UNIX

NETWORK
PROGRAMMING

~ b -
! s Mt 0
- L3 - .
— f
-t
e n b o .

£ ' . -
o ...‘-l"\ T ¥)
\ Jod:w-“"h'* -

- L . B

W, RICHARD S

."‘ '.:. -] .
| _b-.-_o'

Communications
UNIX

W. RICHARD STEVENS

The only

guide to UNIX*
interprocess
communications
you'll ever need!

ULINJEX PROGRAN
. PROGRAMMING

Well-implemented interprocess communications (IPC) are key to the performance o
virtually every non-trivial UNIX program. In UNIX Network Programming,
Volume 2, Second Edition, legendary UNIX expert W Richard Stevens presents
a comprehensive guide to every form d IPC, including message passing. synchronization.
shared memory, and Remote Procedure Calls (RPQ‘.

= -

.4
Stevens begins with a hasic: introduction to IPC and the problemsit isintended to solve.
Slep-by-step you'l learn how to maximize both System V IPC and the new Posix standards.
which offer dramatic improvements in convenience and performance. Youll find extensive

coverage d Pthreads. with many examples rrflecting multiple threads instead o multiple
processes. Along the way. youll master every current IPC techniqueand technology. including:

® Pipesand FIFOs ® Posix and System V Semaphores

® Posix and System VV Message Queues ® Posix and System V Shared Memory
© Mutexes and Condition Vanables o Sbtaris Doorsand Sun RPC

* Read-Wiite Locks e Performance Measurements

* Record Locking o IPC Techniques

If you've read Stevens' best-selling first edition o UNIX Networ k Programming,
this book expands its 1IPC coverage by a factor o five! Yai won't just learn about IPC
"from the outside." Youll actually create impleméntations d Posix message queues.
read-write locks, and semaphores, gaining an in-depth understanding d these
capabilitiesyou simply can't get agywhere else.

The book contains extensive new source code--all capgfully optimized and available
on the Web. Youll even find @ complete guide to meaBuring IPC performance

with message passing bandwidth and latertcy progratts, and thread and process
synchronization programs.

The better you understand 1PC, the better your UNIX software will run. This book
contains all you need to know.

ABOUT THE AUTHOR

W. RICHARD STEVENS isauthor o UNIX Network Programming. First Edition,
widely recognized as the classic text in UNIX networking and UNIX Network
Programming, Volume 1, Second Edition. He is also author of Advanced Programming
in the UNIX Environmentand the TCF/IP THustrated Series. Stevens

isan acknowledged UNIX and networking expert. sought-after

instructor, and occasional consultant.

PRENTIGE HALL
Upper Saddle River. NJ 07458
http://www.phptr.com

Fuctionpraaype

page

bool t clnt_control(CLI ENT *cl, unsigned int request, char *ptr): 418
QLI ENT *clnt_create(const char *host, unsi gned | ong prognum,
unsi gned | ong versnum, const char *protocol) ; 401
voi d clnt_destroy(CLIENT *d); 420
int door-bind(int fd); 390
int door-call (int fd, door_arg_t *argp): 361
int door-create(Door - serverqroc *proc, void *cookie, u_int attr); 363
int door-cred(door_cred_t *cred) : 365
int door-info(int fd, door_info_t *info): 365
int door return(char *dataptr, size-t datasize, door_desc_t *descptr, Size-t ndesc); 365
int door-revoke(int fd); 390
Door - creat eqroc *door_sexver_create (Door_create_proc *proc) ; 384
int dooxr_unbind(void); 390
void exr_dump(const char *fmt, ...): 512
void err-nsg(const char *fmt, ...);: 512
void exrr_quit(const char *fmt, ...);: 512
void err_ret(const char *fmt, ...); 511
void err-sys(const char *fmt, ...); 511
int fentl(int fd, int cmd, ... /* struct flock *arg */); 199
int £stat(int fd, struct stat *buf); 328
key-t ftok(const char *pathname, int id); 28
int ftruncate(int fd, of £_t length); 327
int mq close(mgd_t mgdes) ; 77
int mg getattr(mgd t mgdes, Struct mg attr *atir); 79
int mq notify(mgd_t mgdes, const Struct sigevent *notification) ; 87
mgd_t mg open(const char *name, int oflag, .
/* node-t mode, struct mg attr *atfr */ - 76
int mg unlink(const char *name); 7
int msgetl(int msqid, int cmd, struct msgia_as *Wuff); 134
int magget(key-t key, int oflag); 130
FILE *popen(const char *command, const char *type): 52

Function prototype page
int pthread cancel (pthread_t tid) ; 187
voi d pthread_cl eanupgop(int execute); 187
voi d pthread_cleanup push(void (*function(void *), void *arg): 187
int pthread create(pthread-t *td, const pthread attr_t *atlr,
void *(*func)(void *), void *arg); 502
int pthread detach(pthread_t tid) ; 504
voi d pthread exit(voi d *status); 504
int pthread join(pthread t tid, voi d **status); 503
pthread_t pthread self (void); 503
int pthread condattr_destroy(pthread_condattr_t *attr); 172
int pthread_condattr_getpshared(const pthread-condattr-t *affr, int *uvalptr); 173
int pthread _condattr_init (pthread_condattr_t *atir); 172
int pthread condattr setpshared(pthread_condattr_t *attr, int wvalue); 173
int pthread cond broadcast (pthread cond_t *cptr); 171
int pthread cond destroy(pthread_cond_t *cpir); 172
int pthread cond init (pthread cond_t *cptr, const pthread_condattr_t *attr); 172
int pthread cond_signal (pthread_cond_t *cpir); 167
int pthread cond timedwait (pthread_cond_t *cptr, pthread mutex t *mpitr,
const struct timespec *abstime) ; 171
int pthread cond wait (pthread cond _t *cplr, pthread_mutex_t *mpir); 167
int pthread mutexattr_destroy(pthread_mutexattr_t *aktr) ; 172
int prhread mutexattr getpshared(const pthread-nnutexattr-t *attr, int =uvalptry; 173
int pthread mutexattr_init(pthread- nutexattr-t *attr); 172
int pthread mutexattr setpshared(pthread_mutexattr_t *atfr, int wvalue); 173
int pthread mutex_destroy(pthread_mutex_t *mptr); 172
int pthread mutex init(pthread mutex_t *mpir, const pthread- nutexattr-t *attr); 172
int pthread mutex_ lock(pthread_mutex_t *mptr) ; 160
int pthread mutex_trylock(pthread_mutex_t *mpir); 160
int pthread mutex_unlock(pthread_mutex_t *mpir): 160
int pthread rwlockattr destroy(pthread_rwlockattr_t *attr); 179
int pthread rwlockattr_getpshared(const pthread-rw ockattr-t *attr, int *uvalptr); 179
int pthread rwlockattr_init(pthread_rwlockater_t *attr); 179
int pthread rwlockattr setpshared(pthread-rw ockattr-t =*attr, int value); 179
int pthread_rwlock destroy(pthread_rwlock_t *rwptr); 179
int pthread_rwlock init (pthread_rwlock_t *rwpir,
const pthread-rw ockattr-t *attr); 179
int pthread_rwlock _rdlock(pthread_rwlock_t *rwptr); 178
int pthread rwlock_tryrdlock(pthread_rwlock_t *rwptr); 178
int pthread rwlock trywrlock(pthread rwlock t *rwptr); 178
int pthread rwlock unlock(pthread_rwlock_t *rwptr); 178
int pthread rwlock wrlock(pthread rwlock_t *rwpir); 178

UNIX Network Programming

Volume 2
Second Edition

Interprocess Communications

by W. Richard Stevens

{

= LS

-13-081081-9

0
w u mi m‘ Il
7801301810816 ”mmln

Prentice Hall PTR
Upper Saddle River, NJ 07458
www.phptr.com 9

Library of CongressCataloging-in-PublicationData

Stevens, W. Richard.
UNIX network programming | by W. Richard Stevens. -- 2nd ed.
v. <1 >:ill.: 25¢cm.
Includes bibliographical referencesand index.
Contents: v. 1. Networking APIs : socketsand XTI.
ISBN 0-13-490012-X (v. 1)
1 UNIX (Computer file) 2. Computer networks. 3. Internet
programming. |. Title.
QA76.76.0638755 1998
005.7' 12768--DC21 97-31761

Editorial/production supervision: Patti Guerrieri
Cover designdirector: Jerry Vorta

Cover designer: Scott Weiss

Manufacturing manager: Alexis R. Heydt
Marketing manager: Miles Williams
Acquisitions editor: Mary Franz

Editorial assistant: Noreen Regina

©1999 by Prentice Hall PTR
Prentice-Hall, Inc.

A Simon & Schuster Company
Upper Saddle River, NJ07458

Prentice Hall booksare widely used by corporations and government agencies
for training, marketing, and resale.

The publisher offers discounts on this book when ordered in bulk quantities.

For moreinformation, contact: Corporate Sales Department, Phone: 800-382-3419;
Fax: 201-236-7141; E-mail: corpsales@prenhall.com; or write: Prentice Hall PTR,
Corp. Sales Dept., One Lake Street, Upper Saddle River, NJ07458.

All products or services mentioned in this book are the trademarksor service marks of their
respective companies or organizations.

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the publisher.

Printed in the United States of America
1098765432

[SBN 013-081081-9

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall CanadaInc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

To the Usenet community;
for many questions answered,
and many FAQs provided.

Abbreviated Table

of Contents

Part 1. Introduction 1
Chapter 1. Introduction 3
Chapter 2. Posix IPC 19
Chapter 3. System V IPC 27
Part 2. Message Passing 41
Chapter 4. Pipes and FIFOs 43
Chapter 5. Posix Message Queues 75
Chapter 6. System V Message Queues 129
Part 3. Synchronization 157
Chapter 7. Mutexes and Condition Variables 159
Chapter 8. Read—-Write Locks 177
Chapter 9. Record Locking 193
Chapter 10. Posix Semaphores 219
Chapter 11. System V Semaphores 281
Part 4. Shared Memory 301
Chapter 12. Shared Memory Introduction 303
Chapter 13. Posix Shared Memory 325
Chapter 14. System V Shared Memory 343
Part 5. Remote Procedure Calls 353
Chapter 15. Doors 355
Chapter 16. Sun RPC 399
Appendix A. Performance Measurements 457
Appendix B. A Threads Primer 501
Appendix C. Miscellaneous Source Code 505
Appendix D. Solutions to Selected Exercises 515

Table of Contents

Preface Xiii
Part 1. Introduction 1
Chapter 1. Introduction

1.1 Introduction 3

1.2 Processes, Threads, and the Sharing of Information 5

1.3 Persistence of IPC Objects 6

14 Name Spaces 7

15 Effect of fork, exec, and exit on IPC Objects 9
16 Error Handling: Wrapper Functions 11

1.7 Unix Standards 13

18 Road Map to IPC Examples in the Text 15

19 Summary 16

Chapter 2. Posix IPC 19
21 Introduction 19
22 IPC Names 19
23 Creating and Opening IPC Channels 22
24 IPC Permissions 25

25 Summary 26

Vil

viii UNIX Network Programming Contents
Chapter 3. System V IPC 27
31 Introduction 27
32 key—t Keys and ftok Function 28
33 ipcqgerm Structure 30
34 Creating and Opening IPC Channels 30
35 IPC Permissions 32
36 identifier Reuse 34
37 ipcs and ipcrm Programs 36
38 Kernel Limits 36
39 Summary 38
Part 2. Message Passing 41
Chapter 4. Pipes and FIFOs 43
41 Introduction 43
4.2 A Simple Client—Server Example 43
4.3 Pipes 44
44 Full-Duplex Pipes 50
45 popen and pclose Functions 52
46 FIFOs 54
47 Additional Properties of Pipes and FIFOs 58
48 One Server, Multiple Clients 60
49 Iterative versus Concurrent Servers 66
4.10 Streams and Messages 67
411 Pipe and FIFO Limits 72
412 Summary 73
Chapter 5. Posix Message Queues 75
51 Introduction 75
5.2 mqg_open, mg_close, and mg_unlink Functions 76
5.3 mg_getattr and mg_setattr Functions 79
54 mqg_send and mg_receive Functions 82
55 Message Queue Limits 86
5.6 mg_noti fy Function 87
57 Posix Realtime Signals 98
58 implementation Using Memory-Mapped /O 106
5.9 Summary 126
Chapter 6. System V Message Queues 129
6.1 Introduction 129
6.2 msgget Function 130
6.3 msgsnd Function 131
6.4 msgrcv Function 132
65 msgctl Function 134
6.6 Simple Programs 135
6.7 Client—Server Example 140
6.8 Multiplexing Messages 142

UNIX Network Programming Contents ix

6.9 Message Queues with sel ect and pol | 151
6.10 Message Queue Limits 152
6.11 Summary 155
Part 3. Svnchronization 157
Chaptgr 7. Mutexes and Condition Variables 159
71 Introduction 159
72 Mutexes: Locking and Unlocking 159
73 Producer—Consumer Problem 161
7.4 Locking versus Waiting 165
75 Condition Variables: Waiting and Signaling 167
7.6 Condition Variables: Timed Waits and Broadcasts 171
7.7 Mutexes and Condition Variable Attributes 172
7.8 Summary 174
Chapter 8. Read-Write Locks 177
8.1 Introduction 177
8.2 Obtaining and Releasing Read-Write Locks 178
8.3 Read-Write Lock Attributes 179
8.4 Implementation Using Mutexes and Condition Variables 179
8.5 Thread Cancellation 187
8.6 Summary 192
Chapter 9. Record Locking 193
9.1 Introduction 193
9.2 Record Locking versus File Locking 197
9.3 Posix fcnt| Record Locking 199
9.4 Advisory Locking 203
9.5 Mandatory Locking 204
9.6 Priorities of Readers and Writers 207
9.7 Starting Only One Copy of a Daemon 213
9.8 Lock Files 214
99 NFS Locking 216
9.10 Summary 216
Chapter 10. Posix Semaphores 219
101 Introduction 219
10.2 sem_open, sem close, and sem_unlink Functions 225
10.3 sem_wait and sem_trywait Functions 226
10.4 sem post and sem getvalue Functions 227
10.5 Simple Programs 228
10.6 Producer—Consumer Problem 233
10.7 File Locking 238
10.8 sem_init and sem_destroy Functions 238
10.9 Multiple Producers, One Consumer 242
10.10 Multiple Producers, Multiple Consumers 245

X UNIX Nework Programming Contents

10.11 Multiple Buffers 249
10.12 Sharing Semaphores between Processes 256
10.13 Semaphore Limits 257
10.14 Implementation Using FIFOs 257
10.15 Implementation Using Memory-Mapped /O 262
10.16 Implementation Using System V Semaphores 271
10.17 Summary 278
Chapter 11. System V Semaphores 281
1.1 Introduction 281
11.2 senget Function 282
11.3 senpp Function 285
11.4 senct| Function 287
115 Simple Programs 289
116 File Locking 294
1.7 Semaphore Limits 296
11.8 Summary 300
Part 4. Shared Memory 301
Chapter 12. Shared Memory Introduction 303
121 Introduction 303
12.2 mmap, munmap, and msync Functions 307
12.3 Increment Counter in a Memory-Mapped File 311
12.4 4.4BSD Anonymous Memory Mapping 315
12.5 SVR4 /dev/zero Memory Mapping 316
12.6 Referencing Memory-Mapped Objects 317
12.7 Summary 322
Chapter 13. Posix Shared Memory 325
13.1 Introduction 325
13.2 shm _open and shm_unlink Functions 326
13.3 ftruncate and fstat Functions 327
13.4 Simple Programs 328
13.5 Incrementing a Shared Counter 333
13.6 Sending Messages to a Server 336
13.7 Summary 342
Chapter 14. System V Shared Memory 343
14.1 Introduction 343
14.2 shnget Function 343
14.3 shmat Function 344
14.4 shndt Function 345
14.5 shmetl Function 345
14.6 Simple Programs 346
14.7 Shared Memory Limits 349
14.8 Summary 351

UNIX Network Programming Contents xi
Part 5. Remote Procedure Calls 353
Chapter 15. Doors 355

151 Introduction 355
1562 door - cal I Function 361
153 door - creat e Function 363
154 door - r et urn Function 364
155 door - cred Function 365
15.6 door - i nfo Function 365
157 Examples 366
158 Descriptor Passing 379
159 door - server - creat e Function 384
15.10 door_bind, door - unbi nd, and door - r evoke Functions 390
15.11 Premature Termination of Client or Server 390
1512 Summary 397
Chapter 16. Sun RPC 399
16.1 Introduction 399
16.2 Multithreading 407
16.3 Server Binding 411
16.4 Authentication 414
16.5 Timeout and Retransmission 417
16.6 Call Semantics 422
16.7 Premature Termination of Client or Server 424
16.8 XDR: External Data Representation 426
16.9 RPC Packet Formats 444
16.10 Summary 449
Epilogue 453
Appendix A. Performance Measurements 457
Al Introduction 457
A2 Results 458
A3 Message Passing Bandwidth Programs 467
A4 Message Passing Latency Programs 480
A5 Thread Synchronization Programs 486
A6 Process Synchronization Programs 497
Appendix B. A Threads Primer 501
B.1 Introduction 501
B.2 Basic Thread Functions: Creation and Termination 502
Appendix C. Miscellaneous Source Code 505
C1 unpi pc .h Header 505
C2 confi g. h Header 509
C3 Standard Error Functions 510

xii UNIX Network Programming Contents

Appendix D. Solutions to Selected Exercises 515
Bibliography 535
539

Index

Preface

Introduction

Most nontrivial programsinvolvesome form of |PC or I nterprocessCommunication. This
isanatural effect d thedesign principlethat the better approach isto design an applica-
tion as a group of small pieces that communicatewith each other, instead d designing
one huge monolithic program. Higtoricaly, applications have been built in the follow-

ing ways.

1. One huge monolithic program that does everything. The various piecesd the
program can be implemented as functions that exchange information as func-
tion parameters, functionreturn values, and global variables.

2. Multiple programs that communicate with each other using some form d 1PC.
Many d the standard Unix tools were designed in this fashion, using shell
pipelines(aformof IPC) to passinformationfrom one program to the next.

3. One program comprised d multiple threads that communicatewith each other
using some type d IPC. The term IPC describes this communication even
thoughiit is between threadsand not between processes.

Combinationsd the second two forms d design are also possble: multiple processes,
each consistingd one or more threads, involving communication between the threads
within a given processand between the different processes.

What | have described is distributing the work involved in performing a given
application between multiple processes and perhaps among the threads within a pro-
cess. On a system contai ning multiple processors (CPUs), multiple processes might be

Xiii

xiv. UNIX Nework Programming Prefece

able to run at thesame time (on different CPUs), or the multiplethreads d a given pro-
cess might be able to run at the same time. Therefore, distributing an application
among multiple processes or threads might reduce the amount o time required for an
applicationto perform a given task.

Thisbook describesfour differentformsd 1PCin detail:

1. message passing (pipes, FIFOs, and message queues),
2. synchronization(mutexes, condition variables, read—write locks, file and record
locks, and semaphores),

3. shared memory (anonymousand named), and
4. remote procedurecals(Solaris doorsand Sun RPC).

This book does not cover the writing d programsthat communicate across a computer
network. Thisform d communication normally involves what is called the sockets API
(application program interface) using the TCP/IP protocol suite; these topics are cov-
eredindetail in Voumeld thisseries[Stevens19981L

One could argue that single-host or nonnetworked IPC (thesubject d this volume)
should not be used and instead all applicationsshould be written as distributed appli-
cationsthat run on varioushostsacrossa network. Practicdly, however, single-hostIPC
is often much faster and sometimes simpler than communicating across a network.
Techniquessuch as shared memory and synchronization are normally available only on
a single host, and may not be used across a network. Experience and history have
shown a need for both nonnetworked IPC (this volume) and IPC across a network
(Volumeld thisseries).

Thiscurrent volume buildson thefoundation d VVolumel and my other four books,
which are abbreviated throughout thistext asfollows.

UNPv1: UNIX Network Programming, Volume 1 [Stevens19981,

APUE: Advanced Programming in the UNI X Environment [Stevens 19921,
TCPv1: TCP/IP lllustrated, Volume 1 [Stevens1994],

TCPv2: TCP/IP |llustrated, Volume 2 [Wright and Stevens 19951, and
TCPv3: TCP/IP |llustrated, Volume 3 [Stevens 19961

Although covering IPC in a text with "network programming™ in the title might
seem odd, IPC is often used in networked applications. As stated in the Preface o the
1990 edition d UNIX Network Programming, " A requisite for understanding how to
develop software for a network is an understanding o interprocess communication
(rC).”

Changes from the First Edition

This volume is a complete rewrite and expanson d Chapters 3 and 18 from the 1990
edition d UNIX Network Programming. Based on a word count, the materia has
expanded by a factor d five. The following are the mgjor changes with this new edi-
tion:

UNIX Network Programming Pdece xv

Readers

In addition to thethreeforms d "'System V IPC" (message queues, semaphores,
and shared memory), the newer Posix functions that implement these three
typesd IPC areaso covered. (I say moreabout the Posx family o standardsin
Section 1.7.) In the coming years, | expect a movement to the Posix IPC func-
tions, which haveseveral advantagesover their System V counterparts.

The Posix functions for synchronization are covered: mutex locks, condition
variables, and read-writelocks. These can be used to synchronizeeither threads
or processesand are often used when accessing shared memory.

This volume assumes a Posx threads environment (caled " Pthreads™), and

many d the examplesare built using multiple threads instead & multiple pro-
cesses.

The coverage d pipes, FIFOs, and record locking focuses on their Posix defini-
tions.

In addition to describing the IPC facilitiesand showing how to use them, | also
develop implementations d Posix message queues, read-write locks, and Posix
semaphores (all & which can be implemented as user libraries). These imple-
mentations can tie together many different features (e.g., one implementationd
Posix semaphores uses mutexes, condition variables, and memory-mapped1/01
and highlight conditions that must often be handled in our applications(suchas
race conditions, error handling, memory lesks, and variable-length argument
lists). Understanding an implementation d a certain feature often leads to a
greater knowledged how to usethat feature.

The RPC coverage focuses on the Sun RPC package. | precede this with a
description of the new Solaris doors API, which issimilar to RPC but on asingle
host. This provides an introduction to many d the features that we need to
worry about when calling procedures in another process, without having to
worry about any networking details.

This text can be used either as a tutorial on IPC, or as a reference for experienced pro-
grammers. Thebook isdivided intofour main parts:

message passing,
synchronization,
shared memory, and
remote procedurecalls

but many readers will probably be interested in speafic subsets. Most chapters can be
read independently o others, although Chapter 2 summarizes many features common
to al the Posix IPC functions, Chapter 3 summarizes many features common to all the
System V |PC functions, and Chapter 12 is an introduction to both Posix and SystemV
shared memory. All readers should read Chapter 1, especially Section 1.6, which
describes somewrapper functionsused throughout thetext. The Posix IPC chaptersare

XVi UNIX Nework Programming Preface

independentd the System V IPC chapters, and the chapterson pipes, FIFOs, and record
locking belong to neither camp. The two chapterson RPC are adso independent d the
other IPC techniques.

To aid in the use as a reference, a thorough index is provided, aong with sum-
marieson the end papersd whereto find detailed descriptionsd al thefunctionsand
structures. To help those reading topics in a random order, numerous references to
related topicsare provided throughout thetext.

Source Code and Errata Availability

The source code for all the examples that appear in this book is available from the
author's home page (listed at the end d this Preface). The best way to learn the IPC
techniques described in this book is to take these programs, modify them, and enhance
them. Actually writing code d thisform is the only way to reinforce the concepts and
techniques. Numerous exercisesare aso provided at theend d each chapter, and most
answersare providedin Appendix D.

A current erratafor thisbook isalso availablefrom the author's home page.

Acknowledgments

Although the author's nameisthe only oneto appear on the cover, the combined effort
d many peopleis required to produce a quality text book. First and foremogt is the
author's family, who put up with thelong and weird hours that go into writing a book.
Thank you onceagain, Sdly, Bill, Ellen, and David.

My thanks to the technical reviewers who provided invaluable feedback (135
printed pages) catching lots o errors, pointing out areas that needed more explanation,
and suggesting alternative presentations, wording, and coding: Gavin Bowe, Allen
Briggs, Dave Butenhof, Wan-Teh Chang, Chris Cleeland, Bdb Friesenhahn, Andrew
Gierth, Scott Johnson, Marty Leisner, Larry McVoy, Craig Metz, Bob Nelson, Steve Rago,
Jim Reid, Swamy K. Sitarama, Jon C. Snader, lan Lance Taylor, Rich Teer, and Andy
Tucker.

Thefollowing people answered email questionsd mine, in some cases many ques-
tions, all & whichimproved the accuracy and presentation d the text: David Bausum,
Dave Butenhof, Bill Gallmeister, Mukesh Kacker, Brian Kernighan, Larry McVoy, Steve
Rago, Keith Skowran, Bart Smaalders, Andy Tucker, and JohnWait.

A special thanks to Larry Rafsky at GSquared, for lots o things. My thanks as
usual to the National Optical Astronomy Observatories(NOAQ), Sidney Wdff, Richard
Waff, and Steve Crandi, for providing access to their networks and hosts. Jim Bound,
Matt Thomas, Mary Clouter, and Barb Glover o Digital Equipment Corp. provided the
Alpha system used for most d the examplesin thistext. A subset d the codein this
book wastested on other Unix systems. my thanksto Michael Johnsond Red Hat Soft-
ware for providing the latest releasesd Red Hat Linux, and to Dave Marquardt and
JesseHaug d IBM Austin for an RS/6000 system and access to the latest releases o
AIX.

UNIX Network Programming Rdace xvii

My thanks to the wonderful saff at Prentice Hal —my editor Mary Franz, along
with Noreen Regina, Sophie Papanikolaou, and Patti Guerrieri —for all their help, espe-
cidly in bringing everything together on a tight schedule.

Colophon

| produced camera-ready copy d the book (PostScript), which was then typeset for the
final book. The formatting system used was JamesClark’s wonderful gr of f package,
on aSparcStation running Solaris 26. (Reportsd troff's death are greatly exaggerated.)
| typed in all 138897 words using the vi editor, created the 72 illustrations using the
gpi ¢ program (using many d Gary Wright's macros), produced the 35 tables using the
gtbl program, performed all the indexing (using a set d awk scripts written by Jon
Bentley and Brian Kernighan), and did thefinal pagelayout. Dave Hanson's | oompro-
gram, the GNU i ndent program, and some scripts by Gary Wright were used to
includethe8046 linesd C sourcecodein the book.

| welcomeemail from any readers with comments, suggestions, or bug fixes.

Tucson, Arizona W. Richard Stevens
July1998 r st evens@ohal a. com
http://ww. kohal a. com -r st evens

Part 7

Introduction

1.1

Introduction

Introduction

IPC stands for interprocess communication. Traditionally the term describes different
waysd message passing between different processesthat are running on someoperating
system. This text also describes numerous forms o synchronization, because newer
formsd communication, such as shared memory, requiresomeform d synchronization
to operate.

Intheevolution d the Unix operating system over the past 30 years, message pass-
ing hasevolved through the following stages:

Pipes (Chapter 4) were thefirst widdly used form o IPC, available both within
programs and from the shell. The problem with pipes is that they are usable
only between processes that have a common ancestor (i.e., a parent—hild rela-
tionship), but thiswasfixed with theintroduction o named pipes or FIFOs (Chap-
ter 4).

System V message queues (Chapter 6) wereadded to SystemV kernelsin the early
1980s. These can be used between related or unrelated processes on a given
host. Although these are till referred to with the " System V' prefix, most ver-
sons d Unix today support them, regardiess d whether their heritage is
SystemV or not.

When describing Unix processes, the term related meansthe pr ocesseshave someancestor
in common. Thisis another way of saying that these related processes wer e gener ated

4

Introduction Chapter 1

from this ancestor by one or more forks. A common exampleis when a process cals
fork twice, generating two child processes. We then say that these two children are
related. Smilarly, each child is related to the parent. With regard to IPC, the parent can
establish some form o IPC beforecalling fork (a pipeor message queue, for example),
knowing that the two children will inherit this|PC object acrossthe fork. Wetalk more
about theinheritanced the various |PC objectswith Figure1.6. We must also note that
all Unix processesare theoretically related to the init process, which starts everything
going when a system is bootstrapped. Practicaly speaking, however, process relation-
shipsstart with alogin shell (calledasesson) and al the processesgenerated by that shell.
Chapter 9df APUE talksabout sessionsand processrel ationshipsin moredetail.

Throughout the text, we use indented, parenthetical notes such as this one to describe
implementationdetails, historica points, and minutiae.

Posix message queues (Chapter 5) were added by the Posix realtime standard
(1003.1b-1993, which we say more about in Section 1.7). These can be used
between related or unrelated processeson agiven host.

Remote Procedure Calls (RPCs, which we cover in Part 5) appeared in the
mid-1980sas away o calling afunction on one system (theserver) from a pro-
gram on another system (the client), and was developed as an alternative to
explicit network programming. Since information is normally passed between
the client and server (the arguments and return values d the function that is
called), and since RPC can be used between aclient and server on the same host,
RPC can beconsidered as another form o messagepassing.

Looking at theevolution d the variousformsd synchronization provided by Unix
isasointeresting.

Early programs that needed some form o synchronization (often to prevent
multipl e processesfrom modifying thesamefileat the sametime) used quirks o
thefilesystemn, somed whichwetalk about in Section 9.8.

Record locking (Chapter 9) wasadded to Unix kernelsin theearly 1980s and then
standardized by Posix.1 in1988.

System V' semaphores (Chapter 11) were added along with System V shared memory
(Chapter 14) at the same time System V message queues were added (early
1980s). Mog versionsd Unix support thesetoday.

Posix semaphores (Chapter 10) and Posix shared memory (Chapter 13) were also
added by the Posix realtime standard (1003.1b-1993, which we mentioned with
regard to Posix messagequeuesearlier).

Mutexes and condition variables (Chapter 7) are two forms o synchronization
defined by the Posix threads standard (1003.1c-1995). Although these are often
used for synchronization between threads, they can also provide synchroniza-
tion between different processes.

Read-write locks (Chapter 8) are an additional form o synchronization. These
have not yet been standardized by Posix, but probably will be soon.

Sadion1.2

Processes Threeds and the Sharing d Information 5

12

Processes, Threads, and the Sharing of Information

In the traditional Unix programming model, we have multiple processes running on a

system,

with each process having its own address space. Information can be shared

between Unix processesin variousways. Wesummarizethesein Figurel.1.

T
: shared !

TOCESS TOCess rocess rocess
P P P P | Memory |

process

S

Figure1.1 Threewaysto shareinformationbetween Unix processes.

1. Thetwo processeson theleft are sharing someinformation that residesin afile

in the filesystem. To access this data, each process must go through the kernel
(e.g., read, write, Iseek, and the like). Some form d synchronization is
required when afileis being updated, both to protect multi plewritersfrom each
other, and to protect one or morereadersfrom awriter.

The two processes in the middle are sharing some information that resides
within thekernd. A pipeisan exampled thistyped sharing, asare SysemV
message queuesand SystemV semaphores. Each operation to accessthe shared
information now involvesasystem call into thekernd.

The two processes on the right have a region d shared memory that each pro-
cess can reference. Once the shared memory isset up by each process, the pro-
cesses can access thedata in the shared memory without involving the kernd at
al. Someform o synchronizationis required by the processesthat are sharing
the memory.

Note that nothing restrictsany d the IPC techniquesthat we describe to only two pro-

Cesses.

Any d thetechniquesthat wedescribework with any number o processes. We

show only two processesin Figure1.1 for smplicity.

Threads

Although the concept o a processwithin the Unix system has been used for along time,
the concept o multiple threads within a given process is relatively new. The Posix.1
threads standard (called “Pthreads”) was approved in 1995. From an IPC perspective,

6

Introduction Chapter 1

1.3

al the threads within a given process share the same globa variables(e.g., the concept
d shared memory is inherent to this model). What we must worry about, however, is
synchronizing access to this globa data among the various threads. Indeed, synchro-
nization, though not explicitly aform o IPC, is used with many formsd IPC to control
accessto someshared data.

In this text, we describe IPC between processes and IPC between threads. We
assume a threads environment and make statements o the form "if the pipe is empty,
the calling thread is blocked in its cdl to read until some thread writes data to the
pipe' If your systemm does not support threads, you can substitute "process" for
"thread in this sentence, providing the dassic Unix definition o blockinginar ead o
an empty pipe. But on a system that supports threads, only the thread that calsr ead
on an empty pipeis blocked, and the remaining threadsin the process can continueto
execute. Writing data to this empty pipe can be done by another thread in the same
processor by somethread in another process.

Appendix B summarizes some d the characteristicsd threads and the five basic
Pthread functionsthat are used throughout thistext.

Persistence of IPC Objects

We can define the persistence o any type d IPC as how long an object o that type
remainsin existence. Figurel.2 showsthreetypesd persistence.

process existsuntil last processwith

IPC adbject open closesthe dbject

}proo%persdenthC:

exissuntil kernd reboots

-1 Y kernd-persgentIPC:
o IPC objet isexplicitly deleted

existsuntil IPC dbjet is
explicitlydeeted

Figure1.2 Perssenced IPC objects

}filejsten-persjstent IPC:

1. A process-persistent IPC object remains in existence until the last process that
holdstheobject open closesthe object. Examplesare pipesand FIFOs.

2. A kernel-persistent IPC object remains in existence until the kernel reboots or
until the object is explicitly deleted. Examples are System V message queues,
semaphores, and shared memory. Posix message queues, semaphores, and
shared memory must be at least kernd-persistent, but may be file-
system-persistent,depending on thei mplementation.

Section1.4 Name Spaces 7

14

3. Afilesygtem-persgtent! PC object remainsin existence until the object is explicitly
deleted. Theobject retainsits valueeven if the kerndl reboots. Posx message
queues, semaphores, and shared memory have this property, if they areimple-
mented using mapped files (not a requirement).

We must be careful when defining the persistenced an IPC object becauseit is not
dwaysasit seems. For example, the data within a pipeis maintained within the kernd,
but pipes have process persistence and not kernel persistence—after the last process
that has the pipe open for reading closes the pipe, the kernel discards all the data and
removesthe pipe. Similarly,even though FIFOs have nameswithin thefilesystem, they
aso have process persistencebecause all the data in a FIFO is discarded after the last
processthat has the HFO open closesthe FIFO.

Figure 1.3 summarizesthe persistenced the IPC objects that we describein this
text.

Typed IPC Persgence
Pipe process
FIFO process
Pcsix mutex process
Posix conditionvariable process
Posix read-writelock process
fentl record locking process
Posx messagequeue kernd
Pcsix named semaphore kernd
Pcsix memory-based ssmaphore process
Posix shar ed memory kernd
System V messagequeue kernd
Sysem V semaphore kernd
System V shared memory kernd
TCP socket process
UDP socket process
Unix domain socket process

Figure1.3 Persgtenced varioustypesd IPC objects

Note that no type d IPC has filesystemn persistence, but we have mentioned that the
three types o Posix IPC may, depending on the implementation. Obvioudy, writing
data to afile providesfilesystem persistence, but this is normally not used asaform o
IPC. Mogt formsd IPC are not intended to survive a system reboot, because the pro-
cesses do not survive the reboot. Requiring filesystem persistence would probably
degrade the performancefor agivenform o I1PC, and a common design god for IPCis
high performance.

Name Spaces

When two unrelated processes use some type d IPC to exchange information between
themselves; the IPC object must have a name or identifier o some form so that one

8 Introduction Chapter 1

process (oftena server) can createthe |PC object and other processes (oftenone or more
clients) can specify that same IPC object.

Pipes do not have names (and therefore cannot be used between unrelated pro-
cesses), but FIFOs have a Unix pathname in the filesystemas their identifier (and can
therefore be used between unrelated processes). As we moveto other formsd IPCin
the following chapters, we use additional naming conventions. The set d possible
names for a given type d IPC is cdled its hame space. The name space is important,
because with all forms d IPC other than plain pipes, the nameis how the client and
server connect with each other to exchange messages.

Figurel.4 summarizesthe naming conventionsused by thedifferentformsd 1PC.

Name space Identification Posix.1 .
Typed IPC toopen or create after IPC opened 1996 Unix 58

Pipe (noname) descriptor . .
FIFO pathname descriptor -

| Posix mutex (noname) pthread—mutex—t ptr U
Posix conditionvariable (noname) pthread_cond_t ptr °
Posix read-writelock (noname) pthread_rwlock_t ptr .

| £entl recordlocking pathname descriptor . .
Posix messagequeue Posix IPC name mgd_t value - .
Posix named semaphore Posix IPC name sem_t pointer - .

| Posix memory-based semaphore (noname) sem_t pointer . .
Posix shared memory Posix |IPC name descriptor . .
SystemV messagequeue key—t key SystemV IPCidentifier .
SystemV semaphore key_t key SystemV IPCidentifier .
SystemV shared memory key_t key SystemV IPCidentifier .
Doors pathname descriptor

| Sun RPC program/version RRC handle
TCPsocket IP addr & TCPport descriptor g .
UDP socket IP addr & UDP port descriptor lg .

‘ Unix domain socket pathname descriptor g .

Figure1.4 Namespacesfor thevariousformsd IPC.

Weal so indicatewhich forms of IPC are standardized by the1996 version o Posix.1 and
Unix 98, both d which wesay more about in Section 1.7. For compari son purposes, we
include three types o sockets, which are described in detail in UNPv1. Note that the
sockets AP (application program interface) is being standardized by thePosix.1g work-
ing group and should eventually becomepart o afuturePosix.1 standard.

Even though Posix.1 standardizes semaphores, they are an optional feature. Fig-
ure 1.5 summarizes which features are specified by Posix.1 and Unix 98. Each featureis
mandatory, not defined, or optional. For the optional features, we specify the name o
the constant (e.g., —POSIX—THREADS) that is defined (normally in the <unistd.h>
header)if thefeatureissupported. Notethat Unix 98isasuperset o Posix.1.

Sation15 Efed d fork, exec, ad exit an IPC Oheds
Typed IPC Posix.1 1996 Unix 98
Pipe mandatory mandatory
FIFO mandatory mandatory
Posix mutex _POSIX—THREADS mandatory
Posix condition variable _POSIX—THREADS mandatory
processshared mutex/CV | —POSIX—THREAD—PROCESS—SHARED mandatory
Posix read-writelock (not defined) mandatory
fcntl recordlocking mandatory mandatory
Posix messagequeue _POSIX —MESSAGE—PASSING _XOPEN_REALTIME
Posix semaphores _POSIX —SEMAPHORES _XOPEN_REALTIME
Posix shared memory _POSIX—SHARED—MEMORY —OBJECTS | SOPEN— REALTIME
SystemV messagequeue (not defined) mandatory
System V semaphore (not defined) mandatory
SystemV shared memory (not defined) mandatory
Doors (not defined) (not defined)
Sun RPC (not defined) (not defined)
mmap —POSIX—MAPPED—FILES or mandatory
_POSIX —SHARED —MEMORY —OBJECTS
Realtime signals _POSIX—REALTIME—SIGNALS _XOPEN_REALTIME
Figurel5 Availabilityd thevariousformsd IPC.
1.5 Effect of fork, exec, and exit on IPC Objects

We need to understand the effect o thef or k, exec, and _exit functionson the vari-
ousformsd IPC that wediscuss. (Thelatter iscdled by theexit function.) We sum-
marizethisin Figure1.6.

Most o these features are described later in the text, but we need to make a few
points. First, the calling o f or k from a multithreaded process becomes messy with
regard to unnamed synchronization variables(mutexes, condition variables, read-write
locks, and memory-based semaphores). Section 6.1 o [Butenhof 19971 provides the
details. Wesimply notein thetablethat if thesevariablesresidein shared memory and
are created with the process-shared attribute, then they remain accessible to any thread
a any process with access to that shared memory. Second, thethreeformsd System V
IPC haveno notion d being open or closed. Wewill seein Figure6.8 and Exercises11.1
and 14.1 that all we need to know to access thesethreeforms d IPCisan identifier. So
thesethreeforms o IPC are availableto any processthat knowstheidentifier, although
somespecia handlingisindicated for semaphoresand shared memory.

10 Introduction Chapter1
Typed IPC fork exec _exit
Pipes child getscopiesd all al opendescriptorsremain | al opendescriptors closed;
and parent's open descriptors open unlessdescriptor's all data removedfrom pipe
FIFOs FD_CLOEXEC hit set or HFOonlast close
Posix | child getscopiesd all all open message queue all open message queue
message parent's open message descriptorsare closed descriptorsareclosed
queues queue descrivtors
SystemV no effect noeffect no effect
messsge
queues
Posix shared iff in shared vanishesunlessin shared vanishesunlessin shared
mutexesand memory and process- memory that staysopen memory that staysopen
condition shared attribute and process-shared and process-shared
variahles attribute attribute
Posix shared if in shared vanishesunlessin shared vanishesunlessin shared
read-write memory and process- memory that staysopen memory that staysopen
locks shared attribute and process-shared and process-shared
attribute attribute
Posix shared if in shared vanishes unlessin shared vanishesunlessin shared
memory-based || memory and process- memory that staysopen memory that staysopen
semaphores shared attribute and process-shared and process-shared
attribute attribute
Posix al openin parent remain any openareclosed any openareclosed
named openinchild
semaphores
SystemV al sernadj valuesinchild | &l senadj valuescarried all senadj valuesare
semaphores aresetto0 over to new program added to corresponding
semaphorevalue
fentl locksheld by parent are locksare unchanged as all outstandinglocks
record not inherited by child long asdescriptor remains | owned by processare
locking open unlocked
mmap memory mappingsin memory mappingsare memory mappingsare
memory parent areretained by unmapped unmapped
mappings child
Posix memory mappingsin memory mappingsare memory mappingsare
shared parent are retained by unmapped unmapped
memory child
SystemV attached shared memory attached shared memory attached shared memory
shared segmentsremain attached segmentsare detached segmentsare detached
memory by child
Doors child getscopiesd all al door descriptorsshould | all open descriptorsclosed
parent's open descriptors beclosed becausethey are
but only parentisaserver created with FD_CLOEXEC
for door invocationson bit set
door descriptors

Figurel6 Effectd calling fork, exec, and _exit onIPC.

Sadion 16 Error Handling: Wrgoper Functions 11

16

Error Handling: Wrapper Functions

In any real-world program, we must check every functioncall for an error return. Since
terminating on an error is the common case, we can shorten our programsby defininga
wrapper function that performsthe actual function cal, teststhe return value, and termi-
nates on an error. Theconventionwe useisto capitalizethe named thefunction, asin

Sem_post (ptr);

Our wrapper functionisshownin Figurel.7.

387 void lib[wrapunix.c
388 Sem _post(sem_t *sem)
389 {
390 if (sem_post(sem) == -1)
391 err_sys ("sem_post error");
392 }
lib[wrapunix.c

Figure1.7 Our wrapper functionfor the sem_post function.

Whenever you encounter a function name in the text that begins with a capital let-
ter, that is a wrapper function o our own. It calls a function whose name is the
same but begins with the lowercase letter. The wrapper function always terminates
with an error messageif an error is encountered.

When describing the source code that is presented in the text, we always refer to the
lowest-level function being called (e.g., sem_post) and not the wrapper function
(e.g., Sem_post). Similarly the index always refers to the lowest level function
being called, and not the wrapper functions.

Theformat d the source code just shownis used throughout the text. Each nonblank lineis
numbered. The text describing portionsd the code beginswith the starting and ending line
numbers in the left margin. Sometimesthe paragraphis preceded by a short descriptivebold
heading, providing a summary statement d the code being described.

The horizontal rules at the beginning and end d the code fragment specify the source code
filename: thefilewrapunix. cinthedirectory | i b for thisexample. Sincethe sourcecodefor
al theexamplesin the text isfredly available(seethe Preface), you can locate the appropriate
sourcefile. Compiling, running, and especially modifying these programs while reading this
text isan excellent way tolearn the conceptsd interprocesscommunications.

Although thesewrapper functions might not seem like a big savings, when wedis-
cussthreadsin Chapter 7, wewill find that the thread functionsdo not set the standard
Unix errno variablewhen an error occurs, instead the errno valueisthereturn vaue
d the function. This means that every time we cal one o the pthread functions, we
must allocate a variable, save the return value in that variable, and then set errno to
this value before calling our err - sys function (FigureC.4). To avoid cluttering the
code with braces, we can use C's comma operator to combine the assignment into
errno and thecdl of err - sys into asinglestatement, asin thefollowing:

12 Introduction Chapter 1

int n;

if ((n= pthread_mutex_lock(&ndone_mutex)) != 0)
errno = N, err_sys("pthread mutex_lock error");

Alternately, we could definea new error function that takes the system's error number
asan argument. But we can makethispieced code much easier to read as just

Pthread_mutex_lock(&ndone_mutex) ;

by defining our own wrapper function, shown in Figurel.8.

libjwrappthread.c
125 void urapp
126 pthread_mutex_lock(pthread mutex_t *mptr)
127 {
128 int n;
129 if ((N = pthread_mutex_lock(mptr)) == 0)
130 return;
131 errno = N;
132 err_sys ("pthread_mutex_lock error");
i ¢ .
LR lib{wrappthread.c

Figure18 Our wrapper functionfor pthread_mutex_lock.

With careful C coding, we could use macrosinstead d functions, providing a little run-time
effidency, but these wrapper functionsare rardly, if ever, the performancebottleneck o a pro-
gram.

Our choice of capitalizing the first character o the function name is a compromise. Many
other styles were considered: prefixing the function name with an e (asdone on p. 182 o
[Kernighan and Pike 1984]), appending _e to the function name, and so on. Our style seems
theleast distracting whiletill providing a visua indication that some other functionis really
beingcalled.

This technique has the side benefit d checking for errors from functions whose error returns
areoftenignored: cl oseand pthread mutex_lock, for example.

Throughout the rest o thisbook, we usethese wrapper functionsunlesswe need to
check for an explicit error and handle it in some form other than terminating the pro-
cess. We do not show the source code for al our wrapper functions, but the code is
freely available(seethe Preface).

Unix errno Value

When an error occursin a Unix function, the global variableerrno isset to a positive
value, indicating thetyped error, and the function normally returns—1 Our err_sys
functionlooksat the valued errno and printsthe corresponding error messagestring
(e.g., ""Resourcetemporarily unavailable' if errno equalSEAGAIN).

Thevalued errno isset by afunction only if an error occurs. Itsvalueis unde-
fined if thefunction does not return an error. All the positiveerror values are constants
with an all-uppercase name beginning with E and are normally defined in the

Sadion1.7 Unx Standards 13

17

POSIX

<sys/errno.h> header. Noerror hasthevaued 0.

With multiple threads, each thread must haveitsown exxrno variable. Providinga
per-thread errno is handled automatically, although this normally requirestelling the
compiler that the program being compiled must be reentrant. Specifying something
like -D_REENTRANT oOr -D_POSIX_C_SOURCE=199506L to the compiler is typicaly
required. Often the <errno.h> header defines errno as a macro that expandsinto a
function call when - REENTRANT is defined, referencing a per-thread copy d the error
variable.

Throughout the text, we use phrases d the form "the mqg_send function returns
EMSGSIZE"” as shorthand to mean that the function returnsan error (typicaly a return
valued -1) with errno set to the specified constant.

Unix Standards

Mog activity thesedayswith regard to Unix standardizationis being done by Posix and
The Open Group.

Posix is an acronym for " Portable Operating System Interface.” Posix is not a single
standard, but afamily d standards being developed by the Institutefor Electrica and
Electronics Engineers, Inc, normally caled the IEEE. The Posix standards are also
being adopted as international standards by ISO (the International Organization for
Standardization) and IEC (the International Electrotechnica Commission), caled
ISO/IEC. ThePosx standards havegonethroughthefollowingiterations.

o |EEE Std 1003.1-1988 (317 pages) was the first d the Posix standards. It specified
the C languageinterfaceinto a Unix-like kernel coveringthefollowing areas. process
primitives(fork, exec, signals, timers), theenvironment d a process (user IDs, pro-
cess groups), filesand directories (all the1/0 functions), terminal 1/0, the system
databases(password fileand groupfile), and the t ar and cpio archiveformats.

Thefirst Posix gandard was a trial use version in 1986 known as" |[EEEIX." The name Posix
wassuggested by Richard Stallman.

e« |EEE Std 1003.1-1990 (356 pages) was next and it was aso International Standard
ISO/IEC 9945-1: 1990. Minima changes were made from the 1988 version to the
1990 version. Appended to thetitlewas* Part 1: System Application Program Inter-
face (APD [C Language]" indicating that thisstandard wasthe C language APL

o |EEE Std 1003.2-1992 was published in two volumes, totaling about 1300 pages, and
itstitle contained ' Part 2 Shell and Utilities." This part defines the shell (based on
the System V Bourne shell) and about 100 utilities (programs normally executed
from a shell, from ank and basename to vi and yacc). Throughout this text, we
refer to thisstandard as Posix.2.

14 Introduction Chapter 1

IEEE Std 1003.1b-1993 (590 pages) was originally known as IEEE P10034. Thiswas
an update to the 1003.1-1990 standard to includethe realtime extensionsdevel oped
by the P10034 working group: file synchronization, asynchronous/O, semaphores,
memory management (mmap and shared memory), execution scheduling, clocksand
timers, and message queues.

IEEE Std 1003.1, 1996 Edition [IEEE 19961 (743 pages) includes 1003.1-1990 (the base
APY), 1003.1b-1993 (realtimeextensions), 1003.1¢-1995 (Pthreads), and 1003.1i-1995
(technical correctionsto 1003.1b). Thisstandard isalso called ISO/IEC 9945-1: 1996.
Threechapterson threadswere added, along with additional sectionson thread syn-
chronization (mutexesand condition variables), thread scheduling, and synchroniza-
tion scheduling. Throughout thistext, werefer to thisstandard as Posix.1.

Over one-quarter d the 743 pages are an appendix titled " Rationaleand Notes'* This ratio-
nale contains historical information and reasons why certain features were included or omit-
ted. Often therationaleisasinformativeastheofficid standard.

Unfortunately, the IEEE standards are not freely availableon the Internet. Orderinginforma-
tionisgiven in the Bibliography entry for [IEEE 1996].

Note that semaphores were defined in the realtime standard, separately from mutexes and
condition variables(whichweredefined in the Pthreads standard), which accountsfor some d
thedifferencesthat we seeintheir APIs.

Findly, note that read-writelocks are not (yet) part o any Posx standard. We say more about
thisin Chapter 8.

Sometime in the future, a new verson d IEEE Std 1003.1 should be printed to
include the P1003.1g standard, the networking APIs (sockets and XTI), which are
described in UNPv1.

The Foreword d the 1996 Posix.1 standard states that ISO/IEC 9945 consistsd the
following parts:

Part 1: System application program interface(API) [C language],
Part 2 Shell and utilities, and
Part 3 Systern administration (under development).

Parts1 and 2 arewhat wecdl Posix.1 and Posix.2.

Work on al d the Posix standards continuesand it isa moving target for any book
that attemptsto cover it. The current status d the various Posix standards is available
fromhttp://www.pasc.org/standing/sdll.html.

The Open Group

The Open Group was formed in 1996 by the consolidation d the X/Open Company
(founded in 1984) and the Open Software Foundation (OSFE, founded in 1988). It isan
international consortium d vendors and end-user customers from industry, govern-
ment, and academia. Their standards have gone through thefollowingiterations:

Section 1.8 Road Map to IPC Examples in the Text 15

X/Open published the X/Open Portability Guide, I ssue 3 (XPG3) in 1989.

Issue 4 was published in 1992 followed by Issue 4, Varson 2in 1994. Thislatest ver-
sion was also known as "' Spec 1170, with the magic number 1170 being the sum o
the number d system interfaces (926), the number d headers (70), and the number
d commands (174). Thelatest namefor thisset d specificationsisthe “X/Open Sin-
gle Unix Specification,” althoughit isalsocaled "Unix 95.”

In March 1997, Verson 2 d the Single Unix Specification was announced. Products
conforming to this specification can be called "Unix 98" which is how we refer to
thisspecification throughout thistext. The number interfacesrequired by Unix 98
increases from 1170 to 1434, although for a workstation, this jumps to 3030, because
it includes the CDE (Common Desktop Environment), which in turn requires the X
Window System and the Matif user interface. Details are availablein [Josey 19971
and http://www.UNIX-systems.org/version?2.

Much of the SingleUnix Specificationisfredly availableon the I nternet from thisURL.

Unix Versions and Portability

1.8

Mogt Unix systems today conform to some version d Posix.1 and Posix.2. e use the
qualifier ""'some" becauseas updates to Posix occur (e.g., therealtime extensionsin 1993
and the Pthreads addition in 1996), vendors take a year or two (sometimes more) to
incorporate theselatest changes.

Historicdly, most Unix systems show either a Berkeley heritage or a System V her-
itage, but these differences are dowly disappearing as most vendors adopt the Posix
standards. The main differencestill existing deal with system administration, onearea
that no Posix standard currently addresses.

Throughout this text, we use Solaris 26 and Digital Unix 4.0B for most examples.
Thereason isthat at thetimed thiswriting (Iate1997 to early 1998), theseweretheonly
two Unix systemsthat supported System V IPC, Posix IPC, and Posix threads.

Road Map to IPC Examples in the Text

Three patterns d interaction are used predominantly throughout the text to illustrate
variousfeatures:

1. Fle server: a client—server application in which the client sends the server a
pathname and the server returnsthecontentsd that file to the client.

2. Producer—consumer: one or more threads or processes (producers) place data
into a shared buffer, and one or more threads or processes (consumers) operate
on thedatain theshared buffer.

16

Introduction Chapter 1

19

3. Sequence-number-increment: one or more threads or processes increment a
shared sequence number. Sometimes the sequence number is in a shared file,
and sometimesit isin shared memory.

The first example illustratesthe various forms of message passing, whereas the other
two examplesillustratethe varioustypesd synchronizationand shared memory.

To providea road map for the different topics that are covered in thistext, Figures
19, 1.10, and 1.11 summarize the programs that we develop, and the starting figure
number and page number in which the sourcecodeappears.

Summary

IPC has traditionally been a messy area in Unix. Various solutions have been imple-
mented, none of which are perfect. Our coverageisdivided into four main areas.

1. message passing (pipes, FIFOs, message queues),

2. synchronization(mutexes, condition variables, read—writelocks, semaphores),
3. shared memory (anonymous, named), and

4. procedurecalls(Solaris doors, Sun RPC).

We consider |PC between multiple threads in a single process, and between multiple
processes.

The persistence d each type d IPC as either can be process-persistent, kernel-
persistent, or filesystem-persistent, based on how long the IPC object staysin existence.
When choosing thetype d IPC to use for a given application, we must beaware d the
persistenced that IPC object.

Another featured eachtyped IPC isits name space: how IPC objectsareidentified
by the processes and threads that use the IPC object. Some have no name (pipes,
mutexes, condition variables, read—write locks), some have names in the filesystem
(FIFOs), some have what we describein Chapter 2 as Posx |PC names, and some have
other typesd names (what we describein Chapter 3 as System V IPC keys or identi-
fiers). Typicdly, a server crestesan IPC object with some name and the clients use that
nameto accessthe IPC object.

Throughout the source code in the text, we use the wrapper functions described in
Section 1.6 to reducethesize d our code, yet till check every function cdl for an error
return. Our wrapper functionsall begin with a capital letter.

The IEEE Posix standards—Posix.1 defining the basic C interface to Unix and
Posix.2 defining the standard commands— have been the standards that most vendors
are moving toward. The Posix standards, however, are rapidly being absorbed and
expanded by the commercia standards, notably The Open Group's Unix standards,
such as Unix 98.

Section 1.9

Summary

17

Figure | Page Description
4.8 47 | Usestwo pipes, parent-child
4.15 53 Usespopen and cat
4.16 5 | Usestwo HFOs, parent-child
4.18 57 Usestwo HFOs stand-aloneserver, unrelated client
4.23 62 | UsssHFOs stand-aloneiterativeserver, multipleclients
4.25 68 | Usespipeor HFO: buildsrecordsontop d bytestream

6.9 141 | UsestwoSystemV messagequeues

6.15 144 | UsesoneSystemV message queue, multipleclients

6.20 148 | UsesoneSystemV message queue per client, multipleclients
15.18 381 | Usesdescriptor passingacrossadoor

Figure19 Differentversionsd thefileserver client-server example.

Figure | Page | Description
7.2 162 | Mutex only, multiple producers, one consumer
7.6 168 | Mutexand condition variable, multiple producers, one consumer
10.17 236 | Posx named semaphores, one producer, one consumer
10.20 242 | Posx memory-based semaphores, one producer, one consumer
10.21 243 | Posix memory-based semaphores, multiple producers, one consumer
1024 | 246 | Posx memory-based semaphores, multiple producers, multipleconsumers
10.33 254 | Posix memory-based semaphores, one producer, one consumer: multiplebuffers
Figurel10 Differentversonsd theproducer-consumer example.
Figure | Page | Description
94 194 | Seg# infile nolocking
9.3 201 | Seqg#infile fentl locking
9.12 215 | Seqg#infile filesystem locking using open

10.19 239 | Seq#infile, Posix named semaphorelocking

1210 312 | Seq# inmmap shared memory, Posix named semaphorelocking

12.12 314 | Seqg# inmmap shared memory, Posix memory-based semaphorelocking

12.14 316 | Seqg#in4.4BSD anonymousshared memory, Posix named semaphorelocking
12.15 316 | Seq#inSVR4 /dev/zero shared memory, Posix named semaphorelocking
13.7 334 | Segq#in Posix shared memory, Posix memory-based semaphorelocking

A34 487 | Performancemeasurement: mutex locking between threads

A6 489 | Performance measurement: read—writelocking between threads

A39 491 Performance measurement: Posix memory-based semaphorelocking between threads
A4l 493 | Performance measurement: Posix named semaphorelocking between threads
A42 | 494 | Peformance measurement: System V semaphorelocking between threads
A45 496 | Performance measurement: £cnt1 record locking between threads

A48 | 499 | Performancemeasurement: mutex locking between processes

Figure111 Differentversionsd the sequence-number-increment example.

18 Introduction Chapter 1

Exercises

11 In Figure 1.1 we show two processes accessing a single file. If both processes are just
appending new data to the end o thefile(a log file perhaps), what kind o synchronization
isrequired?

12 Lookat your system's <errno . h> header and see how it definesermo.

13 Update Figurel.5by noting the features supported by the Unix systemsthat you use.

2.1

2.2

Posix IPC

Introduction

Thethreetypesd IPC,

* Posix message queues (Chapter 5),
* Posix semaphores(Chapter 10), and
* Posix shared memory (Chapter 13)

arecollectively referred to as " Posx IPC."* They sharesomesimilaritiesin the functions
that access them, and in theinformation that describesthem. This chapter describesall
these common properties: the pathnames used for identification, the flags specified
when opening or creating, and the access permissions.

A summary d their functionsisshownin Figure2.1.

IPC Names

In Figure 1.4, we noted that the threetypesd Posix IPC use "' Posix IPC names™ for their
identification. The first argument to the three functions mg_open, sem_open, and
shm_open is such a name, which may or may not be a real pathname in a filesystem.
All that Posix.1 saysabout these namesis.

It must conform to existing rules for pathnames (must consst o at most
PATH—MAX bytes, including a terminating null byte).

If it beginswith a dash, then different calls to these functions all referencethe
same queue. If it does not begin with a dash, the effect is implementation
dependent.

19

20

Posix IFC Chepter 2

essg Shared
M © Semaphores
queues memory
Header <mgueue.h> | <semaphore.h> | <sys/mman.h>
Functionsto cregte, open, or delete | mg_open sem_open shm_open
mg close sem close shm_unlink
mg unlink sem_unlink
sem_init
sem_destroy
Functionsfor control operations mg getattr ftruncate
mg_setattr fstat
Functionsfor |PC operations mg_send sem wait mmap
mg receive | sem_trywait munmap
mg _notify sem_post
sem_getvalue

Figure21 Summary d Posix IPCfunctions.

e Theinterpretation d additional slashesin the nameisimplementation defined.

So, for portability, these names must begin with a slash and must not contain any other
dashes. Unfortunately, these rulesareinadequateand lead to portability problems.

Solaris 2.6 requirestheinitial slash but forbids any additional slashes. Assuming a
message queue, it then creates threefilesin /tmp that begin with .MQ. For example, if
the argument to mg open is /queue. 1234, then the three files are
/tmp/ .MQDgueue.1234, /tmp/.MQLgueue.1234, and /tmp/.MQPqueue.1234.
Digital Unix 4.0B, on the other hand, createsthe specified pathname in thefilesystem.

The portability problem occursif we specify a name with only one dlash (asthefirst
character): we must have write permission in that directory, the root directory. For
example, /t np.1234 abides by the Posix rules and would be OK under Solaris, but
Digital Unix would try to create thisfile, and unless we have write permissionin the
root directory, thisattempt would fail. If we specify a named /tmp/test.1234, this
will succeed on all systemsthat create an actud file with that name (assuming that the
/t p directory exists and that we havewrite permissionin that directory, whichis nor-
mal for most Unix systems), but fails under Solaris.

To avoid these portability problems we should aways #def i ne the name in a
header that iseasy to changeif we move our application to another system.

Thiscaseisonein which the standard triesto be so genera (in thiscase, the realtime standard
was trying to alow message queue, semaphore, and shared memory implementations all
within existing Unix kernelsand as stand-al one diskless systems) that the standard's solution
isnonportable. Within Posix, thisiscalled "a standard way of being nonstandard.™

Posix.1 definesthethree macros

S_TYPEISMQ (buf)
S_TYPEISSEM (buf)
S_TYPEISSHM (buf)

Section2 2 IPC Names 21

that take a single argument, a pointer to a st at structure, whose contents arefilled in
by thefstat, | stat, or stat functions. These three macros evaluate to a nonzero
valueif the specified IPC object (message queue, semaphore, or shared memory object)
isimplemented asa distinct filetypeand thest at structure referencessuch afile type.
Otherwise, the macroseval uateto 0.

Unfortunately, these macrosare d little use, since there is no guaranteethat these three types
o IPC are implemented using a distinct file type. Under Solaris 26, for example, all three
macrosalwaysevaluateto 0.

All the other macros that test for a given file type have names beginningwith s_1s and their

single argument is the st—mode member o a stat structure. Since these three new macros
haveadifferentargument, their names werechanged to begin with S_TYPEIS.

px_ipc_name Function

Another solution to this portability problem is to define our own function named
px_ipc_name that prefixesthe correct directory for thelocation d Posx IPC names.

#include *unpipc.h"

]
1
|
| . .
I char *px_ipc_name(const char *name);
I
1
I

Returns: nonnull pointer if OK, NULL on error

Thisisthe notation we usefor functionsd our own throughout this book that are not standard
system functions: the box around the function prototype and return value is dashed. The
header that isincluded at the beginningis usually our unpipc . h header (FigureC.1).

The name argument should not containany dashes. For example, thecdl

px_ipc_name("testl™)

returns a pointer to the string /test1 under Solaris 26 or a pointer to the string
/t mp/t est 1 under Digital Unix 4.0B. The memory for the result string isdynamically
alocated and is returned by cdling free. Additiondly, the environment variable
PX_IPC_NAME canoverridethedefault directory.

Figure2.2 showsour implementationd thisfunction.

This may beyour first encounter with snprintf. Lotsdf existingcodecalssprintf instead,
but sprintf cannot check for overflow o the destination buffer. snprintf, on the other
hand, requiresthat the second argument be thesize d the destination buffer, and this buffer
will not be overflowed. Providing input that intentionally overflows a program's sprintf
buffer hasbeen used for many yearsby hackersbreaking intosystems.

snprintf isnot yet part d the ANS C standard but is being considered for arevisond the
standard, currently called C9X. Nevertheless, many vendors are providing it as part d the
standard C library. We use snprintf throughout the text, providing our own version that
justcallssprintf whenitisnot provided.

22 posix IRC Chapter 2
lib/px_ipc_name.c
1 #include "unpipc.h" I'.P R
2 char *
3 px_ipc_name(const char *name)
4 {
5 char *dir, "dst, *slash;
6 if ((dst = malloc(PATH MAX)) == NULL)
7 return (NULL) ;
8 /* can override default directory with environnent variable */
9 if ((dir = getenv("PX_IPC_NAME")) == NULL) (¢
10 #ifdef POSIX_IPC_PREFIX
11 dir = POSIX_IPC_PREFIX; /* from "config.h" */
12 #el se
13 dir = “/tmp/"; /* defaul t
14 #endif
15 }
16 /* dir nust end in a slash */
17 slash = (aif strlen(dir) - 1] == */7) 2 " s
18 snprintf (dst, PATH MAX, "%s%s%s", dir, slash, nane);
19 return (dst); /* caller can free() this pointer */
20 } . .
lib/px_ipc_name.c
Fgure22 Qur px_ipc_name function.
2.3 Creating and Opening IPC Channels

The three functions that create or open an IPC object, mg _open, sem open, and
shm_open, all take a second argument named oflag that specifies how to open the
requested object. Thisissimilar to the second argument to the standard open function.
The various constants that can be combined to form this argument are shown in Fig-

ure2.3.

Descri ption mg_open sem_open shm_open
readonly O_RDONLY O_RDONLY
witeoly O_WRONLY
read-wite O_RDWR O_RDWR
cregeifit doesnat dready et | O_CREAT O_CREAT O_CREAT
exd wsi vecregte O_EXCL O_EXCL O_EXCL
nonbl ocki ngnode O_NONBLOCK
truxcateif it already ed sts O_TRUNC

Figuwe23 \ariouscostatswhenopeni nga creaingaRosix | FCaj ect.

The firgt three rows specify how the object is being opened: read-only, write-only, or
read—-write. A message queue can be opened in any o the three modes, whereas none

Section2.3

Creating and Opening IPC Channels 23

o these three constantsis specified for a semaphore (read and write accessis required
for any semaphore operation), and a shared memory object cannot be opened write-

only.

Theremaining o_xxx flagsin Figure2.3areoptional .

O_CREAT

O_EXCL

Create the message queue, semaphore, or shared memory object if it
does not aready exis. (Also see the o_ExcL flag, which is
described shortly.)

When creating a new message queue, semaphore, or shared mem-
ory object at |east one additional argument is required, called mode.
Thisargument specifiesthe permission bitsand isformed as thebit-
wise-OR d the constantsshownin Figure2.4.

Constant | Description

S_IRUSR | user read
S_IWUSR | user write

S_IRGRP | group read
S_IWGRP | group write
S_IROTH | other read
S_IWOTH | other write

Figure2.4 modeconstantswhen anew |PC object iscreated.

These constants are defined in the <sys/st at. h> header. The
specified permission bits are modified by the file mode creation mask
d the process, which can be set by caling the umask function
(pp- 83-85d APUE) or by using theshdl's unask command.

As with a newly created file, when a new message queue,
semaphore, or shared memory object is created, the user ID isset to
the effectiveuser ID o the process. Thegroup ID d a semaphoreor
shared memory object is set to the effective group ID d the process
or to a system default group ID. The group ID o a new message
queueisset to the effectivegroup ID o the process. (Pages77-78 of
APUE talk moreabout the user and group IDs.)

This differencein the setting of the group 1D between the three typesdf Posix
IPCisdrange. Thegroup ID of anew filecreated by open iseither the effec-
tivegroup ID of the processa thegroup ID o thedirectory in which thefileis
created, but the IPC functionscannot assumethat a pathname in the filesysem
iscreated for an |PC object.

If thisflag and 0_CREAT are both specified, then thefunction creates
a new message queue, semaphore, or shared memory object only if
it does not aready exist. If it aready exists, and if O_CREAT |
O_EXCL isspecified, an error o EEXIST isreturned.

24 PRodix IFC Chapter 2

The check for the existence d the message queue, semaphore, or
shared memory object and its creation (if it does not already exist)
must be atomic with regard to other processes. Wewill seetwo simi-
lar flagsfor SystemV IPCin Section3.4.

O_NONBLOCK Thisflag makesa message queue nonblocking with regard to aread
on an empty queue or a write to a full queue. We talk about this
morewiththemg_receive and mg_send functionsin Section54.

O_TRUNC If an existing shared memory object is opened read-write, thisflag
specifiesthat the object betruncated to 0 length.

Figure25 shows the actual logic flow for opening an IPC object. We describewhat we
mean by the test d the access permissionsin Section 24. Another way o looking at
Figure25 isshownin Figure26.

oK
start here createnew object
T no
5
1
error return
”)
systemtablesfull ? | errno = ENGSPC
new object A s
iscrested y y
doesobject no no error return
5)
already exist ? o O_CREAT et ? errno = ENOENT
.
yes
~
= = 1
areboth O_CREAT | —yesp error return,
and O_EXCL set ? errno = EEXI ST
exiging
objectis no
referenced
aretheaccess —ho» error return,
permissionsOK ? errno = EACCES
o
(03¢

Figure25 Logicfor openingor creatingan |PC object.

oflag argument Object doesnot exist Object already exists
no special flags error, errno = ENOENT | OK, referencesexistingobject
O_CREAT OK, createsnew object | OK, referencesexistingobject
O_CREAT | O_EXCL | OK, crestesnew object error, exrrno = EEXI ST

Figure26 Logicfor creatingor opening an IPC object.

Sxdion24 IRC Pemissons 25

24

Notethat in the middlelined Figure26, the 0_ CREAT flag without O_EXCL, we do not
get an indication whether a new entry has been created or whether we are referencing
an existingentry.

IPC Permissions

A new message queue, named semaphore, or shared memory object is created by
mqg_open, sem_open, Or shm_open when the oflag argument contains the O_CREAT
flag. Asnoted in Figure 24, permission bits are associated with each o theseformsd
IPC, similar to the permission bitsassociated with a Unix file.

When an existing message queue, semaphore, or shared memory object is opened
by these same three functions (either 0_CREAT is not specified, or O_CREAT isspecified
without 0_ExXcL and the object already exists), permission testing is performed based
on

1. thepermissionbitsassigned to thelPC object when it was created,
2. thetyped accessbeing requested (0_RDONLY, O_WRONLY, or O_RDWR), and

3. theeffective user ID d the calling process, the effective group ID o the calling
process, and the supplementary group IDs d the process (if supported).

Thetests performed by most Unix kernelsare asfollows:

1. If theeffectiveuser ID d the processis0 (thesuperuser),accessisalowed.

2. If theeffectiveuser ID d the processequalsthe owner ID d the IPC object: if the
appropriate user access permission bit is set, accessis adlowed, €lse accessis
denied.

By appropriate access permission bit, we mean if the processis opening the IPC
object for reading, the user-read bit must be on. If the processis opening the
IPC object for writing, the user-writebit must be on.

3. If theeffectivegroup ID d the processor oned the supplementary group IDs o
the process equals the group ID d the IPC object: if the appropriate group
access permission bit is set, accessisallowed, el se permissionisdenied.

4. If the appropriate other access permission bit is s&t, accessis alowed, ese per-
mission isdenied.

Thesefour stepsare tried in sequencein the order listed. Therefore, if the processowns
the IPC object (step 2), then accessis granted or denied based only on the user access
permissons—the group permissions are never considered. Similarly if the process
does not own the IPC object, but the process belongs to an appropriate group, then
accessis granted or denied based only on the group access permissions—the other per-
missionsare not considered.

% Rox IRC Chapter 2

25

We note from Figure 2.3 that sem_open does not use the 0_RDONLY, O_WRONLY, or O_RDWR
flag. We notein Section10.2, however, that some Unix implementationsassume 0_RDWR, since
any used asemaphoreinvolvesreading and writingthe semaphorevalue.

Summary

Thethreetypesd Posix IPC—message queues, semaphores, and shared memory —are
identified by pathnames. But these may or may not be real pathnamesin the filesystem,
and this discrepancy can be a portability problem. The solution that we employ
throughout thetext isto use our own px_ipc_name function.

When an IPC object is created or opened, we specify aset of flagsthat aresimilar to
thosefor the open function. When anew IPC object is created, we must specify the per-
missionsfor the new object, using the same S_xxx constants that are used with open
(Figure2.4). When an existing IPC object is opened, the permissiontesting that is per-
formed isthe sameaswhen an existingfileis opened.

Exercises

21 In wha way do the set-user-ID and set-group-1D bits (Section44 & APUE) d a program
that uses Posix IPC dfedt the permisson teting describedin Section 2.4?

2.2 Whe a program opens a Podix IRC dhjet, how can it determine whether a new object wes
cregted or whether it is referencing an exigting object?

31

System V IPC

Introduction

Thethreetypesd IPC,

o SystemV message queues (Chapter 6),
o SystemV semaphores(Chapter 11),and
e SystemV shared memory (Chapter14)

are collectively referred to as "'Sysem V IPC* This term is commonly used for these
three IPC facilities, acknowledging their heritage from System V Unix. They share
many similaritiesin the functionsthat access them, and in the information that the ker-
nel maintainson them. Thischapter describesall these common properties.

A summary o their functionsisshownin Figure3.1

Message
queues

Semaphores

Shared
memory

Header <sys/msg.h> | <sys/sem.h> | <sys/shm.h>
Function to createor open nsgget senget shnget
Function for control operations nsgct 1 senct | shnct |
Functionsfor IPC operations nmegsnd senop shmat
nsgrcv shndt

Figure31 Summary o SystemV IPC functions.

Information on the design and development d the System V IPC functionsis hard to find.
[Rochkind 19851 provides the followinginformation: System V message queues, semaphores,
and shared memory were developed in the late 1970s at a branch laboratory o Bdl

27

28 System V IPC Chapter 3

3.2

Laboratories in Columbus, Ohio, for an internal verson of Unix called (not surprisingly)
" ColumbusUnix" or jugt “CB Unix." Thisversion of Unix wasused for " Operation Support
Sysems" transaction processing systems that automated telephone company administration
and recordkesping. Sysem V IPC wasadded to the commercial Unix system with Sysem V
around 1983.

key-t Keys and f£tok Function

In Figurel.4, thethreetypesd SystemV IPC are noted as usingkey-t valuesfor their
names. The header <sys/t ypes. h> definesthe key-t datatype, as an integer, nor-
mally at least a 32-hit integer. Theseinteger valuesare normally assigned by the ft ok
function.

Thefunction ft ok convertsan existing pathname and an integer identifier into a
key-t value(caledan IPC key).

#include <sys/ipc.h> ‘

key—-t ftok (const char *pathname, int id); |

Returns IPCkey if OK, -1 onerror

This function takes information derived from the pathname and the low-order 8 bits o
id, and combinesthem into an integer IPC key.

This function assumes that for a given application using System V IPC, the server
and clients all agree on a single pathname that has some meaning to the application. It
could be the pathname o the server daemon, the pathname o a common data file used
by theserver, or some other pathname on the system. If the client and server need only
asinglePC channel between them, an id o one, say can be used. If multiplelPC chan-
nelsare needed, say onefrom the client to the server and another from the server to the
client, then one channel can usean id d one, and the other an id o two, for example.
Once the pathname and id are agreed on by the client and server, then both can call the
ft ok functionto convert theseinto thesameIPC key.

Typicd implementationsd ft ok cdl thest at functionand then combine

1. information about thefilesystem on which pathname resides (the st - dev mem-
ber o thest at structure),

2. thefilés i-node number within thefilesystemn (thest - i no member o thest at
structure), and

3. thelow-order 8 bitsd theid.

The combination o these three values normally produces a 32-bit key. No guarantee
exigsthat two different pathnames combined with the same,id generate different keys,
because the number o bitsd informationin the threeitems just listed (filesystemiden-
tifier, i-node, and id) can be greater than the number d bitsin an integer. (See Exer-
Ccise35)

Section3.2

Example

key-t Keys and ft ok Function 29

The i-node number is never 0, so most implementationsdefine IPC_PRIVATE (which we

describein Section 3.4) to beO.

If the pathname does not exist, or is not accessible to the calling process, ftok
returns-1. Beawarethat the file whose pathname is used to generate the key must not
beafilethat is created and deleted by the server during its existence, since each timeit
is created, it can assume a new i-node number that can change the key returned by
ftok tothenext caler.

The program in Figure 3.2 takes a pathname as a command-lineargument, calls stat,
cdls ftok, and then prints the st— dev and st— inomembers d the stat structure,
and theresulting IPC key. Thesethreevauesare printed in hexadecimal, so we can eas-
ily see how the IPC key isconstructed from thesetwo valuesand our id o 0x57.

1 #include "unpipc.h"

2 int
3 main(int argc, char **argv)
4 {

5
6
7

struct stat stat;

if (argc = 2)
err_qguit ("usage: ftok <pathname>");

8 Stat (argv([1l], &stat);
9 printf("st_dev: %1x, st-ino: %1lx, key: %x\n",
10 (u_long) stat.st_dev, (u_long) stat.st_ino,
11 Ftok(argv[l], 0x57));
12 exit(0);
13 }

Figure3.2 Obtain and print filesystem infor mation and resultingIPC key.

Executing thisunder Solaris 2.6 gives us thefollowing:

solaris % ftok /etc/system

st- dev: 800018, st-ino: 4alb, key: 57018alb
solaris % ftok /usr/tmp

st - dev: 800015, st-ino: 10b78, key: 57015b78
solaris % ftok /home/rstevens/Mall.out

st- dev: 80001f, st-ino: 3b03, key: 5701fb03

svipc/ftok.c

svipc/ftok.c

Apparently the id is in the upper 8 bits, the low-order 12 bits o st— dev in the next
12 bits, and thelow-order 12 bitsd st— i noin thelow-order 12 bits.
Our purposein showing thisexample is not to let us count on this combination o
information toform the IPC key but to let us see how oneimplementation combinesthe
pathname and id. Other implementationsmay do this differently.

FreeBSD usesthelower 8 bitsof theid, the lower 8 bitsdf st - dev, and the lower 16 bitsof

st_ino.

30 Sydam V IPC Chapter 3

Note that the mapping done by f tok is one-way, since some bitsfrom st—dev and st—ino
arenot used. That is, given akey, we cannot determine the pathname that was used to create
thekey.

33 ipc_perm Structure

The kernel maintainsa structured information for each IPC object, similar to theinfor-
mation it maintainsfor files.

struct ipc_perm {

uid_t uid; /* owner's user id */

gid_t gid; /* owner's group id */

uid_t cuid; /* creator's user id */

gid_t cgid; /* creator's group id */

mode—t mode; /* read-write permissions */
ulong_t seq; /* slot usage sequence number */
key—t key; /* 1PC key */

}:

Thisstructure, and other manifest constantsfor the System V IPC functions, are defined
in the <sys/ipc.h> header. We talk about all the members d this structure in this
chapter.

34 Creating and Opening IPC Channels

The three get XXX functions that create or open an IPC object (Figure3.1) all take an
IPC key value, whose type is key—t, and return an integer identifier. This identifier is
not thesameastheid argument to the f tok function, as we see shortly. An application
has two choices for the key value that is the first argument to the three get XXX func-
tions:

1 cdl ftok, passing it apathname and id, or

2. specify akey d 1PC_PRIVATE, which guaranteesthat a new, unique | PC object
iscreated.

Thesequenced stepsisshownin Figure3.3.

*
charirinr::jname Ftok() keyh,t)

- — < "—“—t— m|
BEgYEE () . . o msgctl(), msgsnd(), msgrcv()
semget () | | N identifier

key d TPC_PRIVATE »senctl(), semop()
i shmget () shmctl(), shmat(), shmdt()
openor create access | PC channel

IPC channel

Figure33 GeneratingIPC identifiersfrom IPCkeys.

Sadion 34 Credting and Opening IPC Channds 31

All three get XXX functions (Figure3.1) also take an oflag argument that specifies the
read—write permission bits (the mode member d the ipc_perm structure) for the IPC
object, and whether a new IPC object is being created or an existing one is being refer-
enced. The rulesfor whether a new IPC object is created or whether an existing oneis
referenced are asfollows:

o Specifyingakey d 1pPC_PRIVATE guaranteesthat a uniquelPC object iscreated.
No combinationsd pathname and id exist that cause £t o k to generateakey value
d IPC_PRIVATE.

e Setting the TPC_CREAT bit d the oflag argument creates a new entry for the
specified key, if it does not already exist. If an existing entry isfound, that entry
isreturned.

e Setting both the TPC_CREAT and IPC_EXCL bitsd the oflag argument createsa
new entry for the specified key, only if the entry does not already exist. If an
existing entry is found, an error d EEXIST is returned, since the IPC object
adready exigts.

The combination o T1pC_CREAT and IPC_EXCL with regard to IPC objectsis
similar to the combination o 0_CREAT and O_EXCL with regard to the open
function.

Setting the 1 PC_EXCL bit, without settingthe 1 PC_CREAT bit, has no meaning.

Theactual logic flow for openingan IPC object isshownin Figure34. Figure3.5shows
another way o lookingat Figure34.

Note that in the middleline o Figure 35, the IPC_CREAT flag without IPC_EXCL,
we do not get an indication whether a new entry has been created or whether we are
referencing an existingentry. In most applications, the server creates the IPC object and
specifies either TPC_CREAT (if it does not care whether the object already exists) or
IPC_CREAT | IPC_EXCL (if it needs to check whether the object already exists). The
clientsspecify neither flag (assumingthat the server hasalready created the object).

The Sysem V IPC functions define their own IPC_xxx constants, instead d using the
0_CREAT and O_EXCL constants that are used by the standard open function along with the
Posix IPC functions(Figure2.3).

Also note that the System V IPC functionscombine their IPC_xxx constants with the permis-
sion hits (which we describein the next section) into a singleoflag argument. The open func-
tion along with the Posix IPC functions have one argument named oflag that specifies the
variouso_xxx flags, and another argument named mode that specifiesthe permissionbits.

32 Sysem V IPC Chapter 3

oK
createnew entry
start here returnidentifier

o e

I
eturn
key == IPC_PRIVATE?} Y& demtablesfull? | error return,
y - I ¥ : errno = ENOSPC
entry(no \
iscreated y b
. no
doeskey already exist ? > IPC_CREAT St ? no error return,
errno = ENOENT
L
yes
§ Y
are both IPC—CREAT }fes error return
and TPC_EXCL set ? errno = EEXIST
exiging
entryis no
referenced \
aretheaccess no error return,
permissionsOK ? » errno = EACCES

T
yes
OK
returnidentifier

Figure34 Logicfor creating or opening an IPC object.

oflag argument key doesnot exist key already exists
nospecial flags eror, errno = ENOENT | OK, referencesexistingobject
IPC_CREAT OK, createsnew entry OK, referencesexistingobject
IPC—CREAT | IPC_EXCL OK, createsnew entry eror, errno = EEXIST

Figure35 Logicfor creatingor openingan IPC channel.

35 IPC Permissions

Whenever a new IPC object is created using one o the get XXX functions with the
IPC—CREAT flag, the following information is saved in the ipc_perm structure (Sec-
tion 3.3):

1 Some d the bits in the oflag argument initialize the mode member o the
ipc_perm structure. Figure 3.6 showsthe permissionbitsfor the threedifferent
IPC mechanisms. (Thenotation >> 3 meansthe valueisright shifted 3 bits.)

Sadion 3.5

IRC Pamissons 33

2

3

| Svmbolicvalues

Numeric Message Shared -
(octal) queue Semaphore memory Description
0400 MSG- R SEM_R SHM_R read by user
0200 MSG- W SEM_A SHM_W writeby user
0040 MSG-R 22 3 | SEM-R 22 3 | SHMR 22 3 | readbygroup
0020 MSG-W >> 3 | SEM A >> 3 | SHM W >> 3 | writeby group
0004 MSG-R 22 6 | SEWR 22 6 | SHMR 22 6 | read by others
0002 MG-W =22 6 | SEMA 22 6 | SHM_W 22 6 | write by others

Figure36 nodevaluesfor IPC read-write permissions.

Thetwo memberscui d and cgid are set to the effective user ID and effective
group ID o thecalling process, respectively. Thesetwo membersarecdled the
creator IDs.

The two membersui d and gid in the ipc_perm structure are also set to the
effective user ID and effectivegroup ID d the calling process. Thesetwo mem-
bersare called theowner IDs.

The creator IDs never change, although a process can change the owner IDs by calling
the ct1XXX function for the IPC mechanism with a command o IpPC_SET. Thethree
ct1XXX functionsalso allow a processto changethe permissionbitsd themode mem-
ber for the IPC object.

Mog implementations define the six constants MsG- R MSG- W SEM- R SEM- A SHM_R, and
SHM_W shown in Figure36 in the <sys/msg.h>, <sys/sem h>, and <sys/shm h> headers.
But theseare not required by Unix 98. Thesuffix Ain SEM- A standsfor "'dter."

The three get XXX functions do not use the normal Unix file mode aredtion mesk. The permis-
sionsd the message queue, semaphore, or shared memory segment are set to exactly what the
function specifies.

Posix IPC does not let the creator d an IPC object change the owner. Nothing is like the
IpPC_SET command with Posix IPC. But if the Posix IPC nameisstored in thefilesystemn, then
thesuperuser can changethe owner using thechown command.

Two levelsd checking are done whenever an IPC object is accessed by any process,
once when the |PC object is opened (theget XXX function) and then each timethe IPC
objectisused:

1.

Whenever a process establishesaccess to an existing IPC object with one d the
get XXX functions, an initial check is madethat the caller's oflag argument does
not specify any access bits that are not in the mode member o the ipc¢_perm
structure. Thisis the bottom box in Figure 34. For example, a server process
can set the mode member for its input message queue so that the group-read
and other-read permissionbitsare off. Any processthat triesto specify an oflag
argument that includesthese bitsgetsan error returnfrom themsgget function.
But thistest that is done by the get XXX functionsisd littleuse. It impliesthat

34 Sdamv IRC Chapter 3

3.6

the caller knows which permission category it falls into—user, group, or other.
If the creator specificaly turns off certain permission bits, and if the caller speci-
fiesthese bits, the error isdetected by the get XXX function. Any process, how-
ever, can totally bypass thischeck by just specifyingan oflag argument d 0 if it
knowsthat the IPC object already exists.

2. Every IPC operation does a permissiontest for the process using the operation.
For example, every time a processtriesto put a message onto a message queue
with themsgsnd function, thefollowingtests are performed in the order listed.
Assoon asa test grantsaccess, no further testsare performed.

a. Thesuperuser isawaysgranted access.

b. If theeffective user ID equalseither theui d valueor thecui d valuefor the
IPC object, and if the appropriateaccesshitisoninthenonde member for the
IPC object, permissionis granted. By ** appropriate access hit,;* we mean the
read-bit must be set if the cdler wants to do a read operation or, the IPC
object (receiving a message from a message queue, for example), or the
write-bit must be set for awriteoperation.

c. [the effective group ID equals either the gi d value or the cgi d valuefor
theIPC object, and if theappropriateaccesshitisoninthenode member for
thelPC object, permissionisgranted.

d. If noned theabovetestsaretrue, the appropriate’ other' accessbit must be
oninthenmode member for the IPC object, for permissionto be allowed.

Identifier Reuse

The ipc_perm structure (Section 3.3) also contains a variable named seq, whichisa
dot usage sequencenumber. Thisisa counter that is maintained by the kernel for every
potential IPC object in the system. Every time an IPC object is removed, the kernel
incrementsthe dot number, cyclingit back to zerowhenit overflows.

What we are describing in this section is the common SVR4 implementation. This implemen-
tation technique isnot mandated by Unix 98.

This counter is needed for two reasons. Firet, consider the file descriptors main-
tained by the kernel for open files. They are smadl integers, but have meaning only
within a single process—they are process-specific values. If we try to read from file
descriptor 4, sy, in a process, thisapproachworksonly if that processhasafile openon
this descriptor. It has no meaning whatsoever for a file that might be open on file
descriptor 4 in some other unrelated process. System V IPC identifiers, however, are
systemwide and not process-specific.

We obtain an IPC identifier (similar to a file descriptor) from one d the get func-
tions. negget, senget, and shnget. These identifiers are aso integers, but their
meaning appliesto all processes. If two unrelated processes, a client and server, for
example, use a single message queue, the message queue identifier returned by the

Section 3.6 Identifir Reuse 35

nsgget function must bethe sameinteger valuein both processesin order to accessthe
same message queue. Thisfeature means that a rogue process could try to read a mes-
sage from some other application's message queue by trying different small integer
identifiers, hoping to find one that is currently in use that allowsworld read access. If
the potentia values for theseidentifierswere small integers (likefile descriptors), then
the probability d finding a valid identifier would be about 1 in 50 (assuming a maxi-
mum d about 50 descriptorsper process).

To avoid this problem, the designers o these IPC facilities decided to increase the
possible range d identifier values to includeall integers, not just small integers. This
increaseisimplemented by incrementingthe identifier valuethat is returned to the cal-
ing process, by the number d IPC table entries, each time a tableentry is reused. For
example, if thesystemisconfigured for amaximum d 50 message queues, then thefirst
time thefirst message queue table entry in the kerndl is used, the identifier returned to
the process is zero. After this message queue is removed and the first table entry is
reused, the identifier returned is 50. The next time, the identifier is 100, and so on.
Since seq is often implemented as an unsigned long integer (seethe ipc_perm struc-
ture shown in Section 3.3), it cycles after the table entry has been used 85899,346 times
(2% /50, assuming32-bit long integers).

A second reason for incrementing the slot usage sequence number is to avoid short
term reuse d the System V IPC identifiers. This helps ensurethat a server that prema
turely terminatesand isthen restarted, does not reuse an identifier.

Asan exampled thisfeature, the program in Figure 3.7 printsthe first 10 identifier
valuesreturned by msgget.

sumsg/slot.c
1 #include "unpipc.h" g
2 int
3 main(int argc, char **argv)
4 {
5 int i, msqid;
6 for (i =0; 1 < 10; i++) {
7 msqgid = Msgget (IPC_PRIVATE, SVMSG_MODE I IPC_CREAT) ;
8 printf("msgid = %4\n", msqid);
9 Msgctl (msqgid, IPC_RMID, NULL) ;
10 }
11 exit (0);
12 }

svmsg (slot.c
Figure3.7 Print kerne assigned messagequeueidentifier 10 timesinarow.

Each time around the loop nsgget creates a message queue, and then msgetl witha
commandd IpC_RMID deletesthe queue. Theconstant svMSG_MODE isdefined in our
unpipc. h header (FigureC.l) and specifiesour default permission bitsfor a SystemV
message queue. The program's output is

solaris % slot

msqid 0

msqid 50

» Sgan VvV IPC Chapter 3

37

3.8

msqid = 100
msqid = 150
msqgid = 200
msqid = 250
msqid = 300
msqid = 350
msqid = 400
msqid = 450

if we run the program again, we see that this dot usage sequence number is a kernel
variablethat persistsbetween processes.

solaris % slot

msqid = 500
msqid = 550
msqid = 600
msqgid = 650
msqid = 700
msqid = 750
msqgid = 800
msqid = 850
msqgid = 900
msqgid = 950

i pcs and ipcrm Programs

Sncethethreetypesd System V IPC are not identified by pathnames in thefilesystem,
we cannot look at them or remove them using the standard 1s and rm programs.
Instead, two special programsare provided by any system that implementsthese types
d IPC: ipcs, which prints various piecesd information about the System V IPC fea
tures, and ipcrm, which removesa System V message queue, semaphore set, or shared
memory segment. The former supports about a dozen command-line options, which
affect which d the three typesd IPC is reported and what information is output, and
the latter supports six command-line options. Consult your manual pages for the
detailsd all theseoptions.

SinceSystem V IPC isnot part of Posix, these two commandsare not standar dized by Posix.2.
But these two commandsarepart of Unix 98.

Kernel Limits

Mog implementationsd System V IPC have inherent kernel limits, such as the maxi-
mum number d message queues and the maximum number o semaphores per
semaphore set. We show some typical valuesfor theselimitsin Figures 6.25, 11.9, and
145. Theselimitsareoften derived from the original SystemV implementation.

Section 11.2 of [Bach 1986] and Chapter 8 of [Goodheart and Cox 19941 both describe the
System V implementationof messages, semaphor es,and shared memory. Someaf theselimits
aredescribed therein.

Section 3.8 Kernd Limits 37

Unfortunately, these kernel limits are often too small, because many are derived
from their original implementation on a small address system (the16-bit PDP-11). For-
tunately, most systems allow the administrator to change some or all d these default
limits, but the required stepsar e different for each flavor d Unix. Most require reboot-
ing the running kernel after changing the values. Unfortunately, someimplementations
still use 16-hit integers for some of the limits, providing a hard limit that cannot be
exceeded.

Solaris 26, for example, has 20 d theselimits. Their current values are printed by
the sysdef command, although the values are printed as 0 if the corresponding kernel
module has not been loaded (i.e., the facility has not yet been used). These may be
changed by placingany d thefollowingstatementsin the /etc /syst emfile, which is
read when the kernel bootstraps.

4et msgsys:msginfo_msgseg = value
set msgsys:msginfo_msgssz = value
set msgsys:msginfo_msgtgl = value
set msgsys:msginfo_msgmap = value
set msgsys:msginfo_msgmax = value
set msgsys:msginfo_msgmnb = value
set msgsys:msginfo_msgmni = value
set semsys:seminfo_semopm = value
set semsys:seminfo_semume = value
set semsys:seminfo_semaem = value
set semsys:seminfo_semmap = value
set semsys:seminfo_semvmx = value
set semsys:seminfo_semmsl = value
set semsys:seminfo_semmni = value
set semsys:seminfo_semmns = value
set semsys:seminfo_semmnu = value
set shmsys:shminfo_shmmin = value
set shmsys:shminfo_shmseg = value
set shmsys:shminfo_shmmax = value
set shmsys:shminfo_shmmni = value

Thelast sx charactersd the nameon the left-hand side of the equalssign are the vari-
ableslisted in Figures6.25, 11.9, and 14.5.

With Digital Unix 4.0B, thesysconf i g program can query or modify many kernel
parametersand limits. Here is the output d this program with the -g option, which
queriesthe kernel for the current limits, for the ipc subsystem. We have omitted some
linesunrelatedto the System V IPC facility.

al pha % /sbin/sysconfig -q ipcC

i pc:

nsg-rnax = 8192
msg- mb = 16384
msg-mi = 64
msg-tql = 40
shmrnax = 4194304
shmmn=1
shm-mni = 128
shm seg = 32

38 Sygdem V IPC Chapter 3

39

16
25
10

sem mi
sem nsl
sem-opm
sent ume 10
sem-vmx 32767
semaem = 16384
num-of-sems = 60

Different defaults for these parameters can be specified in the /etc/sysconf igtab
file, which should be maintained using the sysconf igdb program. Thisfileis read
when the system bootstraps.

Summary

Thefirst argument to the threefunctions, msgget, semget, and shmget, isa System V
IPC key. These keys are normally created from a pathname using the system's f tok
function. Thekey canalso bethespecid valued 1pc_PRIVATE. Thesethreefunctions
createa new |PC object or open an existing |PC object and return aSystem V IPC identi-
fier: an integer that is then used to identify the object to the remaining IPC functions.
Theseintegersare not per-processidentifiers(likedescriptors) but are systemwideiden-
tifiers. Theseidentifiersarealso reused by the kernel after sometime.

Asociated with every Systemn V IPC object isan ipc_perm structure that contains
informationsuch as the owner's user 1D, group ID, read-write permissions, and so on.
One difference between Posix IPC and System V IPC is that thisinformation is aways
availablefor aSystem V IPC object (by calling oned the three XXXct1 functionswith
an argument d IPC_STAT), but access to this information for a Posix IPC object
depends on the implementation. If the Posix IPC object is stored in the filesystem, and
if we know its namein the filesystem, then we can access this same information using
theexisting filesystemtools.

When a new System V IPC object is created or an existing object is opened, two
flags are specified to the get XXX function (I1pCc_CREAT and IPC_EXCL), combined
with nine permissionbits.

Undoubtedly, the biggest problem in using System V IPC isthat most implementa-
tionshave artificia kernel limitson thesizesd these objects, and theselimits date back
to their original implementation. These mean that most applications that make heavy
use d System V IPC require that the system administrator modify these kerndl limits,
and accomplishingthischangediffersfor eachflavor d Unix.

Exercises

3.1 Read about the msgctl function in Section 6.5 and modify the program in Figure 3.7 to
print the seq member of thei p ¢ g e r mgtructurein additionto theassigned identifier.

Chapter 3

Exercises 30

3.2

3.3

34

3.5

3.6

Immediately after running the program in Figure 3.7, we run a program that creates two
message queues. Assuming no other message queues have been used by any other applica-
tions since the kernel was booted, what two values are returned by the kernel as the mes-
sage queueidentifiers?

We noted in Section 35 that the System V IPC get XXX functionsdo not use the file mode
creation mask. Write a test program that creates a FIFO (using the nkfi f o function
described in Section 4.6) and a System V message queue, specifying a permissiond (octal)
666 for both. Compare the permissionsof the resulting FIFO and message queue. Make
certainyour shell umask valueis nonzero beforerunning this program.

A server wants to createa unique message queuefor itsclients. Whichis preferable—using
some constant pathname (say the server's executablefile) asan argument to f t ok, or using
IPC_PRIVATE?

Moadify Figure 3.2 to print just the IPC key and pathname. Run the f i nd program to print
all the pathnames on your system and run the output through the program just modified.
How many pathnames map to the same key?

If your system supportsthesar program (*'systemactivity reporter'"), run the command
sar -m 5 6

This prints the number of message queue operations per second and the number o
semaphore operations per second, sampled every 5seconds, 6 times.

Part 2

Message Passing

41

4.2

Pipes and FIFOs

Introduction

Pipesaretheoriginal formd Unix IPC, dating back to the Third Edition d Unix in 1973
[Salus 19941. Although useful for many operations, their fundamental limitationis that
they have no name, and can therefore be used only by related processes. Thiswas cor-
rected in System III Unix (1982) with the addition & FIFOs sometimes called named
pipes. Both pipesand FIFOsare accessed usingthe normal read and w r i t e functions.

Technically, pipes can be used between unreated processes, given the ability to pass descrip-
torsbetween processes(whichwe decribein Section 15.8of thistext aswell asSection 14.7 o
UNPv1). But for practical purposes, pipes are normally used between processesthat have a
common ancestor .

Thischapter describesthe creation and used pipesand FIFOs Weuseasimplefile
server example and also look at some client—server design issues. how many |PC chan-
nels are needed, iterative versus concurrent servers, and byte streams versus message
interfaces.

A Simple Client—-Server Example

The client—-server example shown in Figure 4.1 is used throughout this chapter and
Chapter 6 to illustratepipes, FIFOs, and System V message queues.

The client reads a pathname from the standard input and writesit to the IPC chan-
nel. The server reads this pathname from the IPC channel and tries to open thefile for
reading. If theserver can open thefilg, the server responds by reading thefileand writ-
ing it to the IPC channdl; otherwise, the server responds with an error message. The

43

44 Pipes and FIFOs Chapter 4
pathname _stdin >_—k s _pgthn_ar_ng -T - —b—|
client server file
filecontents —— oo — = — — — — l
or error mesageﬁtmu or fefemoniestage
Figure41l Client-server example.
client then readsfrom the IPC channel, writing what it receives to the standard output.
If thefile cannot be read by the server, the client reads an error messagefrom the IPC
channal. Otherwise, the client reads the contents d the file. The two dashed lines
between the client and server in Figure 4.1 are the IPC channel.
43 Pipes

Pipesare provided with all flavorsd Unix. A pipeiscreated by thepipe functionand
providesaone-way (unidirectional)flow d data.

#i ncl ude <unistd.h>

int pipetint fd[2]);

Returns: 0 if OK, <1 on error [

Two file descriptors are returned: fd[0], which is open for reading, and fd[1], which is
open for writing.

Someversionsd Unix, notably SVR4, provide full-duplex pipes, in which case, both ends are
availablefor reading and writing. Another way to createa full-duplex 1PC channel iswith the
socket pai r function, describedin Section 14.3 o UNPv1, and this works on most current
Unix systems. The most common used pipes, however, is with the various shells, in which
case, a half-duplex pipeisadequate.

Posix.1 and Unix 98 requireonly half-duplex pipes, and weassume soin thischapter.

Thes_1SFIFO macro can be used to determineif a descriptor or fileis either a pipe
or aFFO. Itssingleargument is the st_mode member d the stat structure and the
macro eval uatesto true (nonzero)or false(0). For a pipe, thisstructureisfilled in by the
fstat function. For a FIFO, thisstructure isfilled in by the f stat, 1stat, or stat
functions.

Figure 4.2 showshow a pipelooksin asingle process.

Although a pipeis created by one process, it israrely used within a single process.
(Weshow an example d a pipe withina single processin Figure5.14.) Pipes are typi-
caly used to communicate between two different processes (a parent and child) in the
followingway. First, a process (whichwill be the parent) createsa pipeand then forks
tocreateacopy o itsdf, asshownin Figure4.3.

Section4 3 Pipes 45

process

0Cess
kernel

Figure4.2 A pipeinasingleprocess.

parent child
fork
—_—

0]
faI1] fl1]

— flow d data—»

Figure4.3 Pipein asingleprocess, immediately after f or k.

Next, the parent processcloses theread end d one pipe, and thechild processclosesthe
writeend d that same pipe. Thisprovidesaone-way flow d data between the two pro-
cesses, asshownin Figure4.4.

parent child

fdlo]

fa[1]

"QCEeSS
kernel

- flow o data—»

Figure4.4 Pipebetween two processes.
When we enter acommand such as
who | sort | Ip
to a Unix shell, the shell performs the steps described previoudly to create three

46 Pipes and FIFOs Chapter 4

processes with two pipes between them. The shell aso duplicates the read end d each
pipetostandard input and thewriteend o each pipeto standard output. Weshow this
pipelinein Figure4.5.

who process sort process 1p process

stdout ———. stdout
stdin

— flow of data— — flow of data -

Figure4.5 Pipesbetween threeprocessesin ashdl pipdine.

All the pipesshown so far have been half-duplex or unidirectional, providing a one-
way flow d data only. When a two-way flow o data is desired, we must create two
pipesand useonefor each direction. Theactual stepsare asfollows:

create pipe 1 (f41[0] and fd1[1]), create pipe 2 (fd2[0] and fd2[1]),
fork,

parent closesread end o pipel (fd1[0]),

parent closeswriteend of pipe2 (fd2[1]),

child closeswriteend o pipel(fd1[1]), and

child closesread end o pipe?2 (fd2[0]).

We show the code for these stepsin Figure 4.8. This generates the pipe arrangement
shownin Figure4.6.

OO0 AwWNE

parent child

fa211]
fa1(0]

process
kernel

— flow of data —»

« flow of data «

Figure4.6 Two pipesto provideabidirectional flow of data.

Section4. 3 Pipes 47

Example

Let us now implement the client-server example described in Section 4.2 using pipes.
Themai n function createstwo pipesand forksachild. Theclient then runsin the par-
ent processand the server runs in the child process. Thefirst pipeis used to send the
pathname from theclient to the server, and the second pipeis used to send the contents
o that file (or an error message) from the server to the client. Thissetup gives us the
arrangement shown in Figure4.7.

child

stdin | Py

) thname
pathname LS T -_-;_l!",t_—o TR T
client i_ SRy)+ TVEL file
filecotents -—--—— it l
stdout

a era nessage file contents or error message ———————

Foure47 Inplenentati ond Fgured lusingtwopipes.

Redlizethat in thisfigure we show the two pipes connecting the two processes, but each
pipe goesthrough the kerndl, as shown previoudy in Figure4.6. Therefore, each byted
datafrom theclient to theserver, and viceversa, crosses the user—kernd interface twice:
oncewhenwrittento the pipe, and again when read from the pipe.

Figure4.8 showsour nai n functionfor thisexample.

1 #include "unpipc.h" e iingipa

2 void client (int, int), server (int, int);

3 int

4 main(int argc, char **argv)

5 {

6 i nt pipel([2], pipe2[2];

7 pid_t childpid;

8 Pipe (pipel) ; /* create two pipes */

9 Pipe(pipe2) ;

10 if ((childpid = Fork()) == 0) ¢ /* child */

11 d ose(pipelll]l);

12 d ose(pi pe2(0]) ;

13 server (pipel (0l , pipe2(1l);

14 exit(0);

15 }

16 /* parent */

17 d ose(pipell0]);

18 d ose(pi pe2[1]);

19 client(pi pe2[0], pipelll]);

20 Waitpid(childpid, NULL, 0); /* wait for child to terminate */

21 exit(0);

22 } . .
pipe/mainpipe.c

Fgue48 mai nfuxtionfa diet-server usingt wo pi pes.

48 Pipes and FIFOs Chapter 4

8-19

20

8-14

15-17

Create pipes, fork

Two pipesare created and the six steps that welisted with Figure 4.6 are performed.
The parent callsthecl i ent function (Figure4.9) and the child cals theser ver func-
tion (Figure4.10).

wai t pi d for child

Theserver (thechild) terminatesfirst, whenit calsexi t after writing thefinal data
tothepipe. It then becomesazombie: a processthat hasterminated, but whose parent is
still running but has not yet waited for the child. When the child terminates, the kernel
alsogeneratesaSl GCHLDsignal for the parent, but the parent does not catch thissigndl,
and the default action d this signd is to be ignored. Shortly thereafter, the parent's
cli ent function returns after reading the final data from the pipe. The parent then
calswai t pi d to fetch the termination status o the terminated child (the zombie). If
the parent did not cdl wai t pi d, but just terminated, the child would be inherited by
the init process, and another SIGCHLD signal would be sent to the init process,
which would thenfetch thetermination statusd the zombie.

Theclient functionisshownin Figure4.9.

1 #include "unpipc.h" plp&!dwﬂt'c

2 void

3 client(int readfd, int witefd)

4 {

5 size-t len;

6 ssize_t n;

7 char buff [MAXLINE] ;

8 /* read pathname */

9 Fget s(buf f, MAXLINE, stdin);

10 len = strilen(buff); /* fgets() guarantees null byte at end */

11 if (buff[len - == '\n‘)

12 l en--; /* del ete newline from fgets() */

13 /* wite pathname to | PC channel */

14 Write(writefd, buff, len);

15 /* read froml PC, wite to standard output */

16 while ((n = Read(readfd, buff, MAXLINE)) > 0)

17 Write (STDOUT_FILENO, buff, n):

18 1} : 3
pipe/client.c

Fgwed9 client fuxctionfa diet-sarver usingt wo i pes.

Read pathname from standard input

The pathname is read from standard input and written to the pipe, after deleting
thenewline that isstored by fget s.

Copy from pipe to standard output
The client then reads everything that the server writes to the pipe, writing it to

Section4 3 Pipes 49

12-17

18-23

standard output. Normally thisisthecontentsd thefile, but if the specified pathname
cannot be opened, what the server returnsisan error message.

Figure4.10 showstheser ver function.

1 #include "unpipc.h" p:pe,’seruer.c
2 void
3 server(int readfd, int witefd)
4 {
5 int £4;
6 ssize t n;
7 char buf f [MAXLINE + 1];
8 /* read pathname from| PC channel */
9 if ((n = Read(readfd, buff, MAXIINE)) == 0)
10 err_quit ("end-of-file whil e readi ng pat hnane"):
11 buff[n] = *\0’; /* null term nate pathname */
12 if ((£4 = open(buff, O_RDONLY)) < 0) {
13 /* error: nust tell client */
14 snprintf (buff + n, sizeof(buff) - n, *: can't open, %s\n".
15 strerror (errno)) ;
16 N = strlen(buff);
17 Write(writefd, buff, n):
18 } else {
19 /* open succeeded: copy file to | PC channel */
20 while ((n = Read(fd, buff, MAXLINE)) > 0)
21 Write(writefd, buff, n);
22 Aose(fd);
23 }
24 }
pipe/server.c

Fgure410 server fuxctionfa diet-serve usi ngt wo pipes.

Read pathname from pipe

The pathname written by theclient is read from the pipeand null terminated. Note
that ar ead on a pipe returns as soon as some data is present; it need not wait for the
requested number o bytes (MAXLINE in thisexample).

Open file, handle error

Thefile is opened for reading, and if an error occurs, an error message string is
returned to theclient acrossthe pipe. Wecdll thest r er r or functionto return theerror
message string corresponding to errno. (Pages690-691 o UNPv1 talk more about the
st rerror function.)

Copy fileto pipe
If theopen succeeds, the contentsd thefileare copied to the pipe.

We can see the output from the program when the pathname is OK, and when an
€rror occurs.

50

Fpes and FIFOs Chapter 4

4.4

solaris % mainpipe

/etc/inet/ntp.conf a fileconsisting o twolines
mul ticastclient 224.0.1.1

driftfile /etc/inet/ntp.drift

solaris % mainpipe

/etc/shadow a filewe cannot read
/etc/shadow: can't open, Permi ssion denied

solaris % mainpipe

/no/such/file a nonexistent file
/no/such/file: can't open, No such file or directory

Full-Duplex Pipes

We mentioned in the previous section that some systems provide full-duplex pipes:
SVR4'’s pi pe function and the socket pai r function provided by many kernels. But
what exactly doesa full-duplex pipe provide? First, we can think of a half-duplex pipe
asshownin Figure4.11, amodificationd Figure4.2, which omitsthe process.

fal1] ﬂ»l — half-duplex pipe — }Lﬂdb falol

Fgured41l Half-dupl ex pipe.

A full-duplex pipe could beimplemented asshownin Figure4.12. Thisimpliesthat
only one buffer existsfor the pipe and everything written to the pipe (on either descrip-
tor) gets appended to the buffer and any read from the pipe (on either descriptor) just
takesdatafromthefront d thebuffer.

wite |) read
fal] g——= full -dupl ex pi pe > fdl0]
read i wite

Fgured 12 One possibe(incorrect)inpl enentati ond afull-dupl ex pi pe.

The problem with this implementation becomes apparent in a program such as Fg-
ure A.29. We want two-way communication but we need two independent data
streams, onein each direction. Otherwise, when a processwrites data to the full-duplex
pipe and then turns around and issuesar ead on that pipe, it could read back what it
just wrote.

Figure4.13 showsthe actual implementation of afull-duplex pipe.

et — hal f-dupl ex pi - _read
= " PP > =g
"*ggc-:r—-ﬂ ¢« half-duplexpipe « L~ F

Fogure413 Actual inpl enentationd a full-duplex pi pe.

Here, the full-duplex pipeis constructed from two half-duplex pipes. Anything written

Section44 FUl-Duplex Fpes 51

to fd[1] will be availablefor reading by fd[0], and anything written to fd[0] will be avail-
ablefor reading by fd{1].

The program in Figure 414 demonstratesthat we can use a single full-duplex pipe
for two-way communication.

1 #include "unpipc.h" pqwﬂﬁupkxﬁ
2 int

3 main(int argc, char **argv)

4 {

5 int £d[2]1, n;

6 char C;

7 pid_t chi | dpi d;

8 Pi pe(£d) ; /* assumes a full -dupl ex pipe (e.g., SVR4) */
9 if ((childpid = Fork()) == 0) { /* child */
10 sleep(3);

il if ((n = Read(£4[0], &c, 1)) != 1)

12 err _quit("child: read returned %4", n):
13 printf("child read %c\n", C);

14 Write(fd[0], "c", 1);

15 exi t(0) ;

16 }

17 /* parent */

18 Write(£d[1], "p", 1);

19 if ((n = Read(fd[1l], &c, 1)) 1= 1)

20 err_quit("parent: read returned %4", n);

21 printf('parent read %c\n", c¢);

22 exit(0);

23 }

pipe/fduplex.c
Figure4.14 Ted afull-duplex pipefor two-way communication.

We create a full-duplex pipe and fork. The parent writes the character p to the
pipe, and then reads a character from the pipe. The child degpsfor 3 seconds, readsa
character from the pipe, and then writesthe character c to the pipe. The purposed the
deepinthechildisto allow the parent to call read beforethechild cancal read, tosee
whether the parent reads back what it wrote.

If we run this program under Solaris 2.6, which provides full-duplex pipes, we
observethedesired behavior.

solaris % fduplex
child read p
parent read c

The character p goes across the half-duplex pipe shown in the top o Figure 413, and
the character ¢ goes across the half-duplex pipe shown in the bottom d Figure 4.13.
The parent does not read back what it wrote (thecharacter p).

If we run this program under Digital Unix 4.0B, which by default provides half-
duplex pipes (it also provides full-duplex pipeslike SVR4, if different optionsare speci-
fied at compiletime), we seethe expected behavior d a half-duplex pipe.

52

Fipes and FIFOs Chepter 4

4.5

al pha % fduplex

read error: Bad file nunber
al pha % child read p

wite error: Bad file nunber

The parent writes the character p, which the child reads, but then the parent aborts
when it tries to read from fd[1], and the child aborts when it triesto write to fd[0]
(recall Figure 4.11). The error returned by read is EBADF, which means that the
descriptor is not open for reading. Similarly, write returns the same error if its
descriptor isnot openfor writing.

popen and pclose Functions
Asanother exampled pipes, thestandard1/0 library providesthe popen function that

creates a pipe and initiates another process that either readsfrom the pipe or writesto
the pipe.

#i ncl ude <stdio.h>
FI LE *popen(const char *command, const char *type):
Returns filepointer if OK, NULL on eror

int pcl ose(FlLE *strean);

Returns termination statusaof shell ar -1 onearor

command isashell command line. It is processed by the sh program (normally a Bourne
shdll), so the PATH environment variableis used to locate the command. A pipeis cre-
ated between the calling process and the specified command. The value returned by
popen isastandard I/0 FILE pointer that is used for either input or output, depend-
ing on thecharacter string type

o If typeisr, thecalling processreadsthe standard output d the command.
o If typeisw, thecalling processwritesto thestandard input o the command.

The pcl ose function closesa standard 1/ 0 stream that was created by popen, waits
for thecommand to terminate, and then returnsthe termination status o the shell.

Section 14.3df APUE providesan implementation of popen and pcl ose.

Example

Figure 4.15 showsanother solution to our client—server example using the popen func-
tion and theUnix cat program.

Section4.5 popen and pcl ose Functions 53

'pe | mainpopen.c
1 #include "unpipc.h" pip / Pop
2int
3 main(int argc, char **argv)
4 {
5 size-t n;
6 char buf f[MAXLI NE] , comrand MAXLI NE| ;
7 FILE *fp;
8 /* read pathname */
9 Fget s(buf f, MAXLINE, stdin);
10 n = strlen(buff); [* fgets() guarantees null byte at end */
11 if (buff[n - 1] == '\n’)
12 n--; /* del ete newline from fgets() */
13 snprintf (command, sizeof (command), "cat %s", buff);
14 fp = Popen(command, "r");
15 /* copy frompipe to standard output */
16 whi | e (Fgets(buff, MAXLINE, fp) != NULL)
17 Fput s(buf f , stdout) ;
18 Pcl ose (fp) ;
19 exit(0);
20 }

pipe/mainpopen.c
Figure4.15 Client-server usingpopen.

The pathname is read from standard input, as in Figure 49. A command is built
and passed to popen. The output from either the shell or thecat programiscopied to
standard output.

One difference between this implementation and the implementation in Figure 4.8
is that now we are dependent on the error message generated by the syssem's cat pro-
gram, which is often inadequate. For example, under Solaris 2.6, we get the following
error when trying to read afile that we do not have permission to read:

solaris % cat /etc/shadow
cat: cannot open /etc/shadow

But under BSD/OS 31, we get a more descriptive error when trying to read a similar
file

bsdi % cat /etc/master.passwd

cat: /etc/master.passwd: cannot open [Perm ssion deni ed]

Also redlize that the cdl to popen succeedsin such a case, but f get s just returnsan
end-of-filethefirst timeit iscaled. Thecat program writesitserror message to stan-
dard error, and popen does nothing specia with it—only standard output is redirected
to the pipethat it creates.

54

Fipes and FIFOs Chepter 4

4.6

FIFOs

Pipes have no names, and their biggest disadvantage is that they can be used only
between processesthat havea parent processin common. Two unrelated processescan-
not createa pipe between them and useit for 1PC (ignoring descriptor passing).

FIFO standsfor firstin, first out, and a Unix HFO issimilarto apipe. It isaone-way
(half-duplex)flow o data. But unlike pipes, a HFO has a pathname associated with it,
alowing unrelated processesto accessasingle HFO. FIFOs arealso called named pipes

A HFOiscreated by thenkf i f o function.

#include <sys/types.h>
#include <sys/stat.h>

int nkfifo(const char *pathname, node-t node);

Returns 0if OK, -1 on error

The pathname isa normal Unix pathname, and thisisthename d the FIFO.

The node argument specifiesthefile permission bits, similar to the second argument
to open. Figure 24 shows the six constants from the <sys/st at . h> header used to
specify thesebitsfor a FHFO.

Thernkf i f o functionimpliesO_CREAT | O_EXCL. That is, it createsa new FIFO or
returnsan error d EEXIST if the named HFO aready exists. If the creationd a new
HFO isnot desired, cdl open instead o nkfi f o. To open an existing HFO or createa
new HFO if it does not already exist, call nmkf i f o, check for an error & EEXIST, and if
thisoccurs, cal open instead.

Thenkf i f o command also creates a FIFO. This can be used from shell scriptsor
from thecommand line.

Once a FIFO is created, it must be opened for reading or writing, using either the
open function, or oned thestandard 1/0 open functionssuch asf open. A HFO must
be opened either read-only or write-only. It must not be opened for read-write, because
aHFOishaf-duplex.

A write toa pipeor HFO aways appends the data, and ar ead always returns
what' isat the beginning d the pipeor HFO. If | seek iscalled for a pipe or HFO, the
error ESPIPE isreturned.

Example

We now redo our client—server from Figure 4.8 to use two FIFOs instead o two pipes.
Ourclient andserver functionsremainthesame; all that changesisthe mai n func-
tion, which weshow in Figure4.16.

ipe [mainfifo.c
1 #include "unpipc.h" PP / f#b
2 #define FIFOl "/tmp/fifo.1"
3 #define FIFO2 "/tmp/fifo.2"

4 void client (int, int), server (int, int);

Section 4.6 FIFOs 55

5 int

6 main(int argc, char **argv)

7 {

8 int readfd, witefd;

9 pid_t chil dpid;

10 /* create two FIFGs; K if they already exist */

11 if ((mkfifo(FIFO1l, FILE- MDE) < 0) && (errno != EEXI ST))
12 err_sys("can't create %s", FIFOl);

13 if ((mkfifo(FIFO2, FILE- MDE) < 0) && (errno != EEXIST)) ({
14 unlink (FIFO1) ;

15 err_sys("can’'t create %s", FIF02);

16 }

17 if ((childpid = Fork()) == 0) { /* child x/

18 readf d = Open(FIFO1, O_RDONLY, 0);

19 witefd = Open(FIFO2, O_WRONLY, 0);

20 server (readfd, writefd);

21 exit(0);

22 }

23 /* parent */

24 writefd = Open(FIFOl, O _WRONLY, 0);

25 readfd = Open(FIFO2, O_RDONLY, 0);

26 client(readfd, writefd);

27 Waitpid(childpid, NULL, 0); /* wait for child to termnate */
28 d ose(readfd) ;

29 Aose(witefd);

30 Unlink (FIFOl) ;

31 Unl i nk(FIFO2) ;

32 exit (0);

33 1}

pipe/mainfifo.c
Fgue416 mai nfunction for our dient-server that usestwo FIFOs

Create two FIFOs
10-16 Two FIFOs arecreated in the /t np filesystem. If the HFOsalready exigt, that isOK.
TheFILE—MODE constant isdefined in our unpi pc . h header (FigureC.l) as

#define F LE-MIE (S_IRUSR | S_IWUSR | S IRGRP | S_IROTH)
/* default permssions for newfiles */

Thisalowsuser-read, user-write, group-read, and other-read. These permissionbitsare
modified by the file mode creation mask o the process.

fork

17-27 Wecdl f or k, thechild callsour ser ver function (Figure4.10), and the parent cdls
our cli ent function (Figure4.9). Before executing thesecdls, the parent opensthefirst
HFOfor writing and the second HFO for reading, and the child opensthefirst HFO for

reading and the second HFO for writing. Thisissimilar to our pipe example, and Fig-
ure4.17 showsthisarrangement.

5 Fipes and FIFOs Chepter 4

parent child

- flow of data -
/tmp/fifo.2

< flow of data «

Figure4.17 Client-server exampleusing two FIFOs.
The changesfrom our pipeexampleto this FIFO example areasfollows:

e Tocreate and open a piperequiresonecdl to pi pe. To create and open a HFO
requiresonecdl tomk£i f o followed by acdl to open.

e A pipeautomatically disappearsonitslast close. A HFO's nameisdeleted from
thefilesyssemonly by caling unl i nk.

The benefit in the extra calls required for the FIFO is that a FHFO has a namein thefile
system allowing one processto createa FIFO and another unrel ated processto open the
HFO. Thisisnot possiblewith a pipe.

Subtle problems can occur with programsthat do not use FIFOs correctly. Consider
Figure 4.16: if we swap the order d the two calsto open in the parent, the program
does not work. The reason is that the open d a HFO for reading blocks if no process
currently hasthe FHFO open for writing. If weswap theorder d thesetwo opens in the
parent, both the parent and the child are opening a FIFO for reading when no process
has the HFO open for writing, so both block. Thisis called a deadlock. We discuss this
scenario inthe next section.

Example: Unrelated Client and Server

In Figure 4.16, the client and server are still related processes. But we can redo this
example with the client and server unrelated. Figure 4.18 shows the server program.
Thisprogramis nearly identical to theserver portion o Figure4.16.

Theheader fi f o.h isshown in Figure 419 and providesthedefinitionsd the two
HFO names, which both the client and server must know.

Figure 4.20 showsthe client program, which is nearly identical to the client portion
d Figure 416. Notice that the client, not the server, deletes the HFOs when done,
becausethe client performsthelast operation on the FIFOs

Section 4.6

FIFOs 57

pipe/server_main.c

1 #include “fifo.h"
2 void server (int, int);
3int
4 main(int argc, char **argv)
5 |
6 int readfd, witefd;
7 /* create two FIFGs; CK if they already exist */
8 if ((mkfifo(FIFo1, FILE- MIDE) < 0) && (errno != EEXIST))
9 err-sys("can't create %s", FIFOL);
10 if ((mkfifo(FIF02, FILE- MDE) < 0) && (errno != EEXIST)) {
11 unl i Nk (FIFO1) ;
12 err_sys("can’'t create %s", FIF02);
13 }
14 readfd = Open(FIFOl, O_RDONLY, 0);
15 witefd = Open(FIFO2, O_WRONLY, 0);
16 server (readfd, witefd);
17 exit(0);
18 } . .
pipe/server_main.c
Figure4.18 Stand-aloneserver nai nfunction.
] o.h.c
1 #include "unpipc.h"® ;ﬂpeﬁﬁ.hc
2 #define FIFO1 "/tmp/fifo.1"
3 #define FIFO2 "/top/fifo.2" "
pipelfifo.h.c

Figure4.19 fif o.h header that both thedient and server include.

oN ounhwW N B

pipe/client_main.c

#include "fifo.h"
voi d client (int, int);
int
main(int argc, char **argv)
|
int readfd, witefd;
witefd = Open(FIFO1, O_WRONLY, O0);
readfd - Open(Fl FO2, O_RDONLY, 0);
client (readfd, writefd);
d ose (readfd) ;
d ose (writefd);
Unlink (FIFO1) ;
Unl i nk (FIF02) ;
exit (0) ;
}

pipe/client_main.c
Figure4.20 Stand-aloneclient mai n function.

58

Fpes and FIFOs Chapter 4

4.7

In the cased a pipeor HFO, wherethe kernel keeps a reference count d the number o open
descriptorsthat refer to the pipe or HFO, either theclient or server could call unl i nk without
aproblem. Eventhough thisfunctionremovesthe pathname from thefilesystem, thisdoesnot
affect open descriptorsthat had previoudy opened the pathname. But for other formsd IPC,
such asSystern V message queues, no counter existsand if theserver were to delete the queue
after writing its final message to the queue, the queue could be gone when the client tries to
read thefinal message.

To run thisclient and server, start theserver in the background

% server_fifo &

and then start theclient. Alternately, we could start only the client and haveit invoke
theserver by cdling fork and then exec. Theclient could also pass the namesd the
two FIFOs to the server as command-lineargumentsthrough theexec function, instead
d coding them into a header. But this scenario would make the server a child d the
client, inwhichcase, apipecould jus aseasly be used.

Additional Properties of Pipes and FIFOs

We need to describein more detail some propertiesd pipes and FIFOs with regard to
their opening, reading, and writing. First, a descriptor can be set nonblocking in two

ways.

1. The o_nonBLOCK flag can be specified when open iscalled. For example, the

2

first cal toopen inFigure4. 20 could be

witefd = Open(FIFO1, O_WRONLY | O_NONBLOCK, 0);

If adescriptor isaready open, fcnt | can be caled to enable the 0 NONBLOCK
flag. This technique must be used with a pipe, since open is not caled for a
pipe, and no way exists to specify the 0_NONBLOCK flag in the call to pi pe.

When using f cnt |, wefirst fetch the current file status flags with the F_GETFL
command, bitwise-OR the 0_NONBLOCK flag, and then store the file status flags
with theF_sETFL command:

int fl ags;

if ((flags = fentl(fd, F_GETFL, 0)) < 0)
err-sys("FGETFL error");

flags |= O_NONBLOCK;

if (fontl(fd, F_SETFL, flags) < 0)
err_sys("F_SETFL error");

Beware d code that you may encounter that ssimply sets the desired flag,
becausethisaso clearsall theother possiblefilestatusflags.

/* wong way to set nonbl ocking */
if (fcntl (fd, F_SETFL, O_NONBLOCK) < 0)
err_sys("F_SETFL error");

Section 4.7

Additional Properties of Pipes and FIFOs

50

Figure 4.21 shows the effect d the nonblocking flag for the opening d a AFO and
for thereading d data from an empty pipeor from an empty HFO.

Current Existingopens Return
operation d pipeor FIFO Blocking (default) O_NONBLOCK S&t

FHFO returns OK returns OK

open FIFO open for writing

read-only FIFOnot blocksuntil FIFOisopened for returns OK
open for writing writing
FHFO returns OK returns OK

open FIFO openfor reading

write-only FIFOnot blocksuntil FIFOisopened for returnsan error of ENXI O
open for reading reading
pipeor HFO blocksuntil dataisinthepipeor | returnsanerror d EAGAI N

read open for writing HFO, or until the pipeor

empty pipe FIFOisnolonger open for

or writing

empty FIFO | pipeor FIFOnot | read returns0 (end-of-file) r ead returns 0 (end-of-file)
open for writing
pipeor HFO (seetext) (seetext)

writeto open for reading

pipeor FHFO | pipeor FIFOnot | SIGPIPE generated for thread S| GPI PEgenerated for thread
open for reading

Figure4.21 Effect of 0_NONBLOCK flagon pipesand FIFOs.

Noteafew additional rulesregarding the reading and writing d a pipeor AFO.

If we ask to read more data than is currently availablein the pipe or HFO, only
the available data is returned. We must be prepared to handle a return value
from read that islessthan the requested amount.

If thenumber o bytestowriteislessthan or equal to PIPE_BUF (a Posix limit
that we say more about in Section 4.11), the write is guaranteed to be at onc.
This means that if two processes each write to the same pipe or HFO at about
thesametime, either all the datafrom thefirst processiswritten, followed by all
the data from the second process, or vice versa. The system does not intermix
the data from the two processes. If, however, the number d bytestowriteis
greater than PIPE_BUF, there is no guarantee that the write operation is
atomic.

Posix.1 requires that Pl PE- BUF be at least 512 bytes. Commonly encountered values
range from 1024 for BSD/OS 3.1 to 5120 for Solaris 26. We show a program in Sec-
tion 411 that printsthisvalue.

Thesetting o the 0_NONBLOCK flag has no effect on theatomicity o writestoa
pipeor FIFO—atomicity is determined solely by whether the requested number

d bytesislessthan or equal to PIPE_BUF. But whena pipe or HFO is set non-
blocking, the return valuefrom w ri t e depends on the number o bytesto write

60

Fpes and FIFOs Chepter 4

4.8

and the amount o space currently availablein the pipe or HFO. If the number
d bytestowriteislessthan or equal to APE-BUF:

a [If thereisroomin the pipe or HFO for the requested number o bytes, all the
bytesaretransferred.

b. If thereisnot enough room in the pipe or HFO for the requested number o
bytes, return is made immediately with an error & EAGAIN. Since the
O_NONBLOCK flag isset, the processdoes not want to be put to sleep. But the
kernel cannot accept part o the data and still guaranteean atomicwrite, so
the kernel must return an error and tell the processto try again later.

if the number o bytestowriteisgreater than APE-BUF:

a [If thereis room for at leest 1 bytein the pipe or FIFO, the kernel transfers
whatever the pipe or HFO can hold, and that is the return value from
write.

b. If the pipe or FIFO is full, return is made immediately with an error o
EAGAIN.

o If wewritetoa pipeor FIFO that is not open for reading, the SIGPI PE signal
isgenerated:

a. If the processdoes not catch or ignore SIGPIPE, the default action o termi-
nating the processistaken.

b. i the process ignores the sSIGPIPE sgnd, or if it catches the signal and
returnsfromitssignal handler, thenwrite returnsan error EPIPE.

SIGPIPE isconsdered a synchronoussignal, that is, asignal attributableto one
goecific thread, the one that called wri t e. But the easiest way to handle this
dgnal istoignoreit (set its dispodtion to STIG_IGN) and let wri t e return an
arar o BFAIPE An application should always detect an errar return from
write, but detectingthe termination d a processby SIGPIPE isharde. If the
sgnal isnot caught, we must look at the termination statusdf the processfrom
the shell to deter minethat the process was killed by a signal, and which signal.
Section 5.13df UNPv1 talksmoreabout SGRAFE

One Server, Multiple Clients

The real advantaged a FFO is when the server is along-running process (e.g., a dae-
mon, as described in Chapter 12 o UNPv1) that is unrelated to the client. The daemon
createsa FIFO with a well-known pathname, opens the FIFO for reading, and the client
then starts at some later time, opens the FIFO for writing, and sends its commands or
whatever to the daemon through the FIFO. One-way communication d this form
(client to server)iseasy with a HFO, but it becomes harder if the daemon needsto send
something back to the client. Figure 4.22 shows the technique that we use with our
example.

The server creates a FIFO with a well-known pathname, /tmp/fi f o.serv in this
example. Theserver will read client requestsfrom thisFIFO. Each client createsitsown
HFO when it starts, with a pathname containing its process ID. Each client writes its

Sxtion 4.8 Ore Saver, Multiple Clients 61

10-15

16

server

read-only

FIFO
/tomp/fifo.serv

/tmp/fifo.1234

read-only

client 1

Figure4.22 Oneserver, multipleclients.

request to the server's well-known HFO, and the request containsthe client process 1D
along with the pathname o thefile that the client wantsthe server to open and send to
theclient.

Figure4.23showstheserver program.

Create well-known FIFO and open for read-only and write-only

The server's well-known HFO is created, and it isOK if it already exists. We then
open the HFO twice, once read-only and once write-only. The readf i f o descriptor is
used to read each client request that arrives at the HFO, but the dummy fd descriptor is
never used. The reason for opening the FIFO for writing can be seen in Figure4.21. If
we do not open the HFO for writing, then each time a client terminates, the HFO
becomes empty and the server's read returns 0 to indicate an end-of-file. We would
then haveto cl ose the HFO and cdl open again with the 0_RDONLY flag, and thiswill
block until the next client request arrives. But if we aways have a descriptor for the
HFO that was opened for writing, read will never return 0 to indicate an end-of-file
when no clientsexist. Instead, our server will just block in the cal to read, waiting for
the next client request. This trick therefore simplifies our server code and reduces the
number d callsto openfor itswel-known FIFO.

When the server starts, thefirst open (with the 0_RDONLY flag) blocks until thefirst
client opens the server's FIFO write-only (recal Figure 4.21). The second open (with
the 0_WRONLY flag) then returns immediately, because the HFO is already open for
reading.

Read client request

Each client request isa singleline consisting o the process D, one space, and then
the pathname. We read thislinewith our readline function (whichweshow on p. 79
d UNPv1).

62 Fpes and FIFOs Chapter 4

fifocliserv [mainserver.c

1 #include "fifo.h"

2 void server(int, int);

3 int

4 main(int argc, char **argv)

5 {

6 int readfifo, witefifo, dummyfd, fd;

7 char *ptr, buf f[MAXLI NE] , fif onamg MAXLI NE] ;

8 pid_t pi d;

G ssize_t n;

10 /* create server's well-known FIFQ K if already exists */
11 if ((mkfifo(SERV_FIFO, FILE- MIDE) < 0) && (errno != EEXIST))

12 err_sys("can’'t create %s", SERV_FIFO);

13 /* open server's well-known FIFOfor reading and witing */
14 readfifo = Open(SERV_FIFQO, O_RDONLY, 0);

15 dummyfd = Open (SERV_FIFO, O_WRONLY, 0); /* never used */
16 while ((n = Readline(readfifo, buff, MAXLINE)) > 0) {

7 if (buff[n - 1] == '\n’)

18 n--; /* del ete newline fromreadline() */
19 buff [n] = "\0’; /* null termnate pathname */

20 if ((ptr = strchr(buff, * 7)) == NALL) (

21 err_msg("bogus request: %s", buff);

22 cont i nue;

23 }

24 *prtr++ = 0; /* null termnate PID, ptr = pathname */
25 pid = atol(buff);

26 snprintf (fifoname, sizeof(fifoname), "/tmp/fifo.%1d", (long) pid);
27 if {((witefifo = open(fifoname, O_WRONLY, 0)) < 0) {

28 err_msg("cannot open: %s", fifoname);

29 conti nue;

30 }

31 if ((fd = open(ptr, O_RDONLY)) < 0) {

32 /* error: nust tell client */

33 snprintf(buff + n, sizeof(buff) - n, ": can't open, %s\n",
34 strerror (errno)) ;

35 n = strlen(ptr):

36 Write(writefifo, ptr, n);

37 Close(writefifo) ;

38 } else {

39 /* open succeeded: copy file to FI FO */

40 while ((n = Read(fd, buff, MAXLINE)) > 0)

41 Write(writefifo, buff, n);

42 A ose(fd);

43 Aose(witefifo);

44 }

45 }

46 }

fifocliserv/mainserver.c
Fowred4B H FOserver that hand esnaitipediats

Section 4.8 Ore Sve, Multiple Clients 63

17-26

27-44

10-14

15-21

22-24

25-31

Parse client's request

The newline that is normally returned by readline is deleted. This newline is
missing only if the buffer wasfilled before the newline was encountered, or if thefina
lined input was not terminated by a newline. Thest r chr function returnsa pointer
to thefirst blank in theline, and pt r isincremented to point to thefirst character o the
pathname that follows. The pathname of the client's HFO is constructed from the pro-
cess|D, and the FIFOisopened for write-only by the server.

Open file for client, send file to client's FIFO

The remainder d the server is similar to our ser ver function from Figure 4.10.
Thefileis opened and if thisfals, an error messageis returned to the client acrossthe
HFO. If the open succeeds, thefileiscopied to theclient's FIFO. When done, we must
cl ose thesarver's end o the client's HFO, which causesthe client's r ead to return 0
(end-of-file). The server does not delete the client's HFO; the client must do so after it
readsthe end-of-filefrom the server.

Weshow theclient programin Figure 4.24.
Create FIFO

Theclient's FIFO is created with the processID asthefina part d the pathname.
Build client request line

Theclient's request consistsd its process|D, one blank, the pathname for the server
to send to the client, and a newline. Thislineis built in the array buff, reading the
pathname from the standard input.

Open server's FIFO and write request

The server's FIFO is opened and the request is written to the FIFO. If thisclient is
the first to open this FIFO since the server was started, then this open unblocks the
server fromitscall toopen (withthe O_RDONLY flag).

Read file contents or error message from server

The server's reply is read from the HFO and written to standard output. The
client's HFO isthen closed and del eted.

We can start our server in one window and run the client in another window, and it
worksas expected. Weshow only theclient interaction.

solaris % mainclient

/etc/shadow a filewecannot read
/etc/shadow: can't open, Permni ssion denied

solaris % mai ncli ent

/etc/inet /ntp.conf a2-linefile

mul ticastclient 224.0.1.1

driftfile /etc/inet/ntp.drift

Wecan asointeract with theserver from theshdl, because FIFOs have namesin the
filesystem.

64 Hpes and FIFOs Chepter 4

fifocliserv/mainclient.c

1 #include "fifo.h"

2 int

3 main(int argc, char **argv)

4 {

5 int readfifo, witefifo;

6 size-t len;

7 ssize_t n;

8 char *ptr, fifoname[MAXLINE], buff [MAXLINE];

9 pid t pid:;

10 /* create FIFOwi th our PID as part of name */

11 pid = getpid();

12 snprintf (fEifoname, sizeof (fifoname), */tmp/fifo.%1ld", (long) pid):
13 if ((mkfifo(fifoname, FILE- MDE) < 0) && (errno != EEX ST))

14 err-sys("can't create %s", fifoname);

15 /* start buffer with pid and a bl ank */

16 snprintf (buff, sizeof (buff), "%1d ", (long) pid);

17 len = strl en(buff) ;

18 ptr = buff + len;

19 /* read pathname */

20 Fgets(ptr, MAXLINE - len, stdin);

21 len = strlen(buff); /* fgets() guarantees null byte at end */
22 /* open FIFOto server and wite Pl D and pathname to Fl FO */
23 writefif o = (pen(SERV_FIFO, O_WRONLY, 0);

24 Write(writefifo, buff, len);

25 /* now open our FIFQ; bl ocks until server opens for witing */
26 readfi fo = Open(fifoname, O_RDONLY, 0);

27 /* read fromlIPC, wite to standard out put */

28 while { (n = Read(readfifo, buff, MAXLINE)) > 0}

29 Write (STDOUT_FILENO, buff, n);

30 Close (readfifo);

31 Unlink(fifoname) ;

32 exit (0);

33)

fifocliserv/mainclient.c
Figured24 A FOdiat thet workswththeserver inF gre4. 23

solaris % Pid=$§$ paooess | Dd thisshel
solaris % mkfifo /tmp/fifo.$Pid nake thediet's A FO
solaris % echo "$pid /etc/inet/ntp.conf" > /tmp/fifo.serv

solaris % cat < /tmp/fifo.$Pid adredseve's redy

mul ticastclient 224.0.1.1
driftfile /etc/inet/ntp.drift
solaris % rm /tmp/fifo.$%Pid

We send our process ID and pathname to the server with one shell command(echo)

and read the server's reply with another(cat). Any amount time can occur between
these two commands. Therefore, the server appears to write the file to the HFO, and
theclient later executescat to read the datafrom the FHFO, which might make us think

Sxdion4.8 Ore Save, Multiple Clients 65

that the data remainsin the FIFO somehow, even when no process has the HFO open.
Thisis not what is happening. Indeed, the ruleisthat when thefinal cl ose d apipeor
HFO occurs, any remaining datain the pipeor HFO isdiscarded. What is happeningin
our shell exampleisthat after the server readstherequest linefrom theclient, the server
blocksin itscall to open on the client's HFO, because the client (our shell) has not yet
opened the HFO for reading (recall Figure 4.21). Only when we execute c at sometime
later, which opens the client HFO for reading, does the server's cdl to open for this
HFO return. Thistiming also leads to a denial-of-service attack, which we discussin the
next section.

Using the shell also allows simple testing d the server's error handling. We can
easily send a line to the server without a process D, and we can also send a lineto the
server specifyinga process D that does not correspond to a FIFO in the / tmp directory.
For example, if weinvoketheclient and enter thefollowinglines

solaris % cat > /tmp/fifo.serv
/no/process/id
999999 /invalid/process/id

then the server's output (inanother window) is

solaris % server
bogus request: /no/process/id
cannot open: /tmp/fifo.999999

Atomicity of FIFOwr i t es

Our simple client-server alsolets us see why the atomicity property d writesto pipes
and FIFOs isimportant. Assumethat two clients send requests at about the same time
totheserver. Thefirst client's requestistheline

1234 /etc/inet/ntp.cont

and thesecond client's request istheline

9876 /etc/passwd

If we assume that each client issuesonewrite function cdl for itsrequest line, and that
exch lineislessthan or equal to PIPE_BUF (whichis reasonable, since thislimit isusu-
aly between 1024 and 5120 and since pathnamesare often limited to 1024 bytes), then
weareguaranteed that thedatain the HFO will beeither

1234 /etc/inet/ntp.conf
9876 /etc/passwd

or

9876 /etc/passwd
1234 /etc/inet/ntp.conf

Thedatain the HFO will not be something like

1234 /etc/inet9B76 /etc/passwd
/ntp.conf

66

Fpes and FIFOs Chapter 4

FIFOs and NFS

4.9

FIFOsareaform d IPC that can be used on asinglehost. Although FIFOs have names
in thefilesystem, they can be used only on locd filesystems, and not on NFS-mounted
filesystems.

solaris % mkfifo /nfs/bsdi/usr/rstevens/fifo.temp
nkfifo: 1/0 error

In this example, the filesystem / nfs /bsdi/usr is the /usr filesystem on the host
bsdi .

Some systems(e.g., BSD/OS) do alow FIFOsto be created on an NFS-mounted file-
system, but data cannot be passed between the two systemsthrough oned these FIFOs.
In this scenario, the FIFO would be used only as a rendezvous point in the filesystem
betweenclientsand serverson thesame host. A processon one host cannot send datato
a process on another host through a FIFO, even though both processes may be able to
open a HFO that isaccessibleto both hoststhrough NFS,

Ilterative versus Concurrent Servers

Theserver in our simpleexamplefrom the preceding sectionisan iterativesarver. It iter-
ates through the client requests, completely handling each client's request before pro-
ceeding to the next client. For example, if two clients each send a request to the server
at about the same time—the first for a 10-megabyte file that takes 10 seconds (say) to
send to theclient, and the second for a 10-bytefile—the second client must wait at least
10 secondsfor thefirst client to be serviced.

The alternative is a concurrent sarver. The most common type d concurrent server
under Unix iscaled a one-child-per-dientserver, and it hasthe server cdl f or k to create
anew child each timea client request arrives. The new child handles the client request
to completion, and the multiprogramming featuresd Unix providethe concurrency o
al thedifferent processes. But there are other techniquesthat are discussed in detail in
Chapter 27 UNPv1:

e cCreateapool d childrenand servicea new client withan idlechild,
e Createonethread per client, and
e Createapool d threadsand servicea new client with an idlethread.

Although the discussionin UNPv1 isfor network servers, the same techniquesapply to
IPC serverswhoseclientsare on thesame host.

Denial-of-Service Attacks

We have already mentioned one problem with an iterative server —some clients must
wait longer than expected because they are in Lire following other clientswith longer
requests—but another problem exists. Recdl our shell example following Figure 4.24
and our discussiond how theserver blocksin itscdl to open for theclient HFO if the
client has not yet opened this FHIFO (which did not happen until we executed our cat

Section 4.10 Sreams and Messsges 67

4.10

command). This means that a malicious client could tie up the server by sendingit a
request line, but never opening its FIFO for reading. This is caled a denid-of-sarvice
(Do$S) attack. Toavoid this, we must be careful when coding theiterative portion d any
server, to notewhere the server might block, and for how long it might block. Oneway
to handlethe problemis to place a timeout on certain operations, but it is usually sm-
pler to code the server as a concurrent server, instead d as an iterative server, in which
case, thistyped denia-of-serviceattack affects only one child, and not the main server.
Even with a concurrent server, denia -of-serviceattacks can still occur: a maliciousclient
could send lots d independent requests, causing the server to reach its limit o child
processes, causing subsequent f or ks tofail.

Streams and Messages

The examples shown so far, for pipes and FIFOs, have used the stream [/O modd,
which is natural for Unix. No record boundaries exist—readsand writes do not exam-
inethedataat all. A processthat reads100 bytesfrom a FIFO, for example, cannot tell
whether the process that wrote the data into the HFO did a single write o 100 bytes,
fivewritesd 20 bytes, two writesd 50 bytes, or some other combination d writes that
totals 100 bytes., One process could also write 55 bytes into the HFO, followed by
another processwriting 45 bytes. The data is a byte dream with no interpretation done
by thesystem. If any interpretationisdesired, the writing processand the reading pro-
cessmust agreetoit apriori and doit themselves.

Sometimes an application wants to impose some structure on the data being trans-
ferred. This can happen when the data consists d variable-length messages and the
reader must know where the message boundaries are so that it knows when a single
message has been read. Thefollowingthree techniquesare commonly used for this:

1. Specid termination sequencein-band: many Unix applications use the newline
character to delineate each message. The writing process appends a newline to
each message, and the reading processreadsonelineat atime. Thisiswhat our
client and server did in Figures 4.23 and 4.24 to separate the client requests. In
general, this requires that any occurrence d the delimiter in the data must be
escaped (that is, somehow flagged as data and not asa delimiter).

Many Internet applications (FTP, SVITP, HTTP, NNTP) use the 2-character
sequenced a carriage return followed by a liiefeed (CR/LF) to delineate text
records.

2. Explicit length: each record is preceded by itslength. We will use this technique
shortly. This techniqueis also used by Sun RPC when used with TCP. One
advantage to thistechniqueis that escapinga delimiter that appearsin the data
IS unnecessary, because the receiver does not need to scan all the data, looking
for theend d each record.

3. One record per connection: the application closes the connection to its peer (its
TCP connection, in the case d a network application, or its IPC connection) to

68 PFpesand AFCs Chapter 4

indicate the end d arecord. This requires a new connection for every record,
but isused with HTTP1.0.

Thestandard 1/0 library can also be used to read or writea pipeor FIFO. Sincethe
only way to open a pipe is with the pi pe function, which returns an open descriptor,
the standard 1/0 function £dopen must be used to create a new standard 1/0O sream
that is then associated with this open descriptor. Since a FIFO has a name, it can be
opened using thestandard I/O fopen function.

More structured messages can also be built, and this capability is provided by both
Posix message queues and System V message queues. We will see that each message
has alength and a priority (SystemV calsthelatter a™type'"). Thelength and priority
are specified by the sender, and after the message is read, both are returned to the
reader. Each messageisa recard, similar to UDP datagrams (UNPv1).

We can also add more structureto either a pipe or FHIFO ourselves. We definea mes-
sagein our mesg . h header, asshownin Figure 4.25.

pipemesg [mesg.h

1 #include "unpipc.h"

2 /* Qur own "messages" to use with pipes, FIFOs, and nessage queues. */
3 /* want sizeof (struct mymesg) <= PIPE_BUF */

4 #defi ne MAXMESGDATA (Pl PE- BUF - 2*sizeof (long))

5 /* length of mesg_len and mesg_type */

6 #defi ne MESGHDRSIZE (sizeof (struct nymesg) - MAXMESGDATA)

7 struct nynesg {

8 | ong mesg_len; /* #bytes i n mesg_data, can be 0 */
9 | ong mesg_type; /* message type, must be > 0 */

10 char mesg_data [MAXMESGDATA] ;

11 };

12 ssize-t mesg_send(int, struct nymesg *):
13 void Mesg_send(int, struct nymesg *):
14 ssize-t mesg_recv{int, struct nymesg *):
15 ssize-t Mesg_recv(int, struct nynesg *};

pipemesg[mesg.h
Figure4.25 Our nynesg dructureand reated definitions.

Each message has a mesg_type, which we define as an integer whose value must be
greater than 0. Weignorethetypefield for now, but returntoit in Chapter 6, when we
describe System V. message queues. Each message also has a length, and we allow the
length to be zero. What we aredoing with the mymesg structureisto precedeeach mes-
sage with its length, instead d using newlines to separate the messages. Earlier, we
mentioned two benefits o this design: the receiver need not scan each received byte
looking for theend 0 the message, and thereis no need to escapethe delimiter (anew-
line) if it appearsin the message.

Figure 426 showsa pictured the mynesg structure, and how we useit with pipes,
FIFOs and System V message queues.

Section 4.10 Sreams and Messages 69

second ar gunent fa wri t eand r ead
second ar gunent fa nsgsndand nsgr cv

i'd* mesg_len —'—h-

L
mesg_len |mesg_type mesg_data
A J
Syst emV message: msgbuf {},
used w t h Syst emV nessage queues,
nsgsnd and nsgr cv fucti ons
\ »

Our messago‘alz mymesg{},
used w th pi pes and FIFOs,
writeandreadfuxctios

Fgure4.26 Qur mymesgstructue

We define two functions to send and receive messages. Figure 4.27 shows our
mesg_send function, and Figure4.28showsour mesg_recv function.

T mv— pipemesg [mesg_send.c

2 ssize_ t
3 mesg_send(int fd, struct mymesg *mptr)

4 {
5 return (write(fd, nptr, MESGDRS| ZE + mptr->mesg_len)) ;
6}
pipemesg [mesg_send.c
Fgure4.27 mesg_sendfunction.
1 #include P——— pipemesg [mesg_recv.c

2 ssize t
3 mesg_recv(int fd, struct mymesg *mptr)

4 {

5 size-t len;

6 ssize_t n;

7 /* read nmessage header first, to get len of data that follows */
8 if ((n = Read(fd, nptr, MESGDRSI ZE)) == 0)

9 return (0); /* end of file */

10 else if (n !'= MESGDRSI ZE)

11 err_quit ("message header: expected %, got %d", MESGDRSI ZE, n):
12 if ((len = mptr->mesg_len) > 0)

13 if ((n = Read(fd, mptr->mesg_data, len)) != len)

14 err_quit ("message data: expected %d, got %d", len, n);

15 return (len);

16 } pipemesg [mesg_recv.c

F gure4.28 mesg_recvfunction

70 BRpes ad FIFOs Chepter 4

It now takes two reads for each message, one to read the length, and another to read
the actual message (if thelengthisgreater than 0).

Careful readersmay note that nesg- r ecv checksfor all possibleerrorsand terminatesif one
occurs. Nevertheless, we still definea wrapper function named Mesg_recv and call it from
our programs for consstency.

We now change our client and server functions to use the mesg—send and
mesg-—recv functions. Figure4.29 showsour client.

1 #include "mesg.h" ptpemesg,-‘dient.c

2 void

3 client(int readfd, int writefd)

4 {

5 size-t len;

6 ssize_t n;

7 struct mymesg nesg;

8 /* read pathnarne */

9 Fgets (mesg.mesg_data, MAXMESGDATA, stdin);

10 | en = strlen(mesg.mesg_data);

11 if (mesg.mesg_datal[len - 1] == ’'\n’)

12 len--; /* del ete newline from fgets() */

13 mesg.mesg_len = | en;

14 mesg.mesg_type = 1;

15 /* write pathnarne to | PC channel */

16 Mesg_send(writefd, &mesg):

17 /* read fromIPC, wite to standard output */

18 while ((n = Mesg_recv(readfd, &mesg)) > 0)

19 Write(STDOUT_FILENO, mesg.mesg_data, n);

20 } . .
pipemesg/client.c

Figure4.29 Our cl i ent function that usesmessages.

Read pathname, send to server

8-16 The pathnarne is read from standard input and then sent to the server using
mesg—send.
Read file's contents or error message from server

17-19 Theclient callsmesg—recv in aloop, reading everythingthat the server sends back.
By convention, when mesg—recv returns a length of 0, thisindicates the end o data
from the server. Wewill see that the server includes the newline in each message that it
sendsto theclient, so ablank linewill havea messagelength d 1.

Figure 4.30 showsour server.

Saion4.10 Sreams and Messsges 71

8-18

19-26

1 #include "mesg. h" plpemesg;semer.c
2 void

3 server(int readfd, int witefd)

4 {

5 FILE *fp;

6 ssize_t n;

7 struct mymesg nesg;

8 /* read pathname from|PC channel */

9 nmesg.mesg_type = 1;

10 if ((n = Mesg_recv(readfd, &mesg)) == 0)

11 err_quit ("pathname m ssing");

12 mesg.mesg_dataln] = ‘\0‘; /* null terninate pathname */
13 if ((fp = fopen(mesg.mesg_data, "r")) == NULL) ¢

14 /* error: nmust tell client */

15 snprintf (mesg.mesg_data + n, sizeof (mesg.mesg_data) - n,
16 ». Can't open, %s\n", strerror(errno));

17 nmesg.mesg_len = strlen(mesg.mesg_data);

18 Mesg_send (writefd, &mesg);

19 } else {

20 /* fopen succeeded: copy file to I PC channel */

21 whi | e (Fgets(mesg.mesg_data, MAXMESCDATA, fp) '= NULL) ¢
22 mesg.mesg_len = strlen(mesg.mesg_data) ;

23 Mesg_send(writefd, &mesg);
24 }
25 Fcl ose (fp) ;
26 }
27 /* send a O-1ength nmessage to signify the end */
28 mesg.mesg_len = O;
29 Mesg_send(writefd, &mesg);

30 }

pipemesg [server.c

Figure4.30 Our server functionthat usesmessages.

Read pathname from IPC channel, open file

The pathname isread from theclient. Although theassignmentd 1 tomesg_type
appearsusealess (itisoverwritten by mesg_recv in Figure 4.28), we cal thissamefunc-
tion when using System V message queues (Figure6.10), in which case, this assignment
is needed (e.g., Figure 6.13). The standard 1/0 function fopen opens the file, which
differs from Figure 410, where we called the Unix 1/0 function open to obtain a
descriptor for thefile. The reason we call thestandard1/0 library hereisto cal £get s
toread thefileonelineat atime, and then send each lineto theclient asa message.

Copy file to client

If thecdl to f open succeeds, thefileisread using f get s and sent to theclient, one
line per message. A messagewithalength d 0 indicatestheend d thefile.

72

Fpes ad FIFOs Chapter 4

411

When using either pipesor FIFOs we could aso close the IPC channel to notify the
peer that the end d the input file was encountered. We send back a message with a
length o O, however, because we will encounter other typesd 1PC that do not havethe
concept d an end-of-file.

The mai n functions that cal our cl i ent and server functionsdo not change at
al. Wecan useeither the pipeversion (Figure4.8) or the FIFO version (Figure4.16).

Pipe and FIFO Limits
The only system-imposedlimitson pipesand FIFOs are

OPEN_MaX the maximum number o descriptors open at any time by a process
(Posix requiresthat thisbeat least 16), and

PIPE_BUF the maximum amount d data that can be written to a pipe or FIFO
atomically (wedescribed thisin Section 4.7; Posix requiresthat this be
at least 512).

Thevalued OPEN_MaX can be queried by calling the sysconf function, as we show
shortly. It can normally be changed from the shell by executingtheuli m t command
(Bourneshell and KornShell, as we show shortly) or thel i nit command (C shell). It
can also be changed from a process by calling thesetrlim t function (described in
detail in Section7.11 o APUE).

Thevalued pTPE_BUF isoftendefinedinthe<l i m t s.h> header, but it isconsd-
ered a pathname variable by Posix. Thismeans that its value can differ, depending on the
pathname that is specified (for a FIFO, since pipesdo not have names), because differ-
ent pathnames can end up on different filesystems, and these filesystems might have
different characteristics. The value can therefore be obtained at run time by calling
either pathconf or fpathconf. Figure 431 showsan example that prints these two
limits.

i conf.c
1 #include *unpipc.h” pipe[pipeconf.
2 int
3 main(int argc, char **argv)
4 {
5 if (argc 1= 2)
6 err_quit ("usage: pi peconf <pathname>*");
7 printf ("PIPE_BUF = %14, COPEN- MAX = %1ld\n",
8 Pathconf (argv[1l], _PC_PIPE_BUF), Sysconf (_SC_OPEN_MAX));
9 exit (0);
10 } . .
pipe[pipeconf.c

Figure4.31 Determinevaluesd Pl PE- BU- and OPEN_MAX at run time.

Section 4.12 Summary 73

4.12

Hereare some examples, specifying different filesysterns:

solaris % pi peconf / Solaris 2.6 default values
PIPE-BUF = 5120, OPEN-MAX = 64

solaris % pi peconf /home

PIPE—BUF = 5120, OPEN-MAX = 64

solaris % pi peconf /tmp

PIPE-BUF = 5120, OPEN-MAX = 64

alpha % pi peconf / Digital Unix 4.0B default values
PIPE-BUF = 4096, OPEN-MAX = 4096

alpha % pi peconf /usr

PIPE—BUF = 4096, OPEN-MAX = 4096

We now show how to change the value d OPEN_MAX under Solaris, using the Korn-
Shell.

solaris % ulimit -ns display max # descriptors, soft limit
64

solaris % ulimit -nH display max # descriptors, hard limit
1024

solaris $ ulimt -nS 512 et soft limit to512

solaris % pipeconf / verify that changehas occurred

PIPE-BUF = 5120, OPEN-MAX = 512

Although the value o PIPE—BUF can change for a FIFO, depending on the underlying file-
systemin which the pathname isstored, thisshould beextremely rare.

Chapter 2df APUE describesthe fpathconf, pathconf, and sysconf functions, which pro-
viderun-timeinformationon certainkernel limits. Posix.1 defines12 constantsthat begin with

PC and 52 that begin with _sc_. Digita Unix 4.0B and Solaris 26 both extend the latter,
defining about 100 run-time constantsthat can be queried with sysconf.

The getconf command is defined by Posix.2, and it prints the valued most d
theseimplementationlimits. For example

alpha % getconf OPEN_MAX
4096

alpha % getconf PIPE-BUF /
4096

Summary

Pipes and FIFOs are fundamental building blocks for many applications. Pipes are
commonly used with the shells, but al so used from within programs, often to passinfor-
mation from a child back to a parent. Some d the codeinvolved in using a pipe (pipe,
fork, close, exec, and waitpid) can be avoided by using popen and pclose,
which handleall thedetailsand invokeashell.

74 Pipes and FIFOs Chapter 4

FIFOs are similar to pipes, but are created by mkfi f o and then opened by open.
We must be careful when openinga HFO, because numerousrules (Figure4.21) govern
whether an open blocksor not.

Using pipes and FIFOs, we looked at some client—server designs: one server with
multiple clients, and iterative versus concurrent servers. An iterative server handles
one client request at atime, in aserial fashion, and these typesd servers are normally
open to denia-of-service attacks. A concurrent server has another process or thread
handleeach client request.

One characteristicd pipesand FIFOs is that their dataisa bytestream, similar to a
TCP connection. Any delineation d this byte stream into records is left to the applica
tion. We will see in the next two chaptersthat message queues provide record bound-
aries, smilar to UDP datagrams.

Exercises

41 In the transition from Figure 4.3 to Figure 4.4, what could happen if the child did not
close(£d[1])?

42 Indescribingmkfi f o in Section 4.6, we said that to open an existing FIFO or createa new
HFO if it does not already exidt, cal mkfifo, check for an error of EEXIST, and if this
occurs, cal open. What can happen if the logic is changed, calling open first and then
mkf i f oif the FIFO does not exist?

4.3 What happensinthecall topopen in Figure4.15if the shell encountersan error?

44 Removetheopen d theserver's FIFOin Figure4.23 and verify that thiscausesthe server to
terminatewhen no moreclientsexist.

4.5 In Figure4.23, we noted that when the server starts, it blocks in its first cal to open until
the first client opens this FHFO for writing. How can we get around this, causing both
opensto return immediately, and block instead in thefirst call to readline?

4,6 What happenstotheclientin Figure4.24 if it swapstheorder o itstwo callsto open?

4.7 Why isasignal generated for the writer o a pipe or FIFO after the reader disappears, but
not for thereader o a pipeor FIFO after itswriter disappears?

4,8 Writeasmall test program to determine whether £st at returnsthe number o bytesd data
currently inaFIFO asthe st — si zemember d thest at structure.

4.9 Writeasmall test program to determine what sel ect returns when you select for writabil-
ity on a pipe descriptor whoseread end has been closed.

5.1

Posix Message Queues

Introduction

A message queue can be thought o asalinked list f messages. Threadswith adequate
permission can put messages onto the queue, and threads with adequate permission
can remove messagesfrom the queue. Each messageisarecord (recall our discussion o
streamsversus messagesin Section 4.10), and each messageisassigned a priority by the
sender. No requirement exists that someone be waiting for a message to arrive on a
queue before some process writes a message to that queue. Thisisin contrast to both
pipesand HFOs for which it having awriter makes no sense unlessa reader also exigts.

A process can write some messages to a queue, terminate, and have the messages
read by another processat a later time. We say that message queues have kernel persis-
tence (Section 1.3). This differs from pipes and HFOs We said in Chapter 4 that any
data remaining in a pipe or FIFO when thelast close o the pipe or FIFO takes place, is
discarded.

This chapter looks at Posix message queues and Chapter 6 looks at SystemV mes-
sage queues. Many similaritiesexist between the two sets o functions, with the main
differencesbeing:

¢ A read on aPosx messagequeue alwaysreturnsthe oldest messaged the high-
est priority, whereasa read on a System V message queue can return a message
d any desired priority.

e Posix message queues dlow the generation a signal or the initiation d a
thread when a messageis placed onto an empty queue, whereas nothing similar
isprovided by System V message queues.

75

76 Podx Messsge Queues Chapter 5
Every messageon a queue has thefollowing attributes:

e anunsigned integer priority (Posix)or along integer type (SystemV),

o thelengthd thedataportion d the message(whichcan be(), and

o thedataitsdf (if thelengthisgreater than 0).

Notice that these characterigtics differ from pipes and FIFOs. The latter two are byte
streams with no message boundaries, and no type associated with each message. We
discussed thisin Section 4.10 and added our own messageinterface to pipesand FIFOs.

Figure5.1 showsone possiblearrangementd a message queue.

head ~+———» next next » NULL
mg_maxmsg ' priority=30 priority = 20 priority = 10
mg msgsize | length=1 length =2 length =3
S
data
data
data
Figure5.1 Possiblearrangement of a Posix message queue containingthreemessages.
We are assuming alinked ligt, and the head d thelist contains the two attributesd the
gqueue: the maximum number d messages adlowed on the queue, and the maximum
sized amessage. We say more about these attributesin Section5.3.

In this chapter, we use a technique that we use in later chapters when looking at
message queues, semaphores, and shared memory. Sinceall o these |PC objects have at
least kernel persistence (recall Section 1.3), we can write small programs that use these
techniques, to let us experiment with them and learn more about their operation. For
example, we can writea program that createsa Posix message queue, write another pro-
gram that adds a message to a Posx message queue, and write another that readsfrom
one d these queues. By writing messages with different priorities, we can see how
these messagesare returned by themg_receive function.

5.2 mqg open, mgclose, and mgunlink Functions

The mg_open function creates a new message queue or opens an existing message
queue.

#i ncl ude <mgueue.h>

mgd_t mg open(const char *name, int oflag, ...
/* nmode-t mode, struct mg attr *aHr */);

Returns messagequeue descriptor if OK, -1 oneror

Section 5.2 mg_open, mqg close, and mg unlink Functions 77

We describethe rules about the name argument in Section2.2.

The oflag argument is one of O_RDONLY, O_WRONLY, or O_RDWR, and may be bit-
wise-ORed with O_CREAT, 0_EXCL, and O_NONBLOCK. We describe all these flagsin
Section2.3.

When a new queue is created (O_CREAT is specified and the message queue does
not already exist), the mode and attr arguments are required. We describe the mode val-
uesin Figure24. Theattr argument lets us specify some attributes for the queue. If this
argument is a null pointer, the default attributes apply. We discuss these attributes in
Section5.3.

The return value from mq_open is called a message queue descriptor, but it need not
be (and probably is not) a small integer like a file descriptor or asocket descriptor. This
valueis used asthefirst argument to the remaining seven message queue functions.

Solaris 26 definesmgd_t asa void* whereas Digital Unix 4.08 definesit asan int. In our

sample implementation in Section 5.8, these descriptors are pointersto a structure. Caling
thesedataty pesa descriptor isan unfortunatemistake.

Anopen message queueisclosed by mg _close.

#include <mqueue.h>
int mg _close (mgd_t mgdes) ;

Returns; 0 if OK, -1 onerror

The functionality is similar to the close o an open file the calling process can no
longer use the descriptor, but the message queue isnot removed from the system. If the
processterminates, all open messagequeues are closed, asif mg_close werecalled.

To remove a name that was used as an argument to mg_open from the system,
mqg_unlink must becalled.

#include <mgueue.h>

int mg unlink(const char *name);

| Returns: 0 if OK, -1 on error

Message queues have a reference count of how many timesthey are currently open (just
likefiles), and this function issimilar to the unlink function for afile: the name can be
removed from the system whileits reference count is greater than O, but the destruction
d the queue (versus removing its name from the system) does not take place until the
lastmg_close occurs.

Posix message queues have at least kernd persistence (recall Section 1.3). That is,
they exist along with any messages written to the queue, even if no process currently
has the queue open, until the queue is removed by caling mg_unlink and having the
queue referencecount reach 0.

78 Posix Message Queues Chapter5

We Wl seetha if these nessage queues arei npl enent ed usi ng menor y-napped files(Sec
tian 12.2), then they can have fil esystempersi stance, but this is not required and cannot be
count ed on.

Example: mgereatel Program

8-16

17

Since Posix message queues have at least kernel persistence, we can write a set of small
programs to manipulate these queues, providing an easy way to experiment with them.
The program in Figure 5.2 creates a message queue whose name is specified as the
command-lineargument.

pxmsg [mqcreatel .c

1 #incl ude "unpipc.h”

2int

3 main(int argc, char **argv)

4 {

5 int c, flags;

6 mgd_t nmyd;

7 flags = O_RDWR | O_CREAT;

8 while ((c = Getopt(argc, argv. "e")) != -1) (
9 switch (c) {

10 case '€

11 flags |= O_EXCL;

12 br eak;

13 }

14 }

15 if (optind != argc - 1)

16 err_quit ("usage: nmycreate [-e | <name>");
17 mgd = Mg _open(argv[optindl, flags, FILE- MDE, NULL);
18 Mg _close (mgd) ;

19 exit(0);

20 }

pxmsg[mgcreatel .c
Fgure52 QCeateanessagequeuewththe excl usi vecreat efl ags speai fied

We allow a -e option that specifies an exclusive create. (We say more about the
getopt function and our Getopt wrapper with Figure 5.5.) Upon return, getopt
storesin optind theindex o the next argument to be processed.

We cal mg_open with the IPC name from the command-line, without calling our
px_ipc_name function (Section 2.2). Thislets us see exactly how the implementation
handles these Posix IPC names. (Wedo thiswith all our simple test programs through-
out this book.)

Hereistheoutput under Solaris 2.6:

solaris % mgcreatel /temp.1234 first createworks
solaris % 18 -1 /tmp/.*1234
-IrW-rw-rw- 1 rstevens otherl 132632 Cct 23 17:08 /tmp/.MQDtemp.1234

~rw-rw-rw- 1 rstevens otherl 0 &t 23 17:08 /tmp/.MQLtemp.1234
—rw-r--r-- 1 rstevens otherl 0 Cct 23 17:08 /tmp/.MQPtemp.1234
solaris % mgcreatel -e /temp.1234 second createwith - fails

mg open error for /temp.1234: File exists

Secian53 mg_getattr and mg setattr Functions o

(We cdll this version of our program mgcreatel, because we enhanceit in Figure 5.5
after describing attributes.) The third file has the permissions that we specify with our
FILE—MODE constant (read-writefor the user, read-only for the group and other), but
the other two files have different permissions. We guess that the filename containing D
contains the data, the filenamecontaining L is some type o lock, and the filename con-
taining P specifiesthe permissions.

Under Digital Unix 4.0B, we can seethe actual pathname that iscreated.

al pha % mgcreatel /tmp/myqg.1234

alpha % 18 -1 /tmp/myq.1234

—YW-T-—T—— 1 rstevens system 11976 Qct 23 17:04 /tmp/myq.1234
al pha % ngcreatel -~e /tmp/myqg.1234

mg_open error for /tmp/myqg.1234: File exists

Example: mgunlink Program

5.3

Figure5.3isour mgunlink program, which removesa message queue from the system.

pxmsg[mqunlink.c

1 #i ncl ude "unpipc.h"
2int

3 main(int argc, char **argv)
4 {

5 if (argc '= 2)
6 err_quit ("usage: ngunlink <name>");
7

8

9

Mg unlink(argv[1]);

exit(0);

pxmsg/mgunlink.c
Hgure53 mg unli nk a nessage queue.

We can remove the message queue that was created by our mqgcreate program.
solaris % ngunl i Nk /temp.1234

All threefilesin the / tmp directory that were shown earlier are removed.

mg getattr and mg_setattr Functions

Each message queue hasfour attributes, all o which are returned by mqg_getattr and
oned whichisset by mg setattr.

#i ncl ude <mgueue.h>
int mg getattr(mgd_t mqdes, struct mg attr *attr);:

int mg setattr(mgd_t ques, const Struct mg _attr *aftr, Struct mg attr *oattr);

Bthretun 0if QK -1onera

80 Posx Messge Queles Chepter 5

Themg att r structure containsthese attributes.

struct mg attr ¢
long mqg flags; /* nmessage queue flag: O, O_NONBLOCK */
long mg maxmsg; /* nmax nunber of nessages al | oned on queue */
long mg msgsize; /* nax size of a nessage (in bytes) */
long mg curmsgs; /* nunber of nessages currently on queue */
}:

A pointer to one d these structurescan be passed as the fourth argument to mg_open,
alowing us to set both mg_maxmsg and m~msgsi zehen the queue is created. The
other two membersd thisstructureareignored by mg_open.

nmg_getattr fillsin the structure pointed to by attr with the current attributesfor
the queue.

mqg_setattr setsthe attributesfor the queue, but only themqg_flags member d
themqg_attr structure pointed to by attr is used, to set or clear the nonblocking flag.
The other three members d the structure are ignored: the maximum number o mes-
sages per queue and the maximum number d bytes per message can be set only when
the queueiscreated, and the number d messagescurrently on the queue can be fetched
but not set.

Additionally, if the oattr pointer is nonnull, the previous attributesd the queue are
returned (mg_flags, mg _maxmsg, and mg_msgsize), aong with the current status o
thequeue(mg_curmsgs).

Example: mggetattr Program

The program in Figure5.4 opensa specified messagequeue and printsitsattributes.

xiisg [mggetattr.c

1 #include "unpipc.h" P g" nag

2 int

3 main(int argc, char **argv)

4 {

5 mgd_t myd;

6 struct mg attr attr;

7 if (argc 1= 2)

8 err-quit("usage: nggetattr <name>");

9 myd = Mg _open(argv (1], O_RDONLY);

10 Mg _getattr(mgd, &attr);

11 printf ("max #msgs = %1d, nmax #bytes/msg = %14, "

12 "#currently on queue = %1d\n",

13 attr.mg _maxmsg, attr.mg msgsize, attr.mg curmsgs);

14 Mg close (mgd) ;

15 exit(0);

16 }
pxmsg [tmqgetattr.c

Figure5.4 Fetchand print theattributesd amessagequeue.

We can create a messagequeue and print itsdefault attributes.

Sctionh 3 mg_getattr and mg setattr Functions 8L

solaris % mgcreatel /hello.world
solaris % mggetattr /hello.world
max #msgs = 128, max #bytes/msg = 1024, #currently on queue = 0

We can now see that thefilesizelisted by 1s when we created a queue with the default
attributesfollowing Figure5.2 was 128 x 1024+ 1560 = 132,632. The 1560 extra bytesare
probably overhead information: 8 bytes per message plus an additional 536 bytes.

Example: mgereate Program
We can modify our program from Figure5.2, allowing usto specify the maximum num-

ber o messagesfor the queue and the maximum size of each message. We cannot spec-
ify oneand not the other; both must be specified (but see Exercise5.1). Figure55isthe

new program.
- Xmsg [mgcreate.c
1 #i ncl ude "unpipc.h" pxmsg/ma
2 struct mg attr attr; /* mg_maxmsg and mg msgsize both init to 0 */
3 int
4 mai n(int argc, char **argv)
5 {
6 int c, flags:
7 mgd_t myd;
8 flags = O_RDWR | O_CREAT;
9 while ((c = Getopt(argc, argv, "em:z:")) !'= -1) {
10 switch (c) {
11 case 'e’:
12 flags |= O_EXCL;
13 br eak;
14 case 'm’:
15 attr.mg maxmsg = atol (optarg):
16 br eak;
17 case 'z’':
18 attr.mg msgsize = atol (optarg);
19 br eak;
20 }
21 }
22 if (optind != argc - 1)
23 err_quit ("usage: nycreate [-e] [-m maxmsg -z NBQSi Zz€] <name>");
24 if ((attr.mg maxmsg != 0 && attr.mg msgsize == 0) ||
25 (attr.mg maxmsg == 0 && attr.mg msgsize !'= 0))
26 err_quit ("must specify both -m maxnsg and -z msgsize");
27 myd = Mg _open(argv[optind], flags, Fl LE- MCDE,
28 (attr.mg maxmsg != 0) ? &attr : NULL);
29 Mg_close(mgd) ;
30 exit(0);

31 }

pxmsg [mgcreate.c
Fgure55 Mdficationd Fgues.2alowngeéattribuesto bespedified

82

Posix Messsge Queues Chapter5

a4

To specify that a command-lineoption requiresan argument, we specify a colon fal-
lowing the option character for the m and z optionsin the cdl to getopt. When pro-
cessing the option character, optar g pointsto the argument.

Our Getopt wrapper function callsthe standard library’s get opt functionand terminatesthe
process if getopt detects an error: encountering an option letter not included in the third
argument, or an option letter without a required argument (indicated by an option letter fol-
lowed by a colon). In either case, getopt writes an error message to standard error and
returnsan error, which causes our Getopt wrapper to terminate. For example, thefollowing
twoerrorsaredetected by getopt:

solaris % nycreate -z
mgcreate: Option requires an argument -- z
solaris % nycreate -q
mgcreate: illegal option -- q
Thefollowing error (not specifying the required name argument)is detected by our program:

solaris % nycreate
usage: mgcreate [-e | [-m maxmsg -z msgsize] <name>

if neither d the two new optionsare specified, we must pass a null pointer as the
final argument tomg_open, else we passa pointer toour at t r structure.

We now run thisnew verson d our program, specifying a maximum o 1024 mes-
sages, each messagecontai ning up to 8192 bytes.

solaris % ngcreate -e -m 1024 -z 8192 /foobar

solaris % 1ls -al /tmp/.*foobar

—Yw-rw-rw- 1 rstevens otherl 8397336 Oct 25 11:29 /tmp/.MQDfoobar

—Yw-rw-rw- 1 rstevens otherl 0 Oct 25 11:29 /tmp/.MQLfoobar

-rw-r--r-- 1 rstevens otherl 0 Oct 25 11:29 /tmp/.MQPfoobar

Thesized thefile containingthe datafor thisqueue accountsfor the maximum number
d maximum-sized messages (1024 x 8192 = 8, 388, 608), and the remaining 8728 bytesd
overhead alowsroom for 8 bytes per message (8 x 1024) plusan additional 536 bytes.

If we executethe same program under Digital Unix 4.0B, we have

alpha % nycreate -m 256 -z 2048 /tmp/bigq

alpha % 1s -1 /tmp/bigq
—YW-Y—-T—— 1 rstevens system 537288 Oct 25 15:38 /tmp/bigg

This implementation appears to alow room for the maximum number o maximum-
sized messages (256x2048 =524,288) and the remaining 13000 bytes d overhead
alowsroom for 48 bytes per message (48 x 256) plusan additional 712 bytes.

mg_send and mg_receive Functions

These two functions place a message onto a queue and take a message dff a queue.
Every message has a priority, which is an unsigned integer less than MQ_PRIO_MAX.
Posix requiresthat thisupper limit be at |east 32.

Solaris 2.6 hasan upper limit d 32, but thislimit is 256 with Digital Unix 4.08. We show how
to obtain thesevalueswith Figure5.8.

Section 5.4 mg_send and mg_receive Functions 83

m~r ecei v aways returns the oldest message o the highest priority from the
specified queue, and the priority can be returned in addition to the actual contents of
themessageand itslength.

This operation d mg_receive differsfrom that o the System V msgrcv (Section 6.4).
System V messages haveatypefield, which is similar to the priority, but with msgrecv, we can
specify three different scenarios as to which message is returned: the oldest message on the
queue, the oldest message with a specifictype, or the oldest messagewhose typeislessthanor
equal tosomevalue.

‘ #include <mqueue.h>
int mg_send(mgd_t mqdes, const char *ptr, size—t len, unsigned int prio) ;
| Returns: 0 if OK, -1 on error

ssize_t mg_receive(mgd_t mqdes, char *ptr, size—t len, unsigned int *priop);

| Returns: number of bytesin messageif OK, -1 on error

The first three arguments to both functionsare similar to the first three arguments for
writeand read, respectively.

Declaring the pointer argument to the buffer asa char* lookslikea mistake. void* would be
moreconsi stent with other Posix.1 functions.

Thevaued thelen argument for mqg_receive must beat least as big as the maxi-
mum sized any message that can be added to thisqueue, themg_msgsize member o
the mg_attr structure for this queue. If len is smaller than this value, EMSGSI ZE is
returned immediately.

Thismeansthat most applicationsthat use Posix messagequeuesmust call mg_getattr after
opening the queue, to determinethe maximum message size, and then allocateone or more
read buffersd that size. By requiring that the buffer always belarge enough for any message
on thequeue, m~r ecei vdoes not need to return a natificationif the messageislarger than
the buffer. Compare, for example, the MSGNCHRRCR flag and the EZBIG error possiblewith
System V message queues (Section 6.4) and the MSGARINC flag with the recvmsg function
that isused with UDP datagrams(Section13.5 d UNPv1).

prio is the priority d the message for mg_send, and its value must be less than
MQ PRIO_MAX. If priop is a nonnull pointer for mqg_receive, the priority d the
returned message is stored through this pointer. If the application does not need mes-
sagesd differing priorities, then the priority can always be specified as0 for mg_sengd,
and thefinal argumentform ~ r e c e i vean beanull pointer.

A O-byte message is allowed. Thisinstanceis one in which what isimportant is not what is
said in thestandard (i.e., Posix.1), but what is not said: nowhereisa 0-byte message forbidden.
Thereturn valuefromm ~r ec ei vis the number o bytesin the message (if OK) or -1 (if an
error), so areturn valued 0 indicatesaO-lengthmessage.

One featureis missing from both Posix message queuesand System V message queues. accu-
rately identifying the sender o each message to the receiver. Thisinformation could be useful

84 Posix Message Queues Chapter 5

in many applications. Unfortunately, most |PC messaging mechanisms do not identify the
sender. In Section 15.5, we describe how doors provide this identity. Section 14.8 d UNPv1
describes how BSD/OS provides this identity when a Unix domain socket is used. Sec-
tion 1531 d APUE describeshow S/R4 passes the sender's identity across a pipe when a
descriptor is passed across the pipe. The BSD/OS techniqueis not widely implemented, and
athoughthe SVR4 techniqueis part o Unix 98, it requires passing a descriptor acrossthe pipe,
which is normally more expensive than just passing data across a pipe. We cannot have the
sender include itsidentity (e.g., its effective user | D) with the message, as we cannot trust the
sender to tell the truth. Although the access permissions on a message queue determine
whether thesender is allowed to place a message onto the queue, thisstill does not identify the
sender. The possibility existsto createone queue per sender (whichwe talk about with regard
to System V message queuesin Section 6.8), but thisdoes not scale well for large applications.
Ladly, redlize that if the message queue functionsare implemented entirely as user functions
(as we show in Section 5.8), and not within the kernel, then we could not trust any sender
identity that accompani edthe message, asit would be easy toforge.

Example: mgsend Program

Figure5.6showsour program that addsa messagetoa queue.

xmsg [tgsend.c
1 #include "unpipc.h" P &1ma
2 int
3 main(int argc, char **argv)
4 {
5 mgd_t mgd:
6 void *ptr;
7 size—t 1len;
8 uint_t prio;
9 if (argc !'= 4)
10 err_qguit ("usage: mgsend <name> <#bytes> <priority>");
11 len = atoi(argv(2]);
12 prio = atoi(argv[31);
13 mod = Mg open(argv[1l, O_WRONLY) ;
14 ptr = Calloc(len, sizeof(char));
15 Mg _send{mgd, ptr, len, prio);
16 exit(o);
17 '} pxmsg/mgsend.c

Figure5.6 maqsend program.

Both the size of the message and its priority must be specified as command-line
arguments. Thebuffer isallocated by cal | oc, which initializesit to0.

Example: mgreceive Program

Theprogramin Figure5.7 readsthe next messagefrom a queue.

Sctionh 4

mg_send and

mg_receive Functions 85

14-17

21-25

pxmsg [mqreceive.c

1 #include "unpipc.h"

2int

3 main(int argc, char **argv)

4 {

5 int c, flags;

€ mad_t nqgd;

7 ssize t n;

g uint_t prio;

g voi d *buf f ;

ic struct mg_attr attr;

11 fl ags = O_RDONLY;

12 while ((¢ = Getopt(argc, argv, "n")) !'= -1) {
13 switch (c) ¢

14 case ‘n’:

15 flags |= O_NONBLOCK;

1€ br eak;

17 }

18 }

19 if (optind '= argc - 1)

2C err-quit ("usage: ngreceive [-n] <name>");
21 ngd = Mg_open(argv [optindl, fl ags):

22 Mg_getattr (mgd, &attr);

23 buff = Malloc(attr.mg _msgsize);

24 n = Mg receive(mgd, buff, attr.mg msgsize, &prio);
25 printf ("read %14 bytes. priority = %u\n", (long) n, prio);
2€ exi t(0) ;

27 }

Fgure57 ngrecei veprogram

Allow -n option to specify nonblocking

A command-lineoption d -n specifies nonblocking, which causes our program to
returnan error if N0 messagesarein thequeue.

Open queue and get attributes

We open the queue and then get its attributes by callingmg _getattr. We need to
determine the maximum messagesize, becausewe must allocatea buffer o thissizefor
thecdl tomg_receive. We print thesized the messagethat isread and its priority.

pxmsg |/ mqreceive.c

Sncenisasize-t datatype and we do nat knowwhet her thisisanint a al ong, we cest
the val uetobealongineger and usethe $1afornat string On a 64-biti npl enent ati on, i nt
Wl bea32bitiney, but | ongandsize-t Wl bath be 64-biti ntegers.

We can usethese two programs to see how the priority field is used.

8% PRoEx Messge Queues Chepter 5

solaris % mgcreate /testl createand get attributes
solaris % mggetattr /testl
max #msgs = 128. max #bytes/msg = 1024, #currently on queue = 0

solaris % mgsend /testl 100 99999 send with invalid priority
mg_send error: |nvalid argunent

solaris % ngaend /testl 100 6 100 bytes, priority of 6
solaris % ngaend /testl 50 18 50 bytes, priority d 18
solaris % ngaend /testl 33 18 33 bytes, priority o 18

solaris % nqOrecei ve /testl

read 50 bytes, priority = 18 oldest, highest priority messageis returned
solaris % ngrecei ve /testl

read 33 bytes, priority = 18

solaris % ngrecei ve /testl

read 100 bytes, priority = 6

solaris % mgreceive -n /testl specify nonblocking; queue isempty

mg receive error: Resource temporarily unavail abl e

We can seethat mg_receive returnsthe oldest messaged the highest priority.

55 Message Queue Limits

We have already encountered two limitsfor any given queue, both d which are estab-
lished when thequeueis created:

mg _maxmsg themaximum number d messageson thequeue, and
mg _msgsize themaximumsized agiven message.

No inherent limitsexist on either vaue, although for the two implementationsthat we
have looked at, room in thefilesystern must exidt for afile whose sizeis the product d
these two numbers, plus some small amount d overhead. Virtual memory require-
mentsmay also exid based on thesized the queue (seeExercise5.5).

Two other limitsare defined by theimplementation:

MQ_OPEN_MAX the maximum number d message queuesthat a process can have
open at once (Posix requiresthat thisbeat least 8), and

MQ_PRIO_MAX themaximum valueplusonefor the priority o any message (Posix
requiresthat thisbeat least 32).

These two constants are often defined in the <unistd.h> header and can also be
obtained at run timeby calling the sysconf function, aswe show next.

Example: mgsysconf Program

The program in Figure 58 calls sysconf and prints the two implementation-defined
limitsfor message queues.

Section 56 mg_notify Function 87

5.6

pxmsg[mgsysconf.c

[

#include "unpipc.h"

int
main(int argc, char **argv)
{
printf (MQ-OFEN-MAX = %14, MO PRIO_MAX = $ld\n",
Sysconf (_SC_MQO_OPEN_MAX), Sysconf(_SC_MQ PRIO_MAX)):
exit(o);

N~ WN

pxmsg | mgsysconf.c
Figure58 Cadl sysconf to obtain messagequeuelimits.

if weexecutethison our two systems, we obtain

solaris % mgsysconf

MOQEHNMAX = 32, MQ_PRIO_MAX = 32

alpha % mgsysconf
MQOHENHVAX = 64, MQ _PRIO_MAX = 256

mg notify Function

One problem that we will see with System V message queues in Chapter 6 is their
inability to notify a processwhen a messageis placed onto a queue. Wecan block in a
cal to nsgr cv, but that prevents us from doing anything elsewhile we are waiting. If
we specify the nonblocking flag for msgr cv (IPC_NOWAIT), we do not block, but we
must continually call thisfunction to determine when a messagearrives. Wesaid thisis
caled polling and isawaste o CPU time. Wewant away for the system to tell uswhen
amessageis placed onto a queue that was previously empty.

This section and the remaining sectionsdf this chapter contain advanced topics that you may
want to skip on afirst reading.

Posix message queues allow for an asynchronous event notification when a messageis
placed onto an empty messagequeue. This notification can beeither

o thegenerationd asignal, or
e thecreationd athread to executea specified function.

Weestablish this notification by calling mg_noti £y.

‘ #include <mgueue.h>
int mg notify(mgd_t mgdes, const struct sigevent *notification) ;

Returns: 0 if OK, <1 on error

Thisfunction establishes or removes the asynchronous event notification for the speci-
fied queue. Thesi gevent structureisnew with the Posix.1 realtime signals, whichwe
say more about in the next section. Thisstructureand all o the new signal-related con-
stantsintroduced in this chapter aredefined by <si gnal . h>.

88 Poax Messge Queues Chapter5

union sigval {

}:

st

}:

int sival_int; /* integer value */

void *sival_ptr; /* pointer value */

ruct sigevent {

int sigev_notify; /* SIGEV_{NONE,SIGNAL, THREAD} */

int sigev_signo; /* signal number if SIGEV_SIGNAL */

union sigval sigev_value; /* passed to signal handler or thread */
/* following two if SIGEV_THREAD */

void (*sigev_notify function) (union sigval);

pthread_attr_t *sigev_notify_attributes;

We will show some examplesshortly o the different ways to use this notification, but a
few rulesapply in general for thisfunction.

1.

If the natification argument is nonnull, then the process wants to be notified
when a messagearrives for the specified queue and the queueisempty. We say
that ""the processis registeredfor notificationfor the queue.”

If the notificationargument isa null pointer and if the processis currently regis-
tered for notification for the queue, the existing registrationisremoved.

Only one process at any given time can be registered for notification for a given
queue.

When a message arrives for a queue that was previously empty and a processis
registered for notification for the queue, the notification issent only if no thread
isblocked in acall tomg_receive for that queue. That is blocking in acall to
mg_receive takes precedenceover any registration for notification.

When the notification is sent to the registered process, the registration is
removed. The process must reregister (if desired) by callingmg_noti £y again.

Oned theoriginal problemswith Unix signalswasthat asignal's action wasreset to
its default each time the signal was generated (Section 104 o APUE). Usudly the
firgt functioncalled by asignal handler was signal , to reestablishthehandler. This
provided a small window o time, between the Sgnd's generation and the process
reestablishing its signal handler, during which another occurrence d that signal
could terminate the process. At first glance, weseem to haveasimilar problem with
mg_notify, Sincethe process must reregister each timethe notification occurs. But
message queues are different from signals, because the notification cannot occur
again until the queue is empty. Therefore, we must be careful to reregister before
reading the messagefrom the queue.

Example: Simple Signal Notification

Beforegetting into the details of Posix realtime signals or threads, we can writeasimple
program that causes SIGUSR1 to be generated when a messageis placed onto an empty
queue. We show this program in Figure 59 and note that this program contains an
error that wetalk about in detail shortly.

Section56 mg _noti £y Function DO

xmsg [magnotifysigl.c
1 #include "unpipc.h" P 8!‘ q ﬁl 8
2 mgd_t myd;

3 void *puf f;

4 struct mg attr attr;

5 struct sigevent sigev;

6 static void sig_usrl(int);

7 int

8 main(int argc, char **argv)

9 {

10 if (argc 1= 2)

11 err_quit ("usage: mgnotifysigl <name>");

12 /* open queue, get attributes, allocate read buffer */

13 myd = Mg _open(argv(l], O_RDONLY) ;

14 Mg getattr{mgd, &attr);

15 buff = Malloc(attr.mg_msgsize);

16 /* establish signal handl er, enable notification */

17 Si gnal (SIGUSR1, sig_usrl);

18 sigev.sigev_notify = SIGEV_SIGNAL;

19 sigev.sigev_signo = SIGUSRI1:

20 Mg notify(mgd, &sigev);

21 for (;)

22 pause() ; /* signal handl er does everything */
23 exit(0) ;

24 '}

25 static void
26 sig usrl(int signo)

27 {

28 ssize_t n;

29 Mg _notify(ngd, &sigev); /* reregister first */

30 N = Mg _receive(nyd, buff, attr.mg msgsize, NULL) ;

31 printf ("SIGUSR1 recei ved, read %1d bytes\n", (long) n);
32 return;

33 }

pxmsg [magnotifysigl.c
Fgure59 Generate Sl QUSR when nessage pl aced ont oan enpt y queudi ncarrect versia).

Declare globals

2-6 We declare some globals that are used by both the nai n function and our signal
handler (sig_usril).

Open queue, get attributes, allocate read buffer
12-15 We open themessage queue, obtain itsattributes, and allocatearead buffer.
Establish slgnal handler, enable notiflcatlon

16-20 We firg establish our signal handler for s1GUsr1. Wefill in the sigev_notify
membe of thesi gevent gructurewith the S GEV- Sl GNAL congant, which says that

0 Poax Messsge Queues Chapter5

we want asignal generated when the queue goes from empty to not-empty. We set the
sigev_signo member to thesignal that wewant generated and call mg_noti f y.

Infinite loop

21-22 Our mai n function is then an infiniteloop that goesto sleepin the pause function,
which returns-1 eachtimeasignal iscaught.

Catch signal, read message

25-33 Our signal handler callsmg_noti fy, to reregister for the next event, reads the mes-
sage, and printsitslength. Inthisprogram, weignorethereceived message's priority.

Thereturn statement at theend d sig_usr1 is not needed, since thereis no return value
and faling df theend d the function is an implicit return to the caler. Nevertheless, the
author always codes an explicit return at the end d a signal handler to reiterate that the
return from this function is specia. It might cause the premature return (with an error o
EINTR) df afunctioncall inthethreadthat handlesthesigna.

We now run this program from one window

solaris % mgcreate /testl Createqueue
solaris % mgnotifysigl /testl start program from Figure5.9

and then execute thefollowing commands from another window:

solaris % mgsend /testl 50 16 send 50-byte messagewith priorityd 16

As expected, our ngnoti fysi gl program outputs SIGUSR1 recei ved, read 50
byt es.

We can verify that only one process at a time can be registered for the notification,
by starting another copy o our program from another window:

solaris % mgnotifysigl /testl
mg _notify error: Device busy

Thiserror messagecorrespondsto EBUSY.

Posix Signals: Async-Signal-SafeFunctions

The problem with Figure 59 is that it callsmg notify, mg receive, and printf
fromthesignal handler. Noned thesefunctionsmay becalled from asignal handler.

Posix uses the term async-signal-safe to describe the functions that may be called
from a signal handler. Figure5.10 lists these Posix functions, along with afew that are
added by Unix 98.

Functionsnot listed may not be called from asignal handler. Notethat none o the
standard I/O functions are listed and none o the pthread XXX functions are listed.
O al the IPC functions covered in this text, only sem_post, read, and write are
listed (weareassuming thelatter two would be used with pipesand FIFOs).

ANS C listsfour functionsthat may becalled from asignal handler: abort, exit, longimp,
and signal. Thefirst threearenot listed asasync-signa-safeby Unix 98.

Sectian 5.6

ng_noti fy Function

91

Example: Signal Notification

15-18

15-22

23-27

access
aio_return
alilo_suspend
alarm

cf geti speed
cf get ospeed
cf seti speed
cf set ospeed
chdir

chnod

chown

cl ock-gettirne
cl ose

creat

dup

dup?2

execl e
execve
—exit

fentl

f datasync
fork

f pat hconf
f stat
fsync
getegi d
geteui d
getgi d
get gr oups
getpgrp
get pi d
get ppi d
getui d
kill

I'i nk

| seek
kdi r
nkfifo
open

pat hconf
pause
pipe

rai se
read

rename
rdir
sem_post
setgid

set pgi d
setsid
setuid
sigaction
si gaddset
si gdel set
si genpt yset
sigfillset
si gi snmenber
si gna

si gpause

si gpendi ng
si gpr ocnask
siggueue

si gset

si gsuspend
sl eep

st at

sysconf
tcdrain

tcfl ow

tcfl ush
tcgetattr
tcgetpgrp

t csendbr eak
tcsetattr

t cset pgr p
tinme
timer - getoverrun
timer_gettime
timer_settime
tines

umask

uname

unl i nk

utime

wai t

wai t pi d
wite

Foure510 Functions that are async-signal-safe.

One way to avoid calling any function from asignal handler isto have the handler just
set a global flag that some thread examines to determine when a message has been
received. Figure5.11 shows this technique, although it containsa different error, which

wedescribeshortly.

Global variable

Sincethe only operation performed by our signal handler isto set nyf | ag nonzero,
the global variablesfrom Figure5.9 need not be global. Reducing the number o global
variablesisalways a good technique, especially when threadsare being used.

Open message queue

We open the messagequeue, obtain its attributes, and allocate areceivebuffer.

Initialize signal sets

Weinitializethree signal setsand turn on thebit for STGUSRL1 in the set newmask.

Establish signal handler, enable notification

We establisha signal handler for sTGUSRA, fill in our si gevent structure, and call

mg_notify.

92 Posi x Message Queues Chapter 5

1 #i ncl ude "unpipc.h" pxmsg/mqnotlfy sig2.c
2 volatile sig_atomic_t nufl ag; /* set nonzero by signal handl er */
3 static void sig_usrl(int);
4 int
5 main(int argc, char **argv)
6 {
7 mgd_t mgd;
8 voi d *puf f ;
9 gsize_t n;
10 sigset_t zeronask, newmask, oldmask;
11 struct mg attr attr;
12 struct sigevent sigev;
13 if (argc '= 2)
14 err_quit("usage: mgnotifysig2 <name>");
15 /* open queue, get attributes, allocate read buffer */
16 myd = Mg _open{argv (1], O_RDONLY);
17 Mg getattr(mgd, &attr);
18 buff = Malloc(attr.mg msgsize);
19 sigemptyset (&zeromask) ; /* no signals bl ocked */
20 Sigemptyset (&newmask) ;
21 Sigemptyset (&oldmask) ;
22 Sigaddset (&newmask, SIGUSR1);
23 /* establish signal handl er, enabl e notification */
24 Signal (SIGUSR1, sig_usrl):
25 sigev.sigev_notify = SIGEV_SIGNAL;
26 sigev.sigev_signo = SIGUSR1;
27 Mg _notify(nmgd, &sigev);
28 for (; ;) {
29 Sigprocmask (SIG_BLOCK, &newmask, &oldmask); /* bl ock siGusrl */
30 while (nmgflag == 0)
31 sigsuspend(&zeromask) ;
32 mgfl ag = O; /* reset flag */
33 Mg notify(mgd, &sigev); /* reregister first */
34 n = Mg _receive(mgd, buff, attr.mg msgsize, NULL);
35 printf("read %14 bytes\n", (long) n);
36 Sigprocmask (SIG_UNBLOCK, &newmask, NULL); /* unbl ock SIQJSR */
37 }
38 exit(0);
39 }
40 static void
41 sig_usrl(int signo)
42 {
43 nyf l ag = 1;
44 return;
5 pxmsg [mgnotifysig2.c

FHgues5ll Sgd had er jugt sesaflagfa nai nthread(iaredt vas a).

Saion 5.6 mg notify Function 93

Wait for signal handler to set flag

B2 We cal si gprocnask to block SIGUSR1, saving the current signal mask in
oldmask. We then test the global ngf | ag in a loop, waiting for the signal handler to
set it nonzero. Aslongasitis0, wecall si gsuspend, which atomically putsthecalling
thread to slegp and resetsits signal mask to zeromask (no signals are blocked). Sec-
tion 10.16 o APUE talks more about si gsuspend and why we must test the ngf | ag
variable only when SIGUSR1 isblocked. Each timesi gsuspend returns, S| GUSR is
blocked.

Reregister and read message

33-36 When ngf | ag is nonzero, we reregister and then read the messagefrom the queue.
Wethen unblock SIGUSR1 and go back to thetop o thef or loop.

We mentioned that a problem still existswith this solution. Consider what happens
if two messagesarrive for the queue beforethe first messageis read. We can simulate
thisby adding a sl eep beforethecall tomg_noti f y. Thefundamental problemisthat
the natificationis sent only when a messageis placed onto an empty queue. If two mes-
sages arrive for a queue before we can read thefirst, only one notification is sent: we
read the first message and then call si gsuspend waiting for another message, which
may never be sent. In the meantime, another message is already sitting on the queue
waiting to beread that weareignoring.

Example: Signal Notification with Nonblockingmg_receive

The correction to the problem just noted is to aways read a message queue in a non-
blocking mode when mg_notify isbeing used to generateasignal. Figure5.12 shows
amodificationto Figure5.11 that reads the message queue in a nonblocking mode.

Open message queue nonblocking
15-18 Thefirst changeisto specify 0_NONBLOCK when the messagequeueis opened.
Read all messages from queue

34-38 The other changeisto call mg_receive in aloop, processing each message on the
queue. An error return of EAGAI NisOK and just meansthat no more messagesexist.

Example: Signal Notification Using sigwait instead of a Signal Handler

Although the previous example is correct, it could be more efficient. Our program
blocks, waiting for a message to arrive, by calling si gsuspend. When a message is
placed onto an empty queue, the signal is generated, the main thread is stopped, the
signal handler executesand sets the ngf | ag variable, the main thread executes again,
finds mg_£l ag nonzero, and reads the message. An easier approach (and probably
more efficient) would be to block in a function just waiting for the signal to be deliv-
ered, without having the kernel executea signal handler just to set aflag. Thiscapabil-
ity isprovided by si gwai t .

94 Posix Message Queues Chapter 5

1 #i ncl ude *unpipc.h” pamsg | manotifysig3.c
2 volatile sig_atomic_t nufl ag; /* set nonzero by signal handler */
3 static void sig_usrl(int);
4 int
5 main(int argc, char **argv)
6 {
7 mgd_t myd;
8 voi d *puf f ;
9 ssize_t n;
10 sigset_t zeronask, newmask, oldmask;
11 struct mg attr attr;
12 struct sigevent sigev;
13 if (argc '= 2)
14 err_quit ("usage: mgnotifysig3 <name>");
15 /* open queue, get attributes, allocate read buffer */
16 nmyd = Mg _open(argv({1l], O_RDONLY | O_NONBLOCK) ;
17 Mg _getattr{mgd, &attr);
18 buf f = Malloc(attr.mg_msgsize);
19 S genpt yset (&zeromask) ; /* no signals bl ocked */
20 Sigemptyset (&newmask) ;
21 Sigemptyset (&oldmask) ;
22 Sigaddset (&newmask, SIGUSRI1) ;
23 /* establish signal handl er, enabl e notification */
24 Si gnal (SIGUSR1, sig_ usrl);
25 sigev.sigev_notify = SIGEV_SIGNAL;
26 sigev.sigev_signo = SIGUSRI1;
27 Mg notify(mgd, &sigev);
28 for (; ;) {
29 Sigprocmask (SIG_BLOCK, &newmask, &oldmask); /* bl ock SIGUSR1 */
30 whil e (mgfl ag == 0)
31 sigsuspend(&zeromask) ;
32 ngflag = 0; /* reset flag */
33 Mg _notify(mqgd, &sigev); /* reregister first */
34 while { (n = mg _receive(mqgd, buff, attr.mg msgsize, NULL)) >= 0) (
35 printf("read %1d bytes\n", (long) n);
36 }
37 if (errno !'= EAGAIN
38 ery_sys("mg_receive error");
39 Sigprocmask (SIG_UNBLOCK, &newmask, NULL); /* unbl ock SIGUSR */
40 }
41 exit (0);
42]
43 static void
44 sig_usrl(int signo)
45 {
46 mgfl ag = 1;
47 return;
48 }
pxmsg [magnotifysig3.c

Figure5 12 Wsingasigd mtificaimto read a Posix nessage queue.

Sations.6 mg_noti fy Fundion 95

18-20

26-34

‘ #include <signal.h>

int sigwait (const sigset_t *Sel, int *sig);

| Returns: 0 if OK, positiveExxx valueon error

Beforecalling sigwait, we block someset o signals. We specify thisset o signalsas
theset argument. sigwait then blocks until oneor mored thesesignalsis pending, at
which timeit returnsoned thesignals. That signal valueis stored through the pointer
sig, and thereturn valued thefunctionis0. Thisiscalled **synchronoudy waiting for
an asynchronousevent': weare using asignal but without an asynchronoussignal han-
dier.

Figure5.13 showstheused mg_notify withsigwait.

Initialize signal set and block SIGUSR1

Onesignal set isinitialized to contain just SIGUSR1, and thissignal is then blocked
by sigprocmask.

Wait for signal

We now block, waiting for the signdl, in a cdl to sigwait. When SIGUSR1 is
delivered, wereregister the notification and read all availablemessages.

sigwait is often used with a multithreaded process. Indeed, looking at its function proto-
type, weseethat itsreturn valueis0 or oned theExxx errors, whichisthesameasmost o the
Pthread functions. But sigprocmask cannot be used with a multithreaded process; instead,
pthread_sigmask must be caled, and it changesthe signal mask o just the calling thread.
Theargumentsfor pthread_sigmask areidentical to thosefor sigprocmask.

Two more variants 0 sigwait exist: sigwaitinfo also returns a siginfo_t structure
(which we define in the next section) and is intended for use with reliable signas.
sigtimedwait also returnsa siginfo—t structure and allows the caler to specify a time
limit.

Most threadsbooks, such as[Butenhof 19971, recommend using sigwait to handleall signals
inamultithreaded processand never using asynchronoussignal handlers.

Example: Posix Message Queues with sel ect

A message queue descriptor (anmgd_t variable) is not a *'normal’ descriptor and can-
not be used with either sel ect or poll (Chapter 6 o UNPv1). Nevertheless, we can
usethem along with a pipeand themg_noti fy function. (\Weshow asimilar technique
in Section 6.9 with System V message queues, which involves a child process and a
pipe) Fird, noticefrom Figure5.10 that thew r i t e function is async-sgna-safe, so we
cancdl it fromasigna handler. Figure5.14 showsour program.

96 Posix Message Queues Chapter 5

1 #include "unpipc.h" pxmsgfmqnotxfys:g4.c
2 int
3 main(int argc, char **argv)
4 {
5 int si gno;
6 mgd_t myd;
7 voi d *buf f;
8 ssize t n;
9 sigset_t newmask;
10 struct mg_attr attr;
11 struct sigevent sigev;
12 if (argc = 2)
13 err_quit("usage: mgnotifysig4 <name>");
14 /* open queue, get attributes, allocate read buffer */
15 myd = Mg_open(argv[1], O_RDONLY [O_NONBLOCK) ;
16 Mg_getattr(mgd, &attr);
1 buff = Malloc(attr.mg msgsize);
18 Sigemptyset (&newmask) ;
19 Si gaddset (&newmask, SIGUSRL);
20 Sigprocmask (SIG_BLOCK, &newmask, NULL); /* bl ock SIGusrl */
21 /* establish signal handl er, enable notification */
22 sigev.sigev_notify = SIGEV_SIGNAL;
23 sigev.sigev_signo = SIGUSRI1;
24 Mg _notify(mgd, &sigev):;
25 for (; ;) {
26 Sigwait (&newmask, &signo);
27 if (signo == SIGUSR1) {
28 Mg_notify(ngd, &sigev):; /* reregister first */
29 while ((n = mg_receive(mgd, buff, attr.mg msgsize, NULL)) >= 0)
30 printf("read %1d bytes\n", (long) n);
31 |
32 if (errno !'= EAGAIN
33 err_sys("mg_receive error");
34 |
35 |
36 exit(0);
37 | e .
pxmsg [mgnotifysig4.c
Fgure513 Wsingmg _notify Wth sigwait.
1 #include "unpipc.h" pxmsgfmqnshfyszg&c
2 int pipefd[2];

3 static void sig_usrl (int);

(

Section56 mg_noti fy Function 97

4 int

5 main(int argc, char **argv)

6 {

i int nf ds;

8 char C;

g9 fd set rset;

10 mgd_t myd;

11 voi d *puf f ;

12 ssize t n;

13 struct mg_attr attr;

14 struct sigevent sigev;

15 if (argc 1= 2)

16 err_quit ("usage: mgnotifysig5 <name>");

17 /* open queue, get attributes, allocate read buffer */
18 myd = Mg _open(argv[1], O_RDONLY | O_NONBLOCK) ;

19 Mg_getattr(rnqd, &attr):
20 buff = Malloc(attr.mg_msgsize);
21 Pipe(pipefd) ;
22 /* establish signal handl er, enable notification */
23 Signal (SIGUSR1, sig_usrl):;

24 sigev.sigev_notify = SIGEV_SIGNAL;

25 sigev.sigev_signo = SIGUSR1;

26 Mg _notify(rnqd, &sigev);

27 FD_ZERO (&rset) ;
28 for (; ;) {
29 FD_SET(pipefd[0], &rset);

30 nfds = Sel ect (pipefd[0] + 1, &rset, NULL, NULL, NULL);
AT if (FD_ISSET(pipefd[0], &xset)) (
32 Read(pipefdl[0], &c, 1);

33 Mg_notify(ngd, &sigev); /* reregister first */
34 while { (n = mg _receive(rngd, buff, attr .mg msgsize, NULL)) >= 0) {
35 printf("read %1ld bytes\n", (long) n);

36 }

37 if (errno != EAGAIN

38 err_sys("mg_receive error");

39 }
40 }
41 exit(0);

42 1]

43 static void
44 sig_usrl(int signo)

45 {

46 Write(pipefd[1l]l, "”, 1); /* one byte of 0 */
a7 return;

48 }

pxmsg [mqnotifysig5.c
Hgure514 Usingasignal natification with a pipe.

98

Posix Messsege Queues Chapter 5

21

Create a pipe

We cresate a pipe that thesignal handler will writeto when anotificationis received
for the messagequeue. Thisisan exampled a pipe being used within asingle process.

Call sel ect

27-40 We initializethe descriptor set r set and each time around the loop turn on the bit

correspondingto pipefd[0] (theread end d the pipe). Wethen call sel ect waiting
for only this descriptor, although in a typical application, thisis where input or output
on multiple descriptors would be multiplexed. When the read end d the pipeis read-
able, wereregister the messagequeue notificationand read all available messages.

Signal handler

43- 48 Our signal handler just writes 1 byte to the pipe. As we mentioned, thisis an

async-signal -safeoperation.

Example: Initiate Thread

5.7

Another aternative is to set sigev_notify to SGEV-THREAD, which causes a new
thread to be created. Thefunctionspecifiedby thesigev_notify_ functioniscalled
with the parameter of sigev_value. The thread attributes for the new thread are
specified by sigev_notify_attributes, which can be a null pointer if the default
attributesare OK. Figure5.15showsan exampled thistechnique.

We specify a null pointer for the new thread's argument (sigev_value), so noth-
ingis passed to thethread start function. We could pass a pointer to the message queue
descriptor as the argument, instead d declaring it as a global, but the new thread still
needs the message queue attributesand the si gev structure (to reregister). We specify
anull pointer for the new thread's attributes, so system defaultsare used. These new
threadsare created asdetached threads.

Unfortunatdy, neither of the systems being used for these examples, Solaris 2.6 and Digital
Unix 4.0B, support SIGEV —THREAD. Bathrequirethat sigev_notify bedther SIGEV_NONE
or STGEV_STGNAL.

Posix Realtime Signals
Unix signals have gone through numerous evol utionary changesover the past years.

1. The signal moded provided by Verson 7 Unix (1978) was unreliable. Signals
could get logt, and it was hard for a process to turn off sdected signals while
executing critical sectionsd’ code.

2. 4.3BSD (1986) added reliablesignals.

3. Sygem V Rdease 30 (1986) aso added reliable signals, abeit differently from
the BD moddl.

4. Posix.1 (1990) standardized the B reliable signal modd, and Chapter 10 o
APUE describes this model in detail.

Section 5.7 Posix Realtime Signals 99
- - xmsg [manotifythreadl.c

1 #i ncl ude "unpi pc.h" prmsg/manotify
2 mgd_t myd;

3 struct mg_attr attr;

4 struct sigevent sigev;

5 static void notify_thread(union sigval); /* our thread function */
6 int

7 main(int argc, char **argv)

8 {

9 if (argc 1= 2)

10 err_quit ("usage: ngnoti fythreadl <name>");

11 ngd = Mg_open(argv([1l], O_RDONLY | O_NONBLOCK) ;

12 Mg _getattr (mgd, &attr);

13 sigev.sigev_notify = SIGEV_THREAD;

14 sigev,.sigev_value,. sival_ptr = NULL;

15 sigev.sigev_notify_function = notify-thread,

16 sigev,sigev_notify_attributes = NULL;

17 Mg notify(mgd, &sigev);

18 for ¢ ;)

19 pause () ; /* each new thread does everything */
20 exit (0);

21 }

22 static void

23 notify_thread(union sigval arg)

24 {

25 ssize_t n;

26 voi d *puf f;

27 printf ("notify_ thread started\n");

28 buff = Malloc(attr.mg msgsize);
29 Mg _notify(mgd, &sigev); /* reregister */
30 while ((n = mg receive(mgd, buff, attr.mg msgsize, NULL)) >= 0) {
31 printf ("read %1d bytes\n", (long) n);

32 }

33 if (errmo '= EAGAIN

34 err_sys("mg_receive error");

35 free(buff) ;

k{3 pthread_exit (NULL) ;

37 }

pxmsg [mgnotifythreadl.c
Figure5 5 mg notify that initiatesanew thread.

5. Posix.1 (1996) added realtime signalsto the Posix moddl. This work originated
from thePosix.1b realtime extensions (whichwascalled Posix.4).

Almog every Unix system today provides Posix reliablesignals, and newer syssemsare
providing the Posix realtime signals. (Be careful to differentiate between reliable and

100 Posix Messsge Queues

Chapter 5

realtime when describing signals.) We need to say more about the realtime signas, as
we have already encountered some of the structures defined by this extensionin the
previoussection (thesigval and si gevent structures).

Signalscan bedivided into two groups.

1 The realtime signals whose values are between SGRTMIN and SGRTMAX,

2. All othersignals: stecaLry, SIGINT, SIGKILL, and so on.

inclusive. Posix requires that at least RTSIG_MAX O these realtime signals be
provided, and the minimum valuefor thisconstant is8.

On Solaris 2.6, the normal Unix signalsare numbered 1 through 37, and 8 realtime signalsare
defined with valuesfrom 38 through 45. On Digital Unix 4.0B, the normal Unix signalsare
numbered 1 through 32, and 16 realtime signalsare defined with valuesfrom 33 through 38.
Both implementationsdefine SIGRTMIN and STGRTMAX asmacrosthat call sysconf, to allow
their valuesto changein thefuture.

Next we note whether or not the new SA-SIGINFO flag is specified in the call to
si gacti on by the process that receives the signal. These differenceslead to the four
possiblescenariosshown in Figure5.16.

Calltosigaction

Signal SA_SIGINFO SA_SIGINFO
specified not specified
SIGRTMIN through || realtime behavior | realtime behavior
SIGRTMAX guar anteed unspecified
all other signals realtime behavior realtime behavior
unspecified . unspecified

Figure5.16 Realtime behavior o Posix signals, depending on SA_SIGINFO.

What we mean in the three boxes labeled ' realtime behavior unspecified” is that some
implementations may provide realtime behavior and some may not. if we want real-
time behavior, we must use the new realtime signals between SGRTMIN and
IERTMAX, and we must specify the SA—SGINFO flag to si gact i on when the signal
handler isinstalled.

Theterm realtime behavior impliesthefollowing characterigtics:

Signalsarequeued. That is, if thesignal is generated threetimes, it isddivered
threetimes. Furthermore, multiple occurrencesd agivensignal arequeuedina
firg-in, first-out (FIFO) order. We show an example d signal queueing shortly.
For signals that are not queued, a signal that is generated three times can be
delivered only once.

When multiple, unblocked signals in the range SGRTMIN through SGRTMAX
are queued, lower-numbered signals are delivered before higher-numbered sg-
nals. That iss SGRTMIN is a "higher priority" than the signal numbered
SIGRTMIN+1, which is a "higher priority” than the signal numbered
SIGRTMIN+2, and so on.

Section 57

Posix Realtime Sgnds 101

When a nonrealtimesignal isdelivered, the only argument to thesignal handler
is the signal number. Realtime signals carry more information than other sig-
nals. The signal handler for a realtime signal that is installed with the
SA_SIGINFO flag set isdeclared as

void func(int signo, siginfo_t *info, void *context);
signoisthesignal number, and thesiginfo_t structureisdefined as
typedef struct {

int si_signo; /* same value as signo argument */

int si_code; [/* SI_{USER,QUEUE, TIMER,ASYNCIO,MESGQ} */

union sigval si_value; /* integer or pointer value from sender */
} siginfo-t;

What the context argument points to isimplementati on dependent.

Technicdly a nonrealtime Posix signal handler is caled with jus one argument.
Many Unix systems have an older, three-argument convention for signal handlers
that predatesthePosix realtime standard.

siginfo_t istheonly Posix structuredefined as a typedef d a nameending in

_t. In Figure 517 we declare pointers to thesestructuresas si gi nf o_t * without
theword struct.

Some new functionsare defined to work with therealtime signals. For example,
thesi gqueue functionis used instead d theki I | function, to send asignal to
some process, and the new function allows the sender to passasi gval union
with thesignal.

The realtime signals are generated by the following Posix.1 features, identified by
thesi - code value contained in the si gi nf o_t structure that is passed to the signal
handler.

SI_ASYNCIO The signal was generated by the completion o an asynchronous

I/0 request: the Posix aio_ XXX functions, which we do not
describe.

SI_MESGQ The signal was generated when a message was placed onto an

empty messagequeue, aswedescribed in Section5.6.

SI_QUEUE Thesignal was sent by thesi gqueue function. We show an exam-

pled thisshortly.

SI_TIMER The signal was generated by the expiration d a timer that was set

by the timer_sett i me function, whichwe do not describe.

SI_USER Thesignal was sent by theki 11 function.

If the signal was generated by some other event si - code will be set to some value
other than the ones just shown. The contents o the si_value member o the
si gi nfo_t structure are valid only when si - code is SI_ASYNCIO, SI_MESGQ,
SI_QUEUE, O Sl - TI MER

102 Posix Message Queues Chapter5

Example

Figure 5.17 is a simple program that demonstrates realtime signals. The program cals
fork, the child blocks three realtime signals, the parent then sends nine signals (three
occurrenceseach d three realtime signals), and the child then unblocks the signals and
we see how many occurrences o each signal are delivered and the order in which the
signalsare delivered.

Print realtime signal numbers

10 We print the minimum and maximum realtime signal numbers, to see how many
realtime signals the implementation supports. We cast the two constants to an integer,
because some implementations define these two constants to be macros that call
sysconf, asin

#define SIGRTMAX (sysconf (_SC_RTSIG_MAX))

and sysconf returnsalong integer (see Exercise5.4).
fork: child blocks three realtime signals

11-17 A child is spawned, and the child calls sigprocmask to block the three realtime
signals that weare using: SGRTMAX, SGRTMAX-1, and SGRTMAX-2

Establish signal handler

18-21 We cdll our signal_rt function (which we show in Figure 5.18) to establish our
function sig_rt as the handler for the three realtime signals. This function sets the
Sa_SIGINFO flag, and sincethese three signals are realtime signals, we expect realtime
behavior.

Wait for parent to generate the signals, then unblock the signals

2-5 We wait 6 seconds to alow the parent to generate the nine signals. We then call
sigprocmask to unblock the three realtime signals. Thisshould allow all the queued
signals to be delivered. We pause for another 3 seconds, to let the signal handler cal
printf ninetimes, and then the child terminates.

Parent sends the nine signals

21-%6 The parent pauses for 3 seconds to let the child block all signals. The parent then
generatesthree occurrencesd each o the threerealtime signals. i assumes three values,
and j takeson thevaluesg, 1, and 2 for each valuedf i . We purposely generate thesig-
nals starting with the highest signal number, because we expect them to be delivered
starting with the lowest signa number. We also send a different integer value
(sival_int) with each signal, to verify that the three occurrencesd a given signal are
generated in FIFO order.

Signal handler
38-43 Our signal handler just prints the information about thesignal that isdelivered.

We noted with Figure5.10 that printf isnot async-sgnal-safe and should not be called from
asignal handler. Wecall it hereasa smplediagnogtictool in thislittletest program.

Section 5.7

Posix Realtime Sgnals 103

1 #i ncl ude "unpi pc.h"

2 static void sig_rt(int, siginfo-t *, void *);

3int

4 main(int argc, char **argv)
5{

i nt i, J:

pid_t pi d;

sigset_t newset;

uni on si gval val;

WO oo~

risignalstestl.c

10 printf ("SIGRTMIN = %, SI GRTMAX = %d\n", (int) SIGRTM N, (int) Sl GRTNVAX);
11 if ((pid = Fork()) == 0) ¢

12 /* child: block three realtime signals */

13 Sigemptyset (&newset) ;

14 Sigaddset (&newset, Sl GRTNVAX);

15 Sigaddset (&newset, SIGRTNAX - 1);

16 Sigaddset (&newset, SI GRTVAX - 2);

17 Sigprocmask (SIG_BLOCK, &newset, NULL):

18 /* establish signal handler with SA SIGINFO set */

19 Signal_rt (SIGRTMAX, sig_rt);

20 Sgnal -rt(SIGRTNAX - 1, sig_rt);

21 Signal_rt (SIGRTMAX - 2, sig_rt);

22 sleep(6); /* let parent send all the signals */
23 Sigprocmask (SIG_UNBLOCK, &newset, NULL); /* unbl ock */

24 sl eep(3); /* let all queued signals be delivered */
25 exit(0);

26 }

27 /* parent sends nine signals to child */

28 sleep(3) : /* let child block all signals */

29 for (i = SIGRIMAX, i »= SIGRINAX - 2; i--) {

30 for (3 =0; 3 <=2; 3+r+) {

31 val.sival_int = j;

32 Si gqueue(pid, i, val);

33 printf("sent signal %l, val = %d\n", i, 3j);

34 }

35 }

36 exit(0);

37)

38 static void
39 sig_rt(int signo, siginfo-t *info, void *context)
40 {

41 printf ("received signal #%d, code = %, ival = %d\n",
42 si gno, info-»si_code, info->si_value.sival_inkt);
43)

Figure517 9 npl etet programto denonst r at e realtime signals.

rtsignalstestl.c

104 Posx Message Queues

Chepter 5

Wefirg run the program under Solaris 2.6, but the output isnot what isexpected.

solaris % testl
SIGRTM N = 38. SI GRTMAX =

sent signal 45, val
sent signal 45, val
sent signal 45, val
sent signal 44, val
sent signal 44, val
sent signal 44, val
sent signal 43, val
sent signal 43, val
sent signal 43, val
solaris %

NPEP,ONRPONPRL O

recei ved si gnal #45, code
recei ved si gnal #45, code
recei ved si gnal #45, code
recei ved signal #44, code
recei ved signal #44, code
recei ved si gnal #44, code
recei ved si gnal #43, code
recei ved si gnal #43, code
recei ved signal #43, code

45

1

o
NMNRONNNN

-2,
-2,
-2,

i val
i val
i val
i val
i val
i val
i val
i val
i val

L | A | [R T VA 1
OR NORNORNDN

8 realtime signals provided
3-second pausein here
parent now sends the nine signals

parent terminates, shell prompt printed
3-second pause before child unblocks the signals
child catchesthe signals

The nine signalsare queued, but the three signalsare generated garting with the high-
et sgnal number (weexpect the lowest signal number to be generated first). Then for a
given signal, the queued signals appear to be delivered in LIFO, not FIFO, order. The
si_code df -2 correspondsto ST_QUEUE.

We now run the program under Digital Unix 4.08 and seedifferent results.

al pha % testl

SIGRTM N = 33, SIGRTMAX = 48

sent signal 48, val =
sent signal 48, val =
sent signal 48, val =
sent signal 47, val =
sent signal 47, val =
sent signal 47, val =
sent signal 46, val =
sent signal 46, val =
sent signal 46, val =
al pha %

o= ONREONRE O

recei ved signal #48, code =

recei ved si gnal #48, code
recei ved signal #48, code
recei ved si gnal #47, code
recei ved signal #47, code
recei ved signal #47, code
recei ved signal #46, code
recei ved signal #46, code
recei ved si gnal #46, code

-l’
-l’
_1’
_1’
_1’
_1’
_l,
_1’
_1’

i val
i val
i val
ival
i val
i val
i val
i val
i val

NRrONRPLPONHFHO

16 realtime signals provided
3-second pausein here
parent now sends the nine signals

parent terminates, shell prompt printed
3-second pausebeforechild unblocks the signals
child catchesthe signals

Section 5.7 Posix Realtime Signals 105

si gnal

1-3

5-7

The nine signals are queued but are delivered in the order in which they were gener-
ated, not the lowest-numbered-signal-first, as we expect. But for a given signa, the
three occurrencesare delivered in FFO order.

Bothd thesei npl enent at i onsappear to have bugs.

- rt Function

On p. 120 o UNPv1, we show our si gnal function, which callsthe Posix si gact i on
function to establish a signal handler that provides realtime Posix semantics. We now
modify that function to provide realtime behavior. We call this new function
signal - rt and show itin Figure5.18.

lib/signal_rt.c

1 #include "unpipc.h"

2 Sigfunc_rt *

3 signal_rt(int signo, Sigfunc_rt *func)

4 |

5 struct sigaction act, oact;

6 act.sa_sigaction = func: /* nust store function addr here */
7 sigemptyset (&act.sa_mask) ;

8 act.sa_flags = SA_SIGINFO; /* nust specify this for realtime */
9 if (signo == SIGALRM) ({

10 #ifdef SA_INTERRUPT

11 act.sa_flags |= SA_INTERRUPT; /* sunos 4.x */
12 #endif

13 } else {

14 #ifdef SA_RESTART

15 act.sa_flags |= SA_RESTART; /* SVR4, 4.4BSD */
16 #endif

17 }

18 if (sigaction{signo, &act, &ocact) < 0)

19 return ((Sigfunc_rt *)} SIG_ERR);

20 return (oact.sa_sigaction);

21 |

lib/signal rt.c
Fgure518 signal - rt fucti onto provi derealtime behavi or.

Simplify function prototypeusing t ypedef
Inour unpi pc . h header (FigureC.1), wedefineSigfunc_rt as
typedef void Sigfunc_rt(int, siginfo_t *, void *);
We said earlier in this section that this is the function prototype for a signal handler
installed with the sa_SIGINFO flag set.
Specify handler function

Thesi gact i on structure changed when realtime signal support was added, with
theaddition o thenew sa_si gact i on member.

106 Podx Mesage Queues Chapter 5

struct sigaction {

voi d (*sa_handler) (); /* SIG_DFL, SIG_IGN, or addr of signal handler */
sigset_t sa_mask; /* additional signals to block */

i nt sa_flags; /* signal options: SA_xxx */

voi d (*sa_sigaction) (int, siginfo_t, void *);

/* addr of signal handler if SA- SIG NFOset */
}:

Therulesare:

f the SA- SIG NFO flag is set in the sa-flags member, then the
sa_si gacti on member specifiestheaddressd thesignal-handling function.

If the sSa_SIGINFO flag is not set in the sa- fl ags member, then the
sa_handler member specifiestheaddressd thesignal-handlingfunction.

To specify the default action for a signal or to ignoreasignd, set sa_handler
to either SIG_DFL or STIG_IGN, and do not set SA- SI @ NFO,

Set SA- SI G NFO

8-17 We always set the SA- SI A NFOflag, and also specify the sa_RESTART flag if the
signal isnot STGALRM.

5.8 Implementation Using Memory-Mapped /O

We now provide an implementation d Posix message queues using memory-mapped
I/0, along with Posix mutexesand condition variables.

We cover mutexesand condition variablesin Chapter 7 and memory-mapped 1/0 in Chapters
12and 13. Yau may wish toskip thissection until you haveread those chapters.

Figure 5.19 shows a layout o the data structuresthat we use to implement Posix
message queues. In thisfigure, we assume that the message queue was created to hold
up to four messagesd 7 bytes each.

Figure 5.20 showsour ngueue . h header, which definesthe fundamental structures
for thisimplementation.
mgd_t datatype
1 Our message queue descriptor is just a pointer to an mg_info structure. Each cdl
to mg_open dlocates one d these structures, and the pointer to this structure is what
getsreturnedto thecdler. Thisreiteratesthat a message queue descriptor need not bea
small integer, like a file descriptor —the only Posix requirement is that this datatype
cannot bean array type.

Section 58

Implementation Using Memory—M a_p_ped 1/0 107

mg attr{}

mg_hdr{} gigevent{}

pthread mutex t

pthread cond_t

msg_hdr({}

mseg hdr{}

meg_hdr{}

meg hdr{}

1]

mg_flags
mg_maxmsg
mg msgsize

mg_curmsgs

mgh_head

mgh_free

mgh _nwait

mgh_pid

mgh_event

mgh_lock

mgh_wait

msg_next

msg—len

msgqrio

7 bytes data,

1 byte pad

msg_next

msg—len

msg_prio

7 bytes data,
1 byte pad

msg_next

msg—len

{
oy, s e =

msg_prio

7 bytes data,
1 byte pad

msg_next

msg_len

msggrio

7 bytes data,
1bytepad

start di memory-mapped region

mg info{}
—1 mgi_hdr

mgi_magic
mgi_flags

“ J
onestructure for each

mg_open d messagequeue

onemessage

’

»one message

AN

onemessage

AN

onemessage

J -« end o memory-mappedregion

J

one memory-mappedfileper messagequeue

Figure519 Layoutd datastructurestoimplement Posix message queues usinga memory-mapped file.

108 Podx Messge Queues Chapter5

8-18

my_pxmsg_mmap[mqueve.h

=

typedef struct mg info *mgd_t; /* opaque datatype */

2 struct mg attr |

3 | ong mg_flags; /* message queue flag: O_NONBLOCK */

4 | ong mg_maxmsg; /* max nunber of nessages al |l owed on queue */
5 | ong mg_msgsize; /* max size of a nessage (in bytes) =*/

6 | ong mg_Curmsgs; /* nunber of nessages currently on queue */
7 }:

8 /* one mg_hdr{} per queue, at beginning of nmapped file */

9 struct mg hdr |

10 struct mg attr mgh_attr; /* the queue's attributes */

11 | ong ngh- head; /* index of first nessage */

12 | ong mgh_free; /* index of first free nessage */

13 | ong mgh_nwait; /* #threads bl ocked i n mg _receive() */

14 pid_t mgh_pid: /* nonzero PIDif ngh-event set */

15 struct sigevent ngh-event; /* for mg notify() */

16 pthread_mutex_t mgh_lock; /* mutex | ock */

17 pthread_cond_t mgh_wait; /* and condition variable */

18 };

19 /* one msg_hdr{} at the front of each nmessage in the mapped file */
20 struct msg_hdr |

21 | ong mSg_next; /* index of next on linked list */

22 /* msg_next nust be first nenber in struct */

23 ssize t msg_len; /* actual length */

24 unsi gned i nt msg_prio; [* priority */

25 }:

26 /* one mg_info{} nmalloc'ed per process per mg open() */

27 struct mg_info |

28 struct mg hdr *mgi_hdr; /* start of mmap’ed region */

29 | ong mgi_magic; /* magi c nunber if open */

30 int mqgi_flags; /* flags for this process */

31 };

32 #define MQT_MAGIC 0x98765432

33 /* size of nessage in fileis rounded up for alignnent */

34 #define MSGSIZE(i) ((((i) + sizeof(long)-1) / sizeof(lonag))} * sizeof(long)}
my_pxmsg_mmap[mqueue.h

Figurea 2 nmueue.h header.

mg hdr Structure

This structure appears at the beginning o the mapped file and containsall the per-
queue information. The mg_fl ags member o the mgh _attr structure is not used,
becausethe flags (the nonbl ockingflag isthe only one defined) must be maintained ona
per-open basis, not on a per-queue basis. The flags are maintained in the mg_info
structure. We describe the remaining members o this structure as we use them in the
variousfunctions.

Note now that everything that we refer to as an index (the ngh- head and
mgh_fr ee membersd thisstructure, and the nsg- next member o the next structure)
contains byte indexes from the beginning d the mapped file. For example, the size d

Section 58 Implementation Usng Memory-Mgoped 1/0 109

themg_hdr structure under Solaris 2.6 is 96 bytes, so theindex d thefirst messagefol-
lowing thisheader is96. Each messagein Figure5.19 occupies20 bytes (12 bytesfor the
msg_hdr structure and 8 bytes for the message data), so the indexesd the remaining
three messagesare 116,136, and 156, and thesized thismapped fileis176 bytes. These
indexes are used to maintain two linked lists in the mapped file: one list (mgh_head)
containsall the messages currently on the queue, and the other (mgh_ free) containsall
thefree messages on the queue. We cannot use actual memory pointers (addresses) for
theselist pointers, because the mapped file can start at different memory addressesin
eech process that mapsthefile (aswe show in Figure13.6).

meg_hdr Structure

19-25 This structure appears at the beginning d each message in the mapped file. All
messages are either on the message list or on thefree list, and the msg_next member
containstheindex d the next message on thelist (or O if this messageistheend d the
list). msg_len isthe actud length d the message data, which for our examplein FHg-
ure5.19 can be between 0 and 7 bytes, inclusive. msg_prio isthe priority assigned to
the message by thecdler d mg_send.

m@ _info structure

B2 One 0 these structures is dynamically alocated by mg_open when a queue is
opened, and freed by mg_close. mgi_hdr points to the mapped file (the starting
address returned by mmap). A pointer to this structure is the fundamental mgd_t
datatype o our implementation,and this pointer isthe return valuefrommg_open.

Themgi_magic member containsMQI_MAGIC, once thisstructure has been initia-
ized and is checked by each function that is passed an mgd_t pointer, to make certain
that the pointer redlly pointsto an mg_info structure. mgi_flags contains the non-
blocking flag for thisopen instanced the queue.

MSGSIZE macro

33-34 For alignment purposes, we want each messagein the mapped file to start on along
integer boundary. Therefore, if the maximum sized each message is not so aligned, we
add between 1 and 3 bytesd padding to the data portion & each message, asshownin
Figure5.19. This assumes that the size d a long integer is 4 bytes (whichis true for
Solaris 2.6), but if thesized alonginteger is 8 bytes (ason Digital Unix 4.0), then the
amount d padding will be between 1 and 7 bytes.

ng open Function

Figure5.21 showsthefirst part d our mg_open function, which creates a new message
gueue or opensan existing message queue.

my_pxmsg_mmap|/mq_open.c

1 #include "unpipc.h"

2 #include "mgueue.h"

3 #incl ude <stdarg.h>

4 #define MAX_TRIES 10 /* for waiting for initialization */
5 struct mg _attr defattr =

6 {0, 128, 1024, 0};

110

Podx Mesage Queues

Chapter 5

29-32

7 nmgd_t

8 mg_open{const char

9 |
10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

*pathname, int oflag,..
int i, fd,
| ong msgsi ze, filesize,
va_list ap;

node-t node;

int8_t *mptr;

struct stat statbuff;
struct mg hdr *mghdr;
struct msg_hdr *msghdr;
struct mg_attr *attr;
struct mg _info *mginfo;
pthread_mutexattr_t mattr;
pthread_condattr_t cattr;

i ndex;

created = O;

nonbl ock = oflag & O_NONBLOCK;
oflag &= ~O_NONBLOCK;

nptr = (int8_t *) MAP- FAI LED
mgi nfo = NULL;

agai n:

if (oflag & O_CREAT) {
va_start{ap, oflag};

nonbl ock, created, save-

/* init ap to final

)

errno;

naned argunent */

node = va_arg({ap, va_mode_t} & ~S_IXUSR;

attr = va_arg{(ap,
va_end(ap) ;

struct mg attr *);

/* open and specify O_EXCL and user-execute */
fd = open(pathname, oflag | O_EXCL | O_RDWR, node | S_IXUSR};

if (fd < 0) ¢
if (errno == EEXI ST && (oflag & O_EXCL) == 0)
goto exi sts; /* already exists, K */
el se
return {({mgd_t) -1);

}
created = 1;

/* first one to create the fileinitializesit */

if (attr == NULL)
attr = &defattr;
el se {
if (attr->mg maxmsg <= 0 || attr->mg msgsize <= 0} {

errno = El NVAL;
goto err;

my_pxmsg_mmap|[mq_open.c

Hgures2l mg openfuntion fird part.

Handle variable argument list

This function can be called with ether two or four arguments, depending on
whether ar not the O_CREAT flag is specified. When this flag is specified, the third

Section 1.8 Implementation Usng Memory-Mgpped 1/0 111

30

33-34

35-40

argument is o type mode—t, but thisis a primitive system datatype that can be any
type d integer. The problem we encounter is on BSD/OS, which definesthis datatype
asanunsigned short integer (occupyingl6 bits). Since an integer on thisimplemen-
tation occupies 32 hits, the C compiler expands an argument o this type from 16 to
R hits, since al short integers are expanded to integersin the argument list. But if we
soecify mode—t in the call to va_arg, it will step past 16 bitsdf argument on the stack,
when the argument has been expanded to occupy 32 bits. Therefore, we must define
our own datatype, va—mode—t, that is an integer under BSD/OS, or o type mode—t
under other systems. Thefollowinglinesin our unpipc.h header (FigureC.l) handle
this portability problem:

#ifdef __bsdi___

#defi ne va- node-t int

#el se

#def i ne va- node-t node- t
#endif

Weturn of the user-execute bit in the mode variable (S_IXUSR) for reasonsthat we
describeshortly.

Create a new message queue

A regular fileis created with the name specified by the caler, and the user-execute
bitisturned on.

Handle potential race condition

if wewere to just open thefile, memory map its contents, and initializethe mapped
file (asdescribed shortly) when the o_CREAT flag is specified by the caller, we would
have a race condition. A message queue isinitialized by mg_open only if O_CREAT is
soecified by the caller and the message queue does not already exist. That means we
need some method d detecting whether the messagequeue already exists. To do so, we
always specify 0_EXCL when we open the file that will be memory-mapped. But an
error return o EEXIST from open becomes an error from mg_open, only if the caller
soecified 0_EXCL. Otherwise, if openreturnsan error o EEXIST, thefile already exists
and we just skip ahead to Figure5.23 asif the 0_CREAT flag was not specified.

The possible race condition is because our use o a memory-mapped file to repre-
sent a message queue requirestwo stepsto initialize a new message queue: firgt, thefile
must be created by open, and second, the contents o the file (described shortly) must
beinitialized. The problem occursif two threads (in the same or different processes)
cdl mg_open at about the same time. One thread can create thefile, and then the sys-
tem switches to the second thread before the first thread completes the initialization.
Thissecond thread detects that the file already exists (using the o_ExcL flag to open)
and immediately tries to use the message queue. But the message queue cannot be used
until the first thread initializes the message queue. We use the user-execute bit d the
file to indicate that the message queue ha%been initialized. This bit is enabled only by
the thread that actually creates the file (using the o_gxcL flag to detect which thread
creates the file), and that thread initializes the message queue and then turns of the
user-executebit. We encounter similar race conditionsin Figures10.43and 10.52.

112 Rodx Mesge Queles Chapter5
Check attributes
42-50 If the cdler specifies a null pointer for the fina argument, we use the default

attributesshown at the beginning d thisfigure: 128 messages and 1024 bytes per mes-
sage. If the caller specifiesthe attributes, we verify that mg_maxmsg and mg_msgsize

are positive.

initializationd anew queue.

51
52
53
54
55
56
57
58

59
60
61
62
63

64
65
66

67
68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

88
89
90

/* calculate and set the file size */
Msgsi ze = MSGSIZE(attr->mg_msgsize);

filesize = sizeof (struct ny- hdr) + (attr->mg maxmsg *

The second part o our mg_open functionisshown in Figure5.22; it completes the

my_pxmsg_mmap|mq_open.c

(sizeof (struct nsg- hdr) + nsgsize));

if (lseek(fd, filesize - 1, SEEK- SET) == -1)
goto err;

if (write(fd., »v, 1) == -1)
goto err;

/* menory nmap the file */
nptr = mmap(NULL, fil esize, PROT_READ | PROT_WRITE,
MAP- SHARED, fd, 0);
if (mptr == NMAP- FAl LED
goto err;

/* allocate one mg_info{} for the queue */
if ((myinfo = malloc(sizeof (struct mg info}})} == NULL)
goto err;

mginfo->mgi_hdr = nghdr = (struct ng-hdr *) nptr;
nginfo->mgi_magic = MQI_MAGIC;
mginfo->mgi_flags = nonbl ock;

/* initialize header at begi nning of file */
/* create free list with all nessages on it */
mghdr->mgh_attr.mg_£flags = O;
mghdr-~->mgh_atbr . mg_maxmsg = attr->mg maxmsg;
mandr ->mgh_attr. mg_msgsize = attr->mqg msgsize;
mahdr->mgh_attr,mg_curmsgs = O;
mghdr->mgh_nwait = O;
nghdr->mgh_pid = O;
mghdr->mgh_head = O;
i ndex = sizeof (struct ny- hdr);
mghdr->mgh_free = i ndex;
for (i = 0; i < attr->mg maxmsg - 1; i++) {
msghdr = (struct nsg- hdr *) &mptrlindex];
i ndex += sizeof (struct nsg- hdr) + nsgsi ze;
msghdr->msg_next = i ndex;
}
msghdr = (struct nsg- hdr *) &mptrlindex];
msghdr->msg_next = O; /* end of freelist */

/* initialize mutex & condition variable */
if ((i = pthread_mutexattr_init(&mattr)) !'= 0)
goto pt hreaderr;

Section5.8 Implementation Usng Memory-Mapped 1/0 113

51-58

59-63

64-66

67-87

86-102

91 pthread_mutexattr_setpshared(&mattr, PTHREAD- PROCESS- SHARED);
92 i = pthread_mutex_init (&mghdr->mgh_lock, &mattr);

93 pthread _mutexattr_destroy(&mattr); /* be sure to destroy */
94 if (1 1= 0}

95 goto pt hreaderr;

96 if ((1 = pthread_condattr_init(&cattr)) != 0)

97 goto pthreaderr;

98 pthread_condattr_setpshared(&cattr, PTHREAD- PROCESS- SHARED) ;
99 i = pthread_cond_init (&mghdr->mgh_wait, &cattr);
100 pthread condattr_destroy(&cattr); /* be sure to destroy */
101 if (1 1= 0)

102 goto pthreaderr;
103 /* initialization conplete, turn off user-execute bit */
104 if (fchmod(fd, node) == -1)
105 goto err;

106 cl ose(fa);
107 return ((mgd_t) mginfo);
108 }

my_pxmsg_mmap|/mq_open.c
Fgure52 Second pat o mg_openfunction: conpl eteiritidizaion d newqueue.

Set the file size

We calculate the size o each message, rounding up to the next multiple d the size
d along integer. To calculatethefile size, we also allocateroom for the mg_hdr struc-
ture at the beginning o the file and the msg_hdr structure at the beginning o each
message (Figure 5.19). We set the size o the newly created file using | seek and then
writingone byted 0. Just calling £t r uncat e (Section 13. 3) would be easier, but we are
not guaranteed that thisworksto increasethesize o afile.

Memory map thefile
Thefileis memory mapped by mmap.
Allocatemg info structure
We dlocate one mg_info structurefor each call to mg_open. Thisstructureisini-
tidized.
Initializemg_hdr structure

We initialize the mg_hdr structure. The head o the linked list d messages
(mgh_head) is set to 0, and all the messagesin the queue are added to the free list
(mgh_free).

Initialize mutex and condition variable

Since Posix message queues can be shared by any process that knows the message
queue's hameand hasadequate permission, we must initializethe mutex and condition
variable with the PTHREAD- PROCESS- SHAREDattribute. To do so for the message
queue, wefirstinitializethe attributes by calling pthread_mutexattr_init, then call
pthread_mutexattr_setpshared to set the process-shared attribute in this struc-
ture, and then initializethe mutex by calling pthread_mutex_init. Nearly identical
steps are done for the condition variable. We are careful to destroy the mutex or

114

Posx Messsge Queues Chapter 5

103-107

condition variableattributesthat areinitialized, even if an error occurs, becausethecals
topthread_mutexattr_init Or pthread_condattr_init might allocatememory
(Exercise?.3).

Turn off user-executebit

Once the message queue isinitialized, we turn off the user-execute bit. Thisindi-
cates that the message queue has been initialized. We also cl ose the file, since it has
been memory mapped and thereis no need to keep it open (taking up a descriptor).

Figure5.23 shows the final part d our mg_open function, which opens an existing
queue.

T oxiols: my_pxmsg_mmap[mq_open.c

110 /* open the file then menory map */

111 if ((fd = open(pathname, O_RDWR}} < 0} {

112 if (errno == ENCENT && (oflag & O_CREAT))

113 goto agai n;

114 goto err;

115 }

116 /* make certain initializationis conplete */
117 for (i = 0; i < MAX_TRIES; i++) {

118 if (stat(pathname, &statbuff) == -1) {

119 if (errno == ENCENT && (oflag & O_CREAT)) {
120 close(fd);

121 goto agai n;

122)

123 goto err;

124 }

125 if ((statbuff.st_mode & S_IXUSR) == 0)

126 br eak;

127 sleep(l);

128 }

129 if (1 == MAX-TRES {

130 errno = ETI MEDOUT;

131 goto err;

132 }

133 filesize = statbuff.st_size;

134 nptr = mmap(NULL, filesize, PROT_READ | PROT_WRITE, MAP- SHARED, fd, 0);
135 if (nmptr == NAP- FAl LED)

136 goto err;

137 cl ose(fd);

138 /* allocate one mg_info{} for each open */
139 if ((mginfo = malloc(sizeof (struct mg_info))) == NULL)
140 goto err;

141 mginfo->mgi_hdr = (Sstruct mg hdr *) nptr;

142 nginfo->mgi_magic = MQI_MAGIC;

143 mginfo->mgi_flags = nonbl ock;

144 return ({(mgd_t) mgi nfo);

Section 5.8 Implementation Using Memory-Mapped 1/O 115

109-115

116-132

145 pthreaderr:

146 errno = i;

147 err:

148 /* don‘t let following function calls change errno */
149 save_errno = errno;

150 if (created)

151 unlink (pathname) ;

152 if (mptr != MAP_FAILED)

153 munmap (mptr, filesize);
154 if (mginfo != NULL)

155 free (mginfo) ;

156 close (fd) ;

i]i57. errno = save_errno;

158 return ((mgd_t) -1);

159 1}

my_pxmsg_mmap|mq_open.c
Figure 5.23 Third part of mqg_open function: open an existing queue.

Open existing message queue

We end up here if either the O_CREAT flag is not specified or if O_CREAT is specified
but the message queue already exists. In either case, we are opening an existing mes-
sage queue. We open the file containing the message queue for reading and writing
and memory map the file into the address space of the process (mmap).

Our implementation is simplistic with regard to the open mode. Even if the caller specifies
O_RDONLY, we must specify read-write access to both open and mmap, because we cannot
read a message from a queue without changing the file. Similarly, we cannot write a message
to a queue without reading the file. One way around this problem is to save the open mode
(O_RDONLY, O_WRONLY, or O_RDWR) in the mg_info structure and then check this mode in the
individual functions. For example, mq_receive should fail if the open mode was O_WRONLY.

Make certain that message queue is initialized

We must wait for the message queue to be initialized (in case multiple threads try to
create the same message queue at about the same time). To do so, we call stat and
look at the file’s permissions (the st_mode member of the stat structure). If the user-
execute bit is off, the message queue has been initialized.

This piece of code handles another possible race condition. Assume that two
threads in different processes open the same message queue at about the same time.
The first thread creates the file and then blocks in its call to 1seek in Figure 5.22. The
second thread finds that the file already exists and branches to exists where it opens
the file again, and then blocks. The first thread runs again, but its call to mmap in Fig-
ure 5.22 fails (perhaps it has exceeded its virtual memory limit), so it branches to err
and unlinks the file that it created. The second thread continues, but if we called
fstat instead of stat, the second thread could time out in the for loop waiting for
the file to be initialized. Instead, we call stat, and if it returns an error that the file
does not exist and if the O_CREAT flag was specified, we branch to again (Figure 5.21)
to create the file again. This possible race condition is why we also check for an error of
ENOENT in the call to open.

116 Posix Messege Queues Chapter 5

Memory map file; ailocate and initiaiize mg_info structure

133-144 Thefileis memory mapped, and the descriptor can then be closed. We allocate an
mg_info structure and initializeit. Thereturn valueisa pointer to themg_info struc-
turethat wasallocated.

Handie errors

145-158 When an error is detected earlier in thefunction, thelabel err isbranched to, with
errno Set to the value to be returned by mg_open. We are careful that the functions
called to clean up after the error is detected do not affect the errno returned by this
function.

mg close Function

Figure5.24 showsour mg_close function.

my_pxmsg_mmap [mg_close.c

1 #include "unpipc.h"

2 #incl ude "mqgueue.h"

3int

4 mg close(mgd _t mgd)

5 {

6 | ong msgsi ze, fil esize;

7 struct mg hdr *mghdr;

8 struct mg _attr *attr;

9 struct mg _info *mginfo;
10 mgi nfo = nyd;
11 if (mginfo->mgi_magic != MQI_MAGIC) {
12 errno = EBADF;
13 return (-1);
14 }
15 mghdr = mginfo->mgi_hdr;
16 attr = &mghdr->mgh_attr;
17 if (mg_notify(mgd, NULL) '= 0) /* unregi ster calling process */
18 return (-1);
19 msgsize = MSGSIZE (attr->mg _msgsize);
20 filesize = sizeof (struct mg _hdr) + (attr->mqg _maxmsg *
21 (sizeof (struct msg_hdr) + nsgsize)):
22 if (munmap(mginfo->mgi_hdr, filesize) == -1)
23 return (-1);
24 mginfo->mgi_magic = O; /* just in case */
25 free(mginfo) ;
26 return (0);
27 } my_pxmsg_mmap|mq_close.c

Figure24 mqg_closefunction

Section5.8 Implementation Using Memory-Mapped 1/0 117

Get pointersto structures

10-16 The argument is validated, and pointers are then obtained to the memory-mapped
region (mghdr) and the attributes (in themg_hdr structure).

Unregister calling process

17-18 Wecadl mg_noti fy to unregister the calling processfor thisqueue. If the processis
registered, it will be unregistered, but if itisnot registered, no error isreturned.

Unmap region and free memory

19-25 We calculate the size o the file for munmap and then free the memory used by the
ng_info structure. Just in case the caller continues to use the message queue descrip-
tor beforethat region of memory isreused by malloc, weset the magic number to 0, so
that our message queuefunctionswill detect theerror.

Notethat if the process terminates without calling mg_close, the same operations

take place on process termination: the memory-mapped fileis unmapped and the mem-
ory isfreed.

mg unl i Nk Function

Our mg _unlink function shown in Figure5.25 removes the name associated with our
messagequeue. It just callstheUnix unlink function.

my_pxmsg_mmap [ink.
1 #include "unpipc.h" y_pxmsg_mmap[mq_unlink.c

2 #include "mgueue.h”

3int

4 mg unlink(const char *pathname)
5 {

6 if (unlink(pathname) == -1)
7 return (-1);

8 return (0);

9 1}

my_pxmsg_mmap|mq_unlink.c
Fgure53 mg unlinkfunction

mg get at t r Function

Figure5.26 shows our mg_getattr function, which returnsthe current attributes o the
specified queue.
Acquirequeue's mutex lock

17-2¢ We must acquire the message queue's mutex lock before fetching the attributes, in
casesome other thread isin themiddle o changing them.

118 Posix Message Queues Chapter 5

my_pxmsg_mmap [mq_getattr.c

1 #i ncl ude "unpipc.h"

2 #i ncl ude "mgqueue . h"

3int

4 mg _getattr(mgd_t nmgd, struct mg_attr *mgstat)

5 {

6 int n;

7 struct mg_hdr *mghdr;

2] struct mg attr *attr;

9 struct mg_info *mginfo;

10 mgi nfo = ngd,

11 if (mginfo->mgi_magic != MQI_MAGIC) {

12 errno = EBADF;

13 return (-1);

14 |

15 mghdr = mginfo->mgi_hdr;

16 attr = &mghdr->mgh_attr;

17 if ((n = pthread_mutex_lock (&nghdr->mgh_lock)) 1= 0) {
18 errno = nN;

19 return (-1);:

20 |

21 mgstat->mqg_flags = mginfo->mgi_flags; /* per-open */
22 mgstat->mg_maxmsg = attr->mg_maxmsg; /* remai ning three per-queue */
23 mgstat->mg msgsize = attr->mg msgsize;

24 mgstat->mg_curmsgs = attr->mg curmsgs;

25 pthread_mutex_unlock (&mghdr->mgh_lock) ;

26 return (0);

27 |

my_pxmsg_mmap [mq_getattr.c
Hogure52 mg_getattr function.

mg_setattr Function

Figure 527 shows our mg_setattr function, which sets the current attributes d the
specified queue.
Return current attributes

22-27 If thethird argumentisanonnull pointer, wereturn the previousattributesand cur-
rent status before changing anything.
Changemg_flags

28-31 The only attribute that can be changed with thisfunction ismg_flags, which we
storeinthemg_info structure.

Section 58 I npl enent ati on Usi Nng Menory-Mapped 1/0 119

my_pxmsg_mmap[mq_setattr.c

1 #include "unpipc.h"”
2 #include "mgueue.h"
3int

4 mqg_setattr (mgd_t nyd, const struct mg attr *mgstat,

5 struct mg_attr *omgstat)

6 {

7 i nt n;

8 struct mg_hdr *mghdr;

9 struct mg_attr *attr;

10 struct mg info *mginfo;

i1, mgi nfo = nyd;

12 if (mginfo->mgi_magic != MQI_MAGIC) (

13 errno = EBADF;

14 return (-1);

15 |

16 mghdr = mginfo->mgi_hdr;

17 attr = smghdr->mgh_attr;

18 if ((n = pthread_mutex_lock (&mghdr->mgh_lock)) != 0) {
19 errno = N;

20 return (-1);

21 |

22 if (onmgstat '= NULL) ¢{

23 omgstat->mg_flags = mginfo->mgi_flags; /* previous attributes */
24 omgstat->mg_maxmsg = attr->mg maxmsdg;

25 omgstat->mg_msgsize = attr->mg msgsize;

26 omgstat->mg_curmsgs = attr->mg_curmsgs; /* and current status */
27 |

28 if (mgstat->mg_flags & O_NONBLOCK)

29 mginfo->mgi_flags |= O_NONBLOCK;

30 el se

1 mginfo->mgi_flags &= ~0_NONBLOCK;

32 pthread_mutex_unlock (&mghdr->mgh_lock) ;

33 return (0);

34)

my_pxmsg_mmap|mq_sefattr.c
Figure5 27 mqg_setattr function.

mg noti f y Function

Themg_notify function shown in Figure5.28 registersor unregisters the calling pro-
cessfor the queue. We keep track of the process currently registered for a queue by
storingits process D in the mgh_pid member o themg hdr structure. Only one pro-
cess at a time can be registered for a given queue. When a process registersitsalf, we
dsosaveitsspecified si gevent structurein themgh_event structure.

120 Posix Message Queues Chepte 5

20-24

my_pxmsg_mmap [mq_notify.c

1 #include "unpipc.h"

2 #include “mqueue.h"

3int

4 mg notify(mgd_t nyd, const struct sigevent *notification)

5 {

6 int n;

7 pid_t pi d;

8 struct mg _hdr *mghdr;

9 struct mg_info *mginfo;

10 mgi nfo = nmyd;

11 if (mginfo->mgi_magic != MQI_MAGIC) {

12 errno = EBADF,

13 return (-1);

14 }

15 nghdr = mginfo->mgi_hdr;

16 if ((n = pthread_mutex_ lock(&mghdr->mgh_lock)) != 0) {
17 errnc = n;

18 return (-1);

19 |

20 pid = getpid();

21 if (notification == NULL) {

22 if (mghdr->mgh_pid == pid) {

23 mghdr->mgh_pid = 0; /* unregister calling process */
24 | /* no error if caller not registered */
25 } else {

26 if (mghdr->mgh_pid !'= 0) {

27 if (kill (mghdr->mgh_pid, 0) != -1 || errno 1= ESRCH {
28 errno = EBUSY;

29 goto err;

30 }

31 |

32 mghdr->mgh_pid = pi d;

33 mghdr->mgh_event = *notification;

34 |

35 pthread_mutex_unlock (&mghdr->mgh_lock) ;

36 return (0);

32 err:

38 pthread_mutex_unlock (&mghdr->mgh_lock) ;

39 return (-1);

40 |

my_pxmsg_mmap[mq_notify.c
Figure52B mg noti fyfuction

Unregister caliing process
If the second argument isa null pointer, the calling processis unregistered for this

gueue.
gueue.

Srangdy, no aero is specified if the calling processis not regisered for this

Sectiorl58 Implementation Using Memory-Mgpped 1/0 121

Register caliing process

25-34 If some process is aready registered, we check whether it still exists by sending it
sgnal 0 (called the null signal). This performs the normal error checking, but does not
send asignal and returns an error o ESRCH if the process does not exist. An error of
EBUSY is returned if the previously registered process still exists. Otherwise, the pro-
cessID issaved, along with thecaller's sigevent structure.

Our test for whether the previoudly registered process existsis not perfect. This processcan
terminateand then haveits process|D reused at somelater time.

mg_send Function

Figure5.29 showsthefirst haf o our mg_send function.
Initiaiize
14-29 Pointersare obtained to the structures that we will use, and the mutex lock for the

queueis obtained. A check is made that the size d the message does not exceed the
maximum messagesi ze for this queue.

Check for empty queue and send notification if applicabie

30-36 If we are placing a message onto an empty queue, we check whether any processis
registered for this queue and whether any thread is blocked in a call to mg_receive.
For the latter check, we will see that our mg receive function keeps a count
(mgh_nwait) of the number o threads blocked on the empty queue. If thiscounter is
nonzero, we do not send any notification to the registered process. We handle a notifi-
cation o SIGEV_SIGNAL and call sigqueue to send thesignal. Theregistered process
isthen unregistered.

Cadlling sigqueue to send thesignal resultsin an si_code o SI_QUEUE being passed to the
signal handler in the siginfo_t structure (Section 5.7), which is incorrect. Generating the
correct si_code o SI_MESGQ fromauser processisimplementationdependent. Page 433 of
[IEEE 19961 mentionsthat a hidden interfaceinto the signal generation mechanismis required
to generatethissignal fromauser library.

Check for fuil queue

39-48 If the queue is full but the o_NoNBLOCK flag has been set, we return an error o
EAGAIN. Otherwise, wewait on thecondition variablemgh_wait, which wewill seeis
signaled by our mg _receive functionwhen amessageisread from a full queue.

Our implementation is smplistic with regard to returning an error d EINTR if this call to
mg_send isinterrupted by asignal that is caught by the caling process. The problemis that
pthread_cond_wait does not return an error when thesignal handler returns: it can either
return avalued 0 (which appears as a spurious wakeup) or it need not return at al. Ways
around thisexist, all nontrivial.

Figure5.30 showsthe second haf o our mg_send function. At this point, we know
thequeue hasroom for the new message.

122 Posix Message Queues

Chapter 5

my_pxmsg_mmap|mq_send.c

{

1 #i ncl ude "unpipc.h"

2 #incl ude "mqueue.h"

3int

4 mg_send(mgd_t nyd, const char *ptr, size-t len, unsigned int prio)
5 ¢

6 int n;

7 | ong i ndex, freeindex;

8 int8_t *mptr;

9 struct sigevent *sigev;

10 struct mg_hdr *mghdr;

11 struct mg attr *attr:

12 struct msg_hdr *msghdr, *nmsghdr, *pmsghdr;

13 struct mg info *mginfo;

14 mgi nfo = nyd;

15 if (mginfo->mgi_magic != MQI_MAGIC) {

16 errno = EBADF,;

17 return (-1);

18 }

19 nghdr = mginfo->mgi_hdr; [* struct pointer */

20 nptr = (int8_t *) nghdr; /* byte pointer */

21 attr = &mghdr->mgh_attr;

22 if ((n = pthread mutex_lock (&mghdr->mgh lock)) 1= Q)
23 errno = nN;

24 return (-1);

25 }

26 if (l en > attr->mg _msgsize) (

27 errno = EMBGSI ZE;

28 goto err;

29 }

30 if (attr->mg _curmsgs == 0) {

31 if (mghdr->mgh_pid != 0 && mghdr->mgh_nwait == 0)
32 si gev = &mghdr->mgh_event;

33 if (sigev->sigev_notify == SIGEV_SIGNAL) {
34 siggqueue (mghdr->mgh_pid, sigev->sigev_signo,
35 sigev->sigev_value) ;

36 }

37 mghdr->mgh_pid = 0; /* unregister */

3B }

39 } else if (attr->mg_curmsgs >= attr->mg maxmsg) {

40 /* queue is full */

41 if (mginfo->mgi_flags & O_NONBLOCK) {

42 errno = EACAIN

43 goto err;

44 }

45 /* wait for roomfor one nmessage on the queue */
46 whil e (attr->mg_curmsgs >= attr->mng _maxmsg)

47 pthread_cond_wait (&nghdr->mgh_wait, &mghdr->mgh_lock) ;
48 }

Figure5® mg_send function:first hdf.

my_pxmsg_mmap[mq_send.c

Section 5.8 Implementation Usng Memory-Megpped 1/0 123

my_pxmsg_mmap [mq_send.c

49 /* nmsghdr will point to new nessage */

50 if ((freeindex = mghdr->mgh_free) == 0)

51 err_dump ("mg_send: curnsgs = %1d4; free = 0". attr->mg_curmsgs);
52 nmsghdr = (struct nsg- hdr *) &mptr[freeindex];

53 nmsghdr->msg_prio = prio;

54 nmsghdr->msg_len = | en;

55 memcpy (nmsghdr + 1, ptr, len); /* copy nmessage fromcaller */
56 mghdr->mgh_free = nmsghdr->msg_next; /* new freelist head */
57 /* find right place for nmessage in linked list */

58 i ndex = mghdr->mgh_head;

59 pnsghdr = (struct nsg- hdr *) &(mghdr->mgh_head) ;

60 while (index 1= 0) {

61 nmsghdr = (struct nsg-hdr *) &mptrlindex];

62 if (prio > msghdr->msg_prio) {

63 nmsghdr->msg_next = i ndex;

64 pmsghdr->msg_next = freei ndex;

65 br eak;

66 |

67 i ndex = msghdr->msg_next;

68 pnsghdr = nsghdr;

69 }

70 if (index == 0) ({

71 /* queue was enpty or new goes at end of list */

72 pmsghdr->msg_next = freei ndex;

73 nmsghdr->msg_next = 0;

T4 |

75 /* wake up anyone bl ocked i n mg_receive waiting for a nessage */
76 if (attr->mg_curmsgs == 0)

77 pthread_cond_signal (&mghdr->mgh_wait) ;

78 attr->mg_curmsgs++;

79 pthread_mutex_unlock (&mghdr->mgh_lock) ;

B8C return (0);

Bl err:

B2 pthread_mutex_unlock (&mghdr->mgh_lock])

83 return (-1);

84 |

my_pxmsg_mmap[mq_send.c
Figure53 mq_send function: second e f.

Get index of free biock to use

50-52 Since the number o free messages created when the queue was initialized equals
mg_maxmsg, we should never have a situation where mg curmsgs is less than
mg_maxmsg With an empty freelist.

Copy message

53-56 nmsghdr contains the address in the mapped memory d where the message is
stored. The priority and length are stored in its msg— hdrstructure, and then the con-
tentsd the message are copied from thecaller.

124 Posix Messsge Queues Chapter5

Place new message onto iinked list in correct location

57-74 The order of messages on our linked list is from highest priority at the front
(mgh_head) to lowest priority at theend. When a new message isadded to the queue
and one or more messagesd the same priority are already on the queue, the new mes-
sageisadded after the last messagewith its priority. Using thisordering, mg_receive
always returns the first message on the linked list (which is the oldest message o the
highest priority on the queue). As we step through the linked list, pmsghdr contains
theaddress o the previous messagein thelist, becauseitsmsg_next value will contain
theindex o the new message.

Our design can be low when lots of messagesare on thequeue, forcing atraversal of alarge
number o list entrieseach timea messageiswritten to thequeue. A separateindex could be
maintained that remember sthelocation of thelast messagefor each possiblepriority.

Wake up anyoneblocked in mg_receive

75-77 If the queue was empty before we placed the message onto the queue, we cal
pthread_cond_signal to wake up any thread that might be blocked in
mg receive.

78 Thenumber d messagescurrently on the queue, mg_curmsgs, isincremented.

mg receive Function

Figure5.31 shows thefirst hdf o our mg _receive function, which sets up the pointers
that it needs, obtains the mutex lock, and verifiesthat the caller's buffer islarge enough
for the largest possible message.

Check for empty queue

30-40 If the queue is empty and the O_NONBLOCK flag is set, an error o EAGAIN is
returned. Otherwise, we increment the queue's mgh_nwait counter, which was exam-
ined by our mg_send functionin Figure5.29, if the queue was empty and someonewas
registered for notification. We then wait on the condition variable, which issignaled by
mg_send in Figure5.29.

As with our implementation of mg_send, our implementation of mg_receive is smpligic
with regard toreturningan error of EINTR if thiscall isinterrupted by a signal that is caught
by thecalling process.

Figure 532 shows the second half o our mg_receive function. At this point, we
know that a messageison thequeueto return to thecaller.

Sation 5.8

Implementation Using Memory-Mapped 1/0

125

b =

mg_receive(mgd_t ngd, char *ptr, size-t maxlen, unsigned int

#include "unpipc.h"
#include "mgueue.h"
ssize_t
{
int n;
| ong i ndex;
int8_t *mptr;

ssize_t | en;

struct mg hdr *mghdr;
struct mg_attr *attr;
struct msg_hdr *msghdr;
struct mg info *mginfo;

rnginfo = rnagd;

if (mginfo->mgi_magic != MQI_MAGIC) ({

errno = EBADF,
return (-1);

}

rnghdr = mginfo->mgi_hdr;

mptr = (int8_t *) rnghdr;

attr = &mghdr->mgh_attr;

if ((n=
errno = nN;
return (-1);

}

/* struct pointer */
/* byte pointer */

pthread_mutex_lock (&mghdr->mgh_lock))

if (maxlen < attr->mg msgsize) {

errno = EMBGSI ZE;
goto err;
}

if (attr->mqg _curmsgs == 0) {

errno = EAGAI N
goto err;
}

my_pxmsg_mmap/mq_receive.c

*priop)

1= 0) {

/* queue is enpty */
if (mginfo->mgi_flags & O_NONBLOCK) (

/* wait for a nessage to be pl aced onto queue */

nghdr->mgh_nwait++;

whi |l e (attr->mg_curmsgs
pthread_cond_wait (&mghdr->mgh_wait,

mghdr->mgh_nwait--;

== O)

&mghdr->mgh_lock) ;

my_pxmsg_mmap/mq_receive.c

Figure53l mg_receive function:first half.

126 Rex Mesge Queues Chapter 5
my_pxmsg_mmap [mgq_receive.c
41 if ((index = mghdr->mgh _head) == 0)
42 err_dump ("mg receive: curmnmsgs = %1d; head = 0", attr->mg curmsgs):
43 msghdr = (struct msg_hdr *) &mptr{index];
44 mghdr->mgh_head = msghdr->msg_next; /* new head of list */
45 |l en = msghdr->msg_len;
46 memcpy (ptr, nsghdr + 1, 1len); /* copy the nessage itself */
47 if (priop != NULL)
48 *priop = msghdr->msg_prio;
49 /* just-read nessage goes to front of free list */
50 nsghdr->msg_next = mghdr->mgh_free;
51 mghdr->mgh_free = i ndex;
52 /* wake up anyone bl ocked in mg send waiting for room */
53 if (attr->mg_curmsgs == attr->mg_maxmsg)
54 pthread_cond_signal (&mghdr->mgh_wait);
55 attr->mg curmsgs--;
56 pthread_mutex_unlock (&mghdr->mgh_lock) ;
57 return (len):
58 err:
59 pthread_mutex_unlock (&mghdr->mgh_lock) ;
60 return (-1);
61 } .
my_pxmsg_mmap[mg_treceive.c
Fogure52 mg receive function:second haf.
Return messageto caller
43-51 msghdr pointsto themsg_hdr d thefirst message on the queue, which iswhat we
return. Thespace occupied by this message becomesthe new head d thefreelist.
Wake up anyone blocked inmg_send
52-54 If the queue was full before we took the message off the queue, we cdl
pthread cond_signal, in case anyoneis blocked in mg_send waitingfor room for a
message.
5.9 Summary

Posx messagequeuesare smple: a new queueis created or an existing queueis opened
by mg_open; queues are closed by mg_close, and the queue names are removed by
mg_unlink. Messages are placed onto a queue with mg send and read with
mg_receive. Attributes d the queue can be queried and set with mg_getattr axd
mg_setattr, and the function mg_notify lets us register a signal to be sent, or a
thread to be invoked, when a message is placed onto an empty queue. Small integer
prioritiesare assigned to each message on the queue, and mg_receive awaysreturns
the oldest messaged the highest priority each timeitiscalled.

Chapter 5

Exercises 127

Using mg_notify introduced us to the Posix realtime signals, named S| GRTM N

through SIGRTMAX. When the signal handler for these signals is installed with the
SA_SIGINFO flag set, (1) these signals are queued, (2) the queued signals are delivered
inaFIFO order, and (3) two additional arguments are passed tothe signal handler.

Findly, we implemented most of the Posix message queue features in about 500

linesdof C code, using memory-mapped 1/0, along with a Posix mutex and a Posix con-
dition variable. Thisimplementation showed a race condition dealing with the creation
o a new queue; we will encounter this same race condition in Chapter 10 when imple-
menting Posix semaphores.

Exercises

5.1

5.2

53

5.4

5.5

5.6

5.7

5.8
5.9
5.10

With Figure5.5, we said that if theattr argument tomg_open is nonnull when a new queue
is created, both d the members mq_maxmsg and mg_msgsize must be specified. How
could we allow either o these to be specified, instead of requiring both, with the one not
specified assuming the system's default value?

Modify Figure 5.9 so that it does not cal mq_notify when the signal is delivered. Then
send two messagesto the queue and verify that the signal is not generated for the second
message. Why?

Modify Figure5.9 so that it does not read the message from the queue when the signal is
delivered. Instead, just cal mg notify and print that the signal was received. Then send
two messagesto the queue and verify that the signal is not generated for the second mes-
sage. Why?

What happens if we remove the cast to an integer for the two constantsin thefirst printf
in Figure5.17?

Modify Figure 5.5 as follows: before calling mg_open, print a message and sl eep for 30
seconds. After mg_open returns, print another message, sl eep for 30 seconds, and then
cdl mg_close. Compileand run the program, specifying a large number d messages (a
few hundred thousand) and a maximum message size d (say) 10 bytes. The goal isto cre-
ate a large message queue (megabytes) and then see whether the implementation uses
memory-mapped files. During the first 30-second pause, run a program such as ps and
look at the memory size of the program. Do this again, after mg_open has returned. Can
you explain what happens?

What happens in the call to memcpy in Figure 5.30 when the caller of mg_send specifiesa
lengthd O?

Compare a message queue to the full-duplex pipes that we described in Section 4.4. How
many message queues are needed for two-way communication betweena parent and child?

In Figure5.24, why don't wedestroy the mutex and condition variable?
Posix says that a message queue descriptor cannot be an array type. Why?

Wheredoes themai n function in Figure 5.14 spend most of its time? What happens every
timeasignal isdelivered? How do we handle thisscenario?

128 Posix Message Queues Chapter 5

511 Not all implementations support the PTHREAD- PROCESS- SHARED attributes for mutexes
and condition variables. Redo the implementation of Posix message queuesin Section 5.8
to use Posix semaphor es (Chapter 10) instead of mutexesand condition variables.

512 Extend the implementation of Posix message queues in Section 5.8 to support
SIGEV_THREAD.

6.1

System V Message Queues

Introduction

System V message queues are identified by a message queue identifier. Any process with
adequate privileges (Section 3.5) can place a message onto a given queue, and any pro-
cesswith adequate privileges can read a message from a given queue. As with Posix
message queues, thereis no requirement that some process be waiting for a message to
arriveon aqueue beforesome processwritesa message to that queue.

For every message queue in the system, the kernel maintains the following struc-
tured information, defined by including<sys/msg.h>:

struct msgid ds
struct ipc_perm msg_perm;

struct nsg *msg_first;
struct nsg *msg_last;
msglen t msg_cbytes;
nsggnum_t msg_gnum;
msglen_t msg_gbytes;
pid_t nsg_lspid;
pid_t nsg_lrpid;
tine-t msg_stime;
time_t msg_rtime;
time_t nsg_ctime;

I*
/*
l‘*
/*
/i‘(
/it
/™
/i
/i
l[i
’i

read-wite perns: Section 3.3 */
ptr to first nessage on queue */
ptr to | ast nessage on queue */
current # bytes on queue */
current # of nessages on queue */
max # of bytes all owed on queue */
pid of |ast msgsnd{) */

pid of |last msgrcv() */

time of |last msgsnd() */

time of | ast msgrev() */

time of |ast msgctl()

(that changed the above) =x/

Lhi Xx 98 does nat require the msg_fi rst, nsg- | ast, @ msg_cbytes nenbers. Neverthe
less, thesethree nenber saref ound intheconmon Syst emV deri ved i npl enent ati ons. Nat u-
rally, no requi renent edsts thet the nessages on a queue be nai ntai ned as alirked lid, as
inplied by themsg_fi rst and nsg- | ast menbers. If thesetwo pd ntersae presat, they
pairt tokernd menoryand aelagdy usd esstoangod i cation

129

130 Sydam V Messge Queles Chapter 6
We can picture a particular messagequeuein thekernel asalinked list df messages,
asshownin Figure6.1. Assume that three messages are on a queue, with lengthsd 1
byte, 2 bytes, and 3 bytes, and that the messages were written in that order. Also
assume that these three messages were written with types d 100, 200, and 300, respec-
tivey.
2 e e S S S e T e R A S
: msqgid_ds()
: msgid — next +—> next 1
: ipc_perm(} type=100 type=200 i
: length=1 length=2
I
: msg_first data
! ! data
| msg_last -—m\\\\h
I
I
l
: msg_cti ne
I
L e e kemel ___________
Figure6.1 SysemV messagequeuedructuresinkernd.
In thischapter, welook at the functionsfor manipul atingSystem V messagequeues
and implement our fileserver examplefrom Section 4.2 using message queues.
6.2 nsgget Function

A new message queue is created, or an existing message queue is accessed with the
msgget function.

#include <sys/msg.h>

|
int msgget (key-t key, int oflag); ’
|

Returns nonnegativeidentifier if OK, -1 oneror

The return value is an integer identifier that is used in the other three mgg functionsto
refer to thisqueue, based on the specified key, which can be avaluereturned by ftok o
the constant TPC_ PRIVATE, asshownin Figure 3.3.

oflag isacombinationd theread—write permission valuesshownin Figure3.6. This
can bebitwise-ORed with either TPC_CREAT or IPC_CREAT | IPC_EXCL, as discussed
with Figure3.4.

When a new message queue is created, the following members d the msgid_ds
structureareinitialized:

Section 6.3 msgsnd Function 131

6.3

e Theui d and cui d members o the msg_perm structure are set to the effective

user ID o the process, and the gi d and cgi d members are set to the effective
group ID o the process.

e Theread-writepermission bitsin oflag arestored inmsg_perm. node.

e msg_gnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set to0.
e msg_cti me isset tothecurrent time.

e msg_gbyt es isset tothesystem limit.

nsgsnd Function

Once a message queue is opened by nsgget , we put a message onto the queue using
nmsgsnd.

‘ #include <sys/msg.h>
int msgsnd{int N8Qid, const void *ptr, size-t length, int flag);

i Returns: 0if OK, -1 onerror

nsg d isan identifier returned by nsgget . ptr isa pointer to astructurewith the follow-
ing template, which isdefined in <sys/msg.h>.

struct msgbuf {
long ntype; /* nmessage type, nust be > 0 */
char mtext[1l]; /* nessage data */

}:

The messagetype must be greater than 0, since nonpositive messagetypes are used
asagpecia indicator tothe nsgr cv function, which we describein the next section.

Thenament ext inthensgbuf structure definitionisamisnomer; thedata portion
d the messageis not restricted to text. Any form d data isallowed, binary data or text.
Thekernel does not interpret the contents of the messagedata at all.

We use the term ""template’ to describe this structure, because what ptr pointstois
jugt along integer containing the message type, immediately followed by the message
itsdf (if the length of the messageis greater than 0 bytes). But most applicationsdo not
usethisdefinitiond thensgbuf structure, since theamount o data (1 byte) isnormally
inadequate. No compile-timelimit existsto the amount of data in a message (thislimit
can often be changed by the system administrator), so rather than declare a structure
with a huge amount of data (more data than a given implementation may support), this
templateisdefined instead. Most applications then define their own message structure,
with the data portion defined by the needs o the application.

For example, if some application wanted to exchange messages consisting d a
16-hit integer followed by an 8-byte character array, it could defineitsown structure as.

132 Sydam V Messsge Queles Chepter 6

#defi ne My- DATA 8

typedef struct my_msgbuf {

I ong nt ype; /* message type */
intl6_t nshort; /* start of nessage data */
char nchar [MY- DATA];

} Message;

Thelength argument to nsgsnd specifiesthelength o the messagein bytes. Thisis
the length d the user-defined data that follows the long integer message type. The
length can be 0. In the example jug shown, the length could be passed as
sizeof(Message) - sizeof(l ong).

The flag argument can be either 0 or | PC- NOMI T. This flag makes the cdl to
msgsnd nonblocking: the function returns immediately if no room is available for the
new message. Thiscondition can occur if

¢ too many bytes are aready on the specified queue (the msg_gbytes vauein

themsgid_ds structure),or

e t00 Many messagesexist systemwide.

if one d these two conditions exists and if | PC- NOMI T is specified, nsgsnd
returnsan error o EAGAI N. If oned thesetwo conditionsexistsand if | PC- NOMI T is
not specified, then thethread is put todeep until

* room existsfor the message,

o the message queue identified by rnsgid is removed from the system (in which

case, an error EIDRM isreturned),or

o thecdling thread isinterrupted by a caught signal (in which case, an error d

El NTRisreturned).
6.4 msgrcv Function

A messageisread from a messagequeue usingthensgr cv function.

#incl ude <sys/msg.h>

ssize_t msgrcv(int msgid, void *ptr, size-t length, long type, int flag);

Returns number d bytesd dataread intobuffer if OK, -1 on error

The ptr argument specifies where the received message is to be stored. As with
nsgsnd, this pointer pointsto the long integer type fied (Figure 4.26) that is returned
immediately beforethe actual messagedata.

length specifiesthesized the data portion d the buffer pointed to by ptr. Thisis
the maximum amount 0 datathat isreturned by thefunction. Thislength excludes the
long integer typefied.

Section 6.4 nsgrcv Function 133

type specifieswhich messageon the queueisdesired:

¢ If typeisQ, thefirst messageon thequeueisreturned. Sinceeach messagequeue
ismaintained asa FIFO ligt (first-in, first-out), atype o 0 specifiesthat theoldest
messageon thequeueisto be returned.

o If typeisgreater than O, thefirst messagewhosetypeequalstypeis returned.

o If typeislessthan O, thefirst message with the lowest type that is less than or
equal totheabsolutevalued thetype argument isreturned.

Congder the message queue example shown in Figure 6.1, which contains three mes-
sges

o thefirst messagehasatyped 100and alength o 1,
e thesecond hasatyped 200and alengthd 2, and
o thelast messagehasatyped 300 and alengthd 3.

Figure6.2 showsthe message returned for different valuesd type.

type | Typed messagereturned
0 100
100 100
200 200
300 300
-100 100
-200 100
-300 100

Figure6.2 Messagesreturned by negr cv for different valuesaf type

The flag argument specifieswhat to do if a messaged the requested type is not on
thequeue. If the IPC_NOWAIT bit is set and no messageis available, the msgrev func-
tion returnsimmediately with an error & ENOVBG Otherwise, thecdler isblocked until
oned thefollowing occurs:

1 amessaged therequested typeisavailable,

2 the message queue identified by msgid is removed from the system (in which
case, an error f EIDRM isreturned),or

3 thecdling thread isinterrupted by a caught signal (in which case, an error o
El NTRisreturned).

An additional bit in the flag argument can be specified: MBG- NOERRCR When st
thisgpecifiesthat if the actual data portion d the received messageis greater than the
length argument, just truncate the data portion and return without an error. Not speci-
fying the MBG- NCERRCR flag causes an error return o E2BIG if length is not large
enough to receivethe entire message.

134 Sydam V Messge Queues Chepter 6

On successful return, msgr cv returns the number d bytesd data in the received
message. Thisdoesnot includethe bytes needed for thelong integer messagetype that
isalso returned through the ptr argument.

6.5 rnsgetl Function
Thensgct 1 function providesa variety d control operations on a message queue.

#include <sys/msg.h>

int nmegctl(int msgid, int cmd, struct nsqid-ds *buff):

Returns. 0if OK, -1 onerror
Threecommandsare provided:

I PC- RM D Remove the message queue specified by nsgd from the system. Any
messages currently on the queue are discarded. We have already seen
an exampled thisoperation in Figure 3.7. The third argument to the
functionisignored for thiscommand.

| PC- SET Sat the following four members d the nsqi d- ds structure for the
message queue from the corresponding members in the structure
pointed to by the buff argument: msg_perm.uid, msg_perm.gid,
msg_perm.mode, and msg_gbytes.

| PC- STAT Return to the cdler (through the buff argument) thecurrent nsqi d- ds
structurefor the specified messagequeue.

Example

The programin Figure 6.3 creates a message queue, puts a message containing1 byted
data onto the queue, issues the IPC_STAT command to nsgct |, executes the i pcs
command using the system function, and then removes the queue using the
IPC_RMID commandtonsgct 1.

Wewrite a 1-byte message to the queue, so we just usethe standard nsgbuf struc-
turedefined in <sys/msg.h>.

Executingthis program gives us

solaris % ctl

read-wite: 664, cbhytes = 1, gnum = 1, gbytes = 4096
I PC status from <running system> as of Mn Cct 20 15:36:40 1997

T I D KEY MODE OMER GROUP
Message Queues:
a 1150 00000000 --rwrwr-- rstevens otherl

Thevaluesare as expected. The key valued 0 isthecommon valuefor IPC_PRIVATE,
as we mentioned in Section 3.2. On this system thereis a limit o 4096 bytes per mes-
sagequeue. Sincewewroteamessagewith 1 byted data, and sincemsg_cbytes is],

Section6.6 Snmple Pograms 135

sumsg/ctl.c

[y

#include “unpipc.h”

int
main(int argc, char **argv)
{
int rnsgi d;
struct msqgid ds info;
struct rnsgbuf buf;

N~No oabh WN

rnsgid = Msgget (IPC_PRIVATE, SVMSG_MODE | IPC_CREAT);

[ee]

9 buf .mtype = 1;

10 buf .mtext[0] = 1;

11 Msgsnd (msqgid, &buf, 1, 0);

12 Msgct I (rnsgid, | PG- STAT, & nfo) :

13 printf ("read-write: %030, cbytes = %lu, gnum = %lu, gbytes = %lu\n",
14 info.msg perm.mode & 0777, (ulong_t) info.msg_cbytes,
15 (ulong_t) info.msg _gnum, (ulong_t) info.msg_gbytes);
16 system("i pcs -g");

17 Msgct | (rnsgi d, IPC_RMID, NULL);

18 exit(0):

19 }

somsg[ctl.c
FgureG3 Exanpl ed rnsgct! fucti onwth IPC_sTAT comrand.

this limit is apparently just for the data portion o the messages, and does not include
thelonginteger message type associated with each message.
6.6 Simple Programs

Since Sysem V message queues are kernd -persistent, we can writea small set o pro-
gramsto manipul ate these queues, and see what happens.

msgcreate Program

Figure6.4 showsour nsgcr eat e program, which createsa message queue.
9-122 Wealow acommand-lineoptiond -e to specify the1pc_gxcL flag.

16 The pathname that is required as a command-lineargument is passed as an argu-
ment to £t ok. Theresulting key is converted into an identifier by negget . (SeeExer-
cise6.1)

msgend Program

Our nsgsnd program is shown in Figure 65, and it places one message d a specified
length and typeonto a queue.

136 Sydem V Message Queues

Chepter 6

- - svmsg/msgcreate.c
1 #include "unpipc.h"
2int
3 main(int argc, char **argv)
4 {
5 int c, oflag, rnqd;
6 oflag = SVMSG MODE | IPC_CREAT;
7 while ((¢ = Getopt (argc, argv, "e")) != -1) {
8 switch (¢) (
9 case 'e':
10 oflag |= IPC_EXCL;
11 br eak;
12 }
13 }
14 if (optind '= argc - 1)
15 err_guit("usage: rnsgcreate [-e | <pathname>");
16 rngd = Msgget (Ftok(argv(optind]l, 0), oflag);
17 exit(0):
i8 }
sumsg[msgcreate.c
Figure6.4 CresteaSysem V messagequeue.
sumsg[msgsnd.c
1 #include "unpipc.h" g;’
2int
3 main(int argc, char **argv)
4 {
5 int rngi d;
6 size-t len;
7 | ong type;
8 struct rnsgbuf *ptr;
9 if (argc = 4)
10 err_quit ("usage: rnsgsnd <pathname> <#bytes> <type>");
11 len = atoi(argvi2]);
12 type = atoi(argv[3]);
13 mgid = Msgget (Ftok(argv[i], 0), MG W;
14 ptr = calloc(sizeof(long) t+ | en, sizeof(char));
15 ptr->mtype = type;
16 Msgsnd(mgid, ptr, len, 0);
17 exit(0);
i8 }
sumsg [msgsnd.c

Figure6.5 Add amessagetoaSysemV messagequeue

We allocate a pointer to a generic msgbuf structure but then allocate the actual
sructure(e.g., the output buffer) by callingcal | oc, based on the size of the message.

Thisfunction initializes the buffer to 0.

Section 6.6 Simple Programs 137

magrcv Program

Figure 6.6 shows our nsgr cv function, which reads a message from a queue. An
optional -n argument specifiesnonblocking, and an optional -t argument specifies the
typeargument for nsgr cv.

1 #i ncl ude "unpi pc.h" somsg[msgrev.c
2 #defi ne MMXVBG (8192 + sizeof(long))

3int

4 main(int argc, char **argv)

5 1{

6 int c, flag, rngd;

7 | ong type:

8 ssize t N

9 struct msgbuf *buff;

10 type = flag = 0O;

11 while ((¢ = Getopt(argec, argv, "nt: ")) 1= -1) (
12 switch (¢) ¢

13 case 'n':

14 flag |= IPC_NOWAIT;

15 br eak;

16 case ‘t’:

17 type = atol{optarg);

is br eak;

19 }

20 }

21 if (optind '= argc - 1)

22 err-quit("usage: msgrcv [-n] [-t type | <pathname>");
23 mgid = Msgget (Ftok(argv(optind]l, 0), MBG R;

24 buf f = Mal | oc(NAXVBG ;
25 n = Msgrcv(mgid, buff, MAXVMBG type, flag);

26 printf ("read %4 bytes, type = %ld\n", n, buff->mtype);
27 exit(0);
28 }

svmsg[msgrcu.c
Figure66 Read anessagef r omaSyst emV nessage queue.

No simple way exists to determinethe maximum size o a message (wetak about
thisand other limitsin Section 6.10), so wedefineour own constant for thislimit.

i d Program

To remove a message queue, wecall nsgct | with acommand d TPc_RMID, asshown
in Figure6.7.

138 Sydem V Messsge Queles Chepter 6

sumsg[msgrmid.c
1 #include "unpipec.h" & 8
2int
3 main(int argc, char **argv)
4 {
5 int rngi d;
6 if (argc 1= 2)
7 err_quit ("usage: rnsgrmd <pathname>");
8 mgid = Msgget (Ftok(argv([l], 0), 0);
9 Msgctl(ngi d, IPC_RMID, NULL)
10 exit(0);
11 } "
sumsg[msgrmid.c
Figure6.7 RenoveaSystemV nessage queue.
Examples

We now use the four programs that we have just shown. We first create a message
gueueand writethree messagesto the queue.
solaris % msgcreate /tmp/no/such/file

ftok error for pathname "/tmp/no/such/file” and id 0: No such file or directory
solaris % touch /tmp/testl

solaris % nagcreate /tmp/testl

solaris % nmsgsnd /tmp/testl 1 100
solaris % nsgsnd /tmp/testl 2 200
solaris % nmsgsnd /tmp/testl 3 300

solaris % i pcs =-qgo
| PC status from <running system> as of Sat Jan 10 11:25:45 1998

T 1D KEY MODE ONMER GROP CBYTES QNUM
Message Queues:
[100 0x0000113e --rwr--r-- rstevens otherl 6 3

We first try to creste a message queue using a pathname that does not exist. This
demonstrates that the pathname argument for ft ok must exist. We then create thefile
/tmp/testl and create a message queue using this pathname. Three messages are
placed onto the queue: the three lengths are 1, 2, and 3 bytes, and the three types are
respectively 100,200, and 300 (recall Figure 6.1). The ipcs program shows 3 messages
comprisingatota o 6 byteson thequeue.

We next demonstratethe use d the type argument to nsgr cv in reading the mes:
sagesin an order other than FIFO.

solaris % msgrcv -t 200 /tmp/testl

read 2 bytes, type = 200

solaris % nsgrcv -t -300 /tmp/testl
read 1 bytes, type = 100

solaris % nsgrcv /tmp/testl

read 3 bytes, type = 300

solaris % msgrcv -n /tmp/testl

msgrcv error: No message of desired type

Section 6.6 Smple Pograms . 139

The first example requests the message with a type fiedld 200, the second example
requests the message with the lowest type field less than or equal to 300, and the third
examplerequeststhefirst messageon the queue. Thelast executiond our msgrcv pro-
gram showsthe 1pc_nNowaIT flag.

What happens if we specify a positive type argument to msgrcv but no message
with that type existson the queue?

solaris % i pcs -go
| PC status from <running system> as of Sat Jan 10 11:37:01 1998

T 1D KEY MODE OMER GROUP CBYTES ¢@NUM
Message Queues:
q 100 0x0000113e --rwr--r-- rstevens otherl 0 0

solaris % msgsnd /tmp/testl 1 100

solaris % rnsgrcv -t 999 /tmp/testl

~? type our interrupt key to terminate
solaris % rnsgrcv -n -t 999 /tmp/testl

nmsgrcv error: No nessage of desired type

solaris % grep desired /usr/include/sys/errnoc.h

#def i ne ENOVSG 35 /* No message of desired type */
solaris % rnsgrmd /tmp/testl

We first execute i pcs to verify that the queue is empty, and then place a message d
length 1 withatyped 100 onto the queue. When we ask for a messaged type 999, the
program blocks (in the call to msgrev), waiting for amessaged that typeto be placed
onto the queue. We interrupt this by terminating the program with our interrupt key.
We then specify the -n flag to prevent blocking, and see that the error ENOMSG is
returned in this scenario. We then remove the queue from the system with our
msgrmid program. We could have removed the queue using the system-provided com-
mand

solaris % i pcrm -q 100
which specifiesthe message queueidentifier, or using
solaris % i pcrm -Q Oxll3le

which specifies the message queue key.
msgrevid Program

We now demonstrate that to access a Systerm V. message queue, we need not cdl
msgget: all we need to know is the message queue identifier (easily obtained with
ipcs) and read permission for the queue. Figure 6.8 shows a simplification d our
msgrcv program from Figure6.6.

Wedo not call msgget. Instead, the caler specifiesthe message queueidentifier on
thecommand line.

140 Sydam V Messsge Queles Chapter 6
. sumsg [msgrevid.c
1 #i ncl ude "unpipc.h"
2 #define NAXMBG (8192 + sizeof(l ong))
3int
4 main(int argc, char **argv)
5 {
6 int nyi d;
7 ssize_t n;
8 struct nsgbuf *buff;
9 if (argc 1= 2)
10 err_quit ("usage: msgrcvid <mgid>");
11 ngi d = atoi(argvIiil):
12 buf f = Malloc (MAXMSG) ;
13 n = Msgrcv(mgid, buff, MAXMBG o0, O);
14 printf (“read %4 bytes, type = %ld\n", n, buff->mtype);
15 exit(0):
16 } .
sumsg[msgrcvid.c
Fguwe68 ReadfromaSystemV nessagequeueknow ngonly theidatifier.
Hereisan exampled thistechnique:
solaris % touch /tmp/testid
solaris % rnsgcreate /tmp/testid
solaris % msgsnd /tmp/testid 4 400
solaris % i pcs -qo
| PC stat us from <running system> as of \Wd Mar 25 09:48:28 1998
T 1D KEY MCDE OMER CGROUP CBYTES QNUM
Message Queues:
q 150 0x0000118a --rwr--r-- rstevens otherl 4 1
solaris % rnsgrcvid 150
read 4 bytes, type = 400
We obtain the identifier & 150 from ipcs, and thisis the command-lineargument to
our nsgr cvi d program.
This same feature applies to System V semaphores (Exercise 11.1) and System V
shared memory (Exercisel14.1).
6.7 Client—-Server Example

We now code our client—server example from Section 4.2 to use two message queues.
One queueisfor messagesfrom the client to the server, and the other queueisfor mes
sagesin theother direction.

Our header svmsg. hisshown in Figure 6.9. We includeour standard header ad
definethe keysfor each message queue.

Section &7 Qient-Server Exanple 141

svmsgcliserv/svmsg.h
1 #i ncl ude "unpi pc.h"

2 #define MQ_KEY1l 1234L
3 #define MQ_KEY2 2345L

somsgcliserv[svmsg.h
Figure69 svmsg.h header fa dient-server usi ng nessage queues.

Thenai n function for the server isshown in Figure 6.10. Both message queuesare
created and if either already exidts, it is OK, because we do not specify the IPC_EXCL
flag. Theser ver function is the one shown in Figure 4.30 that calls our mesg_send
andmesg_recv functions, versonsd which we show shortly.

sumsgcliserv/server_main.c

=

#include "svmsg.h"
voi d server (int, int);

i nt
main(int argc, char **argv)
{

int readid, writeid;

readid - Msgget (MQ_KEY1l, SVMSG_MODE | IPC_CREAT) ;
writeid = Msgget (MQ_KEY2, SVMSG_MODE | IPC_CREAT) ;

© 0ON o h~hwW N

server (readid, witeid);

=
o

exit(0) ;

=
[
-

sumsgcliserv/server_main.c
Figure610 Server mai nfuncti on usi ng Nessage queues.

svmsgcliserv/client_main.c
#include "svmsg.h"

1
2 void client (int, int);
3int

4 main(int argc, char **argv)
51

6 int readid, writeid;
7
8
9

/* assumes server has created the queues */
writeid = Msgget (MQ_KEY1l, 0);
readid = Msgget (MQ_KEYZ, 0);

10 client (readid, witeid);

11 /* now we can del ete the queues */
12 Msgctl (readid, IPC_RMID, NULL);

13 Msgetl (witeid, IPC_RMID, NULL):

14 exit(0);

15 }

svmsgcliserv/client_main.c
Figure611 Ciet mai nfuncti onusi ng nessage queues.

142 Sydem V Messsge Queues Chapter 6

Figure 6.11 shows the mai n function for the client. The two message queues are
opened and our cl i ent function from Figure 429 is called. This function cadls our
nesg- send and mesg_ recv functions, which we show next.

Both the cl i ent and server functions use the message format shown in Ag
ure4.25. Thesetwo functionsalso cdl our nesg- send and mesg_recv functions. The
versons d these functionsthat we showed in Figures4.27 and 428 calledw i t e ad
r ead, which worked with pipes and FIFOs, but we need to recode these two functions
to work with message queues. Figures 6.12 and 6.13 show these new versions. Ndtice
that the argumentsto these two functionsdo not change from the versionsthat celled
wite and read, because the first integer argument can contain either an integer
descriptor (fora pipeor HFO) or an integer messagequeue identifier.

svumsgcliserv [mesg_send.c

1 #include "mesg.h"
2 ssize t
3 mesg_send(int id, struct mymesg *mptr)
4 {
5 return (msgsnd(id, &(mptr->mesg_type), mptr->mesg_len, 0)):
6 } ;
somsgcliserv/mesg_send.c
Figure6.12 mesg_send functionthat wor kswith message queues.
- sumsgcliserv/mesg_recv.c
1 #include "mesg.h"
2 ssize-t
3 mesg_recv(int id, struct mymesg *mptr)
4 {
5 ssize_t n;
6 N = msgrcv(id, & (mptr->mesg_type), MAXMESGDATA, mptr->mesg_type, 0);
7 mptr->mesg_len = nN; /* return #bytes of data */
8 return (n); /* -1 on error, 0 at EOF, else >0 */
91

sumsgcliserv/mesg recv.c
Figure6.13 mesg_recv functionthat wor kswith message queues.

6.8 Multiplexing Messages

Two features are provided by the type field that is associated with each message on a

queue:

1 Thetypefidd can be used to identify the messages, all owing multiple processes

to multiplex messages onto a single queue. One value d the type fidd is usd
for messagesfrom the clients to the server, and a different value that is unique
for each client is used for messagesfrom the server to theclients. Naturdly, the
process ID d the client can be used as the type fidd that is unique for each
client.

Section 68 Multiplexing Messsges 143

2. Thetypefied can beused asapriority fiedld. Thisletsthe receiver read the mes-
sagesin an order other than firgt-in, first-out (FIFO). With pipesand FIFOs, the
data must beread in the order in which it waswritten. With SystemV message
queues, we can read the messagesin any order that isconsistent with the vaues
we associate with the message types. Furthermore, we can cal nsgr cv with the
IrCc_NOWAIT flag to read any messages d a given type from the queue, but
return immediately if no messagesd the specified typeexist.

Exampe: One Queue per Application

Recdl our smple exampled a server processand a single client process. With either
pipesor FIFOs, two |PC channelsare required to exchange datain both directions, since
these types of IPC are unidirectional. With a message queue, a single queue can be
used, having the type of each message signify whether the messageisfrom the client to
thesarver, or viceversa

Consider the next complication, a server with multiple clients. Here we can usea
typed 1, say, to indicate a messagefrom any client to theserver. If theclient passesits
process ID as part o the message, the server can send its messages to the dient pro-
ceses, using the client's process ID as the message type. Each client then specifiesits
process ID as the type argument to nsgr cv. Figure 6.14 shows how a single message
queue can be used to multiplex these messages between multiple clientsand one server.

server

type= 1234 or 9876: s=rver replies) type= 1: dient requests

client 1 client 2

PID 1234 PID 9876

Figure6.14 Multiplexing messagesbetween multiple dientsand one server.

A potential for deadlock always exists when one IPC channd is used by both the dientsand
the server. Clientscan fill up the message queue (in thisexample), preventingthe server from
sendinga reply. Theclientsarethen blocked in msgsnd, asisthe server. One convention that
can detect this deadlock is for the server to always use a nonblocking write to the message
queue.

144 Sydem V Messsge Quelues Chepter 6

We now redo our dient—server example using a single message queue with different
message typesfor messages in each direction. These programs use the convention thet
messageswith atyped 1 arefrom theclient to theserver, and all other messages havea
type equal to the process ID o the client. This client—-server requires that the dient
request contain the client's process|D aong with the pathname, similar to what we did
in Section4.8.

Figure 6.15 shows the server mai n function. The svmsg.h header was shown in
Figure 69. Only one message queue is created, and if it already exids, it is OK. The
same messagequeue identifier is used for both argumentstotheser ver function.

suvmsgmpx1q[server main.c
1 #incl ude "svmsg.h" gmpxiq]

2 void server (int, int):
int

main(int argc, char **argv)
{

oo hw

int nmsqi d;

~

rnsgid = Msgget (MQ_KEY1, SVMSG_MODE | IPC_CREAT);

8 server (msgid, msgid) ; [* same queue for both directions */
9 exit (0);
10 }

sumsgmpx1q[server_main.c
Hgure615 Server mai nfunction.

Theserver function does all the server processing, and is shown in Figure 6.16.
Thisfunction isacombinationd Figure4.23, our FIFO server that read commands cort
sisting d a process ID and a pathname, and Figure 4.30, which used our nesg- send
and mesg- r ecv functions. Noticethat the process ID sent by the client is used as the
message type for all messages sent by the server to the client. Also, thisser ver isan
infiniteloop that iscalled onceand never returns, reading each client request and send-
ing back thereplies. Our server isan iterativeserver, aswediscussed in Section4.9.

Figure 6.17 shows the client mai n function. The client opens the message queue,
which the server must havealready created.

Thecl i ent functionshownin Figure6.18 doesall o the processing for our dient.
This function is a combination d Figure 4.24, which sent a process ID followed by a
pathname, and Figure 4.29, which used our nesg- send and nesg- recv functions.
Note that thetyped messagesrequested fromnesg- r ecv equalsthe processID d the
client.

Our client and server functions both use the nesg- send and nesg- recv
functionsfrom Figures6.12 and 6.13.

Section6.8

Multiplexing Messages 145

Ier.
1 #include "mesg.h" svmsgmpxlqisenerc
2 void
3 server (int readfd, int writefd)
4 {
5 FILE ~*fp;
6 char *ptr;
T pid t pi d;
2] ssize_t n;
9 struct mymesg nesg;
10 for (; ;) {
11 /* read pathname froml PC channel */
12 mesg.mesg_type = 1;
13 if ((n = Mesg_recv(readfd, &mesg)) == 0) {
14 err_msg("pathname m ssi ng");
15 conti nue;
16 }
17 mesg.mesg_datal[n] = \0‘; /* null term nate pathname */
18 if ((ptr = strchr(mesg.mesg_data, ’ ’)) == NULL) {
19 err_msg("bogus request: %s", mesg.mesg_data);
20 cont i nue;
21 }
22 *ptr++ = 0; /* null termnate PID, ptr = pathname */
23 pid = atol (mesg.mesg_data);
24 mesg.mesg_type = Pid; /* for nessages back to client */
25 if ((fp = fopen(ptr, "r")) == NUL) ¢
26 /* error: nust tell client */
27 snprintf (mesg.mesg_data + n, sizeof (mesg.mesg_data) - n,
28 . can't open, %s\n", strerror(errno));
29 mesg.mesg_len = strlen(ptr);
30 memmove (mesg.mesg_data, ptr, mesg.mesg_len);
31 Mesg_send(writefd, &mesg);
32 } else {
33 /* fopen succeeded: copy file to Ipc channel */
34 whi | e (Fgets (mesg.mesg_data, MAXMESCDATA fp) !'= NULL) ¢
35 mesg.mesg_len = strlen(mesg.mesg_data);
36 Mesg_send(writefd, &mesg);
37 }
38 Fcl ose(fp) ;
39 }
40 /* send a 0-length nessage to signify the end */
41 mesg.mesg_len = O;
42 Mesg_send(writefd, &mesg):
43 }
44)

sumsgmpx1q [server.c
Figure 6.16 server function.

146 Sygem V Message Queues Chapter 6

sumsgmpx1gq/client_main.c

1 #include "svmsg.h"
2 void client (int, int);
3int
4 main(int argc, char **argv)
5 {
6 int nsqi d;
7 /* server nust create the queue */
8 nsgi d = Msgget (MQ_KEY1, 0);
9 client(nsqid, msgid); /* same queue for both directions */
10 exit(0);
11) sumsgmpx1q/client_main.c
Fgure6.17 Cieat mai nfuxcti on
somsgmpx1q/client.c
1 #include "mesg.h"
2 void
3 client (int readfd, int writefd)
4 {
5 size-t len;
6 ssize t n;
7 char *ptr;
8 struct mymesg mesg;
9 /* start buffer with pid and a bl ank */
10 snprintf (mesg. mesg_data, NAXMES@ATA "%1d ", (long) getpid()):
11 |l en = strlen(mesg.mesg_data);
12 ptr = mesg.mesg_data + | en;
13 /* read pathname */
14 Fgets (ptr, MAXMESADATA - | en, stdin);
15 | en = strlen(mesg.mesg_data);
16 if (mesg.mesg_data[len - 1] == '\n’)
17 l en--; /* del et e newline fromfgets() */
18 mesg.mesg_len = | en;
19 mesg.mesg_type = 1;
20 /* wite PIDand pathname to | PC channel */
21 Mesg_send(writefd, &mesg);
22 /* read fromz1pc, wite to standard output */
23 mesg.mesg_type = getpid();
24 while ((n = Mesg_recv(readfd, &mesg)) > 0)
25 Write (STDOUT FILENO, mesg.mesg_data, n);
26 } sumsgmpx1g|client.c

Fgure618 client fuxction

Section 6.8

Multiplexing Messages

147

Example: One Queue per Client

We now modify the previous exampleto use one queue for all the client requeststo the
saver and one queue per client for that client's responses. Figure 6.19 shows the

design.

child

srver

fork

contents of file
~—+

IPC—PRIVATE

client 1 r

parent child
server fork server
——
queue g
wel-knownkey L
73
- o
b
%, =
'2'5.)
C
‘oq’ O/“ “
AR IPC_PRIVATE
2
% 9“&9 queue
%,
(s
client 2

Figure6.19 Onequeuepe server and onequeuepea client.

The server's queue has a key that iswell-known to the clients, but each client createsits
own queue with a key o IPC_PRIVATE. Instead df passing its process ID with the
request, each client passestheidentifier o its private queue to the server, and the server
sends its reply to the client's queue. We aso write this server as a concurrent server,

withone f ork per client.

One potential problem with thisdesign occursif a dlient dies, in which case, messages may be
left in its private queue forever (or at least until the kernd reboots ar someone explicitly

deletesthequeue).

Thefollowing headersand functions do not changefrom previousversions.

nmesg . h header (Figure4.25),

svnsg . h header (Figure6.9),

server mai n function (Figure6.15), and
mesg_send function (Figure4.27).

Our client mai n function is shown in Figure 6.20; it has changed dlightly from Fig-
ure6.17. We open the server's well-known queue (MQ_KEY1) and then create our own
queue with a key o | PC- PRI VATE. Thetwo queue identifiers become the arguments
to thecli ent function (Figure 6.21). When the client is done, its private queue is

removed.

148 System V Message Queues Chapter 6

sumsgmpxng/client_main.c

1 #i ncl ude "svmsg.h"
2 void client (int, int);
3int
4 main(int argc, char **argv)
5 {
6 int readid, writeid;
7 /* server nust create its wel | -known queue */
2 writeid = Msgget (MQ_KEY1, 0);
9 /* we create our own private queue */
10 readid = Msgget (IPC_PRIVATE, SVMSG_MODE | IPC_CREAT) :
i1 client (readid, writeid);
12z /* and del ete our private queue */
13 Msgctl (readid, IPC_RMID, NULL);
14 exit(0);
15 } . i
sumsgmpxng/client_main.c
Figure6.20 Cieat nai nfuction
sumsgmpxng/client.c
1 #include "mesg.h"
2 void
3 client(int readid, int writeid)
4 {
5 size-t len;
6 ssize_t n;
7 char *ptr;
8 struct mymesg mesg;
9 [* start buffer with nsgid and a bl ank */
10 snprintf (mesg.mesg_data, MAXMESATA "%d ", readid);
11 |l en = strlen(mesg.mesg_data);
12 ptr = mesg.mesg_data + | en;
13 /* read pathname */
14 Fget s(ptr, MAXMES@ATA - len, stdin);
15 l en = strlen(mesg.mesg data);
16 if (mesg.mesg_datal[len - 1] == ’\n’)
17 len--; / *. del et enewline from fgets() */
18 mesg.mesg_len = | en;
19 mesg.mesg_type = 1:
20 /* wite nsqid and pathname to server's wel | -known queue */
21 Mesg_send(writeid, &mesg);
22 /* read fromour queue, wite to standard out put */
23 while ((n = Mesg_recv(readid, &mesg)) > 0)
24 Write (STDOUT_FILENO, mesg.mesg_data, n);
25 } :
somsgmpaxng|client.c

Figure62l cli ent fuxction

Section 6.8 Multiplexing Messsges 149

10

12-18

25-45

Figure6.21l istheclient function. Thisfunction is nearly identical to Figure6.18,
but instead o passing theclient's process ID as part o the request, the identifier o the
client's private queueis passed instead. The messagetype in the mesg structureisalso
left as1, becausethat isthe type used for messagesin both directions.

Figure 6.23 is the server function. The main change from Figure 6.16 is writing
thisfunctionasan infiniteloop that callsf or k for each client request.

Establish signal handler for SIGCHLD

Since we are spawning a child for each client, we must worry about zombie pro-
ceses. Sections5.9 and 510 d UNPv1 talk about thisin detail. Here weestablisha sig-
nal handler for the SIGCHLD signal, and our function sig_chld (Figure6.22) iscalled
when achild terminates.

Theserver parent blocksin the call to mesg—recv waiting for the next client mes-
sageto arrive.

A child iscreated with fork, and the child triesto open the requested file, sending
back either an error message or the contents o the file. We purposely put the cal to
fopen in thechild, instead o the parent, justin casethefileison aremotefilesystem, in
which case, the opening d thefilecould take some timeif any network problemsoccur.

Our handler for the STGCHLD function isshown in Figure6.22. Thisiscopied from
Figure511 o UNPv1.

somsgmpanq|sigchldwaitpid.c

1 #include "unpipc.h"
2 void

3 sig_chld(int signo)

4 {

5 pid t pi d;

6 int stat;

=1

while ((pid = waitpid(-1, &stat, WNOHANG)) > 0) ;
return;

o

svmsgmpxnq|sigchldwaitpid.c
Figure6.22 SIGCHLD signal handler that callswai t pi d.

Each timeour signal handler iscalled, it callswaitpidinaloop, fetchingthe termi-
nation status d any children that have terminated. Our signal handler then returns.
Thiscan create a problem, because the parent process spends most o itstimeblockedin
a cal to msgrev in the function mesg—recv (Figure6.13). When our signal handler
returns, this call to msgrcv is interrupted. That is, the function returns an error o
El NTR, asdescribed in Section 5.9 of UNPv1.

We must handlethisinterrupted system cdl, and Figure6.24 showsthe new version
d our Mesg_recv wrapper function. We allow an error o El NTR from mesg—recv
(which just callsmsgrcev), and when this happens, we just call mesg—recv again.

150 Sysgem V Message Queues Chapter 6

1 #i ncl ude "mesg.h" somsgmpang [serverc
2 void

3 server(int readid, int writeid)

4 {

5 FILE ~*fp;

6 char *ptr;

7 ssize t n;

8 struct nynesg mesg;

9 voi d sig_chld(int});

10 Signal (SIGCHLD, sig_chld);

11 for (; ;) {

12 /* read pathname fromour wel | -known queue */

13 mesg.mesg_type = 1;

14 if ((n = Mesg_recv(readid, &mesg)) == 0) {

15 err_msg ("pathname m ssi ng");

16 conti nue;

17 }

18 mesg.mesg_data[n] = ’\0’; /* null termnate pathname */

19 if ((ptr = strchr(mesg.mesg_data, ' ’)) == NULL) {

20 err_msg("bogus request: %s", mesg.mesg_data);

21 conti nue;

22 }

23 *ptr++ = 0; /* null termnate nsgid, ptr = pathname */
24 writeid = atoi (mesg.mesg_data);

25 if (Fork() == 0) ({ /* child */

26 if ((fp = fopen(ptr, "r")) == NUL) ¢

27 /* error: nust tell client */

28 snprintf (mesg.mesg_data + N, sizeof (mesg.mesg_data) - N,
29 ": can't open, %s\n", strerror(errno));

30 mesg.mesg_len = strlen(ptr);

31 memmove (mesg.mesg_data, ptr, mesg.mesg_len);

32 Mesg_send(writeid, &mesg);

33 } else {

34 /* fopen succeeded: copy file to client's queue */
35 whi | e (Fgets (mesg.mesg_data, MAXMESCDATA, fp) !'= NULL) ¢
36 mesg.mesg_len = strlen(mesg.mesg _data);

37 Mesg_send(writeid, &mesg);

38 }

39 Fcl ose(fp) ;

40 }

41 /* send a O-1ength nessage to signify the end */

42 mesg.mesg_len = O;

43 Mesg_send(writeid, &mesg);

44 exit(0); /* child terminates */

45 }
46 /* parent just |oops around */

47 }

48 }

svmsgmpxng [server.c

Figure& 23 server fuxction

Section 6.9 Messege Queles with select and poll 151

6.9

10 ssize t sumsgmpxng/mesg_recv.c

11 Mesg_recv(int id, struct mymesg *mptr)

12 {

13 ssize_t n;

14 do {

15 n = mesg_recv (id, mptr);

16 } while (n == -1 && errno == EINTR);
17 if (n==-1)

18 err_sys("mesg_recv error");

19 return (n);

20 }

sumsgmpxng[mesg_recv.c
Figure624 Mesg_recv wrapper functionthat handlesan interrupted systemcall.

Message Queues with sel ect and poll

One problem with System V message queuesisthat they are known by their own iden-
tifiers, and not by descriptors. This means that we cannot use either select or poll
(Chapter6 o UNPv1) with these message queues.

Actudly, oneversiond Unix, IBM's AIX, extendssel ect to handle System V messagequeues
inadditiontodescriptors. But thisis nonportableand worksonly with AlX.

This missing feature is often uncovered when someonewants to write a server that
handles both network connections and IPC connections. Network communications
using either the sockets APl or the XTI APl (UNPv1) use descriptors, alowing either
select Or poll to be used. Pipes and FIFOs aso work with these two functions,
becausethey too areidentified by descriptors.

One solution to this problem is for the server to create a pipe and then spawn a
child, with the child blocking in a call to msgrev. When a messageis ready to be pro-
cessed, msgrev returns, and the child readsthe message from the queue and writesthe
messege to the pipe. The server parent can then select on the pipe, in addition to
some network connections. The downside is that these messages are then processed
threetimes. once when read by the child using msgrcv, again when written to the pipe
by the child, and again when read from the pipe by the parent. To avoid thisextra pro-
cessing, the parent could create a shared memory segment that is shared between itsdlf
and the child, and then use the pipe as a flag between the parent and child (Exer-
csel25).

In Figure 5.14 we showed a solution using Posix message queuesthat did not requirea fork.
We can use a single process with Posix message queues, because they providea notification
capability that generatesa signal when a message arrivesfor an empty queue. SystemV mes-
sage queuesdo not providethis capability, so we must fork achild and have the child block
inacall tomsgrev.

152

Sydem V Messsge Queues Chapter6

6.10

Another missing feature from System V message queues, when compared to net-
work programming, is the inability to peek at a message, something provided with the
MSG—PEEK flag to therecv, recvfrom and recvimsg functions (p. 356 o UNPv1). If
such a facility were provided, then the parent-child scenario just described (to ga
around the sel ect problem) could be made more efficient by having the child specify
the peek flag to msgr cv and jugt write 1 byte to the pipe when a message was ready,
and let the parent read the message.

Message Queue Limits

As we noted in Section 3.8, certain system limits often exist on message queues. Hg
ure 6.25 shows the values for some different implementations. The first column isthe
traditional System V namefor the kernel variablethat containsthislimit.

Name Decription DUnix 4.08 | Solaris 2.6

msgmax | max #bytespa message 8192 2048
msgmnb | Max #byteson any one messagequeue 16384 4096
nmsgMi | max #messagequeues, systemwide 64 50
msgtgl | max #messages svstemwide 40 40

Figure6.25 Typical system limitsfor System V messagequeues.

Many SVR4-derived implementations have additional limits, inherited from their
origina implementation: msgssz is often 8, and thisis the ' segment™ size (in bytes)in
which the messagedataisstored. A messagewith 21 bytesd datawould be stored in3
d these segments, with the fina 3 bytes o the last segment unused. nsgseg isthe
number d these segments that are dlocated, often 1024. Historicdly, this has been
stored in a short integer and must therefore be less than 32768. The total number d
bytes availablefor all messagedatais the product d these two variables, often 8x 1024
bytes.

The intent o this section is to show some typica values, to aid in planning for
portability. When a system runs applications that make heavy use d message queues,
kernel tuning d these (or similar) parametersis normally required (whichwe described
in Section 3.8).

Example

Figure6.26 isa program that determinesthefour limitsshownin Figure 6.25.

- sumsg [limits.c
1 #include "unpipc.h"

2 #define MAX DATA 64*%1024
3 #define MAX_NMESG 4096

4 #define MAX- NI DS 4096
5int max_mesg;

6 struct mymesg {

Section 6.10

Message Queue Limits

153

© 0o

11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
435
50
51
52
53
54

55
56

| ong type;
char data[MAX_DATA];
} mesg;
int
main(int argc, char **argv)
{
int i, 3, nmeqid, gid[MAX NIDS];
/* first try and deternm ne maxi nrumanount of data we can send */
nsqgi d = Msgget (IPC_PRIVATE, SVMSG_MODE | IPC_CREAT) ;
mesg.type = 1;
for (i = MMX-DATA 1 > 0; i -=128) {
if (msgsnd(msqgid, &mesg, i, 0) == 0) {
printf ("maximum anount of data per nessage = %d\n", 1i);
max_mesg = i ;
br eak;
}
if (errno != EINVAL)
err_sys("msgsnd error for length 4", 1i);
}
if (1 ==0)
err_quit("i == 0");
Msgct | (msqi d, IPC_RMID, NULL);
/* see how nany nessages of varying si ze can be put onto a queue */
mesg.type = 1;
for (1 = 8; 1 <= max_mesg; 1 *= 2) {
nsqi d = Msgget (IPC_PRIVATE, SVMSG_MODE | IPC_CREAT);
for (3 = 0; 3 < M- NMESG j++) {
if (msgsnd(msgid, &mesg, i, IPC_NOWAIT) 1= 0) ({
if (errno == EAGAIN)
br eak;
err_sys("msgsnd error, i =%, j = %da", i, 3j):
br eak;
}
}
printf("%d %d-byte nessages were pl aced onto queue,", 3, 1i);
printf(" %4 bytes total\n", i * j);
Msgcetl(nsqi d, IPC_RMID, NULL);
}
/* see how many identifiers we can "open" */
mesg.type = 1;
for (i = 0; i <= MAX NIDS; i++) {
if ((gid[i] = msgget (IPC_PRIVATE, SVMSG_MODE | IPC_CREAT)) == -1) {
printf("sd identifiers open at once\n", 1i);
br eak:
}
}
for (j =0; 3 <i; j++)
Msgctl (gid[j], IPC_RMID, NULL);
exit (0);
}

Figure6.26 Determinethesystem limitson System V messagequeues.

svmsg [limits.c

154 Sydem V Message Queues Chapter 6

14-28

29-44

45-54

Determine maximum message size

To determine the maximum message size, we try to send a message containing
65536 bytes o data, and if thisfails, we try a message containing 65408 bytes d data,
and so on, until thecall to msgsnd succeeds.

How many messages of varying size can be put onto a queue?

Next we start with 8-byte messages and see how many can be placed onto a given
queue. Once we determine this limit, we delete the queue (discarding all these mes
sages) and try again with 16-byte messages. We keep doing so until we pass the maxi-
mum messagesize that was determined in thefirst step. We expect smaller messagesto
encounter a limit on the total number o messages per queue and larger messages to
encounter alimit on the total number o bytes per queue.

How many identifiers can be open at once?

Normally a system limit exists on the maximum number o message queue identi-
fiers that can be open at any time. We determine this by just creating queues until
nsgget fails.

We first run this program under Solaris 2.6 and then Digital Unix 4.0B, and the
resultsconfirm the values shown in Figure6.25.

solaris % limts

maxi mum anount of data per nessage = 2048

40 8-byte nessages were placed onto queue, 320 bytes tota

40 16-byte nessages were placed onto queue, 640 bytes total
40 32-byte nessages were placed onto queue, 1280 bytes tota
40 64-byte messages were placed onto queue, 2560 bytes total
32 128-byte nmessages were placed onto queue, 4096 bytes total
16 256-byte nessages were placed onto queue, 4096 bytes tota
8 512-byte nessages were placed onto queue, 4096 bytes tota
4 1024-byte nmessages were placed onto queue, 4096 bytes total
2 2048-byte nessages were placed onto queue, 4096 bytes tota
50 identifiers open at once

alpha % linmits

maxi mum amount of data per nessage = 8192

40 8-byte nessages were placed onto queue, 320 bytes tota

40 16-byte messages were placed onto queue, 640 bytes tota

40 32-byte messages were placed onto queue, 1280 bytes tota
40 64-byte nessages were placed onto queue, 2560 bytes tota
40 128-byte nessages were placed onto queue, 5120 bytes total
40 256-byte nmessages were placed onto queue, 10240 bytes total
32 512-byte nessages were placed onto queue, 16384 bytes total
16 1024-byte nessages were placed onto queue, 16384 bytes tota
8 2048-byte nessages were placed onto queue, 16384 bytes tota
4 4096- byt e nessages were placed onto queue, 16384 bytes total
2 8192-byte nessages were placed onto queue, 16384 bytes tota
63 identifiers open at once

The reason for the limit o 63 identifiers under Digital Unix, and not the 64 shown in
Figure6.25, isthat oneidentifier isalready being used by asystem daemon.

Chap:er 6 Exercises 155

6.11

Summary

Sydem V message queues are similar to Posix message queues. New applications
should consider using Posix message queues, but lots d existing code uses System V
message queues. Nevertheless, recoding an application to use Posix message queues,
instead d System V message queues, should not be hard. The main feature missing
from Posx message queuesis the ability to read messagesd a specified priority from
thequeue. Neither form of message queue uses red descriptors, makingit hard to use
ether sel ect or poll withamessagequeue.

Exercises

61 Modify Figure 64 to accept a pathname argument o IPC_PRIVATE and createa message
queue with a private key if this is specified. What changes must then be made to the
remaining programsin Section 6.6?

62 Whydidweuseatyped 1in Figure 614 for messagesto theserver?

6.3 What happens in Figure 6.14 if a malicious client sends many messages to the server but
never reads any o the server's replies? What changes with Figure 6.19 for this type of
client?

64 Redo theimplementation of Posix message queues from Section 58 to use System V mes-
sagequeuesinstead d memory-mappedI/O.

Part 3

Synchronization

71

7.2

Mutexes and
Condition Variables

Introduction

This chapter begins our discussion o synchronization: how to synchronize the actions
d multiplethreads or multiple processes. Synchronizationis normally needed to allow
thesharing o data between threads or processes. Mutexesand condition variablesare
thebuilding blocksd synchronization.

Mutexes and condition variables are from the Posix.1 threads standard, and can
aways be used to synchronizethe various threads within a process. Posix alsoalowsa
mutex or condition variableto be used for synchronization between multiple processes,
if the mutex or condition variableis stored in memory that is shared between the pro-
ceses.

Thisisan option for Posix but required by Unix 98 (e.g., the" processshar ed mutex/CV” line
in Figurel.5).

In this chapter, we introduce the classc producer-consumer problem and use
mutexes and condition variables in our solution d this problem. We use multiple
threadsfor thisexample, instead of multiple processes, because having multiple threads
share the common data buffer that isassumed in this problemistrivial, whereas sharing
a common data buffer between multiple processes requires some form d shared mem-
ory (which we do not describe until Part 4). We provide additional solutions to this
problem in Chapter 10 using semaphores.

Mutexes: Locking and Unlocking

A mutex, which stands for mutua excluson, is the most basic form o synchronization.
A mutex isused to protect a critica region, to make certain that only one thread at atime

159

160 Mutexes and Condition Vaidies Chapter7

executes the code within the region (assuming a mutex that is being shared by the
threads) or that only one process at a time executesthe code within the region (assum-
ing a mutex is being shared by the processes). The normal outline o code to protect a
critical regionlookslike

lock_the_mutex{(...);
critical region
unlock_the_mutex(...);

Since only one thread at a time can lock a given mutex, this guarantees that only one
thread at a time can be executing the instructionswithin the critical region.

Posix mutexes are declared as variables with a datatype o pthread_mutex t. f
the mutex variable is statically alocated, we can initialize it to the constant
PTHREAD_MUTEX_INITIALIZER, asin

static pthread_mutex_t |ock = PTHREAD_MUTEX_INITIALIZER;

if we dynamically allocatea mutex (e.g., by callingmalloc) or if weallocatea mutex in
shared memory, we must initializeit at run timeby callingthe pthread_mutex_init
function, asweshow in Section 7.7.

Yau may encounter code that omitsthe initializer because that implementation definesthe ini-
tidizer to be 0 (and statically alocated variablesare automatically initialized to 0). But thisis
incorrect code.

Thefollowingthree functionslock and unlock a mutex:

#include <pthread.h>
int pthread mutex_lock(pthread mutex_t *mptr);
int pthread_mutex_trylock(pthread_mutex_t *mptr) ;

int pthread_mutex_unlock(pthread_mutex_t *mptr) ;

All threereturn: 0 if OK, positiveExxx valueon error

if we try to lock a mutex that is already locked by some other thread,

pthread mutex_lock blocks until the mutex is unlocked.
pthread_mutex_trylock isa nonblockingfunction that returns EBUSY if the mutex
isalready locked.

If multiple threads are blocked waiting for a mutex, which thread runs when the mutex is
unlocked? One d the features added by the 1003.1b-1993 standard is an option for priority
scheduling. We do not cover this area, but suffice it to say that different threads can be
assigned different priorities, and the synchronization functions (mutexes, read—-write locks,
and semaphores) will wake up the highest priority thread that is blocked. Section 55 d
[Butenhof 19971 provides more detailson thePosix.1 realtirne scheduling feature.

Although wetalk o acritical region being protected by a mutex, what isreally pro-
tected is the data being manipulated within the critical region. That is, a mutex is nor-
mally used to protect shared data that is being shared between multiple threads or
between multiple processes.

Section 7.3 Producer-Consumer Problem 161

7.3

Mutex locks are cooperative locks. That is, if the shared data is a linked list (for
example), then all the threads that manipulate thelinked list must obtain the mutex lock
‘before manipulating the list. Nothing can prevent one thread from manipulating the
linked list without first obtaining the mutex.

Producer—Consumer Problem

Oned theclassic problemsin synchronization is called the producer—consumer problem,
dso known as the bounded buffer problem. One or more producers (threads or pro-
ceses) are creating data items that are then processed by one or more consumers
(threads or processes). The data items are passed between the producers and con-
sumersusing sometyped 1PC.

Wedeal with thisproblemall thetimewith Unix pipes. That is, theshell pipeline

grep pattern chapters.* | wec -1

issuch a problem. grep isthesingle producer and wc is the single consumer. A Unix
pipeis used as the form o IPC. The required synchronization between the producer
and consumer is handled by the kernel in the way in which it handles thewrites by
the producer and the reads by the consumer. If the producer gets ahead d the con-
sumer (i.e., the pipefillsup), the kernel puts the producer to sleep when it callswrite,
until moreroomisin the pipe. If theconsumer getsahead d the producer (i.e., the pipe
isempty), the kernel puts the consumer to sleep when it callsread, until somedatais
in thepipe.

Thistype d synchronization isimplicit; that is, the producer and consumer are not
even aware that it is being performed by the kernel. If we were to use a Posix or
System V message queue as the form o IPC between the producer and consumer, the
kerndl would again handl e the synchronization.

When shared memory is being used as the form o IPC between the producer and
theconsumer, however, sometype d explicit synchronization must be performed by the
producersand consumers. We will demonstrate this using a mutex. The example that
weuseisshowninFigure7.1l

! |
| [producer) buf£[0] : o]) :
| thread I
: I ——— buffll]: 1]
'l producer buf f [2]: 2 :
i thread dore i fetch consumer |
I “items PUff[31: - items thread !
| I
[|
:

: thread buf f [nitems-1]:|nitems-1
4 P 1
[.
process,

Figure7.1 Producer -consumer example: multiple producer threads oneconsumer thread.

162 Mutexes and Condition Variables

Chapter 7

We have multiple producer threads and a single consumer thread, in a single pro-
cess. Theinteger array buf f containstheitems being produced and consumed (i.e., the
shared data). For simplicity, the producers just set buf f [0] to O, buf f [1] to 1, and 0
on. Theconsumer just goesthrough thisarray and verifiesthat each entry iscorrect.

In thisfirst example, we concern ourselves only with synchronization between the
multiple producer threads. We do not start the consumer thread until all the producers
aredone. Figure7.2isthemain functionfor our example.

mutex[prodcons2.c

1 #include "unpipc.h"

2 #defi ne MAXN TEMB 1000000

3 #defi ne MAXNTHREADS 100

4 int nitens; /* read-only by producer and consuner */
5 struct {

[pthread_mutex_t nmut ex;

7 int buf f [MAXNITEMS] ;

8 int nput ;

9 int nval ;

10 } shared = {

11 PTHREAD_MUTEX_INITIALIZER

12z };

13 void *produce(void *), *consume(void *);

14 int

15 main(int argc, char **argv)

16 {

17 int i, nthreads, count[MAXNTHREADS] ;

18 pthread_t tid_produce(MAXNTHREADS], tid_consume;
19 if (argc '= 3)
20 err_quit("usage: prodcons2 <#items> <#t hreads>");
21 nitems = min(atoi(argv[1]l), MAXN TEMB);
22 nt hreads = m n(atoi(argvizl), NMAXNTHREADS) ;
23 Set_concurrency (nthreads) ;

24 /* start all the producer threads */
25 for (i = 0; i < nthreads: i++) {
26 count[i] = O;

27 Pthread_create(&tid_produce(i]l, NULL, produce, &countl[il);
28 }
29 /* wait for all the producer threads */
30 for (i =0; i < nthreads; i++) {
31 Pthread_join(tid_producelil, NULL):
32 printf("count [$d] = %d\n", i, count [1]);
33 }

34 /* start, thenwait for the consuner thread */
35 pthread_create(&tid_consume, NULL, consure, NULL);
36 Pthread_join(tid_coasume, NULL);

37 exit(0):;

38 }

Figure7.2 mai nfunction

mutex/prodcons2.c

Section7.3 Producer—Consumer Problem 163

£-12

15-22

23

24-28

29-36

Globals shared between the threads

These variables are shared between the threads. We collect them into a structure
named shar ed, along with the mutex, to reinforce that these variables should be
accessed only when the mutex isheld. nput isthe nextindex to storein thebuf f array,
and nval isthe next value to store (0, 1, 2, and so on). We allocate this structure and
initializethe mutex that is used for synchronization between the producer threads.

We will always try to collect shared data with their synchronization variables (mutex, condi-
tion variable, or semaphore) into a structure as we have done here, as a good programming
technique. In many cases, however, the shared data is dynamically alocated, say as a linked
list. WWe might be able to store the head d thelinked list in a structurewith the synchroniza-
tion variables(aswedid with our mg _hdr structurein Figure5.20), but other shared data (the
restd thelist)isnot in thestructure. Therefore, thissolution isoften not perfect.

Command-linearguments

Thefirst command-lineargument specifiesthe number o itemsfor the producersto
store, and the next argument isthe number o producer threadsto create.

Set concurrency level

set - concurrency isa function o ours that tells the threads system how many
threads we would like to run concurrently. Under Solaris 26, thisis just a cal to
thr_setconcurrency and is required if we want the multiple producer threads to
each havea chanceto execute. If we omit thiscall under Solaris, only the first producer
thread runs. Under Digital Unix 4.0B, our set - concur r ency function does nothing
(becauseall the threads within a process competefor the processor by default).

Unix 98 requiresa function named pthread_setconcurrency that performsthesamefunc-
tion. Thisfunction is needed with threadsimplementationsthat multiplex user threads (what
we create with pthread_create) onto a smaller set d kernel execution entities (e.g., kernel
threads). These are commonly referred to as many-to-few, two-level, or M-to-N implementa-
tions. Section5.6 df [Butenhof 19971 discussesthe rel ationship between user threads and ker-
nd entitiesin moredetail.

Create producer threads

The producer threads are created, and each executes the function pr oduce. We
savethethread ID o each in the tid_produce array. Theargument to each producer
thread isa pointer to an element d thecount array. Wefirst initializethe counter to 0,
and each thread then increments this counter each time it stores an item in the buffer.
We print thisarray o counters when we are done, to see how many items were stored
by each producer thread.

Wait for producer threads, then start consumer thread

We wait for all the producer threads to terminate, also printing each thread's
counter, and only then start a single consumer thread. Thisis how (for the time being)
weavoid any synchronization issues between the producers and consumer. Wewait for
theconsumer to finishand then terminate the process.

Figure7.3showsthepr oduce and consune functionsfor our example.

164

Mutexes and Condition Vaidiles Chapter 7

42-53

59-62

Mmutex [prodcons2.c
39 void * Iv

40 produce(void *arg)

41 {

42 for (; ;) {

43 Pthread_mutex_lock(&shared.mutex) ;

44 if (shared.nput >= nitems) {

45 Pthread mutex_unlock({&shared.mutex) ;
46 return (NULL); /* array is full, we're done */
47 }

48 shared.buff[shared.nput] = shared.nval;
49 shared.nput++;

50 shared.nval++;

51 Pthread_mutex_unlock(&shared.mutex) ;

52 *{((int *) arg) += 1;

54 }

55 void *

56 consune(void *arg)
57 {

58 int i;

59 for (i = 0; i < nitens; i++) {

60 if (shared.buff[i] != i)

61 printf("buff[%d] = %d\n", i, shared.buff[i]);
62 }

63 return (NULL) ;

64 }

mutex|prodcons2.c
Figure73 producer and consumner functions.

Generate the dataitems
Thecritical regionfor the producer consistsd the test for whether weare done

if (shared-nput >= nitens)
followed by thethreelines

shared.buff[shared.nput] = shared.nval;
shared.nput++;
shared.nval++;

We protect this region with a mutex lock, being certain to unlock the mutex when we
are done. Noticethat theincrement d thecount element (through the pointer arg) is
not part d thecritical region becauseeach thread hasits own counter (thecount array
in the mai n function). Therefore, we do not include thisline d code within the region
locked by the mutex, because as a general programming principle, we should aways
strive to minimizetheamount o codethat islocked by a mutex.

Consumer verifies contents of array

The consumer just verifies that each item in the array is correct and prints a mes
sageif an error isfound. Aswesaid earlier, only oneinstanced thisfunctionisrunand

Section 74 Locking versus Waiting 165

74

only after all the producer threads havefinished, so no need existsfor any synchroniza-
tion.

If we run the program just described, specifying one million items and five pro-
ducer threads, we have

solaris % prodcons2 1000000 5

count [0] = 167165
count[1] = 249891
count [2] = 194221
count [3] = 191815
count[4] = 196908

As we mentioned, if we remove the call to set - concurrency under Solaris 2 6
count [0] then becomes1000000 and the remaining countsareall 0.

If we removethe mutex lockingfrom thisexample, it fails, asexpected. That is, the
consumer detects many instances o buff [i | not equal to i . We can also verify that
theremoval d the mutex locking has no effect if only one producer thread isrun.

Locking versus Waiting

We now demonstrate that mutexes are for | ocking and cannot be used for vaiting. We
modify our producer-consumer example from the previous section to start the con-
sumer thread right after all the producer threads have been started. Thislets the con-
sumer thread process the data as it is being generated by the producer threads, unlike
Figure 7.2, in which we did not start the consumer until all the producer threads were
finished. But we must now synchronize the consumer with the producers to make cer-
tain that the consumer processes only data items that have already been stored by the
producers.

Figure 7.4 shows the nai n function. All the lines prior to the declaration d mai n
have not changed from Figure 7.2,

mutex/prodcons3.c

14 int

15 main{int argc, char **argv)

16 {

17 int i, nthreads, count[MAXNTHREADS];

18 pthread_t tid_produce[MAXNTHREADS], tid_consume;

19 if (argc !'= 3)

20 err_qguit ("usage: prodcons3 <#items> <#t hreads>");
21 nitems = min(atoi(argv[1]), MAXNI TEMS);

22 nt hreads = min(atoi(argv([2]), MAXNTHREADS);

23 /* create all producers and one consumer =/

24 Set_concurrency (nthreads + 1);

25 for (i = 0; i < nthreads; i++) {

26 count[i] = O;

27 Pthread _create(&tid _produce[i], NULL, produce, &count[i]l);
28 }

29 Pthread_create (&tid_consume, NULL, consume, NULL);

166 Mutexes and Condition Vaiades Chapter 7
30 /* wait for all producers and the consuner */
31 for (i = 0; i < nthreads; i++) {
32 Pthread_joi n(tid _produce(i], NULL):
33 printf("count [¢8d] = %d\n", i, count [i]);
34 }
35 Pt hr ead- j 0i n(tid_consume, NULL);
36 exit(0);
37 }
mutex/prodcons3.c
Fgure74 mai nfuncti onstat consuner i nmedi at €l y dte starti ng producers.
24 We increase the concurrency level by one, to account for the additional consumer
thread.
25-29 We createthe consumer thread immediately after creating the producer threads.

71

The produce function does not changefrom Figure 7.3.

We show in Figure 7.5 the consume function, which calls our new consume_wait
function.

54 void Mmutex/prodcons3.c
55 consume_wait(int i)
56 {
57 for (; ;) {
58 Pthread_mutex_lock (&shared.mutex) ;
59 if (i < shared.nput) (
60 Pthread_mutex_unlock (&shared.mutex) ;
61 return; /* an itemis ready */
62 }
63 Pthread mutex_unlock (&shared.mutex) ;
64 }
65 1}
66 void *
67 consume(void *arg)
68 {
69 int i;
70 for (i = 0; i < nitens; i++) ¢
71 consume_wait(i);
72 if (shared.buff[i] != 1)
73 printf("buff[%d] = %d\n", i, shared.bufflil);
74 }
75 return (NULL);
76 }
mutex[prodcons3.c

Fgure7.5 consune-wait and consunefuncti ans.

Consumer must wait

The only change to the consume function isto call consume—wai t beforefetching
the next item from the array.

Section 7.5 Condition Vaiddes Wating and Sgnding 167

Wait for producers

57-64 Our consune- wai t function must wait until the producershave generated theith
item. To check thiscondition, the producer's mutex islocked and i iscompared to the
producer's nput index. We must acquire the mutex lock beforelooking at nput , since
thisvariable may bein the processd being updated by oned the producer threads.

The fundamental problem is. what can we do when the desired item is not ready?
All we do in Figure 75 is loop around again, unlocking and locking the mutex each
time. Thisiscalling spinning or polling and isawasted CPU time.

We could also deep for a short amount d time, but we do not know how long to
deep. What is needed is another type o synchronization that lets a thread (or process)
deep until some event occurs.

75 Condition Variables: Waiting and Signaling

A mutex is for locking and a condition variableis for waiting. These are two different
typesd synchronizationand both are needed.

A conditionvariableisavariabled typepthread_cond_t, and thefollowing two
functionsare used with thesevariables.

#include <pthread.h>
int pthread_cond _wait(pthread cond_t *cptr, pthread_mutex_t *mpitr) ;

int pthread_cond_signal (pthread _cond_t *cpir);

| Both return: 0 if OK, posi ti ve Exxx val ue on error

Theterm™dgnd™ in the second function's namedoes not refer to aUnix SIGxxx signal.
We choose what definesthe " condition™ to wait for and be notified of: we test this
inour code.
A mutex is always associated with a condition variable. When we cdl
pthread_cond_wait to wait for some condition to be true, we specify the address o
thecondition variableand theaddressd theassociated mutex.

We explain the use d condition variablesby recoding the example from the previ-
oussection. Figure 7.6 showsthe global declarations.

Collect producer variables and mutex Into a structure

7-13 Thetwo variablesnput and nval are associated with the nut ex, and we put all
threevariablesinto astructurenamed put . Thisstructureisused by the producers.

Collect counter, condition variable,and mutex into a structure

14-20 The next structure, nr eady, contains a counter, a condition variable, and a mutex.
Weinitialize the condition variableto PTHREAD_COND_INITIALIZER.

Themai n function doesnot changefrom Figure7.4.

168 Mutexes and Condition Vaiades Chepter 7
= . mutex/prodcons6.c
1 #include "unpipc.h"
2 #defi ne MAXNI TEMS 1000000
3 #define MAXNTHREADS 100
4 /* gl obals shared by threads */
5 int nitems; /* read-only by producer and consuner */
6 int buf f [MAXNITEMS] ;
7 struct {
8 pthread_mutex_t mut ex;
9 int nput ; /* next index to store */
10 int nval ; /* next value to store */
11 } put = ¢
12 PTHREAD MUTEX INITIALIZER
13 };
14 struct |
15 pthread_mutex_t mutex;
16 pthread_cond_t cond;
17 i nt nr eady; /* nunber ready for consuner */
18)} nready = {
19 PTHREAD_MUTEX_ INITIALIZER, PTHREAD_COND_INITIALIZER
20 };
mutex | prodconsé.c
Fogure76 Goba sfa our producer-consumer, usi ng a condi ti onvariad e.
The produce and consume functionsdo change, and we show themin Figure7.7.
Place next item into array
50-58 We now use the mutex put.mutex to lock the critical section when the producer
placesanew iteminto thearray.
Notify consumer
59-64 We increment the counter nready.nready, which counts the number d itans
ready for the consumer to process. Before doing this increment, if the value d the
counter was O, we call pthread_cond_signal to wake up any threads (e.g., the con+
sumer) that may be waiting for thisvalueto become nonzero. We can now see theinter-
action d the mutex and condition variable associated with this counter. The counter is
shared between the producersand the consumer, so access to it must be when the asso-
ciated mutex (nready.mutex) is locked. The condition variable is used for waiting
and signaling.
Consumer waits for nready.nready to be nonzero
72-76 The consumer just waitsfor the counter nready . nready to be nonzero. Sinceths

counter is shared among all the producers and the consumer, we can test its value only
while we have its associated mutex locked. If, while we have the mutex locked, the
valueis O, wecdl pthread_cond_wait to go to sleep. This does two actions atomi-
cdly:

Section 75 Condition Variables Waiting and Sgnaling 169
6 vo d * mutex/prodconsé.c
47 produceg(voi d *arg)

48 {

49 for (; ;) {

50 Pthread_mutex_lock (&put.mutex) ;

51 if (put.nput >= nitems) {

52 Pthread_mutex_unlock{&put.mutex) ;
53 return (NULL) ; /* array is full, we're done */
54 }

55 buf f [put.nput] = put .nval;

56 put.nput++;

57 put.nval++;

58 Pthread _mutex unlock (&put.mutex) ;

59 Pthread_mutex lock(&nready.mutex) ;

60 if (nready.nready == 0)

61 Pthread_cond_signal (&nready.cond) ;
62 nready .nready++;

63 Pthread_mutex_unlock (&nready.mutex) ;
64 *((int *) arg) += 1;

65 }

66 1}

67 void *

68 consune(voi d *arg)

69 {

70 i nt is

71 for (i = 0; i < nitens; i++) {

72 Pthread_mutex_lock(&nready.mutex) ;

73 whi | e (nready.nready == 0)

74 Pthread_cond_wait (&nready.cond, &nready.mutex);
75 nready.-nready--;

76 Pthread_mutex_unlock (&nready.mutex) ;
77 if (buff il !'= i)

78 printf (*buff[sd] = $a\n", i, buff [i]);
79 }

80 return (NULL) ;

8l }

mutex/prodconsé.c
Figure7.7 produceand consune functions.

1. themutexnr eady .mut ex isunlocked, and

2. thethread isput to sleep until someother thread callspthread_cond_signal
for thisconditionvariable.

Befare returning, pthread_cond_wait locks the mutex nr eady. nut ex. Therefore,
when it returns, and we find the counter nonzer o, we decrement the counter (knowing

170 Mutexes and Condition Vaiades Chapter 7

that we have the mutex locked) and then unlock the mutex. Notice that when
pthread_cond_wait returns, we al ways test the condition again, because spurious
wakeups can occur: a wakeup when the desired conditionisstill not true. Implementa
tionstry to minimizethe number d these spuriouswakeups, but they can still occur.

In generd, the code that signalsa condition variablelookslike thefollowing:

struct {
pthread _mutex_t mut ex;
pthread_cond_t cond;
vhat ever variadd es nai ntai nthe cond tion
} var = { PTHREAD MUTEX_INITIALIZER, PTHREAD_COND_ INITIALIZER, ... };

Pthread_mutex_lock(&var.mutex) ;
s conditiontrue

Pthread cond_signal (&var.cond) ;
Pthread_mutex_unlock (&var.mutex) ;

In our example, the variable that maintains the condition was an integer counter, and
setting the condition was just incrementing the counter. We added the optimization thet
the signal occurred only when the counter went from0 to L.

The code that tests the condition and goes to sleep waiting for the condition to be
true normally lookslike thefollowing:

Pthread_mutex_lock(&var.mutex) ;
whi | e (conditionisfal se)

Pthread_cond_wait (&var.cond, &var.mutex);
nadi fy condi ti on

Pthread_mutex_unlock(&var.mutex) ;

Avoiding Lock Conflicts

In the code fragment just shown, as well asin Figure 7.7, pthread cond_signal is
cdled by the thread that currently holds the mutex lock that is associated with the con
dition variable being signaled. In a worst-case scenario, we could imagine the sygem
immediately scheduling the thread that is signaled; that thread runs and then immedi-
ately stops, because it cannot acquire the mutex. An alternative to our code in Hg
ure 7.7 would be

int dosignal;

Pthread_mutex_lock(&nready.mutex) ;
dosignal = (nready.nready == 0);
nready .nready++;
Pthread_mutex_unlock (&nready.mutex) ;

if (dosignal)
Pthread_cond_signal (&nready.cond}) ;

Herewe do not signal the condition variableuntil we releasethe mutex. Thisisexplic
itly allowed by Posix: the thread calling pthread _cond_signal need not be the cur-
rent owner o the mutex associated with the condition variable. But Posix goes on to

Section 7.6 Condition Vaiddes Timed Wats ad Broadcads 171

7.6

say that if predictable scheduling behavior is required, then the mutex must be locked
by thethread calling pthread_cond_wait.

Condition Variables: Timed Waits and Broadcasts

Normdly, pthread cond _signal awakens one thread that is waiting on the condi-
tion variable. In some instances, a thread knowsthat multiple threads should be awak-
ened, in which case, pthread_cond_broadcast will wake up al threads that are
blocked on the condition variable.

An exampled ascenarioin which multiple threadsshoul d be awakened occurswith the read-
ersand writersproblem that we describein Chapter 8. Whena writer isfinished with alock, it
wantsto awakendl queued readers, because multiplereadersareallowed at thesametime.

An dternate (and safer) way d thinking about a signal versus a broadcast is that you can
aways use a broadcast. A signal is an optimization for the casesin which you know that all
the waiters are properly coded, only one waiter needs to be awakened, and which waiter is
awakened doesnot matter. In all other situations, you must use a broadcast.

$include <pthread.h>
int pthread_cond_broadcast {pthread_cond_t *cptr); \

int pthread_cond_timedwait (pthread _cond_t *cptr, pthread_mutex_t *mptr, ‘
const Struct timespec *abstime) ;

Boath return: 0 if OK, positiveExxx valueon error |

pthread_cond_timedwait lets a thread place a limit on how long it will block.
abstimeisa timespec structure;

struct timespec (
time_t tv_sec; /* seconds */
long tv_nsec; /* nanoseconds */
}i

Thisstructure specifiesthe system timewhen the function must return, even if the con-
dition variable has not been signaled yet. If this timeout occurs, ETIMEDOUT is
returned.

Thistimevalueisan absolute time; it isnot atime delta. That is, abstime isthesystem
time—the number o seconds and nanoseconds past January 1, 1970, UTC—when the
function should return. This differsfrom sel ect, pselect, and poll (Chapter 6 o
UNPv1), which al specify some number o fractional seconds in the future when the
function should return. (sel ect specifies microsecondsin the future, pselect peci-
fies nanoseconds in the future, and poll specifies milliseconds in the future.) The
advantage in using an absolute time, instead d a delta time, is if the function prema-
turdly returns (perhaps because d a caught signal): the function can be cdled again,
without having to changethe contentsd the timespec structure.

172

Mutexes and Condition Vaiades Chapter 7

7.7

Mutexes and Condition Variable Attributes

Our examplesin this chapter & mutexes and condition variables have stored them as
globalsin a processin which they are used for synchronization between the threads
within that processs We have initidized them with the two congants
PTHREAD_MUTEX_INITIALIZER and PTHREAD_COND_INITIALIZER. Mutexes and
condition variablesinitialized in thisfashion assume the default attributes, but wecan
initializethesewith other than the default attributes.

First, a mutex or condition variableis initialized or destroyed with the following
functions:

#i ncl ude <pthread.h>

int pthread_mutex_init(pthread mutex_t *mplr, const pthread_mutexattr_t *atir};
int pthread_mutex_destroy (pthread mutex_t *mplr) ;

int pthread_cond_init (pthread cond_t *cplr, const pthread- condattr-t *attr);

int pthread_cond_destroy(pthread_cond_t *cpir) ;

Al four return: 0if OK, positive Exxx val ueon erar

Considering a mutex, mptr must point to a pthread_mutex_t variable that has bemn
allocated, and pthread_mutex_init initializes that mutex. The
pthread mutexattr_t vaue, pointed to by the second argument to
pthread_mutex_init (attr), specifiestheattributes. If thisargumentisanull pointer,
thedefault attributesare used.

Mutex attributes, a pthread_mutexattr_t datatype, and condition varigble
attributes, a pthread — condattr — tdatatype, areinitialized or destroyed with the fol-
lowing functions:

#include <pthread.h>

int pthread _mutexattr_ init (pthread mutexattr_t =*attr);
int pthread mutexattr_ destroy(pthread_mutexattr_t =*atir);
int pthread_condattr_init (pthread_condattr_t *attr);

int pthread_condattr_destroy(pthread_condattr_t *attr);

Al four return: 0if OK, positive Exxx val ue on errar

Once a mutex attribute or a condition variable attribute has been initialized, sepa
rate functions are cdled to enable or disable certain attributes. For example, ane
attributethat wewill usein later chaptersspecifiesthat the mutex or condition variable
is to be shared between different processes, not just between different threads withina
singleprocess. Thisattributeisfetched or stored with thefollowingfunctions.

Section7.7 Mutexes and Condition Vaidbe Attributes 173

#i ncl ude <pthread.h>

int pthread_mutexattr_getpshared(const pthread- mutexattr-t *attr, int *ovalptr);
int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int value) ;

int pthread_condattr_getpshared(const pthread-condattr-t *attr, int *uvalptr);

int pthread_condattr_setpsharad(pthread_condattr_t *aftr, int value);

Al fou reeun 0if QK positive Exxx val Leon erar

Thetwo g et functionsreturn the current value o thisattributein theinteger pointed to
by valptr and the two set functionsset thecurrent value o this attribute, depending on
value. The value is either PTHREAD-FROCESS-FRIVATE or
PTHREAD-FROCESS-SHARED. The latter is aso referred to as the process-shared
attribute.

Thisfeaureis supported only if the constant - PCBI X- THREAD- PROCESS- SHARADs def i ned
by i ncl udi ng <unistd.h>. It isanoptiona feaurewth Posix.1 it reouired by Uhi x 98 F g
uelh.

The following code fragment shows how to initialize a mutex so that it can be
shared between processes:

pthread_mutex_t *mptr; /* pointer to the nutex i n shared nermory */
pthread- nutexattr-t mattr; /* nutex attribute datatype */

mptr = /* sone val ue that points to shared nenory */ ;
Pthread_mutexattr_init (&mattr);
#ifdef - PCBl X- THREAD- PROCESS- SHARED
Pthread_mutexattr_setpshared(&mattr, PTHREAD- PROCESS- SHARED) ;
#el se
error this inplenentati on does not support - PCH X- THREAD- PROCESS- SHARED
#endif
Pthread_mutex_init (mptr, &mattr);

We declare a pthread_mutexattr_t datatype named mattr, initiaize it to the
default attributes for a mutex, and then set the PTHREAD-FROCESS-SHARED attribute,
which saysthat the mutex is to be shared between processes. pthread_mutex_init
theninitializesthe mutex accordingly. Theamount of shared memory that must beallo-
cated for the mutex issizeof (pthread_mutex_t).

A nearly identical set d statements (replacingthefive charactersmutex with cond)
isusad to set the PTHREAD-FROCESS-SHARED attributefor a condition variablethat is
stored in shared memory for use by multiple processes.

We showed examples d these process-shared mutexes and condition variablesin
Figure5.22.

174

Mutexes and Condition Vaiades Chepter 7

Process Termination While Holding a Lock

7.8

When a mutex is shared between processes, there is always a chance that the process
can terminate (perhapsinvoluntarily) while holding the mutex lock. Thereis noway to
have the system automatically release held locks upon processtermination. Wewill sse
that read—write locks and Posix semaphores share this property. Theonly typed syn
chronizationlocksthat the kernd always cleans up automatically upon processtermina
tion is £fcntl record locks (Chapter 9). When using System V semaphores, the
application chooses whether a semaphorelock isautomatically cleaned up or not by the
kernel upon process termination (the SEM_UNDO feature that we tak about in S
tion11.3).

A thread can aso terminate while holding a mutex lock, by being canceled by
another thread, or by calling pthread_exit. The latter should be d no concern,
becausethethread should know that it holdsa mutex lock if it voluntarily terminateshy
cadlingpthread_exit. Inthe cased cancellation, the thread can ingtall cleanup han
dlersthat are called upon cancellation, which we demonstratein Section8.5. Fata con
ditionsfor athread normally result in termination d the entire process. For example, if
a thread makes an invalid pointer reference, generating Sl GSEGV, this terminates the
entire processif thesignal isnot caught, and we are back to the previouscondition ded-
ing with theterminationd the process.

Even if the system were to release alock automatically when a process terminates,
this may not solve the problem. The lock was protecting a critical region probably
while some data was being updated. If the processterminateswhileit isin the middle
d thiscritical region, what is the state o thedata? A good chance exists that the data
has someincons stencies. for example, a new item may have been only partially entered
into alinked ligt. If the kerndl were to just unlock the mutex when the process termi-
nates, the next processto usethelinked list could find it corrupted.

In some examples, however, having the kerndl clean up a lock (or a counter in the
case d a semaphore) when the processterminatesis OK. For example, a server might
usea System V semaphore (withthe sEM_UNDO feature) to count the number d dients
currently being serviced. Each time a child is forked, it increments this semaphore,
and when the child terminates, it decrements this semaphore. If the child terminates
abnormally, the kernel will still decrement the semaphore. An exampled whenitisOK
for the kerndl to release a lock (not a counter as we jus described) is shown in Sec
tion 9.7. Thedaemon obtainsa write Lak on one d itsdata filesand holdsthislock as
long asit isrunning. Should someonetry to start another copy d the daemon, the rev
copy will terminate when it cannot get the writelock, guaranteeing that only one copy
d the daemon is ever running. But should the daemon terminate abnormally, the ker-
nel releasesthewritelock, allowing another copy to be started.

Summary

Mutexesare used to protect critical regionsd code, so that only onethread at atimeis
executing within the critical region. Sometimesa thread obtains a mutex lock and then

Chapter 7 Exercisess 175

discovers that it needs to wait for some condition to be true. When this happens, the
thread waits on a condition variable. A condition variableis always associated with a
mutex. The pthread_cond_wait function that puts the thread to sleep unlocks the
mutex before putting the thread to sleep and relocks the mutex before waking up the
thread at some later time. The condition variableis signaled by some other thread, and
that signaling threed has the option d waking up one thread
(pt hread- cond- signal) or al threads that are waiting for the condition to be true
(pthread_cond_broadcast).

Mutexes and condition variablescan be statically alocated and stetically initialized.
They can also be dynamically allocated, which requiresthat they be dynamically initial-
ized. Dynamic initialization allows us to specify the process-shared attribute, allowing
the mutex or condition variableto be shared between different processes, assuming that
themutex or condition variableis stored in memory that isshared between the different

pr CESES

Exercises

7.1 Remove the mutex locking from Figure 7.3 and verify that the example failsif more than
one producer thread isrun.

7.2 What happens in Figure 7.2 if the call to thread-joi n for the consumer thread is
removed?

73 Write a program that just cadls pthread mutexattr_init and
pthread_condattr_init in an infinite loop. Watch the memory usage d the process,
using a program such as ps. What happens? Now add the appropriate cdls to
pthread_mutexattr_destroy and pthread_condattr_destroy and verify that no
memory leak occurs.

74 In Figure 7.7, the producer calls pthread- cond- signal only when the counter
nr eady. nready goesfrom 0 to1 To seewhat this optimization does, add a counter each
timept hr ead- cond- si gnal iscaled, and print this counter in the main thread when the
consumer isdone.

8.1

Read-Write Locks

Introduction

A mutex lock blocks @l other threads from enteringwhat we cal a criticd regon. This
critica region usually involves accessing or updating one or more piecesd datathat are
shared between the threads. But sometimes, we can di stingui sh between reading a piece
d dataand modifyinga pieced data

We now describea reed-write lodk and di stingui sh between obtaining the read—-write
lock for reading and obtaining the read—write lock for writing. The rulesfor allocating
theseread—-writelocksare:

1 Any number d threadscan hold a given read-write lock for reading aslong as
no thread hol dsthe read—writelock for writing.

2. A read-write lock can be dlocated for writing only if no thread holds the
read—write lock for reading or writing.

Stated another way, any number d threads can have read accessto a given pieced data
aslong as no thread is reading or modifyingthat pieced data. A pieced data can be
modified only if no other thread is reading thedata.

In some applications, the data is read more often than the data is modified, and
these applications can benefit from using read-write locks instead o mutex locks.
Allowing multiple readersat any given time can provide more concurrency, while still
protectingthedatawhileit is modified from any other readersor writers.

Thissharingd accessto a given resource is aso known as shared—exclusive locking,
because obtaining a read—write lock for reading is cadled a shared lodk, and obtaining a
read-writelock for writingiscalled an exdusvelodk. Other termsfor thistype d prob-
lem (multiple readers and one writer) are the reedas and writers problem and

177

178

Reed-Write Lacks Chapters

8.2

reeders-writer locks. (Inthelast term, "'readers” isintentionally plural, and "writer” is
intentionally singular, emphasi zing the multiple-readers but single-writer natured the
problem.)

A common analogy for a read-writelock is accessing bank accounts. Multiple threads can be
reading the balance d an account at the same time, but as soon as one thread wantsto update
a given balance, that thread must wait for al readers to finish reading that balance, and then
only the updating thread should be allowed to modify the balance. No readers should be
alowedto read the balance until the updateiscomplete.

Thefunctionsthat we describein thischapter are defined by Unix 98 because read-writelocks
werenot part o the 1996 Posix.1 standard. Thesefunctionswere developed by a collectiond
Unix vendorsin 1995 known as the Aspen Group, along with other extensionsthat were nat
defined by Posix.1. A Posix working group (1003.1j) is currently developing a set o Pthreads
extensionsthat includes read—write locks, which will hopefully be the same as described in
thischapter.

Obtaining and Releasing Read-Write Locks

A read-writelock has a datatype d pthread_rwlock_t. If avariabled thistypeis
statically adlocated, it can be initidized by assigning to it the congant
PTHREAD_RWLOCK_INITTIALIZER.

pthread_rwlock_rdlock obtains a read-lock, blocking the calling thread if the
read-write lock is currently held by a writer. pt hread- rw ock- wr | ock obtains a
write-lock, blocking the calling thread if the read—write lock is currently held by ether
another writer or by oneor morereaders. pthread_rwlock_unlock releasesethera
read lock or awritelock.

#include <pthread.h>
int pthread rwlock_rdlock(pthread_rwlock_t *rwptr);
int pthread_rwlock wrlock(pthread_rwlock_t *ruwptr);

int pthread rwlock unlock(pthread rwlock_t *rwpfr) ;

All return: 0 if OK, positive Exxx valueon error

Thefollowing two functionstry to obtain either a read lock or awritelock, but if the
lock cannot be granted, an error d EBUSY is returned instead d putting the cdling
thread to sleep.

#i ncl ude <pthread.h>
int pthread rwlock_tryrdlock(pthread rwlock_t *rwpir);

int pthread rwlock trywrlock(pthread_rwlock_t *rwptr);

Both return: 0 if OK, positiveExxx valueon error

Section i34 Implementation Usng Mutexes and Condition Vaigdes 179

8.3

8.4

Read-Write Lock Attributes

We mentioned that a statically alocated read—writelock can beinitialized by assigning
it the value PTHREAD_RWLOCK_INITIALIZER. These variablescan also be dynami-
cdly initialized by calling pthread_rwlock_init. When athread no longer needsa
read-writelock, it can call thefunctionpthread_rwlock_destroy.

| #i ncl ude <pthread.h>

int pthread_rwlock_init(pthread _rwlock_t *rwptr,
const pthread-rw ockattr-t *attr) ;

int pthread_rwlock_destroy (pthread_rwlock_t *rwptr) ; ‘

| Both return: 0 if OK, positiveExxx valueon error

When initializing a read—write lock, if attr is a null pointer, the default attributesare
used. To assign other than these defaults, the following two functionsare provided:

I #include <pthread.h>
int pthread_rwlockattr init(pthread_rwlockattr_t *atir);
int pthread_rwlockattr_destroy(pthread_rwlockattr_t *attr);

| Both return: 0 if OK, positive Exxx valueonerror |

Once an attribute object o datatype pt hr ead- rwl ockattr-t has been initialized,
separate functionsare called to enable or disable certain attributes. The only attribute
currently defined is PTHREAD- PROCESS- SHARED, which specifiesthat the read-write
lock is to be shared between different processes, not just between different threads
withinasingle process. Thefollowing two functionsfetch and set thisattribute:

#i ncl ude <pthread.h>
int pthread_rwlockattr_getpshared(const pthread- rw ockattr-t =attr, int >oalptr);

int pthread- n ockattr- setpshared(pthread- rwlockattr-t *attr, int value);

[Both return: 0 if OK, positiveExxx valueon error

Thefirg function returnsthe current valued thisattribute in the integer pointed to by
valptr. The second function sets the current value d this attribute to value, which is
ether PTHREAD- PROCESS- PRI VATEOr PTHREAD- PROCESS- SHARED.

Implementation Using Mutexes and Condition Variables

Read-write locks can be implemented using just mutexes and condition variables. In
this section, we examine one possible implementation. Our implementation gives

180 Read-Wite Locks Chapt er 8

preferencetowaiting writers. Thisisnot required and thereare other alter natives.

Thi s ssctianand the renai ni ng setias d this chapter cota nadvanced tad csthet you nay
vant toski pon afird read ng

Qher i npl enent ati onsof read-witelods narit study. Sction7.1.2d [Butenhof 19971 pro
videssaninpl enentati onthet gves griaity towva ting readers and i ncl udes cacd | & i anhant
dirg(which we say nore about shotly). Section B.18.2.3.1d [IEEE 1991 provi des adhe
inpl enentati onthet gves priaitytovatingwitesand dsoincl udescardlaionharding
Ghapt er 14 of [Kleiman, Shah, and Saal der s 19961 provi des ani npl enent at i onthet g ves ri-
ority to v ting witers. The i npl enentati onshown in this section is fromDoug Simd' s
ACE package, http://www.CS.wust| .edu/~schmidt/ACE. html(Adapti ve Communi ca
tias Bwviromnent). Al four i npl enent at i onsuse muit exes and condi ti on vari & es.

pthread rwlock_t Datatype

Figure 81 shows our pthread rwlock.h header, which defines the basc
pthread_rwlock_t datatype and the function prototypesfor the functionsthat oper-
ateon read-writelocks. Normally, thesearefound in the <pthread.h> header.

1 #ifndef pthread_rwlock_h

my_rwlock/pthread_rwlockh

2 #define pthread_rwlock_h

3
4
5
6
7
8

9
10
11

13

14
15
16
17

18

19
20
21
22
23
24
25
26

typedef struct {

pthread_mutex_t rw_mutex; /* basic lock on this struct */
pthread_cond_t rw_condreaders; /* for reader threads waiting */
pthread cond_t rw_condwriters; /* for witer threads waiting */

int
int
int
int

rw_magic: /* for error checking */
rw_nwaitreaders; /* the nunber waiting */
rw_nwaitwriters; /* the nunber waiting */

rw_refcount ;
/* -1 if witer has the lock, else # readers hol ding the | ock */

} pthread_rwlock t;

#define RW_MAGIC 0x19283746

/* foll owi ng nust have same order as elenents in struct above */

#def i ne PTHREAD_RWLOCK_INITIALIZER { PTHREAD_MUTEX_INITIALIZER, \

PTHREAD_COND_INITIALIZER, PTHREAD_COND_INITIALIZER, \
RW_MAGIC, 0, O, O }
typedef int pthread-rw ockattr-t; /* dummy; not supported */
/* function prototypes */
int pthread_rwlock_destroy (pthread_rwlock_t =),
int prthread_rwlock_init (pthread_rwlock_t *, pthread_rwlockattr_t *);
int phthread_rwlock_rdlock (pthread_rwlock_t *);
int prthread_rwlock_tryrdlock (pthread_rwlock_t *);
int phhread_rwlock_trywrlock(pihread_rwlock_t *);
int pthread_rwlock_unlock(pthread_rwlock_t *);
int pthread_rwlock_wrlock (pthread_rwlock_t *);

Section 8.4 Implementation Udng Mutexes and Condition Varisbles 181
27 /* and our wapper functions */
28 void Pthread_rwlock_destroy(pthread_rwlock_t *);
29 void Pthread_rwlock_init (pthread_rwlock_t *, pthread rwlockattr_t *):
30 void Pthread_rwlock_rdlock (pthread_rwlock_t *);
31 int Pthread_rwlock_tryrdlock(pthread_rwlock_t *);
32 int Pthread_rwlock_trywrlock(pthread_rwlock_t *):
33 void Pthread_rwlock_unlock (pthread_rwlock_t *);

34 void Pthread_rwlock_wrlock({pthread_rwlock_t *);

35 #endif /* pthread_rwlock_h */

my_rwlock [pthread_rwlock.h
Figureg81 Definitiond pthread_rwlock_t Celatype

3-13 Our pthread_rwlock_t datatype contains one mutex, two condition variables,
oneflag, and three counters. Wewill seetheused all thesein thefunctionsthat follow.
Whenever we examine or manipulate this structure, we must hold the rw_mutex.
When the structure is successfully initialized, the rw_magic member is set to
RW_MAGIC. This member is then tested by all the functionsto check that the caler is
passing a pointer to an initialized lock, and then set to 0 when thelock isdestroyed.

Notethat rw_refcount alwaysindicatesthe current statusd the read—-writelock:
-1 indicatesawritelock (and only one d these can exig at atime), 0 indicates the lock
isavailable, and a valuegreater than 0 meansthat many read locksare currently held.

14-17 Weadsodefinethestaticinitializer for thisdatatype.

pthread _rwlock_init Function

Our firg function, pthread_rwlock_init, dynamically initializesa read-write lock
andisshowninFigure8.2.

7-8 We do not support assigning attributes with this function, so we check that the
attr argumentisa null pointer.

9-19 We initialize the mutex and two condition variables that are in our structure. All
threecountersare set to 0 and rw_magic isset to thevaue that indicatesthat the struc-
tureisinitialized.

20-25 If the initidlization & the mutex or condition variables fails, we are careful to
dedtroy theinitialized objectsand returnan error.

pthread_rwlock_dest r oy Function

Figure 8.3 shows our pthread rwlock destroy function, which destroys a
read-writelock when the caller isfinished with it.

8-13 Wefirst check that thelock is not in use and then call the appropriate destroy func-
tionsfor the mutex and two condition variables.

182 Read- wite Locks Chapt er 8

my_rwlock [pthread_rwlock_init.c

1 #include "unpipc.h"

2 #i ncl ude "pthread_rwlock.h"

3int

4 pthread_rwlock_init (pthread_rwlock_t *rw, pthread_rwlockattr_t *attr)
5 {

6 int resul t;

7 if (attr = NULL)

8 return (EI NVAL) ; /* not supported */

9 if ((result = pthread_mutex_init (&rw->rw_mutex, NULL)) 1= 0)

10 goto errl;

11 if ((result = pthread_cond_init(&rw->rw_condreaders, NUL)) != 0)
12 goto err2;
13 if ((result = pthread_cond_init(&rw->rw_condwriters, NULL)) !'= 0)
14 goto err3;

15 rw->rw_nwaitreaders = O;

16 rw->rw_nwaitwriters = O;

17 rw->rw_refcount = O;

18 rw->rw_magic = RW_MAGIC;

19 return (0);
20 err3:
21 pthread_cond_destroy (&rw->rw_condreaders) ;
22 err2:
23 pthread mutex destroy(&rw->rw_mutex) ;
24 errl:
25 return (result); /* an errno val ue */
26 } ..

my_rwlock [pthread_rwlock_init.c
Figure8.2 pthread rwlock init function:initializearead-writelock.
- my_rwlock/pthread_rwlock_destroy.c

1 #include "unpipc.h"

2 #include "pthread_rwlock.h"

3int

4 pthread_rwlock_destroy(pthread_rwlock_t *rw)

51

6 if (rw->rw_magic != RW_MAGIC)

7 return (El NVAL) ;

8 if (rw->rw_refcount != 0 ||

9 rw->rw_nwaitreaders != 0 || rw->rw_nwaitwriters != 0)

10 return (EBUSY);

11 pthread mutex_destroy (&rw->rw_mutex) ;

12 pthread_cond_destroy (&rw->rw_condreaders) ;

13 pthread_cond_destroy (&rw->rw_condwriters);

14 rw->rw_magic = 0;
15 return (0);

16 }

my_rwlock [pthread_rwlock_destroy.c
Figure83 pthread rwlock_destroy function:destroy aread-write lock.

Section 8.4 Implementation Usng Mutexes and Condition Vaiebles 183

pthread rwlock_rdlock Function

19-20

Our pthread_rwlock_rdlock functionisshownin Figure8.4.

—— my_rwlock/pthread_rwlock_rdlock.c

1 #include "unpipec.h”

2 #include "pthread rwlock.h"

3int

4 pthread_rwlock_rdlock(pthread rwlock_t *rw)

5 (

6 int resul t;

7 if (rw->rw_magic !'= RW_MAGIC)

8 return (EINVAL);

9 if ((result = pthread mutex_lock(&rw->rw_mutex)) != 0)
10 return (result);

11 /* give preference to waiting witers */
12 whil e (rw->rw_refcount < 0 || rw->rw_nwaitwriters > 0) {
13 rw->rw_nwaitreaders++;

14 result = pthread cond wait (&rw->rw_condreaders, &rw->rw_mutex);
15 rw->rw_nwaitreaders--;

16 if (result 1= 0)

17 br eak;

18 }

19 if (result == 0)

20 rw->rw_refcount++; /* anot her reader has a read | ock */
21 pthread_mutex_unlock(&rw->rw_mutex) ;

22 return (result);

23 }

my_rwlock [pthread _rwlock_rdlock.c
Figure8.4 pthread_rwlock_rdlock function: obtainaread lock.

Whenever we manipulate the pthread_rwlock_t structure, we must lock the
rw_mutex member.

We cannot obtain a read lock if (@) the rw_refcount isless than 0 (meaning a
writer currently holds the lock), or (b) if threads are waiting to obtain a write lock
(rw_nwaitwriters is greater than 0). If either d these conditionsis true, we incre-
ment rw_nwaitreaders and cdl pthread_cond_wait on the rw_condreaders
conditionvariable. We will see shortly that when a read-writelock is unlocked, a check
isfirst made for any waiting writers, and if none exist, then a check is made for any
waiting readers. If readers are waiting, the rw_condreaders condition variable is
broadcast.

Whenwe get theread lock, weincrement rw_refcount . Themutex isreleased.

A problem exiss in this function: if the calling thread blocks in the call to
pthread_cond wait and the thread is then cancded, the thread terminates whileit holds
themutex lock, and the counter rw_nwaitreaders iswrong. The same problem exigtsin our
implementation of pthread_rwlock_wrlock in Figure86 We correct these problemsin
Section 8.5.

184 Resd-Wiite Lacks Chapter 8

pthread_rwlock tryrdlock Function

Figure 85 shows our implementation d pthread_rwlock_tryrdlock, the non-
blocking attempt to obtain a read lock.

my_rwlock/pthread_rwlock_tryrdlock.c

1 #ineclude "unpipc.h"
2 #include "pthread rwlock.h"
3 int
4 pthread rwlock_tryrdlock(pthread_rwlock_t *rw)
5 {
6 int result;
7 if (rw->rw_magic != RW_MAGIC)
8 return (EI NVAL) ;
9 if ((result = pthread_mutex lock(&rw->rw_mutex)) != 0)
10 return (result):
11 if (rw->rw_refcount < 0 || rw->rw_nwaitwriters > 0)
12 result = EBUSY; /* held by a witer or waiting witers */
13 el se
14 rw->rw_refcount++; /* increment count of reader |ocks */
15 pthread_mutex_unlock (&rw—>rw_mutex) ;
16 return (result);
17 }

11-14

my_rwlock/pthread_rwlock_tryrdlock.c
Figure85 pthread_rwlock_tryrdlock function:try toobtaina read lock.

if awriter currently holdsthelock, or if threadsare waiting for a writelock, EBUSY

isreturned. Otherwise, we obtain thelock by incrementingr w- r ef count .

pthread rwlock wrlock Function

Our pthread_rwlock_wrlock function isshownin Figure8.6.

11-17 As long as readers are holding read locks or a writer is holding a write lock
(rw_refcount is not equa to 0), we must block. To do s, we increment
rw_nwaitwiters and cal pthread_cond_wait on the rw_condwrit er s condi-
tion variable. We will see that this condition variable is signaled when the read-write
lock isunlocked and writersarewaiting.

18-19 When we obtain thewritelock, weset r w- r ef count to-1

pthread_rwlock_trywrlock Function

Thenonblocking functionpthread_rwlock_trywrlockisshowninFigure8.7.

11-14

if rw- ref count isnonzero, thelock is currently held by either a writer or one ar

more readers (whichone doesnot matter) and EBUSY isreturned. Otherwise, we obtain
thewritelock and rw- ref count issetto-1L

Section8.4

Implementation Using Mutexes and Condition Variables 185

1
2

<1
4
5
[

7
8

9
10

11
12
13
14
15
16
17
18
19

20
21
22

my_rwlock [pthread_rwlock_wrlock.c

#include "unpipec.h"
#include "pthread rwlock.h"
int

pthread_rwlock_wrlock (pthread_rwlock_t *rw)
{

int resul t;

if (rw->rw_magic != RW_MAGIC)
return (EINVAL) ;

if ((result = pthread mutex_lock(&rw->rw_mutex)) != 0)
return (result);

while (rw->rw_refcount != 0) |
rw->rw_nwaltwriters++;
result = pthread_cond_wait (&rw->rw_condwriters, &rw->rw_mutex);
rw->rw_nwaitwriters--;
if (result 1= 0)
br eak;
}
if (result == 0)
rw->rw_refcount = -1;

pthread_mutex_unlock(&rw->rw_mutex) ;
return (result);

my_rwlock/pthread_rwlock_wrtlock.c
Figwre86 pthread_rwlock_wrlockfuntiat dtanawitel ack

[

o W

o =]

10

11
12
13
14

15
1€
17

my_rwlock [pthread_rwlock_trywrlock.c

#include "unpipc.h"
#include "pthread_rwlock.h"
int

pthread_rwlock_trywrlock(pihread_rwlock_t *rw)
|

int resul t ;

if (rw->rw_magic != RW_MAGIC)
return (EINVAL);

if ((result = pthread_mutex lock(&rw->rw_mutex)) != 0)
return (result);

if (rw->rw_refcount != 0)

result = EBUSY; /* held by either witer or reader(s) */
el se

rw->rw_refcount = -1; /* available, indicate a witer has it */

pthread_mutex_unlock (&rw->rw_mutex) ;
return (result);
}

my_rwlock [pthread_rwlock_trywrlock.c
Agre87 pthread_rwlock_trywrlockfutiar trytodtanawitel ok

186 Reed-Wiite Lacks Chapter 8

pthread_rwlock unlock Function

11-16

17-22

Our final function, pt hr ead- rw ock- unl ock, isshownin Figure88.

my_rwlockpthread_rwlock_unlock.c

1 #include "unpipc.h"

2 #i ncl ude "pthread rwlock.h"

3int

4 pthread_rwlock_unlock(pthread_rwlock_t *rw)

5 {

6 int resul t ;

7 i f (rw->rw_magic != RW_MAGIC)

8 return (EINVAL) ;

9 if ((result = pthread_mutex_lock(&rw->rw_mutex)) != 0)
10 return (result);

11 if (rw->rw_refcount > 0)
12 rw->rw_refcount--; /* rel easi ng a reader */
13 else if (rw->rw_refcount == -1)

14 rw->rw_refcount = O; /* rel easing a reader */

15 el se

16 err_dump("rw_refcount = %d4", rw->rw_refcount);

17 /* give preference to waiting witers over waiting readers */
18 if (rw->rw_nwaitwriters > 0) (
19 if (rw->rw_refcount == 0)
20 result = pthread_cond_signal (&rw->rw_condwriters) ;
21 } else if (rw->rw _nwaitreaders > 0)
22 result = pthread_cond_broadcast (&rw->rw_condreaders) ;
23 pthread_mutex_unlock (&rw~>rw_mutex) ;
24 return (result);

25 }

my_rwlock [pthread_rwlock_unlock.c
Figure88 pthread_rwlock_unlockfunction reeaseareadl ak a awritel ack

If rw_refcount iscurrently greater than 0, then areader isrdeasingaread lock. F
rw_refcount iscurrently-1, thenawriter isreleasingawritelock.

If a writer is waiting, the rw_condwriters condition variable is signaled if the
lock is available (i.e., ff the reference count is 0). We know that only one writer can
obtain thelock, sopthread_cond_signal iscalled towakeup onethread. If no writ-
s ae wating but one or more readers ae wating, we dl
pt hread_cond_broadcast ontherw_condreaders condition variable, becausedl
the waiting readers can obtain a read lock. Notice that we do not grant any additional
read locks as soon as a writer iswaiting; otherwise, astream d continual read requests
could block a waiting writer forever. For thisreason, we need two separatei f teds,
and cannot write

/* give preference to waiting witers over waiting readers =/
if (rw->rw nwaitwriters > 0 && rw->rw_refcount == 0)

result = pthread_cond_signal (&rw->rw_condwriters);
} else if (xrw->rw_nwaitreaders > 0)

result = pthread_cond_broadcast (&rw->rw_condreaders) ;

Section 85 Thread Cancellation 187

8.5

We could also omit the test d rw->rw_refcount, but that can result in cals to
pthread_cond_signal when read locksaretill allocated, which islessefficient.

Thread Cancellation

Wedluded to a problem with Figure 84 if the calling thread gets blocked in the cdll to
pthread_cond_wait and the thread is then canceled. A thread may be canceled by
any other thread in the same process when the other thread callspthread_cancel, a
function whoseonly argument isthe thread ID to cancel.

‘ #include <pthread.h>

int pthread— cancel (pthread t tid) ;

| Returns: 0 if OK, positiveExxx valueon error

Cancdlation can be used, for example, if multiplethreadsare started to work on agiven
task (say finding a record in a database) and thefirst thread that completesthetask then
cancdsthe other tasks. Another example is when multiple threads start on a task and
onethread findsan error, necessitatingthat it and the other threadsstop.

To handle the possbility o being cancded, any thread can install (push) and
remove (pop) cleanup handlers.

#include <pthread.h>
void pthread_cleanup_push (void (*function) (void *), void *arg);

void pthread cleanup_pop(int execute);

Thesehandlersare jud functions that are called

« Wwhen thethread iscanceled (by somethread calling pthread— cancel), or

e when the thread voluntarily terminates (either by calling pthread _exit or
returning from itsthread start function).

Thecleanup handlerscan restoreany state that needs to be restored, such as unlocking
any mutexesor semaphoresthat thethread currently holds.

The function argument to pthread_cleanup_push isthe addressd the function
that iscalled, and arg isitssingleargument. pthread_cleanup_pop awaysremoves
thefunction at the top d the cancdllation cleanup stack d the calling threadsand calls
thefunction if execute isnonzero.

We encounter thread cancellation again with Figure 1531 when we see that a doorsserver is
canceledif the client terminateswhile a procedurecall isin progress.

188 Read-Write Locks Chapter8

Example

An exampleisthe easiest way to demonstrate the problem with our implementationin
the previous section. Figure8.9 showsatimeline of our test program, and Figure810

showsthe program.
main thread threadl thread2
00— pthread_create - - - - - 9 getread lock
sleep(l) sl eep(3)
1-}— pthread create— - - - —= — ==L - - — — —— — _ - » trytoget
pthread_join write lock
Gl
- et
21 2IE' 8 EIEE
ek 8[% &
il B|2 &
v, v ",
3—-l— returns i pthread cancel — — - —— -+ canceled
pthread_join sleep(3)
41
= @
bo
2lE 8 HE
SI5 £ |~
£
5—— *5
Y
A J release lock
6—— returns ¢ - - - - - - - - return
exit
)
time

Figure89 Timelineof program in Figure8.10.

Create two threads

10-13 Two threads are created, the first thread executing the function t hr eadl and the
second executing the function thread2. We sleep for a second after creating the first
thread, to allow it to obtain aread lock.

Wait for threads to terminate

14-23 We wait for the second thread first, and verify that its status iS PTHREAD_ CANCEL.
We then wait for the first thread to terminate and verify that its statusisa null pointer.
We then print the three countersin the pthread_rwlock_t structure and destroy the
lock.

™

Section 8.5

Thread Cancellation 189

©Co~NO ObhW M-

10

12
13

14
15
16
17
18
19

20
21
22
23

24
25

26
27
28

30
31
32
33
34
35
36

37
38

40
41
42
43
44
45
46

my_rwlock_cancel [testcancel.c

#include "unpipc.h"
#include "pthread_rwleock.h"
pthread_rwlock_t rw ock = PTHREAD_RWLOCK_INITIALIZER;
pthread_t tidl, tidz;
void *threadl(void *), *thread2(void *);
int
main(int argc, char **argv)
{
voi d *st at us;
Set - concurrency(2) ;
Pthread_create(&tidl, NULL, threadl, NUL);
sleep(1); /* let threadl() get the lock */
Pthread_create(&tid2, NULL, thread2, NULL);
Pthread_join(tid2, &status);
if (status != PTHREAD_CANCELED)
printf ("thread2 status = %p\n", status):
Pthread_join(tidl, &status);
if (status !'= NULL)
printf ("threadl status = %p\n", status);
printf ("rw_refcount = %d, rw_nwaitreaders = %d, rw_nwaitwriters = %d\n",
rwlock.rw_refcount, rwlock.rw_nwaitreaders,
rwlock.rw _nwaitwriters);
Pthread_rwlock_destroy(&rwlock) ;
exit(0);
}
void *
threadl (void *arg)
{
Prhread_rwlock_rdlock (&rwlock)
printf ("threadl() got a read lock\n");
sleep(3): /* let thread2 bl ock i n pthread_rwlock_wrlock()
pthread_cancel (tid2);
sleep(3) ;
Prhread_rwlock_unlock (&rwlock) ;
return (NULL) ;
}
void *
thread2 (void *arg)
{
printf ("thread2() trying to obtain a wite lock\n");
Prhread_rwlock_wrlock (&rwlock) ;
printf ("thread2() got a wite lock\n"); /* shoul d not get here */
sleep(l);
prhread_rwlock_unlock (&rwlock);
return (NULL) :
}

my_rwlock_cancel [testcancel.c
Figure8.10 Tet program toshow thread cancellation.

*/

190

Reed-\Write Locks Chapter 8

26- 36

37-46

t hr eadl function

Thisthread obtainsa read lock and then sleepsfor 3 seconds. This pause allowsthe
other thread to cal pthread_rwlock_wrlock and block in its cal to
pthread_cond_wait, because a write lock cannot be granted while a read lock is
active. Thefirst thread then callspthread cancel to cancel the second thread, deeps
another 3 seconds, releasesitsread lock, and terminates.

t hr ead2 function

The second thread tries to obtain a write lock (which it cannot get, since the firs
thread has already obtained a read lock). The remainder o this function should never
beexecuted.

If we run this program using the functionsfrom the previous section, we get

solaris % testcancel
threadl () got a read | ock
thread20 trying to obtain a wite | ock

and we never get back a shell prompt. The program is hung. The following steps have
occurred:

1. The second thread calls pthread_rwlock_wrlock (Figure8.6), which blocks
initscall topthread_cond_wait.

2. Thesleep (3) inthefirst thread returns, and pthread_cancel iscaled.

The second thread is canceled (it is terminated). When a thread is canceled
while it is blocked in a condition variable wait, the mutex is reacquired before
calling thefirst cancellation cleanup handler. (We have not installed any cance-
lation cleanup handlers yet, but the mutex isstill reacquired beforethethread is
canceled.) Therefore, when the second thread is canceled, it holds the mutex
lock for the read-writelock, and the value d rw_nwaitwriters in Figure86
has been incremented.

4. Thefirst thread callspthread_rwlock_unlock, butit blocksforeverinitscal
to pthread_mutex_lock (Figure8.8), because the mutex is still locked by the
thread that was canceled.

If weremovethecall to pthread— rwlock— unlockin our threadl| function, the main
thread will print

rw_refcount = 1, rw_nwaitreaders = 0, rw_nwaitwriters =1
pthread_rwlock destroy error: Device busy

The first counter is1 because we removed the call to pthread_rwlock _unlock, but
the final counter is 1 because that is the counter that was incremented by the second
thread beforeit was canceled.

The correction for this problemissimple. First we add two linesd code (preceded
by a plus sign) to our pthread_rwlock_rdlock function in Figure 84 that bracket
thecall topthread_cond_wait:

Section 85 Threed Cancdlaion 191

8-9

8-9

rw->rw_nwaitreaders++;
+ pthread_cleanup_push({rwlock_cancelrdwait, (void *) rw);

result = pthread_cond wait (&rw->rw_condreaders, &rw->rw_mutex);
+ pthread_cleanup_pop(0);

rw->rw_nwaliltreaders--;

Thefirst new line of code establishesa cleanup handler (our r w ock- cancel r dwai t
function), and its single argument will be the pointer rw If pthread cond_wait
returns, our second new linedf code removesthecleanup handler. Thesingleargument
d 0 to pthread_cleanup_pop specifies that the handler is not called. If this argu-
ment is nonzero, thecleanup handler isfirst called and then removed.

If the thread is canceled whileitisblocked initscall to pt hr ead- cond- wai t, no
return is made from this function. Instead, the cleanup handlers are called (after reac-
quiringthe associated mutex, which we mentioned in step 3earlier).

Figure 8.11 shows our rwlock_cancelrdwait function, which is our cleanup
handlerfor pthread_rwlock_rdlock.

my_rwlock_cancel [pthread_rwlock_rdlock.c

3 static void

4 rwlock_cancelrdwait (void *arg)

5 {

6 pthread rwlock_t *rw;

7 rw = arg;

8 rw->rw_nwaitreaders--;

9 pthread_mutex_unlock (&rw->rw_mutex) ;
10 }

my_rwlock_cancel [pthread_rwlock_rdlock.c
Fgure81l rwlock_cancelrdwait function cl eanup hand er fa read | ock.

The counter rw_nwait r eader s isdecremented and the mutex isunlocked. Thisis
the "date” that was established before the call to pt hr ead- cond- wai t that must be
restored after the thread iscanceled.

Our fix toour pthread_rwlock_wrlock functionin Figure8.6issimilar. Firstwe
add two new linesaround the call to pthread_cond_wait:

rw->rw_nwaitwriters++;
+ pthread_cleanup_push(rwlock_cancelwrwait, (void *) rw);

result = pthread_cond wait (&xw->rw_condwriters, &rw->rw_mutex);
+ pthread_cleanup_pop(0) ;
rw->rw_nwaitwriters--;

Figure8.12 showsour rwlock_cancelwrwait function, the cleanup handler for a
writelock request.

Thecounter rw_nwait wri t er s isdecremented and the mutex isunlocked.

192 Reed-Wiite Lodks Chepter8
my_rwlock_cancel [pthread_rwlock_wrlock.c
3 static void Y - /P - -
4 rwlock_cancelwrwait (void *arg)
5 {
6 pthread rwlock_t *rw;
7 rw = arg;
8 rw->rw_nwaitwriters--;
9 pthread_mutex_unlock (&rw->rw_mutex) ;
10 }
my_rwlock_cancel [pthread_rwlock_wrlock.c
Figure8.12 rwlock_cancelwrwait function: cl eanup handl er far witelock
If we run our test program from Figure 8.10 with these new functions, the results
are now correct.
solaris % testcancel
threadl() got a read | ock
thread20 trying to obtain a wite | ock
rw_refcount = 0, rw_nwaitreaders = 0, rw_nwaitwriters = 0
The three counts are correct, threadl returns from its cal to
pthread_rwlock_unlock, and pthread_rwlock_destroy does not return EBUSY.
This section has been an overviewd thread cancdlation There are nore dgals; see fo
exanpl e, Sction5.3d [Butenhof 19971
8.6 Summary

Read-writelocks can provide more concurrency than a plain mutex lock when the data
being protected is read more often than it is written. The read-write lock functions
defined by Unix 98, which iswhat we have described in this chapter, or something smi-
lar, should appear in a future Posix standard. These functionsare similar to the mutex
functionsfrom Chapter 7.

Read-writelocks can be implemented easily using just mutexesand condition vari-
ables, and we have shown a sample implementation. Our implementation gives prior-
ity to waiting writers, but someimplementations give priority to waiting readers.

Threads may be canceled while they are blocked ina call to pthread_cond_wait,
and our implementation allowed us to see this occur. We provided a fix for this prob-
lem, using cancellationcleanup handlers.

Exercises

81 Maodfy our implementationin Section84 to give preferenceto reedersingead d writers.

82 Mesaure the paformance d our implementation in Section 8.4 versus a vendor-provided
implementation.

9.1

Record Locking

Introduction

The read-writelocks described in the previous chapter are allocated in memory asvari-
ablesd datatype pthread _rwlock_t. These variablescan be within asingle process
when the read-write locks are shared among the threads within that process (the
default), or within shared memory when the read-write locks are shared among the
processesthat share that memory (and assuming that the PTHREAD PROCESS_ SHARED
attributeisspecified when the read-writelock isinitialized).

This chapter describes an extended type o read-write lock that can be used by
related or unrelated processes to share the reading and writing o afile. Thefilethat is
being locked is referenced through its descriptor, and the function that performs the
lockingis fentl. Thesetypes d locksare normally maintained within the kernel, and
the owner o alock isidentified by its process ID. This means that these locksare for
locking between different processes and not for locking between the different threads
within one process.

In this chapter, we introduce our sequence-number-increment example. Consider
the following scenario, which comes from the Unix print spoolers (the BD 1pr com-
mand and the System V 1p command). The process that adds a job to the print queue
(tobeprinted at a later time by another process) must assign a unique sequence number
to each print job. The process ID, which is unique while the process is running, cannot
be used as the sequence number, becausea print job can exist long enough for a given
process ID to be reused. A given process can also add multiple print jobsto a queue,
and each job needs a unique number. The technique used by the print spoolersis to
have afilefor each printer that contains the next sequence number to beused. Thefile
is just a singleline containing the sequence number in ASCII. Each process that needs
to assign a sequence number goes through three steps:

193

194

Reoord Locking Chapter 9

20

1. it readsthe sequencenumber filg,
2. it usesthe number, and
3. itincrementsthe number and writesit back.

The problem is that in the time a single process takes to execute these three steps,
another process can perform the same three steps. Chaos can result, as we will seein
someexamplesthat follow.

What we have just described isa mutual exclusion problem. It could be solved using mutexes
from Chapter 7 or with the read-writelocksfrom Chapter 8. What differs with this problem,
however, is that we assume the processes are unrel ated, which makes using these techniques
harder. We could have the unrelated processes share memory (as we describein Part 4) ad
then use sometype d synchronizationvariablein that shared memory, but for unrelated pro-
cesses, fentl record locking is often easier to use. Another factor is that the problem we
described with the line printer spoolers predates the availability o mutexes, condition vari-
ables, and read-write locks by many years. Record locking was added to Unix in the early
1980s, beforeshared memory and threads.

What is needed is for a processto be able to set alock to say that no other process
can accessthefile until thefirst processisdone. Figure9.2 showsasimpleprogram that
does these three steps. Thefunctionsny- | ock and my- unl ock are caled to lock the
file at the beginning and unlock the file when the process is done with the sequence
number. Wewill show numerous implementationsd thesetwo functions.

We print the name by which the programisbeing run(ar gv [01) each timearound
the loop when we print the sequence number, because we use this mai n function with
various versonsd our locking functions, and we want to seewhich versionis printing
the sequencenumber.

Printing a process|D requiresthat we cast thevariabled typepid_t toalong and then print
it withthe%1d format string. The problemisthat thepid_t typeisan integer type, but wedo
not know itssize (int or long), so we must assume the largest. If we assumed an i nt and
used aformat stringof 4, but thetypewasactualy along, thecodewould bewrong.

To show theresultswhen lockingis not used, thefunctionsshownin Figure9.1 pro-
videnolockingat all.

1 void lock[locknone.c
2 my_lock(int fd)
3 (
4 return;
51
6 void
7 my_unlock(int fd)
8 {
9 return;
10 }
lock[locknone.c

Figure9l Functionsthat do nolocking.

Section 9.1 Introduction 195

lock [lockmain.c

1 #include "unpipc.h"

2 #define SEQFI LE "segno" /* filenane */

3 void my_lock(int), my_unlock(int);

4 int

5 main(int argc, char **argv)

6 {

7 int fd;

8 | ong i, seqno;

9 pid_t pi d;

10 ssize t n;

11 char line[MAXLINE + 1];

12 pid = getpid():

13 fa = pen(SECFI LE, o _RDWR, H LE- MIE) ;

14 for (i = 0; i < 20; i++) {

15 ny- | ock (f @) ; /* lock the file */

16 Lseek (fd, Q., SEEK- SET); /* rewind before read */

17 n = Read(fd, |line, NAXLINE);

18 line[n] = ‘\0’; /* null termnate for sscanf */
19 Nn = sscanf(line, "%1ld\n", &sedgno);
20 printf (*$s: pid = $1d, seg# = %$1ld\n", argv[0], (long) pid, seqno);
21 seqno++; /* increment sequence nunber */
22 snprintf(line, sizeof(line), "%ld\n", seqno) ;

23 Lseek (fd, ., SEEK- SET); /* rewind before wite */
24 Write(fd, line, strlen(line));

25 ny- unl ock (£4) ; /* unlock the file */

26 }

27 exit(0):;

28 }

lock [lockmain.c

H gurea2 nai nfunctionfor file lockingexanpl e.

If the ssquencenumber in thefileisinitialized to one, and a single copy o thepro-
gamisrun, weget thefollowing output:

solaris % locknone

locknone: pid = 15491, seg# = 1
locknone: pid = 15491, seg# = 2
locknone: pid = 15491, seg# = 3
locknone: pid = 15491, seg# = 4
locknone: pid = 15491, seg# = 5
locknone: pid = 15491, segk = 6
locknone: pid = 15491, seqg# = 7
locknone: pid = 15491, segk = 8
locknone: pid = 15491, seg# = 9
locknone: pid = 15491, seg# = 10
locknone: pid = 15491, seg# = 11

196

Record Locking

Chapter 9

| ocknone:
| ocknone:
| ocknone:
| ocknone:
| ocknone:
| ocknone:
| ocknone:
| ocknone:
| ocknone:

pid

pid =

pid
pid

pid =

pid
pi d
pid
pid

15491,
15491,
15491,
15491,
15491,
15491,
15491,
15491,
15491,

segh
seqgk
seg#
seqg#
seg#
seqg#
seqg#
seq#
seqg#

12
13
14
15
16
17
18
19
20

Noticethat thenai n function (FigureQ. 2 isin afilenamed | ockmai n. ¢, but when we com-
pileand link edit thiswith the functionsthat perform no locking (Figure9.1), we call theexe
cutable | ocknone. This is because we will provide other implementations o the two
functionsmy._lock and ny- unl ock that use other locking techniques, so we name the exe
cutablebasad on thetypeof lockingthat weuse.

When the sequencenumber isagain initialized to one, and the program isrun twice
in the background, we havethefollowing output:

solaris % locknone & locknone &
solaris % | ocknone: pi

| ocknone:
| ocknone:
| ocknone:
| ocknone:
| ocknone:
| ocknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:
locknone:

pid =

pid

pid =

pi d
pi d
pid
pid
pid
pid
pid

pid =

pid
pid
pid
pid
pi d

pid =

pi d
pid
pid
pid
pid
pid
pid
pid
pid
pid

pid =

pid

pid =

pi d
pi d
pid

15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15498,
15499,
15499,
15499,
15499,
15499,
15499,
15499,
15499,
15499,
15499,
15499,
15499,
15499,
15499,

d = 15498,
seqg# = 2
segh = 3
segk = 4
seg# = 5
segk = 6
segh = 7
seg# = 8
seg# = 9
segh = 10
segh = 11
segh = 12
seg¥ = 13
segh = 14
segh = 15
segk = 16
seg# = 17
segh = 18
segh = 19
seqgit = 20
segk = 1
seg# = 2
seg# = 3
seqgh = 4
seg# = 5
seg# = 6
segk = 7
segh = 8
segh = 9
seg# = 10
segh = 11
segk = 12
segk = 13
seqg# = 14

segf = 1

everything through thislineis OK
thisiswrong when kernel switches processes

Section 9.2 Record Locking versus FHle Locking 197

9.2

I ocknone: pid = 15499, seg# = 15
| ocknone: pid = 15499, seqg# = 16
| ocknone: pid = 15499, seg# = 17
| ocknone: pid = 15499, seg# = 18
| ocknone: pid = 15499, seg# = 19
I ocknone: pid = 15499, seqg# = 20

The firg thing we noticeis that the shel's prompt is output before thefirst line o out-
put from the program. ThisisOK and is common when running programsin the back-
ground.

Thefirst 20 lines of output are OK and are generated by thefirst instanced thepro-
gram (process ID 15498). But a problem occurs with the first line of output from the
other instanced the program (processiD 15499): it prints a sequence number o 1, indi-
cating that it probably was started first by the kerndl, it read the sequence number file
(withavaued 1), and the kernel then switched to the other process. This processonly
ran again when the other process terminated, and it continued executingwith the value
d 1that it had read before the kernel switched processes. Thisis not what we want.
Each processreads, increments, and writes the sequence number file 20 times (thereare
exactly 40 lines of output), so theending value o the sequence number should be40.

What we need is some way to allow a process to prevent other processes from
accessing the sequence number file while the three steps are being performed. Thet is,
we need these three steps to be performed as an atomic operation with regard to other
processes. Another way to look at this problem is that the lines of code between the
calstony- | ock and ny- unl ock in Figure9.2 form acritical region, as wedescribed in
Chapter 7.

When we run two instances of the program in the background as just shown, the
output is nondeterministic. There is no guarantee that each time we run the two pro-
grams we get the same output. Thisis OK if the three steps listed earlier are handled
atomically with regard to other processes, generating an ending valued 40. But thisis
not OK if the three steps are not handled atomically, often generating an ending value
lessthan 40, which is an error. For example, we do not care whether thefirst process
increments the sequence number from 1 to 20, followed by the second process incre-
menting it from 21 to 40, or whether each process runs just long enough to increment
the sequence number by two (thefirst process would print 1 and 2, then the next pro-
cesswould print 3and 4, and so on).

Being nondeterministic does not makeit incorrect. Whether the three steps are per-
formed atomically is what makes the program correct or incorrect. Being nondetermin-
istic, however, usually makesdebugging these types o programs harder.

Record Locking versus File Locking

The Unix kernel has no notion whatsoever of recordswithin afile. Any interpretation
d recordsis up to the applications that read and write thefile. Nevertheless, the term
record locking is used to describe the locking features that are provided. But the applica-
tion specifies a byte range within thefileto lock or unlock. Whether this byte range has
any relationshipto one or morelogical recordswithin thefileisleft to the application.

198 Reocod Locking Chepter9

Posix record locking defines one special byte range—a starting offset o 0 (the
beginning o thefile) and a length d 0—to specify the entirefile. Our remainingdis-
cussion concerns record locking, with filelocking just one special case.

Thetermgranularity isused to denotethesized theobject that can belocked. With
Posix record locking, thisgranularity isa single byte. Normally the smaller the granu-
larity, the greater the number o simultaneoususers allowed. For example, assumefive
processesaccessa given file at about the sametime, threereadersand two writers. Alo
assume that all five are accessing different recordsin the file and that each d thefive
requeststakes about the sameamount o time, say 1 second. If thelockingisdoneat the
file level (the coarsest granularity possible), then all three readers can access ther
records at the same time, but both writers must wait until the readersare done. Then
one writer can modify its record, followed by the other writer. The total time will be
about 3 seconds. (We are ignoring lots o details in these timing assumptions, d
course) But if the locking granularity is the record (the finest granularity possble),
then all five accesses can proceed simultaneoudly, since all five are working on different
records. Thetotal timewould then be only 1 second.

Berkeley-derived implementations of Unix supportfile locking to lock or unlock an entirefile,
with no capabilitiesto lock or unlock arangedf byteswithin thefile. Thisis provided by the
f 1 ock function.

History

Various techniqueshave been employed for file and record locking under Unix over the
years. Early programssuch as UUCP and line printer daemons used various tricks that
exploited characteristics d the filesystem implementation. (Wedescribe three o these
filesystem techniquesin Section 9.8) These are dow, however, and better techniques
were needed for the databasesystemsthat were beingimplementedin the early 1980s

Thefirst true file and record locking was added to Verson 7 by John Bass in 1980,
adding a new system call named | ocki ng. This provided mandatory record locking
and was picked up by many versonsd System III and Xenix. (We describethe differ-
ences between mandatory and advisory locking, and between record locking and file
lockinglater in thischapter.)

4.2BSD provided file locking (not record locking) with its f | ock function in 1983,
The 1984 /usr/group Standard (one d the predecessors to X/Open) defined the
I ockf function, which provided only exclusive locks (write locks), not shared locks
(readlocks).

In 1984, System V Redease 2 (SVR2) provided advisory record locking through the
fentl function. Thel ockf function wasalso provided, but it was just alibrary func-
tion that called fcntl. (Many current systems still provide this implementation d
| ockf using fcntl.) In 1986, System V Redease 3 (SVR3) added mandatory record
lockingtof cnt 1 using theset-group-1D bit, aswe describein Section95.

The 1988 Posix.1 standard standardized advisory file and record locking with the
fcnt 1 function, and that is what we describe in this chapter. The X/Open Portability
Guide Issue 3 (XPG3, dated 1988) also specifiesthat record locking is to be provided
throughthef cnt 1 function.

Section 9.3 Posix fentl Record Locking 199

9.3

Posix fentl Record Locking

The Posix interfacefor record lockingisthef cnt 1 function.

#i ncl ude <fcntl.h>

int fcntl(inc fd, int emd, ... /> struct flock *arg */);

Ret urns: dependson cmd if CK, 1 on error

Threevaluesd thecmd argument are used with record locking. Thesethreecommands
requirethat the third argument, arg, bea pointer toan f | ock structure:

struct flock {

short 1_type; /* F_RDLCK, F_WRLCK, F_UNLCK */
short 1- whence; /* SEEK- SET, SEEK_CUR, SEEK- END */
off-t 1-start; /* relative starting offset in bytes */
off-t 1_len; /* #bytes; 0 means until end-of-file */
pid_t | qid; /* PID returned by F- GETLK */
};
Thethreecommandsare:

F- SETLK Obtain (an1_type o either F_RDLCK or F_WRLCK) or release(an1_type
of F- UNLCK) thelock described by thef | ock structurepointed to by arg.

If the lock cannot be granted to the process, the function returnsimmedi-
ately (it does not block) with an error & EACCES or EAGAI N.

F_SETLKW Thiscommand is similar to the previous command; however, if the lock
cannot be granted to the process, the thread blocks until the lock can be
granted. (Thew at theend d thiscommand namemeans* wait."")

F- GETLK Examine thelock pointed to by arg to see whether an existing lock would
prevent this new lock from being granted. If no lock currently exists that
would prevent the new lock from being granted, the 1_type member d
thef | ock structure pointed to by arg isset to F- UNLCK. Otherwise, infor-
mation about the existing lock, including the process ID o the process
holding thelock, isreturned in the f | ock structure pointed to by arg (i.e.,
the contentsdf the structureare overwritten by thisfunction).

Redizethat issuingan F- GETLK followed by an F- SETLK isnot an atomic
operation. That is, if we cdl F- GETLK and it setsthe 1_type member to
F_UNLCK on return, this does not guaranteethat an immediateissued the
F_SETLK Will return success. Ancther process could run between these
two callsand obtain thelock that wewant.

The reason that the F- GETLK command is provided is to return informa-
tion about alock when F_SETLK returnsan error, allowing us to determine
who hasthe region locked, and how (aread lock or awritelock). But even
in thisscenario, we must be prepared for the F_GETLK command to return

200 Recad Lodking Chapter9

that the region is unlocked, because the region can be unlocked between
theF_SETLK and F_GETLK commands.

Thef | ock structuredescribesthetyped lock (aread lock or a writelock) and the
byteranged thefiletolock. Aswith 1seek, thestarting byteoffset is specified asard-
ative offset (the 1- start member) and how to interpret that relative offset (the
1_whence member) as

SEEK- SET: 1- start relativetothebeginningd thefile,
SEEK- QUR 1_st art relativeto thecurrent byte offset o thefile, and
SEEK- END:. 1_st art relativetotheend o thefile.

The1_len member specifiesthe number o consecutive bytes starting at that offset. A
length o 0 means ""from the starting offset to the largest possible value d the file off-
" Therefore, two waysto lock theentirefileare

1. specifyan1- whenced SEEK- SET, an1l_start d O,andan1_lend 0;0r

2. podtion thefileto the beginningusing | seek and then specify an 1- whence d
SEEK- OUR anl_start d 0 andanil_lend 0.

The first o these two ways is most common, since it requires a single function call
(fentl) instead d twofunctioncals. (SeeExercise9.10 als0.)

A lock can be for reading or writing, and at most, one type of lock (read or write)
can exig for any byted afile. Furthermore, a given byte can have multipleread locks
but only asinglewritelock. Thiscorrespondsto the read-writelocks that we described
in the previous chapter. Naturally an error occursif we request a read lock when the
descriptor was not opened for reading, or request a writelock when the descriptor wes
not opened for writing.

All locks associated with afile for a given process are removed when a descriptor
for that fileis closed by that process, or when the process holding the descriptor termi-
nates. Locksare not inherited by a child acrossaf or k.

Thiscleanup of existing locksby the kernel when the process terminatesis provided only by
fcnt | record locking and asan option with System V semaphor es. The other synchronization
techniques that we describe (mutexes, condition variables, read-write locks, and Posix
semaphores)do not perform this cleanup on process termination. We talked about thisat the
end of Section 7.7.

Record locking should not be used with the standard I/0 library, because o the
internal buffering performed by the library. When a file is being locked, r ead and
wr i t e should be used with thefileto avoid problems.

Example

We now return to our examplefrom Figure 9.2 and recode the two functionsny- | ock
and my- unl ock from Figure 9.1 to use Posx record locking. We show these functions
in Figure9.3.

Section 9.3 Poax fent 1 Reood Locking 201

. - lock[lockfentl.c
1 #include "unpipc.h"
2 void
3 my_lock(int £d)
4 {
5 struct flock | ock;
6 lock.1l_type = F_WRLCK;
7 lock.l_whence = SEEK- SET:
8 lock.1_start = O;
9 lock.1l_len = O; /* wite lock entire file */
10 Fentl (fd, F_SETLKW, &lock);
11 }
12 void
13 my_unlock(int £d4)
14 {
15 struct flock | ock;
16 lock.1l_type = F_UNLCK;
17 lock.1l_whence = SEEK- SET;
18 lock.l_start = 0;
19 lock.1l_len = 0; /* unlock entire file */
20 Fentl(fd, F_SETLK, &lock);
21)

lock/lockfentl.c

Figure9.3 Posixf cnt 1 locking.

Notice that we must specify a write lock, to guarantee only one process a a time
updates the sequence number. (See Exercise 94.) We aso specify a command d
F_SETLKW when obtaining the lock, because if the lock is not available, we want to
block until it isavailable.

Given the definition of thef | ock sructureshown earlier, we might think we could initialize
our gructurein ny- | ock as

static struct flock lock = { F WRLCK, SHEK-SET, 0, 0, 0 };
but thisiswrong. Posix definesonly thereguired membersthat must bein astructure such as

flock. Implementationscan arrange these membersin any order, and can also add imple-
mentationspecific members

We do not show the output, but it appears correct. Redize that running our smple
program from Figure 9.2 does not et us state that our program works. If the output is
wrong, as we have seen, we can say that our program is not correct, but running two
copiesd the program, each looping 20 timesis not an adequatetest. The kernel could
run one program that updates the sequence number 20 times, and then run the other
program that updates the sequence number another 20 times. If no switch occurs
between the two processes, we might never see the error. A better test is to run the
functionsfrom Figure 9.3 with a mai n function that increments the sequence number
say, ten thousand times, without printing the value each time through the loop. If we
initidize the sequence number to 1 and run 20 copiesd this program at the sametime,
then we expect theending value d the sequence number file to be 200,001

202 Reood Lodking Chapter9

Example: Simpler Macros

In Figure 9.3, to request or release a lock takes sx lines d code. We must alocatea
structure, fill in the structure, and then cal fcnt| . We can smplify our programs by
defining thefollowingseven macros, which arefrom Section12.3 o APUE:

#def i ne

#def i ne

#def i ne

#def i ne

#def i ne

#def i ne

#def i ne

read lock(£fd, of fset, whence, len) \

lock_reg(fd, F- SETLK F ROLCK, of fset, whence, |en)
readw_lock(fd, of fset, whence, len) \

lock_reg(fd, F_SETLKW, FRDLCK, offset, whence, |en)
write_lock(£d, of fset, whence, len) \

lock_reg(fd, F- SETLK, F-WRLCK of fset, whence, |en)
writew_lock(fd, of fset, whence, len) \

lock_reg(fd, F_SETLKW, F- WRLCK offset, whence, |en)
un_lock (£4, of fset, whence, len) \
lock_reg(fd, F- SETLK, F_UNLCK, of fset, whence, len)

is read_lockable(fd, of fset, whence, len) \

lock_test (fd, F- ROLK, of fset, whence, 1len)
is_write_lockable(fd, offset, whence, len) \

-lock_test (£d, F- WRLCK of fset, whence, |en)

These macros use our | ock- reg and | ock- t est functions, which are shown in Hg-
ures 94 and 95. When using these macros, we need not worry about the structurear
thefunction that is actually called. The firs three arguments to these macros are pur-
posdy the sameasthefirst threeargumentsto thel seek function.

We also define two wrapper functions, Lock- reg and Lock- t est, which termi-
nate with an error upon an fcnt | error, aong with seven macros whose names dso
begin with a capital letter that cdl thesetwo wrapper functions.

Using these macros, our ny- | ock and ny- unl ock functions from Figure 9.3
become

#def i ne my_lock (£d4) (Writew_lock(fd, 0, SEEK- SET, 0))
#def i ne my_unlock(fd) (Un_lock(fd, 0, SEEK- SET, 0))

=

O©CO~NO b wnN

R
R o

lib/lock_reg.c

#include "unpipc.h®
int
lock_reg(int fd, int cnd. int type, off-t offset, int whence, off-t |en)
{
struct flock | ock;
lock.1l_type = type; /* F_RDLCK, F_WRLCK, F_UNLCK */
|l ock-1- start = offset: /* byte offset, relative to 1_whence */
lock.1l_whence = whence; /* SEEK- SET, SEEK- AR SEEK- END */
lock.1l_len = | en; /* #bytes (0 neans to ECF) */
return (fcntl(fd, cnd, &lock)): /* -1 upon error */

lib[lock_reg.c
Fogue94 Gll fent 1todta na rdesseal ok

Section 94 Advisory Locking 203

lib[lock_test.c

1 #include "unpipc.h"

2 pid_t

3 lock_test(int fd, int type, off-t offset, int whence, off-t |en)

4 {

5 struct flock | ock;

6 lock.1l_type = type; /* F_RDLCK Or F_WRLCK */

7 lock.1l_start = of fset; /* byte offset, relative to 1-whence */

8 lock.1l_whence = whence; /* SEEK- SET, SEEK- QR SHEEK- BND */

9 lock.1l_len = |l en; /* #bytes (0 neans to ECF) */

10 if (fcntl(fd, FGETLK, & ock) == -1)

11 return (-1); /* unexpected error */

12 if (lock.1l_type == F_UNLCK)

13 return (0); /* fal se, region not |ocked by another proc */
14 return (lock.l_pid); /* true, return positive PID of |ock owner */

15}

lib/lock_test.c
Figure95 GlI fcnt 1totet al ock.

94 Advisory Locking

Posix record locking is called advisory locking. This means the kernel maintains correct
knowledge o all files that have been locked by each process, but it does not prevent a
process from writing to afile that is read-locked by another process. Similarly, the ker-
nel does not prevent a process from reading from afile that is write-locked by another
process. A processcan ignorean advisory lock and writeto afilethat is read-locked, or
reed from afile that is write-locked, assuming the process has adequate permissions to
reed or writethefile.

Advisory locksarefinefor cooperating processes. The programming o daemonsused
by network programming is an example d cooperative processes—the programs that
access a shared resource, such as the sequence number file, are al under control d the
sygem administrator. Aslong as the actual file containing the sequence number is not
writableby any process, some random process cannot writeto thefilewhileit islocked.

Example: Noncooperating Processes

We can demonstratethat Posx record locking is advisory by running two instances o
our sequence number program: oneinstance(lockfent1) usesthe functionsfrom Fg-
ure 9.3 and locks the file before incrementing the sequence number, and the other
(I ocknone) usesthefunctionsfrom Figure9.1 that perform no locking.

solaris % | ockfcnt|l & locknone &

lockfcntl: pid = 18816, seqg# = 1
lockfcntl: pid = 18816, seq#t = 2
lockfcntl: pid = 18816, seqg# = 3

204 Rexad Locking Chapter 9

9.5

lockfcntl: pid = 18816, segi
lockfcntl: pid = 18816, segi
lockfcntl: pid = 18816, segqi
lockfcntl: pid = 18816, seqg#
lockfcntl: pid = 18816, seg#
lockfcntl: pid = 18816, seq# = 9

lockfcntl: pid = 18816, seqg# = 10

lockfcntl: pid = 18816, seg# = 11

| ocknone: pid = 18817, seg# = 11 switch processes; error
| ocknone: pid 18817, segqg# = 12

| ocknone: pid 18817, seg# = 13

| ocknone: pid 18817, segqgi = 14

| ocknone: pid 18817, segqgi# = 15

| ocknone: pid 18817, seqg# = 16

| ocknone: pid 18817, seqg# = 17

| ocknone: pid = 18817, seqg# = 18

lockfcntl: pid = 18816, seg# = 12 switch processes; error
lockfentl: pid = 18816, seg# = 13

lockfcntl: pid = 18816, seqg# = 14

1
o~ 0N

lockfcntl: pid = 18816, seqg# = 15
lockfcntl: pid = 18816, seqg# = 16
lockfcntl: pid = 18816, seqg# = 17
lockfcntl: pid = 18816, seqg# = 18
lockfcntl: pid = 18816, seqg# = 19

lockfcntl: pid = 18816, seqg# = 20
| ocknone: pid = 18817, seg# 19 switch processes; error
I ocknone: pid = 18817, seqg# = 20

| ocknone: pid = 18817, seqg# = 21
| ocknone: pid = 18817, seqg# = 22
| ocknone: pid = 18817, seqg# = 23
| ocknone: pid = 18817, seqg# = 24

| ocknone: pid

18817, seg# = 25
| ocknone: pid 18817, seqg# = 26
| ocknone: pid 18817, seqgH = 27
| ocknone: pid = 18817, seqg# = 28
I ocknone: pid = 18817, seg# = 29
I ocknone: pid = 18817, seg# = 30

Our | ockfcnt | program runsfirst, but whileit is performing the three stepsto incre
ment the sequence number from 11 to 12 (and whileit holdsthe lock on the entirefile),
the kernel switches processes and our 1ocknone program runs. This new program
readsthe sequencenumber valued 11 beforeour | ockf cnt | programwritesit bedk 1o
thefile. Theadvisory record lock held by thel ockf cnt| program has no effect on our
locknone program.

Mandatory Locking

Some systems provide another type d record locking, called mandatory locking. With a
mandatory lock, the kernel checks every read and wri t e request to verify that the
operation does not interfere with a lock held by a process. For a normal blocking
descriptor, ther ead or wri t e that conflicts with a mandatory lock puts the processio

Section 95 Mandatory Locking 205

deep until thelock isreleased. With a nonblocking descriptor, issuingaread orwite
that conflictswith a mandatory lock causesan error return of EAGAIN.

Posix.1 and Unix 98 define only advisory locking. Many implementations derived from
System V, however, provideboth advisory and mandatory locking. Mandatory record locking
wasintroduced with System V Release3.

To enable mandatory locking for a particular file,

o thegroup-executebit must bedf, and
¢ theset-group-1D bit must beon.

Notethat having the set-user-1D bit on for afilewithout having the user-executebit on
aso makes no sense, and similarly for the set-group-1D bit and the group-execute bit.
Therefore, mandatory locking was added in this way, without affecting any existing
user software. New system callswere not required.

On systemsthat support mandatory record locking, the 1s command looksfor this
specid combination d bits and printsan 1 or L to indicate that mandatory locking is
enabled for that file Similarly, the chnod command accepts a specification o 1 to
enable mandatory lockingfor afile.

Example

On afirst glance, using mandatory locking should solve the problem d an uncooperat-
ing process, snceany r eads or wi t es by the uncooperating process on thelocked file
will block that processuntil thelock isreleased. Unfortunately, the timing problemsare
morecomplex, aswe can easily demonstrate.

To change our exampleusingf cnt 1 to use mandatory locking, all wedoischange
the permission bitsd theseqgno file. Wealso run adifferent verson o thenmai n func-
tion that takes the f or loop limit from the first command-line argument (instead
using the constant 20) and does not call pri nt f each timearound theloop.

solaris % cat > seqno first initialize value to 1

1

“D Control-D isour terminal end-of-filecharacter
solaris % 1s -1 segno

~rwW-r--r—- 1 rstevens otherl 2 Oct 7 11:24 segno

solaris % chmod +1 segno enable mandatory locking

solaris % 1s -1 segno

-rw-r-lr-- 1 rstevens otherl 2 Oct 7 11:24 seqno

We now start two programs in the background: 1loopfcent | usesfcnt| locking, and
loopnone does no locking. We specify a command-line argument o 10,000, whichis
the number 0 times that each program reads, increments, and writes the sequence

number.
solaris % loopfcnt| 10000 & loopnone 10000 & start both programsin the background
solaris % wait wait for both background jobs to finish
solaris % cat segno and look at the sequence number

14378 error: should be 20,001

206 Reocord Locking Chepter 9

Each time we run these two programs, the ending sequence number is normaly
between 14,000 and 16,000. If the locking worked as desired, the ending value would
awaysbe20,001. Toseewheretheerror occurs, we need to draw atimelinedf theindi-
vidua steps, which weshow in Figure9.6.

| ockfcntl locknone

open()

lock file
read() -1
increment
write() -2
unlockfile
lock file
read() 952

‘ ‘ paxoo] I
ONOO A WN R

kernel switch —
10. open()
11. read() blocks

PaPO]

« kernel switch
13. increment
14. write() 53
L— 15. unlockfile

kernel switch —
17. read() -3
18. increment
19. write() >4
20. read() 24
21. increment
22. write() 95
23. read() =5
« kerndl switch
——25. lockfile
— 26. read() -5
R 27. increment
!t 28 write()—6
L 29. unlock file
—— 30. lock file
5 3L read()—>6
:75- 32. increment
& 33 write()>7
L—34. unlockfile

kernel switch+
36. increment
37. write() 26

Figure96 Timelined loopfcntl and loopnone programs.

We assume that the 1ocopfentl program starts first and executesthe first eight Seps
shown in thefigure. The kernel then switches processeswhile 1oopfentl hasarecord
lock on the sequence number file. 1oopnone isthen started, but its first read blocks

Section 9.6 Priorities d Readas and Writas 207

9.6

because thefile from which it is reading has an outstanding mandatory lock owned by
another process. We assume that the kernel switches back to the first program and it
executessteps 13, 14, and 15. Thisbehavior isthe typethat we expect: the kernel blocks
the read from the uncooperating process, because thefileit istryingto read islocked
by another process.

The kernel then switches to the locknone program and it executes steps 17
through 23. The reads and writes are alowed, because the first program unlocked
thefilein step 15. The problem, however, appears when the program reads the value
d 5in step 23 and the kernel then switchesto the other process. It obtainsthelock and
ds readsthevalued 5. This processincrementsthe value twice, storinga vaued 7,
before the next processruns in step 36. But the second processwritesa valued 6 to the
file whichiswrong.

What we see in this example is that mandatory locking prevents a process from
reading afile that islocked (step11), but this does not solve the problem. The problem
isthat the processon the left isallowed to update thefile (steps25 through 34) whilethe
processon theright isin the middle d its three steps to update the sequence number
(steps 23, 36, and 37). If multiple processes are updating a file, all the processes must
cooperateusingsomeform d locking. One rogue processcan create havoc.

Priorities of Readers and Writers

In our implementation o read-write locks in Section 84, we gave priority to waiting
writersover waiting readers. We now look at somedetailsd the solution to the readers
and writer problem provided by f cntl record locking. What wewant tolook at is how
pending lock requests are handled when a region is aready locked, something that is
not specified by Posix.

Example: Additional Read Locks While a Write Lock Is Pending

Thefirst question we ask is if a resource is read-locked with a write lock queued, is
another read lock allowed? Some solutions to the readers and writers problem do not
dlow another reader if awriter isalready waiting, becauseif new read requestsare con-
tinually dlowed, a possibility exigtsthat the already pendingwriterequest will never be
alowed.

To test how fentl record locking handles this scenario, we write a test program
that obtains a read lock on an entire file and then forks two children. The first child
tries to obtain a write lock (and will block, since the parent holds a read lock on the
entirefile), followed in time by the second child, which triesto obtain aread lock. Fg-
ure9.7 showsatimelined theserequests, and Figure9.8 isour test program.

Parent opens file and obtains read lock

The parent opens the file and obtains a read lock on the entirefile. Noticethat we
cdl read—lock (which does not block but returns an error if the lock cannot be
granted) and not readw_lock (which can wait), because we expect this lock to be
granted immediately. We also print a message with the current time (our gf_time
functionfrom p. 404 o UNPv1) when thelock isgranted.

208 Reood Loding Chapter 9

parent child#1 child#2
00— get read lock
1—— try writelock
|
] I
[¥} I
2—|— = |
] \
) |
3—|— ﬁ :_M getsread lock
= g
15
4—t- %8
S »
Y i &
5—— releaselock e =
I =
! &
|
6—— 1
|
|} \
-t getswritelodk releaselock
o [
8-+ E 'E
9—|— releaselock
\
time

Figure9.7 Determinewhether ancother read lock isallowed whileawritelock ispending.

f or k first child

9-19 Thefirst child iscreated and it sleepsfor 1 second and then blocks whilewaiting for
awritelock d theentirefile. When the writelock is granted, thisfirst child holds the
lock for 2 seconds, releasesthelock, and terminates.

f or k second child

20-30 Thesecond child iscreated, and it deegpsfor 3 secondsto allow thefirst child's write
lock to be pending, and then triesto obtain a read lock o the entirefile. We can tell by
the time on the message printed when readw_1lock returns whether this read lok is
queued or granted immediately. Thelock isheld for 4 secondsand released.

Parent holds read lock for 5 seconds

31-35 The parent holds the read lock for 5 seconds, rel easesthelock, and terminates.

Sectior 9.6 Priorities d Reedas and Writers 209
- - lock/test2.c

1 #i ncl ude "unpi pc.h"

2int

3 main(int argc, char **argv)

4 {

5 int fd;

6 fd = Open{"testl.data", O_RDWR | O_CREAT, FlLE- MDE);

7 Read_lock(fd, 0, SEEK- SET, 0); /* parent read | ocks entire file */

printf("%s: parent has read lock\n", Gf_time());

9 if (Fork() == 0) (

10 /* first child */

11 sl eep(1);

12 printf("%s: first child tries to obtain wite lock\n", Gf_time());
13 Writew_lock(fd, 0, SEEK- SET, 0); /* this shoul d bl ock */

14 printf("%s: first child obtains wite lock\n", Gf_time());

15 sleep(2);

16 Un_lock (fd, 0, SEEK- SET, 0);

17 printf(*ss: first child rel eases wite lock\n", Gf_time());

18 exit(0):;

19 }

20 if (Fork() == O) {
21 /* second child */

22 sleep(3);
23 printf("%s: second child tries to obtain read lock\n", G _time());
24 Readw_lock (fd, 0, SEEK- SET, 0);

25 printf(*%$s: second child obtai ns read lock\n", Gf _time());
26 sleep(4);

27 Un_lock(fd, 0, SEEK- SET, 0);
28 printf("%s: second child rel eases read lock\n", Gf_time());
29 exit(0):;

30 }

31 /* parent */

32 sleep(5);
33 Un_lock(fd, 0, SEEK- SET, 0);

34 printf("%s: parent rel eases read lock\n", Gf_time());

35 exit(0);

36]

lock/test2.c
Figure9.8 Determinewhether another read lock isallowed whilea writelock ispending.

The time line shown in Figure 9.7 is what we see under Solaris 2.6, Digital Unix

40B, and BSD/OS 3.1 That is, the read lock requested by the second child is granted
eventhough awritelock isalready pending from thefirst child. Thisallowsfor poten-
tid starvation d write locks as long as read locks are continually issued. Hereis the
output with some blank linesadded between the mgjor timeeventsfor readability:

210 Rexod Loding Chapter9
al pha % test2
16:32:29.674453: parent has read | ock
16:32:30.709197: first child tries to obtain wite |ock
16:32:32.725810: second child tries to obtain read | ock
16:32:32.728739: second child obtains read | ock
16:32:34.722282: parent releases read | ock
16:32:36.729738: second child rel eases read | ock
16:32:36.735597: first child obtains wite |ock
16:32:38.736938: first child rel eases wite | ock
Example: Do Pending Writers Have a Priority Over Pending Readers?
The next question we ask is do pending writers have a priority over pending readers?
Somesolutionsto the readersand writers problem build in this priority.
Figure99isour test programand Figure9.10 isa timelined our test program.
Parent creates file and obtains write lock
6-8 The parent creates thefile and obtainsawritelock on theentirefile.
f or k and create first child
9-19 Thefirst child iscreated, and it dleepsfor 1 second and then requestsa writelock i
the entirefile. We know this will block, since the parent has a write lock on the entire
file and holds this lock for 5 seconds, but we want this request queued when the par-
ent'slock isreleased.
f or k and create second child
20-30 Thesecond child iscreated, and it slegpsfor 3 secondsand then requestsa reed lok

ontheentirefile. Thistoo will be queued when the parent releasesitswritelock.

Under both Solaris 2.6 and Digital Unix 4.0B, we see that thefirst child's writelodk
is granted before the second child's read lock, as we show in Figure 910. But this
doesn't tell usthat writelocks have a priority over read locks, because the reason coud
be that the kerndl grants the lock requests in HFO order, regardless whether they ae
read locksor writelocks. To verify this, we creste another test program nearly identical
to Figure 99, but with the read lock request occurring at time 1 and the write lodk
request occurring at time 3. These two programs show that Solaris and Digital Unix
handle lock requestsin a FIFO order, regardlessd thetype d lock request. Thesetwo
programsal so show that BSD/OS 3.1 gives priority to read requests.

Section 9.6 Priorities of Readers and Writers 211

1 #include "unpipc.h" IockﬁestS.c
2int
3 main(int argc, char **argv)
4 {
5 int fd;
6 fd = open{"testl.data", O_RDWR | O_CREAT, Fl LE- MIE);
7 Write_lock{fd, 0, SEHEK- SET, 0); /* parent wite | ocks entire file »/
8 printf("%$s: parent has wite lock\n", Gf_time());
9 if (Fork() == 0) {
10 [* first child */
11 sleep(l) ;
12 printf("%s: first child tries to obtain wite lock\n*, Gf_time());
13 Writew_lock(fd, 0, SEEK- SET, 0); /* this shoul d bl ock */
14 printf("$s: first child obtains wite lock\n", Gf_time());
15 sleep(2);
16 Un_lock(fd, 0, SEEK- SET, 0):
17 printf(*ss: first child rel eases wite lock\n", Gf_time());
18 exit(0);
19 }
20 if (Fork() == 0) {
21 /* second child */
22 sl eep(3) ;
23 printf("%s: second child tries to obtain read lock\n", Gf_time());
24 Readw_lock(fd, 0, SHEK- SET, 0);
25 printf("%s: second child obtai ns read lock\n", Gf_time());
26 sleep(4):
27 Un_lock{(fd, 0, SEHEK- SET, 0);
28 printf("%s: second child rel eases read lock\n", Gf time());
29 exit(0);
30 }
31 /* parent */
32 sleep(5) ;
33 Un_lock{fd, 0, SEEK- SET, 0);
34 printf{"$s: parent rel eases wite lock\n", Gf_time());
35 exit(0);
36 }
lock[test3.c

Figure9.9 Tet whether writershaveapriority over readers.

212

Record Locking

Chapter 9

11—
i
time

parent child #1 child#2
get writelock
try writelock
|
- 1
& I
o 1
s 5
i
2 T
-] Y\ op try read lock
S =
= éihc |
I'e I
13 1
| [KY)
18
Y Y A
releaselock getswritelock é s
Big
3l £
<|& i
v ;
releaselock getsread lock
="
g
=
<
c
=
\
releaselock

Figure910 Tegt whether writershavea priority over readers.

Hereisthe output from Figure 9.9, from which we constructed the timelinein Fig-
ure9.10:

alpha
16:

16:
16:

16:
16:

16:
16:

16:

34:
34:
34:

34:
34:

34:
34:

34:

% test3

02.
03.
05.

07.
07.

09.
09.

13.

810285:
848166:
861082:

858393:
865222:

865987:
872823:

873822:

parent has write lock
first child tries to obtain write lock
second child tries to obtain read lock

parent releases write lock
first child obtains write lock

first child releases write lock
second child obtains read lock

second child releases read lock

Sedtion 9.7 Starting Only One Copy & a Daemon 213

9.7

8-17

H8-21

Starting Only One Copy of a Daemon

A common use for record locking is to make certain that only one copy d a program
(suchasa daemon) isrunning at atime. The codefragment shown in Figure9.11 would
be executed when a daemon starts.

= lock[onedaemon.c
1 #include "unpipc.h”

2 #define PATH- Pl CFl LE "pidfile"

3int

4 main(int argc, char **argv)

5 {

6 int pi df d;

7 char 1i Nne [MAXLINE] ;

8 /* open the PIDfile, create if nonexistent */

9 pi df d = open(PATH_PIDFILE, O_RDWR | O_CREAT, FlLE- MIDE);
10 /* try towite lock the entire file */

11 if (write_lock(pidfd, 0, SEHEK- SET, 0) < 0) {

12 if (errno == EACCES || errno == EAGAIN)

13 err_guit{*unable to lock %s, is %s al ready runni ng?",
14 PATH Pl OFI LE, argviol):

15 el se

16 err_sys("unable to | ock %s", PATH Pl DFlLE);

17 }

18 /*witeny PID leave file open to hold the wite |lock */
19 snprintf(line, sizeof(line), "%ld\n", (long) getpid()};
20 Ftruncat e pi dfd, 0);:

21 Write(pidfd, |ine, strlen(line));

22 /* then do what ever the daenon does ... */

23 pause () ;

24 }

lock [onedaemon.c
Figure911l Makecertainonly onecopyd aprogramisrunning.

Open and lock afile

Thedaemon maintainsal-linefile that containsits process ID. Thisfileisopened,
being created if necessary, and then a write lock is requested on the entire file. If the
lock is not granted, then we know that another copy d the program is running, and we
printan error and terminate.

Many Unix systems have their daemonswritetheir processID to afile. Solaris 26 storessome
d thesefilesin the /etc directory. Digital Unix and BSD/OS both store these filesin the
/var/r undirectory.

Write our PIDto file

Wetruncatethefile to 0 bytesand then writealine containingour PID. Thereason
for truncating the file is that the previous copy d the program (say before the system
was rebooted) might have had a process ID d 23456, whereas this ingtance d the

214 Rexad Locking Chapter 9
program has a process ID d 123. If we just wrote the line, without truncating the file
the contents would be 123\n6\n. While thefirst line would still contain the process
ID, itiscleaner and lessconfusing to avoid the possibility o asecond linein thefile.

Hereisatestd theprogramin Figure9.11:

solaris % onedaenon & start first copy

[1] 22388

solaris % cat pidfile check PID written to file

22388

solaris % onedaemon and try to start a second copy

unabl e to lock pidfile, is onedaenon al ready runni ng?

Other ways exig for a daemon to prevent another copy o itsdf from being darted.
A semaphore could also be used. The advantagesin the method shown in this ssction
are that many daemons already write their processID to afile, and should the daamon
prematurely crash, therecord lock isautomatically released by the kerndl.

9.8 Lock Files

Posix.1 guaranteesthat if the open functioniscalled with the 0_CREAT (createthefilef
it does not aready exist) and 0_EXCL flags (exclusive open), the function returns an
error if thefile dready exists. Furthermore, the check for the existence d the file ad
the creation d thefile (if it does not already exist) must be atomic with regard to cther
processes. We can therefore use the file created with this technique as a lock. We ae
guaranteed that only one process at a time can creete thefile (i.e., obtain thelock), ad
toreleasethelock, we just unl i nk thefile.

Figure 912 shows a version d our locking functions using this technique. If the
open succeeds, we havethelock, and theny- | ock function returns. We cl ose thefile
because we do not need its descriptor: the lock isthe existenced thefile, regardlessd
whether thefileis open or not. If open returnsan error d EEXIST, then thefileexigs
and wetry theopen again.

Therearethree problemswith thistechnique.

1. If the processthat currently holdsthelock terminateswithout rel easing thelodk,
the filename is not removed. There are ad hoc techniques to ded with
this—check the lagt-accesstimed thefileand assumeit has been orphaned f it
isolder than someamount d time—but none are perfect. Another techniqueis
to write the processID d the process holding the lock into the lock file, so thet
other processes can read this process ID and check whether that processis dill
running. Thisisimperfect because processIDs are reused after sometime.

Thisscenariois not a problem with £cnt | record locking, because when a pro-
cess terminates, any record locks held by that process are autometicdly
released.

2. If some other process currently has thefile open, we just call open again, inan
infiniteloop. Thisis called polling and is a waste CPU time. An dternate

Section 9.8 Lok Files 215

lock [lockopen.c
1 #include "unpipc.h" ek P
2 #defi ne LOCKFILE */tmp/segno. lock"
3 void
4 my_ lock{int £d4)
51
6 i nt t enpf d;
7 while ((tenpfd = open(LOCKFILE, O_RDWR | O_CREAT | O_EXCL, FILE- MODE)) < 0) {
8 if (errno != EEXI ST)
9 err_sys("open error for lock file"):
10 /* someone el se has the lock, |oop around and try again */
11 }
12 d ose (tempfd) ; /* opened the file, we have the | ock */
13 }
14 void
15 my_unlock(int £4)
16 {
17 Unl i nk(LOCKFI LE) ; /* rel ease | ock by renoving file */
18 }

lock {lockopen.c
Figure912 Lock functions usi ng openw th O_CREAT and O_EXCL flags.

techniquewould be to sl eep for 1 second, and then try the open again. (\We
saw thissame problemin Figure7.5.)

Thisisnot aproblemwith f cntl record locking, assuming that the process that
wantsthe lock specifiesthe FSETLKW command. The kernel puts the process to
deep until thelock isavailableand then awakensthe process.

3 Credating and deleting a second file by calling open and unlink involves the
filesysterm and normally takes much longer than caling fcntl twice (onceto
obtain the lock and once to rdease the lock). When the time was measured to
execute 1000 loops within our program that increments the sequence number,
fcntl record locking was faster than calling open and unlink by a factor d
75.

Two other quirksd the Unix filesystem have al so been used to provide ad hoc lock-
ing. Thefirstisthat the | i nk function fails if the name d the new link already exists.
To obtain a lock, a unique temporary file isfirst created whose pathname contains the
process D (or some combination d the process ID and thread ID, if locking is needed
between threadsin different processes and between threads within the same process).
Thelink functionis then caled to create alink to thisfile under the well-known path-
named thelock file. If thissucceeds, then the temporary pathname can be unlinked.
When the thread isfinished with thelock, it just unlinksthewel-known pathname. If
thelink failswith an error d EEXI ST, the thread must try again (similar to what we
did in Figure9.12). Onerequirement d thistechniqueisthat the temporary fileand the

216

Reoord Locking Chepter 9

9.9

9.10

well-known pathname must both reside on the same filesystem, because most versions
d Unix do not allow hard links (theresult d the | i nk function) across different file-
systems.

Thesecond quirk isbased on open returningan error if thefileexids, if 0_TRUNC is
specified, and if write permissionis denied. To obtain alock, wecall open, specifying
O_CREAT | O_WRONLY | O_TRUNC and a node o 0 (i.e., the new file has no permission
bits enabled). If this succeeds, we have the lock and we just unl i nk the pathname
when we are done. If open fails with an error & EACCES the thread must try again
(smilartowhat wedid in Figure9.12). One caveat isthat thistrick does not work if the
calling thread has superuser privileges.

The lesson from these examplesisto use fcnt | record locking. Nevertheless, you
may encounter code that uses these older typesd locking, often in programs written
before thewidespread implementationd fcnt | locking.

NFS Locking

NFSisthe Network File System and isdiscussed in Chapter 22d TCPv1. fcnt| record
lockingisan extension to NFSthat issupported by most implementationsd NFS. Unix
systems normally support NFS record locking with two additional daemons: | ockd
andstatd. Whenaprocesscalsfcnt!| toobtainalock, and the kernel detectsthat the
descriptor refersto a file that is on an NFS-mounted filesystem, the local | ockd sends
the request to the server's | ockd. Thest at d daemon keepstrack o the clients hold-
ing locks and interacts with | ockd to provide crash and recovery functions for NFS
locking.

We should expect record locking for an NFSfile to take longer than record locking
for alocd file, since network communicationis required to obtain and releaseeach lock.
To test NFS record locking, al we need to changeis the filename specified by SEQFILE
in Figure9.2. if we measure the time required for our program to execute 10,000 loops
using fcnt | record locking, it is about 80 times faster for a local file than for an NFS
file. Alsoredlizethat when the sequence number fileison an NFS-mounted filesystem,
network communication isinvolved for both the record locking and for the reading and
writingd the sequencenumber.

Caveat emptor: NFS record locking has been a problem for many years, and most o the prob-
lemshavebeen caused by poor implementations. Despitethefact that themajor Unix vendors
havefinally cleaned up ther implementations, using £cnt | record locking over NFSis ill a
religiousissue for many. We will not take sides on thisissue but will jugt note that fcnt |
record locking is supposed to work over NFS but your successdependson the quality o the
implementations both client and server.

Summary

fentl record locking provides advisory or mandatory locking d a file that is refer-
enced through its open descriptor. These locks are for locking between different pro-
and not for locking between the different threads within one process. The term

Chapter9

Exercisess 217

"record" isa misnomer because the Unix kernel has no concept of records within afile.
A better term is "'range locking,"" because we specify a range of byteswithin thefileto
lock or unlock. Almost all uses of this type of record locking are advisory between
cooperating processes, because even mandatory locking can lead to inconsistent data, as
weshowed.

With £cntl record locking, thereisno guaranteeasto the priority of pending read-

ers versus pending writers, which iswhat we saw in Chapter 8 with read—write locks.
If this is important to an application, tests similar to the ones we developed in Sec-
tion 9.6 should be coded and run, or the application should provide its own read—write
locks (aswedidin Section 8.4), providing whatever priority isdesired.

Exercises

9.1

9.2
9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

Build the Locknone program from Figures 9.2 and 9.1 and run it multiple times on your
system. Verify that the program does not work without any locking, and that theresultsare
nondeterministic.

Modify Figure9.2 so that the standard output is unbuffered. What effect doesthishave?

Continuethe previousexercise by also callingputchar for every character that isoutput to
standard output, instead of calingprintf. What effect doesthis have?

Changethe lock in theny- | ock function in Figure9.3 to be a read lock instead o a write
lock. What happens?

Changethecall to open in the loopmain . ¢ program to specify the 0_NONBLOCK flag also.
Build the 1oopfentlnonb program and run two instancesd it at the same time. Does
anything change? Why?

Continue the previous exercise by using the nonblocking version d 1oopmain.c to build
the 1oopnonenonb program (using the | ocknone. ¢ file, which performs no locking).
Enable the segno file for mandatory locking. Run one instance d this program and
another instance d the 1oopfcnt | nonb program from the previous exercise at the same
time. What happens?

Build the 100pfcnt | program and run it 10 timesin the background from a shell script.
Each d the 10 instancesshould specify a command-lineargument 10,000. Firgt, timethe
shell script when advisory locking is used, and then change the permissions d the segno
file to enable mandatory locking. What effect does mandatory locking have on perfor-
mance?

In Figures 98 and 9.9, why did we call f or k to create child processesinstead o calling
pt hr ead- cr eat eto createthreads?

In Figure9.11, wecall ft runcat e to set thesize d thefileto 0 bytes. Why don't we just
specify theo_Trunc flag for open instead?

If we are writing a threaded application that uses f cnt | record locking, should we use
SEEK- SET, SEEK- QR or SEEK- END when specifying the starting byte offset to lock, and
why?

10.1

10

Posix Semaphores

Introduction

A samaphore is a primitive used to provide synchronization between various processes
or between the various threads in a given process. We look at three types o
semaphoresin thistext.

o Posx named semaphoresareidentified by Posix IPC hames(Section 2.2) and can
be used to synchronizeprocessesor threads.

¢ Posx memory-based semaphoresare stored in shared memory and can be used
to synchronizeprocessesor threads.

o SystemV semaphores (Chapter 11) are maintained in the kernel and can be used
to synchronize processesor threads.

For now, we concern ourselves with synchronization between different processes. We
first consider a binary semaphore: a semaphore that can assume only the values 0 or 1.
Weshow thisin Figure10.1.

process

functionsto
create, wait for,and
post to semaphore

semaphore] 0or 1

Figure10.1 A binary semaphorebeingused by two processes.
219

220 Podx Semagphores Chepter 10

We show that the semaphore is maintained by the kernel (whichis true for SystemV
semaphores) and that itsvalue canbe0 or 1.

Posix semaphores need not be maintained in the kernel. Also, Posix semaphores
are identified by names that might correspond to pathnames in the filesystem. There-
fore, Figure10.2 isa moreredlistic pictured what istermed a Posix named semaphore.

process A process B
functionsto
process create, wait for, and
kermed " N /T post to semaphore

binary semaphoreisafile
whosecontentsare0 or 1

Figure102 A Posix hamed binary semaphorebeing used by two processes.

We must makeonequalificationwith regard to Figure10.2: although Posix named semaphores
are identified by names that might correspond to pathnames in the filesystem, nothing
requiresthat they actually be stored in afilein thefilesystem. An embedded realtime system,
for example, could use the name to identify the semaphore, but keep the actual semaphore
valuesomewherein the kernd. But if mapped filesare used for the implementation (and we
show such an implementationin Section 10.15), then the actual valuedoesappear in afileand
that fileismapped into theaddressspaced all the processesthat havethe semaphoreopen.

In Figures10.1 and 10.2, we note three operations that a process can perform on a
semaphore:

1. Create a semaphore. This also requires the caller to specify the initial vaue,

2

whichfor abinary semaphoreisoften 1, but can be0.

Wait for a semaphore. This tests the value d the semaphore, waits (blocks) if
the value isless than or equal to 0, and then decrements the semaphore value
onceitisgreater than 0. Thiscan besummarized by the pseudocode
while (semaphore—value <= 0)
/* wait; i.e., block the thread or process */

semaphore—value--;
/* we have the semaphore */

The fundamental requirement here is that the test o the value in thewhile
statement, and its subsequent decrement (if its value was greater than 0), must
be done as an atomic operation with respect to other threads or processes access
ing this semaphore. (That is one reason System V semaphores were imple-
mented in the mid-1980s within the kernel. Since the semaphore operations
were system calls within the kernel, guaranteeing this atomicity with regard to
other processeswas eesy.)

There are other common names for this operation: originally it was called P by
Edsger Dijkstra, for the Dutch word proberen (meaning to try). It isalso known

Section 10.1 Introduction 221

as down (sincethe value d the semaphore is being decremented) and lock, but
wewill usethe Posix term df wait.

3. Post to a semaphore. This incrementsthe value d the semaphore and can be
summarized by the pseudocode

semaphore_value++;

If any processes are blocked, waiting for this semaphore's value to be greater
than O, one d those processes can now be awoken. As with the wait code jus
shown, this post operation must aso be atomic with regard to other processes
accessi ng the semaphore.

There are other common namesfor this operation: originally it wascdled V for
the Dutch word verhogen (meaning to increment). It isaso known asup (since
the value d the semaphoreis being incremented), unlock, and signal. We will
usethePosix term d post.

Obvioudy, the actual semaphore code has more details than we show in the pseu-
docodefor the wait and post operations: namey how to queueall the processesthat are
waiting for a given semaphoreand then how to wake up one (of the possibly many pro-
cesses) that is waiting for a given semaphoreto be posted to. Fortunately, these details
arehandled by theimplementation.

Notice that the pseudocode shown does not assume a binary semaphore with the
values0 and 1. Thecode workswith semaphoresthat areinitialized to any nonnegative
value. These are caled counting semaphores. These are normally initialized to some
value N, which indicates the number d resources (say buffers) available. We show
examplesd both binary semaphoresand counting semaphores throughout the chapter.

We often differ entiatebetween a binary ssmaphoreand a counting ssmaphore, and we do so
for our own edification. No differenceexists between the two in the sysem code that imple-
mentsa semaphore.

A binary semaphore can be used for mutual excluson, jud like a mutex. Hg-
urel10.3 showsan example.

initializemutex; initializesemaphoreto 1;
pthread_mutex_lock (&mutex) ; sem_wait (&sem) ;
critical region critical region
pthread_mutex_unlock (&mutex) ; sem_post (&sem) ;

Figure10.3 Comparison of mutex and semaphoreto solvemutual exclusion problem.

Weinitidlize thesemaphoretol. Thecal to sem_wait waitsfor the valueto be greater
than 0 and then decrements the value. The cal to sem_post increments the value
(from 0 to 1) and wakes up any threads blocked in a cadl to sem wait for this
semaphore.

Although semaphores can be used likea mutex, semaphores haveafeature not pro-
vided by mutexes. a mutex must always be unlocked by the thread that locked the

222 Podx Samaphores Chapter 10

mutex, while a semaphore post need not be performed by the same thread that did the
semaphore wait. We can show an example of thisfeature using two binary semaphores
and a simplified version o the producer—consumer problem from Chapter 7. Hg
ure 10.4 shows a producer that placesan item into a shared buffer and a consumer that
removestheitem. For smplicity, assume that the buffer holds oneitem.

producer —»l shared buffer }————= consumer

Figure10.4 Simpleproducer—consumer problem with ashared buffer.

Figure10.5 shows the pseudocode for the producer and consumer.

Producer Consumer

initializesemaphoreget to0;
initializesemaphoreput to1;

for (; 7) { for (; ;) {
sem wait (&put) ; sem_wait (&get) ;
put data into buffer processdata in buffer
sem_post (&get) ; sem_post (&put) ;

} }

Figure10.5 Pseudocodefor smple producer—consumer.

The semaphore put controls whether the producer can place an item into the shared
buffer, and the semaphore get controlswhether the consumer can removean item from
theshared buffer. Thestepsthat occur over timeareasfollows:

1
2

The producer initializesthe buffer and the two semaphores.

Assume that the consumer then runs. It blocksinits call to sem wai t because
thevalued get is0.

Sometimelater, the producer starts. When it callssem- wai t, the value o put
is decremented from 1 to O, and the producer placesan item into the buffer. It
thencallssem_post toincrement thevalue o get from0tol. Sinceathreadis
blocked on this semaphore (theconsumer), waiting for its value to become pos-
tive, that thread is marked as ready-to-run. But assume that the producer con-
tinuesto run. The producer then blocksinitscall to sem wai t at thetop d the
f or loop, becausethe valued put is0. The producer must wait until the con-
sumer emptiesthe buffer.

Theconsumer returnsfromitscall to sem- wai t, which decrementsthevalued
the get semaphore from 1 to 0. It processes the data in the buffer, and cdls
sem_post, which increments the value o put from 0 to 1. Since a thread is
blocked on this semaphore (the producer), waiting for its value to become posi-
tive, that thread is marked as ready-to-run. But assume that the consumer con-
tinues to run. The consumer then blocksin its call to sem wai t, at thetop d
thef or loop, becausethevalue o get is0.

Section 10.1 Introduction 223

5. Theproducer returnsfromitscal to sem_wait, placesdatainto the buffer, and
thisscenario jug continues.

We assumed that each time sem_post was called, even though a process was waiting
and was then marked as ready-to-run, the caller continued. Whether the caler contin-
ues or whether the thread that just became ready runs does not matter (you should
assumethe other scenario and convinceyoursalf d thisfact).

We can ligt three differences among semaphores and mutexes and condition vari-
ables.

1. A mutex must always be unlocked by the thread that locked the mutex, whereas
a semaphore post need not be performed by the same thread that did the
semaphorewait. Thisiswhat we jus showed in our example.

2. A mutex is either locked or unlocked (a binary state, Ssmilar to a binary
semaphore).

3. Since a semaphore has state associated with it (its count), a semaphore post is
always remembered. When acondition variableissignaled, if no thread iswait-
ing for thiscondition variable, thesignal islost. Asan exampled thisfeature,
consider Figure 10.5 but assume that the first time through the producer loop,
the consumer has not yet caled sen—wait. The producer can still put the data
item into the buffer, cal sem_post on the get semaphore (incrementingits
value from 0 to 1), and then block in its cdl to sen—wait on the put
semaphore. Some time later, the consumer can enter its for loop and cdl
sen—wait on the get variable, which will decrement the semaphore's value
from 1 to O, and the consumer then processesthe buffer.

The Posix.1 Rationde states the following reason for providing semaphores along with
mutexesand condition variables: ** Semaphoresare provided in thisstandard primarily to pro-
videameansd synchronizationfor processes; these processesmay or may not share memory.
Mutexes and condition variables are specified as synchronization mechanisms between
threads; these threads always share (some) memory. Baoth are synchronization paradigmsthat
have been in widespread usefor anumber o years. Each set o primitivesis particularly well
matched to certain problems™ Wewill seein Section10.15 that it takes about 300 linesd Cto
implement counting semaphores with kernel persstence, using mutexes and condition
variables—applications should not have to reinvent these 300 lines d C themsdves. Even
though semaphoresare intended for interprocesssynchronization and mutexesand condition
variables are intended for interthread synchronization, semaphores can be used between
threadsand mutexesand condition variablescan be used between processes. We should use
whichever set d primitivesfitstheapplication.

We mentioned that Posix providestwo typesd semaphores. named semaphoresand
mamory-besed (also called unnamed) semaphores. Figure 10.6 compares the functions
used for both typesd semaphores.

Figure10.2 illustrated a Posx named semaphore. Figure10.7 showsa Posx mem-
ory-based semaphorewithina processthat is shared by two threads.

224

Posix Semgphores Chapter 10

named memory-based
semaphore semaphore
sem_open/() sem_init ()
sem_wait ()

sem_trywait ()
sem_post ()

sem_getvalue()

N

sem_close() sem_destroy ()

sem _unlink ()

Figure10.6 Functioncallsfor Posix semaphores.

§
é
]

I e PRE PEOCESS)

Figure10.7 Memory-based semaphor eshar ed between two threadswithin a process.
Figure10.8 showsa Posix memory-based semaphorein shared memory (Part 4) that

isshared by two processes. We show that the shared memory belongs to the address
spaced both processes.

] 4 - -

]
- e T Hrre] |
i |
' one process ‘ E
- _P ______________ = one Pr()(:ess

shared memory

Figure10.8 Memory-based semaphorein shared memory, shared by two processes.

In this chapter, we first describe Posix named semaphores and then Posix memory-
based semaphores. We return to the producer—consumer problem from Section 7.3 and
expand it to alow multiple producers with one consumer and finaly multiple

Seci on10.2 sem_open, sem_close, and sem_unlink Functions 225

10.2

producers and multiple consumers. We then show that the common I/O techniqued
multiplebuffersis just aspecial cased the producer—consumer problem.

We show threeimplementationsd Posix named semaphores. the first using FIFOs,
the next using memory-mapped1/0 with mutexes and condition variables, and thelast
using SystemV semaphores.

sent open, sem _close, and sem unlink Functions

The function sem open creates a new named semaphore or opens an existing named
semaphore. A named semaphore can always be used to synchronizeeither threads or
processes.

#i ncl ude <semaphore.h>

sem_t *sem_open(const char *name, int oflag, .
/* node-t mode, unsigned int value */);

Returns: pointer to semaphoreif OK, SEM_FAILED on error |

Wedescribed the rulesabout the name argument in Section2 2

The oflag argument is either 0, O_CREAT, or O_CREAT | O_EXCL, as described in
Section2 3 If O_CREAT isspecified, then the third and fourth argumentsare required:
mode specifies the permissionbits (Figure2.4), and value specifies theinitial valued the
semaphore. Thisinitial value cannot exceed SEM_VALUE_MAX, which must be at least
32767. Binay semaphores usualy have an initiad value d 1, whereas counting
semaphores often havean initial valuegreater than L

if o_CREAT is specified (without specifying 0_ExXCL), the semaphoreis initialized
only if it does not already exist. SpecifyingO_CREAT if the semaphore already existsis
not an error. Thisflag just means " create and initialize the semaphore if it does not
aready exig." But specifyingO_CREAT | O_EXCL isan error if thesemaphorealready
exigs.

Thereturn valueisa pointer to a sem_t datatype. This pointer is then used as the
argument to senm cl ose, sem _wait, sem trywait, sem_post, and sem_getvalue.

Thereturn valued SEM_FAILED toindicate an error is strange. A null pointer would make
moresense. Earlier draftsthat led to the Posix standard specified areturn valued -1 toindi-
catean error, and many implementationsdefine

#define SEM FAILED {(sem_t *)(-1}}

Posix.1 sayslittle about the permissionbits associated with a semaphorewhen it is crested or
opened by sem open. Indeed, noticefrom Figure2.3 and our discussionabovethat wedo not
even specify 0_RDONLY, O_WRONLY, Of O_RDWR in the oflag argument when opening a named
semaphore. Thetwo systemsused for theexamplesin thisbook, Digital Unix 4.08 and Solaris
26, both require read access and write access to an existing semaphorefor sem open to suc-
ceed. Thereason is probably that the two semaphore operations— postand wait—both read
and changethe valued the semaphore. Not having either read access or write accessfor an
existing semaphoreon these two implementationscauses thesent open function to return an
error d EACCES ('Permissondenied™).

226

Posx Samgphores Chepter 10

10.3

A named semaphorethat wasopened by sem_open isclosed by sen— close.

#i ncl ude <semaphore.h>

int sem_close(sem_t *sem) ;

Returns: 0if OK, -1 on eror

Thissemaphore close operation aso occurs automaticaly on process terminationfor any
named semaphore that is still open. This happens whether the process terminatesvol-
untarily (by callingexit or — exit),or involuntarily (by being killed by asignal).

Closing a semaphore does not remove the semaphore from the system. That is
Posix named semaphoresare at least kernd-persgent: they retain their valueeven if no
processcurrently hasthe semaphore open.

A named semaphoreis removed from thesystem by sem_unlink.

#i ncl ude <semaphore.h>

int sem_unlink{const char *name);

| Returns 0 if OK, -1 on eror

Semaphoreshavea referencecount d how many times they are currently open (just like
files), and this function is similar to the unlink function for a file the name can be
removed from the filesystem whileits reference count is greater than O, but the destruc-
tion d the semaphore (versusremoving its name from the filesystem) does not take
placeuntil thelast sem_close occurs.

sem wait and sem trywait Functions

The sem— wait function tests the value d the specified semaphore, and if the valueis
greater than O, the value is decremented and the function returns immediately. If the
vaue is 0 when the function is cdled, the caling thread is put to seep until the
semaphore valueis greater than 0, at which timeit will be decremented, and the func-
tion then returns. WWe mentioned earlier that the "'test and decrement™ operation must
be atomic with regard to other threadsaccessing thissemaphore.

#i ncl ude <semaphore.h>
int sem wait (sem_t *sem) ;

int sem_trywait(sem_t *sem);

Bath return: 0if OK, -1 oneror

Section 10.4 sem_post and sem_getvalue Functions 227

10.4

The difference between sem_wait and sem_trywait is that the latter does not put the
calling thread to sleep if the current value of the semaphore is already 0. Instead, an
error of EAGAIN is returned.

sem_wait can return prematurely if it is interrupted by a signal, returning an error
of EINTR.

sem post and sem getvalue Functions
When a thread is finished with a semaphore, it calls sem_post. As discussed in Sec-

tion 10.1, this increments the value of the semaphore by 1 and wakes up any threads
that are waiting for the semaphore value to become positive.

#include <semaphore.h>
int sem_post (sem t *sem) ;

int sem_getvalue(sem_t *sem, int *uvalp);

Both return: 0 if OK, —1 on error

sem_getvalue returns the current value of the semaphore in the integer pointed to by
valp. If the semaphore is currently locked, then the value returned is either 0 or a nega-
tive number whose absolute value is the number of threads waiting for the semaphore
to be unlocked.

We now see more differences among mutexes, condition variables, and semaphores.
First, a mutex must always be unlocked by the thread that locked the mutex.
Semaphores do not have this restriction: one thread can wait for a given semaphore
(say, decrementing the semaphore’s value from 1 to 0, which is the same as locking the
semaphore), and another thread can post to the semaphore (say, incrementing the
semaphore’s value from 0 to 1, which is the same as unlocking the semaphore).

Second, since a semaphore has an associated value that is incremented by a post
and decremented by a wait, a thread can post to a semaphore (say, incrementing its
value from 0 to 1), even though no threads are waiting for the semaphore value to
become positive. But if a thread calls pthread_cond_signal and no thread is cur-
rently blocked in a call to pthread_cond_wait, the signal is lost.

Lastly, of the various synchronization techniques—mutexes, condition variables,
read-write locks, and semaphores—the only function that can be called from a signal
handler is sem_post.

These three points should not be interpreted as a bias by the author towards semaphores. All
the synchronization primitives that we have looked at—mutexes, condition variables,
read—write locks, semaphores, and record locking—have their place. We have many choices
for a given application and need to be aware of the differences between the various primitives.
Also realize in the comparison just listed that mutexes are optimized for locking, condition
variables are optimized for waiting, and a semaphore can do both, which may bring with it
more overhead and complication.

228

Posix Semgphores Chagpter 10

10.5 Simple Programs

We now provide some simple programs that operate on Posix named semaphores, to
learn more about their functionaity and implementation. Since Posx named
semaphores have at least kernel persistence, we can manipulate them across multiple
programs.

sencr eat e Program

22

23

Figure 109 creates a named semaphore, allowing a -e option to specify an exclusive-
create, and a -1 option to specify an initial value (other than thedefault o 1).

, - pxsem [semcreate.c
1 #incl ude "unpipc.h"
2int
3 main(int argc, char **argv)
4 {
5 int c, flags;
6 sem_t *sem;
7 unsi gned i nt val ue;
8 flags = O_RDWR | O_CREAT;
9 value = 1;
10 while ((¢ = Getoptlargc, argv, "ei:")) != -1) {
11 switch (e) {
12 case ‘e’:
13 flags |= O_EXCL;
14 br eak;
15 case'i':
16 val ue = atoi(optarg);
17 br eak;
18 }
19 }
20 if (optind 1= argc - 1)
21 err_quit ("usage: senctreate [-e] [-i initalvalue] <name>");
22 sem = Sem_open(argvioptind], flags, Fl LE- MCDE, val ue):
23 Sem_close (sem) ;
24 exit(0);
25 1}
pxsem [semcreate.c
Figure10.9 Createanamed semaphore.
Create semaphore

Since we always specify the 0_CREAT flag, we must call sem_open with four argu-
ments. The final two arguments, however, are used by sem—open only if the
semaphoredoes not already exid.

Close semaphore

Wecdl sem_close, athoughif thiscal were omitted, the semaphoreis still dosed
(and the system resourcesrel eased) when the processterminates.

Section 105 Simple Programs 229

semunlink Program

Theprogram in Figure10.10 unlinks a named semaphore.

pxsem|[semunlink.c

=

#include "unpipc.h"
i nt
main(int argc, char **argv)
{
if (argc '= 2)
err-quit ("usage: semunlink <name>") ;

oo WN

e |

Sem_unlink(argv[1]);

8 exit (0);

pxsem[semunlink.c
Figure10.10 Unlink anamed semaphore.
semgetvalue Program

Figure 10.11 is a simple program that opens a named semaphore, fetches its current
vaue, and prints that value.

pxsem|semgetvalue.c

1 #include "unpipc.h"

2 int

3 main(int argc, char **argv)

4 {

5 sem_t *sem;

6 i nt val ;

7 if (argc !'= 2)

8 err_quit("usage: sengetval ue <nane>");
9 sem = Sem_open(argv[1l], 0);
10 Sem_getvalue(sem, &val);

11 printf("value = %d\n", val);
12 exit (0);

13 }

pxsem/[semgetvalue.c
Figure10.11 Get and print a semaphor€esvalue.

Open semaphore

9 When we are opening a semaphore that must already exist, the second argument to
sem_open is0: we do not specify 0_CREAT and there are no other 0_xxx constants to

Soecify.

230 Podx Semaphores Chapter 10

semwait Program

The program in Figure 10.12 opens a hamed semaphore, calls sem_wait (which will
block if the semaphore's valueis currently lessthan or equal to 0, and then decrements
the semaphore value), fetchesand printsthesemaphore's value, and then blocksforever
inacall to pause.

- - pxsem|semuwait.c
1 #i ncl ude “unpi pc .h"
2int
3 main(int argc, char **argv)
4 {
5 sem t ‘*sem;
6 int val ;
7 if (arge '1= 2)
8 err_quit("usage: semwait <name>");
9 sem = Sem open(argv(l], 0):
10 Sem_wait (sem) ;
11 Sem_getvalue (sem, &val);
12 printf ("pid %14 has senaphore, val ue = %d\n", (long) getpid(), val);
13 pause() ; /* blocks until killed */
14 exit(0);
15 }

pxsem [semwait.c
Figurel0.12 Wit fa asenaphoreand mirt its val ue.

sempost Program

Figure10.13isa program that posts to a named semaphore (i.e., incrementsits value by
one) and then fetchesand printsthe semaphore's value.

xsem | sempost.c
1 #include "unpipc.h" P / pos
2 int
3 main{int argc, char **argv)
4 {
5 sem_t *sem;
6 int val ;
7 if (argc '= 2)
8 err_quit("usage: senpost <name>");
9 sem = Sem_open{argv[1l]l, 0);
10 Sem_post (sen) ;
11 Sem_getvalue(sem, &val);
12 printf("val ue = %d\n", val);
13 exit(0);
14 }

pxsem [sempost.c
Figurel0 13 PRost to a senaphor e.

Section 105 Simple Programs 231

Examples

Wefirst create a named semaphore under Digital Unix 4.08 and print its (default) value.

al pha % semcreate /tmp/testl
alpha % 18 -1 /tmp/testl

-rw-r—-r-- 1 rstevens system 264 Nov 13 08:51 /tmp/testl
al pha % semgetvalue /tmp/testl
value = 1

Aswith Posix message queues, the system createsafilein thefilesystem corresponding
to the namethat we specify for the named semaphore.

We now wait for the semaphore and then abort the program that holds the
semaphorelock.

al pha % semwait /tmp/testl

pid 9702 has semaphore, value = 0 thevalueafter sen- wai t returns

“? typeour interrupt key toabort program
al pha % semgetvalue /tmp/testl

value = 0 and value remains 0

This example shows two features that we mentioned earlier. First, the value d a
semaphoreis kernel-persistent. That is, the semaphore's value d 1 is maintained by the
kernel from when the semaphore was created in our previous example, even though no
program had the semaphore open during this time. Second, when we abort our
semnai t program that holds the semaphore lock, the value o the semaphore does not
change. That is, the semaphore is not unlocked by the kernel when a process holding
thelock terminateswithout releasing the lock. Thisdiffersfrom record locks, which we
said in Chapter 9 are automatically released when the process holding the lock termi-
nateswithout releasingthelock.

We now show that thisimplementation usesa negative semaphore value to indicate
the number o processeswaiting for the semaphore to be unlocked.

al pha % semgetvalue /tmp/testl

value = 0 valueis still 0 from previousexample
al pha % semwait /tmp/testl & start in the background

[1] 9718 it blocks, waiting for ssmaphore

al pha % semgetvalue /tmp/testl

value = -1 one processwaiting for semaphore
al pha % semwait /tmp/testl & start another in the background
[2] 9727 it also blocks, waiting for semaphore
al pha % semgetvalue /tmp/testl

val ue = -2 two processeswaiting for ssmaphore
al pha % sempost /tmp/testl now post to semaphore

value = -1 value after sem_post returns
pid 9718 has semaphore, value = -1 output from semnai t program

al pha % sempost /tmp/testl post again to semaphore

value = 0

pid 9727 has senmphore, value = 0 output fromother semwai t program

232 Posx Semaphores Chapter 10

When the valueis 2 and we execute our sempost program, the value is incremented
to-1 and one o the processesblockedin thecall to sem_wait returns.

We now execute the same example under Solaris 2.6 to see the differencesin the
implementation.

solaris % senctreate /test2
solaris % 18 -1 /tmp/.*test2*

—rwers—p—— 1 rstevens otherl 48 Nov 13 09:11 /tmp/.SEMDtest2
~YW-YW-Tw-— 1 rstevens otherl 0 Nov 13 09:11 /tmp/.SEMLtest2
solaris % sengetval ue /test2

value = 1

As with Posix message queues, files are created in the /tmp directory containing the
specified name asthefilenamesuffixes. We see that the permissionson thefirst filecor-
respond to the permissions specified in our call to sem_open, and we guess that the
second fileis used for locking.

We now verify that the kernel does not automatically post to a semaphore when the
process holding the semaphore lock terminates without releasingthelock.

solaris % semwait /test2
pi d 4133 has senmphore, value = 0

~? typeour interrupt key
solaris % sengetval ue /test2
value = 0 value remains 0

Next we see how thisimplementation handles the semaphore value when processesare
waiting for the semaphore.

solaris % sengetval ue /test2

value = 0 value isstill 0 from previousexample
solaris % semwait /test2 & start in the background

[1] 4257 it blocks, waiting for ssmaphore

solaris % sengetval ue /test2

value = 0 thisimplementation does not use negativevalues
solaris % semait /test2 & start another in the background

[2] 4263

solaris % sengetval ue /test2

value = 0 value remains 0 with two processeswaiting
solaris % senpost /test2 now post to semaphore

pi d 4257 has senmphore, value = 0 output fromsemnai t program

value = 0

solaris % sempost /test2
pid 4263 has semaphore, value = 0 output fromother senwai t program
value = 0

One differencein this output compared to the previous output under Digital Unix, is
when the semaphore is posted to: it appears that the waiting process runs before the
processthat posted to the semaphore.

Sectica10.6 Producer—Consumer Problem 233

10.6 Producer—Consumer Problem

In Section 7.3, we described the producer-consurner problem and showed some solutions
in which multiple producer threadsfilled an array that was processed by one consumer
thread.

1. Inour first solution (Section 7.2), the consumer started only after the producers
were finished, and we were able to solve this synchronization problem using a
single mutex (to synchronizethe producers).

2. In our next solution (Section 7.5), the consumer started before the producers
were finished, and this required a mutex (to synchronize the producers) along
with a condition variable and its mutex (to synchronize the consumer with the
producers).

We now extend the producer-consumer problemby using theshared buffer asacircular
buffer: after the producer fills the final entry (buff [NBUFF-11), it goes back and fills
thefirst entry (buff [01), and the consumer does thesame. Thisadds another synchro-
nization problem in that the producer must not get ahead o the consumer. We still
assumethat the producer and consumer are threads, but they could also be processes,
assuming that some way existed to share the buffer between the processes (e.g., shared
memory, which we describein Part 4).

Three conditions must be maintained by the code when the shared buffer isconsid-
ered asacircular buffer:

1. Theconsumer cannot try to remove an item from the buffer when the buffer is
empty.
2. Theproducer cannot try to placean item into the buffer when the buffer isfull.

3. Shared variables may describe the current state o the buffer (indexes, counts,
linked list pointers, etc.), so all buffer manipulations by the producer and con-
sumer must be protected to avoid any raceconditions.

Our solution using semaphores demonstrates three different typesd semaphores:

1. A binary semaphore named mutex protectsthe critical regions: inserting a data
item into the buffer (for the producer) and removing a dataitem from the buffer
(for the consumer). A binary semaphore that is used asa mutex isinitialized to
1 (Obviously we could use a real mutex for this, instead d a binary
semaphore. See Exercise10.10.)

2. A counting semaphore hamed nempty counts the number of empty slotsin the
buffer. This semaphore is initialized to the number o dots in the buffer
(NBUFF).

3. A counting semaphore named nstored counts the number o filled slotsin the
buffer. Thissemaphoreisinitializedto 0, sincethe buffer isinitially empty.

234 Podx Samaphores Chapter 10

Figure 10.14 shows the status of our buffer and the two counting semaphores when the

program has finished its initialization. We have shaded the array elements that are
unused.

vut£0] : D
buf f [1]:
buff[2]:
buf f [3]:

buf f [NBUFF-1]:

nempty: NBUFF
NStored: Y
| I —

Figure10.14 Buffer and thetwo counting semaphoresafter initialization.

In our example, the producer just stores theintegers 0 through NLOOP-1 into the buffer
(buff (01 = o0, buff (1] = 1, and so on), using the buffer as a circular buffer. The
consumer takesthese integersfrom the buffer and verifiesthat they are correct, printing
any errorsto standard output.
Figure 10.15 shows the buffer and the counting semaphores after the producer has

placed threeitemsinto the buffer, but before the consumer has taken any o theseitems
from the buffer.

— = buff[0]: 0

producer places buff[1]:| i
3itemsinto buffer I

—» buff[2]: 2|

buff [3] : ——

buf f [NBUFF-11] :] J

nempty:| NBUFF-3

nstored: 3

Figure10.15 Buffer and semaphoresafter threeitems placed into buffer by producer.

We next assume that the consumer removesone item from the buffer, and we show
thisin Figure10.16.

Siection 10.6 Producer—Consumer Problem 235

= *‘*\ CONSUMEr removes
buff(0]: ™ 1 item from buffer
buff[l]: 1

buff[2]: 2

S ————

buff [3]:

buf f [NBUFF-1] :

nempty: | NBUFF-2 |
nstored: 2

Figure10.16 Buffer and semaphoresafter consumer removesfirst item from buffer.

Figure 10.17 is the mai n function that creates the three semaphores, creates two
threads, waitsfor both threadsto complete, and then removesthe semaphores.

Globals

6-10 The buffer containing NBUFF items is shared between the two threads, as are the
threesemaphore pointers. Asdescribedin Chapter 7, we collect theseinto a structure to
reiteratethat the semaphores are used to synchronizeaccessto the buffer.

Create semaphores

19-25 Three semaphores are created and their names are passed to our px_ipc_name
function. We specify the 0_EXCL flag becausewe need to initialize each semaphore to
thecorrect value. If any o the three semaphores are still lying around from a previous
run d this program that aborted, we could handle that by calling sem — unlinkfor each
semaphore, ignoring any errors, before creating the semaphores. Alternately, we could
check for an error o EEXIST from sem—open with the o_EXCL flag, and cdl
sem— unlinkfollowed by another call to sem—open, but this is more complicated. If
we need to verify that only one copy d this program is running (which we could do
before trying to create any o the semaphores), we would do so as described in Sec-
tion9.7.

Create two threads

26-29 The two threads are created, one as the producer and one as the consumer. No
argumentsare passed to the two threads.

30-36 The main thread then waits for both threads to terminate, and removes the three
semaphores.

We could also cal sem_close for each semaphore, but this happens automatically when the
process terminates. Removing the name o a named semaphore, however, must be done
explicitly.

Figure10.18 showstheproduce and consume functions.

236 Podx Samephores Chepter 10

44

pxsem[prodcons].c

1 #include "unpipc.h"

2 #defi ne NBUFF 10

3 #def i ne SEM_MUTEX "mutex" /* these are args to px_ipc_name() */
4 #defi ne SEM_NEMPTY "nenpty"

5 #defi ne SEM_NSTORED "nst or ed"

6 int ni t ens; /* read-only by producer and consurer */
7 struct ¢ /* data shared by producer and consurner */
8 int buf f [NBUFF] ;

9 sem t “*mutex, *nempty, *nstored;

10 } shared;

11 void *produce (void *), *consume(void *);

12 int

13 main(int argc, char **argv)

14 {

15 pthread_t tid_produce, tid_consume;

16 if (argc '= 2)

17 err_quit("usage: prodconsl <#itens>");

18 nitems = atoi(argvi[l]):;

19 /* create three semaphores */

20 shared.mutex = Sem_open(Px_ipc_name (SEM_MUTEX), O_CREAT | O_EXCL,
21 FI LE- MIE, 1) ;

22 shared.nempty = Sem_open(Px_ipc_name (SEM_NEMPTY), O_CREAT | O_EXCL,
23 Fl LE- MDE, NBUFF) ;

24 shared.nstored = Sem open(Px_ipc_name (SEM NSTORED), O_CREAT | O_EXCL,
25 FI LE- MDDE, 0);

26 /* create one producer thread and one consuner thread */

27 Set - concurrency(2) ;

28 Pthread_create(stid_produce, NULL, produce, NULL);

29 Pthread_create(&tid_consume, NULL, consune, NULL);

30 /* wait for the two threads */

31 Pthread_join(tid_produce, NULL);

32 Pthread_join(tid_consume, NULL);

33 /* renove the senaphores */

34 Sem_unlink (Px_ipc_name (SEM_MUTEX)) ;

35 Sem_unlink (Px__ipc_name (SEM_NEMPTY)) ;

36 Sem_unlink (Px_ipc_name (SEM_NSTORED)) ;

37 exit(0);

38 }

pxsem/[prodconsl.c
Fogurel0 17 nai nfucti onfa senaphor esd ui onto producer—consumer pr obl em

Producer waits until room for one item in buffer

The producer calls sem_wait on the nenpty semaphore, to wait until room is
available for another item in the buffer. The first time this statement is executed, the
valued thesemaphorewill go from NBUFF to NBUFF- 1.

Section10.6 Producer—Consumer Pradem 237

45-as

57-62

pxsem|prodconsl.c

39 void *

40 produce(void *arg)

41 {

42 int i;

43 for (i = 0; i < nitens; i++) {

44 Sem_wait (shared.nempty) ; /* wait for at least 1 enpty slot */
45 Sem_wait (shared.mutex) ;

46 shared.buff[i % NBUFF] = i; /* store i into circular buffer */
47 Sem_post (shared.mutex) ;

48 Sem_post (shared.nstored) ; /* 1 nore stored item */

49 }

50 return (NULL);

51]

52 void *

53 consune(voi d *arg)

54 {

55 int i;

56 for (i =0; i <nitens; i++) {

57 Sem _wait (shared.nstored) ; /* wait for at least 1 stored item*/
58 Sem_wait (shared.mutex) ;

59 if (shared.buffl[i % NBUFF] != i)

60 printf("buff[%d] = %A\n", i, shared.buff[i % NBUFF]);

61 Sem_post (shared.mutex) ;

62 Sem_post (shared.nempty) ; /* 1 nore enpty slot */

63 }

64 return (NULL);

65 }

pxsem [prodcons1.c
Figure1018 produceand consunefunctions.

Producer stores item in buffer

Before storing the new item into the buffer, the producer must obtain the nut ex
semaphore. In our example, where the producer jus stores a value into the array e
ment indexed by i % NBUFF, no shared variablesdescribethe status o the buffer (i.e.,
we do not use alinked list that we need to update each time we place an item into the
buffer). Therefore, obtaining and releasing the nmut ex semaphore is not actually
required. Nevertheless, we show it, because in general it is required for this type o
problem (updating a buffer that isshared by multiple threads).

After the item is stored in the buffer, the nut ex semaphore is released (itsvalue
goes from 0 to 1), and the nst or ed semaphore is posted to. Thefirst time this state-
ment isexecuted, thevalued nst or ed will gofrom itsinitial valued 0 to1L

Consumer waits for nst or ed semaphore

When thenst or ed semaphore's valueisgreater than 0, that many itemsarein the
buffer to process. The consumer takes one item from the buffer and verifies that its
vaueiscorrect, protecting this buffer accesswith the nut ex semaphore. The consumer
then poststo thenempty semaphore, telling the producer that another dot isempty.

238 Podx Semephores Chepter 10

Deadlock

10.7

10.8

What happensif we mistakenly swap the order of thetwo callsto Sem_wait inthecon
sumer function (Figure10.18)? If weassume the producer startsfirst (asin the solution
shown for Exercise10.1), it stores NBUFF items into the buffer, decrementing the vdue
o the nempty semaphore from NBUFF to O and incrementing the value o thenst or ed
semaphore from 0 to NBUFF. At that point, the producer blocks in the cdl
Sem_wait(shared. nenpty), sincethe buffer isfull and no empty slots are available
for another item.

The consumer starts and verifies the first NBUFF items from the buffer. This decre-
ments the value d the nst or ed semaphore from NBUFF to 0 and increments the vaue
o the nempty semaphore from 0 to NBUFF. The consumer then blocks in the cdl
Sem_wait(shar ed-nstored) after caling Sem_wait {shared.mutex). The pro-
ducer can resume, becausethe value d nempty isnow greater than 0, but the producer
then callssem_wait (shar ed. nut ex) and blocks.

Thisiscalled adeadlock. The producer iswaiting for the mut ex semaphore, but the
consumer is holding this semaphore and waiting for the nst or ed semaphore. But the
producer cannot post to the ns tored semaphore until it obtains the mut ex semaphore.
Thisisone o the problems with semaphores: if we make an error in our coding, our
program does not work correctly.

Posix allows sem_wait to detect a deadlock and return an eror of EDEADLK, but ndther
o the systems being used (Solaris 2.6 and Digital Unix 4.0B) detected this eror with this
example.

File Locking

We now return to our sequence number problem from Chapter 9 and provide versons
o our ny- | ock and ny- unl ock functions that use Posix named semaphores. FHg
ure 10.19 showsthe two functions.

One semaphore is used for an advisory filelock, and the first time this function is
caled, thesemaphore valueisinitializedtol. Toobtain thefilelock, wecal sem wait,
and toreleasethelock, wecall sem_post.

sem_init and sen- destroy Functions

Everything so far in this chapter has dealt with the Posix named semaphores. These
semaphoresare identified by a name argument that normally referencesafilein thefile-
system. But Posix also provides memory-based semaphoresin which the application dlo-
cates the memory for the semaphore (that is, for a sem_t datatype, whatever tha

happensto be) and then hasthe systeminitializethis semaphore.

Section 10.8 sem_init and sem destroy Functions 239

, - lock/lockpxsem.c
1 #include "unpipec.h"

#define LOK-+FATH "pxsemlock"

sem_t *locksem;
int initflag;

2

3

4

5 void

6 my_lock(int £d)
7 {

8 if (initflag== 0) {

9 locksem = Sem_open(Px_ipc_name (LOCK_PATH), O_CREAT, ALE-MODE 1);
0 initflag = 1;

11 }

12 Sem_wait (locksem);

13 }

14 void

15 my—unlock (int £4)

16 {

17 Sem_post (locksem);
18 }

locklockpxsem.c
Figure10.19 Filelocking using Posix named semaphores.

#include <semaphore.h>
int sem init(sem_t *sem, int shaed, unsigned int vaue);

Returns: -1 on error
int sem destroy(sem_t *sem);

Returns; 0 if OK, =1 on error

A memory-based semaphore isinitialized by sem—init. The sem argument points to
thesem_t variablethat the application must alocate. If shared is0, then the semaphore
is shared between the threads o a process, else the semaphore is shared between pro-
cesses. When shared is nonzero, then the semaphore must be stored in some type o
shared memory that is accessibleto all the processes that will be using the semaphore.
Aswith sem—open, thevalue argument istheinitial value d the semaphore.

When we are done with a memory-based semaphore, sem_destroy destroysit.

sem—open does not need a parameter smilar to shared or an attribute similar to
PTHREAD_PROCESS_SHARED (which we saw with mutexes and condition variablesin Chap-
ter 7), becausea named semaphoreisaways sharabl e between different processes.

Notice that there is nothing similar to 0_CREAT for a memory-based semaphore: sem_init
awaysinitializesthe semaphore value. Therefore, we must be careful to call sem_init only
oncefor agiven semaphore. (Exercise10.2 shows thedifferencefor a named semaphore.)) The
resultsareundefinedif sem_init iscaled for asemaphorethat hasalready beeninitialized.

240 Podx Semegphores Chepter 10

Make certain you understand a fundamental difference between sem_open and sem_init.
Theformer returnsa pointer to a sem_t variablethat the function hasallocatedand initialized.
Thefirst argument to sem_init, on theother hand, is a pointer to a sem—t variablethat the
caller must allocateand that thefunctiontheninitializes.

Posix.1 warns that for a memory-based semaphore, only the location pointed to by the sem
argument to sem_init can be used to refer to the semaphore, and using copiesd this sem-t
datatype is undefined.

sem_init returns-1 on an error, but doesnot return 0 on success. Thisisindeed strange, and
anotein thePosix.1 Rationalesaysthat a future update may specify areturnd 0 on success.

A memory-based semaphore can be used when the name associated with a named
semaphore is not needed. Named semaphores are normally used when different, unre-
lated processes are using the semaphore. The name is how each processidentifiesthe
semaphore.

In Figurel.3, we say that memory-based semaphores have process persistence, but
their persistence really depends on the type o memory in which the semaphore is
stored. A memory-based semaphore remains in existence as long as the memory in
which the semaphoreiscontained isvalid.

o If a memory-based semaphore is being shared between the threads o a sngle
process (the shared argument to sem- i ni t is0), then the semaphore has process
persistenceand disappears when the processterminates.

o If a memory-based semaphore is being shared between different processes (the
shared argument to sem-init is 1), then the semaphore must be stored in
shared memory and the semaphore remains in existence as long as the shared
memory remainsin existence. Recdl from Figure1.3 that Posix shared memory
and System V shared memory both have kernel persistence. This means that a
server can create a region o shared memory, initialize a Posx memory-based
semaphore in that shared memory, and then terminate. Sometime later, one or
more clients can open the region d shared memory and access the memory-
based semaphore stored therein.

Bewarned that the foll owing code does not work as planned:
sem—-t mysem;
Sem_init (&mysem, 1, 0); /* 2nd arg of 1 -> shared between processes */
if (Fork() == 0) { /* child */
éezﬁ_ﬁost (&mysem) ;
}
Sem_wait (&mysem) ; /* parent; wait for child */

The problem here is that the semaphore mysem is not in shared memory —see Sec
tion 10.12. Memory is normally not shared between a parent and child across a fork.
The child starts with a copy o the parent's memory, but this is not the same as shared
memory. We talk moreabout shared memory in Part 4 o thisbook.

Section10 8 sem_init and sem destroy Fundtions 241

Example

As an example, we convert our producer—consumer example from Figures 10.17
and 10.18to use memory-based semaphores. Figure 10.20showsthe program.

pxsem[prodcons2.c

1 #include "unpipec.h"®

2 #defi ne NBUFF 10

3int ni t ens; /* read-only by producer and consurer */
4 struct (/* data shared by producer and consuner */
5 int buf f [NBUFF] ;
6 sem_t mut ex, nenpty, nstored; /* semaphores, not pointers */
7 } shared,
g void *produce(void *), *consume(void *);
9 int
10 main(int argc, char **argv)
11 (
12 pthread_t tid_produce, tid_consume;
13 if (argc 1= 2)
14 err_quit ("usage: prodcons2 <#items>");
15 nitems = atoi(argv([1]);
16 /* initialize three semaphores */
17 Sem_init (&shared.mutex, 0, 1);
18 Sem_init (&shared.nempty, 0, NBUFF);
19 Sem_init (¢shared.nstored, 0, 0);
20 Set_concurrency(2) ;
21 Pthread_create (&tid_produce, NULL, produce, NULL);
22 Pthread_create (&tid_consums, NULL, consune, NULL);
23 Pthread_join(tid_produce, NULL) ;
24 Pthread_join(tid_consume, NULL);
25 Sem_destroy (&shared.mutex) ;
26 Sem_destroy (&shared.nempty) ;
27 Sem_destroy (&shared.nstored) ;
28 exit(0);
29 }
30 void *
31 produce(voi d *arg)
32 {
33 int i;
34 for (i = 0; i < nitens; i++) {
35 Sem_wait (&shared,.nempty) ; /* wait for at least 1 enpty slot */
36 Sem_wait (&shared.mutex) ;
37 shared.buff[i % NBUFF] = i; /* store i into circular buffer */
3B Sem_post (&shared.mutex) ;
39 Sem_post (&shared. nstored); [* 1 nore stored item*/
40 }
41 return (NULL) ;

42 }

242 Posix Semgphores Chapter10

16-27

10.9

5-10

43 void *

44 consume (void *arg)

45 {

46 int i;

47 for (i = 0; i < nitems; i++) {

48 Sem wait (&shared.nstored); /* wait for at least 1 stored item*/
49 Sem_wait (&shared.mutex) ;

50 if (shared.buff[i % NBUFF] 1= i)

51 printf(*"buff[%d] = %d\n", i, shared.buff[i % NBUFF]);
52 Sem_post (&shared.mutex) ;

53 Sem_post (&shared.nempty) ; /* 1 nore enpty slot */

54 }

55 return (NULL);

56 }

pxsem [prodcons2.c
Fgure10.20 Producer—consumer usi ng menor y- based semaphor es.

Allocate semaphores

Our declarationsfor the three ssmaphores are now for three sem_t dataty pes them-
selves, not for pointersto three d these datatypes.

Call sem_init

We cal sem_init instead o sem_open, and then sem destroy instead d
sem_unlink. Thesecadlsto sem dest roy arerealy not needed, since the programis
about to terminate.

The remaining changes are to pass pointers to the three semaphoresin all thecdls
to sem_wait and sem_post.

Multiple Producers, One Consumer

The producer-consumer solution in Section 10.6 solves the classic one-producer, one-
consumer problem. An interesting modification isto allow multiple producers with one
consumer. Wewill start with the solution from Figure10.20, which used memory-based
semaphores. Figurel0.21 showsthe global variablesand nai n function.

Globals

The global ni t ens is the total number o items for all the producers to produce,

and npr oducer s isthe number o producer threads. Both are set from command-line
arguments.

Shared structure

Two new variables are declared in the shar ed structure: nput, the index d the
next buffer entry to storeinto (modulo NBUFF), and nput val , the next value to storein
the buffer. These two variables are taken from our solution in Figures 7.2 and 7.3
Thesetwo variablesare needed to synchronizethe multiple producer threads.

Section 10.9 Multiple Producers One Consumer 243

pxsem [prodcons3.c

1 #include "unpipc.h"”

2 #defi ne NBUFF 10

3 #def i ne MAXNTHREADS 100

4 int ni t ens, nproducers; /* read-only by producer and consurer */
5 struct (/* dat a shared by producers and consuner */
6 i nt buf f [NBUFF] ;

7 int nput ;

8 int nput val ;

9 sem_t mut ex, nenpty, nstored; /* semaphores, not pointers */
10 } shared;

11 void *produce (void *), *consume(void *);

12 int

13 main(int argc, char **argv)

14 {

15 int i, count [MAXNTHREADS] ;

16 pthread t tid_produce (MAXNTHREADS], tid_consume;

17 if (argc '= 3)

18 err_quit ("usage: prodcons3 <#items> <#producers>");
19 nitems = atoi (argvI[1l]);
20 nproducers = min(atoi(argvi2]), MAXNTHREADS);

21 /* initialize three semaphores */

22 Sem_init (&shared.mutex, 0, 1):

23 Sem_init (&shared, nempty, 0, NBUFF);

24 Sem_init (&shared,.nstorad, 0, 0);

25 /* create all producers and one consuner */

26 Set_concurrsncy (nproducers + 1);

27 for (i = 0; i < nproducers; i++) {

28 count[i] = O;

29 Prhread_create (&tid_produce(i], NULL, produce, &count[i]);
30 }

31 Prhread_create (&tid_consume, NULL, consume, NULL);

32 /* wait for all producers and the consuner */

33 for (i = 0; i < nproducers; i++) (

34 prhread_join(tid_produce(i], NULL);
35 printf("count [#d] = %d\n", i, count [i]);

36 }

37 Pthread_join(tid_consume, NULL);

38 Sam_destroy (&shared. mutex) ;

39 sem_destroy (&sharsed. nempty) ;
40 Sem_destroy (&shared. nstored);
41 exit(0);

42)

pxsem [prodcons3.c
Figurel021 mai nfuncti onthet crestes nol ti g e producer threads.

244 Posix Semgphores Chapter 10

17-20

21-41

49- 53

50-51

New command-linearguments

Two new command-line arguments specify the total number o items to be stored
into the buffer and the number o producer threadsto creete.

Create all the threads

The semaphores are initialized, and all the producer threads and one consumer
thread are created. We then wait for al the threads to terminate. This code is nearly
identical to Figure7.2.

Figurel0.22 showsthe pr oduce function that is executed by each producer thread.

23 void * pxsem [prodcons3.c
44 produce(voi d *arg)

45 {

46 for (; ;) (

47 Sem_wait (&shared.nempty) ; /* wait for at least 1 enpty slot */

48 Sem_wait (&shared.mutex) ;

49 if (shared-nput >= nitems) {

50 Sem post (&shared.nempty) ;

51 Sem_post (&shared.mutex) ;

52 return (NULL); /* all done */

53 }

54 shared.buff[shared.nput % NBUFF] = shared.nputval;

55 shared.nput++;

56 shared.nputval++;

57 Sem_post (&shared.mutex) ;

58 Sem_post (&shared.nstored); /* 1 nore stored item */

59 *((int *) arg) += 1,

60 }

61)} pxsem|[prodcons3.c

H gure 10.22 Functi on execut ed by dl the producer t hreads.

Mutual exclusion among producer threads

The change from Figure10.18 is that the loop terminates when ni tems o theval -
ues have been placed into the buffer by all the threads. Notice that multiple producer
threads can acquire the nenpt y semaphore at the same time, but only one producer
thread at a time can acquire the nut ex semaphore. This protects the variables nput
and nputval from being modified by morethan one producer thread at atime.

Termination of producers

We must carefully handle the termination o the producer threads. After the last
itemis produced, each producer thread executes

Sem_wait (&shared.nempty) ; /* wait for at least 1 enpty slot */

at thetop o the loop, which decrements the nenpt y semaphore. But beforethe thread
terminates, it must increment this semaphore, becausethe thread does not store an item
in the buffer during its last time around the loop. The terminating thread must aso

Section 10.10 Multiple Producers, Multiple Consumers 245

10.10

release the mut ex semaphore, to alow the other producer threads to continue. If we
did not increment nempty on thread termination and if we had more producer threads
than buffer slots (say 14 threads and 10 buffer slots), the excess threads (4) would be
blocked forever, waiting for the nempty semaphore, and would never terminate.

The consune function in Figure10.23 just verifies that each entry in the buffer is
correct, printing a messageif an error isdetected.

pxsem [prodcons3.c

62 void *

63 consune(void *arg)

64 {

65 int i;

66 for (i = 0; i < nitenms; i++) (

67 Sem _wait (&shared.nstored); /* wait for at least 1 stored item */
68 Sem_wait (&shared.mutex) ;

69 if (shared.buff{i % NBUFF] != i)

70 printf("error: buff[%d] = %d\n", i, shared.buff[i % NBUFF]);
71 Sem_post (&shared.mutex) ;

72 Sem_post (&shared.nempty) ; /* 1 nore enpty slot */

73 }

74 return (NULL) ;

75 }

pxsem |prodcons3.c
Figure 1023 Functionexecuted by the one consuner thread.

Termination df the single consumer thread is smple—it just counts the number o
itemsconsumed.

Multiple Producers, Multiple Consumers

The next modificationto our producer—consumer problem is to allow multiple produc-
ers and multiple consumers. Whether it makes sense to have multiple consumers
depends on the application. The author has seen two applications that use this tech-
nique.

1. A program that converts IP addresses to their corresponding hostnames. Each
consumer takes an IP address, calls get host byaddr (Section 9.6 o UNPv1),
and appends the hostname to a file. Since each call to get host byaddr can
take a variable amount o time, the order o the IP addresses in the buffer will
normally not be the same as the order d the hostnamesin the file appended by
the consumer threads. The advantage in this scenario is that multiple calls to
get host byaddr (each of which can take seconds) occur in parallel: one per
consumer thread.

Thi s assunes areentrant version d get host byaddr, and not dl i npl enent at i ons have
this property. If areentrant versionis not availabl e, anaternativeistostorethe buffer in
shared menory and use mul ti pl e processesinstead o mul ti pl et hreads.

246 Podx Semaphores Chapter 10

19-23

24-50

2. A program that reads UDP datagrams, operates on the datagrams, and then
writes the result to a database. One consumer thread processes each datagram,
and multiple consumer threads are needed to overlap the potentially long pro-
cessing o each datagram. Even though the datagrams are normally written to
the database by the consumer threads in an order that differsfrom the origina
datagram order, the ordering o the recordsin the database handles this.

Figure10.24 showsthe global variables.

xsem [prodconsd.c
1 #include "unpipc.h" P ,-’pr
2 #defi ne NBUFF 10
3 #defi ne MAXNTHREADS 100
4 int ni tens, nproducers, nconsuners; /* read-only */
5 struct (/* data shared by producers and consuners */
6 int buf f [NBUFF] ;
7 int nput ; /* itemnunber: 0, 1, 2, ... */
8 int nputval ; /* value to store in buff [l */
9 int nget ; /* itemnunber: 0, 1, 2, ... */
10 int ngetval ; /* value fetched frombuff (] */
11 sem_t mut ex, nenpty, nstored; /* semaphores, not pointers */
12 } shared;
13 void *produce (void *), *consume(void *);
pxsem [prodconsd.c

Figure10.24 Global variables.

Globals and shared structure

The number o consumer threads is now a global variable and is set from a
command-lineargument. We have added two more variablesto our shared structure:
nget, the next item number for any one o the consumer threads to fetch, and
ngetval, the corresponding value.

The main function, shown in Figure10.25, is changed to create multiple consumer
threads.

A new command-lineargument specifiesthe number o consumer threadsto cregte.
We must also alocate an array (¢id_consume) to hold all the consumer thread IDs,
and an array (conscount) to hold our diagnostic count d how many items each con-
sumer thread processes.

Multiple producer threads and multiple consumer threads are created and then
waited for.

Section 10.10 Multiple Producers, Multiple Consumers 247

pxsem [prodconsé.c

14 int

15 main(int argc, char **argv)

16 {

17 int i , prodcount [MAXNTHREADS], conscount[MAXNTHREADS];

18 pthread_t tid_produce[MAXNTHREADS], tid_consume[MAXNTHREADS];
19 if (argc '= 4)

20 err_quit ("usage: prodconsd <#itens> <#producer s> <#consuners>");
21 nitems = atoi(argvil]);

22 nproducers = min(atoi(argvi2]), MANTHREADS);

23 nconsuners = mn(atoi (argvi31), NMAXNTHREADS) ;

24 /* initialize three semaphores */

25 Sem_init (&shared.mutex, 0, 1):

26 Sem_init (&shared. nempty, 0, NBUFF);

27 Sem_init (&shared.nstored, 0, 0);

28 /* create all producers and all consuners */

29 Set_concurrency (nproducars + NCONSUMErS) ;

30 for (i = 0; i < nproducers; i++) {

31 prodcount[i] = O;

3z Pthread_create (&tid_produce(i], NULL, produce, &prodcountlil]);
33 }

34 for (i = 0; i < nconsuners; i++)

35 conscount (i] = O;

36 Pthread_create (&tid_consume (i), NULL, consume, &conscount[il]):
37 }

38 /* wait for all producers and all consuners */

39 for (i = 0; i < nproducers; i++) {

40 Pthread join(tid_produce(i], NULL);

41 printf ("producer count(%d] = %d\n", i, prodcount[i]);

42 }

43 for (i = 0; i < nconsumers; i++) (

44 Pthread_join(tid _consumefi], NULL);

45 printf ("consumer count[%d] = %d\n", i, conscount([i]);

46 }

47 Sem destroy (&shared.mutex) ;

48 Sem destroy (&shared.nempty) ;

49 Sem_destroy (&shared.nstored) ;

50 exit(0);

Bl 3}

pxsem [prodcons4.c
Figurel0 25 mai nfunctionthet crestes nol ti pl e producersand nol ti g e consuner s.

248 Posx Semagphores Chepter 10

79-83

Our producer function contains one new line from Figure 10.22. When the pro-
ducer threads terminate, the line preceded with the plussign isnew:

if (shared.nput >= nitens) {
+ Sem_post (&sharsd,.nstorad); [/* |let consuners ternminate */
Sengost (&shared.nempty) ;

Sem_post (&shared.mutex) ;
return(NULL); /* all done */
}

We again must be careful when handling the termination o the producer threads and
the consumer threads. After dl theitemsin the buffer have been consumed, each con
sumer thread blocksin the call

Sem_wait (&shared.nstored); /* wait for at least 1 stored item*/
We have the producer threads increment the nstored semaphore to unblock the con
sumer threads, letting them seethat they are done.

Our consumer functionisshown in Figurel0.26.

T2 vord pxsem [prodconsd.c
73 consume(void *arg)

74 {

75 int i;

76 for (; ;) (

77 Sem_wait (&shared.nstored); /* wait for at least 1 stored item *|
78 Sem wait (&shared.mutex) ;

79 if (shared.nget >= nitens) (

BO sem_post (&shared.nstored) ;

BL sem post {&shared.mutex) ;

82 return (NULL) ; /* all done */

83 }

g4 i = shared.nget % NBUFF;

85 if (shared.buffl[i] != shared.ngetval)

8€ printf("error: buff[%d] = %d\n", i, shared.buff[i]);
B7 shared.nget++;

g8 shared.ngetval++;

B9 Sem_post (&shared.mutex) ;

90 Sem_post (&shared.nempty) ; /* 1 nore enpty slot */

91 *((int *) arg) += 1;

92 }

93 1}

pxsem[prodconsd.c
Figuweld 26 Functionexecuted by dl consuner threads.

Termlnation of consumer threads

Our consumer function must now compare nget to nitems, to determine when it
isdone (similar to the producer function). After the last item has been consumed from
the buffer, the consumer threads block, waiting for the nstored semaphore to be

Secticau10.11 Multiple Buffers 249

10.11

greater than 0. Therefore, as each consumer thread terminates, it incrementsnst or ed
tolet another consumer thread terminate.

Multiple Buffers

In atypical program that processessomedata, wefind a Lagp d theform
while ((n = read(fdin, buff, BUFFSIZE)) > 0) {
/* process the data */

write(fdout, buff, n);
}

Many programsthat process a text file, for example, read aline d input, process that
ling, and writealine d output. For text files, the callstoread and wri t e are often
replaced with callsto thestandard I/0 functionsf get s and f put s.

Figure 10.27 shows one way to depict this operation, in which we identify a func-
tion named r eader that reads the data from the input file and a function named
wri t er that writesthedatatothe output file. Onebuffer isused.

process

der () buffer iter () :
r eader wilter
| A—

process
kernd

input output
file file

Figure10.27 Oneprocessthat readsdata intoabuffer and then writesthebuffer out.

Figure10.28 showsatimelined thisoperation. We havelabeled thetimelinewith
numbers on the left, designating some arbitrary units o time. Time increases down-
ward. We assume that a read operation takes 5 units d time, a write takes 7 units of
time, and the processing time between the read and writeconsumes2 unitsd time.

We can modify this application by dividing the processing into two threads, as
shown in Figure10.29. Here we use two threads, since a globa buffer is automaticaly
shared by the threads. We could also divide the copying into two processes, but that
would requireshared memory, which we have not yet covered.

Dividing the operation into two threads (or two processes) also requires some form
d natification between the threads (or processes). The reader thread must notify the
writer thread when the buffer is ready to be written, and the writer thread must notify
thereader thread when the buffer isready to befilled again. Figure10.30 showsatime
linefor thisoperation.

250 Posix Semaphores

Chapter 10

input 2
file ® 3

output 10——
-

input 18 —
file ™ 19—

output 26 ——

T T
T T T

®
|
I

file 11—

20___
Z-__
29 ——
23—
24 14—
25

file 27 ——
2831
29
301

o
Y
time

\Lread()
J
l buffer
~
rwrite{]
Py
~
Sread ()
-
r buffer
~
swrite()
v,

Fi gure 1028 Oneprocessthat readsdataintoabuffer and then writesthe buffer out.

input
file

output
file

F gure 1029 Filecopyingdivided intotwo threads

Section 10.11 Multiple Buffers 251

reader thread writer thread
0—— —0
1—— —‘—1
. =1 Ly
w;g:t_ gl readl) -L3
vl ~La
5-——— —l»S
6 —— notify writer I buffer -T 6
9—— --9
10 —4— . ——10 output
W-|- writeO ¢ | g o
12 —— —+12
— 13
14
notify reader 15
——16
——17
mp(l:t 19 read() 771‘2
20 —20
h—— - —+2
22 notify writer | buffer | ——22
23 —l—23
24 —124
25 —l—25
2% wite() —-2 output
27 —-27 file
28 ——28
29 ——29
30 ——30
31 # notify reader ﬁr—a’l
time time

Figurel0. 30 Filecopyingdivided intotwothreads

We assume that the time to process the data in the buffer, along with the notification d
the other thread, takes 2 unitsd time. The important thing to noteis that dividing the
reading and writing into two threads does not affect the total amount o time required
to do the operation. We have not gained any speed advantage; we have only distrib-
uted the operation into two threads (or processes).

We areignoring many fine pointsin these timelines. For example, most Unix ker-
nels detect sequential reading d afile and do asynchronousread ahead d the next disk
block for thereading process. Thiscanimprovetheactual amount time, caled "dock
timeg" that it takes to perform thistype d operation. We are also ignoring the effect of
other processes on our reading and writing threads, and the effects d the kernel's
scheduling algorithms.

The next step in our exampleis to use two threads (or processes) and two buffers.
Thisistheclassc double buffering solution, and weshow it in Figure10.31.

252

Posix Samaphores Chapter 10

18

Figurel10.31 Filecopyingdivided intotwo threadsusingtwo buffers

We show the reader thread reading into the first buffer while the writer thread is writ-
ing from thesecond buffer. Thetwo buffersare then switched between the two threads.

Figure10.32 showsatimelined doublebuffering. Thereader first readsinto buffer
#1, and then notifiesthe writer that buffer #1 is ready for processing. The reader then
starts reading into buffer #2, whilethe writer iswriting buffer #1.

Note that we cannot go any faster than the dowest operation, whichin our example
isthe write. Once the server has completed thefirst two reads, it has to wait the addi-
tional 2 unitsd time: the time difference between the write (7) and the read (5). The
total clock time, however, will be amost halved for the doubl e buffered case, compared
to thesinglebuffered case, for our hypothetical example.

Also notethat thewritesare now occurring asfast asthey can: each write separated
by only 2 units o time, compared to a separation d 9 units o time in Figures 10.28
and 10.30. Thiscan help with some devices, such as tape drives, that operate faster if
thedataiswritten to thedeviceas quickly as possible (thisiscalled a streaming mode).

The interesting thing to note about the double buffering problem isthat it is jus a
specia cased the producer—consumer problem.

We now modify our producer—consumer to handle multiple buffers. We start with
our solution from Figure 10.20 that used memory-based semaphores. Instead d jus a
double buffering solution, this solution handlesany number o buffers (theNBUFF defi-
nition). Figurel10.33showsthe global variablesand thenmai n function.

Declare NBUFF buffers

Our shar ed structurenow containsan array d another structure named buff, and
this new structurecontainsa buffer and itscount.

Open input file

The command-lineargument is the pathname d afilethat we will copy to standard
output.

Figure10.34 showsthepr oduce and consune functions.

Section 10 11 Mitipe Bffers 253

40-42

reader thread writer thread
0— —0
14— j—1
input 2 42
fiFI)e 3.1 read() = =
4 -4
51— \\ 15
6 —— notify writer I buffer #1 -6
7— - o 7
er 18
input 9- — ——9
fiFI)e 10— read) . ——10 output
11 —— write() 1y Ee™
12— L1
13 —— notify writer ——13
14— r buffer #2 . 14
15 —I— notify reader 15
~ ——16
——17
input ——18
—H" 1 read() _ 119 output
oD write() | 20 file
——21
22 notifywriter L —1—22
23J— buffer #1 ——23
24 J— notify reader —— 24
25 ——25
26 ——26
input 27 ——27
Tpl)e> 28 read() . ——28 output
29 vritelly | o9 file
30—{— —+—30
3l — —notifywriter —-31
R—— buffer #2 —-32
33 + notify reader —-i’— 33
time time

Figure10.32 Timeline for doublebuffering.

Empty critical region

Thecritica region that islocked by thenut ex isempty for thisexample. If thedata
bufferswere kept on alinked list, thiswould be where we could removethe buffer from
thelist, avoiding any conflict with the consumer's manipulation o thislist. But in our
example in which we just use the next buffer, with just one producer thread, nothing
needs protection from the consumer. We till show the locking and unlocking d the
mut ex, to emphasizethat thismay be needed in other modificationsto thiscode.

254 Podx Samaphores Chapter 10
xsem [mycat2.c
1 #include "unpipc.h" P / Y
2 #defi ne NBUFF 8
3 struct { /* data shared by producer and consuner */
4 struct {
5 char data[BUFFSIZE]; /* a buffer */
6 ssize_t n; /* count of #bytes in the buffer */
7 } buff [NBUFF] ; /* NBUFF of these buffers/counts */
8 sem_t mut ex, nenpty, nstored; /* semaphor es, not pointers */
9 } shared;
10 int fd; /* input file to copy to stdout */
11 void *produce (void *), *consume(void *);
12 int
13 main(int argc, char **argv)
14 {
15 pthread_t tid_produce, tid_consume;
16 if (argc 1= 2)
17 err_quit("usage: mycat2 <pathname>");
18 fd = Qpen{argvili], o_RDONLY)
19 /* initialize three senmaphores */
20 Sem_init (&shared.mutex, 0, 1);
21 Sem_init (&shared.nempty, 0, NBUFF);
22 Sem_init (&shared.nstored, 0, 0);
23 /* one producer thread, one consuner thread */
24 Set - concurrency(2) ;
25 Pthread_create (¢tid_produce, NULL, produce, NULL); /* reader thread */
26 Pthread_create(&tid_consume, NULL, consune, NULL); /* witer thread */
27 Pthread_join(tid_produce, NULL);
28 Pthread_join(tid_consume, NULL);
29 Sem_destroy(&shared. mutex) ;
30 Sem_destroy (&shared,nempty) ;
31 Sem_destroy (&shared.nstored) ;
32 exit(0):
33 }

43-49

Figurel0 33 Gobal veridd eand mai nfuncti on

Read data and increment nst or ed semaphore

pxsem[mycat2.c

Each timethe producer obtainsan empty buffer, it callsr ead. Whenr ead returns
the nst or ed semaphoreis incremented, telling the consumer that the buffer is ready.
When read returns 0 (end-of-file), the semaphore is incremented and the producer

returns.

Section 10.11 Multiple Buffers 255
xsem[mycat2.c
34 void * P 4
35 produce({void *arg)
36 |
37 int i;
38 for (i = 0;:) |
39 Sem_wait (&shared.nempty); /* wait for at least 1 enpty slot */
40 Sem_walt (&shared.mutex) ;
41 /* critical region */
42 Sem_post (&shared.mutex) ;
43 shared.buff{i) .n = Read(fd, shared.buff[i].data, BUFFS ZE);
44 if (shared.buff[i].n == 0) |
45 Sem_post (&shared.nstored); [* 1 nore stored item */
46 return (NULL) ;
a7 }
48 if (++i >= NBUFF)
49 i=0 /* circular buffer */
50 Sem_post (&shared . nstored); [/* 1 nore stored item */
51 }
52 }
53 void *
54 consume(void *arg)
55 |
56 int i;
57 for (i =0;;) (
58 Sem_wait (&shared.,nstored); /* wait for at least 1 stored item*/
59 Sem_walit (&shared, mutex);
60 /* critical region */
61 Sem_post (&shared.mutex) ;
62 if (shared.buff[i]l.n == 0)
63 return (NULL) ;
64 Write (STDOUT_FILENO, shared.buff[i].data, shared.buff[i].n);
65 if (++i >= NBUFF)
66 i =0; /* circular buffer */
67 Sem_post (&shared.nempty) ; /* 1 nore enpty slot */
68 }
69)

57- 68

pxsem[mycat2.c
Figurel0. 34 pr oduce and consunef uncti ons.

Consumer thread

The consumer thread takesthe buffersand writesthem to gandard output. A buff-
a containinga Lengh of 0 indicatesthe end-of-file. Aswith the producer, the critical
region protected by themutex isempty.

2% Posx Samegphores Chapter 10

In Section 22.3 d UNPv1, we developed an example using multiple buffers. In that example,
the producer was the s1GT0 signal handler, and the consumer was the main processing loop
(the dg_echo function). The variable shared between the producer and consumer was the
nqueue counter. The consumer blocked the sTGI0 signal from being generated whenever it
examined or modified thiscounter.

10.12 Sharing Semaphores between Processes

The rules for sharing memory-based semaphores between processes are smple: the
semaphore itsdlf (the semt datatype whose address is the first argument to
sem_init) must residein memory that isshared among all the processesthat want to
share thesemaphore, and the second argument to sem_init must bel

These rules are similar to those for sharing a mutex, condition variable, or read—write lock
between processes: the synchronization object itsdf (thepthread mutex_t variable, or the
pthread_cond_t variable, or thepthread_rwlock_t variable) must residein memory that
isshared among al the processes that want to share the object, and the object must be initial-
ized with the PTHREAD- PROCESS- SHARED attribute.

With regard to named semaphores, different processes (related or unrelated) can
aways reference the same named semaphore by having each process cadl sem- open
specifying the same name. Even though the pointers returned by sem- open might ke
different in each processthat calls sem- open for a given name, the semaphore func-
tionsthat use this pointer (e.g., sem_post and sem wait) will all referencethe same
named semaphore.

But what if we cdl sem open, which returns a pointer to a semt datatype, and
then cdl f or k? Thedescriptiond the f or k functionin Posix.1 says " any semaphores
that are open in the parent process shall also be open in the child process™ This means
that code d thefollowingformisOK:

sem_t *mutex; /* gl obal pointer that is copied across the fork0 */

/* parent creates named semaphore */
nut ex = Sem_open (Px_ipc_name (NAME), O_CREAT | O_EXCL, FILE- MDE, 0);

if ((childpid = Fork()) == 0) (
/* child */

Sem_wait (mutex) ;

/* parent */

Ser_post(nmut ex) ;

The reason that we must be careful about knowing when we can and cannot share a
semaphore between different processesis that the statedf a semaphore might be contained in
the sem t datatype itsdf but it might also use other information (e.g., file descriptors). We
will see in the next chapter that the only handle that a process has to describe a System V

Section 10.14 Implementation Using FIFOs 257

semaphoreis its integer identifier that is returned by semget. Any processthat knows that
identifier can then accessthe semaphore. All the gate information for a Sysem Vv semaphore
is contained in the kernd, and the integer identifier jug telsthe kernd which ssmaphoreis
being referenced.

10.713 Semaphore Limits
Two semaphorelimitsaredefined by Posix:

SEM- NSEMB- MAX the maximum number o semaphores that a process can have
open at once (Posix requiresthat thisbeat least 256), and

SEM- VALUE- MAX the maximum valued a semaphore (Posix requiresthat this be
at least 32767).

These two constants are often defined in the <unistd.h> header and can aso be
obtained at run timeby caling thesysconf function, asweshow next.

Example: sensysconf Program

The programin Figure10.35 callssysconf and printsthe two implementation-defined
limitsfor semaphores.

pxsem [semsysconf.c

[

#i ncl ude "unpipc.h"

int
main(int argc, char **argv)
{
printf ("SEM NSEMS_MAX = %1d, SEM- VALUE- MAX = %ld\n",
Sysconf (_SC_SEM_NSEMS_MAX), Sysconf (_SC_SEM VALUE_MAX));
exit(0);

o NOoO gah 0N

pxsem [semsysconf.c
Figure10.35 Call sysconf toobtain ssmaphorelimits.

If we executethison our two systems, weobtain

solaris % semsysconf
SEM- NSEMB- NAX = 2147483647, SEM- VALUE- MAX = 2147483647

al pha % sensysconf
SEM- NSEMVB- MAX = 256, SEM- VALUE- MAX = 32767

10.14 Implementation Using FIFOs

We now provide an implementation o Posix named semaphores using FIFOs. Each
named semaphore is implemented as a HFO using the same name. The nonnegative
number d bytesin the HFO is the current value d the semaphore. The sem_post

258 Rodx Samegphores Chapter 10

function writes 1 byte to the HFO, and the sem_wait function reads1 byte from the
HFO (blockingif the FIFO is empty, which iswhat we want). The sem_open function
creates the FIFO if the O_CREAT flag is specified, opens it twice (once read-only, once
write-only),and if a new FIFO has been created, writesthe number d bytes specified by
theinitia vaIHeto the HIFO.

T ssectian and the renai ni ngsecti as d this chapter cota n advanced taa cs thet you may
want to ski pon afird read ng.

We first show our sermaphor e. h header in Figure 10.36, which defines the funda:
mental sem t datatype.

1 /* the fundanental datatype */ my_pxsem_fif o/ semaphore.:
2 typedef struct {

3 i nt sem_fd[2]; /* two fds: [0] for reading, [1] for witing *|
4 int sem_magic; /* magi ¢ nunber if open */

5} semt;

(421

#define SEM MAGIC 0x89674523

#ifdef SEM FA LED

#undef SEM FA LED

#define SEM FAILED ((semt *)(-1)) /* avoi d conpil er warnings */
#endif

O © 0~

my_pxsem_fifo| semaphore.h
Fgurel0 3 senaphore. h header.

sem_t datatype

Our semaphore data structure contains two descriptors, one for reading the HFO
and one for writing the HFO. For similarity with pipes, we store both descriptorsin a
two-element array, with the first descriptor for reading and the second descriptor for
writing.

Thesem nagi ¢ member contains SEM_MAGIC once this structure has been initid-
ized. Thisvaue ischecked by each function that is passed asent t pointer, to meke
certain that the pointer really pointsto an initialized semaphorestructure. This member
isset to 0 when the semaphoreis closed. Thistechnique, although not perfect, can help
detect some programming errors.

sem_open Function

Figure 10.37 shows our sem+ open function, which createsa new semaphore or opens
an existing semaphore.

my_pxsem_fifo/sem_open.c

1 #include "unpipc.h"

2 #include "semaphore.h”

3 #i ncl ude <stdarg.h> /* for variable arg lists */
4 semt *

5 sem_open(const char *pathname, int oflag,...)

Sedion 10.14

Implementation Using FIFOs

259

45

47
48
49
50
51
52
53
54

i nt i, flags, save- erro;
char c;

mode_t node;

va_list ap;

sem_t *sem;

unsi gned i nt val ue;

if (oflag & O_CREAT) {
va_start (ap, oflag); /* init ap to final named argunent */
node = va_arg(ap, va_mode_t);
val ue = va_arg(ap, unsi gned int);
va_end(ap) ;

if (mkfifo(pathname, node) < 0) {

if (errno == EEXI ST & (oflag & O_EXCL) == 0)
oflag & ~O_CREAT; /* already exists, K */
el se
return (SEM_FAILED) ;
1
1
if ((sem= malloc(sizeof(sem_t))) == NUL)
ret ur n{SEM_FAILED) ;
sem->sem_fd[0] = sem->sem fd[1l] = -1;

if ((sem->sem_fd[0] = open(pathname, O_RDONLY | O_NONBLOCK)) < 0)
goto error;

if ((sem->sem_£dll]
goto error;

open (pathname, O_WRONLY | O_NONBLOCK)) < 0)

/* turn of f nonbl ocking for sem £4[0] */

if ((flags = fcntl(sem->sem_fd[0], F_GETFL, 0)) < 0)
goto error;

fl ags &= ~O_NONBLOCK:

if (fcntl(sem->sem_fd[0], F_SETFL, flags) < 0)
goto error;

if (oflag & O_CREAT) { /* initialize senmaphore */
for (i = 0; i < value; i++)
if (write(sem->sem_fd[1l], &c, 1) != 1)
goto error;
1

sem->sem_magic = SEM MAGIC;
return (sem);

error:

save-errno = errno;
if (oflag & O_CREAT)

unlink (pathname) ; /* if we created FI FO */
cl ose (sem->sem_£d (0]) ; /* ignore error */
close(sem->sem_£d[1]); /* ignore error */
free(sem) ;

errno = Save- errno;
return (SEM_FAILED) ;

Figurel0 37 sem_open function.

my_pxsem_fifo/sem_open.c

260 Pogx Samgphores Chagpter 10

Create a new semaphore

13-17 If the caller specifies the 0_CREAT flag, then we know that four arguments are
required, not two. We cdl va_start to initialize the variable ap to point to the lag
named argumen(of lag. We then useap and theimplementation's va_arg function
to obtain the valuesfor the third and fourth arguments. We described the handlingd
thevariableargument list and our va_mode_t datatype with Figure5. 21

Create new FIFO

18-23 A new HFO is created with the name specified by the cdler. As we discussed in
Section 4.6, this function returnsan error of EEXI ST if the HFO already exigts. If the
cdler d sem_open does not specify the o_ExcL flag, then this error is OK, but we do
not want to initializethe HFO | ater in thefunction, so weturn df theo_CREAT flag.

Allocate sem_t datatype and open FIFO for reading and writing

25-37 We allocate space for asem t datatype, which will contain two descriptors. e
open the AFO twice, once read-only and once write-only. We do not want to block in
either cdl to open, so we specify the 0_NONBLOCK flag when we open the HFO read-
only (recall Figure42l). We also specify the 0_NONBLOCK flag when we open the HFO
write-only, but this is to detect overflow (e.g., if we try to write more than P P& BUF
bytes to the HFO). After the HFO has been opened twice, we turn df the nonblocking
flag on the read-only descriptor.

Initialize value of newly create semaphore

38- 42 If a new semaphore has been created, weinitializeits value by writingval ue num-
ber o bytes to the HFO. If theinitial value exceeds the implementation's A P& BUF
limit, thecdl towr i t e after theAFO isfull will return an error & EAGAI N

sen- cl ose Function

Figure10. 38showsour sem c1ose function.
11-15 Wecl ose both descriptorsand f r ee the memory that wasallocated for thesem t
datatype.

sen- unl i nk Function

Our sem_unlink function, shown in Figure 10. 39, removes the name associated with
our semaphore. It just callsthe Unix unl i nk function.

sem post Function

Figure 10.40 shows our sem_post function, which increments the value d a
semaphore.

11-12 Wewr i t e an arbitrary byte to the FIFO. If the HFO was empty, this will wake up
any processesthat areblocked inacal tor ead on thisHFO, waiting for abyted data.

Section 10.14

[mplementation Using FIFOs

261

by =

©oo~NOOU b~ w

10

12
13
14
15
16
17

#include
#include

"unpipec.h®

int
sem_close(sem_t *sem)

{

"semaphore.h"

if (sem->sem magic != SEM MAGIC) ({

errno = El NVAL;
return (-1);
}

sem->sem_magic = 0;

if (close(sem->sem £fd[0]) == -1 || close(sem->sem_£fd[1]) ==

free(sem);
return (-1);
}
free(sem);
return (0):

/* incasecaller tries to use it

my_pxsem_fifo/sem_close.c

later */
-1) {

Figurel0.38 sem_close function.

%]

=1 oh LN s W

#i ncl ude
#include

"unpi pc.h"

int
sem_unlink (const char

{

"semaphore.h"

*pathname)

return (unlink(pathname));

!

Figure10.39 sem_unlink function.

my_pxsem_fifo/sem_close.c

my_pxsem_fifo/sem_unlink.c

my_pxsem_fifo[sem_unlink.c

R
RPOOVON OUlew NKH

=R
= W N

#i ncl ude "unpipc.h"
#include "semaphore.h"
int
sengost (sem_t *sem)
{
char C;
if (sem->sem_magic != SEM_MAGIC) {
errno = El NVAL;
return (-1);
}
if (wite(sem->sem_fd[1], &c, 1) == 1)
return (0):

return (-1);

my_pxsem_fifo/sem_post.c

Figure10.40 senmost function.

my_pxsem_fifo/sem_post.c

262

Podx Semgphores Chapter 10

sem wait Function

11-12

10.15

Thefinal function isshown in Figure1041, sem wait.

my_pxsem_fifo[sem_wait.c

1 #include "unpipe.h"”

2 #include "semaphore.h"

3int

4 sem_wait (sem t *sem)

5 {

6 char (o

7 if (sem>serf-nmgic != SEM MAGIC) {
8 errno = ElI NVAL

9 return (-1);

10 }

11 if (read(sem->sem_f£f4a[0], &c, 1) == 1)
12 return (0);

13 return (-1);

14 }

my_pxsem_fifo[sem_wait.c
Fgurel04l sem wait function.

Wer ead 1 bytefrom the HFO, blocking if the FIFO isempty.

We have not implemented the sem_trywait function, but that could be done by
enabling the nonblocking flag for the HFO and calling r ead. We have aso not imple-
mented the sem_getvalue function. Some implementations return the number d
bytes currently in a pipe or HFO when the st at or fstat functionis caled, as the
st - size member d the st at structure. But thisis not guaranteed by Posix and is
therefore nonportable. Implementationsd these two Posix semaphore functions are
shownin the next section.

Implementation Using Memory-Mapped /O

We now provide an implementation d Posix named semaphores using memory-
mapped I/0 along with Posix mutexes and condition variables. An implementation
similar tothisis provided in Section B.11.3 (theRationale) d [IEEE 1996].

We cover memory-mapped 1/0 in Chapters12and 13. Yau may wish to skip thissection until
you haveread thosechapters.

We first show our senmaphor e. h header in Figure 1042, which defines the funda-
mental sem_t datatype.

sem_t datatype

Our semaphore data structure contains a mutex, a condition variable, and an
unsigned integer containingthe current valued the semaphore. Asdiscussed with Fg-
ure 10.36, the sem_magic member contains SEM_MAGIC once this structure has been
initialized.

Section 10.15 Implementation Usng Memory-Mgoped 1/0 263

my_pxsem_mmap|semaphore.h

1 /* the fundanental datatype */

2 typedef struct {

3 pthread_mutex_t sem mutex; /* lock to test and set semaphore val ue */
4 pthread_cond_t sem_cond; /* for transition from O to nonzero */

5 unsi gned int sem_count; /* the actual semaphore value */

6 int sem_magic; /* magi c number if open */

7 } semt;

(=]

#define SEM_MAGIC 0x67458923

9 #ifdef SEM- FAI LED

10 #undef SEM- FAI LED

11 #define SEM- FAILED ((sem-t *)(-1)) /* avoid conpiler warnings */
12 #endif

my_pxsem_mmap [semaphore.h
Figurel0.42 semaphore. h header.

sem_open Function

19-23

24-32

33-37

38-42

Figure 1043 shows the firgt hdf d our sem_open function, which creates a new
semaphoreor opensan existingsemaphore.

Handle variable argument list

If the caller specifies the O_CREAT flag, then we know that four arguments are
required, not two. We described the handling d the variable argument list and our
va_mode_t datatype with Figure 521. We turn df the user-execute bit in the node
variable(s_1xUsR) for reasonsthat we describeshortly. A fileis created with the name
specified by thecdler, and the user-executebit isturned on.

Createa new semaphore and handle potential race condition

If, when the 0_CREAT flag is gpecified by the cdler, we were to jus open the file,
memory map its contents, and initializethe three membersd the sem t structure, we
would havea race condition. We described this race condition with Figure5.21, and the
technique that we use is the same as shown there. We encounter a similar race condi-
tionin Figure10.52.

Set the file size

We set thesized the newly created file by writing a zero-filled structureto thefile.
Since we know that thefile has just been created withasize d 0, wecdl wri t e toset
thefilesze, and not ftruncat e, because, as we note in Section 13.3, Posx does not
guaranteethat £t r uncat e workswhenthesized aregular fileisbeing increased.

Memory map the file

Thefileis memory mapped by mmap. Thisfile will contain the current valued the
sem t data structure, although since we have memory mapped the file, we just refer-
enceit through the pointer returned by mmap: wenever cdlread orw i t e.

264 Posix Semaphores Chapter 10

15

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
a1
42

43
44
45
46
47
48
49
50

my_pxsem_mmap [sem_open.c

#i ncl ude "unpipc.h”

#i ncl ude "semaphore.h"

#i ncl ude <stdarg.h> /* for variable arg lists */

#defi ne MX-TRES 10 /* for waiting for initialization */
sem_t *

sem_open{const char *pathname, int oflag,...)
{
int fd, i, created, save-errno;
mode_t node;
va_list ap;
sem_t *sem, seminit;
struct stat statbuff;
unsi gned int val ue;
pthread_mutexattr_t nattr;
pthread_condattr_t cattr;

created = O;

sem = MAP- FAl LED, /* [sic] */
agai n:
if (oflag & O_CREAT) {
va_start (ap, oflag); /* init ap to final nanmed argument */

node = va_arg(ap, va_mode_t) & ~S_IXUSR;
val ue = va_argl(ap. unsi gned int);
va_end (ap) ;

/* open and specify O_gXcL and user-execute */
fd = open(pathname, oflag | O_EXCL | O_RDWR, node | S_IXUSR);
if (fd < 0) ¢
if (errno == EEX ST && (oflag & O_EXCL) == 0)
goto exi sts; /* already exists, (K */
el se
return (SEM_FAILED) ;
}
created = 1;
/* first one to create the fileinitializes it */
/* set the file size */
bzero(&seminit, sizeof (seminit));
if (write(fd, &seminit, sizeof(seminit)) != sizeof(seminit))
goto err;

/* mermory map the file */
sem = mmap (NULL, sizeof(sem_t), PROT_READ | PROT_WRITE,
MAP- SHARED, fd, 0);
if (sem == MAP_FAILED)
goto err;

/* initialize nutex, condition variable, and val ue */
if ((i = pthread_mutexattr_init (&mattr)) 1= 0)

goto pt hreaderr;
pthread_mutexattr_setpshared(&mattr, PTHREAD- PROCESS- SHARED) ;
i = pthread_mutex_init (&sem->sem mutex, &mattr);
pthread_mutexattr_destroy (smattr); [* be sure to destroy */
if (1 1= 0

goto pt hreaderr;

-

Section 10.15 Implementation Usng Memory-Magoped /0 265

43-57

58-61

62-67

£9-78

51 if ((1 = pthread_condattr_init (&cattr)) != 0)

52 goto pthreaderr;

53 pthread_condattr_setpshared(&cattr, PTHREAD- PROCESS- SHARED) ;
54 i = pthread cond_init(&sem->sem_cond, &cattr);

55 pthread_condattr_destroy (&cattr) ; /* be sure to destroy */
56 if (i 1= 0)

57 goto pthreaderr;

58 if ((sem->sem_count = val ue) > sysconf(_SC_SEM VALUE MAX)) {
59 errno = ElI NVAL;

60 goto err;

61 }

62 /* initialization conplete, turn off user-execute bit */
63 if (fchmod(fd, npde) == -1)

64 goto err;

65 cl ose(fd);

66 sem->sen_magic = SEM_MAGIC;

67 return (sem):

68 }

my_pxsem_mmap|sem_open.c
Figure10.43 sem openfunction: firg hdf.

Initialize sem t data structure

We initializethe three members d the sem — tdata structure: the mutex, the condi-
tion variable, and the value d the semaphore. Since Posix named semaphores can be
shared by any processthat knowsthe semaphore's name and has adequate permission,
we must specify the PTHREAD-FROCESS-SHARED attributewhen initializing the mutex
and condition variable. To do so for the semaphore, wefirst initialize the attributesby
cdlingpthread_mutexattr_init, then set the process-shared attributein thisstruc-
ture by calling pthread_mutexattr_setpshared, and then initializethe mutex by
cdlingpthread mutex_init. Three nearly identical stepsare donefor the condition
variable. Weare careful to destroy theattributesin thecase d an error.

Initialize semaphore value

Findly, theinitial value d the semaphoreis stored. We compare this value to the
maximum value alowed, which weobtain by calling sysconf (Section10.13).
Turn off user-executebit

Once the semaphore is initialized, we turn df the user-execute bit. Thisindicates
that the semaphore has been initialized. We cl ose thefile, since it has been memory
mapped and we do not need to keepit open.

Figure 10.44 shows the second hdf d our sem—open function. In Figure 523, we
described a racecondition that we handl e here using the same technique.

Open existing semaphore
Weend up hereif either the 0_CREAT flag isnot specified or if O_CREAT isspecified
but the semaphorealready exists. In either case, we are opening an existing semaphore.

We open thefile containing the sem — t datatype for reading and writing, and memory
map thefileinto theaddressspaced the process (mmap).

266 Posix Semaphores Chapter 10
69 exi st s: my_pxsem_mmap|sem_open.c
70 if ((fd = open(pathname, O_RDWR)) < 0) {

71 if (errno == ENCENT && (oflag & O_CREAT))

72 goto agai n;

73 goto err;

74 }

75 sem = mmap(NULL, sizeof (sem_t), PROT_READ | PROT WRITE,
76 MAP- SHARED, td, 0);

77 if (sem == MAP_FAILED)

78 goto err;

79 /* make certaininitializationis conplete */
80 for (i = 0; i < MAX TRIES; i++) {

81 if (stat(pathname, &statbuff) == -1) {

B2 if {errno == ENCENT && (oflag & O_CREAT)) {
83 cl ose(fd) ;

84 goto agai n;

85 }

86 goto err:

87 }

88 if ((statbuff.st_mode & S_IXUSR) == 0) {

89 close(£f4) ;

90 sem->sem _magic = SEM_MAGIC;

91 return (sem);

92 }

93 sl eep(1);

94 }

95 errno = ETI MEDOUT;

96 goto err;

97 pt hreaderr:

98 errnc = i;

95 err:

100 /* don't |et munmap() or close() change errno */
101 save- errno = errno;

102 if (created)

103 unl i nk(pat hnarre) ;

104 if (sem != NMAP- FA LED)

105 munmap (sem, sizeof(sem_t));

106 cl ose(fd) ;

107 errno = Save- errno;

108 return (SEM_FAILED);
109 }

Figurel044 sem_open function: second haf.

my_pxsem_mmap|[sem_open.c

Wecan now see why Posix.1 statesthat "' referencesto copiesd the semaphore produce unde-
fined results.”” When named semaphoresare implemented using memory-mapped1/0, the
semaphore (thesem t datatype) is memory mapped into the address space d al processes
that have the semaphoreopen. Thisisperformed by sem_open in each processthat opensthe
named semaphore. Changesmadeby one process{e.g., to the semaphore's count) areseen by
al the other processesthrough the memory mapping. If we were to make our own copy d a
sem t datastructure, thiscopy would no longer be shared by all the processes. Even though

Section 10.15 Implementation Usng Memory-Mapped 1/0 267

we might think it was working (the semaphore functions might not give any errors, at least
until we cal sem- cl ose, which will unmap the memory, which would fail on the copy), no
synchronizationwould occur with the other processes. Note from Figure 1.6, however, that
memory-mapped regionsin a parent are retained in the child acrossa f ork, soacopy o a
semaphorethat ismade by the kernel from a parent to achild acrossaf or k isOK.

Make certain that semaphoreis initialized

79-96 We must wait for the semaphoreto beinitialized (in case multiplethreadstry to cre-
ate the same semaphore at about the sametime). Todo so, wecdl st at and look at the
fileés permissions(the st—mode member o the st at structure). If the user-execute bit
isaff, thesemaphorehas been initialized.

Error returns
97-108 When an error occurs, weare careful not to changeerrno.

sem_close Function
Figure 1045 shows our sem— close function, which jus calls munmap for the region

that was memory mapped. Should the caller continue to use the pointer that was
returned by sem_open, it should receivea SI GSEGVsignal.

- my_pxsem_mmap|sem_close.c
1 #include "unpipc.h” YF = P} 2

2 #include "semaphore.h"

3int

4 sem_close(sem t *sem)

5 {

if (sem->sem_magic != SEM_MAGIC) {
errno = EI NVAL;
return (-1);

}

if (munmap(sem, sizeof(sem_t)) == -1)
return(-1);

e
P O OWow~N®

12 return (0);
13 }

my_pxsem_mmap [sem_close.c
Figure10.45 sem_close function.

sem_unlink Function

Our sem_unlink function shown in Figure 10.46 removes the name associated with
our semaphore. It just callstheUnix unlink function.

sem_post Function
Fgure 1047 shows our sem post function, which increments the vaue d a

semaphore, awaking any threadswaiting for the semaphoreif the semaphore value has
just becomegreater than 0.

268 Poax Samgphores Chapter 10

B =

W oo -d oW

#include "unpipc.h"
#include "semaphore.h"

my_pxsem_mmap|sem_unlink.c

sem_unlink (const char *pathname)

if (unlink(pathname) == -1)
return (-1);
return (0);

my_pxsem_mmap[sem_unlink.c
Figure1l046 sem_unlinkfunction.

[

©Co~N OO0 h~W

10

12
13
14
15
16
17
18
19
20

#include "unpipc.h"
#include "semaphore.h"

my_pxsem_mmap/sem_post.c

sem_post (sem_t *sem)

int n;

if (sem->sem_magic != SEM MAGIC) {
errno = El NVAL;
return (-1);
}
if ((n = pthread_mutex_lock(&sem->sem_mutex)) != 0) {
errno = N,
return (-1);
}
if (sem>sen--count == 0)
pthread_cond_signal (&sem->sem_cond) ;
sem—->sem_count++;
pthread_mutex_unlock (&sem->sem_mutex) ;
return (0);

11-18

my_pxsem_mmap [sem_post.c
Figurel0.47 sem_post function.

We must acquire the semaphore's mutex lock before manipulatingits value. If the

semaphore's value will be going from 0 to 1, we cdl pthread_cond_signal to wake
up anyonewaiting for thissemaphore.

sem wait Function

The sem_wait function shown in Figure 1048 waitsfor the valued the semaphoreto
exceed 0.

Section10.15 Implementation Using Memory-Mgoped 1/0 269

my_pxsem_mmap/sem_wait.c

1 #include "unpipec.h"®

2 #include "semaphore.h"

3int

4 sem wait(sem t *sem)

5 {

6 i nt n;

7 if (sem>sen- nagi c !'= SEM_MAGIC) {

8 errno = EI NVAL;

9 return (-1);

1c }

11 if ((n = pthread_mutex_lock (&sem->sem_mutex)) != 0) {
12 errno = n;

13 return (-1);

14 }

15 whi |l e (sem->sem_count == 0)

16 pthread_cond_wait (&sem->sem cond, &sem->sem_mutex) ;
17 sem->sem_count—-;

18 pthread_mutex_unlock(&sem->sem_mutex) ;

18 return (0);

20 }

my_pxsem_mmap[sem_uwait.c
FHgurel0.48 sem wait function.

11-18 We must acquire the semaphore's mutex lock before manipulating its value. If the
valueis0, wegotosleepinacall topthread_cond_wait, waiting for someoneto call
pthread_cond_signal for this semaphore, when itsvalue goesfrom0 to 1. Oncethe
valueisgreater than 0, we decrement the value and rel ease the mutex.

sem_trywait Function

Figure10.49 showsthe sem_trywait function, the nonblocking versiond sem_wai t.

11-22 We acquire the semaphore's mutex lock and then check its value. If the valueis
greater than 0, it is decremented and the return value is 0. Otherwise, the return value
is—1 with errno set to EAGAIN.

sem_getvalue Function
Figure 10.50 shows our final function, sem_getvalue, which returnsthe current value
d the semaphore.

11-16 We acquirethe semaphore’'s mutex lock and returnits value.

We can see from this implementation that semaphores are smpler to use than
mutexesand condition variables.

20 Posix Semaphor es Chapt er 10

my_pxsem_mmap|sem_trywait.c

1 #include "unpipc.h”

2 #include "semaphore.h"

3int

4 sem_trywait (sem_t *sem)

5 1

6 int n, rc;

7 if (sem->sem _magic != SEM_MAGIC) {

8 errno = El NVAL;

g return (-1);

10 }

11 if ((n = pthread_mutex_lock (&sem->sem_mutex)) != 0) {

12 errno = nN;

13 return (-1);

14 }

15 if (sem->sem_count > 0) {

le sem >sen- count - -;

17 rc = 0;

18 } else {

19 rc = -1;

20 errno = EAGAI N

21 }

22 pthread mutex unlock(&sem->sem_mutex) ;

23 return (rc):

24} .

my_pxsem_mmap|sem_trywait.c

Figure10.49 sem_trywait function.

AR e p—— my _p;tsem_mmap{'sem _getvﬁfue.c

2 #include "semaphore.h"

3int

4 sem_getvalue(sem_ _t *sem, int *pvalue)

5 ¢

6 i nt n;

7 if (sem->sem_magic != SEM_MAGIC) {

8 errno = El NVAL;

g return (-1);

10 }

11 if ((n = pthread_mutex_lock (&sem->sem_mutex)) != 0) {

12 errno = nN;

13 return (-1);

14 }

15 *pvalue = sem->sem_count;

16 pthread_mutex_unlock (&sem->sem_mutex) ;

17 return (0);

18 }

my_pxsem_mmap [sem_getvalue.c
Figure1050 sem_getvalue function.

Section 10.16 Implementation Usng Sydem v Samegphores 271

10.16 Implementation Using System V Semaphores

We now provideone moreimplementationd Posix named semaphores using SystemV
semaphores. Since implementationsd the older System V semaphores are more com-
mon than the newer Posx semaphores, this implementation can alow applicationsto
start using Posix semaphores, even if not supported by the operating system.

We cover SystemV semaphores in Ghapter 11 You may w sh to skip ths setian util you
haveread thet chepter.

We firgt show our sermaphor e. h header in Figure 10.51, which defines the funda-
mentd sem_t datatype.

my_pxsem_svsem|[semaphore.h

1 /* the fundanental datatype */

2 typedef struct {

3 int sem_semid; /* the SystemV semaphore ID */

4 i nt sem_magic; /* magi ¢ nunber if open */

5) sem_t;

6 #define SEM MAGIC 0x45678923

7 #ifdef SEM FA LED

8 #undef SEM FAl LED

9 #define SEM FAILED ((sem_t *)(-1)) /* avoi d conpil er warni ngs */
10 #endif

11 #ifndef SEMUNVK

12 #defi ne SEMMK 32767 /* historical SystemV nax val ue for sem */
13 #endif

my_pxsem_svsem [semaphore.h
F gurel0.51 semaphor e.h header.

sem_t datatype

1-5 Weimplement a Posx named semaphore using a System V semaphore set consst-
ingd one member. Our semaphore data structurecontainsthe SystemV semaphorel D
and amagic number (whichwe discussed with Figure10.36).

sem_open Function

Figure 1052 shows the firg hdf d our sem _open function, which creates a new
semaphoreor opensan existing semaphore.

my_pxsem_svsetn[sem_open.c

1 #include "unpipc.h”

2 #include "semaphore.h"

3 #i ncl ude <stdarg.h> /* for variable arg lists */

4 #define MMX-TRES 10 /* for waiting for initialization */
5 sem_t *

6 sem open(const char *pathname, int oflag,...)

272 Posix Semaphores Chapter 10
T
8 int i, fd. senflag, semd, save- errno;
9 key-t key;
10 node-t node;
11 va_list ap;
12 sem_t *sem;
13 uni on senun ar g;
14 unsi gned int val ue;
15 struct semid_ds sem nfo;
16 struct sembuf initop;
% b /* no node for sem_open() w/out O_CREAT; guess */
18 senfl ag = SVSEM MODE;
19 semd = -1;
20 if (oflag & O_CREAT) {
21 va_start (ap, oflag); /* init ap to final named argunent */
22 node = va_arg(ap, va_mode_t);
23 val ue = va_arg(ap, unsigned int);
24 va_end(ap) ;
25 /* convert to key that will identify SystemV semaphore */
26 if ((fd = open(pathname, oflag, node)) == -1)
27 return (SEM_FAILED);
28 close(fd);
29 if ((key = ftok(pathname, 0)) == (key_t) - 1)
30 return (SEM_FAILED);
31 semflag = IPC_CREAT | (mode & 0777);
32 if (oflag & O_EXCL)
33 semflag |= IPC_EXCL;
34 /* create the SystemV semaphore with | PG EXCL */
35 if ((semd = semget(key, 1, senflag | IPGEXQ)) >= 0) {
36 /* success, we're the first soinitializeto o */
37 arg.val = O;
38 if (semctl(semid, 0, SETVAL, arg) == -1)
39 goto err;
40 /* then increment by val ue to set sem_otime nonzero */
41 if (value > SEMVMX) {
42 errno = El NVAL;
43 goto err;
44 }
45 initop.sem_num = O;
46 initop.sem_op = val ue;
47 initop.sem_flg = O;
48 if (semop(semid, &initop, 1) == -1)
49 goto err;
50 goto finish;
51 } else if (errmo 1= EEXIST || (senflag &« |PGEXQL) '= 0)
52 goto err;
53 /* else fall through */
54 }

Fogureld® sem open function:firg ref.

my_pxsem_svsem / sem_open.c

Section10.16 Implementation Usng Sydem V Semephores 273

20-24

25-30

31-33

34-50

40-44

51-53

Create a new semaphore and handle variable argument list

If the caller specifies the 0_CREAT flag, then we know that four arguments are
required, not two. We described the handling o the variable argument list and our
va_mode_t datatype with Figure5.21.

Create ancillary file and map pathname into System V IPC key

A regular fileis created with the pathname specified by thecaller. We do so just to
have a pathname for ftok to identify the semaphore. The caller's oflag argument for
the semaphore, which can be either 0_CREAT or O_CREAT | O_EXCL, isused in thecal
toopen. Thiscreatesthefileif it does not already exist and will causean error return if
thefile already exists and O_EXCL is specified. The descriptor is closed, because the
only used thisfileiswith £tok, which convertsthe pathname into a System V IPC key
(Section3.2).

Create System V semaphore set with one member

We convert the 0_CREAT and O_EXCL constantsinto their corresponding System V
IPC_xxx constants and call semget to create a System V semaphore set consisting o
onemember. Wealways specify TPC_EXCL to determine whether the semaphore exists
or not.

Initialize semaphore

Section 112 describes a fundamental problem with initializing System V
semaphores, and Section 11.6 shows the code that avoids the potential race condition.
Weuseasimilar technique here. Thefirst thread to createthe semaphore (recall that we
alwaysspecify | PC_EXCL) initializesit to 0 with acommand o SETVAL to semctl, and
then setsits value to the caller's specified initial value with semop. We are guaranteed
that the semaphore's sem_otime valueisinitialized to 0 by semget and will be set
nonzero by the creator's call to semop. Therefore, any other thread that finds that the
semaphore already exists knows that the semaphore has been initialized once the
sen—otime valueis nonzero.

Check initial value

We check theinitial value specified by the caller because System V semaphoresare
normally stored as unsigned shorts (the sem structure in Section 11.1) with a maxi-
mum value d 32767 (Section 11.7), whereas Posix semaphores are normally stored as
integers with possibly larger allowed values (Section 20.13). The constant SEMVMX is
defined by some implementationsto bethe System V maximum value, or wedefineit to
be32767in Figure10.51.

If the semaphore aready exists and the caller does not specify 0_ExCr, thisis not
an eror. In this situation, the code falls through to open (not create) the existing
semaphore.

Figure10.53shows the second hdf o our sem_open function.

274 Posix Semaphores Chapter 10

55
56
57
58
59
60
61
62
63

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

79
80
81

82
83
84
85

my_pxsem_suvsem /sem_open.c

(O_CREAT not secified) or
(O_CREAT W t hout O_EXCL and senmaphore al ready exists).
* Must open semaphore and nmake certain it has been initialized.
*/
if ((key = ftok(pathname, 0)) == (key-t) - 1)
goto err;
if ((semd = semget(key, 0, semflag)) == -1)
goto err;

arg.buf = &seminfo;
for (i =0; i < MX-TRES i++) {(
if (semctl(semid, 0, IPC_STAT, arg) == -1)
goto err;
if (arg.buf->sem_otime != 0)
goto finish;
sleep(l);
)
errno = ETI MEDQOUT:
err:
save- errno = errno; /* don't let semctl() change errno */
if (semd 1= -1)
senctl (semd, 0, IPC_RMID);
errnc = save- errno:
return (SEM_FAILED);

finish:
if ((sem= malloc(sizeof(sem_t))) == NULL)
goto err;
sem d;
SEM_MAGIC;

sem->senm_semid
sem->sem_magic
return (sem);

} my_pxsem_svsem/sem_open.c

Figurel0d. 53 sem openfunction: second hd f.

Open existing semaphore

55-63

For an existing semaphore (the 0_CREAT flag is not specified or O_CREAT is goedi-

fied by itsdf and the semaphore al ready exists), we open the System V semaphore with
senget . Noticethat sem open does not have a mode argument when O_CREAT is not
specified, but senget requires the equivalent & a mode argument even if an exising
semaphore is jus being opened. Earlier in the function, we assigned a default vaue
(the svSEM_MODE constant from our unpi pc. h header) that we passto senget when
O_CREAT is not specified.

Wait for semaphore to be initialized

64-72

We then verify that the semaphore has been initialized by calling senct| with a

command d | PG- STAT, waiting for sem_otime to be nonzero.

Error returns

73-78

When an error occurs, weare careful not to changeerrneo.

Section 10.16 Implementaetion Usng Sydem V Samgphores 275

Allocate semy t datatype

74-84 Weallocatespaceforasem-t datatype and store theSystem V semaphore D in the
structure. A pointer tothesem t datatype isthereturn valuefrom thefunction.

gem close Function

Figure 10.54 shows our sem cl ose function, which just calls free to return the
dynamically allocated memory that was used for thesem+ t datatype.

= : my_pxsem_svsem [sem_close.c
#include "unpipc.h" Yy-p = ’(g

1
2 #include "semaphore.h"
3int

4 sem close(sem t *sem)
5 {

6 if (sem->sem_magic != SEM_MAGIC) {
7 errno = ElI NVAL;

8 return (-1);

9 }

10 sem->sem magic = O; /* just in case */
11 free(sem);

12 return (0);

13)

my_pxsem_svsem [sem_close.c
Figurel0.54 sem- cl osefunction.

sem_unl i nk Function

Our sem_unlink function, shown in Figure 10.55, removes the ancillary file and the
SysemV semaphore associated with our Posix semaphore.

Obtain System V key associated with pathname

£-16 ft ok converts the pathname into a System V IPC key. The ancillary file is then
removed by unl i nk. (Wedo so now, in caseone d the remaining functions returns an
error.) We open the System V semaphore with senget and then removeit with a com-
mand d 1 PC_RMIDtosenct 1.

sem_post Function

Figure 1056 shows our sem_post function, which increments the value o a
semaphore.
11-16 We cdl semop with a single operation that increments the semaphore value by one.

gem_Wai t Function

Thenext functionisshown in Figurel0.57; itissem_wait, which waitsfor thevalue d
thesemaphoreto exceed 0.
11-16 We cdl semop with asingle operation that decrementsthe semaphore value by one.

276 Posix Semaphores Chapter 10

my_pxsem_svsem[sem_unlink.c

1 #include "unpipc.h"

2 #include "semaphore.h"

3int

4 sem_unlink(const char #*pathname)

5 |

6 int sem d;

7 key-t key:

8 if ((key = ftok(pathname, 0)) == (key_t) - 1)
9 return (-1);
10 if (unlink(pathname) == -1)
11 return (-1);
12 if ((semd = semget(key, 1, SVSEM_MODE)) == -1)
13 return (-1);
14 if (semctl(semid, 0, IPC_RMID) == -1)
15 return (-1);
16 return (0);

17 }

my_pxsem_svsem [sem_unlink.c
Figure1055 sem_unlinkfunction

pT— C— my_pxsem_suvsem [sem_post.c
2 #include "semaphore.h"

3int

4 sem_post(sem_t *sem)

5 ¢

6 struct sembuf op;

7 if (sem->sem_magic != SEM_MAGIC) {

8 errno = El NVAL;

] return (-1);

1c }
11 op.sem _num = O;

12 op.sem_op = 1;

13 op.sem _flg = O;

14 if (semop(sem->sem semid, &op, 1) < 0)

15 return (-1);

16 return (0);

17)

my_pxsem_suvsem [sem_post.c
Figure10.56 sem_postfunction

sem_trywait Function

Our sem_trywait function, the nonblocking version d sem—wait, is shown in Ag
urel058.

13 The only change from our sem_wait function in Figure 10.57 is specifying
sem_fl g as IPC_NOWAIT. If the operation cannot be completed without blocking the
caling thread, the return value from semop IS EAGAIN, which iswhat sem_trywait
must return if the operation cannot be completed without blocking.

Section 1016 Implementetion Usng Sydem V Semephores 277
S Sincioin ~—— my_pxsem_svsem/[sem_wait.c
2 #include "semaphore.h"
3int
4 sem _wait(sem_t *sem)

5 {
6 struct sembuf op:
7 if (sem->sem _magic != SEM_MAGIC) {
8 errno = El NVAL;
9 return (-1);
10 }
11 op.sem_num = O;
12 op.sem_op = -1;
13 op.sem_flg = O;
14 if (semop(sem->sem_semid, &op, 1) < 0)
15 return (-1);
16 return (0);
17 }
my_pxsem_svsem/[sem_wait.c
Figurel0.57 sem_wait function.
T % inciaie o — my_pxsem_svsetn [sem_trywait.c
2 #include "semaphore.h"
3int
4 sem_trywait(sem_t *sem)
5 ¢(
6 struct sembuf oOp;
7 if (sem->sem_magic !'= SEM_MAGIC) {
8 errno = El NVAL;
9 return (-1);
10 }
11 op.sem num = 0;
12 op.sem_op = -1;
13 op.sem_flg = IPC_NOWAIT;
14 if (semop(sem->sem semid, &op, 1) < 0)
15 return (-1);
16 return (0);
17 }

Figurel0.58 sem_trywait function.

sem_getvalue Function

11-14

my_pxsem_svsem|sem_trywait.c

Thefinal functionisshown in Figure10.59; it issem_getvalue, which returns the cur-
rent valued the semaphore.
The current value d the semaphore is obtained with a command o GETVAL to
semctl.

278

Posix Samaphores Chepter 10

10.17

my_pxsem_svsem [sem_getvalue.

=

#include "unpipec.h”
#i ncl ude "semaphore.h"

8]

int
sem_getvalue(sem t *sem, int *pvalue)
{

int val ;

if (sem->sem_magic != SEM_MAGIC) {
errno = EI NVAL;
9 return (-1);
10 }
11 if ((val = semctl(sem->sem_semid, 0, GETVAL)) < 0)
12 return (-1);
13 *pvalue = val;
14 return (0);
15 }

W=l oW

my_pxsem_svsem [sem_getvalue.c
FHgureld® sem getvaluefunction.

Summary
Posix semaphoresare counting semaphores, and three basic operationsare provided:

createasemaphore,

2. wait for asemaphore's value to be greater than 0 and then decrement the vaue,
and

3. post to a semaphore by incrementingitsvalueand waking up any threadswait-
ing for the semaphore.

Posix semaphores can be named or memory-based. Named semaphores can awaysbe
shared between different processes, whereas memory-based semaphores must be desg-
nated as process-shared when created. The perssence d these two types &
semaphores aso differs: named semaphores have at least kernel persistence, whereas
memory-based semaphoreshave process persistence.

The producer-consumer problem is the clasic example for demonstrating
semaphores. In this chapter, our first solution had one producer thread and one con+
sumer thread, our next solution allowed multiple producer threads and one consumer
thread, and our final solution allowed multiple consumer threads. We then showed that
the classic problem d double buffering is just a specia case d the producer-consumer
problem, with one producer and one consumer.

Threesampl eimplementationsd Posix semaphoreswere provided. Thefirg, using
FIFOs, is the smplest because much d the synchronization is handled by the kernd's
read andwr i t e functions. The next implementation used memory-mapped1/O, Smi-
lar to our implementationd Posix message queuesin Section 5.8, and used a mutex ad
condition variable for synchronization. Our fina implementation used System V
semaphores, providing asimpler interfaceto these semaphores.

Chapter 10

Exercises 279

Exercises

101

10.2

10.3

10.4
10.5

10.6

10.7

10.8

10.9
10.10

10.11

Modify the produce and consume functionsin Section 10.6 as follows. First, swap the
order o the two callsto em-wait in the consumer, to generate a deadlock (as we dis-
cussed in Section10.6). Next, add acall to print £ beforeeach call to em-wait, indicat-
ing which thread (the producer or the consumer) is waiting for which semaphore. Add
another call to printf after the call to sem wait, indicating that the thread got the
semaphore. Reduce the number d buffersto 2, and then build and run this program to
verify that it leadsto a deadlock.

Assume that we start four copies d our program that calls our my—Ilock function from
Figure10.19:

% | ockpxsem & | ockpxsem & | ockpxsem& | ockpxsem &

Each o thefour processesstartswith an initfl ag o 0, so each one calls sem—open spec-
ifying O_CREAT. Is thisOK?

What happensin the previousexerciseif one d thefour programsterminatesafter calling
my_1ock but beforecalling my—unlock?

What could happen in Figure10.37 if wedid not initialize both descriptorsto—1?

In Figure10.37, why do we savethevalue o errno and then restoreit, instead d coding
thetwocallstocloseas

if (sem->£d4[0] >= 0)
close(sem->£d[0]);

if (sem->fd[1l] >= 0)
close(sem->£d[1]);

What happensif two processescall our FIFO implementation d sem—open (Figure10.37)
at about the sametime, both specifying 0_CREAT with aninitial valued 5?2 Can the HFO
ever beinitialized (incorrectly) to 10?

With Figures10.43 and 10.44, we described a possiblerace conditionif two processes both
try to create a semaphore at about the sametime. Ye in the solution to the previous prob-
lem, we said that Figure10.37 does not have a race condition. Explain.

Posix.1 makesit optional for sem_wait to detect that it has been interrupted by a caught
signal and return EINTR. Writeatest program to determinewhether your implementation
detectsthisor not.

Also run your test program using our implementations that use FIFOs (Section 10.14),
memory-mapped1/0 (Section10.15), and SystemV semaphores(Section10.16).

Whichd our threeimplementationsof sem_post areasync-signal-safe(Figure5.10)?

Modify the producer—consumer solution in Section 106 to use a pthread _mutex_t
datatype for the mutex variable, instead o a semaphore. Does any measurablechangein
performanceoccur?

Comparethe timing of named semaphores (Figures10.17 and 10.18) with memory-based
semaphores(Figure10.20).

111

Il

System V Semaphores

Introduction
When we described the concept o a semaphorein Chapter 10, wefirst desaibed

e A binary semaphore: a semaphore whose valueis 0 or 1. This was similar to a
mutex lock (Chapter 7), in which the semaphore valueis 0 if the resourceis
locked, or 1if theresourceisavailable.

Thenext level o detail expanded thisinto

e a counting semaphore: a semaphore whose value is between 0 and some limit
(which must be at least 32767 for Posix semaphores). We used these to count
resourcesin our producer-consumer problem, with the value o the semaphore
beingthe number d resourcesavailable.

In both types & semaphores, the wait operation waits for the semaphore value to be
greater than 0, and then decrementsthe vaue. The pos operation just incrementsthe
semaphore value, waking up any threads awaiting the semaphore value to be greater
thanO.

SystemV semaphoresadd another level d detail to semaphoresby defining

e aset d counting semaphores. one or more semaphores (aset), eech d whichisa
counting semaphore. Thereisa limit to the number o semaphores per s, typi-
cdly on the order d 25 semaphores (Section 11.7). When we refer to a
"'Sysem V semaphore,” we arereferringto aset d counting semaphores. when
we refer to a "Podx semaphore'” we are referring to a single counting
semaphore.

281

282 Sydam V Samgphores Chapter 11

11.2

For every set o semaphoresin the system, the kernel maintainsthefollowingstruc-
tured information, defined by including <sys/sem. h>:

struct semid_ds (
struct ipc_perm sem perm; /* operation permission struct */

struct sem *sem_base; /* ptr to array of semaphores in set */
ushort sem_nsems; /* # of semaphores in set */

t ime_t sem_otime; /* tine of last semop() */

time_t sem_ctime; /* tine of creation or |last IPC_SET */

}:

The ipc_perm structure was described in Section 3.3 and contains the access permis-
sionsfor this particular semaphore.
The semstructureis the internal data structure used by the kernel to maintain the

set d valuesfor a given semaphore. Every member o a semaphore set is described by
thefollowing structure:

struct sem {

ushort-t semval; /* semaphor e val ue, nonnegative */

short senpi d; /* PID of last successful semop(). SETVAL, SETALL */
ushort-t semncnt; /* # awaiting senval > current value */

ushort-t senecnt; /* # awaiting semval = 0 */

}:

Note that sem_base containsa pointer to an array d these sem structures. one array
element for each semaphorein theset.

In addition to maintaining the actual valuesfor each semaphorein the s, the ker-
nel also maintains three other piecesd information for each semaphore in the set: the
processID d the processthat performed thelast operation on thisvaue, acount d the
number d processeswaiting for the valueto increase, and acountd the number d pro-
cesseswaiting for thevalueto become zero.

Uhi x 98 saysthat the abovestructureis anonymous. The namethat we show, sem isfrom the
historical System V implementation.

We can picturea particular semaphorein the kernel as being aseni d- ds structure
that pointsto an array d semstructures. If the semaphore has two membersin its set,
we would have the picture shown in Figure 11.1. In this figure, the variable
sem_nsems hasavaued two, and we have denoted each member d the set with the
subscripts [0] and [11.

semget Function

Thesenget function createsa semaphore set or accesses an existingsemaphoreset.

#i ncl ude <sys/sem.h>

int semget(key_t key, int msems, int oflag);

Returns: nonnegativeidentifier if OK, <L on error

Section 11.2 semget Function 283

1
semid_ds{} |

. e
semid ——» —= semval [0]) :
I g]
ipc _perm(} sempid [0] sam(}:

semzcnt [0]

sem_base i G

I\

semval [1]

sem_nsems 2

1
1
1
]
I
I
| semncnt [0]
I
I
I
I
I
|
[
|
|

senmpid [1]
sem_otime | TSV sem{}
sernncnt. [1]
sem_ctime |
semzcnt [1]
[J
: kernel

Figure11.1 Kernd datagructuresfor asemaphore set with two valuesin the set.

Thereturn valueisan integer called the semaphoreidentifier that is used with the semop
andsenct 1 functions.

The nsems argument specifies the number d semaphoresin the set. If we are not
creatinga new semaphoreset but just accessingan existingset, we can specify thisargu-
ment as0. We cannot changethe number o semaphoresin aset onceit iscreated.

The oflag value is a combinationd the SEM_R and SEM_A constants shown in Hg-
ure 36. R stands for " read and A stands for "dter.”" This can be bitwise-ORed with
either IPC_CREAT or IPC_CREAT | IPC_EXCL, asdiscussed with Figure34.

When a new semaphore set is created, the following members d the semid_ds
structureareinitialized:

e Theui d and cui d membersd the sem perm structure are set to the effective
user ID d the process, and the gi d and cgi d members are set to the effective
group ID d the process.

* Theread-writepermissionbitsin of 1ag arestored insem_perm. node.
e sem otineissetto0, and sem cti ne isset to thecurrent time.
e sem_nsems iSSet to NSATS.

* The sem structure associated with each semaphorein the set is not initialized.
Thesestructuresareinitializedwhensenct | iscaled with either the SETVAL or
SETALL commands.

Initializatlon of Semaphore Value

Commentsin the source codein the1990 edition d thisbook incorrectly stated that the
semaphore values in the set were initialized to 0 by senget when a new set was cre-
ated. Although some systemsdo initializethe semaphore values to 0, thisis not guar-
anteed. Indeed, older implementations o System V do not initialize the semaphore

284 Sydeam V Semgphores Chapter 11

vauesat dl, leavingtheir valuesas whatever they werethelast timethat pieced mem
ory wasused.

Mog manual pages for semget say nothing at all about the initial values d the
semaphoreswhen a new set is created. The X/Open XPG3 portability guide (1989) ad
Unix 98 correct this omission and explicitly state that the semaphore valuesare not ini-
tialized by semget and are initialized only by caling semctl (which we describe
shortly) with acommand d either FETVAL (set onevaluein the set) or SETALL (set dl
thevauesin theset).

Thisrequirement d two functioncallsto createa semaphore set (semget) and then
initialize it (semctl) is afatal flaw in the design & System V semaphores. A partia
solution is to specify IPC—CREAT | IPC—EXCL when caling semget, so that only one
process (thefirst one to call semget) creates the semaphore. This process then initial-
izesthe semaphore. The other processesreceive an error d EEXIST from semget ad
they then cadll semget again, without specifying either IPC— CREAT or IRC-EXCL.

But a race condition still exists. Assume that two processes both try to create ad
initialize a one-member semaphore set at about the same time, both executing the fol-
lowing numbered linesd code:

1 oflag = | PC- CREAT | I PC- EXCL | SVSEM- MDE;
2 if ((semd = senget (key, 1, oflag)) >= 0) {
/* success, we are the first, so initialize */
3 arg.val = 1;
4 Senct ! (semid, 0, SETVAL, arg);

5 } else if (errno == EEXI ST) {
/* already exists, just open */

6 sem d = Semget (key, 1, SVSEM_MODE) ;

7 } el se

8 err_sys("semget error");

9 Semop(semid, ...); /* decrenment the semaphore by 1 */

Thefollowing scenario could occur:

1 Thefirst processexecuteslines1-3and isthen stopped by the kerndl.
2. Thekernel starts the second process, which executeslines 1, 2, 5, 6, and 9.

Even though thefirst processto create the semaphore will be the only processto initid-
ize the semaphore, sinceit takes two steps to do the creation and initialization, the ker-
nel can switch to another process between these two steps. That other process can then
use the semaphore (line9 in the code fragment), but the semaphore val ue has not been
initialized by thefirst process. The semaphore value, when the second process executes
line 9, isindeterminate.

Fortunately, there is a way around this race condition. We are guaranteed that the
sem_otime member d thesemid_ds structureisset to 0 when a new semaphoresg is
created. (TheSystem V manuals have stated thisfact for along time, as do the XPG3
and Unix 98 standards.) This member isset to the current time only by a successful cal
to semop. Therefore, the second processin the preceding example must cal semctl

Section 11.3 semop Funcion 285

11

3

with a command d IPC_STAT after its second call to senget succeeds (line6 in the
codefragment). It then waitsfor sem_otime to be nonzero, at which timeit knowsthat
the semaphore has been initialized and that the process that did the initialization has
successfully called senop. Thismeansthe processthat creates the semaphore must ini-
tidize its valueand must cal senop before any other process can use the semaphore.
Weshow examplesd thistechniquein Figures10.52 and 117.

Posix named semaphores avoid this problem by having one function (sem_open} create and
initializethe semaphore. Furthermore, even if O_CREAT is specified, the semaphoreisiinitial-
ized only if it does not already exist.

Whether this potential race conditionisa problem also dependson theapplication. With some
applications(e.g., our producer—consumer asin Figure 10.21), one processaways creates and
initializesthe semaphore. No race conditionwould exist in thisscenario. But in other applica-
tions(e.g., our filelocking examplein Figure 10.19), no single processcreatesand initializesthe
semaphore: thefirst processto open the semaphore must createit and initiaizeit, and the race
condition must beavoided.

semop Function

Once a semaphore set is opened with senget , operations are performed on one or
mored the semaphoresin the set usingthesenop function.

#include <sys/sem.h>

int semop(int semid, struct sembuf *opsptr, size—t nops);

Returns: 0 if OK, <L onerror

opsptr pointstoan array d thefollowing structures:

struct sembuf {
short sem num; /* semaphore number: 0, 1, ..., nsems-1 */
short sem_op; /* semaphore operation: <0, 0, >0 */
short sem flg; /* operation flags: O, IPC_NOWAIT, SEM_UNDO */
}:

Thenumber d elementsin thearray d senbuf structures pointed to by opsptr is peci-
fied by the nops argument. Each elementin thisarray specifiesan operation for one par-
ticular semaphore valuein the set. The particular semaphore valueis specified by the
sem_num vValue, which is 0 for the first element, one for the second, and so on, up to
nsems—1, where nsems is the number d semaphore values in the set (the second argu-
ment in thecall tosenget when the semaphoreset wascreated).

We areguaranteed only that the structurecontainsthe three membersshown. It might contain
other members, and we have no guarantee that the membersare in the order that we show.
Thismeansthat we must not staticaly initializethisstructure, asin

struct senbuf ops[2] = {

0, 0, O, /* wait for [0] to be O */

0, 1, SEM_UNDO /* then increment [0] by 1 */
}:

286 Sydem V Samagphores Chapter

but must userun-timeinitialization,asin
struct senmbuf ops[2];

ops[0] .sem_num /* wait for [0] to be 0 */
ops (0] .sem op
ops[0] .sem_flg
ops[1l].sem_num
opsf{1].sem op

0
0
0;
0; /* then increment [0] by 1 */
1
ops[1l].sem_flg S

EM_UNDO;

The array d operations passed to the senop function are guaranteed to be per-
formed atomically by the kerndl. The kernd either doesall the operations that are oedi-
fied, or it doesnoned them. Weshow an exampled thisin Section11.5.

Each particular operation is specified by a sem op value, which can be negative, 0,
or positive. In thediscussionthat followsshortly, werefer to the following items:

senval : thecurrent valued the semaphore (Figurell.1).

semcnt : the number d threadswaiting for senmval to be greater than itscur-
rent value (Figurell.l).

senecnt : thenumber o threadswaitingfor semval to be0 (Figurelll).

senadj : the adjustment value for the calling process for the spedfied
semaphore. Thisvalueis updated only if the SEM_UNDO flag is specified in the
sem_flg member o thesenbuf structurefor thisoperation. Thisisa concep
tual variablethat is maintained by the kerndl for each process that specifies the
SEM_UNDO flag in a semaphoreoperation; a structure member with the name d
semadj need not exist.

A given semaphore operation is made nonblocking by specifying the
IpCc_NOWRIT flagin the sem _flg member d thesenbuf structure. When this
flag is specified and the given operation cannot be completed without putting
thecaling thread to deep, senop returnsan error o EAGAI N.

When a thread is put to deep waiting for a semaphore operation to complete
(wewill seethat the thread can be waiting either for the semaphore valueto be(
or for thevalueto begreater than 0), and the thread catchesasignal, and thesg
nal handler returns, the senmop function is interrupted and returns an error of
El NTR. Intheterminologyd p. 124 o UNPv1, senop isaslow Systemcall that is
interrupted by a caught signal.

When a thread is put to deep waiting for a semaphore operation to complete
and that semaphore is removed from the system by some other thread or pro-
Cess, sernop returnsan error & ETDRM (“identifierremoved™).

We now describe the operation d senop, based on the three possible values d each
specified sem- op operation: positive,Q or negative.

1

If sem op is postive, the value d sem- op is added to senval . This corre
spondsto theredease d resourcesthat a semaphorecontrols.

Section 11.4

senct| Function 287

If the sEM_UNDO flag is specified, the value d sem_op is subtracted from the
semaphore's senmadj vaue.

If sem op isO, thecaler wantsto wait until senval is0. If semval isaready
0, returnismadeimmediately.

If senval is nonzero, the semaphore's senzcnt valueisincremented and the
cdling thread is blocked until semval becomes 0 (at which time, the
semaphore's senzcnt valueis decremented). As mentioned earlier, the thread
isnot put to sleep if IPC_NOWAIT is specified. The deep returns prematurely
with an error if a caught signa interrupts the function or if the semaphoreis
removed.

If sem op is negative, the cdler wants to wait until the semaphore's value
becomes greater than or equal to the absolute value & sem op. This corre-
spondsto theallocation d resources.

If semval isgreater than or equal to theabsolutevalued sem op, theabsolute
vaued sem_op issubtracted from senval . If the SEM_UNDO flag is specified,
the absolutevalued sem- op isadded to thesemaphore's senmadj vaue.

If semval islessthan theabsolute valued sem+ op, the semaphore's semmcnt

value is incremented and the calling thread is blocked until semval becomes
greater than or equa to the absolute value d sem op. When this change
occurs, thethread is unblocked, theabsolutevalued sem- op issubtracted from
senval , and the semaphore'ssermmcnt valueisdecremented. If the SEM_UNDO
flag is specified, the absolute value d sem_op is added to the semaphore's
semadj vaue. As mentioned earlier, the thread is not put to deep fif
IPC_NOWAIT isspecified. Also, thedeep returns prematurely with an error if a
caught signal interruptsthefunction or if the semaphoreisremoved.

If we compare these operations to the operations allowed on a Posix semaphore, the latter
allowsoperationsd only -1 (sen—wait) and +1 (sem_post). Sysem V semaphoresallow the
value to go up o down by increments other than one, and also allow waiting for the
semaphorevalue to be 0. These more general operations, along with the fact that Sysem V
semaphorescan have a set o values, iswhat complicatesSystem V semaphor es,compared to
the smpler Posix semaphores

114 semctl Function

Thesentt 1 function performsvariouscontrol operationson asemaphore.

#include <sys/sem.h>

int sernctl (int semid, int semnum, int cmd, ... /* union semun arg */);

Returns nonnegativevalueif OK (seetext),-1onerar

288 Sydam V Samgphores Chapter11

Thefirst argument samid identifiesthe semaphore, and semnum identifiesthe member o
the semaphore set (0, 1, and so on, up to nsems—1). The semnum valueis used only for
theGETVAL, SETVAL, GETNCNT, GETZCNT, and GETPID commands.

The fourth argument is optional, depending on the cmd (see the commentsin the
uni on below). When required, it isthefollowing uni on:

union semun {

int val; /* used for FETVAL only */
struct semid_ds “*buf; /* used for IPC_SET and IPC_STAT */
ushort *array; /* used for GETALL and SETALL */

};

Thisuni on does not appear in any system header and must be declared by the applica
tion. (Wedefineit in our unpipc.h header, Figure C.1.) It is passed by value, not by
reference. That is, the actual value d the uni on isthe argument, not a pointer to the
uni on.

Unfortunatdy, some systems (FreeBSD and Linux) definethisunion asaresult o induding
the <sys/sem. h> header, making it hard to write portablecode. Even though havingthesys
tem header dedare thisunion makessense, Unix 98 states that it must be explicitly dedared
by the application.
The following valuesfor the cmd are supported. Unless stated otherwise, a return
valued 0 indicatessuccess, and a returnvalued -1 indicatesan error.

GETVAL Returnthecurrent valued senval asthereturnvaued thefunction.
Since a semaphore value is never negative(senval is declared asan
unsi gned short), asuccessful return valueisalwaysnonnegative.

STVAL Set thevalued senval toarg.ual. If thisissuccessful, the semaphore
adjustment valuefor thissemaphoreisset to 0 in all processes.

GETPID Return thecurrent valued senpi d asthereturn valued thefunction.

GETNCNT Return the current value o semrmcnt as thereturn vaue d the func-
tion.

GETZCNT Return the current value o senzcnt asthereturn vaue d the func-
tion.

GETALL Return the valuesd senval for each member d the semaphore set.
The values are returned through the arg.array pointer, and the return
valued thefunctionis0. Noticethat thecaller must dlocate an array
d unsi gned short integerslarge enough to hold all the values for
theset, and then set arg.array to point to thisarray.

SETALL Set thevaluesd semval for each member o the semaphore set. The
valuesare specified through thearg.array pointer.

IPC_RMID Removethesemaphoreset specified by samid fromthe system.

IRCET Sd the following three members d the semi d- ds structure for the
semaphore set from the corresponding members in the structure
pointed to by the arg.buf argument: sem_perm.ui d, sem_perm.gi d,

Sectian 115 Simple Programs = 289

and sem_perm node. The sem_ctime member d the senmid- ds
structureisalso set to thecurrent time.

IPC_STAT Return to the caler (through the arg.buf argument) the current
sem d- ds structurefor the specified semaphore set. Notice that the
cdler must first dlocatea semi d- ds structureand set arg.buf to point
to thisstructure.

11.5 Simple Programs

SnceSystem V semaphores have kerndl persistence, we can demonstratetheir usage by
writingasmall set d programs to mani pulatethem and seeing what happens. Theval-
uesd the semaphoreswill be maintained by the kernel from oned our programsto the
next.

semcreate Program
Our first program shown in Figure 11.2 just createsa System V semaphore set. The -e

command-line option specifies the IpC_EXCL flag, and the number d semaphoresin
theset must be specified by the final command-lineargument.

svsem|semcreate.c

1 #incl ude "unpipc.h"

2 int

3 main(int argc. char **argv)

4 {

5 int c, oflag, sem d, nsens;

6 oflag = SVSEM_MODE | IPC_CREAT;

7 while ((c = Getopt(argc, argv, "e"}) != -1) {

8 switch (c) {

9 case ‘e’:

10 oflag |= IPC_EXCL;

11 br eak;

12 }

13 }

14 if (optind !'= argc - 2)

15 err_quit("usage: sencreate [-e] <pathname> <nsems>");
16 nsens = atoi(argvioptind + 11);

17 sen d = Semget (Ftok(argv[optind], 0), nsens, oflag);
18 exit(0);

i9 1}

svsem [semcreate.c
Fgurell2 sencreat e program

gemxmid Program

The next program, shown in Figure 11.3, removes a semaphoreset from the sysem. A
command o IPC_RMID isexecuted throughthesentt| functionto removethe set.

290 Sydam V Samgphores Chapter 11

senset val ues Program

11-15

19-24

Our semsetvalues program (Figurell4) setsdl thevauesin asemaphoreset.

Get number of semaphoresin set

After obtaining the semaphore ID with semget, weissuean IRC-STAT command
to semct1 to fetch the semid—ds structurefor the semaphore. The sem_nsems mem
ber isthe number d semaphoresin theset.

Set all the values

We dlocate memory for an array d unsigned shorts, one per set member, ad
copy the values from the command-line into the array. A command d SETALL to
semctl setsall thevauesin the semaphore set.

senget val ues Program

11-15

16-22

Figurell5 showsour semgetvalues program, which fetchesand printsall the vaues
inasemaphoreset.

Get number of semaphores in set

After obtaining the semaphore ID with semget, we issuean IPC_STAT command
to semctl to fetch the semid_ds structurefor the semaphore. The sem_nsems memt
ber isthe number d semaphoresin the set.

Get all the values

We dlocate memory for an array d unsigned shorts, one per set member, ad
issue a command df GETALL to semctl to fetch all the values in the semaphore .
Each vaueis printed.

senops Program

7-19

20-29

30

Our semops program, shown in Figure 11.6, executes an array d operations on a
semaphoreset.

Command-lineoptions

Anoptiond -n specifiesthe Ipc_NowAIT flag for each operation,and an optiond
-u specifiesthe seM_uNDO flag for each operation. Notethat the semop functiondlows
usto specify adifferent set o flagsfor each member d the sembuf structure (thatis for
the operation on each member d the set), but for simplicity we have these
command-line optionsspecify that flag for all specified operations.

Allocate memory for the operations

After opening the semaphore set with semget, an array & sembuf structuresis
dlocated, one element for each operation specified on the command line. Unlike the
previous two programs, this program allows the user to specify fewer operations than
membersd the semaphoreset.

Execute the operations
semop executesthearray d operationson the semaphoreset.

Section115 Smple Programs 291
- - svsem [semrmid.c
1 #include "unpipc.h"
2int
3 main(int argc, char **argv)
4 {
5 int semd;
6 if (argc 1= 2)
7 err_quit("usage: semrmid <pathname>");
8 senm d = Senget (Ftok(argv[1l], 0), O, 0);
9 Semctl (semid, 0, IPC_RMID);
10 exit(0):
11) R
svsem|semrmid.c
Figurell3 senrm d program.
- - svsem [semsetvalues.c
1 #i ncl ude "unpi pc.h"
2int
3 main(int argc, char **argv)
4 {
5 int semd, nsens, i;
[3 struct semid_ds sem nfo;
7 unsi gned short *ptr;
8 uni on senun arg;
9 if (argc < 2)
10 err_quit("usage: sensetval ues <pathname> [vadues ...]1");:
11 /* first get the number of senaphores in the set */
12 semd = Senget (Ftok(argv[1], 0), 0, 0);
13 arg.buf = &seminfo;
14 Senctl(sem d, 0, IPC_STAT, arg);
15 nsens = arg.buf->sem nsems;
16 /* now get the val ues fromthe command |ine */
17 if (argc != nsens + 2)
18 err_quit ("%d senaphores i n set, %d val ues speci fi ed", nsens, argc - 2);
19 /* allocate menory to hold all the values in the set, and store */
20 ptr = calloc(nsems, sizeof(unsigned short));
21 arg.array = ptr;
22 for (i = 0; 1 < nsems; 1++)
23 ptr[i] = atoi(argv[i + 2]1);
24 Semctl (semid, 0, SETALL, arg);
25 exit (0);
26 ¥

Figurell4 senset val ues program.

svsem [semsetvalues.c

292 System V Semaphores Chapter 11

svsem [semgetvalues.c
1 #include "unpipc.h"
2int
3 main(int argc, char **argv)
4 {
5 int sem d, nsens, i;
6 struct semid_ds sem nf o;
7 unsi gned short *ptr;
8 uni on sermun ar g;
9 if (argc 1= 2)
10 err_guit ("usage: semgetvalues <pathname>");
11 /* first get the nunber of semaphores in the set */
12 semd = Senget (Ftok(argv[1], 0), 0, 0);
13 arg.buf = &seminfo;
14 Senct| (semid, 0, IPC_STAT, arg);
15 nsens = arg.buf->sem nsems;
16 /* allocate nenory to hold all the values in the set */
17 ptr = calloc(nsems, sizeof(unsigned short));
18 arg.array = ptr;
19 /* fetch the values and print */
20 Semctl (semid, 0, GETALL, arg);
21 for (i = 0; i < nsens; i++)
22 printf ("semval[%d] = %d\n", i, ptrl[il);
23 exit(0);
24)
svsem [semgetvalues.c
Figure11.5 senget val ues program.
svsem [semops.c
1 #include “unpipc.h" [£is
2int
3 main(int argc, char **argv)
4 {
5 int c, i, flag, semd, nops;
6 struct sembuf *ptr;
7 flag =0
8 while ((¢ = Getopt(argc, argv, "nu")) 1= -1) {
9 switch (c) {
10 case ’'n’:
11 flag |= IPC_NOWAIT: /* for each operation */
12 br eak;
13 case 'U :
14 flag |= SEM_UNDO; /* for each operation */
15 br eak;
16 }
17 }
18 if (argc - optind < 2) /* argc - optind = #args remaining */

19 err_quit ("usage: senops [-n] [-u] <pathname> operation .. ")#

Secti.on11.5 Smple Programs =~ 293

20 sem d = Semget (Ftok{argvioptind], 0), 0, 0);

21 optind++;

22 nops = argc - optind,;

23 /* allocate nenory to hol d operations, store, and perform*/
24 ptr = Ccalloc(nops, sizeof (struct senbuf));

25 for (i = 0; i < nops; 1i++) {

26 ptrlil.sem num = i;

27 ptrlil .sem op = atoi(argvloptind + il); /* <0, 0, or >0 */
28 ptr[il .sem_flg = fl ag;

29 }

30 Senop(sem d, ptr, nops);

31 exit(0);

32}

svsem [semops.c
Figurell6 senops program.

Examples

We now demonstratethe five programsthat we have just shown, looking at somed the
featuresd SystemV semaphores.

solaris % touch /tmp/rich

solaris % sentreate -e /tmp/rich 3
solaris % sensetval ues /tmp/rich 1 2 3
solaris % sengetval ues /tmp/rich

semval[0] = 1
semval[l] = 2
semval[2] = 3

W\e firgt create afile named /tmp/rich that will be used (by ftok) to identify the
semaphoreset. semcreate createsa set with three members. semsetvalues Setsthe
valuestol, 2, and 3 and thesevaluesarethen printed by semgetvalues.

We now demonstrate the atomicity d the set o operations when performed on a
semaphoreset.

solaris % semops -n /tmp/rich -1 -2 -4

sentt|l error: Resource tenporarily unavail abl e
solaris % sengetval ues /tmp/rich

senval [0] = 1
semval[l] = 2
semval[2] = 3

We specify the nonblocking flag (-n) and three operations, each d which decrementsa
vauein theset. Thefirst operationis OK (wecan subtract 1 from the first member o
theset whosevalueis 1), the second operationis OK (wecan subtract 2 from the second
member o the set whose valueis 2), but the third operation cannot be performed (we
cannot subtract 4 from the third member d the set whose value is 3). Since the last
operation cannot be performed, and since we specified nonblocking, an error & EAGAIN
isreturned. (Had we not specified the nonblocking flag, our program would have just
blocked.) We then verify that noned the valuesin the set were changed. Even though

294 Sydam V Samgphores Chapter 11

thefirst two operations could be performed, since the fina operation could not be per-
formed, none d the three operations are performed. The atomicity d senpop means
that either al d the operationsare performed or noned the operationsare performed.
We now demonstratethe SEM- UNDO property d System V semaphores.
solaris % sensetval ues /tmp/rich 1 2 3 settoknownvalues

solaris % semops -u /tmp/rich -1 -2 -3 specify SEM_UNDO for each operation
solaris % sengetval ues /tmp/rich

semval[0] = 1 all the changeswere undonewhen semops terminated
semval[l] = 2

semval[2] = 3

solaris % semops /tmp/rich -1 -2 -3 do not specify SEM_UNDO

solaris % serngetval ues /tmp/rich

semval[0] = O the changes were not undone

semval [1] = 0

semval[2] = 0

Wefirst reset thethreevaluesto 1, 2, and 3with senset val ues and then specify oper-
dions d -1, -2, and -3 with our senpps program. This causes all three values to
become O, but since we specify the -u flag to our senpps program, the SEM- UNDOflag
isspecifiedfor each d thethree operations. Thiscausesthesenmadj vauefor thethree
membersto be set to 1, 2, and 3, respectively. Then when our senpops program termi-
nates, these three semadj values are added back to the current values d each o the
three members (whichare all 0), causing their final valuesto be1, 2, and 3, as we verify
with our senget val ues program. We then execute our senpps program again, but
without the -u flag, and this leavesthe threevaluesat 0 when our senpps programter-
minates.

11.6 File Locking

Wecan provideaverson d our ny- | ock and ny- unl ock functionsfrom Figure10.19,
implemented using System V semaphores. Weshow thisin Figure11.7.

First try an exclusive create

13-17 We must guarantee that only one process initializes the semaphore, so we secify
IPC_CREAT | IPC_EXCL. If thissucceeds, that process callssent tl to initiaizethe
semaphore value to 1. If we start multiple processes at about the same time, each d
which calls our ny- | ock function, only one will create the semaphore (assuming it
does not already exist), and then that processinitializesthe semaphoretoo.

Semaphore already exists; just open

18-20 Thefirst cal tosenget will returnan error d EEXIST to theother processes, which
then call senget again, but without thel PC- CREAT | | PC- EXCL flags.
Wait for semaphore to be initialized

21-28 We encounter the same race condition that we talked about with theinitiaizationd
Sysem V semaphores in Section 11.2. To avoid this, any process that finds that the
semaphore already exists must cal senct | with a command d IPC_STAT to look &

Section 11.6 File Locking 295

1 7 nol ude "unpi po.h’ lock/locksvsem.c
2 #defi ne LAOK- PATH " /tmp/svsemlock"”

3 #define MMX-TRES 10

4 int semd, initflag;

5 struct sembuf postop, waitop;

6 void

7 my_lock(int fd)

8 {

9 int oflag, i;

10 uni on senun arg;

11 struct semid_ds sem nf o;

12 if (initflag == 0) ({

13 oflag = IPC_CREAT | IPC_EXCL | SVSEM MODE;

14 if ((semd = semget (Ftok{(LOCK_PATH, 0), 1, oflag)) »= 0) {
15 /* success, we're the first soinitialize */

16 arg.val = 1,

17 Senct| (semid, 0, SETVAL, arg);

18 } else if (errno == EEXIST) {

19 /* someone el se has created; nmake sure it's initialized */
20 sem d = Semget (Ftok(LOCK_PATH, 0), 1, SVSEM MDE);

21 arg.buf = &seminfo;

22 for (i = 0; i < MMX-TRES, i++) {

23 Semctl (semid, 0, IPC_STAT, argq);

24 if (arg.buf->sem_otime != 0)

25 goto init;

26 sl eep(1):

27 }

28 err_guit ("semget OK, but senmaphore not initialized");
29 } el se

30 err_sys("semget error");

31: init:

32 initflag = 1;

33 postop.sem_num = O; /* and init the two semop() sStructures */
34 postop.sem op = 1;

35 postop.sem_flg = SEM UNDQ

36 waitop.sem num = Q

37 waitop.sem op = -1;

38 waitop.sem_flg = SEM UNDQ

39 }

40 Semop (semid, &waitop, 1); /* down by 1 */

41 }
42 void
43 ny-unl ock(i nt £d)
44 {
45 Semop (semid, &postop, 1): /[* up by 1 */

46 }

lock/locksvsem.c

Figure11.7 Filelockingusing Sysem V semaphores.

296 Sydem V Semgphores Chepter 11

33-38

thesem_otime valuefor the semaphore. Once thisvalueis nonzero, we know that the
processthat created the semaphore has initialized it, and has caled senop (thecdl to
senpp isat theend d thisfunction). if the valueistill 0 (whichshould happen vey
infrequently),wesl eep for 1 second and try again. We limit the number d timesthat
wetry this, to avoid sleeping forever.

Initialize sembuf structures

As we mentioned earlier, there is no guaranteed order & the members in the
senbuf structure, so we cannot gtatically initialize them. Instead, we allocate two d
these structuresand fill them in at run time, when the process calls ny- | ock for the
first time. We specify the SEM_UNDO flag, so that if a processterminates while holding
thelock, the kernel will releasethelock (seeExercise10.3).

Creating a semaphore on its first use is easy (each process tries to create it but
ignoresan error if the semaphore aready exists), but removingit after all the processes
aredoneis much harder. Inthecased a printer daemon that uses the sequence number
file to assign job numbers, the semaphore would remain in existence all the time. Bu
other applications might want to delete the semaphore when thefileisdeleted. In this
case, a record lock might be better than a semaphore.

11.7 Semaphore Limits
As with System V message queues, there are certain system limits with Sysem V
semaphores, most d which arise from their original System V implementation (Sec-
tion 3.8). These areshown in Figure 11.8. Thefirst column is the traditional Sysem V
namefor the kernd variablethat containsthislimit.
Name | Decription | DUnix4.0B | Solaris 2.6
s=mmni | max # uniqguesemaphor esets, systemwide 16 10
semmsl | max # semaphorespea semaphoreset 25 25
| ssmmns | max # semaphor es, systemwide 400 60
| samopm | max # oper ationspa semop call 10 10
sEmmnu | max # of undo gructures, systemwide 30
| semume | max # of undoentriesper undo sructure 10 10
| semvmx | max valuedf any semaphore 32767 32767
smaem | max adjust-on-exitvalue 16384 16384
Figure11.8 Typical limitsfor System V semaphores.
Apparently nosemmu limit existsfor Digital Unix.
Example

The programin Figure11.9 determinesthelimitsshownin Figure11.8.

Section 11.7

Semaphore Limits 297

svsem [limits.c
1 #include "unpipc.h"
2 /* following are upper limts of values to try */
3 #defi ne MAX- N OS5 4096 /* max # senaphore IDs */
4 #define MAX- VALLE 1024*1024 /* rnax semaphore val ue */
5 #defi ne MAX- MEMBERS 4096 /* max # semaphores per semaphore set */
6 #defi ne MAX- NCPS 4096 /* max # operations per semop() */
7 #define MAX- NPROC Sysconf (_SC_CHILD_MAX)
8 int
9 main(int argc, char **argv)
10 {
11 int i, j, semd, sid[MAX_NIDS], pipefd[2];
12 int semi , semvmx, Sermsl, sems, senopn, senaen) Senume. semmnu;
13 pid_t *child;
14 uni on senun ar g;
15 struct sembuf ops[MAX_NOPS];
16 /* see how many sets with one menber we can create */
17 for (i = 0; i <= MM-NDS i++) |
18 sidi] = senyet (IPC_PRIVATE, 1, SVSEM MIDE | IPC_CREAT);
19 if (sid{i} == -1) |
20 semmni = i:
21 printf("sd identifiers open at once\n", semmni);
22 br eak;
23 }
24 }
25 /* before del eting, find naxi numval ue usi ng sid[0] */
26 for (3 =7; 3 < MX-VALLE j += 8) {
27 arg.val = j;
28 if (semctl(sid[0], O, SETVAL, arg) == -1) {
29 semvmx = j - B;
30 printf ("max senmaphore val ue = %d\n", senvnx);
31 br eak;
32 }
33 }
34 for (3 =0; j < i; j++)
35 Senct!| (sidl[jl, 0, IPC_RMID);
36 /* determne rnex # sermaphores per semaphore set */
37 for (1 =1; i <= MAX- MEMBERS, i++) {
38 sem d = semget (IPC_PRIVATE, i, SVSEM MCDE | IPC_CREAT);
39 if (semd == -1) {
40 semmsl =1 - 1;
41 printf(*max of %d nenbers per set\n", semsl);
42 br eak;
43 }
44 Senct| (senmd, 0, IPC_RMID);
45 }
46 /* find rnax of total # of semaphores we can create */
47 semmns = 0;
48 for (i = 0; i <semi ; i++) {
49 sid[i] = semget (IPC_PRIVATE, sermmsl, SVSEM MDE | IPC_CREAT);
50 if (sid[i] == -1) {

298 Sysem V Semaphores

Chapter 11

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
&7
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

/*

* U to this point each set has been created with semsl
* menbers. But this just failed, so try recreating this
* final set with one fewer nenber per set, until it works.

*/
for (j = semmsl - 1; 3 > 0; j--) {

sid[i] = semget (IPC_PRIVATE, j, SVSEM MXIE | | PG- GREAT);

if (sid[il '= -1) {
semms += j ;
printf("max of %d semaphores\n", semmns);
Senct | (sid[i], 0, IPGRMD);
goto done;
}
}
err_quit("j reached 0, semmns = %d", semmns);
}
semmns += semmsl;
}
printf ("max Of %d semaphores\n", senmms):

done:

for (3 =0; 3 < i; j++)
Sentt! (sid[jl, O, IPGRMD;

/* see how nany operations per senop() */
sem d = Semget(IPC_PRIVATE, semmsl, SVSEM MIE | | PG CREAT);
for (i =1; i <= MAX_NOPS; i++) {
ops[i - 1]l.sem num = | - 1;
ops[i - 1l.sem op = 1;
opsl[i - 1].sem_£fig = O;
if (semop(semid, ops, i) == -1) ({
if (errno != E2BIG)
err_sys ("expected E2BIG from senop");
senmopn = i - 1;
printf {"max of %d& operations per senmop()\n", senopn) ;
br eak;
}
)
Semctl (semid, €, IPC_RMID);

/* determne the nmax val ue of senadj */

/* create one set wth one semaphore */
sem d = Semget (IPC_PRIVATE, 1, SVSEM MIE | | PG- CREAT);
arg.val = semvmx;
Semctl(semid, 0, SETVAL, arg); /* set value to max */
for (i =senvnx - 1; i > 0; i--) {

ops[0].sem num = 0;

ops[0].sem op = -i;

ops[0] .sem_flg = SEM_UNDO:;

if (semop(semid, ops, 1) != -1) {
semaem = i ;
printf(*max val ue of adjust-on-exit = %d\n", semaen);
br eak;

}

}
Senctl (senmid, 0, IPGRMD) ;

Section 11.7 Semaphore Limits 299

104 /* determ ne nmax # undo structures */

105 /* create one set with one semaphore; init to 0 */

106 sem d = Semget (IPC_PRIVATE, 1, SVSEM MIDE | IPC_CREAT);

107 arg.val = O;

108 Semctl (semid, 0, SETVAL, arg); /* set senmaphore value to 0 */
109 Pi pe(pipefd) ;

110 child = Malloc(MAX_NPROC * sizeof (pid_t));

111 for (i = 0; i < M- NPROC i++) {

112 if ((child[i] = fork()) == -1) {

113 semmu = i - 1;

114 printf("fork failed, semmnu at | east %d\n", semmnu);
115 br eak;

116 } else if (child[il == 0) {

117 ops[0].sem_num = O0; /* child does the semop() */

118 ops(0].sem_op = 1;

119 ops[0] .sem_flg = SEM_UNDO:;

120 j = semop(semid, ops, 1); /* 0if OK -1if error */
121 Write(pipefd[1], & , sizeof(3j));

122 sl eep(30) ; /* wait to be killed by parent */
123 exit(0); /* just in case */

124 }

125 /* parent reads result of semop() */

126 Read(pipefd[0], &j, sizeof(3j));

127 if (3 ==-1) {

128 semmu = i ;

129 printf(*max # undo structures = %d\n", semmnu);

130 br eak;

131 }

132 }

133 Semctl(senmid, 0, IPC_RMID);

134 for (3 = 0;] <= i && child[j] > 0; Jj++)

135 Ki 11(child[31, SIGNT);

136 /* deternine max # adjust entries per process */

137 /* create one set with max # of semaphores */

138 sem d = Semget (IPC_PRIVATE, semmsl, SVSEM_MODE | IPC_CREAT);
139 for (i = 0; i < semmsl; i++) {

140 arg.val = O;

141 Semctl (semid, i, SETVAL, arg); /* set semaphore value to 0 */
142 opsl[i].sem num = i;

143 opsli].sem op = 1; /* add 1 to the value */

144 ops[i).sem_flg = SEM_UNLCO;

145 if (semop(semid, ops, i + 1) == -1) {

146 semume = i ;

147 printf("max # undo entries per process = %d\n", semume);
148 br eak;

149 }

150 }

151 Senctl (sem d, 0, IPC_RMID);

152 exit(0);

153 }

svsem/limits.c
Figurell 9 Deterninethe system|initson Syst emV senaphor es.

300 Sydam V Samgphores Chepter 11

11.8 Summary

The following changes occur when moving from Posx semaphores to System V
semaphores:

1 Sysem V semaphores consist a set d values. When specifying a group d

semaphore operations to apply to a s, either al d the operations are per-
formed or noned the operationsare performed.

Threeoperations may be applied to each member d a semaphore set: test for the
value being 0, add an integer to the vaue, and subtract an integer from the
value (assuming that the value remains nonnegative). The only operations
allowedfor a Posix semaphoreare to increment by one and to decrement by one
(assumingthat the value remainsnonnegative).

. Creating a System V semaphore set is tricky because it requirestwo operations

to create the set and then initializethe values, which can lead to race conditions.

. System V semaphores provide an "undo' feature that reverses a semaphore

operation upon processtermination.

Exercises

ni1

nz

FHoaure 68 was a modification to Figure 66 that acoepted an identifier insteed d a path-
name to spedify the queue. We showed that the identifier isal we need to know to aocess
aSydam V message queve (assumingwe have adequate permission). Make smilar mod-
ficationsto Figure11.6 and show that thesamefeaturegppliesto System V samgphores

Whet happensin Figure11.7 if theLock—pPATH filedoes nat exis?

Part 4

Shared Memory

12.1

12

Shared Memory Infroducfion

Introduction

Shared memory is the fastest form d 1PC available. Once the memory is mapped into
the address space d the processes that are sharing the memory region, no kernel
involverment occursin passing data between the processes. What is normally required,
however, is some form d synchronization between the processes that are storing and
fetching information to and from the shared memory region. In Part 3 we discussed
variousformsd synchronization: mutexes, condition variables, read-writelocks, record
locks and semaphores.

What we mean by "'no kernd involvement” is that the processesdo not executeany sys-
tem callsinto the kerndl to passthe data. Obvioudy, the kernel must establish the mem-
ory mappings that allow the processes to share the memory, and then manage this
memory over time (handlepagefaults, and thelike).

Consider the normal steps involved in the client-server file copying program that
we used as an examplefor thevarioustypesd message passing (Figure4.1).

¢ Theserver readsfrom theinput file. Thefile dataisread by the kernd intoits
memory and then copied from the kernel to the process.

¢ Theserver writes thisdatain a message, using a pipe, FIFO, or message queue.

Theseforms d IPC normally require the data to be copied from the processto
thekerndl.

We use the qualifier normally because Posix message queues can be implemented using
memory-mappedl/0 (themmap function that we describein this chapter), as we showed
in Section 5.8 and aswe show in the solution to Exercise12.2. In Figure12.1, we assume

303

34 Shared Mamay Introduction Chepter 12

that Posx message queuesare implemented within the kernd, which isanother passbil-
ity. But pipes, FIFOs, and System V messagequeuesall involvecopying thedata from the
processtothekernd for awriteor msgsnd, or copyingthe data from the kernd tothe
processfor aread or msgrev.
e Theclient readsthe datafrom the IPC channel, normally requiring the datato ke
copied from thekerndl to the process.

o Findly, the data is copied from the client's buffer, the second argument to the
w r i t e function, to the output file.

A total d four copiesd the data are normally required. Additionaly, thesefour copies
are done between the kernel and a process, often an expensive copy (more expensve
than copying data within the kernel, or copying data within a single process). Fg-
ure 12.1 depicts this movement of the data between the client and server, through the
kerndl.

write() read(),mg _receivel(), write(),mg_send()
or msgrecv () ormsgsnd()

output .
file (pipe, FIFO, or

messagequeue)

Figure12.1 Flow of filedata from server to client.

The problem with these forms d IPC—pipes, FFOs, and message queues—is that
for two processes to exchange information, the information has to go through the ka-
nel.

Shared memory providesa way around this by letting two or more processesshare
aregiond memory. The processesmust, d course, coordinateor synchronizetheused
the shared memory among themsdlves. (Sharing a common pieced memory issmilar
to sharing a disk file, such as the sequence number file used in al the file locking exam
ples.) Any d the techniquesdescribedin Part 3 can be used for thissynchronization.

Thestepsfor theclient-server exampleare now asfollows:

e Theserver getsaccessto ashared memory object using (say) asemaphore.

e Theserver readsfrom theinput file into the shared memory object. The sscond

argument to the read, the address of the data buffer, points into the shared
memory object.

¢ Whentheread iscomplete, theserver notifiesthe client, using asemaphore.
¢ Theclient writesthedatafrom theshared memory object to theoutput file.

Sectionl 12.1 Introduction 305

12-14

5

16-29

Thisscenarioisdepicted in Figure12.2.
e S SR F__*—____T,,.i S —‘

server |

————————————————————— _ server addiss sp@

output
file

In thisfigurethe datais copied only twice—from theinput fileinto shared memory and
from shared memory to the output file. We draw one dashed box enclosing the client
and the shared memory object, and another dashed box enclosing the server and the
shared memory object, to reinforce that the shared memory object appears in the
addressspace d both the client and the server.

The conceptsinvolved in using shared memory are similar for both the Posx inter-
faceand the System V interface. We describetheformer in Chapter 13 and the latter in
Chapter 14.

Figure12.2 Copyingfiledatafrom server todlient using shared memory.

In this chapter, we return to our sequence-number-increment example that we
started in Chapter 9. But we now store the sequencenumber in memory instead d ina
file

Wefirst reiterate that memory is not shared by default between a parent and child
acrossafork. The program in Figure 12.3 has a parent and child increment a global
integer named count .

Create and initialize semaphore

W& create and initialize a semaphore that protects what we think is a shared vari-
able (theglobal count). Since this assumption is fase, this semaphore is not redly
needed. Notice that we remove the semaphore name from the system by calling
sem_unlink, but although this removes the pathname, it has no effect on the
semaphorethat is already open. We do thisso that the pathname is removed from the
filesystemeven if the program aborts.

Set standard output unbuffered and f or k

We set standard output unbuffered because both the parent and child will be writ-
ingtoit. Thispreventsinterleavingd theoutput from the two processes.

The parent and child each execute a loop that incrementsthe counter the specified
number d times, being careful to increment the variable only when the semaphoreis
hdd.

306 Shared Memory Introdudion Chapter 12

— X shm/incrl.c
1 #include "unpipc.h"
2 #define SEM NAME "nysent
3int count = 0;
4 int
5 main(int argc, char **argv)
6 {
7 int i, nloop;
8 sem_t ‘*mutex;
9 if (argc 1= 2)
10 err_quit ("usage: incrl <#loops>");
11 nl oop = atoi (argv[1]}):
12 /* create, initialize, and unlink semaphore */
13 rnutex = Sem_open({Px_ipc_name (SEM_NAME), O_CREAT | O_EXCL, FlLE- MDE, 1);
14 Sem_unlink (Px_ipc_name (SEM _NAME)) ;
15 setbuf (stdout, NULL); /* stdout is unbuffered */
16 if (Fork() == 0) ¢ /* child */
17 for (i = 0; i < nloop; i++) {
18 Sem_wait (mutex) ;
19 printf ("child: %d\n", count ++);
20 Sem_post (mutex) ;
21 }
22 exit (0);
23 }
24 /* parent */
25 for (i = 0; i < nloop; i++) {
26 Sem_wait (mutex) ;
27 printf("parent: %d\n", count++):
28 Sem_post (mutex) ;
29 }
30 exit(0);
31 }
shm/incrl.c

Fgurel23 Parent and dild bothi ncrenent thesaned d .

If we run this program and look only at the output when the system switches
between the parent and child, we have thefollowing:

child: o child runs first, counter startsat 0

child: 1

child: 678

child: 679

parent: 0 child isstopped, parent runs, counter startsat 0
parent: 1

parent: 1220
parent: 1221
child: 680 parent is stopped, child runs

Syian 122 mmap, munmap, and msync Functions 307

child: 681

child: 2078
child: 2079

parent: 1222 child is stopped, parent runs
parent: 1223

and soon

As we can see, both processes have their own copy d the global count. Each starts
with thevalue d this variableas 0, and each incrementsits own copy d this variable.
Figure12.4 showsthe parent beforecalling fork.

parent

int count;
parent executing here—ss |
if (Fork() == 0) |
/* child */
}

[* parent */

Figure124 Parentbeforecallingf or k.

When fork iscalled, the child startswith itsown copy d the parent's data space. FHg-
urel2.5 showsthetwo processesafter f ork returns.

parent child

int count; int count;

if (Fork() == 0) | if (Fork() == 0) |
/* child */ /* child */
. child executing here—m~

} }

/* parent */ /* parent */

parent executing here —s=

Figurel25 Parentand child after f or k returns.

Weseethat the parent and child each havetheir own copy d thevariablecount.

12.2 mmap, munmap, and msync Functions

Themmap function maps either afile or a Posix shared memory object into the address
spaced aprocess. We use thisfunctionfor three purposes:

308 Shaed Mamay Introduction Chapter 12

1. witharegular fileto provide memory-mapped1/0 (Section12.3),

2. with specid files to provide anonymous memory mappings (Sections 124
and 12.5), and

3. with shm_open to provide Posix shared memory between unrelated processes
(Chapter 13).

#include <sys/mman.h>
voi d *mmap(void *addr, size-t len, int prot, int flags, int fd, off-t offset);

| Returns startingaddressdf mapped region if OK, MAP—FAILED on eror

addr can specify the starting address within the process d where the descriptor fd
should be mapped. Normally, this is specified as a null pointer, telling the kernd to
choosethe starting address. In any casg, the return valued thefunctionis the sarting
addressd where the descriptor has been mapped.

len is the number d bytes to map into the address space d the process, starting at
offset bytes from the beginning o thefile. Normally, offset is 0. Figure 12.6 shows this

mapping.
addressspace
of process
highmemory
memory \

\
mapped ;
portion \

o file
I
rgurnvalued mmap —mw———+ - — — — — — — — - t
AN N |
low memory \ :
I
I

| portiond file
| offset | len

Figure126 Exampled memory-mappedfile.

memory mapped \J
ERY

The protection d the memory-mapped region is specified by the prot argument
using the constantsin Figure12.7. The common valuefor thisargument is PROT_READ
| PROT_WRITE for read-write access.

Section 12.2 mmap, munmap, &) msync Fundions 309

vrot Description

PROT_READ data can be read
PROT_WRITE | datacanbewritten
PROT_EXEC data can be executed
PROT_NONE data cannot be accessed

Figure127 prot argument for mmap.h>.

flags Description |
MAP_SHARED changes are shared
MAP_PRIVATE | changes are private
MAP_FIXED interpret the addr argument exactly

Figure12.8 flags argument for mmap.

The flags are specified by the constants in Figure 12.8. Either the MAP- SHARED or
the MAP- PRI VATE flag must be specified, optionally ORed with MAP- FI XED. I
MAP- PRI VATE is specified, then modifications to the mapped data by the calling pro-
cess are visible only to that process and do not change the underlying object (either a
file object or ashared memory object). If MAP_SHARED isspecified, modificationsto the
mapped data by the calling process are visible to al processes that are sharing the
object, and these changesdo modify the underlyingobject.

For portability, MAP- FI XEDshould not be specified. If itisnot specified, but addr is
not a null pointer, then it is implementation dependent as to what the implementation
doeswith addr. The nonnull valueof addr is normally taken as a hint about where the
memory should be located. Portable code should specify addr as a null pointer and
should not specify MAP_ FIXED.

One way to share memory between a parent and child is to cdl map with
MAP- SHARED before calling f or k. Posix.1 then guaranteesthat memory mappingsin
the parent are retained in the child. Furthermore, changes made by the parent are vis-
bletothechild and viceversa. Weshow an exampled thisshortly.

After map returnssuccess, the fd argument can be closed. This has no effect on the
mapping that was established by mmap.

To removea mapping from the addressspaced the process, we cal munmap.

#include <sys/mman.h>

int munmap(void *addr, size-t len):

Returns 0if OK, -1 oneror

Theaddr argument is the address that was returned by map, and the len isthesized
that mapped region. Further referencesto these addresses result in the generation d a
S| GSEGV signal to the process (assuming, d course, that a later call to map does not
reusethis portiond the addressspace).

310 Shared Mamoy Introduction Chapter 12

If the mapped region was mapped using MAP_ PRIVATE, the changes made aredis
carded.

In Figure 12.6, the kernel's virtual memory algorithm keeps the memory-mapped
file (typically on disk) synchronized with the memory-mapped region in memory,
assuming a MAP_SHARED segment. That is, f we modify alocation in memory thet is
memory-mappedto afile, then at sometimelater the kernel will update thefile accord-
ingly. But sometimes, we want to make certain that thefile on disk correspondsto what
isin the memory-mapped region, and wecal msync to perform thissynchronization.

#i ncl ude <sys/mman.h>
int meync(void *addr, size-t len, int flags);

Returns 0 if OK, -1oneror

The addr and len arguments normally refer to the entire memory-mapped region d
memory, although subsets d this region can also be specified. Theflags argument is
formed from thecombinationd constantsshownin Figure12.9.

Constant Description
MS_ASYNC perform asynchronous writes
MS_SYNC perform synchronouswrites
MS_INVALIDATE | invalidate cached data

Figure12.9 flagsfor rnsync function.

Oned thetwo constantsMS_ASYNC and MS_SYNC must be specified, but not both. The
differencein these two is that MS_ASYNC returns once the write operationsare queued
by thekerndl, whereasMS_SYNC returnsonly after thewrite operations are complete. F
MS_INVALIDATE is also specified, all in-memory copiesd the file data that are incor+
sistent with thefile data are invalidated. Subsequent referenceswill obtain data from
thefile

Why Use mmap?

Our description d mmap so far has implied a memory-mapped file: some file that we
open and then map into our address space by calling mmap. Thenicefeaturein usnga
memory-mappedfileisthat al thel/0 isdone under the covers by the kernel, and we
just write code that fetches and stores valuesin the memory-mapped region. We never
cdl read, write, or 1seek. Often, thiscansmplify our code.

Recall our implementationof Posix message queues usingmmap and the storingof valuesinto
amsg_hdr dructurein Figure5.30and thefetchingdf valuesfrom amsg_hdr structureinFi ¢
ure5.32.

Sedian12.3 Incemet Counter in a Memary-Maoped Hle 311

123

11-14

15-16

20-34

Bewared some cavests, however, in that not all filescan be memory mapped. Try-
ing to map a descriptor that refersto a terminal or a socket, for example, generatesan
error return from map. These typesd descriptors must be accessed using read and
write (orvariantsthereof).

Another used m ap isto provide shared memory between unrelated processes. In
thiscase, the actua contentsd thefile becometheinitial contentsd the memory that is
shared, and any changes made by the processesto thisshared memory are then copied
back to the file (providing filesystem persistence). This assumes that MAP_ SHARED is
specified, whichisrequired to sharethe memory between processes.

Details on the implementation of mmap and its relationship to the kernd's virtual memory
algorithmsare provided in [McKusick et al. 19961 for 4.4BSD and in [Vahalia 19961 and [Good-
heart and Cox 19941 for SVR4.

Increment Counter in a Memory-Mapped File

We now modify Figure12.3 (which did not work) so that the parent and child sharea
piece d memory in which the counter is stored. To do 0, we use a memory-mapped
file afilethat we open and then m ap into our address space. Figure 12.10 showsthe
new program.

New command-lineargument

We have a new command-line argument that is the named afilethat will be mem-
ory mapped. We open the file for reading and writing, creating the file if it does not
exig, and then writean integer withavaued 0 to thefile.

mmap then close descriptor

We cal map to map thefilethat was just opened into the memory o this process.
Thefirst argument isa null pointer, telling the system to pick the starting address. The
lengthisthesized an integer, and we specify read—-writeaccess. By specifyingafourth
argument o MAP- SHARED, any changes made by the parent will be seen by the child,
and viceversa. Thereturn valueisthe starting addressd the memory region that will
beshared, and westoreitin ptr.

fork

We set standard output unbuffered and cdl fork. The parent and child both incre-
ment theinteger counter pointed to by ptr.

Memory-mapped files are handled specialy by fork, in that memory mappings
created by the parent before calling fork are shared by the child. Therefore, what we
have done by opening thefileand calling m ap with the MAP- SHAREDflag is providea
piece d memory that is shared between the parent and child. Furthermore, since the
shared memory isa memory-mappedfile, any changesto the shared memory (the piece
d memory pointed toby ptr o sizesizeof (i nt)) areasoreflected in the actual file
(whosenamewas specified by the command-lineargument).

312 Shared Mamay Introdudion Chapter 12

shim/incr2.c

1 #include "unpipc.h”

2 #defi ne SEM_NAME "mysem”

3int

4 main(int argc, char **argv)

5 {

6 int fd, i, nloop, zero = O;

7 int *ptr;

8 sem_t *mutex;

9 if (argc = 3)

10 err_quit("usage: incr2 <pathname> <#| oops>");

11 nl oop = atoi(argv(2]);

12 /* open file, initialize to O, map into nenory */
13 fd = Open(argvI[1l], O_RDWR | O_CREAT, FlLE- MDE);

14 Write(fd, &zero, sizeof(int));

15 ptr = Mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP- SHARED, fd, 0):
16 d ose(f4d) ;

17 /* create, initialize, and unlink semaphore */
18 mut ex = Sem_open (Px_ipc_name (SEM_NAME) , O_CREAT | O_EXCL, FILE- MDE 1);
19 Sem_unlink(Px_ipc_name (SEM_NAME)) ;
20 setbuf (stdout, NULL); /* stdout is unbuffered */
21 if (Fork() == 0) (¢ /[* child */
22 for (i = 0; i < nloop; i++) (
23 Sem wait (mutex) ;
24 printf("child: %d\n", (*ptr)++);
25 Sem post (mutex) ;
26 }
27 exit(0);
28 }
29 /* parent */
30 for (i = 0; i < nloop; i++) {
31 Sem_wait (mutex) ;
32 printf ("parent: $d\n”", (*ptr)++);
33 Sem_post (mutex) ;
34 }
35 exit(0);
36 1]

shm/incr2.c
Figurel2 10 Parent and dildincrenenti nga counter inshared nenory.

If we execute this program, we see that the memory pointed to by ptr isinded
shared between the parent and child. We show only the values when the kend
switchesbetween the two processes.

solaris % incr2 /tmp/temp.l 10000

child: o child starts first
child: 1

child: 128

child: 129

parent: 130 child is stopped, parent starts

Section12.3 Increment Counter in a Memory-Mapped File 313

parent executing here—s

parent: 131

parent: 636
parent: 637
child: 638 parent isstopped, child starts
child: 639

child: 1517
child: 1518
parent: 1519 child is stopped, parent starts
parent: 1520

parent: 19999 final line d output
solaris % od -D /tmp/temp.1
0000000 0000020000

0000004

Sincethefile was memory mapped, we can look at thefile after the program terminates
with the od program and seethat thefina valued the counter (20,000) isindeed stored
in thefile.

Figurel2.11isa modificationd Figurel2.5 showing the shared memory, and show-
ing that the semaphore is also shared. We show the semaphore as being in the kernd,
but as we mentioned with Posix semaphores, this is not a requirement. Whatever
implementation is used, the semaphore must have at least kernel persistence. The
semaphore could be stored as another memory-mappedfile, aswe demonstrated in Sec-
tion10.15.

shared memory

count

parent j \ child
int *ptr; ——— -I—i nt

*ptr;
if (Fork() == 0) { if (Fork() == 0) {
/* child */ /* child */

L child executing here—s
})

[* parent */ /* parent */

semaphore:| Oorl

Figure12.11 Parent and child sharingmemory and a semaphore.

We show that the parent and child each have their own copy d the pointer ptx, but

eech copy pointsto the sameinteger in shared memory: the counter that both processes
increment.

314

Shared Menory Introduction

Chapt er 12

2-5

We now nodi fy our programfromH gure 12 10to use a Rosix nenory-based
senaphor einstead d a Rosi x named senaphor e, and storethi s semaphor eint he shared
nmemory. Hgure 12 12isthe newpr ogr am

1 #i ncl ude "unpipc.h"

struct shared {

shmjincr3.c

sem_t mut ex; /* the mutex: a Posi x menory-based senaphor e
int count ; /* and the counter */
} shared;

main(int argc, char **argv)

{

1

11
12
13

14
15
16
17
18
19

20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 }

2
3
4
5
6 int
7
8
9
]

int fd, i, nl oop;
struct shared *ptr;

if (argc 1= 3)
err_quit("usage: incr3 <pathname> <#loops>"):
nl oop = atoi(argv[2]);

/* open file, initializeto O, map i nto nenory */
fd = Open(argv(1], O_RDWR | O_CREAT, FlLE- MIE);
Write(fd, &shared, sizeof(struct shared)):;
ptr = Mmap(NULL, sizeof(struct shared), PROT_READ | PROT_WRITE,
MAP- SHARED, fd, 0);
d ose(fd) ;

/* initialize semaphore that is shared between processes */
Sem_init (&ptr->mutex, 1, 1);

set buf (st dout, NULL) ; /* stdout is unbuffered */
if (Fork() == 0) {(/* child */
for (i = 0; i < nloop; i++) {
Sem_wait (&ptr->mutex) ;
printf ("child: %d\n", ptr->count ++);
Sem_post (&ptr->mutex) ;
}
exit(0);

/* parent */
for (i = 0; i < nloop; i++) (
Sem_wait (&ptr->mutex) ;
printf ("parent: %d\n", ptr->count ++);
Sem_post (&ptr->mutex) ;
}
exit(0);

F gure12 12 Counter and ssmaphoreareboth in shared memory.

Define structure that will be in shared memory

We define astructurecontai ningtheinteger counter and a senaphor eto pratect it.
Thisstructurew bestoredintheshared menory object.

1

4

shm/incr3.c

Section 12.4 44BSD Anonymous Memory Mapping 315

Map the memory

14-19 W cregte thefile that will be mapped, and writea structured 0 to thefile. All we
are doing isinitializing the counter, because the valued the semaphore will beinitid-
ized by the cdll to sem _init. Nevertheless, writing an entire structured 0 issimpler
thantotry towriteonly aninteger d 0.

Initialize semaphore

20-21 We are now using a memory-based semaphore, instead d a named semaphore, so
wecdl sem_init toinitializeitsvaluetol. The second argument must be nonzero, to
indicatethat the semaphoreisbeing shared between processes.

Figurel2.13 isa modification o Figure12.11, noting the change that the semaphore
hasmoved from the kernel into shared memory.

shared memory
| count & semaphore ‘

parent jk child
struct shared *ptr; —_————

t-struct shared *ptr;

if (Fork() == 0) { if (Fork() == 0) {
/* child */ /* child */

- child executing here—s

’ }

[* parent */ /* parent */

parent executingher e

Figure12.13 Counter and semaphorearenow in shared memory.

124 4.4BSD Anonymous Memory Mapping

Our examplesin Figures 12.10 and 12.12 work fine, but we have to create a file in the
filesystern (the command-lineargument), call open, and then write zerosto thefileto
initializeit. When the purposed callingmmap isto providea pieced mapped memory
that will be shared across a fork, we can simplify this scenario, depending on the
implementation.

1. 4.4BSD provides anonymous memory mapping, which completely avoids having
to create or open a file. Instead, we specify the flags as MAP-SHARED |
MAP_ANON and thefd as—-1. Theoffsgtisignored. Thememory isinitialized to0.
We show an exampled thisin Figure12.14.

2. SVRA provides /dev/zero, which we open, and we use the resulting descrip
tor in the call to mmap. Thisdevice returnsbytes o 0 when read, and anything
written to the device isdiscarded. We show an exampled thisin Figure12.15.

316 Shared Mamay Introduction Chepter 12

125

(Many Berkdey-derived implementations, such asSunOS 4.1.x and BSD/OS 31,
alsosupport /dev/zero.)

Figure 12.14 showsthe only portion d Figure12.10 that changes when we use 4.4BSD
anonymous memory mapping.

shnyincr_map_anon.c

3 int

4 main(int argc, char **argv)

5 ¢

6 int i, nl oop;

7 int *ptr;

8 sem_t *mutex;

9 if (argc != 2)

10 err_quit("usage: incr_map_anon <#loops>");
11 nl oop = atoi (argv[1]);

12 /* map into nenory */

13 ptr = Mmap (NULL, sizeof(int), PROT_READ | PROT_WRITE,
14 MAP- SHARED | MAP- ANCN, -1, 0);

shm[incr_map_anon.c
Figure12.14 4.4BSD anonynous menor y nappi ng.

The automatic variables f d and zero are gone, as is the command-lineargument
that specified the pathname that was created.

We no longer open afile. The MAP—ANON flag is specified in the call to mmap, and
thefifth argument (thedescriptor) is—L

SVR4 /dev/zero Memory Mapping

Figure 12.15 shows the only portion d Figure 12.10 that changes when we map

/dev/zero.

- shm[incr_dev_zeroc
3int

4 main(int argc, char **argv)

5 {

6 int fd, i, nl oop;
7 int *ptr;

8 sem_t *mutex;
9
0
1

if (argc '= 2)
1 err_quit ("usage: incr_dev_zero <#l| oops>");
1 nl oop = atoi {argviil);
12 /* open /dev/zero, nap into nmenory */
13 fd = Open("/dev/zero", O_RDWR);
14 ptr = Mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP- SHARED, fd, 0);
15 d ose (fd) ;

shm/incr_dev_zero.c
Figure1215 SVR4 nenory nappi ngd /dev/zero.

Section 12.6 Reeendng Memory-Maoped Objects 317

6--11

12-15

12.6

The automatic variable zero is gone, as is the cornmand-line argument that speci-
fied the pathname that wascreated.

We open /dev/ zero, and the descriptor is then used in the cadl to map. Weare
guaranteed that the memory-mapped region isinitialized to 0.

Referencing Memory-Mapped Objects

When aregular fileis memory mapped, thesized the mappingin memory (thesecond
argument to map) normally equalsthesized thefile. For example, in Figure12.12 the
filesizeisset to thesized our shared structureby write, and thisvalueisalso the
size d the memory mapping. But these two sizes—the file size and the memory-
mapped size—can differ.

We will use the program shown in Figure 12.16 to explore the mmap function in
more detail .

shmtestl.c

1 #include "unpipc.h®

2int

3 main(int argc, char **argv)

4 {

5 int fd, i;

6 char *ptr;

7 size-t filesize, mmapsize, pagesi ze;

8 if (argc = 4)

9 err_guit ("usage: testl <pathname> <filesize> <mmapsize>");
10 filesize = atoi(argvi[2]);

11 mmapsi ze = atoi (argv(3]);

12 /* open file: create or truncate; set file size */

13 fa = pen(argv[1], O_RDWR | O_CREAT | O_TRUNC, FlLE- MIE):

14 Lseek (fd, filesize - 1, SEEK- SET);

15 write(fd, "', 1);

16 ptr = Mmap(NULL, NMMapsize, PROT_READ | PROT _WRITE, MAP- SHARED, fd, 0);
17 Close(£4);

18 pagesize = Sysconf (_SC_PAGESIZE) ;

19 printf ("PAGESIZE = %ld\n", (long) pagesize);

20 for (i = 0; i < max(filesize, mmapsize); i += pagesi ze) (

21 printf("ptr[%d] = %d\n", i, ptr[i]);

22 ptr[i] = 1;

23 printf("ptr[%d] = %d\n", i + pagesize - 1, ptr[i + pagesize - 1]);
24 ptr[i + pagesize - 11 = 1;

25 } .

26 printf ("ptr[%d] = %d\n", i, ptrlil);

27 exit(0);

28 }

shim[testl.c
Figure12.16 Memory mappingwhen mmap equalsfilesize.

318 Shared Mamoy Introduction Chapter 12

12-15

16-17

18-19

20-26

Command-linearguments

The command-linearguments specify the pathname o the file that will be crested
and memory mapped, thesizeto which that fileis set, and thesized the memory megp-

ping.
Create, open, truncate file; set file size

Thefile being opened is created if it does not exist, or truncated toasized 0 if it
dready exists. Thesze d thefileisthen set to the specified size by seeking to that Sze
minus1 byteand writing 1 byte.

Memory map fiie

The file is memory mapped, using the size specified as the fina command-line
argument. The descriptor isthen closed.

Print page size
Thepagesized theimplementationisobtained using sysconf and printed.
Read and store the memory-mappedregion

The memory-mapped region is read (thefirst byte & each page and thelast byted
each page), and thevalues printed. Weexpect the valuesto all be0. Wealso set thefirg
and last bytes 0 the page to 1. We expect one d the references to generate a sgnd
eventually, which will terminate the program. When the f or loop terminates, we print
thefirst byte d the next page, expectingthisto fail (assuming that the program has nat

already failed).

The first scenario that we show is when the file size equals the memory-mapped
sze, but thissizeisnot a multipled the pagesize.

solaris % 1s -1 foo

foo: No such file or directory
solaris % testl foo 5000 5000
PAGESIZE = 4096

ptr[0] = 0
ptr[4095]
ptr[4096] 0

ptr[8191] 0

Segnent at i on Fault (coredump)

solaris % 1s -1 foo

TWeT—-T-— 1 rstevens otheril 5000 Nar 20 17:18 foo

solaris % od -b -A 4 foo

0000000 001 000 000 000 000 000 000 000 000 000 00O 000 000 000 000 000
(2000016 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000

0

0004080 000 COO 00O 000 000 OOC OOO 0OOOC OCO OCO COO 0OO OOO 0OC 0OO OO1
0004096 001 o00C 0OO 00O 0CC OOO QOO QOGO ©OO OO0 OO0 QOO QOO QOO 0OC OO0
0004112 000 000 000 0OOC 0OCO QOO OOO 0O0C COO OOO 00O OOCO 00O COO 000 CQO0O

*

0005000

The page size is4096 bytes, and we areableto read the entire second page (indexes4056
through 8191), but a referenceto the third page (index 8192) generates SIGSEGV, which

Section 12.6 Reaendng Memory-Meoped Objects 319

the shell prints as " Segmentation Fault." Even though we set ptr [8191] to 1, this
valueis not written to the file, and thefileé's size remains5000. The kernd lets us read
and writethat portion d thefinal page beyond our mapping (sincethe kernel's memory
protection workswith pages), but anything that we writeto thisextensionis not written
to thefile. Theother 3 bytesthat we set to 1, indexes0,4095, and 4096, are copied back
to the file, which we verify with the od command. (The -b option says to print the
bytesin octal, and the -2 d option saysto print theaddressesin decimd.) Figurel2.17
depictsthisexample.

filesize

/

| file
L]
offset: 0 4999
index: 0 4999 5000 8191
o
. remainder
memory-mappedregion of last page
T references
Id—— referencesOK — ————-J—n- generate
* S| GSEGV

mmap () Size
Figure12.17 Memory mapping when mmap sizeequalsfilesize.

if we run our example under Digital Unix, we see similar results, but the pagesize
isnow 8192.

alpha % 18 -1 foo

foo not found

al pha % testl foo 5000 5000
PAGESIZE = 8192

ptr[0] = O

ptr[8191] = 0

Menory fault (coredump)

alpha % 1s -1 foo
—YW-TY——T—— 1 rstevens operator 5000 Mar 21 08:40 foo

Wearestill ableto referencebeyond the end d our memory-mapped region but within
that page d memory (indexes5000 through 8191). Referencing ptr [8192] generates
SI GSEGV, aswe expect.

In our next example with Figure12.16, we specify a memory mapping (15000 bytes)
that islarger than thefilesize (5000 bytes).

solaris % rm f oo

solaris % testl foo 5000 15000
PAGESIZE = 4096

ptr[0] = 0
ptr[4095]
ptr[4096]

0
0

320 Shared Mamoy Introduction Chapter 12

9-11

12-16

ptr[8191] = 0O

Bus Error (coredump)

solaris % 1s -1 foo

YWY ——T—— 1 rstevens otherl 5000 Mar 20 17:37 foo

The results are similar to our earlier example when the file size and the memory map
sizewere the same (both 5000). Thisexample generates SIGBUS (whichthe shell prints
as "Bus Error'), whereas the previous example generated SI GSEGV. The differenceis
that SIGBUS meanswe have referenced within our memory-mapped region but beyond
thesized the underlying object. The SIGSEGV in the previous example meant we hed
referenced beyond theend d our memory-mapped region. What we have shown here
isthat the kernel knowsthesized the underlyingobject that is mapped (thefile f ooin
thiscase), even though we have closed the descriptor for that object. The kernel dlows
usto specify asizetommap that islarger than thesized thisobject, but we cannot refer-
encebeyond itsend (except for the byteswithin thefind pagethat are beyond theed
d theobject, indexes5000 through 8191). Figure12.18 depictsthisexample.

filesize

'

file ‘
offsat: 0 4999
mmap () Size
index: 0 4999 5000 8191 8192 14999*
— —_— e P, .
| remainder
| ofpage J
) i g2 _ B el
references
»-1 ————— references OK ————-——4-&-4——-——— SIGBUS h-',_, generate
SIGSEGV

Figure12.18 Memory mapping when mmap sizeexceedsfilesize.

Our next program isshownin Figure12.19. It showsa common techniquefor han-
dling afile that is growing: specify a memory-map size that islarger than thefile, keep
track d thefile's current size (making certain not to reference beyond the current end-
of-file),and then just let thefile's sizeincrease as more dataiswrittento thefile.

Open file

\We open afile, creatingit if it doesnot exist or truncatingit if it already exists. The
fileismemory mapped with asize o 32768, even though thefiles current sizeisO.
Increasefile size

We increase the size d the file, 4096 bytes at a time, by cdling ft runcat e (S
tion 13.3), and fetch the bytethat isnow thefina byted thefile.

Stion12.6 Referencing Memory-Mapped Objects 321

shm/test2.c

1 #include "unpipc.h"

2 #define FI LE "test.data"

3 #define Sl ZE 32768

4 int

5 main(int argc, char **argv)

6 (

7 int fd, i;

8 char *ptr;

9 /* open: create or truncate; then mmap file */

10 fd = Open(FILE, O_RDWR | O_CREAT | O_TRUNC, FlLE- MCDE);
11 ptr = Mmap(NULL, S|ZE, PROT_READ | PROT WRITE, MAP- SHARED fd. 0):
12 for (i = 4096; i <= SIZE i += 4096) ¢

13 printf("setting file size to sd\n", i);

14 Ftruncate(fd, i):

15 printf ("ptr[%d] = %d\n", i - 1, ptrli - 11);

16 }

17 exit(0);

18 }

shm/test2.c
Figure1219 Memory map examplethat letsthefilesizegrow.

When we run this program, we see that as we increasethe size o thefile, we are
abletoreferencethe new data through our established memory map.

alpha % 1s -1 test-data
test.data: No such file or directory
al pha % test2

setting file size to 4096
ptr[4095] = O

setting file size to 8192
ptr[8191] = 0

setting file size to 12288
ptr[12287] = 0

setting file size to 16384
ptr{16383] = 0

setting file size to 20480
ptr[20479] = 0

setting file size to 24576
ptr[24575] = 0

setting file size to 28672
ptr[28671] = O

setting file size to 32768
ptr[32767] = 0

alpha % 1s -1 test-data
—rw-Y—-r—-— 1 rstevens otherl 32768 Mar 20 17:53 test.data

32 Shared Mamary Introduction Chepter 12

12.7

This example shows that the kernel keepstrack o thesized the underlying object thet
ismemory mapped (thefilet est . dat ain thisexample), and we are dways ableto ref-
erence bytes that are within the current file size that are also within our memory map.
We obtain identical results under Solaris 2.6.

This section has dealt with memory-mapped files and mmap. In Exercise13. 1, we
modify our two programs to work with Posix shared memory and see the same reaults.

Summary

Shared memory isthe fastest form d |PC available, because one copy of the data in the
shared memory isavailableto all the threads or processesthat share the memory. Some
form o synchronization is normally required, however, to coordinate the various
threads or processesthat are sharing the memory.

Thischapter hasfocused on the mrap function and the mapping o regular filesinto
memory, because this is one way to share memory between related or unrelated pro-
cesses. Once we have memory mapped afile, weno longer user ead, wri t e, or | seek
to access the file instead, we just fetch or store the memory locations that have bean
mapped to thefile by mmap. Changing explicit filel/0 into fetchesand storesd mem:
ory can oftensimplify our programs and sometimesincreaseperformance.

When the memory is to be shared across a subsequent f or k, this can be asmplified
by not creating a regular file to map, but using anonymous memory mapping instead.
Thisinvolveseither a new flag o MAP_ANON (for Berkeley-derived kernels) or mapping
/dev/zer o (for SYR4-derived kernels).

Our reason for covering mmap in such detail is both because memory mapping d
filesisa useful technique and because mrap is used for Posix shared memory, which is
thetopicd the next chapter.

Also availableare four additional functions (that we do not cover) defined by Posx
dealing with memory management:

e mockall causesdl o the memory o the process to be memory resdent.
munl ockal | undoesthislocking.
e N ock causesa specified range o addresses o the process to be memory res-

dent, where the function argumentsare a starting addressand a number o bytes
from that address. munl ock unlocksa specified regiond memory.

Exercises

221 Wha would happen in Fgure12.19if we executed the code within thef or loop onermae
time?
122 Assumetha we havetwo processes, a sender and a recaiver, with the former just sanding

messagesto the latter. Assume that Sygem V message queues are used and draw a dia-
gran d how the messages go from the sender to the recaver. Now assume that ar

Chapter 12

Exercises 323

123

124

125

implementationd Posix message queues from Section 58 is used, and draw a diagram o
thetransfer d messages.

With mmap and MAP- SHARED, we said that the kernel virtual memory algorithm updates
the actual file with any modificationsthat are made to the memory image. Read the man-
ual pagefor /dev/zero to determine what happens when the kernel writes the changes
back to thefile.

Modify Figure12.10 to specify MAP- PRI VATE instead d MAP- SHARED, and verify that the
resultsare similar to the resultsfrom Figure12.3. What are the contentsd thefilethat is
memory mapped?

In Section 6.9, we mentioned that oneway to sel ect on aSystemV messagequeueis to
create a piece d anonymous shared memory, create a child, and let the child block in its
cal to nmsgrcv, reading the message into shared memory. The parent also creates two
pipes, oneis used by the child to notify the parent that a messageisready in shared mem-
ory, and the other pipeisused by the parent to notify the child that the shared memory is
now available. Thisallowsthe parent to sel ect on theread end o the pipe, along with
any other descriptorson which it wantsto sel ect. Codethissolution. Call our ny- shun
function (Figure A 46) to allocate the anonymous shared memory object. Use our
nsgcr eat e and megsnd programsfrom Section 6.6 to create the messagequeue, and then
place records onto the queue. The parent should just print the size and type d each mes-
sagethat thechild reads.

13.1

13

Posix Shared Memory

Introduction

The previous chapter described shared memory in general terms, along with the map
function. Exampleswere shown that used map to provide shared memory between a
parent and child:

e using a memory-mapped file (Figure12.10),
e Using 4.4BSD anonymous memory mapping (Figure12.14), and
e Using /dev/zero anonymous memory mapping (Figurel2.15).

We now extend the concept of shared memory to include memory that is shared
between unrelated processes. Posix.1 provides two ways to share memory between
unrelated processes.

1. Memory-mapped files: afile is opened by open, and the resulting descriptor is
mapped into the address space o the processby map. We described this tech-
nigue in Chapter 12 and showed its use when sharing memory between a par-
ent and child. Memory-mapped files can also be shared between unrelated
processes.

2. Shared memory objects the function shm_open opens a Posix.1 |PC name (per-
haps a pathname in thefilesystem), returning a descriptor that is then mapped
into the address space d the process by map. We describe this technique in
thischapter.

325

326 Podx Shared Mamary Chepter 13

Both techniques require the call to map. What differsis how the descriptor that isan
argument to map is obtained: by open or by shm_open. We show thisin Figure13.1
Both are called memory objectsby Posix.

Posix memory-mappedfile Posix shared memory object
fd = open(pathname, ...); fd = shm_open(name, ...);
pt}ffd, e) pkp(...ﬂfd, cee)
-« Posix memory objects >

Figure13.1 Posix memory objects memory-mappedfilesand shared memory objects.

13.2 shm_open and shm_unlink Functions
Thetwo-step processinvolved with Posix shared memory requires

1 caling shm_open, specifying a name argument, to either create a new shared
memory object or to open an existing shared memory object, followed by

2. cdling map to map the shared memory into the address space d the cdling
process.

The name argument used with shm_open isthen used by any other processesthat want
to share this memory.

The reason for this two-step process, instead d a single step that would take a name and
return an addresswithin the memory d the calling process, isthat mmap already existed when
Posix invented itsform o shared memory. Clearly, asingle function could do both steps. The
reason that shm_open returnsa descriptor (recall that mq_open returnsan mgd_t valueand
sem_open returnsa pointer toasem_t value) isthat an open descriptor is what mmap usesto
map the memory object into the addressspaced the process.

#include <sys/mman.h>
int shm_open(const char *name, int oflag, mode—t mode);

Returns: nonnegative descriptor if OK, -1 on error

int shm_unlink{const char *name) ;

Returns; 0 if OK, =1 onerror

We described the rules about the nameargument in Section 2.2.

Sectien 13.3 ftruncate and gstat Functions 327

13.3

The oflag argument must contain either O_RDONLY (read-only) or O_RDWR
(read-write), and the following flags can aso be specified: O_CREAT, O_EXCL, or
O_TRUNC. The o_CREAT and O_EXCL flags were described in Section 23. If O_TRUNC
is specified along with 0_RDWR, then if the shared memory object already exidts, it is
truncated to O-length.

mode specifiesthe permission bits (Figure2.4) and isused when the 0_CREAT flagis
specified. Note that unlike the mg _open and sem_open functions, the mode argument
to shm_open must always be specified. If the O_CREAT flag is not specified, then this
argument can be specified as0.

The return value from shm_open is an integer descriptor that is then used as the
fifthargument to mmap.

The shm_unlink function removesthe name o a shared memory object. Aswith
al the other unlink functions (the unlink o a pathname in the filesystem, the
mg unlink of a Posix message queue, and the sem_unlink o a Posx named
semaphore), unlinking a name has no effect on existing references to the underlying
object, until all referencesto that object are closed. Unlinkinga name just prevents any
subsequent call to open, mg_open, or sem_open from succeeding.

ftruncate and f£stat Functions

When dealing with mmap, thesize o either aregular file or a shared memory object can
bechanged by calling f truncate.

#include <unistd.h>
int ftruncate(int fd, of £_t length);

| Reurns0if OK, -1 onaror |
1

Posix defines the function dlightly differently for regular files versus shared memory
objects.

o For aregular file If thesize d the file was larger than length, the extra data is
discarded. If the size o the file was smaller than length, whether the file is
changed or its size is increased is unspecified. Indeed, for a regular file, the
portable way to extend the size of the file to length bytesis to 1seek to offset
length-1 and write 1 byte d data. Fortunately, aimost all Unix implementa-
tionssupport extending afilewith f truncate.

o Forashared memory object: f truncatesetsthesized the object to length.

Wecall ftruncate to specify thesized a newly created shared memory object or
to change the size o an existing object. When we open an existing shared memory
object, wecan call f st at to obtain information about the object.

‘
328 PRodx Shared Memory Chapter 13

#include <sys/types.h>
#include <sys/stat.h>

int fstat(int fd, struct stat *buf);

Returns; 0 if OK, -1 on error

A dozen or moremembersarein the stat structure (Chapter 4 of APUE talksabout dl
the members in detail), but only four contain information when fd refers to a shared

memory object.

struct stat {

mode—t st—mode; /* mode: s_I{RW}{USR,GRP,OTH} */
uid t st—uid; /* user 1D of owner */

gid_t st_gid; /* group 1D of owner */

off—-t st—size; /* size in bytes */

}; o
We show examplesof these two function in the next section.

Unfortunately, Posix.1 does not specify theinitial contentsd a newly created shared memory
object. Thedescriptiond the shm_open function statesthat ** The shared memory object
have asize d 0.” Thedescriptiond ftruncate specifiesthat for a regular file (not shered
memory), "I thefileisextended, the extended area shall appear asif it were zero-filled." But
nothing issaid in the description o f truncate about the new contentsd a shared memory
object that isextended. ThePosix.1 Rationaestatesthat "If the memory object isextended, the
contentsd the extended areas are zeros" but thisis the Rationae, not the officid sandard.
When the author asked on the comp . std. unix newsgroupabout this detail, the opinion wes
expressed that some vendors objected to an initialize-to-0 requirement, because o the over-
head. f anewly extended piece d shared memory is not initialized to some value (i.e,, if the
contentsareleft asis), thiscould be a security hole.

13.4 Simple Programs

We now devel op some simple programs that operate on Posix shared memory.

shntr eat e Program

Our shmcreate program, shown in Figurel3.2, createsa shared memory object witha
specified nameand length.

19-22 shm_open creates the shared memory object. If the —e option is specified, it isan
error if the object already exists. £truncate setsthe length, and mmap maps the dyet
into theaddress space d the process. The program then terminates. Since Posix shared
memory has at |east kernel persistence, this does not remove the shared memory object.

Section 13.4 Smple Progams 329

- - pxshm [shimcreate.c
1 #include "unpipc.h"
2int
3 main{int argc, char **argv)
4 {
5 int c, fd, flags;
6 char *ptr;
7 of f_t | engt h;
8 flags = o_RDWR | O_CREAT;
9 while ((c = Getopt(argc, argv, "e")) != -1) {
10 switch (c) ¢
11 case ‘'e’:
12 flags |= O_EXCL;
13 br eak;
14);
15);
16 if (optind != argc - 2)
17 err_quit("usage: shntreate [-e] <name> <l engt h>");
i8 length = atoi(argvioptind + 1]);
19 fd = shm_open(argvloptind]l, flags, Fl LE- MODE);
20 Ftruncate (fd, | ength);
21 ptr = Mmap(NULL, length, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
22 exit(0);
23)
pxshm/shmcreate.c

Figure13.2 CreateaPosix shared memoryobjectd aspecifiedsize.

shmunlink Program

Figure 13.3 showsour trivial program that calls shm_unlink to remove the namedof a
shared memory object from the system.

: 7 pxshm [shmunlink.c
#include "unpipec.h"

1
2 int

3 main(int argc, char **argv)

4 {

5 if (argc 1= 2)

6 err_quit ("usage: shrmunli nk <name>");

b |

Shm_unlink(axrgv([l]);

exit(0);

v 0

pxshm|[shmunlink.c
Figure13.3 Unlink thenameof a Posix shared memory object.

330 Posix Shared Menory Chapter 13

shmari

10-15

16-18

t e Program

Figurel34isour shnwr i t e program, which writesa patternd 0, 1, 2, ..., 254, 255, 0, 1,
and so on, to ashared memory object.

xshm [shmwrite.c

1 #include "unpipc.h" P /

2 int

3 main(int argc, char **argv)

4 |

5 int i, fd;

6 struct stat stat;

7 unsi gned char *ptr;

8 if (argc 1= 2)

9 err_quit ("usage: shnwite <name>");

10 /* open, get size, map */

11 fd = shm_open(argv[1], O_RDWR, FILE- MDE);

12 Fstat(fd, &stat);

13 ptr = Mmap(NULL, stat.st_size, PROT_READ | PROT WRITE,

14 MAP- SHARED, fd, 0);

15 Close(fd);

16 /* set: ptr[0] = 0, ptr[1l] =1, etc. */

17 for (i = 0; i < stat.st_size; i++)

18 *ptr++ = i % 256;

19 exit (0);

20 } .
pxshm[shmuwrite.c

Figure13.4 Open ashared memory object and fill it with a pattern.

The shared memory object is opened by shm_open, and we fetch its sze with
fstat. Wethen map it using mmap and close thedescriptor.
The pattern iswritten to theshared memory.

shmread Program

Our shnr ead program, shown in Figure 135, verifies the pattern that was written by
shnwrite.

: : pxshm [shmread.c
1 #include "unpipc.h"
2int
3 main(int argc, char **argv)
4 |
5 int i, fd;
6 struct stat stat;
7 unsi gned char c, *ptr;
8 if (argc 1= 2)
9 err_quit ("usage: shnread <name>");

Sectior113.4 Simple Programs 331

10-15

16-19

10 /* open, get size, map */

11 fd = Shm_open(argv[1], O_RDONLY, Fl LE- MCDE);
12 Fstat (fd, &stat) ;

13 ptr = Mmap{(NULL, stat.st_size, PROT_READ,
14 MAP- SHARED, fd, 0):

15 d ose(fd) ;

16 /* check that ptr[0] = 0, ptr[i] = 1, etc. */
17 for (i = 0; 1 < stat.st_size; i++)

18 if ((¢ = *ptr++) 1= (i % 256))

19 err-ret ("ptr[%d] = %d", i, c);

20 exit(0);

21 }

pxshm/|shmread.c
Figuwrel35 penashared nenorydject and veifyitsdata patern

The shared memory object is opened read-only, its sizeis obtained by fstat, itis
mapped by mmap (for reading only), and the descriptor is closed.
The patternwritten by shrmwr i t e isverified.

Examples

Wecreate a shared memory object whose length is123, 456 bytes under Digital Unix 4.0B
named / tmp/myshm.

al pha % shntreate /tmp/myshm 123456

alpha % 18 -1 /tmp/myshm

-rw-r--r-- 1 rstevens system 123456 Dec 10 14:33 /tmp/myshm

al pha % od -c¢ /tmp/myshm

0000000 N0 N0 N0 N0 N0 N0 NO \O \O \O \O \O \O \O 1\O \O

*

0361100

We see that a file with the same nameis created in the filesystem. Using the od pro-
gram, we can verify that the object's initial contentsare all 0. (Octal 0361100, the byte
offset just beyond thefinal byted thefile, equals123 456.)

Next, we run our shnwr i t e program and use od to verify that the initial contents
areas expected.

al pha % shmwite /tmp/myshm

alpha % od -x /tmp/myshm | head -4

0000000 0100 0302 0504 0706 0908 0bOa 0d0c OfCe
0000020 1110 1312 1514 1716 1918 Ibla ldlic Ifle
0000040 2120 2322 2524 2726 2928 2bZa 2d2c 2f2e
0000060 3130 3332 3534 3736 3938 3b3a 3d3c 3f3e
al pha % shnread /tmp/myshm

al pha % shmunlink /tmp/myshm

We verify the shared memory object's contents with shnt ead and then unlink the
name.

if we run our shircr eat e program under Solaris 2 6, we see that afileis created in
the /t np directory with the specified size.

332 Poax Shaed Mamay Chapter 13

solaris % shmcreate -e /testshm 123
solaris % 18 -1 /tmp/.*testshm*
—YW-T——T—— 1 rstevens otherl 123 Dec 10 14:40 /tmp/.SHMtestshm

Example

We now provide asimple examplein Figure13.6 to demonstrate that a shared memory
object can be memory mapped starting at different addressesin different processes.

- - pxshm |[test3.c
1 #include "unpipc.h"
2int
3 main(int argc, char **argv)
4 {
5 int £fd1, £d2, *ptrl, *ptr2;
6 pid_t chil dpid;
7 struct stat stat;
8 if (argc 1= 2)
9 err_qguit("usage: test3 <name>"});
10 shm_unlink (Px_ipc_name (argvill)};
1T fdl = shm_open(Px_ipc_name({argv[1l])}), O_RDWR | O_CREAT | O_EXCL, HLE MIB;
12 Ftruncate(fdl, sizeof(int));
13 fd2 = Open("/etc/motd", O_RDONLY);
14 Fstat(fd2, &stat);
15 if ((childpid = Fork()) == 0} {
16 /* child */
17 ptr2 = Mrap(NULL, stat.st-size, PROI- READ, NAP- SHARED, fd2, 0);
18 ptrl = Mmap(NULL, sizeof(int), PROI- READ | PROT- WR TE,
19 MAP- SHARED, fdl, 0);
20 printf("child: shmptr = %p, notd ptr = $p\n", ptrl, ptr2);
21 sleep(5});
22 printf("shared menory i nteger = %d\n", *ptrl);
23 exit(0);
24 }
25 /* parent: mmap in reverse order fromchild */
26 ptrl = Mvap(NULL, sizeof(int), PROI- READ | PROT- WR TE, MAP- SHARED, fd1, 0);
27 ptr2 = Mmap (NULL, stat.st_size, PROI- READ, NAP- SHARED, fd2, 0);
28 printf("parent: shmptr = %p, notd ptr = %$p\n", ptrl, ptx2);
29 *ptxrl = 777,
30 Waitpid(childpid, NULL, 0);
31 exit(0);
32 1} pxshm /fest3.c

Figure13.6 Shared memory can appear at differentaddressesin different processes.

10-14 We create a shared memory segment whose name is the command-lineargument,
setitssizetothesized aninteger, and then open thefile /etc/motd.

15-30 We f or k, and both the parent and child call rmap twice, but in a different order.
Each prints the starting address d each memory-mapped region. The child then degps

Sadion135 Incrementing a Shared Counter 333

135

13-19

20-22

23

for 5 seconds, the parent storesthevalue 777 in the shared memory region, and then the
child prints thisvalue.

When we run this program, we see that the shared memory object is memory
mapped at different starting addresses in the parent and child.

solaris % test3 test3.data

parent: shm ptr = eee30000, motd ptr = eee20000

child: dm ptr = eee20000, motd ptr = eee30000
shared mayay integer = 777

Nevertheless, the parent stores 777 into 0xeee30000, and the child reads this value
from Oxeee20000. The pointerspt rl in the parent and child both point to the same
shared memory segment, even though the value d each pointer is differentin each pro-
cess.

Incrementing a Shared Counter

We now develop an examplesimilar to the one shown in Section12.3, in which multiple
processes increment a counter that is stored in shared memory. We store the counter in
shared memory and use a named semaphore for synchronization, but we no longer
need a parent—child relationship. Since Posix shared memory objects and Posix named
semaphores are referenced by names, the various processes that are incrementing the
counter can be unrelated, as long as each knows the IPC hames and each has adequate
permission for the |PC objects (shared memory and semaphore).

Figure 13.7 shows the server that createsthe shared memory object, creates and ini-
tidlizesthe semaphore, and then terminates.

Create shared memory object

We call shm_unlink in case the shared memory object still exists, followed by
shm_open to createtheobject. Thesized theobjectisset tothesized our shnst r uct
structure by £t runcat e, and then mmap maps the object into our address space. The
descriptorisclosed.

Create and initialize semaphore

We call sem_unlink, in case the semaphore still exists, followed by sem_open to
create the named semaphore and initializeit to 1. It will be used asa mutex by any pro-
cess that increments the counter in the shared memory object. The semaphore is then
closed.

Terminate

The process terminates. Since Posix shared memory has at least kernel persistence,
the object remains in existence until all open references are closed (when this process
terminatesthere are no open references) and explicitly unlinked.

Our program must use different names for the shared memory object and the
semaphore. Thereis no guarantee that the implementation adds anything to the Posix
IPC names to differentiate among message queues, semaphores, and shared memory.
We have seen that Solaris prefixes these three types o names with .MQ, . S8V, and
. 3M but Digital Unix does not.

334 REx Shaed Mamoy Chapter 13

15-18

19

20-26

- pxshm/serverl.c
1 #incl ude "unpipc.h"
2 struct shnstruct { /* struct stored in shared nmenory */
3 int count ;
4 };
5 sem_t *mutex; /* pointer to naned senmaphore */
6 int
7 main(int argc, char **argv)
8 {
9 int fd;
10 struct shmstruct *ptr;
11 if (argc '= 3)
12 err_guit ("usage: serverl <shmname> <semname>");
13 shm_unlink (Px_ipc_name (argv[1])); /* K if this fails */
14 /* create shm set its size, map it, cl ose descriptor */
15 fd = Shm cpen(Px_ipc_name(argv[l]), O_RDWR | O_CREAT | O_EXCL, HLE MIE);
16 Ftruncate(fd, sizeof(struct shnstruct));
17 ptr = Mmap(NULL, sizecf(struct shnmstruct), PROT_READ | PROT_WRITE,
18 MAP- SHARED, fd, 0);
19 A ose(fd);
20 sem_unlink (Px_ipc_name{argv(2])):; /* K if this fails */
21 mit ex = Sem_open(Px_ipc_name(argv(2]), O_CREAT | O_EXCL, Fl LE- MDE 1);
22 Sem_close (mutex) ;
23 exit(0):;
24 }
pxshm [serverl.c

Figure13.7 Program that createsand initializesshared memory and semaphore.

Figure13.8 showsour client program that i ncrementsthe counter in shared mamory
some number d times, obtai ning the semaphore each timeit incrementsthe counter.

Open shared memory

shm_open opens the shared memory object, which must aready exist (dnce
O_CREAT is not specified). The memory is mapped into the address space d the pro-
cess by mmap, and thedescriptor isthen closed.

Open semaphore
The named semaphoreis opened.
Obtain semaphore and increment counter

The counter is incremented the number d times specified by the commandHine
argument. We print the old value d the counter each time, along with the processiD,
sincewewill run multiplecopiesd this program at thesametime.

Section 13.5 Incrementing a Shared Counter 335

pxshm [client].c

1 #include "unpipc.h"

2 struct shnstruct { /* struct stored in shared nmenory */
3 int count ;

4 };

5 sem_t *mutex; /* pointer to naned semaphore */
6 int

7 main(int argc, char **argv)

8 {

9 int fd, i, nloop;

10 pid t pid;

11 struct shnstruct *ptr;

12 if (argc 1= 4)

13 err_quit ("usage: clientl <shmname> <semname> <#loops>");
14 nl oop = atoi(argv[31);

15 fd = Shm_open(Px_ipc_name(argv(1l]), O_RDWR, Fl LE- MDE) ;

16 ptr = Mmap (NULL, sizeof(struct shnstruct), PROT READ | PROT_WRITE,
17 MAP- SHARED, fd, 0);

18 d ose(fd);

19 nmut ex = Sem_open (Px_ipc_name (argv[2]), 0);
20 pi d = getpid();
21 for (i = 0; i < nloop; i++) {
22 Sem_wait (mutex) ;

23 printf ("pid %$1d: $d\n", (long) pid, ptr->count++);

24 Sem_post (mutex) ;

25 }

26 exit(0);

27 }

pxshm [client1.c
Fgurell28 Programthet i ncrenent sacounter inshared nenory.

Wefirg gart theserver and then run threecopiesof the client in the background.
solaris % serverl shm senl createsand initializes shared memory and semaphore

solaris % clientl shm sem 10000 & clientl shm seni 10000 & \
clientl shm senm 10000 &

(2] 17976 processIDs output by shell
[31 17977

[41 17978

pid 17977: © and this processruns first
pid 17977: 1

S process17977 continues
pid 17977: 32
pid 17976: 33 kerndl switches processes
.. process17976 continues
pid 17976: 707
pid 17978: 708 kernd switches processes
A process17978 continues

336 RoEx Shaed Memoy Chepter 13

13.6

pid 17978: 852

pid 17977: 853 kerne switches processes
.. and soon

pid 17977: 29998
pid 17977: 29999 final value output, which iscorrect

Sending Messages to a Server

We now modify our producer—consumer example as follows. A server is started that
createsa shared memory object in which messages are placed by client processes. Our
server just prints these messages, although this could be generalized to do thingsami-
larly to the sys1log daemon, which isdescribed in Chapter 13d UNPv1l. Wecadll these
other processes clients, becausethat is how they appear to our server, but they may wel
be servers d some form to other clients. For example, a Telnet server isa client d the
syslog daemonwhen it sendslog messagesto the daemon.

Instead o using one d the message passing techniquesthat we described in Part 2
shared memory is used to contain the messages. This, o course, necessitatessomefam
d synchronization between the clients that are storing messages and the server thet is
retrievingand printing the messages. Figure13.9 showstheoverall design.

client client client

create and initialize fetch next message and print

server

Figure139 Multipleclientssendingmessagestoa server through shared memory.

What we have here are multiple producers (the clients) and a single consumer (the
server). The shared memory appears in the address space d the server and in the
addressspaced each client.

Figure13.10 isour cliserv2.h header, which definesa structure with the layout
o theshared memory object.

Basic semaphores and variables

The three Posix memory-based semaphores, mut ex, nenpty, and nst or ed, save
the same purpose as the semaphores in our producer—consumer example in S
tion10.6. Thevariablenput istheindex (0, 1, ... NMESG-1) o the next location to gore
amessage. Since we have multiple producers, thisvariable must bein the shared mam
ory and can be referenced only whilethenut ex isheld.

Section 13.6 Sending Messages to a Server 337

11-12

10-16

17-19

pxshm [cliserv2.h

1 #include "unpipc.h"

2 #defi ne MESGSI ZE 256 /* max #bytes per nmessage, incl. null at end
3 #defi ne NMESG 16 /* max #nmessages */

4 struct shmstruct { /* struct stored in shared nmenory */

5 sem_t nutex; /* three Posix nenory-based semaphores */

[semt nempty;

7 sem t nst or ed;

8 int nput ; /* index into msgoff[] for next put */

9 | ong nover f | ow, /* #overflows by senders */

10 sem_t nover f | owrut ex; /* mutex for noverflowcounter */

11 | ong msgof f [NMESG] ; /* of fset in shared menory of each nessage */
12 char msgdata[NMESG * MESGSI ZE]; /* the actual nmessages */

13 };

pxshm/cliserv2.h
Figure13.10 Header that defineslayout of shared memory.

Overflow counter

The possibility exists that a client wants to send a message but all the message slots
aretaken. But if theclientisactually a server o sometype (perhapsan FTP server or an
HTTPserver), the client does not want to wait for theserver tofreeup asiot. Therefore,
we will write our clients so that they do not block but increment the nover f | ow
counter when this happens. Since this overflow counter is also shared among all the
clientsand theserver, it too requiresa mutex so that its valueis not corrupted.

Message offsets and data

Thearray nsgof f contains offsets into the nsgdat a array o where each message
begins. That is nsgoff [0] is Q nsgoff [1] is 256 (the value d MESGSIZE),
nsgof f [2] is512, and so on.

Be sure to understand that we must use offsets such as these when dealing with
shared memory, because the shared memory object can get mapped into a different
physical address in each process that maps the object. That is, the return value from
mmap can be different for each process that calls mmap for the same shared memory
object. For this reason, we cannot use pointers within the shared memory object that
contain actual addresses d variableswithin the object.

Figure13.11 isour server that waitsfor a messageto be placed into shared memory
by oned theclients, and then prints the message.

Create shared memory object

shm_unlink is cdled first to remove the shared memory object, if it still exists.
The object is created by shm_open and then mapped into the address space by mmap.
Thedescriptor isthen closed.

Initialize array of offsets
Thearray of offsetsisinitialized to contain the offset each message.

*/

-

338 Posix Shared Memory Chapter 13
- - pxshm [server.c
1 #include "cliservz.h"
2int
3 main(int argc, char **argv)
4 |
5 int fd, index, lastnoverflow tenp;
6 | ong of f set ;
7 struct shnstruct *ptr;
8 if (argc !'= 2)
9 err-quit ("usage: server2 <name>");
10 /* create shm set its size, map it, close descriptor */
11 shm_unlink (Px_ipc_name{argv(1l])); /* K if this fails */
12 fd : Shm_open(Px_ipc_name(argv[1]), O_RDWR | O_CREAT | O_EXCL, HLE MIB;
13 ptr = Mmap(NULL, sizeof(struct shmstruct), PROT_READ | PROT_WRITE,
14 MAP- SHARED, fd, 0);
15 Ftruncate(fd, sizeof (struct shnstruct));
16 Close(fd);
17 /* initialize the array of offsets */
18 for (index = 0; index < NMESG i ndex++)
19 ptr->msgofflindex] = i ndex * MESGS ZE
20 /* initialize the semaphores in shared nmenory */
21 Sem_init (&ptr->mutex, 1, 1);
22 Sem_init (&ptr->nempty, 1, NMESG ;
23 Sem_init (&ptr->nstored, 1, 0);
24 Sem_init (&ptr->noverflowmutex, 1, 1);
25 /* this programis the consuner */
26 i ndex = O;
27 | ast noverfl ow = O;
28 for (; ;) {
29 Sem_wait (&ptr->nstored) ;
30 Sem_wait (&ptr->mutex) ;
31 of fset = ptr->msgoff[index];
32 printf ("index = %l: %s\n", index, &ptr->msgdataloffset]);
33 if (++i ndex >= NVESG
34 i ndex = O; /* circular buffer x/
35 Sem_post (&ptr->mutex) ;
36 Sem_post (&ptr->nempty) ;
37 Sem wait (&ptr->noverflowmutex) ;
38 tenp = ptr->noverflow; /* don't printf while mutex held */
39 Sem_post (&ptr->noverflowmutex) ;
40 if (tenp != lastnoverflow ¢
41 printf("noverflow = %d\n", tenp);
42 | ast nover fl ow = t enp;
43 }
44 }
45 exi t(0);
46]
pxshm|serverl.c

Fgreld31l Qur server the fetdhes and prirts the nessages f romshared nenory.

Section 136 Sending Messges to a Saver . 339

20-.24

25-36

37-43

10-13

14-18

19-31

32-37

Initialize semaphores

The four memory-based semaphores in the shared memory object are initialized.
The second argument to sem_init is nonzero for each cal, since the semaphoreisin
shared memory and will be shared between processes.

Wait for message, and then print

Thefirgt hdf o thef or loop isthe standard consumer algorithm: wait for nst or ed
to begreater than 0, wait for the nut ex, process the data, release the nut ex, and incre-
ment nenpt y.

Handle overflows

Each time around the loop, we aso check for overflows. We test whether the
counter nover f | ows has changed from its previousvalue, and if so, print and savethe
new value. Notice that we fetch the current value o the counter while the
nover f lowmutex isheld, but then release it before comparing and possibly printing it.
Thisdemonstrates the general rule that we should always write our code to performthe
minimum number o operationswhilea mutex isheld.

Our client program isshown in Figure13.12.
Command-linearguments

Thefirst command-lineargument isthe name d the shared memory object, the next
is the number d messages to store for the server, and the last one is the number o
microsecondsto pause between each message. By starting multiple copies o our client
and specifying a small value for this pause, we can force an overflow to occur, and ver-
ify that the server handlesit correctly.

Open and map shared memory

We open the shared memory object, assuming that it has already been created and
initialized by the server, and then map it into our address space. The descriptor can
then beclosed.

Store messages

Our client follows the basic algorithm for the consumer but instead d calling
sem_wait(nenpty), which is where the consumer blocksif thereis no room in the
buffer for its message, we call sem_trywait, which will not block. If the value o the
semaphoreis 0, an error o EAGAIN isreturned. We detect thiserror and increment the
overflow counter.

sl eep- us isafunctionfrom FiguresC.9and C.10of APUE. It deepsfor the specified number
of microseconds, and isimplemented by callingéether sel ect or pol | .

While the mut ex semaphore is held we obtain the value o of f set and increment
nput, but we then releasethe mut ex before copying the message into the shared mem-

ory. We should do only those operations that must be protected while holding the
semaphore.

340 Posix Shared Memory Chapter 13
- pxshm [client2.c

1 #i ncl ude "cliserv2.h"

2int

3 main(int argc, char **argv)

4 {

5 int fd, i, nl oop, nusec;

6 pid_t pid:

7 char nesg [MESGSIZE] ;

8 | ong of f set;

9 struct shmstruct *ptr;

10 if (argc 1= 4)

11 err_quit("usage: client2 <name> <#loops> <#usec>");

12 nl oop = atoi(argv[2]);

13 nusec = atoi(argv[3]);

14 /* open and map shared nenory that server nust create */
15 fd = Shm_open(Px_ipc_nane(argv[l]), O_RDWR, FlLE- MDE);

16 ptr = Mmap(NULL, sizeof(struct shnstruct), PROT_READ | PROT_WRITE,
17 MAP- SHARED, fd, 0):

18 A ose(fd);

19 pid = getpid();

20 for (i = 0; i < nloop: i++) {

21 Sleep_us(nusec) ;

22 snprintf (mesg, MESGS| ZE, "pid %1d: nessage %d", (long) pid, i};
23 if (sem_trywait(&ptr->nempty) == -1) (
24 if (errno == EAGAIN) {
25 Sem_wait (&ptr->noverflowmutex) ;
26 ptr->noverflow++;
27 Sem_post (&ptr->noverflowmutex) ;
28 conti nue;
29 } el se

30 err_sys("sem_trywait error");

31 }

32 Sem wait (&ptr->mutex) ;

33 of f set = ptr->msgoff[ptr->nput];
34 if (++(ptr->nput) >= NMESG)

35 ptr->nput = O; /* circul ar buffer */
36 Sem_post (&ptr->mutex) ;

37 strepy (&ptr->msgdataloffset], mesg);
38 Sem_post (&ptr->nstored) ;
39 }
40 exit(0):

41)

Figurel3 12 Qiet thet staes nessagesinshared menor yfa server.

pxshm/client2.c

|

Section 13.6

Sending Messsges to a Saver 341

We first start our server in the background and then run our client, specifying 50
messageswith no pause between each message.

solaris

[2]

solaris

i ndex
i ndex
i ndex

i ndex
i ndex
index

% server2 serv2 &
27223
% client2 serv2 50 0
0: pid 27224: nessage 0
1: pid 27224: nessage 1
2: pid 27224: nessage 2
continues like this
15: pid 27224: nessage 47
0: pid 27224: nessage 48
1: pid 27224: message 49 no messages lost

Butif werun our client again, we see some overflows.

solaris % client2 serv2 50 0

index = 2: pid 27228: nessage 0

index = 3: pid 27228: nessage 1

e continues OK

index = 10: pid 27228: nessage 8

index = 11: pid 27228: nessage 9

noverflow = 25 server detects 25 messages|ost
index = 12: pid 27228: message 10

index = 13: pid 27228: nessage 11

. continues OK for messages 12-22
index = 9: pid 27228: nessage 23

index = 10: pid 27228: nmessage 24

This time, the client appears to have stored messages 0 through 9, which were then
fetched and printed by the server. The client then ran again, storing messages 10
through 49, but therewas room for only thefirst 15 d these, and theremaining 25 (mes-
sages 25 through 49) were not stored becaused overflow.

Obvioudy, in this example, we caused the overflow by having the client generate
the messages asfast asit can, with no pause between each message, which is not a typi-
cd real-world scenario. The purpose d this example, however, is to demonstrate how
to handlesituationsin which no roomisavailablefor the client's messagebut the client
does not want to block. Thisis not unique to shared memory —the same scenario can
happen with message queues, pipes, and FIFOs.

Overrunninga receiver with data is not uniqueto thisexample. Section8.13 o UNPv1 taks
about thiswith regard to UDP datagrams, and the UDP socket receive buffer. Section 182 o

TCPv3 describeshow Unix domain datagram sockets return an error ENOBUFS to thesender
when the receiver's buffer overflows, which differs from UDP. In Figure13.12, our client (the
sender) knowswhen the server's buffer hasoverflowed, soif thiscodewere placed intoagen-
eral-purposefunctionfor other programsto cdl, thefunction could return an error to thecaller
when theserver's buffer overflows.

342 Posix Shared Memory Chapter 13

13.7 Summary

Posix shared memory is built upon the mmap functionfrom the previous chapter. We
first call shm_open, specifyinga Posx IPC namefor the shared memory object, obtaina
descriptor, and then memory map the descriptor with mmap. Theresultissmilartoa
memory-mappedfile, but the shared memory object need not beimplemented as afile

Since shared memory objects are represented by descriptors, their size is set with
f truncate, and information about an existing object (protection bits, user 1D, group
ID, and size)isreturned by f stat.

When we covered Posix message queues and Posix semaphores, we provided sam
ple implementations based on memory-mapped 1/0 in Sections 5.8 and 10.15. We do
not do this for Posix shared memory, because the implementation would be trivid. If
we are willing to memory map afile (asis done by the Solaris and Digital Unix imple
mentations), then shm_open is implemented by calling open, and shm_unlink is
implemented by calling unlink.

Exercises

131 Modify Figures12.16 and 12.19 to work with Posix shared memory instead d a memory-
mapped file, and verify that the resultsare the same as shown for a memory-mappedfile

132 Inthefor loopsin Figures13.4and 135, theC idiom *ptr++ is used to step throughthe
array. Would it be preferabletouseptr[i] instead?

14.1

14.2

14

System V Shared Memory

Introduction

Sygem V shared memory issimilar in concept to Posix shared memory. Instead d cdl-
ing shm_open followed by mmap, wecall shmget followed by shmat.

For every shared memory segment, the kernel maintains the following structure o
information, defined by including<sys/shm.h>:

struct shmid_ds {

struct ipc_perm shm perm; /* operation permssion struct */

si ze-t shm_segsz; /* segnent size */

pid_t shm_1lpid; /* pid of last operation */

pid_t shm_cpid; /* creator pid */

shmatt_t shm_nattch; /* current # attached */

shmat_t shm_cnattch; /* in-core # attached */

t ime_t shm_ati ne; /* last attach time */

time_t shm_dtime; /* last detach tine »/

tine-t shm_cti ne; /* last change tinme of this structure */

};

We described the ipc_perm structurein Section 3.3, and it contains the access permis-
sionsfor the shared memory segment.

shmget Function

A shared memory segment is created, or an existing one is accessed, by the shmget
function.

343

344 Sydem V Shared Mamay Chater 14

14.3

#i nclude <sys/shm.h>
int shnget (key-t key, size-t size, int oflag);

Returns: shared memory identifier if OK, -1 onerror

Thereturn value is an integer called the shared mamary identifier that is used with the
three other shmXXX functionsto refer to thissegment.

key can be either a value returned by £t ok or the constant TPC_PRTVATE, as ds
cussed in Section 3.2.

gze specifies the size d the segment, in bytes. When a new shared memory s
ment is created, a nonzero valuefor 9ze must be specified. If an existing shared mam
ory segment is being referenced, Szeshould be0.

oflag isacombination d the read-write permission valuesshownin Figure36. This
can bebitwise-ORed with either IPC_CREAT or IPC_CREAT | IPC_EXCL, as discussd
with Figure3.4.

When a new shared memory segment iscreated, itisinitialized to szebytesd 0.

Notethat shnget createsor opensashared memory segment, but does not provide
accessto thesegment for the calling process. That isthe purposed theshmat function,
which we describenext.

shmat Function

After a shared memory segment has been created or opened by shnget , we attachit to
our addressspace by calling shnat .

#include <sys/shm.h>

voi d *shmat (int shmid, const voi d *shmaddr, int flag);

| Returns: starting addressd” mapped regionif OK, —1 on error

shmid is anidentifier returned by shnget . The return valuefrom shmat isthedarting
addressd the shared memory segment within the calling process. The rulesfor deter-
miningthisaddressare asfollows:

If shmaddr is a null pointer, the system selectsthe address for the cdler. Thisis
the recommended (and most portable) method.

If shmeddr is a nonnull pointer, the returned address depends on whether the
caller specifiesthe sHM_RND valuefor theflagargument:

e [f sHM_RND is not specified, the shared memory segment is attached & the
addressspecified by the shmaddr argument.
o If SHM_RND is specified, the shared memory segment is attached a the

address specified by the shmaddr argument, rounded down by the condart
SHMLBA. LBA standsfor "'lower boundary address.™

Section 145 shiet | Function 345

144

14.5

By default, the shared memory segment is attached for both reading and writing by the
caling process, if the process has read-write permissions for the segment. The
SHM_RDONLY Vvalue can dso be specified in the flag argument, specifying read-only
access.

shmdt Function

When a processis finished with a shared memory segment, it detachesthe segment by
calingshmdt .

#i nclude <sys/shm.h>

int shmdt (const voi d *shmaddr) ;

Returns. ¢ if OK, -1 onerror

When a process terminates, all shared memory segmentscurrently attached by the pro-
cessaredetached.

Note that thiscall does not delete the shared memory segment. Deletion is accom-
plished by cdlling shntt| with a command o IPC_RMID, which we describe in the
next section.

shmetl Function

shntt 1 providesavariety d operationson a shared memory segment.

‘ #include <svys/shm.h> ‘
int shnctl (int shmid, int cmd, struct shmid-ds *buff);

| Returns, 0 if OK, -1 on error

Threecommandsare provided:

IPC_RMID Removetheshared memory segment identified by shmid from thesys-
tem and destroy the shared memory segment.

IPC_SET Set the following three members d the shm d- ds structure for the
shared memory segment from the corresponding members in the
structure pointed to by the buff argument: shm perm.uig,
shm_perm.gid, and shm_perm.node. Theshm cti ne valueisaso
replaced with thecurrent time.

IPC_STAT Returnto thecdler (throughthe buff argument) the current shm d- ds
structurefor the specified shared memory segment.

346 Sydem V Shaed Mamay Chater 14

14.6 Simple Programs
\We now devel op some simple programsthat operateon SystemV shared memory.
shmget Program

Our shnget program, shown in Figure14.1, createsa shared memory segment usnga
specified pathname and length.

- - sushm shmget.c
1 #i ncl ude "unpi pc.h"
2int
3 main(int argc, char **argv)
4 {
5 int c, id, oflag;
6 char *ptr;
7 size-t length;
8 oflag = SVSHM MODE | IPC_CREAT;
9 while ((¢ = Getopt(argc, argv, "e")) 1=-1) {
10 switch (¢) {
11 case 'é€:
12 oflag |= IPC_EXCL;
13 br eak;
14 }
15 }
16 if (optind != argc - 2)
17 err_quit ("usage: shnget [-e 1 <pathname> <length>");
18 length = atoi(argv[optind + 11);
19 id = Shmget (Ftok(argv(optind], 0), length, oflag);
20 ptr = Shmat(id, NJUL, 0);
21 exit(0);
1 svshm|shmget.c

Figurel4.1 CreateaSystemV shared memory segmentd a specified 978

19 shnget createsthe shared memory segment d the specified size. The pathname
passed as a command-line argument is mapped into a System V IPC key by ftok. If
the —-e option is specified, it is an error if the segment already exists. If we know that
thesegment already exists, thelength on the commmand line should be specified as0.

20 shmat attaches the segment into the address space o the process. The program
then terminates. Since System V shared memory has at least kernel persistence, this
does not remove the shared memory segment.

shmrmid Program

Figure14.2 showsour trivial program that callsshntt 1 with acommand o IpPC_RMID
to removea shared memory segment from thesystem.

Section 14.6 Simple Programs 347

svshm [shmrmid.c

1 #i ncl ude "unpipc.h"

2int

3 main(int argc, char **argv)

4 {

5 int id;

6 if (argc 1= 2)

7 err_quit ("usage: shmrmid <pathname>");

8 id = Shmget (Ftok{argv[1], 0), 0, SVSHM_MODE);
9 Shmetl(id, IPC_RMID, NULL);

10 exit(0);

11} svshm[shmrmid.c

Figure14.2 RemoveaSystemV shared memory segment.

shmwrite Program

10-12

13-15

Figurel4.3isour shnmwr i t e program, which writesapatternd 0, 1, 2, ..., 254, 255, 0, 1,
and so on, toa shared memory segment.

- - svshm/|shmuwrite.c

1 #i ncl ude "unpi pc.h"

2int

3 main(int argc, char **argv)

4 {

5 int i, id;

6 struct shmid_ds buff;

7 unsi gned char *ptr;

8 if (argc '= 2)

9 err_qguit ("usage: shmwrite <pathname>");
10 i d = Shmget (Ftok(argv([1l], 0), 0, SVSHW MIDB);
11 ptr = Shmat(id, NULL, 0);
12 Shmctl (id, IPC_STAT, &buff);
13 /* set: ptr[0] = 0, ptr[l] = 1, etc. */
14 for (i = 0; i < buff.shm_segsz; 1i++)
15 *ptr++ = | % 256;
16 exit(0);
a b) |

sushm [shmwrite.c
Figure14.3 Open a shared memory segment and fill it with a pattern.

The shared memory ssgment is opened by shnget and attached by shmat. We
fetchitssize by callingshntt 1 with acommand of | PG- STAT.
The patterniswritten to theshared mamory.

348 System V Shared Memory Chapter 14

shnr ead Program

10-12

13-16

Our shmread program, shown in Figure 144, verifiesthe pattern that was written by
shmwrite

- svshm [shmread.c
1 #include "unpipc.h"
2int
3 main(int argc, char **argv)
4 {
5 int i, id;
6 struct shmid_ds buff ;
7 unsi gned char c, *ptr;
8 if (argc 1= 2)
9 err_quit ("usage: shmread <pathname>");
10 id = Shmget (Ftok(argv{1l, 0), 0, SVSHM MODE);
11 ptr = Shmat(id, NULL, 0);
12 Shnet !l (i d, TIPC_STAT, &buff);
13 /* check that ptr[o] = 0, ptr[l] = 1, etc. */
14 for (i = 0; i < buff.shm segsz; i++)
15 if ((¢ = *ptr++) = (1 % 256))
16 err-ret ("ptr[sd] = %d", i, c);
17 exit(0);
18 }

sushm [shmread.c

Figurel44 Openashared memory segment and verify itsdata pattern.

The shared memory segment isopened and attached. Itssizeisobtained by cdling
shmctl withacommand of 1 PC—STAT.
The patternwritten by shmwri teisverified.

Examples

W create a shared memory segment whose length is1234 bytes under Solaris 2.6. The
pathname used to identify the ssgment (e.g., the pathname passed to ftok) isthepath-
named our shrnget executable. Using the pathname d a server's executablefile often
providesa uniqueidentifier for agiven application.

solaris % shnget shnget 1234

solaris % ipcs -bmo
| PC status from <running system> as of Thu Jan 8 13:17:06 1998

T 1D KEY MDE OMER GROP NATTCH SEGSZ
Shared Menory:
m 1 0x0000f12a --rwr--r-- rstevens otherl 0 1234

We run the ipcs program to verify that the segment has been created. We notice that
the number o attaches (whichisstored in the shm _nattch member d the shmid_ds
structure)is0, aswe expect.

Section 14.7

Shared Memory Limits 349

Next, we run our shmwr i te program to set the contentsd the shared memory seg-
ment to the pattern. We verify the shared memory segment's contents with shnr ead
and then removetheidentifier.

solaris % shmwrite shrnget
solaris % shmread shrnget
solaris % shmrmid shmget
solaris % i pcs -bmo

IPC status from <running system> as of Thu Jan 8 13:18:01 1998

GROUP NATTCH X

T

1D KEY MODE OWNER

Shared Memory:

Werun ipcs to verify that the shared memory segment hasbeen removed.

When thename d the server executableis used asan argument to f tok to identify someform
d Sysem V IPC, the absolute pathname would normally be specified, such as
/usr/bin/myserverd, and not a relative pathname as we have used (shmget). We have
been able to use a relative pathname for the examples in this section because @l o the pro-
grams have been run from the directory containing the server executable. Redizethat f tok
usesthei-noded thefiletoformthelPCidentifier (e.g., Figure3.2), and whether agivenfileis
referenced by an absol ute pathname or by arelativepathname has no effect on thei-node.

14.7 Shared Memory Limits

As with System V message queues and System V semaphores, certain system limits
exist on System V shared memory (Section 3.8). Figure 14.5shows the valuesfor some
different implementations. The first column is the traditional System V name for the
kernel variablethat containsthislimit.

Name Description | DUnix 4.0B | Solaris 26
shmmax | max #bytesfor ashared memory segment 4194304 1,048576
shmmnb | min #bytes for a shared memory segment 1 1|
shmmni | max #shared memory identifiers,systemwide 128 100
shmseg | max #shared memory segmentsattached per process 32 6
Figurel4.5 Typicd system limitsfor SystemV shared memory.
Example
Theprogramin Figure14.6 determinesthefour limitsshownin Figure14.5.
svshm/[limits.c

1 #include

"unpipc.h”

2 #define MAX-NIDS 4096

3 int

4 main(int argc, char **argv)

350 SystemV Shared Menory

Chapt er 14

13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32

33
34
35
36
37
38
39
40
41

42
43
44
45
46
47
48
49
50

51
52 }

int i,], shmid[MAX NIDS};
voi d *addr [MAX_NIDS] ;
unsi gned | ong si ze;

/* see how nmany identifiers we can "open" */
for (i = 0; i <= MMX-NDS i++) {
shmid[i] = shmget (IPC_PRIVATE, 1024, SVSHW MLE | | PG- GREAT);

if (shmidfi] == -1) ¢
printf("%d identifiers open at once\n", i);
br eak;
}
}
for (3 =0; § <i; F++)

Shmetl (shmid[j1, | PG-RM D, NULL);

/* now see how nany we can *attach* */
for (i = 0; i <= MAX_NIDS; i++) {
shmid[i] = Shmget (IPC_PRIVATE, 1024, SVSHW MIDE | IPC_CREAT);
addr[i] = shmat (shmid[i], NULL, 0);
if (addrl[i]l == (void *) -1) {
printf("%d shared nenory segnents attached at once\n", 1i);
Shmectl (shmid[i], IPCG-RM D NUL); /* the one that failed */

br eak;
}
}
for (3 = 0; § < i; 3++) {
Shmdt (addr [j1) ;
Shmctl (shmid[j], | PG RM D, NULL);
}

/* see howsnall a shared menory segment we can create */
for (size = 1;; size++) {
shmid[0] = shmget (IPC_PRIVATE, size, SVSHW MXDE | | PG CREAT);
if (shmid[0] (= -1) { /* stop on first success */
printf ("minimum si ze of shared nenory segnent = %$lu\n", Size);
Shmetl (shmid[0], | PG-RM D, NULL);
br eak;

/* see how | arge a shared nenory segnent we can create */
for (size = 65536;; size += 4096) ({

shmid[0] = shmget (IPC_PRIVATE, Size, SVSHW MDE | | PG CREAT);

if (shmid[0] == -1) { /* stopon first failure */

~

printf ("maximum Si ze of shared nenory segnent = %$lu\n", size - 4095);

br eak;
1
Shmctl (shmid[0], | PCG-RM D NULL);
}

exit(0);

Figurel4d 6 Det er nnnethe syst emlimitson shared nenory.

svshm/[limits.c

Chapter 14 Exercisss *H1

14.8

We run this program under Digital Unix 4.08.

alpha ¢ limts

127 identifiers open at once

32 shared nenory segments attached at once

m ni mum si ze of shared nenory segnent 1

maxi mumsi ze of shared nenory segnent 4194304

The reason that Figure 14.5 shows 128 identifiers but our program can create only 127

identifiersis that one shared memory segment has already been created by a system
daemon.

Summary

System V shared memory issimilar in concept to Posix shared memory. The most com-
mon function callsare

shnget toobtainan identifier,
shmat to attach the shared memory segment to the address space o the process,

shnect| with a command of 1pCc_STAT to fetch the size d an existing shared
memory segment, and

shntt 1 with acommand of TpPC_RMID to removea shared memory object.

One differenceisthat the size o a Posix shared memory object can be changed at any
timeby calling £t r uncat e (aswe demonstrated in Exercise 13.1), whereasthesizeof a
System V shared memory object isfixed by shnget .

Exercises

141 Figure 6.8 was a modification to Figure 6.6 that accepted an identifier instead d a path-
name to specify the queue. We showed that the identifier is all we need to know to access
aSystem V messagequeue (assumingwe have adequate permission). Make similar modi-
fications to Figure 14.4 and show that the samefeature appliesto System V shared mem-

ory.

Part 5

Remote Procedure Calls

15

Doors

15.1 Introduction

When discussing client—-server scenarios and procedure cdls, there are three different
typesd procedurecals, whichweshow in Figure15.1.

1 Aloca procedurecal iswhat weare familiar with from our everyday C program-
ming: the procedure (function) being called and the calling procedure are both
in the same process. Typicdly, some machineinstruction is executed that trans-
ferscontrol to the new procedure, and the caled proceduresaves machineregis
tersand allocatesspace on the stack for itslocd variables.

2. A-remote procedure call (RPC) iswhen the procedure being cdled and the caling
procedurearein different processes. We normally refer to the caller astheclient
and the procedure being cdled as the server. In the middle scenario in Fg-
ure15.1, we show theclient and server executing on thesamehost. Thisisafre
quently occurring special case d the bottom scenarioin thisfigure, and thisis
what doors provide us. the ability for a processto cal a procedure (function)in
another process on the same hogt.,, One process (a server) makes a procedure
available within that process for other processes (clients) to cal by creeting a
door for that procedure. We can aso think d doors as a specia type d IPC,
since information, in the form function arguments and return values, is
exchanged between the client and server.

3. RPCingenera allowsa client on one host to cal aserver procedure on another
host, as long as the two hosts are connected by some form d network (the bot-
tom scenarioin Figurel15.1). Thisiswhat we describein Chapter 16.

355

65 Doors Chapter 15
host
| A
[process [
: E II local
procedure call | (: j | return procedure
: % JI call
| 1
I B
host
L cie server |)
' ! remote
ess ess 1
: pre procedure call pror " procedure
] z | >call (RPC)
' ! onasingle
: ReRn : host (doors)
b e s s L S 1 4
r _._rlog____‘ l___—hog___—l
| client I I server I T
! Drocess I I process I remote
N ! procedure call ! : procedure
! L a - "l . cal (RPC)
| B) 1 between hosts
|) return \ l__.—l 1
, | | 5 (Chapter16)
RTINS Lt Lo fossasnasiondd J
interconnectednetwork

Figurel51 Threedifferenttypesd procedurecalls.

Higtorically, doors were developed for the Spring distributed operating system, details of
which are availableat http: //www.sun. com/tech/projects/spring. A description of
thedoorsIPC mechanismin thisoperating systemisin [Hamiltonand Kougiouris1993L

Doors then appeared in Solaris 25, although the only manual page contained just a warning
that doors were an experimental interface used only by some Sun applications. With Solaris
2.6, theinterfacewas documented in eight manual pages, but these manual pageslist thesta
bility d the interface as ""evolving." Expect that changes might occur to the API that we
describe in this chapter with future releases o Solaris. A preliminary version d doors for
Linuxisbeing developed: http: / /www.cs.brown. edu/~tor/doors.

Theimplementationd doorsin Solaris 26 involvesallibrary (containingthe door—XXX func-
tions that we describein this chapter), which islinked with the user's application (-1door),
and akernd filesystem (/kernel/ sys/doorfs).

Even though doorsarea Solaris-only feature, we describe them in detail because they provide
a nice introduction to remote procedure calls, without having to deal with any networking
details. Wewill also seein Appendix A that they areasfadt, if not faster, than all other forms
d message passing.

Loca procedure cals are synchronous: the caller does not regain control until the
caled procedure returns. Threads can be thought o as providing a form d
asynchronous procedure cdl: a function is called (the third argument to
pt hread- creat e), and both that function and the caler appear to execute at the same

Section 151 Introduction 357

time. The cdler can wait for the new thread to finish by cdling pthread_join.
Remote procedure callscan be either synchronousor asynchronous, but wewill see that
door callsare synchronous.

Within a process (client or server), doors are identified by descriptors. Externdly,
doors may beidentified by pathnamesin thefilesystem. A server createsadoor by cal-
ing door - cr eat e, whoseargument isa pointer to the procedure that will be associated
with this door, and whose return valueis a descriptor for the newly created door. The
server then associates a pathname with the door descriptor by calling fattach. A
client opens a door by calling open, whose argument is the pathname that the server
associated with the door, and whose return valueis the client's descriptor for this door.
Theclient then callsthe server procedure by calling door - cal | . Naturaly, aserver for
onedoor could beaclient for another door.

Wesaid that door callsare synchronous: when theclient callsdoor - cal |, thisfunc-
tion does not return until the server procedure returns (or some error occurs). The
Solaris implementation d doors isalso tied to threads. Each timeaclient callsa server
procedure, athread in the server process handlesthisclient's call. Thread management
is normally done automatically by the doors library, creating new threads as they are
needed, but we will see how a server processcan managethese threadsitsdf, if desired.
This also means that a given server can be servicing multiple client cals d the same
server procedure at the same time, with one thread per client. Thisis a concurrent
server. Since multiple instances d a given server procedure can be executing at the
same time (eachinstanceas one thread), the server proceduresmust be thread sfe.

When a server procedureis caled, both data and descriptors can be passed from the
client to the server. Both data and descriptors can aso be passed back from the server
to the client. Descriptor passing is inherent to doors. Furthermore, since doors are
identified by descriptors, thisallowsa processto pass a door to someother process. We
say moreabout descriptor passingin Section15.8.

Example

We begin our descriptiond doors with a simple example: the client passesalong inte-
ger to the server, and the server returns the square o that value as the long integer
result. Figure15.2 showstheclient. (Wegloss over many detailsin thisexample, dl d
which wecover later in the chapter.)

Open thedoor

8-10 The door is specified by the pathname on the command line, and it is opened by
caling open. The returned descriptor is cdled the door descriptor, but sometimes we
just cdll it thedoor.

Set up arguments and pointer to result

11-18 Thear g structure containsa pointer to the argumentsand a pointer to the results.
data_ptr pointsto thefirst byted the arguments, and dat a- s i ze specifiesthe num-
ber d argument bytes. The two members desc_ptr and desc_num dea with the
passing d descriptors, which we describein Section 15.8. r buf pointsto thefirg byte
d theresult buffer, andr size isitssize.

338 Doos Chapter 15

19-21

17-21

doors/clientl.c

1 #include "unpipec.h"

2 int

3 main{int argc. char **argv)

4 {

5 int fd;

6 | ong ival, oval;

7 door_arg_t arg;

8 if (argc '= 3)

9 err_qguit("usage: clientl <server-pat hnane> <i nt eger-val ue>");
10 €¢d = Qper(argv [1], O_RDWR); /* open the door */

11 /* set up the argunents and pointer to result */
12 ival = atol{argv[2]);

13 arg.data_ptr = (char *) &ival; /* data argunents */
14 arg.data_size = sizeof{long); /* size of data argunents */
15 arg.desc_ptr = NULL;

16 arg.desc_num = O;

17 arg.rbuf = (char *) &wval; /* data results */

18 arg.rsize = sizeof (long); /* size of dataresults */
19 /* call server procedure and print result */

20 Door-call (fd, &arg):

21 printf ("result: %1d\n", oval);

22 exit(0);

23 }

doors[client].c
Fguels2 Ciettha sends al ongineger totheserver to be squared.

Call server procedureand print result

We call the server procedure by calling door — call, specifying as argumentsthe
door descriptor and a pointer to the argument structure. Upon return, we print the
result.

The server program is shown in Figure 15.3. It consists o a server procedure
named servproc and amain function.

Server procedure

The server procedure is cdled with five arguments, but the only one we useis
dataptr, which pointsto thefirst byted thearguments. Thelonginteger argumentis
fetched through this pointer and squared. Control is passed back to the client, dong
with theresult, by door— return. Thefirg argument points to the result, the second is
thesized theresult, and the remainingtwo deal with the returningd descriptors.

Create a door descriptor and attach to pathname

A door descriptor is created by door— create. The first argument is a pointer to
the function that will be cdled for this door (servproc). After this descriptor is
obtained, it must be associated with a pathname in the filesystem, because this path-
nameis how theclient identifiesthe door. Thisassociationisdone by creatinga regular

Secion151 Introduction 359

22-24

doors[serverl.c

1 #include "unpipc.h"

2 void

3 servproc(void *cooki e, char *dataptr, size-t datasi ze,
4 door_desc_t *descptr, Size-t ndesc)

5 {

6 | ong arg, result;

7 arg = *((long *) dataptr);

8 result = arg * arg;

9 Door_return((char *) &result, sizeof(result), NULL, 0);
10 }

11 int

12 main(int argc, char **argv)

13 {

14 int fd;

15 if (argc !'= 2)

16 err_quit("usage: serverl <server-pathname>");
17 /* create a door descriptor and attach to pathname */
18 fd = Door_create(servproc, NULL, 0);

19 unlink(argvil]) ;

20 Close (Open(argv[1], O_CREAT | O_RDWR, FlILE- MDE));
21 Fattach(fd, argv[ll);

22 /* servproc() handl es all client requests */
23 for (; ;)

24 pause() ;

25 }

doors|serverl.c
Fgurels3 Server thet retunsthesquared alongineg.

filein the filesystem (wecal unlink first, in case the file already exids, ignoring any
error return) and calling f attach, an SVR4 function that associates a descriptor with a
pathname.

Main server thread does nothing

The main server thread then blocksin a call to pause. All the work isdone by the
servproc function, which will be executed asanother thread in the server processeach
timeaclient request arrives.

Torun thisclient and server, wefirst start the server in onewindow

solaris % serverl /tmp/serverl

and then start the client in another window, specifying the same pathname argument
that we passed to the server:

solaris % clientl /tmp/serverl 9

result: 81

solaris % 1s -1 /tmp/serverl

Drw-r-r- 1 rstevens otherl 0 Apr 9 10:09 /tmp/serverl

360 Doors Chapter 15

Theresult iswhat we expect, and when we execute 1s, we see that it prints the charac-
ter D asthefirst character to indicatethat this pathname isadoor,

Figurel5.4 showsadiagramd what appears to be happeningwith thisexample. It
appearsthat door - cal | callstheserver procedure, which then returns.

Figurel5.5 showswhat isactually going on when we call a procedurein a different
process on thesame host.

server

/+ servproc()
{

/* do what ever */

digt -
_ 6"@0’0\\ = doorreturn();
main{) @ce\}é /_}
{ y) main(]

1]
- {
fd = open(path,]/
door_call(fd,); / fd = door-create():
v fattach(£d, path);

} }

Figure15.4 Apparent procedurecd!| fromone process to anot her.

server
servproc({) =
{

/* do what ever */

diat

o door-return(): 7 7
mai n() }
{ mai n()
{
fd = open(path,);:
e door _call(fd,); fd = door - creat e();0_

fattach(fd, path):

} }
door-create() g4—--——/J
{
}

Tdoor— call () doors library door-return() «——— —1 ~ l

Figure155 Actual fl owd cotrd fa aprocedurecdl fromone process to anot her.

Section 15.2 door - cal |l Function 361

15.2

Thefollowing numbered steps in Figurel5.5 take place.

0. The server process starts first, calls door - cr eat e to create a door descriptor
referring to the function servproc, and then attaches this descriptor to a path-
namein thefilesystem.

1. Theclient processstartsand callsdoor - cal | . Thisisactually afunctionin the
doorslibrary.

2. Thedoor - cal | library function performsasystem call into thekernel. Thetar-
get procedure isidentified and control is passed to some doors library function
in the target process.

Theactual server procedure (named ser vpr oc inour example) iscalled.

4. Theserver procedure does whatever it needs to do to handle the client request
and callsdoor - r et ur nwhen it isdone.

5. door - returnisactualy afunction in the doors library, and it performsa sys-
tem call into the kernel.

6. Theclientisidentified and control is passed back to theclient.
The remaining sections describe the doors APl in more detail looking at many exam-
ples. In Appendix A, we will seethat doors provide the fastest form o IPC, in termsd
latency.

door - cal |l Function

Thedoor - cal | functioniscalled by aclient, and it callsa server procedure that isexe-
cuting in theaddress space d the server process.

#include <door.h>

int door-call (int fd, door_arg_t *argp);

| Returns 0if OK, -1 on error

The descriptor fd is normally returned by open (e.g., Figure 15.2). The pathname
opened by the client identifiesthe server procedure that is called by door - cal | when
thisdescriptor isthefirst argument.

The second argument argp points to a structure describing the arguments and the
buffer to be used to hold thereturn values:

362 Doors

Chapter 15

typedef struct door—arg {

}

char *data_ptr; /* call: ptr to data arguments;
return: ptr to data results */
size—t data—size; /* call: #bytes of data arguments;

return: actual #bytes of data results */
door_desc_t *desc_ptr; /* call: ptr to descriptor arguments:
return: ptr to descriptor results */

size—t desc_num; /* call: number of descriptor arguments;
return: number of descriptor results */

char *rbuf; /* ptr to result buffer */

size—t rsize; /* #bytes of result buffer */

door_arg_t;

Upon return, this structure describes the return values. All six members d this struc-
ture can change on return, aswe now describe.

Theused char * for the two pointersis strange and necessitatesexplicit castsin our codeto
avoid compiler warnings. We would expect void * pointers. We will see the sameue d
char * with the first argument to door—return. Solaris 27 will probably change the
datatype of desc—num to be an unsigned int, and the final argument to door—return
would change accordingly.

Two typesd argumentsand two typesd resultsexist: dataand descriptors.

Thedaaargumentsarea sequenced dat a- si ze bytespointed toby data_ptr.
The client and server must somehow ""know™ the format d these arguments
(and theresults). For example, no special coding tellsthe server the datatypesd
the arguments. In Figures 15.2 and 15.3, the client and server were written to
know that the argument was one long integer and that the result was dso ae
long integer. One way to encapsul ate thisinformation (for someonereading the
codeyearslater) isto put all theargumentsinto onestructure, all theresultsinto
another structure, and define both structures in a header that the client ad
server include. We show an example d this with Figures 15.11 and 1512. |
there are no data arguments, we specify data_ptr as a null pointer ad
dat a- si zeas(.

Sincethe client and server deal with binary argumentsand resultsthat are packed intoan
argument buffer and a result buffer, the implicationis that the client and server must be
compiled with the same compiler. Sometimesdifferent compilers, on the same sysem,
pack structuresdifferently.

The descriptor algumentsare an array of door - desc- t structures, each one con
taining one descriptor that is passed from theclient to the server procedure. The
number o door - desc-t structures passed is desc- num (We describe this
structure and what it means to "' pass a descriptor’ in Section 15.8.) If thereare
No descriptor arguments, we specify desc_ptr asanull pointer and desc- num
asO.

Upon return, data_pt r points to the data reaults, and data_si ze specifiesthe
sized theseresults. If there are no data results, dat a- si ze will beQ and we
shouldignoredat a_pt r.

‘

Section 15.3 door - creat e Function 363

15.3

e Upon return, there can also be descriptor results desc_ptr pointsto an array o
door - desc- t structures, each one containing one descriptor that was passed
by the server procedureto the client. The number o door - desc-t structures
returned is contained in desc_num If there are no descriptor results,
desc_num will beQ and weshould ignoredesc_ptr.

Using the same buffer for the argumentsand resultsisOK. That is data_ptr and
desc_ptr can point into the buffer specified by r buf whendoor - cal | iscalled.

Beforecalling door - cal |, theclient setsr buf to point to a buffer wheretheresults
will be stored, and r si ze is the buffer size. Normally upon return, data_ptr and
desc_ptr both point into this result buffer. if this buffer is too small to hold the
server's results, the doors library automatically allocates a new buffer in the caler's
address space using mmap (Section 12.2) and updates r buf and r si ze accordingly.
data_ptr and desc_ptr will then point into this newly alocated buffer. It is the
cdler's responsibility to notice that r buf has changed and at some later timeto return
this buffer to the system by calling munmap with r buf and r si ze as the arguments to
munmap. Weshow an exampled thiswith Figurel5.7.

door - creat e Function

A server processestablishesa server procedureby callingdoor - creat e.

#i ncl ude <door.h>

typedef voi d Door_server_proc(voi d *cookie, char *dataptr, size-t datasize,
door - desc-t *descptr, size-t mndesc);

int door- creat e(Door_server_proc *proc, voi d *cookie, u_int attr);
_p P

Returns nonnegativedescriptor if OK, -1 oneror

In this declaration, we have added our own typedef, which smplifies the function
prototype. This typedef says that door server procedures (e.g., servproc in Hg-
urel5.3) arecdled with fiveargumentsand return nothing.

When door - cr eat e iscaled by a server, thefirst argument proc is the addressd
the server procedure that will be associated with the door descriptor that is the return
vaued thisfunction. When this server procedureis called, itsfirst argument codkie is
the value that was passed as the second argument to door - creat e. This providesa
way for the server to cause some pointer to be passed to this procedure every time that
procedure is cdled by a client. The next four arguments to the server procedure,
dataptr, datas ze, descptr, and ndesc, describe the data argumentsand the descriptor argu-
ments from the client: the information described by the first four members d the
door_arg_t structurethat we described in the previoussection.

Thefinal argument to door - cr eat e, attr, describes specid attributesd this server
procedure, and iseither 0 or the bitwisesOR o thefollowing two constants:

364 Doors Chapter 15

DOOR- PRI VATE Thedoors library automatically creates new threadsin the server
process as needed to cdll the server procedures as client requests
arrive. By default, these threads are placed into a process-wide
thread pool and can be used to service a client request for any
door intheserver process.

Specifying the DOOR- PRI VATE attribute tells the library that this
door is to have its own pool d server threads, separate from the
process-wide pool.

DOCOR- UNREF When the number d descriptors referring to this door goesfrom
two to one, theserver procedureiscaled with asecond argument
(dataptr) d DOOR- UNREF- DATA. The descptr argument is a null
pointer, and both datasize and ndesc are 0. e show some exam:
plesd thisattributestarting with Figure15.16.

The return valuefrom a server procedureisdeclared asvoi d because aserver pro-
cedure never returns by calling return or by falling off the end d the function.
Instead, the server procedure calls door - r et ur n, which we describe in the next ssc
tion.

We saw in Figure 15.3 that after obtaining a door descriptor from door - cr eat e,
the server normally callsf at t ach to associate that descriptor with a pathname in the
filesystem. Theclient opens that pathname to obtain its door descriptor for its cdl ©
door - cal |.

fattach is not a Posix.1 function but it is required by Unix 98. Also, a function named
fdet ach undoesthisassociation, and a command named £det ach justinvokesthisfunction.

Door descriptors created by door - cr eat e have the FD_CLOEXEC bit set in the
descriptor's file descriptor flags. This means the descriptor will be closed by the kernd
if this process callsany d the exec functions. With regard to f or k, even though dl
descriptors open in the parent are then shared by the child, only the parent will recave
door invocationsfrom clients; none are delivered to the child, even though the descrip-
tor returned by door - cr eat eisopenin thechild.

If we consider that adoor isidentified by a processID and theaddressd a server procedureto
cal (whichwe will see in the door - i nf o_t structurein Section 15.6), then these two rues
regarding f or k and exec makesense. A child will never get any door invocations, because
the process ID associated with the door is the process ID d the parent that cdled
door - create. A door descriptor must be closed upon an exec, because even though the
process |D does not change, the addressd the server procedure associated with the door hes
no meaningin the newly invoked programthat runsafter exec.

154 doorreturn Function

When a server procedureis done it returns by calling door - ret urn. This causesthe
associated door - cal | in theclient to return.

Section 15.6 door—info Funcion 365

15

156

|
‘ #include <door.h> |

i nt door_return(char *dataptr, size-t datasize, door_desc_t *descptr, size-t ndesc);

| Returns: noretuntocdl e if OK,-1onera |

Thedata resultsare specified by dataptr and datasize, and the descriptor resultsare speci-
fied by descptr and ndesc.

door - cred Function

One nicefeature d doorsisthat theserver procedure can obtain the client's credentials
onevery cdl. Thisisdonewith thedoor - cr ed function.

#include <door.h>

i nt door - cred(door - cred-t *cred) ;

| Returns: 0if OK,-1onera

Thedoor - cred-t structurethat is pointed to by cred containsthe client's credentials
onreturn.

typedef struct door-cred {
uid t dc_euid; /* effective user IDof client */
gid_t dc_egid; /* effective group IDof client */
uid_t dc_ruid; /* real user IDof client */
gid_t dc_rgid; /* real group IDof client */
pid_t dcqi d; /* process | D of client */

} door-cred-t ;

Section 44 o APUE talks about the difference between the effective and red IDs, and
weshow an examplewith Figure15.8.

Noticethat thereis no descriptor argument to thisfunction. It returnsinformation
about the client d the current door invocation, and must therefore be cdled by the
server procedureor some function called by the server procedure.

door - i nfo Function

The door - cr ed function that we just described provides information for the server
about the client. The client can find information about the server by caling the
door - i nf o function.

#include <door.h>

int door-info(int fd, door-info-t *info);

| Rturns: 0if OK,-1onara

|
366 Doors Chepter 15

fd specifiesan open door. The door_info_t structure that is pointed to by info con
tainsinformationabout the server on return.

typedef struct door-info {

pid t di_target; /* server process |ID */

door_ptr_t diqroc; /* server procedure */

door_ptr_t di_data: /* cookie for server procedure */
door_attr_t di_attributes; /* attributes associated with door */
door-id-t di_uniquifier; /* uni que number =/

} door-info-t;

di_target isthe processID o the server, and di_proc is the addressd the saver
procedure within the server process (whichis probably d little use to the client). The
cookie pointer that is passed as thefirst argument to the server procedureis returned as
di_data.

The current attributes d the door are contained in di_attributes, and we
described two o these in Section 253 DOOR—PRIVATE and DOOR-UNRE: Two rnaw
attributes are DOOR—LOCAL (the procedureis local to this process) and DOOR—REVOKE
(the server has revoked the procedure associated with this door by caling the
door-revoke function).

Each door is assigned a systemwide unique number when created, and this is
returnedasdi_uniquifier.

Thisfunctionis normally called by the client, to obtain informationabout the server.
But it can also be issued by a server procedure with a first argument d DOOREQUERY:
this returns information about the calling thread. In this scenario, the addressd the
server procedure(di_proc) and thecookie(di_data) might bed interest.

15.7 Examples
We now show someexamplesd the fivefunctionsthat we have described.

door - i nf o Function

Figure15.6 showsa program that opensa door, then callsdoor_info, and printsinfor-
mation about the door.

e Netiaie =T doors [doorinfo.c
2 int

3 mmi n{int argc, char **argv)
4 {

int fd;

struct stat stat;

struct door-info info;

~N o o

if (argc 1= 2)
err_qguit ("usage: doorinfo <pathname>");

fd = Openl{argv[1], O_RDONLY);
Fstat (fd, &stat);

=
= O © o

Sectiorl15.7 Exanples 367

12 if (S_ISDOOR(stat.sSt-node) == 0)

13 err_quit ("pathname i s not a door");

14 Door-info(fd, &info);

15 printf ("server PID = %14, uniquifier = %la-,
16 (long) info.di_target, (long) info.di_uniquifier);
17 if (info.di_attributes & DOOR- LQOCAL)

18 printf (", DOOR LOCAL");

19 if (info.di_attributes & DOCR- PR VATE)

20 printf (", DOOR- PR VATE');

21 if (info.di_attributes & DOOR- REVCKED)

22 printf (", DOOR- REVCKED') ;

23 if (info.di_attributes & DOOR_UNREF)

24 printf(", DOOR- UNREF');

25 printf (*\n");

26 exit(0):

27 }

doors/doorinfo.c
Figurel5 6 Rirt infornationabout adoor.

We open the specified pathname and first verify that it is a door. The st - node
member o the st at structure for a door will contain a value so that the S_ISDOOR
meacroistrue. Wethen cal door - i nf o.

Wefirst run the program specifying a pathname that is not a door, and then run it
on thetwo doorsthat are used by Solaris 2.6.

solaris % doorinfo /etc/passwd
pathname i S not a doorxr

solaris % doorinfo /etc/.name_service_door
server PID = 308, uniquifier = 18, DOOR_UNREF
solaris % doorinfo /etc/.syslog door

server PID = 282, uniquifier = 1635

solaris % ps -f -p 308

r oot 308 1 0 Apr Ol ? 0:34 /usr/sbin/nscd
solaris % ps -f -p 282
r oot 282 1 0 Apr Ol ? 0:10 /usr/sbin/syslogd -n -z 14

We use the ps command to see what program is running with the process ID returned
by door - i nf o.

Result Buffer Too Small

19-23

When describingthedoor - cal | function, we mentioned that if the result buffer istoo
smdl for the server's results, a new buffer isautomatically alocated. We now show an
exampled this. Figurel5.7 showsthe new client, asimple modificationd Figurel5.2.

In thisversion of our program, we print theaddressd our oval variable, the con-
tentsd data_ptr, which points to the result on return from door - cal | , and the
addressand sized theresult buffer (rbuf andrsi ze).

363 Doos Cheapter 15

doors[client2.c
1 #include "unpipc.h"
2int
3 main(int argc, char **argv)
4 {
5 int fd;
6 | ong ival, oval;
7 door_arg_t arg;
8 if (argc '= 3)
9 err_qguit("usage: client2 <server-pat hnane> <i nt eger -val ue>");
10 fd = Opentargvil], O_RDWR); /* open the door */
11 /* set up the argunents and pointer to result */
i2 ival = atol(argv([2]);
13 arg.data_ptr = (char *) &ival; /* data argunents */
14 arg.data_size = sizeof(long); /* size of data argunents */
15 arg.desc_ptr = NULL;
16 arg.desc_num = O;
17 arg.rbuf = (char *) &oval; /* dataresults */
is arg.rsize = sizeof (long); /* size of data results */
19 /* call server procedure and print result */
20 Door - cal | (£d, &arg) ;
21 printf("&oval = %p, dataqtr = %p, rbuf = %p, rsize = %d\n",
22 &oval , arg.data_ptr, arg.rbuf, arg.rsize);
23 printf (*result: %1d\n”, *((long *) arg.data_ptr));
24 exit (0);
25 }

doors [client2.c
Figure15.7 Print addressd result.

When we run this program, we have not changed the size d the result buffer fram
Figure15.2, so we expect tofind that data_ptr and rbuf both point to our oval veri-
able, and that r si zeis4 bytes. Indeed, thisiswhat wesee:

solaris % client2 /tmp/server2 22
&oval = effff740, dataqtr = effff740, rbuf = efff£f740, rsize =4
result: 484

We now changeonly onelinein Figurel5.7, decreasingthesized theclient's resit
bufferby 1 byte. Thenew versond linel8from Figure15.7is

arg.rsize = sizeof(long) - 1; /* size of data results =/

When we executethis new client program, we seethat a new result buffer has beendlo
cated and data_ptr pointsto thisnew buffer.
solaris % client3 /tmp/server3 33

&val = effff740, dataqtr = ef620000, rbuf = e£620000, rsize = 4096
result: 1089

Thedlocated size d 4096 is the page size on this system, which we saw in Section 12.6.
We can see from this example that we should always reference the server's reaut

Section 15. 7 BExardes 369

through the data_ptr pointer, and not through our variables whose addresses were
passed in rbuf. That is, in our example, we should referencethe long integer result as
*(long *) arg.data_ptr) and not asoval (whichwedidin Figurel5.2).

This new buffer is dlocated by mmap and can be returned to the system using
munmap. The client can aso just keep using this buffer for subsequent cdls to
door—call.

door —cred Function and Client Credentials

This time, we make one change to our servproc functionfrom Figure15.3: wecdl the
door - cred function to obtain the client credentials. Figure 15.8 shows the new server
procedure; the client and the server main function do not change from Figures 15.2
and 15.3.

- — doors [serverd.c
1 #i ncl ude unpi pc.h*

2 void
3 servproc (void *cooki e, char *dataptr, size-t datasi ze,

4 door_desc_t *descptr, size-t ndesc)

5{

6 | ong arg, result;

7 door_cred_t info;

8 /* obtain and print client credentials */

9 Door_cred (&info) ;

10 printf("euid = %14, ruid = %14, pid = %$ld\n",

11 (long) info.dc_euid, (long) info.dc_ruid, (long) info.dc_pid);
12 arg = *((long *) dataptr);

13 result = arg * arg;

14 Door_return{(char *) & esult, sizeof(result), NULL, 0);
15 }

doors [serverd.c
Figurelh 8 Server procedurethet ddtansand pintsdiat credatids.

Wefirgt run the client and will seethat the effective user ID equalsthereal user ID,
aswe expect. We then become the superuser, changethe owner o the executablefileto
root, enabletheset-user-1D bit, and run theclient again.

solaris % client4 /tmp/serverd 77 firstrun d client

result: 5929

solaris % su become superuser

Passwor d:

Sun M crosystens | nc. Sunos 5.6 Generic August 1997

solaris # cd directory containingexecutable
solaris # 1s -1 client4

-rwxrwxr-x 1 rstevens ot herl 139328 Apr 13 06:02 client4
solaris # chown root client4 changeowner to root

solaris # chnod u+s client4 and turn on the set-user-1D hit
solaris # 1s -1 client4 check file permissionsand owner
-rwsrwxr-x 1 root otherl 139328 apr 13 06:02 client4

solaris # exit

Doors Chepter 15

solaris % 1s -1 client4

~TWSTWXY—X 1 root otherl 139328 Apr 13 06:02 client4
solaris % client4 /tmp/serverd 77 and run theclient again

resul t: 5929

If welook at the server output, we can see the changein the effectiveuser ID the ssoond
timeweran theclient.

solaris % server4d /tmp/serverd
euid = 224, ruid = 224, pid = 3168
euid = 0, ruid = 224, pid = 3176

Theeffectiveuser ID of 0 means the superuser.

Automatic Thread Management by Server

To see the thread management performed by the server, we have the server procedure
print its thread ID when the procedure starts executing, and then we have it deepfor5
seconds, to simulate a long running server procedure. The sleep lets us start multiple
clientswhilean existing client is being serviced. Figure15.9 showsthe new server pro-
cedure.

- - doors[server5.c
1 #incl ude "unpi pc.h"
2 void
3 servproc (void *cooki e, char *dataptr, Size-t datasi ze,
4 door_desc_t *descptr, size-t ndesc)
5 {
6 | ong arg, result;
7 arg = *((long *) dataptr);
8 printf("thread |d %14, arg = %1d\n", pr_thread id(NULL), arg);
9 sleep(5);
10 result = arg * arg;
11 Door_return((char *) & esult, sizeof (result), NULL, 0);
12 }

doors[server5.c

Figurel59 Server procedurethat prints thread ID and degos

We introduce a new function from our library, pr_thread_id. It has one agu
ment (a pointer to a thread ID or a null pointer to use the caling thread's ID) ad
returnsa | ong integer identifier for this thread (often a small integer). A processcan
aways be identified by an integer value, its process ID. Even though we do not know
whether the processID isan i nt or al ong, we just cast the return value from get pi d
to a l ong and print the value (Figure 9.2). But the identifier for a thread is a
pthread_t datatype (called a thread 1D), and this need not be an integer. Indeed,
Solaris 2.6 uses small integers as the thread 1D, whereas Digital Unix uses pointers
Often, however, we want to print asmall integer identifier for athread (asin thisexam
ple) for debugging purposes. Our library function, shown in Figure15.10, handlesthis
problem.

Section15.7 BExarpes 371

245 1 ong lib[wrappthread.c
246 pr_thread_id(pthread_t * ptr)
247 {
248 #if defined(sun)
249 return ((ptr == NULL) ? pthread_self() : *ptr); /* Solaris */
250 #elif defined(__osf__) && defined(— al pha)
251 pthread-t tid;
252 tid = (ptr == NULL) ? pthread_self() : *ptr; /* Digital Unix */
253 return (pthread_getsequence_np(tid));
254 #el se
255 /* everything else */
256 return ((ptr == NULL) ? pthread_self() : *ptr);
257 #endif
258 }
lib/wrappthread.c

Figure1510 pr_thread_idfunction: return small integer identifier for calling thread.

If the implementation does not providea small integer identifier for a thread, the func-
tion could be more sophi sticated, mapping thepthread_t vaduestosmal integersand
remembering this mapping (inan array or linked list) for future cdls. Thisisdonein
thet hr ead- nane functionin[Lewisand Beg1998L

Returning to Figure 159, we run the client three timesin arow. Since we wait for
the shell prompt before starting the next client, we know that the 5-second wait is com-
pleteat theserver eachtime.

solaris % client5 /tmp/server5 55
result: 3025
solaris % client5 /tmp/server5 66
result: 4356
solaris % client5 /tmp/server5 77
result: 5929

Looking at the server output, weseethat the same server thread serviceseach client:

solaris % server5 /tmp/server5
thread id 4, arg = 55
thread id 4, arg 66
thread id 4, arg 77

We now start threeclientsat thesametime:

solaris % client5 /tmp/server5 11 & client5 /tmp/server5 22 & \
client5 /tmp/server5 33 &

[2] 3812
[3] 3813
[4] 3814

solaris % result: 484
result: 121
result: 1089

The server output shows that two new threads are created to handle the second and
third invocationsd theserver procedure:

372

Doars Chapter 15

thread id 4, arg
thread id 5, arg
thread id 6, arg

22
i B
33

Wethen start two moreclientsat thesametime:

solaris % client5 /tmp/server5 11 & client5 /tmp/server5 22 &

[2]1 3830
[31] 3831
solaris % result: 484
result: 121

and seethat the server usesthe previoudly created threads:

thread id 6, arg
thread id 5, arg

22
11

What we can see with thisexampleisthat the server process(i.e., thedoorslibrary thet
islinked with our server code) automatically creates server threads as they are needed.
If an application wants to handle the thread management itsdlf, it can, using the func
tionsthat we describe in Section 15.9.

We have aso verified that the server procedure is a concurrent server: multiple
instances o the same server procedure can be running at the same time, as separate
threads, servicing different clients. Another way we know that the server is concurrent
isthat when we run three clientsat thesametime, al three resultsare printed 5 ssconds
later. If the server were iteraive, one result would be printed 5 seconds after dl three
clientswerestarted, the next result 5 secondslater, and thelast result 5 secondslater.

Automatic Thread Management by Server: Multiple Server Procedures

The previous example had only one server procedurein the server process. Our net
question is whether multiple server proceduresin the same process can use the same
thread pool. To test this, we add another server procedure to the server process ad
also recode this example to show a better style for handling the argumentsand reauits
between different processes.

Our first file is a header named squareproc. h that defines one datatype for the
input argumentsto our square function and one datatype for the output arguments. It
aso definesthe pathname for this procedure. We show thisin Figure15.11

Our new proceduretakesalong integer input value and returnsa doubl e contain
ing the squareroot d theinput. We define the pathname, input structure, and output
structurein our sqrtproc. h header, which we show in Figure15.12.

We show our client program in Figure 15.13. It jud calls the two procedures, ae
after the other, and prints the result. This program is similar to the other client pro
grams that we have shown in thischapter.

Our two server proceduresareshown in Figure15.14. Each printsitsthread ID ad
argument, sleepsfor 5 seconds, computestheresult, and returns.

Themain function, shown in Figure 15.15, opens two door descriptors and assod-
ateseach onewith oned thetwo server procedures.

Section 15.7

Examples 373

NOo o o howN e

- doors/squareproc.h

#def i ne PATH SQUARE- WR " /tmp/squareproc_door"

typedef struct (/* input to squareproc() */
| ong argl ;

} squareproc-in-t;

typedef struct (/* out put from squareproc() */
| ong resl;
} squar eproc-out-t;

doors/squareproc.h
Figurel5. 11 squar epr oc.h header.

=

~No g h~owN

. doors/sqrtproc.h

#def i ne PATH S(RT- DOCR "/tmp/sqrtproc_door"

typedef struct { /* input to saqrtproc() */
| ong argl ;

} sgrtproc-in-t;

typedef struct { /* output fromsqgrtproc() */
doubl e resl;
} sgrtproc-out-t;

doors/sqrtproc.h
Figure15.12 sqgrtproc.h header.

CQVWoo~NoNUTh wWwrnpE

o
N P

[
A w

R
o Ul

BB B RS B DD e
Nk W - oW

- - doors/client7 .c
#include “unpipc.h"

#include "squareproc.h"

#include "sgrtproc.h"

i nt

main(int argc, char **argv)

{
i nt fdsquare. fdsqrt;
door_arg_t arg;
squareproc_in_t square-in;
squar eproc- out -t square- out;
sgrtproc_in t sqrt_in;
sgrtproc_out_t sqgrt_out;

if (argc 1= 2)
err_quit ("usage: client7 <integer-val ue>");

fdsquar e = Open(PATH_SQUARE_DOOR, O_RDWR);
fdsqrt = Open(PATH_SQRT DOOR, O_RDWR) ;

/* set up the argunents and cal |l squareproc() */
sqguare_in.argl = atol (argv[l]);
arg.data_ptr = (char *) &aquare-in;
arg.data_size = sizeof (square_in);
arg.desc_ptr = NULL;
arg.desc_num = O;
arg.rbuf = (char *) &square-out;
arg.rsize = sizeof (square_out);
Door_call (fdsquare, &arg);

374 Door s Chapt er 15

26 /* set up the argunents and cal | sqrtproc() */
27 sgrt_in.argl = atol (argv([l]);

28 arg.data ptr = (char *) &sqgrt_in;

29 arg.data_size = sizeof(sgrt_in);

30 arg.desc_ptr = NULL;

31 arg.desc_num = O;

32 arg.rbuf = (char *) &sgrt_out;

33 arg.rsize = sizeof (sgrt_out);

34 Door_call (f£dsgrt, &arg);

35 printf("result: %1d %g\n", sguare_ocut.resl, sgrt_out.resl);
36 exit(0);

37 }

doors/client7 ¢
Fgurels13 Ciat programthat cdlsour sguareand squareroat procedures.

- doors[server].c

1 #include "unpipc.h"”

2 #include <math.h>

3 #include "squareproc.h"”

4 #include "sgrtproc.h"

5 void

6 squareproc(void *cooki e, char *dataptr, size_t dat asi ze,
7 door_desc_t *descptr, Size-t ndesc)

8 {

9 squareproc_in_t in
10 squareproc-out-t out;
11 memcpy (&in, dataptr, min(sizeof(in), datasize));
12 printf ("squareproc: thread id %14, arg = %$1d\n",
13 pr_thread id(NULL), in.argl);
14 sleep(5);
15 out.resl = in.argl * in.argil;

16 Door-return((char *) &ut, sizeof(out), NUL, 0);
17 }

18 voi d

19 sgrtproc(void *cooki e, char *dataptr, size_t dat asi ze,
20 door_desc_t *descptr, size-t ndesc)

21 |
22 sqgrtproc_in_t in:
23 sgrtproc-out-t out;
24 mentpy(& n, dataptr, min(sizeof(i n), datasize));
25 printf ("sgrtproc: thread id %14, arg = %$1d\n",
26 pr_thread id(NULL), in.argl):
27 sleep(5) ;
28 out.resl = sgrt((double) in.argl);
29 Door_return((char *) &out, sizeof(out), NUL, 0);
30 }
doors[serveri.c

Fgrels14 Twoserver procedures.

Section15.7 Examples 375

doors/server?.c

31 int

32 main(int argc, char **argv)

33 {

34 i nt fd;

35 if (argc '=1)

36 err_quit ("usage: server7"');

37 fd = Door- creat g squareproc, NULL, 0);

38 unlink (PATH_SQUARE_DOOR) ;

39 Close (Open (PATH_SQUARE_DOOR, O_CREAT | O_RDWR, FILE- MDE));
40 Fattach(fd, PATH SQUARE- DOR);

41 fd = Door_create(sgrtproc, NULL, 0);

42 unlink (PATH_SQRT_DOOR) ;

43 Close (Open (PATH_SQRT_DOOR, O_CREAT | O_RDWR, FlILE- MDE));
44 Fattach (fd, PATH SCRT- DOOR ;

45 for (; ;)

46 pause() ;

47 '}

doors|[server?.c
Hgurel15.15 nai nfunction.

If werun theclient, it takes 10 secondsto print the results (aswe expect).

solaris % client7 77
result: 5929 8. 77496

if we look at the server output, we see that the same thread in the server process han-
diesboth client requests.

solaris % server?7
squareproc: thread id 4, arg = 77
sgrtproc: thread id 4, arg = 77

Thistellsusthat any thread in the pool o server threadsfor a given processcan handle
aclient request for any server procedure.

DOOR_UNREF Attribute for Servers

We mentioned in Section 15.3 that the DOOR- REF attribute can be specified to
door - creat e as an attribute & a newly created door. The manual page says that
when the number d descriptorsreferring to the door dropsto one (that is, the reference
count goes from two to one), a special invocation is made o the door's server proce
dure. What is special is that the second argument to the server procedure (the pointer
to the data arguments) is the constant DOOR- REF-DATA. We will demonstrate three
waysinwhich thedoor isreferenced.

1. Thedescriptor returned by door - cr eat e in the server counts as one reference.
Infact, thereason that the trigger for an unreferenced procedureisthe transition
d the referencecount from two to one, and not from one to 0, is that the server
process normally keepsthisdescriptor open for the duration d the process.

376 Doors Chagpter 15

2. The pathname attached to the door in the filesystem also counts as one refer-
ence. We can remove this reference by calling the £detach function, running
the fdet ach program, or unlinking the pathname from the filesystem (ather
theunl i nk function or ther mcommand).

3. Thedescriptor returned by open in the client countsas an open reference urttil
the descriptor is closed, either explicitly by calling ¢l ose or implicitly by the
termination d theclient process. Indl theclient processesthat we have shown
in thischapter, thiscloseisimplicit.

Our first example shows that if the server closesits door descriptor after cdling
fat t ach, an unreferenced invocation d the server procedure occursimmediately. Hg
ure15.16 showsour server procedureand the server nai n function.

: doors [serverunrefl.c
1 #include "unpipec.h"

2 void
3 servproc(void *cooOki e, char *dataptr, size-t datasi ze,

4 door_desc_t *descptr, Size-t ndesc)

5 ¢

6 | ong arg. result;

7 if (dataptr == DOOR_UNREF_DATA) {

8 printf ("door unreferenced\n');

9 Door_return (NULL, 0, NULL, 0);:

10 }

11 arg = *((long *) dataptr);

12 printf("thread id %14, arg = %1d\n", pr_thread_id(NULL), arg);
13 sleep(6) ;

14 result = arg * arg;

15 Door_return((char *) & esult, sizeof(result), NULL, 0);
16 1}

17 int

18 main(int argc, char **argv)

19 {

20 int fd;

21 if (argc 1= 2)

22 err_quit ("usage: serverl <server-pat hnane>");

23 /* create a door descriptor and attach to pathname */
24 fd = Door_create(servproc, NULL, DOOR UNREF);

25 unlink(argv([1]1);

26 Close(Open{argv(1l], O_CREAT { O_RDWR, FlLE- MLE));

27 Fattach(fd, argvIi]):

28 Close(fd);

29 /* servproc() handles all client requests */

30 for (; ;)

31 pausel() ;

32)

doors [serverunrefl.c
Figure1516 Server procedurethat handlesan unreferencedinvocation.

Section15.7 Examples 377

7-10

Our server procedure recognizes the specid invocation and printsa message. The
thread returns from this specia cal by caling door — return with two null pointers
and twosizesd 0.

We now cl ose the door descriptor after f attach returns. The only use that the
server has for this descriptor after fattach is if it needs to cal door—bind,
door_info, or door—revoke.

When we start the server, we notice that the unreferenced invocation occursimme-
diatdly:

solaris % serverunrefl /tmp/doorl
door unref erenced

If we follow the reference count for this door, it becomes one after door— create
returns and then two after fattach returns. The server's cal to cl ose reduces the
count from two to one, triggering the unreferenced invocation. The only reference left
for thisdoor isits pathname in the filesystem, and that is what the client needsto refer
tothisdoor. That is, theclient continuesto work fine

solaris % clientunrefl /tmp/doorl 11

result: 121
solaris % clientunrefl /tmp/doorl 22
result: 484

Furthermore, no further unreferenced invocations d the server procedure occur.
Indeed, only one unreferenced invocationisdelivered for agiven door.

We now change our server back to the common scenarioin whichit doesnot cl ose
itsdoor descriptor. We show the server procedureand the server main functionin Hg-
ure 15.17. We leave in the 6-second sleep and also print when the server procedure
returns. We start the server in one window, and then from another window we verify
that the door's pathname exists in the filesystem and then remove the pathname with
m

solaris % 1ls =1 /tmp/door2
Drw-r-r- 1 rstevens otherl 0 Apr 16 08:58 /tmp/door2
solaris % rm /tmp/door2

Assoon at the pathname is removed, the unreferenced invocation is maded the server
procedure:

solaris % serverunref2 /tmp/door2
door unreferenced as soon as pathname is removed from filesystem

If we follow the reference count for this door, it becomes one after door— create
returns and then two after fattach returns. When we r m the pathname, this com-
mand reducesthe count from two to one, triggering the unreferenced invoceation.

In our final example o thisattribute, we again remove the pathname from the file-
system, but only after starting three client invocationsd the door. What we show is
that each client invocation increasesthe referencecount, and only when all threeclients

378 Doors Chapter 15

- - doors [serverunrefl.c

1 #i ncl ude "unpipc.h"

2 void

3 servproc(void *cooki e, char *dataptr, size-t datasi ze,

4 door_desc_t *descptr, Size-t ndesc)

5 {

6 | ong arg, result;

7 if (dataptr == DOOR_UNREF_DATA)} {

8 printf ("door unreferenced\n");

9 Door_return(NULL, 0, NUL, 0);
10 }
11 arg = *((long ~) dataptr);
12 printf("thread id %14, arg = %ld\n", pr_thread id(NULL), argQ);
13 sleep(6);
14 result = arg * arg;
15 printf("thread id %$1d returning\n", pr_thread_id(NULL));
16 Door_return((char *) & esult, sizeof(result), NULL, 0);
17)
18 int
19 main(int argc, char **argv)
20 {
21 int fd;
22 if (argc 1= 2)
23 err_quit ("usage: serverl <server-pathname>") ;
24 /* create a door descriptor and attach to pathname */
25 fd = Door_create(servproc, NULL, DOOR- UNREF);
26 unlink(argv([1]);

27 Close(Open(argv[1], O_CREAT | O_RDWR, FlLE- MIE)):
28 Fattach(fd, argvIl]):
29 /* servproc() handles all client requests */
30 for (;)
31 pause () ;

32)

doors[serverunrefl.c

Figure15.17 Server that doesnot cl ose itsdoor decriptor.

terminate does the unreferenced invocation take place. We use our previous ssver
from Figure 15.17, and our client isunchanged from Figure 15.2.

solaris % clientunref2 /tmp/door2 44 & clientunref2 /tmp/door2 55 & \
clientunref2 /tmp/door2 55 &

[2] 13552
[31 13553
[4] 13554
solaris % rm /tmp/door2 while thethreeclientsare running

solaris % result: 1936
result: 3025
result: 4356

Section 15.8 Degiptor Passing 379

15.8

Hereistheserver output:

solaris % serverunref2 /tmp/door2
thread id 4, arg = 44

thread id 5, arg = 55

thread id 6, arg = 66

thread id 4 returning

thread id 5 returning

thread id 6 returning

door unreferenced

If we follow the reference count for this door, it becomes one after door— create
returns and then two after fattach returns. As each client calls open, the reference
count isincremented, going from two to three, from threeto four, and then from four to
five. When we r m the pathname, the count reduces from five to four. Then as each
client terminates, the count goesfrom four to three, then three to two, then two to one,
and thisfinal decrement triggersthe unreferenced invocation.

What we have shown with these examples is that even though the description o
the DOOR—UNREF attributeis simple ("'the unreferenced invocation occurs when the ref-
erence count goes from two to one™), we must understand this reference count to use
thisfeature.

Descriptor Passing

When wethink d passing an open descriptor from one processto another, we normally
think d either

e achild sharingall the open descriptorswith the parent after acal to fork, or
e all descriptorsnormally remainingopen when exec iscalled.

In the first example, the process opens a descriptor, cals fork, and then the parent
closes the descriptor, letting the child handle the descriptor. This passes an open
descriptor from the parent to the child.

Current Unix systemsextend thisnotion d descriptor passing and provide the abil -
ity to pass any open descriptor from one process to any other process, related or unre-
lated. Doors provideone AR for the passing d descriptorsfrom theclient to theserver,
and from the server to theclient.

We described descriptor passing using Unix domain socketsin Section14.7 o UNPvl. Beke
ley-derived kernels pass descriptors using these sockets, and al the details are provided in
Chapter 18 d TCPv3. SVR4 kernds use a different technique to pass a descriptor, the
I—SENDFD and I_RECVFD i octl commands, described in Section 1551 d APUE. But an
SVR4 processcan still accessthiskernel feature using a Unix domain socket.

Be sure to understand what we mean by passing a descriptor. In Figure 4.7, the
server opensthefile and then copies the entire file across the bottom pipe. If thefiles
sizeisl1 megabyte, then 1 megabyte d data goes across the bottom pipefrom the server
to theclient. But if the server passes a descriptor back to the client, instead d thefile

-

30 Doos Chapter 15

itself, then only the descriptor is passed across the bottom pipein Figure 4.7 (whichwe
assumeissomesmall amount o kernd-specific information). Theclient then takesthis
descriptor and readsthefile, writingits contentsto standard output. All thefile reading
takesplacein theclient, and the server only opensthefile.

Redize that the server cannot just write the descriptor number across the bottom
pipein Figure4.7, asin

int fd;

fd = Open{(... };
Write(pipefd, &fd, sizeof(int));

Thisapproach does not work. Descriptor numbers are a per-processattribute. Suppose
thevalued £d is4intheserver. Evenif thisdescriptor isopen in theclient, it dmost
certainly does not refer to the samefile as descriptor 4 in the server process. (The only
time descriptor numbers mean something from one processto another is acrossa fork

or acrossan exec.) If the lowest unused descriptor in the server is 4, then a successul

open in theserver will return 4. If the server "'passes” its descriptor 4 to the client and
the lowest unused descriptor in theclient is 7, then we want descriptor 7 in thedient to

refer to the same file as descriptor 4 in the server. Figures154 o APUE and 184 d

TCPv3 show what must happen from the kerndl's perspective: the two descriptors(4 in
the server and 7 in the client, in our example) must both point to the same file teble
entry within the kernel. Some kernel black magicisinvolved in descriptor passing, but
APIs like doors and Unix domain sockets hide all these internal details, allowing pro-
cesses to pass descriptorseasily from one processto another.

Descriptors are passed across a door from the client to server by setting the
descqgtr member of thedoor_arg_t structureto point to an array d door—desc-t
structures, and setting door—num to the number o these structures. Descriptors are
passed from the server to the client by setting the third argument d door — returnto
point to an array d door—desc—t structures, and setting the fourth argument to the
number d descriptorsbeing passed.

typedef struct door- desc {

door_attr_t d_attributes; /* tag for union */
uni on {
struct { /* valid if tag = DOOR—DESCRIPTOR */
int d_descriptor; [/* descriptor nunber */
door-id-t da_ig; /* unique id */
} d_desc;
} 4 data;

} door - desc-t ;

Thisstructurecontainsa union, and thefirst member o thestructureisatag that iden-
tifieswhat is contained in the union. But currently only one member d the unionis
defined (a d_desc structurethat describes a descriptor), and thetag (d_attributes)
must be set to DOOR-DESCRIPTOR

Section 15.8 Degiptor Pesing 381

Example

We modify our file server example (recall Figure 1.9) so that the server opens the file,
passes the open descriptor to the client, and the client then copies the file to standard
output. Figurel5.18 showsthe arrangement.

server

servproc()
(
door - desc-t desc;

. \fd = open(});
client -
- desc... = fd

mai n() o) - door_return(NULL, 0, &desc, 1);
{ .y aescri?S ’

L E: mai n()

door_call (servfd,); {

. , .-
\zl].lffd = arg_;.desc_?t.:xl*—;.i.. > 0) fd = door-create();
tle ((n = Read(filefd, 1)) fattach(fd, path);
Write (STDOUT_FILENO,)i

} }

Figure15.18 Fileserver examplewith server passngback opendescriptor.

Figure15.19 showsthe client program.
Open door, read pathname from standard input

9-15 The pathname associated with the door is a command-lineargument and the door
isopened. The filenamethat the client wants opened is read from standard input and
thetrailing newline is deleted.

Set up arguments and pointer to result

16-22 The door_arg_t structureis set up. We add one to the size o the pathname to
alow theserver to null terminatethe pathname.

Call server procedure and check result

23-31 We call the server procedure and then check that the result is what we expect: no
data and one descriptor. We will seeshortly that the server returnsdata (containingan
error message) only if it cannot open thefile, in which case, our cal toerr - qui t prints
thet error.

Fetch descriptor and copy file to standard output

32-34 The descriptor isfetched from the door - desc- t structure, and thefileiscopied to
standard output.

382 Daos Chepter 15

- doors/clientfdl.c
1 #include "unpipc.h"
2 int
3 main(int argc, char **argv)
4 {
5 int door, fd;
6 char argbuf [BUFFSIZE], resbuf[BUFFSIZE], buff[BUFFSIZE];
7 size-t len, n;
8 door_arg_t arg;
9 if (argc '= 2)
10 err_quit ("usage: clientfdl <server-pat hname>");
11 door : open(argv[l], O_RDWR); /* open the door */
12 Fgets (argbuf, BUFFSI ZE, stdin); /* read pathname of file to open */
13 |l en = strlen(argbuf);
14 if (argbufllen - 11 == ‘\n’)}
15 l en--; /* del ete newline from fgets() */
16 /* set up the argunents and pointer to result */
17 arg.data_ptr = argbuf; /* data argunent */
18 arg.data_size = len + 1; /* size of data argunent */
19 arg.desc_ptr = NULL;
20 arg.desc_num = O;
21 arg.rbuf = resbuf; /* data results */
22 arg.rsize = BUFFS ZE /* size of data results */
23 Door_call (door, &arg); /* call server procedure */
24 if (arg.data_size != 0)
25 err_quit ("%.*s", arg.data_size, arg.data ptr);
26 else if (arg.desc_ptr == NUL)
27 err_quit ("desc_ptr is NULL");
28 else if (arg.desc_num != 1)
29 err_quit ("desc_num = %d", arg.desc_num);
30 else if (arg.desc_ptr->d_attributes {= DOCR- DESCR PTAR
31 err_quit (*d_attributes = %d4", arg desc_ptr->d_attributes);
32 fd : arg.desc_ptr->d_data.d_desc.d_descriptor;
33 while ((n = Read(fd, buff, BUFFSIZE)) > 0)
34 Wi te(STDOUT _FILENO, buff, n);
35 exit (0);
36 } .
doors/clientfdl.c

Hogurels19 Qiet progranfa descriptar pessi ngfileserver exanpl e.

Figure 15.20 shows the server procedure. The server main function has not
changed from Figure 15.3.

Open file for client

9-14 We null terminatethe client's pathname and try to open thefile. If an error cocurs
thedata reault isa string containing theerror message.

Section 15.8 Dexriptor Passing 383

doors [serverfdl .c
1 #include "unpipc.h"

2 void
3 servproc(void *cooki e, char *dataptr, size-t datasi ze,

4 door_desc_t *descptr, size-t ndesc)

5 {

6 int fd;

7 char resbuf [BUFFSIZE] ;

8 door_desc_t desc;

9 dataptr[datasize - 11 = 0; /* null termnate */
10 if ((fd = open(dataptr, O_RDONLY)) == -1) {

11 /* error: nust tell client */

12 snprintf (resbuf, BUFFS|I ZE, "%s: can't open, %s",
13 dat aptr, strerror(errno)):

14 Door_return(resbuf, strlen(resbuf), NULL, 0):
15 } else (

16 /* open succeeded: return descriptor */
17 desc.d_data.d_desc.d_descriptor = fd:

18 desc.d_attributes = DOCOR- DESCR PTCR,

19 Door_return(NULL, 0, &desc, 1);

20 }

21 }

doors [serverfdl.c
Figurel5 20 Srver procedurethet opens afile and pesses back its descriptar.

Success
15-20 If theopen succeeds, only thedescriptor isreturned; therearenodataresults.

We dart the server and specify its door pathname as /tmp/fdl and then run the
dient:

solaris % clientfdl /tmp/£dl

/etc/shadow

/etc/shadow: can't open, Perm ssion deni ed

solaris % clientfdl /tmp/fdl

/no/such/file

/no/such/file: can't open, No such file or directory
solaris % clientfdl /tmp/£41

/etc/ntp.conf a 2-linefile

mul ticastclient 224.0.1.1

driftfile /etc/ntp.drift

The firs two times, we specify a pathname that causes an eror return, and the third
time, theser ver returnsthe descriptor for a 2-linefile.

Thereis a probl emwth descriptar passing acrass adoor. Toseethe probl emin our exanpl e,
jut add a printf tothe server procedure dte a successfu open. You Ml see that each
descriptor val ue is one gester than the previous descriptar va ue. The probl emis thet the
server isnat dasingthe descriptars dtea it pessesthemtothediat. But thereis noessy way
todoths Thelaycd paceto performthecl osewoul d be &ta door - r et ur nreturs, once
the descriptar has beensat tothedieat, but door - ret ur n does nat returnt If we had been

384

Doors Chapter 15

159

using either sendmsg to pass the descriptor acrossa Unix domain socket, or i octl to passthe
descriptor across an SVR4 pipe, we could cl ose the descriptor when sendmsg or ioctl
returns. But the doors paradigm for passing descriptorsisdifferentfrom thesetwo techniques,
sinceno return occurs from the function that passesthe descriptor. The only way around this
problem isfor the server procedure to somehow remember that it has a descriptor open ad
closeit at somelater time, which becomesvery messy.

This problem should be fixed in Solaris 2.7 with the addition o a new DOCR- RELEASE
attribute. The sender sets d_attributes to DOOR- DESCRI PTOR | DOOR- RELEASE, which
tellsthe system to closethe descriptor after passingit to thereceiver.

door - server - cr eat e Function

We showed with Figure15.9 that the doorslibrary automatically creates new threadsas
needed to handle the client requests as they arrive. These are created by the library as
detached threads, with the default thread stack size, with thread cancellation disabled,
and with asignal mask and scheduling classthat areinitially inherited from the threed
that caled door - creat e. If wewant to changeany d these features or if we want to
managethe pool d server threadsourselves, wecal door - server - cr eat eand e
ify our own server creation procedure.

#include <door.h>
typedef void Door_create_proc (door_info_t *);

Door_create_proc *door_server_create(Door_create proc *proc);

Returns: pointer to previous server creation procedure

Aswith our declarationd door - cr eat e in Section15.3, we useC's t ypedef todm+
plify the function prototypefor the library function. Our new datatype definesa server
creation procedureas taking a singleargument (apointer toadoor - i nf o_t structure),
and returning nothing(voi d). When we cdl door - ser ver - cr eat e, the argumentis
a pointer to our server creation procedure, and thereturn valueisa pointer to the previ-
ousserver creation procedure.

Our sexver creation procedureis called whenever a new thread is needed to sarvice
a dient request. Information on which server procedure needs the thread is in the
door - info-t structure whose address is passed to the creation procedure. The
di_proc member containsthe addressd the server procedure, and di_data contans
the cookie pointer that is passed to the server procedureeach timeit iscalled.

An exampleisthe easiest way to seewhat is happening. Our client doesnot change
from Fgure 15.2. In our server, we add two new functionsin addition to our server
procedure function and our server nai n function. Figure 1521 showsan overview d

the four functionsin our server process, when some are registered, and when they ae
al called.

Figure15.22 showsthe server mai n function.

Section 15.9 door - server - creat e Functi on 385

~ s Bervproc()
{ '\| server

eachthread lagcdly procedur e
appear sto conti nue

door-return();

execyt emv _thread executi ngd J
when each new Servproc & N
thread isstarted ~ "Y-thread() each dient | _
(‘ is servi ced furction
. execut ed
door-bind(); by each
door-return(); serve thread

}

. my create()
/* (—> ;

—/\

server
. o cregion
— pthread-create(, ny-thread,); pr ocedur e
LA reg ste ¥
create i 3
{

___ door- server-creat g ny-create) ;

reg st servproc as server e
procedur efa ths door; fd = door_create(servproc,);
dsoexecuteny- creat e
tocreatefirg thread }

Figurel5.21 Overview d thefour functi onsinour server process.

doors [server6.c

42 int

43 main(int argc, char **argv)

44 {

45 if (argc '= 2)

46 err_quit ("usage: serverbf <server-pathname>");
47 Door_server_create(my_create) ;

48 /* create a door descriptor and attach to pathname */
49 Pchread_mutex_lock(&fdlock) ;

50 fd = Door_create(servproc, NULL, DOCR- PR VATE);
51 Pthread_mutex_unlock(&fdlock) ;

52 unl i nk(argv (11) ;

53 Close(Open(argv([1], O_CREAT | O_RDWR, FlILE- MXIE));
54 Fattach(fd, argv([1l]):

55 /* servproc() handles all client requests */
56 for (; ;)

57 pause();

58 }

doors/server6.c
Fgurels 2 mai nfuctionfa exanpl ed thread pod nmanagenent .

336 Doars Chapter 15

30-41

We have made four changes from Figure 15.3: (1) the declaration d the door
descriptor f d is gone (it is now a globa variable that we show and desaibe in FHg
ure 1523), (2) we protect the cal to door - creat e with a mutex (which we a0
desaibe in Figure 15.23), (3) we call door - ser ver - cr eat e before creating the door,
specifying our server aeation procedurg(ny- t hr ead, which we show next),and (4) in
the call to door - creat e, the final argument (the attributes) is now DOOR- PRI VATE
instead of 0. Thistellsthelibrary that thisdoor will haveits own pool o threads, cdled
aprivate server pool.

Specifying a private server pool with DOOR- PRI VATE and specifying a server ae
ation procedurewith door - ser ver - cr eat eareindependent. Four scenariosare pos
sble

1. Default: no private server pools and no server aeation procedure. The sysem
createsthreadsas needed, and they all gointo the process-widethread pool.

2. DOOR- PRI VATE and no server creation procedure. The system creates threeds
as needed, and they go into the process-wide pool for doors created without
DOOR- PRI VATE or into a door's private server pool for doors created with
DOCR- PR VATE.

3. No private server pools, but aserver aeation procedureis specified. Thesarver
creation procedureiscaled whenever a new thread is needed, and thesethreeds
all gointo the process-widethread pool.

4, DOOR- PRI VATE and a server creation procedure are both specified. The sarver
creation procedureis cdled whenever a new thread isneeded. When athreadis
created, it should cal door - bi nd to assign itself to the appropriate privatie
server pool, or the thread will beassigned to the process-wide pool.

Figure 15.23 showsour two new functions: my_create iSour server crestion proce
dure, and it callsny- t hr ead as thefunctionthat is executed by each thread that it ae
ates.

Server creation procedure

Each time ny- create is cdled, we create a new thread. But before cdling
pthread- create, we initialize its attributes, set the contention scope t
PTHREAD_SCOPE_SYSTEMN, and specify the thread as a detached thread. The thread is
created and starts executing the ny - t hr ead function. The argument to this functionis
a pointer to the door - i nf o_t structure. If we have a server with multiple doorsad
we gpecify a server creation procedure, this one server creation procedureis cdled
when a new thread isneeded for any d thedoors. Theonly way for thisserver cregtion
procedure and the thread start function that it specifiesto pt hr ead- cr eat e to differ-
entiate between the differentserver proceduresisto look at the di_proc pointer in the
door - i nf o_t structure.

Setting the contention scope to PTHREAD_SCOPE_SYSTEM means this thread will com-
pete for processor resources against threads in other processes. The dternative,

Section 159

door - server - creat e Function 387

13
14

15
16
17
18
19

20
21
22

23
24
25
26
27
28
29

30
31
32
33
34

35
36
37
38
39
40
41

doors/server6.c
pthread_mutex_t fdlock = PTHREAD_MUTEX_INITIALIZER;

staticint fd = -1; /* door descriptor */
void *
my_thread(void *arg)
{
int ol dst at e;
door-info-t *iptr = arg;
if ((Door-servergroc *) iptr->di_proc == servproc) {
Pthread_mutex_lock (&fdlock) ;
Pthread_mutex_unlock (&fdlock) ;
Pthread_setcancelstate (PTHREAD_CANCEL_ DISABLE, &oldstate);
Door - bi nd(£4d) ;
Door - return(NULL, 0, NULL, 0);
} el se
err_quit ("my_thread: unknown function: %p", arg);
return (NULL) ; /* never executed */
}
voi d
my_create (door_info_t *iptr)

{
pthread_t tid;
pthread_attr_t attr;

Pthread_attr_init (&attr);

Pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) ;
Pthread_attr_setdetachstate (&attr, PTHREAD CREATE_DETACHED) ;

Pthread create(&tid, &attr, ny-thread, (void *) iptr);

Pthread_attr_ destroy(&attr);

printf ("my_thread: created server thread $1d\n", pr_thread_id(&tid));

doors|serverb.c
Fguweln2Z3 Qur ownthread managenent functi ons.

PTHREAD_SCOPE_PROCESS, neans ths thread WA conpet e fa processor resources
only agai nst ather threadsinthis process. Thelata Wl not wor k with doors, because
the doors libray requres thet the kernel |ightweight process performing the
door - return be the sane lightwe ght process thet arigneted the invocation An
unbound t hread (PTHREAD_SCOPE_PROCESS) coul d changel i ght wel ght processes dur -
i ng executi ond the server procedure.

Thereasonfa requiringthet the thread be crested as a detached thread is to prevent
the syst emf r omsavi ng any i nf or nat i onabout the thread whenit terninat es, because
nooneWW becdlingpthread_joi n.

Thread start function

15-20

ny- thread is the thread start functi onspecified by thecdl to pt hread- creat e.

The argunent is the panter to the door_info_t structure thet was passed to
ny- create. Theonly server procedurethet we haveinths processis servproc, and
wejet verify thet theargunent referencesthis procedure.

333 Doos Chapter 15

21-22

23

24

25

Wait for descriptor to be valid

The server creation procedure is cdled for the first time when door - creat e is
caled, tocreatean initial server thread. Thiscal isissued from within the doorslibrary
beforedoor - creat e returns. But the variable f d will not contain the door descriptor
until door - cr eat e returns. (Thisis a chicken-and-egg problem.) Since we know that
my_thread iS running as a separate thread from the main thread that cdls
door - creat e, our solution to thistiming problem is to use the mutex f dl ock asfd-
lows the main thread locks the mutex before calling door - cr eat e and unlocks the
mutex when door - cr eat e returnsand a value has been stored into £d (Figure15.22).
Our ny- t hr ead function jug locks the mutex (probably blocking until the main thread
has unlocked the mutex) and then unlocksit. We could haveadded a condition vaigble
that the main thread signds, but we don't need it here, since we know the sequenced
callsthat will occur.

Disable thread cancellation

When a new Posix thread is created by pthread_create, thread cancdlation is
enabled by default. When cancellationis enabled, and a client abortsadoor - cal | that
isin progress(whichwewill demonstratein Figure 15.31), the thread cancellation han+
dlers (if any) are called, and the thread is then terminated. When cancellation is dis
abled (aswe are doing here), and a client abortsa door - cal | that isin progress, the
server procedure complctes (the thread is not terminated), and the results fram
door - ret ur nare jud discarded. Sincethe server thread isterminated when cancdla
tion isenabled, and since the server procedure may bein the middled an operationfor
theclient (it may hold some locks or semaphores), the doorslibrary disablesthread can
cellation for al the threads that it creates. If a server procedure wants to be cancded
when a client terminates prematurely, that thread must enablecancellation and must ke
prepared todeal withiit.

Noticethat the contentionscoped PTHREAD_SCOPE_SYSTEM and the detached state aregpec-
ified as attributeswhen the thread is created. But the cancellation mode can be set only by the
thread itsdf onceit is running. Indeed, even though we just disable cancellation, a thread can
enableand disable cancellation whenever it wants.

Bind this thread to a door

We cdl door - bi nd to bind the calling thread to the private server pool associated
with the door whosedescriptor is theargument to door - bi nd. Sincewe need the door
descriptor for thiscal, wemadef d aglobal variablefor thisversond our server.

Make thread available for a client call

The thread makes itsdf available for incoming door invocations by cdling
door - r et ur n with two null pointersand two 0 lengthsas thearguments.

We show theserver procedurein Figure15.24. Thisversionisidentical to theonein
Figurel5.9.
To demonstratewhat happens, we just start theserver:

solaris % server6 /tmp/door6
my—thread: created server thread 4

Section 159 door - server - creat e Functi on 339

doors|server6.c

1 #include "unpipc.h®

2 void

3 servproc(void *cooki e, char *dataptr, size-t datasize,

4 door_desc_t *descptr, size-t ndesc)

5 {

6 | ong arg, result;

7 arg = *((long *) dataptr);

8 printf("thread id %1d, arg = %1d\n", pr_thread id(NULL), arg);
9 sleep(5) ;

10 result = arg * arg;

11 Door_return{(char *) & esult, sizeof(result), NULL, 0);
12 3}

doors [server6.c
Fguels 24 Server procedure.

As soon as the server startsand door - cr eat e iscalled, our server creation procedure
iscdled thefirst time, even though we have not even started theclient. Thiscreatesthe
first thread, which will wait for thefirst client call. We then run the client threetimesin
arow:

solaris % client6 /tmp/dooré 11
result: 121
solaris % client6 /tmp/dooré 22
resul t: 484
solaris % client6 /tmp/door6 33
resul t: 1089

if we look at the corresponding server output, another thread is created when the first
client cal occurs (thread ID 5), and then thread number 4 services each d the client
requests. Thedoorslibrary appearsto alwayskeep one extrathread ready.

ny-thread: created server thread 5
thread id 4, arg 11
thread id 4, arg 22
thread id 4, arg = 33

We then execute theclient threetimes, all at about the same timein the background.

solaris % client6 /tmp/door6 44 & client6 /tmp/door6 55 & \
client6 /tmp/door6 66 &

[2] 4919
[3] 4920
[4] 4921

solaris % result: 1936
result: 4356
result : 3025

Looking at the corresponding server output, we see that two new threads are created
(threadIDs 6 and 7), and threads4, 5, and 6 servicethe three client requedts:

30 Doors Chapter 15

15.10

1511

thread id 4, arg = 44
ny- thread: created server thread 6
thread id 5, arg = 66
ny-thread: created server thread 7
thread id 6, arg = 55

door - bi nd, door - unbi nd, and door - r evoke Functions

Threeadditional functionscompletethedoors AP.

#i ncl ude <door.h>
int door - bind(int fd);

int door_unbind(void);

int door-revoke(int fd);

All threereturn: 0 if OK, -1 on error

We introduced the door — bind function in Figure 15.23. It binds the calling thread 0
the private server pool associated with the door whose descriptor isfd. I the cdling
thread isalready bound to some other door, animplicit unbind is performed.

door — unbind explicitly unbinds the calling thread from the door to which it has
been bound.

door —revoke revokes accessto the door identified byfd. A door descriptor canbe
revoked only by the process that created the descriptor. Any door invocation that isin
progresswhen thisfunctioniscaled isalowed to completenormally.

Premature Termination of Client or Server

All our examples so far have assumed that nothing abnormal happens to ether the
client or server. We now consider what happens when errors occur at either the dient
or server. Redizethat when theclient and server are part d the same process (thelocd
procedurecdl in Figure 15.1), the client does not need to worry about the server cragh
ing and vice versa, because if either crashes the entire process crashes. But when the
client and server are distributed to two processes, we must consider what happensif
oned thetwo crashesand how the peer isnotified d thisfailure. Thisissomethingwe
must worry about regardlessd whether the client and server are on the same host or an
different hosts.

Premature Termination of Server

Whiletheclient is blocked inacdl to door — call, waiting for results, it needs to kmow
if the server thread terminates for some reason. To see what happens, we have the

Sxion15.11 Premature Temindion d Client or Saver 301

server procedure thread terminate by calling thread_exit. Thisterminates jud this
thread, not the entire server process. Figure15.25showsthe server procedure.

- - - doors/serverintrl.c
#i ncl ude unpi pc.h*

voi d

servproc (void *cooki e, char *dataptr, size-t dat asi ze,

door_desc_t *descptr, Size-t ndesc)

| ong arg, result;

pthread_exit(NULL) ; /* and see what happens at client */
arg = *((long *) dataptr) ;

result = arg * arg;

Door-return((char *) &esult, sizeof(result), NULL, 0);

1
2
3
4
5 {
6
7
8
9

10
11}

doors/serverintrl.c
Fgure15.25 Server procedurethet termnat esitdf dte be ngi nvoked.

The remainder d the server does not change from Figure 15.3, and the client does not
changefrom Figurel5.2.

When we run our client, we see that an error EINTRisreturned by door - cal | if
theserver procedureterminatesbefore returning.

solaris % clientintrl /tmp/doorli 11
door-call error: Interrupted systemcall

Uninterruptability of door - cal | System Call

Thedoor - cal | manual page warns that this function is not a restartable system cdll.
(Thedoor - cal | functionin thedoorslibrary invokesasystemcal o the same name.)
We can see thisby changing our server so that the server procedure just sleepsfor 6 sec-
onds before returning, which we show in Figure15.26.

doors/serverintr2.c

#include "unpipc.h"

voi d
servproc (void *cooki e, char *dataptr. size-t datasi ze.
door_desc_t *descptr, size-t ndesc)

| ong arg, result;

sleep(6):; /* let client catch SI GCH.D */
arg = *((long *) dataptr);

result = arg * arg;

10 Door_return((char *) & esult, sizeof(result), NULL, 0);
11

1
2
3
4
51
6
7
8
9

doors[serverintr2.c
Fgure15.26 Server procedur e sl egsfa 6 seconds.

We then modify our client from Figure 152 to establish a signal handler for
SIGCHLD, fork a child process, and have the child slegp for 2 seconds and then

392 Doors Chapt er 15

terminate. Therefore, about 2 seconds after the client parent callsdoor — call, the par-
ent catches SIGCHLD and the signal handler returns, interrupting the door — call sys
tem cdl. Weshow thisclientin Figurel5.27.

: ' doors/clientintr2.c
1 #include "unpipc.h"
2 void
3 sig_chld(int signo)
4 {
5 return; /* just interrupt door-call () */
6}
7 int
g main(int argc, char **argv)
9 {
10 int fd;
11 | ong ival, oval;
12 door_arg_t ardg;
13 if (argc '= 3)
14 err_qguit ("usage: clientintr2 <server-pat hname> <i nt eger - val ue>") ;
15 fd - open(argv[1]l, O_RDWR); /* open the door */
16 /* set up the argunments and pointer to result */
17 ival = atol(argvi2]);
18 arg.data_ptr = (char *) &ival; /* data argunents */
19 arg.data_size = sizeof(long); /* size of data argunents x*/
20 arg.desc_ptr = NULL;
21 arg.desc_num = O;
22 arg.rbuf = (char *) &val; /* dataresults */
23 arg.rsize = sizeof(long); /* size of data results */
24 Signal (SI GCHLD, sig_chld);
25 if (Fork() == 0) ¢
26 sl eep(2) ; /* child */
27 exit (0); /* generates SI GCHLD */
28 }
29 /* parent: call server procedure and print result */
30 Door-cal |l (fd, &arg):
31 printf ("result: %1d\n", oval);
3z exit(0):;
33 }
doors/clientintrl.c

Figurel5 27 Qiert thet cat ches SI GOH.Dafter 2 seconds.

The client sees the same error as if the server procedure terminated prematurdy:
El NTR

solaris % clientintr2 /tmp/door2 22
door-call error: Interrupted systemcall

This means we must block any signals that might be generated during a cdl to
door— call from being ddlivered to the process, because those signals will interrupt
door—call.

Section 1511

Premature Temindion d Cliet a Save 393

Idempotent versus Nonidempotent Procedures

What if we know that we just caught a signal, detect the error d ElI NTR from
door - call, and call the server procedure again, since we know that the error is from
our caught signal and not from the server procedure terminati ng prematurely? Thiscan
lead to problems, aswe will show.

First, we modify our server to (1) printitsthread ID whenit iscalled, (2) deepfor 6
seconds, and (3) print its thread ID when it returns. Figure 15.28 showsthisversion d
our server procedure.

1
2
3
4
5
6
7
8
9

10
11
12
13

doors [serverintr3.c

#i ncl ude "unpi pc.h"

voi d

servproc (void *cooki e, char *dataptr, size-t datasi ze,

{

door_desc_t *descptr, size-t ndesc)

| ong arg, result;

printf("thread id %1d called\n", pr_thread_ id(NULL));
sleep(6) ; /* let client catch SI GCHLD */
arg = *((long *) dataptr);

result = arg * arg;

printf ("thread id %1d returning\n", pr_thread id(NULL)) ;
Door-returnl (char *) &esult, sizeof(result), NULL, 0);

2-8

31-42

doors [serverintr3.c
Figurel5.28 Server procedurethat printsitsthread |D when called and when returning.

Figure15.29 showsour client program.

We declarethe global caught_sigchld and set thisto one when the S| GCHLDsig-
nal iscaught.

We now call door — call inaloop aslong astheerror isEINTR and thiswascaused
by our signal handler.

If welook at just theclient output, it appearsOK:

solaris % clientintr3 /tmp/door3 33
cal l i ng door - cal |

cal l i ng door - cal |

result: 1089

door - call iscaled thefirst time, our signal handler isinvoked about 2 seconds later
and caught—sigchld is set to one, door—call returns EINTR and we call
door— call again. Thissecond time, the server procedure proceeds to completion and
theexpected resultisreturned.

But looking at theserver output, we seethat theserver procedureiscaled twice.

solaris % serverintr3 /tmp/door3
thread id 4 called

thread id 4 returning

thread id 5 called

thread id 5 returning

394 Doors Chapter 15
T Tacione = doors/clientintr3.c
2 volatil e sig_atomic_t caught - si gchl d;

3 void

4 sig_chld{int signo)

5 {

6 caught - sigchld = 1;

7 return; /* just interrupt door-call () */
8}

9 int

10 main(int argc, char **argv)

11 {

12 int fd, rc;

13 | ong ival, oval;
14 door_arg_t arg;
15 if (argc 1= 3)
16 err_quit("usage: clientintr3 <server-pat hnane> <i nt eger-val ue>");
17 fd = Cpen(argv(1], C_RDWR); /* open the door */

18 /* set up the argunents and pointer to result */

19 ival = atol(argv[2]);

20 arg.data ptr = (char *) &ival; /* data argunents */
21 arg.data_size = sizeof (long); [* size of data argunents */
22 arg.desc_ptr = NULL;
23 arg.desc_num = O;
24 arg.rbuf = (char *) &val; /* data results */
25 arg.rsize = sizeof {long); /* size of data results */
26 Signal (SIGCHLD, sig_chld);
27 if (Fork() == 0) (
28 sleep(2); /* child */

29 exit(0); /* generates S| GCHLD */

30 }

31 /* parent: call server procedure and print result */
32 for (; ;) (

i3 printf ("calling door_call\n"});

34 if ((rc = door-call (fd, &arg)) == 0)

35 br eak; /* success */

36 if (errno == H NIR && caught - si gchl d) ¢

37 caught - si gchl d = 0;

38 cont i nue; /* call door-call0 again */
39 }

40 err_sys("door_call error");

41 }

42 printf("result: %ld\n", oval);

43 exit(0);

44 }

Figure15.29 Client that callsdoor - cal | again after receivingB NTR

doors/clientintrd.c

Sxion1511 Premature Temindion d Cliat o Saver 395

When the client callsdoor - cal | the second time, after thefirst cdl isinterrupted by
the caught signdl, this starts another thread that calls the server procedure a second
time. If theserver procedureisidempotent, thisisOK. But if theserver procedureis not
idempotent, thisisa problem.

The term idempotent, when describing a procedure, means the procedure can be
cdled any number d timeswithout harm. Our server procedure, which calculatesthe
square d a number, isidempotent: we get the correct result whether we cdl it once or
twice. Another exampleis a procedure that returns the current time and date. Even
though this procedure may return different informationeach time (say it iscaled twice,
1 second apart, causing the returned timesto differ by 1 second), it isstill OK. Theclas
sc example d a nonidempotent procedure is one that subtracts some amount from a
bank account: theend resultiswrong unlessthis procedureiscaled only once.

Premature Termination of Client

We now see how a server procedure is notified if the client terminates after calling
door - cal | but beforetheserver returns. Weshow our client in Figure15.30.

, - doors/clientintrd.c
1 #include "unpipc.h"
2int
3 main(int argc, char **argv)
4 {
5 int fd;
6 | ong ival, oval;
7 door_arg_t arg;
8 if (argc 1= 3)
9 err_quit("usage: clientintrd <server-pat hname> <i nt eger-val ue>");
10 fd = Open{argv[l], O_RDWR); /* open the door =/
11 /* set up the argunents and pointer to result */
12 ival = atol(argv[2]);
13 arg.data_ptr = (char *) &ival; /* data argunents */
14 arg.data_size = sizeof (long):; /* size of data argunents */
15 arg.desc_ptr = NULL
16 arg.desc_num = O;
17 arg.rbuf = (char *) &val; /* data results */
18 arg.rsize = sizeof (long); /* size of data results */
19 /* call server procedure and print result */
20 alarm(3) ;
21 Door-call (fd, &arg);
22 printf ("result: %1d\n", oval);
23 exit (0);
24)

doors[clientintrd.c
Figure1530 Clientthat terminates prematurely after callingdoor - cal | .

3%6 Doos Chapter 15

20

The only change from Figure 15.2 is the call to al ar m(3) right before the cdl to
door - cal | . Thisfunction schedulesa SIGALRM signal for 3 secondsin the future, but
since we do not catch this signal, its default action terminates the process. This will
causetheclient to terminate beforedoor - cal | returns, becausewe will put a 6-second
deepin theserver procedure.

Figure15.31 showsour server procedureand itsthread cancellation handler.

doors/serverintrd.c

[y

#i ncl ude "unpipc.h"

voi d
servproc_cleanup({void *arg)
{
printf("servproc cancelled, thread id $1d\n", pr_thread_id{(NULL)) ;

oA WN

}

7 void
8 servproc (void *cooki e, char *dataptr, size t dat asi ze,
9 door_desc_t *descptr, size-t ndesc)

10 {

11 int ol dst ate, junk;

12 | ong arg, result;

13 Pthread setcancelstate (PTHREAD CANCEL_ENABLE, &oldstate);
14 pthread cleanup_push(servproc_cleanup, NULL);

15 sl eep(6);

16 arg = *((long *) dataptr);

17 result = arg * arg;

18 pthread_cleanup_pop(0) ;

19 Pthread setcancelstate(oldstate, & unk);

20 Door_return{ (char *) & esult, sizeof(result), NULL, 0);
21)

doors/serverintrd.c
Figurel53l Server procedurethet detects prenaturetermnationd diert.

Recdl our discussiond thread cancdllation in Section8.5and our discussiond this
with Figure 15.23. When the system detects that the client is terminating with a
door - cal | in progress, the server thread handling that cdl is sent a cancdlation
request.

o [f the server thread has cancedllation disabled, nothing happens, the thread exe

cutes to completion (when it callsdoor - ret urn), and the results are then dis
carded.

* |f cancdlationisenabled for the server thread, any cleanup handlersare cdled,
and thethread isthen terminated.

In our server procedure, we first cal pt hr ead- set cancel st at e to enable cancdla
tion, becausewhen the doorslibrary creates new threads, it disablesthread cancellation.
Thisfunction also savesthe current cancellation statein thevariableol dst at e, andwe
restorethis state at the end o thefunction. We then call pthread_cleanup_pushto

r

Section15.12 SImmay 397

1512

register our function servproc_cleanup asthecancdlation handler. All our function
doesis print that the thread has been canceled, but thisiswhere a server procedurecan
do whatever must be doneto clean up after the terminated client: rel ease mutexes, write
alog file record, or whatever. When our cleanup handler returns, the thread is termi-
nated.

We also put a 6-second sleep in our server procedure, to alow the client to abort
whileitsdoor — call isin progress.

When we run our client twice, we see that the shell prints' Alarm clock” when our
processiskilled by aSIGALRM signal.

solaris % clientintrd /tmp/doord 44
Al 'arm Cl ock
solaris % clientintrd /tmp/doord 44
Al arm Cl ock

F welook at the corresponding server output, we see that each time the client termi-
nates prematurely, the server thread is indeed cancded and our cleanup handler is
caled.

solaris % serverintrd /tmp/doord
servproc canceled, thread id 4
servproc canceled, thread id 5

The reason we ran our client twice is to show that after the thread with an ID d 4
is canceled, a new thread is created by the doors library to handle the second client
invocation.

Summary

Doors provide the ability to cal a procedurein another processon the same host. In the
next chapter we extend this concept o remote procedure calls by describing the calling
d aprocedurein another processon ancther host.

The basic functionsare simple. A server cals door— create to create a door and
associate it with a server procedure, and then calls fattach to attach the door to a
pathname in the filesystem. The client calls open on this pathname and then
door—call to cal the server procedure in the server process. The server procedure
returnsby calingdoor — return.

Normadly, the only permission testing performed for a door is that done by open
when it createsthe door, based on the client's user [Ds and group IDs, along with the
permisson bitsand owner IDs d the pathname. One nicefeatured doorsthat we have
not seen with the other formsd 1PC in thistext isthe ability d the server to determine
the dlient’s credentials: the dient's effective and red user IDs, and effective and real
group IDs. These can be used by the server to determine whether it wants to service
thisclient's request.

Doorsalow the passing d descriptorsfrom the client to the server and vice versa
Thisis a powerful technique, because so much in Unix is represented by a descriptor:

398

~~
Doors Chapter 15

accesstofilesfor fileor deviceI/O, access to socketsor XIl for network communication
(UNPv1), and access to doorsfor RPC.

When calling proceduresin another process, we must worry about premature ter-
mination of the peer, something we do not need to worry about with local procedure
cdls. A doorsclient is notified if the server thread terminates prematurely by an error
return of EINTR from door - cal | . A doorsserver thread is notified if its client termi-
nates while theclient isblocked in a call to door - cal | by thereceipt of a cancellation
request for the server thread. The server thread must decide whether to handle this
cancellation or not.

Exercises

151 How many bytesd informationare passed asarguments by door - cal | from thedientto
theserver?

15.2 In Figure 156, do we need to call fstat to first verify that the descriptor is a door?
Removethiscdl and see what happens.

15.3 TheSolaris 2.6 manual pagefor sl eep (3C) statesthat ‘"The current processis suspended
from execution." In Figure15.9, why is the doors library able to create the second ad
third threads (thread IDs 5 and 6) once the first thread (ID 4) starts running, since this
statement would imply that the entire server process blocks as soon as one thread cals
sl eep?

154 In Section 15.3, we said that the FD_CLOEXEC bit is automatically set for descriptorsae
ated by door - create. But wecan call fcnt| after door - cr eat e returns and turn this
bit off. What will happen if we do this, cdl exec, and then invoke the server procedure
fromaclient?

155 In Figures15.28 and 15.29, print the current timein thetwo callsto printf in the saver
and in thetwo callsto pri nt f intheclient. Run the client and server. Why does thefird
invocationd the server procedurereturn after 2 seconds?

15.6 Removethe mutex lock that protectsf d in Figures15.22 and 15.23 and verify that the pro
gram no longer works. What error do you see?

15.7 If theonly characteristicd aserver thread that we want to changeisto enable cancdlation,
do we need to establish aserver creation procedure?

15.8 Veify that door - revoke allowsa client call that isin progressto complete, and dete-
minewhat happensto door - cal | oncethe server procedure has been revoked.

15.9 Inour solutionto the previousexerciseand in Figure15.22, we said that the door descrip
tor needsto bea global when either theserver procedure or the server creation procedure
needsto use the descriptor. That statement is not true. Recode the solution to the previous
exercise, keeping f d asan automaticvariablein the mai n function.

15.10 In Figure15.23, wecdl pt hread- at tr_init and pt hr ead- at tr_dest r oy every ime
athread iscreated. Isthisoptimal?

16.1

16

Sun RPC

Introduction
When webuild an application, our first choiceiswhether to

1. build one huge monalithic program that does everything, or

2. distribute the application among multiple processes that communicate with
each other.

If we choosethe second option, the next choiceiswhether to

2a. assumethat all the processesrun on thesame host (allowinglPC to be used for
communi cationbetween the processes), or

2b. assumethat somed the processeswill run on other hosts (necessitatingsome
form o network communication between the processes).

If welook at Figure15.1, the top scenariois case 1, the middle scenariois case 2a, and
the bottom scenariois case 2b. Most o this text has focused on case (2a): |PC between
processes on the same hogt, using message passing, shared memory, and possibly some
form o synchronization. IPC between threads within the same process, or within
threadsin different processes, is just aspecial cased thisscenario.

When we require network communicationsamong the various pieces d the appli-
cation, most applications are written using explicit nework programming, that is, direct
cdlsto either thesockets APl or the XTI AP, asdescribed in UNPv1. Usng thesockets
AR, clients call socket, connect, read, and write, whereas servers cal socket,
bind, listen, accept, read, and write. Most applicationsthat wearefamiliar with
(Webbrowsers, Web servers, Telnet clients, Telnet servers, etc.) arewritten thisway.

399

400 9n RC Chapter 16

An alternative way to write a distributed application is to use implicit network pro-
gramming. Remote procedurecals, or RPC, provide such atool. We code our applica
tion using thefamiliar procedurecdl, but the calling process (theclient) and the process
containing the procedure being caled (the server) can be executing on different hosts.
Thefact that the client and server are running on different hosts, and that network I/0
isinvolved in the procedurecal, isfor the most part transparent. Indeed, one metric by
which to measure any RPC package is how transparent it makes the underlying net-
working.

Example

7-11

As an example d RPC, we recode Figures 15.2 and 15.3 to use Sun RPC instead d
doors. The client calls the server's procedure with a long integer argument, and the
returnvalueisthesquared that value. Figurel6.1lisour firstfile, square. x.

sunrpc/[squarel [square.x

1 struct square-in ¢ /* input (argument) */
2 long argl;

3}

4 struct square—out { /* output (result) */
5 long resl;

6 };

7 program SQUARE—PROG {

8 version SQUARE—VERS ({

9 Square-out SQUAREPROC (square_in) = 1; /* procedure number = 1 */
10 } = 1; /* version number */
11) = 0x31230000; /* program number */

sunrpc/squarel [square.x
Figure16.1 RPC specificationfile

Thesefileswhose nameend in . x arecdled RRC specificationfiles, and they definethe
server proceduresalong with their argumentsand results.

Define argument and return value

We define two structures, one for the arguments (asingle long), and one for the
results(asinglelong).

Define program, version, and procedure

We define an RRC program named SQUARE_PROG that consists d one veason
(SQUARE_VERS), and in that version is a single procedure named SQUAREAROC. The
argument to this procedure is a square—in structure, and its return vaue is a
square— out structure. We also assign this procedurea number o 1, we assign thever-
sionavaued 1, and we assign the program number a 32-hit hexadecimal vaue. (We
say more about these program numbersin Figurel6.9.)

We compile this specificationfile using a program supplied with the Sun RPC peck-
age, rpcgen.

The next program we writeis the client main function that calls our remote proce
dure. Weshow this in Figure16.2.

Section 16.1 Introduction 401

0]

sunrpc/squarel [client.c

1 #i ncl ude "unpipc.h" /* our header =/

2 #incl ude "square.h" /* generated by rpcgen */
3int

4 main(int argc, char **argv)

5 {

6 CLI ENT *c1;

7 square-inin;

8 squar e- out *outp;

9 if (argc = 3)

10 err_quit("usage: client <hostname> <i nteger-val ue>");
11 cl = Clnt_create(argv[1i], SQUARE- PROG SQUARE- VERS, "tcp");
12 in.argl = atol(argv[2]):;

13 if ((outp = squareproc_1(&in, cl)) == NULL)

14 err_quit("%$s", clnt_sperror(cl, argv[1l]));

15 printf(“result: %1d\n", outp->resl);

16 exit(0);

17 }

sunrpc/squarel [client.c
Fgrel62 Ciat mai nfuctionthet cdlsrenot e procedure.

Include header generated by r pcgen
We#i ncl ude thesquar e. h header that isgenerated by r pcgen.
Declare client handle

We declarea client handle named cl . Client handlesare intended to look like stan-
dard I/O FI LE pointers (hencethe uppercase named .l BNI).

Obtain client handle
Wecdl cl nt - cr eat e, whichreturnsaclient handl e upon success.

#include <rpc/rpc.h>

CLI ENT *clnt_create(const char *host, unsigned |ong prognum,
unsi gned | ong wversnum, const char *paocd):

Ret urns: nonnulldiet hand eif QK NULL on errar l

As with standard I/0 FI LE pointers, we don't care what the client handle pointsto. It
is probably some structure d information that is maintained by the RPC runtime sys-
tem. cl nt - creat e dlocatesone d these structuresand returnsits pointer to us, and
we then pass this pointer to the RPC runtimeeach timewecall aremote procedure.

Thefirstargumenttocl nt - cr eat e iseither thehostname or IPaddressd the host
running our server. The second argument isthe program name, and the third argument
istheversion number, both from our squar e. x file (Figurel6.1). Thefina argumentis
our choiced protocol, and we normally specify either TCP or UDP.

-

402 9n RPC Chapter 16

12-15

Call remote procedure and print result

We cdl our procedure, and the first argument is a pointer to the input sructure
(5in), and the second argument is the client handle. (In most standard 1/0 cdls, the
FILE handleisthe fina argument. Similarly, the CLIENT handleis normally thefina
argument to the RPC functions.) The return value is a pointer to the result dructure.
Notice that we allocate room for theinput structure, but the RRC runtime allocates the
result structure.

In our square.x specification file, we named our procedure SQUAREFROC but
from theclient wecdl squareprocc_1. Theconventionisthat the namein the . x fileis
converted to lowercase and an underscoreis appended, followed by the version num
ber.

On the server sde, all we write is our server procedure, which we show in Hg
urel6.3. Therpcgen program automatically generates the server main function.

sunrpc/squarel [server.c

ey

#include "unpipc.h"
#include "square.h”

%]

sguare-out *
squareproc_1_svc (square_in *inp, Struct svc_reqg *rgstp)
{

(o206 I NN}

static square-out out;

~

out.resl = inp->argl * inp->argl:
return (&out);

[o¢]

sunrpc/squarel [serverc
Figure16.3 Server procedurethat iscalled using Sun RPC.

Procedure arguments

Wefirst noticethat the named our server procedure has_svec appended following
the verson number. This allows two ANS C function prototypes in the square.h
header, onefor thefunction called by theclientin Figure16.2 (which had the client han
dle as an argument) and one for the actual server function (which has different argu
ments).

When our server procedureis caled, the first argument is a pointer to the input
structure, and the second argument is a pointer to a structure passed by the RPC run-
time that contains information about this invocation (which we ignorein this smple
procedure).

Execute and return
Wefetch theinput argument and calculateitssquare. Theresult isstored in astruc
ture whose address is the return value from this function. Since we are returning the

address o a variable from the function, that variable cannot be an automatic vaidble
Wedeclareit asstatic.

Adtutereaderswill notethat this preventsour server function from being thread safe. Wedis
cussthisin Section 16.2and show athread-safeverson there.

Section 16.1 Introduction 403

We now compile our client under Solaris and our server under BSD/OS, start the
server, and run theclient.

solaris % client bsdi 11

result: 121
solaris % client 209.75.135.35 22
result: 484

The first time we specify the server's hosthame, and the second time its IP address.
Thisdemonstratesthat the cl nt — createfunction and the RPC runtimefunctionsthat
it calsalow either ahostname or an IPaddress.

We now demonstratesome error returnsfrom clnt— createwhen either the host
doesnot exi, or the host existsbut is not running our server.

solaris % client nosuchhost 11

nosuchhost: RPC. Unknown host from the RPCruntime
clnt_create error from our wrapper function
solaris % client local host 11

| ocal host: RPC. Programnot registered

clnt-create error

We have written a client and server and shown their use without any explicit net-
work programming at al. Our client just calls two functions (clnt— create and
squareproc_1), and on the server sde, we have jug written the function
squareproc_1_svc. All the details involving XTI under Solaris, sockets under
BSD/OS, and network I/0O are handled by the RPC runtime. This is the purpose d
RRPC: to alow the programming d distributed applications without requiring explicit
knowledged network programming.

Another important point in this exampleis that the two systems, a Sparc running
Solaris and an Intel x86 running BSD/OS, have different byte orders. That is, theSparcis
big endian and the Intel islittleendian (whichweshow in Section 34 d UNPv1). These
byte ordering differencesare also handled automatically by the runtimelibrary, using a
standard called XDR (external data representation), which we discussin Section16.8.

More steps are involved in building this client and server than in the other pro-
gramsin thistext. Herearethestepsinvolved in building theclient executable:

solaris % rpcgen -C square.x

solaris % cC =-c¢ client.c¢ -o client.o

solaris % CC -¢ square_clnt.c¢ -o square_clnt.o

solaris % CC -¢ sqguare_xdr.c¢ -o square xdr.o

solaris % cc -o client client.o square_clnt.o square_xdr.o libunpipc.a -lnsl

The -C option to rpcgen tdls it to generate ANS C prototypes in the square. h
header. rpcgen also generates a client stub (square—clnt.c) and a file named
square—xdr. c that handles the XDR data conversions. Our library (with functions
used in this book) is libunpipc.a, and -1ns1 specifies the system library with the
networking functionsunder Solaris (whichincludesthe RPC and XDR runtime).

We see similar commands when we build the server, although rpcgen does not
need to be run again. Thefile square— svc. c containsthe server main function, and

™
404 Sun RPC Chepler 16

square—xdr.o, the same file from earlier that contains the XDR functions, is d©
required by theserver.

solaris % CC -c Server-c -o server.o
solaris % CC -¢ sQuare_svc.c -0 sguare_gvc.o
solaris % CC =-o Server server.o square_svc.o square xdr.o libunpipc.a -1nsl

Thisgeneratesaclient and server that both run under Solaris.

When the client and server are being built for different systems(e.g., in our ealier
example, we ran the client under Solaris and the server under BSD/OS), additiond
steps may be required. For example, some d thefiles must be either shared (e.g., NFS)
or copied between the two systems, and filesthat are used by both the client and sarver
(square—xdr. o) must be compiled on each system.

Figure16.4 summarizesthefilesand steps required to build our client-server exam-
ple. Thethreeshaded boxesarethefilesthat we must write. The dashed linesshow the
filesthat #includesquare. h.

RPC specificationfile

I square.x

Y
rpcgen
#include #include
[———————— F=——— square.h+-pF-q----—- e R 9
I | I 1
v . v ——
square_clnt. c|] square_xdr.c ' sqguare_svc.cC 'll server.c

l:lient < > client|stub server stub server
main " prooedures

. Tunuime ;
“a '// library \\‘ »

CC - - oc

executable executable
Figure16.4 Summary of stepsrequired tobuild an RPC client-server.

Figure 16.5 summarizes the steps that normally take place in a remote procedure
cdl. Thenumbered stepsare executed in order.

0. Theseverisstarted and it registersitsaf with the port mapper on the server hos.
Theclient isthen started, and it callsclnt_create, which contacts the port mgp
per on the server host to find the server's ephemeral port. The clnt— create
function also establishesa TCP connection with the server (sncewe specified TCP

Section16.1

Introduction 405

client process server process

-------- a r-———=-=-=--9

[| [[

1 Tient I i I

client.c ! roulﬁ‘r."les ; ' sen'rer J server.c

1 I ! routines |

I I I I

I 1] | |]

local procedure gall = (1) F (6 0) B | 6) v 5) I
I I I I

square_clnt.c : client : : server : square_svc.c
square_xdr.c (stub i | stub { square_xdr.c

I [I I

I RPC I I RPC !

I runtime I I runtime I

1 I I I

I I 1 A I

st s i s o | I

@
sysemcall = (2) © @
________ | _process e e e — = —|= —|- = - Process
‘I’ kernel kernel
(6] [
network | i network
routines (3) = network communications TOUKInes

Figurel65 Stepsinvolvedinaremote procedurecall.

as the protocol in Figure 16.2). We do not show these stepsin the figureand save
our detailed descriptionfor Section16.3.

The client callsa local procedure, called the client stub. In Figure16.2, this proce-
durewas named squareproc_1, and thefile containing the client stub was gener-
ated by r pcgen and called squar e- cl nt .c. Totheclient, theclient stub appears
to bethe actual server procedure that it wantsto call. The purpose o thestubisto
package up the arguments to the remote procedure, possibly put them into some
standard format, and then build one or more network messages. The packaging of
theclient's argumentsinto a network messageistermed marshaling. Theclient rou-
tines and the stub normally call functions in the RPC runtime library (e.g.,
clnt_create inour earlier example). Whenlink editing under Solaris, these run-
time functions are loaded from the -1ns1 library, whereas under BSD/OS, they
areinthestandard C library.

These network messagesare sent to the remote system by theclient stub. Thisnor-
mally requiresasystem call into thelocal kernel (e.g., wr i t e or sendto).

The network messagesare transferred to the remote system. The typical network-
ing protocolsused for thisstep areeither TCP or UDP.

A server stub procedure is waiting on the remote system for the client's request. It
unmarshals the argumentsfrom the network messages.

The server stub executes a local procedure call to invoke the actual server function
(our squareproc_1_svc procedure in Figure16.3), passing it the arguments that
it received in the network messagesfrom theclient.

When the server procedureisfinished, it returnsto the server stub, returning what-
ever itsreturn valuesare.

406 SN RPC Chepter 16

History

7. The server stub converts the return values, if necessary, and marshals them into
one or more network messagesto send back to theclient.

8. Themessagesare transferred back acrossthe network to theclient.

9. Theclient stub reads the network messages from the local kernel (e.g., read or
recvfrom.

10. After possibly converting the return values, the client stub finally returns to the
client function. Thisstep appearstobeanormal procedure return to theclient.

Probably one of the earliest papers on RPC is[White 1975]. According to [Corbin 19911,
White then moved to Xerox, and severa RPC systems were developed there. One d
these, Courier, was released as a product in 1981. The classic paper on RPC is [Birrell
and Nelson 19841, which describesthe RPC facility for the Cedar project running onsn
gle-user Dorado workstations at Xerox in the early 1980s. Xerox was implementing
RPC on workstations before most people knew what workstationswere! A Unix imple
mentation o Courier was distributed for many years with the 4.x B releases, bu
today Courierisd historical interest only.

Sun released thefirst version d its RPC packagein 1985. It was developed by Bdb
Lyon, who had left Xerox in 1983 to join Sun. Itsofficial nameis ONC/RPC: Open Ne-
work Computing Remote Procedure Call, but it is often called just "*Sun RPC.” Tedmi-
cdly, it issimilar to Courier. The original releases o Sun RPC were written using the
sockets APl and worked with either TCP or UDI? The publicly available source code
releasewas called RPCSRC. In theearly 1990s, thiswas rewritten to use TLI, the prede
cessor to XTI (describedin Part 4 d UNPv1), and works with any networking protocol
supported by the kernel. Publicly available source code implementations o both ae
available from ft p:// pl ayground. sun. com/pub/r pc with the sockets verson
named r pcsrc and the TLI version named tirpcsrc (caled TI-RPC, where "TI"
stands for "' transport independent™).

RFC 1831 [Srinivasan 1995a] provides an overview of Sun RPC and describesthe
format of the RPC messages that are sent across the network. RFC 1832 [Srinivasan
1995b] describes XDR, both the supported datatypes and their format "on the wire"
RFC 1833 [Srinivasan 1995c¢] describes the binding protocols. RPCBIND and its prede-
cessor, the port mapper.

Probably the most widespread application that uses Sun RPC is NFS, Sun's network
filesysten. Normaly, NFSis not built using the standard RPC tools, r pcgen and the
RPC runtime library that we describein this chapter. Instead, most o the library rou
tines are hand-optimized and reside within the kernel for performancereasons. Neva-
theless, most systemsthat support NFSalso support Sun RPC.

In the mid-1980s, A pollo competed against Sun in the workstation market, and they
designed their own RPC packageto competeagainst Sun's, called NCA (Network Gam
puting Architecture), and their implementation was called NCS (Network Computing
System). NCA/RPC was the RPC protocol, NDR (Network Data Representation) was
similar to Sun's XDR, and NIDL (Network Interface Definition Language) defined the

Section 16.2 Multithreading 407

162

interfacesbetween theclientsand servers(e.g., similar toour . x filein Figure16.1). The
runtimelibrary was called NCK (Network Computing Kerndl).

Apollowas acquired by Hewlett Packard in 1989, and NCA was devel oped into the
Open Software Foundation's Distributed Computing Environment (DCE), d which
RPC isafundamental element from which most pieces are built. More information on
DCE is available from ht t p: / /www.canb.opengr oup. or g/t ech/dce. An imple-
mentation o the DCE RPC package has been made publicly available at
£t p: 7/ gat ekeeper . dec .com/pub/DEC/DCE. This directory &so contains a
171-pagedocument describing theinternals o the DCE RPC package. DCE isavailable
for many platforms.

Sun RPC is more widespread than DCE RPC, probably because o its freely availableimple-
mentation and its packaging as part o the basic system with most versionsd Unix. DCE RPC
isnormally available as an add-on (i.e., separate cost) feature. Widespread porting o the pub-
licly available implementation has not occurred, although a Linux port is underway. In this
text, we cover only Sun RPC. All three RPC packages—Courier, Sun RPC, and DCE RPC—are
amazingly smilar, because the basic RPC conceptsare the same.

Most Unix vendors provide additional, detailed documentation on Sun RPC. For example, the
Sun documentationisavailableat ht t p: / / docs.sun. com, and in the Developer Collection,
Volume 1, is a 280-page “ONC+ Developer's Guide The Digita Unix documentation at
http://ww. uni x. di gital.com faqs/ publications/pub_page/ VA0OD_DCCS. HTM
includesa116-page manual titled " Programming with ONC RPC"

RPC itsdf is a controversia topic. Eight postings on this topic are contained in
http://ww. kohal a. com -r st evens/ papers. ot hers/rpc. conents. txt.

In thischapter, we assume TI-RPC (thetransport independent version d RPC men-
tioned earlier) for most examples, and we talk about TCP and UDP as the supported
protocols, even though TI-RPC supportsany protocolsthat are supported by the host.

Multithreading

Recdl Figure 15.9, in which we showed the automatic thread management performed

by a doors server, providing a concurrent server by default. We now show that Sun

RPC providesan iterative server by default. Westart with theexamplefrom the previous

section and modify only the server procedure. Figure 16.6 shows the new function,

which printsitsthread ID, slegpsfor 5 seconds, printsitsthread ID again, and returns.
We start the server and then run theclient three times:

solaris % client |ocal host 22 & client |ocal host 33 & \
client |ocal host 44 &

[31 25179

[4] 25180

[5] 25181

solaris % result: 484 about 5 secondsafter the prompt is printed
result: 1936 another 5 seconds later

result: 1089 and another 5 seconds later

™

408 Sun RPC Chepter 16
S - sunrpc[square [serverc
1 #include "unpipc.h”

2 #include "square.h"
3 square—out *
4 squareproc_l_svc (square_in *inp, Struct svc_req *rgstp)
51
6 static square—out out;
7 printf ("thread %1d started, arg = %1d\n",
8 pr_thread_id(NULL), inp->argl);
9 sleep(5);
10 out.resl = inp-zargl * inp-zargl;
11 printf ("thread %1d done\n", pr_thread id(NULL));
12 return (&out);
13 }

sunrpc[square2 [server.c
Figurel6.6 Server procedurethat deepsfor 5 seconds.

Although we cannot tell from this output, a 5-second wait occurs between the printing
d each result by the client. If welook at the server output, we see that the clientsare
handled iteratively: thefirst client's request is handled to completion, and then the s
ond client's request is handled to completion, and finaly the third client's request is
handled to completion.

solaris % server

thread 1 started, arg = 22
thread 1 done

thread 1 started, arg = 44
thread 1 done

thread 1 started, arg = 33
thread 1 done

Onethread handlesall client requests: theserver is not multithreaded by default.

Our doorsserversin Chapter 15all ranin the foreground when started from the shell, asin
solaris % server

That allowed us to place debugging callsto printf in our server procedures. But Sun RPC

servers, by default, run as daemons, performing the steps as outlined in Section 124 &

UNPv1. Thisrequirescalling syslog from theserver procedureto print any diagnosticinfor-

mation. What we have done, however, is specify the C compiler flag -DDEBUG when wecom
pileour server, whichistheequivalent d placing theline

#def i ne DEBUG
in theserver stub (thesquare—svc. c filethat isgenerated by rpcgen). Thisstopstheserver

mai n function from making itsef a daemon, and leavesit connected to the terminal on which
it wasstarted. That iswhy wecan cadl printf from our server procedure.

The provision for a multithreaded server appeared with Solaris 24 and is endbled
by a -M command-line option to r pcgen. This makes the server code generated by
r pcgen thread safe. Another option, -A, has the server automatically create threadsas

Section 16.2 Multithreeding 409

12-14

they are needed to process new client requests. We enable both options when we run
rpcgen.

Both the client and server also require source code changes, which we should
expect, given our use of static in Figure 16.3. The only change we make to our
squar e. x fileisto changetheversionfrom 1 to 2. Nothing changesin the declarations
of the procedure's argument and result structures.

Figure16.7 showsour new client program.

sunrpc/square3 client.c

1 #include "unpi pc.h"
2 #include "square.h"
3int

4 main(int argc, char **argv)

5 {

6 CLI ENT *cl;
7 square-in in;
8 squar e- out out;
9
0
1

if (argc '= 3)
err_quit ("usage: client <hostname> <integer-val ue>");

1 cl = Clnt_create(argv{1l], SQUARE- PROG SQUARE- VERS, "tcp"):
12 in argl = atol(argv([2]);

13 if (squareproc_2(&in, &out, cl) != RPC_SUCCESS)

14 err_quit ("%s", clnt_sperror(cl, argv{ll));

15 printf ("result: %1d\n", out.resl);

16 exit (0);

17 }

sunrpc[square3 [client.c
Figure16.7 Client mai n functionfor multithreaded server.

Declare variable to hold result
Wedeclarea variabled typesquar e- out, not a pointer to thistype.
New argument for procedure call

A pointer to our out variable becomes the second argument to squareproc_2,
and theclient handleisthelast argument. Instead d thisfunction returninga pointer to
theresult (asin Figure 16.2), it now returns either RPC_SUCCESS or some other valueif
anerror occurs. Theclnt_st at enuminthe<rpc/clnt_stat.h> header listsall the
possibleerror returns.

Figure 16.8 shows our new server procedure. As with Figure 16.6, it prints its
thread ID, deepsfor 5 seconds, printsanother message, and returns.

New arguments and return value

Thechangesrequired for multithreadinginvolvethe functionargumentsand return
value. Instead d returninga pointer to the result structure (asin Figure 16.3), a pointer
to this structure is now the second argument to the function. The pointer to the
svc_req structure moves to the third position. The return value is now TRUE upon
auccess, or FALSE if an error isencountered.

410 Sun RPC Chapt er 16

13-19

1 #include "unpipc.h" S“nm!‘mmrﬁ{mrmﬁ
2 #include "square.h"
3 bool_t
4 squareproc_2_svc(square_in *inp, square-out *outp, Struct svc_req *rgstp)
5 |
6 printf("thread %1d started, arg = %1d\n",
7 pr_thread id(NULL), inp->argl);
8 sl eep(5) ;
9 outp->resl = inp->argl * inp->argl;
10 printf ("thread %1d done\n", pr_thread id(NULL)) ;
11 return (TRUE) ;
12 }
13 int
14 scquare_prog_2_freeresult (SVCKPRT *transp, xdrproc_t xdr_result,
15 caddr_t result)
16 |
17 xdr_free(xdr_result, result);
18 return (1);
19 }

sunrpc/square3/server.c
Figurel68 Mitithreadedserver procedure.

New function to free XDR memory

Another source code change we must make is to provide a function that frees any
storage automatically allocated. This function is called from the server stub after the
server procedure returns and after the result has been sent to theclient. 1n our example,
we just call thegeneric xdr_freeroutine. (Wetalk more about this function with Hg-
ure 16.19 and Exercise16.10.) If our server procedure had allocated any storage neces
sary to hold the result (say a linked list), it would free that memory from this new
function.

We build our client and server and again run three copies o theclient at the same
time:

solaris % client |ocal host 55 & client |ocal host 66 & \
client |ocal host 77 &

{31] 25427
[4] 25428
[5] 25429

solaris % result: 4356
result: 3025
result: 5929

Thistimewe can tel that the three resultsare printed one right after the other. Looking
at the server output, weseethat three threads are used, and all run simultaneously.
solaris % server

thread 1 started, arg
thread 4 started, arg

55
77

Section 16.3

Server Biding 411

thread 6 started, arg = 66
thread 6 done
thread 1 done
thread 4 done

One unfortunateside effectd the source code changesrequired for multithreading is that not
al systemssupport thisfeature. For example, Digital Unix 4.0B and BSD/OS 3.1 both provide
the older RPC system that does not support multithreading. That meansif wewant to compile
and run a programon both typesd systems, we need #i f def sto handle the differencesin the
calling sequencesat the client and server ends. O course, a nonthreaded client on BSD/OS,
sy, can still call a multithreadedserver procedure running on Solaris, but if we havean RPC
client (or server) that we want to compile on both types d systems, we need to modify the
sourcecodeto handle thedifferences.

16.3 Server Binding

In the description of Figure16.5, we glossed over step 0. how the server registers itsdlf
with itsloca port mapper and how the client discoversthe valued this port. Wefirst
note that any host running an RPC server must be running the port mapper. The port
mapper isassigned TCP port 111 and UDP port 111, and theseare the only fixed I nternet
port assignments for Sun RPC. RPC servers always bind an ephemeral port and then
register their ephemeral port with the loca port mapper. When a client starts, it must
first contact the port mapper on the server's host, ask for the server's ephemeral port
number, and then contact the server on that ephemeral port. The port mapper is pro-
viding a name servicewhose scopeisconfined to that system.

1

2

Some readers will claim that NFSalso hasa fixed port number assignmentd 2049. Although
many implementationsuse this port by default, and some ol der implementationsstill have this
port number hardcoded into the client and server, most current implementationsallow other
portsto be used. Most NFS clients also contact the port mapper on the server host to obtain
the port number.

With Solaris 2.x, Sun renamed the port mapper RPCBIND. The reason for thischangeis that
the term "port" implied Internet ports, whereas the TI-RPC package can work with any net-
working protocol, not just TCP and UDP. We will use the traditional name o port mapper.
Also, in our discussion that follows, we assume that TCP and UDP are the only protocolssup-
ported on the server host.

Thesteps performed by the server and client areasfollows.

When the system goes into multiuser mode, the port mapper is started. The exe-
cutablenameistypicaly portmap or r pchi nd.

When our server starts, its mai n function (whichis part o the server stub that is
generated by r pcgen) callsthelibrary function sve_create. Thisfunction deter-
mines the networking protocols supported by the host and createsa transport end-
point (e.g., socket) for each protocol, binding an ephemeral port to the TCP and
UDP endpoints. It then contactsthe loca port mapper to register the TCP and UDP
ephemeral port numberswith the RRC program number and version number.

412 Sun RPC Chepter 16

The port mapper is itsedf an RPC program and the server registers itsdf with the
port mapper using RPC calls (albeitto a known port, 111). A description d the pro-
cedures supported by the port mapper is given in RFC 1833 [Srinivasan 1995¢].
Three versions d this RPC program exist: version 2 is the historical port mapper
that handles just TCP and UDP ports, and versions 3 and 4 are the newer RFCBIND
protocols.

We can seeall the RPC programs that are registered with the port mapper by execut-
ing ther pci nf o program. We can execute this program to verify that port number
111 isused by the port mapper itsalf:

solaris % rpcinfo -p
program vers proto port service
100000 4 tcp 111 rpchind

100000 3 tcp 111 rpchind
-100000 2 tcp 111 rpchind
100000 4 udp 111 rpchind
100000 3 udp 111 rpchind
100000 2 udp 111 rpchind

(Wehave omitted many additional linesof output.) We see that Solaris 2.6 supports
al threeversionsd the protocoal, all at port 111, using either TCP or UDP. Themap-
ping from the RPC program number to the service name is normally found in the
file set c /rpc. Executing the same command under BSD/OS 3.1 showsthat it sup-
portsonly version2 d thisprogram.
bsdi % rpcinfo -p
program vers proto port

100000 2 tcp 111 port mapper
100000 2 udp 111 port mapper

Digital Unix 4.0B also supports just version 2

al pha % rpcinfo -p
program vers proto port
100000 2 tcp 111 port mapper
100000 2 udp 111 port mapper

Our server processthen goes to sleep, waiting for a client request to arrive. This
could bea new TCP connectionon itsTCP port, or thearrival o a UDP datagrama
its UDP port. If weexecute rpcinfo after starting our server from Figure16.3, we
see
solaris % rpcinfo -p
program vers proto port service

824377344 1 udp 47972
824377344 1 tcp 40849

where 824377344 equals 0x31230000, the program number that we assigned in
Figure 16.1. We also assigned a version number d 1 in that figure. Noticethat a
server is ready to accept clients using either TCP or UDP, and the client choosss
which d thesetwo protocolsto use when it createsthe client handle (thefinal argu
ment to clnt_create in Figurel6.2).

Sect:ion16.3 Server Binding 413

3. The client starts and calls clnt_create. The arguments (Figure 16.2) are the
server's hostname or | P address, the program number, version number, and a string
specifying the protocol. An RPC request is sent to the server host's port mapper
(normally using UDP as the protocol for this RPC message), asking for theinforma-
tion on the specified program, version, and protocol. Assuming success, the port
number issaved in theclient handle for all future RPC callsusing thishandle.

In Figure 16.1, we assigned a program number o 0x31230000 to our program.
The 32-bit program numbers are divided into groups, asshown in Figure16.9.

Program number Description

0x00000000 - Ox1fff ££ff | defined by Sun

0x20000000 - Ox3fffffff | definedbyuser

0x40000000 - ox5ffff £££ | transient (forcustomer-writtenapplications)
0x60000000 - Oxfff £EEEff | reserved

Figure16.9 Programnumber rangesfor Sun RPC.

The rpcinfo program shows the programs currently registered on your system.
Another source o information on the RPC programs supported on a given system is
normally the . x filesin thedirectory /usr/i ncl ude/r pcsvc.

inetd and RPC Servers

By default, servers created by r pcgen can be invoked by the i net d superserver. (Sec-
tion 125 d UNPvI coversi netd in detail.) Examining the server stub generated by
r pcgen shows that when the server mai n starts, it checkswhether standard input isa
XIT endpoint and, if so, assumesit wasstarted by i net d.

Backing up, after creating an RPC server that will be invoked by inetd, the
/etc/inetd.conf configurationfileneeds to be updated with the server information:
the RPC program name, the program numbers that are supported, which protocols to
support, and the pathname o the server executable. Asan example, here is one line
(wrapped tofit on this page) from theSolaris configurationfile:

rstatd/2-4 tli rpc/datagram_v wait root
/usr/lib/netsvc/rstat/rpc.rstatd rpc.rstatd

Thefirgt field isthe program name (whichwill be mapped to its corresponding program
number using the /et c/xrpc file), and the supported versionsare 2, 3, and 4. The next
field specifiesa XTI endpoint (asopposed to a socket endpoint), and the third field spec-
ifies that al visble datagram protocols are supported. Looking at the file
/etc/netconfi g, therearetwo of these protocols: UDPand /dev/clts. (Chapter 29
o UNPv1 describesthisfileand XTI addresses.) Thefourth field, wai t, tellsi netd to
wait for thisserver to terminate before monitoring the XT1 endpoint for another client
request. All RPCserversin /etc/i netd.conf specify thewai t attribute.

The next field, r oot , specifies the user ID under which the program will run, and
the last two fields are the pathname of the executableand the program name with any

414

Sn RPC Chepter 16

16.4

argumentsto be passed to the program (thereare no command-lineargumentsfor this
program).

inetd will create the XTI endpointsand register them with the port mapper for the
specified program and versions. We can verify thiswith rpcinfo:

solaris % rpcinfo | grep statd

100001 2 udp 0.0.0.0.128.11 rstatd super user
100001 3 udp 0.0.0.0.128.11 rstatd super user
100001 4 udp 0.0.0.0.128.11 rstatd super user
100001 2 ticlts \000\000\020, rstatd super user
100001 3 ticlts \000\000\020, rstatd super user
100001 4 ticlts \000\000\020, rstatd super user

The fourth field is the printable format for XTl addresses (which prints the individud
bytes) and 128x 256+ 11 equals 32779, which is the UDP ephemeral port number
assigned to this XT1 endpoint.

When a UDP datagram arrivesfor port 32779, inetd will detect that a datagramis
reedy to be reed and it will fork and then exec the program
/usr/lib/netsvc/rstat/rpc.rstatd. .Betweenthe fork and exec, the XTI end-
point for thisserver will be duplicated onto descriptors0, 1, and 2, and all other inetd
descriptorsareclosed (Figurel2.7 d UNPv1). inetd will asostop monitoring thisXTI
endpoint for additional client requests until thisserver (whichwill beachild d inetd)
terminates—thewai t attributein the configurationfilefor thisserver.

Assuming this program was generated by rpcgen, it will detect that standard
input isa XTI endpoint and initializeit accordingly as an RPC server endpoint. Thisis
done by calling the RPC functionssvc_t1li_create and svc_reg, two functionsthat
we do not cover. The second function does not register this server with the port
mapper —that isdone only onceby inetd whenit starts. The RPC server loop, afunc-
tion named svc_run, will read the pending datagram and cal the appropriate server
procedureto handletheclient's request.

Normally, servers invoked by inetd handle one client's request and terminate,
adlowing inetd to wait for the next client request. As an optimization, RPC servers
generated by rpcgen wait around for asmall amount o time (2 minutesis the default)
in case another client request arrives. If s0, thisexisting server that is already running
will read the datagram and process the request. This avoids the overhead d a fork
and an exec for multipleclient requeststhat arrivein quick succession. After thesmdl
wait period, the server will terminate. Thiswill generate SI GCHLDfor inetd, causng
it to start looking for arriving datagramson the XTI endpoint again.

Authentication

By default, thereis no informationin an RPC request to identify the client. The server
replies to the dient's request without worrying about who the client is. Thisis cdled
null authentication or AUTH_NONE.

The next levd is caled Unix authentication or AUTH_SYS. The client must tell the
RPC runtime to includeits identification (hostname, effective user 1D, effective group
ID, and supplementary group IDs) with each request. We modify our client-server

SxHion16.4 Authentication 415

from Section 16.2 to include Unix authentication. Figurel6.10 shows theclient.

sunrpc|square4|client.c

1 #incl ude "unpi pc.h"
2 #incl ude "square.h"
3int
4 main(int argc, char **argv)
51
6 CLI ENT *cl;
7 square-in in;
8 squar e- out out;
9 if (argc '= 3)
10 err_quit(*usage: Client <hostname> <i nteger-val ue>");
11 cl = Clnt_create(argv([1l], SQUARE- PROG SQUARE- VERS, "tcp");
12 auth destroy(cl->cl_auth);
13 cl-»>cl_auth = authsys_create_default();
14 in.argl = atol(argvi2]);
15 if (squareproc-2(&in, &ut, cl) !'= RPC_SUCCESS)
16 err_quit("%s", clnt_sperror(cl, argv[l]l));
17 printf("result: %1d\n", out.resl);
18 exit (0);
19 }

sunrpc[squared [client.c
Figure16.10 Clientthat providesUnix act herti cati on

12-13 These two lines are new. We first call auth_destroy to destroy the previous
authentication associated with this client handle, the null authentication that is created
by default. The function authsys_create_default creates the appropriate Unix
authentication structure, and we store that in the cl_auth member d the CLIENT
structure. Theremainder d theclient has not changed from Figure16.7.

Figure 16.11 shows our new server procedure, modified from Figure 16.8. We do
not show thesquare_prog_2_freeresult function, which does not change.
6-8 We now use the pointer to the sve_req structurethat isaways passed asan argu-
ment to the server procedure.

struct svc_reqg {

u_long rq prog; /* programnunber */

u_long rq vers; /* version nunber */

u_long rqg_proc; /* procedure nunber */

struct opaque- auth rg cred; /* raw credentials */

caddr_t rqg clntcred; /* cooked credentials (read-only) */
SVCXPRT *rq Xprt; /* transport handl e */

};

struct opaque-auth {
enum_t oa_flavor; /* flavor: AUTH_xxx constant */
caddr_t oa_base; /* address of nore auth stuff */
u_int oa_length; /* not to exceed MAX AUTH BYTES */
};

™

416 Sun RFC Ch&ﬂle’ 16
T #include e sunrpcf squared [serverc
2 #include "sguare.h"

3 bool_t

4 squareproc_2_sve(square_in *inp, Square- out *outp, struct svc_req *rgstp)
51

6 printf ("thread %14 started, arg = %14, auth = %a\n",

7 pr_thread_id(NULL), inp->argl, rgstp->rg cred.oa_flavor);

8 if (rgstp->rg_cred.oa_flavor == AUTH_SYS) {

9 struct aut hsysgarns *au;

10 au = (struct aut hsysqarns *) rgstp->rg clntcred;

11 printf ("AUTH_SYS: host %s, uid %14, gid %1d\n",

12 au->aup_machname, (|l ong) au->aup_uid, (|l ong) au->aup_gid);
13 }

14 sleep(5);

15 outp->resl = inp->argl * inp->argl;

16 printf ("thread %1d done\n", pr_thread_id(NULL)):

17 return (TRUE) ;

18 }

sunrpc|squared [server.c
Foguel6 11 Server procedurethet | ooksfa Lhi x athertication

Therqg _cred member containstheraw authentication information, and itsoca_ flavor
member isan integer that identifiesthe type d authentication. The term "raw™ means
that the RPC runtime has not processed theinformation pointed to by ca_base. Bu f
the authentication type is one supported by the runtime, then the cooked credentials
pointed to by r g- cl nt cr ed have been processed by the runtime into some structure
appropriate for that type o authentication. We print the type o authentication and
then check whether it equals AUTH_gSYS.

9-12 For Unix authentication, the pointer to the cooked credentials (rg _clntcred)
pointsto an authsys_parms structure containing theclient's identity:

struct authsys parms {

u_long aup_time; /* credentials creation tine */

char *aup_machname; /* hostname where client is |ocated */
uid t aup_uid; /* effective user ID */

gid_t aup_gid; /* effective group I D */

u_int aup_len; /* #elements i n aup_gids[] */

gid_t *aup_gids; /* suppl emrentary group IDs */

};

We obtain the pointer to thisstructureand print the client's hostname, effectiveuser ID,
and effectivegroup ID.

If westart our server and run the client once, we get the following output from the
server:

solaris % server

thread 1 started, arg = 44, auth =1

AUTH_SYS: host sol ari s. kohal a. com uid 765, gid 870
thread 1 done

Section 16.5 Timeout and Retransmission 417

16.5

Unix authentication is rarely used, because it is simple to defeat. We can easily
build our own RPC packets contai ning Unix authentication i nformation, setting the user
ID and group IDs to any values we want, and send it to the server. The server has no
way to verify that wearewhoweclaimto be.

Actudly, NFS uses Unix authentication by default, but the requests are normally sent by the
NFS client's kernel and usually with a reserved port (Section 2.7 & UNPv1). Some NFS
serversareconfiguredto respond to aclient's request only if it arrivesfrom areserved port. If

you are trusting the client host to mount your filesystems, you aretrusting that client's kernel

to identify itsuserscorrectly. If areserved port isnot required by the server, then hackerscan
writetheir own programsthat send NFS requeststo an NFS server, setting the Unix authenti-
cationIDs to any valuesdesired. Evenif areserved port is required by the server, if you have
your own system on which you have superuser privileges, and you can plug your system into
the network, you can till send your own NFSrequeststo the server.

An RPC packet, either a request or a reply, actually contains two fields related to
authentication: the credentialsand the verifier (Figures16.30 and 16.32). A common anal-
ogy is a picture ID (passport, driver's license, or whatever). The credentias are the
printed information (name, address, date d birth, etc.), and the verifier is the picture.
There are also different forms o credentials. a picture is better than just listing the
height, weight, and sex, for example. If we had an ID card without any form o identi-
fying information (library cards are often examplesd this), then wewould have creden-
tialswithout any verifier, and anyone could usethe card and claim to be the owner.

In the case d null authentication, both the credentials and the verifier are empty.
With Unix authentication, the credentials contain the hostname and the user and group
IDs, but the verifier isempty. Other formsd authentication are supported, and the cre-
dentialsand verifiers contain other information:

AUTH_SHORT An aternate form o Unix authentication that is sent in the verifier
field from the server back to the client in the RPC reply. It isa
smaller amount d information than full Unix authentication, and
the client can send this back to the server as the credential sin subse-
quent requests. Theintent of thistype d credentid is to save net-
work bandwidth and server CPU cycles.

AUTH_DES DESisan acronym for the Data Encryption Sandard, and thisform o
authentication is based on secret key and public key cryptography.
Thisschemeisalso called secure RPC, and when used asthe basisfor
NFS, thisiscalled secure NFS.

AUTH_KERB Thisschemeisbased on MIT’s Kerberossystem for authentication.
Chapter 19 o [Garfinkel and Spafford 19961 says more about the latter two forms o
authentication, including their setup and use.

Timeout and Retransmission

We now look at the timeout and retransmission strategy used by Sun RPC. Two time-
out values are used:

418

SN RPC Chepter 16

10-12

13-14

15-16

1 Thetotal timeout is the total amount of time that a client waits for the server's
reply. Thisvalueisused by both TCPand UDP.

2 The retry timeout is used only by UDP and is the amount o time between
retransmissionsd theclient's request, waiting for the server's reply.

First, no need exists for a retry timeout with TCP because TCPis a reliable protocol. If
the server host never receives the client's request, the client's TCP will time out and
retransmit the request. When the server host receives the client's request, the server's
TCPwill acknowledgeits receipt to the client's TCP. If theserver's acknowledgment is
lost, causing the client's TCP to retransmit the request, when the server TCP receives
thisduplicate data, it will be discarded and another acknowledgment sent by the server
TCI? Withardiable protocoal, the reliability (timeout, retransmission, handling d dupli-
catedata or duplicate ACKs) is provided by the transport layer, and is not a concernd
the RPC runtime. One request sent by the client RPC layer will be received as one
request by the server RPC layer (or the client RPC layer will get an error indication ff
the request never gets acknowledged), regardless o what happens at the network and
transport layers.

After we have created a client handle, we can call clnt_control to both query
and set options that affect the handle. Thisissimilar to calling £cntl for a descriptor,
or caling getsockopt and setsockopt for asocket.

#include <rpc/rpc.h>
bool_t clnt_control (CLIENT *cl, unsigned int request, char *pir);

Returns TRUE if OK, FALSEon erar

clistheclient handle, and what is pointed to by ptr depends on therequest.

We modify our client from Figure 16.2 to call thisfunction and print the two time
outs. Figurel6.12 shows our new client.
Protocolis a command-lineargument

We now specify the protocol as another command-lineargument and use thisasthe
final argument to c1lnt_create.

Get total timeout

Thefirst argument to clnt_control istheclient handle, the second isthe request,
and the third is normally a pointer to a buffer. Our first request is CLGET_TIMEOUT,
which returns the total timeout in the timeval structure whose address is the third
argument. Thisrequestisvalid for all protocols.

Try to get retry timeout

Our next request is CLGET_RETRY_TIMECUT for theretry timeout, but thisisvalid
only for UDP. Therefore, if the return valueis FALSE, we print nothing.

We also modify our server from Figure 16.6 to sleep for 1000 seconds instead d 5
seconds, to guarantee that the client's request timesout. We start the server on our hog

Sxion16.5 Timeout and Retrangmisson 419

suntpc[square5 [client.c

1 #include "unpipc.h”

2 #i ncl ude "square.h”
3int

4 main(int argc, char **argv)
5 {

6 CLI ENT *c1;

7 square-in in;

8 squar e- out *outp;

9 struct tineval tv;
10 if (argc '= 4)
11 err_quit ("usage: client <hostname> <integer-val ue> <pr ot ocol >");

12 cl = Clnt_create(argv[i]l, SQUARE- PROG SQUARE- VERS, argv[31);

13 Clnt_control (cl, CLGET_TIMEOUT, (char *) &tv);

14 printf("timeout = %1d sec, %1d usec\n", tv.tv_sec, tv.tv_usec);

15 if (clnt_control(cl, CLGET_RETRY_TIMEOUT, (char *) &tv) == TRUE)

16 printf("retry timeout = %1d sec, %1d usec\n", tv.tv_sec, tv.tv_usec);
17 in.argl = atol(argv[2]);

18 if ((outp = squareproc_1(&in, cl)) == NUL)

19 err_quit("%s", clnt_sperror(cl, argv[l]));

20 printf("result: %1d\n", outp->resl);

21 exit(0);

22 3} sunrpc/squareb/client.c

Figurel6 12 Ciet thet queriesand frirntsthetwo RPCtimeout val ues.

bsdi and run the client twice, once specifying TCP and once specifying UDP, but the
resultsare not what weexpect:

solaris % date ; client bsdi 44 tcp ; date
Veéd Apr 22 14:46:57 MST 1998

timeout = 30 sec, 0 usec this says30 seconds
bsdi: RPC Ti ned out
Véd Apr 22 14:47:22 MST 1998 but thisis 25 seconds later

solaris % date ; client bsdi 55 udp ; date
VWd Apr 22 14:48:05 MBT 1998

timeout = -1 sec, -1 usec bizarre

retry timeout = 15 sec, 0 usec this turns out to be correct
bsdi: RPC Ti med out

Ved Apr 22 14:48:31 MST 1998 about 25 seconds later

In the TCP casg, the total timeout isreturned by clnt_control as30 seconds, but our
measurement shows a timeout o 25 seconds. With UDP, the total timeout is returned
as-1

To seewhat is happening here, ook at the client stub, the function squareproc_1
in the file square_clnt.c that is generated by rpcgen. Thisfunction callsalibrary
function named clnt_call, and the final argument is a timeval structure named

420 Sun RPC Chapter 16

TIMEOUT that is declared in thisfile and isinitialized to 25 seconds. This argument to
clnt_call overrides the default & 30 seconds for TCP and the -1 values for UDF.
This argument is used until the client explicitly sets the total timeout by cdling
clnt_control with a request d CLSET_TIMEOUT. If we want to change the totad
timeout, we should call c¢lnt_contrel and should not modify the structurein the
client stub.

Theonly way to verify the UDP retry timeout is to watch the packetsusing tcpdump. This
showsthat thefirst datagramis sent assoon asthe client starts, and the next datagramisabout
15secondslater.

TCP Connection Management

If wewatch the TCP client—server that we just described using tcpdump, we see TCP's
three-way handshake, followed by the client sending its request, and the server
acknowledging this request. About 25 seconds later, the client sends a FIN, which is
caused by the client process terminating, and the remaining three ssgments o the TCP
connection termination sequencefollow. Section 25 of UNPv1 describesthese ssgments
in moredetail .

We want to show the following characteristicsd Sun RPC’s usage d TCP connec-
tions: a new TCP connection isestablished by the client's call to c1nt_create, and this
connectionisused by all procedure callsassociated with the specified program and ver-
son. A clients TCP connection is terminated either explicitly by cdling
clnt_destroy or implicitly by theterminationd the client process.

#include <rpc/rpc.h>

void clnt_destroy(CLIENT *cl);

We start with our client from Figure 16.2 and modify it to call the server procedure
twice, then call clnt— destroy, and then pause. Figurel6.13 showsthe new client.
Running this program yields the expected output:

solaris % client kalae 5
result: 25
result: 100
program just waits until wekill it

But the verification d our earlier statements is shown only by the tcpdump output.
This shows that one TCP connection is created (by the call to c1lnt_create) andis
used for both client requests. The connection is then terminated by the cdl ©
clnt_destroy, even though our client process does not terminate.

Transaction D
Another part d the timeout and retransmission strategy is the use o a transaction ID a

XID toidentify the client requestsand server replies. When a client issues an RPC cdl,
the RPC runtime assigns a 32-bit integer XID to the cdl, and this value is sent in the

Section 16.5 Timeout and Refranamisson 421

9/client.
#i ncl ude "unpipc.h” /* our header */ susepclsquarediclient.c

1

2 #incl ude "square.h" /* generated by rpcgen */
3int

4 main(int argc, char **argv)
5 {

6 CLI ENT *cl;
7 square-in in;

8 squar e- out *outp;
9

o0

if (argc '= 3)
err_guit("usage: client <hostname> <i nteger-val ue>");

11 cl = Clnt_create(argv([l], SQUARE- PROG SQUARE- VERS "tcp"):

12 in.argl = atol(argv([2]);

13 if ((outp = squareproc_1(& n, cl)) == NULL)
14 err-quit ("$s", clnt_sperror(cl, argv[il));
15 printf ("result: %1d\n", outp->resl);

16 in.argl *= 2;

17 if ((outp = squareproc_1(& n, cl)) == NUL)
18 err-quit ("%s", clnt_sperror(cl, argv[i])):
19 printf ("result: %1d\n", outp->resl);

20 clnt_destroy(cl) ;

21 pause() ;

22 exit(0);

23 }

sunrpc[square9[client c
Figure16.13 Client program to examineTCP connection usage.

RPC message. Theserver must return this XID withitsreply. The XID does not change
when the RPC runtimeretransmitsarequest. The XID servestwo purposes:

1. Theclient verifiesthat the XID o thereply equals the XID that wassent with the
request; otherwise the client ignoresthis reply. If TCPis being used, the client
should rarely receive areply with the incorrect XID, but with UDP, and the pos-
sibility d retransmitted requests and alossy network, the receipt o areply with
theincorrect XID isadefinite possibility.

2. Theserver isalowed to maintain acache d the repliesthat it sends, and one
theitems that it uses to determine whether a request is a duplicate is the XID.
Wedescribethisshortly.

The TI-RPC package uses the following algorithm for choosing an XID for a new
request, wherethe ~ operator isC's bitwise exclusive OR:

struct timeval now,

gettimeofday (&now, NULL);
Xid = getpid() "~ now.tv_sec "~ now.tv_usec;

422

Sun RFC Chapter 16

Server Duplicate Request Cache

16.6

To enable the RPC runtime to maintain a duplicate request cache, the server must cl
svc_dg_enablecache. Oncethiscacheisenabled, thereisnoway to turnit off (other
than termination d the server process).

#i ncl ude <rpc/rpc.h>
int svc_dg_enablecache(SVCXPRT *xprt, unsi gned | ong Size) ;

Returns:1if CK, Oon error

xprt is the transport handle, and this pointer is member o the svc_req structure (Sec-
tion 16.4). Theaddressd thisstructureisan argument to the server procedure. sizeis
the number d cacheentriesfor which memory should be allocated.

When this cacheis enabled, the server maintains a HFO (first-in, first-out) cache d
al therepliesthat it sends. Each reply isuniquely identified by thefollowing:

program number,

version number,

procedure number,

XID, and

client address (IPaddressand UDP port).

Each time the RPC runtime in the server receivesa client request, it first searches the
cache to see whether it already has a reply for this request. If so, the cached reply is
returned to theclient instead d calling the server procedure again.

The purpose d the duplicate request cache is to avoid caling a server procedure
multiple timeswhen duplicate requests are received, probably because the server proce
dureisnot idempotent. A duplicate request can be received becausethe reply waslost a
because the client retransmission passes the reply in the network. Notice that this
duplicate request cache applies only to datagram protocol ssuch as UDP, becauseif TCP
is being used, a duplicate request never makes it to the application; it is handled com-
pletely by TCP (seeExercise16.6).

Call Semantics

In Figure 15.29, we showed a doors client that retransmitted its request to the sarver
when the client's call to door - cal | was interrupted by a caught signal. But we then
showed that thiscaused theserver procedure to be called twice, not once. We then cate
gorized server procedures into those that are idempotent (can be called any number d
times without harm), and those that are not idempotent (such as subtracting money
from abank account).

Procedurecallscan be placed into oned three categories:

1. Exactly once means the procedure was executed once, period. Thistyped opa-
ationishard to achieve, owing to the possibility d server crashes.

Sxion16.6

Cdl Sematics 423

2. At most once means the procedure was not executed at all or it was executed

once. If a normal return is made to the cdler, we know the procedure was exe-
cuted once. But if an error return is made, we're not certain whether the proce-
durewas executed onceor not at all.

Al least once means the procedure was executed at least once, but perhaps more.
ThisisOK for idempotent procedures— the client keeps transmitting its request
until it receivesa valid response. But if the client has to send its request more
than onceto receivea valid response, a possibility exists that the procedurewas
executed morethan once.

With a local procedure cdl, if the procedure returns, we know that it was executed
exactly once, but if the process crashes after the procedure has been called, we don't
know whether it was executed once or not at all. We must consider various scenarios
with remote procedure cals:

If TCPisbeing used and areply isreceived, we know that the remote procedure
was called exactly once. But if a reply is not received (say the server crashes),
wedon't know whether the server procedure executed to completion before the
host crashed, or whether the server procedure had not yet been called (at-most-
once semantics). Providing exactly-oncesemanticsin the face d server crashes
and extended network outages requires a transaction processing system, some-
thing that isbeyond the capability d an RPC package.

If UDPis being used without a server cache and a reply is received, we know
that the server procedure was called at least once, but possibly more than once
(at-least-oncesemantics).

If UDPisbeing used with a server cacheand areply is received, we know that
the server procedure was called exactly once. But if a reply is not received, we
have at-most-oncesemantics, similar to the TCP scenario.

Given these three choices:

1 TCP,
2. UDPwithaserver cache, or
3. UDPwithout aserver cache,

our recommendationsare:

Always use TCP unless the overhead d the TCP connectionsis excessivefor the
application.

Use a transaction processing system for nonidempotent procedures that are
important to do correctly (i.e., bank accounts, airline reservations,and thelike).

For a nonidempotent procedure, using TCP is preferableto UDP with a server
cache. TCPwasdesigned to be reliablefrom the beginning, and adding thisto a
UDP application is rarely the same as just using TCP (e.g., Section 20.5 o
UNPv1).

b |
424 9 RPC Chapter 16

e Using UDPwithout aserver cachefor an idempotent procedureis OK.
e Using UDPwithout aserver cachefor a nonidempotent procedureis dangerous.

We cover additional advantagesd TCPin the next section.

16.7 Premature Termination of Client or Server

We now consider what happenswhen either the client or the server terminates prena
turely and TCP is being used as the transport protocol. Since UDP is connectionless,
when a process with an open UDP endpoint terminates, nothingis sent to the peer. All
that will happen in the UDP scenario when one end crashesis that the peer will time
out, possibly retransmit, and eventually give up, as discussed in the previous section.
But when a process with an open TCP connection terminates, that connection is termi-
nated, sending a AN to the peer (pp. 36-37 & UNPv1), and we want to see what the
RPC runtime doeswhen it receivesthis unexpected FIN from its peer.

Premature Termination of Server

We fird terminate the server prematurely while it is processing a client's request. The
only change we make to our client is to remove the "tcp" argument from the cdl to
clnt_call in Fgure 16.2 and require the transport protocol to be a command-line
argument, asin Figure16.12. In our server procedure, we add acal totheabort func
tion. Thisterminatesthe server process, causing the server's TCP to send a AN to the
client, whichwe can verify with tcpdump.

Wefirst run our Solaris client to our BSD/OS server:

solaris % client bsdi 22 tcp
bsdi: RPC. Unable to receive; An event requires attention

When the server's FIN is received by the client, the RRC runtime is waiting for the
server's reply. It detects the unexpected reply and returns an error from our cdl to
squareproc_1l. Theerror (RPC_CANTRECV) issaved by the runtimein theclient hanr
dle, and the call to c1lnt_sperror (fromour Clnt_create wrapper function) prints
thisas ""Unable to receive’ The remainder d the error message, ""An event requires
atention,”” corresponds to the XT1 error saved by the runtime, and is aso printed by
clnt_sperror. About 30 different RPC_xxx errorscan be returned by aclient's cal of
aremoteprocedure, and they arelisted inthe<rpc/clnt_st at.h> header.

If we swap the hosts for the client and server, we see the same scenario, with the
same error returned by the RPC runtime (RPC_CANTRECYV), but a different message at
theend.

bsdi % client solaris 11 tcp
solaris: RPC. Unable to receive; errno = Connection reset by peer

The Solaris server that we aborted above was not compiled as a multithreaded
server, and when wecalled abort, theentire processwas terminated. Thingschangei
we are running a multithreaded server and only the thread servicing the dient's call

Section 16.7 Premature Terminatiion d Client or Saver 425

terminates. To force this scenario, we replace the cal to abort with a cal to
pthread_exit, aswedid with our doors examplein Figure15.25. We run our client
under BSD/OS and our multithreaded server under Solaris.

bsdi % client solaris 33 tcp
solaris: RPC. Timed out

When the server thread terminates, the TCP connection to the client is not closed; it
remains open in the server process. Therefore, no FIN issent to the client, so the client
jugt timesout. We would see the same error if the server host crashed after the client's
request wassent to theserver and acknowledged by theserver's TCP.

Premature Termination of Client

When an RPC client terminates while it has an RPC procedure call in progress using
TCP, the client's TCP will send a FIN to the server when the client process terminates.
Our guestion is whether the server's RPC runtime detects this condition and possibly
notifies the server procedure. (Recall from Section 15.11 that a doors server thread is
canceled when the client prematurely terminates.)

To generate this condition, our client callsalarm(3) right before calling the server
procedure, and our server procedure calls sleep(6). (Thisiswhat we did with our
doorsexamplein Figures15.30 and 15.31. Sincethe client does not catch SIGALRY, the
processis terminated by the kernel about 3 seconds before the server's reply is sent.)
We run our client under BSD/OS and our server under Solaris.

bsdi % client solaris 44 tcp
Alarm call

This iswhat we expect at the client, but nothing different happens at the server. The
server procedure completesits 6-second sleep and returns. If we watch what happens
with tcpdump we seethefollowing:

o When theclient terminates (about 3 seconds after starting), the client TCP sends
a FIN to the server, which the server TCP acknowledges. The TCP term for this
isahalf-close(Section 18.5 o TCPv1).

o About 6 seconds after the client and server started, the server sends its reply,
which its TCP sends to the client. (Sending data acrossa TCP connection after
receiving a FIN is OK, as we describe on pp. 130-132 d UNPv1, because TCP
connections are full-duplex.) The client TCP responds with an RST (reset),
because the client process has terminated. Thiswill be recognized by the server
onits next read or write on the connection, but nothing happensat thistime.

Wesummarize the points madein thissection.

e RPC clientsand servers using UDP never know whether the other end termi-
nates prematurely. They may time out when no response is received, but they
cannot tell the type o error: premature processtermination, crashing o the peer
host, network unreachability, and so on.

426 9n RPC Chapter 16

e An RRC client or server using TCP has a better chance o detecting problemsat
the peer, because premature termination d the peer process automaticaly
causesthe peer TCP to closeitsend d the connection. But thisdoes not hep f
the peer isa threaded RPC sarver, because termination d the peer thread does
not close the connection. Also thisdoes not help detect a crashing d the psx
host, because when that happens, the peer TCP does not close its open connec-
tions. A timeout isstill required to handleall these scenarios.

16.8 XDR: External Data Representation

When we used doors in the previous chapter to cal a procedure in one processfram
another process, both processes were on the same host, so we had no data converson
problems. But with RPC between different hosts, the various hosts can use different
data formats. First, the sizesd the fundamental C datatypes can be different (e.g., a
| ong on some systems occupies 32 bits, whereas on othersit occupies &4 bits), and s
ond, the actual bit ordering can differ (e.g., big-endian versuslittle-endian byte order-
ing, which we talked about on pp. 66-69 and pp. 137-140 ¢ UNPv1). We have dready
encountered thiswith Figure16.3 when we ran our server on alittle-endianx86 and or
client on a big-endian Sparc, yet we were able to exchange a long integer correctly
between the two hosts.

Sun RPC uses XDR, the Extarnd Daa Represantation standard, to describe ad
encode the data (RFC 1832 [Srinivasan 1995b]). XDR is both a language for desaibing
thedata and aset d rulesfor encoding the data. XDR uses implidt typing, which means
the sender and receiver must both know the types and ordering d the data: for exam
ple, two 32-bit integer values followed by one single precision floating point vaue, fa-
lowed by acharacter string.

Asacomparison,intheOS world, ASN.1 (Abgract Syntax Notation one) isthe normal way ©
describethe data, and BER (Basic Encoding Rules) isa common way to encodethedata. This
scheme also uses explicit typing, which means each data value is preceded by some value (a
" gpecifier”) describing the datatype that follows. In our example, the sream of bytes would
contain the following fields, in order: a specifier that the next valueis an integer, the integer
value, a specifier that the next value is an integer, the integer value, a specifier that thenext
valueisafloating point value, the floating point value, a specifier that the next valueisadar-
acter string, the character string.

The XDR representation d all datatypes requiresa multiple d 4 bytes, and these
bytes are always transmitted in the big-endian byte order. Signed integer vaues ae
stored using two's complement notation, and floating point values are stored using the
IEEE format. Variable-lengthfieldsawayscontain up to 3 bytesd padding at thead,
so that the next item is on a 4-byte boundary. For example, a 5-character ASCII gring
would be transmitted as12 bytes:

o a4-byteinteger count containingthe valueb,

e the5-bytestring, and
o 3bytesd 0 for padding.

Section 16.8

XDR External Daa Representation 427

When describing XDR and the datatypes that it supports, we have three items to
consider:

1

3.

How do we declarea variabled each typein our RPC specificationfile (our . x
file) for rpcgen? Our only exampleso far (Figurel6.1) usesonly along integer.

Which C datatype does rpcgen convert thisto in the . h header that it gener-
ates?

What istheactual format d thedata that istransmitted?

Figure 16.14 answers the first two questions. To generate this table, an RPC specifica-
tion filewas created using all the supported XDR datatypes. Thefilewas run through
rpcgen and the resulting C header examined.

We now describethe tableentriesin more detail, referencing each by the number in
thefirst column (1-15).

1.

A const declarationisturned intoaC #define.
A typedef declarationisturnedintoaC typedef.

These are the five signed integer datatypes. The first four are transmitted as
32-bit values by XDR, and thelast oneistransmitted asa64-bit value by XDR

64-hit integers are known to many C compilersas type long long i nt or just long
long. Notall compilersand operatingsystemssupport these. Sincethegenerated . hfile
declaresthe C variabled typelonglong-t, some header needsto define

typedef long long Ionglong-t;
An XDR long occupies 32 bits, but aC |ong on a 64-bit Unix system holds 64 hits (e.g.,
the LP64 model described on p. 27 d UNPv1). Indeed, thesedecade-old XDR namesare
unfortunatein today's world. Better names would have been something like int8_t,
intlé6_t,int32_t, int64_t, and soon.
Theseare thefive unsigned integer datatypes. Thefirst four are transmitted as
32-bit values by XDR, and thelast oneistransmitted asa64-bit value by XDR

These are the three floating point datatypes. Thefirst istransmitted as a 32-bit
value, the second asa 64-bit value, and the third asa 128-bit value.

Quadruple-precisionfloating point numbersare knownin C astype long double. Not
all compilers and operating systems support these. (Your compiler may alow long
double, but treat it asa double.) Sncethe generated . h file declaresthe C variabled
typequadrupl e, some header needsto define

typedef 1ong doubl e quadruple;
Under Solaris 26, for example, we must includetheline
%ti ncl ude <floatingpoint.h>

at the beginningd the . x file, because this header includes the required definition. The
percent sign at thebeginningd thelinetellsrpcgen to place theremainder o thelinein
the . hfile.

428 Sun RPC

Chapt er 16

RPCspedificaianfile (. x) Cheader file (.h)
1 | const nane = value, #def i ne name value
2 | typedef dedaration; t ypedef dedaration;
3 | char var; char var;
short var; short var;
int var; int var;
I ong wdr; I ong var;
hyper var; longlong_t var,
4 | unsigned char var; u_char var;
unsi gned short var; u_short var;
unsi gned int var; u_int var;
unsi gned | ong var; u_long var;
| unsi gned hyper var; u_longlong t var;
5 | float var; fl oat wdr;
doubl e var; doubl e var;
quadr upl e ver; quadr upl e vdr;
6 | bool var; bool_t var;
7 | enumvar { nare = const, enumvar { nane = const,
typedef enum var var;
8 | opaque \Wdr(n]; char varnl;
9 | opaque war<m>; struct ¢
Uu-int woar_len;
char *var_val;
}ovar;
10 | string var<m>; char *var;
11 | datatype ver [n]; datatype var [n] ;
12 | datatype var<m>; struct {
u-int war_len;
datatype *var_val;
} var;
13 | struct var { marbas ... }; struct var { marbas ...
typedef struct wdr var;
14 | union var switch (int disc) { struct var {
case discvalueA: armdeclA int disc;
case discvalueB: armdeclB; uni on {
. armdeclA ;
def aul t - defaultded!; armdeclB ;
}; -
defaultded ;
} var_u;
}:
typedef struct var var;
15 | datatype *name; datatype *name;

Figurel6 14 Sunmmar yd dat at ypessupport ed by XDRand r pcgen.

Section 16.8

XDR BExtand Daa Representation 429

10.

11.

12.

13.

14.

The bodeen datatype is equivalent to a signed integer. The RPC headers also
#def i ne theconstant TRUE to bel and the constant FAL SE to be.

An enumerdion is equivalent to a signed integer and is the same as C's enum
datatype. r pcgen also generatesat ypedef for thespecified variable name.

Fixed-length opaque dataiis a specified number o bytes(n) that are transmitted as
8-hit values, uninterpreted by the runtimelibrary.

Vaiablelength opague data is also a sequence d uninterpreted bytes that are
transmitted as 8-bit values, but the actual number 0 bytesistransmitted asan
unsigned integer and precedesthe data. When sending thistype d data (e.g.,
when filling in the arguments prior to an RPC call), set the length before mak-
ing thecall. When thistyped dataisreceived, thelength must be examined to
determine how much datafollows.

The maximum length # can be omitted in the declaration. But if thelengthis
specified at compiletime, the runtime library will check that the actual length
(what we show as the var_len member d the structure) does not exceed the
valued m.

A stringisa sequence d ASCII characters. In memory, a string is stored as a
normal null-terminated C character string, but when a string is transmitted, it
is preceded by an unsigned integer that specifies the actual number o charac-
ters that follows (not including the terminating null). When sending this type
d data, the runtime determines the number o charactersby caling strl en.
When thistype of dataisreceived, it isstored as a null-terminated C character
string.

The maximum length m can be omitted in the declaration. But if thelengthis
specified at compiletime, the runtime library will check that the actual length
does not exceed the value o m.

A fixed-lengtharray o any datatype is transmitted as a sequence o n elements
d that datatype.

A vaidble-length away o any datatype is transmitted as an unsigned integer
that specifiesthe actual number o elementsin thearray, followed by thearray
elements.

The maximum number o elementsm can be omitted in the declaration. But if
this maximum is specified at compiletime, the runtime library will check that
theactual length does not exceed thevalued m.

A structure is transmitted by transmitting each member in turn. r pcgen also
generatesa typedef for the specified variablename.

A discriminated union is composed d an integer discriminant followed by a set
of datatypes (called arms) based on the value o the discriminant. In Fg-
ure 16.14, we show that the discriminant must bean i nt, but it can aso be an
unsi gned int, an enum or abool (al o which are transmitted as a 32-bit
integer value). When a discriminated union is transmitted, the 32-bit value o

|

430 Qn RPC Chapt er 16

the discriminant is transmitted first, followed only by the arm vaue core
sponding to the value o the discriminant. Thedef aul t declaration is oftan
voi d, which means that nothing is transmitted following the 32-bit value d
thediscriminant. We show an exampled thisshortly.

15. Optional data is a specia type o uni on that we describe with an examplein
Figure16.24. The XDR declaration lookslikea C pointer declaration, and thet
iswhat the generated . h filecontains.

Figurel16.16 summarizes theencoding used by XDR for itsvarious datatypes.

Example: Using XDR without RPC

We now show an exampled XDR but without RPC. That is, wewill use XDR to encode
a structure d binary data into a machine-independent representation that can be pro-
cessed on other systems. This technique can be used to write files in a machine-
independent format or to send data to another computer acrossa network in amachine
independent format. Figure 16.15 shows our RPC specification file, dat a. x, whichis
really just an XDR specification file, sincewe do not declareany RPC procedures.

Thefil emane sffixd .x conesfromtheterm” XDRspecificati anfile™ The RPC gEdficain
(RFC 1831) says that the RPCI anguage, soneti nes cdled RPCL, is i daticd to the XDRIan
guage(vhi ch is defi ned in RFC 1832), except far theaddition d a programddiniti a{vki ch
descri besthe proogram versi as, and procedures).

sunrpc/xdrl [data.x

1 enum result-t {

2 RESULT-INT = 1, RESULT- DOBLE = 2

3 }:

4 union union-arg switch (result-t result) ¢

5 case RESULT- | NT:

6 i nt intval ;

7 case RESULT- DOBLE

8 doubl e doubl eval ;

9 defaul t:
10 Vvoi d;
11 };
12 struct data {
13 short short - arg;
14 | ong | ong- arg;
15 string vstring arg < 128 >; /* variable-length string */
16 opaque fopaque-arg(3]; /* fixed-|ength opaque */
17 opaque vopaque_arg <>; /* vari abl e-1 engt h opaque */
18 short fshort-argl4]; /* fixed-lengtharray */
19 | ong vlong_arg <>; /* variable-lengtharray */
20 uni on- arg uarg;

21 };

sunrpc|xdrl [datax

Figure16.15 XDRspdificatianfile

Section 16.8 XDR. External Data Representation 431
MSB LSB
sameencodingformat for unsi gned char, short, unsi gned short,
char :) . .)
int, unsi gnedint, | ong, unsi gned | ong, bool , enum
byte0 1 2 3
MSB LSB
hyper: sameencodingformat for unsi gned hyper
byte0 1 2 3 4 5 6 7
— 1-bitsign
float: [8-bit exponent
'J\ ,l T 2 3 23bitfraction
bytefXP' fraction
T T 1 bie aisn
doubl e: I] 11-bit exponent
] i g .
byte ©P1 2 3fragtion 6 7 -2 Pit fraction
: 1-bit sign
guadruple: |i 15-bit exponent
| e .
byttO 1_2 3 4 5 6 7 f@ctisn10 11 12 13 14 15 112 bitfraction
exp
N N
opaque [n]: - 0| ... |0 | fixed-length opaquedata
byte 0 1 N nl. N
r bytes so that (n +) mod4 =0
opaque <m>: lengthm 0 0 | variable-lengthopaguedata
0 1 '\\.. 1 .\'\u
A bytes M bytes so that (m +) mod4 =0
™ ™y)
string <m>: lengthm 0| ... |0] string
— 1 T A
4 bytes r bytes so that (m + » mod4 =0
type [nl: dement0 | element1) dement n-1 | fixed-length array
sized each element amultiple d 4 bytes
™ variable-length
type <m>: #elementsm | eement0 element 1 . elementm—1
~ array
4 bytes sized each element a multiple o 4 bytes
uni on: discriminant impliedarm
4bytes size of arm a multiple of 4 bytes

Figure16.16 Encoding used by XDR for itsvariousdatatypes.

~—y

432 Sun RPC Chapter 16

12-21

12-32

33

34

Declare enumeration and discriminated union

We declarean enumeration with two values, followed by a discriminated union that
uses this enumeration as the discriminant. If the discriminant value is RESULT-NT,
then an integer value is transmitted after the discriminant value. If the discriminant
value is RESULT-DOUBLE, then a double precision floating point value is transmitted
after the discriminant value; otherwise, nothing is transmitted after the discriminant
value.

Declare structure
We declarea structure contai ning numerous XDR datatypes.

Sincewe do not declareany RPC procedures, if welook at al the files generated by
rpcgenin Figurel6.4, wesee that the client stub and server stub are not generated by
rpcgen. But it still generates the data. h header and the data— xdr. ¢ file containing
the XDR functionsto encode or decode the data items that we declared in our data.x
file.

Figure 16.17 shows the data. h header that is generated. The contents o this
header are what we expect, given the conversionsshown in Figurel6.14.

In thefiledata— xdr. c, afunction isdefined named xdr— data that wecancdl ©
encodeor decodethecontentsd thedata structurethat we define. (Thefunction name
suffix of _data comesfrom the name o our structure in Figure 16.15.) The first pro-
gram that we writeiscalledwrite.c, and it sets the values d all the variablesin the
data structure, callsthe xdr— data function to encode all the fieldsinto XDR format,
and then writestheresult to standard output.

Figure16.18 showsthis program.

Set structure members to some nonzero value

We first set all the members o the data structure to some nonzero value. In the
cased variable-lengthfields, we must set the count and that number o values. For the
discriminated union, we set the discriminant to RESULT-NT and the integer vaueto
123.

Allocate suitably aligned buffer

Wecall malloc to allocateroomfor the buffer that the XDR routines will storeinto,
sinceit must be aligned on a 4-byte boundary, and just allocatinga char array doesna
guarantee thisalignment.

Create XDR memory stream

Theruntimefunction xdrmem_create initializesthe buffer pointed to by buff far
XDR to use asa memory stream. We allocatea variable o type XDR named xhandle
and passtheaddress o this variableas thefirst argument. The XDR runtime maintains
theinformationin thisvariable (buffer pointer, current positionin the buffer, and soon).
The final argument is XDR_ENCODE, which tells XDR that we will be going from hot
format (our out structure) into XDR format.

Sectian 16.8 XDR: External Data Representation 433
sunrpc/xdr1 [data.h
L /*
2 * Please do not edit this file. It was generated using rpcgen.
3 */
4 #ifndef _DATA_H_RPCGEN
5 #define _DATA_H_RPCGEN
6 enumresult-t ¢
7 RESULT-INT = 1,
8 RESULT- DOBLE = 2
9 };
10 typedef enum result-t result-t;
11 struct union-arg {
12 result-t result;
13 uni on {
14 i nt intval ;
15 doubl e doubl eval ;
16 } union_arg_u;
17 };
18 typedef struct union-arg union-arg;
19 struct data {
20 short short - arg;
21 | ong | ong- arg;
22 char *vstring_ arg;
23 char f opaque- arg[31;
24 struct {
25 u_int vopaque_arg_len;
26 char *vopaque_arg_val;
27 } vopaque_arg;
28 short fshort_argl[4];
29 struct {
30 u_int vlong_arg_len;
31 | ong *vlong_arg_val;
32 } vliong_arg:
33 uni on- arg uarg;
34 }:
35 typedef struct data data;
36 /* the xdr functions */
37 extern bool -t xdr_result_t(XDR *, result-t *);:
38 extern bool -t xdr_union_arg{(XDR *, union-arg *);
39 extern bool -t xdr_data(XDR *, data *);
1 * | *
40 #endif /* |_DATA_H_RPCGEN */ sunrpc{xdrl Tt

Figuels 17 Header gererated by r pcgenfromF gure 16, 15.

—~

434 Sun RPC Chapter 16
- - sunrpc/xdrl [writec

1 #i ncl ude "unpipc.h"”

2 #i ncl ude "data. h"

3int

4 main(int argc, char **argv)

51

€ XOR xhandl e;

7 dat a out ; /* the structure whose val ues we store */
8 char *pbuf f ; /* the result of the XDR encoding */
a char vopl[2];
10 | ong vliong[3];
11 u_int si ze;
12 out.short_arg = 1,
13 out.long _arg = 2;

14 out.vstring _arg = "hell o, worl d"; /* pointer assignnent */

15 out. fopague_arg[0] = 99; /* fixed-1ength opaque */
16 out . fopaque_arg[1] = 88;
17 out. fopaque_argl[2] = 77;

18 vop[0] = 33; /* vari abl e-1 engt h opaque */
19 vopl[l] = 44;
20 out vopaque_arg, vopaque_arg_len = 2;
21 out . vopaque_arg. vopaque_arg_val = vop;
22 out. fshort_arg[0] = 9999; /* fixed-lengtharray */
23 out. fshort_arg[1l] = 8888;
24 out. fshort_argl[2] = 7777;
25 out. fshort_argl[3] = 6666;
26 vliong[0] = 123456; /* variable-length array */
27 vliong[1l] = 234567;

28 viong[2] = 345678;
29 out . vliong_arg.vlong_arg_len = 3;

3C out,vlong_arg.vlong_arg_val = vl ong;

31 out.uarg.result = RESULT- | NT; /* discrimnated union */

32 out.uarg.union_arg_u.intval = 123;

33 buff = Malloc (BUFFSIZE); /* nust be aligned on 4-byte boundary */
34 xdrmem_create (&xhandle, buff, BUFFSI ZE, XDR_ENCODE) ;

35 if (xdr_data(&xhandle, &out) != TRUE)

3€ err_quit ("xdr_data error")

37 Si ze = xdr_getpos (&xhandle) ;

3& Write (STDOUT_FILENO, buff, size);

39 exit(0);
4C }

sunrpc/xdrl [writec
Fogrelal8 Intidizthedat astructureand witeit in XDRfornat .

Section 16.8 XDR: BExtand Daa Represantation 435

35-36

37-38

11-13

14-17

1842

Encode the structure

We cdl the xdr— data function, which was generated by rpcgen in the file
data— xdr.c, and it encodes the out structure into XDR format. A return value o
TRUE indicatessuccess.

Obtain size of encoded dataandwri te

The function xdr_getpos returns the current position o the XDR runtimein the
output buffer (i.e., the byte offset o the next byte to storeinto), and we use this as the
sized ourwrite.

Figure16.19 showsour read program, which readsthefilethat waswritten by the
previous program, printingthe valuesd all themembersd thedata structure.

Allocate suitably aligned buffer

Wecdl malloc to allocatea buffer that issuitably aligned and read thefile that was
generated by the previous programinto the buffer.

Create XDR memory stream, inltlalize buffer, and decode

Weinitializean XDR memory stream, this time specifying XDR—DECODE to indicate
that we want to convert from XDR format into host format. Weinitializeour i n struc-
tureto 0 and cdl xdr— datato decodethe buffer buff into our structurein. We must
initializethe XDR destination to 0 (thei n structure), because somed the XDR routines
(notably xdr_string) require this. xdr— data is the same function that we caled
from Figure 16.18; what has changed is the final argument to xdrmem-—create: in the
previous program, we gspecified XDR_ENCODE, but in this program, we specify
XDR-DEOCDE Thisvalueis saved in the XDR handle (xhandle) by xdrmem-—create
and then used by the XDR runtimeto determinewhether to encode or decodethedata

Print structure values
Weprint all themembersd our datastructure.
Free any XDR-allocated memory

We cdll xdr_fr ee to free the dynamic memory that the XDR runtime might have
alocated (seeal so Exercisel6.10).

We now run our write program on a Sparc, redirecting standard output to afile
named data:

solaris % write > data
solaris % 18 -1 data
W- T W- 1T - 1 rstevens otherl 76 Apr 23 12:32 data

We see that thefile sizeis 76 bytes, and that correspondsto Figure 16.20, which details
thestoraged thedata (nineteen4-bytevalues).

436 Sun RPC Chapter 16

- - sunrpcxdrl [readc
1 #i ncl ude "unpipc.h"
2 #incl ude "data.h"
3int
4 main(int argc, char **argv)
51
6 XOR xhandl e;
7 int i;
8 char *puf f ;
9 dat a in;
10 ssize_t n;
11 buff = Malloc (BUFFSIZE); /* nust be aligned on 4-byte boundary */
12 N = Read(STDIN_FILENO, buff, BUFFSIZE);
13 printf("read %1d bytes\n", (long) n);
14 xdrmem_create (&xhandle, buff, n, XDR_DECODE)};
15 memset (&in, 0, sizeof(in));
16 if (xdr_data(&xhandle, &in) !'= TRUE)
17 err_quit ("xdr_data error");
18 printf ("short_arg = %l, long-arg = %1d, vstring arg = ’'%s‘’\n",
19 in.short_arg, in.long_arg, in.vstring arg);
20 printf ("fopaque[] = %d, %d, %d\n",
21 in. fopaque_arg[0], in.fopaque_arg[l], in.fopaque_arg([2]);
22 printf ("vopagque<> =");
23 for (1 = 0; i < in.vopaque_arg.vopague_arg_len; i++)
24 printf (" %4d", in.vopague_arg.vopaque_arg val[il]);
25 printf (*\n");
26 printf (*fshort_argl[] = %d, %d, %d, %d\n", in.fshort_argl[0],
27 in.fshort_arg[l]., in.fshort_argl[2], in.fshort_argl[3]1);
28 printf ("viong<> =");
29 for (i = 0; 1 < in.vliong_arg.vliong arg_len; i++)
30 printf (" %1d", in.vlong_arg.vlong_arg_valli]);
31 printf("\n");
32 switch (in.uarg.result) [
33 case RESULT- I NI:
34 printf ("uarg (int) = %d\n", in.uarg.union_arg_u.intval);
35 br eak;
36 case RESULT- DOBLE
37 printf("uarg (doubl €) = %g\n", in,uarg.union_arg_u.doubleval);
38 br eak;
39 defaul t -
40 printf ("uarg (void)\n");
41 br eak;
42 }
43 xdr_free (xdr_data, (char *) &in);
44 exit(0);
45 }
sunrpc{xdrl [read.c

Figwel619 Readthedat astructurein XDR formatand prirnt theva ues.

Secti0n 16.8 XDR BExtard Daa Reoresataion 437

4 bytes

short 1

long 2

12

string <128> lte ¥ Sajel
o | . w

ojr|lid

opaque [3| 99 (8877 o
2
opaque <> :m 4
9999

8888
short [4] { 7777 |
6666

3

long <> 123456
234567

345678

uni on{ SERR :
int 123

Figure16.20 Format of the XDR stream written by Figure16. 18,

If weread this binary datafile under BSD/OS or under Digitd Unix, theresultsare
what we expect:

bsdi % read < data
read 76 bytes

short-arg = 1, long-arg = 2, vstring-arg = 'hello, world
fopaquel[]l = 99, 88, 77
vopaque<> = 33 44

fshort_arg[]l = 9999, 8888, 7777, 6666
vl ongo = 123456 234567 345678
uarg (int) = 123

al pha % read < data

read 76 bytes

short-arg = 1, long-arg = 2, vstring-arg = "hello, world'
fopaquel] 99, 88, 77

vopaqueo = 33 44

fshort_arg[] = 9999, 8888, 7777, 6666

viong<> = 123456 234567 345678

uarg (int) = 123

Example: Calculating the Buffer Size

In our previousexample, weadllocated a buffer o length BUFFSIZE (whichisdefined to
be8192 in our unpipc. h header, FigureC.1), and that was adequate. Unfortunately, no
smple way exists to calculate the total size required by the XDR encoding d a given

438 9N RC Chepter 16

structure. Just calculatingthe sizeof the structureiswrong, because each member is
encoded separately by XDR. What we must do is go through the structure, member by
member, adding the size that will be used by the XDR encoding d each member. For
example, Figurel6.21 showsa simplestructurewith threemembers.

1 const MAXC = 4; sunrpc [xdr1 [example.x
2 struct example {
3 short a;
4 doubl e b;
5 short c[MAXC] ;
6 };
sunrpc/xdr1 [example.x

Figure16.21 XDR specificationof asimplestructure.

The program shown in Figure 16.22 cal culates the number o bytes that XDR requiresto
encodethisstructureto be 28 bytes.

T % nel ude R E— sunrpe/xdrl [example.c
2 #incl ude "example.h"
3 int
4 main(int argc, char **argv)
5 1
6 i nt si ze;
7 exanpl e foo;
8 si ze = RNDUP(sizeof (foo.a)) + RNDUP(sizeof (foo.b)) +
9 RNDUP (sizeof (foo.c[0]1)) * MAXC;
10 printf("size = %d\n", size);
11 exit (0);
12 }
sunrpexdrl [example.c

Figurel6.22 Programto calculatethenumber of bytesthat XDR encoding requires.

The macro RNDUP isdefined in the <rpc/xdr . h> header and rounds its argument
up to the next multipled BYTES- PER- XDR- UNI T(4). For afixed-length array, we cal-
culatethesized each element and multiply thisby the number d elements.

The problem with thistechniqueis variable-length datatypes. If wedeclarestring
d<10>, then the maximum number d bytesrequired iSRNDUP (si zeof (i nt) (forthe
length) plusRNDUP (si zeof {char) *10) (forthe characters). But we cannot cdculae
asizefor a variable-length declaration without a maximum, such as f | oat e<>. The
easiest solution isto allocatea buffer that should be larger than needed, and check for
failured the XDR routines (Exercisel6.5).

Example: Optional Data

. There are three ways to specify optional data in an XDR specification file, all d which
weshow in Figurel6.23.

Sation16.8 XDR: Extand Dda Reoresantation 439

10

14-21

sunrpc/xdrl [optl.x

1 uni on optlong switch (bool flag) {

2 case TRUE:

3 | ong val ;

4 case FALSE:

5 voi d;

6 |;

7 struct args {

8 optlong argl; /* union w th bool ean di scri m nant */

9 | ong arg2 < 1 >; /* variable-length array with one el enent */
10 | ong *arg3; /* pointer */

Bk sunrpc[xdrl foptl.x

Figure16.23 XDR specificationfile showingthreswaysto specify optional data

Declare union with boolean discriminant

We define a uni on with TRUE and FALSE arms and a structure member d this
type. When the discriminant f | ag is TRUE, al ong valuefollows, otherwise, nothing
follows. When encoded by the XDR runtime, thiswill beencoded aseither

o ad-byteflag o 1 (TRUE)followed by a4-bytevalue, or
e ad-byteflagd O (FALSE).

Declare variable-lengtharray

When we specify a variable-length array with a maximum d oneeement, it will be
coded aseither

e a4-bytelengthd 1followed by a4-bytevaue, or
e ad-bytelengthd 0.

Declare XDR pointer

A new way to specify optional data is shown for arg3 (which correspondsto the
last linein Figurel6.14). Thisargument will becoded aseither

e a4d-bytevalued 1 followed by a4-bytevaue, or
e ad-bytevalued 0

depending on the valued the corresponding C pointer when thedataisencoded. If the
pointer is nonnull, thefirst encoding is used (8bytes), el sethe second encodingis used
(4 bytesd 0). Thisisa handy way d encoding optional data when the data is refer-
enced in our code by a pointer.

One implementation detail that makes the first two declarations generate identical
encodingsisthat the valued TRUE is1, which isalsothelength d the variable-length
array when oneelementis present.

Figure16.24 showsthe . hfilethat isgenerated by r pcgen for thisspecificationfile.
Even though all threeargumentswill be encoded the same by the XDR runtime, the
way weset and fetch their valuesin Cisdifferent for each one.

440 Sun RPC Chapter 16
sunrpclxdrl fopt1.h
7 struct optlong {(
8 int flag;
9 uni on {
10 | ong val ;
11 } optlong_u;
12 |;
13 typedef struct optlong optlong;
14 struct args {
15 optlong argl ;
16 struct {
17 u_int argZ2_len;
18 | ong *arg2_val;
19 | arg2;
20 | ong *arg3;
21 |;
22 typedef struct args args;

sunrpclxdrl foptlh
Figure16.24 C header generated by r pcgenfor Figurel6. 23

sunrpc/xdrl foptlz.c

1 #incl ude "unpi pc .h" pel fop
2 #include "optl.h"

3int

4 main(int argc, char **argv)

5 {

6 int i;

7 XDR xhandl e;

8 char *puf f ;

9 | ong *iptr;
10 args out ;

11 size-t size:

12 out.argl.flag = FALSE

13 out.arg2.arg2_len = O;

14 out .arg3 = NULL;

15 buff - Malloc(BUFFSIZE); /* nust be aligned on 4-byte boundary */
16 xdrmem_create (&xhandle, buff, BUFFSI ZE, XDR_ENCODE) ;

17 if (xdr_args(&xhandle, &ut) !'= TRUE)
18 err_quit ("xdr_args error");

19 Si ze = xdr_getpos (&xhandle) ;
20 Iptr = (long *) buff;
21 for (1 =0;i <size; i +=4)
22 printf("%1d\n", (|l ong) ntohl (*iptr++)};
23 exit(0);
24 '}

sunrpclxdrl foptize
Figure16.25 Noneof thethresargumentswill beencoded.

Sectian 16.8 XDR: BExtand Daa Reresentation 441

Figure16.25 isasimple program that setsthe valuesd the three argumentsso that
noned thel ong valuesare encoded.

Set values

12-14 We set thediscriminant d theuni on for thefirst argument to FALSE, thelength o
the variable-lengtharray to O, and the pointer corresponding to the third argument to
NULL.

Allocate suitably aligned buffer and encode

1519 Weallocatea buffer and encodeour out structureinto an XDR memory stream.
Print XDR buffer

2i7-22 W print the buffer, one 4-byte value at a time, using the nt ohl function (host-to-

network long integer) to convert from the XDR big-endian byte order to the host's byte
order. Thisshowsexactly what has been encoded into the buffer by the XDR runtime:
solaris % optlz
0

0
0

Asweexpect, each argument isencoded as 4 bytesd 0 indicating that no valuefollows.

Figure 16.26 is a modification o the previous program that assigns values to all
threearguments, encodesthem into an XDR memory stream, and printsthestream.

Set values

12-18 To assign a valueto the uni on, we set the discriminant to TRUE and set the value.
Toassign avalueto the variable-length array, we set thearray length to 1, and itsassoci-
ated pointer points to the value. To assign a value to the third argument, we set the
pointer to theaddressd the value.

When werun thisprogram, it printsthe expected sx 4-bytevalues:

solaris % optl

1 discriminant value d TRUE

5

1 variable-length array length
987€

1 flag for nonnull pointer variable
123

Example: Linked List Processing

Given the capability to encode optional data from the previousexample, we can extend
XDR’s pointer notation and use it to encode and decodelinked lists containing a vari-
able number d dements. Our exampleis a linked list name-value pairs, and FHg-
urel6.27 showsthe XDR specificationfile.

1-5 Our myli st structurecontainsonename-value pair and a pointer to the next struc-
ture. Thelast structureinthelist will haveanull next pointer.

442

Sn RPC Chapter 16

- sunrpc/xdrl foptl.c
1 #incl ude *unpipc.h"
2 #i ncl ude "optl.h"
3int
4 main(int argc, char **argv)
5 {
6 int i;
7 XOR xhandl e;
8 char *buf f;
g | ong lval2, 1val3, *lptr;
10 ar gs out ;
11 size-t size;
12 out.argl.flag = TRUE
13 out.argl.optlong_u.val = 5;
14 lval2 = 9876;
15 out.arg2.arg2_len = 1;
16 out.arg2.arg2_val = &lval2;
17 lval3d = 123;
18 out.arg3d = &lval3;
19 buff = Malloc (BUFFSIZE); /* must be aligned on 4-byte boundary */
20 xdrmem_create (&xhandle, buff, BUFFSI ZE, XDR_ENCODE) ;
21 if (xdr_args(&xhandle, &out) != TRUE)
22 err_quit ("xdr_args error");
23 Si ze = xdr_getpos (&xhandle) ;
24 Iptr = (long *) buff;
25 for (i =0; 1 <size; 1 +=4)
26 printf("%1id\n", (|l ong) ntohl (*lptr++));
27 exit(0);
28 | sunrpc[xdrl [optl.c
Figure16.26 Assgn valuestoall threeargumentsfrom Figurel6.23.
sunrpe[xdrl [opt2.x
1 struct mylist {
2 string nane <>;
3 | ong val ue;
4 mylist *next;
51;
6 struct args {
7 mylist *list;
8 .
= sunrpc[xdrl [opt2.x

Figure16.27 XDR specificationfor linked list of name-valuepairs.
Figure16.28showsthe . h filegenerated by r pcgen from Figure 16.27.

Figure16.29isour program that initializesalinked list containing thr eename-value
pairsand then callstheXDR runtimeto encodeit.

Section 16.8

XDR: External Data Representation 443

sunrpclxdrl /opt2.h

7 struct mylist {
8 char *nane;
9 | ong val ue;
10 struct mylist *next;
11 };
12 typedef struct mylist mylist;
13 struct args {
14 mylist *list;
15 1|;
16 typedef struct args args; sunrpc/xdrl [opt2.h
Figure16.28 C declarationscorrespondingto Figure16.27.
L % ol ude ~apipo b sunrpc/xdrl[opt2.c
2 #i ncl ude "opt2.h"
3int
4 main(int argc, char **argv)
5 {
6 int i;
7 XOR xhandl e;
8 | ong *1ptr;
9 args out ; /* the structure that we fill */
10 char *puf f ; /* the XOR encoded result */
11 mylist namevall([4]; /* up to 4 list entries */
12 size-t size;
i3 out.list = &nameval[2]; /* [2] -> [1] -> [0] */
14 nameval[2] .name = "nanel ";
15 nameval [2]. val ue = 0x1111;
16 naneval (2] .next = &nameval([l1];
17 naneval [1].nane = "namee2";
18 nameval[1l].value = 0x2222;
19 naneval [1].next = &nameval[0];
20 nameval [0] .name = "nameee3";
21 nameval [0] .value = 0x3333;
22 naneval [0].next = NUL;
23 buff = Malloc (BUFFSIZE); /* nust be aligned on 4-byte boundary */
24 xdrmem_create (&xhandle, buff, BUFFS|I ZE, XDR_ENCODE}) ;
25 if (xdr_args(&xhandle, &ut) 1= TRUE)
26 err_quit ("xdr_args error");
27 Si ze = xdr_getpos (&xhandle) ;
28 Iptr = (long *) buff;
29 for (i = 0; i <size; i +=4)
30 printf("%81x\n", (long) ntohl (*1lptr++));
31 exit(0);
32 |
sunrpc|xdrl [opt2.c

Figure16.29 Initializelinked list, encodeit, and print result.

444 9N RC Chepter 16

Initialize linked list

122 We alocate room for four list entries but initialize only three. The first entry is
nameval [2l, then naneval [1l, and then narmeval [0l. The head d the linked list
(out. list)issetto&nameval [2]. Our reason for initializing thelist in thisorder is
just to show that the XDR runtime follows the pointers, and the order o thelinked lig
entriesthat are encoded has nothing to do with which array entriesare being used. We
have also initialized the values to hexadecima values, because we will print the long
integer valuesin hex, becausethismakesit easier to seethe ASCII valuesin each byte

The output showsthat each list entry is preceded by a 4-byte value 0 1 (which we
can consider as either alength o 1 for a variable-lengtharray, or as the boolean vdue
TRUE), and thefourthentry consstsd just a4-bytevalued 0, indicating theend d the

list.
solaris % opt 2
1 oneelement follows
5 string length
6e616d65 name
31000000 1,3 bytesd ped
1111 correspondingvalue
1 oneelement follows
6 string length
6e616d65 name
65320000 e 2,2 bytesd ped
2222 correspondingvalue
1 oneelement follows
7 string length
6e616d65 name
65653300 e e 3,1 byteofpad
3333 correspondingvalue
0 no element follows: end-of -list

If XDR decodesa linked list d this form, it will dynamically allocate memory far
the ligt entries and pointers, and link the pointers together, allowing usto traverse the
ligteasilyinC.

16.9 RPC Packet Formats

Figure16.30 showstheformat o an RPC request when encapsulated in a TCP segment.

Since TCP is a byte stream and provides no message boundaries, some method o
delineating the messages must be provided by the application. Sun RPC definesarecord
aseither arequest or reply, and each record iscomposed o one or morefragments. Eath
fragment startswith a 4-byte value: the high-order bit is the fina -fragment flag, and the
low-order 3L bitsis the count. If the final-fragment bit is 0, then additional fragments
make up therecord.

This 4-bytevalueistranamitted in the big-endian byte order, the sameasall 4-byte XOR inte:
gers but thisfidd isnot in gandard XDR format because XDR doesnot tranamit bit fidds.

Section 16.9 RPC Packet Formats 445
| P header 20 bytes
TCP header 2
flag + length 4
unsigned int xici transaction|D (XID) 4
enum msg_type messagetype(0 = call) 4
unsigned int rpcverzs RPC version (2) 4
unsigned int proljz program number 4
unsigned int verz version number 4
unsigned int proc procedurenumber 4
enum auth_flavor authenticationflavor 4
a credential length 4
Treat H cred
call_body{} 4 opague body<400> ¢ credential deta Z(pn tgyt .
. L
" enum auth_flavor authenticationflavor 4
(verifier length 4
verf 4
gpaque bodpeani=>q verifier data z(pntgytes
\ -
procedure
arguments

Figure16.30 RPC request encapsulatedin a TCP segment.

if UDPisbeing used instead o TCPT, the first field following the UDP header is the
XID, asweshow in Figure16.32.

With TCP, virtually no limit existsto thesized the RPC request and reply, becauseany num-
ber d fragments can be used and each fragment has a 31-bit length field. But with UDP, the

446 9N RPC Chapt er 16

request and repy nust eachfit inasing e UDP dat agram and the maxi numanount d cta
inths dat agramis 65507 bytes(assunming IPv4). Many i npl enentati ons pria to the TI-RPC
package further lirt thesize d ether therequest a regy to around 8192 bytes, soif nore
t han about 8000 byt esis needed fa ether thereguest o redy, TCPshoul d be used.

We now show the actual XDR specificationd an RPC request, taken from RFC133L
The namesthat we show in Figure 16.30 were taken from thisspecification.

enum auth_flavor {
AUTH_NONE
AUTH_SYS
AUTH_SHORT = 2
/* and nore to be defined =/
};

struct opaque-auth {
aut h-flavor fl avor;
opaque body<400>;
}s
enum nsg- type ¢
CALL = o,
REPLY = 1

};
struct call-body {

unsi gned int rpcvers; /* RPC version: nust be 2 */
unsi gned i nt prog; /* programnunber */

unsi gned int vers; /* version nunber */

unsi gned int proc; /* procedure nunber */
opaque- auth cred; /* caller's credentials */
opaque- auth verf; /* caller's verifier */

/* procedure-specific paraneters start here */
}:
struct rpc_msg {
unsi gned int Xi d;
uni on switch (msg_type ntype) (

case CALL:

call-body cbody;
case REPLY:

reply- body rbody;
} body;

}:

The contentsd the variabl e-lengthopaque data containing the credentialsand veri-
fier depend on the flavor o authentication. For null authentication (the default), the
length o the opaque data should be 0. For Unix authentication, the opague data con
tainsthefollowinginformation:

struct aut hsysqarns {
unsi gned int stanp;
string machinename<255>;
unsi gned int wuid;
unsi gned int gid;
unsi gned int gids<16>;

Section 16.9 RPC Packet Formats 447

When the credential flavor iSsAUTH_SYS, the verifier flavor should be AUTH_NONE.

The format o an RPC reply is more complicated than that d a request, because
errorscan occur in therequest. Figure 16.31 showsthe possibilities.

Figure 16.32 showstheformat o asuccessful RPC reply, thistimeshowing the UDP
encapsulation.

We now show the actual XDR specificationd an RPC reply, taken from RFC 1831.

enumreply-stat {
MBG- ACCEPTED = 0,
MSG-DENED =1
};

enum accept - stat {
SUCCESS
PROG_UNAVAIL
PROG_MISMATCH
PROC_UNAVAIL
GARBACE- ARGS
SYSTEM ERR

}:

/* RPC execut ed successfully */

/* program # unavail abl e */

/* version # unavail able */

/* procedure # unavail able */

/* cannot decode argunents */

/* menory allocation failure, etc. */

nononon
u NWN~ O

struct accepted-reply {
opaque- auth verf;
uni on switch (accept-stat stat) {
case :
opaque resultsl0]; /* procedure-specific results start here */
case PROG_MISMATCH:
struct ¢
unsigned int low /* |lowest version # supported */
unsigned int high; /* highest version # supported */
} msnatch-info;
default: /* PROG_UNAVAIL, PROC_UNAVAIL, GARBACGE- ARGS, SYSTEM ERR */
voi d;
} reply-data;
}i

uni on reply-body switch (reply-stat stat) {
case MG ACCEPTED
accepted-reply areply;
case MSG- DEN ED
rejected-reply rreply;
} reply;

448 Sun RPC Chapter 16

reply

/

MSG-ACCEPTED

M BED
SUCCESS PROG_UNAVAIL RPC_MIA X‘I‘_ERROR

PROG_MISMATCH
PROC_UNAVAIL
GARBAGEARGS
SYSTEM-ERR

Figure16.31 PossbleRPCreplies.

IP header 20bytes
UDP header 8
=
unsigned int xid transaction ID (XID) 4
enum msg_type| message type (1 =reply) 4
-
enum reply-stat| reply status(0 = accepted) 4
-
- (enum au th_flavor authentication flavor 4
rpc_msg{} 4 > vexifier length 4
fo?
reply body{}{ & | verf4
o 9 opague body<400> o
° verifier data P
2 400bytes
w
[¢]
[4] L
L © enum accept—stat accept satus(0 = success) | 4
L -

procedure
results

Figure16.32 Successful RPCreply encapsulated asa UDP datagram.

Section 16. 10 Summary 449

The call can be rgected by the server if the RPC verson number iswrong or if an
authentication error occurs.

enum rej ect- stat {
RPC_MISMATCH
AUTH- ERRCR

0, /* RPC version nunber not 2 */
1 /* authentication error */

};

enum aut h- stat {
AUTH_OK = 0, /* success */
/* following are failures at server end */
AUTH_BADCRED 1, /* bad credential (seal broken) */
AUTH_REJECTEDCRED = 2, /[* client nust begin new session */
AUTH_BADVERF , [/* bad verifier (seal broken) */
AUTH_REJECTEDVERF , [* verifier expired or replayed */

3
4
AUTH_TOOWEAK 5 /* rejected for security reasons */
/* following are failures at client end */
6
7

AUTH_INVALIDRESP /* bogus response verifier */
/* reason unknown */

AUTH_FAILED
Y

uni on rejected_reply switch (reject-stat stat) {
case RPC_MISMATCH:
struct {
unsigned int low, /* lowest RPC version # supported */
unsigned int high; /* highest RPC version # supported */
} mismatch-info;
case AUTH- ERROR
aut h- stat stat;

16.10 Summary

Sun RPC allows us to code distributed applicationswith the client running on one host
and the server on another host. Wefirst definethe server proceduresthat theclient can
cdl and then write an RPC specification file that describes the argumentsand return
valuesfor each o these procedures. We then write the client mai n function that cals
the server procedures, and the server proceduresthemsdves. The client code appears
to just call the server procedures, but underneath the covers, network communicationis
taking place, hidden by the various RPC runtimeroutines.

The rpcgen program is afundamental part d building applicationsusing RPC. It
reads our specification file, and generates the client stub and the server stub, aswell as
generating functionsthat call the required XDR runtimeroutinesthat will handleall the
data conversons. The XDR runtime is also a fundamental part o this process. XDR
defines a standard way d exchanging various data formats between different systems
that may have different-sized integers, different byte orders, different floating point for-
mats, and the like. Aswe showed, we can use XDR by itsdlf, independent o the RPC
package, just for exchanging data in a standard format using any form o communica
tionsto actually transfer the data (programswritten using socketsor XIl, floppy disks,
CD-ROMSs or whatever).

450 9N RPC Chapter 16

Sun RPC provides its own form o naming, using 32-bit program numbers, 32-hit
verson numbers, and 32-bit procedure numbers. Each host that runs an RPC sarver
must run a program named the port mapper (now called RPCBIND). RPC servershind
ephemeral TCP and UDP ports and then register with the port mapper to associate
these ephemeral ports with the programs and versions provided by the server. When
an RPC client starts, it contacts the port mapper on the server's host to obtain the
desired port number, and then contacts the server itself, normally using either TCP a
UDP.

By default, no authentication is provided by RPC dlients, and RPC servers handle
any client request that they receive. Thisis the same asif we were to write our omn
client-server using either sockets or XTl. Sun RPC provides three additional formsd
authentication: Unix authentication (providing the client's hostname, user ID, ad
group IDs), DES authentication (based on secret key and public key cryptography), and
Kerberosauthentication.

Understanding the timeout and retransmission strategy o the underlying RPC
packageis essentia to using RPC (or any form d network programming). When ardi-
able transport layer such as TCP is used, only a total timeout is needed by the RPC
client, asany lost or duplicated packets are handled completely by the transport layer.
When an unreliable transport such as UDP is used, however, the RPC package hasa
retry timeout in addition to a total timeout. A transaction ID is used by the RPC dient
to verify that areceived reply istheonedesired.

Any procedurecall can be classified as having exactly-once semantics, at-most-once
semantics, or at-least-once semantics. With loca procedure cdls, we normally ignore
thisissue, but with RPC, we must be aware d the differences, as well as understanding
the differencebetween an idempotent procedure (onethat can be cdled any number d
timeswithout harm) and onethat is not idempotent (and must be called only once).

Sun RPC isa large package, and we have jus scratched the surface. Nevertheless,
given the basics that have been covered in this chapter, complete applications can be
written. Using r pcgen hides many o the details and simplifies the coding. The Sun
manualsrefer to variouslevels d RPC coding—the simplified interface, top leve, inter-
mediate level, expert leve, and bottom level —but these categorizationsare meaning-
less. Thenumber d functionsprovided by the RPC runtimeis 164, with the divison e
follows:

11 auth_ functions (authentication),
26 c1nt_ functions(clientside),
5 pmap_ functions (port mapper access),
24 rpc_functions(generd),
44 sve_ functions(server side), and
B xdr functions (XDR conversions).

Thiscomparesto around 25 functions each for the sockets and XTI APIs, and less then
10 functionseach for the doors APl and the Posix and System V message queue ARS
semaphore APIs, and shared memory APIs. Fifteen functions deal with Posix threeds,
10 functions with Posix condition variables, 11 functions with Posix read—-write locks,
and onefunctionwith fent1 record locking.

Chapter 16

Exercises 451

Exercises

16.1

16.2

16.3

16.4

16.5

16.6

16.7

16.8

16.9

16.10

61

When we start one d our servers, it registersitsalf with the port mapper. But if we termi-
nate it, say with our terminal interrupt key, what happensto thisregistration? What hap-
pensif aclient request arrivesat sometimelater for thisserver?

We have a client-server using RPC with UDP, and it has no server reply cache. The client
sendsa request to the server but the server takes 20 seconds before sending itsreply. The
client times out after 15 seconds, causing the server procedure to be called a second time.
What happensto the server's second reply?

The XDR string datatype is dways encoded as a length followed by the characters.
What changes if we want a fixed-length string and write, say, char c{10] instead o
string s<10>?

Change the maximum size o the string in Figure 16.15 from 128 and 10, and run the
write program. What happens? Now remove the maximum length specifier from the
string declaration, that is, write string vstring arg<> and compare the
data— xdr. cfileto onethat is generated with a maximum length. What changes?

Change the third argument to xdrmem_create in Figure16.18 (the buffer size) to 50 and
seewhat happens.

In Section 16,5, we described the duplicate request cache that can be enabled when UDPis
being used. We could say that TCP maintains its own duplicate request cache. What are
we referring to, and how big is this TCP duplicate request cache? (Hint: How does TCP
detect thereceipt of duplicate data?)

Given thefiveelements that uniquely identify each entry in the server's duplicate request
cache, in what order should thesefivevalues be compared, to requirethe fewest number o
comparisons, when comparing a new regquest to a cache entry?

When watching the actual packetsfor our client—server from Section 16.5 using TCP, the
sized the request segment is48 bytesand the size o the reply segment is 32 bytes (ignor-
ing the IPv4 and TCP headers). Account for these sizes (e.g., Figures 16.30 and 16.32).
What will thesizesbeif we use UDPinstead o TCP?

Can an RPC client on a system that does not support threads call a server procedure that
has been compiled to support threads? What about the differencesin the arguments that
we described in Section 16.2?

In our read program in Figure16.19, we allocate room for the buffer into which thefileis
read, and that buffer contains the pointer vstring— arg. But where is the string stored
that is pointed to by vstring— arg? Modify the program to verify your assumption.

Sun RPC definesthe null procedureas the one with a procedure number o 0 (whichiswhy
we aways started our procedure numbering with 1, asin Figure16.1). Furthermore, every
server stub generated by rpcgen automatically definesthis procedure (whichyou can eas-
ily verify by looking at any o the server stubs generated by the examplesin this chapter).
The null procedure takes no argumentsand returns nothing, and is often used for verify-
ing that a given server is running, or to measure the round-trip time to the server. But if
we look at the client stub, no stub is generated for this procedure. Look up the manual
page for the cint_call function and use it to call the null procedure for any d the
servers shown in this chapter.

452 Sun RRC Chapter 16

16.12 Why doesnoentry exist for amessagesize o 65536for Sun RPC using UDPin Figure A.2?

16.13

Why do no entries exist for message sizesd 16384 and 32768 for Sun RPC using UDPin
Figure A.4?

Veify that omitting the call to xdr - f r ee in Figure 16.19 introduces a memory lesk. Add
the statement

for (; ;) {

immediately before calling xdrmem_create, and put the ending brace immediately
beforethe call to xdr - f r ee. Runthe program and watch its memory size using ps. Then
move the ending brace to follow the call to xdr - f r ee and run the program again, watch-
ingitsmemory size.

Epilogue

This text has described in detail four different techniquesfor interprocesscommunica
tion (IPC):

1 message passing (pipes, FIFOs, Posix and System V message queues),

2. synchronization (mutexes, condition variables, read-write locks, file and record
locks, Posix and System V semaphores),

3. shared memory (anonymous, named Posix, named System V), and
4. procedurecalls(Solaris doors, Sun RPC).

Message passing and procedure calls are often used by themsdves, that is, they nor-
mally providetheir own synchronization. Shared memory, on the other hand, usually
requiressomeform d application-providedsynchronizationtowork correctly. Thesyn-
chronization techniques are sometimes used by themselves; that is, without the other
formsd IPC.

After covering 16 chapters d details, the obvious question is. which form o IPC
should be used to solve some particular problem? Unfortunately, thereis no silver bul-
let regardingIPC. The vast number o different typesd IPC provided by Unix indicates
that no one solution solvesall (or even most) problems. All that you can do is become
familiar with the facilities provided by each form o 1PC and then comparethe features
with the needsd your specificapplication.

Wefirst list four itemsthat must be considered, in case they areimportant for your
application.

1. Networked versus nonnetworked. We assume that this decision has already been
made and that IPC is being used between processesor threadson a single host.

453

454 UNIX Nework Programming Eplogue

if the application might be distributed across multiple hosts, consider usang
socketsinstead 0 1PC, to smplify thelater moveto a networked gpplication.

Portability (recall Figure 1.5). Almost al Unix systems support Posix pipes
Posix FIFOs and Posix record locking. As of 1998, most Unix systems support
System V IPC (messages, semaphores, and shared memory), whereas only afew
support Posix IPC (messages, semaphores, and shared memory). More imple
mentationsd Posx IPC should appear, but it is (unfortunately)an option with
Unix 98. Many Unix systems support Posx threads (which include mutexes
and condition variables) or should support them in the near future. Somesys
temsthat support Posix threadsdo not support the process-shared attributes o
mutexes and condition variables. The read-write locks required by Unix 98
should be adopted by Posx, and many versionsd Unix already support some
type d read-write lock. Memory-mapped I/0 is widespread, and most Urix
systems also provide anonymous memory mapping (either /dev/zero a
MAP—ANON). Sun RPC should be availableon almost all Unix systems, wheress
doorsareaSolaris-only feature(for now).

Performance. f thisisacritical itemin your design, run the programs deve oped
in Appendix A on your own systems. Better yet, modify these programsto sm
ulate the environment d your particular application and measure their pafor-
mancein thisenvironment.

Realtime scheduling. If you need thisfeature and your system supports the Rosx
realtime scheduling option, consider the Posix functions for message pasing
and synchronization (message queues, semaphores, mutexes, and condition
variables). For example, when someone posts to a Posx semaphore on which
multiple threads are blocked, the thread that is unblocked is chosen in a manner
appropriate to the scheduling policiesand parameters d the blocked threads.
System V semaphores, on the other hand, make no such guarantee.

To help understand somed thefeaturesand limitationsd the varioustypesd IPC,
wesummarizesomed the mgor differences:

Pipes and FIFOs are byte streams with no message boundaries. Posx messages
and System V messages have record boundaries that are maintained from the
sender to the receiver. (With regard to the Internet protocols described in
UNPv1, TCPis a byte stream, but UDP provides messages with record bound-
aries.)

Posix message queues can send a signal to a process or initiate a new threed
when a message is placed onto an empty queue. No similar form o natification
is provided for System V message queues. Neither type d message queue can
be used directly with either sel ect or poll (Chapter 6 & UNPv1), dthough
we provided workaroundsin Figure5.14 and Section 6.9.

The bytesd data in a pipe or HFO are first-in, first-out. Posix messages ad
SystemV messageshavea priority that isassigned by the sender. When reading
a Posix message queue, the highest priority message is always returned first.

UNIX Network Programming Epilogue 455

When reading a System V message queue, the reader can ask for any priority
messagethat it wants.

¢ When a messageis placed onto a Posix or System V message queue, or written
to apipeor FIFO, one copy isdelivered to exactly one thread. No peeking capa-
bility exists (similar to the sockets MBG- PEEK flag; Section 13.7 & UNPv1), and
these messagescannot be broadcast or multicast to multiple recipients (asis pos-
sible with sockets and XTI using the UDP protocol; Chapters 18 and 19 o
UNPv1).

e Mutexes, condition variables, and read-write locks are all unnamed: they are
memory-based. They can be shared easily between the different threads within
asingleprocess. They can be shared between different processesonly if they are
stored in memory that is shared between the different processes. Posix
semaphores, on the other hand, comein two flavors. named and memory-based.
Named semaphores can always be shared between different processes (since
they areidentified by Posix IPC names), and memory-based semaphores can be
shared between different processesif the semaphoreisstored in memory that is
shared between the different processes. System V semaphores are also named,
using thekey-t datatype, which is often obtained from the pathname o afile.
These semaphores can be shared easily between different processes.

e« fcntl record locks are automatically released by the kernel if the process hold-
ing the lock terminates without releasing the lock. System V semaphores have
this feature as an option. Mutexes, condition variables, read-write locks, and
Posix semaphores do not havethisfeature.

s Each fcntl lock is associated with some range d bytes (what we called a
""record”)in thefilereferenced by the descriptor. Read-writelocksare not asso-
ciated with any typed record.

e« Posix shared memory and System V shared memory both have kernel persis-
tence. They remainin existenceuntil explicitly deleted, even if they are not cur-
rently being used by some process.

e Thesized a Posix shared memory object can be extended while the object is
being used. Thesized a System V shared memory segment isfixed when it is
created.

e« Thekernel limitsfor thethree typesd System V IPC often require tuning by the
system administrator, because their default values are usually inadequate for
real-world applications (Section 3.8). The kernel limits for the three types o
Posix IPC usually require notuning at all.

« |nformation about System V IPC objects (current size, owner ID, last-
modification time, etc.) isavailablewith acommand d TpC_STAT with thethree
XXXectl functions, and with the i pcs command. No standard way exists to
obtain thisinformation about Posix |PC objects. If the implementation usesfiles
in the filesystem for these objects, then the information is available with the
st at functionor with the 1s command, if we know the mapping from the Posix

456 UNIX Network Programming Eplogue

IPC name to the pathname. But if the implementation does not use files, this
information may not be available.

e O the various synchronization techniques—mutexes, condition variables,
read—write locks, record locks, and Posix and System V semaphores—the anly
functions that can be called from a signal handler (Figure5.10) are sem_post
and fcnt | .

e O the various message passing techniques—pipes, FIFOs, and Posix ad
System V message queues— theonly functions that can be called from a sgnd
handler arer ead andwr i t e (for pipesand FIFOs).

o« O all the message passing techniques, only doors accurately provide thedient's
identity to the server (Section 15.5). In Section 54, we mentioned two other
types of message passing that also identify the client: BSD/OS provides this
identity when a Unix domain socket is used (Section 14.8 of UNPv1), and SVR4
passes the sender's identity acrossa pipe when a descriptor is passed acrossthe
pipe (Section15.3.1 of APUE).

Al

Appendix A

Performance Measurements

Introduction

Inthetext, we have covered six typesd message passing:
* pipes,
e FFOs
¢ Posix message queues,
¢ SystemV message queues,
e doors, and
¢ Sun RPC,

and fivetypesd synchronization:

mutexesand condition variables,
read-writelocks,

fcntl record locking,

Posix semaphores, and

SystemV semaphores.

We now develop some simple programs to measure the performance o these types d
IPC, so we can makeintelligent decisions about when to usea particular form d IPC.

When comparing the different forms o message passing, we are interested in two
measurements.

1 Thebandw dt histhe speed at which wecan move data through the IPC channdl.
To measure this, we send lots o data (millionsd bytes) from one process to
another. We also measurethisfor different sizesd the1/0 operation (writes
and reads for pipes and FIFOs, for example), expecting to find that the band-
width increasesastheamount d data per 1/0 operation increases.

457

458 Peformance Messurements Appendix A

A.2

2. The latency is how long a small IPC message takes to go from one process to
another and back. We measure this as the time for a 1-byte message to go from
one processto another, and back (theround-trip time).

In the real world, the bandwidth tells us how long bulk data takesto be sent acrossan
IPC channel, but IPC isalso used for small control messages, and the time required by
the system to handle these small messagesis provided by latency. Both numbers are
important.

To measure the various forms o synchronization, we modify our program thet
increments a counter in shared memory, with either multiple threads or multiple pro-
cesses incrementing the counter. Since the increment is a simple operation, the time
required isdominated by thetimed thesynchronization primitives.

The simple programs used in this Appendix to measure the various forms o IPC are loosly
based on the Imbench suite benchmarksthat isdescribedin [McVoy and Staglin 1996]. This
isa sophisticated set of benchmarksthat measure many characteristicsdf a Unix system (con+
text switch time, I/0 throughput, etc.) and not just IPC. The sourcecodeis publicly available:
ht t p: // waw. bi t nover . cond | r nbench.

The numbersshown in thisAppendix are provided to let us comparethe techniquesdescribed
in this book. An ulterior motiveis to show how simple measuring these values is. Bdare
making choicesamong the various techniques, you should measure these performancenum
bers on your own systems. Unfortunately, as easy as the numbers are to measure, when
anomaliesare detected, explainingthese is often very hard, without access to the sourcecode
for the kernel or librariesin question.

Results

We now summarize all the results from this Appendix, for easy reference when going
through thevarious programsthat we show.

The two systems used for all the measurements are a SparcStation 4/110 running
Solaris 2.6 and a Digital Alpha (DEC 3000 model 300, Pelican) running Digital Unix
4.0B. Thefollowinglineswereadded to theSolaris /etc/systemfile

set megsys:msginfo_msgmax = 16384

set msgsys:msginfo_msgmnb = 32768
set msgsys:msginfo_msgseg 4096

Thisallows 16384-byte messageson a System V message queue (FigureA.2). Thesame
changeswere accomplished with Digital Unix by specifyingthefollowing linesasinput
totheDigital Unix sysconf i g program:
ipc:
msg-max = 16384
msg-mnb = 32768

Section A.2 Results 459

Message Passing Bandwidth Results

FigureA.2 lists the bandwidth results measured on a Sparc running Solaris 26, and Fig-
ure A.3 graphs these values. Figure A4 lists the bandwidth results measured on an
Alpharunning Digital Unix 4.0B, and Figure A.5 graphs these values.

As we might expect, the bandwidth normally increases as the size o the message
increases. Since many implementationsd System V message queues have small kernel
limits (Section 3.8), the largest message is 16384 bytes, and even for messages o this
size, kernel defaults had to beincreased. The decreasein bandwidth above 4096 bytes
for Solaris is probably caused by the configurationd theinternal message queue limits.
For comparison with UNPv1, we also show the values for a TCP socket and a Unix
domain socket. Thesetwo values weremeasured using programsin thel nbench pack-
age using only 65536-byte messages. For the TCP socket, the two processes were both
on the same host.

Message Passing Latency Results

FigureA.l liststhelatency results measured under Solaris 2.6 and Digital Unix 4.0B.

Latency (micr oseconds)

Pipe Posix |SysemV| Doors |SunRPC|SunRPC| TCP UDP Unix
message | message TCP UbDP socket socket | domain
aueue | gueue socket
Solaris 2.6 324 584 260 121 1891 1677 798 755 465
DUnix 4.0B 574 995 625 1648 1373 848 639 289

FigureAl Latency toexchangea |-bytemessage using variousformsof |PC.

In Section A4, we show the programs that measured the first six values, and the
remaining threeare from the| nbench suite. For the TCP and UDP measurements, the
two processes were on the same host.

460 Performance Measurements AppendixA

Bandwidth (MBytes/sec) !
Pipe Posix System V | Doors SunRPC | SunRPC TCP Unix
Message message | message TCP UDP socket domain
size queue queue ocket
1024 6.3 3.7 49 6.3 0.5 0.5
2048 B7 53 6.3 10.0 0.9 1.0
4096 9.8 8.4 6.6 12.6 1.6 28
8192 12.7 10.2 58 144 24 28
16384 13.1 116 6.1 16.8 32 34
32768 132 134 114 3.5 4.3
65536 137 14.4 12.2 37 13.2 11.3

FigureA.2 Bandwidthfor varioustypesd messagepassing(Solaris 2.6).

17 —
16 —
15—
14 —
13

—17
— 16
—15

14
P

e —
- TCP socket —13
12 T 12

1 Unix domain socket’ —11
10 — —10

Posix mes’j_aﬁe,_q‘_lef € -

bandwidth
(MBytes/sec)

T | [I
1024 40968192 16384 32768 65536

message size (bytes)

FigureA.3 Bandwidthfor varioustypesd messagepassing(Solaris 2.6).

Section A.2 Reaults 461
Bandwidth{MBytes: /sec)
Pipe Posix SyssemV SunRPC SunRPC TCP Unix
Message UDP socket domain
size queue queue socket
1024 99 18 12.7 0.6 06
2048 15.2 35 15.0 08 1.0
4096 17.1 59 211 1.3 18
8192 165 86 17.1 1.8 25
16384 17.3 1n7z 17.3 23
32768 159 14.0 26
65536 14.2 94 28 46 180

bandwidth
(MBytes/sec)

Figure A4 Bandwidthfor varioustypesd messagepassing (Digital Unix 4.0B).

22— — 22
21 System V message queue — 21
20 — — 0
19 — — 19
18 — Unix domain sockete —18
17 — — 17
16— — 16
15— — 15
14 — — 14
13 — — 13
12 —12
1 -1
10 — —10
9_| —9
8— —8
o — 7
6 — — 6
5| —5
TCPsocket.
4] —4
3— [SunRPCUDP _3
2l g st -2
1—d —1
07 | | —°
1024 4096 8192 16384 32768 65536
messagesi ze (bytes)

FigureA5 Bandwidthfor varioustypesd messagepassing (Digital Unix 4.0B).

462 Peformance Messurements Appendix A

Thread Synchronization Results

Figure A.6 lists the time required by one or more threadsto increment a counter that is
in shared memory using various forms d synchronization under Solaris 2.6, and Hg
ure A.7 graphs these values. Each thread increments the counter 1,000,000 times, ad
the number o threadsincrementing the counter varied from onetofive. FigureA.8lids
thesevalues under Digital Unix 4.0B, and FigureA.9 graphs these values.

The reason for increasing the number o threadsisto verify that the code using the
synchronization techniqueis correct and to see whether the time starts increasi ng non
linearly asthe number o threads increases. We can measure f cnt 1 record locking only
for a single thread, becausethisform o synchronization works between processesad
not between multiple threads within a single process.

Under Digital Unix, the times become very large for the two types d PRodx
semaphores with more than one thread, indicating some type o anomaly. We do nat
graph these values.

One possiblereason for these lar ger-than-expectednumber sisthat this program isa pathologi-
cal synchronizationtest. That is, the threads do nothing but synchronization,and the lok is
held essentially all the time. Since the threadsare created with process contention scope, by
default, each timeathread losesitstimedice, it probably holdsthe lock, so the new thread that
isswitched to probably blocksimmediately.

Process Synchronization Results

Figures A.6 and A.7 and Figures A.8 and A.9 showed the measurementsd the various
synchronization techniques when used to synchronize the threads within a single pro-
cess. FiguresA.10 and A.Il show the performanced these techniques under Solaris 26
when the counter isshared between different processes. FiguresA.12 and A.13 show the
process synchronization results under Digital Unix 4.0B. The results are similar to the
threaded numbers, although the two forms o Posix semaphores are now smilar far
Solaris. We plot only the first valuefor f ent1 record locking, since the remaining va-
ues are so large. Aswe noted in Section 7.2, Digital Unix 4.0B does not support the
PTHREAD- PROCESS- SHAREDfeature, so we cannot measure the mutex val ues between
different processes. We again see some type o anomaly for Posix semaphores under
Digital Unix when multiple processesareinvolved.

Section A.2 Reaults 463
Timerequired to increment a counter in shared memory (seconds)
Posix Read-write Posix Posix SystemV | SysemV fentl
mutex lock memory named semaphore | semaphore record
threads semaphore | semaphore with UNDO locking
1 Q7 20 45 54 16.3 21 8.4
2 15 54 9.0 31 35 315
3 22 75 14.4 4.5 483 51.7
4 29 137 182 62.5 65.8 .8
5 37 197 28 76.8 8.8 0.0
Figure A.6 Timerequired toincrement acounter in shared memory (Solaris 2 6).
100 — — 100
90— fent1 record locking t— 90
80 — — 80
timeto = —70
increment
counter 60— e
inshared
memory 50— B
(seconds) 40 |40
30— — 30
20 semaph®®__ -4
10— T . 10
b—-—""d'_'__.-.— d—wﬂ‘-elod(mutex
. i i | e
1 2 3 4 5

number o threads

Figure A7 Timerequiredtoincrement a counter in shared memory (Solaris 2 6).

464 Performance Measurements Appendix A

Time required to incrementacounter in shared memory (seconds)
Posix Read-write Posix Posix SystemV | SystemV fentl
mutex fock memory named | semaphore | semaphore | record
threads semaphore | semaphore withunpo | locking
1 29 129 132 14.2 26.6 46.6 96.4
2 114 40.8 7425 771.6 549 a9
3 284 732 1080.5 1074.7 84.5 1419
4 493 95.0 1534.1 1502.2 1099 188.4
5 67.3 126.3 1923.3 1764.1 137.3 233.6
FigureA.8 Time required toincrement acounter in shared memory (Digital U X 4.0B).
240 — — 240
timeto
increment
counter
inshared
memory
(seconds)
I

1 2 3 4 5
number o threads

FigureA.9 Time requiredtoincrementacounter in shared memory (Digital U X 4.0B).

Section A2 Results 465
Time required to increment a counter in shared memory (seconds)
Posix Read-write| Posix Posix SystemV | SystemV fentl
mutex lock memory named semaphore | semaphore| record
#processes semaphore | semaphore with UNDO locking
1 08 19 136 14.3 173 21 0.7
2 1.6 3.9 292 29.2 349 41.6 2445
3 23 6.4 41.6 429 54.0 60.1 3764
4 3.1 12.2 57.3 58.8 724 819 558.0
5 4.0 204 704 73.5 878 102.6 764.0
FigureA 10 Time required to incrementacounter in shared memory (Solaris 2.6).
100 — —100
90 —¢ £cntl record locking
timeto
increment
counter
inshared
memory
(seconds)
mutex
0
| | | g
i 2 3 4 5

number of processes

FigureAll Time required toincrementacounter inshared memory (Sclaris 2.6).

466 Performance Measurements AppendixA

Timerequired toincrementacounter in shared memory (seconds)
Posix Posix SystemV | System V fentl

memory named semaphore | semaphore record

processes | semaphore | semaphore with UNDO locking
1 128 125 30.1 49.0 9.1

2 664.8 659.2 58.6 95.7 477.1

3 1236.1 1269.8 % .4 146.2 1785.2

4 17729 1804.1 120.3 197.0 2582.8

5 2179.9 2196.8 147.7 250.9 3419.2

FigureA.12 Timerequired toincrementacounter in shared memory (Digital Unix 4.0B).

260 —
240 —
220 —|
200 —
180 —
timeto 160 —
increment 1
counter 140—_
inshared 154 _|
memory i
(seconds) 100—4 f CNt!
| record locking
80— P
60 —] _ - -, =
w0 -7]
<+~
20 — Posix memory semaphore —20
Posix named semaphore B
0 | | | -0

1 2 3 4 5
number o processes

Figure A13 Timerequiredtoincrement acounter inshared memory (Digital Unix 4.0B).

Seition A.3 Messege Pessng Bandwidth Programs . 467

A3 Message Passing Bandwidth Programs

Thissection showsthe three programs that measure the bandwidth d pipes, Posx mes-
sage queues, and System V message queues. We showed the results of these programs
inFiguresA.2and A.3.

Pipe Bandwidth Program

Figure A.14 showsan overview d the program that we are about to describe.

parent child

main() main()

{ {

Pi pe(cont pi pe);

_Pipe (datapipe) ; fork()
if (Fork() ==0) { ———p======"—-c—— - if (Fork() == 0) ¢
witer();
exit (0);
} }
reader ();
exit(0);
} 1
reader () witer()
: { - {
tine Wite (contpipell],), | CoMrd ppe » Read (contpipel[0],) ;
this whi | b #oyt es to send .
function ile (nore to receive) dat a pi pe: whi | e (m)retgsend)
Read(datapipe[0],)& Tia Write(datapipe[1],);

Figure A14 Overvi ewd programto neasur ethe bandwi dt hd a pi pe.

Figure A.15 shows thefirst hdf o our bw_pipe program, which measures the band-
width o apipe.
Command-linearguments

11-15 The command-line arguments specify the number o loops to perform (typically
five in the measurements that follow), the number o megabytes to transfer (an argu-
ment of 10 causes 10X 1024 X 1024 bytesto be transferred), and the number o bytes for
eachw rit e and read (which varies between 1024 and 65536 in the measurementsthat
we showed).

Allocate buffer and touch it

16-17 val | oc isaverson d mal | oc that alocates the requested amount d memory
starting on a page boundary. Our functiont ouch (FigureA.17) stores 1 byte o datain
each page d the buffer, forcing the kernel to page-in each page comprising the buffer.
We do so beforeany timingisdone.

468 Peaformance Messurements Appendix A

18-19

20-31

woNOO abh WN P

10

11
12
13
14
15

16
17

18
19

20
21
22
23
24
25
26
27
28
29
30
31
32

bench/bw_pipe.c
#i ncl ude "unpipc.h" [bw_pip
voi d reader(int, int, int);
voi d writer (int, int);
voi d *buf;
int t ot al nbyt es, xfersize;
int

main(int argc, char **argv)
{

int i, nloop, contpipe([2], datapipel2];
pid_t childpid;
if (argc !'= 4)

err_qguit ("usage: bw_pipe <#loops> <#mbytes> <#bytes/write>");
nl oop = atoi(argv(i]);
total nbytes = atoi(argv[2]) * 1024 * 1024:
xfersize = atoi(argv([3]);

buf = valloc (xfersize);
Touch (buf, Xfersize);

Pipe(contpipe) ;
Pipe(datapipe) ;

if ((childpid = Fork()! == QL {
writer (contpipe[0], datapipe[1]); /*chil d*/
exit(0);
}
/* parent */
Sart-tine();
for (i = 0; i < nloop; i++)
reader (contpipe([1l], datapipe[0] total nbytes);
printf ("bandwidth: %.3f MB/sec\n",
total nbytes / Stop-tinme0 * nl oop);
kill(childpid, Sl GTERV);
exit(0);
}

bench/bw_pipec
Fgure Al5 mai nfuctionto neasur ethe bandw dthd api pe

val | ocis nat pat d Posix.1andisliged as a™legecy” inafae by Ui x B it was reqired
by an exrlier versiond the X/Open speci fi cati anbut is nowopti ad . Qur Valloe wapper
fuctionclsnal | ocif val | ocisnat support ed.

Create two pipes

Two pipes are created: contpipel[0] and contpipe[1] are used to synchronize

the two processes at the beginning o each transfer, and datapipel[0] ad
datapipe[1] are used for theactual datatransfer.

f or k to createchild

A child processiscreated, and the child (areturn valued 0) callsthewriter func

tion while the parent callsthe reader function. The reader function in the parentis

Sation A3 Messsge Pasing Bandwidth Programs 469

33-44

45-54

caled nl oop times. Our start - ti me function is called immediately before the loop
begins, and our st op- ti ne function is called as soon as the loop terminates. These
two functionsare shown in FigureA.17. Thebandwidth that is printed isthe total num-
ber of bytes transferred each time around the loop, divided by the time needed to trans-
fer the data (stop-tine returns this as the number o microseconds since
start - ti me was caled), times the number o loops. Thechild isthen killed with the
SIGTERM signal, and the program terminates.

The second hdf o the program isshown in Figure A.16, and containsthe two func-
tionswri t er andr eader .

bench/bw_pipe.c

33 void [bw_pip

34 writer(int contfd, int datafd)

35 {

36 int ntowite;

37 for (; ;) (

38 Read (contfd, &ntowrite, sizeof (ntowrite));

39 while (ntowite > 0) {

40 Write(datafd, buf, xfersize);

41 ntowite -= xfersize;

42 }

43 }

44 }

45 void

46 reader (int contfd, int datafd, int nbytes)

47 {

48 ssize t n;

49 Write(contfd, &nbytes, sizeof (nbytes));

50 while ((nbytes > 0) &&

51 ((n = Read(datafd, buf. xfersize)) > 0)) {

52 nbytes -= n;

53 }

54 } .
bench/bw_pipe.c

Fgure A16 writer and reader functionsto measurebandwidthof a pipe.

wr it er function

Thisfunctionisaninfiniteloop that is called by the child. It waitsfor the parent to
say that it is ready to receive the data, by reading an integer on the control pipe that
specifies the number o bytes to write to the data pipe. When this notification is
received, the child writes the data across the pipe to the parent, xf er si ze bytes per
wite.

r eader function

Thisfunction is called by the parent in aloop. Each time the function is called, it
writes an integer to the control pipe telling the child how many bytes to write to the
pipe. Thefunctionthencallsr ead inaloop, until all the data hasbeen received.

470

Performance M easur ements

Appendix A

Qur start-tine stop-tine, andt ouch functionsareshownin FigureA.17.

1 #include "unpipc.h”

2 static struct tineval tv_start, tv_stop;
3int

4 start_time(void)

5 {

6 return (gettimeofday(&tv_start, NULL));
7}

8 doubl e

9 stop-tine(void)

10 {

11 doubl e clockus;

12 if (gettimeofday(&tv_stop, NULL) == -1)
13 return (0.0);

14 tv_sub(&tv_stop, &tv_start);

15 clockus = tv_stop.tv_sec * 1000000.0 + tv_stop.tv_usec;
16 return (clockus);

17)

18 int

19 touch(void *vptr, int nbytes)

20 {

21 char *cptr;

22 static int pagesize = O;

23 if (pagesize == 0) {

24 errno = O;
25 #ifdef _SC_PAGESIZE
26 if ((pagesi ze = sysconf(_SC_PAGESIZE)) == -1)
27 return (-1);

28 #else

29 pagesize = getpagesize(); /* BSD */
30 #endif
31 }
32 cptr = vptr;
33 whil e (nbytes > 0) {

34 *cptr = 1;

35 cptr += pagesi ze;

36 nbyt es -= pagesi ze;
37 }
38 return (0);

39 }

lib/timing.c

FgreAl7 Timngfuctions:start-t ime,st op-ti ne, and t ouch.

lib{timing.c

SectionA.3 Message Passing Bandwidth Programs 471

The tv_sub functionisshown in Figure A.18; it subtractstwot i neval structures,
storing theresult in thefirst structure.

lib/tv_sub.c
1 #include "unpipc.h”
2 void
3 tv_sub(struct timeval *out, struct timeval *in)
4 {
5 if ({out->tv_usec -= in->tv_usec) < 0) { /* out -=in */
6 --out->tv_sec;
7 out->tv_usec += 1000000;
8 }
9 out->tv_sec -= in->tv_sec;
10 }

lib/tv_sub.c

FigureA.18 tv_sub function: subtract two timeval structures.

On aSparc running Solaris 2.6, if werun our program fivetimesin arow, weget

solaris % bw_pipe 5 10 65536
bandwidth: 13.722 MB/sec
solaris % bw_pipe 5 10 65536
bandwidth: 13.781 MB/sec
solaris % bw_pipe 5 10 65536
bandwidth: 13.685 MB/sec
solaris % bw_pipe 5 10 65536
bandwidth: 13.665 MB/sec
solaris % bw_pipe 5 10 65536
bandwidth: 13.584 MB/sec

Each time we specify five loops, 10,485,760 bytes per loop, and 65536 bytesper wi t e
and read. Theaverage d thesefive runsis the 13.7 MBytes/sec value shown in Fg-
ureA2

Posix Message Queue Bandwidth Program

Figure A.19 is our mai n program that measures the bandwidth o a Posx message
queue. Figure A.20 showsthewr it er and r eader functions. Thisprogramissimilar
to our previous program that measuresthe bandwidth d a pipe.

Note that our program must specify the maximum number d messages that can exist on the
queue, when we create the queue, and we specify thisasfour. The capecity d thelPC channel
can affect the performance, because thewriting process can send thismany messagesbeforeits
call tomg_send blocks, forcing a context switch to the reading process. Therefore, the perfor-
mance d this program depends on this magic number. Changing this number from four to
eight under Solaris 2.6 had no effect on the numbersin Figure A.2, but thissame change under
Digital Unix 4.0B decreased the performanceby 12%. We would have guessed the perfor-
mancewould increasewith alarger number of messages, because thiscould halvethe number
o context switches. But if a memory-mapped fileis used, thisdoublesthesized that fileand
theamount o memory that i Ssmmaped.

472 Peaformance Measurements Appendix A

o~N O AW N

9
10
11
12
13

14
15
16
17
18

19
20

21
22
23
24
25

26
27
28
29
30
31
32
33
34
35

36
37
38
39
40

#i nc
#def

voi d
voi d
voi d
int

int

- bench[bw_pxmsg.c
| ude "unpi pc.h"

i ne NAME "bw_pxmsg"

reader (int, magd_t, int):
writer (int, MQd_t);

*buf;
t ot al nbyt es, xfersi ze;

main(int argc, char **argv)

{

}

int i, nloop, contpipel2];
mad_t mng;

pid_t chi | dpi d;

struct mg attr attr;

if (argc '= 4)
err_quit ("usage: bw_pxmsg <#loops> <#mbytes> <#bytes/write>");
nl oop = atoi(argv[1]):;
total nbytes = atoi(argvi2]) * 1024 * 1024
xfersi ze = atoi(argv([3]);

buf = Valloc(xfersize);
Touch (buf, xfersize);

Pi pe(cont pi pe);

mg_unlink (Px_ipc_name (NAME)) ; /* error &K */

attr.mg _maxmsg = 4;

attr.mg msgsize = Xfersize;

Ny = Mg _open(Px_ipc_name (NAME), O_RDWR | O_CREAT, FlLE- MODE, &attr);

if ((childpid = Fork()) == 0) (
writer (contpipel0], NU); /* child */
exit (0);
}
/* parent */
Sart-tine();
for (i = 0; i < nloop; i++)
reader (contpipell], ny, total nbytes);
printf("bandwidth: %.3f MB/sec\n",
total nbytes / Sop-tine() * nloop);

kill(childpid, Sl GTERV);

Mg close(mq) ;

Mg unlink (Px_ipc_name(NAME));

exit(0):

bench/bw_pxmsg.c

Hgure A19 mai nfuncti onto neasur ebandw dt hd a Posix nessagequeue.

Section A.3 Message Passing Bandwidth Programs 473

bench/bw_pxmsg.c
41 voi d —pamsg
42 writer (int contfd, mgd_t ngsend)
43 {
44 int ntowite;
45 for (; ;) {
46 Read (contfd, &ntowrite, sizeof(ntowrite));
47 while (ntowite > 0) {
48 Mg_send(ngsend, buf , xfersize, 0);
49 ntowite -= xfersize;
50 }
51 }
52 1}
53 void
54 reader(int contfd, mgd_t nmgrecv, int nbytes)
55 {
56 ssize_t n;
57 Write(contfd, &nbytes, sizeof (nbytes));
58 while ((nbytes > 0) &&
59 ((n = Mg_receive (mgrecv, buf, xfersize, NULL)) > 0)) {
60 nbytes -= n;
61 }
62 ¥ bench/bw_pxmsg.c

FigureA.20 writer andreader functionstomeasurebandwidthd aPosix messagequeue.

System V Message Queue Bandwidth Program

Figure A.21 isour main program that measures the bandwidth of a System V message
queue, and Figure A.22showsthew r i t er and reader functions.

= bench[bw_svmsg.c
1 #include "unpipec.h"

2 void reader (int, int, int);

3 void witer(int, int);

4 struct nsgbuf *buf;

5 int t ot al nbyt es, xfersize;

6 int

7 main(int argc, char **argv)

8 {

9 int i, nloop, contpipef2], nsqid;

10 pid_t chi | dpi d;

11 if (argc !'= 4)

12 err_quit ("usage: bw_svmsg <#loops> <#mbytes> <#bytes/write>");
13 nl oop = atoi(argvill):
14 total nbytes = atoi(argv[2]) * 1024 * 1024,

15 xfersize = atoi(argvi3]);

474 Performance Measurements Appendix A

16 buf = valloc(xfersize);
17 Touch (buf, xfersize);
18 buf ->mtype = 1;
19 Pipe(contpipe) ;
20 nsqi d = Msgget (IPC_PRIVATE, IPC_CREAT | SVMSG_MODE);
21 if ((childpid = Fork{)) == 0) {
22 witer(contpipel[0], msgid); /* child */
23 exit (0);
24 }
25 Sart-tine():
26 for (i = 0; 1 < nloop; i++)
27 reader (contpipe[1], nsqi d, total nbytes);
28 printf ("bandwidth: %.3f MB/sec\n",
29 total nbytes / Stop-tine0 * nl oop);
30 ki l'l (childpid, Sl GTERM ;
31 Msgetl (msgid, IPC_RMID, NULL);
32 exit(0);
33)
bench[bw_svmsg.c
FigureA.21 mai nfuncti onto neasur e bandw dt h d a Syst emV nessage queue.
- bench/bw_svmsg.c
34 voi d
35 writer(int contfd, int nsqid)
36 {
37 int ntowite;
38 for ¢ ; ; ¥ {
39 Read(contfd, &ntowrite, sizeof(ntowrite));
40 while (ntowite > 0) {
41 Msgsnd (msgid, buf, xfersize - sizecf(long), 0);
42 ntowite -= xfersize;
43 }
44 }
45 '}
46 voi d
47 reader(int contfd, int nsqgid, int nbyt es)
48 {
49 ssize_t n;
50 Write(contfd, &nbytes, sizeof (nbytes));
51 while ((nbytes > 0) &
52 ({n = Msgrcv(msaqid, buf, xfersize - sizeof(long), 0, 0)) > 0)) {
53 nbytes -= n + sizeof(long);
54 }
55 }

bench/bw_svmsg.c
FigureA.22 writ er and r eader functi onsto neasur e bandw dt h d aSyst emV nessage queue.

Sedion A.3 Mesge Pasing Bandwidth Programs 475

Doors Bandwidth Program

Our program to measure the bandwidth d the doors AP is more complicated than the
previous onesin thissection, becausewe must f or k before creating the door. Our par-
ent createsthe door and then notifiesthe child that the door can be opened by writing
toapipe.

Another changeisthat unlike Figure A.14, the reader functionis not receiving the
data. Instead, the data is being received by afunction named server that isthe server
procedurefor the door. Figure A.23showsan overview o the program.

parent child

main() main()

({

Pipe(contpipe) ;
if (Fork() ==0) { ————F—-—--—-ccemm-—— t= i f (Fork() == 0) {
Read(cont pi pel[01,);
doorfd = Open();

witer();
exit (0);
} }
doorfd = Door-create();
Fattach(); 1
Write(contpipelll, }; /
reader {);
exit(0);
t }
- -
server () \2/r|ter()
doors e \ da Read (contpipe[0].):
fa L)
server va\ﬁietng(gfon(tjati a)e[O] I // while (nore to send);
procedure prp) T Write(datapipel[l]l,):
Door - return{); A T Door-call ():
- : q‘l‘é‘pg }
r reader () L
time (
thisq Write(contpipe(1], 1;//
function Read(cont pi pe[1],) ;-w—-
1
N

Figure A.23 Overview o programto measurethe bandwidthd thedoorsAPI.

Since doors are supported only under Solaris, we simplify the program by assuming a
full-duplex pipe (Section4.4).

Another changefrom the previous programsis the fundamental difference between
message passing, and procedure caling. In our Posix message queue program, for
example, the writer just writesmessagesto aqueuein aloop, and thisisasynchronous.
At some point, the queue will fill, or the writing process will lose its time dice of the
processor, and the reader runs and reads the messages. If, for example, the queue held

476 Peaformance Messuraments Appendix A

eight messages and the writer wrote eight messages each time it ran, and the reader
read all eight messageseach timeit ran, to send N messageswould involveN /4 context
switches (N/8 from the writer to the reader, and another N/8 from the reader to the
writer). But the doors APl is synchronous: the caller blocks each time it cdls
door — call and cannot resumeuntil theserver procedure returns. To exchangeN mes
sages now involves Nx2 context switches. We will encounter the same problem when
we measure the bandwidth d RPC cdls. Despite the increased number o context
switches, note from Figure A.3 that doors provide the fastest IPC bandwidth up
through a messagesized around 25000 bytes.

Figure A.24 shows the main function o our program. Thewriter, server, ad
reader functionsareshownin Figure A.25.

Sun RPC Bandwidth Program

Since procedure calls in Sun RRC are synchronous, we have the same limitation that we
mentioned with our doors program. It is also easier with RPC to generate two pro-
grams, aclient and aserver, because that iswhat rpcgen generates. Figure A.26 shows
the RPC gpecificationfile. We declarea single procedure that takes a variable-length d
opaguedataasinput and returnsnothing.

Figure A.27 shows our client program, and Figure A.28 shows our server proce
dure. We specify the protocol (TCP or UDP) asa command-lineargument for the diernt,
alowing usto measureboth protocols.

Section A.3 Message Passing Bandwidth Programs 477
bench bw_door.c
1 #i ncl ude *"unpipc.h"
2 void reader (int, int);
3 void witer (int);
4 void server{void *, char *, size-t, door_desc_t * size-t);
5 void *buf;
6 int total nbytes, xfersize, contpipel2];
7 int
8 main(int argc, char **argv)
9 {
10 int i, nloop, doorfd,
11 char c;
12 pid_t chil dpid;
13 ssize_t n;
14 if (argc != 5)
15 err_quit ("usage: bw_door <pathname> <#loops> <#mbytes> <#bytes/write>");
16 nl oop = atoi (argvi2]);
17 total nbytes = atoi(argvi31) * 1024 * 1024,
18 xfersize = atoi(argvid]);
19 buf = valloc(xfersize):
20 Touch(buf, xfersize):;
21 unlink(argv[1]) ;
22 Close(Open(argv[1], O_CREAT | O_EXCL | O_RDWR, FILE- MIE));
23 Pi pe(contpipe) ; /* assunes ful | -dupl ex SVR4 pi pe */
24 if ((childpid = Fork{)) == 0) {
25 /*child =client =witer */
26 if ((n = Read(contpipel0], &c, 1)) != 1)
27 err_quit("child: pipe read returned %d", n);
28 doorfd = open(argv[l}, O_RDWR);
29 writer (doorfd) ;
30 exit(0);
31 }
32 /* parent = server = reader */
33 doorfd = Door_create(server, NULL, 0);
34 Fattach(doorfd, argvI[l]);
35 Write(contpipelll, &c, 1); /* tell child door is ready */
36 Start-tine{);
37 for (i = 0; i < nloop; i++)
38 reader (doorfd, total nbytes);
39 printf ("bandwidth: %.3f MB/sec\n",
40 total nbytes / Stop-tine() * nloop);
41 ki I'l (chil dpi d, SIGTERM);
42 unl i nk (argvI1]) ;
43 exit(0) ;
44 3

bench/bw_door.c
Fgure A.24 nmai nfuncti onto neasur ethe bandw dt h o thedoors AR .

478 Peaformance Measurements Appendix A

bench/bw_doorc

45 voi d

46 witer(int doorfd)

47 {

48 int ntowite;

49 door_arg_t arg;

50 arg.desc_ptr = NULL; /* no descriptors to pass */
51 arg. desc_num = 0O;

52 arg.rbuf = NULL; /* no return val ues expected */
53 arg.rsize = O;

54 for (; ;) {

5% Read(contpipel[0], &ntowrite, sizeof (ntowrite));

56 while (ntowite > 0) {

57 arg.data_ptr = buf;

58 arg.data_size = xfersize

59 Door_call (doorfd, &arg):;

60 ntowite -= xfersize;

61 }

62 }

63 }

64 static int ntoread, nread;

65 voi d

66 server(void *cooki e, char *argp, sSize-t arg-size,

67 door_desc_t *dp, Size-t n_descriptors)

68 {

69 char c;

70 nread += arg_size;

71 if (nread >= ntoread)

72 Write (contpipel[0], &c, 1); [/* tell reader0O we are all done */
73 Door - return(NULL, 0, NULL, 0);

74 1}

75 voi d

76 reader(int doorfd, int nbytes)

77 {

78 char c;

79 ssize_t N;

80 ntoread = nbytes; /* globals for server0 procedure */
81 nread = O;

82 Write(contpipel(ll, &nbytes, sizeof(nbytes));

83 if ((n = Read(contpipelll, &c, 1)) 1= 1)

84 err_quit ("reader: pipe read returned %da", n);
85 1}

benchV bw_door.c
FigureA.25 writer,server, andreader functionsfor doorsAPI bandwidth measurement.

SectionA.3

Message Passing Bandwidth Programs 479

bench/bw_sunrpc.x

1 %tdefi ne DEBUG /* so server runs in foreground */

2 struct data-in {

3 opaque data<>; /* vari abl e-1 engt h opaque data */

4);

5 program BW_SUNRPC_PROG {

6 ver si on BW_SUNRPC_VERS {

7 voi d BW_SUNRPC(data-in) = 1;

8 } = 1;

9 3 = 0~31230001; bench[bw_sunrpc.x

FgueA26 RPCspedificaianfilefa our bandw dt h neasur enent sd Sun RPC.

o~N OO0 AW N

=
(=]

e e e
oOn s WN e

=
m -]

=
\o

W W BB RN R RN NN
BN O WD =1 Um s W RO

33
34

bench/bw_sunrpc_client.c
#include "unpipc.h"

#include "bw_sunrpc.h”

voi d *buf;
int t ot al nbyt es, xfersi ze;
int
main(int argc, char **argv)
{
int i, nloop, ntowrite;
CLI ENT =*c1;
data-in in;

if (argc '= 6)
err_quit ("usage: bw_sunrpc_client <hostname> <#loops>"
v <#mbytes> <#bytes/write> <protocol >");
nl oop = atoi(argvl2}l);
total nbytes = atoi(argv[3]) * 1024 * 1024;
xfersize = atoi(argv[4]);

buf = valloc(xfersize);
Touch (buf, xfersize);

cl = clnt_create(argv[1l], BW_SUNRPC_PROG, BW_SUNRPC_VERS, argvI[5]);

Sart-tine();
for (i = 0; i < nloop; i++) {
ntowite = total nbytes;
while (ntowite > 0) {
in.data.data_len = xfersize;

in.data.data_val = buf;
if (bw_sunrpc_1(&in, cl) == NULL)

err _quit("%$s", clnt_sperror(cl, argv[l])):
ntowite -= xfersize;

}
}
printf (*bandwidth: %.3f MB/sec\n",
total nbytes / Stop-tine() * nl oop):
exit(0);

bench{bw _sunrpc_client.c
Fgure A27 RPCdiat programfa bandw dt h neasur enent .

480 Pafomance Messuraments Appendix A

- p bench/bw_sunrpc_serverc
#include "unpipc.h"

#include "bw_sunrpc.h"

VI

#ifndef RPCGEN_ANSIC
#define bw_sunrpc_1l_ svc bw_sunrpc_1l
#endif
void *
bw_sunrpc_1_svc(data_in

{

* inp, struct svc_req *rgstp)

©Cow~No vk w

static int nbytes;

10 nbytes = inp->data.data_len;
11 return (&nbytes); /* must be nonnul |, but xdr_void() will ignore *|
12)

bench [bw_sunrpc_server.c
Figure A.28 RPCserver procedurefa bandw dt h neasur enent .

A4 Message Passing Latency Programs

We now show the three programs that measure the latency o pipes, Posix message
queues, and System V message queues. The performancenumberswere shown in Hg-
ureA.l.

Pipe Latency Program

The program to measurethelatency d a pipeisshownin Figure A.29.
doit function

2-9 Thisfunction runsin the parent and itsdock timeis measured. It writes1 bytetoa
pipe (thatis read by the child) and reads1 bytefrom another pipe (that iswritten to by
thechild). Thisiswhat we described as the latency: how long it takes to send a andl
messageand receiveasmall messagein reply.

Createpipes

19-20 Two pipes are created and f or k createsa child, leading to the arrangement shown
in Figure 4.6 (but without the unused ends o each pipe closed, which is OK). Two
pipesare needed for thistest, since pipesare haf-duplex, and we want two-way com-
munication between the parent and child.
Chiid echoes 1-byte message

22-27 Thechildisan infiniteloop that readsa1-byte messageand sendsit back.
Measure parent

29- 34 The parent first calls the doit function to send a 1-byte message to the child ad
read its 1-byte reply. This makes certain that both processes are running. The doit
function isthen caled in aloop and thecdock timeismeasured.

Section A.4

Message Passing Latency Programs 481

1 #include "unpipc.h"

2 void

3 doit(int readfd, int witefd)

4 {

5 char c;

6 wite(witefd, &, 1);

7 if (Read(readfd, &c, 1) i= 1)

8 err_quit("read error");

9 1}

10 int

11 main(int argc, char **argv)

12 %

13 int i, nloop, pipel[2], pipe2(2];
14 char C;

15 pid_t childpid;

16 if (argc != 2)

132 err_quit("usage: | at qi pe <#loops>");
18 nl oop = atoi(argvil});

19 Pi pe(pipel) ;

20 Pi pe(pi pe2):

21 if ((childpid = Fork()) == 0) {

22 for (; ;) { [* child */
23 if (Read(pipell0], &c, 1) != 1)
24 err_quit("read error");

25 Write(pipe2{1l], &c, 1);

26 }

27 exit(0);

28 }

29 /* parent */

30 doit(pipe2[0}, pipellll);

31 Start_time () ;

32 for (i = 0; i < nloop; i++)

33 doit (pipe2[0], pipellll);

34 printf("latency: %.3f usec\n", Stop-tinme0 / nloop);
35 Kill(childpid, S GI'EHV))

36 exit(0);

37 1

FigureA.29 Programto measurethelatency o a pipe.

bench/lat_pipe.c

bench/lat_pipe.c

482 Peaformance Messuraments Appendix A

On aSparc running Solaris 2.6, if we run the program fivetimesin arow, we get

solaris % latgipe 10000
latency: 278.633 usec
solaris % latgipe 10000
latency: 397.810 usec
solaris % latgipe 10000
latency: 392.567 usec
solaris % latgipe 10000
latency: 266.572 usec
solaris % latgipe 10000
latency: 284.559 usec

Theaveraged thesefiverunsis 324 microseconds, which weshow in Figure A.1l. These
timesinclude two context switches (parent-to-child, then child-to-parent), four system
cdls(write by parent, read by child, write by child, and read by parent), and the
pipeoverhead for 1 byted datain each direction.

Posix Message Queue Latency Program

Our program to measurethelatency o a Posix message queueisshownin Figure A.30.

25-28 Two message queues are created: oneis used from the parent to the child, and the
other from the child to the parent. Although Posix messages have a priority, dlowing
us to assign different priorities for the messages in the two different directions,
mg_receive aways returnsthe next message on the queue. Therefore, we cannot use
just onequeuefor thistest.

System V Message Queue Latency Program

Figure A.31 shows our program that measures the latency d a Sysem V messge
queue.

Only one message queue is created, and it contains messages in both directions:
parent-to-child and child-to-parent. The former have a type fidd o 1, and the later
haveatypefidd d 2. Thefourth argument to msgrcv in doit is2, to read only mes
sages d thistype, and the fourth argument to msgrcv in the child is1, to read only
messagesd thistype.

In Sections9.3 and 11.3, we mentioned that many kernel-definedstructurescannot be saicaly
initialized becausePosix.1 and Unix 98 guaranteeonly that certain membersare present in the
structure. These standards do not guaranteethe order o these members, and the structures
might contain other, nonstandard, memberstoo. But in this program, we staticaly initidize
the msgbuf structures, because System V' message queues guarantee that this structure cort
tainsa l ong messagetypefield followed by the actual data.

1 #include *unpipc.h" bench[lat_pxmsg.c
2 #define NAMEL "lat_pxmsgl”

3 #define NAME2 "lat_pxmsg2"

4 #define MAXMSG 4 /* room for 4096 bytes on queue */

5 #define MSGSIZE 1024

SctionA.4

Message Passing Latency Programs 483

O o ~NO

11
12
13

14
15
16
17
18
19
20
21

22
23
24

25
26
27
28

29
30
31
32
33
34
35
36
37
38

39
40
41
42

43
44
45
46
47
48
49

voi d

doit (mgd_t nysend, mgd_t nyrecv)

{

}

int

char buff [MSGSIZE] ;

Mqg_send(ngsend, buff, 1, 0);
if (Mg _receive(ngrecv, buff, MSGS|I ZE, NULL) !'= 1)
err-quit ("mg_receive error"):

main(int argc, char **argv)

{

int i, nloop;
mgd_t myl, nmy2;
char buff[MSGSIZE];

pid_t chi | dpi d;
struct mg_attr attr;

if (argc '= 2)
err_guit ("usage: lat_pxmsg <#loops>");
nl oop = atoi(argv[ll):

attr.mg maxmsg = MAXMSG;

attr.mg_msgsize = NMBGSI ZE;

nyl = Mg_open(Px_ipc_name (NAMEL), O_RDWR | O_CREAT, FlLE- MDE, &attr};
NY2 = Mg _open (Px_ipc_name (NAME2), O_RDWR | O_CREAT, F|ILE- MDE, &attr);

if ((childpid = Fork()) == 0) {
for (;) { [* child */
if (Mg _receive(mgl, buff, MBGSI ZE, NULL) != 1)
err_quit("mg receive error");
Mg send(mg2, buff, 1, 0);
}
exit(0);
}
/* parent */
doit(mgl, mg2);

Start-tine();
for (i = 0; i < nloop; i++)
doit (mgl, mg2);
printf("latency: %.3f usec\n", Stop-tinme0 / nl oop);

Kill(childpid, SIGTERM);

Mg _close(mgl) ;

Mg_close(mg2) ;

Mg _unlink (Px_ipc_name (NAMEL1)) ;
Mg _unlink (Px_ipc_name (NAME2)) ;
exit(0);

bench/lat_pxmsg.c
FigureA.30 Program to measurethelatency of a Posix messagequeue.

484 Paformance Messuraments Appendix A

bench[lat_svmsg.c

1 #i ncl ude "“unpipc.h"

2 struct nsgbuf p2child = { 1, { 0} }; /* type = 1 */
3 struct nsgbuf child2p = { 2, { 0} }; /* type = 2 */
4 struct nsgbuf i nbuf ;

5 void

6 doit(int nsgid)

7t

8 Msgsnd (msgid, &p2child, 0, 0);

9 if (Msgrev(msgid, &inbuf, sizeof (inbuf.mtext), 2, 0) != 0)
10 err_quit ("msgrcv error");

11 1

12 int

13 main(int argc, char **argv)

14 {

15 int i, nl oop, msgid;

16 pid_t chi | dpi d;

17 if (argc 1= 2)

18 err_quit ("usage: lat_svmsg <#|l oops>");

19 nl oop = atoi(argvii]);

20 nmsgi d = Msgget (IPC_PRIVATE, IPC_CREAT | SVMSG_MODE);
21 if ((childpid= Fork()) == 0) ¢

22 for (; ;) { /* child */

23 if (Msgrcv(msgid, &inbuf, sizeof(inbuf .mtext), 1, 0) != 0)
24 err_quit ("msgrcv error");

25 Msgsnd (msgid, &child2p, 0, 0);

26 1

27 exit(0);

28 1

29 /* parent */

30 doit(nsgi d);

31 Sart-tine();

32 for (i = 0; i < nloop; i++)

33 doi t(nsqi d) ;

34 printf("latency: %.3f usec\n", Stop-tinmeO / nloop);
35 Kill(childpid, SI GIERV);

36 Msgct | (msgi d, IPC_RMID, NULL);

37 exit(0):;

38 1

bench [lat_svmsg.c
FigureA3l Programto neasur ethel aercy d aSyst emV nessage queue.

Doors Latency Program

Our program to measure the latency o the doors APl is shown in Figure A.32. The
child creates the door and associates the function ser ver with the door. The parent
then opensthe door and invokesdoor - cal | in aloop. Onebyted datais passed as
an argument, and nothingisreturned.

Section A4

Message Passing Latency Programs 485

10
11
12
13
14
15

16
17
18

19
20
21

22
23
24
25

26
27
28
29
30
31
32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
a7

#i ncl ude "unpi pc.h"

voi d
server (void *cooki e, char *argp, size-t arg_size,
door_desc_t *dp, Size-t n_descriptors)

{

1

int

char C;

Door - return(&c, sizeof(char), NULL, 0):

main{int argc, char **argv)

{

int

i, nloop, doorfd, contpipel2];

char c;
pid_t chi | dpi d;
door_arg_t arg;

if (argc '= 3)

err_quit ("usage: lat_door <pathname> <#loops>"});

nl oop = atoi(argvi2]);

unlink(argv[1]});

Close (Open(argv[l], O_CREAT | O_EXCL | O_RDWR, FILE- MIE));

Pipe (contpipe);

if

1

arg.
arg.
arg.
arg.
arg.
arg.

if

((childpid = Fork()) == 0) {

doorfd = Door_create(server, NJUL, 0):
Fattach(doorfd, argvl[ill):
Write(contpipelll, &c, 1);

for (; ;) /* child = server */
pause () ;

exit(0);

data_ptr = &c; /* parent = client */

data_size = sizeof (char);

desc_ptr = NULL;
desc_num = 0O;

rbuf = &c;

rsize = sizeof (char);

err_quit ("pipe read error");

doorfd = Open(argv[l], O_RDWR);

Door_call (doorfd, &arg):

Sart-tine();

for

printf("latency: %.3f usec\n", Sop-tinme() / nloop);

(i =0; i < nloop; i++)
Door_call (doorfd, &arg):;

Ki Il (chil dpid, SIGTERM):
unl i nk (axrgv[1]);
exit(0) ;

/* once to start everything */

FigureA.32 Programtomeasurethelatency of thedoorsAPL

bench/lat_door.c

(Read (contpipel[0], &c, 1) != 1) /* wait for child to create */

bench/lat_door.c

48 Paformance Measurements Appandix A

Sun RPC Latency Program

AS

To measure the latency o the Sun RPC AR, we write two programs, a client and a
server (similar to what we did when we measured the bandwidth). We use the same
RPC gpecification file (Figure A.26), but our client calls the null procedure this time
Recdl from Exercise 16.11 that this procedure takes no argumentsand returns nothing,
which is what we want to measurethe latency. Figure A.33 showstheclient. Asin the
solution to Exercise16.11, we must call clnt_call directly to cdl the null procedure; a
stub functionis not provided in the client stub.

bench/lat_sunrpc_client.c

1 #include "unpipc.h"

2 #include "lac_sunrpc.h"

3int

4 main(int argc. char **argv)

5

6 int i, nloop;

7 CLI ENT *cl1;

8 struct tineval tv;

9 if (argc = 4)

10 err_qguit ("usage: lat_sunrpc_client <hostname> <#loops> <protocol >");
11 nl oop = atoi(argv([2]);

12 cl = Clnt_create(argv([l], BW_SUNRPC_PROG, BW_SUNRPC_VERS, argv[3]):
13 tv.tv_sec = 10;

14 tv.tv_usec = 0;

15 Start-tine();

16 for (i = 0; i < nloop; i++) {

17 if (eclnt_call(cl, NULLPROC, xdr-void, NULL,

18 xdr-void, NULL, tv) != RPC_SUCCESS)
19 err_quit("%s", clnt_sperror(cl, argv[1l]});

20 }

21 printf("latency: %.3f usec\n", Stop-tine0 / nloop);
22 exit(0);

23 }

bench/lat_sunrpc_client.c
FigureA.33 Sun RPC dlient for latency measurement.

We compile our server with the server function from Figure A.28, but that function
isnever called. Sincewe used rpcgen to build the client and server, we need to define
at least one server procedure, but we never cdl it. Thereasonwe used rpcgen isthat it
automatically generatesthe server main with the null procedure, which we need.

Thread Synchronization Programs

To measure the time required by the various synchronization techniques, we cregte
some number o threads (oneto five for the measurements shown in Figures A.6 and
A.8) and each thread incrementsa counter in shared memory a large number d times
using thedifferent forms o synchronizationto coordinateaccessto the shared counter.

Section A5 Thread Synchronization Programs 487

Posix Mutex Program

Figure A.34 showsthe global variablesand them ai n function for ow program to mea:
urePosix mutexes.

. . bench/incr_pxmutex1.c
1 #include "unpipc.h"

2 #defi ne MAXNTHREADS 100

3int nloop;

4 struct {

5 pthread_mutex_t nut ex;

6 | ong count er;

7 } shared = {

8 PTHREAD_MUTEX_INITIALIZER
9 1;

10 void *incr(void *);

11 int

12 main(int argc, char **argv)

13 {

14 int i, nthreads;

15 pthread_t tid[MAXNTHREADS] ;

16 if (argc 1= 3)

3B s err_quit ("usage: incr_pxmutexl <#loops> <#t hr eads>");
18 nloop = atoi (argv([1l]):

19 nt hreads = min(atoi(argvi2]), MVNTHREADS) ;

20 /* lock the mutex */

21 Pthread_mutex_lock(&shared.mutex) ;

22 /* create all the threads */

23 Set_concurrency (nthreads) ;

24 for (i = 0; i < nthreads; i++) {

25 Pthread_create(&tid[il, NULL, incr, NULL);

26 1

27 /* start the tiner and unl ock the nutex */
28 Sart-tine();

29 Pthread_mutex_unlock (&shared.mutex) ;

30 /* wait for all the threads */

31 for (i = 0; i < nthreads; i++) {

32 Pthread_join(tid[i], NULL);

33 }

34 printf("microseconds: % usec\n", Stop-tinel);
35 if (shared.counter != nloop * nthreads)

36 printf('error: counter = %1ld\n", shared.counter);
37 exit(0);

38 1

bench[incr_pxmutex1.c
Figure A34 Goba variad esand mai nfuncti onto neasur e Fosi X nut ex synchroni zat i on.

488 Paformance Messuraments Appendix A

4-5

20-2€

27-3€

44-4€

Shared data

The shared data between the threads consists d the mutex itsdf and the counter.
Themutex isgaticaly initialized.

Lock mutex and create threads

The main thread locks the mutex before the threads are created, so that no thread
can obtain the mutex until all the threads have been created and the mutex is rd eased
by themain thread. Our set - concur r ency functioniscaled and the threads are cre
ated. Eachthread executesthei ncr function, which weshow next.
Start timer and release the mutex

Oncedl thethreads arecreated, the timer isstarted and the mutex isreleased. The
main thread then waits for all the threadsto finish, at which time the timer is stopped
and thetotal number of microsecondsis printed.

Figure A.35 showsthei ncr functionthatis executed by each thread.

bench [incr_pxmutexl.c

39 void *

40 incr(void *arg)

41 {

42 int i;

43 for (i = 0; 1 < nloop; i++) {

44 Pthread_mutex_lock (&shared.mutex) ;
45 shared.counter++;

46 Pthread mutex_unlock(&shared.mutex) ;
47 1

48 return (NULL);

49 1

bench/incr_pxmutex].c
Figure A3 Increment ashared counter using aPosix mutex.

Increment counter in critical region
The counter isincremented after obtai ning the mutex. The mutex isreleased.

Read-Write Lock Program

Our program that uses read—write locksis a dight modification to our program thet
uses Posix mutexes. Each thread must obtain awritelock on the read—writelock before
incrementingthe shared counter.

Few systemsimplement the Posix read-write locksthat we described in Chapter 8 whichare
part o Unix 98 and are being considered by the Posix.1j working group. The read-writelodk
measurements described in this Appendix were made under Solaris 26 using the Solaris
read-write locks described in the rwlock (3T) manual page. Thisimplementation provides
the same functionality as the proposed read-write locks, and the wrapper functionsreguired
to usethesefunctionsfrom thefunctionswe describedin Chapter 8 aretrivial.

Section A5

Thread Synchronization Programs

489

Figure A.36 showstherai nfunction, and Figure A.37 showsthei ncr function.

Lhder Dgtd Lhi x4 08 our neasur enent s were made usi ng the Dgtd t hreadi ndependent
services resd-witel ocks, described onthe tis_rwlock nanual pages. We do nat showthe
sinpl e nadi fi cati onsto H gures A.36and A.37fa theseread-wi tel ads.

#i nc
#i nc

voi d
voi d

#def
int

stru

o v o o s W L

=

} sh

| ude "unpipc.h"
| ude <synch.h>

/* Solaris header */

Rw_wrlock(rwlock_t *rwptr);
Rw_unlock(rwlock_t *rwptr);

ine MAXNTHREADS 100
nl oop;

ct

rwlock_t rw ock;
| ong counter;
ar ed;

11 void *incr(void *);

12 int

13 main(int argc, char **argv)

14 {
15
16

17
18
19
20

21
22

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37

38
35 1

int i, nthreads;

pthread_t tid[MAXNTHREADS];

if (argc '= 3)

/* the Solaris datatype */

/* init tOo 0 -> USYNC_THREAD */

err_qguit ("usage: incr_rwlockl <#loops> <#t hreads>");

nl oop = atoi(argvii]);

nt hreads = min(atoi(argv[2]), MMXNTHREADS);

/* obtain wite lock */
Rw_wrlock(&shared.rwlock) ;

/* create all the threads */

Set_concurrency (nthreads) ;
for (i = 0; i < nthreads;

iv+) {

Pthread create(&tid[i], NULL, incr, NULL);

1

/* start the tiner and rel ease the wite | ock */

Start_time();

Rw_unlock (&shared.rwlock) ;

/* wait for all the threads */

for (i = 0; i < nthreads;

i++) {

Pthread join(tid[i], NULL);

1

printf ("microseconds: % usec\n", Stop-tine());
if (shared.counter != nloop * nthreads)

printf ("error: counter

exit(0);

$1d\n", shared.counter);

FigureA.36 nai nfuncti onto neasur eread-wi tel ack synchroni zati on

bench/incr_rwlockl .c

bench/incr_rwlockl .c

490 Peaformance Messuraments AppadixA

bench/incr_rwlockl.c

40 void *

41 incr(void *arg)

42 {

43 int i;

44 for (i = 0; i < nloop; i++) {
45 Rw_wr lock(&hared. rwlock) ;
46 shared.counter++;

47 Rw_unlock (&shared.rwlock) ;
48 1

49 return (NULL) ;

50 }

bench finer_rwlockl.c
Figure A.37 | ncrenent ashared counter usingaread-witel ok

Posix Memory-Based Semaphore Program

18-19

20-27

We measure both Posx memory-based semaphores and Posix hamed semaphores. Hg
ure A.39 shows thermai n functionfor the memory-based semaphore program, and Hg
ure A.38 showsitsi ncr function.
A semaphore is created with a value d 0, and the second argument o 0 to
sem_init saysthat the semaphoreis shared between thethreadsd the calling process
After all thethreadsarecreated, thetimer isstarted and sem_post iscalled onceby
themain thread.

bench[incr_pxseml.c

37 void *

38 incr(void *arg)

39 {

40 i nt i;

41 for (i = 0; i < nloop; i++) {
42 Sem_wait (&shared.mutex) ;
43 shared.counter++;

44 Sem_post (&shared.mutex) ;
45 1

46 return (NULL) ;

47 }

bench/incr_pxseml.c
FigureA.38 | ncrenent ashared counter usi ng a Posix nenor y- based senaphor e.

Section A5 Thread Synchronization Programs 491
- - bench[incr_pxseml.c
1 #include "unpipc.h"
2 #defi ne MAXNTHREADS 100
3int nl oop;
4 struct {
5 sem_t nutex; /* the nenory-based semaphore */
6 | ong count er;
7 } shared;
8 void *incr (void *);
9 int
10 main(int argc, char **argv)
11 {
12 int i, nthreads;
13 pthread_t tid[MAXNTHREADS] ;
14 if (argc '= 3)
15 err_quit ("usage: incr_pxseml <#loops> <#threads>");
16 nl oop = atoi(argvil]);
17 nt hreads = min(atoi(argv[2]), MAXNTHREADS);
18 /* initialize nenory-based semaphore to 0 */
19 Sem_init (&shared.mutex, 0, 0);
20 /* create all the threads */
21 Set_concurrency (nthreads) ;
22 for (i = 0; i < nthreads; i++) {
23 Pthread_create (&tid[i], NULL, incr, NULL);
24 1
25 /* start the tiner and rel ease the semaphore =/
26 Sart-tine();
27 Sem_post (&shared.mutex) ;
28 /* wait for all the threads */
29 for (i = 0; 1 < nthreads; i++) {
30 Pthread_join(tid[i], NULL);
31 }
32 printf("microseconds: % usec\n", Stop-time());
33 i f (shared.counter !'= nloop * nthreads)
34 printf("error: counter = %1d\n", shared-counter);
35 exit(0);
36)

bench/incr_pxsem]1.c
FigureA® mai nfuncti onto neasur e Rosi X nenor y- basedsenaphor esynchr oni zet i on.

492 Paformance Messurements AppadxA

Posix Named Semaphore Program

Figure A.41 showsthe mai n function that measures Posx named semaphores, and Hg-
ureA.40showsitsi ncr function.

20 void * bench/incr_pxsem2.c
41 incr(void *arg)

a2 |

43 int i;

44 for (i = 0; i <nloop; i++) {
45 Sem _wait (shared.mutex) ;
46 shared.counter++;

47 Sem_post (shared.mutex) ;
48 1

49 return (NULL) ;

50 1

bench/incr_pxsem2.c
FigureA.40 Increment a shared counter usi ng a Posix named semaphore.

System V Semaphore Program

Thermai n functiond our program that measuresSystem V semaphoresisshownin Hg
ureA.42, and FigureA.43showsitsi ncr function.
20-23 A semaphoreiscreated consisting d one member, and itsvalueisinitializedto0.
24-29 Two senpp structuresareinitialized: oneto post-to the semaphoreand oneto wait-
for the semaphore. Notice that the sem flg member d both structures is 0. the
SEM_UNDO flag is not specified.

System V Semaphore with seM_unDO Program

The only difference in our program that measures Systemm V semaphores with the
SEM_UNDO feature from Figure A .42 is setting the sem_f1g member d the two senop
structuresto SEM_UNDO instead df 0. Wedo not show thissimple modification.

Sxtion A5 Thread Synchronization Programs 493

bench [incr_pxsem2.c
1 #include "unpipc.h” firer ¢
2 #defi ne MAXNTHREADS 100

3 #defi ne NAME vincr_pxsem2"

4 int nl oop;

5 struct {

6 sem_t *mutex; /* pointer to the naned senmaphore */
7 | ong counter;

8 1 shared;

9 void *incr(void *);
10 int
11 main(int argc, char **argv)
12 {
13 int i, nthreads;

14 pthread_t tid[MAXNTHREADS];
15 if (argc '= 3)
16 err_quit ("usage: incr_pxsem2 <#loops> <#t hreads>");
17 nl oop = atoi(argvill);

18 nt hreads = min(atoi(argv[2]), MAXNTHREADS) ;
19 /* initialize naned senmaphore to 0 */
20 sem_unlink (Px_ipc_name (NAME)); [/* error QK */
21 shared.mutex = Sem_open (Px_ipc_name (NAME), O_CREAT | O_EXCL, FLE- MLE 0);
22 /* create all the threads */

23 Set__concurrency (nthreads) ;

24 for (1 = 0; L < nthreads; i++) {

25 Pthread create(&tid[i], NULL, incr, NULL);

26 1

27 /* start the tiner and rel ease the semaphore */

28 Sart-tine();

29 Sem_post (shared.mutex) ;

30 /* wait for all the threads */

31 for (i = 0; i < nthreads; i++) {

32 Pthread_join(tid[i]l, NULL);

33 1

34 printf (*microseconds: % ' usec\n", Stop-tine());

35 if (shared-counter != nloop * nthreads)

36 printf(verror: counter = %1d\n", shared.counter);

37 Sem_unlink (Px_ipc_name (NAME)) ;
38 exit(0);

39 }

bench [incr_pxsem2.c
FigureA4l mai nfuncti onto neasur e Posix naned senaphor esynchroni zati on.

494 Performance M easurements Appendix A

bench/incr_svseml.c

1 #include "unpipc.h"

2 #defi ne MAXNTHREADS 100

3int nl oop;

4 struct {

5 int sem d;

6 | ong counter;

7 } shared;

g struct senbuf postop, waitop;

9 void *incr(void *);

10 int

11 main(int argc, char **argv)

12 {

13 int i, nthreads;

14 pthread_t tid[MAXNTHREADS] ;

15 uni on semun arg;

16 if (argc = 3)

17 err_guit ("usage: incr_svseml <#loops> <#t hreads>");
18 nl oop = atoi (argv(1l);

19 nt hreads = min(atoi(argvi2l), NMAVNTHREADS);

20 /* create semaphore and initialize to 0 */

21 shared.semid = Semget (IPC_PRIVATE, 1, IPC_CREAT | SVSEM_MODE);
22 arg.val = O;

23 Semctl (shared.semid, 0, SETVAL, arg);

24 postop.sem_num = O; /* and init the two semop() structures */
25 postop.sem_op = 1;

26 postop.sem_flg = O;

27 waitop.sem_num = O;

28 waitop.sem op = -1;

29 waitop.sem flg = O;

30 /* create all the threads */

31 Set_concurrency (nthreads) ;

32 for (i = 0; i < nthreads; i++) {

a3 Pthread_create(&tid[il, NULL, incr, NUL);

34 }

35 /* start the tiner and rel ease the semaphore */
36 Sart-tine();

37 Semop (shared.semid, &postop, 1); /* up by 1 */
38 /* wait for all the threads */

39 for (1 = 0; 1 < nthreads; i++) (

40 Pthread_join(tid[il, NULL):

41 }

42 printf (*microseconds: % usec\n", Sop-tinme());

43 if (shared.counter != nloop * nthreads)

44 printf ("error: counter = $1d\n", shared.counter);
45 Semctl (shared.semid, 0, IPC_RMID);

46 exit(0):;

a7 }

bench/incr_svseml.c
Fguwe A4 mai nfucti onto neasur e Syst emV senaphor esynchr oni zati on.

Section A.5 Threed Synchronization Programs 495

bench/incr_svseml.c

48 void *

49 incr(void *arg)

50 {

51 int i;

52 for (i = 0; i < nloop; i++) {

53 Semop (shared. semid, &waitop, 1);
54 shared.counter++;

55 Semop (shared.semid, &postop, 1);
56 }

57 return (NULL);

58 1)

bench/incr _svseml.c
Figure A43 Increnent ashared counter usinga SystemV semaphor e.

fenit i Record Locking Program

18-22

Our final program uses fcnt| record locking to provide synchronization. The mai n
function is shown in Figure A.45. This program will run successfully when only one
thread is specified, because fcnt | locks are between different processes, not between
the different threads o a single process. When multiple threads are specified, each
thread can always obtain the requested lock (that is, the callsto writew_lock never
block, sincethe calling processal ready owns thelock), and thefinal valued the counter
iswrong.

The pathname d thefile to create and then use for locking isa command-lineargu-
ment. This allows us to measure this program when this file resides on different file-
systems. We expect this program to run slower when thisfile is on an NFS mounted
filesystemn, which requires that both systems (the NFS client and NFS server) support
NES record locking.

Thei ncr function using record lockingisshownin Figure A.44.

benchincr_fentll.c

44 void *

45 incr(void *arg)

46 {

47 int i

48 for (i = 0; i < nloop; i++) {

49 Writew_lock (shared.fd, 0, SEEK—-SET, 0):
50 shared.counter++;

51 Un_lock(shared.fd, 0, SEEK—-SET, 0);
52 }

53 return (NULL);

54 }

bench/incr_fentll.c
Fgure A44 Increnent ashared counter using fcnt | recordl ocki ng.

496 Performance Measurements Appendix A

- - bench fincr_fentll.c
4 #include "unpipc.h"
5 #defi ne MAXNTHREADS 100
6 int nl oop;
7 struct {
8 int fd;
9 | ong count er;
10 } shared;
11 voi d *iner (void *);
12 int
13 main(int argc, char **argv)
14 |
15 int i, nthreads;
16 char *pathname;
17 pthread_t tid[MAXNTHREADS];
18 if (argc '= 4)
19 err_quit ("usage: incr_fcntll <pathname> <#loops> <#t hr eads>");
20 pathname = argv{ll;
21 nl oop = atoi(argvi2l);
22 nt hr eads = min(atoi (argv[31), MAXNTHREADS);
23 /* create the file and obtain wite | ock */
24 shared.fd = Open(pathname, O_RDWR | O_CREAT | O_TRUNC, FlLE- MCDE);
25 Writew_lock(shared. f4, 0, SEEK- SET, 0);
26 /* create all the threads */
27 Set_concurrency (nthreads) ;
28 for (i = 0; 1 < nthreads; i++) {
29 Pthread_create(&tid[il, NULL, incr, NULL);
30 }
31 /* start the tiner and rel ease the wite |l ock */
32 Start_time () ;
33 Un_lock (shared.fd, 0, SEEK- SET, 0);
34 /* wait for all the threads */
35 for (i = 0; i < nthreads; i++) {
36 Pthread_join(tid[i], NULL);
i b | }
38 printf("microseconds: % Cf usec\n", Stop-time());
39 if (shared.counter != nloop * nthreads)
40 printf("error: counter = %1d\n", shared.counter):
41 Unlink(pathname) ;
42 exit(0);
43 } .
bench/incr_fentll.c

FigureA45 mai nfuncti onto measure fent1 record | acki ng.

Secction A6 Prooess Syndhronization Programs . 497

A6

Process Synchronization Programs

In the programs in the previous section, sharing a counter between multiple threads
was smple: we just stored the counter asa global variable. We now modify these pro-
gramsto providesynchroni zation between different processes.

To share the counter between a parent and its children, we store the counter in
shared memory that isallocated by our my_shm function, shownin Figure A .46.

lib/my_shm.c
1 #include "unpipec.h"® :
2void *
3 my_shm(size_t nbytes)
4 {
5 voi d *shar ed;
6 #if defined (MAP_ANON)
7 shared = mmap (NULL, nbytes, PROT READ | PROT_WRITE,
8 MAP- ANOCN | MAP- SHARED, -1, 0);
9 #elif defined (HAVE_DEV_ZERO)
10 int fd;
11 /* nenmory map /dev/zero */
12 if ((fd = open("/dev/zero", O_RDWR)) == -1)
13 return (MAP- FAI LED) ;
14 shared = mmap (NULL, nbytes, PROT_READ | PROT WRITE, MAP- SHARED, fd, 0);
15 close(£fd);
16 #el se

17 #error cannot determ ne what type of anonynous shared nenory to use
18 #endif

19 return (shared); /* MAP- FAILED on error */

20)

lib/my_shm.c
FigureA46 Geatesoneshared nenoryfa aparent anditschil dren

If the system supports the MAP—ANON flag (Section 12.4), we use it; otherwise, we
memory map /dev/zero (Section12.5).

Further modifications depend on the type d synchronizationand what happensto
the underlying datatype when f or k is called. We described some o these detailsin
Section 10.12.

e Posx mutex: the mutex must be stored in shared memory (with the shared
counter), and the PTHREAD_PROCESS_ SHARED attribute must be set when the
mutexisinitialized. Weshow the codefor thisprogram shortly.

e Posx read-write lock: the read-write lock must be stored in shared memory
(with the shared counter), and the PTHREAD_PROCESS_SHARED attribute must
beset when theread-writeisinitialized.

498 Paformance Messurements Appendix A

e Posx memory-based semaphores. the semaphore must be stored in shared
memory (with the shared counter), and the second argument to sem_init must
bel, tospecify that the semaphoreisshared between processes.

e Posx named semaphores. either we can have the parent and each child cdl
sem open or we can have the parent cdl sem open, knowing that the
semaphorewill beshared by the child acrossthef or k.

e Systemn V semaphores. nothing specia need be coded, since these semaphores
can always be shared between processes. The children just need to know the
semaphore's identifier.

e fcntl record locking: nothing special need be coded, since descriptors ae
shared by the child acrossaf or k.

Weshow only the codefor the Posx mutex program.

Posix Mutex Program

19-20

21-26

27- 36
37-43

Themai n function for our first program uses a Posix mutex to providesynchronization
and isshownin Figure A48. Itsincr functionisshownin Figure A47.
Since we are using multiple processes (thechildren o a parent), we must place our
shar ed structureinto shared memory. We cal our my_shm function (FigureA 46).
Since the mutex is in shared memory, we cannot statically initialize it, so we cal
pthread_mutex_init after setting the PTHREAD_PROCESS_SHARED attribute. The
mutex islocked.

All thechildrenarecreated, thetimer isstarted, and the mutex is unlocked.
The parent waitsfor al the children and then stopsthe timer.
76 void * bench/incr_pxmutexb.c
47 incr(void *arg)
48 |
49 int i;
50 for (i = 0; i < nloop; i++) {
51 Pthread mutex_lock(&shared->mutex) ;
52 shar ed- >count er ++;
53 Pthread_mutex_unlock (&shared->mutex) ;
54 }
55 return (NULL) ;
56 } .
bench/incr_pxmutex5.c

Figure A47 incr functionto measur e Posi x mut ex locking bet ween processes.

Section A.6 Process Synchronization Programs 499
bench/incr_pxmutex5.c
1 #include "unpipc.h" 'I P
2 #defi ne NAXNPRQOC 100
3int nl oop;
4 struct shared {
5 pthread_mutex_t nut ex;
6 | ong counter;
7 } *shared; /* pointer; actual structure in shared menory */
8 void *incr(void *);
9 int
10 main(int argc, char **argv)
11 {
12 int i, nprocs;
13 pid_t childpid{MAXNPROC] ;
14 pthread_mutexattr_ t mattr;
15 if (argc 1= 3)
16 err_quit ("usage: incr_pxmutex5 <#loops> <#processes>");
17 nl oop = atoi(argvi{ll);
18 nprocs = min(atoi(argv{2]), MAXNPROC) ;
19 /* get shared nenory for parent and children */
20 shared = My_shm(sizeof (struct shared)):
21 /* initialize the mutex and lock it */
22 Pthread_muktexaktbr_init (&makkr);
23 Phhread_muktexakttbr_sektpshared(&makttr, PTHREAD_PROCESS_SHARED)
24 Pthread_muktex_inik (&shared->mutex, &mattr);
25 Pbhread_mutexakttr_destroy (&mattr);
26 Pthread_mukex_lock(&shared->mukex) ;
27 /* create all the children */
28 for (i = 0; 1 < nprocs; i++) {
29 if ((childpid{i] = Fork()) == 0) {
30 i ncr (NULL) ;
31 exit(0);
3z }
33 }
34 /* parent: start the timer and unlock the nutex */
35 Start_time();
36 Pthread_mutex_unlock (&shared->mutex) ;
37 /* wait for all the children */
38 for (i =0; i < nprocs; i++) {
39 Waitpid(childpidi{il, NULL, 0);:
40 }
41 printf ("microseconds: %.0f usec\n", Stop-time());
42 if (shared->counter != nloop * nprocs)
43 printf("error: counter = %1d\n", shared->counter);
44 exit(0):;
45 }

bench/incr_pxmutex5.c
FigureA48 mai nfuncti onto neasur e Rosi x nut ex | ocki ng bet ween processes.

6.1

Appendix B

A Threads Primer

Introduction

This appendix summarizes the basc Posix thread functions. In the traditional Unix
model, when a process needs something performed by another entity, it forksa child
process and lets the child perform the processing. Most network servers under Unix,
for example, arewrittenthisway.

Although this paradigm has served well for many years, there are problems with
fork:

e fork isexpensve. Memory is copied from the parent to the child, all descrip-
torsare duplicatedin the child, and so on. Current implementationsuse a tech-
nique called copy-onwrite, which avoidsa copy o the parent's data space to the
child until the child needs its own copy; but regardless d this optimization,
fork isexpensive.

e Interprocess communication (IPC) is required to pass information between the
parent and child after the fork. Information from the parent to the child bdare
the fork isessy, sncethechild startswith acopy o the parent's dataspaceand

with a copy d all the parent's descriptors. But returning information from the
child to the parent takes more work.

Threads help with both problems. Threads are sometimes caled lightweight prooesses
sincea thread is "' lighter weight' than a process. That is, thread creation can be 10-100
timesfaster than processcrestion.

501

502

A Threeds Rimer Appendix B

B.2

All threadswithina processshare the same global memory. This makesthesharing
d information easy between the threads, but along with thissimplicity comes the prob-
lem d synchronization. But more than just the global variablesare shared. All threads
within a processshare:

processinstructions,

most data,

openfiles(e.g., descriptors),

signal handlersand signal dispositions,
current working directory, and

user and group IDs.

But each thread hasitsown:

thread ID,
set 0 regigters, including program counter and stack pointer,
stack (forloca variablesand return addresses),

errno,
signal mask, and
priority.

Basic Thread Functions: Creation and Termination

In thissection, we cover fivebasic thread functions.

pthread create Function

When a program is started by exec, asinglethread iscreated, called theinitial thread or
main thread. Additional threadsare created by pthread— create.

#include <pthread.h>

int pthread_create(pthread_t *td, const pthread_attr_t *attr
voi d *(*func)(void *), void *arg);

Returns 0 if OK, positiveExxx valueon eror

Each thread withina processisidentified by a thread 1D, whose datatype iSpthread._t.
On successful creationd anew thread, itsID isreturned through the pointer tid.

Each thread has numerous attributes: its priority, its initial stack size, whether it
should be a daemon thread or not, and so on. When a thread is created, we can specify
these attributes by initializinga pthread_attr_t variablethat overrides the default.
We normally take the default, in which case, we specify the attr argument as a null
pointer.

Findly, when we create a thread, we specify a function for it to execute, cdled its
thread start function. Thethread starts by calling thisfunctionand then terminateseither
explicitly (by callingpthread_exit) or implicitly (by letting thisfunction return). The

Sation B2 Badc Threed Functions Credtion and Tamingion 503

addressd thefunctionisspecified asthe func argument, and thisfunctioniscaled with
asingle pointer argument, arg. If we need multipleargumentsto the function, we must
package them into a structure and then pass the address d this structure as the single
argument to thestart function.

Noticethe declarationsd func and arg. Thefunction takes one argument, a generic
pointer(voi d *), and returnsa generic pointer(voi d *). Thislets us pass one pointer
(to anything we want) to the thread, and lets the thread return one pointer (again, to
anythingwewant).

The return value from the Pthread functionsis normally 0 if OK or nonzero on an
error. But unlike most system functions, which return—L on an error and set errno toa
positive value, the Pthread functions return the positive error indication as the func-
tion's return value. For example, if pt hr ead- creat e cannot create a new thread
because we have exceeded some system limit on the number d threads, the function
return valueis EAGAIN. The Pthread functionsdo not set errno. The conventiond 0
for OK or nonzero for an error isfing, sinceal the Exxx valuesin <sys/errno.h> are
positive. A valued 0 isnever assigned to oned the Exxx names.

pthread_joi n Function

We can wait for a given thread to terminate by caling pthread_join. Comparing
threads to Unix processes, pt hr ead- cr eat eissimilarto f ork, and pthread_joi nis
similartowai tpid.

#include <pthread.h>

int pthread_join(pthread_t tid, void **status);

Returns: 0if OK, positive Exxx val ue on errar

We must specify the tid of the thread for which we wish to wait. Unfortunately, we
have no way to wait for any o our threads (similartowai t pi d with a process|D argu-
ment o -1).

If the status pointer is nonnull, the return valuefrom the thread (a pointer to some
object) isstored in thelocation pointed to by status.

pthread_self Function

Each thread has an ID that identifies it within a given process. The thread ID is
returned by pt hr ead- creat e, and we saw that it was used by pthread_join. A
thread fetchesthisvaluefor itsdf usingpthread_self.

#i ncl ude <pthread.h>
pthread_t pthread_self (void);

Returns: thread IDd cdlingthread

Comparingthreadsto Unix processes, pt hr ead- sel f issmilar toget pi d.

504 A Threads Primer Appendix B

pthread detach Function

A thread is either joinable (the default) or detached. When a joinable thread terminates,
its thread ID and exit status are retained until another thread in the process cdls
pthread - join. But adetached thread islike a daemon process: when it terminates, dl
itsresources are released, and we cannot wait for it to terminate. if one thread needsto
know when another thread terminates, it is best to leavethe thread as joinable.
Thepthread_detach function changesthe specified thread so that it is detached.

#include <pthread.h>
int pthread- detach(pthread t td) ;

Returns 0if OK, poditiveExxx valueon erar

Thisfunctioniscommonly called by the thread that wantsto detach itsdlf, asin

pthread_detach (pthread_gelf());

pthread_exit Function

Oneway for athread toterminateistocal pthread_exit.

#i ncl ude <pthread.h>

voi d pthread- exit(void *satus);

Doesnat returntocaller

If the thread is not detached, its thread ID and exit status are retained for a laer
pthread_join by someother thread in thecalling process.

The pointer status must not point to an object that islocd to thecdling thread (e.g.,
an automeatic variablein the thread start function), since that object disappearswhen the
thread terminates.

A thread canterminatein two other ways.

e Thefunction that started the thread (the third argument to pthread_create)
can return. Since thisfunction must be declared as returning a void pointer,
that return valueistheexit status o thethread.

e [f themain functiond the processreturnsor if any thread callsexit or _exit,
the processterminatesimmediately, including any threads that are still running.

C.1

Appendix C

Miscellaneous Source Code

unpipc.h Header

Almost every program in thetext includes our unpi pc . h header, shownin FigureC.1.
Thisheader includesall the standard system headersthat most network programsneed,
along with some general system headers. It aso defines constants such as MAXLINE
and ANS C function prototypes for the functions that we define in the text (e.g.,
px_ipc_name) and all thewrapper functionsthat we use. Wedo not show these proto-

types.
lib/unpipc.h
1 /* Qur own header. Tabs are set for 4 spaces, not 8 */
2 #ifndef _ _unpipc_h
3 #define _ unpipc_h
4 #incl ude v../config.h" /* configuration options for current CS */
5 /* »../config.h" is generated by configure */
6 /* If anything changes in the follow ng list of #includes, nust change
7 ../aclocal.m4 and ../configure.in al so, for configure's tests. */
8 #include <sys/types.h> /* basic systemdata types */
9 #include <sys/time.h> /* timeval{} for select0 */
10 #include <time.h> /* timespec{} for pselect() */
11 #include <errno.h>
12 #include <fentl.h> /* for nonbl ocking */
13 #include <limits.h> /* Pl PE- BUF */
14 #include <signal.h>
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <string.h>
18 #include <sys/stat.h> /* for s_xxx file node constants */

505

506 Miscdlaneous Source Code AppendixC

19 #include <unistd.h>
20 #include <sys/wait.h>

21 #ifdef HAVE- MQBEE-H

22 #incl ude <mgueue.h> /* Posix message queues */
23 #endif

24 #ifdef HAVE- SHVAPHORE-H

25 #i ncl ude <semaphore.h> /* Posi x semaphores */

26 #ifndef SEM_FAILED
27 #define SEM_FAILED ((sem_t *)(-1))

28 #endif

29 #endif

30 #ifdef HAVE_SYS MMAN_H

31 #i ncl ude <sys/mman.h> /* Posi x shared nenory */
32 #endif

33 #ifndef MAP_FAILED
34 #define MAP-FAILED ((void *)(-1))

35 #endif

36 #ifdef HAVE_SYS_IPC_H

37 #include <sys/ipc.h> /* SystemV I PC */

38 #endif

39 #ifdef HAVE _SYS_MSG_H

40 #include <sys/msg.h> /* SystemV nessage queues */
41 #endif

42 #ifdef HAVE SYS-SHMH
43 #ifdef _ bsdi___

44 #undef HAVE- SYS-SEMH /* hack: BSDI’s semctl() prototype is wong */
45 #el se

46 #i ncl ude <sys/sem.h> /* SystemV senaphores */

47 #endif

48 #ifndef HAVE_SEMUN_UNION

49 uni on senun { /* define union for semctl() */
50 i nt val ;

51 struct semid_ds *buf;

52 unsi gned short *array;

53 };

54 #endif

55 #endif /* HAVE- SYS-SEMH */

56 #ifdef HAVE_SYS_SHM H

57 #i ncl ude <sys/shm.h> /* SystemV shared nenory */
58 #endif

59 #ifdef HAVE_SYS_SELECT_H

60 #i ncl ude <sys/select.h> /* for conveni ence */

61 #endif

62 #ifdef HAVE PAL-H
63 #i ncl ude <poll.h> /* for conveni ence */
64 #endif

Section C.1

unpipc.h Header 507

100
101
102
103
104
105

106
107
108
109

110
111
112

#ifdef HAVE STRCPTS-H
#i ncl ude <stropts.h> /* for conveni ence */
#endif

#ifdef HAVE- STRNGG-H
#i ncl ude <strings.h> /* for conveni ence */
#endif

/* Next three headers are nornally needed for socket/file ioctl’s:
* <gys/ioctl.h>, <sys/filio.h>, and <sys/sockio.h>.

*/

#ifdef HAVE_SYS_TOCTL_H

#i ncl ude <sys/ioctl.h>

#endif

#ifdef HAVE_SYS_FILIO_H

#i ncl ude <sys/filio.h>

#endif

#ifdef HAVE_PTHREAD_H
#include <pthread.h>
#endif

#ifdef HAVE-DOOR-H
#i ncl ude <door.h> /* Solaris doors APl */
#endif

#ifdef HAVE_RPC_RPC_H

#ifdef _PSX4_NSPRCE H_TS /* Dgital Wix 4.0b hack, hack, hack */
#undef SUCCESS

#endif

#i ncl ude <rpc/rpc.h> /* Sun RPC */

#endif

/* Define bzero() as a nacro if it's not in standard Clibrary. */
#ifndef HAVE- BZERO

#defi ne bzero(ptr, n) menset(ptr, O, n)

#endif

/* Posix.ig requires that an #i nclude of <poll.h> define INFTIM but nany
systens still define it in <sys/stropts.h>. V& don't want to include
all the streans stuff if it's not needed, so we just define | NFTI Mhere.
This is the standard val ue, but there's no guarantee it is -1. */

#ifndef |NFTIM

#define | NFTI M (-1) /* infinite poll timeout */

#ifdef HAVE-PQLL-H

#def i ne INFTIM_UNPH /* tell unpxti.h we defined it */

#endif

#endif

/* M scel | aneous constants */

#ifndef PATH MAX /* should be in <limits.h> */

#def i ne PATH MAX 1024 /* max # of characters i n a pathname */
#endif

#def i ne MAX- PATH 1024
#def i ne MAXLINE 4096 /* max text line length */
#def i ne BUFFSIZE 8192 /* buffer size for reads and wites */

508 Miscdlaneous Source Code AppendixC

113
114
115
116

117
118
119
120
121
122

123

124
125
126

127
128

129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144

145
146
147
148
149

150
151
152
153
154
155
156
157
158
159
leQ
161

#defi ne FILE- MDE (S_IRUSR | S_IWUSR | S_IRGRP | S_TROTH)
/* default permssions for newfiles */
#def i ne DIR_MODE (FILE- MDE | S_IXUSR | S_IXGRP | S_IXOTH)
/* default perm ssions for newdirectories */

#def i ne svMsG_MODE (MSG-R | MBG W | MSG_R>>3 | MSG_R>>6)

/* default perm ssions for new sv nessage queues */
#def i ne svSEM_MODE (SEM_R | SEM_A | SEM_R>>3 | SEM_R>>6)

/* defaul t perm ssions for new SV senaphores */
#defi ne svsSHM_MODE (SHM_R | SHM W | SHM R>>3 | SHM_R>>6)

/* defaul t perm ssions for new SV shared nenory */

typedef void S gfunc (int); /* for signal handlers */

#ifdef HAVE_SIGINFO_T_STRUCT
typedef voi d sigfunc_rt (int, siginfo_t *, void *);

#endif
#defi ne min(a,b) (a) < (B 2 (a) : ()
#def i ne max(a,b) ((a) > (b) 2 (&) : (b))

#ifndef HAVE- TI MESPEG- STRCT
struct timespec {

time_t tv_sec; /* seconds */
| ong tv_nsec; /* and nanoseconds */
};
#endif
/-k
* In our wappers for open(), mg open{(), and sem_open() we handl e the
* optional argunents using the va_xXxx() macros. But one of the optional
*argunents is of type "node-t" and this breaks under Bsps/os because it
* uses a 16-bit integer for this datatype. But when our w apper function
* is called, the conpiler expands the 16-bit short integer to a 32-bit
*integer. This breaks our call to va_arg(). Al we cando is the
* following hack. Qher systens in addition to BsD/0s mght have this
* problemtoo ...
*/
#ifdef __bsdi_
#define va_mode_t int
#el se
#def i ne va_mode_t mode_t
#endif

/* our record | ocki ng macros */

#def i ne read_lock(£fd, of fset, whence, len) \

lock_reg(fd, F- SETLK, F_RDLCK, of fset, whence, |en)
#defi ne readw_lock(£fd, of fset, whence, | en) \

lock_reg(fd, F_SETLKW, FRDLCK, offset, whence, len)
#defi ne write_lock(£fd, of fset, whence, | en) \

lock_reg(fd, F_SETLK, F_WRLCK, of fset, whence, |en)
#defi ne writew_lock(£fd, of fset, whence, len) \

lock_reg(fd, F_SETLKW, F_WRLCK, offset, whence, len)
#defi ne un_lock(fd, of fset, whence, len) \

lock_reg(fd, F_SETLK, F_UNLCK, offset, whence, len)
#defi ne is_read_lockable(fd, of fset, whence, len) \

Section C 2 config.h Header 509

C.2

162 lock_test (fd, F_RDLCK, of fset, whence, len)
163 #define is_write_lockable(fd, offset, whence, len) \
164 lock_test (fd, F_WRLCK, of fset, whence, len)

lib[unpipc.h
Figured Our header unpipc. h.

confi g.h Header

TheGNU aut oconf tool wasused to aid in the portability o all thesourcecodein this
text. Itisavailablefromftp://prep. ai .mt .edu/pub/gnu/. Thistool generatesa
shell script named conf i gur e that you must run after downloading the software onto
your system. This script determines the features provided by your Unix system: are
System V message queues supported? is the uint8_t datatype defined? is the
get host name function provided?and so on, generating a header named confi g.h.
This header is the first header included by our unpi pc.h header in the previous sec-
tion. Figure C.2 showstheconfi g. h header for Solaris 2.6 when used with the gcc
compiler.

Thelinesbeginningwith#def i ne incolumnl arefor featuresthat thesystem pro-
vides. Thelinesthat are commented out and contain #undef arefeaturesthat thesys
tem doesnot provide.

sparc-sun-solaris2.6/config.h

1 /* config.h. Generated autonatically by configure. */
2 /* Define the followi ng if you have the correspondi ng header */
3 #defi ne CPU_VENDOR_OS "sparc-sun-solaris2.6"

4 #define HVMEDOR-H 1 /* <door.h> */

5 #defi ne HAVE_MQUEUE_H 1 /* <mgueue.h> */

6 #define HAVE-PQL-H 1 /* <poll.h> */

7 #define HAVE PTHREAD H 1 /* <pthread.h> */

8 #define HAVE_RPC_RPC_H 1 /* <rpc/rpc.h> */

9 #defi ne HAVE- SEMPHORE-H 1 /* <semaphore.h> */
10 #defi ne HAVE= STR N&BY 1 /* <strings.h> */

11 #defi ne HAVE_SYS_FILIO H 1 /* <sys/filio.h> */
12 #defi ne HAVE_SYS_IOCTL_H 1 /* <sys/ioctl.h> */
13 #defi ne HAVE_SYS_IPC_H 1 /* <sys/ipc.h> */
14 #defi ne HAVE_SYS MMAN_H 1 /* <sys/mman.h> */
15 #defi ne HAVE_SYS_MSG H 1 /* <sys/msg.h> */

16 #define HAVE_SYS_SEM_H 1 /* <sys/sem.h> */
17 #define HAVE_SYS_SHM H 1 /* <sys/shm.h> */

18 #defi ne HAVE_SYS_SELECT_H 1 /* <sys/select.h> */
19 /* #undef HAVE_SYS_SYSCTL_H */ /* <sys/sysctl.h> */
20 #defi ne HAVE_SYS_TIME_H 1 /* <sys/time.h> */
21 /* Define if we can include <time.h> with <sys/time.h> */
22 #define TTM=WTH SYS-TIME 1

23 /* Define the following if the function is provided */
24 #define HAVE- BZERO 1

N
a1

#def i ne HAVE- FATTACH 1
#defi ne HAVE- PALL 1

N
(o}

510 Misdlaneous Source Code Appandix C
27 |* #undef HAVE- PSELECT */
28 #define HAVe- SSGM T 1
29 #define HAVE- VALLCOC 1
30 #defi ne HAVE VSNPRINTF 1
31 /* Define the following if the function prototype is in a header =/
32 #defi ne HAVE- GETHOSTNAME- PROTO1 /* <unistd.h> */
33 #defi ne HAVE_GETRUSAGE_PROTO 1 /* <sys/resource.h> */
34 /* #undef HAVE_PSELECT_PROTO */ /* <sys/select.h> */
35 #defi ne BAVE_SHM OPEN_PROTO 1 /* <sys/mman.h> */
36 #defi ne HAVE- SNPRI NTFPROTO1 /* <stdio.h> */
37 #define HAVE THR_SETCONCURRENCY_PROTO 1 /* <thread.h> */
38 /* Define the following if the structure is defined. */
39 #defi ne HAVE_SIGINFO_T_STRUCT 1 /* <signal.h> */
40 #defi ne HAVE- TI MESPEG- STRUCT 1 /* <time.h> */
41 /* #undef HAVE_SEMUN_UNION */ /* <sys/sem.h> */
42 [* Devices */
43 #define HAVE- DEV- ZEHRO 1
44 /* Define the following to the approprl ate datatype, if necessary */
45 /* #undef int8_t */ * <sys/types.h> */
46 /* #undef intlé_t */ /* <sys/types.h> */
47 /* #undef int32_t */ /* <sys/types.h> */
48 /* #undef uint8_t */ /* <sys/types.h> */
49 /* #undef uintlé_t */ /% <sys/types.h> */
50 /* #undef uint32_t */ /* <sys/types.h> */
51 /* #undef size-t */ /* <sys/types.h> */
52 /* #undef ssize_t */ /* <sys/types.h> */
53 #define POSIX_IPC_PREFIX "/"
54 #defi ne RPCGEN_ANSIC 1 /* defined if rpcgen groks -c option */

sparc-sun-solaris2.6 [config.h
FigureC2 Qur confi g.h header for Solaris 2.6.
C3 Standard Error Functions

We define our own set o eror functions that are used throughout the text to handle
aror conditions. Thereason for our own eror functionsisto let uswriteour earor hen-
dling withasinglelined C code, asin

if (eraocodtian))
err - sys(prinffornat Vith any nuniber d ar gunent s) ;

instead o

if (eracodtio) ¢
char buff [200];

snprintf(buff, sizeof (buff), minffornat Vithany nunber d argunents) ;

perror(buf £);
exit (1);

SectionC.3 Standard Error Functions 511

Our error functions use the variable-lengthargument list facility from ANS C. SeeSec-
tion7. 3d [Kernighan and Ritchie 19881 for additional details.

Figure C.3 lists the differences between the various error functions. If the globa
integer daemon_proc is nonzero, the messageis passed to syslog with theindicated
level (seeChapter 12 o UNPv1 for detailson sysl og) ; otherwise, theerror isoutput to
standard error.

Frction | ToEER6P% | Terrinate? sysléil
: z level
err_dump yes abort(}); LOG_ERR
err-nsg no return; LOG_INFO
err_gquit no exit(1); LOG_ERR
err-ret yes return; LOG_INFO |
err_sys yes | exit(1); LOG_ERR

FigureC.3 Summary d our standard era fucti oms.

Figure C.4 showsthefivefunctionsfrom Figure C.3.

- liblerror.c
1 #incl ude "unpipc.h"

2 #incl ude <stdarg.h> /* ANSI C header file */

3 #i ncl ude <syslog.h> /* for syslog() */

4 int daemon_proc; /* set nonzero by daemon_init() */
5 static void err _doit(int, int, const char *, va-list);

6 /* Nonfatal error related to a systemcall.

7 * Print a nessage and return. */

8 void

9 err_ret(const char *fmt,...)
10 {
11 va-|list ap;

12 va_start(ap, fmt);

13 err-doit (1, LGG INFQ fmt, ap);

14 va_end(ap) ;
15 return;
16 }

17 /= Fatal error related to a systemcall.
18 * Print a message and termnate. */

19 void

20 err_sys(const char *fmt,...)

21 {

22 va-|list ap;

23 va_start(ap, fmt);

24 err-doit (1, LOG- BERR fmt, ap):
25 va_end(ap) ;

26 exit(1);

27 }

512 Miscdlaneous Source Code AppendixC

28 /* Fatal error related to a systemcall.
29 * Print a nessage, dunp core, and terninate. */

30 void

31 err_dump(const char *fmt,...)

32 |

33 va-list ap;

34 va-start (ap., fmt);

35 err doit(l, LG ERR fmt, ap):

36 va_end (ap) ;

37 abort (); /* dunp core and ternmnate */
38 exit(1); /* shouldn't get here */

39 1}

40 /* Nonfatal error unrelated to a systemcall.
41 * Print a message and return. */

42 void

43 err-nsg(const char *fmt,...)

44 |

45 va-list ap;

46 va- start(ap, £mt);

47 err-doit (0, LGG INFQ fmt, ap);
48 va_end(ap) ;

49 return;

50 }

51 /* Fatal error unrelated to a systemcal |
52 * Print a nmessage and terninate. */

53 voi d

54 err_quit(const char *fmt,...)

55 {

56 va-list ap;

57 va-start (ap, fmt);

58 err_doit(0, LGGERR fnt, ap);
59 va_end(ap) ;

60 exit (1);

61 }

62 /* Print a nessage and return to caller.
63 * Caller specifies "errnoflag" and "l evel ". */

64 static void
65 err_doit (int errnoflag, int |evel, const char *fmt, va-list ap)

66 {

67 int errno- save, n;

68 char buf [MAXLINE] ;

69 errno- save = errno; /* value caller mght want printed */
70 #ifdef HAVE- VANPR NTF

71 vsnprintf (buf, sizeof(buf), fnt, ap); /* this is safe */

72 #el se

73 vsprintf(buf, fnt, ap); /* this is not safe */

74 #endif

75 n = strlen(buf);

Section C.3

Sandard Error Functions 513

76
77
78

79
g0
81
82
83
84
85
86
87

if (errnofl ag)

snprintf(buf + n, sizeof(buf) - n, ": %s", strerror(errno_save}};
strcat (buf, "\n");

if (daemon_proc) {
sysl og(l evel , buf};
} else {
fflush(stdout) ; /* in case stdout and stderr are the sanme */
f put s(buf, stderr);
fflush(stderr) ;
[
return:

libferror.c
Figurec4 CQur standard error functions.

Appendix D

Solutions to Selected Exercises

Chapter 1

11

12

Chapter 2

21

Both processes only need to specify the 0— APPEND flag to the open function, or
the append mode to the fopen function. The kernel then ensures that each
writeisappended to thefile. Thisistheeasest form d file synchronization to
specify. (Pages60-61 d APUE talk about thisin more detail.) The synchroniza-
tion issues become more complex when existingdatain thefileis updated, asin a
databasesystem.

Somethinglikethefollowingistypicd:

#ifdef - REENTRANT

#defi ne errno (*_errno())
#el se

extern int errno;

#endif

If _REENTRANT is defined, references to errno cal a function named _errno
that returns the address d the calling thread's errno variable. This varigble is
possibly stored asthread-specificdata (Section235d UNPv1). If _REENTRANT is
not defined, then errno isagloba i nt.

These two bits can change the effective user 1D and/or the effectivegroup ID o
the program that isrunning. Thesetwo effectivelDs are used in Section 24.

515

516 Solutions to Sdedted Exadises Appendix D

22

Chapter 3

31

32

33

Firgt specify both 0_CREAT and O_EXCL, and if this returnssuccess, a new object
has been created. But if thisfailswith an error d EEXIST, then the object aready
exigs and the program must cal the open function again, without specifying
either O_CREAT or 0_EXCL. Thissecond cal should succeed, but a chance exists
(adbeitsmall) that it failswith an error & ENOENT, which indicatesthat some cther
thread or process has removed the object between the two cdls.

Our programisshownin FigureD.1.

1 #include “unpipec.h" sumsg|slotseq.c
2 int
3 main(int argc, char **argv)
4 {
5 int i, msqgid;
6 struct msgid_ds info;
7 for (i = 0; i < 10; i++) {
8 msgid = Msgget (IPC_PRIVATE, SVMSG_MODE | IPC_CREAT);
9 Msgct | (msgid, IPC_STAT, &info);
10 printf("msgid = %. seq = %lu\n", msqgid, info.msg_perm.seq);
11 Msgctl (msgid, IPC_RMID, NULL);
12 }
13 exit(0);
14 }
sumsg [slotseq.c

FigureD.l Print identifier and dot usage sequencenumber.

Thefirst call tonsgget uses thefirst available message queue, whose dot usage
sequence number is 20 after running the program in Figure 3.7 two times, return-
ing an identifier & 1000. Assuming the next available message queue has never
been used, itssl ot usage sequencenumber will be0, returningan identifierd 1.

Our simple programisshownin FigureD.2.

1 #include "unpipc.h" suieg] testimial]
2 int
3 main(int argc, char **argv)
4 {
5 Msgget (IPC_PRIVATE, 0666 | IPC_CREAT | IPC_EXCL);
6 unlink("/tmp/fifo.1");
7 Mkfifo("/tmp/fifo.1", 0666);
8 exit (0);
9 |
svmsg [testumask.c

FigureD2 Tet whether thefilemodeareation mask isused by r nsgget .

Solutions t0 Sdected Exerdses AppendixD 517

34

35

Chapter 4

41

When we run this program we see that our file mode creation mask is 2 (turn off
the other-write bit) and this bit is turned off in the FIFO, but thisbit is not turned
dof in the messagequeue.

solaris % umask

02

solaris % testumask

solaris % 1s -1 /tmp/fifo.1

prw rwr-- 1 rstevens otherl 0 Mar 25 16:05 /tmp/fifo.1
solaris % ipcs -q

| PC status from <running systen> as of Wed Mar 25 16:06:03 1998

T 1D KEY MODE ONNER GROUP
Message Queues:
q 200 00000000 --rwrwrw rstevens otherl

With £t ok, the possibility always existsthat some other pathname on the system
can lead to the same key as the one being used by our server. With
IPC_PRIVATE, theserver knowsthat it iscreating a new message queue, but the
server must then write the resulting identifier into somefilefor theclientstoread.

Hereisoneway to detect the collisions:

solaris % find 7/ -links 1 -not -type 1 -print |
xargs -nl ftokl > temp.1
solaris % wc -1 temp.l

109351 temp.1

solaris % sort +0 -1 temp.1 |
nawk *{ if (lastkey == $1)
print lastline, $0

lastline = $0
lastkey = $1

}’ > temp.2

solaris % wc -1 temp.2

82188 tenp. 2

Inthefi nd program, weignorefileswith morethan onelink (sinceeach link will
have the samei-node), and weignoresymboliclinks (sincethest at functionfol-
lows the link). The extremely high percentage o collisions (75.2%) is due to
Solaris 2x using only 12 bits of the i-node number. This meanslots d collisons
can occur on any filesystem with more than 4096 files. For example, the four files
with i-node numbers 4096, 8192, 12288, and 16384 all have the same IPC key
(assuming they are on the samefilesystem).

This example was run on the same filesystems but using the f t o k function from
BSD/OS, which adds the entire i-node number into the key, and the number o
collisonswas only 849 (lessthan 1%).

If fd[1] wereleft openin the child when the parent terminated, thechild's r ead
o fd[1] would not return an end-of-file, because this descriptor istill openin

518 Solutions to Sdected Exardsss

Appandx D

42

43

45

46

a7
48

thechild. By closingf d [1] inthechild, thisguaranteesthat assoon as the parent
terminates, all its descriptors are closed, causing the childsread o fd[1] o
return 0.

If the order d the cdls is swapped, some other process can create the HFO
betweenthecallstoopen and nkf i f o, causing thelatter tofail.

If we execute

solaris % nai npopen 2>temp.stderr
/etc/ntp.conf > /myfile
solaris % cat temp.stderr

sh:

/myfile: cannot create

we see that popen returns success, but we read just an end-of-filewith f get s.
Theshell error messageiswrittento standard error.

Changethefirst cal to open to specify the nonblockingflag:

readfi fo = Open(SERV_FIFO, O_RDONLY | O_NONBLOCK, O0};

Thiscdl then returnsimmediately, and the next cdl to open (for write-only) d so
returnsimmediately, since the FIFO isalready open for reading. But to avoid an
error fromr eadl i ne, the0_NONBLOCK flag must be turned off for the descriptor
readfi f o beforecallingr eadl i ne.

If the client were to open its dient-specific FIFO (write-only) before opening the
server's well-known HFO (read-only),a deadlock would occur. Theonly way o
avoid the deadlock isto open the two FIFOs in the order shown in Figure4.24 a
to use the nonblocking flag.

Thedisappearanced thewriter issignaled by an end-of-filefor the reader.
Figure D.3 showsour program.

1 #include "unpipc.h"

2 int

3 main(int argc, char **argv)

4 {

5 int farzi;

6 char buff[7];

7 struct stat info;

8 if (argc 1= 2)

9 err_quit("usage: testl <pathname>");
10 Mkfifo(argv([1l], Fl LE- MDE);
11 fd(0] = pen(argv(l], O_RDONLY | O_NONBLOCK) ;
12 fd[1] = Open(argv[l], O _WRONLY | O_NONBLOCK) ;
13 /* check sizes when FIFOis enpty */

14 Fstat (£4[0]1, & nfo) ;

15 printf("fd[0]: st-size = %1d\n", (long) info.st_size);
16 Fstat (£d[1]1, &info);
17 printf(“fd[1]: st-size = %1d\n", (long) info.st_size);

pipe/testl.c

~y

Sduions to Sdected Exardsss AppendixD 519

49

18 Write(£d[1), buff, sizeof (buff));

19 /* check si zes when FIFOcontains 7 bytes */

20 Fstat (£4[0], &info);

21 printf ("£4[0]: st-size = %1d\n", (long) info.st_size);
22 Fstat (£d[1], &info);

23 printf("£d[1]: st-size = %1d\n", (long) info.st_size);
24 exit (0);

25 |

pipe/testl.c
FigureD.3 Determinewhether f st at returnsthe numberd bytesinaFFO.

sel ect returns that the descriptor is writable, but the cal towr i t e then dlicits
SIGPIPE. Thisconceptisdescribed on pages153- 155 of UNPvi; whenaread (or
write) error occurs, sel ect returns that the descriptor is readable (or writable),
and the actual error isreturned by read (orwite). Figure D.4 showsour pro-
gram.

1 #include "unpipc.h"” plpe,fteth.c

2int

3 main(int argc, char **argv)

4 {

5 int fd[2], n;

6 pid t childpid;

7 fd_set wset;

8 Pipe (fd);

9 if ((childpid = Fork()) == 0) ¢{ /* child */
10 printf("child cl osi ng pi pe read descriptor\n");
11 Close(£d4[0]) ;

12 sleep(6);

13 exit(0);

14 }

15 /* parent */

16 Close (£4[01) ; /* in case of a full-duplex pipe */
17 sleep(3);

18 FD_ZERO (&wset) ;

19 FD_SET(£4[1], &wset);

20 n = select (£d[1]1 + 1, NULL, &wset, NULL, NULL);
21 printf("sel ect returned $d\n", n);

22 if (FD_ISSET(fd[1l], &wset)) {

23 printf{"£f4[1] writable\n");

24 Wite(£d[1l, "hell o". 5);

25 I

26 exit(0);

27 }

pipe/test2.c
FigureD4 Determinewhat sel ect returnsfor writability when theread end o a pipeisclosed.

520 Solutions to Sdedted Exadss AppendixD

Chapter 5

51

52
53

54

55

56

57

58

59
510

Firgs create the queue without specifying any attributes, followed by a cdl
mg_getattr to obtain the default attributes. Then remove the queue and cregte
it again, usingthedefault valued either attributethat is not specified.

The signal is not generated for the second message, because the regigtration is
removed every timethe notification occurs.

The signal is not generated for the second message, because the queue was not
empty when the messagewas received.

The GNU C compiler under Solaris 26 (which defines both constants as cdls o
sysconf) generatestheerrors

testl.c:13: warning: int format, long int arg (arg 2)
testl.c:13: warning: int format, long int arg (arg 3)

Under Solaris 2.6, we specify1,000,000 messagesd 10 byteseach. Thisleadstoa
filesized 20,000,536 bytes, which correspondswith our resultsfrom running Hg
ure55: 10 bytes o data per message, 8 bytes o overhead per message (perhaps
for pointers), another 2 bytesd overhead per message (perhapsfor 4-bytedign
ment), and 536 bytes d overhead per file. Beforemg_open is called, the sze ¢

the program reported by ps is 1052 Kbytes, but after the message queue is cre-

ated, the sizeis 20 Mbytes. This makes us think that Posix message queues are
implemented using memory-mapped files, and that mg_open maps the file into
the address space d the calling process. We obtain similar results under Digita

Unix 4.0B.

Asizeargumentd 0isOK for the ANS C memXXX functions. The original 1989
ANS C standard X3.159-1989, also known asISO/IEC 98991990, did not say this
(and none o the manual pages that the author could find mentioned this), but
Technical Corrigendum Number 1 explicitly states that a size o 0 is OK (but the
pointer arguments must still bevalid). http: //www. lysator.liu.se/c/ isa
wonderful reference point for information on the C language.

For two-way communication between two processes, two message queues are
needed (seefor example, Figure A.30). Indeed, if we were to modify Figure 414
to use Posx messagequeuesinstead o pipes, we would see the parent reed back
what it wroteto thequeue.

The mutex and condition variable are contained in the memory-mapped file
which is shared by all processes that have the queue open. Other processes mey
have the queue open, so a process that is closing its handle to the queue cannat
destroy the mutex and condition variable.

An array cannot be assigned acrossan equalssign in C, whereasa structurecan.

Themain functionspendsalmost all o itstimeblocked in acdl to sel ect, wait-
ing for the pipe to be readable. Every timethesignal isdelivered, the returnfram
the signal handler interrupts this cdl to sel ect, causing it to return an error @

Sdutios to Sdedted Exadsss AppedixD 521

Chapter 6

61

62

63

Chapter 7
72

73

EINTR. To handle this, our Sel ect wrapper function checksfor this error, and
calsselect again, asshowninFigureD.5.

lib[wrapunix.c
313 int

314 Select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds,
315 struct timeval *timeout)

316 {

17 int n;

318 agai n:

319 if ((n = select(nfds, readfds, witefds, exceptfds, timeout)) < 0)
320 if (errno == EINTR)

321 goto agai n;

322 el se

323 err_sys("select error");

324 } else if (n == 0 && timeout == NULL)

325 err_quit("select returned 0 with no tineout");

326 return (n); /* can return 0 on timeout */

327 }

lib[wrapunix.c
Figure D5 Qur Sel ect w apper functionthat handlesB NTR

Page 124 o UNPv1 talks moreabout interrupted system calls.

The remaining programs must then accept a numeric message queue identifier
instead of a pathname (recal the output d Figure 6.3). This change could be
made with a new command-line option in these other programs, or the assump-
tion could be made that a pathname argument that isentirely numericisan iden-
tifier and not a pathname. Since most pathnames that are passed to ft ok are
absolute pathnames, and not relative (i.e., they contain at least one dash charac-
ter), thisassumptionis probably OK.

Messageswith atyped 0 are not allowed, and a client can never have a process
ID d 1, sincethisisnormally thei ni t process.

When only one queue is used in Figure 614, this maliciousclient affectsall other
clients. When we haveone return queue per client (Figure619), thisclient affects
only itsown queue.

The process will terminate, probably before the consumer thread has finished,
becausecdling exi t terminatesany threadsstill running.

Under Solaris 26, omitting the call to the dest r oy functions causes a memory
leak, implying that the init functionsare performing dynamic memory dloca
tion. Wedo not seethisunder Digital Unix 4.0B, which just impliesan implemen-
tation difference. The calsto the matching dest r oy functionsaretill required.

522 Solutions to Sdedted Exadss Appendix D

Chapter 9
91

9.2

9.3

94

9.5

9.6

From an implementation perspective, Digital Unix appears to use the attr_t
variable as the attributes object itsalf, whereas Solaris uses this variable as a
pointer to adynamically allocated object. Either implementationisfine.

Depending on your system, you may heed to increasetheloop counter from 20, to
seetheerrors.

To makethestandard 1/0 stream unbuffered, we add theline

setvbuf (stdout, NULL. _IONBF, 0};
to the main function, before the for loop. This should have no effect, because
thereisonly onecdl toprintf and thestring isterminated with anewline. Nor-

maly, standard output is line buffered, so in either case (line buffered a
unbuffered),thesinglecdl toprintf endsupinasinglewrite cal tothekend.

We changethecdl toprintf tobe

snprintf (line, sizeof(line), "%s: pid = %1d, seqg# = %d\n",
argv[0]1, (long) pid, seqno};
for (ptr = line; (c = *ptr++) != 0;)

putchar(c) ;

and declare c as an integer and ptr as a char*. If we leave in the cdl ©
setvbuf, making standard output unbuffered, this causes the standard 1/0
library to cdl write once per character that is output, instead d once per line
Thisinvolves more CPU time, and provides more opportunitiesfor the kernd to
switch between the two processes. We should see more errorswith this program.

Since multiple processes are allowed to have read locks for the same region d a
file, thisisthesameas having nolocksat all for our example.

Nothing changes, because the nonblocking flag for a descriptor has no efect m
fcntl advisory locking. What determines whether acdl to f cnt1 blocksor na
iswhether the commandis F_SETLKW (which aways blocks) or F_sETLK (which
never blocks).

The loopf cntlnonb program operates as expected, because, as we showed in
the previous exercise, the nonblocking flag has no effect on a program that pe-
forms fent1 locking. But the nonblocking flag does affect the 1copnonenonb
program, which performs no locking. As we said in Section 9.5, a nonblocking
cal to read or write for afilefor which mandatory locking is enabled, returns
an error d EAGAI Nif the read or write conflicts with an existinglock. \We se
thiserror aseither

read error: Resource tenporarily unavail abl e

or

write error: Resource tenporarily unavail abl e

and we can verify that theerror isEAGAI N by executing

~

Solutions to Selected Exercises AppendixD 523

97

98

99

910

Chapter 10

10.1

solaris % grep Resource /usr/include/sys/errno.h
#define EAGAIN 11 /* Resource tenporarily unavail able */

Under Solaris 26, mandatory locking increases the dock time by about 16%and it
increases the system CPU time by about 20%. The user CPU time remains the
same, as we expect, because the extra time is within the kernel checking every
read and write, not within our process.

Locks are granted on a per-process basis, not on a per-thread basis. To see con-
tention for lock requests, we must have different processes trying to obtain the
locks.

If another copy d the daemon were running and we open with the O_TRUNC flag,
this would wipe out the processID stored by the first copy o the daemon. We
cannot truncatethefile until we know we are the only copy running.

SHEK-FET isaways preferable. The problem with SHK-AUR isthat it depends
on the current offset in thefile, which isspecified by | seek. Butif wecdl 1seek
and then £cntl, weare using two functioncallsto performwhat isasingleoper-
ation, and a chance existsthat another thread can changethe current offset by cdl-
ing | seek between our two function cdls. (Recdl that al threadssharethe same
descriptors. Alsorecdl that f cntl record locksarefor locking between different
processesand not for locking between the different threads within one process.)
Similarly, if wespecify SHEK-BEND, a chanceexists that another thread can append
data to the file before we obtain a lock based on what we think is the end of the
file

Hereis theoutput under Solaris 26:

solaris % deadl ock 100

prod: calling sem wait(nenpty) =0 |oop for producer
prod: got sem wait (nenpty)

prod: calling sem wait (mutex)

prod: got sem_wait (mutex), storing 0

prod: calling sem wait (nempty) i=I loop for producer
prod: got sem wait (nempty)

prod: calling sem wait(mutex)

prod: got sem wait(mutex), storing 1

prod: calling sem_wait (nempty) start next loop, but noempty slots
context switch from producerto consumer
cons: calling sem_wait (mutex) i=O loop for consumer

cons: got sem_wait (mutex)
cons: calling sem_wait(nstored)
cons: got sem_wailt (nstored)
cons: fetched 0

cons: calling sem_wait (mutex) i=O loop for consumer
cons: got sem wait (mutex)
cons: calling sem_wait(nstored)

524

Solutions to Sdedted Exadsss Appendix D

10.2

10.3

10.4

10.5

10.6

10.7

10.8

cons: got sem _wait(nstored)
cons: fetched 1

cons: calling sem_wait(mutex)
cons: got sem_wait (mutex)
cons: calling sem wait(nstored) consumer blockshere forever
context switch from consumer to producer
prod: got sem_wait (nempty)
prod: calling sem wait (mutex) producer blocks here forever

Thisis OK given the rulesfor semaphore initialization that we specified when
we described sem—open: if the semaphore aready existsit, isnot initialized. So
only the first d the four programs that calls sem—open actually initiaizes the
semaphore value to 1. When the remaining three cal sem_open with the
O_CREAT flag, the semaphore will already exist, so its value is not initidized
again.

Thisisa problem. The semaphoreis automatically closed when the process ter-
minates, but thevalued thesemaphoreis not changed. Thiswill prevent any d
the other three programs from obtaining the lock, causing another type d dead-
lock.

if wedid not initializethe descriptorsto -1, their initial valueis unknown, snce
malloc does not initializethe memory that it dlocates. So if oned thecdlst
openfails, thecalstoclose at thelabe error could close some descriptor thet
the processisusing. By initializing the descriptors to -1, we know that the cdls
to close will have no effect (other than returning an error that weignore) if that
descriptor has not been opened yet.

A chance exigts, abeit dight, that c1ose could be caled for a valid descriptor
and could return some error, thereby changing errno from the value that we
want to return. Sincewe want to save thevalued errno to return to thecdler,
todosoexplicitly is better than counting on somesideeffect (that c1ose will nat
return an error when avalid descriptor is closed).

No racecondition existsin thisfunction, because the mkf i f o function returnsan
error if the AFO aready exists. If two processescal this function at about the
sametime, the FIFOiscreated only once. Thesecond processto cal mkf i f owill
receivean error o EEXIST, causing the 0_CREAT flag to be turned off, prevent-
inganother initializationd the FIFO.

Figure10.37 does not have the race condition that we described with Figure1043
because the initialization d the semaphore is performed by writing data to the
HFO. If the processthat createsthe HFO issuspended by the kernel after it cals
mkfifo but beforeit writesthedata bytes to the FIFO, the second processwill

just open the FIFO and block thefirst timeit calssem _wait, because the neMy
created FIFO will be empty until thefirst process (whichcreated the FIFO) writes
thedata bytesto the HFO.

Figure D.6 shows the test program. Both the Solaris 26 and Digital Unix 408
implementationsdetect being i nterrupted by a caught signal and return EINTR.

Sdlutions to Sdedted Exadss AppendixD 525

109

pxsem [testeintr.c
1 #include "unpipc.h"

2 #defi ne NAME "testeintr"”

3 static void sig_alrm{int);

4 int

5 main(int argc, char **argv)

6 {

7 sem_t *seml, sem2;

8 /* first test a naned semaphore */
9 sem_unlink (Px_ipc_name (NAME)) ;
10 seml = Sem_open (Px_ipc_name(NAME), O_RDWR | O_CREAT | O_EXCL,
11 FI LE- MDDE, 0);
12 Signal (SIGALRM, sig_alrm);
13 alarm(2) ;
14 if (sem wait(seml) == 0)
15 printf("sem _wait returned 0?\n"};
16 el se
17 err_ret("sem_wait error");
18 Sem close(seml);
19 /* now a nenory-based semaphore wi th process scope */
20 Sem_init (&sem2, 1, O0);
21 alarm(2);
22 if (sem wait(&sem2) == Q)
23 printf("sem wait returned 0?\n");
24 el se
25 err_ret ("sem_wait error");
26 Sem_destroy (&sem2) ;
27 exit(0);
28 }

29 static void
30 sig_alrm(int Si gno)

31 {

32 printf ("SIGALRM caught\n"});
33 return;

34 }

pxsem[testeintr.c
FigureD6 Test whether sem wai t detectsB NTR

Our implementation using FIFOs returnsEINTR, because sem_wait blocksin a
cdl to read on a FIFO, which must return the error. Our implementation using
memory-mappedl1/0 does not return any error, because sem_wait blocksin a
cdl to pthread_cond_wait and this function does not return EINTR when
interrupted by a caught signal. (We saw another example d this with FHg-
ure 529) Our implementation using System V semaphores returns EINTR,
because sem — waitblocksin acal to semop, which returnstheerror.

The implementation using FIFOs (Figure 10.40) is async-signal-safe because
write isasync-sgna-safe. The implementation using a memory-mapped file

526 Solutions to Sdedted Exeadises Appendix D

Chapter 11

n1

1n2

Chapter 12

21

22

12.3

124
12.5

(Figure10.47) is not, because none d the pthread XXX functions are async-
signa-safe. The implementation using System V semaphores (Figure 10.56) is
not, because semop isnot listed as async-signal-safeby Unix 98.

Only oneline needsto change:
< sernid = Sernget (Ftok(argv[optind]l, 0), 0, 0);

> sernid = atol (argv[optind});

Thecdl to ft ok will fail, causingour Ft ok wrapper to terminate. Theny- | ock
function could call ft ok beforecaling senget, check for an error d ENOENT,
and createthefileif it doesnot exist.

Thefile size would be increased by another 4096 bytes (to 36864), but our refer-
enceto the new end-of-file (index 36863) might generatea SIGSEGV signal, Snce
thesized the memory-mapped regionis32768. Thereasonwe say ""might* and
not "'will"" isthat it depends on the pagesize.

Figure D.7 shows the scenario assuming a System V. message queue, and Hg-
ure D.8 shows the Posix message queue scenario. The calls to memepy in the
sender occur when mg_send is caled (Figure5.30), and the calls to memcpy in
thereceiver occur whenmg_receive iscaled (Figure5.32).

sender
msgsnd ()
_________ process
_______ kernd
System V
messagequeue

FigureD7 Sending messagesusinga System V messagequeue.

Any r ead from /dev/zero returns the requested number o bytes, all contain-
ing 0. Any data written to this device is simply discarded, just likewr it es to
/dev/null.

Thefina contentsd thefileare4 bytesd 0 (assuminga32-bitint).
Figure D.9 showsour program.

r
Solutions to Sdected Exercisss Appendix D 527

[[RS X @ssage I |
: recd ver queue in et | memcpy () ——— ‘
I |
| : I
receiver address space
SRS e el S : sender address space
process
___ kernel

kard's virttd nenorydgorithm
keepsregd a fileinsync
wth nenor y- nmappedreg on

F gure D8 Sendi ng nessages usi ng a Rosi X nessagequeuei npl enent ed usi ng mmap.

shm[svmsgread.c
1 #include "unpipc.h"”
2 #define MAXMBG (8192 + sizeof(long))
3 int
4 main(int argc. char **argv)
5 {
6 int pipel([2]., pipe2[2], mgid;
7 char c;
8 pid_t childpid;
9 fd_set rset;
10 ssize_t n, nread;
11 struct nsgbuf *buff;
12 if (argc '= 2)
13 err_quit ("usage: svnsgread <pathname>");
14 Pi pe (pipel) ; /* 2-way communi cationw th child */
15 Pi pe (pipe2) ;
16 buff = My shm(MAXMSG) ; /* anonynous shared nenory with child */
17 if ((childpid = Fork()) == 0) {
18 d ose(pipelll]); /* child */
19 d ose(pi pe2[0]);
20 nui d = Msgget (Ftok(argv([1], 0), MSG_R);
21 for (; ;) (
22 /* bl ock, waiting for nmessage, then tell parent */
23 nread = Msgrcv (mgid, buff, MAXMBG 0, 0);
24 write(pi pe2[1}, &nread, sizeof(ssize_t));
25 /* wait for parent to say shm is available */
26 if ((n = Read(pipell0], &c, 1)) != 1)
27 err_quit(“child: read on pi pe returned %d", n);
28 }
29 exit(0):;
30 }

528 Solutions tO0 Sel ected Exerci ses Appendi x D

Chapter 13

131

31 /* parent */

32 Close(pipel[0]);

33 Close(pipe2[1]);

34 FD_ZERO (&rset) ;

35 FD_SET(pi pe2[0], &xset);

36 for (; ;) {

37 if ((n = select(pipe2[0] + 1, &rset, NULL. NULL, NULL)) t= 1)
38 err_sys("select returned %4", n):;

39 if (FD_ISSET(pipe2[0], &rset)) {

40 N = Read(pipe2[0] , &nread, sizeof(ssize_t));

41 if (n !'= sizeof(ssize_t))

42 err_quit (*parent: read on pi pe returned %d*, n);

43 printf ("read %d bytes, type = %1d\n", nread, buff->mtype);
44 Write(pipel([1l], &c, 1);

45 } el se

46 err_quit("pi pe2[0] not ready");

47 }

48 Kill(childpid, SIGTERM);

49 exit (0);

50 }

shm[svmsgread.c
FguweD.9 Exanpl ed parent and dildsetuptousesel ect wthSyst emV nessages.

Figure D.10 shows our modified verson of Figure12.16, and Figure D.l1 shows
our modified verson of Figure 12.19. Noticein thefirg program that we mus
set the size o the shared memory objet using ftruncate; we cannot use
seekandwite.

- - pxshm [testl.c
1 #incl ude "unpi pc.h"
2int
3 main(int argc, char **argv)
4
5 int fd, i;
6 char *ptr;
9 size-t shmsize, mmapsize, pagesi ze;
8 if (argc 1= 4)
9 err_guit ("usage: testl <name> <shmsize> <mmapsize>");
10 shmsize = atoi(argvi2]):
11 mmapsize = atoi (argv[31):
12 /* open shm: create or truncate; set shm size */
13 fd = shm_open(Px_ipc_name(argv[1]}), O_RDWR | O_CREAT | O_TRUNC,
14 FI LE- MCDE) ;

15 Ftruncate (fd, shmsize);

Solutions to Selected Exercises AppendixD 529

16 ptr = Mmap (NULL, mmapsize, PROT_READ | PROT_WRITE, M\P- SHARED, fd. 0);
17 A osel(fd);

18 pagesize = Sysconf (_SC_PAGESIZE);

19 printf ("PAGESIZE = %$1d\n", (long) pagesize);

20 for (i = 0; i < max(shmsize, mmapsize); i += pagesi ze) {

21 printf (*ptr[(sd] = %d\n", i, ptr[i]);

22 ptr(i} = 1;

23 printf ("ptr[%$d] = %d\n", i + pagesize - 1, ptr[i + pagesize - 11);
24 ptr{i + pagesize - 1] = 1

25 }

26 printf ("ptr[%$d] = %d\n", i, ptr[i]);

27 exit(0);

28 }

pxshm/testl.c
F gure D10 Memory mappingwhen ma p equalsshared memory size.

pxshm/testl.c

1 #i ncl ude "unpipc.h"

2 #define FI LE "test.data"

3 #define Sl ZE 32768

4 int

5 main(int argc, char **argv)

6 {

7 int fd, i;

8 char *ptr;

9 /* open shm create or truncate; then map shm*/

10 fd - shm_open(Px_ipc_name (FILE), O_RDWR | O_CREAT | O_TRUNC, FlLE MIE);
11 ptr = mMmap(NULL, S| ZE, PROT_READ | PROT_WRITE, MAP- SHARED, fd, 0);
12 for (i = 4096; i <= SIZE i += 4096) {

13 printf{"setting shmsize to sd\n", i);

14 Ftruncate(fd, i):

15 printf(*ptr[%d} = %d\n*, i - 1, ptr[i - 11);

16 }

17 exit (0);

18 }

pxshm [testl.c
FHgure DIl Memory-mapexamplethat letsthe shared memory sizegrow.

132 (Onepossible probl emwth *ptr++istha the pointer ret urned by mmapis nodi -
fied preventingalaer cdl to munmap. If the ponter is needed & alaer tine, it
nust beether saved, a nat nodi fi ed.

530 Solutions to SHected Exadsess Appadx D

Chapter 14

141

Chapter 15

K1

52

153

K4

155

156

K7

158

Only oneline needs to change:

13¢13
< id = Shmget (Ftok(argv[l], 0), 0, SVSHM MODE) ;
> id = atol(argv([1]);

Thereare data_size * (desc_num X sizeof (door_desc_t)) bytesd argu-
ments.

No, we do not need to cdl fstat. If the descriptor does not refer to a door,
door_info returnsan error o EBADF:

solaris % doorinfo /etc/passwd
door-info error: Bad file nunber

The manual page is wrong. Posix.1 states correctly that ""The sleep() function
shall causethe current thread to be suspended from execution.™

The resultsare unpredictable (althougha core dump is a pretty safe bet), because
the address d the server procedure associated with the door will cause some
random codein the newly execed program to be called as afunction.

When thedlient's door — call isterminated by the caught signal, the server pro-
cess must be notified because the server thread handling thisclient (thread ID 4
in our output) isthen sent a cancdlation request. But we said with Figure 15.23
that for all the server threadsautomatically created by the doorslibrary, cancdla
tion is disabled, and hence this thread is not terminated. Instead, the cdl to
sleep(6), in which the server procedure is blocked, appears to return prema
turely when the dlient's door— call is terminated, about 2 seconds after the
server procedurewascalled. But theserver thread still proceedsto completion.

Theerror that weseeis

solaris % server6 /tmp/dooré
my_thread: created server thread 4
door-bind error: Bad file nunber

When starting the server 20 timesin a row, the error occurred five times. This
error isnondeterministic.

No. All that isrequired is to enable cancellation each time the server procedure
is caled, aswe do in Figure 15.31. Although this technique calls the function
pthread_setcancelst ate every time the server procedure is invoked,
instead 0 just oncewhen thethread starts, thisoverhead is probably trivial.

To test this, wemodify one d our servers (say Figure15.9) to call door—revoke
from the server procedure. Since the door descriptor is the argument to

Solutions to Sdedted Exadsss AppendixD 531

159

door-revoke, we must also make £d a global. We then execute our client (say
Figure15.2) twice:

solaris % client8 /tmp/dooxr8 88

result: 7744

solaris % client8 /tmp/dooxr8 99
door-call error: Bad fil e nunber

The firgt invocation returns successfully, verifying our statement that
door—revoke does not affect a cdl that isin progress. The second invocation
tellsusthat theerror from door — call iSEBADF.

To avoid making fd a globa, we use the cookie pointer that we can pass to
door— createand that is then passed to the server procedure every timeit is
caled. Figure D.12 showstheserver process.

doors[server9.c

1 #include "unpipc.h"

2 void

3 servproc (void *cooki e, char *dataptr, size-t datasi ze,

4 door_desc_t *descptr, size-t ndesc)

5 {

6 | ong arg, result;

7 Door_revoke (* ((int *) cookie));

8 arg = *((long *) dataptr);

9 printf("thread id %14, arg = %1d\n", pr_thread id(NULL), arg);
10 result = arg * arg;
11 Door_return((char *) & esult, sizeof(result), NULL, 0);

12 }
13 int
14 main(int argc, char **argv)

15 {

16 int fd;

17 if (argc '= 2)
18 err_quit ("usage: server9 <server-pat hname>");
19 /* create a door descriptor and attach to pathname */
20 fd = Door_create(servproc, &fd, 0);

21 unlink(argv[1l]);

22 Close(Open(argv[l], O_CREAT | O_RDWR, FILE_MODE));

23 Fattach(fd, argv[1l]);
24 /* servproc() handles all client requests */
25 for (; ;)
26 pause(} ;

27 } doors|server9.c

FogreD12 Wingthecooki eparnter toava d naki ng ftdad dd .

We could easily make the same change to Figures 1522 and 1523, since the
cookie pointer is available to our my—thread function (in the door_info_t

532 Solutions to SHected Exadsss Appendix D

1510

Chapter 16

161

16.2

163

164

165

16.6

structure), which passes a pointer to this structure to the newly created threed
(which needsthedescriptor for thecal to door - bi nd).

In this example, the thread attributes never change, so we could initiaize the
attributesonce (inthenai n function).

The port mapper does not monitor the servers that register with it, to try ad
detect if they crash. After we terminate our client, the port mapper mappings
remainin place, as we can verify with the rpcinfo program. So a client who
contacts the port mapper after our server terminates will get an OK return from
the port mapper with the port numbersin use beforethe server terminated. But
when a client tries to contact the TCP server, the RPC runtime will receive an
RST (reset)in responseto itsSYN (assuming that no other process has since been
assigned that same port on the server host), causing an error return from
clnt_create. A UDPclient's cdl to clnt_create Will succeed (sincethereis
No connection to establish), but when the client sendsa UDP datagram to theadd
server port, nothing will be returned (assuming again that no other process hes
since been assigned that same port on the server host) and the client's procedure
cdl will eventually time out.

The RPC runtimereturns the server's first reply to the client wheniit is received,
about 20 seconds after the client's call. The next reply for the server will just ke
held in the client's network buffer for this endpoint until either the endpoint is
closed, or until the next read o this buffer by the RPC runtime. Assumethat the
client issuesasecond cdl to thisserver immediately after receiving thefirst reply.
Assuming no network loss, the next datagram that will arrive on this endpoint
will betheserver's reply to theclient's retransmission. But the RRC runtimewill
ignorethisreply, since the XID will correspond to the client's first procedurecall,
which cannot equal the XID used for thissecond procedurecall.

The C structure member ischar ¢ [10!, but this will be encoded by XDR as ten
4-byte integers. If you redly want a fixed-length string, use the fixed-length
opaquedatatype.

The cdl to xdr_data returns FALSE, because its call to xdr - stri ng (look &
thedat a- xdr .c file) returns FALSE

When a maximum length is specified, it is coded as the fina argument to
xdr - stri ng. When this maximum length is omitted, the final argument is the
one's complement of 0, (whichis2* -1, assuming 32-bit integers).

The XDR routines all check that adequate room is availablein the buffer for the
data that is being encoded into the buffer, and they return an error d FALSE
when the buffer isfull. Unfortunatdly, thereis no way to distinguish among the
different possibleerrorsfrom the XDR functions.

We could say that TCP’s use d sequence numbers to detect duplicatedata s, in
effect, a duplicate request cache, because these sequence numbers identify any

Solutions to Sdected Exadsss AppedixD 533

16.7

16.8

16.9

16.10

old segment that arrives as containing duplicate data that TCP has already
acknowledged. For a given connection (e.g., for a given client's IP addressand
port), thesize d this cache would be one-hdf o TCP’s 32-bit sequence number
space, or 21, about 2 gigabytes.

Since all five values for a given request must be equal to al five valuesin the
cache entry, the first value compared should be the one most likely to be
unequal, and the last value compared should be the one least likely to be
unequal. The actual order d the comparisonsin the TI-RPC packageis(1) XID,
(2) procedure number, (3) version number, (4) program number, and (5) client's
address. Given that the XID changesfor every request, to compareit first makes
sense.

In Figure 16.30, starting with the flag/length field and including 4 bytesfor the
long integer argument, thereare 12 4-bytefields, for a total d 48 bytes. With the
default & null authentication, the credential data and verifier data will both be
empty. That is, the credentialsand verifier will both take 8 bytes. 4 bytesfor the
authentication flavor (AuTH_NONE) and 4 bytes for the authentication length
(whichhasavaued 0).

In thereply (look at Figure16.32 but redizethat snce TCPisbeing used, a4-byte
flag/length field will precedethe XID), there are eight 4-bytefields, starting with
theflag/length field and ending with 4 bytesd long integer result. They total 32
bytes.

When UDPis used, the only change in therequest and reply istheabsenced the
4-byte flag/length field. Thisgivesarequest size o 44 bytes and areply szed
28 bytes, whichwecan verify with tcpdump.

Yes Thedifferencein argument handling, both at theclient end and at theserver
end, islocd to that host and independent d the packets that traverse the net-
work. The client main cdls a function in the client stub to generate a network
record, and theserver main callsafunctionin theserver stub to process this net-
work record. The RPC record that is transmitted across the network is defined
by the RPC protocol, and this does not change, regardlessd whether either end
supports threadsor not.

The XDR runtime dynamically alocates space for these strings. We verify this
fact by adding thefollowing lineto our read program:
printf("sbrk() = %p, buff = $p, in.vstring arg = $p\n",
sbrk (NULL), buff, in.vstring_arg):
The sbrk function returns the current address at the top d the program's data
segment, and the memory just below this is normally the region from which
malloc takesitsmemory. Runningthisprogramyields

sbrk() = 29638, buff = 25e48, in.vstring arg = 27e58
which shows that the pointer vstring_ arg points into the region used by

malloc. Our 8192-byte buf f goesfrom 0x25e48 to 0x27e47, and thestringis
stored just beyond thisbuffer.

53 Solutions to Sdected Exadses Appendix D

b1

16.12

Figure D.13 shows the client program. Note that the fina argument to
clnt_call is an actua timeval structure and not a pointer to one o these
structures. Also note that the third and fifth argumentsto clnt_call must be
nonnull function pointers to XDR routines, so we specify xdr—void, the XDR
function that does nothing. (You can verify that thisisthe way to call a function
with no arguments or no return values, by writing a trivial RPC specificationfile
that defines a function with no arguments and no return values, running
rpcgen, and examining the client stub that isgenerated.)

sunrpe[squarel0/client.c

1 #incl ude "unpipc.h" /* our header */

2 #include *square. h* /* generated by rpcgen */
3 int

4 main(int argc, char **argv)

5

6 CLI ENT *cl1;

7 struct tineval tv;

8 if (argc !'= 3)

9 err_quit("usage: client <hostname> <protocol>");
10 cl = Clnt_create(argv[l]}, SQUARE- PROG SQUARE- VERS, argv[2});
5t tv.tv_sec = 10;

12 tv.tv_usec = 0;

13 if (clnt_call(cl, NULLPROC, =xdr_void, NULL,

14 xdr_void, NULL, tv) != RPC_SUCCESS)

15 err-quit ("$s", clnt_sperrox(cl, argvil]));

16 exit(0);

17 }

sunrpc|squarel0/client.c
FigureD.13 Client program that callstheserver's null procedure.

Theresulting UDP datagram si ze (65536 + 20 + RPC overhead) exceeds 65535, the
maximum size d an IPv4 datagram. In Figure A4, there are no values for Sun
RPC using UDP for message sizes o 16384 and 32768, because thisis an older
RPCSRC 4.0 implementation that limitsthesize o the UDP datagrams to around
9000 bytes.

Bibliography

Whenever an electronic copy wasfound of a paper or report referenced in this bibli-
ography, its URL isincluded. Be aware that these URLs can change over time, and
readers are encouraged to check the Errata for thistext on the author's home pagefor
any changes: http: //www.kohal a. com/~rstevens.

Bach, M. J. 1986. The Design of the UNIX Operating System. PrenticeHall, Englewood Cliffs N.J.

Birrel], A. D., and Nelson, B. J. 1984. " Implementing Remote Procedure Cdls’ ACM Transactions
on Computer Systems, val. 2, no. 1, pp. 39-59 (Feb.).

Butenhof, D. R 1997. Programming with POSIX Threads. Addison-Wedey,Reading, Mass

Corbin,J R 1991. The Art of Distributed Applications: Programming Techniques for Remote Procedure
Calls. Springer-Verlag, New York.

Garfinkd, S L., and Spafford, E H. 1996. Practical UNIX and Internet Security, Ssoond Edition.
O'Reilly & Associates, Sebastopol, Cdlif.

Goodheart, B, and Cox, J. 1994. The Magic Garden Explained: The Internals & UNIX System V
Release4, An Open Systems Design. PrenticeHall, Englewood Cliffs, N.J.

Hamilton, G., and Kougiouris, 1? 1993. "The Spring Nucleus: A Microkernd for Objects" Pro-
ceedings of the 1993 Summer USENIX Conference, pp. 147-159, Cincinnati, Oh.

http://www.kchala.com/~rstevens/papers.others/springnucleus.1993.ps

535

536

UNIX Network Programming Bibliography

IEEE. 1996. "Information Technology — Portable Operating System Interface (POSIX) —Part 1
System ApplicationProgram Interface (API) [C Language],” |EEE Std 1003.1, 1996 Edition,
Institute of Electrical and Electronics Engineers, Piscataway, N. J. (duly).

Thisverson d Posix.1 containsthe 1990 base API, the 1003.1b realtime extensions(1993), the
1003.1c Pthreads (1995), and the 1003.1i technical corrections (1995). Thisisaso International
Standard ISO/IEC 9945-1: 1996 (E). Orderinginformation on |IEEE standards and draft stan-
dardsisavailableat ht t p: //www.ieee.org. Unfortunately,the |IEEE standardsarenot fredy
availableon thenternet.

Josgy, A, ed. 1997. Go Solo 2 The Authorized Guide to Version 2 d the Single UNIX Specification.
PrenticeHall, Upper Saddle River, N.J.

Also note that many o the Unix 98 specifications (e.g., dl o the manual pages) are available
online at http://www.UNIX-systems.org/online.html.

Kernighan, B. W.,, and Pike, R 1984. The UNIX Programming Environment. Prentice Hall, Engle-
wood Cliffs, N.J.

Kernighan, B. W,, and Ritchie, D. M. 1988. The C Programming Language, Second Edition. Prentice
Hall, Englewood Cliffs, N.J.

Kleiman, S, Shah, D., and Smaalders, B. 1996. Programming with Threads. Prentice Hall, Upper
SaddleRiver, N.J

Lewis, B, and Berg, D. J. 1998. Multithreaded Programming with Pthreads. Prentice Hall, Upper
Saddle River, N.J.

McKusick, M. K., Bodtic, K., Karels, M. J, and Quarterman, J.S 1996. The Design and |mplementa-
tion d the 4.4BSD Operating System. Addison-Wedey, Reading, Mass.

McVoy, L., and Staglin, C. 1996. *"'Imbench: PortableToolsfor Performance Analysis,” Proceedings
d the1996 Winter Technical Conference, pp. 279-294, San Diego, Calif.

This suite d benchmark tools, aong with this paper, are avalable from
http://ww. bi t rover. conl | nbench.

Rochkind, M. J. 1985. Advanced UNIX Programming. PrenticeHall, Englewood Cliffs, N.J
Sdus, I?7H. 1994. A Quarter Century of Unix. Addison-Wedey, Reading, Mass.

Srinivasan, R 1995a. "'RPC. Remote ProcedureCall Protocol Specification Verson 2" RFC 1831,
18 pages(Aug.).

Srinivasan, R. 1995b. "XDR: External Data Representation Standard," RFC 1832, 24 pages(Aug.).
Srinivasan, R. 1995¢. " Binding Protocolsfor ONC RPC Version2,” RFC 1833, 14 pages(Aug,.).

Stevens, W. R 1992. Advanced Programming in the UNIX Environment. Addison-Wedey, Reading,
Mass.
All thedetailsd Unix programming. Referred to throughout thistext as APUE
Stevens, W. R 1994. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wedley, Reading, Mass.
A completeintroduction to thelnternet protocols. Referredto throughout thistext as TCPvI.

UNIX Network Programming Bibliography = 537

Stevens, W. R. 1996. TCP/IP Illustrated, Volume 3: TCP foar Transactions, HI'TE, NNTP, and the UNIX
Domain Protocols. Addison-Wedey, Reading, Mass.

Referred tothroughout thistext asTCPv3.
Stevens, W. R. 1998. UNIX Network Programming, Volume 1, Second Edition, Networking APIs: Sock-
etsand XTI. PrenticeHall, Upper SaddleRiver, N .J.
Referred tothroughout thistext asUNPvl.

Vahalia, U. 1996. UNIX Internals: The New Frontiers. PrenticeHall, Upper Saddle River, N.J.

White, J. E. 1975. "A High-Level Framework for Network-Based Resource Sharing,” RFC 707,
27 pages (Dec.).

http://www.kohala.com/~rstevens/papers.others/rfc707.txt
Wright, G. R.,and Stevens, W. R. 1995. TCP/IP |llustrated, Volume 2: The Implemenfafion. Addison-
Wedey, Reading, M ass.

Theimplementation of the Internet protocolsin the 4.4BSD-Lite operating system. Refared to
throughout thistext asTCPv2.

Index

Rather than provide a separate glossary (with most of the entries being acronyms), this
index also serves as a glossary for al the acronyms used in this book. The primary
entry for the acronym appears under the acronym name. For example, all referencesto
Remote Procedure Call appear under RPC. The entry under the compound term
"Remote Procedure Cal" refersback to the main entry under RPC.

The notation " definition of " appearing with a C function refers to the boxed func-
tion prototype for that function, its primary description. The " definition of" notation
for astructurerefersto its primary definition. Some functionsalso contain the notation
"*source code” if asource codeimplementation for that function appearsin the text.

4.2BSD, 198

4.3BSD, 98

4.4BSD, 311,315-316
4.4BSD-Lite, 537

64-bit architectures, 85,427

abort function, 90,424-425

absolutetime, 171

Abstract Syntax NotationOne, see ASN.1

accept function, 399

accept— stat member, 447

accepted— reply structure, definitionof, 447

access function, 91

ACE (AdaptiveCommunicationsEnvironment),
180

address, IP, 245,401,403,413,422,533

advisorylocking, 203-204,217,522

aio_return function, 91

aio_suspend function, 91

AlX, xvi, 151
alarm function, 91, 396, 425
American National Standardslnstitute, see ANSI
American Standard Codefor Information
Interchange, see ASCII
anonymous memory mapping, 315-317
ANS (AmericanNational Standardslngtitute), 21,
402-403, 505, 511, 520
API (applicationprogram interface), 13-14,356,
379-380,450,536
sockets, Xiv, 8, 14, 151, 398—399, 403, 406,
449-450,454-455
TLI, 406
XTI, 14,151,398-399,403,406,413-414,424,
449-450, 455
Apollo, 406
APUE (AdvancedProgrammingin theUNIX
Environment), xiv, 536
areply member, 447

539

540

UNIX Network Programming

Index

am, 429
array datatype, XDR, 429
array member, 288

ASCIl (AmericanStandard Codefor Information

Interchange), 193, 426, 429, 444
ASN.1 (Abstract Syntax Notation One), 426
Aspen Group, 178
asynchronous

event notification, 87
170, 14,101
procedurecal, 356

async-signal-safe, 90-91, 95, 98, 102, 279, 525-526

at-least-onceRPC cdl semantics, 423, 450
at-most-onceRPC call semantics, 423, 450
atomic, 24, 59, 197, 214, 220, 286
atomicity of pipeand FIFOwrites, 65- 66
attributes

conditionvariable, 113, 172- 174, 521

doors, 363, 366, 375, 384

messagequeue, 79- 82, 520

mutex, 172- 174

process-shared, 9-10,113,128,173,175,265,

454

read-writelock, 179

thread, 98, 113, 502, 521, 532
aup_gid member, 416
aup_gids member, 416
aup_len member, 416
aup_machname member, 416
aup_time member, 416
aup_uid member, 416
AUTH_BADCRED constant, 449
AUTH_BADVERF constant, 449
AUTH_DES constant, 417
AUTH_ERROR constant, 448—-449
AUTH_FAILED constant, 449
AUTH_INVALIDRESP constant, 449
AUTH_KERB congtant, 417
AUTH_NONE constant, 414, 446- 447, 533
AUTH_OK constant, 449
AUTH_REJECTEDCRED constant, 449
AUTH_REJECTEDVERF constant, 449
AUTH_SHORT constant, 417, 446
AUTH_SYS congtant, 414, 416, 446- 447
AUTH_TOOWEAK constant, 449
auth_destroy function, 415
auth_flavor member, 446
auth_stat member, 449
authentication

null, 414

RPC, 414- 417

Unix, 414

authsys_create_default function, 415

authsysqarms structure, 416
definitionof, 416, 446

autoconf program, 509

anvk program, xvii, 13

Bach, M. J, 36,535
bandwidth, 457
performance, message passing, 467- 480
basename program, 13
Badc Encoding Rules, sseBER
Bass J, 198
Bausum, D, xvi
Bentley, J. L., xvii
BER (Basic Encoding Rules), 426
Beg, D.J, 371,536
bibliography, 535- 537
bii-endian byteorder, 403, 426, 444
binary semaphore, 219, 281
bind function, 399
Birrell, A. D, 406, 535
black magic, 380
body member, 446
bool datatype, XDR, 429
Bodic, K, 311,536
Bound, J, xvi
bounded buffer problem, 161
Bourneshdl, 13, 5272
Bowe, G., xvi
Briggs, A., xvi
BSD/OS, 53, 59, 66, 84, 111, 209-210, 213, 316,
403- 405, 411- 412, 425, 437, 456, 517
buf member, 288
buffers, multiple, 249- 256
BUFFSIZE constant, definitionof, 507
bullet, Slver, 453
Butenhof, D. R, xvi, 9, 95, 160, 163, 180, 192, 535
byte
order, big-endian, 403, 426, 444
order, little-endian, 403, 426
range, 197
stream, 67, 74, 76, 444, 454
BYTES_PER_XDR_UNIT constant, 438

Cfunction prototype, 21, 105, 363, 384, 402—403,
505
Cshdl, 72
Cstandard, 21, 90, 511, 520
9, 21
Technica Corrigendum, 520
CALL constant, 446

UNIX Network Programming

Index

541

cdl semantics
at-least-once RPC, 423, 450
at-most-onceRPC, 423, 450
exactly-onceRPC, 422- 423, 450
RPC, 422- 424
call - body structure, definitionof, 446
calloc function, 84, 136
cancdlation, thread, 174, 180, 183, 187- 192384,
388, 396- 398, 530
carriagereturn, seCR
cat program, 52~53, 64—66
cbody member, 446
CDE (Common Desktop Environment), 15
Cedar, 406
cfgetispeed function, 91
cf getospeed function, 91
cf setispeed function, 91
cfsetospeed function, 91
cgid member, 33- 34, 131, 283
Chang, W, xvi
char datatype, XDR, 427
chdir function, 91
chmod function, 91
chmod program, 205
chown function, 91
chown program, 33
cl_auth member, 415
Clark, J. J, xvii
Cleeland, C., xvi
CLGET_RETRY_TIMEOUT constant, 418
CLGET_TIMEQUT condtant, 418
client
handle, definitionof, 401
identity, 83—84, 365, 369, 397, 415—-417, 456
stub, 403, 405
client function, 48, 54-55, 72, 142, 144, 147, 149
CLIENT structure, 401~402, 415
clnt_call function, 419- 420, 424, 451, 486, 534
clnt_control function, 418- 420
definitionof, 418
clnt_create function, 401, 403- 405, 412- 413,
418, 420, 532
definitionof, 401
clnt_destroy function, 420
definitionof, 420
clnt_sperror function, 424
clnt_stat structure, 409
clock— gettime function, 91
close function, 12, 61, 63, 65, 73, 77, 91, 114, 214,
260,265,279,330,376-378,383-384,524
Clouter, M., xvi
CLSET_TIMEOCUT constant, 420
codingstyle, 12 0

ColumbusUnix, 28

Common Desktop Environment, sseCDE

concurrency, thread, 163, 165- 166, 488

concurrentserver, 66- 67, 147, 357, 372, 407

conditionvariables, 159~175
attributes, 113, 172- 174,521

config.h header, 509- 510

configure program, 509

connect function, 399

const datatype, XDR, 427

contentionscope, 386, 388, 462

conventions, sourcecode, 11

cooperating processes, 203

cooperativelocks, 161

Coordinated Universa Time, sseUTC

copy-on-write, 501

Corbin,J. R, 406,535

countingsemaphore, 221, 281

Courier, 406

Cox, J., 36,311,535

cpio program, 13

CR (carriagereturn), 67

creat function, 91

creator ID, 33

cred member, 446

credentials, 417, 446, 449, 533

critical region, 159, 177, 197

cuid member, 33- 34, 131, 283

d_attributes member, 380, 384
d_data member, 380
d_desc structure, 380
definitionof, 380
d_descriptor member, 380
4_id member, 380
daemon, 60, 174, 203, 408, 502, 504, 511, 523
startingonecopy, 213-214
daemon_proc variable, 511
Data Encryption Standard, ss2=DES
dataqtr member, 357, 362- 363, 367- 369
data— size member, 357, 362, 530
datatypes, XDR, 427- 430
dc_egid member, 365
dc_euid member, 365
dc_pid member, 365
dc_rgid member, 365
de_ruid member, 365

DCE (DistributedComputing Environment), 407

deadlock, 56, 143, 238, 279, 518, 523- 524
DEBUG constant, 408

deltatime, 171

denial-of-service, s2DoS

UNIX Network Programming

Index

DES (DataEncryption Standard), 417
desc_num member, 357,362-363,530
descqtr member, 357, 362—-363, 380
descriptor passing, 84,379-384
detached thread, 98,384,386-388,504
/dev/clts device, 413
/dev/null device, 526
/dev/ zero device, 315-317,322-323,325,454,
497,526
/dev/zero memory mapping, 316-317
dg_echo function, 256
di_attributes member, 366
di_data member, 366,384
di_proc member, 366384, 386
di_target member, 366
di_uniquifier member, 366
Digital Equipment Corp., xvi
Digital Unix, xvi, 15,20-21, 37,51, 73,77, 79, 82,
98, 100, 104, 109, 154, 163, 209-210, 213, 225,
231-232,238,296,319,331,333,342,351,370,
407,411-412,437,458-459,461-462,464,
466,471,489,520-522,524
Dijkstra, E W, 220
DIR_MODE constant, definitionof, 508
discriminant, 429
discriminated union, 429
Distributed Computing Environment, see DCE
Door - createqroc datatype, 384
DOOR-DESCRIPTOR congtant, 380,384
DOCRLQOCAL constant, 366
DOOR_PRIVATE constant, 364,366,386
DOOR—QUERY constant, 366
DOORRA_EASE congtant, 384
DOOR_REVOKE constant, 366
Door_server_proc datatype, 363
DOOR_UNREF congtant, 364,366,375-379
DOOR_UNREF_DATA constant, 364,375
door_arg_t structure, 363,380-381
definitionof, 362
door—bind function, 377,385-386,388,390,532
definitionof, 390
door - call function, 357-358,360-364,367,369,
388,390-393,395-398,422,476,484,530-531
definitionof, 361
door - create function, 357-358,361,363-364,
375, 377, 379, 384~ 386, 388- 389, 397- 398, 531
definitionof, 363
door—cred function, 365,369
definitionof, 365
door_cred_t structure, 365
definitionof, 365
door_desc_t structure, 362-363,380-381,530
definitionof, 380

door_info function, 365-367,377,530
definitionof, 365
door_info_t structure, 364, 366, 384, 386—387,
531
definitionof, 366
door — return function, 358,361-362,364-365,
377,380,383,385,387-388,396-397
definitionof, 365
door-revoke function, 366,377,390,398,
530-531
definitionof, 390
door— server— createfunction, 384-390
definitionof, 384
door—unbind function, 390
definitionof, 390
doors, 355-398
attributes, 363,366,375,384
prematureterminationd client, 390-397
prematureterminationd server, 390-397
thread management, 370-375
Dorado, 406
DoS (denia-of-service), 65-67
doublebuffering, 251
doubl e datatype, XDR, 427
dup function, 91
dup2 function, 91
duplicatedata, 418,421,451,532
duplicaterequest cache, RPC server, 421-424,451,
532-533

EZBIG error, 83,133

EACCES error, 24, 32, 199, 216, 225

EAGAIN eror, 12,59-60,93, 121, 124, 132, 199,
205,227,260,269,276,286,293,339,503,522

EBADF error, 52,530-531

EBUSY error, 90,121,160,178,184,192

echo program, 64

EDEADLK error, 238

EEXIST error, 23-24, 31-32, 54, 74, 111, 214-215,
235,260,284,294,516,524

effective

groupID, 23,25, 33-34, 131, 283, 365, 414, 416,
515
user ID, 23, 25, 33-34, 84, 131, 283, 365,

369-370,414,416,515

EIDRM eror, 132-133,286

EINTR error, 90,121,124,132-133,149,227,279,
286,391-394,398,521,524-525

BMISGIZE error, 13, 83

BENCBUFS error, 341

ENOENT error, 24, 32,115, 516, 526

BNOMSS error, 133,139

UNIX Network Programming

Index 543

ENOSPC error, 24,32
enum datatype, XDR, 429
environment variable
PATH, 52
PX_IPC_NAME, 21
ENXIO error, 59
ephemeral port, 404,411,414,450
EPI PE error, 60
err— doit function, sourcecode, 512
err—dump function, 511
sourcecode, 512
err_msg function, 511
sourcecode, 512
err_quit function, 381,511
sourcecode, 512
err_ret function, 511
sourcecode, 511
err—sys function, 11-12, 511
sourcecode, 511
errata availability, xvi
_errno function, 515
errno variable, 11-13, 18, 49, 116, 267, 269, 274,
279,502-503,511,515,524
<errno.h> header, 13,18
error functions, 510-513
ESPI PE error, 54
ESRCH error, 121
/etc/inetd. conf file, 413
/etc/netconfig file 413
/etc/rpe file, 412-413
/etc/sysconfigtab file, 38
/etc/systen file, 37,458
ETI MEDQUT error, 171
exactly-once RPC call semantics, 422-423450
examplesroad map, 15-16
exec function, 9-10, 13, 58, 73, 364, 379-380, 398,
414,502,530
execle function, 91
execve function, 91
exercises, solutionsto, 515-534
exit function, 9, 48, 90, 226, 504, 511, 521
—exit function, 9-10, 91, 226, 504
explicit
filel/O, 322
network programming, 4,399,403
synchronization, 161
thread termination, 502
typing, 426
external data representation, see XDR

F_GETFL constant, 58
F_GETLK constant, 199-200

F_RDLCK constant, 199
F_SETFL constant, 58-59
F_SETLK constant, 199-200,522
F_SETLKW constant, 199,201,522
F_UNLCK congtant, 199
F_WRLCK congtant, 199
FALSE constant, 409,418,429,439,441,532
fattach function, 357, 359, 364, 376-377, 379, 397
fentl function, 58,91, 174, 193~194, 198-200,
202, 205, 207, 214—217, 398, 418, 450,
455-456,462,495,522-523
definitionof, 199
FD_CLOEXEC constant, 10,364,398
fdatasync function, 91
fdetach function, 364,376
fdetach program, 364
f dopen function, 68
£gets function, 48, 53,71, 249, 518
HFO (firstin, first out), 54-60
limits, 72-73
NFS and, 66
order, lock requests, 210
order, messagequeue, 133,138,143
order, queued signas, 100,102,104-105
order, RPC server reply cache, 422
permissions, 54
used for implementationd Posix semaphores,
257~262
writes, atomicity d pipeand, 65-66
fifo.h header, 56
filel/O, explicit, 322
filelocking
using Posix semaphores, 238
using SystemV semaphores, 294-296
versusrecord locking, 197-198
file modecreation mask, 23, 33,55
filepermissions, 203,205,216,397
Fl LE structure, 52,401-402
File Transfer Protocol, see FTP
FI LE- MODE constant, 55, 79
definitionof, 508
filesystem persistence, 6-7, 78, 311
FIN (finishflag, TCP header), 420,424-425
find program, 39,517
finishflag, TCP header, sse FIN
firstin, first out, sseFIFO
flavor member, 446
fl oat datatype, XDR, 427
floating point format, |IEEE, 426
flock function, 198
flock structure, 199-201
definition of, 199
fopen function, 54, 68,71, 149, 515

544

UNIX Network Programming

Index

fork function, 4,9-10, 13, 44-47, 51, 55, 58,
66—67,73,91, 102, 147, 149, 151, 174, 200, 207,
217,240,256,267,305,307,309,311,315,322,
332,364,379-380,391,414,475,480,
497-498, 501, 503

fpathconf function, 72-73, 91

fputs function, 249

fragment, XDR, 444

Franz, M., xvii

free function, 21,260,275

FreeBSD, 29,288

Friesenhahn, R, xvi

FEINLKW congtant, 215

f stat function, 21, 44, 74, 91, 115, 262, 327-328,
330-331,342,398,519,530

defi tionof, 328

fsync function, 91

ftok function, 28-31, 38—39, 130, 135, 138, 273,
275,293,344,346,348-349,517,521,526

definitionof, 28

FTP (FileTransfer Protocol), 67,337

ftruncate function, 113,217,263,320,327-328,
333,342,351,528

definitionof, 327

full-duplexpipe, 44,50-52, 127, 475

ni

Gallmeister, B. O., xvi
GARBACEARSS congtant, 447-448
Garfinkd,S L., 417,535
GETALL constant, 288,290
getconf program, 73
getegid function, 91
geteuid function, 91

getgid function, 91
getgroups function, 91
gethostbyaddr function, 245
gethostname function, 509
GETNCNT constant, 288
getopt function, 78, 82
Getopt wrapper function, 78
getpgrp function, 91

GETPID condant, 288

getpid function, 91,370,503
getppid function, 91
getsockopt function, 418
getuid function, 91

GETVAL constant, 277,288
GETZCNT constant, 288
gf_time function, 207

gid member, 33-34,131,134,283,288,345,446
gids member, 446

Gierth, A, xvi

Glover, B, xvi

GNU (GNU’s Not Unix), xvii, 509,520
Goodheart, B, 36,311,535
gpic program, Xxvii
Grandi, S, xvi
granularity, locking, 198
grep program, 161
groff program, xvii
group ID, 328,397,417,502
effective, 23, 25, 33-34, 131, 283, 365, 414, 416,
515
red, 365
supplementary, 25,414,416
GSquared, xvi
gtbl program, Xxvii
Guerriern, P, xvii

hdf-dose, 425

Hamilton, C., 356,535

Hanson, D. R, xvii

Haug, J, xvi

Hewlett Packard, 407

high member, 447,449

hostname, 245,401,403,413-414,416-417,450
HTTP (Hypertext Transfer Protocal), 67,337
hyper datatype, XDR, 427

Hypertext Transfer Protocol, sseHTTP

|—RECVFD congtant, 379
I-SENDFD constant, 379
| BM xvi
idempotent, 393-395,422-423
identifier reuse, SystemV IPC, 34-36
identity, client, 83-84,365,369,397,415-417,456
IEC (International Electrotechnical Commission),
13-14,520,536
IEEE (Instituted Electrical and Electronics
Engineers), 13-14,121,180,262,536
floating point format, 426
IEEEIX, 13
implementation
d Posix message queuesusi ng memory-
mapped1/0O, 106-126
o Posix read-writelock using mutexesand
conditionvariables, 179-187
d Posix semaphoresusing FIFOs, 257-262
d Posix semaphoresusing memory-mapped
I/0, 262-270
o Posix semaphoresusing Systemv
semaphores, 271-278
implicit
synchronization, 161
thread termination, 502

typing, 426

UNIX Network Programming

Index 545

indent program, xvii
inetd program, 413-414
RPCand, 413-414
init program, 4,48, 521
initia thread, sse main thread
i-node, 28-29,349,517
Instituted Electrica and ElectronicsEngineers, sse
IEEE
i nt datatype, XDR, 427
int16_t datatype, 427
int32_t datatype, 427
int64_t datatype, 427
int8_t datatype, 427
International Electrotechnical Commission, seeIEC
International Organizationfor Standardization, se
SO
Internet Protocol, sseIP
Internet Protocol version 4, seiPv4
interprocesscommunication, sselPC
ioctl function, 379,384
I P (Internet Protocol), address, 245,401,403,413,
422 533
IPC (interprocesscommunication)
identifier reuse, SystemV, 34-36
kernel limits, System V, 36-38
key, 28
namespace, 7-9
names, Posix, 19-22
networked, 453
nonnetworked, 453
permissions, Posix, 23, 25-26, 84, 115, 225,232,
267,327
permissions, SystemV, 31-35, 39, 130-131,
282-283,343-345
persistence, 6-7
Posix, 19-26
SystemV, 27-39
IPC_CREAT constant, 31—-32, 38, 130, 283284,
294,344
IPC_EXCL constant, 31-32, 38, 130, 135, 141, 273,
283-284,289,294,344
IPC_NOWAIT constant, 87, 132—-133, 139, 143, 276,
286-287.290
IPC_PRIVATE constant, 2931, 38—39, 130, 134,
147,155,344,517
IPC_RMID constant, 35,134,137,275,288-289,
345-346,351
IPC_SET constant, 33,134,288,345
IPC_STAT constant, 38,134,274,285,289-290,
294,345,347-348,351,455
i pcgerm structure, 30-35, 38, 129-130, 282-283,
A3
definitionof, 30

ipcrm program, 36

ipcs program, 36,134,138-140,348-349,455

IPv4 (Internet Protocol version 4), 446,451,534

is—read— | ockabl e function, definitionof, 202

is—write—lockabl efunction, definitionof, 202

1SO (International Organi zationfor
Standardization), 13-14,520,536

iterative, server, 66-67,144,372,407-408

Johnson, M., xvi
Johnson,S,, xvi
joinablethread, 387,504
Josey,A., 15,536
justice, poetic, 517

Kacker, M., xvi

Karels, M. J, 311,536

Kerberos, 417

kernd limits, SystemV 1IPC, 36-38
kernel persistence, 6, 75, 77, 226
Kernighan, B. W, xvi—xvii, 12,511,536
key, IPC, 28

key—t datatype, 8, 28—30, 455
kill function, 91,101

Kleiman, S, 180,536

KornShell, 72-73

Kougiouris, 1?7, 356,535

1_len member, 199-200
I qi d member, 199
1_start member, 199-200
1_type member, 199
1-whence member, 199-200
lastin, first out, sse LIFO
latency, 361,458
performance, message passing, 480-486
leak, memory, 114,175,452,521
Leisner, M., xvi
Lewis, B, 371,536
LF (linefeed), 67
LIFO (lastin, first out), 104
lightweight process, 501
limit program, 72
limits
HFO, 72-73
pipe, 72-73
Posix messagequeue, 86-87
Posix semaphore, 257
SystemV IPC kerndl, 36-38
SystemV messagequeue, 152-154
System V semaphore, 296-300
SystemV shared memory, 349-351

UNIX Network Programming

Index

<limits.h> header, 72
linefeed, sseLF
link function, 91,215-216
Linux, xvi, 288,356,407
listen function, 399
littdle-endian byteorder, 403,426
Imbench program, 458-459
local procedurecdl, 355
lock priority, 180,207-213
lock—reg function, 202
lock — test function, 202
lockd program, 216
lockf function, 198
lockfcntl program, 203-204
locking
advisory, 203-204,217,522
conflicts, 170-171
file locking versusrecord, 197-198
granularity, 198
lock files, 214-216
mandatory, 204-207,217
NFS, 216
prioritiesdf readersand writers, 207-213
record, 193-217
shared-exclusive, 177
versuswaiting, 165-167
locking function, 198
locknone program, 203-204,207,217
LOGHR constant, 511
LOGHNFO constant, 511
long datatype, XDR, 427
long doubl e datatype, 427
long long datatype, 427
longjmp function, 90
longlong_t datatype, 427
loom program, xvii
loopfcntl program, 205-206,217
loopfcntlnonb program, 217,522
looprnione program, 205206
loopnonenonb program, 217,522
low member, 447,449
1p program, 193
LPe64, 427
I pr program, 193
1s program, 36, 81, 205, 360, 455
I seek function, 5, 54, 91, 113, 115, 200, 202, 310,
322,327,523,528
| stat function, 21, 44
Lyon, B, 406

machinename member, 446
magic number, 109,117,181,258,262,271

main thread, 93,190,235,388,488,490,502
malloc function, 117, 160, 432, 435, 467- 468, 524,
533
mandatory locking, 204-207,217
many-to-few thread implementation, 163
MARANCON constant, 315-316,322,454,497
MAP_FIXED congtant, 309
MAP—PRIVATE constant, 309-310,323
MARSHARED constant, 309-311,315,323
Marquardt, D, xvi
marshaling, 405
MAX—PATH constant, definitionof, 507
MAXLINE constant, 49, 505
definitionof, 507
McKusick, M. K., 311,536
McVoy, L., xvi, 458,536
memcpy function, 127,526
memory
leak, 114,175,452,521
mapping, anonymous, 315-317
mapping, /dev/zero, 316-317
object, 326
memory-mapped
file, 78,107,111,127,308,310-311,313,322,
325-326,471,520,525
1/0, 303,525
1/0, used forimplementation of Posix message
queues, 106-126
1/0, used forimplementationd Posix
semaphores, 262-270
mesg structure, 149
mesg_recv function, 69-71,141-142,144,149
mesg_send function, 69-70, 141-142, 144
mesg. h header, 68
Mesg_recv function, 149
message
boundary, 67, 76, 444, 454
queueattributes, 79-82, 520
queuedescriptor, definitionof, 77
queuelD, 129- 130, 139- 140, 142, 147, 149, 151,
14
queuelimits, Posix, 86-87
queuelimits, SystemV, 152-154
queue priority, 82—83, 85-86, 109, 123-124, 126,
143,482
queues, implementati on using memory-
mapped 170, Posix, 106-126
queues, Posix, 75-128
queues, System'V, 129-155
queueswithpoll function, SystemV, 151-152
queueswith sel ect function, Posix, 95-98
queueswith sel ect function, SystemvV,
151-152

UNIX Network Programming

Index

547

messages
multiplexing, 142-151
streamsversus, 67-72
Metz, C. W, xvi
mismatch_info structure, definitionof, 447,449
nkdi r function, 91
nkf i f o function, 39, 54—58, 74, 91, 518, 524
definitionof, 54
nkf i f o program, 54
m ock function, 322
m ockal | function, 322
mmap function, 14,109,113,115,263,265,303,
307-311,315-320,322-323,325-328,
330-334,337,342-343,363,369,471,527,529
definitionof, 308
nmode member, 31-34,134,283,289,345
node- t datatype, 110-111
MQO_OPEN_MAX constant, 86
MQ_PRIO_MAX constant, 82—83, 86
mg_attr structure, 80, 83
definitionof, 80
mg_close function, 76-79, 109, 116- 117, 126- 127
definitionof, 77
sourcecode, 116
mg_curmsgs member, 80,123-124
mg_£l ags member, 80,108,118
mg_getattr function, 79-83, 85, 117, 126, 520
definitionof, 79
sourcecode, 118
mg_hdr structure, 109,113,117,119
mg_info structure, 106,108-109,113,115-118
mg_maxmsg member, 76, 80, 86, 112, 123, 127
mg_msgsize member, 76, 80, 83, 86,112,127
mg_notify function, 87-99,117,119,126-127
definitionof, 87
sourcecode, 120
mg_open function, 1920, 22, 25, 76—80, 82, 106,
109,111-114,116,126-127,326-327.520
definitionof, 76
sourcecode, 109
mg_receive function, 24, 76, 82—86, 88, 90, 93,
115,121,124,126,482,526
definitionof, 83
sourcecode, 125
mg_send function, 13, 24, 82~86, 109, 121,124,
126-127,471,526
definitionof, 83
sourcecode, 122
mg_setattr function, 79-82, 118, 126
definitionof, 79
sourcecode, 119
mg_unlink function, 76-79,117,126,327
definitionof, 77
sourcecode, 117

mad_t datatype, 8,77,95,109, 326
mgh_attr structure, 108
mgh_event structure, 119
mgh_free member, 108-109, 113
mgh_head member, 108-109, 113, 124
mgh_nwait member, 121,124
mgh_pid member, 119
mgh_wait member, 121
MQI_MAGIC constant, 109
mgi_fl ags member, 109
mgi_hdr member, 109
mgi_magic member, 109
mgueue.h header, 106
MS_ASYNC congtant, 310
MS_INVALIDATE constant, 310
MS_SYNC constant, 310
MSG_ACCEPTED congtant, 447—448
MSG_DENIED constant, 447—448
MEG- NCERRCR constant, 83,133
MBG- PEEK constant, 152,455
MSG- R constant, 33
MSG_TRUNC congtant, 83
MSG- W constant, 33
msg_cbytes member, 129,134
msg_ctime member, 129,131
msg_£i rst member, 129
msg_hdr structure, 109,113, 123, 126,310
msg_last member, 129
msg_len member, 109
msg_lrpid member, 129,131
msg__1spid member, 129,131
msg_next member, 108-109,124
msg_perm structure, 131,134
definitionof, 129
msg_prio member. 109
msg_gbytes member, 129,131-132 134
msg_gnum member, 129,131
msg_rti me member, 129,131
msg_sti me member, 129,131
msg_type member, 446
msgbuf structure, 131,134,136,482
definitionof, 131
nsgct | function, 35, 38, 134—135, 137
definitionof, 134

msgget function, 33-35, 38, 130—-131, 135, 139,

154,516-517
definition of, 130
msghdr structure, 126
msgmap variable, 37
nsgnax variable, 37-38,152,458
nsgmb variable, 37-38,152,458
nsgmi variable, 37-38,152

UNIX Network Programming

Index

msgrcv function, 83, 87, 131-134, 137-139, 143,
149,151-152,304,323,482
definition of, 132
msgseg variable, 37,152,458
msgsnd function, 34,131-132,135,143,154,304
definitionof, 131
msgssz variable, 37,152
msgtqgl variable, 37-38,152
msqgid_ds structure, 130,132,134
definition of, 129
msync function, 307-311
definition of, 310
mtext member, 131
M-to-N thread implementation, 163
mtype member, 131
multiplebuffers, 249-256
multiplexingmessages, 142-151
multithreading, RPC, 407-411
munlock function, 322
munlockall function, 322
munmap function, 117,267,307-311,363,369,529
definitionof, 309
mutex, 159-175
and conditionvariables, used for
implementationd Posix read—writelock,
179-187
attributes, 172-174
mutual exclusion, 159,194,221
my — create function, 386—387
my—lock function, 194,196-197,200-202,214,
217,238,279,294,296,526
my_shm function, 323, 497-498
my—thread function, 386-388,531
my_unlock function, 194,196-197,200,202,238,
279,294
mymesg structure, 68

namespace, IPC, 7-9

named pipe, 43, 54

names, Posix IPC, 19-22

National Optical Astronomy Observatories, s
NOAO

NCA (Network Computing Architecture), 406

NCK (Network Computing Kernel), 407

NCS (Network Computing System), 406

NDR (Network Data Representation), 406

Nelson, B.J,, 406,535

Nelson, R, Xxvi

network programming, explicit, 4,399,403

Network Computing Architecture, see NCA

Network Computing Kernel, sse NCK

Network Computing System, s NCS

Network Data Representation, see NDR

Network FileSystem, se NFS
Network Interface Definition Language, see NIDL
Network NewsTransfer Protocol, sse NNTP
networked IPC, 453
NFS (Network FileSystem), 404,406,411,417,495
and FIFO, 66
locking, 216
secure, 417
NIDL (Network I nterfaceDefinition Language),
406
NNTP (Network News Transfer Protocol), 67
NOAO (National Optical Astronomy
Observatories), xvi
nonblocking, 24, 58—59, 80, 85, 87, 93, 109, 132, 143,
160,184,205,217,260,262,269,276,286,293,
518,522
noncooperating processes, 203-204
nondeterministic, 197,217,530
nonnetworked IPC, 453
ntohl function, 441
null
authentication, 414
procedure, 451,486,534
signal, 121

O-AFFEND constant, 515

O_CREAT constant, 22-25, 31, 54, 77, 110-111, 115,
214-216,225,228-229,239,258,260,263,
265, 273- 274, 279, 285, 327, 334, 516, 524

O_EXCL constant, 22-25, 31, 54, 77, 111, 214-215,
225,235,260,273,327,516

O_NONBLOCK constant, 22, 24, 58—60, 77,93, 121,
124,217,260,518

O_RDONLY constant, 22,25-26, 61, 63,77, 115, 225,
327

O_RDWR constant, 22, 25-26, 77, 115, 225, 327

O_TRUNC constant, 22, 24, 216-217, 327, 523

O_WRONLY constant, 22, 25-26, 61, 77, 115, 216,
225

oa_base member, 416

oa_flavor member, 416

oa_length member, 416

od program, 313,319,331

ONC (Open Network Computing), 406

opagquedata, 429

opaque datatype, XDR, 429

opaque— auth structure, definitionof, 416,446

open systemsinterconnection, seeOSl

open function, 22-23, 26, 31, 49, 54, 56, 58, 61, 63,
65—-66, 71, 74, 91, 111, 115, 214—217, 260, 265,
273,310-311,315-317,325-327,342,357,
361,364,367,376,379-380,382-383,397,
515,518,523-524

UNIX Network Programming

Index 549

Open Group, The, 14-15

Open Network Computing, see ONC
Open Software Foundation, sseOS-
CPEN- MAX constant, 72-73

Operation Support Systems, 28
optarg variable, 82

optind variable, 78

OSF (OpenSoftwareFoundation), 14
OS (opensystemsinterconnection), 426
owner ID, 25, 33, 38, 397

packet formats, RPC, 444—-449
Papanikolaou, S, xvii
PATH environment variable, 52
PATH- MAX constant, 19,22
pathconf function, 72-73, 91
pause function, 90-91,230,359,420
pclose function, 52-53,73
definitionof, 52
_PG- Pl PE- BUF constant, 72
PDP-11, 37
performance, 457-499
message passing bandwidth, 467-480
message passing latency, 480486
processsynchronization, 497-499
thread synchronization, 486—496
permissions
AFO, 54
file, 203,205,216,397
Posix IPC, 23, 25-26, 84, 115, 225, 232, 267, 327
SystemV IPC, 31-35, 39, 130-131, 282-283,
343—-345
persistence, 6
filesystem, 6-7, 78, 311
IPC, 6-7
kernd, 6,75,77,226
process, 6
pid_t datatype, 194
Pike R, 12,536
pipe, 44-53
and FIFO writes, atomicity of, 65-66
full-duplex, 44, 50-52, 127, 475
limits, 72-73
named, 43, 54
pipe function, 44, 50, 56, 58, 68, 73, 91
definitionof, 44
Pl PE- BUF constant, 59—60, 65, 72—73, 260
pol1 function, 95,151,155,171,339,454
System V message queueswith, 151-152
polling, 87,167,214
popen function, 52-53, 73-74, 518
definitionof, 52

port
ephemeral, 404, 411, 414, 450
mapper, 404,406,411-414,450-451,532
reserved, 417
PortableOperating System Interface, ssePosix
portmap program, 411
Posix (PortableOperating System Interface), 13-14
IRC, 19-26
IPC names, 19-22
IPC permissions, 23, 25-26, 84, 115, 225, 232,
267,327
messagequeuelimits, 86-87
messagequeues, 75-128
messagequeues, implementationusing
memory-mappedl/O, 106-126
messagequeueswith sel ect function, 95-93
read—writelock, implementationusing mutexes
and conditionvariables, 179-187
realtime signals, 98-106
semaphorelimits, 257
semaphores, 219-279
semaphoresbetween processes, 256-257
semaphores. filelocking using, 238
semaphores, implementationusing FIFOs,
257-262
semaphores, implementationusing memory-
mapped1/0, 262-270
semaphores, implementationusing SysemV
semaphores, 271-278
shared memory, 325-342
Posix.1, 8,14~16, 19, 44, 59, 73, 83, 87, 98, 101, 159,
173,178, 198,205,214,225,240,256,266,279,
309,325,328,364,468,482,530,536
definitionof, 14
Rationae, 14,223, 240, 262, 328
Posix.1b, 14,99, 536
Posix.1¢, 14,536
Posix.1g, 8
Posix.1i, 14,536
Posix.1j 178,488
Posix.2, 14-16
definitionof, 13
Posix.4, 99
POSIX_IPC_PREFIX constant, 22
_POSIX_C_SOURCE constant, 13
—PC8l X- MAPPED- FI LES constant, 9
—PCBl X- MESSACGE- PASSI NGeonstant, 9
- PGBl X- REALTI ME- SI GNALS condant, 9
—PCSI X- SEMAPHORES constant, 9
—PCBl X- SHARED- MEMORY- CBJECTS condtant, 9
_POSI X- THREAD- PROCESS- SHAREDcondgtant, 9,
173

_POSIX_THREADS constant, 8-9

UNIX Network Programming

Index

PostScript, xvii
pr_thread_id function, 370-371
sour cecode, 371
printf function, 90, 102, 127, 205, 217, 279, 383,
398, 408, 522
piaity
| ock, 180, 207- 213
nessage queue, 82-83, 85-86, 109, 123-124,
126, 143, 482
thread, 160, 502
privateserver pod, 386, 388, 390
proc nenber, 446
PROC_UNAVAIL constant, 447-448
pr ocedur ecd |
asynchr onous, 356
locd, 355
synchr onous, 356- 357, 476
procedure, nu |, 451, 486, 534
process
ligntwel ght, 501
persistence, 6
pr ocesses, cooper at i ng, 203
process-sharedatribute 9- 10, 113, 128, 173, 175,
265, 454
producer—consumer probl em 161- 165, 233- 238,
242- 249
prog nenber, 446
PROG_MISMATCH const ant, 447-448
PROG_UNAVAIL constant, 447- 448
PROT_EXEC constant, 309
PROT_NONE constant, 309
PROT_READ constant, 308- 309
PROT_WRITE constant, 308- 309
ps program 127, 175, 367, 452, 520
psel ect function, 171
PTHREAD_CANCEL costat, 188
PTHREAD_COND_INITIALIZER constant, 167,

172

PTHREAD_ MUTEX_INITIALIZER constant, 160,
172

Pthread_mutex- | ock w apper functi on,sour ce
code, 12

PTHREAD PROCESS_PRIVATE constant, 173,179
PTHREAD PROCESS_SHARED constant, 113,128,
173, 179, 193, 239, 256, 265, 462, 497498
PTHREAD_RWLOCK_INITIALIZER constant,
178- 179
PTHREAD_SCOPE_PROCESS constant, 387
PTHREAD_SCOPE_SYSTEM costant, 386, 388
pthread_attr_destroy function, 398
pthread_attr_init functi on, 398
pt hr ead- at tr_t datatype, 502

pt hr ead- cancel function, 187,190
ofintiond, 187
pthread_cleanup_pop function, 187,191
ofintiond, 187
pthread_cleanup_push function, 187, 396
ofintiond, 187
pthread_condattr_destroy fuxtion, 175
ofintiond, 172
pthread_condattr_getpshared function,
ofintiond, 173
pthread_condattr_init function, 114, 175
ofintiond, 172
pthread_condattr_setpshared function,
ofintiond, 173
pthread _condattr_t datatype, 172
pthread_cond_broadcast function, 171, 175,
186
ofintiond, 171
pthread_cond_destroy function, dfintiond,
172
pthread_cond_init fuction dfintiond, 172
pthread_cond_signal function, 124,126,
167- 171, 175, 186- 187, 227, 268- 269
afintiond, 167
pthread _cond_t datatype, 8, 167, 256
pthread_cond_timedwait function, 171
ofintiond, 171
pthread_cond_wait function, 121, 167-171,
175,183-184,187,190-192,227,269,525
afintiond, 167
pt hr ead- creat e function, 163, 217, 356,
385- 388, 502- 504
afintiond, 502
pthread_det ach functi on, 502- 504
afintiond, 504
pthread_exit function, 174, 187, 425, 502- 504
afintiond, 504
pthread join function, 357,387, 502- 504
ofintiond, 503
pthread_mutexattr_destroy function, 175
ofintiond, 172
pthread_mitexattr_getpshared function,
ofintiond, 173
pthread_mutexattr_init function, 113-114,
175, 265
afintiond, 172
pthread_mutexattr_set pshar ed function,
113, 265
ofintiond, 173
pthread_mutexattr_t datatype, 172-173
pthread_mutex_dest roy fuxction dfintion
o, 172

UNIX Network Programming

Index 551

pthread mutex_init function, 113,160,
172-173,265,498
definitionof, 172
pthread_mutex_lock function, 12,160,190,221
definitionof, 160
pthread_mutex_t datatype, 8,160,172,256,279
pthread_mutex_trylock function, 160
definition of, 160
pthread_mutex_unlock function, 221
definition of, 160
pthread_rwlockattr_destroy function,
definitionof, 179
pthread rwlockattr_getpshared function,
definition of, 179
pthread— rwlockattr_init function, definition
of, 179
pthread— rwlockattr_setpshared function,
definitionof, 179
pthread_rwlockattr_t datatype, 179
pthread_rwlock_destroy function, 179,181,
192
definition of, 179
sourcecode, 182
pthread_rwlock.h header, 180
pthread_rwlock_init function, 179,181
definition of, 179
sourcecode, 182
pthread_xrwlock_rdlock function, 178-179,
183,190-191
definition of, 178
sourcecode, 183
pthread rwlock_t datatype, 8,178,180-181,
183,188,193,256
pthread_rwlock_tryrdlock function, 184
definition of, 178
sourcecode, 184
pthread_rwlock_trywrlock function, 184
definition of, 178
sourcecode,. 185
pthread_rwlock_unlock function, 178-179,
186,190,192
definitionof, 178
sourcecode, 186
pthread rwlock_wrlock function, 178-179,
183-184,190-191
definition of, 178
sourcecode, 185
pthread— self function, 502-504
definition of, 503
pthread_setcancelstate function, 396,530
pthread_setconcurrency function, 163
pthread_sigmask function, 95
pthread_t datatype, 370-371,502

<pthread.h> header, 180
Pthreads, 15
putchar function, 217
PX_IPC_NAME environment variable, 21
px_ipc_name function, 21-22, 26, 78, 235, 505
definitionof, 21
sourcecode, 22

quadrupl e datatype, XDR, 427
Quarterman, J. S, 311,536
queued signals, 100,102

FIFO order, 100,102,104-105

Rafsky, L. C,, xvi
Rago, S A, xvi
r ai se function, 91
rbody member, 446
rbuf member, 357,362-363,367-369
read ahead, 251
read function, 5-6, 43, 49-52, 54, 59, 61, 63, 70,
83, 90-91, 142, 161, 200, 204-207, 249, 254,
260,262-263,278,304,310-311,322,399,406,
435, 451, 456- 457, 467, 469, 471, 482,
517-519,522-523,525-526,533
read—lock function, 207
definitionof, 202
readers-and-writers
locks, 178
problem, 177
readline function, 61, 63,74, 518
readw_1lock function, 207-208
definitionof, 202
read-writelock, 177-192
attributes, 179
implementation using mutexesand condition
variables, Posx, 179-187

rea
group ID, 365
user ID, 365,369
realtime

scheduling, 14,160,171,454

signals, Posix, 98-106
record, 75

locking, 193-217

locking, filelockingversus, 197-198
recv function, 152
recvf rom function, 152,406
recvmsg function, 83,152
Red Hat Software, xvi
_REENTRANT constant, 13,515
Regina, N., xvii
Red, J, xvi

UNIX Network Programming

Index

reject_stat member, 449
rejected_reply structure, definitionof, 449
remote procedurecal, see RPC
remote procedurecall language, see RPCL
remote procedurecall sourcecode, see RPFCSRC
remote terminal protocol, see Telnet
r enane function, 91
REPLY constant, 446
repl y- body structure, definitionof, 447
repl y- stat member, 447
Request for Comments, see RFC
reserved port, 417
reset flag, TCPheader, see RST
resul t s member, 447
retransmission, 424,532
RPC timeout and, 417-422
RFC (Reguestfor Comments)
1831, 406,430,446-447
1832, 406, 426, 430
1833, 406,412
Ritchie, D. M., 511,536
r m program, 36,376-377,379
rndi r function, 91
RNDUP function, 438
road map, examples, 15-16
Rochkind, M. J, 27,536
round-triptime, 451,458
RPC (remoteprocedurecall), 355,399-452
andi net d program, 413-414
authentication, 414-417
call semantics, 422-424
call semantics, at-least-once, 423,450
call semantics, at-most-once, 423,450
call semantics, exactly-once, 422-423,450
multithreading, 407-411
packet formats, 444-449
prematureterminationd client, 424-426
prematureterminationdf server, 424-426
secure, 417
server binding, 411-414
server duplicaterequest cache, 421-424,451,
532-533
TCP connection management, 420
timeout and retransmission, 417-422
transaction|D, 420-422
RPC_CANTRECV constant, 424
RPC_MISMATCH constant, 448—449
RPC_SUCCESS constant, 409
rpc_msg structure, definitionof, 446
rpcbind program, 406,411-412,450
r pcgen program, 400-406,408-409/411,
413-414,419,427-429,432-433,435,
439-440,442,449-451,476,486,534

rpci nf o program, 412-414,532

RPCL (remoteprocedurecal language), 430

RPCSRC (remote procedurecall sourcecode), 406,
534

rpcver s member, 446

rq_clntcred member, 415

rqg_cred member, 415-416

rqg_proc member, 415

rq_prog member, 415

rqg_vers member, 415

rg_xprt member, 415

rreply member, 447

rsi ze member, 357,362-363,367-368

RST (reset flag, TCP header), 425,532

RTSIG_MAX constant, 100

RW_MAGIC constant, 181

rw_condreaders member, 183,186

rw_condwriters member, 184,186

rw_magic member, 181

rw_mutex member, 181,183

rw_nwaitreaders member, 183,191

rw_nwaitwriters member, 183-184, 190-191

rw_refcount member, 181,183-184186

rwlock_cancelrdwait function, 191

rwlock_cancelwrwait function, 191

S_IRGRP congtant, 23

S_IROTH constant, 23

S_IRUSR constant, 23

S_ISDOOR constant, 367
S_ISFIFO macro, 44

S_IWGRP constant, 23

S__IWOTH constant, 23

S_IWUSR constant, 23

S_IXUSR congtant, 111,263
S_TYPEISMQ macro, 21
S_TYPEISSEM macro, 21
S_TYPEISSHM macro, 21
SA_RESTART constant, 106
SA_SIGINFO constant, 100—102, 105-106, 127
sa_fl ags member, 106
sa_handler member, 106
sa_mask member, 106
sa_sigaction member, 105-106
Salus, P. H., 43,536

sar program, 39

sbr k function, 533
_SC_CHILD_MAX constant, 297
scheduling, redtime, 14,160,171,454
Schmidt, D. C, 180
_SC_MQ_OPEN_MAX congtant, 87
_SC_MQ_PRIO_MAX constant, 87
scope, contention, 386,388,462

UNIX Network Programming

Index 553

_SC_OPEN_MAX constant, 72
_SC_PAGESIZE constant, 317,470,529
_SC_RTSIG_MAX constant, 102
—SC_SEM_NSEMS_MAX constant, 257

_SC_SEM_VALUE_MAX constant, 257,265
Secure

NFS, 417
RPC, 417
Security, hole, 328
SEEK- CUR constant, 200,217,523
SEEK- END constant, 200,217,523
SEEK- SET constant, 200,217,523
sel ect function, 74, 95,98, 151-152, 155171,
323,339,454,519-521,528
Posix message queueswith, 95-98
SystemV message queueswith, 151-152
sel ect wrapper function, sourcecode, 521
sem structure, 273,282-283
definitionof, 282
SEM_A constant, 33,283
SEM_FAILED constant, 225
SEM_MAGIC constant, 258,262
SEM_NSEMS_MAX constant, 257
sem_post wrapper function, sourcecode, 11
SEM_R constant, 33,283
SEM_UNDO constant, 174,286-287,290,294,296,
492
SEM_VALUE_MAX constant, 225,257
sem_base member, 282-283
sem_close function, 224-226,228,235,260,267,
275
definitionof, 226
sourcecode, 261,267,275
sem_ct i me member, 282-283,289
sem_destroy function, 224,238-242
definitionof, 239
sem_flg member, 276,285-286,492
sem_getvalue function, 224-225,227,262,269,
277
definitionof, 227
sourcecode, 270,278

sem_init function, 224, 238- 242, 256, 315, 339,

490,498
definitionof, 239
sem_magic member, 258,262
sem_nsems member, 282-283,290
sem_num member, 285-286
sem_op member, 285-287
sem_open function, 19, 22, 25-26, 224—226,
228-229,232,235,239-240,242,256,258,
260,263,265-267,271,273-274,279,285,
326-327,333,498,524
definitionof, 225
sourcecode, 258,264,271

sem_ot i me member, 273-274,282-285,296
semger mstructure, 283,288-289
definitionof, 282
semgost function, 11,90-91, 221-225, \/\/233,
242,256-257,260,267,275,279,287,456,490
definitionof, 227
sourcecode, 261,268,276
sem_t datatype, 8, 225,238-240, 242, 256, 258,
260, 262- 263, 265- 266, 271, 275, 326
sem_trywait function, 224-227,262,269,276,
339
definitionof, 226
sourcecode, 270,277
sem_unlink function, 224-226, 235, 242, 260,
267,275,305,327,333
de tionof, 226
sourcecode, 261,268,276
sem _wait function, 221-227, 230, 232, 236, 238,
242,256,258,262,268-269,275-276,279,
287,339,524-525
definitionof, 226
sourcecode, 262,269,277
semadj member, 10,286-287,294
semaem variable, 37-38,296
semaphor e. h header, 258, 262, 271
semaphores
between processes, Posix, 256-257
binary, 219,281
counting, 221,281
filelocking using Posix, 238
filelocking usingSystem V, 294-296
ID, 271,283,290,300
implementationusing FIFOs, Posix, 257-262
implementationusing memory-mappedl/O,
Posix, 262-270
implementationusing System V semaphores,
Posix, 271-278
limits, Posix, 257
limits, SystemV, 296-300
Posix, 219-279
System'V, 281-300
senbuf structure, 285-286,290,296
definitionof, 285
senct | function, 273- 275, 277, 283- 284, 287- 290,
flg,:lm
definitiond, 287
senget function, 34, 38, 257, 273—275, 282-285,
290,294,526
definitionof, 282
semid_ds structure, 282-284288-290
definitionof, 282
semmap variable, 37
semmni variable, 37-38,296

UNIX Network Programming

Index

semmns Vvariable, 37,296
ssmmnu variable, 37,296
semms1 variable, 37-38,296
semncnt member, 282-283,286-283
semop function, 273,275-276,283-287,290,294,
296,492,525-526
definitionof, 285
semopm variable, 37-38,296
sempid member, 282-283,288
semume Variable, 37-38,296
semun structure, 506
definitionof, 288
semval member, 282-283,286-288
SEMVMX constant, 273
semvmx Variable, 37-38,296
semzcnt member, 282-283,286-288
sendmsg function, 384
sendto function, 405
seq member, 34-35, 38
sequencenumber, ot usage, 34
server
binding, RPC, 411-414
concurrent, 66-67,147,357,372,407
creation procedure, 384
duplicaterequest cache, RPC, 421-424,451,
532-533
iterative, 66-67,144,372,407-408
stub, 405
server function, 48-49, 54-55, 63, 72, 141-142,
144,149
session, 4
set_concurrency function, 163,165,488
SETALL congtant, 283-284,288,290
setgid function, 91
set-group-1D, 26,198,205
setpgid function, 91
setrlimit function, 72
setsid function, 91
setsockopt function, 418
setuid function, 91
set-user-1D, 26,205,369
STVAL constant, 273,283-284,288
setvbuf function, 522
sh program, 52
Shar, D, 180,536
shared memory, 303-351
ID, 344,351
limits, SystemV, 349-351
object, 325
Posix, 325-342
SystemV, 343-351
shared-exclusivelocking, 177
SHM_R conglant, 33

SHM_RDONLY constant, 345

SHM_RND constant, 344

SHM_W constant, 33

shm_atime member, 343

shm_cnattch member, 343

shm_cpid member, 343

shm_ctime member, 343,345

shm_dtime member, 343

shm_1pid member, 343

shm_nattch member, 343,348

shm_open function, 19, 22, 25, 308, 325—-328, 330,

333-334,337,342-343

definitionof, 326

shm_perm structure, 345
definitionof, 343

shm_segsz member, 343

shm_unlink function, 326-327,329,333,337,342
definitionof, 326

shmat function, 343-347,351
definitionof, 344

shmetl function, 345-348,351
definitionof, 345

shmdt function, 345
definitionof, 345

shmget function, 34, 38, 343-344, 346—349, 351
definitionof, 344

shmid_ds structure, 345,348
definitionof, 343

SHMLBA constant, 344

shmmax variable, 37-38,349

shmmin variable, 37-38

shmmnb variable, 349

shmmni variable, 37-38,349

shmseg variable, 37-38,349

short datatype, XDR, 427

SI_ASYNCIO constant, 101

SI_MESGQ constant, 101, 121

ST_QUEUE constant, 101, 104, 121

SI_TIMER constant, 101

SI_USER constant, 101

si_code member, 101,104,121

si_signo member, 101

si_value member, 101

SIG_DFL constant, 106

SIG_IGN congtant, 60,106

sigaction function, 91,100,105

sigaction structure,definitionof, 106

sigaddset function, 91

SIGALRM signal, 100,106,396-397,425

SIGBUS signal, 320

SGCHLD signal, 48,149,391-393,414

sigdelset function, 91

sigemptyset function, 91

UNIX Network Programming

Index 55

sigev structure, 98
SIGEV_NONE constant, 98
SIGEV_SIGNAL constant, 89,98, 121
SIGEV_THREAD constant, 98, 128
sigev_notify member, 88-89, 98
sigev_notify attributes member, 88,98
sigev_notify_function member, 88,98
sigev_signo member, 88,90
sigev_value member, 88,98
sigevent structure, 87, 89, 91, 100, 119, 121
definitionof, 88
sigfillset function, 91
Sigfunc_rt datatype, 105
siginfo_t structure, 95, 101, 121
definitionof, 101
SIGINT signal, 100
SIGIO signal, 256
sigismember function, 91
SIGKILL signa, 100
signal
disposition, 60, 502
handler, 60, 88—91, 93, 95, 98, 100—-102, 105-106,
121, 149, 227, 256, 286, 391, 393, 456, 502, 520
mask, 93,95, 384, 502
null, 121
Posix realtime, 98- 106
synchronous, 60
signal function, 88, 90-91, 105
signal — rt function, 102, 105- 106
sourcecode, 105
sigpause function, 91
sigpending function, 91
SIGPI PE signal, 59- 60, 519
sigprocmask function, 91, 93, 95, 102
sigqueue function, 91, 101, 121
SIGRTMAX signal, 100, 102, 127
SGRTMIN signal, 100, 127
SGSEGV signal, 174, 267, 309, 318- 320, 526
sigset function, 91
sigsuspend function, 91, 93
SIGTERM signal, 469
sigtimedwai t function, 95
SIGUSR1 signal, 88-91,93,95
sigval structure, 100- 101
definitionof, 88
sigwait function, 93- 95
definitionof, 95
sigwaitinfo function, 95
silver bullet, 453
SimpleMail Transfer Protocol, se SMTP
Single Unix Specification, 15
Sitarama, S K, xvi
sival_int member, 88, 102

sival gtr member, 83
Skowran, K., Xxvi
sl eep function, 91, 93, 127, 190, 215, 296, 398, 425,
530
sleep— us function, 339
slot usagesequencenumber, 34
Smaalders, B, xvi, 180, 536
SMTP (SimpleMail Transfer Protocal), 67
Snader,J. C, xvi
snprintf function, 21
socket, Unix domain, 84, 341, 379- 380, 384, 456,
459
socket function, 399
socketpair function, 44, 50
sockets AP, xiv, 8, 14, 151, 398—399, 403, 406,
449- 450, 454- 455
Solaris, xvii, 15, 20-21, 29, 37, 51, 53, 59, 73, 77-78,
82, 98, 100, 104, 109, 154, 163, 165, 209-210,
213, 225, 232, 238, 322, 331, 333, 342, 348,
356- 357, 362, 367, 370, 384, 398, 403- 405,
408, 411- 413, 424- 425, 427, 454, 458- 460,
462- 463, 465, 471, 475, 482, 488, 509- 510,
517, 520- 524
solutionsto exercises, 515- 534
sourcecode
availability, xvi
conventions, 11
Spafford, E. H., 417,535
Spec1170, 15
spinning, 167
sprintf function, 21
spurious wakeup, 121, 170
squareproc_1 function, 402- 403, 405, 419, 424
Srinivasan, R, 406, 412, 426, 536
st_dev member, 28-30
st_gid member, 328
st— ino member, 28- 30
st—mode member, 21, 44, 115, 267, 328, 367
st_size member, 74, 262, 328
st— uid member, 328
Staelin, C,, 458, 536
Stallman, R M, 13
stamp member, 446
standards, Unix, 13- 15
start— ti mefunction, 469- 470
sourcecode, 470
stat function, 21, 28-29, 44, 91, 115, 262, 267, 455,
517
stat member, 449
st at structure, 21, 28-29, 44, 74, 115, 262, 267,
328, 367
definition of, 328
statd program, 216

UNIX Network Programming

Index

Stevens, D. A., xvi
Stevens, E. M., xvi
Stevens, S H., xvi
Stevens, W. R, xiv, 536-537
Stevens, W. R, xvi
stop- t i me function, 469-470
sourcecode, 470
strchr function, 63
streams versusmessages, 67-72
strerror function, 49,511
string datatype, XDR, 429,438,451
st rl en function, 429
struct datatype, XDR, 429
stub
client, 403,405
sarver, 405
SUCCESS constant, 447-448
Sun Microsystems, 406
SunOS 4, 316
superuser, 25, 33-34, 216, 369~370, 414, 417
supplementarygroup ID, 25,414,416
sve_create function, 411
svc_dg_enablecache function, 422
definitionof, 422
svcr eg function, 414
svc_req structure, 409,415,422
definitionof, 415
sve_run function, 414
sve_tli_create function, 414
SVCXPRT structure, 415
SVMSG_MODE constant, 35
definitionof, 508
svinsg.h header, 140,144
SVR2 (SystemV Release?), 198
SVR3(SystemV Release 3), 98,198,205
SVRA (SystemV Release4), 34, 44, 50-51, 84, 152,
311,315-317,322,359,379,384,456
SVSEM_MODE constant, 274
definitionof, 508
SVSHM_MODE constant, definitionof, 508
SYN (synchronizesequencenumbersflag, TCP
header), 532
synchronization
explicit, 161
implicit, 161
synchronizesequencenumbersflag, TCPheader,
see SYN
synchronous
procedurecal, 356-357,476
signd, 60
sysconf function, 72-73, 86,91, 100, 102, 257,
265,318,520
sysconf ig program, 37,458

sysconf i gdb program, 38
sysdef program, 37
<sys/errno.h> header, 13,503
<sys/i pc.h> header, 30
sysl og function, 336,408,511
<sys/msg.h> header, 33,129,131,134
<sys/sem.h> header, 33,282,288
<sys/shm.h> header, 33,343
<sys/stat.h> header, 23,54
systemcdl, 5,198,205,220,303,361,391,405,482
interrupted, 121,124,132-133,149,151,227,
279,286,391-392,395,521,524-525
dow, 286
syst em function, 134
SysemV
IPC, 27-39
IPCidentifier reuse, 34-36
IPC kernel limits, 36-38
IPC permissions, 31-35, 39, 130-131, 282-283,
343-345
messagequeuelimits, 152-154
message queues, 129-155
message queueswith pol | function, 151-152
message queueswithsel ect function,
151-152
Reease2, see SVR2
Reease 3, see SVR3
Reease4, see SVR4
semaphorelimits, 296-300
semaphores, 281-300
semaphores, filelocking using, 294-296
semaphores. used forimplementationd Posix
semaphores, 271-278
shared memory, 343-351
shared memory limits, 349-351
SYSTEM- ERR constant, 447—-448
<sys/t ypes. h> header, 28

tar program, 13
Taylor, I. L., xvi
t cdr ai n function, 91
t cf low function, 91
t cf | ush function, 91
tcgetattr function, 91
t cget pgr p function, 91
TCP(TransmissionControl Protocol), 67, 74, 401,
404-407,411-412,418-426,444-446,
450-451,454,459,476,532-533
connection management, RPC, 420
forTransactions, see T/TCP,
three-way handshake, 420
tepdump program, 420,424-425,533

UNIX Network Programming

Index 557

TCPv1 (TCP/IP |llustrated, Volume1l), xiv, 536
TCPv2 (TCP/IP |llustrated, Volume?2), xiv, 537
TCPv3 (TCP/IP |llustrated, Volume 3), xiv, 537
tcsendbreak function, 91
tcsetattr function, 91
tcsetpgrp function, 91
Te, R, xvi
Telnet (remoteterminal protocol), 336,399
terminationof client
doors, premature, 390-397
RPC, premature, 424-426
terminationd server
doors, premature, 390-397
RPC, premature, 424-426
Thomas, M., xvi
thr_setconcurrency function, 163
thread— exit function, 391
threads, 5-6, 501-504
attributes, 98,113,502,521,532
cancellation, 174,180,183,187-192,384,388,
396-398,530
concurrency, 163,165-166,488
detached, 98,384,386-388,504
ID, 502
ID, printing, 371
implementati on, many-to-few, 163
implementation, M-to-N, 163
implementation, two-level, 163
joinable, 387,504
main, 93,190,235,388,488,490,502
management, doors, 370-375
priority, 160,502
start function, 98,187,386-387,502
termination, explicit, 502
termination,implicit, 502
three-way handshake, TCP, 420
time
absolute, 171
delta, 171
round-trip, 451,458
ti me function, 91
timeout, 67,171,424,426
and retransmission, RPC, 417-422
TIMEOUT constant, 420
timer— getoverrunfunction, 91
timer— getime function, 91
timer — settime function, 91,101
times function, 91
timespec structure, 171,508
definitionof, 171
timeval structure, 418-419,471,534
TI-RPC (transport independent RPC), 406-407,
411,421,446,533

TLI (Transport Layer Interface), AP, 406
touch function, 467,470

sourcecode, 470
transactionID, see XID
TransmissionControl Protocol, see TCP
transport independent RPC, see TI-RPC
Troff, xvii
TRUE constant, 409,418,429,435,439,441,444
T/TCP (TCP for Transactions), 537
Tucker, A., xvi
tv_nsec member, 171,508
tv_sec member, 171,508
tv_sub function, 471

sourcecode, 471
two-level thread implementation, 163
typedef datatype, XDR, 427
typing

explicit, 426

implicit, 426

UDP (User Datagram Protocol), 68, 74, 83, 246,
341,401,405-407,411-414,418-425,
445—-447, 450—452, 454—-455, 459, 476,
532-534

uid member, 33-34,131,134,283,288,345,446

uint8_t datatype, 509

ulimit program, 72-73

umask function, 23, 91

umask program, 23, 39

un_lock function, definitionof, 202

uname function, 91

uniform resourcelocator, see URL

union datatype, XDR, 429

<unistd.h> header, 8, 86,173, 257

Unix

9%, 15

98, 8,16,33-34, 36, 44, 84, 90, 129, 159, 163, 173,
178,192,205,282,284,288,364,454,468,482,
488,526,536

98, definitionof, 15

authentication, 414

Columbus, 28

domain socket, 84,341,379-380,384,456,459

Specification, Single, 15

standards, 13-15

System 11, 43,198

Verson7, 98,198

versionsand portability, 15

unlink function, 56, 58, 77, 91, 115, 117, 214216,
226,260,267,275,327,342,359,376

unpipc. h header, 21, 55, 105, 111, 274, 288,
505-509

sourcecode, 505

558

UNIX Network Programming

Index

UNPv1 (UNIX Network Programming, Volume1),
Xiv, 537
unsigned char datatype, XDR, 427
unsigned hyper datatype, XDR, 427
unsigned i nt datatype, XDR, 427
unsigned long datatype, XDR, 427
unsigned short datatype, XDR, 427
URL (uniform resourcelocator), 535
Usenet, iii
User Datagram Protocol, sse UDP
user 1D, 328,397,413,417,502
effective, 23, 25, 33—34, 84, 131, 283, 365,
369-370,414,416,515
real, 365,369
UTC (Coordinated Universal Time), 171
utime function, 91
UUCP, 198

va_arg function, 111,260
va_mode_t datatype, 111,260,263,273
definition of, 508
va_start function, 260
Vahaia U, 311,537
val member, 283
valloc function, 467-468
verf member, 446—447
verifier, 417,446,449,533
vers member, 446
vi program, xvii,13
void datatype, 503-504

w ait function, 91,413-414
Wait, J. W, xvi
waiting, locking versus, 165-167
waitpid function, 48,73, 91, 149, 503
wakeup, spurious, 121,170
wWc program, 161
well-known
key, 147
pathname, 60,215
White, J E, 406,537
Wolff, R, xvi
Walff, S, xvi
wrapper function, 11-13
source code, Pthread_mutex—lock, 12
source code, Sel ect, 521
sourcecode, Sem_post, 11
Wright, G. R, xiv, xvii, 537

writefunction, 5,43, 52, 54, 59-60, 65, 83, 90-91,
95, 98, 142, 161, 200, 204-205, 207, 249, 260,
263,278,304,310-311,315,317,322,327,399,
405,435,451,456-457,467,469,471,482,515,
519,522-526,528

w r ite_lock function, definition of, 202

writew_lock function, 495

definition of, 202

XDR (external data representation), 403,406,
426-444,450,532-534
datatypes, 427-430
fragment, 444
XDR datatype, 432
XDR_DECODE constant, 435
XDR_ENCODE constant, 432,435
xdr_data function, 432,435,532
xdr_free function, 410,435,452
xdr_getpos function, 435
xdr_string function, 435,532
xdr_void function, 534
xdrmem_create function, 432, 435, 451452
Xenix, 198
Xerox, 406
XID (transaction ID), 420-422,532-533
xid member, 446
X/Open, 14,198
Portablity Guide, sse XPG
Transport Interface, sse XTI
_XOPEN_REALTIME constant, 9
XPG (X/Open Portablity Guide), 15,198,284,468
XTI (X/Open Transport Interface), API, 14,151,
398-399,403,406,413-414,424,449-450,455

yacc program, 13

zombie, 48,149

Functi on prototype page
long pr_thread id(pthread t *pir); 371
char *px_ipec name(const char *name) ; 21
int sen-close(semt *sem); 226
int sem destroy(sem_ t *sem); 239
int sem getvalue(sem_t *sem, int *uvalp); 227
int sen-init(semt *sem, int shared, unsigned int vaue ; 239
semt *sem_open(const char *nane, int oflag, .

/* node-t node, unsigned int vdwe */); 225
int sem post(sem t *sem); 227
int sen-trywait(semt =*sem): 226
int sen-unlink(const char *nane); 226
int sem wait(sem_t *sem) 226
int semctl(int semd, int semnum, int emd, ... /* union semun arg */); 287
int semget(key-t key, int nsens, int oflag); 282
int semop(int semd, struct senbuf *opsptr, size-t nops) ; 285
int shm open(const char *name, int oflag, node-t mode) ; 326
int shm unlink(const char *name) ; 326
void *shmat(int shmid, const void *shmaddr, int flag); 344
int shmetl(int shmid, int cmd, struct shmid_ds *buff); 345
int shmdt(const voi d *shmaddr) ; 345
int shmget(key-t Key, size-t sizg int oflag); 344
Sigfunc_rt *signal rt(int signo, Sigfunc_rt *func); 105
int sigwait(const sigset_t *set, int *sig); 95
int start_time(void); 470
doubl e stop_time(void); 470
int sve_dg enablecache {SVCXPRT *xprt, unsigned | ong Sz6) ; 422
int touch(void *uptr, int nbytes); 470

void ev_sub(struct tinmeval *out, struct tineval *in);

471

Sructure Definitions

accepted-reply
authsys_parms

cal | - body

d_desc

door_arg_t
door_cred_t
door_desc_t
door - info-t

flock
ipc_perm

m smat ch- i nfo
mg_attr
msgbuf
msg_perm
msqgid_ds

447
416

446

380
362
365
380
366

199

30

447

80
131
129
129

opaque- aut h

rejected-reply
repl ybody
rpc_msg

sem
sembu f
semid_ds
sem_perm
semun
shmid_ds
shm_perm
sigaction
si gevent
siginfo_t
sigval

St at
svCc_req

timespec

416

449
447

282
285
282
282
288
343
343
106

101

88
328
415

171

