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FOR JONATHAN GREENFIELD 



PREFACE 

If you want to discover new ideas in computing, textbooks won't help you. 
You need to find out how the masters of the field did it. You need to read 
their original papers! 

That's why I put twenty-four papers together in a previous volume called 
Classic Operating Systems: Fmm Batch Pmcessing to Distributed Systems 
(Springer-Verlag, 2001). 

But there is another side to this story. You cannot build (or understand) 
a modern operating system unless you know the principles of concurrent 
programming. The classic papers in the present book cover the major break­
throughs in concurrent programming fmm the mid 1960s to the la te 1970s. 
These pioneering contributions have remained the foundation of concurrent 
programming in operating systems and parallel computing. 

All the papers were written by the computer scientists who invented these 
ideas. Apart from a brief summary, I let the papers speak for themselves. 

This book is for programmers, researchers, and students of electrical engi­
neering and computer science. I assume that you are familiar with operating 
system principles. 

I thank the copyright owners for permission to reprint these papers. A 
footnote on the title page of each paper gives fuH credit to the publication in 
wh ich the work first appeared, including the name of the copyright holder. 

vii 

PER BRINCH HANSEN 
Syracuse University 
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OVERVIEW 



THE INVENTION OF 
CONCURRENT PROGRAMMING 

PER BRINCH HANSEN 

(2001) 

The author selects classic papers written by the computer scientists who made 

the major breakthroughs in concurrent programming. These papers cover the 

pioneering era of the field from the semaphores of the mid 1960s to the remote 

procedure calls of the Iate 1970s. The author summarizes the classic papers 

and puts them in historical perspective. 

A PROGRAMMING REVOLUTION 

This is the story of one of the major revolutions in computer programming: 
the invention of concurrent programming. 

Tom Kilburn and David Howarth pioneered the use of interrupts to simu­
late concurrent execution of several programs on the Atlas computer (Kilburn 
1961). This programming technique became known as multiprogramming. 

The early multiprogramming systems were programmed in assembly lan­
guage without any conceptual foundation. The slightest programming mis­
take could make these systems behave in a completely erratic manner that 
made program testing nearly impossible. 

By the end of the 1960s multiprogrammed operating systems had become 
so huge and unreliable that their designers spoke openly of a software crisis 
(Naur 1969). 

As J. M. Havender (1968) recalled: 

P. Brinch Hansen, The invention of concurrent programming. In The Origin 0/ Goncur­
rent Programming: From Semaphores to Remote Procedure Galls, P. Brinch Hansen, Ed., 
Copyright © 2001, Springer-Verlag, New York. 

3 



4 PER BRINCH HANSEN 

The original multitasking eoneept of the [IBM OS/360] envisioned rel­
atively unrestrained eompetion for resourees tQ per form a number of 
tasks eoneurrently ... But as the system evolved many instanees of 
task deadloek were uneovered. 

Elliott Organick (1973) pointed out that the termination of a task in the 
Burroughs B6700 system might cause its offspring tasks to lose their stack 
space! 

In the mid 1960s computer scientists took the first steps towards a deeper 
understanding of concurrent prögramming. In less than fifteen years, they 
discovered fundamental concepts, expressed them by programming notation, 
included them in programming languages, and used these languages to write 
model operating systems. In the 1970s the new programming concepts were 
used to write the first concise textbooks on the principles of operating systems 
and concurrent pr:ogramming. 

The development of concurrent programming was originally motivated 
by the des ire to develop reliable operating systems. From the beginning, 
however, it was recognized that principles of concurrent programming "have 
a general utility that goes beyond operating systems" -they apply to any 
form of parallel computing (Brinch Hansen 1971a). 

I would like to share the excitement of these discoveries with you by 
offering my own assessment of the classic papers in concurrent programming. 

This essay is not just an editorial overview of the selected papers. It is 
also my personal refiections on the major contributions, whieh inspired me 
(and others) in our common search for simplicity in concurrent programming. 

If you compare my early papers with this essay, you will notiee an oc­
casional change of perspective. With thirty years of hindsight, that is in­
evitable. 

I have made an honest attempt to rely only on the publication record 
to document historie events and settle issues of priority. However, as a 
contributor to these ideas I cannot claim to have written an unbiased account 
of these events. That can only be done by a professional historian. 

THE CLASSIC PAPERS 

Choosing the classic papers was easier than I thought: 

• First I made a short list of fundamental eontributions to abstract eoneurrent 

programming of major and lasting teehnical importanee. 
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• Then I selected the original papers in which computer scientists first intro­

duced these ideas. 

• I added a few papers that illustrate the infiuence of concurrent programming 

concepts on operating system principles and programming language imple­

mentation. 

• Finally I put the papers in chronological order to illustrate how each new idea 

was motivated by earlier successes and failures. 

Fundamental Concepts 

Asynchronous processes 
Speed independence 
Fair scheduling 
Mutual exclusion 
Deadlock prevention 
Process communication 
Hierarchical structure 
Extensible system kern eIs 

Programming Language Concepts 

Concurrent statements 
Critical regions 
Semaphores 
Message buffers 
Conditional critical regions 
Sec ure queueing variables 
Monitors 
Synchronous message communication 
Remote procedure calls 
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Classic Papers 

1. E. W. Dijkstra, Cooperating Sequentia1 Processes (1965). 

2. E. W. Dijkstra, The Structure of the THE Mu1tiprogramming System 
(1968). 

3. P. Brinch Hansen, RC 4000 Software: Mu1tiprogramming System (1969). 

4. E. W. Dijkstra, Hierarchica1 Ordering of Sequentia1 Processes (1971). 

5. C. A. R. Hoare, Towards a Theory of Parallel Programming (1971). 

6. P. Brinch Hansen, An Out1ine of a Course on Operating System 
Princip1es (1971). 

7. P. Brinch Hansen, Structured Mu1tiprogramming (1972). 

8. P. Brinch Hansen, Shared C1asses (1973). 

9. C. A. R. Hoare, Monitors: An Operating System Structuring Concept 
(1974). 

10. P. Brinch Hansen, The Programming Language Concurrent Pascal (1975). 

11. P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal 
Program (1976). 

12. P. Brinch Hansen, The Solo Operating System: Processes, Monitors and 
C1asses (1976). 

13. P. Brinch Hansen, Design Princip1es (1977). 

14. E. W. Dijkstra, A Synthesis Emerging? (1975). 

15. C. A. R. Hoare, Communicating Sequential Processes (1978). 

16. P. Brinch Hansen, Distributed Processes: A Concurrent Programming 
Concept (1978). 

17. P. Brinch Hansen, Joyce-A Programming Language for Distributed 
Systems (1987). 

18. P. Brinch Hansen, SuperPascal: A Pub1ication Language for Parallel 
Scientific Computing (1994). 

19. P. Brinch Hansen, Eflicient Parallel Recursion (1995). 

After following this selection procedure rigorously, I was surprised to see that 
every single paper turned out to have been written by either Edsger Dijkstra, 
Tony Hoare or me. In retrospect, this was, perhaps, not so surprising. 

In Judy Bishop's (1986) view: 

The swing away from assembly language which gained genuine mo­
mentum during the seventies was slow to affect the area of concur­

rent systems-operating systems, embedded control systems and the 
like. What happened was that three people-Edsger Dijkstra, Tony 
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Hoare and Per Brinch Hansen-independently developed key abstrac­
tions which were taken up by researchers worldwide, realized in exper­
imental languages, reported on, adapted and refined. In this way, the 
problems of concurrency could be expressed in weIl understood nota­
tion, and solutions and principles gradually evolved. 

To produce an anthology of reasonable size (about 500 pages) I omitted: 

• Subsequent work that built on the seminal papers without adding any­
thing fundamentally new. 

• Survey papers and assessments of ideas. 

• Implementation details (except in outline). 

• Testing, verification, and formal theory. 

• Functional multiprogramming and data parallel languages. 

These guidelines eliminated many valuable contributions to concurrent pro­
gramming (as weIl as two dozen of my own papers). Some of them are listed 
as recommended further reading in the bibliography at the end of this essay. 

PART I CONCEPTUAL INNOVATION 

It is difficult for students today to imagine how little anyone knew about 
systematic programming in the early 1960s. Let me illustrate this by telling 
you about my first modest experience with multiprogramming. 

In 1963 I graduated from the Technical University of Denmark without 
any programming experience (it was not yet being taught). There were 
(as far as I remember) no textbooks available on programming languages, 
compilers or operating systems. 

After graduating I joined the Danish computer company Regnecentralen. 
Working on a Cobol compiler project, headed by Peter Naur and J0rn 
Jensen, I taught myself to program. 

In 1966 Pet er Kraft and I were asked to design a real-time system for 
supervising a large ammonia nitrate plant in Poland. A small computer 
would be used to perform a fixed number of cyclical tasks simultaneously. 
These tasks would share data tables and peripherals. Since plant operators 
could change the frequencies of individual tasks (and stop some of them 
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indefinitely), we could not make any assumptions about the relative (or 
absolute) speeds of the tasks. 

It was obvious that we needed multiprogramming with process synchro­
nization. But what kind of synchronization? 

A common technique at the time was to suspend a process in a queue until 
it was resumed by another process. The trouble was that resumption had no 
effect if the queue was empty. This happened if resumption was attempted 
before a process was suspended. (This pitfall reminds me of a mailman who 
throws away your letters if you are not at horne when he attempts to deliver 
them!) 

This mechanism is unreliable because it makes a seemingly innocent as­
sumption about the relative timing of parallel events: A process must never 
attempt to resurne another process that is not suspended. However, since 
the timing of events is unpredictable in a real-time system, this would have 
been a disastrous choice for our real-time system. 1 

Regnecentralen had no experience with multiprogramming. Fortunately, 
Edsger Dijkstra was kind enough to send me a copy of his 1965 monograph 
"Cooperating Sequential Processes," with a personal dedication: "Especially 
made for graceful reading!" (I still have it.) 

Using Dijkstra's semaphores, Peter Kraft, Charles Simonyi and I were 
able to implement the Re 4000 real-time control system on the prototype of 
Regnecentralen's RC 4000 computer with only 4K words ofmemory (without 
a drum or disk) (Brinch Hansen 1967a, 1967b). 

1 Cooperating Sequential Processes 

The first classic is one of the great works in computer programming: 

E. W. Dijkstra, Cooperating Sequential Processes (1965) 

Here Dijkstra lays the conceptual foundation for abstract concurrent pro­
grammmg. He begins by making the crucial assumption about speed inde­
pendence: 

We have stipulated that pro ces ses should be connected loosely; by this 
we mean that apart from the (rare) moments of explicit intercommu­
nication, the individual processes themselves are to be regarded as 

1 Around 1965 IBM's PL/Ilanguage included queueing variables of this kind known as 
events. Surprisingly, the suspend and resume primitives are also included in the recent 
Java language (Doug Lea 1997). 
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completely independent of each other. In particular, we disallow any 
assumption ab out the relative speeds of the different processes. 

Indivisible operations were well-known in multiprogramming systems, in 
the form of supervisor calts (Kilburn 1961). Dijkstra's contribution was to 
make explicit ass um pt ions about these critical sections (as he calls them).2 

For pedagogical reasons, Dijkstra first attempts to program critical sec­
tions using assignments and inspection of simple variables only. 

Through a carefully presented sequence of rejected solutions, Dijkstra 
arrives at the following correctness criteria for cyclical processes cooperating 
by means of common variables and critical sections: 

1. Mutual exclusion: "At any moment at most one of the processes is engaged 
in its critical section." 

2. Fairness: "The decision which of the processes is the first to enter its critical 
section cannot be postponed to eternity." 

3. Speed independence: "Stopping a process in its 'remainder of cycle' [that is, 
outside its critical region] has no effect upon the others." 

The Dutch mathematician T. J. Dekker found a general solution to 
the mutual exclusion problem without synchronizing primitives. For single­
processor systems, I have always viewed this as an ingenious, academic ex­
ercise. Computer designers had solved the problem (in a restricted way) by 
the simple technique of disabling interrupts. 

As a more realistic solution, Dijkstra intro duces binary semaphores, wh ich 
make the mutual exclusion problem trivia1.3 

Using general semaphores (due to Carel Scholten), Dijkstra implements 
message communication through a bounded bujjer.4 He achieves a pleasing 
symmetric behavior of communicating processes by viewing senders as pro­
cesses that consume empty buffer slots and produce full slots. Similarly, 
receivers consume full slots and pro du ce empty ones. 

Dijkstra also presents an ingenious method of deadlock prevention, known 
as the banker's algorithm. 

2Hoare (1971) renamed them critical regions. 

3Dijkstra used Dutch acronyms, P and V, for the semaphore operations. Being allergie 
to acronyms in any language, I renamed them wait and signal (Brinch Hansen 1971a). 

4The bounded buffer is used as a programming example throughout this essay. 
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beg in integer number of queuing portions, 
number of empty positions, 
buffer manipulation; 

end 

number of queuing portions:= 0; 
number of empty positions:= N; 
buffer manipulation:= 1; 
parbegin 
producer: begin 

again 1: produce next portion; 

end; 
consumer: begin 

P(number of empty positions); 
P(buffer manipulation); 
add portion to buffer; 
V(buffer manipulation); 
V(number of queuing portions); 
goto again 1 

again 2: P(number of queuing portions); 
P(buffer manipulation); 

end 
parend 

take portion from buffer; 
V(buffer manipulation); 
V(number of empty positions); 
process portion taken; 
goto again 2 

The Bounded Buffer with Semaphores 

In the 1960s Alan Perlis noticed that Regnecentralen's compiler group 
discussed programming problems by writing Algol 60 statements on a black­
board. This was unusual at a time when systems programs were still being 
written in assembly language. 

Edsger Dijkstra was also firmly in the Algol 60 tradition (Naur 1960). 
He writes parallel algorithms in Algol extended with a parallel statement:5 

parbegin Si; S2; ... Sn parend 

As Dijkstra defines it: 

Initiation of a parallel compound implies simultaneous initiation of all 

5 Also known as a concurrent statement (Brinch Hansen 1972b). 
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its constituent statements, its execution is completed after the comple­
tion of the execution of all its constituent statements. 

This modest proposal is one of the first published examples of an abstract 
programming notation for concurrent processes. 

2 THE Multiprogramming System 

Dijkstra demonstrated the depth of his ideas in the construction of an elegant 
model operating system: 

E. W. Dijkstra, The Structure of the THE Multiprogramming System (1968) 

This was a spooling system that compiled and executed a stream of Algol 
60 programs with paper tape input and printer output. It used software­
implemented demand paging between a 512K word drum and a 32K word 
memory. There were five user processes and ten input/output processes, 
one for each peripheral device. The system used semaphores for process 
synchronization and communication. 

Dijkstra's multiprogramming system illustrated the conceptual clarity 
of hierarchical ordering. His system consisted of several program layers, 
which gradually transform the physical machine into a more pleasant abstract 
machine: 

Level 0: Processor allocation. 
Level 1: Demand paging ("segment controller"). 
Level 2: Operator console ("message interpreter"). 
Level 3: Virtual devices ("input/output streams"). 
Level 4: User processes. 
Level 5: System operator. 

Apart from the operator, these program layers could be designed and tested 
one at a time. 

This short paper concentrates on Dijkstra's most startling claim: 

We have found that it is possible to design a refined multiprogramming 

system in such a way that its logical soundness can be proved apriori 
and its implementation can admit exhaustive testing. The o"nly errors 

that showed up during testing were trivial co ding errors ... the resulting 
system is guaranteed to be flawless. 

The hierarchical structure was used to prove the following properties of 
harmoniously cooperating processes: 
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1. "Although a process performing a task may in so doing generate a finite 
number of tasks for other processes, a single initial task cannot give rise to 
an infinite number of task generations." 

2. "It is impossible that all processes have returned to their homing position 
while somewhere in the system there is still pending a generated but unac­
cepted task." 

3. "After the acceptance of an initial task all processes eventually will be (again) 
in their homing position." 

Software managers continue to believe that software design is based on 
a magical discipline, called "software engineering," which can be mastered 
by average programmers. Dijkstra explained that the truth of the matter is 
simply that 

the intellectual level needed for system design is in general grossly un­
derestimated. I am convinced more than ever that this type of work is 
very difficult, and that every effort to do it with other than the best 
people is doomed to either failure or moderate success at enormous 
expense. 

Nico Habermann (1967), Edsger Dijkstra (1971), Coen Bron (1972) and 
Mike McKeag (1976) described the THE system in more detail. 

3 RG 4000 Multiprogramming System 

In 1974 Alan Shaw wrote: 

There exist many approaches to multiprogramming system design, but 
we are aware of only two that are systematic and manageable and at 
the same time have been validated by producing real working operating 
systems. These are the hierarchical abstract machine approach devel­
oped by Dijkstra (1968a) and the nucleus methods of Brinch Hansen 

(1969) ... The nucleus and basic multiprogramming system for the Re 
4000 is one of the most elegant existing systems. 

The Re 4000 multiprogramming system was not a complete operating 
system, but a small kernel upon which operating systems for different pur­
poses could be built in an orderly manner: 

P. Brinch Hansen. Re 4000 Software: Multiprogramming System (1969) 
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The kernel provided the basic mechanisms for creating a tree 01 parallel 
processes that communicated by messages. Jorn Jensen, SOren Lauesen and 
I designed it for Regnecentralen's Re 4000 computer. We started working 
on the system in the fall of 1967. A well-documented reliable version was 
running in the spring of 1969. 

Before the RC 4000 multiprogramming system was programmed, I de­
scribed a design philosophy that drastically generalized the concept of an 
operating system (Brinch Hansen 1968): 

The system has no built-in assumptions about program scheduling and 
resource allocation; it allows any program to initiate other programs in 
a hierarchal manner.6 Thus, the system provides'a general frame[work] 
for different scheduling strategies, such as batch processing, multiple 
console conversation, real-time scheduling, etc. 

This radical idea was probably the most important contribution of the RC 
4000 system to operating system technology. If the kernel concept seems 
obvious today, it is only because it has passed into the general stock of 
knowledge about system design. It is now commonly referred to as the 
principle of separation of mechanism and policy (Wulf 1974). 

The RC 4000 system was also noteworthy for its message communication. 
Every communication consisted of an exchange of a message and an answer 
between two processes. This protocol was inspired by an early decision to 
treat peripheral devices as processes, which receive input/output commands 
as messages and return acknowledgements as answers. In distributed systems 
this form of communication is now known as remote procedure calls. 

The system also enabled a server process to be engaged in nondetermin­
istic communication with several dient processes at a time. This was known 
as a conversational process. 

The RC 4000 system was programmed in assembly language. As a purely 
academic exercise for this essay, I have used an informal Pascal notation 
(Wirth 1971) to outline a conversational process that implements a bounded 
buffer used by dient processes. In retrospect, such a process is equivalent 
to the "secretary" concept that Dijkstra (1971) would sketch two years later 
(in very preliminary form). 

In the RC 4000 system, the initial process was a conversational process 
that spawned other processes in response to messages from console processes. 

6Rere I obviously meant "processes" rather than "programs." 
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{ The buffer process receives messages from client processes 
requesting it to accept or return data items. The messages 
arrive in buffer elements, which are linked to a message 
queue. The buffer process receives a message in a buffer 
element and uses the same buffer element to return an 
answer to the client process. } 

number of items := 0; 
{ Inspect the message queue from the beginning } 
current buffer := nil; 
cycle 

{ Postpone receipt of the current buffer element (if any) } 
previous buffer := current buffer; 
{ Wait for the next buffer element in the queue (which 

may already have arrived) } 
wait event(previous buffer, current buffer); 
case current buffer.request of 

end 

accept item: 
if number of items < N then 

begin 
take a data item from the current buffer element 

and store it within the buffer process; 
number of items := number of items + 1; 
{ Remove the current buffer element from the queue } 
get event(current buffer); 
{ Use the same buffer element to return an 

acknowledgment to the client process } 
send answer(acknowledgment, current buffer); 
{ Reinspect the queue from the beginning } 
current buffer := nil; 

end; 
return item: 

end 

if number of items > 0 then 
begin 

select a data item stored within the buffer process; 
number of items := number of items - 1; 
{ Remove the current buffer element from the queue } 
get event(current buffer); 
{ Use the same buffer element to return the 

data item to the client process } 
send answer(data item, current buffer); 
{ Reinspect the queue from the beginning } 
current buffer := nil; 

end 

The Bounded Buffer as a Conversational Process 



THE INVENTION OF CONCURRENT PROGRAMMING 15 

If this basic operating system temporarily was unable to honor arequest, it 
would postpone the action by delaying its receipt oE the message. In the 
meantime, it would attempt to serve other clients. 

According to S0ren Lauesen (1975): 

The Re 4000 software was extremely reliable. In a university envi­
ronment, the system typically ran under the simple operating system 
for three months without crashes ... The crashes present were possibly 
due to transient hardware errors. 

When the RC 4000 system was finished I described it in a 5-page journal 
paper (Brinch Hansen 1970). I then used this paper as an outline oE the 
160-page system manual (Brinch Hansen 1969) by expanding each section oE 
the paper. 7 The third article in this book is a reprint oE the most important 
part oE the original manual, which has been out oE print Eor decades.8 

As usual, Niklaus Wirth (1969) immediately recognized the advantages 
and limitations oE the system: 

I am much impressed by the clarity ofthe multiple process concept, and 
even more so by the fact that a computer manufacturer adopts it as the 
basis of one of his products. I have come to the same conclusion with 
regard to semaphores, namely that they are not suitable for higher level 
languages. Instead, the natural synchronization events are exchanges 
of messages. 

What does not satisfy me completely at your scheme is that a specific 
mechanism of dynamic buffer space allocation is inextricably connected 
with the problem of process synchronization, I would prefer a scheme 
where the programmer hirnself declares such buffers in his programs 
(which of course requires an appropriate language). 

4 Hierarchical Ordering oE Sequential Processes 

E. W. Dijkstra, Hierarchical Ordering of Sequential Processes (1971) 

7In May 1968 I outlined these ideas in a panel discussion on Operating Systems at 
the Tenth Anniversary Algol Colloquium in Zurich, Switzerland. The panelists included 
Edsger Dijkstra and Niklaus Wirth, both of whom received copies of the RC 4000 system 
manual in July 1969. 

8My operating system book (Brinch Hansen 1973b) includes a slightly different version 
of the original manual supplemented with abstract (untested) Pascal algorithms. 
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With deep insight, Dijkstra explains his layered approach to operating sys­
tem design in greater detail. This time he proves the correctness of critical 
sections and the bounded buffer implemented with semaphores. He also in­
troduces and solves the scheduling problem of the dining philosophers, which 
poses subtle dangers of deadlock and unfairness (described in flamboyant ter­
minology as "deadly embrace" and "starvation" ). 

The THE multiprogramming system was implemented in assembly lan­
guage without memory protection. Every process could potentially access 
and change any variable in the system. However, using well-defined pro­
gramming rules and systematic testing, Dijkstra and his students were able 
to verify that alt processes cooperated harmoniously. 

At the end of the paper, Dijkstra briefly sketches an alternative scenario 
of secretaries and directors: 9 

Instead of N sequential processes cooperating in critical sections via 
common variables, we take out the critical sections and combine them 
into a N + 1 st process, called a "secretary"; the remaining N processes 
are called "directors". Instead of N equivalent processes, we now have 
N directors served by a common secretary. 

What used to be critical sections in the N processes are in the directors 
"calls upon the secretary" . 

A secretary presents itself primarily as a bunch of non-reentrant rou­
tines with a common state space. 

When a director calls a secretary . .. the secretary may decide to keep 
hirn asleep, adecision that implies that she should wake hirn up in one 
of her later activities. As a result the identity of the calling program 
cannot remain anonymous as in the case of the normal subroutine. The 
secretaries must have variables of type "process identity" . 

In general, a director will like to send a message to his secretary when 

calling her ... and will require an answer back from his secretary when 

she has released his call. 

On the basis of this proposal, Greg Andrews (1991) credits Dijkstra with 
being "the first to advocate using data encapsulation to control access to 
shared variables in a concurrent program." Twenty-five years ago, I repeated 
the prevailing opinion that "Dijkstra (1971) suggested the idea of monitors" 
(Brinch Hansen 1975a). Today, after reading the classic papers again, I find 
this claim (which Dijkstra never made) debatable. 

9The gender bias in the terminology was not considered unusual thirty years ago. 
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Dijkstra had implemented his multiprogramming system as cooperating 
processes communicating through common variables in unprotected memory. 
From his point of view, the idea of combining critical regions and common 
variables into server processes ("secretaries") was a new approach to resource 
scheduling. 

However, this idea was obvious to the designers of the RC 4000 mul­
tiprogramming system, based, as it was, on a paradigm of processes with 
disjoint memories communicating through messages only. There was simply 
no other way of using the RC 4000 system! 

The "secretaries," which Dijkstra described informally, had already been 
implemented as "conversational processes" in the RC 4000 system. Mike 
McKeag (1972) demonstrated the similarity of these ideas by using the RC 
4000 message primitives to outline simple secretaries for weIl-known syn­
chronization problems, such as the bounded buffer, the dining philosophers, 
and areaders and writers problem. 

I am not suggesting that the RC 4000 primitives would have been a good 
choice for a programming language. They would not. They lacked a crucial 
element of language design: notational elegance. And I certainly did not 
view conversational processes (or "secretaries") as the inspiration for the 
future monitor concept. 

I am simply pointing out that the idea of a resource manager was already 
known by 1969, in the form of a basic monitor, invoked by supervisor caIls, 
or a conversational process (a "secretary"), invoked by message passing. 

What was new, was the goal of extending programming languages with 
this paradigm (Discussions 1971). And that had not been done yet. 

PART II PROGRAMMING LANGUAGE CONCEPTS 

The invention of precise terminology and notation plays a major role not 
only in the sciences but in all creative endeavors. 

When a progmmming concept is understood informally it would seem to 
be a trivial matter to invent a progmmming notation for it. But in practice 
this is hard to do. The main problem is to replace an intuitive, vague idea 
with apreeise, unambiguous definition of its meaning and restrictions. The 
mathematician George P6lya (1957) was weIl aware of this diffieulty: 

An important step in solving a problem is to choose the notation. It 
should be done carefuIly. The time we spend now on choosing the 

notation may weIl be repaid by the time we save later by avoiding 
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hesitation and confusion. Moreover, choosing the notation carefully, 
we have to think sharply of the elements of the problem which must be 
denoted. Thus, choosing a suitable notation may contribute essentially 
to understanding the problem. 

A programming language concept must represent a general idea that is 
used often. Otherwise, it will just increase the complexity of the language at 
nO apparent gain. The meaning and rules of a programming concept must be 
precisely defined. Otherwise, the concept is meaningless to a programmer. 
The concept must be represented by a CfJncise notation that makes it easy 
to recognize the elements of the concept and their relationships. Finally, it 
should be possible by simple techniques to obtain a secure, efficient imple­
mentation of the concept. A compiler should be able to check that the rules 
governing the use of the concept are satisfied, and the programmer should 
be able to predict the speed and size of any program that uses the concept 
by means of performance measurements of its implementation. 

As long as nobody studies your programs, their readability may not seem 
to be much of a problem. But as so On as you write a description for a wider 
audience, the usefulness of an abstract notation that suppresses irrelevant de­
tail becomes obvious. So, although Dijkstra's THE system was implemented 
in assembly language, he found it helpful to introduce a programming nota­
tion for parallel statements in his description (Dijkstra 1965). 

5 Conditional Critical Regions 

In the fall of 1971, Tony Hoare enters the arena at a Symposium on Operating 
Systems Techniques at Queen's University of Belfast: 

C. A. R. Hoare, Towards a Theory of Parallel Programming (1971) 

This is the first notable attempt to extend pragramming languages with ab­
stract features for parallel programming. Hoare points out that the search for 
parallel language features is "one of the major challenges to the invention, 
imagination and intellect of computer scientists of the present day." 

Hoare boldly formulates design principles for parallel pragramming lan­
guages: 

1. Interference contral. The idea of preventing time-dependent errors by 
compile-time checking was novel at a time when multiprogramming systems 
re lied exclusively On run-time checking of variable access: 
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Parallel programs are particularly prone to time-dependent errors, which 

either cannot be detected by program testing nor by run-time checks. 

It is therefore very important that a high-level language designed for 

this purpose should provide complete security against time-dependent 

errors by means of a compile-time check. 

2. Disjoint processes. Dijkstra's parallel statement {Qd /Q2/ / .. ./ /Qn} 

is used to indicate that the program statements Ql, Q2, ... , Qn define disjoint 
proeesses to be exeeuted in parallel. Aeeording to Hoare: 

It is expected that the compiler will check the disjointness of the pro­

cesses by ensuring that no variable subject to change in any of the Qj 

is referred to at all in any Qi for iyfj. Thus it can be guaranteed by a 

compile-time check that no time-dependent errors could ever occur at 

run time. 

3. Resources. The programming language Pascal is extended with a 
notation indieating that a variable r of some type T is a resouree shared 
by parallel proeesses: 

r: T; ... {resource r; Qd/Q2//" .//Qn} 

4. Critical regions. Inside the proeess statements Ql, Q2, ... , Qn a 
critical region C on the resouree r is expressed by the struetured notation 

with r do C 

A compiler is expected to eheek that the resouree is neither used nor referred 
to outside its critical regions. 

5. Conditional critical regions. Sometimes the exeeution of a eritieal 
region C must be delayed until a resouree r satisfies a eondition, defined by 
a Boolean expression B: 

with r when B do C 

The eonditional form of a critical region is the most originallanguage feature 
proposed in Hoare's paper. lO 

10 Simula I and SOL also included statements for waiting on Boolean conditions (later 
removed from Simula). However, these were simulation languages without any concept (or 
need) of critical regions (Dahl 1963, Knuth 1964). 
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B: record inpointer, outpointer, count: Integer; 
buffer: array 0 ... N-1 of T end; 

with B do 
begin inpointer:= 0; outpointer:= 0; 

count:= 0; 
end; 

{resource B; 

} 

with B when count < N do 

// 

begin buffer[inpointer] := next value; 
inpointer:= (inpointer + 1) mod N; 
count:= count + 1 

end 

with B when count > 0 do 
begin this value:= buffer[outpointer]; 

outpointer:= (outpointer + 1) mod N; 
count:=count - 1 

end 

The Bounded Buffer with Conditional Critical Regions 

Hoare emphasized that "The solutions proposed in this paper cannot 
claim to be final, but it is believed that they form a sound basis for furt her 
advance." 

At the Belfast symposium (Brinch Hansen 1971a), I expressed some reser­
vations from a software designer's point of view: 

The eoneeptual simplicity of simple and eonditional eritieal regions 
is aehieved by ignoring the sequenee in whieh waiting processes enter 

these regions. This abstraction is unrealistie far heavily used resourees. 
In such eases, the operating system must be able to identify eompeting 
processes and eontrol the seheduling of resourees among them. This 
ean be done by me ans of a monitor-a set of shared proeedures whieh 
ean delay and activate individual processes and perform operations on 

shared data. 

Hoare 's response (Discussions 1971): 

As a result of diseussions with Brineh Hansen and Dijkstra, I feel that 
this proposal is not suitable for operating system implementation ... 
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My proposed method eneourages the programmer to ignore the ques­
tion of whieh of several outstanding requests for a resouree should be 
granted. 

A year aga I would have said that this was a very serious eriticism 
indeed of a language proposal that it eneouraged the programmer to 
ignore eertain essential problems. I now believe that a language should 
be usable at a high level of abstraction, and at high levels of abstraction 
it is an exeellent thing to eneourage the programmer to ignore eertain 
types of problems, in partieular seheduling problems. 

Hoare's paper was as an eye-opener for me: It was my introduction to 
the difficult art 0/ language design. The idea of checking interference during 
scope analysis struck me as magical! 

Years later, I included variants of conditional critical regions in two pro­
gramming languages, Distributed Processes (Brinch Hansen 1978) and Edi­
son (Brinch Hansen 1981). 

6 Operating System Principles 

Abstract concurrent programming had an immediate and dramatic impact 
on our fundamental understanding of computer operating systems. 

The implementation techniques of operating systems were reasonably 
weIl understood in the late 1960s. But most systems were too large and 
poorly described to be studied in detail. All of them were written either in 
assembly language or in sequential programming languages extended with 
assembly language features. Most of the literature on operating systems 
emphasized low-Ievel implementation details of particular systems rather 
than general concepts. The terminology was unsystematic and incomplete 
(Brinch Hansen 2000). 

Before the invention of abstract concurrent programming, it was im­
practical to include algorithms in operating system descriptions. Technical 
writers mixed informal prose with unstructured flowcharts and complicated 
pictures of linked lists and state transitions. ll 

In its Cosine Report (1971), the National Academy of Engineering sum­
marized the state of affairs at the time [with emphasis added]: 

llSee, for example, IBM (1965), Elliott Organick (1972), and Stuart Madnick (1974). 
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The subject of computer operating systems, if taught at all , is typ i­
cally a descriptive study of some specific operating system, with little 
attention being given to emphasizing the relevant basic concepts and 
principles. To worsen matters, it has been difficult Jor most university 
departments to develop a new course stressing operating systems prin­
ciples . .. There are essentially no suitable textbooks on the subject. 

I consider myself lucky to have started in industry. The RC 4000 project 
convinced me that a fundamental understanding of operating systems would 
change computer programming radically. I was so certain of this that I 
decided to leave industry and become a researcher. 

In November 1970 I became a research associate at Carnegie-Mellon Uni­
versity, where I wrote the first comprehensive textbook on operating system 
principles: 

P. Brinch Hansen, An Outline of a Course on Operating System Principles {l971) 

While writing the book I reached the conclusion that operating systems are 
not radically different from other programs. They are just large programs 
based on the principles of a more fundamental subject: parallel programming. 

Starting from a concise definition of the purpose of an operating system, 
I divided the subject into five major areas. First, I presented the principles of 
parallel programming as the essence of operating systems. Then I described 
processor management, memory management, scheduling algorithms and 
resource protection as techniques for implementing parallel processes. 

I defined operating system concepts by abstract algorithms written in Pas­
cal extended with a notation for structured multiprogramming. My (unimple­
mented) programming notation included concurrent statements, semaphores, 
conditional critical regions, message buffers, and monitors. These program­
ming concepts are now discussed in all operating system texts. 

The book includes a concise vocabulary of operating system terminology, 
which is used consistently throughout the text. The vocabulary includes the 
following terms: 

concurrent processes, processes that overlap in time; concurrent 
processes are called disjoint if each of them only refers to pri­
vate data; they are called interacting if they refer to common 
data. 

synchronization, a general term for any constraint on the order in 
which operations are carried out; a synchronization rule can, for 
example, specify the precedence, priority, or mutual exclusion in 
time of operations. 
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monitor, a common da ta structure and a set of meaningful operations 

on it that exclude one another in time and control the synchraniza­

tion of concurrent processes. 

My book Operating System Principles was published in July 1973. Pet er 
Naur (1975) reviewed it: 

The presentation is generally at a very high level of clarity, and gives 
evidence of deep insight. In pursuing his general aim, the establish­
ment of a coherent set of basic principles for the field, the author is 
highly successful. The principles are supported by algorithms written 
in Pascal, extended where necessary with carefully described primitives. 
elose attention is paid to the thorny quest ion of terminology. 

In my outline of the book I made a prediction that would guide my future 
research: 

So far nearly all operating systems have been written partly or com­
pletely in machine language. This makes them unnecessarily difficult 
to understand, test and modify. I believe it is desirable and possible 
to write efficient operating systems almost entirely in a high-level lan­

guage. This language must permit hierarchal structuring of data and 
program, extensive errar checking at compile time, and production of 
efficient machine code. 

7 Structured Multiprogramming 

P. Brinch Hansen. Structured Multiprogramming (1972) 

The conditional critical region, proposed by Hoare (1971), had minor nota­
tionallimitations and a potentially serious implementation problem: 

1. A shared variable is declared as both a variable and aresource. The 
textual separation of these declarations can be misused to treat the same 
variable as a scheduled resource in some contexts and as an ordinary variable 
in other contexts. This would enable a process to refer directly to a variable 
while another process is within a "critical" region on the same variable. 

I closed this loophole by using a single declaration to introduce a shared 
variable (of some type T): 

var v: shared T 
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2. When a process is delayed by a Boolean expression without side ef­
feets, it cannot indicate the urgency of its request to other processes. This 
complicates the programming of priority scheduling. 

It was an obvious remedy to permit a conditional await statement to 
appear anywhere within a critical region: 

region v do 
begin ... await B; ... end 

3. The major concern was that it did not seem possible to implement con­
ditional critical regions efficiently. The root of the problem is the unbounded 
reevaluation of Boolean expressions until they are true. 

Many years later, Charles Reynolds (1993) asked: 

How does a process wait for so me condition to be true? It seems to me 

that the critical insight occurred in realizing that the responsibility for 
determining an awaited event has occurred must lie with the applica­

tion programmer and not with the underlying run-time support. The 
awakening of processes awaiting events is part of the application algo­

rithm and must be indicated by explicit announcement of the events 
by means of "signal" or "cause" commands present in the applica­
tion algorithm. This idea is clearly present as early as Brinch Hansen 

(1972b). 

I suggested that programmers should be able to associate secure queueing 
variables with shared data structures and control the transfers of processes 
to and from them. 

In my proposal, the declaration 

var e: event v; 

associates a queuing variable e of type event with a shared variable v. 
A process can leave a critical region associated with v and join the queue 

e by executing the standard procedure 

await(e) 
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var B: shared record 
buffer: array O .. max-1 of T; 
p, c: O .. max-1; 
full: O .. max; 
nonempty, nonfull: event B; 

end; 
procedure send(m: T); 
region B do 
begin 

while full = max do await(nonfull); 
buffer[p] := m; 
p := (p + 1) mod max; 
full := full + 1; 
cause( nonempty); 

end 
procedure receive(var m: T); 
region B do 
begin 

while full = 0 do await(nonempty); 
m := buffer[c]; 
c := (c + 1) mod max; 
full := full - 1; 
cause( nonfull) ; 

end 

The Bounded Buffer with Secure Events 

Another process can enable all processes in the queue e to reenter their 
critical regions by executing the standard procedure 

cause(e) 

If several processes are waiting in the same queue, a cause operation on the 
queue will (eventually) enable alt of them to resurne their critical regions 
(one at a time). Mutual exclusion is still maintained, and processes waiting 
to resurne critical regions have priority over processes that are waiting to 
enter the beginning of critical regions. 

In this situation, a resumed process may find that another process has 
made its scheduling condition B false again. Consequently, processes must 
use waiting laaps of the form 12 

12 Mesa (Lampson 1980) and Java (Lea 1997) would also require waiting loops on Boolean 
conditions. 
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while not B do await( e) 

My proposal was completely unrelated to the unpredictable event queues 
of the 1960s, which caused the pragrammer to lose contral over schedul­
ing. The crucial difference was that the new queues were associated with 
a shared variable, so that all scheduling operations were mutually exclusive 
operations. The programmer could control the scheduling of processes to 
any degree desired by associating each queue with a graup of processes or an 
individual process. 

The idea of associating secure scheduling queues with a shared data struc­
ture to enable processes to delay and resume critical regions has been used 
in alt monitor praposals. In an unpublished draft, Hoare (1973a) proposed 
wait and signal operations on condition variables, which, he says, "are very 
similar to Brinch Hansen's await and cause operations." In the following I 
will call all these kinds of queues secure queueing variables. 

Seeure queueing variables were an efficient solution to the problem of 
process scheduling within critical regions. However, like semaphores, queue­
ing variables always struck me (and others) as somewhat too primitive for 
abstract concurrent programming. To this day nobody has found a better 
compromise between notational elegance and efficient implementation. Still, 
I cannot help feeling that we somehow looked at the scheduling problem 
from the wrong point of view. 

We now had all the pieces of the monitor puzzle, and I had adopted a 
programming style that combined shared variables, critical regions, seeure 
queueing variables, and procedures in a manner that closely resembled mon­
itors. But we still did not have an abstract monitor notation. 

8 Shared Classes 

The missing element in conditional critical regions was a concise represen­
tation of data abstraction. The declaration of a resource and the operations 
associated with it were not combined into a single syntactical form, but were 
distributed throughout the program text. 

In the spring of 1972 I read two papers by Dahl (1972) and Hoare (1972) 
on the dass concept of the programming language Simula 67. Although 
Simula is not a concurrent programming language, it inspired me in the 
following way: So far I had thought of a monitor as a program module that 
defines all operations on a single instance of a data structure. From Simula 
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I learned to regard a program module as the definition of a class of data 
structures accessed by the same procedures. 

This was a moment of truth for me. Within a few days I wrote a chapter 
on resource protection for my operating "system book: 

P. Brinch Hansen, Shared C/asses (1973) 

I proposed to represent monitors by shared classes and pointed out that re­
source protection and type checking are part of the same problem: to verify 
automatically that all operations on data structures maintain certain prop­
erties (called invariants). 

My book includes a single monitor for a bounded buffer. The shared class 
defines a data structure of type B, two procedures that can operate on the 
data structure, and a statement that defines its initial state. 

shared dass B = 
buffer: array 0 .. max-1 of Tj 
p, c: 0 .. max-1j 
fuH: O .. maxj 

procedure send(m: T)j 
begin 

await fuH < maxj 
buffer[p] := mj 
p := (p + 1) mod maxj 
fuH := fuH + 1j 

end 
procedure receive(var m: T)j 
begin 

await fuH > Oj 
m := buffer[c]j 
c := (c + 1) mod maxj 
fuH := fuH - 1j 

end 
begin p := Oj C := Oj fuH := 0 end 

The Bounded Buffer as a Shared Class 

The shared class notation permits multiple instances of the same monitor 
type. A buifer variable b of type B is declared as 

var b: B 

Upon entry to the block in which the buifer variable is declared, storage is 
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aIlocated for its data components, and the buffer is initialized by executing 
the statement at the end of the dass definition. 

Send and receive operations on a buffer bare denoted 

b.send(x) b.receive(y) 

A shared dass is a notation that explicitly restricts the operations on an 
abstract data type and enables a compiler to check that these restrictions are 
obeyed. It also indicates that aIl operations on a particular instance must 
be executed as critical regions. In short, a shared class is a monitor type. 

My decision to use await statements in the first monitor proposal was a 
matter of taste. I might just as weIl have used secure queueing variables. 

You might weIl ask why after inventing shared dasses with secure queue­
ing variables I published my original ideas in a textbook, instead of a pro­
fessional journal. WeIl, I was young and idealistic. I feIt that my first book 
should indude at least one original idea. It did not occur to me that re­
searchers rarely look for original ideas in undergraduate textbooks. 13 

Why didn't I publish a tutorial on the monitor concept? My professional 
standards were deeply influenced by the Gier Algol compiler (Naur 1963), the 
THE multiprogramming system (Dijkstra 1968), the Re 4000 multiprogram­
ming system (Brinch Hansen 1969), and the Pascal compiler (Wirth 1971). 
Every one of these systems had been implemented before it was described in 
a professional journal. 

Since this was my standard of software research, I decided to implement 
monitors in a programming language before writing more about it. 

9 Monitor Papers 

In his first paper on monitors, Hoare (1973b) used my shared dasses and 
secure queueing variables (with minor changes) to outline an unimplemented 
paging system. A year later, he published a second paper on monitors (Hoare 
1974b). He acknowledged that "This paper develops Brinch Hansen's con­
cept of a monitor." 

Avi Silberschatz (1992) conduded that "The monitor concept was devel­
oped by Brinch Hansen (1973b). A complete description of the monitor was 
given by Hoare (1974b)." 

13r did, however, send the complete manuscript of Operating System Principles, which 
included my monitor concept, to Edsger Dijkstra and Tony Hoare in May 1972 (Horning 
1972). 
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C. A. R. Hoare, Monitors: An Operating System Structuring Concept (1974) 

Hoare's contribution to the monitor concept was to refine the rules of process 
resumption: 

1. He replaced the "resume-all, one-at-a-time" policy of sec ure event vari­
ables with the more convenient "first-come, first-served" poliey of con­
dition variables. 

2. He decreed "that a signal operation be followed immediately by re­
sumption of a waiting program, without possibility of an intervening 
procedure call from yet a third program." This eliminated the need 
for waiting loops. 

3. He advocated Ole-Johan Dahl's simplifying suggestion that a signal 
operation should terminate a monitor call (Hoare 1973c). 

bounded buffer: monitor 
begin buffer: array O .. N -1 of portion; 

lastpointer: O .. N -1; 
count: O .. N; 
nonempty, nonfull: condition; 

procedure append(x: portion); 
begin if count = N then nonfull.wait; 

note 0 :::: count< N; 
buffer[lastpointer] := x; 
last pointer : = lastpointer EIl 1; 
count := count + 1; 
nonempty.signal 

end append; 
procedure remove(result x: portion); 

begin if count = 0 then nonempty.wait; 
note 0 < count:::: N; 
x := buffer[lastpoint e count]; 
count := count - 1; 
nonful!. signal 

end remove; 
count := 0; lastpointer := 0 

end bounded buffer; 

The Bounded Buffer as a Monitor 

This influential paper deserves a pI ace in the history of concurrent pro­
gramming as the first monitor tutorial: 
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1. The monitor concept is illustrated by solutions to familiar programming 
exercises: a single resource scheduler, a bounded buffer, an alarm clock, 
a buffer pool, a disk head optimizer, and areaders and writers problem. 

2. As an academic exercise he presents a semaphore implementation of 
monitors. (In practice, monitors would, of course, be implemented by 
uninterruptible operations in assembly language.) 

3. Finally, he defines simple proof rules for condition variables. 

PART III CONCURRENT PROGRAMMING LANGUAGES 

Hoare (1974a) introduced the essential requirement that a programming lan­
guage must be secure in the following sense: A language should enable its 
compiler and run-time system to detect as many cases as possible in which 
the language concepts break down and produce meaningless results. 14 

For a parallel programming language the most important security measure 
is to check that processes access disjoint sets of variables only and do not 
interfere with each other in time-dependent ways. 

Unless the parallel features of a programming language are secure in this 
sense, the effects of parallel programs are generally both unpredictable and 
time-dependent and may therefore be meaningless. This does not necessarily 
prevent you from writing correct parallel programs. It does, however, force 
you to use a low-level, error-prone notation that precludes effective error 
checking during compilation and execution. 

The only secret about secure concurrent languages was that they could be 
designed at all. Once you have seen that this is possible, it is not so difficult 
to invent other concurrent languages. That is why I have included only the 
first secure concurrent language, Concurrent Pascal. 

In the first survey paper on concurrent programming I cited 11 papers 
only, written by four researchers. None of them described a concurrent pro­
gramming language (Brinch Hansen 1973e). The development of monitors 
and Concurrent Pascal started a wave of research in concurrent programming 
languages. A more recent survey of the field includes over 200 re fe ren ces to 
nearly 100 languages (BaI 1989). 

Concurrent Pascal had obvious limitations by today's standards. But 
in 1975 it laid the foundation for the development of secure programming 
languages with abstract concepts for parallelism. 

14This definition of security differs somewhat from its usual meaning of "the ability of 
a system to withstand attacks from adversaries" (Naur 1974). 
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10 Concurrent Pascal 

On July 1, 1972, I became associate professor of computer science at Cal­
ifornia Institute of Technology. During my first academic year I prepared 
three new courses and introduced Pascal on campus. These tasks kept me 
busy for a while. 

I also started thinking about designing a programming language with 
concurrent processes and monitors. To reduce the effort, I decided to include 
these concepts in an existing sequential language. Since I had used the 
language in my operating system book, Pascal was an obvious choice for me. 

In September 1973, I sent Mike McKeag "a copy of a preliminary working 
document that describes my suggestion for an extension of Pascal with con­
current processes and monitors" (Brinch Hansen 1973d). This is the earliest 
evidence of Concurrent Pascal. 

By January 1975, the Concurrent Pascal compiler and its run-time sup­
port were running on a PDP 11/45 minicomputer at Caltech (Hartmann 
1975, Brinch Hansen 1975f). 

In May 1975, I published a paper on the new language: 

P. Brinch Hansen, The Programming Language Concurrent Pascal (1975) 

Concurrent Pascal extends Pascal with abstract data types known as pro­
cesses, monitors, and classes. Each type module defines the representation 
and possible transformations of a single data structure. The syntax clearly 
shows that each module consists of a set of variable declarations, a set of 
procedures, and an initial statement. 

A module cannot access the variables of another module. The compiler 
uses this scope rule to detect synchronization errors before a program is ex­
ecuted. The run-time synchronization of monitor calls prevents other race 
conditions. 

A process can delay itself in a monitor variable of type queue. When an­
other process performs a continue operation on the same queue, the delayed 
process (if any) immediately resurnes execution of its monitor procedure. In 
any case, the process performing the continue operation immediately returns 
from its monitor procedure. 

A queue is either empty or holds a single process. A multiprocess queue 
can be implemented as an array of single-process queues. 

As a language designer, I have always feIt that one should experiment 
with the simplest possible ideas before adopting more complicated ones. This 
led me to use single-process queues and combine process continuation with 
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monitor exit. 
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type bulfer = 
monitor 
var contents: array [l..max] of T; 

head, tail, length: integer; 
sender, receiver: queue; 

procedure entry send(x: T); 
begin 

if length = max then delay(sender); 
contents[tailJ := X; 
tail := tail mod max + 1; 
length := length + 1; 
continue(receiver) 

end; 
procedure entry receive(var x: T); 
begin 

if length = 0 then delay(receiver); 
x := contents[head]; 
head := head mod max + 1; 
length := length - 1; 
continue( send<;r) 

end; 

begin head := 1; tail := 1; full := 0 end 

The Bounded Buffer in Concurrent Pascal 

I feIt that the merits of a signaling scheme could be established only by 
designing real operating systems (but not by looking at sm all programming 
exercises). Since Concurrent Pascal was the first monitor language, I was 
unable to benefit from the practical experience of others. After designing 
small operating systems, I concluded that first-in, first-out queues are indeed 
somewhat more convenient to use. 

In any case, the virtues of different signaling mechanisms still strike me 
as being only mildly interesting. In most cases, any one of them will do, 
and all of them (including my own) are slightly complicated. Fortunately, 
monitors have the marvelous praperty of hiding the details of scheduling fram 
concurrent pracesses. 

The pragmmming tricks of assembly language were impossible in Concur­
rent Pascal: there were no typeless memory words, registers, and addresses 
in the language. The programmer was not even aware of the existence of 
physical processors and interrupts. The language was so secure that concur-
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rent processes ran without any form of memory protection. 
The portable compiler (written in Sequential Pascal) generated platform­

independent code, which was executed by a sm all kernel written in assembly 
language (Hartmann 1975, Brinch Hansen 1975e). The language was moved 
from one computer to another by rewriting the kernel of 4K words in the 
assembly language of the target computer (Brinch Hansen 1975f) .15 

Greg Andrews (1993) feIt that: 

The contribution of Concurrent Pascal was indeed that it added a new 
dimension to programming languages: modular concurrency. Monitors 
(and classes) were essential to this contribution. And the modulariza­
tion they introduced has greatly influenced most subsequent concurrent 
language proposals. 

In a later essay on language description (Brinch Hansen 1981), I said: 

The task of writing a language report that explains a programming 
language with complete clarity to its implementors and users may look 
deceptively easy to someone who hasn't done it before. But in reality it 
is one the most difficult intellectual tasks in the field of programming. 

WeIl, I was someone who hadn't done it before, and the Concurrent Pascal 
report (Brinch Hansen 1975d) suffered from aIl the problems I mentioned in 
the essay. I added, "I am particularly uncomfortable with the many ad hoc 
restrictions in the language." 

Ole-Johan Dahl (1993) disagreed: 

I take issue with some of your reservations about Concurrent Pascal. 
Of course a language built around a small number of mechanisms used 
orthogonally is an ideal worth striving for. Still, when I read your 
1977 book my reaction was that the art of imposing the right restric­
tions may be as important from an engineering point of view. So, he re 
for once was a language, beautiful by its orthogonal design, which at 
the same time was the product of a competent engineer by the re­
strictions imposed in order to achieve implement at ion and execution 
efficiency. The adequacy of the language as a practical tool has been 
amply demonstrated. 

15Twenty years later, the designers of the Java language resurrected the idea of platform­
independent parallel programming (Gosling 1996). Unfortunately, they replaced the secure 
monitor concept of Concurrent Pascal with insecure shortcuts (Brinch Hansen 1999). 
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Concurrent Pascal was followed by more than a dozen monitor languages, 
listed in Brinch Hansen (1993a), among them Modula (Wirth 1977a), Pascal 
Plus (Welsh 1979), and Mesa (Lampson 1980). 

PART IV MODEL OPERATING SYSTEMS 

By the end of 1975, I had used Concurrent Pascal to implement three small 
operating systems of 600-1400 lines each: 

• The single-user operating system Solo 

• A job stream system 

• Areal-time scheduler 

The development and documentation effort of each system took a few months 
(or weeks) only. 

11 Solo Operating System 

As a realistic test of the new programming language, I used Concurrent 
Pascal to program a small operating system: 

P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal Program 

(1976) 

Solo was a portable single-user operating system for the development of 
Sequential and Concurrent Pascal programs. It was implemented on a 
PDP 11/45 minicomputer with removable disk packs. Every user disk was 
organized as a single-level file system. The heart of Solo was a job pro­
cess that compiled and ran programs stored on the disk. Two additional 
processes performed input/output spooling simultaneously. 

Al Hartmann (1975) had already written the Concurrent Pascal compiler. 
I wrote the operating system and its utility programs in three months. Wolf­
gang Franzen measured and improved the performance of the disk allocation 
algorithm. 

The Solo system demonstrated that it is possible to write small opera­
ting systems in a secure programming language without machine-dependent 
features. The discovery that this was indeed possible for small operating 
systems was more important (I think) than the invention of monitors. 
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12 Solo Program Text 

Solo was the first modular operating system implemented by means oi abstract 
data types (classes, monitors and processes) with compile-time checking oi 
access rights. The most significant contribution of Solo was undoubtedly 
that the program text was short enough to be published in its entirety in a 
computer journal: 

P. Brinch Hansen, The Solo Operating System: Processes, Monitors and C/asses 

(1976) 

The new programming language had a dramatic (and unexpected) impact on 
my programming style. It was the first time I had programmed in a language 
that enabled me to divide programs into modules that could be programmed 
and tested separately. The creative part was clearly the initial selection of 
modules and the combination oi modules into hierarchical structures. The 
programming of each module was often trivial. I so on adopted the rule that 
each module should consist oi no more than one page oi text. Since each 
module defined all the meaningful operations on a single data type (private 
or shared), the modules could be studied and tested one at a time. As 
a result these concurrent programs became more reliable than the hardware 
they ran on. 

In July 1975, when the Solo operating system had been working for three 
months, I described it at the International Summer School in Marktoberdorf, 
Germany. Hoare presented an outline of an unimplemented operating system 
(Hoare 1976a). 

At Caltech we prepared a distribution tape with the source text and 
portable code of the Solo system, including the Concurrent and Sequential 
Pascal compilers. The system reports were supplemented by implementation 
notes (Brinch Hansen 1976b). By the spring of 1976 we had distributed the 
system to 75 companies and 100 universities in 21 countries. 

In a guest editorial on the Solo papers (Brinch Hansen 1976a), I wrote: 

It is not uncommon for a computer scientist to make a proposal without 
testing wh ether it is any good in practice. After spending 3 days writing 
up the monitor proposal and 3 years implementing it, I can very weIl 
understand this temptation. It is perhaps also sometimes a human 
response to the tremendous pressure on university professors to get 
fundingand recognition fast. 

Nevertheless, we must remember that only one thing counts in en­
gineering: Does it work (not "might it work" or "wouldn't it be nice 
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if it did")? What would we think of mathematicians if most of their 
papers contained conjectures only? Sometimes an educated guess can 
be a great source of inspiration. But we must surely hope that the 
editors of computer journals will reject most proposals until they have 
been tried at least experimentally. 

All reviewers of my [operating system] book correctly pointed out 
that the chapter on resource protection [introducing shared classes] 
was highly speculative. The Solo operating system described here is 
an attempt to set the record straight by putting monitors to a realistic 
test. 

13 The Architecture of Concurrent Programs 

In July 1976 I joined University of Southern California as professor and 
chair of computer science. Now that Concurrent Pascal was running I knew 
that the time was ripe for a book on the principles of abstract parallel 
programming. 

My second book, The Architecture 01 Concurrent Pmgmms, includes the 
complete text of the model operating systems written in Concurrent Pascal 
(Brinch Hansen 1977b). 

In a book review, Roy Maddux and Harlan Mills (1979) wrote: "This is, 
as far as we know, the first book published on concurrent programming." 
They were particularly pleased with the Solo system: 

Here, an entire operating system is visible, with every line of program 
open to scrutiny. There is no hidden mystery, and after studying such 
extensive examples, the reader feels that he could tackle similar jobs 
and that he could change the system at will. Never before have we seen 
an operating system shown in such detail and in a manner so amenable 
to modification. 

Twenty years later, two of my former Ph.D. students recalled their ex­

perience of working with Concurrent Pascal: 

Jon Fellows (1993): "The beauty of the structures you created using 
Concurrent Pascal created an aura of magical simplicity. While work­
ing with my own programs and those of other graduate students, I 
soon learned that ordinary, even ugly, programs could also be written 
in Concurrent Pascal ... My current feeling is that the level of intel­
lectual effort required to create a beautiful program structure cannot 
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be reduced by programming language features, but that these features 
can more easily reveal a program's beauty to others who need to un­
derstand it." 

Charles Hayden (1993): "I think the significance of the system was 
. .. that one could provide a protected environment for concurrent 
programming-a high-level language environment which could main­
tain the illusion that there was no "machine" level. It was remarkable 
that through compile time restrictions and virtual machine error check­
ing ... you could understand the program behavior by looking at the 
Pascal, not at the machine's registers and memory. It was remarkable 
that the machine could retain its integrity while programs were being 
developed, without hardware memory protection." 

In designing Concurrent Pascal and the model operating systems written 
in the language I followed a consistent set of programming principles. These 
principles carried structured programming (Dijkstra 1972a) into the realm of 
modular, concurrent programming: 

P. Brinch Hansen, Design Principles (1977) 

Roy Maddux and Harlan Mills (1979) agreed that: 

An author does weIl to start by stating those beliefs and biases he holds 
that are relevant to his work so that the reader is forewarned about 
what will follow and can understand the motivation behind subsequent 
decisions and choices. Brinch Hansen's opening chapter-a reasoned 
essay on the fundamental principles of programming today-does this 
remarkably weIl. The quotations at the end of the chapter are partic­
ularly weIl-chosen and make delightful reading. 

PART V DISTRIBUTED COMPUTING 

In the late 1970s, parallel computing was moving from multiprocessors with 
shared memory towards multicomputers with distributed memory. For micro­
computer networks, Dijkstra, Hoare and I suggested different programming 
models. Although our ideas opened the way for abstract distributed comput­
ing, they clearly needed furt her refinement before they could be incorporated 
into programming languages. 
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14 A Synthesis Emerging? 

Edsger Dijkstra led the way. In a brief note he gave a personal account 
of a discussion with Tony Hoare at the International Summer School in 
Marktoberdorf, Germany, in July 1975: 

E. W. Dijkstra, A Synthesis Emerging? (1975) 

Hoare was trying to explain the class concept of Simula 67, when Dijkstra 
began to: 

change terminology, notation and a way of looking at it, things I had 
to do in order to make it all fit within my frame of mind. To begin 

with, I shall record how our discussions struck root in my mind. I don't 

know whether areal Simula fan will still recognize the class-concept; 

he may get the impression that I am writing about so met hing totally 

different. 

Indeed! What emerges is the exciting possibility of modular programs with 
nondeterministic process types (calIed generators). In his usual colorful ter­
minology, Dijkstra calls these programs "elephants built from mosquitoes." 

His simplest example is a generator, named nn, for natural numbers: 

nn gen begin privar x; x virint := 0; 
do ?inc ----+ x := x + 1 

end 

~ x > 0 cand ?dec ----+ x := x-I 
od 

(The notational details are not important here.) 
The main program can declare a variable y as a natural number: 

privar y; y vir nn; 

The generator instance y keeps a natural number in a private variable x. 
After initializing its value to zero, the generator is ready to perform an end­
less series of increase and decrease operations on x in response to commands 
from the main program: 

y.inc y.dec 

The generator defines the increment operation as a guarded command 
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?inc ----+ x := x + 1 

When the main program issues an inerement eommand, the guard 

?inc 

is regarded as being true (onee), enabling the generator to exeeute the 
guarded statement 

x:= x + 1 

However, if the main program issues a deerement eommand, the guard 

x > 0 eand ?dec 

does not become true until x > o. 
So far, the generator looks very mueh like a monitor implement at ion of 

a semaphore, but there are subtle differenees: 

• Dijkstra views the main program and its generators as processes that 
are synchronized during the execution of guarded commands. 

• When the main program terminates, alt guards within its local gener­
ators become false, and the generator loops terminate too. 

Dijkstra emphasizes that: 

[In the past] it was the purpose of our programs to instruct our ma­
chines: now it is the purpose of the machines to execute our programs. 
Whether the machine does so sequentially, one thing at a time, or with a 
considerable amount of concurrency, is a matter of implement at ion and 
should not be regarded as a property of the programming language. 

This viewpoint naturally leads hirn to conclude that 

• If the main program is concurrent, the generator does indeed imple­
ment a semaphore that delays a decrement operation until x > o. 

• However, if the main program is sequential, an attempt to decrement 
a natural number equal to zero will cause the main program to get 
stuck. 



40 PER BRINCH HANSEN 

At this point Dijkstra introduces the powerful concept of recursive non­
deterministic processes. He programs a generator that defines a sequence oi 
integers recursively. A parallel execution of this program can be visualized as 
a pipeline oi processes. Each process accepts commands from its predecessor 
(which is either another pipeline process or the main program). 

An insert command, issued by the main program, propagates to the end 
of the chain, where the last process extends the pipeline with another process. 

A membership query moves down the pipeline until it either reaches a 
process that holds the desired element or is absorbed at the end of the 
pipeline. In a parallel implementation, a wave oi queries can move down the 
pipeline simultaneously. 

Edsger Dijkstra called it "A surprising discovery, the depth of which is 
as far as I am concerned still unfathomed." In 1982 he added a final remark: 

In retrospect this text is not without historical interest: it records the 

highlights of a discussion mentioned las "Verbal communication" (Dijk­
stra 1975)] in C. A. R. Hoare's "Communicating sequential processes" , 
Comm. ACM 21, 8 (Aug. 1978),666-677. The text was evidently writ­

ten in astate of same excitement; in retrospect we may conclude that 

this excitement was not entirely unjustified. Seeing Haare keenly in­
terested in the topic, I left that arena. 

15 Communicating Sequential Processes 

Three years after his discussion with Edsger Dijkstra in Marktoberdorf, Tony 
Hoare publishes a paper on communicating sequential processes (also known 
as eSP): 

c. A. R. Hoare, Communicating Sequential Processes (1978) 

This classic paper develops Dijkstra's (1975a) vision of nondeterministic pro­
cesses communicating by means of guarded commands (but without recur­
sion). 

The bounded buffer, shown here, is a CSP process, named X, that can hold 
up to ten buffer portions. After making the buffer empty to begin with, the 
process executes a repetitive command (prefixed by an asterisk *). In each 
cycle, the buffer process is delayed until one of two possible communications 
takes place: 

1. A process named producer is ready to execute an output command 
X! e. In that case, the buffer process inputs the value of the expression 
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x· . 
buffer:CO .. 9)portion; 
in,out:integer; in:= 0; out:= 0; 
comment 0 :::; out :::; in :::; out + 10; 

*[in < out + 10; producer?bufferCin mod 10) -4 in:= in + 1 
Dout < in; consumer?moreO -4 consumer!bufferCout mod 10); 

out := out + 1 

The Bounded Buffer in CSP 

e in the last buffer element, provided that there is room for it in the 
buffer. This is the effect of the guarded input command: 

in < out + 10; producer?bufferCin mod 10) -4 in:= in + 1 

2. A process named consumer outputs arequest for more input, X! more (), 
and inputs the next buffer portion in a local variable v by executing 
the command X?v. When the buffer is nonempty, it accepts the request 
before outputting the first portion: 

out < in; consumer?moreC) -4 

consumer!bufferCout mod 10); out:= out + 1 

This paper describes highly original ideas: 

1. Synchronous communication. Hoare introduces this idea, which was 
well-known in computer architectures but novel in programming languages: 

Communication occurs when one process names another as destination 
for output and the second proeess names the first as souree for input. 

In this ease, the value to be output is eopied from the first proeess to 
the second. There is no automatie buffering: In general, an input or 
output command is delayed until the other proeess is ready with the 
corresponding output or input. Such delay is invisible to the delayed 
process. 

2. Input guards. CSP incorporates Dijkstra's (1975a) concept of nonde­
terministic process interactions controlled by guarded commands: 
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A guarded command with an input guard is selected for execution only 
if and when the source named in the input command is ready to execute 
the corresponding output command. If several input guards of a set of 

alternatives have ready destinations, only one is selected and the others 

have no effect; but the choice between them is arbitrary. 

3. Coincidence oi events. In 1965, Dijkstra demonstrated that mutual 
exclusion of events is a fundamental programming concept. In 1975, he 
showed that the opposite idea, the coincidence of events, is just as important! 
This strikes me as the most profound idea incorporated in CSP. 

4. Programming examples. The CSP paper includes solutions to a wide 
variety of interesting problems. 

However, the CSP proposal also has so me awkward details: 

1. Direct process naming. One of the major advantages of monitors is 
their ability to communicate with processes and schedule them without be­
ing aware of process identities. In CSP, an input/output command must 
name the sour ce or destination process directly. The text of a process must 
therefore be modified when it is used in different contexts. This complicates 
the examples in Hoare's paper: the user of a process array S (1 .. n) is itself 
named S (0). And the prime sieve is composed of three different kinds of 
processes to satisfy the naming rules. 

2. Pattern matching. The CSP notation does not include type declara­
tions of communication channels, but depends (conceptually) on dynamic 
checking to recognize matching input and output commands in parallel pro­
cesses. 

3. Conditional input. Hoare mentions that: 

conditions can be used to delay acceptance of inputs which would vio­

late scheduling constraints-postponing them until so rne later occasion 

when so me other process has brought the monitor into astate in which 

the input can validly be accepted. This technique is similar to a condi­
tional critical region (Hoare 1971) and it obviates the need for special 

synchronizing variables such as events, queues, or conditions. However, 
the absence of these special facilities certainly makes it more difficult 

or less efficient to solve problems involving priorities. 16 

16Notice, however, that a monitor with await statements on Boolean conditions does not 
require queueing variables either (Brinch Hansen 1973c). 



THE INVENTION OF CONCURRENT PROGRAMMING 43 

4. No output guards. This restriction forces Hoare to publish a CSP 
version of the bounded buffer with asymmetrie input; output operations. For 
aesthetic reasons, I find this lack of elegance regrettable. 

5. Proeess termination. CSP uses Dijkstra's (1975a) termination rule: 

A repetitive command may have input guards. If all the sources named 
by them have terminated, then the repetitive command also term i­
nates. 

Hoare maintains that: 

The automatie termination of a repetitive command on termination 
of the sources of all its input guards is an extremely powerful and 
convenient feature but it also involves some subtlety of specification to 
ensure that it is implementable; and it is certainly not primitive, since 
the required effect can be achieved (with considerable inconvenience) 
by explicit exchange of "endO" signals. 

Seven years later, Hoare (1985) realizes that: 

The trouble with this convention is that it is complicated to define 
and implement; and methods of proving program correctness seem no 
simpler with it than without. 

6. No recursion. The most obvious weakness of CSP is the omzsswn 
01 Dijkstra's beautiful concept of reeursive nondeterministie proeesses. A 
CSP process cannot activate itself recursively. It is, however, possible to 
activate fixed-Iength process arrays, which can imitate the behavior (but not 
the elegance) of recursive processes. 17 

CSP was a major achievement and the inspiration for a new generation 
of concurrent programming languages, incIuding the nonrecursive language 
occam for the transputer (Inmos 1989a, 1989b) and the recursive language 
Joyce (Brinch Hansen 1987a). 

Seven years later Hoare (1985) published a mathematieal theory of com­
munieating sequential proeesses using a recursive variant of CSP. This nota­
tion has played a significant role in research on the mathematical foundations 
of concurrency. Hoare (1981) is an early example of this theoretical work 
(which is beyond the scope of this essay). 

17My alternative programming model, Distributed Processes, is also nonrecursive (Brinch 
Hansen 1978c). 
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16 Distributed Processes 

For microcomputer networks with distributed memory I introduced the idea 
of a synchronized procedure that can be called by one process and executed 
by another process. This proposal combines processes and monitors into a 
single concept, called distributed processes. In distributed operating systems, 
this communication paradigm is known as remote procedure calls. 

P. Brinch Hansen, Distributed Processes: A Concurrent Programming Concept 

(1978) 

Distributed Processes have the following properties: 

• Areal-time program consists of a fixed number of concurrent processes that 
are started simultaneously and exist forever. Each process can access its own 
variables only. There are no common variables. 

• A process can call common procedures defined within other processes. These 
procedures are executed when the other processes are waiting for some condi­
tions to become true. A procedure call from one process to another is called 
an external request. This is the only form of process communication. 

• Processes are synchronized by means of nondeterministic guarded regions 
(Hoare 1971, Dijkstra 1975b, Brinch Hansen 1978c). 

The bounded buffer, shown here, is a process that stores a sequence of 
characters transmitted between processes by means of send and receive pro­
cedures. 

process buffer 
s: seq[nJchar 
proc send(c: char) when not s.full: s.put(c) end 
proc rec(#v: char) when not s.empty: s.get(v) end 
s:= [J 

The Bounded Buffer with Distributed Processes 

The initial statement makes the buffer empty and terminates. The buffer 
process, however, continues to exist and can now be called by other processes: 

call buffer.send(e) call buffer.rec(v) 
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After initialization, the buffer process is idle between external calls. This 
process is similar to a monitor (Brinch Hansen 1973c) with conditional crit­
ical regions (Hoare 1971). 

In general, an external call of a procedure R, declared in a process Q, 
may include both value and result parameters: 

call Q.R(expressions, variables) 

The parameter passing between two distributed processes requires a single 
input operation when an extern al procedure is activated, followed by a single 
output operation when it terminates. 

The relationship between two communicating processes is asymmetrical 
and requires only that the caller of a procedure name the process that per­
forms it. This asymmetry is useful in hierarchical systems, in which server 
processes should be unaware of the identities of client processes. 

Every process is quasiparallel in the following sense: 

• A proeess beg ins by exeeuting its initial statement. This eontinues until the 
statement either terminates or waits for a eondition to become true. Then 
another operation is started (as the result of an external request). When 
this operation in turn terminates or waits the proeess will either begin yet 
another operation (requested by another proeess) or it will resume an earlier 
operation (as the result of a eondition beeoming true). This interleaving 
of the initial statement and the external requests eontinues forever. If the 
initial statement terminates, the proeess eontinues to exist and will still aeeept 
external statements. 

• In a microproeessor network where eaeh proeessor is dedieated to a single 
proeess it is an attractive possibility to let a proeess earry out eomputa­
tions between external ealls of its proeedures. The shortest job next scheduler 
(shown in the paper) takes advantage of this eapability by selecting the next 
user while the resouree is being used by the present user. 

The major weaknesses of distributed processes are (1) the implicit waiting 
loops on Boolean conditions and (2) the absence of parallel recursion. 

It was Jim White (1976) who first proposed remote procedure calls, as an 
informal programming style. However, White did not explain how to prevent 
race conditions between unsynchronized remote ealls and loeal proeesses that 
are being exeeuted by the same proeessor. This fiaw potentially made remote 
proeedure ealls as unsafe as interrupts that eannot be disabled! Nevertheless, 
the original idea was his. 
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My Ph.D. student Charles Hayden (1979) implemented an experimen­
tal language with distributed proeesses on an LSI-11 mieroeomputer and 
evaluated the new paradigm by writing small simulation programs. 

Greg Andrews (1991) aeknowledged that: 

Per Brinch Hansen (1978) developed the first programming language 
based on [remote procedure caUs] RPC. His language is caUed Dis­
tributed Processes (DP).18 

Aeeording to Olivier Roubine (1980), my proposal was "a souree of inspi­
ration in the design of the Ada tasking faeilities." The rendezvous eoneept 
in the language Ada eombines the remote procedure calls of distributed pro­
ces ses with the selection of alternative interactions in CSP. 

Since then, operating system designers have turned remote procedure 
calls into an unreliable mechanism of surprising complexity. In their present 
form, remote proeedure calls are an attempt to use unreliable message pass­
ing to invoke procedures through loeal area networks. 

Tay (1990) admits that "Currently, there are no agreed definition on 
the semantics of RPC." Leach (1983) goes one step further and advocates 
that "each remote operation implements a protocol tailored to its need." 
Sinee it ean be both system-dependent and application-dependent, a remote 
proeedure eall is no longer an abstract eoneept. 

After implementing a remote procedure call mechanism for the distributed 
operating system Unix United, Santosh Shrivastava and Fabio Panzieri (1982) 
concluded: 

At a superficial level it would seem that to design a program that 
provides a remote procedure caU abstraction would be a straightforward 
exercise. Surprisingly, this is not so. We have found the problem of the 
design of the RPC to be rather intricate. 

18Rarely does anyone replace single words, like "Pascal," "Monitor," "Solo" or "Joyce," 
by baffling acronyms-P, M, S or J. But carefully chosen longer names, like "Condi­
tional Critical Region," "Concurrent Pascal," "Communicating Sequential Processes," 
"Distributed Processes" and "Remote Procedure CaU," are doomed to be abbreviated 
as CCR, CP, CSP, DP and RPC. Ij you believe that papers should be easy to read (but 
not necessarily easy to write) , the lesson is clear: Always use single words to name your 
concepts! 
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17 Joyce 

The most surprising idea in Dijkstra's "Emerging Synthesis" (1975a) was his 
introduction of recursive nondeterministic processes. This idea was clearly 
ahead of its time. Some ten years would pass before Hoare (1985) published 
a theoretical recursive variant of CSP. 

Two years later, I published the first recursive esp language imple­
mented on a computer: 

P. Brinch Hansen, Joyce-A Programming Language {or Distributed Systems 

(1987) 

Joyce is a secure CSP language based on a minimal subset of Pascal. A Joyce 
program activates recursive processes, known as agents. These agents com­
municate through synchronous channels. A channel can transfer messages of 
different (but fixed) types between two or more agents. The compiler checks 
message types and ensures that agents use disjoint variables only. 

type stream == [int(integer)]; 

agent buffer(inp, out: stream); 
const n == 10; 
type contents = array [Ln] of integer; 
var head, tail, length: integer; 

ring: contents; 
begin 

head := 1; tail := 1; length := 0; 
while true do 

poil 
inp?int(ring[tailJ) & length < n - > 

tail := tail mod n + 1; 
length := length + 11 

out!int(ring[headJ) & length > 0 - > 
head := head mod n + 1; 
length := length - 1 

end 
end; 

The Bounded Buffer in Joyce 

The bounded buffer, shown here, is defined by an agent procedure. A 
buffer agent uses two channels of type stream. Every communication through 
a stream channel transmits a single symbol, named int, from one agent to 
another. The symbol carries a message of type integer. 
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A buffer agent transmits an endless stream of symbols from one channel 
to another in response to input/output commands from other agents. In 
each cycle, a buffer agent executes a polling statement that delays it until a 
conditional communication takes place through one of its channels. 

In general: 

A Joyce program consists of nested procedures which define commu­
nicating agents. Joyce permits unbounded (recursive) activation of 
agents. The execution of a program activates an initial agent. Agents 
may dynamically activate subagents which run concurrently with their 
creators. The variables of an agent are inaccessible to other agents. 

Agents communicate by means of symbols transmitted through 
channels. Every channel has an alphabet-a fixed set of symbols that 
can be transmitted through the channel. A symbol has a name and 
may carry a message of a fixed type. 

Two agents match when one of them is ready to output a symbol 
to a channel and the other is ready to input the same symbol from 
the same channel. When this happens, a communication takes place 
in which a message from the sending agent is assigned to a variable of 
the receiving agent. 

The communications on a channel take place one at a time. A 
channel can transfer symbols in both directions between two agents. 

A channel may be used by two or more agents. If more than two 
agents are ready to communicate on the same channel, it may be pos­
sible to match them in several different ways. The channel arbitrarily 
selects two matching agents at a time and lets them communicate. 

A polling statement enables an agent to examine one or more chan­
nels until it finds a matching agent. Both sen ding and receiving agents 
may be polled. 

Agents create channels dynamically and access them through local 
port variables. When an agent creates a channel, a channel pointer 
is assigned to a port variable. The agent may pass the pointer as a 
parameter to subagents. 

When an agent reaches the end of its defining procedure, it waits 
until all its subagents have terminated before terminating itself. At 
this point, the local variables and any channels created by the agent 
cease to exist. 

Hoare (1978) emphasized that CSP should not be regarded as suitable 
for use as a programming language but only as a partial solution to the 

problems tackled. 
Joyce removed unnecessary limitations of esp by introducing: 
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• Recursive agent procedures. 

• Simple agent termination. 

• Typed channel alphabets. 

• Typed port variables. 

• Bidirectional synehronous ehannels. 

• Nondeterministie shared channels. 

• Symmetrie input/output polling. 

To be able to experiment with parallel recursion, I developed portable im­
plementations of Joyce for a personal computer and a multiprocessor (Brinch 
Hansen 1987b, 1989b). 

I still marvel at the beauty of recursive agents, such as the bounded 
buffer, the sorting array, the prime sieve, the integer set, and the Fibonacci 
tree (shown in the paper). 

How can I explain the joy of being able, for the first time, to explore this 
new dass of algorithms in a concise, executable language? The experience 
reminds me of the wise observation by the logician Susanne K. Langer (1967): 

There is something uneanny about the power of a happily chosen ideo­
graphie language; for it often allows one to express relations whieh have 
no names in naturallanguage and therefore have never been notieed by 
anyone. Symbolism, then, becomes an organ of diseovery rather than 
me re notation. 

PART VI IMPLEMENTATION ISSUES 

I promised to omit "Implementation details (except in outline)." Parallel 
programming languages do, however, pose special implementation problems 
that deserve your attention: 

• Interference controldurmg compilation . 

• Memory allocation of parallel recursion. 
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18 SuperPascal 

When Hoare (1971) published his paper on conditional critical regions, we 
did not fully appreciate the complexity of checking interference in a block­
structured parallellanguage. You see, the subsequent invention of modular 
parallelism made interference checking so simple that we hardly noticed how 
hard it could have been! 

Out of curiosity I asked myself twenty-three years later, Is it feasible to 
detect pT'Ocess interference in a block-structured language with nonmodular 
parallelism? 

P. Brinch Hansen. SuperPascal-A Publication Language for Parallel Scientific 

Computing (1994) 

The parallel features of SuperPascal are a subset of occam 2 with the added 
generality of dynamic pT'Ocess arrays and recursive parallel pT'Ocesses (Inmos 
1988b, Cok 1991). SuperPascal omits ambiguous and insecure features of 
Pascal. Restrictions on the use of variables enable a single-pass compiler to 
check that parallel pT'Ocesses are disjoint, even if the pT'Ocesses use pT'Ocedures 
with global variables. 19 

When you have read this paper, you can judge for yourself how com­
plicated concurrent programming would have been without some form of 
modularity, such as the process and monitor types of Concurrent Pascal. 

After reading the paper, Dave Parnas (1993) feIt that "Some might sug­
gest that nobody would be able to build practical programs in a language 
with so many restrictions." I answered (Brinch Hansen 1993d): 

I too was surprised at the restrictions required to make parallelism se­
eure in a bloek-structured language. However, I think that the exercise 

merely foreed me explicitly to reeognize the eomplexity of the proeedure 

eoneept in our programming languages (such as Pascal). SuperPascal 

foreed me to use a more restricted proeedure eoneept. So far, I have 
found that the rules enforeed by the compiler eontribute to program 

clarity. 

After developing a portable implementation of SuperPascal on a Sun 
workstation: 

19Since the language does not support conditional communication, a bounded buffer 
cannot be programmed in SuperPascal. 
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[I used] the Super Pascal notation to write portable programs for regu­
lar problems in computational science (Brinch Hansen 1995). I found 
it easy to express these programs in three different programming lan­
guages (SuperPascal, Joyce,20 and occam 2) and run them on three 

different architectures (a Unix workstation, an Encore Multimax, and 
a Meiko Computing Surface).21 

19 Efficient Parallel Recursion 

In esp and Distributed Processes, Hoare and I shied away from paral­
lel recursion because of the difficulty of implementing an unbounded tree­
structured stack without using garbage collection. 

Dijkstra (1975a) was well aware of this stumbling block: 

the storage requirements for a sequence are very simple, viz. a stack. 

(In our rejected example of the binary tree, although lifetimes are, in 

a fashion, nested, life is not so simple.) 

After using static memory allocation in Concurrent Pascal, it took me 
twenty years to discover a simple method for efficient parallel recursion 
(which I used to implement SuperPascal): 

P. Brinch Hansen, Efficient Parallel Recursion (1995) 

I now believe that we should have used parallel recursion from the beginning, 
even though we didn't know how to implement it. 22 This kind of intellectual 
courage paid off handsomely when Peter Naur (1960) included sequential 
recursion in his famous Algol 60 report, before Dijkstra (1960) had shown 
how to implement it efficiently using a run-time stack. 

THE END OF AN ERA 

The development of abstract language notation for concurrent programming 
started in 1965. Twenty years later Judy Bishop (1986) concluded: 

2°Brinch Hansen (1988). 

21The Encore Multimax was a multiprocessor with 18 processors sharing a memory of 
128 MB (Trew 1991). The Computing Surface was a multicomputer with 48 transputers, 
each with 1 MB of local memory (Inmos 1988a, Trew 1991). 

22 As you can tell, I am now a middle-aged idealist. 
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It is evident that the realm of concurrency is now firmly within the 
ambit of reliable languages and that future designs will provide for 
concurrent processing as a matter of course. 

So passed an exciting era. 
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CONCEPTUAL INNOVATION 



COOPERATING 
SEQUENTIAL PROCESSES 

EDSGER W. DIJKSTRA 

(1965) 

INTRODUCTION 

1 

This chapter is intended for all those who expect that in their future activities 
they will become seriously involved in the problems that arise in either the 
design or the more advanced applications of digital information processing 
equipment; they are furt her intended for all those who are just interested in 
information processing. 

The applications are those in which the activity of a computer must 
include the proper reaction to a possibly great variety of messages that can 
be sent to it at unpredictable moments, a situation which occurs in pracess 
contral, traffic control, stock control, banking applications, automatization 
of information fiow in large organizations, centralized computer service, and, 
finally, all information systems in which a number of computers are coupled 
to each other. 

The desire to apply computers in the ways sketched above has often a 
strong economic motivation, but in this chapter the not unimportant ques­
tion of efficiency will not be stressed too much. Logical problems which 
arise, for example, when speed ratios are unknown, communication possibil­
ities restricted, etc., will be dealt with much more. This will be done in order 
to create a clearer insight into the origin of the difficulties one meets and 
into the nature of solutions. Deciding whether under given circumstances 

E. W. Dijkstra, Cooperating sequential processes. Technological University, Eindhoven, 
The Netherlands, September 1965. Reprinted in Frogmmming Languages, F. Genuys, Ed., 
Academic Press, New York, 1968,43-112. Copyright © 1968, Academic Press. Reprinted 
by permission. 
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the application of our techniques is economically attractive falls outside the 
scope of this chapter. 

There will not be a fully worked out theory, complete with Greek letter 
formulae, so to speak. The only thing that can be done under the present 
circumstances is to offer a variety of problems, together with solutions. And 
in discussing these we can only hope to bring as much system into it as we 
possibly can, to find which concepts are relevant, as we go along. 

1 ON THE NATURE OF SEQUENTIAL PROCESSES 

Our problem field proper is the co-operation between two or more sequential 
processes. Before we can enter this field, however, we have to know quite 
clearly what we call "a sequential process". To this preliminary quest ion the 
present section is devoted. 

To begin, he re is a comparison of two machines to do the same example 
job, the one a non-sequential machine, the other a sequential one. 

Let us assume that of each of four quantities, named a [1J, a [2J, a [3J , 
and a [4J respectively, the value is given. Our machine has to process these 
values in such a way that, as its reaction, it "teIls" us which of the four 
quantities has the largest value. E.g. in the case: 

a[1] = 7, a[2] = 12, a[3] = 2, a[4] = 9 

the answer to be produced is a [2J (or only 2, giving the index value pointing 
to the maximum element). 

Note that the desired answer would become incompletely defined if the 
set of values were-in order-7, 12, 2, 12, for then there is no unique 
largest element, and the answer a [2J would have been as good (or as bad) 
as a [4J. This is remedied by the further assumption that of the four values 
given, no two are equal. 

Remark 1. If the required answer would have been the maximum value 
occurring among the given ones, the last restriction would have been super­
fluous, for the answer corresponding to the value set 7, 12, 2, 12 would 
then have been 12. 

Remark 2. Our restriction "Of the four values no two are equal" is 
still somewhat loosely formulated, for what do we mean by "equal"? In 
the processes to be constructed pairs of values will be compared with one 
another, and what is really meant is that every two values will be sufficiently 
different, so that the comparator will unambiguously decide which of the two 
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is the larger one. In other words, the difference between any two must be 
large compared with "the resolving power" of our comparators. 

We shall first construct our non-sequential machine. When we ass urne 
our given values to be represented by currents we can imagine a compara­
tor consisting of a two-way switch, the position of which is schematically 
controlled by the currents in the coils of electromagnets, as in Figs. 1 and 2. 

y A x y x 

l®J lQQ) (W ~ 
B fC BI C 

Fig. 1. x<y Fig. 2. y<x 

When current y is larger than current x, the left electromagnet pulls 
harder than the right one and the switch switches to the left (Fig. 1) and 
the input A is connected to output B; if current x is the larger one we shall 
get the situation (Fig. 2), where the input A is connected to output C. 

In our diagrams we shall omit the coils and shall represent such a com­
parator by a small box 

A 
I 

y<x? 

I I 
B C 

only representing at the top side the input and at the bot tom side the two 
outputs. The currents to be led through the coils are identified in the ques­
tion written inside the box, and the convention is that the input will be 
connected to the right-hand side output when the answer to the question is 
"Yes", to the left-hand side output when the answer is "No". 

Now we can construct our machine as indicated in Fig. 3. At the output 
side we have drawn four indicator lamps, one, and only one, of which will 
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light up to indicate the answer. 

a(1) < a(3)? a(2)<a(3)? 

+ + + + 
Fig.3 

In Fig. 4 we indicate the position of the switches when the value set 7, 
12, 2, 9 is applied to it. In the boxes the positions of the switches are 
indicated, wires not connected to the input are drawn dotted. 

Iz 
I 
I 
I 
11 

, , 

r->'",s: I 
, I 

-----.-------~-----~ , I 

'3 14 
I I 

Fig.4 

We draw the reader's attention to the fact that now only the positions 
of the three switches that connect output 2 to the input matter; the reader 
is invited to convince himself that the position of the other three switches is 
indeed immaterial. 

It is also worthwhile to give a moment's attention to see what happens in 
time when our machine of Fig. 3 is fed with four "value currents". Obviously 
it cannot be expected to give the correct answer before the four value currents 
start going through the coils. But one cannot even expect it to indicate the 
correct answer as so on as the currents are applied, for the switches must get 
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into their correct position, and this may take so me time. In other words, 
as soon as the currents are applied (simultaneously or the one after the 
other) we must wait aperiod of time -characteristic for the machine-and 
only after that the correct answer will be shown at the output side. What 
happens during this waiting time is immaterial, provided that the interval 
is long enough for all switches to find their final position. They may start 
switching simultaneously, the exact order in which they attain their final 
position is immaterial, and therefore we shall no longer pay any attention to 
it. 

From the logical point of view the switching time can be regarded as a 
marker on the time axis: before it the input data have to be supplied, after 
it the answer is available. 

In the use of our machine the progress of time is only refiected in the 0 b­
vious "before-after" relation, which teIls us that we cannot expect an answer 
before the quest ion has been properly put. This sequence relation is so obvi­
ous (and fundamental) that it cannot be regarded as a characteristic property 
of our machine. And our machine is therefore called a "non-sequential ma­
chine" to distinguish it from the kind of equipment-or processes that can 
be performed by it-to be described now. 

Up till now we have interpreted the diagram of Fig. 3 as the (schematic) 
picture of a machine to be built in space. But we can interpret this same 
diagram in a very different manner if we place ourselves in the mind of the 
electron entering at the top input and wondering where to go. First, it finds 
itself faced with the quest ion whether a [1] < a [2] holds. Having found 
the answer to this question, it can proceed. Depending on the previous 
answer, it will enter one of the two boxes a[1J < a[3] or a[2] < a[3], i.e. 
it will only know what to investigate next, after the first question has been 
answered. Having found the answer to the question selected from the second 
line, it will know which quest ion to ask from the third line and, having found 
this last answer, it will now know which bulb should start to glow. Instead 
of regarding the diagram of Fig. 3 as that of a machine, the parts of which 
are spread out in space, we have regarded it as rules of behaviour, to be 
followed in time. 

With respect to our earlier interpretation two differences are highly sig­
nificant. In the first interpretation all six comparators started working si­
multaneously, although finally only three switch positions were relevant. In 
the se co nd interpretation only three comparisons are actually evaluated­
the wondering electron asks itself three questions-but the price of this gain 
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is that they have to be performed the one after the other, as the outcome 
of the previous one decides what to ask next. In the second interpretation 
three quest ions have to be asked in sequence, the one after the other. The 
existence of such an order relation is the distinctive feature of the second 
interpretation, which in contrast to the first one is therefore called "a se­
quential process". We should like to make two remarks. 

Remark 3. In actual fact, the three comparisons will each take a finite 
amount of time ("switching time", "decision time", or, in the jargon, "ex­
ecution time"), and as a result the total time taken will at least be equal 
to the sum of these three execution times. We stress once more that for 
many investigations these executions can be regarded as ordered markers on 
a scaleless time axis and that it is only the relative ordering that matters 
from this (logical) point of view. 

Remark 4. As a small side line we note that the two interpretations 
(call them "simultaneous comparisons" and "sequential comparisons") are 
onlyextremes. There is a way of, again, only performing three comparisons, 
in wh ich two of them can be done independently from one another, i.e. 
simultaneously; the third one, however, can be done only after the other two 
have been completed. It can be represented with the aid of a box in which 
two questions are put and which, as a result, has four possible exits, as in 
Fig.5. 

all] < a[2]? a[3] < a[4]? 

NY YN 

a[2] < a[3]? 

1 2 3 4 
Fig.5 

The total time taken will be at least the sum of the comparison execution 
times. The process is of the first kind in the sense that the first two com­
parisons can be performed simultaneously, it is of sequential nature, as the 
third comparison can be selected from the second line only when the first 
two have both been completed. 
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We return to our purely sequential interpretation. Knowing that the di­
agram is meant for purely sequential interpretations, we can take advantage 
of this circumstance to make the description of the "rules of behaviour" more 
compact. The idea is that the two questions on the second line only one of 
wh ich will be actually asked are highly similar: the questions on the same 
line differ only in the subscript value of the left operand of the comparison. 
And we may ask ourselves: "Can we map the questions on the same line of 
Fig. 3 on to a single question 7" 

This can be done, but it implies that the part that varies along a line-i.e. 
the subscript value in the left operand- must be regarded as a parameter, 
the task of which is to determine which of the quest ions mapped on each 
other is meant, when its turn to be executed has come. Obviously the value 
of this parameter must be defined by the past history of the process. 

Such parameters, in which past history can be condensed for future use, 
are called "variables". To indicate that a new value has to be assigned to 
it we use the so-called assignment operator := (read: "becomes"), a kind of 
directed equality sign which defines the value of the left-hand side in terms 
of the value of the right-hand side. 

We hope that the previous paragraph is sufficient for the reader to recog­
nize also in the diagram of Fig. 6 a set of "rules of behaviour". Our variable 
is called i; and the reader may wonder why the first question, which is in­
variably a [lJ < a [2J ? is not written that way, but with patience he will 
understand. 

When we have followed the rules of Fig. 6 as intended from top till 
bottom, the final value of i will identify the maximum value, viz. a [iJ . 

The transition from the scheme of Fig. 3 to the one of Fig. 6 is a drastic 
change, for the latter's "rules of behaviour" can only be interpreted sequen­
tially. And this is due to the introduction of the variable i: having only 
a [lJ , a [2J , a [3J , and a [4J available as values to be compared, the question 
a [iJ < a [2J ? is meaningless, unless it is known for which value of i this 
comparison has to be made. 

Remark 5. It is somewhat unfortunate that the jargon of the trade 
calls the thing denoted by i a variable, because in normal mathematics 
the concept of a variable is a completely timeless concept. Time has not hing 
to do with the x in the relation 

sin(2 * x) = 2 * sin(x) * cos(x) 

if such a variable ever denotes a value it denotes "any value" . 



72 EDSGER W. DIJKSTRA 

Fig.6 

Each time, however, that a variable in a sequential process is used~such 
as i in a [iJ ~it denotes a very specific value, viz. the last value assigned 
to it, and nothing else! As long as no new value is assigned to a variable, it 
denotes a constant value! 

Remark 6. One may well ask what we are actually doing when we intro­
duce a variable without specifying, for instance, a domain for it, i.e. a set of 
values which is guaranteed to comprise all its future actual values. We shall 
not pursue this quest ion here. 

Now we are going to subject our scheme to a next transformation. In 
Fig. 3 we have "wrapped up" the lines, now we are .going to wrap up the 
scheme of Fig. 6 in the vertical direction, an operation to which we are 
invited by the repetitive nature of it and which can be performed at the 
price of a next variable, j say. 

The change is a dramatic one, for the fact that the original problem was 
to identify the maximum value among Jour given values is no longer reflected 
in the "topology" of the rules of behaviour: in Fig. 7 we only find the number 
4 mentioned once. By introducing another variable, say n, and replacing the 
4 in Fig. 7 by n we have suddenIy the rules of behaviour to identify the 
maximum occurring among the n elements a [lJ, a [2J, ... , a [nJ, and 
this practically only for the price that before application the variable n must 
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be given its proper value. 

t 
i:= 1; 

j:= 1; 

j =4? 

j:=j+l; 

a[i] < a[j]? 

I i:=j 
I 

Fig.7 

The change is dramatic, for now we have not only given rules of behaviour 
which must be interpreted sequentially this was already the case with Fig. 6 
but we have devised a single mechanism for identifying the maximum value 
among any number of given elements, whereas our original non-sequential 
machine could only be built for a previously well-defined number of elements. 
We have mapped our comparisons in time instead of in space, and if we wish 
to compare the two methods it is as if the sequential machine "extends itself" 
in terms of Fig. 3 as the need arises. It is our last transition which displays 
the sequential processes in their full glory. 

The technical term for what we have called "rules of behaviour" is an al­
gorithm or a program. (It is not customary to call it "a sequential program" , 
although this name would be fully correct.) Equipment able to follow such 
rules, "to execute such a program" is called "a general-purpose sequential 
computer" or "computer" for short; what happens during such a program 
execution is called "a sequential process" . 

There is a commonly accepted technique of writing algorithms without 
the need of pictures such as we have used, viz. ALGOL 60 ("ALGOL" being 
short for Algorithmic Language). For a detailed discussion of ALGOL 60 I 
must refer the reader to the existing literature. We shall use it in future, 
whenever convenient for our purposes. 

For the sake of illustration we shall describe the algorithm of Fig. 7 (but 
for n instead of 4) by a sequence of ALGOL statements: 



74 EDSGER W. DIJKSTRA 

i:= 1; j:= 1; 
back: if j <> n then 

begin j:= j + 1; 

end 

if a[i] < a[j] then i:= j; 
goto back; 

The first two statements: i : = 1; j: = 1 are-one hopes-self-
explanatory. Then comes back:, a so-called label, used to identify this 
place in the program. Then comes if j <> n then, a so-called conditional 
dause. If the condition expressed by it is satisfied the following statement 
will be performed, otherwise it will be skipped. (Another example of it 
can be found two lines lower.) When the extent of the program which may 
have to be skipped presents itself primarily as a sequence of more than one 
statement, then one puts the so-called statement brackets begin and end 
around this sequence, thereby making it into a single statement as far as 
its surroundings are concerned. (This is entirely analogous to the effect of 
parentheses in algebraic formulae, such as a * eb + c) where the parenthe­
sis pair indicates that the whole expression contained within it is to be taken 
as factor.) The last statement goto back means that the process should be 
continued at the point thus labelled; it does exactly the same thing for us 
as the upward-pointing line of Fig. 7. 

2 LOOSELY CONNECTED PROCESSES 

The subject matter of this chapter is the co-operation between loosely con­
nected sequential processes, and this section will be devoted to a thorough 
discussion of a simple, but representative problem, in order to give the reader 
so me feeling for the problems in this area. 

In the previous section we have described the nature of a single sequential 
process, performing its sequence of actions autonomously, Le. independent 
of its surroundings as so on as it has been started. 

When two or more of such processes have to co-operate with each other 
they must be connected, i.e. they must be able to communicate with each 
other in order to exchange information. As we shall see below, the properties 
of these means of intercommunication playavital role. 

Furthermore, we have stipulated that the processes should be connected 
loosely; by this we me an that apart from the (rare) moments of explicit 
intercommunication, the individual processes themselves are to be regarded 
as completely independent of each other. In particular, we disallow any 
assumption about the relative speeds of the different processes. (Such an 
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assumption-say, "processes geared to the same clock"-could be regarded 
as implicit intercommunication.) This independence of speed ratios is in 
strict accordance with our appreciation of the single sequential process: its 
only essential feature is that its elementary steps are performed in sequence 
If we prefer to observe the performance with a chronometer in our hand 
we may do so, but the process itself remains remarkably unaffected by this 
observation. 

The consistent refusal to make any assumptions about the speed ratios 
will at first sight appear to the reader as a mean trick to make things more 
difficult than they already are. I feel, however, fully justified in my refusal. 
First, we may have to cope with situations in which, indeed, very little is 
known about the speeds. Far instance, part of the system may be a manu­
ally operated input station, another part of the system might be such that 
it can be stopped externally for any period of time, thus reducing its speed 
temporarily to zero. Secondly-and this is much more important-when we 
think that we can rely upon certain speed ratios we shall discover that we 
have been "penny wise and pound foolish". It is true that certain mecha­
nisms can be made simpler under the assumption of speed-ratio restrictions. 
The verification, however, that such an assumption is always justified is, 
in general, extremely tricky and the task to make, in a reliable manner, a 
well-behaved structure out of many interlinked components is seriously ag­
gravated when such "analogue interferences" have to be taken into account 
as weIl. (For one thing: it will make the proper working a rather unstable 
equilibrium, sensitive to any change in the different speeds, as may easily 
arise by replacement of a component by another-say, replacement of a line 
printer by a faster model-or reprogramming of a certain portion.) 

2.1 A Simple Example 

In considering two sequential processes, process 1 and process 2, they 
can for our purposes be regarded as cyclic. In each cycle a so-called "critical 
section" occurs, critical in the sense that at any moment at most one of the 
two processes is allowed to be engaged in its critical section. In order to 
effectuate this mutual exclusion, the two processes have access to a number 
of common variables. We postulate that inspecting the present value of such 
a common variable and assigning a new value to such a common variable 
are to be regarded as indivisible, non-interfering actions, Le. when the two 
processes assign a new value to the same common variable "simultaneously", 
then the assignments are to be regarded as done the one after the other, the 
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final value of the variable will be one of the two values assigned, but never 
a "mixt ure" of the two. Similarly, when one process inspects the value of a 
common variable "simultaneously" with the assignment to it by the other 
one, then the former process will find either the old or the new value, but 
never a mixture. 

For our purposes ALGOL 60 as it stands is not suited, as ALGOL 60 
has been designed to describe one single sequential process. We therefore 
propose the following extension to enable us to describe parallelism of execu­
tion. When a sequence of statements-separated by semicolons as usual in 
ALGOL 60-is surrounded by the special statement bracket pair parbegin 
and par end this is to be interpreted as parallel execution of the constituent 
statements. The whole construction-let us call it "a parallel compound"­
can be regarded as a statement. Initiation of a parallel compound implies 
simultaneous initiation of all its constituent statements, its execution is com­
pleted after the completion of the execution of all its constituent statements. 
E.g.: 

begin 81; parbegin 82; 83; 84 parend; 85 end 

(in which 81, 82, 83, 84, and 85 are used to indicate statements) means that 
after the completion of 81, the statements 82, 83, and 84 will be executed in 
parallel, and only when they are all finished will the execution of statement 
85 be initiated. 

With the above conventions we can describe our first solution: 

begin integer turn; turn:= 1; 
parbegin 

end 

process 1: begin L1: if turn = 2 then goto L1; 
critical section 1; 
turn:= 2; 
remainder of cycle 1, goto L1 

end; 
process 2: begin L2: if turn = 1 then goto L2; 

critical section 2; 
turn:= 1; 
remainder of cycle 2; goto L2 

end; 
par end 

(Note for the inexperienced ALGOL 60 reader. After begin in the first 
line we find the so-called declaration integer turn, thereby sticking to the 
rule of ALGOL 60 that program text is not allowed to refer to variables 
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without having introduced them with the aid of a declaration. As this dec­
laration occurs after the begin of the outermost statement bracket pair, it 
means that for the whole duration of the program a variable has been intro­
duced that will only take on integer values and to which the program text 
can refer by means of the name turn.) 

The two processes communicate with each other via the common integer 
turn, the value of which indicates which of the two processes is the first to 
perform (or rather: to finish) its critical section. From the program it is 
clear that after the first assignment the only possible values of the variable 
turn are 1 and 2. The condition for process 2 to enter its critical section is 
that it finds at so me moment turn <> 1, i.e. turn = 2. But the only way 
in wh ich the variable turn can get this value is by the assignment turn: = 2 
in process 1. As process 1 performs this assignment only at the completion 
of its critical section, process 2 can only initiate its critical section after 
the completion of critical section 1. And critical section 1 could indeed 
be initiated, because the initial condition turn = 1 implied turn <> 2, so 
that the potential wait cycle, labelled Ll, was initially inactive. After the 
assignment turn: = 2 the roles of the two processes are interchanged. (N.B. 
It is assumed that the only references to the variable turn are the ones 
explicitly shown in the program. ) 

Our solution, though correct, is, however, unnecessarily restrictive: after 
the completion of critical section 1 the value of the variable turn becomes 
2, and it must be = 1 again, before the next entrance into critical section 1. 

As a result, the only admissible succession of critical seetions is the 
strictly alternating one 1, 2, 1, 2, 1, 2, 1, ... ; in other words, the 
two processes are synchronized In order to stress explicitly that this is not 
the kind of solution we wanted, we impose the furt her condition: "If one of 
the processes is stopped weIl outside its critical section, this is not allowed 
to lead to potential blocking of the other process." This makes our previous 
solution unacceptable, and we have to look for another. 

Our second effort works with two integers cl and c2, where cl, c2 = 

0/1 respectively will indicate that the corresponding process is inside/outside 
its critical section respectively. We may try the following construction: 
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begin integer ci, c2; 
ci: = 1; c2: = 1; 
parbegin 

end 

processi: begin Li: if c2 = 0 then goto Li; 
c1:= 0; 

end; 

critical section 1; 
c1:= 1; 
remainder of cycle 1; goto Li 

process2: begin L2: if ci = 0 then goto L2; 
c2:= 0; 

end 
par end 

critical section 2; 
c2:= 1; 
remainder of cycle 2; goto L2 

The first assignments set both c's = 1, in accordance with the fact that 
the processes are started outside their critical sections. During the entire 
execution of critical section 1 the relation cl = 0 holds, and the first li ne 
of process 2 is effectively a wait: "Wait as long as process 1 is in its critical 
section." The trial solution gives indeed some protection against simultane­
ity of critical section execution, but is, alas, too simple, because it is wrong. 
Let first process 1 find that c2 = 1; let process 2 inspect cl immediately af­
terwards, then it will (still) find cl = 1. Both processes, each having found 
that the other is not in its critical section, will conclude that they can enter 
their own critical seetion safely! 

We have been too optimistic, we must playa safer game. Let us invert, 
at the beginning of the parallel processes, the inspection of the c of the other 
and the setting of the own c. We then get the construction: 

begin integer ci, c2; 
c1:= 1; c2:= 1; 
parbegin 
process 1: begin Al: cl:= 0; 

end; 

Li: if c2 = 0 then goto Li; 
critical section 1; 
ci:= 1; 
remainder of cycle 1; goto Ai 

process 2: begin A2: c2:= 0; 

end 

L2: if ci = 0 then goto L2; 
critical section 2; 
c2:= 1; 
remainder of cycle 2; goto A2 
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parend 
end 

It is worthwhile to verify that this solution is at least completely safe. 
Let us focus our attention on the moment that process 1 finds c2 = 1 

and therefore decides to enter its critical section. At this moment we can 
conclude: 

(1) that the relation cl = 0 already holds and will continue to hold until 
process 1 has completed the execution of its critical section; 

(2) that, since c2 = 1 holds, process 2 is weIl outside its critical section, 
which it cannot enter while cl = 0 holds, i.e. while process 1 is still 
engaged in its critical section. 

Thus the mutual exclusion is indeed guaranteed. 
But this solution, alas, must also be rejected: in its safety measures it 

has been too drastic, for it contains the danger of definite mutual blocking. 
When after the assignment cl: = 0 but yet before the inspection of c2 (both 
by process 1) process 2 performs the assignment c2: = 0, then both processes 
have arrived at label L1 or L2 respectively and both relations cl = 0 and 
c2 = 0 hold, with the result that both processes will wait for each other to 
eternity. Therefore this solution, too, must be rejected. 

It was aIl right to set one's own c before inspecting the c of the other, 
but it was wrong to stick to one's own c-setting and just to wait. This is 
(somewhat) remedied in the following construction: 

begin integer cl, c2; 
cl:= 1; c2: = 1; 
parbegin 
process 1: begin Ll: cl:= 0; 

end 

end; 

if c2 = 0 then 
begin cl:= 1; goto Ll end; 

critical section 1; 
ci:= 1; 
remainder of cycle 1; goto Ll 

process 2: begin L2: c2:= 0; 

end 
par end 

if cl = 0 then 
begin c2:= 1; goto L2 end; 

critical section 2; 
c2:= 1; 
remainder of cycle 2; goto L2 



80 EDSGER W. DIJKSTRA 

This construction is as safe as the previous one, and when the assignments 
ci: = 0 and c2: = 0 are performed "simultaneously" it will not necessarily 
lead to mutual blocking ad infinitum, because both processes will reset their 
own c back to 1 before restarting the entry rites, thereby enabling the other 
process to catch the opportunity. But our principles force us to reject this 
solution also, for the refusal to make any assumptions about the speed ratio 
implies that we have to cater for all speeds, and the last solution admits 
the speeds to be so carefully adjusted that the processes inspect the other's 
c only in those periods of time that its value is = O. To make clear that 
we reject such solutions that only work with some luck, we state our next 
requirement: "If the two processes are ab out to enter their critical sections, 
it must be impossible to devise for them such finite speeds, that the decision 
which one of the two is the first to enter its critical section is postponed to 
eternity." 

In passing we note that the solution just rejected is quite acceptable in 
everyday life, e.g. when two people are talking over the telephone and they 
are suddenly disconnected, as a rule both try to re-establish the connection. 
They both dial and if they get the signal "Number Engaged" they put down 
the receiver and, if not already caIled, they try "some" seconds later. Of 
course, this may coincide with the next effort of the other party, but as a 
rule the connection is re-established successfully after very few trials. In 
our mechanical circumstances, however, we cannot accept this pattern of 
behaviour: our parties might very weIl be identical! 

Quite a collection of trial solutions have been shown to be incorrect, and 
at some moment people that had played with the problem started to doubt 
whether it could be solved at all. To the Dutch mathematician Th. J. Dekker 
the credit is due for the first correct solution. It is, in fact, mixture of our 
previous efforts: it uses the "safe sluice" of our last constructions, together 
with the integer turn of the first one, but only to resolve the indeterminacy 
when neither of the two immediately succeeds. The initial value of turn 
could have been 2 as weIl. 
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begin integer c1, c2, turn; 
c1:= 1; c2:= 1; turn:= 1; 
parbegin 

end 

process 1: begin A1: c1:= 0; 

process 2: 

par end 

L1: if c2 = 0 then 

end; 
beg in A2: 

L2: 

end 

begin if turn 1 then goto L1; 
c1:= 1; 

B1: if turn 2 then goto B1; 
goto A1 

end; 
critical section l' , 
turn:= 2' , c1 := l' , 
remainder of cycle l' , goto A1 

c2:= O· , 
if c1 = o then 

begin if turn 2 then goto L2; 
c2:= 1 ; 

B2: if turn 1 then goto B2; 
goto A2 

end; 
critical section 2; 
turn:= l' , c2:= l' , 
remainder of cycle 2' , goto A2 

81 

We shall now prove the correctness of this solution. Our first observation 
is that each process only oper at es on its own c. As a result, process 1 inspects 
c2 only while ci = 0, it will only enter its critical section provided it finds 
c2 = 1; for process 2 the analogous observation can be made. 

In short, we recognize the safe sluice of our last constructions, and the 
solution is therefore safe in the sense that the two processes can never be in 
their critical sections simultaneously. The second part of the proof has to 
show that in case of doubt the decision which of the two will be the first to 
enter cannot be postponed until eternity. Now we should pay some attention 
to the integer turn: we note that assignment to this variable occurs only 
at the end or, if you wish, as part of critical sections, and therefore we can 
regard the variable turn as a constant during the decision process. Suppose 
that turn = 1. Then process 1 can only cycle via L1, that is with ci = 0 
and only as long as it finds c2 = O. But if turn = 1, then process 2 can only 
cycle via B2, but this state implies c2 = 1, so that process 1 cannot cycle 
and is bound to enter its critical section. For turn 2 the mirrored reasoning 
applies. As third and final part of the proof we observe that stopping, say, 
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process 1 in "remainder of cycle I" will not restrict process 2: the relation cl 
= 1 will then hold, and process 2 can merrily enter its critical section, quite 
independently of the current value of turn. And this completes the proof of 
the correctness of Dekker's solution. Those readers that fail to appreciate 
its ingenuity are kindly asked to realize that for them I have prepared the 
ground by means of a carefully selected set of rejected constructions. 

2.2 The Generalized Mutual Exclusion Problem 

The problem of Section 2.1 has a natural generalization: given N cyclic 
processes, each with a critical section, can we construct them in such a way 
that at any moment at most one of them is engaged in its critical section? 
We assume the same means of intercommunication to be available, i.e. a set 
of commonly accessible variables. Furthermore, our solution has to satisfy 
the same requirements, viz. that stopping one process weIl outside its critical 
section may in no way restrict the freedom of the others, and that if more 
than one process is about to enter its critical section it must be impossible 
to devise for them such finite speeds that the decision which one of them is 
to be first to enter its critical section can be postponed to eternity. 

In order to be able to describe the solution in ALGOL 60, we need the 
concept of the array. In Section 2.1 we had to introduce a c for each of the 
two processes and we did so by declaring 

integer cl, c2 

Instead of enumerating the quantities, we can declare-under the assumption 
that N has a well-defined positive value-

integer array c[l : N] 

which means, that at one stroke we have introduced N integers, accessible 
under the names 

c[subscript] 

where subscript might take the values 1, 2, ... N. 
The next ALGOL 60 feature we introduce is the so-called "for clause", 

which we shall use in the following form: 

for j:= 1 step 1 until N do statement S 

and wh ich enables us to express repetition of statement S quite conve­
niently. In principle, the for clause implies that statement S will be exe­
cuted N times, with j in succession = 1, = 2, ... = N. (We have added "in 
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prineiple", for via a goto statement as eonstituent part of statement Sand 
leading out of it, the repetition ean be ended earlier.) 

Finally, we need the logical operator that in this monograph is denoted 
by and. We have met the eonditional clause in the form: 

if condition then statement 

We shall now meet: 

if condition 1 and condition 2 then statement 

meaning that statement S will be exeeuted only if condi tion 1 and 
condition 2 are both satisfied. (Onee more we should like to stress that 
this monograph is not an ALGOL 60 programming manual: the above~ 
loose!~explanations of parts of ALGOL 60 have been introdueed only to 
make this monograph as self-contained as possible.) 

With the notational aids just sketched we can describe our solution for 
fixed N as folIows. 

The overall structure is: 

begin integer array b, c[O : N]; 
integer turn; 

end 

for turn:= 0 step 1 until N do 
begin b[turn]:= 1; c[turn)':= 1 end; 

turn:= 0; 
parbegin 
process 1: begin end; 
process 2: begin end; 

process N: begin ... end; 
par end 

The first declaration intro duces two arrays with N + 1 elements each, 
the next declaration introduces a single integer turn. In the following for 
clause this variable turn is used to take on the successive values 1, 2, 3, ... 
N, so that the two arrays are initialized with all elements 1. Then turn is 
set = 0 (Le. none of the processes, numbered from 1 onwards,· is privileged). 
After this the N processes are started simultaneously. 

The N processes are all similar. The structure of the i th process is as 
follows (1 :::; i :::; N): 
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process i: begin integer j; 
Ai: b[i]:= 0; 
Li: if turn <> i then 

begin c[i]: = 1; 

end 

if b[turn] = 1 then turn:= i; 
goto Li 

end; 
c[i]:= 0; 
for j:= 1 step 1 until N do 

begin if j <> i and c[j] = 0 then goto Li 
end; 

critical section i; 
turn:= 0; c[i]:= 1; b[i]:= 1; 
remainder of cycle i; goto Ai 

Remark. The description of the N individual processes starts with a 
declaration integer j. According to the rules of ALGOL 60 this means 
that each process introduces its own, private, integer j (a so-called "local 
quantity" ). 

We leave the proof to the reader. It has to showagain: 

(1) that at any moment at most one of the processes is engaged in its 
critical section; 

(2) that the decision which of the processes is the first to enter its critical 
section cannot be postponed to eternity; 

(3) that stopping a process in its "remainder of cycle" has no effect upon 
the others. 

Of these parts, the second one is the more difficult one. (Hint: As so on 
as one of the processes has performed the assignment turn: = i, no new 
processes can decide to assign their number to turn before a critical section 
has been completed. Mind that two processes can decide "simultaneously" 
to assign their i-value to turn!) 

(Remark that can be skipped at first reading) 

The program just described inspects the value of b [turn] where both 
the array band the integer turn are in common store. We have stated that 
inspecting a single variable is an indivisible action and inspecting b [turn] 
can therefore only mean: inspect the value of turn, and if this happens to 
be = 5, weH, then inspect b [5]. Or, in more explicit ALGOL: 
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process i: begin integer j, k; 

k:= turn; if b[k] = 1 then ... 

implying that by the time that b [k] is inspected, turn may already have a 
value different from the current one of k. 

Without the stated limitations in communicating with the common store, 
a possible interpretation of "the value of b [turn]" would have been "the 
value of the element of the array b as indicated by the current value of 
turn". In so-called uniprogramming i.e. a single sequential process oper­
ating on quantities local to it the two interpretations are equivalent. In 
multiprogramming, where other active processes may access and change the 
same common information, the two interpretations make a great difference! 
In particular, for the reader with extensive experience in uniprogramming 
this remark has been inserted as an indication of the subtleties of the games 
we are playing. 

2.3 A Linguistic Interlude 

In Section 2.2 we described the co-operation of N processes; in the overall 
structure we used a vertical sequence of dots between the brackets parbegin 
and parend. This is not hing but a loose formalism, suggesting to the human 
reader how to compose in our notation a set of N co-operating sequential 
processes, under the condition that the value of N has been fixed beforehand. 
It is a suggestion for the construction of 3, 4, or 5071 co-operating processes, 
it does not give a formal description of N such co-operating processes in 
which N occurs as a parameter, i.e. it is not a description valid for any value 
of N. 

It is the purpose of this section to show that the concept of the so-called 
"recursive procedure" of ALGOL 60 caters for this. This concept will be 
sketched briefty. 

We have seen how after begin declarations could occur in order to intro­
duce and to name either single variables (by enumeration of their names) or 
whole ordered sets of variables (viz. in the array declaration). With the so­
called "procedure declaration" we can define and name a certain action; such 
an action may then be invoked by using its name as astatement, thereby 
supplying the parameters to which the action should be applied. 

As an illustration we consider the following ALGOL 60 program: 
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begin integer a, b; 
procedure square(u, v); integer u, v; 

begin u:= v * v end; 
L: square(a, 3); square(b, a); square(a, b) 

end 

In the first line the integers named a and bare declared. The next li ne 
declares the procedure named square" operating on two parameters, wh ich 
are specified to be single integers (and not, say, complete arrays). This li ne is 
called "the procedure heading". The immediately following statement-the 
so-called "procedure body" -describes by definition the action named: in 
the third line-in which the bracket pair begin ... end is superfiuous­
it is told that the action of square is to assign to the first parameter the 
square of the value of the second one. Then, labelled L, comes the first 
statement. Before its execution the values of both a and bare undefined, 
after its execution a = 9. After the execution of the next statement the 
value of b is therefore = 81, after the execution of the last statement the 
value of a is = 6561, the value of b is still = 8I. 

In the previous example the procedure mechanism was essentially intro­
duced as a means for abbreviation, a means for avoiding to have to write 
down the "body" three times, although we could have done so quite easily: 

begin integer a, b; 
L: a:= 3 * 3; b:= a * a; a:= b * b 

end 

When the body is much more complicated than in this example a program 
along the latter lines tends to be much lengthier indeed. 

This technique of "substituting for the call the appropriate version of the 
body" is, however, no longer possible as so on as the procedure is a so-called 
recursive one, i.e. may call itself. It is then that the procedure really extends 
the expressive power of the programming language. 

A simple example might illustrate the recursive procedure. The greatest 
common divisor of two given natural numbers is: 

(1) if they have the same value equal to this value; 

(2) if they have different values equal to the greatest common divisor of 
the sm aller of the two and their difference. 

In other words, if the greatest common divisor is not trivial (first case) the 
problem is replaced by finding the greatest common divisor of two numbers 
with a sm aller maximum value. 
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(In the following program the insertion value v, w; can be skipped by 
the reader as being irrelevant for our present purposes; it indicates that for 
the parameters listed the body is only interested in the numerical value of 
the actual parameter, as supplied by the call.) 

begin integer a; 

end 

procedure GCD(u, v, w); value v, w; integer u, v, w; 
if v = w then u:= v 

else 
begin if v < w then GCD(u, v, w - v) 

else GCD(u, v - w, w) 
end; 

GCD(a, 12, 33) 

(In this example the more elaborate form of the conditional statement is 
used, viz.: 

if condition then statement 1 else statement 2, 

meaning that if condi tion is satisfied, statement 1 will be executed 
and statement 2 will be skipped, and that if condi t ion is not satisfied 
statement 1 will be skipped and statement 2 will be executed.) 

The reader is invited to follow the pattern of calls of GCD and to see 
how the variable a becomes = 3; he is also invited to convince himself of the 
fact that the (dynamic) pattern of calls depends on the parameters supplied 
and that the substitution technique-replace call by body-as applied in the 
previous example would lead to difficulties here. 

We shall now write a program to perform a matrix * vector multiplication 
in which: 

(1) the order in which the M scalar * scalar products are to be calculated 
is indeed prescribed (the rows of the matrix will be scanned from left 
to right); 

(2) the N rows of the matrix can be processed in parallel. 

(Where we do not wish to impose the restriction of purely integer values, 
we have used the declarator real instead of the declarator integer; furt her­
more, we have introduced an array with two subscripts in what we hope is 
an obvious manner.) 

It is assumed that, upon entry of this block of program, the integers M 
and N have positive values. 
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begin real array matrix[1 : N, 1 : M]; 
real array vector[1 : M]; 

end 

real array product[1 : N]; 
procedure rowmult(k); value k; integer k; 

begin if k > 0 then 

end 

parbegin 
begin real s; integer j; 

s:= 0; 

end; 

for j:= 1 step 1 until M do 
s:= s + matrix[k, j] * vectorU]; 

product[k]:= s 

rowmult (k - 1) 
par end 

rowmult(N); 

3 THE MUTUAL EXCLUSION PROBLEM REVISITED 

We return to the problem of mutual exclusion in time of critical sections, as 
introduced in Section 2.1 and generalized in Section 2.2. This section deals 
with a more efficient technique for solving this problem; only after having 
done so we have adequate means for the description of examples, with which 
I hope to convince the reader of the rather fundamental importance of the 
mutual exclusion problem, in other words, I must appeal to the patience 
of the wondering reader (suffering, as I am, from the sequential nature of 
human communication!). 

3.1 The Need for a More Realistic Solution 

The solution given in Section 2.2 is interesting in as far as it shows that the 
restricted means of communication provided are, from a theoretical point of 
view, sufficient to solve the problem. From other points of view, which are 
just as dear to my heart, it is hopelessly inadequate. 

To start with, it gives rise to a rather cumbersome description of the 
individual processes, in which it is anything but transparent that the overall 
behaviour is in accordance with the (conceptually so simple) requirement of 
the mutual exclusion. In other words, in so me way or another this solution 
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is a tremendous mystification. Let us try to isolate in which respect this 
solution represents indeed a mystification, for this investigation could give 
the clue to improvement. 

Let us consider the period of time during which one of the processes is in 
its critical section. We all know, that during that period no other processes 
can enter their critical section and that, if they want to do so, they have 
to wait until the current critical section execution has been completed. For 
the remainder of that period hardly any activity is required from them: they 
have to wait anyhow, and as far as we are concerned "they could go to sleep" . 

Our solution does not reflect this at all: we keep the processes busy 
setting and inspecting common variables all the time, as if no price has 
to be paid for this activity. But if our implementation~i.e. the ways in 
which or the means by which these processes are carried out~is such that 
"sleeping" is a less-expensive activity than this busy way of waiting, then 
we are fully justified (now also from an economic point of view) to call our 
solution misleading. 

In present-day computers there are at least two ways in which this active 
way of waiting can be very expensive. Let me sketch them briefly. These 
computers have two distinct parts, usually called "the processor" and "the 
store". The processor is the active part, in wh ich the arithmetic and logical 
operations are performed, it is "active and small"; in the store, which is 
"passive and large" , there resides at any moment the information which is not 
being processed at that very moment but only kept there for future reference. 
In the total computational process information is transported from store to 
processor as soon as it has to play an active role, the information in store 
can be changed by transportation in the inverse direction. 

Such a computer is a very flexible tool for the implementation of sequen­
tial processes. Even a computer with only one single processor can be used 
to implement a number of concurrent sequential processes. From a macro­
scopic point of view it will seem as though all these processes are being 
carried out simultaneously, a closer inspection will reveal, however, that at 
any "microscopic" moment the processor serves only one single program at 
a time, and the overall picture only results because at wen-chosen moments 
the processor will switch from one process to another. In such an implemen­
tation the different processes share the same processor, and activity (i.e. a 
non-zero speed) of any single process will imply zero speed for the others; 
it is then undesirable that precious processor time is consumed by processes 
wh ich cannot go on anyhow. 
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Apart from processor sharing, the store sharing could make the unneces­
sary activity of a waiting process undesirable. Let us assurne that inspection 
of or assignment to a "common variable" implies the access to an informa­
tion unit a so-called "word" in a ferrite-core store. Access to a word in a 
core store takes a non-zero time, and for technical reasons only one word can 
be accessed at a time. When more than one active process may wish access 
to words of the same core store the usual arrangement is that in the case of 
imminent coincidence the storage access requests from the different active 
processes are granted according to a built-in priority rule: the lower prior­
ity process is automatically held up. (The literat ure refers to this situation 
when it describes "a communication channel stealing a memory cycle from 
the processor" .) The result is that frequent inspection of common variables 
may slow down any processes which share the same core storage for their 
local quantities. 

3.2 The Synchronizing Primitices 

The origin of the complications, which lead to such intricate solutions as 
the one described in Section 2.2, is the fact that the indivisible accesses to 
common variables are always "one-way information traffic": an individual 
process can either assign a new value or inspect a current value. Such an 
inspection itself, however, leaves no trace for the other processes, and the 
consequence is that, when a process wants to react to the current value of a 
common variable, that variable's value may have been changed by the other 
processes between the moment of its inspection and the following effectuation 
of the reaction to it. In other words: the previous set of communication 
facilities must be regarded as inadequate for the problem at hand, and we 
should look for more appropriate alternatives. 

Such an alternative is provided by introducing: 

(a) among the common variables special-purpose integers, wh ich we shall 
call "semaphores"; 

(b) among the repertoire of actions, from which the individual processes 
have to be constructed, two new primitives, which we call the "P­
operation" and the "V-operation" respectively. 

The latter operations always operate on a semaphore and represent the only 
way in which the concurrent processes may access the semaphores. 
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The semaphores are essentially non-negative integers; when used only to 
solve the mutual exclusion problem the range of their values will even be 
restricted to 0 and 1. It is the merit of the Dutch physicist and computer 
designer C. S. Scholten to have shown a considerable field of applicability for 
semaphores that can also take on larger values. When there is a need for dis­
tinction we shall talk about "binary semaphores" and "general semaphores" 
respectively. The definition of the P- and V-operation that I shall give now 
holds regardless of this distinction. 

Definition. The V-operation is an operation with one argument, which 
must be the identification of a semaphore. (If Si and S2 denote semaphores 
we can write V(S1) and V(S2).) Its function is to increase the value of its 
argument semaphore by 1; this increase is to be regarded as an indivisible 
operation. 

Note that this last sentence makes V(Sl) inequivalent to Sl:= Si + 1. 
For suppose that two processes A and B both contain the statement V(Sl) 
and that both should like to perform this statement at a moment when, 
say, Si = 6. Excluding interference with Si from other processes, A and B 
will perform their V-operations in an unspecified order-at least: outside our 
control-and after the completion of the second V-operation the final value of 
Si will be = 8. If Si had not been a semaphore but just an ordinary common 
integer, and if processes A and B had contained the statement Si: = Si + 

instead of the V-operation on Si, then the following could happen. Process A 
evaluates Si + 1 and computes 7; before effecting, however, the assignment 
of this new value, process B has reached the same stage and also evaluates 
Si + 1, computing 7. Thereafter both processes assign the value 7 to Si, 
and one of the desired incrementations has been lost. The requirement of 
the "indivisible operation" is meant to exclude this occurrence when the 
V-operation is used. 

Definition. The P-operation is an operation with one argument, which 
must be the identification of a semaphore. (If Si and S2 denote semaphores 
we can write P(S1) and P(S2).) Its function is to decrease the value of 
its argument semaphore by 1 as so on as the resulting value would be non­
negative. The completion of the P-operation-i.e. the decision that this 
is the appropriate moment to effectuate the decrease and the subsequent 
decrease itself-is to be regarded as an indivisible operation. 

It is the P-operation which represents the potential delay, viz. when a 
process initiates a P-operation on a semaphore, that at that moment is = 0, 
in that case this P-operation cannot be completed until another process has 
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performed a V-operation on the same semaphore and has given it the value 
1. At that moment more than one process may have initiated a P-operation 
on that very same semaphore. The clause that completion of P-operation 
is an indivisible action means that when the semaphore has got the value 
1 only one of the initiated P-operations on it is allowed to be completed. 
Which one, again, is left unspecified, i.e. at least outside our control. 

At this stage we shall take the implementability of the P- and V­
operations for granted. 

3.3 The Synchronizing Primitives Applied to the Mutual Exclusion 
Problem 

The construction of the N processes, each with a critical section, the exe­
cutions of which must exclude one another in time (see Section 2.2) is now 
trivial. It can be done with the aid of a single binary semaphore, say free. 
The value of free equals the number of processes allowed to enter their 
critical section now, or; 

free = 1 means: none of the processes is engaged in its critical section 
free = 0 means: one of the processes is engaged in its critical section. 

The overall structure of the solution becomes: 

begin integer free; free:= 1; 
parbegin 
process 1: begin end; 
process 2: begin ... end; 

process N: begin ... end; 
par end 

end 

with the i th process of the form: 

process i: begin 
Li: P(free); critical section i; V(free); 

remainder of cycle i; goto Li 
end 

4 THE GENERAL SEMAPHORE 

4.1 Typical Uses of the General Semaphore 

We consider two processes, which are called the "producer" and the "con­
sumer" respectively. The producer is a cyclic process, and each time it goes 
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through its cycle it produces a certain portion of information that has to be 
processed by the consumer. The consumer is also a cyclic process, and each 
time it goes through its cycle it can process the next portion of information, 
as produced by the producer. A simple example is given by a computing 
process, producing as "portions of information" punched-card images to be 
punched out by a card punch, which plays the role of the consumer. 

The producer-consumer relation implies a one-way communication chan­
nel between the two processes, along which the portions of information can 
be transmitted. We assurne the two processes to be connected for this pur­
pose via a buffer with unbounded capacity, Le. the portions produced need 
not be consumed immediately, but they may queue in the buffer. The fact 
that no upper bound has been given for the capacity of the buffer makes this 
example slightly unrealistic, but this should not trouble us too much now. 

(The reason for the name "buffer" becomes understandable when we in­
vestigate the consequences of its absence, viz. when the producer can only 
offer its next portion after the previous portion has been actually consumed. 
In the computer-card punch example, we mayassume that the card punch 
can punch cards at a constant speed, say 4 cards per second. Let us assurne 
that this output speed is weIl matched with the production speed, i.e. that 
the computer can perform the card image production process with the same 
average speed. If the connection between computing process and card punch 
is unbuffered, then the couple will only work continuously at full speed when 
the card-production process pro duces a card every quarter of a second. If, 
however, the nature of the computing process is such that after one or two 
seconds vigorous computing it produces 4 to 8 card images in a single burst, 
then unbuffered connection will result in aperiod of time during which the 
punch will be idle (for lack of information), followed by aperiod in which 
the computing process has to be idle, because it cannot get rid of the next 
card image before the preceding one has been actually punched. Such irreg­
ularities in production speed, however, can be smoothed out by a buffer of 
sufficient size and that is why such a queuing device is called "a buffer".) 

In this section we shall not deal with the various techniques of implement­
ing a buffer. It must be able to contain successive portions of information, 
it must therefore be a suitable storage medium, accessible to both processes. 
Furthermore, it must not only contain the portions themselves, it must also 
represent their linear ordering. (In the literat ure two weIl-known techniques 
are known as "cyclic buffering" and "chaining" respectively.) When the pro­
ducer has prepared its next portion to be added to the buffer we shall denote 
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this action simply by add portion to buffer, without going into furt her 
details; similarly, the take portion from buffer describes the consumer's 
behaviour, where the oldest portion still in the buffer is understood. (An­
other name of a buffer is a "First-In-First-Out-Memory".) 

Omitting in the outermost block all declarations for the buffer, we can 
now construct the two processes with the aid of a single general semaphore, 
called number of queuing portions. 

begin integer number of queuing portions; 
number of queuing portions:= 0; 
parbegin 

end 

producer: begin 
again 1: produce the next portion; 

add portion to buffer; 
V(number of queuing portions); 
goto again 1 

end; 
consumer: begin 

parend 

again 2: P(number of queuing portions); 
take portion from buffer; 
process portion taken; 
goto again 2 

end 

The first line of the producer represents the co ding of the process wh ich 
forms the next portion of information; it has a meaning quite independent of 
the buffer for which this portion is intended; when it has been executed the 
next portion has been successfully completed, the completion of its construc­
tion can no longer be dependent on other (unmentioned) conditions. The 
second li ne of co ding represents the actions which define the finished portion 
as the next one in the buffer; after its execution the new portion has been 
added completely to the buffer, apart from the fact that the consumer does 
not know it yet. The V-operation finally confirms its presence, i.e. signals 
it to the consumer. Note that it is absolutely essential that the V-operation 
is preceded by the complete addition of the portion. About the structure of 
the consumer analogous remarks can be made. 

Particularly in the case of buffer implementation by means of chaining the 
operations add portion to buffer and take portion from buffer­
operating as they are on the same clerical status information of the buffer­
may interfere with each other in a most undesirable fashion, unless we see to 
it, that they exclude each other in time. This can be catered for by a binary 
semaphore, called buffer manipulation, the values of which mean: 
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= 0: either adding to or taking from the buffer is taking place 
= 1: neither adding to nor taking from the buffer is taking place. 

The program is as follows: 

begin integer number of queuing portions, 

end 

buffer manipulation; 
number of queuing portions:= 0; 
buffer manipulation:= 1; 
parbegin 
producer: begin 

again 1: produce next portion; 

end; 
consumer: begin 

P(buffer manipulation); 
add portion to buffer; 
V(buffer manipulation); 
V(number of queuing portions); 
goto again 1 

again 2: P(number of queuing portions); 
P(buffer manipulation); 

end 
par end 

take portion from buffer; 
V(buffer manipulation); 
process portion taken; 
goto again 2 

The reader is requested to convince himself that: 

(a) the order of the two V-operations in the producer is immaterial; 

(b) the order of the two P-operations in the consumer is essential. 

95 

Remark. The presence of the binary semaphore buffer manipulation 
has another consequence. We have given the program for one producer 
and one consumer, but now the extension to more producers and/or more 
consumers is straightforward: the same semaphore sees to it that two or more 
additions of new portions will never get mixed up, and the same applies to 
two or more takings of a portion by different consumers. The reader is 
requested to verify that the order of the two V-operations in the producer 
is still immaterial. 

4.2 The Superfluity of the General Semaphore 

In this section we shall show the superfluity of the general semaphore and we 
shall do so by rewriting the last program of the previous section, using binary 
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semaphores only. (Intentionally I have written "we shall show" and not "we 
shall prove". We do not have at our disposal the mathematical apparatus 
that would be needed to give such a proof, and I do not feel inclined to 
develop such mathematical apparatus now. Nevertheless, I hope that my 
show will be convincing!) We shall first give a solution and postpone the 
discussion till afterwards. 

begin integer numqueupor, buffer manipulation, 

end 

consumer delay; 
numqueupor:= 0; buffer manipulation:= 1; 
consumer delay:= 0; 
parbegin 
producer: begin 

again 1: produce next portion; 
P(buffer manipulation); 

end; 

add portion to buffer; 
numqueupor:= numqueupor + 1; 
if numqueupor = 1 then 

V(consumer delay); 
V(buffer manipulation); 
goto again 1 

consumer: begin integer oldnumqueupor; 
wait: P(consumer delay); 

par end 

go on: P(buffer manipulation); 

end 

take portion from buffer; 
numqueupor:= numqueupor - 1; 
oldnumqueupor:= numqueupor; 
V(buffer manipulation); 
process portion taken; 
if oldnumqueupor = 0 then goto wait 

else goto go on 

Relevant in the dynamic behaviour of this program are the periods of 
time during which the buffer is empty. (As long as the buffer is not empty, 
the consumer can go on happily at its maximum speed.) Such aperiod can 
only be initiated by the consumer (by taking the last portion present from 
the buffer), it can only be terminated by the producer (by adding a por­
tion to an empty buffer). These two events can be detected unambiguously, 
thanks to the binary semaphore buffer manipulation, that guarantees the 
mutual exclusion necessary for this detection. Each such period is accom­
panied by a P- and a V-operation on the new binary semaphore consumer 
delay. Finally, we draw attention to the local variable oldnumqueupor of the 
consumer: its value is set during the taking of the portion and fixes whether 
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it was the last portion then present. (The more expert ALGOL readers will 
be aware that we only need to store a single bit of information, viz. whether 
the decrease of numqueupor resulted in a value = 0; we could have used a 
local variable of type Boolean for this purpose. ) When the consumer decides 
to go to wait, i.e. finds oldnumqueupor = 0, at that moment numqueupor 
itself could already be greater than zero again! 

In the previous program the relevant occurrence was the period with 
empty buffer. One can remark that emptiness is, in itself, rather irrelevant: it 
only matters, when the consumer should like to take a next portion, which is 
still absent. We shall program this version as weIl. In its dynamic behaviour 
we may expect less P- and V-operations on consumer delay: they will not 
occur when the buffer has been empty for a short while, but is filled again 
in time to make delay of the consumer unnecessary. Again we shall first give 
the program and then its discussion. 

begin integer numqueupor, buffer manipulation, 
consumer delay; 

end 

numqueupor:= 0; buffer manipulation:= 1; 
consumer delay:= 0; 
parbegin 
producer: begin 

again 1: produce next portion; 
P(buffer manipulation); 
add portion to buffer; 
numqueupor:= numqueupor + 1; 
if numqueupor = 0 then 

begin V(buffer manipulation); 
V(consumer delay) end 

else 
V(buffer manipulation); 

goto again 1 
end; 

consumer: begin 

par end 

again 2: P(buffer manipulation); 
numqueupor:= numqueupor - 1; 
if numqueupor = -1 then 

end 

begin V(buffer manipulation); 
P(consumer delay); 
P(buffer manipulation) end; 

take portion from buffer; 
V(buffer manipulation), 
process portion taken; 
goto again 2 
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Again, the semaphore buffer manipulation caters for the mutual 
exclu- sion of critical sections. The last six lines of the producer could have 
been formulated as follows: 

if numqueupor = 0 then V(consumer delay); 
V(buffer manipulation); goto again 1 

In not doing so I have followed a personal taste, VIZ. to avoid P- and 
V- operations within critical sections; a personal taste to wh ich the reader 
should not pay too much attention. 

The range of possible values of numqueupor has been extended with the 
value -1, meaning (outside critical section execution) "the buffer is not only 
empty, but its emptiness has already been detected by the consumer, wh ich 
has decided to wait". This fact can be detected by the producer when, after 
the addition of one, numqueupor = 0 holds. 

Note how, in the case of numqueupor = -1, the critical section of the 
consumer is dynamically broken into two parts: this is most essential, for 
otherwise the producer would never get the opportunity to add the portion 
that is already so much wanted by the consumer. 

(The program just described is known as "The Sleeping Barber". There 
is a barbershop with aseparate waiting room. The waiting room has an entry 
and next to it an exit to the room with the barber's chair, entry and exit 
sharing the same sliding door, which always closes one of them; furthermore, 
the entry is so sm all that only one customer can enter it at a time, thus fixing 
their order of entry. The mutual exclusions are thus guaranteed. 

t I Barber's Chair 

jv-----C+ 
Waiting room 

\,. 

I 
When the barber has finished a haircut he opens the door to the waiting 

room and inspects it. If the waiting room is not empty he invites the next 
customer, otherwise he goes to sleep in one of the chairs in the waiting room. 
The complementary behaviour of the customers is as follows: when they find 
zero or more customers in the waiting room they just wait their turn, when 
they find, however, the Sleeping Barber-numqueupor = -l-they wake hirn 
up.) 

The two programs given present a strong indication that the general 
semaphore is, indeed, superfiuous. Nevertheless, we shall not try to abolish 
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the general semaphore: the one-sided synchronization restrietion expressible 
by it is very common, and comparison of the solutions with and without 
the general semaphore shows convincingly that it should be regarded as an 
adequate tool. 

4.3 The Bounded Buffer 

I shall give a last simple example to illustrate the use of the general 
semaphore. In Seetion 4.1 we have studied a producer and a consumer 
coupled via a buffer with unbounded capacity. This is a typically one-sided 
restriction: the producer can be arbitrarily far ahead of the consumer; on the 
other hand, the consumer can never be ahead of the producer. The relation 
becomes symmetrie when the two are coupled via a buffer of finite size, say 
of N portions. We give the program without discussion; we ask the reader 
to convince himself of the complete symmetry. ("The consumer pro duces 
and the producer consumes empty positions in the buffer.") The value N, 
as weIl as the buffer, is supposed to be defined in the surrounding universe 
into which the following program should be embedded. 

begin integer number of queuing portions, 
number of empty positions, 
buffer manipulation; 

end 

number of queuing portions:= 0; 
number of empty positions:= N; 
buffer manipulation:= 1; 
parbegin 
producer: begin 

again 1: produce next portion; 

end; 
consumer: begin 

P(number of empty positions); 
P(buffer manipulation); 
add portion to buffer; 
V(buffer manipulation); 
V(number of queuing portions); 
goto again 1 

again 2: P(number of queuing portions) ; 
P(buffer manipulation); 

end 
parend 

take portion from buffer; 
V(buffer manipulation); 
V(number of empty positions); 
process portion taken; 
goto again 2 
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5 CO-OPERATION VIA STATUS VARIABLES 

In Sections 4.1 and 4.3 we have illustrated the use of the general semaphore. 
It proved an adequate tool, be it as implement at ion of a rather trivial form 
of interaction. The rules for the consumer are very simple: if there is some­
thing in the buffer, consume it. They are of the same simplicity as the 
behaviour of the wage-earner who spends all his money as soon as he has 
been paid and is broke until the next pay day. 

In other words: when a group of co-operating sequential processes have 
to be constructed and the overall behaviour of these processes combined has 
to satisfy more elaborate requirements~the community, formed by them, 
has, as a whole, to be weIl behaved in some sense~we can only expect to 
be able to achieve this if the individual processes themselves and the ways 
in wh ich they can interact will get more refined. We can no longer expect 
a ready-made solution, such as the general semaphore, to do the job. In 
general, we shall need such fiexibility as can be expressed in a program for 
a general-purpose computer. 

We now have the raw material, we can define the individual processes, 
they can communicate with each other via the common variables, and finally, 
we have the synchronizing primitives. How we can compose from it what we 
might want is, however, by no means obvious. We must now train ourselves 
to use the tools, we must develop a style of programming, a style of "parallel 
programming". Two points should be stressed. 

We shall be faced with a great amount of freedom. Interaction may imply 
decisions bearing upon more than one process, and it is not always obvious 
which of the processes should then take the decisions. If we cannot find 
a guiding principle (e.g. efficiency considerations), then we must have the 
courage to impose some rule for the sake of clarity. 

Secondly, if we are interested in systems that really work we should 
be able to convince ourselves (and anybody else who takes the trouble of 
doubting) of the correctness of our constructions. In uniprogramming one 
is already faced with the task of program verification a task the difficulty of 
which is often underestimated but there one can hope to debug by testing 
of the actual program. In our case the system will often have to work under 
irreproducible circumstances, and we can hardly expect any serious help 
from field tests. The duty of verification should concern us right from the 
start. 

We shall attack a more complicated example in the hope that this will 
give us some of the experience which might be used as guiding principle. 
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5.1 An Example of a Priority Rule 

In Section 4.3 we have used the general semaphore to couple a producer and 
a consumer via a bounded buffer. The solution given there is extendable to 
more producers and/or more consumers; it is applicable when the "portion" 
is at the same time a convenient unit of information, i.e. when we can regard 
the different portions as all being of the same size. 

In the present problem we consider producers that offer portions of dif­
ferent sizes; we assume the size of these portions to be expressed in portions 
units. The consumers, again, will process the successive portions from the 
buffer, and will therefore have to be able to process portions the size of which 
is not given apriori. A maximum portion size will, however, be known. 

The size of the portions is given in information units, we assume also 
that the maximum capacity of the buffer is given in information units: the 
quest ion whether the buffer will be able to accommodate the next portion 
will therefore depend on the size of the portion offered. The requirement 
that "adding a portion to" and "taking a portion from the buffer" are still 
conceivable operations implies that the size of the buffer is not less than the 
maximum portion size. 

We have a bounded buffer, and therefore a producer may have to wait 
before it can offer a portion. With fixed-sizeportions this would only occur 
when the buffer was full to the brim, now it can also happen because free 
space in the buffer, although present, is insucient for the portion concerned. 

Furthermore, when we have more than one producer and one of them is 
waiting, then the other ones may go on and reach the state that they wish to 
offer a portion. Such a portion from a next producer may also be too large, 
or it may be sm aller and it may fit in the available free space of the buffer. 

Somewhat arbitrarily, we impose on our solution the requirement that 
the producer wishing to offer the larger portion gets priority over the pro­
ducer wishing to offer the sm aller portion to the buffer. (When two or more 
producers are offering portions that happen to be of the same size we just 
don't care.) 

When a producer has to wait because the buffer cannot accommodate 
its portion, no other producers can therefore add their portions until furt her 
notice: they cannot do so if the new portion is larger (for then it will not fit 
either) , they are not allowed to if the new portion is smaller, for then they 
have a lower priority and must leave the buffer for the earlier request. 

Suppose a moment at which there is a completely filled buffer and three 
producers, waiting to offer portions of 1, 2, and 3 units respectively. When 
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a consumer now comsumes a five-unit portion the priority rule implies that 
the producers with the 2-unit portion and the 3-unit portion will get the 
opportunity to go on and not the one offering the l-unit portion. It is not 

meant to imply that in that case the 3-unit portion will actually be offered 
before the 2-unit portion! 

We shall now try to introduce so-called "status variables" for the different 
components of the system, with the aid of which we can characterize the state 
of the system at any moment. Let us try. 

For each producer we introduce a variable named desire; this variable 
will denote the number of buffer units needed for the portion it could not add 
to the buffer. As this number is always positive, we can attach to desire = 0 
the meaning that no request from this producer is pending. Furthermore, 
we shall introduce for each producer a private binary producer semaphore. 

For the buffer we introduce the binary semaphore bufman, wh ich takes 
care of the mutual exclusion of buffer manipulations in the widest sense 
(i.e. not only the adding to and taking from the buffer but also inspection 
and modification of the status variables concerned). 

Next we need a mechanism to signal the presence of a next portion to the 
consumers. As soon as a next portion is in the buffer, it can be consumed and 
as we do not care which of the consumers takes it, we can hope that a general 
semaphore number of queuing portions will do the job. (Note that it 
counts portions queuing in the buffer and not number of filled information 
units in the buffer.) 

Vacated buffer space must be signalled back to the producers, but the 
possible consequences of vacating buffer space are more intricate, and we 
cannot expect that a general semaphore will be adequate. Tentatively we 
introduce an integer status variable number of free buffer uni ts. Note 
that this variable counts units, not portions. 

Remark. The value of number of free buffer uni ts will at most be 
equal to the size of the buffer diminished by the total size of the portions 
counted in number of queuing portions, but it may be less! I refer to the 
program given in section 4.3; there the sum 

number of queuing portions + number of empty positions 

is initially (and usually) = N, but it may be = N - 1, because the P­
operation on one of the semaphores always precedes the V-operation on the 
other. (Verify that in the program of section 4.3 the sum can even be = 
N - 2 and that this value could even be lower had we had more produc­
ers and/or consumers.) Here we may expect the same phenomenon: the 
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semaphore number of queuing portions will count the portions'actually 
and completely filled and still unnoticed will count the completely free, un­
allocated units in the buffer. But the units which have been reserved for 
filling, which have been granted to a (waiting) producer, without already 
being filled, will not be counted in either of them. 

Finally, we introduce the integer buffer blocking, the value of which 
equals the number of quantities desire that are positive. Obviously, this 
variable is superfluous; it has been introduced as a recognition of one of our 
earlier remarks, that as so on as one of the desires is positive, no further 
additions to the buffer can be made, until furt her notice. At the same time 
this variable may act as a warning to the consumers, that such a "further 
notice" is wanted. 

We now propose the following program, written for N producers and M 
consumers. (N, M, Buffer size, and all that concerns the buffer is assumed 
to be declared in the surroundings of this program. ) 

begin integer array desire, producer semaphore[l N]; 
integer number of queuing portions, 

number of free buffer units, 
buffer blocking, bufman, loop; 

for loop:= 1 step 1 until N do 
begin des ire [loop] := 0; 

producer semaphore [loop] := 0 
end 

number of queuing portions:= 0 ; 
number of free buffer units:= Buffer size; 
buffer blocking:= 0; bufman:= 1; 
parbegin 
producer 1: 

begin end; 

producer n: 
begin integer portion size; 
again n: produce next portion and set portion size; 

P(bufman); 
if buffer blocking = 0 and 

number of free buffer units >= portion size 
then 

number of free buffer units:= 
number of free buffer units - portion size 

else 
begin buffer blocking:= buffer blocking + 1; 

desire[n]:= portion size; V(bufman); 
P(producer semaphore[n]); P(bufman) end; 

add portion to buffer; V(bufman); 
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V(number of queuing portions); goto again n 
end; 

producer N: 
begin end; 

consumer 1: 
begin end; 

consumer m: 
begin integer portion size, n, max, nmax; 
again m: P(number of queuing portions); P(bufman); 

take portion from buffer and set portion size; 
number of free buffer units:= 

number of free buffer units + portion size; 
test: if buffer blocking > 0 then 

end; 

consumer M: 

begin max:= 0, 

end; 

for n:= 1 step 1 until N do 
begin if max < desire[n] then 

begin max:= desire[n]; nmax:= n 
end end; 

if max <= 
number of free buffer units then 

begin number of free buffer units:= 
number of free buffer units 
- max; 

end 

desire[nmax] := 0; 
buffer blocking:= 

buffer blocking - 1; 
V(producer semaphore[nmax]); 
goto test 

V(bufman); process portion taken; 
goto again m 

begin end 
par end 

In the outermost block the common variables are declared and initialized. 
This part of the program hopefully presents no difficulties to the reader who 
has followed me until here. 
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Let us first try to understand the behaviour of the producer. When it 
wishes to add a new portion to the buffer there are essentially two cases: 
either it can do so immediately or not. It can add immediately under the 
combined condition: 

buffer blocking = 0 and 
number of free buffer units >= portion size; 

if so, it will decrease number of free buffer uni ts and-dynamically 
speaking in the same critical seetion-it will add the portion to the buffer. 
The two following V-operations (the order of which is immaterial) close the 
critical section and signal the presence of the next portion to the combined 
consumers. If it cannot add immediately, i.e. if (either) 

buffer blocking > 0 or 
number of free buffer units < portion size 

(or both), then the producer decides to wait, "to go to sleep", and delegates 
to the combined consumers the task to wake it up again in due time. The faet 
that it is waiting is coded by desire [n] > 0, buffer blocking is increased 
by 1 accordingly. After all clerical operations on the common variables have 
been carried out the critical seetion is left (by V (bufman)) and the producer 
initiates a P-operation on its private semaphore. When it has completed 
this P-operation it re-enters the critical seetion, merges dynamically with 
the first case and adds the portion to the buffer. (See also the consumer in 
the second program of section 4.2, where we have already met the cutting 
open of a critical section.) Note that in the waiting case the producer has 
skipped the decrease of number of free buffer uni ts. Note also that the 
producer initiates the P-operation on its private semaphore at a moment 
that the latter may already be = 1, i.e. this P-operation, again, is only a 
potential delay. 

Let us now inspect whether the combined consumers fulfil the tasks del­
egated to them. The presence of a next portion is correctly signalIed to 
them via the general semaphore number of queuing portions and, as the 
P-operation on it occurs outside any critical seetion, there is no danger of 
consumers not initiating it. After this P-operation the consumer enters its 
critical seetion, takes a portion, and increases the number of free buffer 
units. If buffer blocking = 0 holds, the following compound statement is 
skipped completely and the critical seetion is left immediately; this is cor­
reet, for buffer blocking = 0 means that none of the quantities desire is 
positive, i.e. that none of the producers is waiting for the free space just cre­
ated in the buffer. If, however, it finds buffer blocking > 0 it knows that 
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at least one of the producers has gone to sleep and it will inspect, whether 
one or more producers have to be woken up. It looks for the maximum value 
of desire. If this is not too large it decides that the corresponding producer 
has to go on. This decision has three effects: 

(a) The number of free buifer units is decreased by the number of 
units desired. Thus we guarantee that the same free space in the 
buffer cannot be granted to more than one producer. Furthermore, 
this decrease is in accordance with the producer behaviour. 

(b) Desire of the producer in question is set to zero; this is correct, for 
its request has now been granted; buffer blocking is decreased by 1 
accordingly. 

(c) A V-operation on the producer semaphore concerned wakes the sleep­
ing producer. 

After that, control of the consumer returns to test to inspect whether 
more sleeping producers should be woken up. The inspection process can 
end in one of two ways: either there are no sleeping producers left (buifer 
blocking = 0) or there are still sleeping processes, but the free space is 
insufficient to accommodate the maximum desire. The final value of buifer 
blocking is correct in both cases. After the waking up of the producers is 
done the critical section is left. 

5.2 An Example of Conversations 

In this section we shall discuss a more complicated example, in which one of 
the co-operating processes is not a machine but a human being, the "oper­
ator". 

The operator is connected with the processes via a so-called "semi-duplex 
channel" (say "telex connection" ). It is called a duplex channel because it 
conveys information in either direction: the operator can use a keyboard to 
type in a message for the processes, the processes can use the teleprinter 
to type out a message for the operator. It is called a semi-duplex channel, 
because it can only transmit information in one direction at a time. 

Let us now consider the requirements of the total construction, admit­
tedly somewhat simplified yet hopefully sufficiently complicated to pose to 
us a real problem, yet sufficiently simple so as not to drown the basic pattern 
of our solution in a host of inessential details. 
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We have N identical processes (numbered from 1 through N), and essen­
tially they can each ask a single question, called Q i, meaning "How shall I 
go on 7", to which the operator may give one of two possible answers, called 
Ai and A2. We assurne that the operator must know which of the processes 
is asking the question since his answer might depend on this knowledge and 
we therefore specify that the i th process identifies itself when posing the 
question; we indicate this by saying that it transmits the quest ion Q1(i). In 
a sense this is a consequence of the fact that all N processes use the same 
communication channel. 

A next consequence of this channel sharing between the different pro­
cesses is that no two processes can ask their question simultaneously: be­
hind the scenes so me form of mutual exclusion must see to this. If only 
Q1-questions are mutually exclusive the operator may meet the following 
situation: a question-say Q1(3)-is posed, but before he has decided how 
to answer it a next question-say, Qi (7)-is put to hirn. Then the single 
answer Ai is no longer sufficient, because now it is no longer clear whether 
this ans wer is intended for process 7 or for process 3. This could be over­
come by adding to the answers the identification of the process concerned, 
say, A1(i) and A2 (i) with the appropriate value of i. 

Eut this is only one way of doing it: an alternative solution is to make the 
question, followed by its answer, together a critical occurrence: it relieves 
the operator from the duty to identify the process, and we therefore select 
the latter arrangement. So we stick to the answers Ai and A2. We have 
two kinds of conversations Q1(i) , Ai and Q1(i), A2 with the rule that 
a next conversation can be initiated only when the previous one has been 
completed. 

We shall now complicate the requirements in three respects. 
First, the individual processes may wish to use the communication chan­

nel for single-shot messages M (i) say which do not require any answer from 
the operator. 

Secondly, we wish to give the operator the possibility to postpone an 
answer. Of course, he can do so by just not answering, but this would have 
the undesirable effect that the communication channel remains blocked for 
the other N - 1 processes. We introduce a next answer A3, meaning: "The 
channel becomes free again, but the conversation with the process concerned 
remains unfinished." Obviously, the operator must have the opportunity to 
reopen the conversation again. He can do so via A4(i) or A5(i), where 
i runs from 1 through N and identifies the process concerned, where A4 
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indicates that the process should continue in the same way as after Al, while 
A5 prescribes the reaction as to A2. Possible forms of conversation are now: 

(a) Ql (i) , Al 

(b) Ql Ci) , A2 

(c) Ql(i), A3 - - - A4(i) 

(d) Ql (i) , A3 - A5 (i) 

As far as process i is concerned (a) is equivalent with (c) and (b) is equivalent 
with (d). 

The second-requirement has a profound infiuence: without it-i.e. only 
Al and A2 permissible answers-the process of incoming message interpreta­
tion can always be subordinate to one of the N processes, viz. the one that 
has put the question, this can wait for an answer and can act accordingly. 
We do not know beforehand, however, when the message A4(i) or A5(i) will 
arrive, and we cannot delegate its interpretation to the ith process, because 
the discovery that this incoming message is concerned with the i th process 
is part of the message interpretation itself! 

Thirdly, A4- and A5-messages must have priority over Ql- and M- mes­
sages, i.e. while the communication channel is occupied (in a Ql- or M­
message), processes might reach the state that they want to use the channel, 
but the operator too might co me to this conclusion at the same time. As 
soon as the channel becomes available, we wish that the operator can use 
it and that, if he so desires, it won't be snatched away by one of the pro­
cesses. This implies that the operator has a means to express this desire a 
rudimentary form of input even if the channel itself is engaged in output. 

We assurne that the operator 

(a) can give externally a 

V(incoming message) 

which he can use to announce a message (Al, A2, A3, A4, or A5); 

(b) can detect by the machine's reaction, whether his intervention is ac­
cepted or ignored. 

Remark. The situation is not unlike the school teacher shouting, "Now 
children, listen!" If this is regarded as a normal message it is nonsensical: 
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either the children are listening and it is therefore superfluous, or they are 
not listening and therefore they do not hear it. It is, in fact, a kind of "meta­
message" , which only teIls that a normal message is coming and which should 
even penetrate if the children are not listening (talking, for instance). 

This priority rule may cause the communication channel to be reserved 
for an announced A4-or A5 message. By the time the operator gets the 
opportunity to give it the situation or his mood may have changed, and 
therefore we extend the list of answers with A6-the dummy opening-which 
enables the operator to withhold, on second thoughts, the A4 or A5. 

A final feature of the message interpreter is the applicability test. The 
operator is a human being, and we may be sure that he will make mistakes. 
The states of the message interpreter are such that at any moment not all 
incoming messages are applicable; when a message has been rejected as non­
applicable the interpreter should return to such astate that the operator 
can then give the correct version. 

Our attack will be along the following lines: 

(1) Besides the N processes we introduce another process, called message 
interpreter; this,is done because it is difficult to make the interpre­
tation of the messages A4, A5, and A6 sub ordinate to one of the N 
processes. 

(2) Interpretation of a message always implies, besides the message itself, 
astate of the interpreter. (In the trivial case this is a constant state, 
viz. the willingness to understand the message.) We have seen that not 
all incoming messages are acceptable at all times, so our message in­
terpreter will have to have different states. We shall code them via the 
(common) state variable comvar. The private semaphore, which can 
delay the action of the message interpreter, is the semaphore incoming 
message, already mentioned. 

(3) For the N processes we shall introduce an array procsem of private 
semaphores and an array procvar of state variables, through which 
the different processes can communicate with each other, with the 
message interpreter, and vice versa. 

(4) Finally, we introduce a single binary semaphore mutex which caters 
for the mutual exclusion during inspection and/or modification of the 
common variables. 
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(5) We shall use the binary semaphore mutex only for the purpose just 
described, and never, say, will mutex = 0 be used to code that the 
channel is occupied. Such a convention would be a dead alley in the 
sense that the technique used would fall into pieces as soon as the 
N processes would have two channels (and two operators) at their 
disposal. We aim to make the critical sections, governed by mutex, 
rather short, and we won't shed a tear if some critical section is shorter 
than necessary. 

The above five points are helpful, and in view of our previous experiences 
they seem a set of reasonable principles. One facet of this subject has been 
to present a solution along the lines just given and show that it is correct. I 
would do a better job if I could show as weIl how such a solution is found. 
Admittedly any such solution is found by trial and error, but even so, we 
could try to make the then prevailing guiding principle (in mathematics 
usually called "The feeling of the genius") somewhat more explicit. For we 
are still faced with problems: 

(a) what structure should we give to the N +1 processes? 

(b) what states should we introduce (Le. how many possible values should 
the state variables have and what should be their meanings)? 

The problem (both in constructing and in presenting the solution) is 
that the two points just mentioned are interdependent. For the values of 
the state variables have only an unambiguous, interpretable meaning, when 
mutex = 1 holds, i.e. when none of the processes is inside a critical section, 
in which these values are subject to change. In other words, the conditions 
under which the meaning of the state variable values should be applicable 
is only known when the programs have been constructed, but we can only 
construct the programs after we know what inspections of and operations on 
the state variables are to be performed. In my experience, one starts with a 
rough picture of both programs and state variables, then starts to enumerate 
the different states and finally tries to build the programs. Then two things 
may happen: either one finds that one has introduced too many states or 
one finds that~having overlooked a need for cutting a critical section into 
parts~one has not introduced enough of them. One modi fies the states 
and then the program, and with luck and care the design process converges. 
Usually I found myself content with a working solution and did not bother 
to minimize the number of states introduced. 
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In my experience it is easier to conceive first the states (these being 
statically interpretable) and then the programs. In conceiving the states we 
have to bear three points in mind. 

(a) State variables should have a meaning when mutex is = 1; on the other 
hand, a process must leave the critical section before it starts to wait 
for a private semaphore. We must be very keen on all those points 
where a process may have to wait for something more complicated 
than permission to complete P (mutex) . 

(b) The combined state variables specify the total state of the system. 
Nevertheless, it helps a great deal if we can regard so me state variables 
as "belonging to that and that process". If some aspect of the total 
state increases linearly with N it is easier to conceive that part as 
equally divided among the N processes. 

( c) If a process decides to wait on account of a certain (partial) state each 
process that makes the system leave this partial state should inspect 
whether on ac count of this change so me waiting process should go on. 
(This is only a generalization of the principle already illustrated in The 
Sleeping Barber.) 

The first two points are mainly helpful in the conception of the different 
states, the last one is an aid to make the programs correct. 

Let us now try to find a set of appropriate states. We start with the 
element procvar [i], describing the state of process i. 

procvar[i] = 0 

This we call "the horne position". It will indicate that none of the fol­
lowing situations applies, that process i does not require any special service 
from either the message interpreter or one of the other processes. 

procvar [i] = 1 

"On account of non-availability of the communication channel, process 
i has decided to wait on its private semaphore." This decision can be taken 
independently in each process, it is therefore reasonable to represent it in 
the state of the process. Up till now there is no obvious reason to distinguish 
between waiting upon availability for aM-message and for a Ql-question, 
so let us try to do without this distinction. 
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procvar[i] = 2 

"Question Ql Ci) has been answered by A3, viz. with respect to process 
i the operator has postponed his final decision." The fact of the post­
ponement must be represented because it can hold for an indefinitely long 
period of time (observation a); it should be regarded as astate variable of 
the process in question, as it can hold in N-fold (observation b). Moreover, 
procvar [i] = 2 will act as applicability criterion for the operator messages 
A4 [i] and A5 [i] . 

procvar[i] = 3 

"Ql [i] has been answered by Al or by A3 - - - A4 [i]." 

procvar[i] = 4 

"Ql [i] has been answered by A2 or by A3 - - - A5 [i]." 

First of all we remark that it is of no concern to the individual process 
whether the operator has postponed his final answer or not. The reader may 
wonder, however, that the answer given is coded in procvar, while only one 
answer is given at a time. The reason is that we do not know how long it 
will take the individual process to react to this answer: before it has done 
so, a next process may have received its final answer to the Q1-question. 

Let us now try to list the possible states of the communication organi­
sation. We introduce a single variable, called comvar to distinguish between 
these states. We have to bear in mind three different aspects: 

(1) availability of the communication possibility for M-messages, Q1-
quest ions , and the spontaneous message of the operator; 

(2) acceptability-more general: interpretability-of the incoming mes­
sages. 

(3) operator priority for incoming messages. 

In order not to complicate matters too much at once, we shall start by 
ignoring the third point. Without operator priority we can see the following 
states. 

comvar 0 
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"The communication facility is idle", i.e. equally available for both pro­
cesses and operator. For the processes comvar = 0 me ans that the commu­
nication facility is available, for the message interpreter it means that an 
incoming message need not be ignored, but must be of type A4, A5, or A6. 

comvar = 1 

"The communication facility is used for aM-message or a Ql-question." 
In this period of time the value of comvar must be i= 0, because the commu­
nication facility is not available for the processes; for the message interpreter 
it me ans that incoming messages have to be ignored. 

comvar = 2 

"The communication facility is reserved for an Al-, A2-, or A3-answer." 
When the M-message has been finished the communication facility becomes 
available again; after a Ql-question, however, it must remain reserved. Dur­
ing this period, characterized by comvar = 2, the message interpreter must 
know to which process the operator answer applies. At the end of the answer 
the communication facility becomes again available. 

Let us now take the third requirement into consideration. This will lead 
to a duplication of (certain) states. When comvar = 0 holds, an incom­
ing message is accepted, when comvar = 1, an incoming message must be 
ignored. This occurrence must be noted down, because at the end of this 
occupation of the communication facility the operator must get his priority. 
We can introduce a new state: 

comvar = 3 

"As comvar = 1 with operator priority requested." 
When the transition to comvar = 3 occurred during aM-message the 

operator could get his opportunity immediately at the end of it; if, however, 
the transition to comvar = 3 took place during a Ql-question the prior­
ity can only be given to the operator after the answer to the Ql-question. 
Therefore, also state 2 is duplicated: 

comvar = 4 

"As comvar = 2, with operator priority requested." 
Finally, we have the state: 

comvar = 5 
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"The communication facility is reserved for, or used upon, instigation of 
the operator." For the processes this means non-availability, for the message 
interpreter the acceptability of the incoming messages of type A4, A5, and 
A6. UsuaIly, these messages will be announced to the message interpreter 
while comvar is = O. If we do not wish that the entire collection and interpre­
tation of these messages is done within the same critical section the message 
interpreter can break it open. It is then necessary that comvar is # o. We 
may try to use the same value 5 for this purpose: for the processes it just 
means non-availability, while the control of the message interpreter knows 
very weIl whether it is waiting for a spontaneous operator message (i.e. "re­
served for ... ") or interpreting such a message (i.e. "used upon instigation 
of ... "). 

Before starting to try to make the program we must bear in mind point 
c: remembering that availability of the communication facility is the great 
(and only) bottleneck, we must see to it that every process that ceases to 
occupy the communication facility decides upon its future usage. This occurs 
in the processes at the end of the M-message (and not so much at the end 
of the Ql-question, for then the communication facility remains reserved 
for the answer ) and in the message interpreter at the end of each message 
interpretation. 

The proof of the pudding is the eating: let us try whether we can make the 
program. (In the program the sequence of characters starting with comment 
and up to and including the first semicolon are inserted for explanatory 
purpose only. In ALGOL 60 such a comment is admitted only immediately 
after begin, but I do not promise to respect this (superfluous) restriction. 
The following program should be interpreted to be embedded in a uni verse in 
which the operator, the communication facility, and the semaphore incoming 
message-initially = O-are defined.) 

begin integer mutex, comvar, asknum, loop; 
comment The integer "asknum" is astate variable of the 
message interpreter, primarily during interpretation of 
the answers A1, A2, and A3. It is a common variable, as 
its value is set by the asking process; 
integer array procvar, procsem[1 : N]; 
for loop:= 1 step 1 until N do 
begin procvar[loop]:= 0; procsem[loop]:= 0 end; 
comvar:= 0; mutex:= 1; 
parbegin 

process 1: begin ... end; 
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process n: begin integer i; comment The integer "i" is a 
local variable, very much like "loop"; 

M message: P(mutex); 
if comvar = 0 then 
begin comment When the communication 

facility is available, it is taken; 
comvar:= 1; V(mutex) end 

else 
begin comment Otherwise the process re cords 

itself as dormant and goes to sleep; 
procvar[n]:= 1; V(mutex); 
P(procsem[n]) 

end; 

comment At the completion of this 
P-operation, "procsem[n]" will again 
be = 0, but comvar - still untouched 
by this process - will be = 1 or = 3; 

send M message; 
comment Now the process has to analyse 
whether the operator (first) or one of the 
other pro ces ses should get the communication 
facility; P(mutex); 
if comvar = 3 then comvar:= 5 

else 
begin comment Otherwise "comvar = 1" will 

hold and process n has to look whether 
one of the other processes is waiting. 
Note that "procvar[n] = 0" holds; 
for i:= 1 step 1 until N do 
begin if procvar[i] = 1 then 

end; 

begin procvar[i] := 0; 
V(procsem[i]); goto ready 

end 

comvar:= 0 
end 

ready: V(mutex); 

Q1 Question: P(mutex); 
if comvar = 0 then 
begin comvar:= 1; V(mutex) end 

else 
begin procvar[n]:= 1; V(mutex); 

P(procsem[n]) 
end; 
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end; 
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comment This entry is identical to that of 
the M message. Note that we are out of the 
critical section, nevertheless this process 
will set "asknum". It can do so safely, for 
neither another process nor the message 
interpreter will access "asknum" as long as 
"comvar = 1" holds; 
asknum:= n, send question Ql(n); 
P(mutex); 
comment "comvar" will be = 1 or 3; 
if comvar = 1 then comvar:= 2 

else comvar:= 4; 
V(mutex); P(procsem[n]); 
comment After completion of this 
P-operation, procvar[n] will be = 3 or = 4. 
This process can now inspect and reset its 
procvar, although we are outside a critical 
section; 
if procvar[n] = 3 then Reaction 1 

else Reaction 2; 
procvar[n]:= 0; 
comment This last assignment is 
superfluous; 

process N: begin ... end; 
message interpreter: 

begin integer i; 
wait: P(incoming message); 

P(mutex); 
if comvar = 1 then comvar:= 3; 
if comvar = 3 then 
begin comment The message interpreter 

ignores the incoming message, but in 
due time the operator will get the 
opportunity; 
V(mutex); goto wait end; 

if comvar = 2 or comvar = 4 then 
begin comment Only Al, A2 and A3 are 

admissible. The interpretation of the 
message need not be done inside a 
critical section; 
V(mutex); 
interpretation of the message coming 
in; 
if message = Al then 
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begin procvar[asknum] := 3; 
V(procsem[asknum]); 
goto after correct answer end; 

if message = A2 then 
begin procvar[asknum]:= 4; 

V(procsem[asknum]); 
goto after correct answer end; 

if message = A3 then 
begin procvar[asknum]: = 2; 

goto after correct answer end; 
comment The operator has given an 
erroneous answer and should repeat the 
message; goto wait; 

after correct answer: P(mutex); 
if comvar = 4 then 
begin comment The operator should now 

get his opportunity; 
comvar:= 5; V(mutex); goto wait 

end; 
perhaps comvar to zero:for i:= 1 step 1 until N do 

begin if procvar[i] = 1 then 
begin procvar[i] := 0; 

end 
end; 
comvar:= 0; 

comvar:= 1; 
V(procsem[i]); goto ready 

ready: V(mutex); goto wait 
end; 
comment The cases "comvar 0" and 
"comvar = 5" remain. 
Messages A4, A5, and A6 are admissible; 
if comvar = 0 then comvar:= 5; 
comment See Remark 1 after the program; 
V(mutex); 
interpretation of the message coming in; 
P(mutex); 
if message = A4[process number] then 
begin i:= process number given in the 

end; 

message; 
if procvar[i] = 2 then 
begin procvar[i]:= 3; V(procsem[i]); 

goto perhaps comvar to zero end; 
comment Otherwise process not waiting 
for postponed answer; 
goto wrong message 

if message = A5[process number] then 
begin i:= process number given in the 

message; 
if procvar[i] = 2 then 
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end; 

begin procvar[il:= 4; V(procsem[i]); 
goto perhaps comvar to zero end; 

comment Otherwise process not waiting 
for postponed answer; 
goto wrong message 

if message = A6 then 
goto perhaps comvar to zero; 

wrong message: comment "comvar = 5" holds, giving priority 
to the operator to repeat his message; 
V(mutex); goto wait 

end 

end 
par end 

Remark 1. If the operator, while comvar = 0 or comvar = 5 originally 
holds, gives an uninterpretable (or inappropriate) message the communica­
tion facility will remain reserved for his next trial. 

Remark 2. The final interpretation of the A4 and A5 messages is done 
within the critical section, as their admissibility depends on the state of the 
process concerned. If we have only one communication channel and one 
operator this precaution is rather superfiuous. 

Remark 3. The for-loops in the program scan the processes in order, 
starting at process 1; by scanning them cyclically, starting at an arbitrary 
process (selected by means of a (pseudo) random number generator), we 
could have made the solution more symmetrical in the N processes. 

Remark 4. In this section we have first presented a rather thorough 
exploration of the possible states and then the program. The reader might 
be interested to know that this is the true picture-"a live recording" - of 
the birth of this solution. When I started to write this section the problem 
posed was as new to me as it was to the reader: the program given is my 
first version, constructed on account of the considerations and explorations 
given. I hope that this section may thus give a hint as to how one may find 
such solutions. 

5.2.1 Improvements of the Previous Program 

In Section 5.2 we have given a first version of the program; this version has 
been included in the text, not because we are satisfied with it but because 
its inclusion completes the picture of the birth of a solution. Let us now 
try to embellish, in the name of greater conciseness, clarity, and, may be, 
efficiency. Let us try to discover in what respects we have made a mess of 
it. 



COOPERATING SEQUENTIAL PROCESSES 119 

Let us compare the information flows from a process to the message 
interpreter, and vi ce versa. In the one direction we have the common variable 
asknum to tell the message interpreter which process is asking the question. 
The setting and the inspection of asknum can safely take place outside the 
critical sections, governed by mutex, because at any moment at most one of 
the N + 1 processes will try to access asknum. In the inverse information 
flow, where the message interpreter has to signal back to the ith process the 
nature of the final operator answer, this answer is coded in procvar. This 
is mixing things up, as is shown: 

(a) by the procvar-inspection (whether procvar is = 3 or = 4), which is 
suddenly allowed to take place outside a critical section; 

(b) by the superfluity of its being reset to zero. 

The suggestion is to introduce a new 

integer array operanswer[1 : NJ 

the elements of which will be used in a similar fashion as asknum. (An 
attractive consequence is that the number of possible values of procvar­
the more fundamental quantity (see below) will no longer increase with the 
number of possible answers to the quest ion Ql.) 

I should like to investigate whether we can achieve a greater clarity 
by separating the common variables into two (or perhaps more?) distinct 
groups, in order to reflect an observable hierarchy in the way in which they 
are used. Let us try to order them in terms of "basicness". 

The semaphore incoming message seems at first sight a fairly basic one, 
being defined by the surrounding universe. This is, however, an illusion: 
within the parallel compound we should have programmed (as the N + 2nd 
process) the operator himself, and the semaphore incoming message is the 
private semaphore for the message interpreter just as procsem [i] is for the 
ith process. 

Thus the most basic quantity is the semaphore mutex taking care of the 
mutual exclusion of the critical sections. 

Then co me the state variables comvar and procvar, which are inspected 
and can be modified within the critical sections. 

The quantities just mentioned share the property that their values must 
be set before entering the parallel compound. This property is also shared 
by the semaphores procsem (and incoming message, see above) if we stick 
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to the rules that parallel statements will access common semaphores via P­
and V-operations exclusively. 

(Without this restrietion, re quest for the communication facility by 
process n could start with: 

P(mutex); 
if comvar = 0 then 
begin comvar:= 1; V(mutex) end 

else 
begin procvar[n]:= 1; procsem[n]:= 0; 

V(mutex); P(procsem[n]) end 

We reject this solution on the furt her observation that the assignment 
procsem [n] is void, except for the first time that it is executed; the ini­
tialization of procsem's outside the parallel compound seems therefore ap­
propriate. ) 

For the common variables listed thus far I should like to reserve the name 
"status variables" , to distinguish them from the remaining ones, asknum and 
operanswer, which I should like to call "transmission variables". 

The latter are called "transmission variables" because, whenever one of 
the processes assigns a value to such a variable, the information just stored 
is destinated for a well-known "receiving party". They are used to transmit 
information between well-known parties. 

Let us now turn our attention from the common variables towards the 
programs. Within the programs we have learnt to distinguish the so-called 
"critical sections" for which the semaphores mutex caters for the mutual 
exclusion. Besides these, we can distinguish regions in which relevant actions 
occur, such as: 

In the ith Process 

Region 1: 
Region 2: 
Region 3: 

sending an M-message 
sending a Q1(i)-question 
reacting to operanswer[i] (This region 
is somewhat openended). 

In the Message Interpreter 

Region 4: 
Region 5: 
Region 6: 

ignoring incoming messages 
expecting Al, A2, or A3 
expecting A4(i), A5(i), or A6. 

We come now to the following picture. In the programs we have critical 
sections, mutually excluded by the semaphore mutex. The purpose of the 
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critical sections is to resolve any ambiguity in the inspection and modification 
of the remaining state variables, inspection and modification performed for 
the purpose of more intricate "sequencing patterns" of the regions. These 
sequencing patterns make the unambiguous use of the transmission variables 
possible. (If one process has to transmit information to another it can now do 
so via a transmission variable, provided that the execution of the assigning 
region is always followed by that of the inspecting region before that of the 
next assigning region.) 

In the embellished version of the program we shall stick to the rule that 
the true state variables will only be accessed in critical sections (if they are 
not semaphores) or via P- and V-operations (if they are semaphores), while 
the transmission variables will only be accessed in the regions. (In more 
complicated examples this rule might prove too rigid, and duplication might 
be avoided by allowing transmission variables to be inspected at least within 
the critical section. In this example, however, we shall observe the rule.) 

The remaining program improvements are less fundamental. 
Co ding will be smoothed if we represent the fact of requested operator 

priority not by additional values of comvar but by an additional two-valued 
state variable: 

Boolean operator priority 

(Quantities of type Boolean can take on the two values denoted by true and 
false respectively, viz. they have the same domain as "conditions" such as 
we have met in the if-clause.) 

Furthermore we shall introduce two procedures; they are declared outside 
the compound and therefore at the disposal of the different constituents of 
the parallel compound. 

We shall first give a short description of the new meanings of the values 
of the state variables procvar and comvar: 

procvar [i] 
procvar[i] 

procvar[i] 
comvar 0 
comvar = 1 
comvar 2 
comvar 3 

o horne position 
1 waiting for availability of the communication 

facility for M or Q1(i) 
2 waiting for the answer A4 (i) or A5 (i) . 

horne position (communication facility free) 
communication facility for M or Q1 
communication facility for Al, A2, or A3 
communication facility for A4, A5, or A6. 

We give the program without comments, and shall do so in two stages: 
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first the program outside the parallel compound and then the constituents 
of the parallel compound. 

begin integer mutex, comvar, asknum, loop; 
Boolean operator priority; 

end 

integer array procvar, procsem, operanswer[l: N]; 
procedure M or Q entry(u); value u; integer u; 
begin P(mutex); 

end; 

if comvar = 0 then 
begin comvar:= 1; V(mutex) end 

else 
begin procvar[u]:= 1; V(mutex); P(procsem[u]) end 

procedure select new comvar value; 
begin integer i; 

if operator priority then 
begin operator priority:= false; comvar:= 3 end 

else 
begin for i:= 1 step 1 until N do 

begin if procvar[i] = 1 then 

end; 

begin procvar[i]:= 0; comvar:= 1; 
V(procsem[i]); goto ready end 

comvar:= 0; 
ready: end 

end; 
for loop:= 1 step 1 until N do 

beg in procvar[loop] := 0; procsem[loop]:= 0 end, 
comvar:= 0; mutex:= 1; operator priority:= false; 
parbegin 
process 1: begin ... end; 

process N: begin end; 
message interpreter: 

begin ... end 
par end 

Here the nth process will be of the form 

process n: 

M message: 
Region 1: 

begin 

M or Q entry(n); 
send M message; 
P(mutex); select new comvar value; V(mutex); 
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Q1 question: M or Q entry(n); 
Region 2: asknum:= n; 

send Q1(n); 
P(mutex); comvar:= 2; V(mutex); P(procsem[n]) 

Region 3: if operanswer[n] = 1 then Reaction 1 
else Reaction 2; 

end 
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When the message interpreter decides to enter Region 6 it copies, before 
doing so, the array procvar: if an answer A4(i) should be acceptable, then 
procvar [i] = 2 should already hold at the moment of announcement of the 
answer. 

Message Interpreter: 

begin integer i; integer array pvcopy[l: N]; 
wait: P(incoming message); P(mutex); 

if comvar = 1 then 
Region 4: 
leave: 

Region 5: 

signal to 
preleave: 
Region 6: 

end 

begin operator priority:= true; 
V(mutex); goto wait end; 

if comvar <> 2 then goto Region 6; 
V(mutex); collect message; 
if message <> A1 and message <> A2 
and message <> A3 then goto wait; 
i:= asknum; 
if message A1 then operanswer[i]:= 1 else 
if message = A2 then operanswer[i]:= 2; 
P(mutex); 
if message = A3 then procvar[i]:= 2 else 
i: V(procsem[i]); 
select new comvar value; goto leave; 
if comvar = 0 then comvar:= 3; 
for i:= 1 step 1 until N do pvcopy[i]:= procvar[i]; 
V(mutex); collect message; 
if message = A6 then 
begin P(mutex); goto preleave end; 
if message <> A4(process number) 
and message <> A5(process number) then goto wait; 
i:= process number given in the message; 
if pvcopy[i] <> 2 then goto wait; 
operanswer[i]:= if message = A4 then 1 else 2; 
P(mutex); procvar[i]:= 0; goto signal to i 

As an exercise we leave to the reader the version in which pending re­
quests for Q1-questions have priority over those for M-messages. As a next 
extension we suggest a two-console configuration with the additional re­
striction that an A4- or A5-message is only acceptable via the console over 
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which the conversation has been initiated. (Otherwise we have to exclude 
simultaneous, contradictory messages A4 Ci) and A5 Ci) via the two different 
consoles. The solution without this restriction is left to the really fascinated 
reader.) 

5.2.2 Proving the Correctness 

In this section title I have used the word "proving" in an informal way. 
I have not defined what formal conditions must be satisfied by a "legal 
proof", and I do not intend to do so. When I can find a way to discuss the 
program of Section 5.2.1, by which I can convince myself of-and hopefully 
anybody else that takes the trouble of doubting!-the correctness of the 
overall performance of this aggregate of processes I am satisfied. 

In the following "state picture" we make a diagram of all the states 
in which a process may find itself "for any considerable length of time", 
i.e. outside sections critical to mutex. The arrows describe the transitions 
taking place within the critical sections; accompanying these arrows, we give 
the modifications of comvar or the conditions under which the transition from 
one state to another is made. 

Calling the neutral region of a process before entry into a Region 1 or 
Region 2, Region 0, we can give the state picture 

Region 0 
procvar = 0 

comvar 0-+ 1 comvar i= 0 

Region 1 or 2 
procvar = 0 

Leaving Region 1 can be pictured as: 
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I Region 1, procvar = 0 I 
comvar 1 -+ 3 

operator 
priority 

procvar 
1-+0 

1-+0 

all procvar i= 0 

l Region 0, procvar = 0 I 
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Leaving Region 2, with the possibility of a delayed answer, can be pic­
tured as: 

I 

I 
A1,A2 
comvar2 -+ 

I 
I 

Region 2, procvar = 0 J 
1-+2 

waiting for answer, procvar = 0 I 
A3 

3, 1,0 comvar 2 -+ 3,1,0 

I waiting for answer, procvar = 2 J 
comvar 0,3 -+ 0,1 
A4, A5 

Region 3, procvar = 0 I 
reaction to the answer , 
Region 0, procvar = ° I 

We can try to do the same for the message interpreter. Here we indicate 
along the arrows the relevant occurrences, such as changes of a procvar and 
the kind of message. We use WIM as abbreviation for "Waiting for Incoming 
Message". 
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Regionl-.. 

ReBlon 0 

end of ReBlon 2 

an procvar #: 1 

These diagrams, of course, tell us nothing new, but they may be a pow­
erful aid to program inspection. 

We verify first that comvar = 0 represents indeed the horne position 
of the communication facility, i.e. its availability either for entrance into 
Region 1 or Region 2 (by one of the processes ) or for entrance into Region 6 
(by the message interpreter, as result of an incoming message for which it is 
waiting). 

If comvar = 0 and one of the processes wants to enter Region 1 or Re­
gion 2, or a message comes from the operator, Region 1, 2, or 6 is en­
teredj furthermore, this entrance is accompanied by either comvar: = 1 or 
comvar : = 3, and in this way care is taken of the mutual exclusion of the 
Regions 1, 2, and 6. 

The mutual exclusion implies that processes may fail to enter Region 1 
or 2 immediately, or that an incoming message must be rejected when 
it comes at an inacceptable moment. In the first case the process sets 
procvar: = 1, in the second case (in Region 4) the message interpreter sets 
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operator priority:= true. 
These assignments are performed only under the condition comvar <> 0; 

furthermore, the assignment comvar: = O-only occurring in the procedure 
select new comvar value-is only performed provided "non-operator pr i­
ority and all procvar i- 1". From these two observations and the initial 
values we can conclude: 

comvar = 0 excludes operator priori ty as weIl as the occurrence of 
one or more procvar = 1. 

Since all ways of ceasing to occupy the communication facility (i.e. the 
end of Region 1, 5, and 6) call select new comvar value, we have estab­
lished: 

(a) that entrance into the Region 1, 2, and 6 is only delayed if necessary; 

(b) that such a delay is guaranteed to end at the earliest opportunity. 

The structure of the message interpreter shows clearly that: 

(a) it can execute Region 5 only if comvar 2 

(b) it can only execute Region 5 if comvar 2 

(c) execution of Region 5 is the only way to make comvar again i- 2. 

The only assignment comvar: = 2 occurs at the end of Region 2. As a 
result, each Region 2 can be followed only by a Region 5 and, conversely, 
each Region 5 must be preceded by a Region 2. This sequencing allows us to 
use the transmission variable asknum, which is set in Region 2 and inspected 
in Region 5. 

For the uses of the transmission variables oper ans wer an analogous anal­
ysis can be made. Region 2 will be followed by Region 5 (see above); if 
here the final answer (Al or A2) is interpreted, operanswer Ei] is set before 
V (procsem Ei] ), so that the transmission variable has been set properly be­
fore the process can (and will) enter Region 3, where its operanswer will be 
inspected. If in Region 5 the answer A3 is detected, the message interpreter 
sets procvar Ei] : = 2 for this process, thus allowing the answer A4 or A5 for 
this process exactly once in Region 6. Again V (procsem [i]) is performed 
only after the assignment to operanswer. Thus we have verified that: 

(a) operanswer is only set on ce by the message interpreter after arequest 
in Region 2; 
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(b) this operanswer will only be inspected in the following Region 3 after 
the request to set it has been fulfilled (in Region 5 or Region 6). 

This completes the analysis of the soundness of the use of the transmis­
sion variables operanswer . 

Inspection of the message interpreter (particularly the scheme of its 
states) shows: 

(a) that a rejected message (Region 4) so on er or later is bound to give rise 
to Region 6; 

(b) that wrong messages are ignored, giving the operator the opportunity 
of correction. 

By the above analysis we hope to have created sufficient confidence in 
the correctness of our construction. The analysis followed the steps already 
hinted at in section 5.2.1: after creation of the critical sections (with the aid 
of mutex) the latter are used to sequence Regions properly, thanks to which 
sequencing the transmission variables can be used unambiguously. 

6 THE PROBLEM OF THE DEADLY EMBRACE 

In the introductory part of this section I shall draw attention to a rather 
logical problem that arises in the co-operation between various processes 
when they have to share the same facilities. We have selected this problem 
for various reasons. First, it arises by a straightforward extension of the 
sound principle that no two persons should use a single compartment of a 
revolving door simultaneously. Secondly, its solution, which I regard as non­
trivial and which will be given in Section 6.1, gives us a nice example of 
more subtle co-operation rules than we have met before. Thirdly, it gives us 
the opportunity to illustrate (in Section 6.2) a programming technique by 
which a furt her gain in clarity can be achieved. 

Let me first give an example of the kind of facility-sharing I have in mind. 
As "processes" we might take "programs" , describing so me computa­

tional process to be performed by a computer. Execution of such a com­
putational process takes time, during which information must be stored in 
the computer. We restrict ourselves to those processes of which is known in 
advance: 

(1) that their demand on storage space will not exceed a certain limit, and 
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(2) that each computational process will end, provided that storage space 
requested by the process will be put at its disposal. The ending of the 
computational process will imply that its demand on storage space will 
reduce to zero. 

We ass urne that the available store has been subdivided into fixed-size 
"pages" which, from the point of view of the programs, can be regarded as 
equivalent. 

The actual demand on storage space needed by a process may be a func­
tion varying in time as the process proceeds-subject, of course, to the a 
priori known upper bound. We assurne that the individual processes request 
from and return to "available store" in single page units. By "equivalence" 
(see the last word of.the previous paragraph) is meant that a process requir­
ing a new page only asks for "a new page" but never for a special one nor 
one out of a special group. 

We now request that a process, once initiated, will-sooner or later-get 
the opportunity to complete its action and reject any organization in which 
it may happen that a process may have to be killed half-way through its 
activity, thereby throwing away the computation time already invested in it. 

If the computer has to perform the different processes one after the other 
the only condition that must be satisfied by a process is that its maximum 
demand does not exceed the total storage capacity. 

If, however, the computer can serve more than one process simultaneously 
one can adhere to the rule that one only admits pro grams as long as the sum 
of their maximum demands does not exceed the total storage capacity. This 
rule, safe though it is, is unnecessarily restrictive, for it means that each 
process effectively occupies its maximum demand during the complete time 
of its execution. When we consider the following table (in which we regard 
the processes as "borrowing" pages from available store) 

Process 
PI 
P2 

Maximum demand 
80 
60 

Present Ioan 
40 
20 + 

A vailable store = 100 - 60 = 40 

Further claim 
40 
40 

(a total store of 100 pages is assumed), we have a situation in which is still 
not hing wrong. If, however, both processes request their next page, and if 
they should both get it, we should get the following situation: 
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Process 
PI 
P2 
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Maximum demand 
80 
60 

Present loan 
41 
21 + 

Available store = 100 - 62 = 38 

Further claim 
39 
39 

This is an unsafe situation, for both processes might want to realize their 
full further claim before returning a single page to available store. So each 
of them may first need a further 39 pages, while there are only 38 available. 

This situation, when one process can continue only provided the other 
one is killed first, is called "The Deadly Embrace". The problem to be 
solved is: how can we avoid the danger of the Deadly Embrace without 
being unnecessarily restrictive. 

6.1 The Banker's Algorithm 

A banker has a finite capital expressed in florins. He is willing to accept 
customers, that may borrow florins from hirn on the following conditions: 

1. The customer makes the loan for a transaction that will be completed 
in a finite period of time. 

2. The customer must specify in advance his maximum "need" for florins 
for this transaction. 

3. As long as the "loan" does not exceed the "need" stated in advance, 
the customer can increase or decrease his loan florin by florin. 

4. A customer when asking for an increase in his current loan undertakes 
to accept without complaint the answer "If I gave you the florin you 
ask for you would not exceed your stated need, and therefore you 
are entitled to a next florin. At present, however, it is somewhat 
inconvenient for me to pay you, but I promise you the florin in due 
time." 

5. His guarantee that this moment will indeed arrive is founded on the 
banker's cautiousness and the fact that his co-customers are subject 
to the same condition as he: that as so on as a customer has got the 
florin he asked for he will proceed with his transactions at a non-zero 
speed, i.e. within a finite period of time he will ask for a next florin 
or will return a florin or will finish the transaction, which implies that 
his complete loan has been returned (florin by florin). 
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The primary questions are: 

(a) under which conditions can the banker enter into contract with a new 
customer? 

(b) under which conditions can the banker pay a (next) florin to a request­
ing customer without running into the danger of the Deadly Embrace? 

The answer to question (a) is simple: he can accept any customer, whose 
stated need does not exceed the banker's capital. 

In order to answer question (b), we introduce the following terminology. 
The banker has a fixed capi tal at his disposal; each new customer states 

in advance his maximum need and for each customer will hold 

need[i] ::; capital (for an i). 

The current situation for each customer is characterized by his loan. 
Each loan is initially = 0 and shall satisfy at any instant 

0::; loan[i] ::; need[i] (for an i). 

A useful quantity to be derived from this is the maximum further claim, 
given by 

claim[i] = need[i] - loan[i] (for an i). 

Finally, the banker notes the amount in cash, given by 

cash = capital - sum of the loans 

Obviously 

o ::; cash::; capi tal 

has to hold. 
In order to decide whether a requested florin can be paid to the customer, 

the banker essentially inspects the situation that would arise if he had paid 
it. If this situation is "safe", then he pays the florin, if the situation is not 
"safe" he has to say: "Sorry, but you have to wait." 

Inspection whether a situation is safe amounts to inspecting whether all 
customer transactions can be guaranteed to be able to finish. The algorithm 
starts to investigate whether at least one customer has a claim not exceed­
ing cash. If so, this customer can complete his transactions, and therefore 
the algorithm investigates the remaining customers as if the first one had 
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finished and returned its complete loan. Safety of the situation means that 
all transactions can be finished, i.e. that the banker sees a way of getting all 
his money back. 

If the customers are numbered from 1 through N the routine inspecting 
a situation can be written as follows: 

integer free money; Boolean safe; 
Boolean array finish doubtful[l : N]; 

free money:= cash; 
for i:= 1 step 1 until N do finish doubtful[i]:= true; 

L: for i:= 1 step 1 until N do 
begin if finish doubtful[i] and claim[i] <= free money 

then 
begin finish doubtful[il:= false; 

free money:= free money + loan[i]; goto L 
end 

end; 
if free money = capital then safe:= true else safe:= false 

The above routine inspects any situation. An improvement of the Al­
gorithm has been given by L. Zwanenburg, who takes into account that 
the only situations to be investigated are those, where, starting from a safe 
situation, a florin has been tentatively given to customer [i]. As soon as 
finish doubtful[i] : = false can be executed the algorithm can decide 
directly on safety of the situation, for then clearly this attempted payment 
was reversible. This short cut will be implemented in the program in the 
next section. 

6.2 The Banker's Algorithm Applied 

In this example also the florins are processes. (Each florin, say, represents 
the use of a magnetic tape deck; the loan of a florin is then the permission 
to use one of the tape decks.) 

We assurne that the customers are numbered from 1 through N and that 
the florins are numbered from 1 through M. Each customer has a variable 
florin number in which, after each granting of a florin, it can find the num­
ber of the florin it has just borrowed; also each florin has a variable customer 
number in which it can find by which customer it has been borrowed. 

Each customer has astate variable cusvar, where cusvar = 1 me ans 
"I am anxious to borrow." (otherwise cusvar = 0); each florin has astate 
variable flovar, where flovar = 1 me ans "I am anxious to get borrowed, 
i.e. I am in cash." (otherwise flovar = 0). Each customer has a binary 
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semaphore cussem, each florin has a binary semaphore flosem, which will 
be used in the usual manner. 

We assurne that each florin is borrowed and returned upon customer 
indication, but that he cannot return a borrowed florin immediately. After 
the customer has indicated that he has no further use for this florin the 
florin may not be instantaneously available for subsequent use. It is as if 
the customer can say to a borrowed florin "run horne to the banker". The 
actual loan will only be ended after the florin has indeed returned to cash: 
it will signal its return into the banker's cash to the customer from which 
it came via a customer semaphore florin returned. A P-operation on 
this semaphore should guard the customer against an inadvertent overdraft. 
Before each florin re quest the customer will perform a P-operation on its 
florin returned; the initial value of florin returned will be = need. 

We assurne that the constant integers N and M (= capi tal) and the 
constant integer array need are declared and defined in the universe in which 
the following program is embedded. 

The procedure try to gi ve to is made into a Boolean procedure, the 
value of which indicates whether a delayed request for a florin has been 
granted. In the florin program it is exploited that returning a florin may at 
most give rise to a single delayed request to be granted now. (If more than 
one type of facility is shared under control of the banker this will no Ion ger 
hold. Jumping out of the for loop to the statement labelled leave at the 
end of the florin program is then not permissible.) 

begin integer array loan, claim, cussem, cusvar, 
florin number, florin returned[1 : N], 
flosem, flovar, customer number[1 : M]; 

integer mut ex , cash, k; 
Boolean procedure try to give to (j); value j; 
integer j; 
begin if cusvar[j] = 1 then 

begin integer i, free money; 
Boolean array finish doubtful[1 N]; 
free money:= cash - 1; 
claim[j]:= claim~] - 1; 
loan[j] := loan[j] + 1; 
for i:= 1 step 1 until N do 

finish doubtful[i]:= true; 
LO: for i:= 1 step 1 until N do 

begin if finish doubtful[i] 
and claim[i] <= free money then 
begin if i <> j then 

begin 
finish doubtful[i] := false; 
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end 
end; 

free money:= 
free money + loan[i] ; 

goto LO 
end 

else 
begin comment Here more 

sophisticated ways for 
selecting a free florin 
may be implemented; 
i:= 0; 

L1: i:= i + 1; 

end 

if flovar[i] = 0 then 
goto L1; 
florin number[j]:= i; 
customer number[i]:= j; 
cusvar[j]:= 0; 
flovar[i]:= 0; 
cash:= cash - 1; 
try to give to:= true; 
V(cussem[j]) ; 
V (flosem Ci] ) ; 
goto L2 

claim[j]:= claim[j] + 1; 
loan[j]:= loan[j] - 1 

try to give to:= false; 
L2: end, 

mutex:= 1; cash:= M; 
for k:= 1 step 1 until N do 
begin loan[k] := 0; cussem[k]:= 0; cusvar[k]:= 0; 

claim[k] := need[k]; florin returned[k] := need[k] 
end; 
for k:= 1 step 1 until M do 
begin flosem[k] := 0; flovar[k]:= 1 end; 
parbegin 

customer 1: begin ... end; 

customer N: begin end; 
florin 1: beg in end; 

florin M: begin ... end 
par end 

end 
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In customer n the request for a new florin consists of the following se-
quence of statements: 

P(florin returned[n]); 
P(mutex); 
cusvar[n]:= 1; try to give to (n); 
V(mutex); 
P(cussem[n]); 

after completion of the last statement florin number [n] gives the identity 
of the florin just borrowed, the customer has the opportunity to use it and 
the duty to return it in due time to the banker. 

The structure of a florin is as follows: 

florin m: 
begin integer h; 
start: P(flosem[m]); 

comment Now customer number[m] identifies the 
customer that has borrowed it. The florin can serve 
that customer until it has finished the task required 
from it during this loan. To return itself to the 
cash, the florin proceeds as follows; 
P(mutex); 
claim[customer number[m]] := 

claim[customer number[m]] + 1; 
loan[customer number[m]] := 

loan[customer number[m]] - 1; 
flovar[m]:= 1; cash:= cash + 1; 
V(florin returned[customer number[m]]); 
for h:= 1 step 1 until N do 

begin if try to give to(h) then goto leave end; 
leave: V(mutex); 

goto start 
end 

Remark. Roughly speaking, a successful loan can take place only when 
two conditions are satisfied: the florin must be requested and the florin must 
be available. In this program the mechanism of cusvar and cussem is also 
used (by the customer) when the requested florin is immediately available, 
likewise the mechanism of flovar and flosem is also used (by the florin) if, 
after its return to cash, it can immediately be borrowed again by a waiting 
customer. This programming technique has been suggested by C. Ligtmans 
and P.A. Voorhoeve, and I mention it because in the case of more intricate 
rules of co-operation it has given rise to a simplification that proved to be 
indispensable. The underlying cause of this increase in simplicity is that 
the dynamic way through the topological structure of the program no longer 
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distinguishes between an actual delay or not, just as in the case of the P­
operation itself. 

7 CONCLUDING REMARKS 

In the literat ure one sometimes finds a sharp distinction between "con­
current programming" -more than one central processor operating on the 
same job-and "multi-programming" -a single processor dividing its time 
between different jobs. I have always feIt that this distinction was rather 
artificial and therefore confusing. In both cases we have, macroscopicaIly 
speaking, a number of sequential processes that have to co-operate with each 
other, and our discussions on this co-operation apply equaIly weIl to "concur­
rent programming" as to "multi-programming" or any mixture of the two. 
What in concurrent programming is spread out in space (e.q. equipment) 
is in multi-programming spread out in time: the two present themselves 
as different implement at ions of the same logical structure, and I regard the 
development of a tool to describe and form such structures themselves, i.e. in­
dependent of these implementational differences, as one of the major contri­
butions of the work from which this monograph has been born. As a specific 
example of this unifying train of thought I should like to mention-for those 
that are only meekly interested in multi-processors, multi-programming, and 
the like-the complete symmetry between anormal sequential computer, on 
the one hand, and its peripheral gear, on the other (as displayed, for instance, 
in Section 4.3: "The Bounded Buffer"). 

Finally, I should like to express, on ce more, my concern about the cor­
rectness of programs, because I am not too sure whether all of it is duly 
refiected in what I have written. 

If I suggest methods by which we could try to attain a greater security, 
then this is, of course, more psychology than, say, mathematics. I have the 
feeling that for the human mi nd it is just terribly hard to think in terms of 
processing evolving in time and that our greatest aid in controlling them is 
by attaching meanings to the values of identified quantities. For instance, in 
the program section 

i:= 10; 
LO: x:= sqrt(x); i:= i-i; 

if i > 0 then goto LO 

we conclude that the operation x: = sqrt (x) is repeated ten times, but I 
have the impression that we can do so by attaching to i the meaning of 
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"the number of times that the operation x: = sqrt (x) still has to be re­
peated". But we should be aware of the fact that such a timeless meaning (a 
statement of fact or relation) is not permanently correct: immediately after 
the execution of x: = sqrt (x) but before that of the sub se quent i: = i - 1 

the value of i is "one more than the number of times that the operation 
x: = sqrt (x) still has to be repeated". In other words, we have to specify 
at what stages of the process such a meaning is applicable and, of course, 
it must be applicable in every situation where we rely on this meaning in 
the reasoning that convinces us of the desired overall performance of the 
program. 

In purely sequential programming, as in the above example, the regions 
of applicability of such meanings are usually closely connected with places in 
the program text (if not, we have just a tricky and probably messy program ). 
In multi-programming we have seen in particular in Section 5.2.1 that it 
is a worth-while effort to create such regions of applicability of meaning 
very consciously. The recognition of the hierarchical difference between the 
presence of a message and the message itself, here forced upon us, might 
give a clue even to clearer uniprogramming. 

For example, if I am married to one out of ten wives, numbered from 
1 through 10, this fact may be represented by the value of a variable wife 
number associated with me. If I may also be sIngle it is a commonly used pro­
grammer's device to code the state of the bachelor as an eleventh value, say 
wife number = O. The meaning of the value of this variable then becomes 
"If my wife nu mb er is = 0, then I am single, otherwise it gives the number of 
my wife". The moral is that the introduction of aseparate Boolean variable 
married might have been more honest. 

We know that the von Neumann-type machine derives its power and 
flexibility from the fact that it treats all words in store on the same footing. 
It is often insufficiently realized that, thereby, it gives the user the duty to 
impose structure wherever recognizable. 

Sometimes it iso It has often been quoted as The Great Feature of the 
von Neumann-type machine that it can modify its own instructions, but 
most modern algorithmic translators, however, create an object program 
that remains in its entire execution phase just as constant as the original 
source text. Instead of chaotically modifying its own instructions just be­
fore or after their execution, creation of instructions and execution of these 
instructions now occur in different sequenced regions: the translation phase 
and the execution phase. And this for the benefit of us all. 



138 EDSGER W. DIJKSTRA 

It is my firm belief that in each process of any complexity the variables 
occurring in it admit analogous hierarchical orderings, and that when these 
hierarchies are clearly recognizable in the program text the gain in clarity of 
the program and in effiiciency of the implementation will be considerable. If 
this chapter gives any reader a clearer indication of what kind of hierarchi­
cal ordering can be expected to be relevant I have reached one of my goals. 
And may we not hope that a confrontation with the intricacies of Multipro­
gramming gives us a clearer understanding of what Uniprogramming is all 
about? 
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A multiprogramming system is described in which all activities are divided 

over a number of sequential processes. These sequential processes are placed 

at various hierarchical levels, in each of which one or more independent ab­

stractions have been implemented. The hierarchical structure proved to be 

vital for the verification of the logical soundness of the design and the correct­

ness of its implementation. 

Introduction 

In response to a call explicitly asking for papers "on timely research and 
development efforts," I present a progress report on the multiprogramming 
effort at the Department of Mathematics at the Technological University in 
Eindhoven. 

Having very limited resources (viz. a group of six people of, on the av­
erage, half-time availability) and wishing to contribute to the art of system 
design-including all the stages of conception, construction, and verification, 
we were faced with the problem of how to get the necessary experience. To 
solve this problem we adopted the following three guiding principles: 

(1) Select a project as advanced as you can conceive, as ambitious as you 
can justify, in the hope that routine work can be kept to a minimum; hold 
out against all pressure to incorporate such system expansions that would 

E. W. Dijkstra, The strueture of the "THE" multiprogramming system. Communications 
0/ the ACM 11, 5 (May 1968), 341-346. Copyright © 1968, Assoeiation for Computing 
Maehinery, Ine. Reprinted by permission. 
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only result into a purely quantitative increase of the total amount of work 
to be done. 

(2) Select a machine with sound basic characteristics (e.g. an interrupt 
system to fall in love with is certainly an inspiring feature); from then on 
try to keep the specific properties of the configuration for wh ich you are 
preparing the system out of your considerations as long as possible. 

(3) Be aware of the fact that experience does by no means automatically 
lead to wisdom and understanding; in other words, make a conscious effort 
to learn as much as possible from your previous experiences. 

Accordingly, I shall try to go beyond just reporting what we have done 
and how, and I shall try to formulate as weIl what we have learned. 

I should like to end the introduction with two short remarks on working 
conditions, which I make for the sake of completeness. I shall not stress 
these points any further . 

One remark is that production speed is severely slowed down if one works 
with half-time people who have other obligations as weIl. This is at least 
a factor of four; probably it is worse. The people themselves lose time 
and energy in switching over; the group as a whole loses decision speed 
as discussions, when needed, have often to be postponed until all people 
concerned are available. 

The other remark is that the members of the group (mostly mathemati­
cians) have previously enjoyed as good students a university training of five 
to eight years and are of Master's or Ph.D. level. I mention this explicitly 
because at least in my country the intellectual level needed for system de­
sign is in general grossly underestimated. I am convinced more than ever 
that this type of work is very difficult, and that every effort to do it with 
other than the best people is doomed to either failure or moderate success 
at enormous expense. 

The Tool and the Goal 

The system has been designed for a Dutch machine, the EL X8 (N.V. Elec­
trologica, Rijswijk (ZR)). Characteristics of our configuration are: 

(1) co re memory cycle time 2.5 f-tsec, 27 bits; at present 32K; 
(2) drum of 512K words, 1024 words per track, rev. time 40 msec; 
(3) an indirect addressing mechanism very weIl suited for stack imple­

mentation; 
(4) a sound system for commanding peripherals and controlling of inter­

rupts; 
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(5) a potentially great number of low capacity channels; ten of them are 
used (3 paper tape readers at 1000 char/sec; 3 paper tape punches at 150 
char / sec; 2 teleprinters; a plotter; a line printer); 

(6) absence of a number of not unusual, awkward features. 
The primary goal of the system is to process smoothly a continuous 

flow of user programs as a service to the university. A multiprogramming 
system has been chosen with the following objectives in mind: (1) a reduction 
of turn-around time for programs of short duration, (2) economic use of 
peripher al deviees, (3) automatie control of backing store to be combined 
with economie use of the central processor, and (4) the economic feasibility 
to use the machine for those applications for which only the flexibility of a 
general purpose computer is needed, but (as a rule) not the capacity nor the 
processing power. 

The system is not intended as a multiaccess system. There is no common 
data base via whieh independent users can communieate with each other: 
they only share the configuration and a procedure library (that includes a 
translator for Algol 60 extended with complex numbers). The system does 
not cater for user programs written in machine language. 

Compared with larger efforts one can state that quantitatively speaking 
the goals have been set as modest as the equipment and our other resources. 
Qualitatively speaking, I am afraid, we became more and more immodest as 
the work progressed. 

A Progress Report 

We have made some minor mistakes of the usual type (such as paying too 
much attention to eliminating what was not the real bottleneck) and two 
major ones. 

Our first major mistake was that for too long a time we confined our 
attention to "a perfeet installation"; by the time we considered how to make 
the best of it, one of the peripherals broke down, we were faced with nasty 
problems. Taking care of the "pathology" took more energy than we had 
expected, and some of our troubles were a direct consequence of our earlier 
ingenuity, i.e. the complexity of the situation into which the system could 
have maneuvered itself. Had we paid attention to the pathology at an earlier 
stage of the design, our management rules would certainly have been less 
refined. 

The second major mistake has been that we conceived and programmed 
the major part of the system without giving more than scanty thought to 
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the problem of debugging it. I must decline all credit for the fact that this 
mistake had no serious consequences-on the contrary! one might argue as 
an afterthought. 

As captain of the crew I had had extensive experience (dating back to 
1958) in making basie software dealing with real-time interrupts, and I knew 
by bitter experience that as a result of the irreproducibility of the interrupt 
moments a program error could present itself misleadingly like an occasional 
machine malfunctioning. As a result I was terribly afraid. Having fears 
regarding the possibility of debugging, we decided to be as careful as possible 
and, prevention being better than eure, to try to prevent nasty bugs from 
entering the construction. 

This decision, inspired by fear, is at the bottom of what I regard as the 
group's main contribution to the art of system design. We have found that 
it is possible to design a refined multiprogramming system in such a way 
that its logieal soundness can be proved apriori and its implementation can 
admit exhaustive testing. The only errors that showed up during testing 
were trivial coding error (occurring with a density of one error per 500 in­
structions) each of them located within 10 minutes (classical) inspection by 
the machine and each of them correspondingly easy to remedy. At the time 
this was written the testing had not yet been completed, but the resulting 
system is guaranteed to be flawless. When the system is delivered we shall 
not live in the perpetual fear that a system derailment may still occur in 
an unlikely situation, such as might result from an unhappy "coincidence" 
of two or more critical occurrences, for we shall have proved the correctness 
of the system with a rigor and explicitness that is unusual for the great 
majority of mathematical proofs. 

A Survey of the System Structure 

Storage Allocation. In the classieal von Neumann machine, information is 
identified by the address of the memory location containing the information. 
When we started to think about the automatie control of secondary storage 
we were familiar with a system (viz. GIER ALGOL) in which all information 
was identified by its drum address (as in the classieal von Neumann machine) 
and in which the function of the core memory was nothing more than to make 
the information "page-wise" accessible. 

We have followed another approach and, as it turned out, to great ad­
vantage. In our terminology we made astriet distinction between memory 
units (we called them "pages" and had "core pages" and "drum pages") and 
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corresponding information units (for lack of a better word we called them 
"segments"), a segment just fitting in a page. For segments we created a 
completely independent identification mechanism in wh ich the number of 
possible segment identifiers is much larger than the total number of pages 
in primary and secondary store. The segment identifier gives fast access 
to a so-called "segment variable" in core whose value denotes whether the 
segment is still empty or not, and if not empty, in which page (or pages) it 
can be found. 

As a consequence of this approach, if a segment of information, residing 
in a core page, has to be dumped onto the drum in order to make the co re 
page available for other use, there is no need to return the segment to the 
same drum page from which it originally came. In fact, this freedom is 
exploited: among the free drum pages the one with minimum latency time 
is selected. 

A next consequence is the total absence of a drum allocation problem: 
there is not the slightest reason why, say, a program should occupy consec­
utive drum pages. In a multiprogramming environment this is very conve­
nient. 

Processor Allocation. We have given full recognition to the fact that in a 
single sequential process (such as can be performed by a sequential automa­
ton ) only the time succession of the various states has a logical meaning, but 
not the actual speed with which the sequential process is performed. There­
fore we have arranged the whole system as a society of sequential processes, 
progressing with undefined speed ratios. To each user program accepted by 
the system corresponds a sequential process, to each input peripheral corre­
sponds a sequential process (buffering input streams in synchronism with the 
execution of the input commands), to each output peripher al corresponds 
a sequential process (unbuffering output streams in synchronism with the 
execution of the output commands); furthermore, we have the "segment 
controller" associated with the drum and the "message interpreter" associ­
ated with the console keyboard. 

This enabled us to design the whole system in terms of these abstract "se­
quential processes." Their harmonious cooperation is regulated by means of 
explicit mutual synchronization statements. On the one hand, this explicit 
mutual synchronization is necessary, as we do not make any assumption 
about speed ratios; on the other hand, this mutual synchronization is pos­
sible because "delaying the progress of a process temporarily" can never 
be harmful to the interior logic of the process delayed. The fundamental 
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consequence of this approach-viz. the explicit mutual synchronization-is 
that the harmonious cooperation of a set of such sequential processes can be 
established by discrete reasoning; as a further consequence the whole har­
monious society of cooperating sequential processes is independent of the 
actual nu mb er of processors available to carry out these processes, provided 
the processors available can switch from process to process. 

System Hierarchy. The total system admits a strict hierarchical struc­
ture. 

At level 0 we find the responsibility for processor allocation to one of 
the processes whose dynamic progress is logically permissible (Le. in view of 
the explicit mutual synchronization). At this level the interrupt of the real­
time dock is processed and introduced to prevent any process to monopolize 
processing power. At this level a priority rule is incorporated to achieve 
quick response of the system where this is needed. Our first abstraction 
has been achieved; above level 0 the number of processors actually shared 
is no longer relevant. At higher levels we find the activity of the different 
sequential processes, the actual processor that had lost its identity having 
disappeared from the picture. 

At level 1 we have the so-called "segment controller," a sequential pro­
cess synchronized with respect to the drum interrupt and the sequential 
processes on higher levels. At level 1 we find the responsibility to cater to 
the bookkeeping resulting from the automatic backing store. At this level 
our next abstraction has been achieved; at all higher levels identification of 
information takes place in terms of segments, the actual storage pages that 
had lost their identity having disappeared from the picture. 

At level 2 we find the "message interpreter" taking care of the allocation 
of the console keyboard via which conversations between the operator and 
any of the higher level processes can be carried out. The message interpreter 
works in dose synchronism with the operator. Wheri the operator presses 
a key, a character is sent to the machine together with an interrupt signal 
to announce the next keyboard character, whereas the actual printing is 
done through an output command generated by the machine under control 
of the message interpreter. (As far as the hardware is concerned the console 
teleprinter is regarded as two independent peripherals: an input keyboard 
and an output printer.) If one of the processes opens a conversation, it iden­
tifies itself in the opening sentence of the conversation for the benefit of the 
operator. If, however, the operator opens a conversation, he must identify 
the process he is addressing, in the opening sentence of the conversation, Le. 
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this opening sentence must be interpreted before it is known to which of the 
processes the conversation is addressed! Here lies the logical reason for the 
introduction of aseparate sequential process for the console teleprinter, a 
reason that is reflected in its name, "message interpreter." 

Above level 2 it is as if each process had its private conversational console. 
The fact that they share the same physical console is translated into a re­
source restriction of the form "only one conversation at a time," a restriction 
that is satisfied via mutual synchronization. At this level the next abstrac­
tion has been implemented; at higher levels the actual console teleprinter 
loses its identity. (If the message interpreter had not been on a higher level 
than the segment controller, then the only way to implement it would have 
been to make a permanent reservation in co re for it; as the conversational vo­
cabulary might become large (as soon as our operators wish to be addressed 
in fancy messages), this would result in too heavy a permanent demand upon 
core storage. Therefore, the vocabulary in which the messages are expressed 
is stored on segments, Le. as information units that can reside on the drum 
as weIl. For this reason the message interpreter is one level higher than the 
segment controller.) 

At level 3 we find the sequential processes associated with buffering of 
input streams and unbuffering of output streams. At this level the next 
abstraction is effected, viz. the abstraction of the actual peripherals used 
that are allocated at this level to the "logical communication units" in terms 
of which are worked in the still higher levels. The sequential processes as­
sociated with the peripherals are of a level above the message interpreter, 
because they must be able to converse with the operator (e.g. in the case 
of detected malfunctioning). The limited number of peripherals again acts 
as a resource restriction for the processes at high er levels to be satisfied by 
mutual synchronization between them. 

At level 4 we find the independent user programs and at level 5 the 
operator (not implemented by us). 

The system structure has been described at length in order to make the 
next section intelligible. 

Design Experience 

The conception stage took a long time. During that period of time the 
concepts have been born in terms of which we sketched the system in the 
previous section. Furthermore, we learned the art of reasoning by wh ich we 
could deduce from our requirements the way in which the processes should 
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infiuence each other by their mutual synchronization so that these require­
ments would be met. (The requirements being that no information can be 
used before it has been produced, that no peripheral can be set to two tasks 
simultaneously, etc.). Finally we learned the art of reasoning by which ve 
could prove that the society composed of processes thus mutually synchro­
nized by each other would indeed in its time behavior satisfy all requirements. 

The construction stage has been rather traditional, perhaps even old­
fashioned, that is, plain machine code. Reprogramming on account of a 
change of specifications has been rare, a circumstance that must have con­
tributed greatly to the feasibility of the "steam method." That the first two 
stages took more time than planned was somewhat compensated by a delay 
in the delivery of the machine. 

In the verification stage we had the machine, during short shots, com­
pletely at our disposal; these were shots during which we worked with a 
virgin machine without any software aids for debugging. Starting at level 0 
the system was tested, each time adding (a portion of) the next level only 
after the previous level had been thoroughly tested. Each test shot itself 
contained, on top of the (partial) system to be tested, a number of test­
ing processes with a double function. First, they had to force the system 
into all different relevant states; second, they had to verify that the system 
continued to react according to specification. 

I shall not deny that the construction of these testing programs has been 
a major intellectual effort: to convince oneself that one has not overlooked 
"a relevant state" and to convince oneself that the testing programs generate 
them all is no simple matter. The encouraging thing is that (as far as we 
know) it could be done. 

This fact was one of the happy consequences of the hierarchical structure. 
Testing level 0 (the real-time clock and processor allocation) implied a 

number of testing sequential processes on top of it, inspecting together that 
under all circumstances processor time was divided among them according 
to the rules. This being established, sequential processes as such were im­
plemented. 

Testing the segment controller at level 1 meant that all "relevant states" 
could be formulated in terms of sequential processes making (in various 
combinations) demands on core pages, situations that could be provoked 
by explicit synchronization among the testing programs. At this stage the 
existence of the real-time clock-although interrupting all the time-was so 
immaterial that one of the testers indeed forgot its existence! 
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By that time we had implemented the correct reaction upon the (mutu­
ally unsynchronized) interrupts from the real-time dock and the drum. If 
we had not introduced the separate levels 0 and 1, and if we had not cre­
ated a terminology (viz. that of the rather abstract sequential processes) in 
wh ich the existence of the dock interrupt could be discarded, but had in­
stead tried in a nonhierarchical construction, to make the central processor 
react directly upon any weird time succession of these two interrupts, the 
number of "relevant states" would have exploded to such a height that ex­
haustive testing would have been an illusion. (Apart from that it is doubtful 
whether we would have had the means to generate them all, drum and dock 
speed being outside our control.) 

For the sake of completeness I must mention a further happy consequence. 
As stated before, above level 1, core and drum pages have lost their identity, 
and buffering of input and output streams (at level 3) therefore occurs in 
terms of segments. While testing at level 2 or 3 the drum channel hardware 
broke down for some time, but testing proceeded by restricting the number 
of segments to the number that could be held in core. If building up the line 
printer output streams had been implemented as "dumping onto the drum" 
and the actual printing as "printing from the drum," this advantage would 
have been denied to uso 

Conclusion 

As far as pro gram verification is concerned I present nothing essentially new. 
In testing a general purpose object (be it a piece of hardware, a program, 
a machine, or a system), one cannot subject it to all possible cases: for 
a computer this would imply that one feeds it with all possible programs! 
Therefore one must test it with a set of relevant test cases. What is, or is not, 
relevant cannot be decided as long as one regards the mechanism as a black 
box; in other words, the decision has to be based upon the internal structure 
of the mechanism to be tested. It seems to be the designer's responsibility to 
construct his mechanism in such a way-i.e. so effectively structured-that 
at each stage of the testing procedure the number of relevant test cases will 
be so small that he can try them all and that what is being tested will be so 
perspicuous that he will not have overlooked any situation. I have presented 
a survey of our system because I think it a nice example of the form that 
such a structure might take. 

In my experience, I am sorry to say, industrial software makers tend 
to react to the system with mixed feelings. On the one hand, they are 
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inclined to think that we have done a kind of model job; on the other hand, 
they express doubts whether the techniques used are applicable outside the 
sheltered atmosphere of a University and express the opinion that we were 
successful only because of the modest scope of the whole project. It is not my 
intention to underestimate the organizing ability needed to handle a much 
bigger job, with a lot more people, but I should like to venture the opinion 
that the larger the project the more essential the structuring! A hierarchy 
of five logical levels might then very weIl turn out to be of modest depth. 
especially when one designs the system more consciously than we have done, 
with the aim that the software can be smoothly adapted to (perhaps drastic) 
configuration expansions. 
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APPENDIX 

Synchronizing Primitives 

Explicit mutual synchronization of parallel sequential processes is imple­
mented via so-called "semaphores." They are special purpose integer vari­
ables allocated in the universe in which the processes are embedded; they are 
initialized (with the value 0 or 1) before the parallel processes themselves 
are started. After this initialization the parallel processes will access the 
semaphores only via two very specific operations, the so-called synchroniz­
ing primitives. For historical reasons they are called the P-operation and 
the V -operation. 

A process, "Q" say, that performs the operation "P{sem)" decreases 
the value of the semaphore called "sem" by 1. If the resulting value of 
the semaphore concerned is nonnegative, process Q can continue with the 
execution of its next statement; if, however, the resulting value is nega­
tive, process Q is stopped and booked on a waiting list associated with the 
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semaphore concerned. Until further notice (i.e. a V-operation on this very 
same semaphore), dynamic progress of process Q is not logically permissible 
and no processor will be allocated to it (see above "System Hierarchy," at 
level 0). 

A process, "R" say, that performs the operation "V(sem)" increases the 
value of the semaphore called "sem" by 1. If the resulting value of the 
semaphore concerned is positive, the V-operation in question has no fur­
ther effect; if, however, the resulting value of the semaphore concerned is 
nonpositive, one of the processes booked on its waiting list is removed from 
this waiting list, i.e. its dynamic progress is again logically permissible and 
in due time a processor will be allocated to it (again, see above "System 
Hierarchy," at level 0). 

COROLLARY 1. 1f a semaphore value is nonpositive its absolute value 
equals the number of processes booked on its waiting list. 

COROLLARY 2. The P-operation represents the potential delay, the 
complementary V-operation represents the removal of a barrier. 

Note 1. P- and V-operations are "indivisible actions"; i.e. if they occur 
"simultaneously" in parallel pro ces ses they are noninterfering in the sense 
that they can be regarded as being performed one after the other. 

Note 2. If the semaphore value resulting from a V-operation is negative, 
its waiting list originally contained more than one process. It is undefined­
i.e. logically immaterial~which of the waiting processes is then removed from 
the waiting list. 

Note 3. A consequence of the mechanisms described above is that a pro­
cess whose dynamic progress is permissible can only loose this status by 
actually progressing, i.e. by performance of a P-operation on a semaphore 
with a value that is initially nonpositive. 

During system conception it transpired that we used the semaphores in 
two completely different ways. The difference is so marked that, looking 
back, one wonders whether it was really fair to present the two ways as uses 
of the very same primitives. On the one hand, we have the semaphores used 
for mutual exclusion, on the other hand, the private semaphores. 

Mutual Exc1usion 

In the folloving program we indicate two parallel, cyclic processes (between 
the brackets "parbegin" and "parend" ) that come into action after the sur­
rounding universe has been introduced and initialized. 
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begin semaphore mutex; mutex := 1; 
parbegin 

begin Li: P(mutex); critical section 1; V(mutex); 

remainder of cycle 1; go to Li 

end; 

begin L2: P(mutex); critical section 2,. V(mutex),. 

remainder of cycle 2; go to L2 
end 

parend 
end 

As a result of the P- and V-operations on "mutex" the actions, marked 
as "critical sections" exclude each other mutually in time; the scheme given 
allows straightforward extension to more than two parallel processes, the 
maximum value of mutex equals 1, the minimum value equals -(n - 1) if we 
have n parallel processes. 

Critical sections are used always, and only for the purpose of unam­
biguous inspection and modification of the state variables (allocated in the 
surrounding universe ) that describe the current state of the system (as far as 
needed for the regulation of the harmonious cooperation between the various 
processes ). 

Private Semaphores 

Each sequential process has associated with it a number of private semaphores 
and no other process will ever perform a P-operation on them. The universe 
initializes them with the value equal to 0, their maximum value equals 1, 
and their minimum value equals -1. 

Whenever a process reaches a stage where the permission for dynamic 
progress depends on current values of state variables, it follows the pattern: 

P(mutex); 

"inspection and modijication of state variables including 

a conditional V(private semaphore)"; 

V(mutex); 

P(private semaphore) 

If the inspection learns that the process in quest ion should continue, it 
performs the operation "V(private semaphore)"-the semaphore value then 
changes from 0 to l-otherwise, this V-operation is skipped, leaving to the 
other processes the obligation to perform this V -operation at a suitable 
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moment. The absence or presence of this obligation is refiected in the final 
values of the state variables upon leaving the critical section. 

Whenever a process reaches a stage where as a result of its progress pos­
sibly one (or more) blocked processes should now get permission to continue, 
it follows the pattern: 

P(mutex); 

"modification and inspection 01 state variables including 

zero or more V-operations on private semaphores 

01 other processes "; 

V(mutex) 

By the introduction of suitable state variables and appropriate program­
ming of the critical sections any strategy assigning peripherals, buffer areas, 
etc. can be implemented. 

The amount of co ding and reasoning can be greatly reduced by the ob­
servation that in the two complementary critical sections sketched above the 
same inspection can be performed by the introduction of the notion of "an 
unstable situation," such as a free reader and a process needing areader. 
Whenever an unstable situation emerges it is removed (including one or 
more V -operations on private semaphores) in the very same critical section 
in which it has been created. 

Proving the Harmonious Cooperation 

The sequential processes in the system can all be regarded as cyc1ic pro­
cesses in which a certain neutral point can be marked, the so-called "homing 
position," in which all processes are when the system is at rest. 

When a cyclic process leaves its homing position "it accepts a task"; 
when the task has been performed aftd not earlier, the process returns to its 
homing position. Each cyclic process has a specific task processing power 
(e.g. the execution of a user program or unbuffering a portion of printer 
output, etc.). 

The harmonious cooperation is mainly proved in roughly three stages. 
(1) It is proved that although a process performing a task may in so 

doing generate a finite number of tasks for other processes, a single initial 
task cannot give rise to an infinite number of task generations. The proof 
is simple as processes can only generate tasks for processes at lower levels 
of the hierarchy so that circularity is excluded. (If a process needing a 
segment from the drum has generated a task for the segment controller, 
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special precautions have been taken to ensure that the segment asked for 
remains in core at least until the requesting process has effectively accessed 
the segment concerned. Without this precaution finite tasks could be forced 
to generate an infinite number of tasks for the segment controller, and the 
system could get stuck in an unproductive page flutter.) 

(2) It is proved that it is impossible that all processes have returned to 
their homing position while somewhere in the system there is still pending a 
generated but unaccepted task. (This is proved via instability of the situation 
just described.) 

(3) It is proved that after the acceptance of an initial task all processes 
eventually will be (again) in their homing position. Each process blocked in 
the course of task execution relies on the other processes for removal of the 
barrier. Essentially, the proof in question is a demonstration of the absence 
of "circular waits": process P waiting for process Q waiting for process R 
waiting for process P. (Our usual term for the circular wait is "the Deadly 
Embrace.") In a more general society than our system this proof turned out 
to be a proof by induction (on the level of hierarchy, starting at the lowest 
level), as A. N. Habermann has shown in his doctoral thesis. 
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Re 4000 SOFTWARE: 
MULTIPROGRAMMING SYSTEM 

PER BRINCH HANSEN 

(1969) 

The RC 4000 multiprogramming system consists of a monitor program that 

can be extended with a hierarchy of operating systems to suit diverse require­

ments of program scheduling and resource allocation. This manual defines the 

functions of the monitor and the basic operating system, which allows users 

to initiate and control parallel program execution from typewriter consoles. 

The excerpt reprinted here is the general description of the philosophy and 

structure of the system. This part will be of interest to anyone wishing an un­

derstanding of the system in order to evaluate its possibilities and limitations 

without going into details about exact conventions. The discussion treats the 

hardware structure of the RC 4000 only in passing. 

1 SYSTEM OBJECTIVES 

This ehapter outlines the philosophy that guided the design of the Re 4000 
multiprogramming system. It emphasizes the need for different operating 
systems to suit different applications. 

The primary goal of multiprogramming isto share a eentral proeessor and its 
peripheral equipment among a number of programs loaded in the internal 
store. This is a meaningful objeetive if single programs only use a fraction 
of the system resourees and if the speed of the machine is so fast, compared 
to that of peripherals, that idle time within one program can be utilized by 
other programs. 

P. Brinch Hansen, Re 4000 Software: Multiprogramming System, Part I General Descrip­
tion. Regnecentralen, Copenhagen, Denmark, April 1969, 13-52. Copyright © 1969, Per 
Brinch Hansen. Reprinted by permission. 
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The present system is implemented on the RC 4000 computer, a 24-bit, 
binary computer with typieal instruction execution times of 4 microseconds. 
It permits practically unlimited expansion of the internal store and standard­
ized connection of all kinds of peripherals. Multiprogramming is facilitated 
by concurrency of program execution and input/output, program interrup­
tion, and storage protection. 

The aim has been to make multiprogramming feasible on a machine 
with a minimum internal store of 16 k words backed by a fast drum or disko 
Programs can be written in any of the available programming languages and 
contain programming errors. The storage protection system guarantees non­
interference among 8 parallel programs, but it is possible to start up to 23 
programs provided some of them are error free. 

The system uses standard multiprogramming techniques: the central pro­
cessor is shared between loaded programs. Automatie swapping of programs 
in and out of the store is possible but not enforced by the system. Backing 
storage is organized as a common data bank, in which users can retain named 
files in a semi-permanent manner. The system allows a conversational mode 
of access from typewriter consoles. 

An essential part of any multiprogramming system is an operating system, 
a program that coordinates all computational activities and input/output. 
An operating system must be in complete control of the strategy of program 
execution, and assist the users with such functions as operator communiea­
tion, interpretation of job control statements, allocation of resources, and 
application of execution time limits. 

For the designer of advanced information systems, a vital requirement of 
any operating system is that it allows hirn to change the mode of operation 
it controls; otherwise his freedom of design can be seriously limited. Unfor­
tunately this is precisely what present operating systems do not allow. Most 
of them are based exclusively on a single mode of operation, such as batch 
processing, priority scheduling, real-time scheduling, or time-sharing. 

When the need arises, the user often finds it hopeless to modify an op­
erating system that has made rigid assumptions in its basie design about a 
specific mode of operation. The alternative-to replace the original operat­
ing system with a new one-is in most computers a serious, if not impossible, 
matter, the reason being that the rest of the software is intimately bound to 
the conventions required by the original system. 

This unfortunate situation indicates that the main problem in the design 
of a multiprogramming system is not to define functions that satisfy specific 
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operating needs, but rat her to supply a system nudeus that can be extended 
with new operating systems in an orderly manner. This is the primary 
objective of the Re 4000 system. 

The nudeus of the Re 4000 multiprogramming system is a monitor pro­
gram with complete control of storage protection, input/output, and in­
terrupts. Essentially the monitor is a software extension of the hardware 
structure, which makes the Re 4000 more attractive for multiprogramming. 
The following elementary functions are implemented in the monitor: 

scheduling of time slices among programs executed 
in parallel by means of a digital dock, 

initiation and control of program execution at 
the request of other running programs, 

transfer of messages among running programs, 

initiation of data transfers to or from peripherals. 

The monitor has no built-in strategy of program execution and resource 
allocation; it allows any program to initiate other programs in a hierarchal 
manner and to execute them according to any strategy desired. In this hi­
erarchy of programs an operating system is simply a program that controls 
the execution of other programs. Thus operating systems can be intro­
duced in the system as other programs without modification of the monitor. 
Furthermore operating systems can be replaced dynamically, enabling each 
installation to switch among various modes of operation; several operating 
systems can, in fact, be active simultaneously. 

In the following chapters we shall explain this dynamic operating system 
concept in detail. In accordance with our philosophy all questions about 
particular strategies of program scheduling will be postponed, and the dis­
cussion will concentrate on the fundamental aspects of the control of an 
environment of parallel processes. 

2 ELEMENTARY MULTIPROGRAMMING PROBLEMS 

This chapter introduces the elementary multiprogramming problems of mu­
tual exclusion and synchronization of parallel processes. The discussion is 
restricted to the logical problems that arise when independent processes try 
to access common variables and shared resources. An understanding of these 
concepts is indispensable to the uninitiated reader, who wants to appreciate 
the difficulties of switching from uniprogramming to multiprogramming. 
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2.1 Multiprogramming 

In multiprogramming the sharing of computing time among programs is 
controlled by a dock, which interrupts program execution frequently and 
activates a monitor program. The monitor saves the registers of the inter­
rupted program and allocates the next slice of computing time to another 
program and so on. Switching from one program to another is also performed 
whenever a program must wait for the completion of input/output. 

Thus although the computer is only able to execute one instruction at 
a time, multiprogramming creates the illusion that programs are being exe­
cuted simultaneously, mainly because peripherals assigned to different pro­
grams indeed operate in parallel. 

2.2 Parallel Processes 

Most of the elementary problems in multiprogramming arise from the fact 
that one process (e.g. an executed program) cannot make any assumptions 
about the relative speed and progress of other processes. This is a potential 
source of conflict whenever two processes try to access a common variable 
or a shared resource. 

It is evident that this problem will exist in a truly parallel system, in 
which programs are executed simultaneously on several central processors. 
It should be realized, however, that the problem will also appear in a quasi­
parallel system based on the sharing of a single processor by means of inter­
rupts; since a program cannot detect when it has been interrupted, it does 
not know how far other programs have progressed. 

Another way of stating this is that if one considers the system as seen 
from within a program, it is irrelevant whether multiprogramming is im­
plemented on one or more central processors-the logical problems are the 
same. 

Consequently a multiprogramming system must in general be viewed as 
an environment with a number of truly parallel processes. Having reached 
this conclusion, a natural generalization is to treat not only program exe­
cution but input/output also as independent, parallel processes. This point 
will be illustrated abundantly in the following chapters. 

2.3 Mutual Exclusion 

The idea of multiprogramming is to share the computing equipment among 
a number of parallel programs. At any moment, however, a given resource 
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must belong to one program only. In order to ensure this it is necessary to 
introduce global variables, which programs can inspect to decide whether a 
given resource is available or not. 

As an example consider a typewriter used by all programs for messages 
to the operator. To control access to this device we might introduce aglobai 
boolean typewriter available. When a program p wishes to output a message, 
it must examine and set this boolean by me ans of the following instructions: 

wait: load typewriter available 
skip if true 
jump to wait 
load false 
store typewriter available 

While this is taking place the program may be interrupted after the loading 
of the boolean, but before inspection and assignment to it. The register 
containing the value of the boolean is then stored within the monitor, and 
program q is started. Q may load the same boolean and find that the type­
writer is available. Q accordingly assigns the value false to the boolean and 
starts using the typewriter. After a while q is interrupted, and at some later 
time p is restarted with the original contents of the register reestablished by 
the monitor. Program p continues the inspection of the original value of the 
boolean and concludes erroneously that the typewriter is available. 

This confiict arises because programs have no control over the interrupt 
system. Thus the only indivisible operations available to programs are single 
instructions such as load, compare, and store. This example shows that one 
cannot implement a multiprogramming system without ensuring a mutual 
exclusion of programs during the inspection of global variables. Evidently 
the entire reservation sequence must be executed as an indivisible junction. 
One of the purposes of a monitor program is to execute indivisible functions 
in the disabled mode. 

In the use of reservation primitives one must be aware of the problem 
of "the deadly embrace" between two processes, p and q, which attempt to 
share the resources rand s as follows: 

process p: wait and reserve(r) ... wait and reserve(s) 
process q: wait and reserve(s) ... wait and reserve(r) ... 

This can cause both processes to wait forever, since neither is aware of that 
it wants what the other one has. 
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To avoid this problem we need a third process (an operating system) that 
controls the allocation of shared resources between p and q in a manner that 
guarantees that both will be able to proceed to completion (if necessary by 
delaying the other until resources become available). 

2.4 Mutual Synchronization 

In a multiprogramming system parallel processes must be able to cooperate 
in the sense that they can activate one another and exchange information. 
One example of a process activating another process is the initiation of in­
put/output by a program. Another example is that of an operating system 
that schedules a number of programs. The exchange of information between 
two processes can also be regarded as a problem of mutual exclusion, in 
which the receiver must be prevented from inspecting the information until 
the sender has delivered it in a common storage area. 

Since the two processes are independent with respect to speed, it is not 
certain that the receiver is ready to accept the information at the very mo­
ment the sender wishes to deliver it, or conversely the receiver can become 
idle at a time when there is no furt her information for it to process. 

This problem of the synchronization of two processes during a transfer 
of information must be solved by indivisible monitor functions, which allow 
a process to be delayed on its own request and activated on re quest from 
another process. 

For a more extensive analysis of multiprogramming fundamentals, the 
reader should consult E. W. Dijkstra's monograph: Cooperating Sequential 
Processes. Math. Dep. Technological University, Eindhoven, (Sep. 1965). 

3 BASIC MONITOR CONCEPTS 

This chapter opens a detailled description of the RC 4000 monitor. A mul­
tiprogramming system is viewed as an environment in which program exe­
cution and input/output are handled uniformly as cooperating, parallel pro­
cesses. The need for an exact definition of the process concept is stressed. 
The purpose of the monitor is to bridge the gap between the actual hardware 
and the abstract concept of multiprogramming. 

3.1 Introduction 

The aim has been to implement a multiprogramming system that can be 
extended with new operating systems in a well-defined manner. In order 
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to do this a sharp distinction must be made between the contml and the 
strategy of program execution. 

The mechanisms provided by the monitor solve the logical problems of 
the control of parallel processes. They also solve the safety problems that 
arise when erroneous or malicious processes try to interfere with other pro­
cesses. They do, however, leave the choice of particular strategies of program 
scheduling to the processes themselves. 

With this objective in mind we have implemented the following funda­
mental mechanisms within the monitor: 

simulation of parallel processes, 
communication among processes, 
creation, control, and removal of processes. 

3.2 Programs and Internal Processes 

As a first step we shall assign a precise meaning to the process concept, i.e. 
introduce an unambiguous terminology for wh at a process is and how it is 
implemented on the RC 4000. 

We distinguish between internal and external processes, roughly corre­
sponding to program execution and input/output. 

More precisely: an internal pmcess is the execution of one or more inter­
ruptable programs in a given storage area. An internal process is identified 
by a unique process name. Thus other processes need not be aware of the 
actual location of an internal process in the store, but can refer to it by 
name. 

The following figure illustrates a division of the internal store among the 
monitor and three internal processes, p, q, and r. 

Later it will be explained how internal processes are created and how 
programs are loaded into them. At this point it should only be noted that 
an internal process occupies a fixed, contiguous storage area during its whole 
lifetime. The monitor has a pmcess description of each internal process; this 
table defines the name, storage area, and current state of the process. 

Computing time is shared cyclically among all active internal processes; 
as a standard the monitor allocates a maximum time slice of 25 milliseconds 
to each internal process in turn; after the elapse of this interval the process is 
interrupted and its registers are stored in the process description; following 
this the monitor allocates 25 milliseconds to the next internal process, and 
so on. The cyclic queue of active internal processes is called the time slice 
queue. 
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MONITOR 

INTERNAL 

PROCESS P 

INTERNAL 

PROCESS Q 

INTERNAL 
PROCESS R 

A sharp distinction is made between the concepts program and internal 
process. A program is a collection of instructions describing a computational 
process, whereas an internal process is the execution of these instructions in 
a given storage area. 

An internal process like p can involve the execution of a sequence of 
programs, for example, editing followed by translation and execution of an 
object program. It is also possible that copies of the same program (e.g. the 
Algol compiler) can be executed simultaneously in two processes q and r. 
These examples illustrate the need for a distinction between programs and 
processes. 

3.3 Documents and External Processes 

In connection with input/output the monitor distinguishes between periph­
eral devices, documents, and extern al processes. 

A peripheral device is an item of hardware connected to the data channel 
and identified by a device number. 

A document is a collection of data stored on a physical medium. Exam­
pIes of documents are: 

a roll of paper tape, 
a deck of punched cards, 
a printer form, 
a reel of magnetic tape, 
a data area on the backing store. 
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By the expression external process we refer to the input/output of a given 
document identified by a unique process name. This concept implies that 
on ce a document has been mounted, internal processes can refer to it by 
name without knowing the actual device it uses. 

For each external process the monitor keeps a process description defining 
its name, kind, device number, and current state. The process kind is an 
integer defining the kind of peripheral device on which the document is 
mounted. 

For each kind of extern al process the monitor contains an interrupt pro­
cedure that can initiate and terminate input/output on request from internal 
processes. 

3.4 Monitor 

The monitor is a program activated by me ans of interrupts. It can execute 
privileged instructions in the disabled mode, meaning that (1) it is in com­
plete control of input/output, storage protection, and the interrupt system, 
and that (2) it can execute a sequence of instructions as an indivisible entity. 

After initial system loading the monitor resides permanently in the in­
ternal store. We do not regard the monitor as an independent process, but 
rather as a software extension of the hardware structure, which makes the 
computer more attractive for multiprogramming. Its function is to (1) keep 
descriptions of all processes; (2) share computing time among internal and 
external processes; and (3) implement procedures that processes can call in 
order to create and control other processes and communicate with them. 

So far we have described the multiprogramming system as a set of inde­
pendent, parallel processes identified by names. The emphasis has been on a 
clear understanding ofrelationships among resources (store and peripherals ), 
data (programs and documents), and processes (internal and external). 

4 PROCESS COMMUNICATION 

This chapter deals with the monitor procedures for the exchange of informa­
tion between two parallel processes. The mechanism of message buffering is 
defended on the grounds of safety and efficiency. 

4.1 Message Buffers and Queues 

Two parallel processes can cooperate by sending messages to each other. A 
message consists of eight words. Messages are transmitted from one process 
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to another by means of message buffers selected from a common pool within 
the monitor. 

The monitor administers a message queue for each process. Messages are 
linked to this queue when they arrive from other processes. The message 
queue is apart of the process description. 

Normally a process serves its queue on a first-come, first-served basis. 
After the processing of a message, the receiving process returns an answer 
of eight words to the sending process in the same buffer. 

As described in Section 2.4, communication between two independent 
processes requires a synchronization of the processes during a transfer of 
information. A process requests synchronization by executing a wait opera­
tion; this causes a delay of the process until another process executes a send 
operation. 

The term delay means that the internal process is removed temporarily 
from the time slice queue; the process is said to be activated when it is again 
linked to the time slice queue. 

4.2 Send and Wait Procedures 

The following monitor procedures are available for communication among 
internal processes: 

send message( receiver, message, buffer) 
wait message(sender, message, buffer) 
send answer(result, answer, buffer) 
wait answer (result, answer, buffer) 

Send message co pies a message into the first available buffer within the 
pool and delivers it in the queue of a named receiver. The receiver is acti­
vated if it is waiting for a message. The sender continues after being informed 
of the address of the message buffer. 

Wait message delays the calling process until a message arrives in its 
queue. When the process is allowed to proceed, it is supplied with the name 
of the sender, the contents of the message, and the address of the message 
buffer. The buffer is removed from the queue and is now ready to transmit 
an answer. 

Send answer copies an answer into a buffer in which a message has been 
received and deli vers it in the queue of the original sender. The sender of the 
message is activated if it is waiting for the answer. The answering process 
continues immediately. 
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Wait answer delays the calling process until an answer arrives in a given 
buffer. On arrival, the answer is copied into the process and the buffer is 
returned to the pool. The result specifies whether the answer is a response 
from another process, or a dummyanswer generated by the monitor in re­
sponse to a message addressed to a non-existing process. 

The use of these procedures can be illustrated by the following example 
of a conversational process. The figure below shows one of several user pro­
cesses, wh ich deliver their output on the backing store. After completion of 
its output a user process sends a message to a converter process requesting it 
to print the output. The converter process receives and serves these requests 
one by one, thus ensuring that the line printer is shared by all user processes 
with a minimum delay. 

INPUT CONVERTER 
PROCESS MESSAGE 

AND 

USER ANSWER 

OUTPUT PROCESS 

BACKING INTERNAL 
STORE STORE 

The algorithms of the converter and the user are as follows: 

converter process: 
wait message(sender, message, buffer); 
print from backing store( message); 
send answer(result, answer, buffer); 
goto converter process; 



164 PER BRINCH HANSEN 

user process: 

output on backing store; 
send message( converter, message, buffer); 
wait answer(result, answer, buffer); 

4.3 General Event Procedures 

The communication procedures enable a conversational process to receive 
messages simultaneously from several other processes. To avoid becoming a 
bottleneck in the system, however, a conversational process must be prepared 
to be actively engaged in more than one conversation at a time. As an 
example think of a conversational process that engages itself, on request 
from another process, in a conversation with one of several human operators 
in order to perform some manual operation (mounting of a tape etc.). If 
one restricts a conversational process to only accepting one request (i.e. a 
message) at a time, and to completing the requested action before receiving 
the next request, the unacceptable consequence of this is that other processes 
(including human operators at consoles) can have their requests for response 
delayed for a long or even undefined time. 

As soon as a conversational process has started a lengthy action, by 
sending a message to some other process, it must receive further messages 
and initiate other actions. It will then be reminded later of the completion 
of earlier actions by means of normal answers. In general a conversational 
process is now engaged in several requests at one time. This intro duces a 
scheduling and resource problem: when the process receives arequest, some 
of its resources (storage or peripheral devices) can be tied up by already 
initiated actions; thus in some cases the process will not be able to honor 
new rcquests before old ones are completed. In this case the process wants 
to postpone the reception of some requests and leave them pending in the 
queue, while examining others. 

The procedures wait message and wait answer, which force a process to 
serve its queue in a strict sequential order and delay itself while its own 
requests to other processes are completed, do not fulfill the above require­
ments. 

Consequently we have introduced two more general communication pro­
cedures, which enable a process to wait for the arrival of the next message 
or answer and serve its queue in any order: 
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wait event(last buffer, next buffer, result) 
get event (buffer) 

The term event denotes a message or an answer. In accordance with this the 
queue of a process from now on will be called the event queue. 

Wait event delays the calling process until either a message or an answer 
arrives in its queue after a given last buffer. The process is supplied with 
the address of the next buffer and a result indicating whether it contains 
a message or an answer . If the last buffer address is zero, the queue is 
examined from the start. The procedure does not remove the next buffer 
from the queue or in any other way change its status. 

As an example, consider an event queue with two pending buffers A and 
B: 

queue = buffer A, buffer B 

The monitor calls: wait event(O, buffer) and wait event(A, buffer) will 
cause immediate return to the process with buffer equal to A and B, re­
spectively; while the call: wait event(B, buffer) will delay the process until 
another message or answer arrives in the queue after buffer B. 

Get event removes a given buffer from the queue of the calling process. 
If the buffer contains a message, it is made ready for the sending of an 
answer. If the buffer contains an answer, it is returned to the common pool. 
The copying of the message or ans wer from the buffer must be done by the 
process itself before get event is called. 

The following algorithm illustrates the use of these procedures within a 
conversational process: 
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buffer:=O; 
last buffer:=buffer; 
wait event (last buffer, buffer, result); 
if result = message then 
begin 
if resources not available then go to next event; 
get event (buffer) ; 
reserve resources; 

send message to some other process; 
save state of action; 
end else 
begin comment: result = answer; 
restore state of action; 
get event(buffer); 
release resources, 
send answer to original sender; 
end; 
go to first event; 

The process starts by examining its queue; if empty, it awaits the arrival 
of the next event. If it finds a message, it checks whether it has the necessary 
resources to perform the requested action; if not, it leaves the message in 
the queue and examines the next event. Otherwise it accepts the message, 
reserves resources, and initiates an action. As so on as this involves the 
sending of a message to some other process, the conversational process saves 
information about the state of the incomplete action and proceeds to examine 
its queue from the start in order to engage itself in another action. 

Whenever the process finds an answer in its queue, it immediately accepts 
it and completes the corresponding action. It can now release the resources 
used and send an answer to the original sender that made the request. After 
this it examines the entire queue again to see whether the release of resources 
has made it possible to ac ce pt pending messages. 

One example of a process operating in accordance with this scheme is the 
basic operating system s, which creates internal processes on request from 
typewriter consoles. S can be engaged in conversations with several consoles 
at the same time. It will only postpone an operator request if its storage 
is occupied by other requests, or if it is already in the middle of an action 
requested from the same console. 
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4.4 Advantages of Message Buffering 

In the design of the communication scheme we have given fuH recognition 
to the fact that the multiprogramming system is a dynamic environment, in 
which some of the processes may turn out to be black sheep. 

The system is dynamic in the sense that processes can appear and disap­
pear at any time. Therefore a process does not in general have a complete 
knowledge about the existence of other processes. This is reflected in the 
procedure wait message, which makes it possible for a process to be unaware 
of the existence of other processes until it receives messages from them. 

On the other hand once a communication has been established between 
two processes (e.g. by means of a message), they need a common identifi­
cation of it in order to agree on when it is terminated (e.g. by means of 
an answer ). Thus we can properly regard the selection of a buffer as the 
creation of an identification of a conversation. 

A happy consequence of this is that it enables two processes to exchange 
more than one message at a time. We must be prepared for the occurence of 
erroneous or malicious processes in the system (e.g. undebugged programs ). 
This is tolerable only if the monitor ensures that no process can interfere 
with a conversation between two other processes. This is done by storing 
information about the sender and receiver in each buffer, and checking it 
whenever a process attempts to send or wait for an answer in a given buffer. 

Efficiency is obtained by the queuing of buffers, which enables asending 
process to continue immediately after delivery of a message or an answer 
regardless of whether the receiver is ready to process it or not. 

In order to make the system dynamic it is vital that a process can be 
removed at any time, even if it is engaged in one or more conversations. 
In the previous example of user processes that deliver their output on the 
backing store and ask a converter process to print it, it would be sensible to 
remove a user process that has completed its task and is now only waiting 
for an answer from the converter process. In this case the monitor leaves 
aH messages from the removed process undisturbed in the queues of other 
processes. When these processes terminate their actions by sen ding answers, 
the monitor simply returns the buffers to the common pool. 

The reverse situation is also possible: during the removal of a process, the 
monitor finds unanswered messages sent to the process. These are returned 
as dummy answers to the senders. A special instance of this is the generation 
of a dummyanswer to a message addressed to a process that does not exist. 

The main drawback of message buffering is that it introduces yet another 
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resource problem, since the common pool contains a finite number of buffers. 
If a process was allowed to empty the pool by sending messages to ignorant 
processes, which do not respond with answers, furt her communication within 
the system would be blocked. We have consequently set a limit to the 
number of messages a process can send simultaneously. By doing this, and 
by allowing a process to transmit an answer in a received buffer, we have 
placed the entire risk of a conversation on the process that opens it (see 
Section 7.4). 

5 EXTERN AL PROCESSES 

This chapter clarifies the meaning of the external process concept. It explains 
initiation of input/output by means of messages from internal processes, 
dynamic creation and removal of external processes, and exclusive access to 
documents by me ans of reservation. The similarity of internal and external 
processes is stressed. 

5.1 Initiation of Input/Output 

Consider the following situation, in which an internal process, p, inputs a 
block from an external process, q (say, a magnetic tape): 

EXTERNAL 

PROCESS a 

INPUT 
BLOCK 

INTERNAL 
PROCESS P 

FIRST ADDRESS 

LAST ADDRESS 

P initiates input by sending a message to q: 

send message( q, message, buffer) 

The message consists of eight words defining an input/output operation 
and the first and last addresses of a storage area within process p: 
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message: operation 
first storage address 
last storage address 
(five irrelevant words) 

The monitor copies the message into a buffer and deli vers it in the queue of 
process q. Following this it uses the kind parameter in the process description 
of process q to switch to a piece of code common to all magnetic tapes. If 
the tape station is busy, the message is merely left in its queue; otherwise 
input is initiated to the given storage area. On return, program execution 
continues in process p. 

When the tape station completes input by means of an interrupt, the 
monitor generates an answer and delivers it in the queue of p, which in turn 
receives it by calling wait answer: 

wait answer(result, answer, buffer) 

The answer contains status bits sensed from the device and the actual block 
length expressed as the number of bytes and characters input: 

answer: status bits 
number of bytes 
number of characters 
(five irrelevant words) 

After delivery of the answer, the monitor examines the queue of the ex­
ternal process q and initiates its next operation (unless the queue is empty). 

Essentially all external processes follow this scheme, which can be defined 
by the following algorithm: 

extern al process: wait message; 
analyse and check message; 
initiate input/output; 
wait interrupt; 
generate answer; 
send answer; 
goto extern al process; 

With low-speed, character-oriented devices, the monitor repeats in­
put/output and the interrupt response for each character until a complete 
block has been transferred; (while this is taking place, the time between 
interrupts is of course shared among internal processes). Internal processes 
can therefore regard all input/output as block oriented. 
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5.2 Reservation and Release 

The use of message buffering provides a direct way of sharing an external 
process among a number of internal processes: an external process can sim­
ply accept messages from any internal process and serve them in their order 
of arrival. An example of this is the use of a single typewriter for output of 
messages to a main operator. This method of sharing a device ensures that 
a block of data is input or output as an indivisible entity. When sequential 
media such as paper tape, punched cards, or magnetic tape are used, how­
ever, an internal process must have exdusive access to the entire document. 
This is obtained by calling the following monitor procedure: 

reserve process(name, result) 

The result indicates whether the reservation has been accepted or not. An 
external process that handles sequential documents of this kind rejects mes­
sages from all internal processes except the one that has reserved it. Rejec­
tion is indicated by the result of the procedure wait answer. 

During the removal of an internal process, the monitor removes all reser­
vations made by it. Internal processes can, however, also do this explicitly 
by means of the monitor procedure: 

release process(name) 

5.3 Creation and Removal 

Prom the operator's point of view an external process is created when he 
mounts a document on a device and names it. The name must, however, 
be communicated to the monitor by means of an operating system, i.e. an 
internal process that controls the execution of programs. Thus it is more 
correct to say that external processes are created when internal processes 
assign names to peripher al devices. This is done by means of the monitor 
procedure: 

create peripheral process(name, device number, result) 

The monitor has, in fact, no way of ensuring wh ether a given document 
is mounted on a device. Furthermore, there are some devices which operate 
without documents, e.g. the real-time dock. 

The name of an external process can be explicitly removed by a call of 
the monitor procedure: 
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remove process(name, result) 

It is also possible to implement an automatie removal of the process name 
when the monitor detects operator intervention in a device. At present, this 
is done only in connection with magnetic tapes (see Seetion 10.1). 

5.4 Replacement of External Processes 

The decision to control input/output by me ans of interrupt procedures 
within the monitor, instead of using dedicated internal processes for each 
kind of peripheral device, was made to obtain immediate initiation of in­
put/output after the sending of messages. In contrast the activation of an 
internal process merely implies that it is linked to the time slice queue; after 
activation several time slices can elapse before the internal process actually 
starts to execute instructions. 

The price paid for the present implementation of external processes is 
a prolongation of the time spent in the disabled mode within the monitor. 
This limits the system's ability to cope with real-time events, i.e. data that 
are lost unless they are input and processed within a certain time. 

An important consequence of the uniform handling of internal and ex­
ternal processes is that it allows us to replace any extern al process by an 
internal process of the same name; other processes that communicate with 
it are quite unaware of this replacement. 

Thus it is possible to improve the response time of the system by replacing 
a time-consuming extern al process, such as the paper tape reader, by a 
somewhat slower internal process, which executes privileged instructions in 
the enabled mode. 

This type of re placement also makes it possible to enforce more complex 
rules of access to a document. In the interests of security, for example, one 
might want to limit the access of an internal process to one of several files 
recorded on a particular magnetic tape. This can be ensured by an internal 
process that traps all messages to the tape and decides whether they should 
be passed on to it. 

As a final example let us consider the problem of debugging a process 
control system before it is connected to an industrial plant. A convenient 
way of doing this is to replace analog inputs with an internal process that 
simulates relevant values of actual measuring instruments. 

We conclude that the ability to replace any process in the system with 
another process is a very useful tool. This can now be seen as a practical 
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result of the general, but somewhat vague idea (expressed in Section 2.2) 
that internal and extern al processes are independent processes, which differ 
only in their processing capability. 

6 INTERN AL PROCESSES 

This chapter explains the creation and control of internal processes. The 
emphasis is on the hierarchal structuring of internal processes, which makes 
it possible to extend the system with new operating systems. The dynamic 
behaviour of the system is explained in terms of process states and the 
transition between these. 

6.1 Creation, Control, and Removal 

Internal processes are created on request from other internal processes by 
means of the monitor procedure: 

create internal process(name, parameters, result) 

The monitor initializes the process description of the new internal process 
with its name and storage area selected by the parent process. The storage 
area must be within the parent's own area. Also specified by the parent is 
a protection key, which must be set in all storage words of the child process 
before it is started. 

PARENT 
PROCESS 

CHILD 

PROCESS 

After creation the child process is simply a named storage area, which 
is described within the monitor. It has not yet been linked to the time slice 
queue. 
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The parent process can now load a program into the child process by 
means of an input operation. Following this the parent can initialize the 
registers of its child using the monitor procedure: 

modify internal process( name, registers, result) 

The register values are stored in the process description until the child pro­
cess is started. As a standard convention adopted by parent processes (but 
not enforced by the monitor), the registers inform the child about the pro­
cess descriptions of itself, its parent, and the typewriter console it can use 
for operator communication. 

Finally the parent can start program execution within the child by calling: 

start internal process( name, result) 

which sets the protection keys within the child and links it to the time slice 
queue. The child now shares time slices with other active processes including 
the parent. 

On request from a parent process, the monitor waits for the completion 
of all input/output initiated by a child process and stops it, i.e. removes it 
from the time slice queue: 

stop internal process(name, buffer, result) 

The meaning of the message buffer will be made clear in Section 6.3. 
In the stopped state a child process can be modified and started again, 

or it can be completely removed by the parent process: 

remove process (name, result) 

During removal, the monitor generates dummy answers to all messages sent 
to the child and releases all external processes used by it. Finally the protec­
tion keys are reset to the value used within the parent process. The parent 
can now use the storage area to create other child processes. 

6.2 Process Hierarchy 

The idea of the monitor has been described as the simulation of an environ­
ment in which program execution and input/output are handled uniformly as 
parallel, cooperating processes. A fundamental set of procedures allows the 
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dynamic creation and control of pro ces ses as weIl as communication among 
them. 

For a given installation we still need, as part of the system, programs 
that control strategies for operator communication, program scheduling, and 
resource allocation. But it is essential for the orderly growth of the systems 
that these operating systems be implemented as other programs. Since the 
difference between operating systems and production programs is one of 
jurisdiction only, this problem is solved by arranging the internal processes 
in a hierarchy in which parent processes have complete control over child 
processes. 

After initial loading the internal store contains the monitor and an in­
ternal process, s, which is the basic operating system. S can create parallel 
processes, a, b, c, etc., on re quest from consoles. These processes can in 
turn create other processes, d, e, f, etc. Thus while s acts as a primitive 
operating system for a, b, and c, these in turn act as operating systems for 
their children, d, e, f, etc. This is illustrated by the following figure, which 
shows a family tree of processes on the left and the corresponding storage 
allocation on the right: 

MONITOR 

A 0 

E 
S 

8 FE F 

C 

This family tree of processes can be extended to any level, subject only 
to a limitation of the total number or processes. At present the maximum 
number of internal processes is 23 including the basic operating system s. 
It must, however, be remembered that the storage protection system only 
provides mutual protection of 8 independent processes. When this number 
is exceeded, one must rely on some of the processes being error free. 
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In this multiprogramming system all privileged functions are imple­
mented in the monitor, which has no built-in strategy. Strategies can be 
introduced at the various higher levels, where each process has the power to 
control the scheduling and resource allocation of its own children. The only 

. rules enforced by the monitor are the following: a process can only allocate 
a subset of its own resources (induding storage) to its children; a process 
can only modify, start, stop, and remove its own children. 

The structure of the family tree is defined in the process descri ptions 
within the monitor. We emphasize that the only function of the tree is to 
define the basic rules of process control and resource allocation. Time slices 
are shared evenly among active processes regardless of their position in the 
hierarchy, and each process can communicate with all other processes. 

As regards the future development of operating systems, the most im­
portant characteristics can now be seen as the following: 

1. New operating systems can be implemented as other programs without 
modification of the monitor. In this connection we should mention that the 
Algol and Fortran languages for the RC 4000 contain facilities for calling 
the monitor and initiating parallel processes. Thus it is possible to write 
operating systems in high-Ievellanguages. 

2. Operating systems can be replaced dynamically, thus enabling an in­
stallation to switch among various mo des of operation; several operating 
systems can, in fact, be active simultaneously, 

3. Standard programs and user programs can be executed under different 
operating systems without modification; this is ensured by a standardization 
of communication between parents and children. 

6.3 Process States 

We are now in a position to define the possible states of an internal process 
as described within the monitor. An understanding of the transition from 
one state to the other is vital as a key to the dynamic behaviour of the 
system. 

An internal process is either running (executing instructions or ready to 
do so) or waiting (for an event outside the process). In the running state the 
process is linked to the time slice queue; in the waiting state it is temporarily 
removed from this queue. 

A process can either be waiting for a message, an answer, or an event, 
as explained in Chapter 4. 

Of a more complex nature are the situations in which a process is waiting 
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to be stopped or started by another process. In order to explain this we shall 
once more refer to the family tree shown in the previous section. 

Let us say that process b wants to stop its child f. The purpose of doing 
this is to ensure that all program execution and input/output within the 
storage area of process f is stopped. Since apart of the storage area has 
been allocated to children of f, it is obviously necessary to stop not only the 
child f but also all descendants of f. This is complicated by the fact that some 
of these descendants may already have been stopped by their own parents. 
In the present example process g may still be running, while process h may 
have been stopped by its parent f. Consequently the monitor should only 
stop processes fand g. 

Consider now the reverse situation, in which process b starts its child 
f again. Now the purpose is to reestablish the situation exactly as it was 
before process f was stopped. Thus the monitor must be very careful only to 
start those descendants of f that were stopped along with f. In our example 
the monitor must start processes fand g but not h. Otherwise we confuse f, 
which still relies on its child h being stopped. 

Obviously, then, the monitor must distinguish between processes that 
are stopped by their parents and by their ancestors. 

The possible states of an internal process are the following: 

running 
running after error 
waiting for message 
waiting for answer 
waiting for event 
waiting for start by parent 
waiting for stop by parent 
waiting for start by ancestor 
waiting for stop by ancestor 
waiting far process function 

A process is created in the state waiting for start by parent. When it is 
started, its state becomes running. The meaning of the state running after 
error is explained in Section 8.1. 

When a parent wants to stop a child, the state of the child is changed 
to waiting for stop by parent, and all running descendants of the child are 
described as waiting for stop by ancestor. At the same time these processes 
are removed from the time slice queue. 
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What remains to be done is to ensure that all input/output initiated by 
these processes is terminated. In order to control this each internal process 
description contains an integer called the stop count. The stop count is 
increased by one each time the internal process initiates input/output from 
an external process. On arrival of an answer from an extern al process, 
the monitor decreases the stop count by one and examines the state of the 
internal process. If the stop count becomes zero and the process is waiting 
for stop by parent (or ancestor) , its state is changed to waiting for start by 
parent (or ancestor). 

Only when all involved processes are waiting for start is the stop opera­
tion finished. This can last some time, and it may not be acceptable to the 
parent (being an operating system with many other duties) to be inactive 
for so long. For this reason the stop operation is split into two parts. The 
stop procedure: 

stop internal process(name, buffer, result) 

only initializes the stopping of a child and selects a message buffer for the 
parent. When the child and its running descendants are completely stopped, 
the monitor delivers an answer to the parent in this buffer. Thus the parent 
can use the procedures wait answer or wait event to wait for the completion 
of the stop. 

A process can be in any state when a stop is initiated. If it is waiting for 
a message, answer, or an event, its state will be changed to waiting for stop, 
as explained above, but at the same time its instruction counter is decreased 
by two in order that it can, repeat the call of wait message, wait answer, or 
wait event when it is started again. 

It should be noted that a process can receive messages and answers in 
its queue in any state. This ensures that a process does not loose contact 
with its surroundings while stopped. 

The meaning of the state waiting for process function is explained in 
Section 9.1. 

7 RESOURCE CONTROL 

This chapter describes a set of monitor rules that enables a parent process 
to control the allocation of resources to its children. 
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7.1 Introduction 

In the multiprogramming system the internal processes compete for the fol­
lowing limited resources: 

computing time 
storage and protection keys 
message buffers 
process descriptions 
peripheral devices 
backing storage 

Initially all resources are owned by the basic operating system s. As a 
basic principle enforced by the monitor a process can only allocate a subset 
of its own resources to a child process. These are returned to the parent 
process when the child is removed. 

7.2 Time Slice Scheduling 

All running processes are allocated time slices in a cyclical manner. Depend­
ing on the interrupt frequency of the hardware interval timer, the length of a 
time slice can vary between 1.6 and 1638.4 milliseconds. A reasonable time 
slice is 25.6 milliseconds; with shorter intervals the percentage of computing 
time consumed by timer interrupts grows drastically; with longer intervals 
the delay between activation and execution of an internal process increases. 

In practice internal processes often initiate input/output and wait for it 
in the middle of a time slice. This creates a scheduling problem when internal 
processes are activated by answers: Should the monitor link processes to the 
beginning or to the end of the time slice queue? The first possibility ensures 
that processes can use peripherals with maximum speed, but there is the 
danger that a process can monopolize computing time by communicating 
frequently with fast devices. The second choice prevents this, but introduces 
a delay in the time slice queue, which slows down peripherals. 

We have introduced a modified form of round-robin scheduling to solve 
this dilemma. As soon as a process is removed from the time slice queue, 
the monitor stores the actual value of the time quantum used by it. When 
the process is activated again, the monitor compares this quantum with the 
maximum time slice. As long as this limit is not exceeded, the process is 
linked to the beginning of the queue; otherwise it is linked to the end of the 
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queue and its time quantum is reset to zero. The same test is applied when 
the interval timer interrups an internal process. 

This scheduling attempts to share computing time evenly among active 
internal processes regardless of their position in the hierarchy. It permits 
a process to be activated immediately until it threatens to monopolize the 
central processor, only then is it pushed into the background to give other 
processes a chance. This is admittedly a built-in strategy at the microlevel. 
Parent processes can in fact only control the allocation of computing time 
to their children in larger portions (on the order of seconds) by means of the 
procedures start and stop internal process. 

For accounting purposes the monitor retains the following information 
for each internal process: the time at which the process was created and the 
sum of time quantums used by it; these quantities are denoted start time 
and run time. 

7.3 Storage Allocation and Protection 

An internal process can only create child processes within its own storage 
area. The monitor does not check whether storage areas of child processes 
overlap each other. This freedom can be used to implement time-sharing 
of a common storage area among several processes as described in Sections 
10.2 and 10.4. 

During creation of an internal process the parent must specify the values 
of the protection register and the protection key used by the child. In the 
protection register each bit corresponds to one of the eight possible protec­
tion keys; if a bit is zero the process can change or execute storage words 
with the corresponding key. 

The protection key is the key that is set in all storage words of the 
child process itself. A parent process can only allocate a subset of its own 
protection keys to a child. It has complete freedom to allocate identical or 
different keys to its children. The keys remain accessible to the parent after 
creation of a child. 

7.4 Message Buffers and Process Descriptions 

The monitor only has room for a finite number of message buffers and tables 
describing internal processes and the so-called area processes (files on the 
backing store used as external processes). A message buffer is selected when 
a message is sent to another process; it is released when the sending process 
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receives an answer. A process description is selected when an internal process 
creates another internal process or an area process, and released when the 
process is removed. 

Thus it is clear that message buffers and process descriptions only assurne 
an identity when they are actually used. As long as they are unused, they can 
be regarded as anonymous pools of resources. Consequently it is sufficient to 
specify the maximum number of each resource an internal process can use. 
These so-called buJJer claim, internal claim, and area claim are defined by 
the parent when a child process is created. The claims must be a subset of 
the parent's own claims, which are diminished accordingly, they are returned 
to the parent when the child is removed. 

The buffer claim defines the maximum number of messages an internal 
process can exchange simultaneously with other internal and extern al pro­
cesses. The internal claim limits the number of children an internal process 
can have at the same time. The area claim defines how many backing store 
areas an internal process can access simultaneously. 

The monitor decreases a claim by one each time a process actually uses 
one of its resources, and increases it by one when the resource is released 
again. Thus at any moment the claims define the number of resources that 
can still be used by the process. 

7.5 Peripheral Devices 

A distinction has been made between peripher al devices and external pro­
cesses. An external process is created when a name is assigned to a device. 

Thus it is also true of peripher al devices that they only assurne an identity 
when they are actually used for input/output. Indeed the whole idea of 
identification by name is to give the operator complete freedom in allocation 
of devices. It would therefore seem natural to control the allocation of devices 
to internal processes by a complete set of claims-one for each kind of device. 

In a system with remote peripherals, however, it is unrealistic to treat all 
devices of a given kind as a single, anonymous pool. An operating system 
must be able to force its children and their human operators to remain within 
a certain geographical configuration of devices. It should be noted that the 
concept of configuration must be defined in terms of physical devices and 
not in terms of external processes, since a parent generally speaking does 
not know in advance which documents its children are going to use. 

Configuration control is exercised as follows. From the point of view 
of other processes an internal process is identified by a name. Within the 
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monitor, however, an internal process can also be identified by a single bit 
in a machine word. The process descriptions of peripheral devices include a 
word in which each bit indicates whether the corresponding internal process 
is a potential user of the device. Another word indicates the current user that 
has reserved the device in order to obtain exclusive access to a document. 

Initially the basic operating system s is a potential user of all peripherals. 
A parent process can include or exclude a child as a user of any device, 
provided the parent is also a user of it: 

include user( child, device number, result) 
exclude user(child, device number, result) 

During removal of a child, the monitor excludes it as a user of all devices. 
All in all three conditions must be fulfilled before an internal process can 

initiate input/output: 

The device must be an external process with a unique name. 

The internal proeess must be a user of the device. 

The internal proeess must reserve the external proeess if it eontrols a 
sequential doeument. 

7.6 Privileged Functions 

Files on the baeking store are deseribed in a catalog, which is also kept on 
the backing store. Clearly there is a need to be able to prevent an internal 
proeess from reserving an excessive amount of spaee in the catalog or on the 
backing store as such. It seems difficult, however, to speeify a reasonable 
rule in the form of a claim that is defined onee and for all when a ehild 
proeess is created. The main diffieulty is that eatalog entries and data areas 
ean survive the removal of the proeess that ereated them; in other words 
baeking storage is a resource a parent process ean loose permanently by 
alloeating it to its children. 

As a half-hearted solution we have introdueed the eoneept of privileged 
monitor pmcedures. A parent proeess must supply eaeh of its ehildren with 
a junction mask, in which eaeh bit specifies whether the ehild is allowed 
to perform a eertain monitor funetion. The mask must be a subset of the 
parent's own mask. 

At present the privileged functions include all monitor proeedures that: 
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change the catalog on the backing store, 
create and remove names of peripheral devices, 
change the real-time dock. 

8 MONITOR FEATURES 

This chapter is a survey of specific monitor features such as internal interrup­
tion, the real-time dock, conversational access from consoles, and permanent 
storage of files on the backing store. Although these are not essential primi­
tive concepts, they are indispensable features of practical multiprogramming 
systems. 

8.1 Internal Interruption 

The monitor can assist internal processes with the detection of infrequent 
events such as violation of storage protection or arithmetic overflow. This 
causes an interruption of the internal process followed by a jump to an 
interrupt procedure within the process. 

The interrupt procedure is defined by calling the monitor procedure: 

set interrupt(interrupt address, interrupt mask) 

When an internal interrupt occurs, the monitor stores the values of reg­
isters at the head of the interrupt procedure and continues execution of the 
internal process in the body of the procedure: 

interrupt address: working registers 
instruction counter 
interrupt cause 
(execution continues here) 

The system distinguishes between the following causes of internal inter­
ruption: 

protection violation 
integer overflow 
floating-point overflow or underflow 
parameter error in monitor call 
breakpoint forced by parent 
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The interrupt mask specifies whether arithmetic overflow should cause 
internal interruption. Other kinds of internal interrupts cannot be masked 
off. 

If an internal process provokes an interrupt without having defined an 
interrupt procedure after its creation, the monitor removes the process from 
the time slice queue and changes its state to running after error. The process 
does not receive any more computing time in this state, but from the point 
of view of other processes it is still an existing process. The parent of the 
erroneous process can, however, reactivate it by means of stop and start. 

A parent can force a breakpoint in a child process as follows: first, stop 
the child; second, fetch the registers and interrupt address from the process 
description of the child and store the registers in the interrupt area together 
with the cause; third; modify the registers of the child to ensure that program 
execution continues in the interrupt procedure; fourth, start the child again. 

8.2 Real-Time Clock 

Real time is measured by means of a hardware interval timer, which counts 
modulo 16384 in units of 0.1 msec and interrupts the computer regularly 
(normally every 25.6 msec). 

The monitor uses this timer to update a programmed real-time clock of 
48 bits. This dock can be initialized and sensed by means of the procedures: 

set dock( dock) 
get dock( dock) 

The setting of the dock is a privileged function. A standard convention 
adopted by operating systems (but not enforced by the monitor) is to let the 
dock express the time interval elapsed since midnight 31 December 1967 in 
units of 0.1 msec. 

The interval timer is also used to implement an external process that 
permits the synchronization of internal processes with real time. All internal 
processes can send messages to this clock process. After the elapse of a time 
interval specified in the message, the dock process returns an answer to the 
sender. In order to avoid a heavy overhead time of dock administration, the 
dock process only ex amines its queue every second. 

8.3 Console Communication 

A multiprogramming system encourages a conversational mode of opera­
tion, in which users interact directly with internal processes from typewriter 
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consoles. The external processes for consoles clearly refiect this objective. 
Initially all program execution is ordered by human operators who com­

municate with the basic operating system. It would be very wasteful if the 
operating system had to examine all consoles regularly for possible operator 
requests. Therefore our first requirement is that consoles be able to activate 
internal processes by sending messages to them. Note that other external 
processes are only able to receive messages. 

Second, it must of course be possible for an internal process to open a 
conversation with any console. 

Third, a console should accept messages simultaneously from several in­
ternal processes. This will enable us to control more than one internal pro­
cess from the same console, which is valuable in a small installation. 

In short, consoles should be independent processes that can open conver­
sations with any internal process and vice versa. The console should assist 
the operator with the identification of the internal processes using it. 

An operator opens a conversation by depressing an interrupt key on the 
console. This causes the monitor to select a li ne buffer and connect it to 
the console. The operator must now identify the internal process to which 
his message is addressed. Following this he can input a message of one line, 
which is delivered in the queue of the receiving process. 

A message to the basic operating system s can, for example, look like 
this (the word in italics is output by the console process in response to the 
key interrupt): 

to s 
new pbh run 

An internal process opens a conversation with a console by sending a 
message to it. Before the input/output operation is initiated, the console 
identifies the internal process to the operator. This identification is sup­
pressed after the first of aseries of messages from the same process. 

In the following example internal processes a and b share the same console 
for input/output. Process identifications are in italics: 
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to a 
first input line to a 
second input line to a 
from b 
first output line from b 
second output line from b 
from a 
first output line from a 
etc. 

Note that these processes are unaware of their sharing the same console. 
From the point of view of internal processes the identification of user pro­
ces ses makes it irrelevant whether the system contains one or more consoles. 
(Of course one cannot expect operators to feel the same way about it). 

8.4 Files on Backing Store 

8.4.1 Introduction 

The monitor permits semi-permanent storage of files on a backing store 
consisting of one or more drums and disks. The monitor makes these appear 
as a single backing store with a number of segments of 256 words each. This 
logical backing store is organized as a collection of named data areas. Each 
area occupies a consecutive number of segments on a single backing store 
device. A fixed part of the backing store is reserved for a catalog describing 
the names and locations of data areas. 

Data areas are treated as external processes by the internal processes; 
input/output is initiated by sending messages to the areas specifying in­
put/output operations, storage areas, and relative segment numbers within 
the areas. The identification of a data area requires a catalog search. In 
order to reduce the number of searches, input/output must be preceded by 
an explicit creation of an area process description within the monitor. 

8.4.2 Catalog Entries 

The catalog is a fixed area on the backing store divided into a number of 
entries identified by unique names. Each entry is of fixed length and consists 
of a head, which identifies the entry, and a tail, which contains the rest of 
the information. The monitor distlnguishes between entries describing data 
areas on the backing store and entries describing other things. 
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An entry is created by calling the monitor procedure: 

create entry( name, tail, result) 

The first word of the tail defines the size of an area to be reserved and 
described in the entry; if the size is negative or zero, no area is reserved. 
The rest of the tail contains nine optional parameters, which can be selected 
freely by the internal process. 

Internal pro ces ses can look up, change, rename, or remove existing entries 
by means of the procedures: 

look up entry( name, tail, result) 
change entry( name, tail, result) 
rename entry(name, new name, result) 
remove entry(name, result) 

The catalog describes itself in an entry named catalog. 
The search for catalog entries is minimized by using a hashed value of 

names to define the first segment to be examined. Each segment contains 
15 entries; thus most catalog searches only require the input of a single 
segment unless the catalog is filled to the brim. The allocation of data areas 
is speeded up by keeping a bit table of available segments within the monitor. 
In practice the creation or modification of an entry therefore requires only 
the input and output of a single catalog segment. 

8.4.3 Catalog Protection 

Since many users share the backing store as a common data base, it is 
vital that they have a means of protecting their files gainst unintentional 
modification or complete removal. The protection system used is similar to 
the storage protection system: each catalog entry is supplied with a catalog 
key in its head; the rules of access within an internal process are defined by a 
catalog mask set by the parent of the internal process. Each bit in this mask 
corresponds to one of 24 possible catalog keys; if a bit is one, the internal 
process can modify or remove entries with the corresponding key; otherwise 
it can only look up these entries. A parent can only allocate a subset of 
its own catalog keys to a child process. Initially the basic operating system 
owns all keys. 

In order to prevent the catalog and the rest of the backing store from be­
ing filled with irrelevant data, the concept of temporary entry is introduced. 
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This is an entry that can be removed by another internal process as so on 
as the internal process that created the entry has been removed. Typical 
examples are working areas used during program compilation and data areas 
created, but not removed, by faulty programs. 

This concept is implemented as follows. After creation of an internal 
process, the monitor increases an integer creation number by one and stores 
it within the new process description. Each time an internal process creates 
a catalog entry, the monitor includes its creation number in the entry head 
indicating that it is temporary. Internal processes can at any time scan 
the catalog and remove all temporary entries provided the corresponding 
creators no longer exist within the monitor. Thus in accordance with our 
basic philosophy the monitor only provides the necessary mechanism for the 
handling of temporary entries, but leaves the actual strategy of removal to 
the hierarchy of processes. 

In order to ensure the survival of a catalog entry, an internal process 
must call the privileged monitor function: 

permanent entry(name, catalog key, result) 

to replace the creation number with a catalog key. A process can of course 
only set one of its own keys in the catalog; otherwise it might fill the catalog 
with highly protected entries, which could be difficult to detect and remove. 

8.4.3 Area Processes 

In order to be used for input/output a data area must be looked up in the 
catalog and described as an extern al process within the monitor: 

create area process( name, result) 

The area process is created with the same name as the catalog entry. 
Following this internal processes can send messages with the following 

format to the area process: 

message: input/output operation 
first storage address 
last storage address 
first relative segment 
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The reader is reminded that the tables used to describe area processes 
within the monitor are a limited resource, which is controlled by means of 
area claims defined by parent processes (Section 7.4). 

The backing store is a random access medium that serves as a common 
data base. In order to utilize this property fully internal processes should be 
able to input simultaneously from the same area (e.g. when several copies 
of the Algol compiler are executed in parallel). On the other hand access to 
an area should be exclusive during output, because its content is undefined 
from the point of view of other processes. 

Consequently we distinguish between internal processes that are poten­
tial users of an area process and the single process that may have reserved 
the area exclusively. This distinction was also made for peripher al devices 
(Section 5.2), but the rules of access are different here: An internal process 
is a user of an area after the creation of it. This enables the internal process 
to perform input as long as no other process reserves it. An internal pro­
cess can reserve an area process if its catalog mask permits modification of 
the corresponding catalog entry. After reservation the internal process can 
perform both input and output. 

Finally we should mention that the catalog is described permanently as 
an area process within the monitor. This enables internal processes to input 
and scan the catalog sequentially, for instance, during the detection and 
removal of temporary entries. Only the monitor itself, however, can perform 
output to the catalog. 

9 SYSTEM IMPLEMENTATION 

This chapter gives important details ab out the implement at ion as well as 
figures about the size and performance of the system. 

9.1 Interruptable Monitor Functions 

Some of the monitor functions are too long to be executed entirely in the dis­
abled mode, e.g. updating of the catalog on the backing store and creation, 
start, stop, and removal of processes. These so-called process junctions are 
called as other monitor procedures, but behind the scenes they are executed 
by an anonymous internal process, which only operates in disabled mode 
for short intervals while updating monitor tables, otherwise the anonymous 
process shares computing time with other internal processes. 

When an internal process calls a process function, the following takes 



Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 189 

place: the calling process is removed from the time slice queue and its state 
is changed to waiting fOT process function. At the same time the process 
description is linked to the event queue of the anonymous process that is 
activated. The anonymous process serves the calling processes one by one 
and returns them to the time slice queue after completion of each function. 

Process functions are interruptable like other internal processes. From 
the point of view of calling processes, however, process functions are indi­
visible, since (1) they are executed only by the anonymous process one at a 
time in their order of request, and (2) calling processes are delayed until the 
functions are completed. 

The following monitor procedures are implemented as interruptable func­
tions: 

9.2 Stopping Processes 

create entry 
look up entry 
change entry 
rename entry 
remove entry 
permanent entry 
create area process 
create peripher al process 
create interna! process 
start interna! process 
stop interna! process 
modify interna! process 
remove process 

According to theory an internal process cannot be stopped while in­
put/output is in progress within its storage area (Section 6.3). This re­
quirement is inevitable in the case of high-speed devices such as a drum 
or a magnetic tape station, which are beyond program control during in­
put/output. On the other hand it is not strictly necessary to enforce this 
for low-speed devices controlled by the monitor on a character-by-character 
basis. 

In practice the monitor handles the stop situation as follows: 
Before an extern al process initiates high-speed input/output, it examines 

the state of the sending process. If the sender is stopped (or waiting to be 
stopped), input/output is not initiated, but the external process immedi­
ately returns an answer with block length zero; the sender must then repeat 
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input/output after restart. If the sender is not stopped, its stop count is 
increased and input/output is initiated. Note that if the stop count was 
increased immediately after the sending of a message, the sending process 
could only be stopped after completion of all previous operations pending 
in the external queue. By increasing the stop count as late as possible, we 
ensure that high-speed peripherals at most prevent the stopping of internal 
processes during a single block transfer. 

Low-speed devices never increase the stop count. During output an exter­
nal process fetches one word at a time from the sending process and outputs 
it character by character regardless of whether the sender is stopped mean­
while. Before fetching a word the extern al process examines the state of the 
sender. If it is stopped (or waiting to be stopped), output is terminated by 
an answer defining the actual number of characters output; otherwise output 
continues. During input an external process examines the state of the sender 
after each character. If the sender is stopped (or waiting to be stopped), in­
put is terminated by an answer; otherwise the character is stored and input 
continues. Some devices, such as the typewriter, lose the last input character 
when stopped; others, such as the paper tape reader, do not. It can be seen 
that low-speed devices never delay the stopping of a process. 

9.3 System Size 

After initial system loading the monitor and the basic operating system s 
occupy a fixed part of the internal store. The size of a typical system is as 
follows: 
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words: 
monitor procedures: 2400 
code for external processes: 1150 

clock 50 
backing store 100 
typewriters 300 
paper tape readers 250 
paper tape punches 150 
line printers 100 
magnetic tape stations 200 

process descriptions and buffers: 1250 
15 peripheral devices 350 
20 area processes 200 

6 internal processes 200 
25 message buffers 300 

6 console buffers 200 
basic operating system s 1400 

total system 6200 

It should be noted that the 6 internal processes include the anonymous 
process and the basic operating system, thus leaving room for 4 user pro­
cesses. As a minimum the standard programs (editor, assembler, and com­
pilers) require an internal process of 5-6000 words for their execution. This 
means that a 16 k store can only hold the system plus 1-2 standard pro­
grams, while a 32 k store enables parallel execution of 4 such programs. A 
small store can of course hold more programs, if these are written in machine 
code and executed without the assistance of standard programs. 

9.4 System Performance 

The following execution times of monitor procedures are conservative esti­
mates based on a manual count of instructions. The reader should keep in 
mind that the basic instruction execution time of the RC 4000 computer is 
4 J-Lsec. A complete conversation between two internal processes takes about 
2 milliseconds distributed as follows: 

msec 
send message 0.6 
wait answer 0.4 
wait message 0.4 
send answer 0.6 



192 PER BRINCH HANSEN 

It can be seen that one internal process can activate another internal 
process in 0.6 msec, this is also approximately the time required to activate 
an external process. An analysis shows that the 2 msec required by an 
internal communication are used as follows: 

percent 
validity checking 25 
process activation 45 
message buffering 30 

This distribution is so even that one cannot hope to speed up the system 
by introducing additional, ad hoc machine instructions. The only realistic 
solution is to make the hardware faster. 

The maximum time spent in the disabled mode within the monitor limits 
the system's response to real-time events. The monitor procedures them­
selves are only disabled for 0.2-1 msec. The situation is worse in the case of 
interrupt procedures that handle low-speed devices with hardware buffers, 
because the monitor empties or fills such buffers in the disabled mode after 
each interrupt. For the paper tape reader (fiexowriter input) and the line 
printer, the worst-case figures are: 

empty reader buffer (256 characters) 
fill printer buffer (170 characters) 

20 msec 
7 msec 

It should be noted, however, that these buffers normally only contain 64-
70 characters corresponding to 4-5 msec. The worst-case situations can be 
remedied either by using sm aller input/output areas within internal pro­
cesses, or by replacing these extern al processes with dedicated internal pro­
ces ses (Section 5.4). 

Finally we shalllook at the interruptable monitor functions. An internal 
process of 5000 words can be created and controlled by a parent process with 
the following speed: 

msec 
create internal process 3 
modify internal process 2 
start internal process 26 
stop internal process 4 
remove internal process 30 
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Most of the time required to start and remove an internal process is used to 
set storage protections keys. 

Assuming that the backing store is a drum with a transfer time of 15 
msec per segment, the catalog can be accessed with the following speed: 

msec 
create entry 38 
look up entry 20 
change entry 38 
rename entry 85 
remove entry 38 
permanent entry 38 

The execution time of process functions should be taken with some reser­
vations. First it must be remembered that process functions, like other in­
ternal processes, can be delayed for some time before they receive a time 
slice. In practice process functions will be activated immediately as long 
as they have not used a complete time slice (Section 7.2). Second one must 
take into consideration the fact that process function calls are queued within 
the monitor. Thus when a process wants to stop another process, the worst 
thing that can happen is that the anonymous process is engaged in updating 
the catalog. In this situation the stop is not initiated before the catalog has 
been updated. One also has to keep in mind that process functions share the 
drum or disk with other processes, and must wait for the completion of all 
input/output operations that preceed their own in the drum or disk queue. 
The execution times given here assurne that process functions and catalog 
input/output are initiated instantly. 

9.5 System Tape 

The first version of the multiprogramming system consists of the monitor, 
the basic operating system s, and a program for initializing the catalog. 
It is programmed in the Slang 3 language. Before assembly the system is 
edited to include process descriptions of the peripheral devices connected to 
a particular installation and to define the following options: 
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number of storage bytes 
number of internal processes 
number of area processes 
number of message buffers 
number of console buffers 
maximum time slice 
inclusion of code for external processes 
backing store configuration 
size of catalog 

The system is delivered in the form of a binary paper tape, which can 
autoload and initialize itself. After loading the system starts the basic op­
erating system. Initially the operating system executes a program that can 
initialize the backing store with catalog entries and binary Slang programs 
input from paper tape. When this has been done, the operating system is 
ready to accept operator commands from consoles. 

10 SYSTEM POSSIBILITIES 

The strength of the monitor is the generality of its basic concepts, its weak­
ness that it must be supported by operating systems to obtain realistic mul­
tiprogramming. We believe that the ultimate limits to the use of the system 
will depend on the imagination of designers of future operating systems. The 
purpose of this chapter is to stimulate creative thinking by pointing out a 
few of the possibilities inherent in the system. 

10.1 Identification of Documents 

In tape-oriented installations, operating systems should assist the operator 
with automatie identifieation of magnetic tapes. At present the external 
process eoneept gives the operator eomplete freedom to mount a magnetic 
tape on any station and identify it by name. When a tape station is set in 
the loeal mode, the monitor immediately removes its name to indicate that 
the operator has interfered with it. The station gives an interrupt when 
the operator returns it to the remote mode. Thus the monitor distinguishes 
between three states of a tape station: 

document removed (after intervention) 
unidentified document mounted (after remote interruption) 
identified doeument mounted (after process ereation) 
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It is a simple matter to introduce a watch-dog process in the monitor, 
to which internal processes can send messages in order to receive answers 
each time an unidentified tape is mounted somewhere. After reception of an 
answer, an internal process can give the actual station a temporary name, 
identify the tape by reading its label, and re name it accordingly. 

Automatie identification requires general aggreement on the format of 
tape labels, at least to the extent of assigning a standard position to the 
names of tapes. 

10.2 Temporary Removal of Programs 

We have not imposed any restrictions on individual programs with respect to 
their demand for storage, run time, and peripherals. It is taken for granted 
that some programs will need most of the system resources for several hours. 
Such large programs must not, however, prevent other users from obtaining 
immediate access to the machine in order to execute more urgent programs 
of short duration. Thus the system must permit temporary removal of a 
program in order to make its storage area and peripherals available for other 
programs. One example, where this is absolutely necessary, is the periodic 
supervision of areal-time process combined with the execution of large back­
ground programs in idle intervals. 

A program can be removed temporarily by stopping the corresponding 
internal process and dumping its storage area on the backing store by an 
output operation. Note that this dump automatically includes all children 
and descendants created within the area. The monitor is only aware of the 
process being stopped; it is still described within the monitor and can receive 
messages from other processes. 

It is now possible to create and start other processes in the same storage 
area, since the monitor does not check whether internal processes overlap 
each other as long as they remain within their parent processes. Peripherals 
can also be taken from the dumped process and assigned to others simply 
by mounting new documents and renaming the peripherals. 

Temporary removal makes sense only if it is possible to restart a program 
at a later stage. This requires reloading the program into its original storage 
area as well as mounting and repositioning of its documents. After rest art 
the internal process can detect interference with its documents in one of two 
ways: either it finds that a document does not exist any more, whereupon it 
must ask the operator to mount and name it; or it discovers that an existing 
document no longer is reserved by it, meaning that the operator has mounted 
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it, but that it needs to be repositioned. These cases are indicated by the 
result parameter after a call of wait answer. 

The need for repositioning can also arise during normal program exe­
cution, if the operator interferes with a peripheral device (by mistake or in 
order to move a document to a more reliable device). Consequently all major 
programs should consider each input/output operation as a potential restart 
situation. 

10.3 Batch Processing 

In the design of a batch processing system the distinction between parent and 
child processes prevents the batch of programs from destroying the operating 
system. Note that in general an operating system must remove a child 
process (and not merely stop it) to ensure that all its resources are released 
again (Section 7.4). Even then, it must be remembered that messages sent 
by a child to other processes remain in their queues until these processes 
either answer them or are removed (Section 4.4). 

The multiprogramming capabilities can be utilized to accept job requests 
in a conversational mode during execution of the bateh. Thus a batch process­
ing system can include facilities for remote job entry combined with priority 
scheduling of programs. 

10.4 Time-Sharing 

The basic requirement of a time-sharing system, in which a large number of 
users have conversational access to the system from consoles, is the ability 
to swap programs between the internal store and the backing store. A time­
sharing operating system must create an internal process for each user, and 
make these processes share the same storage area by frequent removal and 
restart of programs (say, every few seconds). The problem is that stopping a 
process temporarily also means stopping its communication with peripherals. 
Thus in order to keep typewriter input/output alive while a user process is 
dumped, the system must include an internal process that buffers all data 
between programs and consoles. 

10.5 Real-Time Scheduling 

We conclude these hints with an example of a real-time system. The appli­
cation we have in mi nd is a process contral system, in which a nu mb er of 
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programs must perform data logging, alarm scanning, trend logging, and so 
forth periodically under the real-time control of an operating system. 

This can be organized as follows: initially all task programs send mes­
sages to the operating system and wait for answers. The operating system 
communicates with the dock process and is activated every second in order 
to scan a time table of programs. If the real time exceeds the start time of 
a task program, the operating system activates the program by an answer. 
After completion of its task, the program again sends a message to the op­
erating system and waits for the answer. In response the operating system 
increases the start time of the program by the period between two successive 
executions of the task. 
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One of the primary functions of an operating system is to rebuild a machine 

that must be regarded as non-deterministic (on account of cycle stealing and 

interrupts) into a more or less deterministic automaton. Taming the degree 

of indeterminacy in steps will lead to a layered operating system. A bottom 

layer will be discussed and so will the adequacy of the interface it presents. An 

analysis of the requirements of the correctness proofs will give us an insight 

into the logical issues at hand. A "director-secretary" relationship will be 

introduced to reftect a possible discipline in the use of sequencing primitives. 

The processing unit of a working computer performs in a short period of 
time a sequence of millions of instructions and as far as the processing unit 
is concerned this sequence is extremely monotonous: it just performs in­
structions one after the other. And if we dare to interpret the output, if we 
dare to regard the whole happening as "meaningful", we do so because we 
have mentally grouped sequences of instructions in such a way that we can 
distinguish a structure in the whole happening. Similar considerations apply 
to the store: high speed stores contain typically millions of bits stored in a 
monotonous sequence of consecutively numbered but otherwise equivalent 
storage locations. And again, if we dare to attach a meaning to such a vast 
amount of bits, we can only do so by grouping them in such a way that we 
can distinguish some sort of structure in the vast amount of information. 

E. W. Dijkstra, Hierarchical ordering of sequential processes. Acta Informatica 1, 2 (Oc­
tober 1971),115-138. Copyright © 1971, Springer-Verlag. Reprinted by permission. 
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In both cases the structure is our invention and not an inherent property 
of the equipment: with respect to the structure mentioned the equipment 
itself is absolutely neutral. It might even be argued that this "neutrality" 
is vital for its fiexibility. On the other hand, it then follows that it is the 
programmer's obligation to structure "what is happening where" in a useful 
way. It is with this obligation that we shall concern ourselves. And it is in 
view of this obligation that we intend to start with a rat her machine-bound, 
historical introduction: this gives us the unordered environment in which we 
have to create order, to invent structure adequate for our purposes. 

In the very old days, machines were strictly sequential, they were con­
trolled by wh at was called "a program" but could be called very adequately 
"a sequential program" . Characteristic for such machines is that when the 
same program is executed twice-with the same input data, if any-both 
times the same sequence of actions will be evoked. In particular: transport 
of information to or from peripherals was performed as a program-controlled 
activity of the central processor. 

With the advent of higher electronic speeds the discrepancy in speed 
between the central processor on the one hand and the peripher al devices on 
the other became more pronounced. As a result there came for instance a 
strong economic pressure to arrange matters in such a way that two or more 
peripherals could be running simultaneously. 

In the old arrangement one could write a program reading information 
from a paper tape, say at a maximum speed of 50 char/sec. In that case 
the progress through that piece of program would be synchronized with the 
actual movement of the paper tape through the reader. Similarly one could 
write a program punching a paper tape, say at a maximum speed of 30 
char/sec. To have both peripherals running simultaneously and also closely 
to their maximum speed would require a tricky piece of program specifically 
designed for this mixt ure of activities. This was clearly too unattractive and 
other technical solutions have been found. Channels were invented; a channel 
is a piece of hardware dedicated to the task of regulating the information 
trafiic between the store and the peripheral to which it is attached, and doing 
this synchronized to the natural speed of the peripheral device, thus doing 
away with the implicit mutual synchronization of the peripheral devices that 
would be caused if both were controlled by the same sequential program 
execution. 

The introduction of channels created two problems, a microscopic and 
a macroscopic one. The microscopic problem has to do with access to the 
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store. In the old arrangement only the central processor required access to 
the store and when the central processor required access to the store it could 
get it. In the new arrangement, with the channels added-channels that 
can be regarded as "special purpose processors" -a number of processors 
can be competing with each other as regards access to the store because 
such accesses from different processors very often exclude each other in time 
(for technicalor local reasons). This microscopic problem has been solved 
by the invention of the "switch", granting the competing processors access 
to the store according to some priority rule. Usually the channels have a 
lower trafik density and a higher priority than the central processor: the 
processor works at full speed until a channel requests access to the store, an 
arrangement wh ich is called "cycle stealing". We draw attention to the fact 
that the unit of information in which this interleaving takes place-usually 
"a word" -is somewhat arbitrary; in a few moments we shall encounter a 
similar arbitrariness. 

The macroscopic problem has to do with the coordination of central pro­
cessor activity and channel activity. The central processor issues a command 
to a channel and from that moment onwards, two activities are going on si­
multaneously and-macroscopically speaking-independent of each other: 
the central processor goes on computing and the channel transports infor­
mation. How does the central processor discover, when the execution of the 
channel command has been completed? The answer to this has been the 
"interrupt". Upon completion of a channel command the channel sets an 
interrupt flip-flop; at the earliest convenient moment (but never sooner than 
after completion of the current instruction) the central processor interrupts 
the execution of the current program (in such a neat way that the inter­
rupted computation can be resumed at a later moment as if not hing had 
happened) and starts executing an interrupt program instead, under control 
of which all now appropriate actions will be taken. From the point of view 
of the central processor it interleaves the various program executions, the 
unit of interleaving being-similarly arbitrarily-"the instruction". 

The above scheme can be recognized in all larger, modern computers 
that I have studied. It has been embellished in many directions but we 
don't need to consider those embellishments now. We go immediately to the 
next questions: given a piece of equipment constructed along the lines just 
sketched, wh at are the problems when we try to use it and in what direction 
should we look for their solution? 

What are the problems? Well the main point is that from the point 
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of view of program control such a piece of equipment must be regarded as 
a non-deterministic machine. Measured in a grain of time appropriate for 
the description of the activity of the central processing unit-clockpulse or 
instruction execution time-the time taken by a peripheral transport must 
be regarded as undefined. If completion of such a peripheral is signalled to 
the central processor by me ans of an interrupt, this means that we must 
regard the moment when the interrupt will take pI ace (or more precisely: 
the point of progress where the computation will be interrupted) as unpre­
dictable. The problem is that in spite of this indeterminacy of the basic 
hardware, we must make a more or less deterministic automaton out of this 
equipment: from the outside world the machine will be confronted with a 
well-defined computational task and it has to produce a well-defined result 
in a microscopically unpredictable way! 

Let me give a simple example to explain what I mean by "a more or less 
deterministic automaton" . Suppose that offering a program to the machine 
consists of loading a pack of cards into a card reader (and pushing some 
button on the reader in order to signal that it has been loaded). Suppose 
now that we have a machine with two readers and that we want to load it 
with two programs, A and B, and that we can do this by loading both card 
readers and pressing both buttons. We assume that the two card readers are 
not mutually synchronized, i.e. we regard both speeds as unpredictable. To 
what extent will the total configuration be a deterministic automaton? It 
will be fully deterministic in the sense that eventually it will produce both 
output A and output B. If these outputs are to be produced by the same 
printer, they will be produced in some order and the system may be such 
that the order in which the respective outputs appear on the printer does 

depend on the relative speeds of the two readers. As far as the operator 
is concerned, who has to take the output from the printer and to dispatch 
it to the customers, the installation is non-deterministic; what he has to 
do depends on the unpredictable speed ratio of the two readers, which may 
cause output A to precede or to follow output B. For both cases the operator 
has his instructions such that in both cases all output is dispatched to the 
proper customer. The "computation centre" -i.e. installation and operator 
together-are deterministic. We can regard the operator's activity as an 
outer layer, "wrapping up the installation", shielding from the outside world 
a level of interior indeterminacy. 

Now, even if the operator is aware of not having a fully deterministic 
machine, we should recognize that he has only to deal with two cases-
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output A before output B or the other way round-while the number of 
possible sequences of occurrences at cycle time level is quite fantastic. In 
other words, by far the major part of the "shielding of indeterminacy" is 
done by the installation itself. We call the resulting installation "more or 
less deterministic" because as the case may be, a few degrees of limited 
freedom-here one Boolean degree of freedom-may be left unpredictable. 

We have called the operator's activity "an outer layer", shielding a level 
of indeterminacy, and of course we did so on purpose. At the other end we 
may distinguish an inner layer, viz. in the channel signalling (via an interrupt 
signal) that the next card has been read: it teIls the central processor that 
the next card image is available in core, regardless which storage cycles have 
been stolen to get it there. The terms "inner layer" and "out er layer" have 
been chosen in order to suggest that in the total organization we shall be 
able to distinguish many layers in between. But an important remark is 
immediately appropriate: I assume that with the card read command an 
area in core has been designated to receive this card image: the remark that 
the interrupt signalled the completed transfer of the card image irrespective 
of which cycles had been stolen to transport its constituents is only true, 
provided that no other access to the designated co re area took place in the 
period of time ranging from the moment the command was given up to the 
moment that the completion was signalled! Obvious but vital. 

It draws our attention to an element of structure that must be displayed 
by the remaining programs if we wish to make the total organization insen­
sitive to the exact identity of the cycles stolen by the channel. And from 
the above it is clear that this insensitivity must be one of our dearest goals. 
And on next levels (of software) we shall have to invent similar elements 
of structure, making the total organization insensitive (or "as insensitive as 
possible") to the exact moment when interrupts are honoured. Again it is 
clear that this must be one of our dearest goals. And on a next level we 
must make our organization insensitive (or "as insensitive as possible") to 
the exact number of cards put into the readers for program A and B, and so 
on .... This "layered insensitivity" is, in two words, our grand plan. 

I have used the term "layer" on purpose, because it has seemed to pro­
vide an attractive terminology in terms of which to talk about operating 
systems and their total task. We can regard an operating system as the 
basic software that "rebuilds" a given piece of hardware into a (hopefully) 
more attractive machine. An operating system can then be regarded as a 
sequence of layers, built on top of each other and each of them implementing 



HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 203 

a given "improvement". Before going on, let me digress for a moment and 
try to explain why I consider such an approach of ordered layers a fruitful 
one. 

There is an alternative approach, which I would like to call the approach 
via unordered modules. There one makes a long list of all the functions of the 
operating system to be performed, for each function a module is programmed 
and finally all these modules are glued together in the fervent hope that they 
will cooperate correctly and will not interfere disastrously with each other's 
activity. It is such an approach which has given rise to the assumed law 
of nature, that complexity grows as the square of the number of program 
components, i.e. of the number of "functions". 

In the layered approach we start at the bottom side with a given hardware 
machine Ao, we add our bottom layer of software rebuilding Ao into the 
slightly more attractive machine Al, for which the next layer of software is 
programmed rebuilding it into the still more attractive machine A2 etc. As 
the machines in the sequence Ao, Al, A2, ••. get more and more attractive, 
adding a further layer gets easier and easier. This is in sharp contrast to the 
approach via unordered modules, where adding new functions seems to get 
progressively worse! 

1. So much in favour of a layered approach in general. When one wishes 
to design an operating system, however, one is immediately faced with the 
burning question, which "improvement" is the most suitable candidate to be 
implemented in the bottom layer. 

For the purpose of this discussion I will choose a very modest bot tom 
layer. I do so for two reasons. Firstly, it is a choice with which for historical 
reasons I myself am most familiar. Secondly, as a bot tom layer it is very 
modest and neutral, so neutral in fact that it provides us with amental 
platform from where we can discuss various alternatives for the structure of 
what is going to be built on top of it. As a bottom layer it seems dose to the 
choice of minimal commitment. The fact that this bottom layer is chosen as 
a starting point for our discussion is by no means to be interpreted as the 
suggestion that this is the best possible choice: on the contrary, one of the 
later purposes of this discussion is the consideration of alternatives. 

With the hardware taking care of the cyde stealing we feIt that the soft­
ware's first responsibility was to take care of the interrupts, or, to put it 
a little more strongly, to do away with the interrupt, to abstract from its 
existence. (Besides all rational arguments this decision was also inspired by 
fear based on the earlier experience that, due to the irreproducibility of the 
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interrupt moments, a program bug could present itself misleadingly like an 
incidental machine malfunctioning.) What does it mean "to do away with 
the interrupt"? WeIl, without the interrupt the central processor continues 
the execution of the current sequential process while it is the function of 
the interrupt to make the central processor available for the continuation 
of another sequential process. We would not need interrupt signals if each 
sequential process had its own dedicated processor. And here the function 
of the bottom layer emerged: to create a virtual machine, able to execute a 
number of sequential programs in parallel as if each sequential program had 
its own private processor. The bottom layer has to abstract of the existence 
of the interrupt or, wh at amounts to the same thing, it has to abstract from 
the identity of the single hardware processor. If this abstraction is carried 
out rigorously it implies that everything built on top of this bottom layer 
will be equally applicable to a multiprocessor installation, provided that all 
processors are logically equivalent (i.e. have the same access to main mem­
ory etc.). The remaining part of the operating system and user programs 
together then emerges as a set of harmoniously cooperating sequential pro­
cesses. 

The fact that these sequential processes out of the family have to coop­
erate harmoniously implies that they must have the me ans of doing so; in 
particular, they must be able to communicate with each other and they must 
be able to synchronize their activities with respect to each other. For rea­
sons which, in retrospect, are not very convincing, we have separated these 
two obligations. The argument was that we wished to keep the bottom layer 
as modest as possible, giving it only the duty of processor allocation; in 
particular it would leave the "neutral, monotonous memory" as it stood; 
it would not rebuild that part of the machine, and immediately above the 
bottom layer the processes could communicate with each other via the still 
available, commonly accessible memory. 

The mutual synchronization, however, is a point of concern. Closely 
related to this is the question: given the bottom layer, what will be known 
about the speed ratios with which the different sequential processes progress? 
Again we have made the most modest assumption we could think of, viz. that 
they would proceed with speed ratios, unknown but for the fact that the 
speed ratios would differ from zero; i.e. each process (when logically allowed 
to proceed, see below) is guaranteed to proceed with so me unknown, but 
finite speed. In actual fact we can say more about the way in which the 
bottom layer grants processor time to the various candidates: it does it 
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"fairly" in the sense that in the long run a number of identical processes will 
proceed at the same macroscopic speed. But we don't tell, how "long" this 
run is and the said fairness has hardly a logical function. 

This assumption about the relative speeds is a very "thin" one, but as 
such it has great advantages. From the point of view of the bottom layer, we 
remark that it is easy to implement: to prevent a running program from mo­
nopolizing the processor an interrupting clock is all that is necessary. From 
the point of view of the structure built on top of it is also extremely attrac­
tive: the absence of any knowledge about speed ratios forces the designer to 
code all synchronization measures explicitly. When he has done so he has 
made a system that is very robust in more than one sense. 

Firstly he has made a system that will continue to operate correctly when 
an actual change in speed ratios is caused, and this may happen in a variety 
of ways. The actual strategy for processor allocation as implemented by the 
bottom layer, may be changed. In a multiprocessor installation the number 
of active processors may change. A peripheral may temporarily work with 
speed zero, e.g. when it requires operator attention. In our case the original 
line printer was actually replaced by a faster model. But under all those 
changes the system will continue to operate correctly (although perhaps not 
optimally, but that is quite another matter). 

Secondly-and we shall return to this in greater detail-the system is 
robust thanks to the relative simplicity of the arguments that can convince 
us of its proper operation. Nothing being guaranteed about speed ratios 
means that in our understanding of the structure built on top of the bottom 
layer we have to rely on discrete reasoning and there will be no place for 
analog arguments, for other purposes than overall justification of chosen 
strategies. I trust that the strength of this remark will become apparent as 
we proceed. 

2. Let us now focus our attention upon the synchronization. Here a key 
problem is the so-called "mutual exclusion problem". Given a number of 
cyclic processes of the form 

cycle begin entry; 

end 

critical section; 
exit; 
remainder of cycle 

program entry and exi t in such a way that at any moment at most one of 
the processes is engaged in its critical section. The solution must satisfy the 
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following requirements: 

(a) The solution must be symmetrical between the processes; as a result 
we are not allowed to introduce a static priority. 

(b) Nothing may be assumed about the ratio of the finite speeds of the 
processes; we may not even assume their speeds to be constant in 
time. 

(c) If any of the processes is stopped somewhere in remainder of cycle, 
this is not allowed to lead to potential blocking of any of the others. 

(d) If more than one process is about to enter its critical section, it must 
be impossible to devise for them such finite speeds, that the decision to 
determine which of them will enter its critical section first is postponed 
until eternity. In other words, constructions in which "After you"­
"After you" -blocking, although improbable, is still possible, are not 
to be regarded as valid solutions. 

I called the mutual exclusion problem "a key problem". We have met 
something similar in the situation of programs A and B producing their out­
put in one of the two possible orders via the same printer: obviously those 
two printing processes have to exclude each other mutually in time. But this 
is a mutual exclusion on a rather macroscopic scale and in all probability 
it is not acceptable that the decision to grant the printer to either one of 
the two activities will be taken on decount of the requirement of mutual 
exclusion alone: in all probability considerations of efficiency or of smooth­
ness of service require a more sophisticated printer granting strategy. The 
explanation why mutual exclusion must be regarded as a key problem must 
be found at the microseopie end of the scale. The switch granting access to 
store on word basis provides a built in mutual exclusion, but only on a small, 
fixed and rat her arbitrary scale. The same applies to the single processor 
installation which can honour interrupts in between single instructions: this 
is a rather arbitrary grain of activity. The problem arises when more compli­
cated operations on common data have to take place. Suppose that we want 
to count the number of times something has happened in a family of parallel 
processes. Each time such an occurrence has taken place, the program could 
try to count it via 

n:= n+l 
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If in actual fact such a statement is coded by three instructions 

R:= n; 
R:= R+1; 
n:= R 

then one of the increases may get lost when two such sequences are executed, 
interleaved on single instruction basis. The des ire to compound such (and 
more complicated) operators on common variables is equivalent to the desire 
to have more explicit control over the degree of interleaving than provided 
by the neutral, standard hardware. This more explicit control is provided 
by a solution to the mutual exclusion problem. 

We still have to solve it. Our solution depends criticaHy on the communi­
cation facilities available between the individual processes and the common 
store. We can assume that the only mutual exclusion provided by the hard­
ware is to exclude a write instruction or a read instruction, writing or reading 
a single word. Under that assumption the problem has been solved for two 
processes by T. J. Dekker in the early sixties. It has been solved by me 
for N processes in 1965 (CACM 8, 9 (1965), p.569). The solution for two 
processes was complicated, the solution for N processes was terribly compli­
cated. (The program pieces for enter and exi t are quite small, but they 
are by far the most difficult pieces of program I ever made. The solution is 
only of historical interest.) 

It has been suggested that the problem could be solved when the indi­
vidual processes had at their disposal an indivisible "add to store" which 
would leave the value thus created in one of the private process registers as 
weH, so that this value is available for inspection if so desired. Indicating this 
indivisible operation with braces the suggested form of the parallel programs 
was: 

cycle begin while {x:= x+1} <> 1 do {x:= x-1}; 
critical section; 
{x:= x-1}; 
remainder of cycle 

end 

Where the "add to store" operation is performed on the common variable 
x which is initialized with the value zero before the parallel programs are 
started. 

As far as a single process is concerned the cumulative ~x (h''l affected by 
this process since its start is = 0 or = 1; in particular, when a process is in 
its critical section its cumulative ~x = 1. As a result we conclude that at 
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any moment when N processes are in their critical section simultaneously, 
x 2': N will hold. 

A necessary and sufficient condition for entering a critical section is that 
this process effectuates for x the transition from 0 to 1. As long as one process 
is engaged in its critical section (N = 1), x 2': 1 will hold. This excludes the 
possibility of the transition from 0 to 1 taking place and therefore no other 
process can enter its critical section. We conclude that mutual exclusion is 
indeed guaranteed. Yet the solution must be rejected: it is not difficult to 
see that even with two processes (after at least one successful execution of 
a critical section) "After you"-"After you"-blocking may occur (with the 
value of x oscillating between 1 and 2). 

A correct solution exists when we ass urne the existence of an indivisible 
operation, swap which causes a commonvariable (x) and a private variable 
(loe) to exchange their values. With initially x = 0 the structure of the 
parallel programs is: 

begin integer loe; loe:= 1; 
eyele begin repeat swap(x, loe) until loe 0; 

eritieal seetion; 
swap(x, loe); 
remainder of eyele 

end 
end 

The invariant relation is that of the N+l variables (i.e. the N loe's and the 
single x) always exactly one will be = 0, the others being = 1. A process is 
in its critical section if and only if its own loe = 0, as a result at most one 
process can be engaged in its critical section. When none of the processes 
is in its critical section, x = 0 and "After you" -" After you" -blocking is 
impossible. So this is a correct solution. 

In a multiprogramming environment, however, the correct solutions re­
ferred to or shown have a great drawback: the program section called enter 
contains a loop in which the process will cycle when it cannot enter its crit­
ical section. This so-called "busy form of waiting" is expensive in terms of 
processing power, because in a multiprogramming environment (with more 
parallel processes than processing units) there is a fair chance that there will 
be a more productive way of spending processing power than giving it to 
a process that, to all intents and purposes, could go to sleep for the time 
being. 

If we want to do away with the busy form of waiting we need some sort of 
synchronizing primitives by means of which we can indicate those program 
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points where~depending on the circumstances~a process may be put to 
sleep. Similarly we must be able to indicate that potential sleepers may 
have to be woken up. What form of primitives? 

Suppose that process 1 is in its critical section and that process 2 will be 
the next one to enter it. Now there are two possible cases. 

(a) process 1 will have done exi t before process 2 has tried to enter; in 
that case no sleeping occurs 

(b) process 2 tries to enter before process 1 has done exi t; in that case 
process 2 has to go to sleep temporarily until it is woken up as a side­
effect of the exi t done by process 1. 

When both occurrences have taken place, i.e. when process 2 has suc­
cessfully entered its critical section it is no longer material whether we had 
case (a) or case (b). In that sense we are looking for primitives (for enter 
and exi t) that are commutative. What are the simplest commutative oper­
ations on common variables that we can think of? The simplest operation 
is inversion of a common Boolean, but that is too simple for our purpose: 
then we have only one operation at our disposal and lack the possibility of 
distinguishing between enter and exi t. The next simplest commutative 
operations are addition to (and subtraction from) a common integer. Fur­
thermore we observe that enter and exi t have to compensate each other: if 
only the first process passes its critical section the common state before its 
enter equals the common state after its exi t as far as the mutual exclusion 
is concerned. The simplest set of operations we can think of are increas­
ing and decreasing a common variable by 1 and we introduce the special 
synchronizing primitives 

pes): s:=s-1 

and 

V(s): s:=s+1 

special in the sense that they are "indivisible" operations: if a number of P 
and V-operations on the same common variable are performed "simultane­
ously" the net effect of them is as if the increases and decreases are done "in 
so me order" . 

Now we are very elose to a solution: we have still to decide how we wish 
to characterize that a process may go to sleep. We can do this by making 
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the P- and V-operations operate not on just a common variable, but on a 
special pur pose integer variable, a so-called semaphore, whose value is by 
definition non-negative, i.e. s :2 o. 

With that restriction, the V-operation can always be performed: unsyn­
chronized execution of the P-operation, however, could violate it. 

We therefore postulate that whenever a process initiates a P-operation 
on a semaphore whose current value equals zero, the process in question will 
go to sleep until (another) process has performed a V-operation on that very 
same semaphore. A little bit more precise: if a semaphore value equals zero, 
one or more processes may be blocked by it, eager to perform a P-operation 
on it. If a V-operation is performed on a semaphore blocking a number 
of processes, one of them is woken up, i.e. will perform its now admissible 
P-operation and proceed. The choice of this latter process is such that no 
process wIll be blocked indefnitely long. A way to implement this is to decide 
that no two processes will initiate the blocking P-operation simultaneously 
and that they will be treated on the basis "first come, first served" (but it 
need not be done that way, see below). 

With the aid of these two primitives the mutual exclusion problem is 
solved very easily. We introduce a semaphore mutex say, with the initial 
value 

mutex = 1 

after which the parallel processes controlled by the program 

cycle begin P(mutex); 

end 

are started. 

critical section; 
V(mutex); 
remainder of cycle 

Before proceeding vith the discussion I would like to insert aremark. 
In languages specifically designed far process control I have met two other 
primitives, called "wait" and "cause", operating on an "event variable", 
which is a (possibly empty) queue of waiting processes. Whenever a process 
executes a "wait" it attaches itself to the queue until the next "cause" for 
the same event, which empties the queue and signals to all processes in the 
queue that they should proceed. Experience has shown that such primitives 
are very hard to use. The reason for this is quite simple: a "wait" in one 
process and a "cause" in another are non-commutative operations, their net 
effect depends on the order in which they take place and at the level where 
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we need the synchronizing primitives we must assume that we have not yet 
effective control over this ordering. The limited usefulness of such "wait", 
and "cause" primitives could have been deduced apriori. 

3. As a next interlude I am going to prove the correctness of our solution. 
One may ask "Why bother about such a proof, for the solution is obviously 
correct". WeIl, in due time we shall have to prove the correctness of the 
implementation of more sophisticated rules of synchronization and the proof 
structure of this simple case may then act as a source of inspiration. 

With each process j we introduce astate variable Cj, characterizing the 
progress of the process. 

processj is in the remainder of cycle 
processj is in its critical section. 

While processj performs (i.e. "completes") the operation P(mutex)j the trans­
lation Cj=O ---+ Cj=l takes place, when it performs the operation V(mutex)j 
the transition Cj=l ---+ Cj=O takes place. (Note that the Cj are not variables 
occurring in the program, they are more like functions defined on the cur­
rent value of the order counters.) In terms of the Cj the number of processes 
engaged in its critical section equals 

N 

I:Cj 
j=l 

In order to prove that this number will be at most = 1, we follow the life 
history of the quantity 

N 

K = mutex+ I:Cj 
j=l 

The quantity K will remain constant as long as its constituents are constant: 
the only operations changing its constituents are the 2N mutually exclusive 
primitive actions P(mutex)j and V(mutex)j (for 1 ~ i ~ N). 

We have as a result of 

P(mutex)j : ~K I>mutcx + I> (~Cj) 
~mutex+ ~Ci 

-1 + 1 = 0 
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and similarly, as a result of 

V(mutex)j : ~K ~mutex+ ~Cj 

+1 - 1 = 0 

As these 2N operations are the only ones affecting K's constituents, we 
conclude that K is constant, in particular, that it is constantly equal to its 
initial value, 

As a result 

N 

K=l+L:0=l 
j=l 

N 

L:Cj = 1- mutex 
j=l 

Because mutex is a semaphore, we have 

o ::; mutex 

and from the last two relations we conclude 

Because this sum is the sum of non-negative terms we know 

Combining this with 

We conclude 

N 

mutex = 1- L:Cj 

j=l 

mutex::; 1 
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i.e. mutex is a so-called "binary semaphore" , only taking on the values 0 and 
1. 

Finally we observe that no process will be kept out of its critical section 
without justification: if all processes are outside their critical sections, all 
Cj 's are = 0 and therefore mutex is = 1, thereby allowing the first process 
that wants to enter its critical section to do so. 

For later reference we summarize the structure of this proof. A central 
role is played by an invariant relation among common variables (here only the 
semaphore) and "progress variables" (here the Cj 's). Its invariance is proved 
by observing the net effect of the (mutually exclusive) operators operating 
on its constituents, without any further assumptions about their mutual 
synchronization, ab out which we can then make assertions on account of the 
established invariance. In the sequel we shall see that this pattern of proof 
is very gene rally applicable. 

4. Before proceeding with more complicated ex am pIes of synchronization we 
must make a little detour and make a connection with earlier observations. 
When a process is engaged in its critical section, a great number of other 
processes may go to sleep. When the first one leaves its critical section, it is 
undefined which of the sleepers is woken up, the only requirement being that 
no single process is kept sleeping indefinitely long. (This latter assumption 
we have to make when, later, we wish to prove assertions about the finite 
progress of individual processes. ) In this sense our "family of sequential 
processes" is still a mechanism of an undeterministic nature, but the degree 
of undeterminacy is a mild one compared with the original hardware, in 
which an interrupt could occur between any pair of instructions: the only 
indeterminacy left is the relative order of much larger units of action, viz. the 
critical sections. In this respect the bottom layer of our operating system 
achieves a step towards our goal of "layered insensitivity" . 

It is in this connection that I should like to make another remark of quan­
titative nature. The choice of the process to be woken up is left undefined 
because it is assumed that it does not matter, i.e. we assume the system 
load to be such that the total period of time that any of the processes will 
be engaged in its critical section will be a negligible fraction of real time, 
in other words, nearly always mutex = 1 will hold. It is for that reason 
that such a neutral policy for waking up a sleeper is permissible. This is 
no longer true for our macroscopic concerns regarding so-called "resource 
allocation". In the case of a number of programs producing their output via 
the same printer, these printing actions have to exclude each other mutually 
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in time, but it is no longer true that the total time spent in printing will be a 
negligible fraction of real time! On the contrary: in a well-balanced system 
the printer will be used with a duty cyele elose to 100 per cent! In order to 
achieve this-and to satisfy other, perhaps conflicting design requirements­
such a neutral poliey which is adequate for granting entrance into critieal 
sections will certainly be inadequate for granting a scarce resource like a 
printer. For the implementation of a less neutral granting policy we shall 
use the critical sections, entrance to which is granted on a neutral basis. 
(For an example of a more elaborate synchronization implemented with the 
aid of critieal sections we refer to the Problem of the Dining Philosophers 
to be treated later.) This is the counterpart of the "layered insensitivity": 
going upwards in levels we gain more and more control over the microscopie 
indeterminacy, but simultaneously macroscopie strategie concerns begin to 
enter the pieture: it seems vital that the bottom layer with its mieroscopic 
concerns does not bother itself with such macroscopie considerations. This 
observation seems to apply to all well-designed systems: I would call it a 
principle if I had a bett er formulation for it. 

5. We now turn to a slightly more complicated example, viz. a bunch of 
producers and a bunch of consumers, coupled to each other via an unbounded 
buffer. In this example all producers are regarded as equivalent to each other 
and all consumers are regarded as equivalent to each other. Under these 
assumptions-which are not very realistic-the semaphores provide us with 
a ready-made solution. 

In the commonly accessible universe we have 

(a) a buffer, initialized empty 

(b) a semaphore mutex, initialized = 1; this semaphore caters for the mu­
tual exelusion of operations changing buffer contents 

(c) a semaphore numqueuepor; this gives (a lower bound of) the number 
of portions queueing in the buffer. 

Then a producer may have the form 

cycle begin produce next portion; 
P(mutex); 

end 

add portion produced to buffer; 
V(numqueuepor); 
V(mutex) 
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with consumers of the following structure 

eyele begin P(numqueuepor); 
P(mutex); 

end 

Notes: 

take portion from buffer; 
V(mutex); 
eonsume portion taken 

1. The order of the V-operations in the producer is immaterial, the order 
of the P-operations in the consumer is absolutely essential. 

2. The assumption is that the operations produce next portion and 
consume portion taken are the slow, time-consuming operations~ 
possible in synchronism with other equipment~for which parallelism 
is of interest, while the actions add portion produced to buffer 
and take portion from buffer are very fast "clerical" operations. 

In the above program the semaphore numqueuepor is a so-called "gen­
eral semaphore", i.e. a semaphore whose possible values are not restricted 
to 0 and 1. We shall now give an alternative program, using only binary 
semaphores. 

In the commonly accessible universe we have 

( a) a buffer and an integer n, counting the number of portions in the buffer. 
The buffer is initialized empty (incl. n:=O) 

(b) a semaphore mutex initialized = 1; this semaphore caters for the mu­
tual exclusion of the operations changing the buffer contents, the value 
of n and the inspection of n. 

(c) a semaphore consal, initialized = 0; if this semaphore is = 1, a next 
consumption is allowed. 

Then a producer may have the form 

eyele begin produee next portion; 
P(mutex) ; 

end 

add portion to buffer (inel. n:=n+1); 
if n=1 do V(eonsal); 
V(mutex) 
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with consumers of the following structure 

cycle begin P(consal) ; 
P(mutex); 

end 

take portion from the buffer (incl. n:=n-1); 
if n > 0 do V(consal); 
V(mutex); 
consume portion taken 

Although it is not too hard to convmce ourselves "by inspection" ~ 
whatever that may mean~that the above bunch of programs work properly, 
it is illuminating to give a somewhat more formal treatment of their coop­
eration. (I am now used to calling such a more formal treatment of their 
co operation "a correctness proof", although I did not formalize the require­
ments that such a piece of reasoning should satisfy in order to be a "valid 
proof" .) 

The proof consists of two steps. The first step uses our earlier result, 
viz. that the P (mutex) and V (mutex) establish mutual exclusion of the crit­
ical sections. (Inside these critical sections we find no P-operations, as a 
result they cannot give rise to deadlock situations.) This observation allows 
us to regard the critical sections as indivisible operations and to confine our 
attention to the state of the system at the discrete moments with mutex = 1 
(i.e. no one engaged in its critical section). 

In the se co nd step we define three mutually exclusive states for the whole 
system and shall show that whenever the system is started in one of these 
states, it will remain within these states. For the purpose of state description 
we introduce a function defined on the progress of the consumers, viz. 

K = the number of consumers that have performed P (consal) 
but have not yet entered the following critical section. 

Now we can introduce OUf three states 

SI: n=O and K=O and consal=O 
S2: n>O and K=O and consal=1 
S3: n>O and K=1 and consal=O 

Three operations; (viz. P (consal) and the two critical sections) operate on 
the constituents of these Boolean expressions; for each state we investigate 
all three. 
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81: (initial state) 
P (consal): impossible (on account of consal=O) 
critical producer section: transition to 82 
critical consumer section: impossible (on account of K=O) 

82: 
P (consal): transition to 83 
critical producer section: transition to 82 
critical consumer section: impossible (on account of K=O) 

83: 
P (consal): impossible (on account of consal=O) 
critical producer section: transition to 83 
critical consumer section: transition to 81 or 82 

This concludes the second step, showing the invariance of 

81 or 82 or 83 

(from which we conclude N2:0 and consal:::;1. 
A few remarks, however, are in order, for we have cheated slightly. Let 

us repair our cheating first and then give our further comments. In our 
se co nd step we have investigated the isolated effect of either P (consa!) or 
the critical producer section or the critical consumer section. For the critical 
sections this is all right for they exclude each other mutually in time; the 
operation P (consal), however, can take pI ace during a critical section, and 
we did not pay any attention to such coincidence. We can save the situation 
by observing that in the case of coincidence the net effect is equal to the 
execution of the critical section immediately followed by P (consal). This is 
really a messy patching up of a piece of reasoning that was intended to be 
clean. Now our further comments. 

1. The proof shows why the mutual exclusion problem is worthy, of the 
name "a key problem". Thanks to the mutual exclusion of critical sections 
we only need to consider the net effect of each single, isolated section. If 
these sections were not critical, i.e. could take place in arbitrary interleaving, 
we would have to consider the net effect of one section, the net effect of two 
sections together, of three sections together, of four etc.! With N cooperating 
processes the number of cases to be investigated would grow like 2N (i.e. the 
powerset!). This is one of the strongest examples showing how the amount 
of intellectual effort needed for a correctness proof may depend critically on 
structural aspects of the program, here the aspect of mutual exclusion. It is 
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this observation that is meant to justify the inclusion of the above proof in 
this text. 

2. The proof is complicated considerably by the fact that P (consal) is 
an operation sequentially separate from the following critical section: this 
caused the messy patching up of our piece of reasoning, it called for the in­
troduction of the function K. If the conditional entrance of critical sections is 
going to be a standard feature of the system, a more direct way of expressing 
this would be essential. A minimal departure of the current formation would 
be the introduction of the parallel P-operation, allowing us to combine the 
two P-operations of the consumer into 

P(consal, mutex) 

3. For the sake of completeness we mention that in the T.H.E. mul­
tiprogramming system, where we used general semaphores to control syn­
chronization along information streams, each information stream had at any 
moment in time at most one consumer attached to it. As a result a general 
semaphore could block at most one process and when a V-operation was 
performed on it there was never the problem which process should be woken 
up. The absence of the possibility that more than one process is blocked by a 
general semaphore is not surprising: it is the semaphore consal that may be 
equal to zero for a long period of time; as a result it is not to be expected that 
it is irrelevant which of the processes will be woken up when a V-operation 
is performed on it. In the design phase of the T.H.E. multiprogramming 
system the parallel P-operation has been considered but finally it has not 
been implemented because we feIt that it contained the built-in solution to 
an irrealistic problem. But it would have simplified proof procedures. 

6. We now turn to the problem of the Five Dining Philosophers. The 
life of a philosopher consists of an alternation of thinking and eating: 

cycle begin think; 
eat 

end 

Five philosophers, numbered from 0 through 4 are living in a house where 
the table is laid for them, each philosopher having his own place at the table: 

Their only problem-besides those of philosophy-is that the dish served 
is a very difficult kind of spaghetti, that has to be eaten with two forks. 
There are two forks next to each plate, so that presents no difficulty: as a 
consequence, however, no two neighbours may be eating simultaneously. 
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A very naive solution associates with eaeh fork a binary semaphore with 
the initial value=l (indicating that the fork is free) and, naming in eaeh 
philosoph er these semaphores in a loeal terminology, we eould think the 
following solution for the philosopher's life adequate 

cycle begin think; 

end 

P(left-hand fork); P(right-hand fork); 
eat; 
V(left-hand fork); V(right-hand fork) 

But this solution-although it guarantees that no two neighbours are 
eating simultaneously-must be rejeeted beeause it eontains the danger of 
the deadly embraee. When all five philosophers get hungry simultaneously, 
eaeh will grab his left-hand fork and from that moment onwards the group 
is stuck. This could be overcome by the introduction of the parallel P­
operation, eombining the two P-operations into the single 

P(left-hand fork, right-hand fork) 

For the time being we assurne the parallel P-operation denied to us­
later we shall reject the solution using it on other grounds-and we shall 
show how (using only single P-operations and binary semaphores) we ean 
derive our solution in a reasonably eontrolled manner. 

In order to be able to give a formal deseription of our restrietion, we 
associate with eaeh philosopher astate variable, C say, where 

C [i] 0 means: philosopher i is thinking 
C [i] 2 means: philosopher i is eating. 

In accordance with their first act, all C's will be initialized = O. In terms of 
the C's we ean state that it is disallowed 
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3 i (C[i] = 2 and C[(i + 1) mod 5] = 2) (1) 

in words: no philosopher may be eating while his left hand neighbour is 
eating as weIl. From this formula it follows that for a C the transition from 2 
to 0 can never cause violation of the restrietion (1), while the transition from 
o to 2 can. Therefore we introduce for the last transition an intermediate 
state 

C Ei] = 1 means: philosopher i is hungry 

Now each philosopher will go cyclicaIly through the states 0, 1, 2, O ... , The 
next question to ask is: when has the (dangerous) transition from 1 to 2 to 
take place for philosopher K? WeIl, three conditions have to be satisfied 

(1) C[KJ = 1, i.e. he himself must be hungry 

(2) C [(K+1) mod 5J =1= 2, because otherwise 
C [KJ : =2 would cause violation of (1) for i=K 

(3) C [(K-1) mod 5J =1= 2, because otherwise 
C [KJ : =2 would cause violation of (1) for i = (K -1) mod 5. 

As a result we have to see to it that the state 

3K(C[(K - 1) mod 5] =1= 2 and C[K] = 1 and C[(K + 1) mod 5] =1= 2) (2) 

is unstable: whenever it occurs, it has to be resolved by assigning C [KJ : =2 
and sending philosopher K to the table. 

In a similar analysis we ask: which transitions in the life of philosopher 
w can cause the unstable situation and for which values of K? 

(1) when C[wJ :=1 is executed, instability may be created far K = w 

(2) when C [wJ : = O-i.e. when C [wJ loses the value 2-instability may be 
created for K=(w+1) mod 5 and for K=(w-1) mod 5. 

In words: when philosopher w gets hungry, the test whether he himself should 
be sent to the table is appropriate, when he leaves the table the test should 
be done for both his neighbours. 

In the universe we assume declared 
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(1) the semaphore mutex, initially = 1 

(2) the integer array C [0; 4] , with initially all elements = 0 

(3) the semaphore array prisem [0; 4] with initially all elements = 0 

(4) procedure test(integer value K); 
if C[(K-i) mod 5] i= 2 and C[K] = 1 

and C [(K+i) mod 5] i= 2 do 
begin C[K] ;=2; V(prisem[K]) end; 

(This procedure, which resolves unstability for K when present, will only be 
called from within a critical section.) 

In this uni verse the life of philosopher w can now be coded 

cycle begin think; 
P(mutex); 

end 

C[w];= 1; test(w); 
V(mutex) ; 
P(prisem[w]); eat 
P(mutex); 

C[w];= 0; 
test[(w+1) mod 5]; 
test[(w-1) mod 5]; 

V(mutex) 

And this concludes the solution I was aiming at. I have shown it, together 
with the way in which it was derived, for the following reasons. 

(1) The arrangement with the private semaphore for each process and 
the common semaphore for mutual exclusion in order to allow for unam­
biguous inspection and modification of common state variables is typical for 
the way in which in the T.H.E. multiprogramming system all synchroniza­
tion restrictions have been implemented that were more complicated than 
straight forward mutual exclusion or synchronization along an information 
stream (the latter synchronization has been implemented directly with the 
aid of a general semaphore). 

(2) The solution (including the need for the introduction of the interme­
diate state called "hungry") has been derived by me ans of a formal analysis 
of the synchronization restriction. It is exemplar for the way in which the 
flows of mutual obligations for waking up have been derived in the design 
phase of the T.H.E. multiprogramming system. It is this analysis that I have 
called "A constructive approach to the problem of program correctness". 
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With respect to this partieular solution I would like to make some further 
remarks. 

Firstly the solution as presented is free from the danger of deadloek, as 
it should be. Yet it is highly improbable that a solution like this ean be 
aeeepted beeause it eontains the possibility of a particular philosopher being 
starved to death bya conspiration of his two neighbours. This ean be over­
eome by more sophisticated rules (introducing besides the state "hungry" 
also the state "very hungry"); this requires a more eomplieated analysis but 
by and large it follows the same pattern as the derivation shown. This was 
another reason not to introduee the parallel P-operation: for the solution 
with the parallel P-operation we did not see an automatie way of avoiding 
the danger of individual starvation. 

Seeondly we eould have made a more erude solution: the proeedure test 
has a parameter indicating for which philosoph er the test has to be done; 
also in the eritical sections we eall the proeedure test preeisely for those 
philosophers for whom there is a chance that they should be woken up and for 
no others. This is very refined: we eould have made a test proeedure without 
parameter that would simply test for any K if there was an unstability to be 
removed. But the problem eould have been posed for 9 or 25 philosophers 
and the larger the number of philosophers, the more prohibitive the overhead 
of the erude solution would get. 

Thirdly, I have stated that we "derived our solution in a reasonably eon­
trolled manner" : although the formal analysis has been earried out almost 
meehanieally, I would not like to suggest that it should be done automat­
ically, beeause in real life, whether we like it or not, the situation ean be 
more eomplieated. 

We eonsider two dasses of processes, dass A and dass B, sharing the 
same resouree from a large pool. (The situation oeeurred in the T.H.E. mul­
tiprogramming system with the total pool of pages in the system.) Suppose 
now that processes from dass A ask and return items from this pool at high 
frequeney, while those from dass B do so at low frequeney only. In that 
ease it is highly unattraetive to pose upon the highly frequent item releases 
of dass A the (possibly) eonsiderable overhead involved in the analysis of 
whether it is neeessary to wake up one or more bloeked processes. This high­
frequeney overhead was avoided by delegating the waking-up obligation to 
(some) processes of dass Band by guaranteeing that at least one of these 
processes would be aetive when the boundary of the resouree restrietion was 
in danger of being approaehed. In other words, in order to reduee system 
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overhead we removed the highly frequent inspection whether processes had 
to be woken up at the price of increasing the "re action time" there where an 
ultra short "response" was not required. The taking of such decisions seems 
a basic responsibility of the system designer and I don't see how they could 
be taken automatically. 

The above concludes my discussion of the chosen bottom layer. In the 
final part of this paper I would like to discuss briefly an alternative solution. 

7. The chosen bottom layer implements a family of sequential processes 
plus a few synchronizing primitives, the remaining part of the system, to 
be composed on top of it, will exist of a set of harmoniously cooperating 
sequential processes. The interface is characterized by a number of features 

(a) the bottom layer treats all sequential processes on the same footing 

(b) the sequential processes communicate with each other via commonly 
accessible variables 

( c) critical sections ensure the unambiguous interpretation and modifica­
ti on of these common variables. 

One or two objections can be raised to this organization; they center 
around the observation that each sequential process can be in one of two 
mutually exclusive radically different states: either the process is inside its 
critical section or it is not. Inside its critical section it is allowed to access the 
common variables, outside it is not. In actual fact this difference does not 
only pertain to accessibility of information it has also a bearing on processor 
allocation as implemented in the bot tom layer. Given a process without 
hurry it is permissible to take the processor away from it for longer periods 
of time, but it is unattractive to do so in the middle of a critical section: if a 
process is stopped within a critical section it blocks for the other processes 
the mechanism needed for their cooperation and the remaining processes are 
bound to come to a grinding halt. In the T.H.E. multiprogramming system 
this has been overcome by giving processes two colours-red or white-by 
making each process red while it is in a critical section and by never granting 
the processor to a white process if a red one is logically allowed to proceed. 

Furthermore there is the aspect ofreproducibility. To an individual user, 
offering a strictly sequential program to the system, we should like to present 
a strictly deterministic automation. In the system a nu mb er of sequential 
processes are dedicated to the processing of user programs, they act as slots 
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into which a user program can be inserted; whenever the user program refers 
to a shared resource the translator effectively inserts-via a subroutine call­
the critical section required for this cooperation. As a result, what happens 
in this slot is perfectly reproducible as long as the sequential process remains 
outside critical sections. But if we wish to charge our user and also insist 
that the charge be reproducible, we can only charge hirn for the activity of 
the slot outside critical sections! What happens inside the critical sections 
is situation dependent system overhead: it does not really "belong" to the 
activity of the process in which the critical section occurs. 

Finally, we know how to interpret the evolution of a sequential process 
as a path through "its" state space as is spanned by "its" variables. But 
for this interpretation to be valid it is necessary that all variables "belong" 
uniquely to one sequential process. 

It is this collection of observations that was an incentive to redo some 
of our thinking ab out sequential processes and to reorder the total activity 
taking place in the system. Instead of N sequential processes cooperating in 
critical sections via common variables, we take out the critical sections and 
combine them into a N + 1st process, called a "secretary"; the remaining N 
processes are called "directors". Instead of N equivalent processes, we now 
have N directors served by a common secretary. (We have used the metaphor 
of directors and a common secretary because in the director-secretary rela­
tion in real-life organization it's also unclear who is the master and who is 
the slave!) 

What used to be critical sections in the N processes are in the directors 
"calls upon the secretary" . 

The relation between a set of directors and their common secretary shows 
great resemblance to the relation between a set of mutually independent 
programs and a common library. What is regarded as a single, unanalysed 
action on the level of a director , is a finite sequential process on the level of 
the secretary, similar to the relation between main program and subroutines. 

But there is also a difference. In the case of a common library of re­
entrant procedures, the library does not need to have a private state space; 
whenever a library procedure is called its local state space can be embedded 
(for the duration of the call) in thfJ (extendable) state space of the calling 
program. 

A secretary, however, has her own private state space, comprising all 
"common variables". One of the main reasons to introduce the concept of 
"a secretary" is that now we have identified a process to which the "common 
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variables" belong: they belong to the common secretary. 
To stress the specific nature of a secretary, I call her "a semi-sequential 

process". A fully sequential process consists of a number of actions to be 
performed one after the other in an order,determined by the evolution of this 
process. A secretary is a bunch of actions-"operators in her state space"­
to be performed one after the other, but in undefined order, i.e. depending 
on the calls of her directors. 

A secretary presents itself primarily as a bunch of non-reentrant routines 
with common state space. But as far as the activity of the main program 
is concerned there is a difference between the routine of a secretary and 
anormal subroutine. During anormal subroutine call we can regard the 
main program "asleep", while the return from the subroutine "wakes" the 
main program again. When a director calls a secretary-for instance when 
a philosopher wishes to notity the secretary that now he is hungry-the 
secretary may decide to keep hirn asleep, adecision that implies that she 
should wake hirn up in one of her later activities. As a result the identity of 
the calling program cannot remain anonymous as in the case of the normal 
subroutine. The secretary must have variables of type "process identity" 
whenever she is called the identity of the calling process is handed over in 
an implicit input parameter, when she signals a release-analogous to the 
return of the normal subroutine--she will supply the identity of the process 
to be woken up. 

In real time a director can be in three possible states with respect to his 
secretaries. 

(a) "active", i.e. his progress is allowed 

(b) "calling", Le. he has tried to initiate a call on a secretary, but the 
call could not be honoured, e.g. because the secretary was busy with 
another cal!. 

(c) "sleeping", i.e. a call has been honoured but the secretary's activity in 
which he will be released has not ended. 

The state "calling" has hardly any logical significance: it would not occur 
if the director was stopped just before the call that could not be honoured. 

With respect to her directors a secretary can be 

(a) "busy", i.e. engaged in one of her (finite) algorithms 

(b) "i dIe" , Le. ready to honour a next call from one of her directors. 
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Note that a secretary may be simultaneously busy with respect to her 
directors and calling or sleeping with respect to one of her subsecretaries. 

In two respects, the above scheme asks for embellishments. Firstly, a 
secretary may be in such astate that certain calls on her service are in­
convenient. With each call we can associate a masking bit, stating whether 
with respect to that call she is "responding" or "deaf". A secretary man­
aging an unbounded buffer could be deaf for the consumer's call when her 
buffer is empty. Here we have another reason why a director may be in 
the state "calling": besides being busy the secretary could be deaf for the 
call concerned. For the reasons stated I have my doubts as to whether this 
embellishment is very useful, but I mention it because it seems more useful 
than similar embellishments that have been suggested, e.g. making a secre­
tary responding to an enumerated list of directors. The secretary has to see 
to it that certain constraints will not be violated i.e. she may be in such a 
state that she can not allow certain of her possible actions to take place. 
This has nothing to do with the identity of the director calling for such an 
action. 

A more vital embellishment is parameter passing: in general a director 
will like to send a message to his secretary when calling her-a producing 
director will wish to hand over the portion to be buffered; in general a direc­
tor will require an answer back from his secretary when she has released his 
call-a consuming director will wish to receive the portion to be unbuffered. 

Note that this message passing system is much more modest than various 
mail box systems that have been suggested in which processes can send 
messages (and proceed!) to other processes. In such systems elaborate 
message queues can be built up. Such systems suffer from two possible 
drawbacks. Firstly, implementation reasons are apt to impose upper limits 
to lengths of message queues: "message queue full" may be another reason 
to delay a process and to show the absence of the danger of deadly embraces 
may prove to be very diffcult. Secondly, and that seems worse, with the 
queueing messages we have reintroduced state information that cannot be 
associated with an individual process. 

From an aesthetic point of view the relation director-secretary is very 
pleasing because it allows secretaries to act as directors with respect to 
subsecretaries. This pI aces OUf processes in a hierarchy which avoids deadly 
embraces as far as mutual exclusion is concerned in exactly the same way in 
which mutual exclusion semaphore would need to be ordered in the case of 
nested critical sections. Whether, however, actual systems can be built up 
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with a meaningful hierarchy of secretaries of reasonable depth-say larger 
than two-remains to be seen. That is why I called this point of view 
"aesthetically pleasing" . 

Finally: I can only view a well-structured system as a hierarchy of layers 
and in the design process the interface between these layers has to be de­
signed and decided upon each time. I am not so much bothered by designer's 
willingness and ability to propose such interfaces, I am seriously bothered 
by the lack of commonly accepted yardsticks along wh ich to compare and 
evaluate such proposals. My "playing" with a bot tom layer should therefore 
not be regarded as adefinite proposal for yet another interface, it was meant 
to illustrate a way of thinking. 

Acknowledgement is due to my former students J. Bomhoff and W. H. 
J. Feyen and to Professor C. A. R. Hoare from the Queen's University of 
Belfast. 
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OBJECTIVES 

5 

The objectives in the construction of a theory of parallel programming as a 
basis for a high-level programming language feature are: 

1. Security from error. In many of the applications of parallel programming 
the cost of programming error is very high, often inhibiting the use of com­
puters in environments for which they would otherwise be highly suitable. 
Parallel programs are particularly prone to time-dependent errors, which ei­
ther cannot be detected by program testing nor by run-time checks. It is 
therefore very important that a high-levellanguage designed for this purpose 
should provide complete security against time-dependent errors by means of 
a compile-time check. 
2. Efficiency. The spread of real-time computer applications is severely 
limited by computing costs; and in particular by the cost of main store. If a 
feature to assist in parallel programming is to be added to a language used 
for this purpose, it must not entail any noticeable extra run-time overhead 
in space or speed, neither on programs which use the feature heavily, nor 
on programs which do not; efficient implement at ion should be possible on a 
variety of hardware designs, both simple and complex; and there should be 
no need for bulky or slow compilers. 

C. A. R. Hoare, Towards a theory of parallel programming. In Operating Systems Tech­
niques, Proceedings of a Seminar at Queen's University, Belfast, Northern Ireland, August­
September 1971. C. A. R. Hoare and R. H. Perrott, Eds. Academic Press, New York 
(1972),61-71. Copyright © 1972, Academic Press. Reprinted by permission. 
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3. Conceptual simplicity. A good high-Ievellanguage feature should provide 
a simple conceptual framework within wh ich the programmer can formulate 
his problems and proceed in an orderly fashion to their solution. In particu­
lar, it should give guidance on how to structure a program in a perspicuous 
fashion, and verify that each component of the structure contributes reliably 
to a clearly defined overall goal. 
4. Breadth of application. The purposes for which parallel programming 
have been found useful are: 

(a) To take advantage of genuine multi-processing hardware. 

(b) To achieve overlap of lengthy input or output operations with comput­
ing. 

(c) Operating system implementation. 

(d) Real-time applications. 

( e) Simulation studies. 

(f) Combinatorial or Heuristic Programming. 

Ideally, a language feature for parallel programming suitable for inclusion 
in a general-purpose programming language should cater adequately for all 
these highly disparate purposes. 

The design of high-level programming languages which simultaneously 
satisfy these four objectives is one of the major challenges to the invention, 
imagination and intellect of Computer Scientists of the present day. The 
solutions proposed in this paper cannot claim to be final, but it is believed 
that they form a sound basis for furt her advance. 

PARALLEL PROCESSES 

The concept of two or more processes occurring simultaneously in the real 
world is a familiar one; however, it has proved exceptionally difficult to apply 
the concept to programs acting in parallel in a computer. The usual defini­
tion of the effect of parallel actions is in terms of "an arbitrary interleaving 
of units of action from each program" . This presents three difficulties: 

1. That of defining a "unit of action" . 
2. That of implementing the interleaving on genuinely parallel hardware. 
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3. That of designing programs to control the fantastic number of combina­
tions involved in arbitrary interleaving. 

Our approach to the solution of these problems is based on the observa­
tion that in the real world simultaneous processes gene rally occur in different 
parts of physical space (it is difficult to give any explanation of what it would 
mean for two processes to be occurring in the same place). Thus our normal 
concept of simultaneity is closely bound up with that of spatial separation. 
The concept of spatial separation has an analogue in computer programs that 
are operating on entirely disjoint sets of variables, and interacting with their 
environment through entirely disjoint sets of peripheral equipment. Obvious 
ex am pIes are programs being run on separate computers, or on the same 
computer under the control of a conventional multiprogramming system. 

In such cases, where there is no possibility of communication or inter­
action between the programs, the question whether a given action of one 
program preceded, followed, or was simultaneous with a given action of the 
other program is wholly without significance. On a "Newtonian" view, the 
quest ion must have adefinite answer , even if we can neither know nor care 
what it iso For practical purposes, it is equally acceptable to take an "Ein­
steinian" view that there is no relative ordering between events occurring 
in disjoint programs being executed in parallel; and that each action of one 
program is simultaneous with all the actions of the other programs. 

We introduce the notation 

to indicate that the program statements Q 1, Q2, ... , Qn are disjoint processes 
to be executed in parallel. It is expected that the compiler will check the 
disjointness of the processes by ensuring that no variable subject to change in 
any of the Qj is referred to at all in any Qi for i# j. Thus it can be guaranteed 
by a compile-time check that no time-dependent errors could ever occur at 
run time. It is is assumed that the high-levellanguage in use has the decent 
property that it is possible to tell by inspection wh ich variables and array 
names appear to the left of an assignment which might be executed in any 
given statement or program. 

The desired effect of the parallel statement described above is to initiate 
execution of each of the Qi in parallel; and when they are all terminated, 
execution of the parallel statement is also complete. Each Qi may contain 
any of the normal program features-assignments, conditionals, iterations, 
blocks, declarations, subroutine calls-of the base language; but if recursion 
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or dynamic storage allocation is used, this will involve replacing the simple 
stack by a "cactus" stack. It would be wise to ban the use of jumps out of 
a parallel statement, since these would be not only difficult to define and to 
use correctly, but can also cause considerable implementation problems. In 
a language designed for parallel programming there is an even stronger case 
far the abolition of jumps than in more conventional high-levellanguages. 

Some languages (e.g. PL/I) give the programm er the ability to specify 
and even to change the priorities of the parallel processes. Far most appli­
cations this appears to be an unnecessary complexity, whose effective use 
will depend on many detailed machine and implement at ion oriented consid­
erations. In practice it has been found that the general-purpose scheduling 
method of giving control to the process which has used least computer time 
in the recent past achieves acceptably high efficiency in most circumstances. 
The programmer can therefore safely be encouraged to "abstract from" the 
relative speeds and priorities of his processes, and allow the implementor of 
his programming language to decide on his behalf. 

The way in which parallel programs can be proved to achieve some desired 
objective is simple. Suppose each Qi is designed to ensure that Ri is true 
when it finishes, on the assumption that Pi is true before it starts. Then on 
completion of 

all the Ri will be true, provided that all the Pi were true beforehand. Thus 
each Qi makes its contribution to the common goal. But one caution is 
necessary: none of the Pi or Ri may mention any variable which is subject 
to change in any of the Qj for j =1= i. A formal statement of this and 
following program proving principles will be found in the Appendix. 

The facility for specifying parallelism of disjoint programs appears to be 
adequate for use of genuine multiprocessing hardware, and for the overlap 
of input and output operations with computing. But of course the more 
interesting problems require some form of interaction between the parallel 
programs; and this will be the topic of the following sections. 

Example: input/output overlap. 
A simple program inputs an array, processes it, and outputs it. In or­

der to achieve overlap of input, output and processing, it adopts a simple 
buffering scheme. 
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input Clastone) ; 
{process(lastone)//input(thisone)}; 
while some remain do 
begin {input(nextone)//process(thisone)//output(lastone)} 

lastone := thisone; thisone := nextone 
end; 
{process(thisone)//output (lastone)}; 
output(thisone). 

RESOURCE CONSTRAINTS 

One of the reasons why parallel programs need to interact with eaeh other 
is beeause they need to share some limited resouree. For example, several 
parallel programs may need to eommunicate with a single operator through a 
single eonsole; or to present aseries of lines for output on a single line printer. 
In such eases it is usually important that no other proeess be permitted 
to aeeess the resouree while a given proeess is using it; for example, one 
proeess must be permitted to eomplete its eonversation with the operator 
without interruption from other processes; and an "arbitrary interleaving" 
of lines from files output by different parallel processes would be wholly 
unaeeeptable. 

We may thus envisage the action of eaeh parallel proeess as follows: for 
part of the time it operates freely in parallel with all the other processes, but 
oeeasionally it enters a so-ealled critical region C; and while it is exeeuting 
C, it must have exclusive use of some resouree r. On eompletion of C, the 
resouree is freed, and may be alloeated to any other proeess (or the same 
one again) whieh wishes to enter a eritieal region with respeet to the same 
resouree. Thus the effect of a eritical region is to re-establish the neeessary 
degree of serialism into the parallel exeeution, so that only one of the pro­
cesses may enter its eritical region at any time. Thus eritical regions from 
different processes are exeeuted strictly serially, in an arbitrarily interleaved 
order. 

This reintroduction of "arbitrary interleaving" does not suffer from the 
dis advantages mentioned earlier sinee: 

1. The unit of action (= eritieal region) is defined by the programmer. 
2. The necessary synehronization will be relatively infrequent, so that software­
assisted implementation is aeceptable. 
3. The user has no des ire or need to eontrol the "interleaving" involved in 
the use of eommon resourees, sinee these make no differenee whatsoever to 
the results of his program. 
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If a parallel statement is to include eritieal regions with respeet to a 
resouree eonstraint, I suggest the following notation 

{resource r; Otl 1021 I . . . 1 IOn} 

where r is the name of the non-Ioeal quantity (e.g. lineprinter, eonsole, ete.) 
wh ich eonstitutes the resouree. 

Then inside the processes Ql, Q2, ... , Qn, a eritical region C is signalled 
by the notation 

with r do C 

The compiler is expected to check that no resouree is used or referred to 
outside its eritical regions. 

The run-time implementation of this feature will depend on the nature of 
the basic synehronization facility provided by the hardware of the computer. 
If we assume that a Boolean semaphore meehanism is "built-in", the imple­
mentation is trivial. A resource declaration eauses a Boolean Semaphore to 
be ereated; eaeh eritieal region in the object code is preeeded by seizing this 
semaphore (the P-operation), and followed by releasing it (the V-operation). 

This method of dealing with resource constraints encourages the pro­
grammer to ignore the question of which of several outstanding requests for 
a resouree should be granted. In general, the density of utilization of a re­
souree should be sufficiently low that the chance of two requests arriving 
during the eritical period of a third process should be relatively infrequent; 
for if the resource is a serious bottleneek, it is hardly worth setting up paral­
lelism at all. Thus the relatively simple strategy of granting the resouree to 
the one that has waited longest would seem to be perfeetly adequate. Where 
it is not adequate, the faeilities described on in the next section can be used 
to program a more subtle strategy. 

Another problem which arises from re sour ce constraints is that of the 
deadly embrace. Fortunately, a simple compile-time check can guarantee 
against this danger, if the programmer is willing to observe a simple disci­
pline; when one critical region is nested inside another, the resource involved 
in the out er region should always have been declared as such before that de­
clared in the inner region. This will mean that sometimes resourees are 
acquired rather before they are actually needed, just as the nested nature of 
critical regions may mean that resources are kept longer than needed. Even 
when this occurs, it may be preferable to the alternatives, which include 
run-time checks and the generalized banker's algorithm. 
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The proof of programs which share resourees will be virtually identieal 
to that of non-sharing processes. However, the non-loeal variables whieh 
eonstitute the resouree must be regarded for proof purposes as though they 
were loeal to eaeh of their regions; sinee their initial values must be regarded 
as arbitrary, and their final values are "lost" to the program on exit from the 
eritieal region. This shows that from an abstract point of view, the seizure 
of a eommon resouree eould have been replaeed simply by a loeal declaration 
of the variable required; and the only reason for introducing the eonstraint 
is beeause limitations of hardware availability make it unwise or impossible 
to provide enough "loeal" quantities to enable two processes to enter their 
eritical regions together. 

CO OPERATING PROCESSES 

In order for processes to cooperate on a eommon task, it is neeessary that 
they eommunicate or interact through so me eommon item of data. Within 
eaeh proeess, any updating of this item must be regarded as a eritical region, 
not interruptable by similar updatings in other processes. However, on exit 
from a eritieal region, this data item retains its value, whieh ean then be 
examined and updated by other processes. Thus with the understanding 
of the retention of the value of the "resource" , it appears that no new lan­
guage feature is required to permit the eonstruetion of programs involving 
co operating processes. 

In order to see how such a facility might be used, it is helpful to draw 
an analogy. The resouree r may be a potentially large structure (building) 
whieh starts off in some null eondition (empty site), and whieh is built up 
to so me desired state by performance of a number of operations of different 
types; Cd IC21 1 .. ./ ICrn (laying a briek, fitting a window). It does not matter 
much in what order these operations are performed, so their exeeution may 
be delegated to a set of parallel processes (builders), eaeh of whieh will on 
occasion invoke one of the permissible operations. Since an operation will 
update the eommon re sour ce r, it must be invoked as a eritieal region. When 
eaeh proeess detects that it has fulfilled its task, it terminates. When the 
tasks of all processes are eomplete, the strueture r will also be eomplete. 

In many eases it will not be permissible to perform the updating oper­
ations on r in a wholly random order; for example, the windows cannot be 
inserted in a building until the frames are installed. In general, a proeess 
must be allowed to test the state of r before ente ring a eritieal region, to 
see whether the corresponding operation is permissible or not; and if not, to 
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wait until other processes have brought r into astate in wh ich the operation 
can be carried out. Let B be a Boolean expression which tests the permissi­
bility of an operation carried out by a critical region C. Then I suggest the 
notation: 

with r when B da C 

to specify that C is not to be carried out until B is true. 
Some care must be exercised in the implementation of this new feature. 

The first action (as before) is to seize the semaphore associated with r. Then 
the condition B is tested. If it is false, the given process will hang itself up 
on a queue of processes waiting for r, and must then release the semaphore. 
If Bis true, the critical region C is executed normally; and on completion the 
queue of waiting processes (if any) will be inspected, in the order of longest 
wait. 

Then the waiting eondition B for eaeh waiting proeess is re-evaluated. If it 
is still false, the proeess remains on the queue. If true, it executes its eritieal 
region C, and then repeats the sean of the queue. Thus it is guaranteed 
that B will be true on entry to a eritical region prefixed by when B; it is also 
guaranteed at all times (outside eritical regions) that no proeess is waiting 
when its B is true; for B ean only become true as a result of some eritical 
operation by another proeess, and it is retested after each such operation. 
The programmer must be eneouraged to ensure that this retesting is not too 
time-eonsuming. 

In order to verify the correctness of a system of co operating processes, 
it is neeessary to define what is meant by a permissible operation on the 
resouree r. This may usually be aceomplished by giving some propositional 
formula I, specifying some property of r, whieh must remain true at all times 
(outside eritieal regions); such a proposition is known as an invariant for the 
resouree. Obviously I must not mention any variable subjeet to change in 
any of the parallel processes. Now the eondition for harmonious co operation 
of the processes is that eaeh proeess after updating the resouree in a eritieal 
region must leave the resouree in astate whieh satisfies I; and in return the 
proeess may assume that I is true before eaeh entry to one of its own eritical 
regions. Also, eaeh process may assume that its eondition B for entry of a 
eritical region will be true before exeeution of the eritical region starts. If 
all processes of a parallel program cooperate harmoniously, and if I is true 
before entering the program, then it is known that on eompletion of the 
program I will still be true. 
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Example: Bounded Buffer. 
A process Ql pro duces a stream of values which are consumed by a par­

allel process Q2' Since the production and consumption of values proceeds 
at a variable but roughly equal pace, it is profitable to interpose a buffer 
between the two processes; but since storage is limited the buffer can only 
contain N values. Our program takes the form (using Pascal notations): 

B: record inpointer, outpointer, count: Integer; 
buffer:array O .. N-1 of T end; 

{resource B; Ql//Q2} 

We maintain the following variables: 

count: the number of values in the buffer. 
inpointer: if count < N, this is first empty place in the 

buffer; otherwise it equals outpointer. 
outpointer: if count > 0 this is the place where the next 

consumed value will be taken from; 
otherwise it equals inpointer. 

The initial values of these variables are all zero. 
The critical region inside the producer is as follows: 

with B when count< N do 
begin buffer[inpointer] := next value; 

inpointer:= (inpointer + 1) mod N; 
count:= count + 1 

end 

The critical region inside the consumer is 

with B when count> 0 do 
begin this value:= buffer[outpointer]; 

outpointer:= (outpointer + 1) mod N; 
count:=count - 1 

end 

Example: Spaghetti Eaters 
Five Benthamite philosophers spend their lives between eating and think­

ing. To provide them sustenance, a wealthy benefactor has given each of 
them his own place at a round table, and in the middle is a large and con­
tinually replenished bowl of spaghetti, from which they can help themselves 
when they are seated. The spaghetti is so long and tangled that it requires 
two forks to be conveyed to the mouth; but unfortunately the wealthy bene­
factor has provided only five forks in all, one between each philosopher's 
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Fork A 

Philosopher 5 

Fork E Fork B 

Philosopher 4 Philosopher 2 

Philosopher 3 

plaee. The only forks that a philosopher ean pick up are those on his imme­
diate right and his immediate left. 

It ean be seen that no two neighbours ean be eating at a time. The 
problem is to write a program for eaeh philosopher whieh will ensure that 
he eontributes at all times to the greatest good of the greatest number. 

When a philosopher is hungry, he must go to his own plaee and piek 
up two forks. Supposing eaeh philosopher adopts the praetice of picking up 
his left fork first. Then there is a grave danger that all philosophers will 
get hungry simultaneously, and all piek up their left forks; then they would 
slowly but inexorably starve to death. If the philosophers all put their left 
forks down on finding the right fork unobtainable, there is still a danger that 
they will eontinue to starve while repeatedly pieking up and putting down 
their left forks in perfeet unison. 

One solution to this vicious circle is to arrange that one of the philoso­
phers always picks up his right fork first. Then either he or the philosopher 
on his left must always have the opportunity of eating. This is basically 
the solution suggested earlier, of establishing a linear sequenee of resourees, 
and ensuring that all claims of more than one resouree observe the standard 
sequenee. The period of eating for eaeh philosopher may be regarded as 
eritieal a region with respect to his right fork, nested immediately within 
the eritieal region for his left fork, for example: 

with fark A da with fark B da eat spaghetti; 

but for the last philosopher the nesting is reversed: 

with fark A da with fark E da eat spaghetti 

This solution is a great improvement, and eertainly prevents universal 
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starvation; but it still does not ensure optimum utilization of resources, since 
it is possible for three adjacent philosophers to remain holding one fork each 
while one of their colleagues is eating; and one would hope that a slightly 
more intelligent strategy could be devised in such a case to enable the middle 
one to eat. 

The correct solution requires the use of synchronization facilities to guar­
antee that each philosopher either picks up no forks or he picks up both his 
forks. Picking up a single fork must be avoided. Thus we introduce an array: 

integer array possforks[O:4]; 

possforks [i] takes values 0, 1 or 2 (with initial value 2), and indicates the 
number of forks available to philosoph er i. This array itself is aresource, 
wh ich can be inspected or updated by any philosopher. Each philosopher 
on feeling hungry first waits until two forks are available to hirn, and then 
re duces the number of forks available to his immediate neighbours, seizes the 
forks, and eats. On completion, he increases the number of forks available 
to his neighbours. Thus three successive critical regions are required in 
philosopher i: 

with possforks when possforks[i] = 2 do 
begin possforks[(i-1)mod 5] := possforks[(i-1)mod 5]-1; 

possforks[(i+l)mod 5]:= possforks[(i+l)mod 5]-1 
end; 

with fork A do with fork B do eat spaghetti; 
with possforks do 

begin possforks[(i-1)mod 5]:= possforks[(i-1)mod 5]+1; 
possforks[(i+l)mod 5]:= possforks[(i+1)mod 5]+1 

end 

ADDITIONAL POINTS 

It is hoped that the basic concepts and facilities introduced in the previous 
sections will be found adequate for most purposes. However, it seems that a 
few additional simple notations and features may increase their convenience 
and range of application. 

Array remapping 

This paper proposes that the introduction of parallelism is meaningful only 
when no process refers to variables changed by another process (excluding 
critical regions). However, a compile time check on the observance of this 
discipline is sometimes too restrictive, since it would prevent two processes 
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operating in parallel on different elements of the same array. A proposal 
to mitigate this problem is to permit the programmer to declare a local 
remapping of an array, within a block; this splits the array down into disjoint 
parts, each with its own name; and these separate names can now be updated 
in separate processes. A notation for expressing the remapping might be: 

beg in map a [1: 12], b, c [0: i] on X; ... end 

which declares a as a local name for an array consisting of the first 12 
elements of X, b as the thirteenth element, and the next i + 1 elements are 
renamed c. C itself should not be referred to within the block. 

Example: Quicksort. 
Using this facility it is possible, if sufficient parallel hardware is available, 

to sort an array of size N in time proportional to N. 

procedure Quicksort(A, m, n); 
begin integer i, j; 

partition(A, i, j, m, n); 
begin map B[m:j] X[j+l:i-1], C[i:n] on A; 

{Quicksort(B, m, j)//Quicksort(C, i, n)} 
end 

end Quicksort 

Resource arrays 

The facility for remapping storage gives a simple method by wh ich parallel 
processes can operate simultaneously on different parts of a data structure. 
However, it can be used only when it is known in advance which parts are 
going to be used by each process. Sometimes, the choice of which element 
or elements of an array are to be seized for a particular critical region can 
only be made on entry to that region; this means that each element of the 
array must be regarded as aseparate resource, which can be allocated and 
deallocated independently of its neighbours. Such an array may be declared 

resource array R 

and the critical regions may take the form: 

with r = R[i] do Q 

where r is used within Q as a local name for R[i]; and R itself must not be 
mentioned in Q. 

One obvious application of resource arrays is in the real time maintenance 
of a table of information; and if a random access file is regarded as a form 
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of sparse array, this gives the faeility of the PLII EXCLUSIVE attribute. 
Another applieation is in dealing with a set of homogeneous resourees, sueh 
as dise handlers, where the programmer does not eare which handler(s) he 
is alloeated in a particular eritical region. As an example of the use of the 
feature, we suppose that the number of handlers required in eaeh eritieal 
region is different, and that as before we wish to avoid the possibility that 
more than one proeess should have a partially fulfilled request. 

To aehieve this, we use a resouree request, whieh is alloeated to a proeess 
during the time that its request is being fulfilled. There is also a set resouree 
free whieh eontains the numbers of all free handlers; mine is a loeal set 
variable, eontaining the numbers of the handlers alloeated to me. A eritical 
region requiring two handlers would be surrounded by small eritical regions 
whieh earry out the administration, thus: 

with request do {with free when size(free) 2 2 do 
{mine:=first two of (free); free:= free & ' mine}} 

with a = handler[first(mine)] do {with b = handler[second(mine)] do 
use a and b}; 

with free do free := free V mine; 
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APPENDIX 

Formal definition 

It has been suggested that a specification of proof procedures for proving 
correetness of programs would be a useful method of defining languages 
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with a certain desired degree of indeterminacy. This appendix applies the 
formal language definition technique to parallel programming. 

Let Vi be the set of variables subject to change in Qi' Then it is assured, 

1. no variable of Vi -{ r} occurs free in I or in Pj , Qj, or Rj for j i- i 
2. r is not free in P, R, Pi, Qi, Ri , except in a critical region with respect to 
r. 

Then letting r inv I state that I is the invariant for r, we can formulate 
the following two rules: 

Criticality: 

Simultaneity: 

r inv I, B & I & P {c} R & I 
P {with r when B' do c} R 

These two rules cover all cases if we adopt the conventions: 

1. when true can be omitted. 
2. If there are no critical regions with respect to r, resource r can be 
omitted; and I may then be taken as true. 
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COMPUTER SCIENCE AND OPERATING SYSTEMS 

In November 1970 I began writing a textbook on operating system principles 
at Carnegie-Mellon University. This is a description of its structure and how 
far it has progressed. 

The goal is to give students of computer science and professional pro­
grammers a general understanding of operating systems. The only back­
ground required is an understanding of the basic structure of computers and 
programming languages and some practical experience in writing and test­
ing non-trivial programs. In a few cases a knowledge of elementary calculus 
and probability theory is also needed. The components of the course are 
well-known to a small group of designers, but most operating systems reveal 
an inadequate understanding of them. 

The first and most obvious problem is to delimit the subject and eonsider 
its place in computer scienee edueation. I define an operating system as a set 
of manual and automatie proeedures whieh enable a group of users to share 
a computer system efficiently. The keyword in this definition is sharing: it 
means eompetetion for the use of physical resources but also cooperation 
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among users exchanging programs and data on the same computer system. 
All shared computer systems must schedule user computations in some order, 
protect them against one each other, and give them means of long-term 
storage of programs and data. They must also perform accounting of the 
cost of computing and measure the actual performance of the system. 

In early computer systems, operators carried out most of these functions, 
but during the last fifteen years the programs that we call operating systems 
have gradually taken over these aspects of sharing. 

Although most components of present computers are sequential in na­
ture, they can work simultaneously to some extent. This infiuences the 
design of operating systems so much that the subject can best be described 
as the management of shared multiprogramming systems. 

Operating systems are large programs developed and used by achanging 
group of people. They are often modified considerably during their life­
time. Operating systems must necessarily impose certain restrictions on all 
users. But this should not lead us to regard them as being radically different 
from other programs. They are just examples of large programs based on 
fundamental principles of computer science. The proper aim of education is 
to identify these fundamentals. 

The student should realize that principles and methods of resource shar­
ing have a general utility that goes beyond operating systems. Any large 
programming effort will be heavily infiuenced by the presence of several lev­
els of storage, by the possibility of executing smaller tasks independently, 
and by the need for sharing a common set of data among such tasks. We 
find it convenient to distinguish between operating systems and user com­
putations because the former can enforce certain rules of behavior on the 
latter. It is important, however, to realize that each level of programming 
solves some aspect of resource allocation. 

I argue therefore that the study of operating systems leads to the recog­
nition of general principles which should be taught as part of a core of com­
puter science. Assuming that the student has an elementary background 
in programming languages, data structures and computer organization, the 
course concentrates on the following areas of computer science: concurrent 
computations, resource sharing and program construction. 

Let us look at the course in some detail. It consists of eight parts which 
are summarized in the Appendix. The following is a more informal presen­
tation of its basic attitude. 
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TECHNOLOGICAL BACKGROUND 

The necessity of controlling access to shared computer systems automatically 
is made clear by simple arguments about the poor utilization of equipment in 
an open shop operated by the users themselves, one at a time. As a first step 
in this direction, I describe the classical bat eh proeessing system wh ich carries 
out computations on a main computer while a sm aller computer prepares 
and prints magnetic tapes. The strict sequential nature of the processors 
and their backing storage in this early scheme made it necessary to prevent 
human interaction with computations and schedule them in their order of 
arrival inside a batch. 

These restrictions on scheduling disappear to some extent with the in­
troduction of multiprogramming techniques and large backing stores with 
random access. This is illustrated by two simple operating systems: the first 
one is a spooling system which handles a continuous stream of input, com­
putation and output on a multiprogrammed computer with drum storage; 
the other is an interactive system in which main storage is shared cyclically 
among several computations requested from remote terminals. 

Through a chain of simple arguments the student gradually leams to 
appreciate the infiuence of teehnological constraints on the service offered by 
operating systems. 

THE SIMILARITY OF OPERATING SYSTEMS 

The main theme of the course is the similarity of problems faced by all oper­
ating systems. To mention one example: all shared computer systems must 
handle concurrent activities at some level. Even if a system only schedules 
one computation at a time, users can still make their requests simultaneously. 
This problem can, of course, be solved by the users themselves (forming a 
waiting line) and by the operators (writing down requests on paper). But 
the observation is important, since our goal is to handle the problems of 
sharing automatically. 

It is also instructive to compare a batch processing and a spooling sys­
tem. Both achieve high efficiency by means of concurrent activities: in a 
batch processing system independent processors work together; in a spool­
ing system a single processor switches among independent programs. Both 
systems use backing storage (tape and drum) as a buffer to compensate for 
speed variations between the producers and consumers of data. 

As another example, consider real-time systems for process control or 
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conversational interaction. In these systems, concurrent processes must be 
able to exchange data in order to cooperate on common tasks. But again, 
this problem exists in all shared computer systems: in a spooling system 
user computations exchange data with concurrent input/output processes; 
and in a batch processing system we have another set of concurrent processes 
which exchange data by means of tapes mounted by operators. 

So I find that all operating systems face a common set of problems. 
To recognize these we must reject the established classification of operating 
systems into batch processing, time sharing, and real time systems wh ich 
stresses the dissimilarities of various forms of technology and user service. 
This does not mean that the problems of adjusting an operating system 
to the constraints of a certain environment are irrelevant. But the students 
will solve them much better when they have grasped the underlying common 
principles. 

You will also look in vain for chapters on input/output and filing systems. 
For a particular operating system considerations about how these problems 
are handled are highly relevant; but again I have concentrated on the more 
elementary problems involved in these complicated tasks, namely, process 
synchronization, storage management and resource protection. 

SEQUENTIAL AND CONCURRENT COMPUTATIONS 

After this introduction, the nature of computations is described. A com­

putation is a set of operations applied to a set of data in order to solve a 
problem. The operations must be carried out in a certain order to ensure 
that the results of some of them can be used by others. In a sequential 
process operations are carried out strictly one at a time. But most of our 
computational problems only require a partial ordering of operations in time: 
so me operations must be carried out before others, but many of them can 
be carried out concurrently. 

The main obstacles to the utilization of concurrency in computer systems 
are economy and human imagination. Sequential processes can be carried 
out cheaply by repeated use of simple equipment; concurrent computations 
require duplicated equipment and time-consuming synchronization of opera­
tions. Human beings find it extremely difficult to comprehend the combined 
effect of a large number of activities which evolve simultaneously with in­
dependent rates. In contrast, our understanding of a sequential process is 
independent of its actual speed of execution. All that matters is that op­
erations are carried out one at a time with finite speed, and that certain 
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relations hold between the data before and after each operation. 
So sequential processes closely mirror our thinking habits, but a computer 

system is utilized better when its various parts operate concurrently. As a 
compromise, we try to partition our problems into a moderate number of 
sequential activities which can be programmed separately and then combined 
for concurrent execution. These processes are loosely connected in the sense 
that they can proceed simultaneously with arbitrary rates except for short 
intervals when they exchange data. 

After a brief review of methods of structuring data and sequential pro­
grams, I consider the synchronizing requirements of concurrent processes. It 
is shown that the results of concurrent processes which share data cannot 
be predicted unless some operations exclude each other in time. Operations 
which have this property are called critical regions. Mutual exclusion can be 
controlled by a data structure, called a semaphore, consisting of aboolean, 
defining whether any process is inside its critical region, and a queue, con­
taining the set of processes waiting to enter their regions. 

A critical region is one example of a timing constraint or synchronization 
imposed on concurrent processes. Synchronization is also needed when some 
processes produce data which are consumed by other processes. The simplest 
input/output relationship is the exchange of timing signals between processes. 
The constraint here is that signals cannot be received faster than they are 
sent. This relationship can be represented by an integer semaphore accessed 
by signal and wait operations only. 

Realistic communication between processes requires the exchange of data 
structures. This problem can be solved by synchronizing primitives operat­
ing on semaphores and data structures which are accessible to all the pro­
cesses involved. It is tempting to conclude that critical regions, common 
data, and wait and signal operations are the proper concepts to include in 
a programming language. Experience shows that the slightest mistake in 
the use of these tools can result in erroneous programs which are practically 
impossible to correct because their behavior is infiuenced by external factors 
in a time-dependent, irreproducible manner. 

A more adequate solution is to include message buffers as primitive data 
structures in the programming language and make them accessible only 
through well-defined send and receive operations. The crucial point of this 
language feature is that storage containing shared data (messages) is ac­
cessible to at most one process at a time. It has been proved that when 
a set of sm aller systems with time-independent behavior are connected by 
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means of message buffers only, the resulting system can also be made time­
independent in behavior. 

The most general form of process inter action is one in wh ich a process 
must be delayed until another process has ensured that certain relationships 
hold between the components of a shared data structure. This form of 
synchronization can be expressed directly by means of conditional critical 
regIOns. 

The conceptual simplicity of simple and conditional critical regions is 
achieved by ignoring the sequence in which waiting processes enter these 
regions. This abstraction is unrealistic for heavily used resourees. In such 
cases, the operating system must be able to identify competing processes 
and control the scheduling of resources among them. This can be done by 
means of a monitor-a set of shared procedures which can delay and activate 
individual processes and perform operations on shared data. 

Finally, I consider the problems of deadlocks and their prevention by 
hierarchical ordering of process interactions. 

RESOURCE MANAGEMENT 

Most of the previous concepts are now widely used. Far more controversial 
are the problems of how abstract computations are represented and man­
aged on physical systems with limited resources. At first sight, problems 
caused by the physical constraints of computers seem to be of secondary 
importanee to the computational problems we are trying to solve. But in 
practice most programming efforts are dominated by technologieal problems 
and will continue to be so. It will always be economically attractive to share 
resources among competing computations, use severallevels of storage, and 
accept occasional hardware malfunction. 

It seems unrealistic to look for a unifying view of how different kinds of 
technology are used efficiently. The student should realize that these issues 
can only be understood in economic terms. What we can hope to do is to 
describe the circumstances under which certain techniques will work well. 

The implementation of the process concept is considered in two chapters 
on processor multiplexing and storage organization. The first of these de­
scribes the representation of processes and scheduling queues at the lowest 
level of programming and the implementation of synchronizing primitives. 
Hardware registers, docks and interrupts are treated as technological tools 
which in many cases can be replaced by more appropriate concepts at higher 
levels of programming. The second of these chapters discusses the compro-
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mises between associative and location-dependent addressing, and the dy­
namic allocation of fixed and variable-length data structures in storage with 
one or more levels. 

Following this, I discuss the influence of various scheduling algorithms: 
first-come first-served, shortest job next, highest response ratio next, round 
robin, and so on, on the behavior of the system in terms of average response 
times to user requests. 

A CASE STUDY 

At the end of the course, the conceptual framework is used to describe an 
existing operating system in depth using a consistent terminology. 

I have selected the RC 4000 multiprogramming system (Brinch Hansen 
1970) as a case study, because it is the only one I know in detail, and 
is a small, consistent design which illustrates essential ideas of concurrent 
processes, message communication, scheduling and resource protection. 

THE CHOICE OF A DESCRIPTION LANGUAGE 

So far nearly all operating systems have been written partly or completely in 
machine language. This makes them unnecessarily difficult to understand, 
test and modify. I believe it is desirable and possible to write efficient oper­
ating systems almost entirely in a high-level language. This language must 
permit hierarchal structuring of data and program, extensive error checking 
at compile time, and production of efficient machine code. 

To support this belief, I have used the programming language Pascal 
(Wirth 1971) throughout the text to define operating system concepts con­
cisely by algorithms. Pascal combines the clarity needed for teaching with 
the efficiency required for design. It is easily understood by programmers 
familiar with Algol 60 or Fortran, but is a far more natural tool than these 
for the description of operating systems because of the presence of data 
structures of type record, class and pointer. 

At the moment, Pascal is designed for sequential programming only, 
but I extend it with a suitable notation for multiprogramming and resource 
sharing. I have illustrated the description of operating systems in Pascal 
elsewhere (Brinch Hansen 1971a, 1971b). 
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STATUS OF THE COURSE 

I conceived the plan for the course in March 1970 and started to work on 
it in November 1970. Now, in November 1971, drafts have been written of 
parts 1-4, and 6 (see the Appendix). Most of the work on parts 5, and 7-8 
remains to be done. It is unlikely that the structure of the course will change 
significantly, although the details certainly will. 

APPENDIX: THE CONTENTS OF THE COURSE 

1. An overview of operating systems 

The purpose of an operating system. Technological background: manual 
scheduling, non-interactive scheduling with sequential and random access 
backing storage, interactive scheduling. The similarity of operating systems. 
Special versus general-purpose systems. 

2. Sequential processes 

Abstraction and structure. Data and operations. Sequential and concur­
rent computations. Methods of structuring data and sequential programs. 
Hierarchal program construction. Programming levels viewed as virtual ma­
chines. Our understanding and verification of programs. 

3. Concurrent processes 

Time-dependent programming errors in concurrent computations. Definition 
of functional behavior in terms of input/output histories. The construction 
of functional systems from sm aller functional components. Concurrent sys­
tems with inherent time-dependent behavior: priority scheduling and shared 
processes. 

Disjoint and interacting processes. Mutual exclusion of operations on 
shared data. Simple and conditional critical regions. Process communication 
by semaphores and message buffers. Explicit control of process scheduling 
by monitors. 

The deadlock problem. Prevention of deadlocks by hierarchal ordering 
of process interactions. 

4. Processor multiplexing 

Short-term and medium-term scheduling. A computer system with identical 
processors connected to a single store. Peripheral versus central processors. 
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Process descriptions, states and queues. Processor execution cyde. Schedul­
ing of critical regions by means of a storage arbiter. Implementation of the 
scheduling primitives wait, signal, initiate and terminate process. Influence 
of critical regions on preemption. Processor multiplexing with static and 
dynamic priorities. Implementation details: hardware registers, dock, inter­
rupts. Timing constraints. 

5. Storage organization 

Properties of abstract and physical storage. Methods of address mapping: 
searching, key transformation and base registers. 

Single-level storage: fixed partitioning, dynamic allocation of fixed and 
variable-length data structures. Compacting and fragmentation. 

Hierarchal storage: swapping, demand paging and extended storage. Lo­
cality principle. Prevention of thrashing. Placement and replacement strate­
gies. Hardware support. 

Influence of input/output, process communication, and scheduling on 
storage allocation. 

6. Scheduling algorithms 

Objectives of scheduling policies. Queueing models of user requests and 
computations. Performance measures. A conservation law for a dass of 
priority scheduling algorithms. 

Non-preemptive scheduling: fixed priorities, first-come first-served, short­
est job next, and highest response ratio next. 

Preemptive scheduling: round robin with swapping. Methods of reducing 
transfers between storage levels. Scheduling with performance feedback. 

7. Resource protection 

The concept of a process environment of shared objects. Requirements of 
naming and protection. Existing protection mechanisms: privileged execu­
tion state, storage protection, file systems with private and public data, user 
password identification, protection levels and process hierarchies. 

8. A case study 

A detailed analysis of the structure, size and performance of the RC 4000 
multiprogramming system. 
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STRUCTURED 
MULTIPROGRAMMING 

PER BRINCH HANSEN 

(1972) 

7 

This paper presents a proposal for structured representation of multiprogram­

ming in a high level language. The notation used explicitly associates a data 

structure shared by concurrent processes with operations defined on it. This 

darifies the meaning of programs and permits a large dass of time-dependent 

errors to be caught at compile time. A combination of critical regions and 

event variables enables the programmer to control scheduling of resources 

among competing processes to any degree desired. These concepts are suf­

ficiently safe to use not only within operating systems but also within user 

programs. 

1 Introduction 

The failme of operating systems to provide reliable long-term service can 
often be explained by excessive emphasis on functional capabilities at the 
expense of efficient resomce utilization, and by inadequate methods of pro­
gram construction. 

In this paper, I examine the latter cause of failme and propose a language 
notation for structmed multiprogramming. The basic idea is to associate 
data shared by concmrent processes explicitly with operations defined on 
them. This clarifies the meaning of programs and permits a large class of 
time-dependent errors to be caught at compile time. 

The notation is presented as an extension to the sequential programming 
language Pascal (Wirth 1971). It will be used in a forthcoming textbook to 

P. Brinch Hansen, Structured multiprogramming. Gommunications 0/ the A GM 15, 7 (July 
1972), 574-578. Copyright © 1972, Association for Computing Machinery, Inc. Reprinted 
by permission. 
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explain operating system principles concisely by algorithms (Brinch Hansen 
1971). Similar ideas have been explored independently by Hoare. The con­
ditional critical regions proposed in (Hoare 1971) are a special case of the 
ones introduced here. 

2 Disjoint Processes 

Our starting point is the concurrent statement 

cobegin SI; S2; ... ; Sn coend 

introduced by Dijkstra (1965). This notation indicates that statements 
51, 52, ... , Sn can be executed concurrently; when all of them are termi­
nated, the following statement in the program (not shown here) is executed. 

This restricted form of concurrency simplifies the understanding and ver­
ification of programs considerably, compared to unstructured Jork and join 
primitives (Conway 1963). 

Algorithm 1 illustrates the use of the concurrent statement to copy 
records from one sequential file to another. 

var f, g: file of T; 
s, t: T; eof: Boolean; 

begin 
input(f, s, eof); 
while not eof do 

begin t := s; 
cobegin 

output(g, t); 
input(f, s, eof); 

coend 
end 

end 

Algorithm 1 Copying of a sequential file. 

The variables here are two sequential files, J and 9, with records of 
type T; two buffers, sand t, holding one re cord each; and aBoolean, eoJ, 
indicating whether or not the end of the input file has been reached. 

Input and output of single records are handled by two standard proce­
dures. The algorithm inputs arecord, copies it from one buffer to another, 
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outputs it, and at the same time, inputs the next record. The copying, 
output, and input are repeated until the input file is empty. 

Now suppose the programmer by mistake expresses the repetition as 
follows: 

while not eof do 
cobegin 

t := s; 
output(g, t); 
input(f, s, eof); 

coend 

The copying, output, and input of arecord can now be executed concur­
rently. To simplify the argument, we will only consider cases in which these 
processes are arbitrarily interleaved but not overlapped in time. The erro­
neous concurrent statement can then be executed in six different ways with 
three possible results: (1) if copying is completed before input and output 
are initiated, the correct record will be output; (2) if output is completed 
before copying is initiated, the previous record will be output again; and (3) 
if input is completed before copying is initiated, and this in turn completed 
before output is initiated, the next record will be output instead. 

This is just for a single record of the output file. If we copy a file of 
10,000 records, the program can give of the order of 310,000 different results! 

The actual sequence of operations in time will depend on the presence of 
other (unrelated) computations and the (possibly time-dependent) schedul­
ing policy of the installation. It is therefore very unlikely that the program­
mer will ever observe the same result twice. The only hope of locating the 
error is to study the program text. This can be very frustrating (if not im­
possible) when it consists of thousands of lines and one has no clues about 
where to look. 

Multiprogramming is an order of magnitude more hazardous than se­
quential programming unless we ensure that the results of our computations 
are reproducible in spite oi errors. In the previous example, this can easily 
be checked at compile time. 

In the correct version of Algorithm 1, the output and input processes 
operate on disjoint sets of variables (g, t) and (1, s, eof). They are called 
disjoint or noninteracting processes. 

In the erroneous version of the algorithm, the processes are not disjoint: 
the output process refers to a variable t changed by the copying process; and 
the latter refers to a variable s changed by the input process. 
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This can be detected at compile time if the following rule is adopted: a 
concurrent statement defines disjoint processes SI, S2, ... , Sn which can be 
executed concurrently. This means that a variable Vi changed by statement 
Si cannot be referenced by another statement Sj (where j i- i). In other 
words, we insist that a variable subject to change by a process must be 
strictly private to that process; but disjoint processes can refer to shared 
variables not changed by any of them. 

Throughout this paper, I tacitly assume that sequential statements and 
assertions made about them only refer to variables wh ich are accessible to 
the statements according to the rules of disjointness and mutual exclusion. 
The latter rule will be defined in Section 3. 

Violations of these rules must be detected at compile time and prevent 
execution. To enable a compiler to check the disjointness of processes the 
language must have the following property: it must be possible by simple 
inspection of a statement to distinguish between its constant and variable 
parameters. I will not discuss the influence of this requirement on language 
design beyond mentioning that it makes unrestricted use of pointers and 
side-effects unacceptable. 

The rule of disjointness is due to Hoare (1971). It makes the axiomatic 
properly of a concurrent statement S very simple: if each component state­
ment Si terminates with a result R i provided a predicate Pi holds before its 
execution then the combined effect of S is the following: 

"P" S "R" 

where 

P == PI & P2 & ... & Pn 

R == R l & R2 & ... & Rn 

As Hoare puts it: "Each Si makes its contribution to the common goal." 

3 Mutual Exclusion 

The usefulness of disjoint processes has its limits. We will now consider 
intemcting processes~concurrent processes which access shared variables. 

A shared variable v of type T is declared as folIows: 

var v: shared T 
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Concurrent processes can only refer to and change a shared variable 
inside a structured statement called a critical region 

region v do S 

This notation associates a statement S with a shared variable v. 
Critical regions referring to the same variable exclude each other in time. 

They can be arbitrarily interleaved in time. The idea of progressing towards 
a final result (as in a concurrent statement) is therefore meaningless. All 
one can expect is that each critical region leaves certain relationships among 
the components of a shared variable v unchanged. These relationships can 
be defined by an assertion I about v which must be true after initialization 
of v and before and after each subsequent critical region associated with v. 
Such an assertion is called an invariant. 

When a process enters a critical region to execute a statement S, a pred­
icate P holds for the variables accessible to the process outside the critical 
region and an invariant I holds for the shared variable v accessible inside the 
critical region. After the completion of S, a result R holds for the former 
variables and invariant I has been maintained. So a critical region has the 
following axiomatic property: 

"P" 
region v do "P&I" S "R&I"; 
"R" 

4 Process Communication 

Mutual exclusion of operations on shared variables makes it possible to make 
meaningful statements about the effect of concurrent computations. But 
when processes cooperate on a common task they must also be able to wait 
until certain conditions have been satisfied by other processes. 

For this purpose I introduce a synchronizing primitive, await, which de­
lays a process until the components of a shared variable v satisfy a condition 
B: 

region v do 
begin ... await B; ... end 

The await primitive must be textually enclosed by a critical region. If 
critical regions are nested, the synchronizing condition B is associated with 
the innermost enclosing region. 
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The await primitive can be used to define conditional critical regions of 
the type proposed in (Hoare 1971): 

"Consumer" 
region v do 
begin await B; 81 end 

"Producer" 
region v do 82 

The implementation of critical regions and await primitives is illustrated 
in Fig. 1. When a process, such as the consumer above, wishes to enter a 
critical region, it enters a main queue Qv associated with a shared variable v. 
After entering its critical region, the consumer inspects the shared variable 
to determine whether it satisfies a condition B. In that case, the consumer 
completes its critical region by executing a statement 81; otherwise, the 
process leaves its critical region temporarily and joins an event queue Qe 
associated with the shared variable. 

Figure 1 Scheduling of conditional 
critical regions V by me ans of process 
queues Qv and Qe. 

All processes waiting for one condition or another on variable v enter the 
same event queue. When another process (here called the producer) changes 
v by a statement 82 inside a critical region, it is possible that one or more 
of the conditions expected by processes in the event queue will be satisfied. 
So, after completion of a critical region, all processes in the event queue Qe 
are transferred to the main queue Qv to enable them to reenter their critical 
regions and inspect the shared variable v again. 

It is possible that a consumer will be transferred in vain between Qv and 
Qe several times before its condition B holds. But this can only occur as 
frequently as producers change the shared variable. This controlled amount 
of busy waiting is the price we pay for the conceptual simplicity achieved by 
using arbitrary Boolean expressions as synchronizing conditions. 
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The desired invariant I for the shared variable v must be satisfied before 
an await primitive is exeeuted. When the waiting eyde terminates, the 
assertion B & I holds. 

As an example, eonsider the following resouree alloeation problem: two 
kinds of eoneurrent proeesses, ealled readers and writers, share a single re­
souree. The readers ean use the resouree simultaneously, but the writers 
must have exdusive aeeess to it. When a writer is ready to use the resouree, 
it should be enabled to do so as so on as possible. 

This problem is solved by Algorithm 2. Here variable v is a reeord eon­
sisting of two integer eomponents defining the number of readers eurrently 
using the resouree and the number of writers eurrently waiting for or using 
the resouree. Both readers and writers are initialized to zero. 

var v: shared record readers, writers: integer end 
w: shared Büülean; 

"Reader" 
region v do 
begin 

await writers = 0; 
readers := readers + 1; 

end 
read; 
region v do 
readers : = readers - 1; 

"Writer" 
region v do 
begin 

writers := writers + 1; 
await readers = 0; 

end 
region w do write; 
region v do 
writers := writers - 1; 

Algorithm 2 Resüuree sharing by readers and writers. 

Mutual exdusion of readers and writers is aehieved by letting readers 
wait until the number of writers is zero, and viee versa. Mutual exdusion of 
individual writers is ensured by the eritieal region on the Boolean w. 

The priority rule is obeyed by inereasing the number of writers as so on 
as one of them wishes to use the resouree. This will delay subsequent reader 
requests until all pending writer requests are satisfied. 

A eorrectness proof of Algorithm 2 is outlined in (Brineh Hansen 1972). 
In this paper I also point out the superiority of eonditional eritical regions 
over semaphores (Dijkstra 1965). Compared to the original solution to the 
problem (Courtois 1971) Algorithm 2 demonstrates the eoneeptual advan-
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tage of a structured notation. 1 

The conceptual simplicity of critical regions is achieved by ignoring de­
tails of scheduling: the programmer is unaware of the sequence in which 
waiting processes enter critical regions and access shared resources. This 
assumption is justified for processes which are so loosely connected that si­
multaneous requests for the same resource rarely occur. 

But in most computer installations TeSOUTces are heavily used by a large 
group of users. In this situation, an operating system must be able to control 
the scheduling of resources explicitly among competing processes. 

To do this a programmer must be able to associate an arbitrary number 
of event queues with a shared variable and control the transfers of processes 
to and from them. In general, I would therefore replace the previous proposal 
for conditional delays with the following One: 

The declaration 

var e: event V; 

associates an event queue e with a shared variable v. 
A process can leave a critical region associated with v and join the event 

queue e by executing the standard procedure 

await(e) 

Another process can enable all processes in the event queue e to reenter 
their critical regions by executing the standard procedure 

cause(e) 

A consumer jproducer relationship must now be expressed as follows: 

"Consumer" 
region v do 
begin 

while not B do await(e); 
SI; 

end 

"Producer" 
region v do 
begin 

S2; 
cause(e); 

end 

lThe original solution includes the following refinement: when a writer decides to 
make arequest at most one more reader can complete arequest ahead of it. This can 
be ensured by surrounding the reader request in Algorithm 2 with an additional critical 
region associated with a shared Boolean r. 
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var v: shared record 
available: set of R; 
requests: set of P; 
grant: array P of event v; 

end 

procedure reserve(prüeess: P; var resüuree: R); 
region v do 
begin 

while empty( available) do 
begin enter(proeess, requests); 

await(grant[proeess]); 
end 
remüve( resüuree, available); 

end 

procedure release(resüuree: R); 
var proeess: P; 
region v do 
begin enter( resüuree, available); 

if not empty(requests) then 
begin remüve(proeess, requests); 

eause(grant [proeess]); 
end 

end 

Algorithm 3 Seheduling üf heavily used resüurees. 

263 

Although less elegant than the previous notation, the present one still 
clearly shows that the eonsumer is waiting for eondition B to hold. And we 
ean now eontrol proeess seheduling to any degree desired. 

To simplify explicit scheduling, I suggest that processes reentering their 
eritieal regions from event queues take priority over processes entering eritical 
regions direetly through a main queue (see Fig. 1). If the seheduling rule 
is eompletely unknown to thc programmer as before, additional variables 
are required to ensure that resourees granted to waiting processes remain 
available to them until they reenter their eritical regions. 

Algorithm 3 is a simple example of eompletely eontrolled resouree alloea­
tion. A number of processes share a pool of equivalent resourees. Processes 
and resourees are identified by indices of type P and R respectively. When 
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resources are available, a process can acquire one immediately; otherwise, it 
must enter arequest in a data structure of type set of P and wait until a 
resource is granted to it. It is assumed that the program controls the entry 
and removal of set elements completely. 

5 Conclusion 

I have presented structured multiprogramming concepts which have simple 
axiomatic properties and permit extensive compile time checking and gen­
eration of efficient machine code. 

The essential properties of these concepts are: 

1. A distinction between disjoint and interacting processes; 

2. An association of shared data with operations defined on them; 

3. Mutual exclusion of these operations in time; 

4. Synchronizing primitives which permit partial or complete control of 
process scheduling. 

These are precisely the concepts needed to implement monitor procedures 
such as the ones described in (Brinch Hansen 1970). They appear to be 
sufficiently safe to use not only within operating systems but also within 
user programs to control local resources. 
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SHARED CLASSES 

PER BRINCH HANSEN 

(1973) 

The author discusses the elose relationship between data and operations and 

suggests that a compiler should be able to check that data structures are ac­

cessed by meaningful procedures only. This idea leads to the introduction of 

shared elasses-a programming notation for the monitor concept. The nota­

tion is illustrated by a message buffer for concurrent processes. 

We will discuss the dose relationship between data and operations and use 
it to define a very important form of resource protection. 

If we consider variables of primitive types such as integer and boolean, it 
is quite possible that values of different types will be represented by identical 
bit strings at the machine level. For example both the boolean value true 
and the integer value 1 might be represented by the bit string 

000 ... 001 

in single machine words. 
So data of different types are distinguished not only by the representa­

tion of their values, but also by the operations associated with the types. 
An integer, for example, is a datum subject only to arithmetic operations, 
comparisons, and assignments involving other data subject to the same re­
strictions. 

Now consider structured types. Take for example a variable that repre­
sents a message buffer which contains a sequences of messages sent, but not 

P. Brinch Hansen, Operating System Principles, Section 7.2 Cl ass Concept, Prentice Hall, 
Englewood Cliffs, NJ, (July 1973), 226-232. Copyright © 1973, Prentice Hall. Reprinted 
by permission. 

265 



266 PER BRINCH HANSEN 

yet received. A static picture of process communication can be defined by 
assertions about the relationships of the components of the message buffer. 
But to understand how and when messages are exchanged dynamically, one 
must also study the send and receive procedures defined for a message buffer. 
These operations in turn are only meaningful for the particular representa­
tion of the message buffer chosen and can only be understood precisely by 
studying its type definition. 

These examples illustrate the point made by Dahl (1972): "Data and 
operations on data seem to be so closely connected in our minds, that it 
takes elements of both kinds to make any concept useful for understanding 
computing processes." 

Simon (1962) has pointed out that the search for state and process 
descriptions of the same phenomenon is characteristic of problem solving: 
"These two modes of apprehending structure are the warp and weft of our 
experience. Pictures, blueprints, most diagrams, chemical structural for­
mulae are state descriptions. Recipes, differential equations, equations for 
chemical reactions are process descriptions. The former characterize the 
world as sensed; they provide the criteria for identifying objects, often by 
modeling the objects themselves. The latter characterize the world as acted 
upon; they provide the me ans for producing or generating objects having 
the desired characteristics." 

"The distinction between the world as sensed and the world as acted 
upon defines the basic condition for the survival of adaptive organisms. The 
organism must develop correlations between goals in the sensed world and 
actions in the world of process." 

In Section 2.6 on program construction, I have illustrated this alternation 
between a refinement of data (representing states) and program (representing 
processes ). The essence of this form of problem solving is the following: 

When a programmer needs a concept such as process communication, he 
first postulates a set of operations (in this case, send and receive) that have 
the desired effect at his present level of thinking. Later, he chooses a specific 
representation of a data structure (a message buffer), that enables hirn to 
implement the operations efficiently on the available machine. 

When the programmer is trying to convince hirnself of the correctness 
of a program (by formal proof or testing), he will tacitly ass urne that these 
operations (send and receive) are the only ones carried out on data structures 
of this type (message buffers). 

If other statements in his program are able to operate on message buffers, 
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he cannot make this assumption. The most extreme case is unstructured ma­
chine language, which potentially permits each statement to influence any 
other statement, intentionally or by mistake. This makes program verifica­
tion an endless task since one can never be sure, when a new component is 
added to a large program, how this will influence previously tested compo­
nents. 

If, on the other hand, the previous assumption is justified, the program­
mer can convince hirnself of the correctness of process communication by 
studying only the type definition of a message buffer and the procedures send 
and receive. Once this program component has been shown to be correct, 
the designer can be confident that subsequent addition of other components 
will not invalidate this proof. This makes the task of verification grow lin­
early with the number and size of components-an essential requirement for 
the design of large, reliable programs. 

According to the previous definition, it is an obvious protection problem 
to check that data are accessed by operations consistent with their type. 
To what extent do the structures of present high-level languages enable a 
compiler to do this? 

Adecent compiler for an algorithmic language such as Fortran, Algol 60, 
or Pascal will check the compatibility of data and operations on them for 
primitive types (Naur 1963). The compiler can do this because the permis­
sible operations on primitive types are part of the language definition. 

But in the case of structured types, only the most rudimentary kind of 
checking is possible with these languages. All the compiler can check is that 
data in assignment statements and comparisons for equality are of the same 
type. But, since the languages mentioned do not enable the programmer 
to associate a set of procedures with a type definition, the compiler cannot 
check whether the operations on a message buffer are restricted to send 
and receive procedures as intended by the programmer. This is a serious 
deficiency of most programming languages available today. 

An exception is the Simula 67language (Dahl 1968), an extension of 
Algol 60 originally designed for simulation. In Simula 67, the definition of 
a structured data type and the meaningful operations on it form a single, 
syntactical unit called a dass. 1 

I will briefly describe a simplified, restricted form of the Simula 67 dass 
concept in a Pascal-inspired notation. 

1 Readers of the Pascal report by Wirth (1971) should notice that the Simula dass 
concept is completely unrelated to the Pascal dass concept. 
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The notation 

procedure P1(. .. ) begin S1 end 

procedure Pn (. .. ) begin Sn end 

begin So end 

defines: (1) a data structure of type T eonsisting of the eomponents VI, V2, 

... , Vm of types Tl, T2, ... , Tm; (2) a set of proeedures (or funetions), PI, 
P2, ... , Pn that operate on the data strueture; and (3) a statement So that 
ean define its initial value. 

A variable V of type T is declared as usual: 

var v: T 

Upon entry to the eontext in whieh the variable V is declared, storage is 
alloeated for its eomponents VI, V2, ... , Vm , and the initial statement So is 
earried out for this variable. 

A eall of a proeedure Pi on the variable v is denoted: 

Proeedure Pi ean refer to the eomponents vI, V2, ... , vm of v, to its own 
loeal variables, and to the parameters of the given eall. The operations PI, 
P2 , ... , Pn are the only ones permitted on the variable v. 

An obvious idea is to represent eritieal regions by the eoneept shared 
class, implying that the operations PI, P2 , ... , Pn on a given variable v of 
type T exclude one another in time. 

The eoneept message buffering is defined as a shared class in Algorithm l. 
A buffer variable band a message variable t are dedared and aceessed as 
follows: 

var b: B; t: T; 

b.send(t) b.receive( t) 

Strictly speaking, assignment to a message parameter m ean only be 
made within the dass B if its type T is primitive. But it seems reasonable 
to retain the simple type definition 
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shared dass B = 

buffer: array o .. max-1 of T; 
p, c: 0 .. max-1; 
full: o .. max; 

procedure send(m: T); 
begin 

await fuH < maxi 
buffer[p] := m; 
p := (p + 1) mod maxi 
fuH := fuH + 1; 

end 

procedure receive(var m: T); 
begin 

await fuH > 0; 
m := buffer[c]; 
c := (c + 1) mod maxi 
fuH := fuH - 1; 

end 

begin p := 0; c := 0; fuH := 0 end 

Algorithm 1 Representation of a 

message buffer by a shared dass. 

type T = <type> 

to indicate that variables of this type can be accessed directly. 
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The dass concept in Simula 67 has several other aspects, among them a 
mechanism for defining a hierarchy of dasses (Dahl1972). My main purpose 
he re is to show a notation which explicitly restricts operations on data and 
enables a compiler to check that these restrictions are obeyed. Although such 
restrictions are not enforced by Simula 67, this would seem to be essential 
for effective protection. 

Many computers support arestricted form of shared dass at the ma­
chine level of programming. I am referring to the basic monitor procedures 
and data structures which control the sharing of processors, storage, and 
peripherals at the lowest level of programming. This dass conccpt enforced 
at run time is implemented as follows: The address mapping performed by 
a central processor prevents computations from referring directly to data 
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structures belonging to the basic monitor, but permits them to call a well­
defined set of monitor procedures. Mutual exdusion in time of such calls 
is achieved by means of an arbiter and by delaying interrupt response. To 
prevent computations from bypassing the monitor and referring directly to 
physical resources, the central processor recognizes two states of execution: 
the privileged state, in which all machine instructions can be executed; and 
the user state, in which certain instructions cannot be executed (those that 
control program interruption, input/output, and address mapping). The 
privileged state is entered after a monitor caIl; the user state is entered after 
a monitor return. 

In Chapter 1 I said "It is now recognized that it is desirable to be able 
to distinguish in a more flexible manner between many levels of protection 
(and not just two)." We have seen that it is indeed desirable to be able 
to enforce a separate set of access rules for each data type used. The dass 
concept is a general structuring tool applicable at all levels of programming, 
sequential as weIl as concurrent. 

The dass concept was introduced here to protect loeal data structures 
within a program against inconsistent operations. But the concept is appli­
cable also to data structures which are retained within the computer after 
the termination of computations. 

One example of retained data structures are those used within an operat­
ing system to control resource sharing among unrelated computations. These 
data structures must be accessed only through well-defined procedures; oth­
erwise, the operating system might crash. So an operating system defines 
a set of standard procedures which can be called by computations. Since 
these procedures remain unchanged over reasonable periods of time, a com­
piler should be able to use a description of them to perform type checking 
of calls of them within user programs in advance of their execution. 

We are thus lead to the idea of maintaining dala structures defining 
environments 01 compilation and execution. An environment defines a set of 
retained data structures and procedures accessible to a given computation. 

Another example of retained data structures are files stored semiperma­
nently on backing stores. In most present file systems, a computation can 
either be denied access to a given file or be permitted to read, write, or ex­
ecute it. This seems a rather crude distinction. In most cases, a data file is 
intended to be used only in a particular manner; for example, a source text 
of a program is intended to be edited or compiled by a particular compiler; 
most other operations on it may be entirely meaningless from the user's point 
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of view. To maintain the integrity of a file, its creator should therefore be 
able to associate it with a set of procedures through wh ich it can be accessed 
in a meaningful manner. This is possible, for example, in the file system for 
the B5500 computer (McKeag 1971). 

Assuming that this set of procedures remains unchanged over reasonable 
periods of time, it would again be possible to check the consistency of refer­
ences to files within user programs at compile time. The basic requirement 
is that the access rules remain fixed between compilation and execution of 
programs. 

Such a system differs from the present ones in two aspects: (1) a program 
is compiled to be executed in a particular environment; and (2) a compiled 
program may become invalid if its environment changes. This is acceptable 
only if most programs are compiled shortly before execution or if they oper­
ate in a fairly constant environment. The benefits of this approach would be 
an early detection of program errors and a more efficient execution because 
fewer protection rules would have to be checked dynamically. 
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MONITORS: AN OPERATING 
SYSTEM STRUCTURING CONCEPT 

C.A.R.HOARE 

(1974) 

This paper develops Brinch Hansen's concept of a monitor as a method of 

structuring an operating system. It introduces a form of synchronization, de­

scribes a possible method of implementation in terms of semaphores and gives 

a suitable proof rule. Illustrative examples include a single resource scheduler, 

a bounded buffer, an alarm clock, a buffer pool, a disk head optimizer, and a 

version of the problem of readers and writers. 

1 Introduction 

A primary aim of an operating system is to share a computer installation 
among many programs making unpredietable demands upon its resourees. 
A primary task of its designer is therefore to eonstruct resouree alloeation 
(or seheduling) algorithms for resourees of various kinds (main store, drum 
store, magnetie tape handlers, eonsoles, ete.). In order to simplify his task, 
he should try to eonstruet separate sehedulers for eaeh dass of resouree. 
Eaeh seheduler will eonsist of a eertain amount of loeal administrative data, 
together with some proeedures and functions whieh are ealled by programs 
wishing to aequire and release resourees. Such a eollection of assoeiated data 
and proeedures is known as a monitor; and a suitable notation ean be based 
on the class notation of Simula 67 (Dahl 1972). 

C. A. R. Hoare, Monitors: an operating system strueturing eoneept, Communications oi 
the ACM 17, 10 (October 1974), 549-557. Copyright © 1974, Assoeiation for Computing 
Maehinery, Ine. Reprinted by permission. 
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monitorname: monitor 
begin ... declarations of data loeal to the monitor; 

procedure procname ( ... formal parameters ... ); 
begin ... proeedure body ... end; 

... declarations of other proeedures loeal to the monitor; 

... initialization of loeal data of the monitor ... 
end; 

Note that the proeedure bodies may have loeal data, in the normal way. 
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In order to eall a proeedure of a monitor, it is neeessary to give the name 
of the monitor as weH as the name of the desired proeedure, separating them 
by a dot: 

monitorname. procname( .. . aetual parameters ... ); 

In an operating system it is sometimes desirable to dedare several mon­
itors with identical strueture and behaviour, for example to sehedule two 
similar resourees. In such eases, the dedaration shown above will be pre­
eeded by the word class, and the separate monitors will be dedared to belong 
to this dass: 

monitor 1, monitor 2: classname; 

Thus the strueture of a dass of monitors is identieal to that deseribed for a 
data representation in Hoare (1972b), except for addition of the basic word 
monitor. Brinch Hansen (1973) used the word shared for the same purpose. 

The proeedures of a monitor are eommon to aH running programs, in the 
sense that any program may at any time attempt to eall such a procedure. 
However, it is essential that only one program at a time aetually succeed 
in entering a monitor procedure, and any sub se quent call must be held up 
until the previous eall has been eompleted. Otherwise, if two proeedure 
bodies were in simultaneous execution, the effects on the loeal variables of 
the monitor eould be chaotic. The procedures loeal to a monitor should not 
access any nonloeal variables other than those local to the same monitor, 
and these variables of the monitor should be inaeeessible from outside the 
monitor. If these restrictions are imposed, it is possible to guarantee against 
eertain of the more obseure forms of time-dependent co ding error; and this 
guarantee eould be underwritten by a visual sean of the text of the program, 
whieh eould readily be automated in a compiler. 

Any dynamic resouree allocator will sometimes need to delay a program 
wishing to aequire a resouree which is not eurrently available, and to res urne 
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that program after some other program has released the resouree required. 
We therefore need: a "wait" operation, issued from inside a proeedure of 
the monitor, which eauses the ealling program to be delayed; and a "sig­
nal" operation, also issued from inside a proeedure of the same monitor, 
whieh eauses exaetly one of the waiting programs to be resumed immedi­
ately. If there are no waiting programs, the signal has no effeet. In order to 
enable other programs to release resourees during a wait, a wait operation 
must relinquish the exclusion whieh would otherwise prevent entry to the 
releasing proeedure. However, we deeree that a signal operation be followed 
immediately by resumption of a waiting program, without possibility of an 
intervening proeedure eall from yet a third program. It is only in this way 
that a waiting program has an absolute guarantee that it ean aequire the 
resouree just released by the signalling program without any danger that a 
third program will interpose a monitor entry and seize the resouree instead. 

In many eases, there may be more than one reason for waiting, and these 
need to be distinguished by both the waiting and the signalling operation. 
We therefore introduee a new type of "variable" known as a "eondition"; 
and the writer of a monitor should declare a variable of type eondition for 
eaeh reason why a program might have to wait. Then the wait and signal 
operations should be preeeded by the name of the relevant eondition variable, 
separated from it by a dot: 

condvariable.wait; 
condvariable.signal; 

Note that a eondition "variable" is neither true nor false; indeed, it does 
not have any stored value aeeessible to the program. In praetiee, a eondition 
variable will be represented by an (initially empty) queue of proeesses whieh 
are eurrently waiting on the eondition; but this queue is invisible both to 
waiters and signallers. This design of the eondition variable has been de­
liberately kept as primitive and rudimentary as possible, so that it may be 
implemented efficiently and used fiexibly to aehieve a wide variety of effeets. 
There is a great temptation to introduee a more eomplex synehronization 
primitive, whieh may be easier to use for many purposes. We shall res ist 
this temptation for a while. 

As the simplest example of a monitor, we will design a seheduling algo­
rithm for a single resouree, whieh is dynamically aequired and released by 
an unknown number of eustomer proeesses by ealls on proeedures: 

procedure acquire; 
procedure release; 
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A variable l 

busy: Boolean 

determines whether or not the resouree lS muse. If an attempt is made 
to aequire the resouree when it is busy, the attempting program must be 
delayed by waiting on a variable, 

nonbusy: eondition 

whieh is signalled by the next subsequent release. The initial value of busy 
is false. These design decisions lead to the following eode for the monitor: 

Notes 

single resouree: monitor 
begin busy: Boolean; 

nonbusy: eondition; 
procedure aequire; 

begin if busy then nonbusy.wait; 
busy := true 

end; 
procedure release; 

begin busy := false; 
nonbusy.signal 

end; 
busy := false; comment initial value; 

end single resouree 

1. In designing a monitor, it seems natural to design the proeedure head­
ings, the data, the eonditions, and the proeedure bodies, in that order. All 
subsequent examples will be designed in this way. 
2. The aequire proeedure does not have to re test that busy has gone false 
when it resumes after its wait, sinee the release proeedure has guaranteed 
that this is so; and as mentioned before, no other program ean intervene 
between the signal and the eontinuation of exaetly one waiting program. 
3. If more than one program is waiting on a eondition, we postulate that the 
signal operation will reactivate the longest waiting program. This gives a 
simple neutral queuing discipline which ensures that every waiting program 
will eventually get its turn. 

1 As in Pascal (Wirth 1971), a variable declaration is of the form: 
< variable identifier>: < type>; 
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4. The single resource monitor simulates a Boolean semaphore (Dijk­
stra 1968a) with acquire and release used for P and V respectively. This 
is a simple proof that the monitorjcondition concepts are not in principle 
less powerful than semaphores, and that they can be used for all the same 
purposes. 

2 Interpretation 

Having proved that semaphores can be implemented by a monitor, the next 
task is to prove that monitors can be implemented by semaphores. 

Obviously, we shall require for each monitor a Boolean semaphore "mu­
tex" to ensure that the bodies of the local procedures exclude each other. 
The semaphore is initialized to 1; a P(mutex) must be executed on entry to 
each local procedure, and a V(mutex) must usually be executed on exit from 
it. 

When a process signals a condition on which another process is wait­
ing, the signalling process must wait until the resumed process permits it 
to proceed. We therefore introduce for each monitor a second semaphore 
"urgent" (initialized to 0), on which signalling processes suspend themselves 
by the operation P(urgent). Before releasing exclusion, each process must 
test whether any other process is waiting on urgent, and if so, must release it 
instead by a V(urgent) instruction. We therefore need to count the number 
of processes waiting on urgent, in an integer "urgent count" (initially zero). 
Thus each exit from a procedure of a monitor should be coded: 

if urgent count > 0 then V(urgent) else V(mutex) 

Finally, for each condition local to the monitor, we introduce a semaphore 
"condsem" (initialized to 0), on which a process desiring to wait suspends 
itself by a P( condsem) operation. Since a process signalling this condition 
needs to know whether anybody is waiting, we also need a count of the 
number of waiting processes held in an integer variable "condcount" (initially 
0). The operation cond.wait may now be implemented as follows (recall that 
a waiting program must release exclusion before suspending itself ): 

condcount := condcount + 1; 
if urgentcount > 0 then V(urgent) else V(mutex); 
P(condsem); comment This will always wait; 
condcount := condcount - 1 

The signal operation may be coded: 
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urgent count := urgent count + 1; 
if condcount > 0 then {V(condsem); P(urgent)}; 
urgentcount := urgentcount - 1 
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In this implementation, possession of the monitor is regarded as a priv­
ilege which is explicitly passed from one process to another. Only when no 
one further wants the privilege is mutex finally released. 

This solution is not intended to correspond to recommended "style" in 
the use of semaphores. The concept of a condition-variable is intended as a 
substitute for semaphores, and has its own style of usage, in the same way 
that while-loops or coroutines are intended as a substitute for jumps. 

In many cases, the generality of this solution is unnecessary, and a sig­
nificant improvement in efficiency is possible. 
1. When a procedure body in a monitor contains no wait or signal, exit from 
the body can be coded by a simple V(mutex), since urgent count cannot have 
changed during the execution of the body. 
2. If a cond.signal is the last operation of a procedure body, it can be 
combined with monitor exit as follows: 

if condcount > 0 then V(condsem) 
else if urgent count > 0 then V(urgent) 

else V(mutex) 

3. If there is no other wait or signal in the procedure body, the second line 
shown above can also be omitted. 
4. If every signal occurs as the last operation of its procedure body, the 
variables urgentcount and urgent can be omitted, together with all operations 
upon them. This is such a simplifcation that O.-J. Dahl suggests that signals 
should always be the last operation of a monitor procedure; in fact, this 
restriction is a very natural one, which has been unwittingly observed in all 
examples of this paper. 

Significant improvements in efficiency mayaiso be obtained by avoiding 
the use of semaphores, and by implementing conditions directly in hardware, 
or at the lowest and most uninterruptible level of software (e.g. supervisor 
mode). In this case, the following optimizations are possible. 
1. urgentcount and condcount can be abolished, since the fact that someone is 
waiting can be established by examining the representation of the semaphore, 
which cannot change surreptitiously within noninterruptible mode. 
2. Many monitors are very short andcontain no calls to other monitors. 
Such monitors can be executed wholly in non-interruptible mode, using, as 
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it were, the common exclusion mechanism provided by hardware. This will 
often involve less time in non-interruptible mode than the establishment of 
separate exclusion for each monitor. 

I am grateful to J. Bezivin, J. Horning, and R. M. McKeag for assisting 
in the discovery of this algorithm. 

3 Proof rules 

The analogy between a monitor and a data representation has been noted 
in the introduction. The mutual exclusion on the code of a monitor ensures 
that procedure calls follow each other in time, just as they do in sequential 
programming; and the same restrictions are placed on access to nonlocal 
data. These are the reasons why the same proof rules can be applied to 
monitors as to data representations. 

As with a data representation, the programm er may associate an invari­
ant J with the local data of a monitor, to describe some condition which 
will be true of this data before and after every procedure call. J must also be 
made true after initialization of the data, and before every wait instruction; 
otherwise the next following procedure call will not find the local data in a 
state which it expects. 

With each condition variable b the programmer may associate an asser­
tion B which describes the condition under which a pro gram waiting on b 
wishes to be resumed. Since other programs may invoke a monitor procedure 
during a wait, a waiting program must ensure that the invariant J for the 
monitor is true beforehand. This gives the proof rule for waits: 

.J {b.wait} .J&B 

Since a signal can cause immediate resumption of a waiting program, the 
conditions J&B which are expected by that program must be made true 
before the signal; and since B may be made false again by the resumed 
program, only J may be assumed true afterwards. Thus the proof rule for 
a signal is: 

.J&B {b.signal} .J 

This exhibits a pleasing symmetry with the rule for waiting. 
The introduction of condition variables makes it possible to write moni­

tors subject to the risk of deadly embrace (Dijkstra 1968a). It is the respon­
sibility of the programmer to avoid this risk, together with other scheduling 
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disasters (thrashing, indefinitely repeated overtaking, etc. (Dijkstra 1972c)). 
Assertion-oriented proof methods cannot prove absence of such risk; perhaps 
it is bett er to use less formal methods for such proofs. 

Finally, in many cases an operating system monitor constructs some 
"virtual" resource which is used in place of actual resources by its "cus­
tomer" programs. This virtual resource is an abstraction from the set of 
local variables of the monitor. The program prover should therefore define 
this abstraction in terms of its concrete representation, and then express the 
intended effect of each of the procedure bodies in terms of the abstraction. 
This proof method is described in detail in Hoare (1972b) 

4 Example: bounded buffer 

A bounded buffer is a concrete representation of the abstract idea of a se­
quence of portions. The sequence is accessible to two programs running in 
parallel: the first of these (the producer) updates the sequence by appending 
a new portion x at the end; and the second (the consumer) updates it by 
removing the first portion. The initial value of the sequence is empty. We 
thus require two operations: 

(1) append(x: portion); 

wh ich should be equivalent to the abstract operation 

sequence := sequence n <x>; 

where <x> is the sequence whose only item is x and n denotes concatenation 
of two sequences. 

(2) remove(result x: portion); 

which should be equivalent to the abstract operations 

x:= first(sequence); sequence:= rest(sequence); 

where first selects the first item of a sequencc and rest denotes the sequence 
with its first item removed. Obviously, if the sequence is empty, first is 
undefined; and in this case we want to ensure that the consumer waits until 
the producer has made the sequence nonempty. 

We shall assurne that the amount of time taken to produce a portion or 
consume it is large in comparison with the time taken to append or remove 
it from the sequence. We may therefore be justifed in making a design 
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in which producer and consumer can both update the sequence, but not 
simultaneously. 

The sequence is represented by an array: 

buffer: array O .. N -1 of portion; 

and two variables: 

(1) lastpointer: 0 .. N-1; 

which points to the buffer position into which the next append operation 
will put a new item, and 

(2) count: O .. N; 

which always holds the length of the sequence (initially 0). 
We define the function 

seq(b,l,c) = df if c = 0 then empty 
else seq(b,181,c-1) n <b[181]> 

where the circled operations are taken modulo N. Note that if c '1= 0, 

first(seq(b,l,c)) = b[18c] 

and 

rest(seq(b,l,c)) = seq(b,l,c-1) 

The definition of the abstract sequence in terms of its concrete representa­
tion may now be given: 

sequence = df seq(buffer, lastpointer, count) 

Less formally, this may be written 

sequence = df <buffer[lastpointer8count], 
buffer[lastpointer8countEB1] , 
... , 
buffer [lastpointer81] > 

Another way of conveying this information would be by an ex am pie and a 
picture, which would be even less formal. The invariant for the monitor is: 
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o ::; count ::; N & 0 ::; lastpointer ::; N -1 

There are two reasons for waiting, which must be represented by condi­
tion variables: 

nonempty: condition; 

means that the count is greater than 0, and 

nonfull: condition; 

means that the count is less than N. 
With this constructive approach to the design (Dijkstra 1968b), it lS 

relatively easy to code the monitor without error. 

bounded buffer: monitor 
begin buffer: array O .. N -1 of portion; 

lastpointer: O .. N -1; 
count: O .. N; 
nonempty, nonfull: condition; 

procedure append(x: portion); 
begin if count = N then nonfull.wait; 

note 0 ::; count < N; 
buffer[lastpointer] := x; 
last pointer := lastpointer EB 1; 
count : = count + 1; 
nonempty.signal 

end append; 
procedure remove(result x: portion); 

begin if count = 0 then nonempty.wait; 
note 0 < count ::; N; 
x := buffer[lastpointer 8 count]; 
count : = count - 1; 
nonfull. signal 

end remove; 
count := 0; lastpointer := 0 

end bounded buffer; 

A formal proof of the correctness of this monitor with respect to the 
stated abstraction and invariant can be given if desired by techniques de­
scribed in Hoare (1972b). However, these techniques seem not capable of 
dealing with subsequent examples of this paper. 
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Single-buffered input and output may be regarded as a special case of 
the bounded buffer with N = 1. In this case, the array can be replaced by 
a single variable, the lastpointer is redundant, and we get: 

iostream: monitor 
begin buifer: portion; 

count: 0 .. 1; 
nonempty,nonfull: condition; 

procedure append(x: portion); 
begin if count = 1 then nonfull.wait; 

buifer := x; 
count := 1; 
nonempty.signal 

end append; 
procedure remove(result x: portion); 

begin if count = 0 then nonempty.wait; 
x:= buifer; 
count := 0; 
nonfull. signal 

end remove; 
count := 0; 

end iostream; 

If physical output is carried out by aseparate special-purpose channel, then 
the interrupt from the channel should simulate a call of iostream.remove(x}; 
and similarly for physical input, simulating acall of iostream.append(x}. 

5 Scheduled waits 

Up to this point, we have assumed that when more than one program is wait­
ing for the same condition, a signal will cause the longest waiting program 
to be resumed. This is a good simple scheduling strategy, which precludes 
indefinite overtaking of a waiting process. 

However, in the design of an operating system, there are many cases 
when such simple scheduling on the basis of first-come-first-served is not 
adequate. In order to give a closer control over scheduling strategy, we 
introduce a furt her feature of a conditional wait, which makes it possible 
to specify as a parameter of the wait so me indication of the priority of the 
waiting program, e.g.: 

busy.wait(p); 



MONITORS 283 

When the condition is signalled, it is the program that specified the lowest 
value of p that is resumed. In using this facility, the designer of a monitor 
must take care to avoid the risk of indefinite overtaking; and often it is 
advisable to make priority a nondecreasing function of the time at whieh the 
wait commences. 

This introduction of a "scheduled wait" concedes to the temptation to 
make the condition concept more elaborate. The main justifications are: 
1. It has no effect whatsoever on the logic of a program, or on the formal 
proof rules. Any program which works without a scheduled wait will work 
with it, but possibly with better timing characteristies. 
2. The automatie ordering of the queue of waiting processes is a simple 
fast-scheduling technique, except when the queue is exceptionally long-and 
when it is, central processor time is not the major bottleneck. 
3. The maximum amount of storage required is one word per process. With­
out such a built-in scheduling method, each monitor may have to allocate 
storage proportional to the number of its customers; the alternative of dy­
namic storage allocation in small chunks is unattractive at the low level of 
an operating system where monitors are found. 

I shall yield to one furt her temptation, to introduce a Boolean function 
of conditions: 

condname.queue 

which yields the value true if anyone is waiting on condname and false other­
wise. This can obviously be easily implemented by a couple of instructions, 
and affords valuable information which could otherwise be obtained only at 
the expense of extra storage, time, and trouble. 

A trivially simple example is an alarmclock monitor, which enables a 
calling program to delay itself for astated number n of time units, or"ticks". 
There are two entries: 

procedure wakeme(n: integer); 
procedure tick; 

The second of these is invoked by hardware (e.g. an interrupt) at regular 
intervals, say ten times per second. Local variables are 

now: integer; 

whieh re cords the current time (initially zero) and 



284 C.A.R.HOARE 

wakeup: condition; 

on which sleeping programs wait. But the alarmsetting at which these pro­
grams will be aroused is known at the time when they start the wait; and 
this can be used to determine the correct sequence of waking up. 

alarmclock: monitor 
begin now: integer; 

wakeup: condition; 
procedure wakeme(n: integer); 

begin alarmsetting: integer; 
alarmsetting := now + n; 
while now < alarmsetting do wakeup.wait(alarmsetting); 
wakeup.signal; 
comment In case the next process is due to wake up at the 
same time; 

end; 
procedure tick; 

begin now: = now + 1; 
wakeup .signal 

end; 
now:= 0 

end alarmclock 

In the program given above, the next candidate for wakening is actually 
woken at every tick of the dock. This will not matter if the frequency of 
ticking is low enough, and the overhead of an accepted signal is not too high. 

I am grateful to A. Ballard and J. Horning for posing this problem. 

6 Further examples 

In proposing a new feature for a high-levellanguage it is very diffcult to make 
a convincing case that the feature will be both easy to use efficiently and 
easy to implement efficiently. Quality of implement at ion can be proved by 
a single good example, but ease and efficiency of use require a great number 
of realistic examples; otherwise it can appear that the new feature has been 
specially designed to suit the examples, or vice versa. This section contains 
a number of additional examples of solutions of familiar problems. Further 
examples may be found in Hoare (1973). 
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6.1 Buffer allocation 

The bounded buffer described in Section 4 was designed to be suitable only 
for sequences, with small portions, for example, message queues. If the 
buffers contain high-volume information (for example, files for pseudo off­
line input and output), the bounded buffer may still be used to store the 
addresses of the buffers which are being used to hold the information. In this 
way, the producer can be filling one buffer while the consumer is emptying 
another buffer of the same sequence. But this requires an allocator for 
dynamic acquisition and relinquishment of buffer addresses. These may be 
declared as a type 

type bufferaddress= l..B; 

where B is the number of buffers available for allocation. 
The buffer allocator has two entries: 

procedure acquire(result b: bufferaddress); 

which deli vers a free buffer address b; and 

procedure release(b: bufferaddress); 

wh ich returns a buffer address when it is no longer required. In order to 
keep arecord of free buffer addresses the monitor will need: 

freepool: powerset bufferaddress; 

which uses the Pascal powerset facility to define a variable whose values range 
over all sets of buffer addresses, from the empty set to the set containing all 
buffer addresses. It should be implemented as a bitmap of B consecutive 
bits, where the ith bit is 1 if and only if i is in the set. There is only one 
condition variable needed: 

nonempty: condition 

which means that jreepool i- empty. The code for the allocator is: 
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bufIerallocator: monitor 
begin freepool: powerset bufIeraddress; 

nonempty: condition; 
procedure acquire(result b: bufIeraddress); 

begin if freepool = empty then nonempty.wait; 
b := first(freepool); 
comment Any one would do; 
freepool := freepool - {b}; 
comment Set subtraction; 

end acquire; 
procedure release(b: bufIeraddress); 

begin freepool:= freepool + {b}; 
nonempty.signal 

end release; 
freepool := all bufIer addresses 

end bufIer allocator 

The action of a producer and consumer may be summarized: 

producer: begin b: bufIeraddress; ... 
while not finished do 
begin bufferallocator.acquire(b); 

... fill bufIer b ... ; 
bounded buffer .append(b) 

end; ... 
end producer; 

consumer: begin b: bufferaddress; ... 
while not finished do 
begin bounded bufIer .remove(b); 

... empty bufIer b ... ; 
bufIer allocator.release(b) 

end; ... 
end consumer; 

This buffer allocator would appear to be usable to share the buffers 
among several streams, each with its own producer and its own consumer, 
and its own instance of a bounded buffer monitor. Unfortunately, when the 
streams operate at widely varying speeds, and when the freepool is empty, 
the scheduling algorithm can exhibit persistent undesirable behaviour. If 
two producers are competing for each buffer as it becomes free, a first-come­
first-served dis ci pli ne of allocation will ensure (apparently fairly) that each 
gets alternate buffers; and they will consequently begin to produce at equal 
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speeds. But if one consumer is a 1000 lines/min printer and the other is a 
10 lines/min teletype, the faster consumer will be eventually reduced to the 
speed of the slower, since it cannot forever go faster than its producer. At 
this stage nearly all buffers will belong to the slower stream, so the situation 
could take a long time to clear. 

A solution to this is to use a scheduled wait, to ensure that in heavy load 
conditions the available buffers will be shared reasonably fairly between the 
streams that are competing for them. Of course, inactive streams need not 
be considered, and streams for which the consumer is currently faster than 
the producer will never ask for more than two buffers anyway. In order to 
achieve fairness in allocation, it is sufficient to allocate a newly freed buffer 
to that one among the competing producers whose stream currently owns 
fewest buffers. Thus the system will seek a point as far away from the 
undesirable extreme as possible. 

For this reason, the entries to the allocator should indicate for what 
stream the buffer is to be (or has been) used, and the allocator must keep a 
count of the current allocation to each stream in an array: 

count: array stream of integer; 

The new version of the allocator is: 

bufferallocator: monitor 
begin freepool: powerset bufferaddress; 

nonempty: condition 
count: array stream of integer; 

procedure acquire(result b: bufferaddress; s: stream); 
begin if freepool = empty then nonempty.wait(count[s]); 

count[s] := count[s] + 1; 
b:= first(freepool); 
freepool := freepool - {b} 

end acquire; 
procedure release(b: bufferaddress; s: stream) 

begin count[s] := count[s] - 1; 
freepool := freepool + {b}; 
nonempty.signal 

end 
freepool := all buffer addresses; 
for s: stream do count[s] := 0 

end bufferallocator 

Of course, if a consumer stops altogether, perhaps owing to mechanical 
failure, the producer must also be halted before it has acquired too many 
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buffers, even if no one else eurrently wants them. This ean perhaps be most 
easily aeeomplished by appropriate fixing of the size of the bounded buffer 
for that stream and/or by ensuring that at least two buffers are reserved far 
eaeh stream, even when inaetive. It is an interesting comment on dynamic 
resouree alloeation that, as so on as resources are heavily loaded, the system 
must be designed to fall back toward a more static regime. 

I am grateful to E. W. Dijkstra (1972b) for pointing out this problem 
and its solution. 

6.2 Disk head scheduler 

On a moving-head disk, the time taken to move the heads increases mono­
tonically with the distance travelled. If several programs wish to move the 
heads, the average waiting time can be redueed by selecting, first, the pro­
gram whieh wishes to move them the shortest distance. But unfortunately 
this poliey is subject to an instability, since a program wishing to access a 
eylinder at one edge of the disk can be indefinitely overtaken by programs 
operating at the other edge or the middle. 

A solution to this is to minimize the frequency of change of direction of 
movement of the heads. At any time, the heads are kept moving in a given 
direction, and they service the program requesting the nearest cylinder in 
that direetion. If there is no such request, the direction changes, and the 
heads make another sweep across the surfaee of the disko This may be called 
the "elevator" algorithm, sinee it simulates the behaviour of a lift in a multi­
storey building. 

There are two entries to a disk head scheduler: 

(1) request(dest: eylinder); 

where 

type cylinder = O .. cylmax; 

whieh is entered by a program just before issuing the instruction to move the 
heads to eylinder desto 

(2) release; 

whieh is entered by a program when it has made all the transfers it needs 
on the current cylinder. 

The loeal data of the monitor must include arecord of the current head 
position, headpos, the current direction of sweep, and whether the disk is 
busy: 
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headpos: cylinder; 
direction: (up, down); 
busy: Boolean 
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We need two conditions, one for requests waiting for an upsweep and the 
other for requests waiting for a downsweep: 

upsweep, downsweep: condition 

diskhead: monitor 
begin headpos: cylinder; 

direction: (up, down); 
busy: Boolean; 
upsweep, downsweep: condition; 

procedure request(dest: cylinder); 
begin if busy then 

{if headpos < dest V headpos = dest & direction = up 
then upsweep.wait(dest) 
else downsweep.wait(cylmax - dest)}; 

busy := true; headpos := dest 
end request; 

procedure release; 
begin busy := false; 

if direction = up then 
{if upsweep.queue then upsweep.signal 

else {direction := down; 
downsweep.signal} } 

else if downsweep.queue then downsweep.signal 
else {direction := up; 

upsweep.signal} 
end release; 
headpos := 0; direction := up; busy := false 

end diskhead; 

6.3 Readers and writers 

As a more significant example, we take a problem which arises in on-line 
real-time applications such as airspace control. Suppose that each aircraft is 
represented by arecord, and that this record is kept up to date by a number 
of "writer" processes and accessed by a number of "reader" processes. Any 
number of "reader" processes may simultaneously access the same record, 
but obviously any process which is updating (writing) the individual com­
ponents of the record must have exclusive access to it, or chaos will ensue. 
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Thus we need a dass of monitors; an instanee of this dass loeal to each 
individual aircraft reeord will enforee the required diseipline for that record. 
If there are many aircraft, there is a strong motivation for minimizing local 
data of the monitor; and if eaeh read or write operation is brief, we should 
also minimize the time taken by eaeh monitor entry. 

When many readers are interested in a single aircraft record, there is a 
danger that a writer will be indefinitely prevented from keeping that record 
up to date. We therefore deeide that a new reader should not be permitted to 
start if there is a writer waiting. Similarly, to avoid the danger of indefinite 
exdusion of readers, all readers waiting at the end of a write should have 
priority over the next writer. Note that this is a very different scheduling 
rule from that propounded in Courtois (197la), and does not seem to require 
such subtlety in implementation. Nevertheless, it may be more suited to this 
kind of application, where it is better to read stale information than to wait 
indefinitely! 

The monitor obviously requires four local procedures: 

startread 
endread 
startwrite 
endwrite 

entered by reader who wishes to read. 
entered by reader who has finished reading. 
entered by writer who wishes to write. 
entered by writer who has finished writing. 

We need to keep a count of the number of users who are reading, so that 
the last reader to finish will known this fact: 

readercount: integer 

We also need a Boolean to indicate that someone is actually writing: 

busy: Boolean; 

We introduce separate conditions for readers and writers to wait on: 

OKtoread, OKtowrite: condition; 

The following annotation is relevant: 

OKtoread == -, busy 
OKtowrite == -, busy & readercount = 0 
invariant: busy =} readercount = 0 
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dass readers and writers: monitor 
begin readereount: integer; 

busy: Boolean; 
OKtoread, OKtowrite: eondition; 

procedure startread; 
begin if busy V OKtowrite.queue then OKtoread.wait; 

readereount : = readereount + 1; 
OKtoread.signal; 
eomment Onee one reader ean start, they all ean; 

end startread; 
procedure endread; 

begin readereount := readereount - 1; 
if readereount = 0 then OKtowrite.signal 

end endread; 
procedure startwrite; 

begin 
if readereount -I 0 V busy then OKtowrite.wait; 
busy := true 

end startwrite; 
procedure endwrite; 

begin busy := false; 
if OKtoread.queue then OKtoread.signal 

else OKtowrite.signal 
end endwrite; 

readereount := 0; 
busy : = false; 

end readers and writers; 
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I am grateful to Dave Gorman for assisting in the discovery of this solu­
tion. 

7 Condusion 

This paper suggests that an appropriate structure for a module of an oper­
ating system, which sehedules resourees for parallel user processes, is very 
similar to that of a data representation used by a sequential program. How­
ever, in the case of monitors, the bodies of the procedure must be protected 
against re-entranee by being implemented as eritical regions. The textual 
grouping of eritieal regions together with the data whieh they update seems 
mueh superior to eritical regions scattered through the user program, as de­
seribed in Dijkstra (1968a) and Hoare (1972a). It also eorresponds to the 
traditional practiee of the writers of operating system supervisors. It ean be 
recommended without reservation. 
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However, it is mueh more diffieult to be eonfident about the eondition 
eoneept as a synehronizing primitive. The synehronizing faeility whieh is 
easiest to use is probably the eonditional wait (Brineh Hansen 1972b; Hoare 
1972a). 

wait(B); 

where B is a general Boolean expression (it eauses the given proeess to 
wait until B beeomes true); but this may be too inefficient for general use 
in operating systems, beeause its implementation requires re-evaluation of 
the expression B after every exit from a proeedure of the monitor. The 
eondition variable gives the programmer better eontrol over effieieney and 
over seheduling; it was designed to be very primitive, and to have a simple 
proof rule. But perhaps so me other eompromise between eonvenienee and 
effieieney might be better. The quest ion whether the signal should always 
be the last operation of a monitor proeedure is still open. These problems 
will be studied in the design and implementation of a pilot project operating 
system, eurrently enjoying the support of the Scienee Research Council of 
Great Britain. 

Another quest ion which will be studied will be that of the disjointness 
of monitors: Is it possible to design aseparate isolated monitor for eaeh 
kind of resouree, so that it will make sensible seheduling decisions for that 
resouree, using only the minimal information about the utilization of that 
resouree, and using no information about the utilization of any resouree 
administered by other monitors? In prineiple, it would seem that, when 
more knowledge of the status of the entire system is available, it should 
be easier to take decisions nearer to optimality. Furthermore, in principle, 
independent seheduling of different kinds of re sour ce ean lead to deadly 
embraee. These eonsiderations would lead to the design of a traditional 
"monolithie" monitor, maintaining large system tables, all of which ean be 
aeeessed and updated by any of the proeedures of the monitor. 

There is no apriori reason why the attempt to split the functions of 
an operating system into a number of isolated disjoint monitors should sue­
eeed. It ean be made to sueeeed only by discovering and implementing good 
seheduling algorithms in eaeh monitor. In order to avoid undesirable inter­
actions between the separate seheduling algorithms, it appears neeessary to 
observe the following principles: 
1. Never seek to make an optimal deeision; merely seek to avoid persistently 
pessimal deeisions. 
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2. Do not seek to present the user with a virtual machine which is better 
than the actual hardware; merely seek to pass on the speed, size, and Bat 
unopiniated structure of a simple hardware design. 
3. Use preemptive techniques in preference to nonpreemptive ones where 
possible. 
4. Use "grain of time" (Dijkstra 1972a) methods to seeure independence of 
scheduling strategies. 
5. Keep a low variance (as well as a low mean) on waiting times. 
6. A void fixed priorities; instead, try to ensure that every program in the 
system makes reasonably steady progress. In particular, avoid indefinite 
overtaking. 
7. Ensure that when demand for resources outstrips the supply (i.e. in over­
load conditions), the behaviour of the scheduler is satisfactory (i.e. thrashing 
is avoided). 
8. Make rules for the correct and sensible use of monitor calls, and assume 
that user programs will obey them. Any checking which is necessary should 
be done not by a central shared monitor, but rat her by an algorithm (called 
"user envelope") which is local to each process executing a user program. 
This algorithm should be implemented at least partially in the hardware 
(e.g. base and range registers, address translation mechanisms, capabilities, 
etc.). 

It is the possibility of constructing separate monitors for different pur­
poses, and of separating the scheduling decisions embodied in monitors from 
the checking embodied in user envelopes, that may justify a hope that mon­
itors are an appropriate concept for the structuring of an operating system. 
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THE PROGRAMMING LANGUAGE 

CONCURRENT PASCAL 
PER BRINCH HANSEN 

(1975) 

The paper describes a new programming language for structured program­

ming of computer operating systems. It extends the sequential programming 

language Pascal with concurrent programming tools called processes and moni­

tors. Part I explains these concepts informally by means of pictures illustrating 

a hierarchical design of a simple spooling system. Part n uses the same exam­

pIe to introduce the language notation. The main contribution of Concurrent 

Pascal is to extend the monitor concept with an explicit hierarchy of access 

rights to shared data structures that can be stated in the program text and 

checked by a compiler. 

I THE PURPOSE OF CONCURRENT PASCAL 

A Background 

Since 1972 I have been working on a new programming language for struc­
tured programming of computer operating systems. This language is called 
Concurrent Pascal. It extends the sequential programming language Pascal 
with concurrent programming tools called processes and monitors (Wirth 
1971; Brinch Hansen 1973; Hoare 1974). 

This is an informal description of Concurrent Pascal. It uses examples, 
pictures, and words to bring out the creative aspects of new programming 
concepts without getting into their finer details. I plan to define these con­
cepts precisely and introduce a notation for them in later papers. This form 

P. Brinch Hansen, The programming language Concurrent Pascal, IEEE Transactions on 
Software Engineering 1, 2 (June 1975), 199-207. Copyright © 1975, Institute of Electrical 
and Electronics Engineers, Inc. Reprinted by permission. 
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of presentation may be imprecise from a formal point of view, but is perhaps 
more effective from a human point of view. 

B Processes 

We will study concurrent processes inside an operating system and look at 
one small problem only: How can large amounts of data be transmitted from 
one process to another by means of buffers stored on a disk? 

Figure 1 shows this little system and its three components: A process 
that pro duces data, a process that consumes data, and a disk buffer that 
connects them. 

Disk buffer 

Producer process Consumer process 

Figure 1 Process communication 

The circles are system components and the arrows are the access rights 
of these components. They show that both processes can use the buffer (but 
they do not show that data fiows from the producer to the consumer). This 
kind of picture is an access graph. 

The next picture shows a process component in more detail (Fig. 2). 

Access rights 

Private data 

Sequential program 

Figure 2 Process. 

A process consists of a private da ta structure and a sequential program 
that can operate on the data. One process cannot operate on the private 
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data of another process. But concurrent processes can share certain data 
structures (such as a disk buffer). The access rights of a process mention the 
shared data it can operate on. 

C Monitors 

A disk buffer is a data structure shared by two concurrent processes. The 
details of how such a buffer is constructed are irrelevant to its users. All the 
processes need to know is that they can send and receive data through it. 
If they try to operate on the buffer in any other way it is probably either a 
programming mistake or an example of tricky programming. In both cases, 
one would like a compiler to detect such misuse of a shared data structure. 

To make this possible, we must introduce a language construct that will 
enable a programmer to tell a compiler how a shared data structure can be 
used by processes. This kind of system component is called a monitor. A 
monitor can synchronize concurrent processes and transmit data between 
them. It can also control the order in which competing processes use shared, 
physical resources. Figure 3 shows a monitor in detail. 

Access rights 

Shared data 

Synchronizing operations 

Initial operation 

Figure 3 Monitor. 

A monitor defines a shared data structure and all the operations pro­
cesses can perform on it. These synchronizing operations are called monitor 
procedures. A monitor also defines an initial operation that will be executed 
when its data structure is created. 

We can define a disk buffer as a monitor. Within this monitor there will 
be shared variables that define the location and length of th€ buffer on the 
disko There will also be two monitor procedures, send and receive. The 
initial operation will make sure that the buffer starts as an empty one. 

Processes cannot operate directly on shared data. They can only call 
monitor procedures that have access to shared data. A monitor procedure 
is executed as part of a calling process (just like any other procedure). 
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If concurrent pro ces ses simultaneously call monitor procedures that op­
erate on the same shared data these procedures will be executed strictly one 
at a time. Otherwise, the results of monitor calls would be unpredictable. 
This me ans that the machine must be able to delay processes for short pe­
riods of time until it is their turn to execute monitor procedures. We will 
not be concerned with how this is done, but will just notice that a monitor 
procedure has exclusive access to shared data while it is being exeeuted. 

So the (virtual) machine on wh ich eoneurrent programs run will handle 
short-term scheduling of simultaneous monitor calls. But the programmer 
must also be able to delay processes for longer periods of time if their requests 
for data and other resourees eannot be satisfied immediately. If, for example, 
a process tries to receive data from an empty disk buffer it must be delayed 
until another process sends more data. 

Concurrent Pascal includes a simple data type, called a queue, that ean be 
used by monitor procedures to control medium-term scheduling of processes. 
A monitor can either delay a calling process in a queue or continue another 
process that is waiting in a queue. It is not important he re to understand 
how these queues work except for the following essential rule: A proeess 
only has exclusive access to shared data as long as it eontinues to exeeute 
statements within a monitor procedure. As soon as a process is delayed 
in a queue it loses its exclusive aeeess until another proeess ealls the same 
monitor and wakes it up again. (Without this rule, it would be impossible 
to enter a monitor and let waiting proeesses continue their exeeution.) 

Although the disk buffer example does not show this yet, monitor proee­
dures should also be able to call procedures defined within other monitors. 
Otherwise, the language will not be very useful for hierarchieal design. In 
the case of the disk buffer, one of these other monitors could perhaps define 
simple input/output operations on the disk. So a monitor can also have 
access rights to other system components (see Fig. 3). 

D System Design 

A process executes a sequential program-it is an active component. A 
monitor is just a collection of procedures that do nothing until they are called 
by processes-it is a passive component. But there are strong similarities 
between a process and a monitor: both define a data structure (private or 
shared) and the meaningful operations on it. The main differenee between 
proeesses and monitors is the way they are scheduled for execution. 

It seems natural therefore to regard proeesses and monitors as abstract 
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data types defined in terms of the operations one can perform on them. If 
a compiler can check that these operations are the only ones carried out 
on data structures, then we may be able to build very reliable, concurrent 
programs in which controlled access to data and physical resources is guar­
anteed before these programs are put into operation. We have then to some 
extent solved the resource protection problem in the cheapest possible man­
ner (without hardware mechanisms and run time overhead). 

So we will define processes and monitors as data types and make it 
possible to use several instances of the same component type in a system. 
We can, for example, use two disk buffers to build a spooling system with an 
input process, a job process, and an output process (Fig. 4). 

Input process Job process Output process 

Figure 4 Spooling system. 

I will distinguish between definitions and instances of components by 
calling them system types and system components. Access graphs (such as 
Fig. 4) will always show system components (not system types). 

Peripheral devices are considered to be monitors implemented in hard­
ware. They can only be accessed by a single procedure io that delays the 
calling process until an input/output operation is completed. Interrupts are 
handled by the virtual machine on which processes run. 

To make the programming language useful for stepwise system design 
it should permit the division of a system type, such as a disk buffer, into 
smaHer system types. One of these other system types should give a disk 
buffer access to the disko We will caH this system type a virtual disko It 
gives a disk buffer the illusion that it has its own private disko A virtual 
disk hides the details of disk input/output from the rest of the system and 
makes the disk look like a data structure (an array of disk pages). The only 
operations on this data structure are read and write a page. 

Each virtual disk is only used by a single disk buffer (Fig. 5). A system 
component that cannot be called simultaneously by several other compo-
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? Virtual disk 

6 Disk buffer 

Figure 5 Buffer refinement. 

nents will be called a class. A dass defines a data structure and the possible 
operations on it (just like a monitor). The exdusive access of dass proce­
dures to dass variables can be guaranteed completely at compile time. The 
virtual machine does not have to schedule simultaneous calls of dass proce­
dures at run time, because such calls cannot occur. This makes dass calls 
considerably faster than monitor calls. 

The spooling system indudes two virtual disks but only one real disk. 
So we need a single disk resource monitor to control the order in which com­
peting processes use the disk (Fig. 6). This monitor defines two procedures, 
request and release access, to be called by a virtual disk before and after each 
disk transfer. 

Virtual consoles 

Disk 

Disk resource 

Virtual disks 

Figure 6 Decomposition of virtual disks. 

It would seem simpler to re pI ace the virtual disks and the disk resource 
by a single monitor that has exdusive access to the disk and does the in­
put/output. This would certainly guarantee that processes use the disk one 
at a time. But this would be done according to the built-in short-term 
scheduling policy of monitor calls. 

Now to make a virtual machine efficient, one must use a very simple 
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short-term scheduling rule, such as first-come, first-served (Brinch Hansen 
1973). If the disk has a moving access head this is about the worst possible 
algorithm one can use for disk transfers. It is vital that the language make it 
possible for the programmer to write a medium-term scheduling algorithm 
that will minimize disk head movement (Hoare 1974). The data type queue 
mentioned earlier makes it possible to implement arbitrary scheduling rules 
within a monitor. 

The difficulty is that while a monitor is performing an input/output 
operation it is impossible for other processes to enter the same monitor 
and join the disk queue. They will automatically be delayed by the short­
term scheduler and only allowed to enter the monitor one at a time after 
each disk transfer. This will, of course, make the attempt to control disk 
scheduling within the monitor illusory. To give the programmer complete 
control of disk scheduling, processes should be able to enter the disk queue 
during disk transfers. Since arrival and service in the disk queueing system 
potentially are simultaneous operations they must be handled by different 
system components, as shown in Fig. 6. 

If the disk fails persistently during input/output this should be reported 
on an operator's console. Figure 6 shows two instances of a dass type, called 
a virtual console. They give the virtual disks the illusion that they have their 
own private consoles. 

The virtual consoles get exdusive access to a single, real console by calling 
a console resource monitor (Fig. 7). Notice that we now have a standard 
technique for dealing with virtual devices. 

Console 

Console resouree 

Virtual eonsoles 

Figure 7 Decomposition of virtual consoles. 

If we put all these system components together, we get a complete picture 
of a simple spooling system (Fig. 8). Classes, monitors, and processes are 
marked C, M, and P. 
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Console 

Console resource 

Virtual consoles 

Disk 

Disk resource 

Virtual disks 

Input process Job process Output process 

Figure 8 Hierarchical system structure. 

E Scope Rules 

Some years aga I was part of a team that built a multiprogramming system 
in which processes can appear and disappear dynamically (Brinch Hansen 
1970). In practice, this system was used mostly to set up a fixed config­
uration of processes. Dynamic process deletion will certainly complicate 
the semantics and implementation of a programming language considerably. 
And since it appears to be unnecessary for a large dass of real-time applica­
tions, it seems wise to exdude it altogether. So an operating system written 
in Concurrent Pascal will consist of a fixed number of processes, monitors, 
and dasses. These components and their data structures will exist forever 
after system initialization. An operating system can, however, be extended 
by recompilation. It remains to be seen whether this restriction will sim­
plify or complicate operating system design. But the poor quality of most 
existing operating systems dearly demonstrates an urgent need for simpler 
approaches. 

In existing programming languages the data structures of processes, mon­
itors, and dasses would be called "global data." This term would be mis-
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leading in Concurrent Pascal where each data structure can be accessed by 
a single component only. It seems more appropriate to call them permanent 
data structures. 

I have argued elsewhere that the most dangerous aspect of concurrent 
programming is the possibility of time-dependent programming errors that 
are impossible to locate by testing ("lurking bugs") (Brinch Hansen 1972, 
1973, 1974b). If we are going to depend on real-time programming systems 
in our daily lives, we must be able to find such obscure errors before the 
systems are put into operation. 

Fortunately, a compiler can detect many of these errors if processes and 
monitors are represented by a structured notation in a high-level program­
ming language. In addition, we must exclude low-Ievel machine features 
(registers, addresses, and interrupts ) from the language and let a virtual 
machine control them. If we want real-time systems to be highly reliable, we 
must stop programming them in assembly language. (The use of hardware 
protection mechanisms is merely an expensive, inadequate way of making 
arbitrary machine language programs behave almost as predictably as com­
piled programs. ) 

A Concurrent Pascal compiler will check that the private data of a process 
only are accessed by that process. It will also check that the data structure 
of a class or monitor only is accessed by its procedures. 

Figure 8 shows that access rights within an operating system normally 
are not tree structured. Instead they form a directed graph. This partly 
explains why the traditional scope rules of block-structured languages are 
inconvenient for concurrent programming (and for sequential programming 
as well). In Concurrent Pascal one can state the access rights of components 
in the program text and have them checked by a compiler. 

Since the execution of a monitor procedure will delay the execution of 
further calls of the same monitor, we must prevent a monitor from calling 
itself recursively. Otherwise, processes can become deadlocked. So the com­
piler will check that the access rights of system components are hierarchically 
ordered (or, if you like, that there are no cycles in the access graph). 

The hierarchical ordering of system components has vital consequences 
for system design and testing (Brinch Hansen 1974a). 

A hierarchical operating system will be tested component by component, 
bottom up (but could, of course, be conceived top down or by iteration). 
When an incomplete operating system has been shown to work correctly (by 
proof or testing), a compiler can ensure that this part of the system will con-
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tinue to work correctly when new untested program components are added 
on top of it. Programming errors within new components cannot cause old 
components to fail because old components do not call new components, and 
new components only call old components through well-defined procedures 
that have already been tested. 

(Strictly speaking, a compiler can only check that single monitor calls 
are made correctly; it cannot check sequences of monitor calls, for example 
whether a resource is always reserved before it is released. So one can only 
hope for compile time assurance of partial correctness.) 

Several other reasons besides program correctness make a hierarchie al 
structure attractive: 

1. A hierarchical operating system can be studied in a step-wise manner 
as a sequence of abstract machines simulated by programs (Dijkstra 
1971). 

2. A partial ordering of process interactions permits one to use math­
ematical induction to prove certain overall properties of the system, 
such as the absence of deadlocks (Brinch Hansen 1973). 

3. Efficient resource utilization can be achieved by ordering the program 
components according to the speed of the physical resources they con­
trol, with the fastest resources being controlled at the bottom of the 
system (Dijkstra 1971). 

4. A hierarchical system designed according to the previous criteria is 
often nearly decomposable from an analytical point of view. This means 
that one can develop stochastic models of its dynamic behavior in· a 
stepwise manner (Simon 1962). 

F Final Remarks 

It seems most natural to represent a hierarchical system structure, such 
as Fig. 8, by a two-dimensional picture. But when we write a concurrent 
program we must somehow represent these access rules by linear text. This 
limitation of written language tends to obscure the simplicity of the original 
structure. That is why I have tried to explain the purpose of Concurrent 
Pascal by means of pictures instead of language notation. 

The dass concept is a restricted form of the dass concept of Simula 67 
(Dahl 1972). Dijkstra (1971) suggested the idea of monitors. The first 
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structured language notation for monitors was proposed in Brinch Hansen 
(1973), and illustrated by examples in Hoare (1974). The queue variables 
needed by monitors for process scheduling were suggested in Brinch Hansen 
(1972) and modified in Hoare (1974). 

The main contribution of Concurrent Pascal is to extend monitors with 
explicit access rights that can be checked at compile time. Concurrent Pascal 
has been implemented at Caltech for the PDP 11/45 computer. Our system 
uses sequential Pascal as a job control and user programming language. 

11 THE USE OF CONCURRENT PASCAL 

A Introduction 

In Part I the concepts of Concurrent Pascal were explained informally by 
means of pictures of a hierarchical spooling system. I will now use the 
same example to introduce the language notation of Concurrent Pascal. The 
presentation is still informal. I am neither trying to define the language 
precisely nor to develop a working system. This will be done in other papers. 
I am just trying to show the fiavor of the language. 

B Processes 

We will now program the system components in Fig. 8 one at a time from 
top to bot tom (but we could just as weIl do it bottom up). 

Although we only need one input process, we mayas weIl define it as a 
general system type of which several copies may exist: 

type inputprocess = 
process(buffer: diskbuffer); 
var block: page; 
cycle 

readcards(block) ; 
buffer .send(block); 

end 

An input process has access to a buffer of type diskbuffer (to be defined 
later). The process has a private variable block of type page. The data type 
page is declared elsewhere as an array of characters: 

type page = array [1..512J of char 
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A process type defines a sequential program-in this case, an endless 
cycle that inputs a block from a card reader and sends it through the buffer 
to another process. We will ignore the details of card reader input. 

The send operation on the buffer is called as follows (using the block as 
a parameter): 

buffer .send(block) 

The next component type we will define is a job process: 

type jobprocess = 
process(input, output: diskbuffer); 
var block: page; 
cycle 

input.receive(block); 
update(block); 
output.send(block) ; 

end 

A job process has access to two disk buffers called input and output. It 
receives blocks from one buffer, updates them, and sends them through the 
other buffer. The details of updating can be ignored here. 

Finally, we need an output process that can receive data from a disk 
buffer and output them on a li ne printer: 

type outputprocess = 
process(buffer: diskbuffer); 
var block: page; 
cycle 

buffer .receive(block); 
printlines (block); 

end 

The following shows a declaration of the main system components: 

var bufferl, buffer2: diskbuffer; 
reader: inputprocess; 
master: jobprocess; 
writer: outputprocess; 

There is an input process, called the reader, a job process, called the master, 
and an output process, called the writer. Then there are two disk buffers, 
buffer 1 and buffer2, that connect them. 
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Later I will explain how a disk buffer is defined and initialized. If we 
assume that the disk buffers already have been initialized, we can initialize 
the input process as follows: 

init reader(bufferl) 

The init statement allocates space for the private variables of the reader 
process and starts its execution as a sequential process with access to bufferl. 

The access rights of a process to other system components, such as 
bufferl, are also called its parameters. A process can only be initialized 
once. After initalization, the parameters and private variables of a process 
exist forever . They are called permanent variables. 

The init statement can be used to start concurrent execution of several 
processes and define their access rights. As an example, the statement 

init reader(bufferl), master(bufferl, buffer2), writer(buffer2) 

starts concurrent execution of the reader process (with access to buffer 1), the 
master process (with access to both buffers), and the writer process (with 
access to buffer2). 

A process can only access its own parameters and private variables. The 
latter are not accessible to other system components. Compare this with the 
more liberal scope rules of block-structured languages in which a program 
block can access not only its own parameters and local variables, but also 
those declared in outer blocks. In Concurrent Pascal, all variables accessible 
to a system component are declared within its type definition. This access 
rule and the init statement make it possible for a programmer to state access 
rights explicitly and have them checked by a compiler. They also make it 
possible to study a system type as a self-contained program unit. 

Although the programming examples do not show this, one can also 
define constants, data types, and procedures within a process. These objects 
can only be used within the process type. 

C Monitors 

The disk buffer is a monitor type: 
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type diskbuffer = 

monitor( consoleaccess, diskaccess: resource; 
base, limit: integer); 

var disk: virtualdisk; sender, receiver: queue; 
head, tail, length: integer; 

procedure entry send(block: page); 
begin 

if length = limit then delay(sender); 
disk.write(base + tail, block); 
tail := (tail + 1) mod limit; 
length : = length + 1; 
continue( receiver); 

end; 

procedure entry receive(var block: page); 
begin 

if length = 0 then delay(receiver); 
disk.read(base + head, block); 
head := (head + 1) mod limit; 
length := length - 1; 
continue( sender); 

end; 

begin "initial statement" 
init disk( consoleaccess, diskaccess); 
head := 0; tail := 0; length := 0; 

end 

A disk buffer has aeeess to two other eomponents, consoleaccess and 
diskaccess, of type resouree (to be defined later). It also has aeeess to two 
integer eonstants defining the base address and limit of the buffer on the 
disko 

The monitor declares a set of shared variables: The disk is declared as 
a variable of type virtualdisk. Two variables of type queue are used to 
delay the sender and receiver proeesses until the buffer beeomes nonfull and 
nonempty. Three integers define the relative addresses of the head and tail 
elements of the buffer and its eurrent length. 

The monitor defines two monitor procedures, send and reeeive. They are 
marked with the word entry to distinguish them from loeal proeedures used 
within the monitor (there are none of these in this example). 
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Receive returns a page to the ealling proeess. If the buffer is empty, the 
ealling proeess is delayed in the receiver queue until another proeess sends a 
page through the buffer. The reeeive proeedure will then read and remove 
a page from the head of the disk buffer by ealling a read operation defined 
within the virtualdisk type: 

disk.read(base + head, block) 

Finally, the reeeive proeedure will continue the exeeution of asending proeess 
(if the latter is waiting in the sender queue). 

Send is similar to reeeive. 
The queueing meehanism will be explained in detail in the next seetion. 
The initial statement of a disk buffer initializes its virtual disk with aeeess 

to the eonsole and disk resourees. It also sets the buffer length to zero. 
(Notiee, that a disk buffer does not use its aeeess rights to the eonsole and 
disk, but only passes them on to a virtual disk declared within it.) 

The following shows a declaration of two system eomponents of type 
resouree and two integers defining the base and limit of a disk buffer: 

var consoleaccess, diskaccess: resource; 
base, limit: integer; 
buffer: diskbuffer; 

If we assume that these variables already have been initialized, we ean 
initialize a disk buffer as folIows: 

init buffer( consoleaccess, diskaccess, base, limit) 

The init statement alloeates storage for the parameters and shared variables 
of the disk buffer and exeeutes its initial statement. 

A monitor ean only be initialized onee. After initialization, the parame­
ters and shared variables of a monitor exist forever. They are ealled perma­
nent variables. The parameters and loeal variables of a monitor proeedure, 
however, exist only while it is being executed. They are called tempomry 
variables. 

A monitor procedure can only aecess its own temporary and permanent 
variables. These variables are not accessible to other system components. 
Other eomponents ean, however, call procedure entries within a monitor. 
While a monitor proeedure is being executed, it has exclusive access to the 
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permanent variables of the monitor. If concurrent processes try to call pro­
cedures within the same monitor simultaneously, these procedures will be 
executed strictly one at a time. 

Only monitors and constants can be permanent parameters of processes 
and monitors. This rule ensures that processes only communicate by means 
of monitors. 

It is possible to define constants, data types, and local procedures within 
monitors (and processes). The local procedures of a system type can only 
be called within the system type. To prevent deadlock of monitor calls and 
ensure that access rights are hierarchical the following rules are enforced: 
A procedure must be declared before it can be called; procedure definitions 
cannot be nested and cannot call themselves; a system type cannot call its 
own procedure entries. 

The absence of recursion makes it possible for a compiler to determine the 
store requirements of all system components. This and the use of permanent 
components make it possible to use fixed store allocation on a computer that 
does not support paging. 

Since system components are permanent they must be declared as per­
manent variables of other components. 

D Queues 

A monitor procedure can delay a calling process for any length of time by 
executing a delay operation on a queue variable. Only one process at a 
time can wait in a queue. When a calling process is delayed by a monitor 
procedure it loses its exclusive access to the monitor variables until another 
process calls the same monitor and executes a continue operation on the 
queue in which the process is waiting. 

The continue operation makes the calling process return from its monitor 
call. If any process is waiting in the selected queue, it will immediately 
resurne the execution of the monitor procedure that delayed it. After being 
resumed, the process again has exclusive access to the permanent variables 
of the monitor. 

Other variants of process queues (called "events" and "conditions") are 
proposed in Brinch Hansen (1972) and Hoare (1974). They are multiprocess 
queues that use different (but fixed) scheduling rules. We do not yet know 
from experience which kind of queue will be the most convenient one for op­
erating system design. A single-process queue is the simplest tool that gives 
the programmer complete control of the scheduling of individual processes. 
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Later, I will show how multiprocess queues can be built from single-process 
queues. 

A queue must be declared as a permanent variable within a monitor type. 

E Classes 

Every disk buffer has its own virtual disko A virtual disk is defined as a class 
type: 

type virtualdisk = 
class( consoleaccess, diskaccess: resource); 

var terminal: virtualconsole; peripheral: disk; 

procedure entry read(pageno: integer; var block: page); 
var error: boolean; 
begin 

repeat 
diskaccess.request; 
peripheral.read(pageno, block, error); 
diskaccess.release; 
if error then terminal.write('disk failure'); 

until not error; 
end; 

procedure entry write(pageno: integer; block: page); 
begin "similar to read" end; 

begin "initial statement" 
init terminal( consoleaccess), peripheral; 

end 

A virtual disk has access to a console resource and a disk resource. Its 
permanent variables define a virtual console and a disko A process can access 
its virtual disk by means of read and write procedures. These procedure 
entries request and release exclusive access to the real disk before and after 
each block transfer. If the real disk fails, the virtual disk calls its virtual 
console to report the error. 

The initial statement of a virtual disk initializes its virtual console and 
the real disko 

Section II-C shows an example of how a virtual disk is declared and 
initialized (within a disk buffer). 
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A class can only be initialized once. After initialization, its parameters 
and private variables exist forever. A class procedure can only access its 
own temporary and permanent variables. These cannot be accessed by other 
components. 

A class is a system component that cannot be called simultaneously by 
several other components. This is guaranteed by the following rule: A class 
must be dedared as a permanent variable within a system type; a dass 
can be passed as a permanent parameter to another dass (but not to a 
process or monitor). So a chain of nested dass calls can only be started by 
a single process or monitor. Consequently, it is not necessary to schedule 
simultaneous class calls at run time-they cannot occur. 

F Input/Output 

The real disk is controlled by a class 

type disk = dass 

with two procedure entries 

read(pageno, block, error) 
write(pageno, block, error) 

The dass uses a standard procedure 

io(block, param, device) 

to transfer a block to or from the disk device. The io parameter is arecord 

var param: 
record 

operation: iooperation; 
result: ioresult; 
pageno: integer 

end 

that defines an input/output operation, its result, and a page number on the 
disko The calling process is delayed until an io operation has been completed. 

A virtual console is also defined as a dass 

type virtualconsole = 
dass( access: resource); 
var terminal: console; 
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It can be accessed by read and write operations that are similar to each 
other: 

procedure entry read(var text: !ine); 
begin 

access.request; 
terminal.read( text); 
access.release; 

end 

The real console is controlled by a dass that is similar to the disk dass. 

G Multiprocess Scheduling 

Access to the console and disk is controlled by two monitors of type re­
source. To simplify the presentation, I will assume that competing processes 
are served in first-come, first-served order. (A much better disk scheduling 
algorithm is defined in Hoare (1974). It can be programmed in Concurrent 
Pascal as weIl, but involves more details than the present one.) 

We will define a multiprocess queue as an array of single-process queues 

type multiqueue = array [O .. qlength-l] of queue 

where qlength is an upper bound on the number of concurrent processes in 
the system. 

A first-come, first-served scheduler is now straightforward to program: 
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type resüuree = 

monitor 

var free: büülean; q: multiqueue; 
head, tail, length: integer; 

procedure entry request; 
var arrival: integer; 
begin 

if free then free := false 
else 

begin 
arrival := tail; 
tail := (tail + 1) mod qlength; 
length := length + 1; 
delay( q[ arrival]); 

end; 
end; 

procedure entry release; 
var departure: integer; 
begin 

if length = 0 then free : = true 
else 

begin 
departure := head; 
head := (head + 1) mod qlength; 
length : = length - 1; 
eüntinue( q [departure]); 

end; 
end; 

begin "initial statement" 
free := true; length := 0; 
head := 0; tail := 0; 

end 

H Initial Process 

Finally, we will put all these components together into a concurrent pro­
gram. A Concurrent Pascal program consists of nested definitions of system 
types. The outermost system type is an anonymous process, called the ini­
tial process. An instance of this process is created during system loading. It 
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initializes the other system components. 
The initial process defines system types and instances of them. It exe­

cutes statements that initializes these system components. In our example, 
the initial process can be sketched as follows (ignoring the problem of how 
base addresses and limits of disk buffers are defined): 

type 
resouree = monitor ... end; 
eonsole = dass ... end; 
virtualconsole = dass(aeeess: resouree); ... end; 
disk = dass ... end; 
virtualdisk = dass( eonsoleaeeess, diskaeeess: resouree); ... end; 
diskbuffer = 

monitor( eonsoleaeeess, diskaeeess: resouree; base, limit: integer); ... 
end; 

inputproeess = process(buffer: diskbuffer); ... end; 
jobproeess = process(input, output: diskbuffer); ... end; 
outputproeess = process(buffer: diskbuffer); ... end; 

var 
eonsoleaeeess, diskaeeess: resouree; 
bufferl, buffer2: diskbuffer; 
reader: inputproeess; 
master: jobproeess; 
writer: outputproeess; 

begin 
init eonsoleaeeess, diskaeeess, 

end. 

bufferl (eonsoleaeeess, diskaeeess, basel, limitl), 
buffer2 (eonsoleaeeess, diskaeeess, base2, limit2), 
reader(bufferl) , 
master(buffer l, buffer2), 
writer (b uffer2 ) ; 

When the execution of a process (such as the initial process) terminates, 
its private variables continue to exist. This is necessary because these vari­
ables may have been passed as permanent parameters to other system com­
ponents. 
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THE SOLO OPERATING SYSTEM: 
A CONCURRENT PASCAL 

PROGRAM 
PER BRINCH HANSEN 

(1976) 

This is a description of the single-user operating system Solo written in the 

programming language Concurrent Pascal. It supports the development of 

Sequential and Concurrent Pascal programs for the PDP 11/45 computer. 

Input/output are handled by concurrent processes. Pascal programs can call 

one another recursively and pass arbitrary parameters among themselves. This 

makes it possible to use Pascal as a job control language. Solo is the first 

major example of a hierarchical concurrent program implemented in terms 

of abstract data types (classes, monitors and processes ) with compile-time 

control of most access rights. It is described he re from the user's point of view 

as an introduction to another paper describing its internal structure. 

INTRODUCTION 

This is a description of the first operating system Solo written in the pro­
gramming language Concurrent Pascal (Brinch Hansen 1975). It is a simple, 
but useful single-user operating system for the development and distribution 
of Pascal programs for the PDP 11/45 computer. It has been in use since 
May 1975. 

From the user's point of view there is nothing unusual about the system. 
It supports editing, compilation and storage of Sequential and Concurrent 
Pascal programs. These programs can access either console, cards, printer, 

P. Brinch Hansen, The Solo operating system: a Concurrent Pascal program. Sojtware­
Pmctice and Experience 6, 2 (April-June 1976), 141-149. Copyright © 1975, Per Brinch 
Hansen. Reprinted by permission. 
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tape or disk at several levels (character by character, page by page, file 
by file, or by direct device access). Input, processing, and output of files 
are handled by concurrent processes. Pascal programs can call one another 
recursively and pass arbitrary parameters among themselves. This makes it 
possible to use Pascal as a job controllanguage (Brinch Hansen 1976a). 

To the system programmer, however, Solo is quite different from many 
other operating systems: 

1. Less than 4 per cent of it is written in machine language. The rest is 
written in Sequential and Concurrent Pascal. 

2. In contrast to machine-oriented languages, Pascal does not contain 
low-level programming features, such as registers, addresses and inter­
rupts. These are all handled by the virtual machine on which compiled 
programs run. 

3. System protection is achieved largely by means of compile-time check­
ing of access rights. Run-time checking is minimal and is not supported 
by hardware mechanisms. 

4. Solo is the first major example of a hierarchical concurrent program 
implemented by means of abstract data types (classes, monitors, and 
processes ) . 

5. The complete system consisting of more than 100,000 machine words of 
code (including two compilers) was developed by a student and myself 
in less than a year. 

To appreciate the usefulness of Concurrent Pascal one needs a good un­
derstanding of at least one operating system written in the language. The 
purpose of this description is to look at the Solo system from a user's point 
of view before studying its internal structure (Brinch Hansen 1976b). It teIls 
how the user operates the system, how data flow inside it, how programs call 
one another and communicate, how files are stored on disk, and how weIl 
the system performs in typical tasks. 

JOB CONTROL 

The user controls program execution from a display (or a teletype). He calls 
a program by writing its name and its parameters, for example: 
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move(5) 
read( maketemp, seqcode, true) 

The first command positions a magnetic tape at file number 5. The second 
one inputs the file to disk and stores it as sequential code named maketemp. 
The boolean true protects the file against accidental deletion in the future. 

Programs try to be helpful to the user when he needs it. If the user 
forgets which programs are available, he may for example type: 

help 

(or anything else). The system responds by writing: 

not executable, try 
list ( catalog, seqcode, console) 

The suggested command lists the names of all sequential programs on the 
console. 

If the user knows that the disk contains a certain program, but is un­
certain about its parameter conventions, he can simply call it as a program 
without parameters, for example: 

read 

The program then gives the necessary information: 

tryagain 
read(file: identifier; kind: filekind; protect: boolean) 

using 
filekind = (scratch, ascii, seqcode, concode) 

Still more information can be gained about a program by reading its 
manual: 

copy(readman, console) 

A user session may begin with the input of a new Pascal program from 
cards to disk: 

copy( cards, sorttext) 

followed by a compilation: 
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pascal(sorttext, printer, sort) 

If the compiler reports errors on the program listing: 

pascal: 
compilation errors 

the next step is usually to edit the program text: 

edi t ( sorttext ) 

and compile it again. After a successful compilation, the user program can 
now be called directly: 

sort( ... ) 

The system can also read job control commands from other media, for 
example: 

do(tape) 

A task is preempted by pushing the bell key on the console. This causes 
the system to reload and initialize itself. The command start can be used to 
replace the Solo system with any other concurrent program stored on disko 

DATA FLOW 

Figure 1 shows the data fiow inside the system when the user is processing 
a single text file sequentially by copying, editing, or compiling it. 

The input, processing, and output of text take place simultaneously. 
Processing is done by a job process that starts input by sen ding an argument 
through a buffer to an input process. The argument is the name of the input 
device or disk file. 

The input process sends the data through another buffer to the job pro­
cess. At the end of the file the input process sends an argument through 
yet another buffer to the job process indicating whether transmission errors 
occurred during the input. 

Output is handled similarly by means of an output process and another 
set of buffers. 

In a single-user operating system it is desirable to be able to process a 
file continuously at the highest possible speed. So the data are buffered in 
core instead of on disko The capacity of each buffer is 512 characters. 
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Figure 1 Processes and buffers. 

CONTROL FLOW 

Figure 2 shows what happens when the user types a command such as: 

edit( cards, tape) 

After system loading the machine executes a Concurrent Pascal program 
(Solo) consisting of three processes. Initially the input and output processes 
both load and call a sequential program ia while the job process calls another 
sequential program da. The do program reads the user command from the 
console and calls the edit pro gram with two parameters, cards and tape. 

The editor starts its input by sending the first parameter to the io pro­
gram executed by the input process. This causes the io program to call 
another program cards which then begins to read cards and send them to 
the job process. 

The editor starts its output by sending the second parameter to the io 
program executed by the output process. The latter then calls a program 
tape which reads data from the job process and puts them on tape. 

At the end of the file the cards and tape programs return to the io 
programs which then await further instructions from the job process. The 
editor returns to the do program which then reads and interprets the next 
command from the console. 

It is worth observing that the operating system itself has no built-in 
drivers for input/output from various devices. Data are simply produced 
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CARDS TAPE 

10 10 

INPUT JOB OUTPUT 
PROCESS PROCESS PROCESS 

Figure 2 Concurrent processes and sequential programs. 

and consumed by Sequential Pascal programs stored on disko The operat­
ing system only contains the mechanism to call these. This gives the user 
complete freedom to supplement the system with new devices and simulate 
complicated input/output such as the merging, splitting and formatting of 
files without changing the job programs. 

Most important is the ability of Sequential Pascal programs to call one 
another recursively with arbitrary parameters. In Fig. 2, for example, the 
do program calls the edit program with two identifiers as parameters. This 
removes the need for aseparate (awkward) job controllanguage. The job 
contral language is Pascal. 

This is illustrated more dramatically in Fig. 3 which shows how the 
command: 

pascal(sorttext, printer, sort) 

causes the do program to call the program pascal. The latter in turn calls 
seven compiler passes one at a time, and (if the compiled program is correct) 
pascal finally calls the filing system to store the generated code. 

A program does not know whether it is being called by another program 
or directly from the console. In Fig. 3 the program pascal calls the filing sys­
tem. The user, may, however, also call the file system directly, for example, 
to protect his program against accidental deletion: 
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PASS 1 PASS 2 PASS 7 FILE 

DO 

JOB PROCESS 

Figure 3 Compilation. 

file(protect, sort, true) 

The Pascal pointer and heap concepts give programs the ability to pass 
arbitrarily complicated data structures among each other, such as symbol 
tables during compilation (Jensen 1974). In most cases, however, it suffices 
to be able to use identifiers, integers, and booleans as program parameters. 

STORE ALLOCATION 

The run-time environment of Sequential and Concurrent Pascal is a kernel of 
4 K words. This is the only program written in machine language. The user 
loads the kernel from disk into co re by means of the operator's panel. The 
kernel then loads the Solo system and starts it. The Solo system consists 
of a fixed number of processes. They occupy fixed amounts of co re store 
determined by the compiler. 

All other programs are written in Sequential Pascal. Each process stores 
the code of the currently executed program in a fixed core segment. After 
termination of a program called by another, the process reloads the previous 
program from disk and returns to it. The data used by a process and the 
programs called by it are all stored in a core resident stack of fixed length. 
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FILE SYSTEM 

The backing store is a slow disk with removable packs. Each user has his 
own disk pack containing the system and his private files. So there is no 
need for a hierarchical file system. 

A disk pack contains a catalog of all files stored on it. The catalog 
describes itself as a file. A file is described by its name, type, protection and 
disk address. Files are looked up by hashing. 

All system programs check the types of their input files before operating 
on them and associate types with their output files. The Sequential Pascal 
compiler, for example, will take input from an ascii file (but not from a 
scratch file), and will make its output a sequential code file. The possible 
file types are scratch, ascii, seqcode and concode. 

Since each user has his own disk pack, files need only be protected against 
accidental overwriting or deletion. All files are initially unprotected. To 
protect one the user must call the file system from the console as described 
in Section 4. 

To avoid compacting of files (lasting several minutes), file pages are scat­
tered on disk and addressed indirectly through a page map (Fig. 4). A file is 
opened by looking it up in the catalog and bringing its page map into core. 

CATALOG PAGE MAP PAGES 

FILE 

Figure 4 File system. 

The resident part of the Solo system implements only the most frequently 
used file operations: lookup, open, elose, get and put. A nonresident, sequen­
tial program, called file, handles the more complicated and less frequently 
used operations: create, replace, rename, protect, and delete file. 
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DISK ALLOCATION 

The disk always contains a scratch file of 255 pages called next. A program 
creates a new file by outputting data to this file. It then calls the file system 
to associate the data with a new name, a type, and a length (::; 255). Having 
done this the file system creates a new instance of next. 

This scheme has two advantages: 

1. All files are initialized with typed data. 

2. A program creating a file need only call the nonresident file system 
on ce (after producing the file). Without the file next the file system 
would have to be called at least twice: before output to create the file, 
and after output to define its finallength.. 

The disadvantages of having a single file next is that a program can only 
create one file at a time. 

Unused disk pages are defined by apowerset of page indices stored on 
the disk. 

On a slow disk special care must be taken to make program loading fast. 
If program pages were randomly scattered on the disk it would take 16 
seconds to load the compiler and its input/output drivers. An algorithm 
described in Brinch Hansen (1976c) reduces this to 5 seconds. When the 
system creates the file next it tries to place it on consecutive pages within 
neighboring cylinders as far as possible (but will scatter the pages somewhat 
if it has to). It then rearranges the page indices within the page map to 
minimize the number of disk revolutions and cylinder movements needed to 
load the file. Since this is done before a program is compiled and stored on 
disk it is called disk scheduling at compile time. 

The system uses a different allocation technique for the two temporary 
files used during compilation. Each pass of the compiler takes input from 
a file produced by its predecessor and delivers output to its successor on 
another file. A program maketemp creates these files and interleaves their 
page indices (making every second page belong to one file and every second 
one to the other). This makes the disk head sweep slowly across both files 
during a pass instead of moving wildly back and forth between them. 

OPERATOR COMMUNICATION 

The user communicates with the system through a console. Since a task 
(such as editing) usually involves several programs executed by concurrent 
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processes these programs must identify themselves to the user before asking 
for input or making output: 

do: 
edit( cards, tape) 
edit: 

do: 

Program identity is only displayed every time the user starts talking to a 
different program. A program that communicates several times with the 
user without interruption (such as the editor) only identifies itself once. 

Normally only one program at a time tries to talk to the user (the current 
program executed by the job process). But an input/output error may cause 
a message from another process: 

tape: 
inspect 

Since processes rarely compete for the console, it is sufficient to give a process 
exclusive access to the user for input or output of a single line. A conversation 
of severallines will seldom be interrupted. 

A Pascal program only calls the operating system once with its identifi­
cation. The system will then automatically display it when necessary. 

SIZE AND PERFORMANCE 

The Solo system consists of an operating system written in Concurrent Pas­
cal and a set of system programs written in Sequential Pascal: 

Program Pascal Machine 
lines words 

operating system 1,300 4K 
do, io 700 4K 
file system 900 5K 
concurrent compiler 8,300 42 K 
sequential compiler 8,300 42 K 
editor 400 2K 
input/ output programs 600 3K 
others 1,300 8K 

21,800 1l0K 
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(The two Pascal compilers can be used under different operating systems 
written in Concurrent Pascal-not just Solo.) 

The amount of code written in different programming languages is: 

Language % 
machine language 4 
Concurrent Pascal 4 
Sequential Pascal 92 

This clearly shows that a good sequential programming language is more 
important for operating system design than a concurrent language. But 
although a concurrent program may be small it still seems worthwhile to 
write it in a high-level language that enables a compiler to do thorough 
checking of data types and access rights. Otherwise, it is far too easy to 
make time-dependent programming errors that are extremely difficult to 
locate. 

The kernel written in machine language implements the process and mon­
itor concepts of Concurrent Pascal and res ponds to interrupts. It is inde­
pendent of the particular operating system running on top of it. 

The Solo system requires a core store of 39 K words for programs and 
data: 

Programs K words 
kernel 
operating system 
input/output programs 
job programs 
core store 

4 
11 

6 
18 
39 

This amount of space allows the Pascal compiler to compile itself. 
The speed of text processing using disk input and tape output is: 

Program 
copy 
edit 
compile 

char/sec 
11,600 

3,300-6,200 
240 

All these tasks are 60-100 per cent disk limited. These figures do not distin­
guish between time spent waiting for peripherals and time spent executing 
operating system or user code since this distinction is irrelevant to the user. 
They illustrate an overall performance of a system written in a high-level 
language using straight forward code generation without any optimization. 
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FINAL REMARKS 

The compilers for Sequential and Concurrent Pascal were designed and im­
plemented by Al Hartmann and me in half a year. I wrote the operating 
system and its utility programs in 3 months. In machine language this 
would have required 20-30 man-years and nobody would have been able 
to understand the system fully. The use of an efficient, abstract program­
ming language reduced the development cost to less than 2 man-years and 
produced a system that is completely understood by two programmers. 

The low cost 01 programming makes it acceptable to throw away awkward 
programs and rewrite them. We did this several times: An early 6-pass com­
piler was never released (although it worked perfectly) because we found its 
structure too complicated. The first operating system written in Concurrent 
Pascal (called Deamy) was used only to evaluate the expressive power of the 
language and was never built (Brinch Hansen 1974). The second one (called 
Pilot) was used for several months but was too slow. 

From a manufacturer's point of view it is now realistic and attractive to 
replace a huge ineffective "general-purpose" operating system with a range 
of small, efficient systems for special purposes. 

The kernei, the operating system, and the compilers were tested very 
systematically initially and appear to be correct. 
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THE SOLO OPERATING SYSTEM: 
PROCESSES, MONITORS 

AND CLASSES 

PER BRINCH HANSEN 

(1976) 

This paper describes the implementation of the Solo operating system written 

in Concurrent Pascal. It explains the overall structure and details of the 

system in wh ich concurrent processes communicate by means of a hierarchy 

of monitors and classes. The concurrent program is a sequence of nearly 

independent components of less than one page of text each. The system has 

been operating since May 1975. 

INTRODUCTION 

This is a description of the program structure of the Solo operating system. 
Solo is a single-user operating system for the PDP 11/45 computer writ­
ten in the programming language Concurrent Pascal (Brinch Hansen 1976a, 
1976b). 

The main idea in Concurrent Pascal is to divide the global data structures 
of an operating system into small parts and define the meaningful operations 
on each of them. In Solo, for example, there is a data structure, called a 
resource, that is used to give concurrent processes exclusive access to a disk. 
This data structure can only be accessed by means of two procedures that 
request and release access to the disk. The programmer specifies that these 
are the only operations one can perform on aresource, and the compiler 

P. Brinch Hansen, The Solo operating system: processes, monitors and classes. Sojtware­
Pmctice and Experience 6, 2 (April-June 1976), 165-200. Copyright © 1975, Per Brinch 
Hansen. Reprinted by permission. 
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checks that this rule is obeyed in the rest of the system. This approach 
to program reliability has been called resource protection at compile-time 
(Brinch Hansen 1973). It makes programs more reliable by detecting incor­
rect interactions of program components before they are put into operation. 
It makes them more efficient by reducing the need for hardware protection 
mechanisms. 

The combination of a data structure and the operations used to access 
it is called an abstract data type. It is abstract because the rest of the 
system need only know what operations one can perform on it but can 
ignore the details of how they are carried out. A Concurrent Pascal program 
is constructed from three kinds of abstract data types: processes, monitors 
and classes. Processes perform concurrent operations on data structures. 
They use monitors to synchronize themselves and exchange data. They 
access private data structures by means of classes. Brinch Hansen (1975a) 
is an overview of these concepts and their use in concurrent programming. 

Solo is the first major example of a hierarchical concurrent program 
implemented in terms of abstract data types. It has been in use since May 
1975. This is a complete, annotated program listing of the system. It also 
explains how the system was tested systematically. 

PROGRAM STRUCTURE 

Solo consists of a hierarchy of program layers, each of which controls a par­
ticular kind of computer resource, and a set of concurrent processes that use 
these resourees (Fig. 1): 

• Resource management controls the scheduling of the operator's eonsole 
and the disk among eoneurrent processes. 

• Console management lets proeesses eommunieate with the operator 
after they have gained aecess to the eonsole. 

• Disk management gives processes access to the disk files and a catalog 
deseribing them. 

• Program management fetehes program files from disk into eore on de­
mand from processes that wish to execute them. 

• Buffer management transmits data among proeesses. 

These facilities are used by seven concurrent processes: 
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INITIAL CARD INPUT JOB OUTPUT PRINTER LOADER 
PROCESS PROCESS PROCESS PROCESS PROCESS PROCESS PROCESS 

Figure 1 Program layers and processes. 

• A job process executes Pascal programs upon request from the opera­
tor. 

• Two input/output processes produce and consume the data of the job 
process. 

• A card process feeds punched cards to the input process which then 
removes trailing blanks from them and packs the text into blocks. 

• A printer process prints lines that are unpacked from blocks and sent 
to it by the output process. 

• A loader process preempts and reinitializes the operating system when 
the operator pushes the bell key on the console. 

• An initial process starts up the rest of the system after system loading. 

The term program layer is only used as a convenient way of explaining 
the gross division of labor within the system. It cannot be represented by 
any language notation in Concurrent Pascal. 
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ABSTRACT DATA TYPES 

Each program layer consists of one or more abstract data types (monitors 
and classes). 

Resource management 

A fifa class implements a first-in, first-out queue that is used to maintain 
multiprocess queues and message buffers. 

A resaurce monitor gives processes exclusive access to a computer re­
süurce. It is used to control disk access. 

A typewriter resaurce monitor gives processes exclusive access to a console 
and teIls them whether they need to identify themselves to the operator. 

Console management 

A typewriter class transmits a single line between a process and a console 
(but does not give a process exclusive access to it). 

A terminal class gives a process the illusion that it has its own private 
console by giving it exclusive access to the operator for input or output of a 
single line. 

A terminal stream makes a terminal look character oriented. 

Disk management 

A disk class can access a page anywhere on disk (but does not give a process 
exclusive access to it). It uses a terminal to report disk failure. 

A disk file can access any page belonging to a particular file. The file 
pages, wh ich may be scattered on disk, are addressed indirectly through a 
page map. The disk address of the page map identifies the file. It uses a 
disk to access the map and its pages. 

A disk table class makes a disk catalog of files look like an array of entries, 
some üf which describe files, and some of which are empty. The entries are 
identified by numeric indices. It uses a disk file tü access the catalog page 
by page. 

A disk catalag monitor can look up files in a disk catalog by means of 
their names. It uses a resource to get exclusive acess to the disk and a disk 
table to scan the catalog. 

A data file class gives a process access to a named disk file. It uses a 
resource, a disk catalog, and a disk file to access the disk. 
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Program management 

A program file dass ean load a named disk file into eore when a proeess 
wishes to exeeute it. It uses a resouree, a disk eatalog, and a disk file to do 
this. 

A program stack monitor keeps traek of nested program ealls within a 
proeess. 

Buifer management 

The buffer monitors transmit various kinds of messages between proeesses: 
arguments (sealars or identifiers), lines, and pages. 

The following defines the purpose, specifieation, and implementation of 
eaeh of these abstract data types. 

INPUT/OUTPUT 

The following data types are used in elementary input/output operations: 

type iodevice = 
(typedevice, diskdevice, tapedevice, printdevice, carddevice); 

type iooperation = (input, output, move, contral); 

type ioarg = (writeeof, rewind, upspace, backspace); 

type ioresult = 
(complete, intervention, transmission, failure, 
endfile, endmedium, startmedium); 

type ioparam = 
record 

operation: iooperation; 

status: ioresult; 

arg: ioarg 

end; 

const nl = '(:10:)'; ff = '(:12:)'; er = '(:13:)'; em = '(:25:)'; 

const linelength = 132; 
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type line = array [l..linelength] of char; 

const pagelength = 512; 
type page = array [l..pagelength] of char; 

They define the identifiers of peripheral devices, input/output operations 
and their results as wen as the data types to be transferred (printer lines or 
disk pages). The details of input/output operations are explained in Brinch 
Hansen (1975b). 

FIFO QUEUE 

type fifa = dass (limit: integer) 

A fifo keeps track of the length and the head and tail indices of an array 
used as a first-in, first-out queue (but does not contain the queue elements 
themselves). A fifo is initialized with a constant that defines its range of 
queue indices 1. .limit. A user of a fifo must ensure that the length of the 
queue remains within its physicallimit: 

o :::; arrivals - departures :::; limit 

The routines of a fifo are: 

functian arrival: integer 

Returns the index of the next queue element in which an arrival can take 
place. 

functian departure: integer 

Returns the index of the next queue element from which adeparture can 
take place. 

function empty: boolean 

Defines whether the queue is empty (arrivals = departures). 

function full: boolean 

Defines whether the queue is fun (arrivals = departures + limit). 
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Implementation: 

A fifo queue is represented by its head, tail and length. The Concurrent 
Pascal compiler will ensure that these variables are only accessed by the 
routines of the dass. In general, a dass variable can only be accessed by 
calling one of the routines associated with it (Brinch Hansen 1975a). The 
final statement of the dass is executed when an instance of a fifo queue is 
dedared and initialized. 

type fifo = 

class(limit: integer); 

var head, tail, length: integer; 

function entry arrival: integer; 

begin 

arrival := tail; 
tail := tail mod limit + 1; 
length := length + 1; 

end; 

function entry departure: integer; 
begin 

departure := head; 
head := head mod limit + 1; 
length : = length - 1; 

end; 

function entry empty: boolean; 

begin empty := (length = 0) end; 

function entry full: boolean; 

begin full := (length = limit) end; 

begin head := 1; tail := 1; length := 0 end; 
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RESOURCE 

type resource = monitor 

A resüuree gives exdusive aeeess tü a eümputer resüuree (but dües nüt per­
fürm any üperatiüns ün the resüuree itself). A user üf a resüuree must request 
it befüre using it and release it afterwards. If the resüuree is released within 
a finite time it will also. become available tü any prüeess requesting it within 
a finite time. In shürt, the resüuree seheduling is fair. 

procedure request 

Gives the ealling proeess exdusive aeeess tü the resüuree. 

procedure release 

Makes the resüuree available für üther prücesses. 

Implementation: 

A resüuree is represented by its state (free ür used) and a queue üf processes 
waiting for it. The multiprüeess queue is represented by twü data structures: 
an array üf single-prücess queues and a fifü tü keep track üf the queue indices. 

The initial statement at the end üf the münitür sets the resüuree state tü 
free and initializes the fifü variable with a constant defining the tütal number 
of processes that can wait in the queue. 

The cümpiler will ensure that the münitür variables only ean be aeeessed 
by ealling the routine entries assüciated with it. The generated code will 
ensure that at most üne process at a time is executing a münitür routine 
(Brinch Hansen 1975a). The monitür ean delay and (later) cüntinue the 
exeeutiün üf a ealling proeess. 

A routine assüciated with a dass ür münitür is ealled by mentioning the 
dass ür münitür variable füllüwed by the name üf the routine. As an example 

next.arrival 

will perfürm an arrival üperatiün ün the fifü variable next. 

const processcount = 7; 
type processqueue = array [l..processcount] of queue; 

type resource = 
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monitor 

var free: boolean; q: processqueue; next: fifo; 

procedure entry request; 

begin 
if free then free := false 
else delay( q[next.arrival]); 

end; 

procedure entry release; 
begin 

if next.empty then free := true 
else continue( q[next.departure]); 

end; 

begin free := true; init next(processcount) end; 

TYPEWRITER RESOURCE 

type typeresource = monitor 

A typewriter resource gives proeesses exclusive a,eeess to a typewriter eon­
sole. A ealling proeess supplies an identifieation of itself and is told whether 
it needs to display it to the operator. The resouree seheduling is fair as 
explained in the definition of the resource monitor. 

procedure request(text: line; var changed: boolean} 

Gives the ealling proeess exclusive aeeess to the resouree. The proeess iden­
tifies itself by a text line. A boolean ehanged defines whether this is the 
same identifieation that was used in the last eall of re quest (in whieh ease 
there is no need to display it to the operator again). 

procedure release 

Makes the resouree available again for other proeesses. 
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Implementation: 

type typeresource = 
monitor 

var free: boolean; q: processqueue; next: fifo; header: line; 

procedure entry request(text: line; var changed: boolean); 

begin 

if free then free := false 

else delay( q[next.arrival]); 

changed : = (header < > text); 
he ader := text; 

end; 

procedure entry release; 
begin 

if next.empty then free := true 

else continue( q[next,departure]); 
end; 

begin 

free := true; header[l] := nl; 
init next(processcount); 

end; 

TYPEWRITER 

type typewriter = dass (device: iodevice) 

A typewriter can transfer a text line to or from a typewriter console. It does 
not identify the calling process on the console or give it exclusive access to 
it. A typewriter is initialized with the identifier of the device it controls. 

A newline character (nI) terminates the input or output of a line. A li ne 
that exceeds 73 characters is forcefully terminated by a newline character. 

procedure write(text: line) 

Writes a line on the typewriter. 
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procedure read(var text: line) 

Rings the bell on the typewriter and reads a li ne from it. Single characters 
or the whole line can be erased and retyped by typing control c or control l. 
The typewriter responds to erasure by writing a question mark. 

Implementation: 

The procedure writechar is not a routine entry; it can only be called within 
the typewriter dass. The standard procedure io delays the calling process 
until the transfer of a single character is completed. 

type typewriter = 
class( device: iodevice); 

const linelimit = 73; 
cancelchar = '(:3:)'; "control c" 
cancelline = '(:12:)'; "controll" 

procedure writechar(x: char); 
var param: ioparam; c: char; 
begin 

param.operation := output; 
c:= X; 

io( c, param, device); 
end; 

procedure entry write(text: line); 

var param: ioparam; i: integer; c: char; 

begin 
param.operation := output; 

i:= 0; 

repeat 

i := i + 1; c := text[iJ; 
io( c, param, device); 

until (c = nl) or (i = linelimit); 

if c <> nl then writechar(nl); 

end; 

procedure entry read(var text: line); 
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const bel = '(:7:)'; 
var param: ioparam; i: integer; c: char; 
begin 

writechar (bel) ; 

param.operation := input; 

i := 0; 

repeat 

io(c, param, device); 

if c = cancelline then 

begin 

writechar(nl); 

writechar(' ?'); 
i:= 0; 

end 

else if c = cancelchar then 
begin 

if i > 0 then 

begin 

writechar(' ?'); 

i := i-I; 

end 

end 

else 
begin i := i + 1; text[i] := c end 

until (c = nl) or (i = linelimit); 

if c <> nl then 
begin 

writechar( nl); 

text[linelimit + 1] := nl; 

end; 

end; 

begin end; 
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TERMINAL 

type terminal = class (access: typeresource) 

A terminal gives a single proeess exdusive aeeess to a typewriter, identifies 
the proeess to the operator and transfers a line to or from the device. The 
terminal uses a typewriter resouree to get exdusive aeeess to the device. 

procedure read(header: line; var text: line) 

Writes a header (if neeessary) on the typewriter and reads a text line from 
it. 

procedure write(header, text: line) 

Writes a he ader (if neeessary) followed by a text line on the typewriter. 

The header identifies the ealling proeess. It is only output if it is different 
from the last header output on the typewriter. 

Implementation: 

A dass or monitor ean only eall other dasses or monitors if they are dedared 
as variables within it or passed as parameters during initialization (Brineh 
Hansen 1975a). So a terminal ean only eall the monitor access and the dass 
unit. These aeeess rights are eheeked during eompilation. 

type terminal = 
class( access: typeresource); 

var unit: typewriter; 

procedure entry read(header: line; var text: line); 

var changed: boolean; 

begin 

access.request (header , changed); 
if changed then unit.write(header); 

unit.read( text); 

access.release; 

end; 

procedure entry write(header, text: line); 
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var changed: boolean; 
begin 

access. request (header , changed); 
if changed then unit.write(header); 
unit.write(text) ; 
access.release; 

end; 

begin init unit(typedevice) end; 

TERMIN AL STREAM 

type terminalstream = class( operator: terminal) 

A terminal stream enables a proeess to identify itself onee and for all and 
then proeeed to read and write single eharacters on a terminal. A terminal 
stream uses a terminal to input or output a line at a time. 

procedure read(var c: char) 

Reads a eharacter from the terminal. 

procedure write( c: char) 

Writes a character on the terminal. 

procedure reset(text: line) 

Identifies the ealling proeess. 

Implementation: 

The terminal stream eontains two line buffers for input and output. 

type terminalstream = 

class(operator: terminal); 

const !ine!imit = 80; 

var header: !ine; endinput: boolean; 
inp, out: record count: integer; text: !ine end; 
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procedure initialize(text: line); 
begin 

he ader := text; 
endinput := true; 

out.count := 0; 
end; 

procedure entry read(var c: char); 

begin 
with inp do 

begin 
if endinput then 

begin 
operator.read(header, text); 
count := 0; 

end; 
count := count + 1; 
c := text[count]; 
endinput := (c = nl); 

end; 
end; 

procedure entry write(c: char); 
begin 

with out do 
begin 

count := count + 1; 
text [count] := c; 
if (c = nl) or (count = linelimit) then 

begin 

operator. write(header, text); 

count := 0; 

end; 
end; 

end; 

procedure entry reset(text: line); 
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begin initialize(text) endj 

begin initialize('unidentified:(:10:)') end; 

DISK 

type disk = class(typeuse: typeresource) 

A disk ean transfer any page to or from a disk deviee. A disk uses a type­
writer resouree to get exclusive aeeess to a terminal to report disk failure. 
After a disk failure, the disk writes a message to the operator and repeats 
the operation when he types a newline character. 

procedure read(pageaddr: integer; var block: univ page) 

Reads a page identified by its absolute disk address. 

procedure write(pageaddr: integer; var block: univ page) 

Writes a page identified by its absolute disk address. 

A page is declared as a universal type to make it possible to use the disk 
to transfer pages of different types (and not just text). 

Implementation: 

The standard procedure io delays the calling process until the disk transfer 
is eompleted (Brinch Hansen 1975b). 

type disk = 
class( typeuse: typeresource); 

var operator: terminal; 

procedure transfer( command: iooperation; 

pageaddr: univ ioargj var block: page); 

var param: ioparamj response: line; 

begin 

with param, operator do 

begin 

operation := command; 
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end; 
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arg := pageaddr; 

io(block, param, diskdevice); 

while status <> complete do 

end; 

begin 

write('disk: (:10:)', 'error( :10:) '); 

read('push return(: 10:)', response); 

io(block, param, diskdevice); 
end; 

procedure entry read(pageaddr: integer; var block: univ page); 
begin transfer(input, pageaddr, block) end; 

procedure entry write(pageaddr: integer; var block; univ page); 

begin transfer ( output, pageaddr, block) end; 

begin init operator(typeuse) end; 

DISK FILE 

type diskfile = class(typeuse: typeresource) 

A disk file enables a proeess to aeeess a disk file eonsisting of a fixed number 
of pages (:s: 255). A disk file uses a typewriter resouree to get exdusive 
aeeess to the operator after a disk failure. 

The disk file is identified by the absolute address of a page map that 
defines the length of the file and the disk addresses of its pages. To a ealling 
proeess the pages of a file are numbered 1, 2, ... , length. 

Initially, the file is dosed (inaeeessible). A user of a file must open it 
before using it and dose it afterwards. Read and write have no effeet if the 
file is dosed or if the page number is outside the range 1. .length. 

procedure open(mapaddr: integer) 

Makes a disk file with a given page map aeeessible. 

procedure close 

Makes the disk file inaeeessible. 



SOLO: PROCESSES, MONITORS AND CLASSES 351 

junction length: integer 

Returns the length of the disk file (in pages). The length of a dosed file is 
zero. 

procedure read(pageno: integer; var block: univ page) 

Reads a page with a given number from the disk file. 

procedure write(pageno: integer; var block: univ page) 

Writes a page with a given number on the disk file. 

Implementation: 

The variable length is prefixed with the word entry. This means that its 
value can be used directly outside the dass. It can, however, only be changed 
within the dass. So a variable entry is similar to a function entry. Variable 
entries can only be used within dasses. 

const maplength = 255; 
type filemap = 

record 

filelength: integer; 

pageset: array [l..maplength] of integer 
end; 

type diskfile = 
class( typeuse: typeresource); 

var unit: disk; map: filemap; opened: boolean; 

entry length: integer; 

function includes(pageno: integer): boolean; 

begin 

includes := opened & 
( 1 < = pageno) & (pageno < = length); 

end; 

procedure entry open(mapaddr: integer); 
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begin 
unit.read(mapaddr, map); 

length := map.filelength; 

opened : = true; 

end; 

procedure entry elose; 

begin 

length := 0; 

opened : = false; 

end; 

procedure entry read(pageno: integer; 'var block: univ page); 

begin 

if ineludes(pageno) then 

unit.read(map.pageset[pageno], block); 
end; 

procedure entry write(pageno: integer; var block: univ page); 

begin 
if ineludes(pageno) then 

unit. write( map. pageset [pageno], block); 

end; 

begin 

init unit(typeuse); 

length := 0; 

opened := false; 

end; 

CATALOG STRUCTURE 

The disk contains a catalog of all files. The following data types define the 
structure of the catalog: 

const idlength = 12; 

type identifier = array [l..idlength] of char; 

type filekind = (empty, scratch, ascii, seqcode, concode); 
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type fileattr = 

record 
kind: filekind; 
addr: integer; 
protected: boolean; 
notused: array [1..5] of integer 

end; 

type catentry = 

record 
id: identifier; 
attr: fileattr; 
key, searchlength: integer 

end; 

const catpagelength = 16; 
type catpage = array [1..catpagelength] of catentry; 

const cataddr = 154; 

The catalog is itself a file defined by a page map stored at the catalog 
address. Every catalog page contains a fixed number of catalog entries. A 
catalog entry describes a file by its identifier, attributes and hash key. The 
search length defines the number of files that have a hash key equal to the 
index of this entry. It is used to limit the search for a non-existing file name. 

The file attributes are its kind (empty, scratch, ascii, sequential or con­
current code), the address of its page map, and a boolean defining whether it 
is protected against accidental deletion or overwriting. The latter is checked 
by all system programs operating on the disk, but not by the operating 
system. Solo provides a mechanism for protection, but does not enforce it. 

DISK TABLE 

type disktable = class(typeuse: typeresource; cataddr: integer) 

A disk table makes a disk catalog look like an array of catalog entries iden­
tified by numeric indices 1, 2, ... , length. A disk table uses a typewriter 
resource to get exclusive access to the operator after a disk failure and a 
catalog address to locate a catalog on disk. 
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junction length: integer 

Defines the number of entries in the catalog. 

procedure read(i: integer; var elem: catentry) 

Reads entry number i in the catalog. If the entry number is outside the 
range 1 . .length the contents of the entry is undefined. 

Implementation: 

A disk table stores the most recently used catalog page to make a sequential 
search of the catalog fast. 

type disktable = 
class( typeuse: typeresource; cataddr: integer); 

var file: diskfile; pageno: integer; block: catpage; 

entry length: integer; 

procedure entry read(i: integer; var eIern: catentry); 
var index: integer; 
begin 

index := (i - 1) div catpagelength + 1; 

if pageno < > index then 
begin 

pageno := index; 
file.read(pageno, block); 

end; 
eIern := block[(i - 1) mod catpagelength + 1]; 

end; 

begin 
init file( typeuse); 
file.open( cataddr); 
length := file.length * catpagelength; 
pageno := 0; 

end; 
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DISK CATALOG 

type diskcatalog = 
monitor(typeuse: typeresource,- diskuse: resource,- cataddr: integer) 

The disk catalog describes all disk files by me ans of a set of named entries 
that can be looked up by proeesses. A disk eatalog uses a resouree to get 
exclusive aecess to the disk during a eatalog lookup and a typewriter resource 
to get exclusive aecess to the operator after a disk failure. It uses a eatalog 
address to locate the catalog on disk. 

procedure lookup(id: identifier,- var attr: fileattr,- var found: boolean) 

Searehes for a catalog entry describing a file with a given identifier and 
indicates whether it found it. If so, it also returns the file attributes. 

Implementation: 

A disk eatalog uses a disk table to make a eyclical search for an identifier. 
The initial catalog entry is selected by hashing. The seareh stops when the 
identifier is found or when there are no more entries with the same hash 
key. The disk eatalog has exclusive aeeess to the disk during the lookup to 
prevent eompeting processes from causing disk arm movement. 

type diskcatalüg = 
monitor( typeuse: typeresüurce; diskuse: resüuree; eataddr: integer); 

var table: disktable; 

function hash(id: identifier): integer; 
var key, i: integer; c: char; 
begin 

key := 1; i := 0; 

repeat 
i := i + 1; c := id[i]; 
if e <> ' , then 

key := key * ürd(c) mod table.length + 1; 

until (c = ' ') or (i = idlength); 
hash := key; 

end; 
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procedure entry lookup(id: identifier; 

var attr: fileattr; var found: boolean); 

var key, more, index: integer; eIern: catentry; 
begin 

diskuse.request; 

key := hash(id); 

table.read(key, eIern); 

more := elem.searchlength; 

index := key; found := false; 

while not found & (more> 0) do 
begin 

table.read(index, eIern); 
if elem.id = id then 

begin attr := elem.attr; found := true end 

else 

begin 
if elem.key = key then more := more - 1; 

index := index mod table.length + 1; 

end; 

end; 
diskuse.release; 

end; 

begin init table(typeuse, cataddr) end; 

DATA FILE 

type datafile = 
class(typeuse: typeresource; diskuse: resource; catalog: diskcatalog) 

A data file enables a proeess to aeeess a disk file by me ans of its name in a 
diskeatalog. The pages of a data file are numbered 1, 2, ... , length. A data 
file uses a resouree to get exclusive aeeess to the disk during a page transfer 
and a typewriter resouree to get eXclusive aeeess to the operator after disk 
failure. It uses a eatalog to look up the the file. 

Initially a data file is inaeeessible (closed). A user of a data file must 
open it before using it and close it afterwards. If a proeess needs eXclusive 
aeeess to a data file while using it, this must be ensured at higher levels of 
programmmg. 
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procedure open(id: identifier,. var jound: boolean) 

Makes a file with a given identifier accessible if it is found in the catalog. 

procedure close 

Makes the file inaccessible. 

procedure read(pageno: integer,. var block: univ page) 

Reads a page with a given number from the file. It has no effect if the file is 
closed or if the page number is outside the range l..length. 

procedure write(pageno: integer,. var block: univ page) 

Writes a page with a given number on the file. It has no effect if the file is 
closed or if the page number is outside the range l..length. 

junction length: integer 

Defines the number of pages in the file. The length of a closed file is zero. 

Implementation: 

type datafile = 

class( typeuse: typeresüuree; diskuse: reSÜuree; eatalüg: diskeatalüg); 

var file: diskfile; üpened: büülean; 

entry length: integer; 

procedure entry open(id: identifier; var found: boolean); 
var attr: fileattr; 
begin 

catalog.lookup(id, attr, found); 
if found then 

begin 
diskuse.request; 
file.open( attr.addr); 
length := file.length; 
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diskuse.release; 
end; 

opened := found; 

end; 
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procedure entry dose; 
begin 

file. dose; 
length := 0; 
opened := false; 

end; 

procedure entry read(pageno: integer; var block: univ page); 

begin 
if opened then 

end; 

begin 

diskuse.request; 
file.read(pageno, block); 
diskuse.release; 

end; 

procedure entry write(pageno: integer; var block: univ page); 
begin 

if opened then 

end; 

begin 
diskuse.request; 
file.write(pageno, block); 

diskuse.release; 

end; 

begin 

init file( typeuse); 

length := 0; 
opened := false; 

end; 
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PRO GRAM FILE 

type progfile = 

class(typeuse: typeresource; diskuse: resource; catalog: diskcatalog) 

A program file ean transfer a sequential program from a disk file into eore. 
The program file is identified by its name in a disk eatalog. A program file 
uses a resouree to get exclusive aeeess to the disk during program loading 
and a typewriter resouree to get exclusive aeeess to the operator after disk 
failure. It uses a disk eatalog to look up the file. 

procedure open(id: identifier; var state: progstate) 

Loads a program with a given identifier from disk and returns its state. The 
program state is one of the following: ready for exeeution, not found, the 
disk file is not sequential code, or the file is too big to be loaded into eore. 

junction store: progstore 

Defines the variable in whieh the program file is stored. A program store is 
an array of disk pages. 

Implementation: 

A program file has exclusive aeeess to the disk until it has loaded the entire 
program. This is to prevent eompeting processes from slowing down program 
loading by eausing disk arm movement. 

type progstate = (ready, notfound, notseq, toobig); 

const storelengthl = 40; 
type progstorel = array [l..storelengthl] of page; 

type progfilel = 
class( typeuse: typeresouree; diskuse: resouree; eatalog: diskeatalog); 

var file: diskfile; 

entry store: progstorel; 

procedure entry open(id: identifier; var state: progstate); 
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var attr: fileattr; found: boolean; pageno: integer; 
begin 

catalog.lookup(id, attr, found); 
with diskuse, file, attr do 

if not found then state : = notfound 
else if kind <> seqcode then state := notseq 
else 

begin 
request; 

open( addr); 
if length <= storelengthl then 

begin 
for pageno := 1 to length do 

read(pageno, store[pageno]); 

state : = ready; 
end 

else state := toobig; 
elose; 
release; 

end; 
end; 

begin init file(typeuse) end; 

Solo uses two kinds of program files (progfilel and progfile2); one for large 
programs and another one for smaIl ones. They differ only in the dimension 
of the program store used. The need to repeat the entire dass definition to 
handle arrays of different lengths is an awkward inheritance from Pascal. 

PRO GRAM STACK 

type progstack = monitor 

A program stack maintains a last-in, first-out list of identifiers of programs 
that have called one another. It enables a process to keep track of nested 
caIls of sequential programs. 

For historical reasons a program stack was defined as a monitor. In the 
present version of the system it might as weIl have been a dass. 
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junction space: boolean 

Tells whether there is more space in the program stack. 

junction any: boolean 

TeIls whether the stack contains any program identifiers. 

procedure push{id: identifier) 

Puts an identifier on top of the stack. It has no effect if the stack is fuIl. 

procedure pop (var line, result: univ integer) 

Removes a program identifier from the top of the stack and defines the 
li ne number at which the program terminated as weIl as its result. The 
result either indicates normal termination or one of several run-time errors 
as explained in the Concurrent Pascal report (Brinch Hansen 1975b). 

procedure get{var id: identifier) 

Defines the identifier stored in the top of the stack (without removing it). It 
has no effect if the stack is empty. 

Implementation: 

A program stack measures the extent of the heap of the calling process 
before pushing an identifier on the stack. If a pop operation shows abnormal 
program termination, the heap is reset to its original point to prevent the 
calling process from crashing due to lack of data space. 

The standard routines, attribute and setheap, are defined in the Concur­
re nt Pascal report. 

type resulttype = 
(terminated, overflow, pointererror, rangeerror, varianterror, 
heaplimit, stacklimit, codelimit, timelimit, callerror); 

type attrindex = 

(caller, heaptop, progline, progresult, runtime ); 

type progstack = 
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monitor 

const stacklength = 5; 

var stack: 

array [1..stacklength] of 
re cord progid: identifier; heapaddr: integer end; 

top: O .. stacklength; 

function entry space: boolean; 

begin space := (top< stacklength) end; 

function entry any: boolean; 
begin any := (top> 0) end; 

procedure entry push(id: identifier); 
begin 

if top < stacklength then 
begin 

top := top + 1; 
with stack[top] do 

begin 
progid := id; 
heapaddr := attribute(heaptop); 

end; 
end; 

end; 

procedure entry pop(var line, result: univ integer); 

const terminated = 0; 
begin 

line := attribute(progline); 
result : = attribute(progresult); 

if result < > terminated then 
setheap(stack[top] .heapaddr); 

top := top - 1; 

end; 
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procedure entry get(var id: identifier); 

begin 
if top> 0 then id := stack[top].progid; 

end; 

begin top := 0 end; 

PAGE BUFFER 

type pagebuffer = monitor 

A page buffer transmits a sequence of data pages from one process to another. 
Each sequence is terminated by an end of file mark. 

procedure read(var text: page,. var eof: boolean) 

Receives a message consisting of a text page and an end of file indication. 

procedure write(text: page,. eof: boolean) 

Sends a message consisting of a text page and an end of file indication. 

If the end of file is true then the text page is empty. 

Implementation: 

A page buffer stores a single message at a time. It will delay the sending 
process as long as the buffer is fuH and the receiving process until it becomes 
fuH (0 :::; writes - reads :::; 1). 

type pagebuffer = 
monitor 

var buffer: page; last, fuH: boolean; 

sender, receiver: queue; 

procedure entry read(var text: page; var eof: boolean); 

begin 

if not fuH then delay( receiver); 

text := buffer; eof := last; fuH := false; 

continue( sender); 



364 PER BRINCH HANSEN 

end; 

procedure entry write(text: page; eof: boolean); 
begin; 

iffull then delay(sender); 
buffer := text; last := eof; full := true; 
continue( receiver); 

end; 

begin full := false end; 

Solo also implements buffers for transmission of arguments (enumerations 
and identifiers) and lines. They are similar to the page buffer (but use no 
end of file marks). The need to duplicate routines for each message type is 
an inconvenience caused by the fixed data types of Pascal. 

CHARACTER STREAM 

type eharstream = class(buffer: pagebuffer) 

A character stream enables a process to communicate with another process 
character by character. A character stream uses a page buffer to transmit 
one page of characters at a time from one process to another. 

Asending process must open its stream for writing before using it. The 
last character transmitted in a sequence should be an end of medium (ern). 

A receiving process must open its stream for reading before using it. 

proeedure initread 

Opens a character stream for reading. 

proeedure initwrite 

Opens a character stream for writing. 

proeedure read(var e: eh ar ) 

Reads the next character from the stream. The effect is undefined if the 
stream is not open for reading. 
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procedure write(c: char) 

Writes the next character in the stream. The effect is undefined if the stream 
is not open for writing. 

Implementation: 

type charstream = 

class(buffer: pagebuffer); 

var text: page; count: integer; eof: boolean; 

procedure entry read(var c: char); 
begin 

if count = pagelength then 
begin 

buffer.read(text, eof); 
count := 0; 

end; 

count := count + 1; 
c := text[count]; 
if c = em then 

end; 

begin 

while not eof do buffer.read(text, eof); 
count := pagelength; 

end; 

procedure entry initread; 
begin count := pagelength end; 

procedure entry write(c: char); 
begin 

count : = count + 1; 
text [count] := c; 

if (count = pagelength) or (c = em) then 
begin 

buffer.write(text, false); count := 0; 

if c = em then buffer.write(text, true); 
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end; 
end; 

procedure entry initwrite; 
begin count := 0 end; 

begin end; 

TASKS AND ARGUMENTS 

The following data types are used by several processes: 

type taskkind = (inputtask, jobtask, outputtask); 

type argtag = (niltype, booltype, inttype, idtype, ptrtype); 

argtype = record tag: argtag; arg: identifier end; 

const maxarg = 10; 
type arglist = array [l..maxarg] of argtype; 

type argseq = (inp, out); 

The task kind defines whether a process is performing an input task, a 
job task, or an output task. It is used by sequential programs to determine 
whether they have been loaded by the right kind of process. As an example, 
a program that controls card reader input can only be called by an input 
process. 

A process that executes a sequential program can pass a list of argu­
ments to it. A program argument consists of a tag field defining its type 
(boolean, integer, identifier, or pointer) and another field defining its value. 
(Since Concurrent Pascal does not include the variant records of Sequential 
Pascal one can only represent a program argument by the largest one of its 
variants-an identifier.) 

A job process is connected to two input and output processes by argument 
buffers called its input and output sequences. 
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JOB PROCESS 

type jobpmcess = 
pmcess 

(typeuse: typeresource; diskuse: resource; 
catalog: diskcatalog; inbufJer, outbufJer: pagebufJer; 
inrequest, inresponse, outrequest, outresponse: argbufJer; 
stack: pmgstack) 

"pmgram data space" +16000 

A job process executes Sequential Pascal programs that can call one another 
recursively. Initially, it executes a program called do with console input. A 
job process also implements the interface between sequential programs and 
the Solo operating system as defined in Brinch Hansen (1976b). 

A job process needs access to the operator's console, the disk, and its 
catalog. It is connected to an input and an output process by two page 
buffers and four argument buffers as explained in Brinch Hansen (1976a). It 
uses a pro gram stack to handle nested calls of sequential programs. 

It reserves a data space of 16,000 bytes for user programs and a code 
space of 20,000 bytes. This enables the Pascal compiler to compile itself. 

Implementation: 

The private variables of a job process give it access to a terminal stream, 
two charaeter streams for input and output, and two data files. It uses a 
large program file to store the currently executed program. These variables 
are inaccessible to other processes. 

The job process contains a declaration of a sequential program that de­
fines the types of its arguments and the variable in which its code is stored 
(the latter is inaccessible to the program). It also defines a list of interface 
routines that can be called by a program. These routines are implemented 
within the job process. They are defined in Brinch Hansen (1976b). 

Before a job process can call a sequential program it must load it from 
disk into a program store and push its identifier onto a program stack. After 
termination of the program, the job process pops its identifier, line number, 
and result from the program stack, reloads the previous program from disk 
and returns to it. 

A process can only interaet with other processes by calling routines 
within monitors that are passed as parameters to it during initialization 
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(such as the catalog declared at the beginning of a job process). These 
access rights are checked at compile-time (Brinch Hansen 1975a). 

type jobprocess = 
process 

(typeuse: typeresource; diskuse: resource; 

catalog: diskcatalog; inbuffer, outbuffer: pagebuffer; 

inrequest, inresponse, out re quest , outresponse: argbuffer; 

stack: progstack); 

"program data space" +16000 

const maxfile = 2; 

type file = l..maxfile; 

var operator: terminal; opstream: terminalstream; 

instream, outstream: charstream; 

files: array [file] of datafile; 

code: progfile1; 

program job(var param: arglist; store: progstore1); 

entry read, write, open, elose, get, put, length, 
mark, release, identify, accept, display, readpage, 
writepage, readline, writeline, readarg, writearg, 

lookup, iotransfer, iomove, task, run; 

procedure call(id: identifier; var param: arglist; 
var line: integer; var result: resulttype); 

var state: progstate; lastid: identifier; 

begin 

with code, stack do 

begin 

line := 0; 

open(id, state); 
if (state = ready) & space then 

begin 

push(id); 

job(param, store); 

pop(line, result); 

end 
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else if state = toobig then result := codelimit 
else result := callerror; 
if any then 

begin get(lastid); open(lastid, state) end; 

end; 

procedure entry read(var c: char); 

begin instream.read(c) end; 

procedure entry write(c: char); 

begin outstream. write( c) end; 

procedure entry open(f: file; id: identifier; var found: boolean); 

begin files[f].open(id, found) end; 

procedure entry close(f: file); 

begin files[f].close end; 

procedure entry get(f: file; p: integer; var block: page); 

begin files[f].read(p, block) end; 

procedure entry put(f: file; p: integer; var block: page); 
begin files[f].write(p, block) end; 

function entry length(f: file): integer; 

begin length := files[f].length end; 

procedure entry mark(var top: integer); 

begin top : = attribute(heaptop) end; 

procedure entry release(top: integer); 

begin setheap( top) end; 

procedure entry identify(header: line); 

begin opstream.reset(header) end; 

procedure entry accept(var c: char); 
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begin opstream.read( c) end; 

procedure entry display(c: char); 
begin opstream. write( c) end; 

procedure entry readpage(var block: page; var eof: boolean); 
begin inbuffer.read(block, eof) end; 

procedure entry writepage(block: page; eof: boolean); 

begin outbuffer.write(block, eof) end; 

procedure entry readline(var text: line); 
begin end; 

procedure entry writeline(text: line); 
begin end; 

procedure entry readarg(s: argseq; var arg: argtype); 

begin 
if s = inp then inresponse.read( arg) 
else outresponse.read(arg); 

end; 

procedure entry writearg(s: argseq; arg: argtype); 
begin 

if s = inp then inrequest.write(arg) 
else outrequest.write( arg); 

end; 

procedure entry lookup(id: identifier; 

var attr: fileattr; var found: boolean); 

begin catalog.lookup(id, attr, found) end; 

proced ure entry iotransfer( device: iodevice; 
var param: ioparam; var block: page); 

begin 
if device = diskdevice then 

begin 
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diskuse.request; 
io(block, param, device); 
diskuse.release; 

end 
else io(block, param, device); 

end; 

procedure entry iomove(device: iodevice; var param: ioparam); 
begin io(param, param, device) end; 

function entry task: taskkind; 
begin task := jobtask end; 

procedure entry run(id: identifier; var param: arglist; 
var line: integer; var result: resulttype); 

begin call(id, param, line, result) end; 

procedure initialize; 

var i: integer; param: arglist; line: integer; result: resulttype; 

begin 
init operator( typeuse), opstream( operator), 

instream( inbuffer), outstream( out buffer); 
instream.initread; outstream.initwrite; 
for i : = 1 to maxfile do 

init files[i](typeuse, diskuse, catalog); 
init code(typeuse, diskuse, catalog); 
with param[2] do 

begin tag := idtype; arg := 'console ' end; 
call( 'do " param, line, result); 
operator.write('jobprocess: (:10:)', 'terminated (: 10) '); 

end; 

begin initialize end; 
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10 PROCESS 

type ioprocess = 
process 
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(typeuse: typeresource; diskuse: resource; 

catalog: diskcatalog; slowio: linebuffer; 
buffer: pagebuffer; request, response: argbuffer; 
stack: progstack; iotask: taskkind) 

"program data space" +2000 

An io process executes Sequential Pascal programs that produce or con­
sume data for a job process. It also implements the interface between these 
programs and the Solo operating system. 

An io process needs access to the operator, the disk, and the catalog. It 
is connected to a card reader (or a line printer) by a line buffer and to a job 
process by a page buffer and two argument buffers. It uses a program stack 
to handle nested calls of sequential programs. 

It reserves a data space of 2,000 bytes for input/output programs and a 
code space of 4,000 bytes. 

Initially, it executes a program called io 

Implementation: 

The implementation details are similar to a job process. 

type ioprocess = 

process 
(typeuse: typeresource; diskuse: resource; 
catalog: diskcatalog; slowio: linebuffer; 
buffer: pagebuffer; request, response: argbuffer; 
stack: progstack; iotask: taskkind); 

"program data space" +2000 

type file = 1..1; 

var operator: terminal; opstream: terminalstream; 
iostream: charstream; iofile: datafile; 
code: progfile2; 

program driver(var param: arglist; store: progstore2); 
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entry read, write, open, close, get, put, length, 
mark, release, identify, accept, display, readpage, 

writepage, readline, writeline, readarg, writearg, 
lookup, iotransfer, iomove, task, run; 

procedure call(id: identifier; var param: arglist; 

var line: integer; var result: resulttype); 

var state: progstate; lastid: identifier; 

begin 
with code, stack do 

begin 

line := 0; 
open(id, state); 

if (state = ready) & space then 

begin 

push(id); 

driver(param, store); 

pop(line, result); 

end 

else if state = toobig then result := codelimit 

else result := callerror; 

if any then 

begin get(lastid); open(lastid, state) end; 

procedure entry read(var c: char); 
begin iostream.read( c) end; 

procedure entry write(c: char); 

begin iostream. write( c) end; 

procedure entry open(f: file; id: identifier; var found: boolean); 

begin iofile.open(id, found) end; 

procedure entry close(f: file); 

begin iofile.close end; 
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procedure entry get(f: file; p: integer; var block: page); 
begin iofile.read(p, block) end; 

procedure entry put(f: file; p: integer; var block: page); 

begin iofile.write(p, block) end; 

function entry length(f: file): integer; 
begin length := iofile.length end; 

procedure entry mark(var top: integer); 

begin top := attribute(heaptop) end; 

procedure entry release(top: integer); 
begin setheap(top) end; 

procedure entry identify(header: line); 

begin opstream. reset (header ) end; 

procedure entry accept(var c: char); 
begin opstream.read( c) end; 

procedure entry display( c: char); 
begin opstream. write( c) end; 

procedure entry readpage(var block: page; var eof: baalean); 
begin buffer.read(block, eof) end; 

procedure entry writepage(block: page; eof: baalean); 

begin buffer.write(block, eof) end; 

procedure entry readline(var text: line); 

begin slowio.read(text) end; 

procedure entry writeline(text: line); 
begin slowio.write(text) end; 

procedure entry readarg(s: argseq; var arg: argtype); 

begin request.read(arg) end; 
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procedure entry writearg(s: argseq; arg: argtype); 
begin response. write( arg) end; 

procedure entry lookup(id: identifier; 

var attr: fileattr; var found: boolean); 

begin catalog.lookup(id, attr, found) end; 

procedure entry iotransfer( device: iodevice; 

var param: ioparam; var block: page); 

begin 

if device = diskdevice then 
begin 

diskuse.request; 

io(block, param, device); 

diskuse.release; 

end 
else io(block, param, device); 

end; 

procedure entry iomove(device: iodevice; var param: ioparam); 

begin io(param, param, device) end; 

function entry task: taskkind; 
begin task := iotask end; 

procedure entry run(id: identifier; var param: arglist; 
var line: integer; var result: resulttype); 

begin call(id, param, line, result) end; 

procedure initialize; 

var param: arglist; line: integer; result: resulttype; 

begin 

init operator( typeuse), opstream( operator), 

iostream(buffer), iofile( typeuse, diskuse, catalog), 

code( typeuse, diskuse, catalog); 

if iotask = inputtask then iostream.initwrite 

else iostream.initread; 
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call( 'io " param, line, result); 
operator.write('ioprocess:( :10:)', 'terminated (: 10) '); 

end; 

begin initialize end; 

CARD PROCESS 

type cardprocess = 

process(typeuse: typeresource; buffer: linebuffer) 

A eard proeess transmits eards from a eard reader through a li ne buffer to 
an input proeess. The eard process ean access the operator to report device 
failure and a line buffer to transmit data. It is assumed that the eard reader 
is eontrolled by a single eard proeess. As long as the eard reader is turned 
off or is empty the eard proeess waits. It begins to read eards as so on as 
they are available in the reader. After a transmission error the eard proeess 
writes a message to the operator and eontinues the input of eards. 

Implementation: 

The standard proeedure wait delays the eard proeess one seeond (Brineh 
Hansen 1975b). This reduees the processor time spent waiting for operator 
intervention. 

type cardprocess = 
process( typeuse: typeresource; buffer: linebuffer); 

var operator: terminal; param: ioparam; 

text: line; ok: boolean; 

begin 

init operator(typeuse); 

param.operation := input; 

cycle 

repeat 

io(text, param, carddevice); 

case param.status of 

complete: 

ok := true; 

intervention: 
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begin ok := false; wait end; 
transmission, failure: 

begin 
operator.write('cards:( :10:)', 'error( :10:) '); 
ok := false; 

end 
end 

untilok; 

buffer. write( text); 
end; 

end; 

PRINTER PROCESS 

type printerprocess = 

process(typeuse: typeresource; buffer: linebuffer) 

A printer process transmits lines from an output process to a line printer. 
The printer process can access the operator to report device failure and a 
li ne buffer to receive data. It is assumed that the line printer is controlled 
only by a single printer process. After a printer failure the printer process 
writes a message to the operator and repeats the output of the current li ne 
until it is successful. 

Implementation: 

type printerprocess = 
process(typeuse: typeresource; buffer: linebuffer); 

var operator: terminal; param: ioparam; text: line; 
begin 

init operator( typeuse); 

param.operation := output; 

cycle 

buffer .read( text); 
io(text, param, printdevice); 

if param.status <> complete then 
begin 

operator.write('printer: (:10:)', 'inspect( :10:) '); 
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end; 
end; 

repeat 
wait; 
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io( text, param, printdeviee); 
until param.status = eomplete; 

end; 

LOADER PROCESS 

type loaderprocess = 

process( diskuse: resource) 

A loader process preempts the operating system and reinitializes it when 
the operator pushes the bell key (contral g) on the console. A loader process 
needs access to the disk to be able to re load the system. 

Implementation: 

A control operation on the typewriter delays the loader process until the 
operator pushes the bell key (Brinch Hansen 1975b). 

The operating system is stored on eonsecutive disk pages starting at 
the Solo address. It is loaded by me ans of a control operation on the disk 
as defined in Brinch Hansen (1975b). Consecutive disk pages are used to 
make the system kernel of Concurrent Pascal unaware of the structure of a 
particular filing system (such as the one used by Solo). The disk contains a 
sequential program start that can copy the Solo system from a concurrent 
code file into the consecutive disk segment defined above. 

type loaderproeess = 
process( diskuse: resomee); 

const soloaddr = 24; 
var param: ioparam; 

procedure initialize(pageno: univ ioarg); 
begin 

with param do 
begin 

operation : = control; 
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arg := pageno; 

end; 

begin 
initialize( soloaddr); 
"await bel signal" 

io(param, param, typedevice); 
"reload solo system" 

diskuse.request; 

io(param, param, diskdevice); 

diskuse. release; 

end; 

INITIAL PROCESS 

The initial process initializes all other processes and monitors and defines 
their access rights to one another. After initialization the operating system 
consists of a fixed set qf components: a card process, an input process, 
a job process, an output process, a printer process, and a loader process. 
They have access to an operator, a disk, and a catalog of files. Process 
communication takes place by means of two page buffers, two line buffers 
and four argument buffers (see also Fig. 1). 

Implementation: 

When a process, such as the initial process, terminates its execution, its 
variables continue to exist (because they may be used by other processes ). 

var 
typeuse: typeresource; 

diskuse: resource; catalog: diskcatalog; 

inbuffer, outbuffer: pagebuffer; 

cardbuffer, printerbuffer: linebuffer; 

inrequest, inresponse, outrequest, outresponse: argbuffer; 

instack, outstack, jobstack: progstack; 

reader: cardprocess; writer: printerprocess; 

producer, consumer: ioprocess; master: jobprocess; 

watchdog: loaderprocess; 

begin 
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init 

end; 

typeuse, diskuse, 
catalog( typeuse, diskuse, cataddr), 
inbuffer, outbuffer, 
cardbuffer, printerbuffer, 
inrequest, inresponse, outrequest, outresponse, 
instack, outstack, jobstack, 
reader( typeuse, cardbuffer), 
writer(typeuse, printerbuffer), 
producer(typeuse, diskuse, catalog, cardbuffer, 

inbuffer, inrequest, inresponse, instack, inputtask), 
consumer(typeuse, diskuse, catalog, printerbuffer), 

outbuffer, outrequest, outresponse, outstack, outputtask), 
master(typeuse, diskuse, catalog, inbuffer, outbuffer, 

inrequest, inresponse, outrequest, outresponse, 
jobstack), 

watchdog( diskuse); 

CONCLUSION 

The Solo system consists of 22 line printer pages of Concurrent Pascal text 
divided into 23 component types (10 classes, 7 monitors, and 6 processes). A 
typical component is less than one page long and can he studied in isolation 
as an (almost ) independent piece of program. All program components called 
hy a given component are explicitly declared within that component (either 
as permanent variahles or a parameters to it). To understand a component 
it is only necessary to know what other components called hy it do, hut how 
they do it is irrelevant. 

The entire system can he studied component hy component as one would 
read a hook. In that sense, Concurrent Pascal supports abstraction and 
hierarchical structuring of concurrent programs very nicely. 

It took 4 compilations to remove the formal programming errors from 
the Solo system. It was then tested systematically from the hottom up hy 
adding one component type at a time and trying it hy means of short test 
processes. The whole program was tested in 27 runs (or ahout 1 run per 
component type). This revealed 7 errors in the test processes and 2 trivial 
ones in the system itself. Later, ahout one third of it was rewritten to speed 
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up program loading. This took about one week. It was then compiled and 
put into operation in one day and has worked ever since. 

I can only suggest two plausible explanations for this unusual testing 
experience. It seems to be vital that the compiler prevents new components 
from destroying old ones (since old components cannot call new ones, and 
new ones can only call old on es through routines that have al ready been 
tested). This strict checking of hierarchical access rights makes it possible 
for a large system to evolve gradually through a sequence of intermediate, 
stable subsystems. 

I am also convinced now that the use of abstract data types which hide 
implementation details within a fixed set of routines encourages a clarity of 
design that makes programs practically correct before they are even tested. 
The slight inconvenience of strict type checking is of minor importance com­
pared to the advantages of instant program reliability. 

Although Solo is a small concurrent program of only 1,300 lines it does 
implement a virtual machine that is very convenient to use for program de­
velopment (Brinch Hansen 1976a). The availability of cheap microprocessors 
will put increasing pressure on software designers to develop special-purpose 
operating systems at very low cost. Concurrent Pascal is one example of a 
programming tool that may make this possible. 
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DESIGN PRINCIPLES 
PER BRINCH HANSEN 

(1977) 

This is the opening chapter of the author's book on concurrent programming. 

The essay describes the fundamental principles of programming which guided 

the design and implementation of the programming language Concurrent Pas­

cal and the model operating systems written in that language. 

This book describes a method for writing concurrent programs of high qual­
ity. Since there is no common agreement among programmers about the 
qualities a good program should have, I will begin by describing my own 
requirements. 

Program Quality 

A good program must be simple, reliable, and adaptable. Without simplicity 
one cannot expect to understand the purpose and details of a large program. 
Without reliability one cannot seriously depend on it. And without adapt­
ability to changing requirements a program eventually becomes a fossil. 

Fortunately, these essential requirements go hand in hand. Simplicity 
gives one the confidence to believe that a program works and makes it clear 
how it can be changed. Simplicity, reliability, and adaptability make pro­
grams manageable. 

In addition, it is desirable to make programs that can work efficiently 
on several different computers for a variety of similar applications. But 
efficiency, portability, and generality should never be sought at the expense 

P. Brinch Hansen, The Architecture 0/ Concurrent Programs, Chapter 1 Design Principles, 
Prentice Hall, Englewood Cliffs, NJ, (July 1977), 3-14. Copyright © 1977, Prentice Hall. 
Reprinted by permission. 
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of simplicity, reliability, and adaptability, for only the latter qualities make 
it possible to understand what programs do, depend on them, and extend 
their capabilities. 

The poor quality of much existing software is, to a large extent, the 
result of turning these priorities upside down. Some programmers justify 
extremely complex and incomprehensible programs by their high efficiency. 
Others claim that the poor reliability and efficiency of their huge programs 
are outweighed by their broad scope of application. 

Personally I find the efficiency of a tool that nobody fully understands 
irrelevant. And I find it difficult to appreciate a general-purpose tool which 
is so slow that it cannot do anything well. But these are matters of taste 
and style and are likely to remain so. 

Whenever program qualities appear to be in confiict with one another I 
shall consistently settle the issue by giving first priority to manageability, sec­
ond priority to efficiency, and third priority to generality. This boils down 
to the simple rule of limiting our computer applications to those which pro­
grammers fully understand and which machines can handle weil. Although 
this is too narrow a view for experimental computer usage it is sound advice 
for professional programming. 

Let us now look more closely at these program qualities to see how they 
can be achieved. 

Simplicity 

We will be writing concurrent programs which are so large that one cannot 
understand them all at once. So we must reason about them in sm aller 
pieces. What properties should these pie ces have? Well, they should be so 
small that any one of them is trivial to understand in itself. It would be 
ideal if they were no more than one page of text each so that they can be 
comprehended at a glance. 

Such a program could be studied page by page as one reads a book. But 
in the end, when we have understood wh at all the pieces do, we must still 
be able to see what their combined effect as a whole iso If it is a program of 
many pages we can only do this by ignoring most of our detailed knowledge 
about the pieces and relying on a much simpler description of what they do 
and how they work together. 

So our program pieces must allow us to make a clear separation of their 
detailed behavior and that small part of it which is of interest when we 
consider combinations of such pieces. In other words, we must distinguish 
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between the inner and outer behavior of a program piece. 
Program pieces will be built to perform well-defined, simple functions. 

We will then combine program pieces into larger configurations to carry out 
more complicated functions. This design method is effective because it splits 
a complicated task into simpler ones: First you convince yourself that the 
pie ces work individually, and then you think about how they work together. 
During the second part of the argument it is essential to be able to forget how 
a piece works in detail-otherwise, the problem becomes too complicated. 
But in doing so one makes the fundamental assumption that the piece always 
will do the same when it carries out its function. Otherwise, you could not 
afford to ignore the detailed behavior of that piece in your reasoning about 
the whole system. 

So reproducible behavior is a vital property of program pieces that we wish 
to build and study in small steps. We must clearly keep this in mind when we 
select the kind of program pieces that large concurrent programs will be made 
of. The ability to repeat program behavior is taken for granted when we write 
sequential programs. Here the sequence of events is completely defined by 
the program and its input data. But in a concurrent program simultaneous 
events take place at rates not fully controlled by the programmer. They 
depend on the presence of other jobs in the machine and the scheduling 
policy used to execute them. This means that a conscious effort must be 
made to design concurrent programs with reproducible behavior. 

The idea of reasoning first about what a piece does and then studying 
how it does it in detail is most effective if we can repeat this process byex­
plaining each piece in terms of simpler pieces which themselves are built from 
still simpler pieces. So we shall confine ourselves to hierarchical structures 
composed of layers of program pieces. 

It will certainly simplify our understanding of hierarchical structures if 
each part only depends on a small number of other parts. We will therefore 
try to build structures that have minimal interfaces between their parts. 

This is extremely difficult to do in machine language since the slightest 
programming mistake can make an instruction destroy any instruction or 
variable. Here the whole store can be the interface between any two instruc­
tions. This was made only too clear in the past by the practice of printing 
the contents of the entire store just to locate a single programming error. 

Programs written in abstract languages (such as Fortran, Algol, and Pas­
cal) are unable to modify themselves. But they can still have broad interfaces 
in the form of global variables that can be changed by every statement (by 
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intention or mistake). 
We will use a programming language called Concurrent Pascal, which 

makes it possible to divide the global variables into smaller parts. Each of 
these is accessible to a small number of statements only. 

The main contribution of a good programming language to simplicity 
is to provide an abstract readable notation that makes the parts and struc­
ture of a program obvious to a reader. An abstract programming language 
suppresses machine detail (such as addresses, registers, bit patterns, inter­
rupts, and sometimes even the number of processors available). Instead the 
language relies on abstract concepts (such as variables, data types, synchro­
nizing operations, and concurrent processes ). As a result, program texts 
written in abstract languages are often an order of magnitude shorter than 
those written in machine language. This textual reduction simplifies program 
engineering considerably. 

The fastest way to discover whether or not you have invented a simple 
pro gram structure is to try to describe it in completely readable terms­
adopting the same standards of clarity that are required of a survey paper 
published by a journal. If you take pride in your description you have prob­
ably invented a good program structure. Eut if you discover that there is no 
simple way of describing what you intend to do, then you should probably 
look for some other way of doing it. 

Once you appreciate the value of description as an early warning signal 
of unnecessary complexity it becomes self-evident that program structures 
should be described (without detail) beiore they are built and should be 
described by the designer (and not by anybody else). Programming is the 
art of writing essays in crystal clear prose and making them executable. 

Reliability 

Even the most readable language notation cannot prevent programmers from 
making mistakes. In looking for these in large programs we need all the help 
we can get. A whole range of techniques is available 

correctness proofs 
proofreading 
compilation checks 
execution checks 
systematic testing 

With the exception of correctness proofs, all these techniques played a vital 
role in making the concurrent programs described in this book work. 
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Formal proofs are still at an experimental stage, particularly for concur­
rent programs. Since my aim is to describe techniques that are immediately 
useful in professional software development, I have omitted proofs here. 

Among the useful verification techniques, I feel that those that reveal 
errors at the earliest possible time during the program development should 
be emphasized to achieve reliability as so on as possible. 

One of the primary goals of Concurrent Pascal is to push the role of com­
pilation checks to the limit and reduce the use of execution checks as much 
as possible. This is not done just to make compiled programs more efficient 
by reducing the overhead of execution checks. In program engineering, com­
pilation and execution checks play the same roles as preventive maintenance 
and flight recorders do in aviation. The latter only tell you why a system 
crashed; the former prevents it. This distinction seems essential to me in the 
design of real-time systems that will control vital functions in society. Such 
systems must be highly reliable before they are put into operation. 

Extensive compilation checks are possible only if the language notation 
is redundant. The programmer must be able to specify important proper­
ties in at least two different ways so that a compiler can look for possible 
inconsistencies. An example is the use of declarations to introduce variables 
and their types before they are used in statements. The compiler could eas­
ily derive this information from the statements-provided these statements 
were always correct. 

We shall also follow the crucial principle of language design suggested 
by Hoare: The behavior of a program written in an abstract language should 
always be explainable in terms of the concepts of that language and should 
never require insight into the details of compilers and computers. Otherwise, 
an abstract notation has no significant value in reducing complexity. 

This principle immediately rules out the use of machine-oriented features 
in programming languages. So I shall assume that all programming will take 
place in abstract programming languages. 

Dijkstra has remarked that testing can be used only to show the presence 
of errors but never their absence. However true that may be, it seems very 
worthwhile to me to show the presence of errors and remove them one at a 
time. In my experience, the combination of careful proofreading, extensive 
compilation checks, and systematic testing is a very effective way to make a 
program so dependable that it can work for months without problems. And 
that is about as reliable as most other technology we depend on. I do not 
know of better methods for verifying large programs at the moment. 
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I view programming as the art of building program pyramids by adding 
one brick at a time to the structure and making sure that it does not collapse 
in the process. The pyramid must remain stable while it is being built. I will 
regard a (possibly incomplete) program as being stable as long as it behaves 
in a predictable manner. 

Why is program testing so often difficult? Mainly, I think, because the 
addition of a new program piece can spread a burst of errors throughout the 
rest of a program and make previously tested pieces behave differently. This 
clearly violates the sound principle of being able to assume that when you 
have built and tested apart of a large program it will continue to behave 
correctly under all circumstances. 

So we will make the strong requirement that new program pieces added on 
top of old ones must not be able to make the latter fail. Since this property 
must be verified before program testing takes place, it must be done by a 
compiler. We must therefore use a language notation that makes it clear 
what program pieces can do to one another. This strong confinement of 
program errors to the part in which they occur will make it much easier to 
determine from the behavior of a large program where its errors are. 

Adaptability 

A large program is so expensive to develop that it must be used for several 
years to make the effort worthwhile. As time passes the users' needs change, 
and it becomes necessary to modify the program somewhat to satisfy them. 
Quite often these modifications are done by people who did not develop 
the program in the first place. Their main difficulty is to find out how the 
program works and whether it will still work after being changed. 

A small group of people can often succeed in developing the first version 
of a program in a low-level language with little or no documentation to 
support them. They do it by talking to one another daily and by sharing a 
mental picture of a simple structure. 

But later, when the same program must be extended by other program­
mers who are not in frequent contact with the original designers, it becomes 
painfuIly clear that the "simple" structure is not described anywhere and 
certainly is not revealed by the primitive language notation used. It is impor­
tant to realize that for program maintenance a simple and well-documented 
structure is even more important than it is during program development. I 
will not talk about the situation in which a program that is neither simple 
nor weIl documented must be changed. 
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There is an interesting relationship between programming errors and 
changing user requirements. Both of them are sources of instability in the 
program construction process that make it difficult to reach astate in which 
you have complete confidence in what a program does. They are caused by 
our inability to fully comprehend at once what a large program is supposed 
to do in detail. 

The relative frequencies of program errors and changing requirements 
are of crucial importance. If programming intro duces numerous errors that 
are difficult to locate, many of them may still be in the program when the 
user requests changes of its function. And when an engineer constantly finds 
himself changing a system that he never succeeded in making work correctly 
in the first place, he will eventually end up with a very unstable product. 

On the other hand, if pro gram errors can be located and corrected at a 
much faster rate than the system develops, then the addition of a new piece 
(or a change) to the program will soon lead to a stable situation in which the 
current version of the program works reliably and predictably. The engineer 
can then, with much greater confidence, adapt his product to slowly changing 
needs. This is a strong incentive to make pro gram verification and testing 
fast. 

A hierarchical structure consists of program pieces that can be studied 
one at a time. This makes it easier to read the program and get an initial 
understanding of what it does and how it does it. Once you have that insight, 
the consequences of changing a hierarchical program become dear. When 
you change apart of a program pyramid you must be prepared to inspect 
and perhaps change the program parts that are on top of it (for they are the 
only ones that can possibly depend on the one you changed). 

Port ability 

The ability to use the same program on a variety of computers is desirable 
for economic reasons: Many users have different computers; sometimes they 
replace them with new ones; and quite often they have a common interest 
in sharing programs developed on different machines. 

Portability is only practical if pro grams are written in abstract languages 
that hide the differences between computers as much as possible. Otherwise, 
it will require extensive rewriting and testing to move programs from one 
machine to another. Programs written in the same language can be made 
portable in several ways: 
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1. by having different compilers for different machines. This is only prac­
tical for the most widespread languages. 

2. by having a single compiler that can be modified to generate code for 
different machines. This requires a clear separation within the compiler 
of those parts that check programs and those that generate code. 

3. by having a single computer that can be simulated efficiently on differ­
ent machines. 

The Concurrent Pascal compiler generates code for a simple machine 
tailored to the language. This machine is simulated by an assembly language 
program of 4 K words on the PDP 11/45 computer. To move the language 
to another computer one rewrites this interpreter. This approach sacrifices 
so me efficiency to make portability possible. The loss of efficiency can be 
eliminated on a microprogrammable machine. 

Efficiency 

Efficient programs save time for people waiting for results and reduce the 
cost of computation. The programs described here owe their efficiency to 

special-purpose algorithms 
statie store alloeation 
minimal run-time eheeking 

Initially the loading of a large program (such as a compiler) from disk 
took about 16 sec on the PDP 11/45 computer. This was later reduced to 5 
sec by a disk allocation algorithm that depends on the special characteristics 
of program files (as opposed to data files). A scheduling algorithm that tries 
to reduce disk head movement in general would have been useless here. The 
reasons for this will be made clear later. 

Dynamic store algorithms that move programs and data segments around 
during execution can be a serious source of inefficiency that is not under the 
programmer's control. The implementation of Concurrent Pascal does not 
require garbage collection or demand paging of storage. It Uses static allo­
cation of store among a fixed number of processes. The store requirements 
are determined by the compiler. 

When programs are written in assembly language it is impossible to pre­
dict what they will do. Most computers depend on hardware mechanisms to 
prevent such programs from destroying one another or the operating system. 
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In Concurrent Pascal most of this protection is guaranteed by the compiler 
and is not supported by hardware mechanisms during execution. This dras­
tic reduction of run-time checking is only possible because all programs are 
written in an abstract language. 

Generality 

To achieve simplicity and reliability we will depend exclusively on a machine­
independent language that makes programs readable and extensive compila­
tion checks possible. To achieve efficiency we will use the simplest possible 
store allocation. 

These decisions will no doubt reduce the usefulness of Concurrent Pascal 
for some applications. But I see no way of avoiding that. To impose structure 
upon yourself is to impose restrictions on your freedom of programming. You 
can no longer use the machine in any way you want (because the language 
makes it impossible to talk directly about some machine features). You can 
no longer delay certain pro gram decisions until execution time (because the 
compiler checks and freezes things much earlier). But the freedom you lose 
is often illusory anyhow, since it can complicate programming to the point 
where you are unable to cope with it. 

This book describes a range of small operating systems. Each of them 
provides a special service in the most efficient and simple manner. They show 
that Concurrent Pascal is a useful programming language for minicomputer 
operating systems and dedicated real-time applications. I expect that the 
language will be useful (but not sufficient) for writing large, general-purpose 
operating systems. But that still remains to be seen. I have tried to make a 
programming tool that is very convenient for many applications rather than 
one which is tolerable for all purposes. 

Conclusion 

I have discussed the programming goals of 

simplicity 
reliability 
adaptability 
efficiency 
port ability 

and have suggested that they can be achieved by careful design of program 
structure, language notation, compiler, and code interpreter. The properties 
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that we must look for are the following: 

structure: 

notation: 

compiler: 

hierarchical structure 
small parts 
minimal interfaces 
reproducible behavior 
readable documentation 

abstract and readable 
structured and redundant 

reliable and fast 
extensive checking 
portable code 

interpreter: reliable and fast 
minimal checking 
static store allocation 
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This is the philosophy we will follow in the design of concurrent programs. 

Literature 

For me the most enjoyable thing about computer programming is the insight 
it gives into problem solving and design. The search for simplicity and 
structure is common to all intellectual disciplines. 

Here are a historian and a biologist talking about the importance of 
recognizing structure: 

"lt is a matter of some importance to link teaching and research, even 
very detailed research, to an acceptable architectonic vision of the whole. 
Without such connections, detail becomes mere antiquarianism. Yet while 
history without detail is inconceivable, without an organizing vision it quickly 
becomes incomprehensible ... What cannot be understood becomes meaning­
less, and reasonable men quite properly refuse to pay attention to meaningless 
matters. " 

William H. McNeill (1974) 

"There have been a number of physicists who suggested that biological 
phenomena are related to the finest aspects of the constitution of matter, 
in a manner of speaking below the chemical level. But the evidence, which 
is almost too abundant, indicates that biological phenomena opemte on the 
'systems' level, that is, above chemistry." 
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Walter M. Elsasser (1975) 

A linguist, a psychologist, and a logician have this to say ab out writing 
and notation: 

"Omit needless words. Vigorous writing is concise. A sentence should 
eontain no unneeessary words, a paragraph no unnecessary sentenees, for the 
same reason that a drawing should have no unnecessary lines and a machine 
no unneeessary parts. This requires not that the writer make all his sentenees 
short, or that he avoid all detail and treat his subjeet only in outline, but that 
every word tell." 

William Strunk, Jr. (1959) 

"How eomplex or simple a strueture is depends eritieally upon the way 
in whieh we deseribe it. Most of the eomplex struetures found in the world 
are enormously redundant, and we ean use this redundancy to simplify their 
description. But to use it, to aehieve the simplifieation, we must find the 
right representation. " 

Herbert A. Simon (1969) 

"There is something uneanny about the power of a happily chosen ideo­
graphie language; for it often allows one to express relations which have no 
names in natural language and therefore have never been noticed by anyone. 
Symbolism, then, beeomes an organ of discovery rather than mere notation. " 

Susanne K. Langer (1967) 

An engineer and an architect discuss the infiuence of human errors and 
cultural changes on the design process: 

"First, one must perform perfectly. The computer resembles the magic 
of legend in this respect, too. If one character, one pause, of the incantation 
is not strictly in proper form, the magic doesn't work. Human beings are 
not accustomed to being perfect, and few areas of human activity demand it. 
Adjusting to the requirement for perfection is, 1 think, the most difficult part 
of leaming to program. " 

Frederick P. Brooks, Jr. (1975) 

"Misfit provides an incentive to change ... However, for the fit to occur in 
practice, one vital condition must be satisfied. It must have time to happen. 
The proeess must be able to achieve its equilibrium before the next culture 
change upsets it again. It must actually have time to reach its equilibrium 
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every time it is disturbed~or, if we see the process as continous rather than 
intermittent, the adjustment of forms must proceed more quickly than the 
drift of the culture context." 

Christopher Alexander (1964) 

Finally, he re are a mathematician and a physicist writing about the 
beauty and joy of creative work: 

"The mathematician's patterns, like the painter 's or the poet 's, must be 
beautiful; the ideas, like the colours or the words, must fit together in a 
harmonious way. Beauty is the first test: there is no permanent place in the 
world for ugly mathematics. " 

G.H. Hardy (1967) 

"The most powerful drive in the ascent of man is his pleasure in his own 
skilt. He loves to do what he does welt and, having done it welt, he loves 
to do it better. You see it in his science. You see it in the magnificence 
with which he carves and builds, the loving care, the gaiety, the effrontery. 
The monuments are supposed to commemorate kings and religions, heroes, 
dogmas, but in the end the man they commemorate is the builder." 

Jacob Bronowski (1973) 
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Author's comment (added 1982): In retrospect this text is not without histor­

ical interest: it records the highlights of a discussion mentioned [as "Verbal 

communication" (Dijkstra 1915») in C. A. R. Hoare's "Communicating se­

quential processes" , Comm. ACM 21, 8 (Aug. 1918), 666-611. The text was 

evidently written in astate of some excitement; in retrospect we may con­

clude that this excitement was not entirely unjustified. Seeing Hoare keenly 

interested in the topic, lIeft that arena. 

Introduction 

This document does not contain language proposals; at a later stage they 
may be inspired by it. It has no other purpose than to record discussions 
and programming experiments. It is exciting because it seems to open the 
possibility of writing programs that could be implemented 

(a) either by normal sequential techniques 
(b) or by elephants built from mosquitoes 
(c) or by a data-driven machine. 

That programs intended for the se co nd or third implementation could be 
"inefficient" when regarded as sequential programs is he re irrelevant. The 
important result would be that the same mathematical technique for the in­
tellectual mastery of sequential programs can be taken over-hopefully lock, 
stock and barrel-for the intellectual mastery of those, as yet less familiar, 
designs. Finally, and this seems the most important promise, it introduces 
the possibility of concurrent execution in a non-operational manner. 

E. W. Dijkstra, A synthesis emerging? In E. W. Dijkstra, Selected Writings on Computing: 
A Personal Perspective, (1982), 147-160. Copyright © 1982, Springer-Verlag New York. 
Reprinted by permission. 
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From the past, terms as "sequential programming" and "parallel pro­
gramming" are still with us, and we should try to get rid of them, for they 
are a great souree of eonfusion. They date from the period that it was the 
purpose of our programs to instruet our maehines: now it is the purpose of 
the maehines to exeeute our programs. Whether the maehine does so sequen­
tially, one thing at a time, or with a eonsiderable amount of eoneurreney, is 
a matter of implementation and should not be regarded as a property of the 
programming language. In the years behind us we have earried out this pro­
gram of non-operational definition of semantics for a simple programming 
language that admits (trivially) a sequential implementation; our ultimate 
goal is a programming language that admits (highly?) eoneurrent imple­
mentations equally trivially. The experiments deseribed in this report are a 
first step towards that goal. 

27th and 31st July, 1975 

It all started on Sunday 27th of July 1975, when Tony Hoare explained to 
me in the garden of Hotel Sepp in Marktoberdorf (Western Germany) upon 
my request the dass-eoneept of SIMULA (induding the so-ealled inner­
eoneept); at least he explained his version of it. I had always stayed away 
from it as far as possible, in order to avoid eontamination with the extremely 
operational point of view as practised by Dahl et al. , and, after some time 
I eould not even (under)stand their meehanistie deseriptions anymore; they 
just made me shudder. In late 1974, Tony sent me a paper that looked 
better, but still made me shudder; I read it onee, but, doubting whether I 
eould endure the exposure, I eonseiously refused to study it at that moment. 
On Saturday 26th I deeided that the moment to be eourageous had eome 
and asked Tony to explain to me what he was eonsidering. He was a tolerant 
master, allowing me to ehange terminology, notation and a way of looking at 
it, things I had to do in order to make it all fit within my frame of mind. To 
begin with, I shall reeord how our diseussions struek root in my mind. I don't 
know whether areal SIMULA fan will still reeognize the dass-eoneept; he 
may get the impression that I am writing about something totally different. 
My deseriptions are definitely still more operational and meehanistic than I 
would like them to be; it is hard to get rid of old habits! 

* * 
* 
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Suppose that we consider a natural number, wh ich can be introduced 
with the initial value zero, and can be decreased and increased by 1, provided 
it remains non-negative. A nondeterministic, never-ending program that 
may generate any history of a natural number is then 

nn begin privar X; X vir int := 0; 
do true -+ x : = x + 1 

end 

~ x > 0 -+ x := x-I 
od 

Suppose we want to write a main program operating on two natural 
numbers y and z, a main program that "commands" these values to be 
increased and decreased as it pleases. In that case we can associate with 
each of the two natural numbers y and z a nondeterministic program of 
the above type, be it that the nondeterminacy of each of these two program 
executions has to be resolved ("settled" , if you prefer) in such a way that the 
two histories are in accordance with the "commands" in the main program. 
For this purpose we consider the following program. (Please remember that 
the chosen notations are not aproposal: they have been introduced only to 
make the discussion possible!) 

nn gen begin privar x; x vir int : = 0; 
do ?inc -+ x := x + 1 

end 

~ x > 0 cand ? dec -+ x : = x-I 
od 

main program: 

begin privar y, z; y vir nn; z vir nn; 

y.inc; ... ; y.dec; ... ; z.inc; ... ; z.dec; ... 
end 

NOTES 

1) We have written two programs. Eventually we shall have three se­
quential processes, two of type nn-one for y and one for z-and one of 
type "main program" . The fact that the first one can be regarded as a kind 
of "template" I have indicated by writing gen (suggesting "generator") in 
front of its begin. 
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2) The main program is the only one to start with; upon the initialization 
y vir nn the second one is started~and remains idling in the repetitive 
construct~, upon the initialization z vir nn, the last one is introduced in 
an identical fashion. It is assumed~e.g because the "main program" is 
written after nn~that the main program is within the lexical scope of the 
identifier nn. 

3) The two identifiers ine and dee~preceded in the text of nn by a 
question mark~are subordinate to the type nn; i.e. if y is declared and 
initialized as a variable of type nn, the operations ine and dee~invoked by 
y. ine and y. dec respectively~are defined on it and can be implemented by 
suitably synchronizing and sequencing the execution of the y-program with 
that of the main program. 

4) When in the main program y.ine is commanded, this is regarded in 
the y-program as the guard fine being true (once). Otherwise guards (or 
guard components) with the question mark are regarded as undefined. Only 
a true guard makes the guarded statement eligible for execution. 

5) The block exit of the main program, to which the variables y and 
z are local, implies that all the "query-guards" are made false: when fine 
and ?dee are false for the y-program, the repetitive construct terminates and 
that local block exit is performed: the x local to the y-program may cease 
to exist. It is sound to view the implicit termination of the blocks associated 
with the variables y and z to be completed before the exit of the block to 
which they are local~the main program~is completed. (End of Notes. ) 

* * 
* 

In the preceding section we have assumed that the main program was 
somehow within the scope of nn. But one can ask what funny kind of 
identifier this is; it is the name of a program text, however, there are as many 
nns as the main program intro duces natural numbers. The decent way to 
overcome this is to introduce a fourth program, a "natural number maker", 
say peano. Suppose that the purpose of peano is not only to provide~i.e. to 
create and to destroy~natural numbers, but also to print at the end of its 
life the maximum natural number value that has ever existed. 
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peano 
begin privar totalmax; totalmax vir int := 0; 

do ?nn -t gen begin privar x, localmax; 

od; 
print(totalmax) 

end 

main program 

x vir int, localmax vir int := 0, 0; 
U /do ?inc -t x := x + 1; 

do localmax < x -t localmax := x od 
~ x > 0 cand ?dec -t x := x-I 

od/ I); 
do totalmax < localmax -t totalmax := localmax od 

end 

begin privar y, Z; Y vir peano.nn; z vir peano.nn; 

y.inc; ... ; y.dec; ... ; z.inc; ... ; z.dec 
end 

The idea was, that the program called peano is read in and executed, until 
it gets stuck at the repetitive construct with the (undefined) query ?nn. With 
the knowledge ofthe identifier peano (and its subordinate peano.nn) the main 
program is read in and executed, and because inc is subordinate to peano.nn, 
it becomes subordinate to y by the initializing declaration y vir peano. nn. 

NOTES 

1) In the above it has not been indicated when peano will terminate and 
print the value of totalmax. 

2) The generator describing the natural number exists of three parts: 

its opening code; 
(j /its local code/ /) 
; its closing code. 

Access to the local variable totalmax of peano is permitted only in the opening 
code-here the facility is not used and in nn the "(j /" could have been 
moved forward-and in the closing code. Different natural numbers may 
inc simultaneously, only their opening and closing codes are assumed to be 
performed in mutual exclusion. 
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3) If the main program is a purely sequential one, immediately after 
initialization y.dec will cause the main program to get stuck. If the main 
program consists of a number of concurrent ones, the one held up in y. dec 

may proceed after another process has performed y. inc. Our natural num­
bers would then provide an implementation for semaphores! 

4) It is now possible to introduce, besides the peano given above, a pean­
odash that, for instance, omits the recording of maximum values. The main 
program could then begin with 

begin privar y, z; y vir peano.nn; z vir peanodash.nn; ... 

The importance of the explicitly named maker in the declarationjinitial­
ization lies in the fact that it allows us to provide alternative implementations 
for variables of the same (abstract) type. (End of Notes.) 

The above re cords the highlights of Sunday's discussion as I remember 
them. Many of the points raised have been recorded for the sake of com­
pleteness: we may pursue them later, but most of them not in this report, 
as the discussion took another turn on the next Thursday. 

* * 
* 

On Thursday, a couple of hours were wasted by considering how also 
in the local code instances of generated processes-natural numbers-could 
be granted mutually exclusive access to the local variables of their maker. 
Although we came up with a few proposals of reasonable consistency, Tony 
became suddenly disgusted, and I had to agree. The whole effort had been 
"to separate", and now we were re-introducing a tool for fine-grained in­
terference! Our major result that day was the co ding of a recursive data 
structure of type sequence. The coding was as follows (omitting the type of 
parameters and of function procedures). It is not exactly the version coded 
on that Thursday afternoon, but the differences are minor. 
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sequencemaker begin 
do ?sequence ----+ gen begin 
U /do ?empty ----+ result := true 

~ ?has(i) ----+ result := false 
~ ?truncate ----+ result : = false 
~ ?back ----+ result := nil 
~ ?remove(i) ----+ skip 
~ ?insert(i) ----+ begin privar first, rest; first vir nint := i; 

rest vir sequencemaker.sequence; 
do first #- nil cand ?empty ----+ result := false 

~ first #- nil cand ?has(i) ----+ if first = i ----+ 

result := true ~ first #- i ----+ result := rest.has(i) fi 
~ first #- nil cand ?truncate ----+ result : = true; 

begin pricon absorbed; 
absorbed vir bool := rest.truncate; 
if absorbed ----+ skip ~ non absorbed ----+ first := nil fi 

end 
~ first #- nil cand ?back ----+ result := first; first := rest. back 
~ first #- nil cand ?remove(i) ----+ if i #- first ----+ rest.remove(i) 

~ i = first ----+ first := rest.back fi 
~ first #- nil cand ?insert(i) ----+ if i #- first ----+ rest.insert(i) 

~ i = first ----+ skip fi 
od end 

od/ /) end 
od end 
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It is a recursive definition oE a sequence oE different integers. Let s be a 
variable oE type sequence. 

s.empty is a boolean function, true if the sequence s is empty, 
otherwise false 

s.has(i) is a boolean function with an argument i of type 
integer; it is true if i occurs in the sequence, 
otherwise false 

s.truncate is an operator upon s, which also returns a boolean 
value; if s is nonempty, the last value is removed and 
the value true is returned; if s is empty, it remains so 
and the value false is returned 

s. back is an operator upon s, which returns a value of type 
nint (i.e. the integers, extended with the value nil); 
if s is nonempty, the first value is returned and 
removed from S; if s is empty, it remains so and the 
value nil is returned 
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It is also instructive to follow how, upon exit from block 

begin privar s; s vir sequencemaker.sequence; ... end 

at a moment that s may contain many elements, the sequence s disappears. 
All query-guards to s are set to false, which forces termination of the in­
ner repetitive construct for s, which results in a block exit from its inner 
block (which first requires deletion ofits rest); upon completion of this block 
exit, the query-guards still being false, termination of the outer repetitive 
construct and block exit from the outer block of s are forced. This is very 
beautiful: the hint to delete itself, given to the head of the sequence, propa­
gates up to its end, reflects there, travels back, folding up the sequence in a 
nice stack-wise fashion, as, of course, it should. In its elegance- or should 
I say: completeness?-it had a great appeal to uso 

* * 
* 

It was at this stage, that I realized that the same program could be 
visualized as a long sequence-long enough, to be precise-of mosquitoes: 

where each mosquito is essentially a copy of the text between U / and / I), 
and each mosquito is the rest for its left-hand neighbour. Execution of the 
declaration rest vir sequencemaker.sequence can be interpreted as a com­
mand to one's right-hand neighbour to initialize its instruction counter to 
the beginning of the program. Each mosquito is ready to accept a next com­
mand from the left as so on as it has nothing more to do, i.e. its control has 
successfully returned to one of the sets of query-guards. Giving a command 
to the right lasts until the command has been accepted when no answer is 
required and until the answer has been returned when an answer is required. 

It is instructive to follow the propagation of activity for the various co m­
mands. 

?empty is immediately reflected. 

?has(i) propagates up the sequence until i has been detected or the se­
quence has been exhausted, and from there the boolean value (true or false, 
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respectively) is reflected and travels to the left until it leaves the sequence 
at the front end. All the time the sequence is busy and cannot accept an­
other command. The time it takes to return the answer true depends on the 
distance of i from the beginning of the sequence; the time it takes to return 
the answer false is the longest one, and depends on the actual length of the 
sequence (not on the number of mosquitoes available). 

?truncate and ?back propagate at practically full speed to the right; at 
each mosquito, there is a reflection one place back to absorb the answer. Note 
that ?truncate (in the inner block) starts with result := true and ?back starts 
with result := first-actions, which can be taken to be completed when the 
mosquito to the left has absorbed the value. This is done in order to allow 
the mosquito to the left to continue as quickly as possible. 

?remove(i) propagates still more simply (until it becomes a ?back). 

?insert(i) propagates also quite simply, until the wave is either absorbed­
because i = first is encountered-or the sequence is extended with one ele­
ment. The fascinating observation is that any sequence of ?remove(i), ?in­
sert(i), ?back, and ?truncate may enter the sequence at the left: they will 
propagate with roughly the same speed along the sequence; if the sequence 
is long, a great number of such commands will travel along the sequence 
to the right. It is guaranteed to be impossible that one command "over­
takes" the other, and we have introduced the possibility of concurrency in 
implementation in an absolutely safe manner. 

NOTE. Originally ?truncate was coded differently. It did not return a 
boolean value, and was in the outer guarded command set 

?truncate ---) skip 

and in the inner guarded command set 

first =I nil cand ?truncate ---) 
if rest.empty ---) first := nil 
~ non rest.empty ---) rest.truncate 
fi 

As soon as we started to consider the implementation by a sequence of 
mosquitoes, however, we quickly changed the code, because the earlier ver­
sion had awkward propagation properties: two steps forward, one step back­
ward. The version returning the boolean was coded when we had not yet 
introduced the type nint; after we had done so, we could also have coded 
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truncate with a parameter of type integer: in the outer guarded command 
set 

?truncate(j) ----+ result := nil 

and in the inner guarded command set 

first =1= nil cand ?truncate(i) ----+ 

result := i; first := rest.truncate(first) 

The last part of this note is rather irrelevant. (End of Note.) 
This was the stage at which we were when we left Marktoberdorf. As 

I wrote in my trip report EWD506 "A surprising discovery, the depth of 
which is-as far as I am concerned-still unfathomed.". 

* * 
* 

What does one do with "discoveries of unfathomed depth"? WeIl, I de­
cided to let it sink in and not to think about it for a while-the fact that 
we had a genuine heatwave when I returned from Marktoberdorf helped to 
take that decision!. The discussion was only taken up again last Tuesday 
afternoon in the company of Martin Rem and the graduate student Poirters, 
when we tried to follow the remark, made in my trip report, that it would 
be ni ce to do away with von Neumann's instruction counter. (This morn­
ing I found a similar suggestion in "Recursive Machines and Computing 
Technology", by V.M. Gluskov, M.B. Ignatyev, V.A. Myasnikov, and V.A. 
Torgashev, IFIP 1974; this morning I received a copy of that article from 
Philip H. Enslow, who had drawn my attention to it.) 

We had, of course, observed that the propagation properties of has(i) are 
very awkward. It can keep a whole sequence of mosquitoes occupied, all of 
them waiting for the boolean value to be returned. As long as this boolean 
value has not been returned to the left-most mosquito, no new command can 
be accepted by the first mosquito, and that is sad. The string of mosquitoes, 
as shown above, is very much different from the elephant structure that we 
have already encountered very often, viz. all mosquitoes in a' ring. 

Nice propagation properties would be displayed by astring of mosquitoes 
that send the result as soon as found to the right, instead of back to the left! 
Before we pursue that idea, however, I must describe how I implemented 
(recursive) function procedures in 1960-a way, which, I believe, is still the 
standard one. 
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Upon call of a function procedure the stack was extended with an "empty 
element" , an as yet undefined anonymous intermediate result. On top of that 
the procedure's local variables would be allocated, and during the activation 
of the procedure body, that location-named result-would be treated as 
one of the local variables of the procedure. A call 

?has(i) ----+ if i = first ----+ result := true 
~ i oF first ----+ result := rest.has(i) 
fi 

could result in 9 times the second alternative and once the first, so that the 
answer is found at a moment of dynamic depth of nesting equal to 10. In the 
implementation technique described, the boolean result is then handed down 
the stack in ten successive steps: the anonymous result at level n + 1 becomes 
at procedure return the anonymous result at level n, which is assigned to 
the anonymous result of level n, etc.: a sequence of alternating assignments 
and procedure returns. Under the assumption that assignment is not an 
expensive operation, this implementation technique can be defended very 
weIl. 

But it is an implementation choice! When implementing 

result := rest.has(i) 

no one forces us to manipulate the value of rest.has(i) as an intermediate 
result that subsequently can be assigned! An alternative interface with the 
function procedure would have been to give it an additional implicit parame­
ter, viz. the destination of the result-e.g. in a sufficiently global terminology, 
such as distance from stack bottom. In that case the implementation of 

result := rest.has(i) 

would consist of a recursive call on has in which the implicit destination 
parameter received would just be handed over to the next activation. When, 
at dynamic depth 10, the boolean value would become known, it would 
instantaneously be placed at its final destination, after which the stack could 
collapse. In the case of a fixed number of mosquitoes, always present, needed 
or not-that is the simplification I am thinking about now-there is not 
much stack collapse, and the configuration that now suggests itself is the 
following 



A SYNTHESIS EMERGING? 409 

m m m m m m 

The mosquitoes still have the same mutual interconnection pattern, but I 
assume that each request for a value that enters the network at the left at 
the quest ion mark is accompanied by "a destination" for the result. The 
reason that I have added the line at the bot tom is the following. A sequence 
is a very simple arrangement, and in that case also the "external result", 
as soon as known, could be handed to the right-hand neighbour for further 
transmission. If, however, we consider the tree that would correspond to a 
variable of the type "binary tree", the result would then finally arrive in one 
of the many leaves. If we associate areal copper wire with each connection 
between two mosquitoes, and we wish the result to appear at a single point, 
then we must introduce some connecting network so that the various paths 
of the results can merge. Hence the additionalline. The points marked m 
are binary merge points. We have arranged them linearly, we could have 
arranged them logarithmically, logically-and perhaps even physically-we 
can think of them as "multi-entry merges" . 

I am not now designing in any detail the appropriate mechanism for 
collecting the extern al result as soon as it has been formed somewhere in the 
network. My point is that there are many techniques possible, which all can 
be viewed as different implementation techniques for the same (recursive) 
program. Their only difference is in "propagation characteristics". The 
reason that I draw attention to the difference in implement at ion technique 
for the sequential machine (without and with implicit destination parameter) 
is the following. In the case of the linear arrangement of mosquitoes, each 
mosquito only being able to send to its right-hand neighbour when its right 
hand neighbour is ready to accept, we have a pipeline that, by the nature 
of its construction, pro duces results in the order in which they have been 
requested. This, in general, seems too severe a restriction, and for that 
purpose each re quest is accompanied by a "destination" that as a kind of 
tag accompanies the corresponding result when finally produced. Obviously, 
the environment driving the network must be such that never two requests 
with the same destination could reside simultaneously in the network. 

* * 
* 
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True to our principle that about everything sensible that can be said 
about computing can be illustrated with Euclid's Algorithm, we looked at 
good old Euclid's Algorithm with our new eyes. We also took a fairly recent 
version that computes the greatest common divisor of three positive num­
bers. It is 

x, y, z := X, Y, Z; 
do x > y ----> x := x - y 
~ y > z ----> y := y - z 
~ z > x ----> z := z - x 
od 

with the obvious invariant relation 

gcd(x, y, z) = gcd(X, Y, Z) and x > 0 and y > 0 and z > 0 

Our next version was semantically equivalent, but written down a little bit 
differently, in an effort to represent that in each repetition we were really 
operating on a tripIe x, y, z. That is, we regarded the above program as an 
abbreviation of 

x, y, z := X, Y, Z; 
do x > y ----> x, y, z : = x - y, y, z 
~ y > z ----> x, y, z := x, y - z, z 
~ z > x ----> x, y, z := x, y, z - x 
od 

We then looked at it and said, why only change one value? This, indeed, is 
not necessary, and we arrived at the following similar, but mathematically 
different, program: 

x, y, z := X, Y, Z; 
do non x = y = z ----> x, y, z := f(x, y), f(y, z), f(z, x) od 

with 

f(u, v): ifu > v ----> result:= u - v 
~ u :::; v ----> result := u 
fi 

(program 3) 

or, if we want to go one step further for the sake of argument, with 

f(u, v): if u > v ----> result := dif(u, v) 
~ u :::; v ----> result := u 
fi 
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and 

dif(u, v): result := u - v 

How do we implement this? We can look at program 3 with our traditional 
sequential eyes, which means that at each repetition the function f is invoked 
three times, each next invocation only taking pI ace when the former one has 
returned its answer. We can also think of three different f-networks, which 
can be activated simultaneously. We can also think of a single f-network 
that is activated three times in succession, but where the comparison of the 
next pair of arguments can coincide in time with forming the difference of 
the preceding pair. To be quite honest, we should rewrite program 3 in the 
form 

x, y, z := X, Y, Z; 
do non x = y = z --) tx, ty, tz := f(x, y), f(y, z), f(z, x); 

x, y, z := tx, ty, tz 
od 

(program 4) 

The reason is simple: we want to make quite clear that always the old values 
of x, y, z are sent as arguments to the f-network, and we want to code our 
cycle without making any assumptions about the information capacity of the 
f-network. The above program works also if we have an f-network without 
pipelining capacity. 

* * 
* 

I was considering a mosquito that would have six local variables, x, y, z, 
tx, ty, and tz; it would first "open" tx, ty, and tz, i.e. make them ready to 
receive the properly tagged results, then send the argument pairs in any order 
to either one or three f-networks, and finally, as a merge node, wait until 
all three values had been received. When I showed this to C. S. Scholten, 
he pointed out to me that the same result could be obtained by two, more 
sequential mosquitoes: one only storing the x, y, z values, and another 
storing the tx, ty, tz values, waiting for the three values to be delivered by 
the f-network. This is right. 

Some remarks, however, are in order. I can now see networks of mos­
quitoes, implementing algorithms that I can also interpret sequentially and 
for which, therefore, all the known mathematical techniques should be ap­
plicable. Each mosquito represents a nondeterministic program that will be 
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activated by its "query-guards" when it is ready to be so addressed and is 
so addressed, and where the act of addressing in the addressing mosquito is 
only completed by the time that the mosquito addressed has honoured the 
request. We should realize, however, that these synchronization rules are 
more for safety than for "scheduling", because dynamically such networks 
may have awkward macroscopic properties when overloaded. Take the long 
string of mosquitoes that, together, form a bounded buffer, each of them al­
ternatingly waiting for a value from the left and then trying to transmit this 
value to the right. If this is to be a transmission line, it has the maximum 
throughput when, with n mosquitoes, it contains n/2 values. Its capacity, 
however, is n. If we allow its contents to grow-because new values are 
pumped in at the left while no values are taken out at the right-it gets 
stuck: taking out values from the sequence filled to the brim empties the 
buffer, but this effect only propagates slowly to the left and the danger of 
awkward macroscopic oscillations seems not excluded. 

The next re mark is that I have now considered elephants built from 
mosquitoes, but the design becomes very similar to that of a program for 
a data-driven machine. The programs I have seen for data-driven machines 
were always pictorial ones-and I don't like pictures with arrows, because 
they tend to become very confusing-and their semantics were always given 
in an operation al fashion. Both characteristics point to the initial stage of 
unavoidable immaturity. I now see a handle for separating the semantics 
from the (multi-dimensional, I am tempted to add) computational histories 
envisaged. In a sense we don't need to envisage them anymore, and the 
whole quest ion of parallelism and concurrency has been pushed a little bit 
more into the domain where it belongs: implementation. This is exciting. 

* * 
* 

A sobering remark is not misplaced either, and that is that we have al­
ready considered highly concurrent engines-e.g. the hyperfast Fourier trans­
form via the perfect shuffie-that seem to fall as yet outside the scope of 
constructs considered here. And so does apparently the on-the-fly garbage 
collection. We can only conclude that there remains enough work to be done! 

PS. For other reasons forced to go to town, I combine that trip with a visit to 
the Eindhoven Xerox branch. The time to reread my manuscript for typing 
errors is lacking and I apologize for their higher density. 
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This paper suggests that input and output are basic primitives of program­

ming and that parallel composition of communicating sequential processes is 

a fundamental program structuring method. When combined with a develop­

ment of Dijkstra's guarded command, these concepts are surprisingly versatile. 

Their use is illustrated by sampIe solutions of a variety of familiar program­

ming exercises. 

1 Introduction 

Among the primitive concepts of computer programming, and of the high­
level languages in which programs are expressed, the action of assignment 
is familiar and weH understood. In fact, any change of the intern al state 
of a machine executing a program can be modeHed as an assignment of a 
new value to some variable part of that machine. However, the operations 
of input and output, which affect the external environment of a machine, 
are not nearly so weH understood. They are often added to a programming 
language only as an afterthought. 

Among the structuring methods for computer programs, three basic con­
structs have received widespread recognition and use: A repetitive con­
struct (e.g. the while loop), an alternative construct (e.g. the conditional 
if. .. then ... else), and normal sequential program composition (often de­
noted by a semicolon). Less agreement has been reached about the de­
sign of other important program structures, and many suggestions have 
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been made: Subroutines (Fortran), procedures (Algol 60 (Naur 1960)), en­
tries (PL/I), coroutines (UNIX (Thompson 1976)), classes (SIMULA 67 
(Dahl et al. 1967)), processes and monitors (Concurrent Pascal (Brinch 
Hansen 1975)), clusters (CLU (Liskov 1974)), forms (ALPHARD (Wulf 
et al. 1976)), actors (Atkinson and Hewitt 1976). 

The traditional stored-program digital computer has been designed pri­
marily for deterministic execution of a single sequential program. Where 
the desire for greater speed has led to the introduction of parallelism, every 
attempt has been made to disguise this fact from the programmer, either 
by hardware itself (as in the multiple function units of CDC 6600) or by 
the software (as in an 1/0 control package, or a multiprogrammed operat­
ing system). However, developments of processor technology suggest that a 
multiprocessor machine, constructed from a number of similar self-contained 
processors (each with its own store), may become more powerful, capacious, 
reliable, and economical than a machine which is disguised as a monopro­
cessor. 

In order to use such a machine effectively on a single task, the component 
processors must be able to communicate and to synchronize with each other. 
Many methods of achieving this have been proposed. A widely adopted 
method of communication is by inspection and updating of a common store 
(as in Algol 68 (van Wijngaarden 1969), PL/I, and many machine codes). 
However, this can create severe problems in the construction of correct pro­
grams and it may lead to expense (e.g. cross bar switches) and unreliability 
(e.g. glitches) in some technologies of hardware implementation. A greater 
variety of methods has been proposed for synchronization: semaphores (Dijk­
stra 1968), events (PL/I), conditional critical regions (Hoare 1972a), moni­
tors and queues (Concurrent Pascal (Brinch Hansen 1975)), and path expres­
sions (Campbell 1974). Most of these are demonstrably adequate for their 
purpose, but there is no widely recognized criterion· for choosing between 
them. 

This paper makes an ambitious attempt to find a single simple solution 
to all these problems. The essential proposals are: 
(1) Dijkstra's guarded commands (1975a) are adopted (with a slight change 
of notation) as sequential control structures, and as the sole means of intro­
ducing and controlling nondeterminism. 
(2) A parallel command, based on Dijkstra's parbegin (1968), specifies con­
current execution of its constituent sequential commands (processes ). All the 
processes start simultaneously, and the parallel command ends only when 
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they are all finished. They may not communicate with each other by updat­
ing global variables. 
(3) Simple forms of input and output command are introduced. They are 
used for communication between concurrent processes. 
(4) Such communieation occurs when one process names another as destina­
tion for output and the second process names the first as source for input. 
In this case, the value to be output is copied from the first process to the 
second. There is no automatie buffering: In general, an input or output 
command is delayed until the other process is ready with the corresponding 
output or input. Such delay is invisible to the delayed process. 
(5) Input commands may appear in guards. A guarded command with an in­
put guard is selected for execution only if and when the source named in the 
input command is ready to execute the corresponding output command. If 
several input guards of a set of alternatives have ready destinations, only one 
is selected and the others have no effect; but the choiee between them is ar­
bitrary. In an efficient implementation, an output command which has been 
ready for a long time should be favoured; but the definition of a language 
cannot specify this since the relative speed of execution of the processes is 
undefined. 
(6) A repetitive command may have input guards. If all the sources named 
by them have terminated, then the repetitive command also terminates. 
(7) A simple pattern-matching feature, similar to that of Reynolds (1965), 
is used to discriminate the structure of an input message, and to access its 
components in aseeure fashion. This feature is used to inhibit input of 
messages that do not match the speeified pattern. 

The programs expressed in the proposed language are intended to be 
implementable both by a eonventional machine with a single main store, 
and by a fixed network of processors eonneeted by input/output ehannels 
(although very different optimizations are appropriate in the different cases). 
It is eonsequently a rather statie language: The text of a program determines 
a fixed upper bound on the number of processes operating eoneurrently; there 
is no recursion and no facility for process-valued variables. In other respeets 
also, the language has been stripped to the barest minimum neeessary for 
explanation of its more novel features. 

The concept of a communicating sequential process is shown in Sec­
tions 3-5 to provide a method of expressing solutions to many simple pro­
gramming exercises which have previously been employed to illustrate the 
use of various proposed programming-language features. This suggests that 
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the process may constitute a synthesis of a number of familar and new pro­
gramming ideas. The reader is invited to skip the examples which do not 
interest hirn. 

However, this paper also ignores many serious problems. The most seri­
ous is that it fails to suggest any proof method to assist in the development 
and verification of correct programs. Secondly, it pays no attention to the 
problems of efficient implementation, which may be particularly serious on a 
traditional sequential computer. It is probable that a solution to these prob­
lems will require (1) imposition of restrietions in the use of the proposed 
features; (2) re-introduction of distinctive notations for the most common 
and useful special cases; (3) development of automatie optimization tech­
niques; and (4) the design of appropriate hardware. 

Thus the concepts and notations introduced in this paper (although de­
scribed in the next section in the form of a programming language fragment) 
should not be regarded as suitable for use as a programming language, either 
for abstract or for concrete programming. They are at best only a partial so­
lution to the problems tackled. Further discussion of these and other points 
will be found in Section 7. 

2 Concepts and notations 

The style of the following description is borrowed from Algol 60 (Naur 1960). 
Types, declarations, and express ions have not been treated; in the exam­
pIes, a Pascal-like notation (Wirth 1971) has usually been adopted. The 
curly braces { } have been introduced into BNF to denote none or more 
repetitions of the enclosed material. (Sentences in parentheses refer to an 
implementation: they are not strictly part of a language definition.) 

<command> ::= <simple command> I <structured command> 

<simple command> ::= <null command> I <assignment command> 

I <input command> I <output command> 
<structured command> ::= <alternative command> 

I <repetitive command> I <parallel command> 
<null command> ::= skip 

<command list> ::= {<declaration>jl <command>j}<command> 

A command specifies the behaviour of a device executing the command. 
It may succeed or fail. Execution of a simple command, if successful, may 
have an effect on the internal state of the executing device (in the case of 
assignment), or on its external environment (in the case of output), or on 
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both (in the case of input). Execution of a structured command involves 
execution of some or all of its constituent commands, and if any of these 
fail, so does the structured command. (In this case, whenever possible, an 
implementation should provide some kind of comprehensible error diagnostic 
message.) 

A null command has no effect and never fails. 
A command list specifies sequential execution of its constituent co m­

mands in the order written. Each declaration introduces a fresh variable 
with a scope which extends from its declaration to the end of the command 
list. 

2.1 Parallel commands 

<parallel command> ::= [<process>{11 <process>}] 
<process> ::= <process label><command list> 
<process label> ::= <empty> I <identifier> :: 

I <identifier> ( <label subscript> { ,<label subscript> }) :: 
<label subscript> ::= <integer constant> I <range> 

<integer constant> ::= <numeral> I <bound variable> 
<bound variable> ::= <identifier> 
<range> ::= <bound variable>:<lower bound> .. <upper bound> 
<lower bound> ::= <integer constant> 
<upper bound> ::= <integer constant> 

Each process of a parallel command must be disjoint from every other 
process of the command, in the sense that it does not mention any variable 
which occurs as a target variable (see Sections 2.2 and 2.3) in any other 
process. 

A process label without subscripts, or one whose label subscripts are 
all integer constants, serves as a name for the command list to which it 
is prefixed; its scope extends over the whole of the parallel command. A 
process whose label subscripts include Olle or more ranges stands for aseries 
of processes, each with the same label and command list, except that each has 
a different combination of values substituted for the bound variables. These 
values range between the lower bound and the upper bound inclusively. For 
example, X (i : 1 .. n) :: CL stands for 

X(1) :: CL1 1IX(2) :: CL2 11·· .IIX(n) :: CLn 

where each CLj is formed from CL by replacing every occurrence of the bound 
variable i by the numeral j. After all such expansions, each process label 
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in a parallel eommand must oeeur only onee and the processes must be weIl 
formed and disjoint. 

A parallel eommand specifies eoneurrent exeeution of its eonstituent pro­
cesses. They all start simultaneously and the parallel command terminates 
sueeessfully only if and when they have all suceessfully terminated. The 
relative speed with which they are exeeuted is arbitrary. 

Examples: 

(1) [cardreader?cardimage[[lineprinter! lineimage] 

Performs the two constituent eommands in parallel, and terminates only 
when both operations are eomplete. The time taken may be as low as the 
longer of the times taken by eaeh constituent proeess, i.e. the sum of its 
computing, waiting, and transfer times. 

(2) [west :: DISASSEMBLE[[X :: SQUASH[[east :: ASSEMBLE] 

The three processes have the names west, X, and east. The eapitalized 
words stand for eommand lists whieh will be defined in later examples. 

(3) [room :: ROOMllfork(i:O .. 4) :: FORKllphilCi:O .. 4) :: PHIL] 

There are eleven proeesses. The behaviour of room is specifed by the 
command list ROOM. The behaviour of the five processes f ork (0), f ork (1) , 

fork(2), fork(3), fork(4), is specifed by the eommand list FORK, within 
whieh the bound variable i indicates the identity of the partieular fork. 
Similar remarks apply to the five proeesses PHIL. 

2.2 Assignment commands 

<assignment command> ::= <target variable> := <expression> 

<expression> ::= <simple expression> I <structured expression> 

<structured expression> ::= <constructor>( <expression list» 

<constructor> ::= <identifier> I <empty> 
<expression list> ::= <empty> I <expression> {, <expression> } 

<target variable> ::= <simple variable> I <structured target> 
<structured target> ::= <constructor>( <target variable list» 

<target variable list> ::= <empty> I <target variable> 
{,<target variable>} 
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An expression denotes a value which is computed by an executing device 
by application of its constituent operators to the specified operands. The 
value of an expression is undefined if any of these operations are undefined. 
The value denoted by a simple expression may be simple or structured. The 
value denoted by a structured expression is structured; its constructor is 
that of the expression, and its components are the list of values denoted by 
the constituent expressions of the expression list. 

An assignment command specifies evaluation of its expression, and as­
signment of the denoted value to the target variable. A simple target variable 
may have assigned to it a simple or a structured value. A structured target 
variable may have assigned to it a structured value, with the same construc­
tor. The effect of such assignment is to assign to each constituent simpler 
variable of the structured target the value of the corresponding component of 
the structured value. Consequently, the value denoted by the target variable, 
if evaluated after a successful assignment, is the same as the value denoted 
by the expression, as evaluated before the assignment. 

An assignment fails if the value of its expression is undefined, or if that 
value does not match the target variable, in the following sense: A simple 
target variable matches any value of its type. A structured target variable 
matches a structured value, provided that: (1) they have the same construc­
tor, (2) the target variable list is the same length as the list of components of 
the value, (3) each target variable of the list matches the corresponding com­
ponent of the value list. A structured value with no components is known 
as a "signal". 

Examples: 

(1) x:= x + 1 

(2) (x, y) := (y, x) 

(3) x:= cons(left, right) 

(4) cons(left, right) := x 

the value of x after the assignment 
is the same as the value of x + 1 
before. 

exchanges the va1ues of x and y. 
constructs a structured va1ue and 

assigns it to x. 
fai1s if x does not have the form 

cons (y, z); but if it does, then 
y is assigned to 1eft, and z is 
assigned to right. 

(5) insert (n) insert(2*x + 1) equiva1ent to n:= 2*x + 1. 
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( 6) c : = P 0 assigns to c a "signal" wi th 
constructor P, and no components. 

(7) PO: = c fails if the value of c is not PO; 
otherwise has no effect. 

(8) insert (n) : = has (n) fails, due to mismatch. 

Note: Successful execution of both (3) and (4) ensures the truth of the 
postcondition x = cons Cleft, right); but (3) does so by changing x and 
(4) does so by changing left and right. Example (4) will fail if there is no 
value of left and right wh ich satisfes the postcondition. 

2.3 Input and output commands 

<input command> ::= <source> ?<target variable> 
<output command> ::= <destination>kexpression> 
<source> ::= <process name> 
<destination> ::= <process name> 
<process name> ::= <identifier> I <identifier>( <subscripts» 
<subscripts> ::= <integer expression> { ,<integer expression>} 

Input and output commands specify communication between two concur­
rently operating sequential processes. Such a process may be implemented in 
hardware as a special-purpose device (e.g. cardreader or line printer), or its 
behaviour may be specified by one of the constituent processes of a parallel 
command. Communication occurs between two processes of a parallel com­
mand whenever (1) an input command in one process specifies as its source 
the process name of the other process; (2) an output command in the other 
process specifies as its destination the process name of the first process; and 
(3) the target variable of the input command matches the value denoted by 
the expression of the output command. On these conditions, the input and 
output commands are said to correspond. Commands which correspond are 
executed simultaneously, and their combined effect is to assign the value of 
the expression of the output command to the target variable of the input 
command. 

An input command fails if its source is terminated. An output command 
fails if its destination is terminated or if its expression is undefined. 

(The requirement of synchronization of input and output commands 
means that an implementation will have to delay whichever of the two com­
mands happens to be ready first. The delay is ended when the corresponding 
command in the other process is also ready, or when the other process termi­
nates. In the latter case the first command fails. It is also possible that the 
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delay will never be ended, for example, if a group of processes are attempting 
communication but none of their input and output commands correspond 
with each other. This form of failure is known as a deadlock.) 

Examples: 

(1) cardreader?cardimage from cardreader, read a card and assign its 
value (an array of characters) to the 
variable cardimage. 

(2) lineprinter! lineimage to lineprinter, send the value of lineimage 
for printing. 

(3) X?(x,y) from process named X, input a pair of 
values and assign them to x and y. 

(4) DrV! (3*a + b, 13) to process DrV, output the two specifed 
values. 

Note: If a process named Drv issues command (3), and a process named X issues 
command (4), these are executed simultaneously, and have the same effect as the 

assignment: (x, y):= (3*a + b, 13) (= x:= 3*a + b; y:= 13). 

(5) console(i)?c 

(6) console (j - 1)! "A" 

(7) X(i)?VO 

(8) sem!PO 

from the i th element of an array of 
consoles, input a value and assign it to c. 

to the (j - 1) th console, output character 
"A". 

from the ith of an array of processes X, 
input a signal V 0; refuse to input any 
other signal. 

to sem output a signal PO. 

2.4 Alternative and repetitive commands 

<repetitive command> ::= * <alternative command> 
<alternative command> ::= [<guarded command> 

{~<guarded command>}] 
<guarded command> ::= <guard>~<command list> 

I «range>{,<range>}) <guard>~<command list> 
<guard> ::= <guard list> I <guard list>;<input command> 

I <input command> 

<guard list> ::= <guard element> {;<guard element>} 
<guard element> ::= <boolean expression> I <declaration> 

A guarded command with one or more ranges stands for aseries of 

guarded commands, each with the same guard and command list, except 
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that each has a different combination of values substituted for the bound 
variables. The values range between the lower bound and upper bound in­
clusive. For example, (i: 1 .. n) G -t CL stands for 

G1 ----+ CL1 0 G2 ----+ CL2 0 ... ~Gn ----+ CLn 0 

where each Gj -t CLj is formed from G -t CL by replacing every occurrence 
of the bound variable i by the numeral j. 

A guarded command is executed only if and when the execution of its 
guard does not fail. First its guard is executed and then its command list. 
A guard is executed by execution of its constituent elements from left to 
right. A Boolean expression is evaluated: If it denotes false, the guard fails, 
but an expression that denotes true has no effect. A declaration introduces 
a fresh variable with a scope that extends from the declaration to the end 
of the guarded command. An input command at the end of a guard is 
executed only if and when a corresponding output command is executed. (An 
implementation may test whether a guard fails simply by trying to execute 
it, and discontinuing execution if and when it fails. This is valid because 
such a discontinued execution has no effect on the state of the executing 
device.) 

An alternative command specifies execution of exact1y one of its con­
stituent guarded commands. Consequently, if all guards fail, the alternative 
command fails. Otherwise an arbitrary one with successfully executable 
guard is selected and executed. (An implementation should take advantage 
of its freedom of selection to ensure efficient execution and good response. 
For example, when input commands appear as guards, the command which 
corresponds to the earliest ready and matching output command should in 
general be preferred; and certainly, no executable and ready output com­
mand should be passed over unreasonably often.) 

A repetitive command specifies as many iterations as possible of its con­
stituent alternative command. Consequently, when all guards fail, the repet­
itive command terminates with no effect. Otherwise, the alternative com­
mand is executed on ce and then the whole repetitive command is executed 
again. (Consider a repetitive command when all its true guard lists end in 
an input guard. Such a command may have to be delayed until either (1) an 
output command corresponding to one of the input guards becomes ready, 
or (2) all the sources named by the input guards have terminated. In case 
(2), the repetitive command terminates. If neither event ever occurs, the 
process fails (in deadlock).) 
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Examples: 

(1) [x:::: y ----) m: = x 0 y :::: x ----) m: = y] 

If x 2: y, assign x to m; if y 2: x assign y to m; if both x > y and y > 
x, either assignment can be executed. 

(2) i:=O;*[i < size; eontent(i) # n ----) i:= i + 1] 

The repetitive command scans the elements content(i), for i = 0, 1, 
... , until either i 2: size, or a value equal to n is found. 

(3) *[e: eharaeter; west?e ----) east!e] 

This reads all the characters output by west, and outputs them one by 
one to east. The repetition terminates when the process west terminates. 

(4) *[(i:1 .. 10)eontinue(i); eonsole(i)?e ----) X!(i, e); 
eonsole(i)!aek(); eontinue(i):= (e # sign off)] 

This command inputs repeatedly from any of ten consoles, provided that 
the corresponding element of the Boolean array continue is true. The bound 
variable i identifies the originating console. Its value, together with the char­
acter just input, is output to X, and an acknowledgment signal is sent back to 
the originating console. Ifthe character indicated sign off, continueCi) is 
set false, to prevent further input from that console. The repetitive command 
terminates when all ten elements of continue are false. (An implementation 
should ensure that no console which is ready to provide input will be ignored 
unreasonably often.) 

(5) *[n:integer; X?insert(n) ----) INSERT 
Dn:integer; X?has(n) ----) SEARCH; X! ü<size) 
] 

(Here, and elsewhere, capitalized words INSERT and SEARCH stand as abbre­
viations for program text defined separately.} 

On each iteration this command accepts from X either (a) arequest to 
insert (n), (followed by INSERT) or (b) a quest ion has (n), to which it 
outputs an answer back to X. The choice between (a) and (b) is made by 
the next output command in X. The repetitive command terminates when X 
does. If X sends a non-matching message, deadlock will result. 

(6) *[X?VO ----) val:= val + 1 
Oval > 0; Y?P 0 ----) val: = val - 1 
] 

On each iteration, accept either a VO signal from X and increment val, or 
aPO signal from Y, and decrement val. But the se co nd alternative cannot 
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be selected unless val is positive (after wh ich val will remain invariantly 
nonnegative). (When val> 0, the choice depends on the relative speeds of 
X and Y, and is not determined.) The repetitive command will terminate 
when both X and Y are terminated, or when X is terminated and val S 0. 

3 Coroutines 

In parallel programming coroutines appear as a more fundamental program 
structure than subroutines, which can be regarded as a special case (treated 
in the next section). 

3.1 Copy 

Problem: Write a process X to copy characters output by process west to 
process east. 
Solution: 

X" *[c:character; west?c ~ east!c] 

Notes: (1) When west terminates, the input west?c will fail, causing termi­
nation of the repetitive command, and of process X. Any subsequent input 
command from east will fail. (2) Process X acts as a single-character buffer 
between west and east. It permits west to work on production of the next 
character, before east is ready to input the previous one. 

3.2 Squash 

Problem: Adapt the previous program to replace every pair of consecutive 
asterisks ** by an upward arrow T. Assurne that the final character input is 
not an asterisk. 
Solution: 

X" *[c:character; west?c ~ 

[c i asterisk ~ east! c 

Oe = asterisk ~ west?c; 

[c i asterisk ~ east! asterisk; east! c 

Oe = asterisk ~ east! upward arrow 

]] ] 

Notes: (1) Since west does not end with asterisk, the second west?c will not 
fail. (2) As an exercise, adapt this process to deal sensibly with input which 
ends with an odd number of asterisks. 
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3.3 Disassemble 

Problem: To read cards from a cardfile and output to process X the stream 
of characters they contain. An extra space should be inserted at the end of 
each card. 
Solution: 

* [cardimage: (1 .. 80)character; cardfile?cardimage -4 

i:integer; i:= 1; 
*[iS80 -4 X!cardimage(i); i:= i + 1J 

X!space 

Notes: (1) (1 .. 80) character declares an array of 80 characters, with sub­
scripts ranging between 1 and 80. (2) The repetitive command terminates 
when the cardfile process terminates. 

3.4 Assemble 

Problem: To read a stream of characters from process X and print them in 
lines of 125 characters on a lineprinter. The last line should be completed 
with spaces if necessary. 
Solution: 

lineimage:(1 .. 125)character; 
i:integer; i:=1; 
*[c:character; X?c -4 

lineimage(i):= c; 
[iS124 -4 i:= i + 1 
o i = 125 -4 lineprinter! lineimage; i: = 1 
J; 

[i=1 -4 skip 
Oi>1 -4 *[iS125 -4 lineimage(i):= space; i:= i + 1]; 

lineprinter!lineimage 

Note: When X terminates, so will the first repetitive c0l!lmand of this 
process. The last line will then be printed, if it has any characters. 

3.5 Reformat 

Problem: Read a sequence of cards of 80 characters each, and print the 
characters on a line printer at 125 characters per line. Every card should be 
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followed by an extra space, and last line should be completed with space if 
necessary. 
Solution: 

[west: : DISASSEMBLEllx: : COPYII east: : ASSEMBLE] 

Notes: (1) The capitalized names stand for program text defined in previous 
sections. (2) The parallel command is designed to terminate after the card 
file has terminated. (3) This elementary problem is difficult to solve elegantly 
without coroutines. 

3.6 Conway's problem (1963) 

Problem: Adapt the above program to replace every pair of consecutive 
asterisks by an upward arrow. 
Solution: 

[west: :DISASSEMBLEIIX: :SQUASHlleast: : ASSEMBLE] 

4 Subroutines and data representations 

A conventional nonrecursive subroutine can be readily implemented as a 
coroutine, provided that (1) its parameters are called "by value" and "by 
result", and (2) it is disjoint from its calling program. Like a Fortran sub­
routine, a coroutine may retain the values of local variables (own variables, 
in Algol terms) and it may use input commands to achieve the effect of 
"multiple entry points" in a safer way than PLI!. Thus a coroutine can be 
used like a SIMULA dass instance as a concrete representation for abstract 
data. 

A coroutine acting as a subroutine is a process operating concurrently 
with its user process in a parallel command: [subr:: SUBROUTINEIIX: : USER] . 
The SUBROUTINE will contain (or consist of) a repetitive command: 

* [X? (value params) -4 ... ; X! (result params)] 

where ... computes the results from the values input. The subroutine will 
terminate when its user does. The USER will call the subroutine by a pair 
of commands: subr! (arguments); ... ; subr? (resul ts). Any commands 
between these two will be executed concurrently with the subroutine. 

A multiple-entry subroutine, acting as a representation for data (Hoare 
1972b), will also contain a repetitive command wh ich represents each en­
try by an alternative input to a structured target with the entry name as 
constructor. For example, 
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*[X?entry1(value params) ~ 
OX?entry2(value params) ~ 
] 

The calling process X will determine which of the alternatives is activated 
on each repetition. When X terminates, so does this repetitive command. 
A similar technique in the user program can achieve the effect of multiple 
exits. 

A recursive subroutine can be simulated by an array of processes, one 
for each level of recursion. The user process is level zero. Each activation 
communicates its parameters and results with its predecessor and calls its 
successor if necessary: 

[recsub(O): :USERllrecsub(i: 1. .reclimit): :RECSUB] 

The user will call the first element of 

recsub: recsub(1)! (arguments); ... ; recsub(1)?(results); 

The imposition of a fixed upper bound on recursion depth is necessitated by 
the "static" design of the language. 

This clumsy simulation of recursion would be even more clumsy for a 
mutually recursive algorithm. It would not be recommended for conventional 
programming; it may be more suitable for an array of microprocessors for 
which the fixed upper bound is also realistic. 

In this section, we assume each subroutine is used only by a single user 
process (which may, of course, itself contain parallel commands). 

4.1 Function: division with remainder 

Problem: Construct a process to represent a function-type subroutine, which 
accepts a positive dividend and divisor, and returns their integer quotient 
and remainder. Efficiency is of no concern. 
Solution: 

[Drv: :*[x,y:integer; X?(x,y) ~ 
quot,rem:integer;quot:= 0; rem:= x; 
*[rem ~ y ~ rem:= rem - y; quot:= quot + 1]; 
X! (quot, rem) 
] 

IIX: : USER 
] 
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4.2 Recursion: factorial 

Problem: Compute a factorial by the recursive method, to a given limit. 
Solution: 

[fac(i:l .. limit):: 
*[n:integer;fact(i - l)?n -4 

[n = 0 -4 fac Ci - 1)! 1 
On> 0 -4 f ac( i + 1)! n - 1; 

r:integer;fac(i + l)?r; fac(i - l)!(n * r) 

JJ 
Ilfac(O) : :USER 

J 

Note: This unrealistic example introduces the technique of the "iterative 
array" which will be used to better effect in later examples. 

4.3 Data representation: small set of integers (Haare 1972b) 

Problem: To represent a set of not more than 100 integers as a process, 
S, which accepts two kinds of instruction from its calling process X: (1) 
S! insert (n), insert the integer n in the set, and (2) S! has (n); ... ; S?b, 
b is set true if n is in the set, and false otherwise. The initial value of the 
set is empty. 

Solution: 

S' . 

content:(O .. 99)integer; size:integer; size:= 0; 
* [n:integer; X?has(n) -4 SEARCH;X!(i < size) 
Dn:integer; X?insert(n) -4 SEARCH; 

[i < size -4 skip 
o i = size; size < 100 -4 

content(size):= n; size:= size + 1 

J J 

where SEARCH is an abbreviation for: 

i:integer; i:= 0; 
*[i < size; cOhtent(i) -I- n -4 i:= i + lJ 
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Notes: (1) The alternative command with guard size < 100 will fail if 
an attempt is made to insert more than 100 elements. (2) The activity of 
insertion will in general take place concurrently with the calling process. 
However, any subsequent instruction to S will be delayed until the previous 
insertion is complete. 

4.4 Scanning a set 

Problem: Extend the solution to 4.3 by providing a fast method for scanning 
all members of the set without changing the value of the set. The user 
program will contain a repetitive command of the form: 

S!scan(); more:boolean; more:= true; 

* [more; x: integer; S?next (x) ----+ ... deal wi th x ... 

o more; S?noneleft () ----+ more: = false 

J 

where S! scan () sets the representation into a scanning mode. The repetitive 
command serves as a for statement, inputting the successive members of x 
from the set and inspecting them until finally the representation sends a 
signal that there are no members left. The body of the repetitive command 
is not permitted to communicate with S in any way. 

Solution: Add a third guarded command to the outer repetitive command 
of S: 

... 0 X?scan ----+ i: integer; i: = 0; 

*[i < size ----+ X!next(content(i)); i:= i + lJ; 

X! noneleft () 

4.5 Recursive data representation: small set of integers 

Problem: Same as above, but an array of processes is to be used to achieve 
a high degree of parallelism. Each process should contain at most one num­
ber. When it contains no number, it should answer false to all inquiries 
about mernbership. On the first insertion, it changes to a second phase of 
behaviour, in which it deals with instructions frorn its predecessor, passing 
some of them on to its successor. The calling process will be named S (0). 

For efficiency, the set should be sorted, i.e. the ith process should contain 
the i th largest number. 
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Solution: 

S(i:1..100):: 

*[n:integer; Sei 

C. A. R. HOARE 

l)?has(n) ~ S(O) !false 
Dn:integer; Sei 1)?insert(n) ~ 

*[m:integer; Sei - l)?has(m) ~ 
[m ::; n ~ S (0) ! (m = n) 

Dm > n ~ sei + 1) !has(m) 

Dm:integer; Sei - 1)?insert(m) ~ 
[m < n ~ Sei + 1) !insert(n); n:= m 
Dm = n ~ skip 
Dm > n ~ sei + 1) !insert(m) 

] ] ] 

Notes: (1) The user process S(O) inquires whether n is a me mb er by the com­
mands S(1)!has(n); ... ; [(i:1. .. 100)S(i)?b --t skipJ. The appropri­
ate process will respond to the input command by the output command in 
line 2 or line 5. This trick avoids passing the answer back "up the chain". (2) 
Many insertion operations can proceed in parallel, yet any subsequent has 

operation will be performed correctly. (3) All repetitive commands and all 
processes of the array will terminate after the user process S (0) terminates 

4.6 Multiple exits: remove the least member 

Exercise: Extend the above solution to respond to a command to yield the 
least member of the set and to remove it from the set. The user pro gram 
will invoke the facility by a pair of commands: 

S(l) !least(); [x:integer;S(l)?x ~ deal with x 
D S (1) ?noneleft 0 ~ ... 
] 

or, if he wishes to scan and empty the set, he may write: 

S(l) !least();more:boolean; more:= true; 
* [more; x: integer; S(l)?x ~ ... deal with x 
Dmore; S(l)?noneleft() ~ more:= false 
] 

S(1) !leastO 

Hint: Introduce a Boolean variable, b, initialized to true, and prefix this to 
all the guards of the inner loop. After responding to a ! least () command 
from its predecessor, each process returns its contained value n, asks its 
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successor for its least, and stores the response in n. But if the successor 
returns noneleft 0, b is set false and the inner loop terminates. The process 
therefore returns to its initial state (solution due to David Gries). 

5 Monitors and scheduling 

This section shows how a monitor can be regarded as a single process wh ich 
communicates with more than one user process. However, each user process 
must have a different name (e.g. producer, consumer) or a different subscript 
(e.g. X (i)) and each communication with a user must identify its source or 
destination uniquely. 

Consequently, when a monitor is prepared to communicate with any of its 
user processes (i.e. whichever of them calls first) it will use a guarded co m­
mand with a range. For example: * [(i: 1. .100)X(i)? (value parameters) 
~ ... ; X (i) ! (results) J. Here, the bound variable i is used to send the 
results back to the calling process. If the monitor is not prepared to accept 
input from some particular user (e.g. X (j)) on a given occasion, the input 
command may be preceded by a Boolean guard. For example, two successive 
inputs from the same process are inhibited by j = 0; * [( i : 1 .. 100) i =I- j; 
X(i)?(values) ~ ... ; j:= iJ. Any attempted output from X(j) will be 
delayed until a subsequent iteration, after the output of some process X Ci) 

has been accepted and dealt with. 
Similarly, conditions can be used to delay acceptance of inputs which 

would violate scheduling constraints-postponing them until some later oc­
casion when some other process has brought the monitor into astate in 
which the input can validly be accepted. This technique is similar to a con­
ditional critical region (Hoare 1972a) and it obviates the need for special 
synchronizing variables such as events, queues, or conditions. However, the 
absence of these special facilities certainly makes it more difficult or less ef­
ficient to solve problems involving priorities-for example, the scheduling of 
head movement on a disko 

5.1 Bounded buffer 

Problem: Construct a buffering process X to smooth variations in the speed 
of output of portions by a producer process and input by a consumer process. 
The consume.r contains pairs of commands X! more 0; X?p, and the producer 
contains commands of the form X! p. The buffer should contain up to ten 
portions. 
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Solution: 

X· . 

buffer:(O .. 9)portion; 
in,out:integer; in:= 0; out:= 0; 
comment 0 ~ out ~ in ~ out + 10; 

*[in < out + 10; producer?buffer(in mod 10) ~ in:= in + 1 
Dout < in; consumer?moreO ~ consumer!buffer(out mod 10); 

out:= out + 1 
] 

Notes: (1) When out < in < out + 10, the selection of the alternative 
in the repetitive command will depend on whether the producer pro duces 
before the consumer consumes, or vice versa. (2) When out = in, the buffer 
is empty and the second alternative cannot be selected even if the consumer 
is ready with its command X! more (). However, after the producer has 
produced its next portion, the consumer's re quest can be granted on the 
next iteration. (3) Similar remarks apply to the producer, when in = out 
+ 10. (4) Xis designed to terminate when out = in and the producer has 
terminated. 

5.2 Integer semaphore 

Problem: To implement an integer semaphore, S, shared among an array 
X (i : 1 .. 100) of dient processes. Each process may increment the semaphore 
by S ! V () or decrement it by S! P (), but the latter command must be delayed 
if the value of the semaphore is not positive. 
Solution: 

S: :val:integer; val:= 0; 
*[(i:1 .. 100)X(i)?V() ~ val:= val + 1 
o (i:1. .100)val > 0; X(i)?PO ~ val:= val - 1 
] 

Notes: (1) In this process, no use is made of knowledge of the subscript i 

of the calling process. (2) The semaphore terminates only when all hundred 
processes of the process array X have terminated. 

5.3 Dining philosophers (Problem due to E.W. Dijkstra) 

Problem: Five philosophers spend their lives thinking and eating. The 
philosophers share a common dining room where there is a circular table 
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surrounded by five chairs, each belonging to one philosopher. In the cent re 
of the table there is a large bowl of spaghetti, and the table is laid with 
five forks (see Figure 1). On feeling hungry, a philosopher enters the dining 
roorn, sits in his own chair, and picks up the fork on the left of his place. 
Unfortunately, the spaghetti is so tangled that he needs to pick up and use 
the fork on his right as weIl. When he has finished, he puts down both 
forks, and leaves the roorn. The roorn should keep a count of the nurnber of 
philosophers in it. 

o 

Fig.l 

Solution: The behaviour of the i th philosopher rnay be described as folIows: 

PHIL = *[ ... during ith lifetime ... ~ 
THINK; 
room! enter () ; 
fork(i) !pickup(); fork((i + 1) mod 5) !pickup(); 
EAT; 

fork(i) !putdown(); fork((i + 1) mod 5) !putdown(); 
room! exitO 
] 

The fate of the ith fork is to be picked up and put down by a philosopher 
sitting on either side of it: 

FORK = 
*[phil(i)?pickup() ~ phil(i)?putdown () 
o phil (Ci - 1) mod 5) ?pickupO ~ phil( (i - 1) mod 5) ?putdownO 
] 
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The story of the room may be simply told: 

ROOM = occupancy:integer; occupancy:= 0; 
*[(i:O .. 4)phil(i)?enter() ~ occupancy:= occupancy + 1 
O(i:0 .. 4)phil(i)?exit() ~ occupancy:= occupancy - 1 
] 

All these components operate in parallel: 

[room: :ROOMllfork(i:O .. 4): :FORKllphil(i:O . .4): :PHIL] 

Notes: (1) The solution given above does not prevent all five philosophers 
from entering the room, each picking up his left fork and starving to death 
because he cannot pick up his right fork. (2) Exercise: Adapt the above pro­
gram to avert this sad possibility. Hint: Prevent more than four philosophers 
from entering the room. (Solution due to E.W. Dijkstra.) 

6 Miscellaneous 

This section contains furt her examples of the use of communicating sequen­
tial processes for the solution of some less familiar problems; a parallel ver­
sion of the sieve of Eratosthenes, and the design of an iterative array. The 
proposed solutions are even more speculative than those of the previous 
sections, and in the second example, even the quest ion of termination is 
ignored. 

6.1 Prime numbers: the sieve of Eratosthenes (McIlroy 1968) 

Problem: To print in ascending order all primes less than 10000. Use an array 
of processes, SIEVE, in which each process inputs a prime from its predecessor 
and prints it. The process then inputs an ascending stream of numbers from 
its predecessor and passes them on to its successor, suppressing any that are 
multiples of the original prime. 
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Solution 

[SIEVE(i:l .. 100):: 

p,mp:integer; 

SIEVE(i - 1)?p; 

printip; 

mp:= p; comment mp is a multiple of p; 

*[m:integer; SIEVE(i - l)?m -4 

* [m > mp -4 mp: = mp + p] ; 

[m = mp -4 skip 

Dm < mp -4 SIEVE(i + 1) im 

] 

IISIEVE(O): :printi2; n:integer; n:= 3; 

*[n< 10000 -4 SIEVE(l) in; n:= n + 2] 

IlsIEVE(101): :*[n:integer;SIEVE(100)?n -4 printin] 

Ilprint::*[(i:0 .. l01) n:integer; SIEVE(i)?n -4 ... ] 

] 

Note: (1) This beautiful solution was contributed by David Gries. (2) It 
is algorithmically similar to the program developed in (Dijkstra 1972, pp. 
27-32). 

6.2 An iterative array: matrix multiplication 

Problem: A square matrix A of order 3 is given. Three streams are to be 
input, each stream representing a column of an array IN. Three streams are 
to be output, each representing a column of the product matrix IN x A. 
After an initial delay, the results are to be produced at the same rate as the 
input is consumed. Consequently, a high degree of parallelism is required. 
The solution should take the form shown in Figure 2. Each of the nine 
nonborder nodes inputs a vector component from the west and a partial 
sum from the north. Each node outputs the vector component to its east, 
and an updated partial sum to the south. The input data is produced by 
the west border nodes, and the desired results are consumed by south border 
nodes. The north border is a constant source of zeros and the east border 
is just a sink. No provision need be made for termination nor for changing 
the values of the array A. 
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Fig.2 

Solution: There are twenty-one nodes, in five groups, comprising the central 
square and the four borders: 

[M(i:1 .. 3,0): :WEST 
IIM(O,j: 1. .3): : NORTH 
IIM(i:1. .3,4): :EAST 
IIM(4,j: 1. .3): :SOUTH 
IIM(i: 1. .3,j : 1. .3) : :CENTRE 
] 

The WEST and SOUTH borders are processes of the user program; the the 
remaining processes are: 

NORTH = *[true -4 M(1,j) 10] 
EAST = *[x:real; M(i,3)?x -4 skip] 
CENTER = *[x:real; M(i,j - 1)?x -4 

M(i,j + 1) Ix; sum:real; 
M(i - 1,j)?sum; M(i + 1,j) !(A(i,j)*x + sum) 

] 

7 Discussion 

A design for a programming language must necessarily involve a number of 
decisions which seem to be fairly arbitrary. The discussion of this section is 
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intended to explain some of the underlying motivation and to mention some 
unresolved questions. 

7.1 Notations 

I have chosen single-character notations (e.g. !,7) to express the primitive 
concepts, rat her than the more traditional boldface or underlined English 
words. As a result, the examples have an APL-like brevity, which some 
readers find distasteful. My excuse is that (in contrast to APL) there are only 
a very few primitive concepts and that it is standard practice of mathematics 
(and also good co ding practice) to denote common primitive concepts by 
brief notations (e.g. +, x). When read aloud, these are replaced by words 
(e.g. plus, times). 

Some readers have suggested the use of assignment notation for input 
and output: 

<target variable> := <source> 
<destination> := <expression> 

I find this suggestion misleading: it is better to regard input and output as 
distinct primitives, justifying distinct notations. 

I have used the same pair of brackets ([' .. J) to bracket all program struc­
tures, instead of the more familiar variety of brackets (if..fi, begin .. end, 
case .. esac, etc.). In this I follow normal mathematical practice, but I must 
also confess to a distaste for the pronunciation of words like fi, od, or esac. 

I am dissatisfed with the fact that my notation gives the same syntax for 
a structured expression and a subscripted variable. Perhaps tags should be 
distinguished from other identifers by a special symbol (say #). 

I was tempted to introduce an abbreviation for combined declaration and 
input, e.g. X? Cn: integer) for n: integer; X?n. 

7.2 Explicit naming 

My design insists that every input or output command must name its source 
or destination explicitly. This makes it inconvenient to write a library of 
processes wh ich can be included in subsequent programs, independent of the 
process names used in that prograrrl. A partial solution to this problem is 
to allow one process (the main process) of a parallel command to have an 
empty label, and to allow the other processes in the command to use the 
empty process name as source or destination of input or output. 
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For eonstruetion of large programs, some more general teehnique will 
also be neeessary. This should at least permit substitution of program text 
for names defined elsewhere-a teehnique whieh has been used informally 
throughout this paper. The Cobol COPY verb also permits a substitution 
far formal parameters within the eopied text. But whatever facility is in­
trodueed, I would reeommend the following prineiple: Every program, after 
assembly with its library routines, should be printable as a text expressed 
wholly in the language, and it is this printed text whieh should deseribe the 
exeeution of the program, independent of whieh parts were drawn from a 
library. 

Sinee I did not intend to design a eomplete language, I have ignored 
the problem of libraries in order to eoneentrate on the essential semantie 
eoneepts of the program which is aetually exeeuted. 

7.3 Port names 

An alternative to explicit naming of souree and destination would be to name 
a port through whieh eommunieation is to take plaee. The port names would 
be loeal to the proeesses, and the manner in whieh pairs of ports are to be 
eonneeted by ehannels eould be declared in the head of a parallel eommand. 

This is an attraetive alternative wh ich eould be designed to introduee a 
useful degree of syntaetically eheekable redundaney. But it is semantieally 
equivalent to the present proposal, provided that eaeh port is eonnected to 
exactly one other port in another proeess. In this ease eaeh ehannel ean be 
identifed with a tag, together with the name of the proeess at the other end. 
Since I wish to concentrate on semanties, I preferred in this paper to use the 
simplest and most direct notation, and to avoid raising quest ions about the 
possibility of connecting more than two ports by a single channel. 

7.4 Automatie buffering 

As an alternative to synchronization of input and output, it is often proposed 
that an outputting process should be allowed to proceed even when the 
inputting process is not yet ready to accept the output. An implementation 
would be expected automatically to interpose a ehain of buffers to hold 
output messages that have not yet been input. 

I have deliberately rejected this alternative, for two reasons: (1) It is less 
realistic to implement in multiple disjoint processors, and (2) when buffering 
is required on a particular channel, it can readily be specified using the given 
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primitives. Of course, it could be argued equally weIl that synchronization 
can be specifed when required by using a pair of buffered input and output 
commands. 

7.5 Unbounded process activation 

The notation for an array of processes permits the same program text (like an 
Algol recursive procedure) to have many simultaneous "activations"; how­
ever, the exact number must be specifed in advance. In a conventional 
single-processor implementation, this can lead to inconvenience and waste­
fulness, similar to the fixed-length array of Fortran. It would therefore be 
attractive to allow a proc~ss array with no apriori bound on the number of 
elements; and to specify that the exact number of elements required for a 
particular execution of the program should be determined dynamically, like 
the maximum depth of recursion of an Algol procedure or the number of 
iterations of a repetitive command. 

However, it is a good principle that every actual run of a program with 
unbounded arrays should be identical to the run of some program with all 
its arrays bounded in advance. Thus the unbounded program should be 
defined as the "limit" (in some sense) of aseries of bounded programs with 
increasing bounds. I have chosen to concentrate on the semantics of the 
bounded case~which is necessary anyway and which is more realistic for 
implementation on multiple microprocessors. 

7.6 Fairness 

Consider the parallel command: 

[X: :YlstopOIIY: :continue:boolean;continue:= true; 

* [continue; X?stop() -4 continue 

o continue -4 n:= n + 1 

] 

false 

If the implementation always prefers the second alternative in the repetitive 
command of Y, it is said to be unfair, because although the output command 
in X could have been executed on an infinite number of occasions, it is in 
fact always passed over. 

The question arises: Should a programming language definition specify 
that an implementation must be fair? Here, I am fairly sure that the answer 
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is NO. Otherwise, the implementation would be obliged to successfully com­
plete the example program shown above, in spite of the fact that its nondeter­
minism is unbounded. I would therefore suggest that it is the programmer's 
responsibility to prove that his program terminates correctly-without rely­
ing on the assumption of fairness in the implementation. Thus the program 
shown above is incorrect, since its termination cannot be proved. 

Nevertheless, I suggest that an efficient implement at ion should try to be 
reasonably fair and should ensure that an output command is not delayed 
unreasonably often after it first becomes executable. But a proof of correct­
ness must not rely on this property of an efficient implementation. Consider 
the following analogy with a sequential program: An efficient implementa­
tion of an alternative command tends to favour the alternative which can be 
most efficiently executed, but the programmer must ensure that the logical 
correctness of his program does not depend on this property of his imple­
mentation. 

This method of avoiding the problem of fairness does not apply to pro­
grams such as operating systems which are intended to run forever , because 
in this case termination proofs are not relevant. But I wonder whether it 
is ever advisable to write or to execute such programs. Even an operating 
system should be designed to bring itself to an orderly conclusion reasonably 
soon after it inputs a message instructing it to do so. Otherwise, the only 
way to stop it is to "crash" it. 

7.7 Functional coroutines 

It is interesting to compare the pro ces ses described here with those pro­
posed in Kahn (1974); the differences are most striking. There, coroutines 
are strictly deterministic: No choice is given between alternative sources of 
input. The output commands are automatically buffered to any required 
degree. The output of one process can be automatically fanned out to any 
number of processes (including itself!) which can consume it at differing 
rates. Finally, the processes there are designed to run forever, whereas my 
proposed parallel command is normally intended to terminate. The design 
in Kahn (1974) is based on an elegant theory which permits proof of the 
properties of programs. These differences are not accidental-they seem to 
be natural consequences of the difference between the more abstract applica­
tive (or functional) approach to programming and the more machine-oriented 
imperative (or procedural) approach, which is taken by communicating se­
quential processes. 
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7.8 Output guards 

Since input commands may appear in guards, it seems more symmetrie to 
permit output commands as weIl. This would allow an obvious and useful 
simplification in some of the example programs, for example, in the bounded 
buffer (5.1). Perhaps a more convincing reason would be to ensure that 
the externally visible effect and behaviour of every parallel command can 
be modelled by some sequential command. In order to model the parallel 
command 

Z:: [X!21IY!3J 

we need to be able to write the sequential alternative command: 

Z: : [X! 2 -* Y! 3 D Y ! 3 -* X! 2J 

Note that this cannot be done by the command 

Z:: [true -* X!2; Y!3Dtrue -* Y!3; X!2J 

whieh can fail if the process Z happens to choose the first alternative, but 
the processes Y and X are synchronized with each other in such a way that 
Y must input from Z before X does, e.g. 

Y: :Z?y; X!goO 

IIX: : Y?go 0; Z?x 

7.9 Restrietion: Repetitive command with input guard 

In proposing an unfamiliar programming-Ianguage feature, it seems wiser at 
first to specify a highly restrietive version rather than to propose extensions­
especially when the language feature claims to be primitive. For example, it 
is clear that the multidimensional process array is not primitive, since it can 
readily be constructed in a language which permits only single-dimensional 
arrays. But I have a rat her more serious misgiving about the repetitive 
command with input guards. 

The automatie termination of a repetitive command on termination of 
the sources of all its input guards is an extremely powerful and convenient 
feature but it also involves so me subtlety of specification to ensure that it 
is implementable; and it is certainly not primitive, since the required effect 
can be achieved (with considerable inconvenience) by explicit exchange of 
end() signals. For example, the subroutine DIV (4.1) could be rewritten: 
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[DIV: :continue:boolean; continue:= true; 
* [continue; X?end() ~ continue:= false 
Dcontinue; x,y:integer; X?(x,y) ----> .•• ; Xl(quot,rem) 

IIX: : USER PROG; DIVlendO 
] 

Other examples would be even more inconvenient. 
But the dangers of convenient facilities are notorious. For example the 

repetitive commands with input guards may tempt the programmer to write 
them without making adequate plans for their termination; and if it turns 
out that the automatie termination is unsatisfactory, reprogramming for 
explicit termination will involve severe changes, affecting even the interfaces 
between the processes. 

8 Conclusion 

This paper has suggested that input, output, and concurrency should be 
regarded as primitives of programming, which underlie many familiar and 
less familiar programming concepts. However, it would be unjustified to 
conclude that these primitives can wholly replace the other concepts in a 
programming language. Where a more elaborate construction (such as a 
procedure or monitor) is frequently useful, has properties which are more 
simply provable, and can be implemented more efficiently than the general 
case, there is a strong reason for including in a programming language a 
special notation for that construction. The fact that the construction can 
be defined in terms of simpler underlying primitives is a useful guarantee 
that its inclusion is logically consistent with the remainder of the language. 

Acknowledgments. The research reported in this paper has been encour­
aged and supported by a Senior Fellowship of the Science Research Council 
of Great Britain. The technical inspiration was due to Edsger W. Dijkstra 
(1975b), and the paper has been improved in presentation and content by 
valuable and painstaking advice from D. Gries, D. Q. M. Fay, E. W. Dijk­
stra, N. Wirth, R. Milne, M. K. Harper, and its referees. The role of IFIP 
W.G.2.3 as a forum for presentation and discussion is acknowledged with 
pleasure and gratitude. 

References 

Atkinson, R., and Hewitt, C. 1976. Synchronisation in actor systems. Working Paper 83, 
M.I.T., Cambridge, Mass., Nov. 



COMMUNICATING SEQUENTIAL PROCESSES 443 

Brinch Hansen, P. 1975. The programming language Concurrent Pascal. IEEE Trans. Soft­
ware Eng. 1,2 (June) , 199-207. 

Campbell, R.H., and Habermann, A.N. 1974. The specification of process synchronisation 
by path expressions. Lecture Notes in Computer Science 16, Springer, 89-102. 

Conway, M.E. 1963. Design of a separable transition-diagram compiler. Comm. ACM 6, 
7 (July), 396-408. 

Dahl, O.-J., et al. 1967. SIMULA 67, common base language. Norwegian Computing 
Centre, Forskningveien, Oslo. 

Dijkstra, E.W. 1968. Co-operating sequential processes. In Programming Languages, 
F. Genuys, Ed., Academic Press, New York, 43-112. 

Dijkstra, E.W. 1972. Notes on structured programming. In Structured Programming, 
Academic Press, New York, 1-82. 

Dijkstra, E.W. 1975a. Guarded commands, nondeterminacy, and formal derivation of 
programs. Comm. ACM 18,8 (Aug.), 453-457. 

Dijkstra, E.W. 1975b. Verbal communication, Marktoberdorf, Aug. 
Hoare, C.A.R. 1972a. Towards a theory of parallel programming. In Operating Systems 

Techniques, Academic Press, New York, 61-71. 
Hoare, C.A.R. 1972b. Proof of correctness of data representations. Acta Informatica 1, 4, 

271-281. 
Kahn, G. 1974. The semantics of a simple language for parallel programming. In Proc. IFIP 

Congress 74, North Holland. 
Liskov, B.H. 1974. A note on CLU. Computation Structures Group Memo. 112, M.I.T., 

Cambridge, Mass. 
McIlroy, M.D. 1968. Coroutines. Bell Laboratories, Murray Hill, N.J. 
Naur, P., Ed. 1960. Report on the algorithmic language ALGOL 60. Comm. ACM 3, 5 

(May) , 299-314. 
Reynolds, J.C. 1965. COGENT. ANL-7022, Argonne Nat. Lab., Argonne, Ill. 
Thompson, K. 1976. The UNIX command language. In Structured Programming, Infotech, 

Nicholson House, Maidenhead, England, 375-384. 
van Wijngaarden, A., Ed. 1969. Report on the algorithmic language ALGOL 68. Nu­

mer. Math. 14, 79-218. 
Wulf, W.A., London, R.L., and Shaw, M. 1976. Abstraction and verification in AL­

PHARD. Dept. of Comptr. ScL, Carnegie-Mellon U., Pittsburgh, Pa., June. 
Wirth, N. 1971. The programming language PASCAL. Acta Informatica 1, 1,35-63. 



DISTRIBUTED PROCESSES: 
A CONCURRENT 

PROGRAMMING CONCEPT 
PER BRINCH HANSEN 

(1978) 

16 

A language concept for concurrent processes without common variables is in­

troduced. These processes communicate and synchronize by means of proce­

dure calls and guarded regions. This concept is proposed for real-time applica­

tions controlled by microcomputer networks with distributed storage. The pa­

per gives several examples of distributed processes and shows that they include 

procedures, coroutines, classes, monitors, processes, semaphores, buffers, path 

expressions, and input/output as special cases. 

1 INTRODUCTION 

This paper intro duces distributed processes-a new language concept for con­
current programming. It is proposed for real-time applications controlled by 
microcomputer networks with distributed storage. The paper gives several 
examples of distributed processes and shows that they include procedures, 
coroutines, classes, monitors, processes, semaphores, buffers, path expres­
sions and input/output as special cases. 

Real-time applications push computer and programming technology to 
its limits (and sometimes beyond). A real-time system is expected to moni­
tor simultaneous activities with critical timing constraints continuously and 
reliably. The consequences of system failure can be serious. 

P. Brinch Hansen, Distributed processes: A concurrent programming eoneept, Communi­
cations 0/ the ACM 21, 11 (November 1978), 934-94l. Copyright © 1978, Association for 
Computing Maehinery, Ine. Reprinted by permission. 
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Real-time programs must achieve the ultimate in simplicity, reliability, 
and efficiency. Otherwise one can neither understand them, depend on them, 
nor expect them to keep pace with their environments. To make real-time 
programs manageable it is essential to write them in an abstract program­
ming language that hides irrelevant machine detail and makes extensive com­
pilation checks possible. To make real-time programs efficient at the same 
time will probably require the design of computer architectures tailored to 
abstract languages (or even to particular applications). 

From a language designer's point of view, real-time programs have these 
characteristics: 

1. Areal-time program interacts with an environment in wh ich many 
things happen simultaneously at high speeds. 

2. Areal-time program must respond to a variety of nondeterministic 
requests from its environment. The program cannot predict the order 
in which these requests will be made but must respond to them within 
certain time limits. Otherwise, input data may be lost or output data 
may lose their significance. 

3. Areal-time program controls a computer with a fixed configuration of 
processors and peripherals and performs (in most cases) a fixed number 
of concurrent tasks in its environment. 

4. Areal-time program never terminates but continues to serve its envi­
ronment as long as the computer works. (The occasional need to stop a 
real-time program, say at the end of an experiment, can be handled by 
ad hoc mechanisms, such as turning the machine off or loading another 
program into it.) 

What is needed then for real-time applications is the ability to specify 
a fixed number of concurrent tasks that can respond to nondeterministic 
requests. The programming languages Concurrent Pascal and Modula come 
dose to satisfying the requirements for abstract concurrent programming 
(Brinch Hansen 1975, 1977; Wirth 1977). Both of them are based on the 
monitor concept (Brinch Hansen 1973; Hoare 1974). Modula, however, is 
primarily oriented towards multiprogramming on a single processor. And a 
straightforward implementation of Concurrent Pascal requires a single pro­
cessor or a multiprocessor with a common store. In their present form, 
these languages are not ideal for a microcomputer network with distributed 
storage only. 
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It may weIl be possible to modify Concurrent Pascal to satisfy the con­
straints of distributed storage. The ideas proposed here are more attractive, 
however, because they unify the monitor and process concepts and result in 
more elegant programs. The new language concepts for real-time applica­
tions have the following properties: 

1. Areal-time program consists of a fixed number of concurrent processes 
that are started simultaneously and exist forever. Each process can 
access its own variables only. There are no common variables. 

2. A process can call common procedures defined within other processes. 
These procedures are executed when the other processes are waiting 
for some conditions to become true. This is the only form of process 
communication. 

3. Processes are synchronized by means of nondeterministic statements 
called guarded regions (Hoare 1972; Brinch Hansen 1978). 

These processes can be used as program modules in a multiprocessor sys­
tem with common or distributed storage. To satisfy the real-time constraints 
each processor will be dedicated to a single process. When a processor is 
waiting for some condition to become true then its processor is also waiting 
until an external procedure call makes the condition true. This does not 
represent a waste of resources but rather a temporary lack of useful work for 
that processor. Parameter passing between processes can be implemented ei­
ther by copying within a common store or by input/output between separate 
stores. 

The problems of designing verification rules and computer architectures 
for distributed processes are currently being studied and are not discussed. 
This paper also ignores the serious problems of performance evaluation and 
fault tolerance. 

2 LANGUAGE CONCEPTS 

A concurrent program consists of a fixed number of sequential processes 
that are executed simultaneously. A process defines its own variables, some 
common procedures, and an initial statement 

process name 
own variables 
common procedures 
initial statement 
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A process may only access its own variables. There are no common variables. 
But a process may call common procedures defined either within itself or 
within other processes. A procedure call from one process to another is 
called an external request. 

A process performs two kinds of operations then: the initial statement 
and the external requests made by other processes. These operations are 
executed one at a time by interleaving. A process begins by executing its 
initial statement. This continues until the statement either terminates or 
waits for a condition to become true. Then another operation is started (as 
the result of an external re quest ). When this operation in turn terminates 
or waits the process will either begin yet another operation (requested by 
another process) or it will res urne an earlier operation (as the result of a 
condition becoming true). This interleaving of the initial statement and the 
external requests continues forever. If the initial statement terminates, the 
process continues to exist and will still accept external statements. 

So the interleaving is controlled by the program (and not by dock signals 
at the machine level). A process switches from one operation to another 
only when an operation terminates or waits for a condition within a guarded 
region (introduced later). 

A process continues to execute operations except when all its current 
operations are delayed within guarded regions or when it makes arequest to 
another process. In the first case, the process is idle until another process 
calls it. In the second case, the process is idle until the other process has 
completed the operation requested by it. Apart from this not hing is assumed 
about the order in which a process performs its operations. 

A process guarantees only that it will perform some operations as long 
as there are any unfinished operations that can proceed. But only the pro­
grammer can ensure that every operation is performed within a finite time. 

A procedure defines its input and output parameters, some local variables 
perhaps, and a statement that is executed when it is called. 

proc name(input param#output param) 
loeal variables 
statement 

A process P can call a procedure R defined within another process Q as 
folIows: 

call Q.R(expressions, variables) 
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Before the operation R is performed the expression values of the call are 
assigned to the input parameters. When the operation is finished the values 
of the output parameters are assigned to the variables of the call. Parameter 
passing between processes can therefore be implemented either by copying 
within a common store or by input/output between processors that have no 
common store. 

In this paper processes can call procedures within one another without 
any restrictions. In a complete programming language additional notation 
would be added to limit the access rights of individual processes. It may 
also be necessary to eliminate recursion to simplify verification and imple­
mentation. But these are issues that will not concern us here. 

Nondeterminism will be controlled by two kinds of statements called 
guarded commands and guarded regions. A guarded region can delay an 
operation, but a guarded command cannot. 

A guarded command (Dijkstra 1975) enables a process to make an ar­
bitrary choice among several statements by inspecting the current state of 
its variables. If none of the alternatives are possible in the current state the 
guarded command cannot be executed and will either be skipped or cause a 
program exception. 

The guarded commands have the following syntax and meaning: 

if BI: 51 I B 2 : 52 I ... end 

1f statement: If some of the conditions BI, B2, ... , are true then select 
one of the true conditions Bi and execute the statement Si that follows it; 
otherwise, stop the program. 

(If the language includes a mechanism whereby one process can detect 
the failure of another process, it is reasonable to let an exception in one 
process stop that process only. But, if recovery from programming errors 
is not possible then it is more consistent to stop the whole program. This 
paper does not address this important issue.) 

Do statement: While some of the conditions are true, select one of them 
arbitrarily and execute the corresponding statement. 

A guarded region (Hoare 1972; Brinch Hansen 1978) enables a process 
to wait until the state of its variables makes it possible to make an arbitrary 
choice among several statements. If none of the alternatives are possible in 
the current state the process postpones the execution of the guarded region. 

The guarded regions have the following syntax and meaning: 
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When statement: Wait until one of the conditions is true and execute 
the corresponding statement. 

Cycle statement: Endless repetition of a when statement. 
If several conditions are true within a guarded command or region it is 

unpredictable which one of the corresponding statements the machine will 
select. This uncertainty reflects the nondeterministic nature of real-time 
applications. 

The data types used are either integers, booleans, or characters, or they 
are finite sets, sequences, and arrays with at most n elements of some type 
T: 

int bool char set[n]T seq[n]T array[n]T 

The following statement enumerates all the elements in a data structure: 

for x in y: Send 

For statement: For each element x in the set or array y execute the 
statement S. A for statement can access and change the values of array 
elements but can only read the values of set elements. 

Finally, it should be mentioned that the empty statement is denoted skip 
and the use of semicolons is option al. 

3 PROCESS COMMUNICATION 

The following presents several examples of the use of these language concepts 
in concurrent programming. We will first consider communication between 
processes by means of procedure calls. 

Example: Semaphore 

A general semaphore initialized to zero can be implemented as a process sem 
that defines wait and signal operations. 

process sem 
s: int 
proc wait when s > 0: s := s - 1 end 
proc signal; s := s + 1 
s := 0 
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The initial statement assigns the value zero to the semaphore and terminates. 
The process, however, continues to exist and can now be called by other 
processes 

call sem.wait call sem.signal 

Example: Message buffer 

A buffer process stores a sequence of characters transmitted between pro­
ces ses by means of send and receive operations. 

process buffer 
s: seq[n]ehar 
proc send( e: eh ar ) when not s.full: s. put( e) end 
proc ree( Iv: ehar) when not s.empty: s.get( v) end 
s:= [] 

The initial statement makes the buffer empty to begin with. The buffer 
operations are called as follows: 

call buffer.send(x) call buffer .ree(y) 

The semaphore and buffer processes are similar to monitors (Brinch Han­
sen 1973; Hoare 1974): They define the representation of a shared data 
structure and the meaningful operations on it. These operations take place 
one at a time. After initialization, a monitor is idle between external calls. 

Example: Character stream 

A process inputs punched cards from a card reader and outputs them as a 
sequence of characters through a buffer process. The process deletes spaces 
at the end of each card and terminates it by a newline character. 

process stream 
b: array[80]ehar; n, i: int 
do true: 

call eardreader .input(b) 
if b = blankline: skip I 

b i- blankline: i := 1; n := 80; 
do b[n] = spaee: n := n - 1 end 
do i ~ n: call buffer.send(b[i]); i := i + 1 end 

end 
call buffer.send( newline) 

end 
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This use of a proeess is similar to the traditional process eoneept: the 
proeess exeeutes an initial statement only. It ealls eommon proeedures within 
other processes, but does not define any within itself. Such a proeess does 
not eontain guarded regions beeause other processes are unable to eall it and 
make the eonditions within it true. 

The example also illustrates how peripheral devices ean be eontrolled by 
distributed processes. A deviee (such as the eard reader) is assoeiated with a 
single proeess. Other processes ean aeeess the deviee only through eommon 
proeedures. So a peripheral deviee is just another proeess. 

While a proeess is waiting for input/output, no other operations ean 
take plaee within it. This is a special ease of a more general rule: When a 
proeess P ealls a proeedure R within another proeess Q then R is eonsidered 
an indivisible operation within proeess P, and P will not exeeute any other 
operation until R is finished (see Section 2). 

Notiee, that there is no need for interrupts even in areal-time language. 
Fast response to external requests is aehieved by dedicating a proeessor to 
eaeh eritieal event in the environment and by making sure that these pro ees­
sors interact with a small number of neighboring proeessors only (to prevent 
them from being overloa,ded with too many requests at a time). 

Exercise: Write a proeess that reeeives a sequenee of eharaeters from a 
buffer proeess and outputs them line by li ne to a printer. The proeess should 
output a formfeed after every 60 lines. 

4 RESOURCE SCHEDULING 

We will now look at a variety of seheduling problems solved by means of 
guarded regions. It should perhaps be mentioned that resouree sehedulers 
are by nature bottlenecks. It would therefore be wise in areal-time program 
to make sure that eaeh resouree either is used frequently by a small number 
of processes or very infrequently by a larger number of processes. In many 
applications it is possible to avoid resouree seheduling altogether and ded­
icate a resouree to a single proeess (as in the eard reader and line printer 
examples). 

Example: Resource scheduler 

A set of user processes ean obtain exclusive aeeess to an abstract resouree 
by ealling request and release operations within a seheduling proeess. 
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process resouree 
free: bool 
proc request when free: free := false end 
proc release if not free: free := true end 
free := true 

call resouree.request ... call resouree.release 

The use of the boolean free forees a strict alternation of request and release 
operations. The program stops if an attempt is made to release a resouree 
that is already free. 

In this example, the seheduler does not know the identity of individual 
user processes. This is ideal when it does not matter in whieh order the 
users are served. But, if a seheduler must enforee a partieular seheduling 
poliey (such as shortest job next) then it must know the identity of its users 
to be able to grant the resouree to a speeifie user. The following example 
shows how this ean be done. 

Example: Shortest job next scheduler 

A seheduler alloeates a resouree among n user processes in shortest job next 
order. Arequest enters the identity and service time of a user process in a 
queue and waits until that user is selected by the seheduler. Arelease makes 
the resouree available again. 

The seheduler waits until one of two situations arises: 

1. A proeess enters or leaves the queue: The seheduler will sean the queue 
and seleet the next user (but will not grant the resouree to it yet). 

2. The resouree is not being used and the next user has been selected: 
The seheduler will grant the resouree to that user and remove it from 
the queue. 

User processes identify themselves by unique indices 1, 2, ... , n. The 
eonstant nil denotes an undefined proeess index. 

The seheduler uses the following variables: 

queue the indices of waiting processes 
rank the service times of waiting processes 
user the index of the eurrent user (if any) 
next the index of the next user (if any) 
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process sjn 
queue: set [n]int; rank: array[n]int 
user, next, min: int 

proc request( who, time: int) 
begin queue.include(who); rank[who] := time 

next := nil; when user = who: next := nil end 
end 

proc release; user := nil 

begin queue := [ ]; user := nil; next := nil 
cycle 

not queue.empty & (next = nil): 
min : = maxinteger 
for i in queue: 

if rank[i] > min: skip I 
rank[i] ::; min: next := i; min := rank[i] 

end 
endl 

(user = nil) & (next ~ nil): 
user := next; queue.exclude(user) 

end 
end 
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In a microprocessor network where each processor is dedicated to a single 
process it is an attractive possibility to let a process carry out computations 
between external calls of its procedures. The above scheduler takes advantage 
of this capability by selecting the next user while the resource is being used 
by the present user. It would be simpler (but less efficient) to delay the 
selection of the next user until the previous one has released the resource. 

The scheduling of individual processes is handled completely by means of 
guarded regions without the use of synchronizing variables, such as semaphores 
or event queues. 

The periodic reevaluation of a synchronizing condition, such as 

user = who 

might be a serious load on a eommon store shared by other processors. But it 
is quite acceptable when it only involves the loeal store of a single processor 
that has nothing else to do. This is a good example of the infiuence of 
hardware technology on abstract algorithms. 

Exereise: Write a first-come, first-served scheduler. 
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Example: Readers and writers 

Two kinds of proeesses, ealled readers and writers, share a single resouree. 
The readers ean use the resouree simultaneously, but eaeh writer must have 
exdusive aeeess to it. The readers and writers behave as folIows: 

call resouree.startread 
read 
call resouree.endread 

call resouree.startwrite 
write 
call resouree.endwrite 

A variable s defines the eurrent resouree state as one of the following: 

s = 0 
s = 1 
s = 2 
s = 3 

1 writer uses the resouree 
o proeesses use the resouree 
1 reader uses the resouree 
2 readers use the resouree 

This leads to the following solution (Brineh Hansen 1978): 

process resouree 
s: int 
proc startread when s ~ 1: s := s + 1 end 
proc endread if s > 1: s := S - 1 end 
proc startwrite when s = 1: s := 0 end 
proc endwrite if s = 0: s := 1 end 
s := 1 

Exercise: Solve the same problem with the additional constraint that 
further reader requests should be delayed as long as some writers are either 
waiting for or are using the resouree. 

Example: Alarm clock 

An alarm doek proeess enables user proeesses to wait for different time 
intervals. The alarm doek reeeives a signal from a timer proeess after eaeh 
time unit. (The problems of representing a doek with a finite integer are 
ignored here.) 
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process alarm 
time: int 

proc wait(interval: int) 
due: int 
begin due := time + interval 

when time = due: skip end 
end 

proc tick; time := time + 1 

time := 0 

5 PROCESS ARRAYS 

455 

So far we have only used one instance of each process. The next example 
uses an array of n identical processes (Hoare 1978): 

process name[n] 

A standard function this defines the identity of an individual process within 
the array (1 ~ this ~ n). 

Example: Dining philosophers 

Five philosophers alternate between thinking and eating. When a philoso­
pher gets hungry, he joins a round table and picks up two forks next to his 
plate and starts eaiting. There are, however, only five forks on the table. 
So a philosopher can eat only when none of his neighbors are eating. When 
a philosopher has finished eating he puts down his two forks and leaves the 
table again. 

process philosopher[5] 
do true: think 

call table.join(this); eat; call table.leave(this) 
end 

process table 
eating: set [5Jint 
proc join( i: int) 
when([i 8 1, i EB 1] & eating) = [ ]: eating.include(i) end 
proc leave(i: int); eating.exclude(i) 
eating := [ ] 
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This solution does not prevent two philosophers from starving a philosopher 
between them to death by eating alternately. 

Exercise: Solve the same problem without starvation. 

Example: Sorting array 

A process array sorts m data items in order O(m). The items are input 
through sort process 1 that stores the smallest item input so far and passes 
the rest to its successor sort process 2. The latter keeps the second smallest 
item and passes the rest to its successor sort process 3, and so on. When the 
m items have been input they will be stored in their natural order in sort 
processes 1, 2, ... , m. They can now be output in increasing order through 
sort process 1. After each output the processes receive the remaining items 
from their successors. 

A user process behaves as follows: 

A: array[mJint 
für x in A: call sort[l].put(x) end 
für x in A: call sort[l].get(x) end 

The sorting array can sort n elements or less (m ::; n). A sorting process is in 
equilibrium when it holds one item only. When the equilibrium is disturbed 
by its predecessor, a process takes the following action: 

1. If the process holds two items, it will keep the smallest one and pass 
the largest one to its successor. 

2. If the process holds no items, but its successor does, then the process 
will fetch the smallest item from its successor. 

A sorting process uses the following variables: 

he re the items stored in this process (0 ::; here.length ::; 2) 
rest the number of items stored in its successors 

A standard function succ defines the index of the successor process (succ 
= this + 1). 



DISTRIBUTED PROCESSES 

process sort[n] 
here: seq[2]int; rest, temp: int 
proc put(c: int) when here.length < 2: here.put(c) end 
proc get(#v: int) when here.length = 1: here.get(v) end 

begin here := [ ]; rest := 0 
cycle 

here.length = 2: 
if here[l] s:: here[2]: temp := here[2]; here := [here[llli 

here[l] > here[2]: temp := here[l]; he re := [here[2]] 
end 
call sort[succ].put(tcmp); rest := rest + 1 I 

(here.length = 0) & (rest> 0): 
call sort[succ].get(temp); rest := rest - 1 
here := [temp] 

end 
end 
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A hardware implementation of such a sorting array could be used as a very 
efficient form of priority scheduling queue. 

BTercise: Program a process array that contains N = 2n numbers to 
begin with and which will add them in time 0(1og2N). 

Since a process can define a common procedure it obviously includes 
the procedure concept as a special case. Hoare (1978) shows that a process 
array also can simulate a recursive procedure with a fixed maximum depth 
of recursion. 

Exercise: Write a process array that computes a Fibonacci nu mb er by 
recursion. 

6 ABSTRACT DATA TYPES 

A process combines a data structure and all the possible operations on it into 
a single program module. Since other processes can perform these operations 
only on the data structure, but do not have direct access to it, it is called 
an abstract data structure. 

We have already seen that a process can function as a monitor-an ab­
stract data type that is shared by several processes. The next example shows 
that a process also can simulate a class-an abstract data type that is used 
by a single process only. 
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Example: Vending machine 

A vending machine accepts one coin at a time. When a button is pushed 
the machine returns an item with change provided there is at least one item 
left and the coins cover the cost of it; otherwise, all the coins are returned. 

process vending_machine 
items, paid, cash: int 
proc insert(coin: int) paid := paid + coin 
proc push( #change, goods: int) 
if (items > 0) & (paid ;::: price) 

change := paid - price; cash := cash + price 
goods := 1; items := items - 1; paid := 0 I 

(items = 0) or (paid < price): 
change := paid; goods := 0; paid := 0 

end 
begin items := 50; paid := 0; cash := 0 end 

7 COROUTINES 

Distributed processes can also function as coroutines. In a coroutine rela­
tionship between two processes P and Q only one of them is running at a 
time. A resume operation transfers control from one process to the other. 
When a process is resumed it continues at the point where it has transferred 
control to another process. 

process P 
go: bool 
proc resurne; go := true 

begin go : = false 

call Q .resume 
when go: go := false end 

end 

Process Q is very similar. 

8 PATH EXPRESSIONS 

Path expressions define meaningful sequences of operations P, Q, " ., (Camp­
bell 1974). A path expression can be implemented by a scheduling process 
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that defines the operations P, Q, ... , as procedures and uses astate vari­
able s to enforce the sequence in which other processes may invoke these 
procedures. 

Suppose, for example, that the operation P only can be followed by the 
operation Q as shown by the graph below: 

-+-P-+-Q-+-

To implement this path expression one associates a distinct state a, b, and 
c with each arrow in the graph and programs the operations as folIows: 

proc P if s = a: ... s := b end 

proc Q if s = b: ... s := c end 

If P is called in the state s = a it will change the state to s = band make Q 
possible. Q, in turn, changes the state from b to c. An attempt to perform 
P or Q in astate where they are illegal will cause a program exception (or 
a delay if a when statement is used within the operation). 

The next path expression specifies that either P or Q can be performed. 
This is enforced by means of two states a and b. 

proc P if s = a: ... s := b end 

proc Q if s = a: ... S := b end 

If an operation P can be performed zero or more times then the execution 
of Pleaves the state s = a unchanged as shown below. 

proc P if s = a: ... end 

The simple resource scheduler in Seetion 4 implements a composite path 
expression in wh ich the sequence request ... release is repeated zero or more 
times. 
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The readers and writers problem illustrates the use of astate variable to 
permit some operations to take place simultaneously while other operations 
are temporarily excluded (in this case, simultaneous reading by several pro­
cesses excludes writing). Each simultaneous operation P is surrounded by 
a pair of scheduling operations, startP and endP. The state variable counts 
the number of P operations in progress. 

9 IMPLEMENTATION HINTS 

The following outlines the general nature of an implementation of distributed 
processes but ignores the details which are currently being studied. 

In a well-designed concurrent program one may assume that each process 
communicates with a small number of neighboring processes only. For if the 
interactions are not strongly localized one cannot expect to gain much from 
concurrency. (A few resource schedulers may be an exception to this rule.) 

Each processor will contain a distributed process P and a small, fixed 
number of anonymous processes which are the representatives of those dis­
tributed processes that can call process P. Additional notation in the lan­
guage should make it possible for a compiler to determine the number of 
processes which call a particular process. 

Whenever a processor is idle it activates a local representative wh ich 
then waits until it receives arequest with input data from another processor. 
The representative now calls the local procedure requested with the available 
input. When the procedure terminates, its output data are returned to the 
other processor and the representative becomes passive again. The switching 
from one quasiconcurrent process to another within a processor takes place 
as described in Section 2. 

Since processes are permanent and procedures are nonrecursive, a com­
piler can determine the maximum storage required by a distributed process 
and the local representatives of its environment. So the storage allocation is 
static within each processor. 

The parameter passing between two processors requires a single input 
operation before a procedure is executed and a single output operation when 
it terminates. 

The speed of process switching within a single processor will probably 
be crucial for its real-time response. 

The technique of representing the environment of a processor by local 
processes synchronized with extern al processes seems conceptually attrac­
tive. Although these processes are anonymous in this proposal one could 
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design a language in which the store of a single process is shared by qua­
siconcurrent processes which communicate with nonlocal processes by in­
put/output only. 

10 FINAL REMARKS 

It would certainly be feasible to adapt the processes and monitors of Concur­
rent Pascal to multiprocessor networks with distributed storage by restrict­
ing the parameter passing mechanism as proposed here. All the examples 
discussed here could then be programmed in that language-but not nearly 
as elegantly! 

What then are the merits of distributed processes? Primarily, that they 
are a combination of well-known programming concepts (processes, proce­
dures, and conditional critical regions) which unify the dass, monitor, and 
process concepts. They indude a surprising number of basic programming 
concepts as special cases: 

procedures 
coroutines 
classes 
monitors 
processes 
semaphores 
buffers 
path expressions 
input/output 

Since there is a common denominator for all these concepts, it may weIl be 
possible to develop common proof rules for them. The use of a single concept 
will certainly simplify the language implementation considerably. 

The Concurrent Pascal machine distinguishes between 15 virtual instruc­
tions far dasses, monitors, and processes. This number would be reduced 
by a factor of three for distributed processes. In addition, numerous special 
cases would disappear in the compiler. 

It is also encouraging that distributed processes can be used to write 
elegant algorithms both for the more weIl-known concurrent' problems and 
far some new ones that are nontrivial. 

Arecent proposal by Hoare (1978) has the same pleasant properties. 
Both proposals attack the problem of concurrency without shared variables 
and recognize the need for nondeterminacy within a single process. 
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Hoare's communicating sequential processes can be created and termi­
nated dynamically. A single data transfer from one process to another is 
the communication mechanism. A process synchronizes itself with its envi­
ronment by guarded input commands which are executed when a boolean 
expression is true and input is available from another process. The rela­
tionships between two communicating processes is symmetrical and requires 
both of them to name the other. The brief and nonredundant notation does 
not require dedarations of communication channels but depends (concep­
tually) on dynamic type checking to recognize matching input and output 
commands in two processes. 

In their present form communicating sequential processes seem well­
suited to a theoretical investigation of concurrency and as a concise spec­
ification language that suppresses minor details, However, as Hoare points 
out, the language concepts and the notation would have to be modified to 
make them practical for program implementation. 

The proposal for distributed processes is intended as a first step toward a 
practical language for networks. The proposal recognizes that the exchange 
of input and output in one operation is a frequent case, particularly for pe­
ripheral devices which return a result after each operation. The notation is 
redundant and enables a compiler to determine the number of processes and 
their storage requirements. The relationship between two communicating 
processes is asymmetrical and requires only that the caller of an operation 
name the process that performs it. This asymmetry is useful in hierarchi­
cal systems in which servants should be unaware of the identities of their 
masters. 

Distributed processes derive much of their power from the ability to de­
lay process interactions by means of boolean expressions which may involve 
both the global variables of a process and the input parameters from other 
processes (as illustrated by the sjn scheduler and the alarm dock). The 
price for this flexibility is the need for quasiconcurrent processes in the im­
plementation. A more restricted form of Hoare's proposal might be able 
to implement process synchronization by the simpler method of polling a 
number of data channels until one of them transmits data. 

But more work remains to be done on verification rules and network 
architectures for these new concepts. And then the ideas must be tested in 
practice before a final judgment can be made. 
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This paper describes a sec ure programming language called Joyce based on 

CSP and Pascal. Joyce permits unbounded (recursive) activation of communi­

cating agents. The agents exchange messages through synchronous channels. 

A channel can transfer messages of different types between two or more agents. 

A compiler can check message types and ensure that agents use disjoint sets 

of variables only. The use of Joyce is illustrated by a variety of examples. 

1 INTRODUCTION 

Two years after the invention of the monitor concept (Brinch Hansen 1973; 
Hoare 1974), Concurrent Pascal had been developed (Brinch Hansen 1975) 
and used for operating system design (Brinch Hansen 1976). Within ten 
years, half a dozen production-quality languages were monitor-based, among 
them Modula (Wirth 1977), Pascal-Plus (Welsh 1979), Mesa (Lampson 1980) 
and Concurrent Euclid (Holt 1982). 

Eight years after the CSP proposal (Hoare 1978), several CSP-based lan­
guages have been developed: these include CSP80 (Jazayeri 1980), RBCSP 
(Roper 1981), ECSP (Baiardi 1984), Planet (Crookes 1984) and the low­
level language occam (Inmos 1984). But no experience has been reported 
on the use of these languages for non-trivial system implementation. Al­
though CSP has been highly successful as a notation for theoretical work 

P. Brinch Hansen, Joyce-A programming language for distributed systems. Software­
Pmctice and Experience 17 , 1 (January 1987), 29-50. Copyright © 1987, Per Brinch 
Hansen. Reprinted by permission. 
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(Hoare 1985), it has probably been too far removed from the requirements 
of a secure programming language. 

This paper describes a secure programming language called Joyce for the 
design and implementation of distributed systems. Joyce is based on CSP 
and Pascal (Wirth 1971). 

A Joyce program consists of nested procedures which define communicat­
ing agents. Joyce permits unbounded (recursive) activation of agents. The 
execution of a program activates an initial agent. Agents may dynamically 
activate subagents which run concurrently with their creators. The variables 
of an agent are inaccessible to other agents. 

Agents communicate by means of symbols transmitted through channels. 
Every channel has an alphabet-a fixed set of symbols that can be trans­
mitted through the channel. A symbol has a name and may carry a message 
of a fixed type. 

Two agents match when one of them is ready to output a symbol to a 
channel and the other is ready to input the same symbol from the same chan­
nel. When this happens, a communication takes place in which a message 
from the sending agent is assigned to a variable of the receiving agent. 

The communications on a channel take place one at a time. A channel 
can transfer symbols in both directions between two agents. 

A channel may be used by two or more agents. If more than two agents 
are ready to communicate on the same channel, it may be possible to match 
them in several different ways. The channel arbitrarily selects two matching 
agents at a time and lets them communicate. 

A polling statement enables an agent to examine one or more channels 
until it finds a matching agent. Both sending and receiving agents may be 
polled. 

Agents create channels dynamically and access them through local port 
variables. When an agent creates a channel, a channel pointer is assigned to 
a port variable. The agent may pass the pointer as a parameter to subagents. 

When an agent reaches the end of its defining procedure, it waits until 
all its subagents have terminated before terminating itself. At this point, 
the local variables and any channels created by the agent cease to exist. 

This paper defines the concepts of Joyce and illustrates the use of the 
language to implement a variety of well-known programming concepts and 
algorithms. 
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2 LANGUAGE CONCEPTS 

Joyce is based on a minimal Pascal subset: type integer, boolean, char and 
real; enumerated, array and re cord types; constants, variables and expres­
sions; assignment, if, while, compound and empty statements. 

This subset is extended with concurrent programming concepts called 
agent procedures, port types and channels, agent, port, input/output and 
polling statements. 

The Joyce grammar is defined in extended BNF notation: [E] denotes 
an E sentence (or none). {E} denotes a finite (possibly empty) sequence of 
E sentences. Tokens are endosed in quotation marks, e.g. "begin" . 

This paper concentrates on the concurrent aspects of Joyce. 

Port types 

TypeDefinition = TypeName "=" NewType ";" . 

NewType = PascalType I PortType . 
PortType = "[" Alphabet "]" . 
Alphabet = SymbolClass { "," SymbolClass } . 

SymbolClass = SymbolName [ "(" MessageType ")" ] . 

MessageType = TypeName . 

A Joyce program defines abstract concurrent machines called agents. The 
agents communicate by means of values called symbols transmitted through 
entities called channels. The set of possible symbols that can be transmitted 
through a channel is called its alphabet. 

Agents create channels dynamically and access them through variables 
known as port variables. The types of these variables are called port types. 

A type definition 

defines a port type named T. The port value nil T is of type T and denotes a 
non-existing channel. All other port values of type T denote distinct channels 
with the given alphabet. The port values (also known as channel pointers) 
are unordered. 

The alphabet is the union of a fixed number of disjoint symbol dasses 
named Sl,S2, ... ,Sn. 

A symbol dass Si (Ti) consists of every possible value of type Ti prefixed 
with the name si. The Ti values are called messages. 
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A symbol dass Sj consists of a single symbol named Sj without a message. 
The symbol is called a signal. 

The symbol names SI, S2, ... , Sn must be distinct, and Tl, T2 , . .. , Tn must 
be names of known types. (Every type has a name and is said to be known 
within its scope.) The message types cannot be (or include) port types. 

Examples: 

1. A port type named stream with two symbol dasses named int and eos. 
Every int symbol indudes a message of type integer. The eos symbol 
is a signal: 

stream = [int(integer), eos]; 

2. A port type named PV with two signals P and V: 

PV = [P, V]; 

Note. Symbols of the same alphabet must have distinct names. Symbols 
of different alphabets may have the same names. Different symbols of the 
same alphabet may carry messages of the same type. 

Port variables 

PortAccess = VariableAccess . 

A variable v : T of a port type T holds a port value. If the value of v is 
nil T, a port access v denotes a non-existing channel; otherwise, it denotes a 
channel with the alphabet given by T. (The channel itself is not a variable, 
but a communication device shared by agents.) 

Examples: 

1. Access a port variable named inp: 

inp 

2. Access the ith element of an array of port variables named ring: 

ring[i] 
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Port statements 

Statement = PascalStatement I PortStatement I 
InputOutputStatement I PollingStatement I 
AgentStatement . 

PortStatement = "+" PortAccess . 

The creation of a new channel is called the activation of the channel. A 
port statement +c denotes activation of a new channel. The variable access 
c must be of a known port type T. 

When an agent executes the port statement, a new channel with the 
alphabet given by T is created and apointer to the channel is assigned to 
the port variable c. The agent is called the creator of the channel. The 
channel itself is known as an internal channel of the agent. The channel 
ceases to exist when its creator terminates. 

Examples: 

1. Create a new channel and assign the pointer to the port variable inp: 

+inp 

2. Create a new channel and assign the pointer to the port variable ring[i]: 

+ring[i] 

Input/output statements 

InputOutputCommand = OutputCommand I InputCommand . 
OutputCommand = PortAccess "!" OutputSymbol . 
OutputSymbol = SymbolName [ "(" OutputExpression ")" ] . 
OutputExpression = Expression . 
InputCommand = PortAccess "7" InputSymbol . 
InputSymbol = SymbolName [ "(" InputVariable ")" ] . 
InputVariable = VariableAccess . 
InputOutputStatement = InputOutputCommand . 

A communication is the transfer of a symbol from one agent to another 
through a channel. The sending agent is said to output the symbol, and the 
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receiving agent is said to input the symbol. The agents access the channel 
through local port variables. 

Consider an agent p which accesses a channel through a port variable 
b, and another agent q which accesses the same channel through a different 
port variable c. The port variables must be of the same type: 

An output command blsi(ei) denotes output of a symbol si(ei) through the 
channel denoted by the port variable b. Si must be the name of one of the 
symbol classes of T, and the expression ei must be of the corresponding 
message type Ti. 

An input command C?Si(Vi) denotes input of a symbol Si(Vi) through the 
channel denoted by the port variable c. Si must be the name of one of the 
symbol classes of T, and the variable access Vi must be of the corresponding 
message type Ti. 

When an agent p is ready to output the symbol Si on a channel, and 
another agent q is ready to input the same symbol from the same channel, 
the two agents are said to match and a communication between them is said 
to be feasible. If and when this happens, the two agents execute the output 
and input commands simultaneously. The combined effect is defined by the 
following sequence of actions: 

1. p obtains a value by evaluating the output expression ei. 

2. q assigns the value to its input variable Vi. 

(If the symbol Si is a signal, steps 1 and 2 denote empty actions.) 
After a communication, the agents proceed concurrently. 
When an agent reaches an input/output command which denotes a com­

munication that is not feasible, the behavior of the agent depends on whether 
the command is used as an input/output statement or as a polling command 
(defined in the next section). 

The effect of an input/output statement is to delay an agent until the 
communication denoted by the statement has taken place. 

The communications on a channel take pI ace one at a time. A channel 
can transfer symbols in both directions between two agents. 

A channel may be llsed by two or more agents. If more than two agents 
are ready to commllnicate on the same channel, it may be possible to match 
them in several different ways. The channel arbitrarily selects two matching 
agents at a time and lets them commllnicate. 
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Examples: 

1. Use the port variable out to output an int symbol with the message 
x + 1: 

out!int(x + 1) 

2. Use the port variable inp to input an int symbol and assign the message 
to y: 

inp?int(y) 

3. Use the port variable out to output an eos signal: 

out!eos 

4. Use the port variable inp to input an eos signal: 

inp?eos 

5. Use the port variable ring[ij to output a token signal: 

ring[i] !token 

Polling statements 

PollingStatement = 
"poIl" GuardedStatementList "end" 

GuardedStatementList = 

GuardedStatement { "I" GuardedStatcment } . 

GuardedStatement = Guard "->" StatementList . 
Guard = PollingCommand [ "&" PollingExpression] . 

PollingCommand = InputOutputCommand . 
PollingExpression = BooleanExpression . 

A polling statement 
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poIl 
Cl & BI - > SL I I 
C2 & B 2 -> SL2 I 

denotes execution of exactly one of the guarded statements 

Ci & Bi -> SLi 
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An agent executes a polling statement in two phases, known as the polling 
and completion phases: 

1. Polling: the agent examines the guards C1&B1, C2&B2 , ... , Cn&Bn 
cyclically until finds one with a polling command Ci that denotes a 
feasible communication and a polling expression Bi that denotes true 
(or is omitted). 

2. Completion: the agent executes the selected polling command Ci fol­
lowed by the corresponding statement list S Li. 

While an agent is polling, it can be matched only by another agent that 
is ready to execute an input/output statement. Two agents polling at the 
same time do not match. 

Example: 

Use a port variable named user to either (1) input a P signal (provided an 
integer x > 0) and decrement x, or (2) input a V signal and increment x: 

poIl 
user?P & x > 0 - > x := x-I I 
user?V - > x := x + 1 

end 

Note. Polling has no side-effects, but may cause program failure if the 
expression evaluation causes a range error (or overflow). 
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Agent statements 

J\gentStatell1ent = 
J\gentN all1e [ "(" J\ctualParall1eter List ")" 1 . 

J\ctualParall1eterList = 
J\ctualParall1eter { "," J\ctualParall1eter } . 

J\ctualParall1eter = Expression . 

An agent procedure P defines a dass of agents. The creation and start 
of an agent is called its activation. The activation of a P agent creates a new 
instance of every variable defined in procedure P. These variable instances 
are called the own variables of the newagent. When the agent refers to a 
variable x in P, it refers to its own instance of x. The own variables of an 
agent are inaccessible to other agents. 

An agent is always activated by another agent (called its creator). The 
new agent is called a subagent of its creator. After the creation, the subagent 
and its creator run concurrently. 

An agent statement 

denotes activation of a newagent. P must be the name of a known agent 
procedure (defined in the next section). The actual parameter list must 
contain an actual parameter ei for every formal parameter ai defined by P. 
ei must be an expression of the same type as ai. 

When an agent executes an agent statement, a subagent is created in 
two steps: 

1. The own variables of the subagent are created as follows: 

(a) The formal parameters of P are created one at a time in the order 
listed. Every formal parameter ai is assigned the value denoted 
by the corresponding actual parameter ei. 

(b) The variables defined in the procedure body of P are created with 
unpredictable initial values. 

2. The subagent is started. 

A port operand used as an actual parameter denotes a channel which is 
accessible to both the subagent and its creator. It is known as an external 
channel of the subagent. 
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An agent defined by a proeedure P may aetivate P reeursively. Every 
activation ereates a new P agent with its own variables. 

Example: 

Activate a semaphore agent with two actual parameters: the integer 1 and 
a port value named user: 

semaphore(l, user) 

Agent procedures 

AgentProcedure = "agent" AgentName ProcedureBlock ";" 
ProcedureBlock = 

[ "(" FormalParameterList ")" 1 ";" ProcedureBody . 
FormalParameter List = 

ParameterDefinition { ";" ParameterDefinition } . 
ParameterDefinition = 

VariableName { "," VariableName } ";" TypeName . 
ProcedureBody = 

[ ConstantDefinitionPart 1 [ TypeDefinitionPart 1 
{ AgentProcedure } [ VariableDefinitionPart 1 
CompoundStatement . 

An agent proeedure P defines a dass of agents. Every formal parameter 
is a loeal variable that is assigned the value of an expression when a P agent 
is aetivated. 

After its aetivation, a P agent exeeutes the eorresponding proeedure 
body in two steps: 

1. The agent exeeutes the eompound statement of P. 

2. The agent waits until all its subagents (if any) have terminated. At 
this point, the own variables and internal ehannels of the agent eease 
to exist, and the agent terminates. 

Example: semaphore 

An agent procedure that defines a semaphore wh ich accepts P and V signals: 
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Programs 

Program = 
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agent semaphore(x: integer; user: PV); 
begin 

while true do 
poIl 

end; 

user?P & x> 0 -> x := x-li 
user?V -> x := x + 1 

end 

[ ConstantDefinitionPart 1 [ TypeDefinitionPart 1 
AgentProcedure . 

A program defines an agent procedure P. The program is executed by 
activating and executing a single P agent (the initial agent). The activation 
of the initial agent is the result of executing an agent statement in another 
program (an operating system). A program communicates with its operat­
ing system through the extern al channels of the initial agent (the system 
channels). 

3 PROGRAM EXAMPLES 

The following examples illustrate the use of Joyce to implement stream pro­
cessing, functions, data representations, monitors and ring nets. The ex am­
pIes have been compiled and run on an IBM PC using a Joyce compiler and 
interpreter written in Pascal. 

Stream processing 

First, we look at agents that input and output bounded data streams. Every 
stream is a (possibly empty) sequence of integers ending with an eos signal: 

type stream = [int(integer), eos]; 

Example: generate 

An agent that generates an arithmetic progression ao, al,' .. , an-I, where 
ai = a + ixb: 

agent generate( out: stream; 
a, b, n: integer); 
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var i: integer; 
begin 

i := 0; 

while i < n do 

begin 

out!int(a + i*b); i := i + 1 
end; 

out!eos 

end; 

Example: copy 

An agent that copies a stream: 

agent copy(inp, out: stream); 

var more: boolean; x: integer; 

begin 
more := true; 

while more do 
pon 

inp?int(x) - > out!int(x) 1 

inp?eos -> more := false 

end; 
out!eos 

end; 

Example: merge 

An agent that outputs an arbitrary interleaving of two input streams: 

agent merge(inp1, inp2, out: stream); 

var n, x: integer; 

begin 

n:= 0; 

while n < 2 do 

pon 

inpl?int(x) - > out!int(x) 1 

inpl?eos -> n := n + 11 

inp2?int(x) -> out!int(x) 1 

inp2?eos -> n := n + 1 

475 
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end; 
outleos 

end; 
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A value input from one of the streams inpl and inp2 is immediately output. 
The agent terminates when both input streams have been exhausted (n = 
2). 

Example: SuppT'ess duplicates 

An agent that outputs a stream derived from an ordered input stream by 
suppressing duplicates: 

agent suppress(inp, out: stream); 

var more: boolean; x, y: integer; 

begin 

poIl 

inp?int(x) -> more := truel 
inp?eos -> more := false 

end; 

while more do 

poIl 
inp?int(y) -> 

ifx <> y then 
begin outlint(x); x := yendl 

inp?eos - > outlint(x); more := false 

end; 
out!eos 

end; 

Example: iterative buffeT' 

A buffer implemented as a pipeline of 10 copy agents: 

agent buffer(inp, out: stream); 

const n = 9; 

type net = array [Ln] of stream; 

use copy; 

var a: net; i: integer; 

begin 

+a[l]; copy(inp, all]); i := 2; 
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while i <= n da 
begin 

+a[iJ; copy(a[i-1], a[i]); i := i + 1 
end; 

copy(a[n], out) 

end; 

477 

The buffer agent is a composite agent which activates an array of copy agents 
and channels by iteration. The length n + 1 of the iterative array is specified 
by a constant n. During compilation, the use sentence is replaced by the 
text of the copy agent. 

This algorithm is an example of "information hiding". A user agent 
may regard the copy and buffer agents as different implementations of the 
same mechanism: a copying agent with an input and an output channel. 
The subagents and internal channels of the buffer agent are therefore made 
invisible to its environment. 

Example: recursive buffer 

A recursive version of the previous buffer: 

agent buffer(n: integer; inp, out: stream); 

use copy; 

var succ: stream; 

begin 
if n = 1 then copy(inp, out) 
else 

end; 

begin 

+succ; copy(inp, succ); 
buffer(n - 1, succ, out) 

end 

The length n of the recursive array is specified when it is activated. If n = 1, 
the buffer consists of a single copy agent only; otherwise, it consists of a copy 
agent followed by a buffer of length n - l. 

The next two examples illustrate the use of a programming paradigm 
known as a dynamic accumulator. This is a pipeline which uses an in­
put stream to compute another stream. The pipeline accumulates the new 
stream while it is being computed and outputs it as a whole when it is com­
plete. Every agent (except the last one) in the pipeline holds one element of 
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the new stream. The last agent is empty. Each time the pipeline has co m­
puted another element, the last agent receives an element and extends the 
pipeline with a new empty agent. Since the length of the computed stream 
is not known apriori, the pipeline begins as a single empty agent. At the 
end of the input stream, the pipeline outputs the elements of the computed 
stream one at a time and terminates. 

Example: recursive sorting 

Adynamie accumulator that inputs a (possibly empty) stream and outputs 
the elements in non-decreasing order: 

agent sort(inp, out: stream); 

var more: boolean; x, y: integer; 

suce: stream; 

begin 

poIl 

inp?int(x) - > +suce; 

sort(suce, out); more := true;1 

inp?eos - > out!eos; more := false 

end; 
while more do 

poIl 

end; 

inp?int(y) -> 
ifx > y then 

begin succ!int(x); x := yend 

else suec!int(y) I 
inp?eos - > out!int(x); 

succ!eos; more := false 

end 

The sorting agents share a common output channel. Initially, an agent 
is the last one in the chain and is empty. After receiving the first value from 
its predecessor, the agent creates a successor and becomes non-empty. The 
agent now inputs the rest of the stream from its predecessor and keeps the 
smallest value x received so far. The rest it sends to its successor. When 
the agent inputs an eos signal it terminates as folIows: if it is empty, the 
agent sends eos through the common channel; otherwise it outputs x on the 
common channel and sends eos to its successor. 
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As an example, while sorting the sequence 

3, 1, 2, eos 

the accumulator s starts as a single empty agent denoted by < cjJ > and is 
extended by a new agent for every value input: 

Initially: s =< cp > 
After inputting 3: s =< 3 >, < cP > 
After inputting 1: s =< 1 >, < 3 >, < cP > 
After inputting 2: s =< 1 >, < 2 >, < 3 >, < cP > 

The sorting accumulator may be tested by means of a pipeline with three 
agents: 

agent pipelineI; 
use generate, sort, print; 
var a, b: stream; 
begin 

+a; +b; generate(a, 10, -1, 10); 

sort( a, b); print(b) 
end; 

The print agent accepts a stream and prints it. 
The next pipeline merges two unordered streams, sorts the results, sup­

presses duplicates and prints the rest: 

agent pipeline2; 
use generate, merge, sort, suppress, print; 
var a, b, c, cl, e: stream; 
begin 

+a; +b; +c; +cl; +e; 
generate(a, 1, 1,10); 

generate(b, 10, -1, 10); 

merge(a, b, c); sort(c, cl); 
suppress(cl, e); print(e) 

end; 

Example: prime sieve 

Adynamie accumulator that inputs a finite sequence of natural numbers 1, 
2, 3, ... , n and outputs those that are primes: 
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agent sieve(inp, out: stream); 
var more: boolean; x, y: integer; 

succ: stream; 

begin 
poIl 

inp?int(x) - > +succ; 
sieve(succ, out); more := truel 

inp?eos -> out!eos; more := false 
end; 

while more do 
poIl 

inp?int(y) - > 
ify mod x<> 0 then succ!int(y)I 

inp?eos -> out!int(x); 
succ!eos; more := false 

end; 
end; 

Initially, a sieve agent inputs a prime x from its predecessor and activates a 
successor. The agent then skips all further input which is divisible by x and 
sends the rest to its successor. At the end, the agent sends x through the 
common channel and sends eos either to its successor (if any) or through the 
output channel. 

The sieve can be optimized somewhat by letting every agent output its 
prime as soon as it has been input. The present form of the algorithm was 
chosen to show that the sort and sieve agents are almost identical variants 
of the same programming paradigm. (They differ in one statement only!) 

Since 2 is the only even prime, we mayas well feed the sieve with odd 
numbers 3, 5, 7, ... only. The following pipeline prints all primes between 3 
and 9999: 

agent primes; 

use generate, sieve, print; 

var a, b: stream; 
begin 

+a; +b; generate(a, 3, 2, 4999); 

sieve( a, b); print(b) 

end; 
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Function evaluation 

A function f(x) can he evaluated hy activating an agent with two parameters 
denoting the argument x and a channel. The agent evaluates f(x), outputs 
the result on the channel and terminates. 

A procedure can he implemented similarly. 

Example: recursive Fibonacci 

An agent that computes a Fihonacci numher recursively hy means of a tree 
of suhagents: 

type func = [val(integer)]; 

agent fibonacci(f: func; x: integer); 
var g, h: func; y, z: integer; 

beg in 

if x <= 1 then f!val(x) 
else 

begin 

+g; fibonacci(g, x-I); 
+h; fibonacci(h, x - 2); 
g?val(y); h?val(z); f!val(y + z) 

end 

end; 

Data representation 

An agent can also implement a set of operations on a data representation. 

Example: recursive set 

Problem. Represent a set of integers as an agent with an input and an 
output channel. Initially, the set is empty. The set agent accepts three 
kinds of commands from a single user agent only: 

1. Insert an integer n in the set: 

inp!insert(n) 

2. Return a hoolean b indicating if n is in the set: 
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inp!has( n); out?return(b) 

3. Delete the set: 

inp!delete 

Solution. 

type 

setinp = [insert(integer), has(integer), delete]; 
set out = [return(boolean)]; 

agent intset(inp: setinp; out: setout); 
type state = (empty, nonempty, deleted); 
var s: state; x, y: integer; succ: setinp; 

begin 
s := empty; 
while s = empty do 

poIl 

inp?insert(x) -> +succ; 
intset(succ, out); s := nonemptyl 

inp?has(x) -> out!return(false)I 
inp?delete - > s := deleted 

end; 
while s = nonempty do 

poIl 

end; 

inp?insert(y) -> 

ifx> y then 
begin succ!insert(x); x := yend 

else ifx < y then succ!insert(y)I 

inp?has(y) -> 

if x >= y then out!return(x = y) 

else succ!has(y)I 

inp?delete - > succ!delete; s := deleted 

end 

The set agent is very similar to the sort and sieve agents. It contains either 
one member of the set or none. Initially, the agent is empty and answers false 
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to all membership queries. After the first insertion, it aetivates an empty 
sueeessor to whieh it passes any eommand it eannot handle. To speed up 
proeessing, the set is ordered. Many insertions ean proeeed simultaneously in 
the pipeline. Insertion of an already existing member has no effect. A delete 
signal propagates through all the set agents and makes them terminate. 

Monitors 

A monitor is a seheduling agent that enables two or more user agents to 
share a resouree. The user agents ean invoke operations on the resouree one 
at a time only. A monitor may use boolean expressions to delay operations 
until they are feasible. 

Example: ring buffer 

A monitor that implements a non-terminating ring buffer whieh can hold up 
to ten messages: 

agent buffer(inp, out: stream); 
const n = 10; 
type contents = array [Ln] of integer; 
var head, tail, length: integer; 

ring: contents; 
begin 

head := 1; tail := 1; length := 0; 

while true do 

end; 

poIl 
inp?int(ring[tail]) & length < n - > 

tail := tail fiod n + 1; 

length : = length + 11 
out!int(ring[head]) & length > 0 -> 

head := head fiod n + 1; 
length : = /ength - 1 

end 

An empty buffer may input a message only. A full buffer may output only. 
When the buffer contains at least. one and at most ni ne values, it is ready 
either to input or to output a message. 
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Example: scheduled printer 

A monitor that gives one user agent at a time exdusive access to a printer 
during a sequence of write operations. The user agent must open the printer 
before writing and dose it afterwards: 

type printsym = [open, write(char), dose]; 

agent printer(user: printsym); 

var more: boolean; x: char; 

begin 

while true do 

begin 

end; 

user?open; more := true; 

while more do 

end 

poll 
user?write(x) - > print(x) I 

user?dose -> more := false 

end 

When the printer has received an open symbol from a user agent, it accepts 
onlya (possibly empty) sequence of write symbols followed by a dose symbol. 
This protocol prevents other agents from opening the printer and using it 
simultaneously. (The details of printing are ignored.) 

Ring nets 

So far, we have only considered agents connected by acydic nets of channels. 
In the final example, the agents are connected by a cydic net of channels. 

Example: nim players 

Prom a pile of 20 coins, three players take turns picking one, two or three 
coins from the pile. The player forced to pick the last coin loses the game. 

The game is simulated by three agents connected by a ring of three 
channels. When the game begins, one of the agents receives all the coins: 

agent nim; 

use player; 

var a, b, c: stream; 
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begin 
+a; +b; +c; player(20, a, b); 
player(O, b, c); player(O, c, a); 

end; 

The players behave as follows: 

agent player(pile: integer; 
pred, succ: stream); 

var more: boolean; 
begin 

if pile > ° then succ!int(pile - 1); 
more := true; 
while more do 

end; 

pon 

pred'?int(pile) - > 
if pile > 1 then succ!int(pile - 1) 
else { loser } 

begin 
succ!eos; pred'?eos; more := false 

endl 
pred!eos - > succ!eos; more := false 

end 
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When an agent receives the pile from its predecessor, it reduces it and sends 
the rest (if any) to its successor. (To simplify the algorithm slightly, an 
agent always removes a single coin). The agent that picks the last coin 
sends eos to its successor and waits until the signal has passed through the 
other two agents and comes back from its predecessor. At that point, the 
loser terminates. When a non-losing agent receives eos instead of a pile, it 
passes the signal to its successor and terminates. 

The dining philosophers problem (Hoare 1978) is another example of a 
ring net. It is left as an exercise to the reader. 

4 DESIGN ISSUES 

The following motivates some of the design decisions of Joyce. 
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Terminology and notation 

In the literat ure, the word "process" often denotes a sequential process. 
Since a composite agent is not sequential, I prefer to use another word for 
communicating machines (namely, "agents"). 

It was tempting to use the notation of CSP (Hoare 1978) or one of 
the successors of Pascal, for example Modula-2 (Wirth 1982). However, 
in spite of its limitations, Pascal has a readable notation which is familiar to 
everyone. Chosing a pure Pascal subset has enabled me to concentrate on 
the concurrent aspects of Joyce. 

Indirect naming 

One of the major advantages of monitors is their ability to communicate 
with processes and schedule them without being aware of process names. 
Joyce agents also refer indirectly to one another by means of port variables. 

In CSP, an input/output command must name the source or destination 
process directly. The text of a process must therefore be modified when it is 
used in different contexts. This complicates the examples in (Hoare 1978): 
the user of a process array 8(1..n) is itself named 8(0)! And the prime sieve 
is composed of three different kinds of processes to satisfy the naming rules. 

Direct process naming also makes it awkward to write a server with 
multiple clients of different kinds (such as the scheduled printer). If the 
clients are not known apriori, it is in fact impossible. 

ECSP and RBCSP use process variables for indirect naming. CSP80, 
occam, Planet and a theoretical variant of CSP, which I shall call TCSP 
(Hoare 1985), use ports or channels. 

Message declarations 

So far, the most common errors in Joyce programs have been type errors in 
input/output commands. I am therefore convinced that any CSP language 
must include message declarations which permit complete type checking dur­
ing compilation. In this respect, CSP and occam are insecure languages. 
Although ECSP does not include message declarations, the compiler per­
forms type checking of messages after recognizing (undeclared) channels by 
statement analysis. 

The simplest idea is to declare channels which can transfer messages of 
a single type only (as in CSP80 or Planet). But this does not even work 
well for a simple agent that co pies a bounded stream. Such an agent needs 
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two ehannels, both eapable of transferring two different kinds of symbols. 
Otherwise, four ehannels are required: two for stream values and two for eos 
signals. 

As a modest inerease in complexity, I eonsidered a channel which ean 
transfer messages of a finite number of distinet types Tl, T2 , . .. , Tn . But 
this proposal is also problematic sinee (1) it is neeessary to treat signals 
as distinet data types, and (2) an agent still needs multiple ehannels to 
distinguish between different kinds of messages of the same type (such as 
the has and insert symbols in the intset example). 

To avoid a eonfusing proliferation of ehannels, the ability to define chan­
nel alphabets with named symbols seems essential. The symbol names play 
the same role as the (undeclared) "constructors" of CSP or the procedure 
names of monitors: they deseribe the nature of an event in whieh a process 
participates. 

Channel sharing 

The intset pipeline is made simpler and more efficient by the use of a single 
output ehannel shared by all the agents. A set agent which reeeives a query 
about the member it hoIds ean immediately output the answer through the 
eommon ehannel instead of sending it through all its sueeessors. This im­
provement was suggested in (Dijkstra 1982). 

Channel sharing also simplifies the scheduled printer. If every ehannel 
ean be used by two processes only, it is necessary to connect a resouree 
process to multiple users by means of a quantifier called a "replieator." 

I expeet channel sharing to work well for lightly used resourees. But, 
if a shared resouree is used heavily, some user agents may be bypassed by 
others and thus prevented from using the resouree. In such eases, it may be 
neeessary to introduce separate user ehannels to achieve fairness. 

Output polling 

In CSP, ECSP, RBCSP and oceam, polling is done by input commands only. 
This restrietion prevents asender and receiver from polling the same channel 
simultaneously. Unfortunately, it also makes the input and output of a ring 
buffer asymmetrie (Hoare 1978). 

Like CSP80 and TCSP, Joyce permits both input and output polling. It 
is the programmer's responsibility to ensure that a polling agent is always 
matched by an agent that executes an input/output statement. This prop-
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erty is automatically satisfied in a hierarchical system in which every agent 
poIls its masters only (Silberschatz 1979). 

Polling loops 

CSP includes a polling loop that terminates when all the processes polled 
have terminated. Hoare (1985) remarks: "The trouble with this convention 
is that it is complicated to define and implement." 

In RBCSP, a process waiting for input from a terminated process is 
terminated only when all processes are waiting or terminated. 

A Joyce agent terminates when it reaches the end of its procedure. This 
is a much more flexible mechanism which enables an agent to send a termi­
nation signal to another agent without terminating itself. 

I resisted the temptation to include polling loops, such as 

do inp?int(x) -> out!int(x) 
until inp?eos -> out!eos end 

Although this simplifies the copy and printer agents, it cannot be used di­
rectly in the other examples. It may even complicate programs, if it is used 
where it is inappropriate. 

U nbounded activation 

In CSP one can activate only a fixed number of processes simultaneously. 
If these processes terminate, they do it simultaneously. A process cannot 
activate itself recursively. It is, however, possible to activate a fixed-length 
array of indexed processes which can imitate the behavior (but not quite the 
elegance) of a recursive process. 

Joyce supports unbounded (recursive) agent activation. The beauty of 
the recursive algorithms is sufficient justification for this feature. The ability 
to activate identical agents by iteration and recursion removes the need for 
indexed agents (as in CSP, RBCSP, Planet and occam). The rule that an 
agent terminates only when all its subagents have terminated was inspired 
by the task concept of Ada (Roubine 1980). 

Procedures and functions 

To force myself to make agents as general as possible, I excluded ordinary 
procedures and functions from Joyce. As a result, I feIt obliged to design an 
agent concept wh ich includes the best features of Pascal procedures: value 
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parameters, recursion and efficient implementation. Although agent proce­
dures may be recursive, every agent has one instance only of its own vari­
ables. Consequently, a compiler can determine the lengths of agent activation 
records. This simplifies storage allocation considerably. 

Security 

A programming language is secure if its compiler and run-time support can 
detect all violations of the language rules (Hoare 1973). Programs written in 
an insecure language may cause obscure system-dependent errors which are 
inexplicable in terms of the language report. Such errors can be extremely 
difficult to locate and correct. 

Joyce is a far more seeure language than Pascal (Welsh 1977). A compiler 
can check message types and ensure that agents use disjoint sets of variables 
only. (The disjointness is automatically guaranteed by the syntax and scope 
rules.) 

When an agent is activated, every word of its activation record may be 
set to nil. Afterwards a simple run-time check can detect unitialized port 
variables. 

There are no dangling references, either, to channels that have ceased to 
exist. Every port variable of an agent is either nil or points to an internal or 
extern al channel of the agent. Now, an internal channel exists as long as the 
agent and its port variables exist. And an external channel exists as long as 
the ancestor that created it. This ancestor, in turn, exists at least as long 
as the given agent. So, a port variable is either nil or points to an existing 
channel. 

Implementability 

The first Joyce compiler is a Pascal program of 3300 lines wh ich generates 
P-code. The code is currently interpreted by a Pascal program of 1000 lines. 
(Reals are not implemented yet.) The surprisingly simple implementation 
of agents and channels will be described in a future paper. 

Proof rules 

The problems of finding proof rules for Joyce are currently being studied and 
are not discussed here. However, the algorithms shown have a convincing 
simplicity that makes me optimistic in this respect. 
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Language comparison 

Table 1 summarizes the key features of the CSP languages (except TCSP). 

Table 1 

CSP occam ECSP Planet RBCSP CSP80 Joyce 
Indirect naming + + + + + + 
Message declaration + + + + 
Input polling + + + + + + 
Output polling + + 
Recursion + 

Hoare (1978) emphasized that CSP should not be regarded as suitable 
for use as a programming language but only as a partial solution to the 
problems tackled. However, all that remained to be done was to modify these 
concepts. CSP is still the foundation for the new generation of concurrent 
programming languages discussed here. 

5 FIN AL REMARKS 

This paper has presented a secure programming language wh ich removes 
several restrictions of the original CSP proposal by introducing: 

l. port variables 

2. channel alphabets 

3. output polling 

4. channel sharing 

5. recursive agents 

The language has been implemented on a personal computer. 
More work remains to be done on verification rules and implementation 

of the language on a parallel computer. The language needs to be used 
extensively for the design of parallel algorithms before a final evaluation can 
be made. 
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SUPERPASCAL: 
A PUBLICATION LANGUAGE FOR 

PARALLEL SCIENTIFIC COMPUTING 
PER BRINCH HANSEN 

(1994) 

Parallel computers will not become widely used until scientists and engineers 

adopt a common programming language for publication of parallel scientific 

algorithms. This paper describes the publication language SuperPascal by ex­

amples. SuperPascal extends Pascal with deterministic statements for parallel 

processes and synchronous message communication. The language permits 

unrestricted combinations of recursive procedures and parallel statements. 

SuperPascal omits ambiguous and insecure features of Pascal. Restrictions 

on the use of variables enable a single-pass compiler to check that parallel 

processes are disjoint, even if the processes use procedures with global vari­

ables. A portable implementation of SuperPascal has been developed on a Sun 

workstation under Unix. 

1 INTRODUCTION 

One of the major challenges in computer science today is to develop effective 
programming tools for the next generation of parallel computers. It is equally 
important to design educational programming tools for the future users of 
parallel computers. Since the 1960s, computer scientists have recognized the 
distinction between publication languages that emphasize clarity of concepts, 
and implementation languages that refiect pragmatic concerns and historical 
traditions (Forsythe 1966; Perlis 1966). I believe that parallel computers 

P. Brinch Hansen, SuperPascal-A publication language for parallel scientific computing. 
Concurrency-Practice and Experience 6, 5 (August 1994),461-483. Copyright © 1994, 
John Wiley & Sons, Ltd. Reprinted by permission. 
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will not become widely used until scientists and engineers adopt a common 
programming language for publication of parallel scientific algorithms. 

It is instructive to consider the historical role of Pascal as a publication 
language for sequential computing. The first paper on Pascal appeared in 
1971 (Wirth 1971). At that time, there were not very many textbooks 
on computer science. A few years later, universities began to use Pascal 
as the standard programming language for computer science courses. The 
spreading of Pascal motivated authors to use the language in textbooks for a 
wide variety of computer seience courses: introductory programming (\iVirth 
1973), operating systems (Brinch Hansen 1973), program verification (Alagic 
1978), compilers (Welsh 1980), programming languages (Tennent 1981), and 
algorithms (Aho 1983). In 1983, IEEE acknowledged the status of Pascal as 
the lingua franca of computer seien ce by publishing a Pascal standard (IEEE 
1983). Pascal was no longer just another programming tool for computer 
users. It had become a thinking tool for researchers exploring new fields in 
computer seience. 

We now face a similar need for a common programming language for 
students and researchers in computational science. To understand the re­
quirements of such a language, I spent three years developing a collection of 
model programs that illustrate the use of structured programming in parallel 
scientific computing (Brinch Hansen 1993a). These programs solve regular 
problems in science and engineering: linear equations, n-body simulation, 
matrix multiplication, shortest paths in graphs, sorting, fast Fourier trans­
forms, simulated annealing, primality testing, Laplace's equation, and forest 
fire simulation. I wrote these programs in occam and tested their perfor­
mance on a Computing Burface configured as a pipeline, a tree, a cube, or a 
matrix of transputers (Inmos 1988; McDonald 1991). 

This practical experience led me to the following conclusions about the 
future of parallel scientific computing (Forsythe 1966; Dunham 1982; May 
1989; Brinch Hansen 1993a): 

1. A general-purpose parallel computer of the near future will probably 
be a multicomputer with tens to thousands of processors with local 
memories only. The computer will support automatie routing of mes­
sages between any pair of processors. The hardware architecture will 
be transparent to programmers, who will be able to connect processors 
arbitrarily by virtual communication channels. Such a parallel com­
puter will enable programmers to think in terms of problem-oriented 
process configurations. There will be no need to map these configura-
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tions onto a fixed architecture, such as a hypercube. 

2. The regular problems in computational science can be solved efficiently 
by deterministieparallel computations. I have not found it necessary to 
use a statement that enables a parallel process to poll several channels 
until a communication takes place on one of them. Nondeterministic 
communication is necessary at the hardware level in a routing net­
work, but appears to be of minor importance in parallel programs for 
computational science. 

3. Parallel scientific algorithms can be developed in an elegant publica­
tion language and tested on a sequential computer. When an algo­
rithm works, it can easily be moved to a particular multicomputer by 
rewriting the algorithm in another programming language chosen for 
pragmatic rather than intellectual reasons. Subtle parallel algorithms 
should be published in their entirety as executable programs written in 
a publication language. Such programs may serve as models for other 
scientists, who wish to study them with the assurance that every detail 
has been considered, explained, and tested. 

A publication language for computational science should, in my opinion, 
have the following properties: 

1. The language should extend a widely used standard language with 
deterministic parallelism and message communication. The extensions 
should be defined in the spirit of the standard language. 

2. The language should make it possible to program arbitrary config­
urations of parallel processes connected by communication channels. 
These configurations may be defined iteratively or recursively and cre­
ated dynamically. 

3. The language should enable a single-pass compiler to check that paral­
lel processes do not interfere in a time-dependent manner. This check 
is known as syntactic interference contral. 

The following describes SuperPascal-a publication language for par­
allel scientific computing. SuperPascal extends Pascal with deterministic 
statements for parallel processes and synchronous communication. The lan­
guage permits unrestricted combinations of recursive procedures and parallel 
statements. SuperPascal omits ambiguous and insecure features of Pascal. 
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Restrictions on the use of variables per mit a single-pass compiler to check 
that parallel processes are disjoint, even if the processes use procedures with 
global variables. 

Since the model programs cover a broad spectrum of algarithms far scien­
tific computing, I have used them as a guideline for language design. Super­
Pascal is based on well-known language features (Dijkstra 1968; Hoare 1971, 
1972, 1985; Ambler 1977; Lampson 1977; IEEE 1983; Brinch Hansen 1987; 
Inmos 1988). My only contribution has been to select the smallest number of 
concepts that enable me to express the model programs elegantly. This paper 
illustrates the parallel features of SuperPascal by examples. The SuperPas­
cal language report defines the syntax and semantics concisely and explains 
the differences between SuperPascal and Pascal (Brinch Hansen 1994a). The 
interference control is further discussed in (Brinch Hansen 1994b). 

A portable implementation of SuperPascal has been developed on a Sun 
workstation under Unix. It consists of a compiler and an interpreter writ­
ten in Pascal. The SuperPascal compiler is based on the Pascal compiler 
described and listed in (Brinch Hansen 1985). The compiler and interpreter 
are in the public domain. You can obtain the SuperPascal software by us­
ing anonymous FTP from the directory pbh at top. cis.syr. edu. The software 
has been used to rewrite the model programs for computational science in 
SuperPascal. 

2 A PROGRAMMING EXAMPLE 

I will use pieces of a model program to illustrate the features of SuperPascal. 
The Miller-Rabin algorithm is used for primality testing of a large integer 
(Rabin 1980). The model program performs p probabilistic tests of the 
same integer simultaneously on p processors. Each test either proves that 
the integer is composite, ar it fails to prove anything. However, if, say, 40 
trials of a 160-digit decimal number all fail, the number is prime with virtual 
certainty (Brinch Hansen 1992a, 1992b). 

The program performs multiple-length arithmetic on natural numbers 
represented by arrays of w digits (plus an overflow digit): 

type nu mb er = array [O .. w] of integer; 

A single trial is defined by a procedure with the heading 

procedure test(a: number; seed: real; 
var composite: boolean) 
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Each trial initializes a random number generator with a distinct seed. 
The parallel computation is organized as a ring network consisting of 

a master process and a pipeline connected by two communication channels 
(Fig. 1). 

pipeline 

right 

master 

Figure 1 A ring network. 

The pipeline consists of p identical, parallel nodes connected by p + 1 
communication channels (Fig. 2). 

~c~ 
~---~ 

Figure 2 A pipeline. 

The master sends a number through the pipeline and receives p boolean 
values from the pipeline. The booleans are the results of p independent trials 
performed in parallel by the nodes. 

3 MESSAGE COMMUNICATION 

3.1 Communication channels 

The communication channels of SuperPascal are deterministic synchronaus 
channels: 

1. A channel can transmit one message at a time in either direction be­
tween two parallel processes. 
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2. Before a communication, a process makes a deterministic selection of 
a communication channel, a communication direction, and a message 
type. 

3. A communication takes place when one process is ready to send a 
message of some type through a channel, and another process is ready 
to receive a message of the same type through the same channel. 

3.2 Channel and message types 

A channel is not a variable, but a communication medium shared by two 
parallel processes. Each channel is created dynamically and identified by a 
distinct value, known as a channel reference. A variable that holds a channel 
reference is called a channel variable. An expression that denotes a channel 
reference is called a channel expression. These concepts are borrowed from 
Joyce (Brinch Hansen 1987). 

As an example, the declarations 

type chan ne 1 = *(boolean, number); 
var left: channel; 

define a new type, named channel, and a variable of this type, named leit. 
The value of the variable is a reference to a channel that can transmit mes­
sages of types boolean and number only. 

In general, a type definition of the form 

introduces a new channel type T. The values of type T are an unordered set 
of channel references created dynamically. Each channel reference of type T 
denotes a distinct channel that can transmit messages of types Tl, T2 , ... ,Tn 

only (the message types). 

3.3 Channel creation 

The effect of an open statement 

open(v) 

is to create a new channel and assign the corresponding channel reference 
to a channel variable v. The channel reference is of the same type as the 
channel variable. 

The abbreviation 
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is equivalent to 

begin open(vd; open(v2"'" vn ) end 

As an example, two channels, Zeft and right, can be opened as follows 

open(left, right) 

or as shown below 

begin open(left); open(right) end 

A channel exists until the program execution ends. 

3.4 Communication procedures 

Consider a process that receives a number a through a channel, Zeft, and 
sends it through another channel, right: 

var left, right: channel; a: number; 
receive(left, a); send(right, a) 

The message communication is handled by two required procedures, send 
and receive. 

In general, a send statement 

send(b, e) 

denotes output of the value of an expression e through the channel denoted 
by an expression b. The expression b must be of a channel type T, and the 
type of the expression e must be a message type of T. 

A receive statement 

receive( c, v) 

denotes input of the value of a variable v through the channel denoted by an 
expression c. The expression c must be of a channel type T, and the type of 
the variable v must be a message type of T. 

The send and receive operations defined by the above statements are said 
to match if they satisfy the following conditions: 
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1. The channel expressions band c are of the same type T and denote 
the same channel. 

2. The output expression e and the input variable v are of the same type, 
which is a message type of T. 

The execution of a send operation delays a process until another process 
is ready to execute a matching receive operation (and vice versa). If and 
when this happens, a communication takes place as follows: 

1. The sen ding process obtains a value by evaluating the output expres­
sion e. 

2. The receiving process assigns the value to the input variable v. 

After the communication, the sending and receiving processes proceed 
independently. 

The abbrevation 

is equivalent to 

begin send(b, el); send(b, e2, .. . , en ) end 

Similarly, 

is equivalent to 

begin receive(c, vI); receive(c, V2, ... , vn ) end 

The following communication erTOrs are detected at run-time: 

1. Undefined channel reference: A channel expression does not denote a 
channel. 

2. Channel contention: Two parallel processes both attempt to send (or 
receive) through the same channel at the same time. 
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3. Message type errar: Two parallel processes attempt to communicate 
through the same channel, but the output expression and the input 
variable are of different message types. 

Message communication is illustrated by two procedures in the primality 
testing program. The master process, shown in Fig. 1, sends a number a 
through its left channel, and receives p booleans through its right channel. 
If at least one of the booleans is true, the number is composite; otherwise, 
it is considered to be prime (Algorithm 1). 

procedure master( 
a: number; var prime: boolean; 
left, right: channel); 

var i: integer; composite: boolean; 
begin 

send (left, a); prime := true; 
for i : = 1 to P do 

end; 

begin 
receive( right, composite); 
if composite then 

prime : = false 
end 

Algorithm 1 Master. 

The pipeline nodes, shown in Fig. 2, are numbered 1 through p. Each 
node receives a number a through its left channel, and sends a through its 
right channel (unless the node is the last one in the pipeline). The node 
then tests the number for primality using the node index i as the seed of 
its random number generator. Finally, the node outputs the boolean result 
of its own trial, and copies the results obtained by its i-I predecessors (if 
any) in the pipeline (Algorithm 2). 

3.5 Channel arrays 

Since channel references are typed values, it is possible to define an array of 
channel refer~nces. A variable of such a type represents an array of channels. 

The pipeline no des in Fig. 2 are connected by a row of channels created 
as folIows: 
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procedure node(i: integer; 
left, right: channel); 

var a: number; j: integer; 
composite: boolean; 

begin 
receive(left, a); 
if i < P then send(right, a); 
test(a, i, composite); 
send(right, composite); 
for j : = 1 to i-I do 

end; 

begin 
receive(left, composite); 
send(right, composite) 

end 

Algorithm 2 Node. 

type channel = *(boolean, number); 
row = array [O .. p] of channel; 

var c: row; i: integer; 
for i := 0 to p do open( c[i]) 

Later, I will program a matrix of processes connected by a horizontal and 
a vertical matrix of channels. The channel matrices, hand v, are defined 
and initialized as folIows: 

type 
row = array [O .. q] of channel; 
net = array [O .. q] of row; 

var h, v: net; i, j: integer; 
for i : = 0 to q do 

for j : = 0 to q do 
open(h[i,j], v[i,j]) 

3.6 Channel variables 

The value of a channel variable v of a type T is undefined, unless a channel 
reference of type T has been assigned to v by executing an open statement 

open( v) 

or an assignment statement 
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v:= e 

If the value of the expression e is a channel reference of type T, the effect of 
the assignment statement is to make the values of v and e denote the same 
channel. 

If e and f are channel express ions of the same type, the boolean expres­
sion 

e=! 

is true, if e and f denote the same channel, and is false otherwise. The 
boolean expression 

e <>! 

is equivalent to 

not (e = J) 

In the following example, the references to two channels, left and right, 
are assigned to the first and last elements of a channel array c: 

c[O] := left; c[p] ;= right 

After the first assignment, the value of the boolean expression 

c[O] = left 

is true. 

4 PARALLEL PROCESSES 

4.1 Parallel statements 

The effect of a parallel statement 

parallel 5\1521 ... ISn end 
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procedure ring( a: number; 
var prime: boolean); 

var left, right: ehannel; 
begin 

open(left, right); 
parallel 

pi peline (left, right) I 
master( a, prime, left, right) 

end 
end; 

Algorithm 3 Ring. 

is to execute the process statements 8 1 , 8 2 , ... , 8 n as parallel processes until 
all of them have terminated. 

Algorithm 3 defines a ring net that determines if a given integer a is 
prime. The ring, shown in Fig. 1, consists of two parallel processes, a master 
and a pipeline, which share two channels. The master and the pipeline run 
in parallel until both of them have terminated. 

A parallel statement enables you to run different kinds of algorithms 
in parallel. This idea is useful only for a small number of processes. It 
is impractical to write thousands of process statements, even if they are 
identical. 

4.2 Forall statements 

To exploit parallel computing with many processors, we need the ability to 
run multiple instances of the same algorithm in parallel. 

As an example, consider the pipeline for primality testing. From the 
abstract point of view, shown in Fig. 1, the pipeline is a single process with 
two external channels. At the more detailed level, shown in Fig. 2, the 
pipeline consists of an array of identical, parallel no des connected by a row 
of channels. 

Algorithm 4 defines the pipeline. 
The first and last elements of the channel array c 

e[O] = left e[p] = right 

refer to the external channels of the pipeline. The remaining elements 
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procedure pipeline(left, right; ehannel); 
type row = array [O .. p] of ehannel; 
var e; row; i; integer; 
begin 

e[O] ;= left; e[p] ;= right; 
for i ; = 1 to P - 1 do 

open(e[i]); 
forall i ;= 1 to p do 

node(i, e[i -1], e[i]) 
end; 

Algorithm 4 Iterative pipeline. 

e[l], e[2], ... , e[p-1] 

denote the internal ehannels. 
For p :2 1, the statement 

forall i ;= 1 to p do 
node(i, e[i-1], e[i]) 

is equivalent to the following statement (whieh is too tedious to write out in 
full for a pipeline with more than, say, ten no des ): 

parallel 
node(1, e[O], c[l])1 
node(2, c[l], e[2]) 1 

node(p, e[p-1], e[p]) 
end 

The variable i used in the farall statement is not the same variable as 
the variable i declared at the beginning of the pipeline proeedure. 

In the farall statement, the clause 

i ;= 1 to p 

is a declaratian of an index variable i that is loeal to the proeedure statement 

node(i, e[i-1], e[i]) 
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Each node process has its own instance of this variable, which holds a distinct 
index in the range from 1 to p. 

It is a coincidence that the control variable of the for statement and 
the index variable of the forall statement have the same identifier in this 
example. However, the scopes of these variables are different. 

In general, a forall statement 

forall i := el to e2 do S 

denotes a (possibly empty) array of parallel processes, called element pro­
cesses, and a corresponding range of values, called process indices. The lower 
and upper bounds of the index range are denoted by two expressions, el and 
e2, of the same simple type. Every index value corresponds to aseparate 
element process defined by an index variable i and an element statement S. 

The index variable declaration 

introduces the variable i that is local to S. 
A forall statement is executed as follows: 

1. The expressions, el and e2, are evaluated. If el > e2, the execution of 
the forall statement terminates; otherwise, step 2 takes place. 

2. e2 - el + 1 element processes run in parallel until all of them have ter­
minated. Every element process creates a local instance of the index 
variable i, assigns the corresponding process index to the variable, and 
executes the element statement S. When an element process term i­
nates, its local instance of the index variable ceases to exist. 

A model program for solving Laplace 's equation uses a process matrix 

(Brinch Hansen 1993b). Figure 3 shows a q x q matrix of parallel nodes 
connected by two channel matrices, hand v. 

Each node process is defined by a procedure with the heading: 

procedure node(i, j: integer; 
up, down, left, right: channel) 

Anode has a pair of indices (i, j) and is connected to its four nearest neigh­
bors by channels, up, down, left, and right. 

The process matrix is defined by nested forall statements: 
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Figure 3 A process matrix. 

forall i := 1 to q do 
forall j := 1 to q do 

node(i, j, v[i-l,j], v[i,j], h[i,j-l], h[i,j]) 

4.3 Recursive parallel processes 

SuperPascal supports the beautiful concept of recursive parallel processes. 
Figure 4 illustrates a recursive definition of a pipeline with p nodes: 

node pipeline 

---D-{f 
left middle right 

(a) 

node 

~ 
left right 

(b) 

Figure 4 A recursive pipeline. 
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1. If p > 1, the pipeline consists of a single node followed by a shorter 
pipeline of p - 1 nodes (Fig. 4a). 

2. If p = 1, the pipeline consists of a single node only (Fig. 4b). 

The pipeline is defined by combining a recursive procedure with a parallel 
statement (Algorithm 5). 

procedure pipeline(min, max: integer; 
left, right: channel); 

var middle: channel; 
begin 

if min < max then 
begin 

open(middle); 
parallel 

node(min, left, middle)I 
pipeline(min + 1, max, 

middle, right) 
end 

end 
else node(min, left, right) 

end; 

Algorithm 5 Recursive pipeline. 

The pipeline consists of nodes with indices in the range from min to max 
(where min :s; max). The pipeline has a left and a right channel. If min < 
max, the pipeline opens amiddie channel, and splits into a single node and 
a smaller pipeline running in parallel; otherwise, the pipeline behaves as a 
single node. 

The effect of the procedure statement 

pipeline(l, p, left, right) 

is to activate a pipeline that is equivalent to the one shown in Fig. 2. 
The recursive pipeline has a dynamic length defined by parameters. The 

nodes and channels are created by recursive parallel activations of the pipeline 
procedure. The iterative pipeline programmed earlier has a fixed length be­
cause it uses a channel array of fixed length (Algorithm 4). 



SUPERPASCAL: A PUBLICATION LANGUAGE 511 

A model program for divide and conquer algorithms uses a binary process 
tree (Brinch Hansen 1991a). Figure 5 shows a tree of seven parallel processes 
connected by seven channels. 

41eaves 

2 roots 

1 root 

Figure 5 A specific process tree. 

The bot tom process of the tree inputs data from the bottom channel, 
and sends half of the data to its left child process, and the other half to its 
right child process. The splitting of data continues in parallel higher up in 
the tree, until the data are evenly distributed among the leaf processes at 
the top. Each leaf transforms its own portion of the data, and outputs the 
results to its parent process. Each parent combines the partial results of its 
children, and outputs them to its own parent. The parallel combination of 
results continues at lower levels in the tree, until the final results are output 
through the bottom channel. 

A process tree can be defined recursively as illustrated by Fig. 6. 

bottom 

(a) 

2 trees 

1 root 91eaf 

bottom 

(b) 

Figure 6 A recursive tree. 
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A binary tree is connected to its environment by a single bot tom channel. 
A closer look reveals that the tree takes one of two forms: 

1. A tree with more than one node consists of a root process and two 
sm aller trees running in parallel (Fig. 6a). 

2. A tree with one node only is a leaf process (Fig. 6b). 

The process tree is defined by a recursive procedure (Algorithm 6). The 
depth of the tree is the number of process layers above the bot tom process. 
Figure 5 shows a tree of depth 2. 

procedure tree( depth: integer; 
bottom: channe1); 

var 1eft, right: channe1; 
begin 

if depth > 0 then 
begin 

open(left, right); 
parallel 

tree( depth - 1, 1eft) I 
tree( depth - 1, right) I 
raot (bottom, 1eft, right) 

end 
end 

else 1eaf(bottom) 
end; 

Algorithm 6 Recursive tree. 

The behavior of roots and leaves is defined by two procedures of the form: 

procedure root(bottom, left, right: channel) 

procedure 1eaf(bottom: channe1) 

These procedures vary from one application of the tree to another .. 
The effect of the procedure statement 

tree(2, bottom) 
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is to activate a binary tree of depth 2. 
A notation for recursive processes is essential in a parallel programming 

language. The reason is simple. It is impractical to formulate thousands of 
processes with different behaviors. Wemust instead rely on repeated use 
of a small number of behaviors. The simplest problems that satisfy this 
requirement are those that can be reduced to smaller problems of the same 
kind and solved by combining the partial results. Recursion is the natural 
programming tool for these divide and conquer algorithms. 

5 INTERFERENCE CONTROL 

5.1 Disjoint processes 

The relative speeds of asynchronous, parallel processes are generally un­
known. If parallel processes update the same variables at unpredictable 
times, the combined effect of the processes is time-dependent. Similarly, if 
two parallel processes both attempt to send (or receive) messages through 
the same channel at unpredictable times, the net effect is time-dependent. 
Processes with time-dependent errors are said to interfere with one another 
due to variable or channel confiicts. 

When a program with a time-dependent error is executed repeatedly with 
the same input, the output usually varies in an unpredictable manner from 
one run to another. The irreproducible behavior makes it difficult to locate 
interference by systematic program testing. The most effective remedy is 
to introduce additional restrietions, which make process interference impos­
sible. These restrictions must be checked by a compiler before a parallel 
program is executed. 

In the following, I concentrate on syntactic detection of variable conflicts. 
The basic requirement is simple: Parallel processes can only update disjoint 
sets of variables. A variable that is updated by a process may only be used 
by that process. Parallel processes may, however, share variables that are 
not updated by any of them. Parallel processes that satisfy this requirement 
are called disjoint processes. 

5.2 Variable contexts 

I will illustrate the issues of interference control by small examples only. The 
problem is discussed concisely in (Brinch Hansen 1994b). 

In theory, syntactic detection of variable conflicts is a straightforward 
process. A single-pass compiler scans a program text once. For every state-
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ment S, the compiler determines the set of variables that may be updated 
and the set of variables that may be used as expression operands during the 
execution of S. These sets are called the target and expression variables of 
S. Together they define the variable context of S. If we know the variable 
context of every statement, it is easy to check if parallel statements define 
disjoint processes. 

As an example, the open statement 

open(h[i,j]) 

denotes creation of a component hi,j of a channel array h. Since the index 
values i and j are known during execution only, a compiler is unable to 
distinguish between different elements of the same array. Consequently, the 
entire array h is regarded as a target variable (the only one) of the open 
statement. The expression variables of the statement are i and j. 

An entire variable is a variable denoted by an identifier only, such as 
h, i, or j above. During compilation, any operation on a component of a 
structured variable is regarded as an operation on the entire variable. The 
target and expression variables of a statement are therefore sets of entire 
variables. 

A compiler cannot predict if a component of a conditional statement will 

be executed or skipped. To be on the safe side, the variable context of a 
structured statement is defined as the union of the variable contexts of its 
components. 

Consider the conditional statement 

if i < p then send(right, a) 

It has no target variables, but uses three expression variables, i, right and a 

(assuming that p is a constant). 

5.3 Parallel statements 

The choice of a notation for parallel processes is profoundly influenced by 
the requirement that a compiler must be able to detect process interference. 
The syntax of a parallel statement 
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clearly shows that the process statements 51,52, ... , Sn are executed in par­
allel. 

The following restriction ensures that a parallel statement denotes dis­
joint processes: A target variable oi one proeess statement eannot be a target 
or an expression variable oi another proeess statement. This rule is enforced 
by a compiler. 

Let me illustrate this restriction with three examples. The parallel state­
ment 

parallel open(h[i,j]) lopen(v[i,j]) end 

defines two open statements executed simultaneously. The target variable h 
of the first process statement does not occur in the second process statement. 
Similarly, the target variable v of the second process statement is not used 
in the first process statement. Consequently, the parallel statement defines 
disjoint processes. 

However, the parallel statement 

parallel 
reeeive(left, a)1 
if i < p then send(right, a) 

end 

is incorrect, because the target variable a of the first process statement is 
also an expression variable of the second process statement. 

Finally, the parallel statement 

parallel e[O] := leftle[p] := right end 

is incorrect, since the process statements use the same target variable c. 
Occasionally, a programmer may wish to override the interference control 

of parallel statements. This is useful when it is obvious that parallel processes 
update distinct elements of the same array. The previous restriction does not 
apply to a parallel statement prefixed by the clause [sie]. This is called an 
unrestrieted statement. The programmer must prove that such a statement 
denotes disjoint processes. 

The following example is taken from a model program that uses the 
process matrix shown in Fig. 3: 
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[sie] { 1 <= k <= m } 
parallel 

receive( up, u[O,k]) I 
send( down, u[m,k]) I 
receive(Ieft, u[k,O]) I 
send(right, u[k,m]) 

end 

This statement enables anode process to simultaneously exchange four el­
ements of a local array u with its nearest neighbors. The initial comment 
implies that the two input elements are distinct and are not used as output 
elements. 

The programmer should realize that the slightest mistake in an unre­
stricted statement may introduce a subtle time-dependent error. The incor­
reet statement 

[sie] { 1 <= k <= m } 
parallel 

receive(up, u[l,k])1 
send(down, u[m,k])I 
receive(Ieft, u[k,l]) I 
send(right, u[k,m]) 

end 

is time-dependent, but only if k = 1. 

5.4 Forall statements 

The following restriction ensures that the statement 

forall i := el to e2 do S 

denotes disjoint processes: In a famll statement, the element statement S 
cannat use target variables. This is checked by a compiler. 

This restrietion implies that a process array must output its final results 
to another process or a file. Otherwise, the results will be lost when the 
element processes terminate and their local variables disappear. For tech­
nological reasons, the same restriction is necessary if the element processes 
run on separate processors in a parallel computer with distributed memory. 

In the primality testing program, a pipeline is defined by the statement 

forall i := 1 to p do node(i, c[i-l], c[i]) 
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Since the node procedure has value parameters only, the procedure statement 

node(i, c[i~l], c[i]) 

uses expression variables only (i and c). 
The incorrect statement 

forall i := 1 to p ~ 1 do open(c[i]) 

denotes element processes that attempt to update the same variable c in 
parallel. 

If it is desirable to use the above statement, it must be turned into an 
unrestricted statement: 

[sie] { distinct elements c[i] } 
forall i := 1 to p ~ 1 do open(c[i]) 

The initial comment shows that the node processes are disjoint, since they 
update distinct elements of the channel array c. 

Again, it needs to be said that a programming error in an unrestricted 
statement may cause time-dependent behavior. The incorrect statement 

[sie] forall i := 1 to p ~ 1 do open(c[l]) 

denotes parallel assignments of channel references to the same array element 
Cl· 

Needless to say, syntactic interference control is of limited value if it is 
frequently overridden. A programmer should make a conscientious effort to 
limit the use of unrestricted statements as much as possible. The thirteen 
model programs, that I wrote, include five unrestricted statements only; all 
of them denote operations on distinct array elements. 

5.5 Variable parameters 

To enable a compiler to recognize distinct variables, a language should have 
the property that distinct variable identifiers occurring in the same state­
ment denote distinct entire variables. Due to the scope rules of Pascal, this 
assumption is satisfied by all entire variables except variable parameters. 

The following procedure denotes parallel creation of a pair of channels: 
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procedure pair(var c, d: channel); 
begin 

parallel open( c) I open( d) end 
end; 

The parallel processes are disjoint only if the formal parameters, c and d, 
denote distinct actual parameters. 

The procedure statement 

pair(h[i,j], v[i,j]) 

is valid, since the actual parameters are elements of different arrays, hand 
v. 

However, the procedure statement 

pair (left, left) 

is incorrect, because it makes the identifiers, c and d, aliases of the same 
variable, left. 

Aliasing of variable parameters is prevented by the following restrietion: 
The actual variable parameters of a procedure statement must be distinct 
entire variables (or components of such variables). 

An unrestricted statement is not subject to this restriction. A model 
program for n-body simulation computes the gravitational forces between a 
pair of bodies, Pi and Pj, and adds each force to the total force acting on 
the corresponding body (Brinch Hansen 1991b). This operation is denoted 
by a procedure statement 

{ i <> j } [sie] addforces(p[j], pli]) 

with two actual variable parameters. The initial comment shows that the 
parameters, Pi and Pj, are distinct elements of the same array variable p. 

5.6 Global variables 

Global variables used in procedures are another source of aliasing. Con­
sider a procedure that updates aglobai seed and returns a random number 
(Algorithm 7). 

The procedure statement 

random(x) 
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var seed: real; 

procedure random(var number: real); 
var temp: real; 
begin 

temp := a*seed; 
seed := temp - m*trunc(temp/m); 
number := seed/m 

end; 

Algorithm 7 Random number generator. 

denotes an operation that updates two distinct variables, x and seed. 
On the other hand, the procedure statement 

random(seed) 

turns the identifier number into an alias for seed. 
To prevent aliasing, it is necessary to regard the global variable as an 

implicit parameter of both procedure statements. Since the procedure uses 
the global variable as a target and an expression variable, it is both an 
implicit variable parameter and an implicit value parameter of the procedure 
statements. 

The rule that actual variable parameters cannot be aliases applies to 
aIl variable parameters of a procedure statement, explicit as weIl as implicit 
parameters. However, since implicit value parameters can also cause trouble, 
we need astronger restriction defined as foIlows (Brinch Hansen 1994b): 
The restricted actual parameters of a procedure statement are the explicit 
variable parameters that occur in the statement and the implicit parameters 
of the corresponding procedure block. The restricted actual parameters of a 
procedure statement must be distinct entire variables (or components of such 
variables). 

In the primality testing program, the pipeline nodes use a random nu m­
ber generator. If the seed variable is global to the node procedure, then the 
seed is also an implicit variable parameter of the procedure statement 

node(i, c[i-l], c[i]) 

Consequently, the statement 
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forall i := 1 to p do node(i, c[i-l], c[i]) 

denotes parallel processes that (indirectly) update the same global variable 
at unpredictable times. The concept of implicit parameters enables a com­
piler to detect this variable conflict. The problem is avoided by making the 
procedure, mndom, and its global variable, seed, local to the node procedure. 
The node processes will then be updating different instances of this variable. 

The parallel statement 

parallel write(x) Jwriteln end 

is invalid because the required textfile output is an implicit variable param­
eter of both write statements. 

Similarly, the parallel statement 

parallel 
read(x)J 
if eof then writeln 

end 

is incorrect because the required textfile input is an implicit variable parame­
ter of the read statement and an implicit value parameter of the eojfunction 
designator. 

5.7 Functions 

Functions may use global variables as implicit value parameters only. The 
following rules ensure that functions have no side-effects: 

1. Functions cannot use implicit or explicit variable parameters. 

2. Procedure statements cannot occur in the statement part of a function 
block. 

The latter restriction implies that functions cannot use the required pro­
cedures for message communication and file input/output. This rule may 
seem startling at first. I introduced it after noticing that my model programs 
include over 40 functions, none of which violate this restriction. 

Since functions have no side-effects, expressions cannot cause process 
interference. 
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5.8 Further restrictions 

Syntactic detection of variable confiicts during single-pass compilation re­
quires additional language restrictions: 

l. Pointer types are omitted. 

2. Goto statements and labels are omitted. 

3. Procedural and functional parameters are omitted. 

4. Forward declarations are omitted. 

5. Recursive functions and procedures cannot use implicit parameters. 

These design decisions are discussed in (Brinch Hansen 1994b). 

5.9 Channel conflicts 

Due to the use of channel references, a compiler is unable to detect process 
interference caused by channel confiicts. From a theoretical point of view, 
I have serious misgivings about this fiaw. In practice, I have found it to be 
a minor problem only. Some channel confiicts are detected by the run-time 
checking of communication errors mentioned earlier. For regular process 
configurations, such as pipelines, trees, and matrices, the remaining channel 
confiicts are easy to locate by proofreading the few procedures that define 
how parallel processes are connected by channels. 

6 SUPERPASCAL VERSUS OCCAM 

occam2 is an admirable implement at ion language for transputer systems (In­
mos 1988). It achieves high efficiency by relying on static allocation of 
processors and memory. The occam notation is somewhat bulky and not 
sufficiently general for a publication language: 

1. Key words are capitalized. 

2. Areal constant requires eight additional characters to define the length 
of its binary representation. 

3. Simple statements must be written on separate lines. 

4. An if statement requires two additionallines to describe an empty else 
statement. 
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5. Array types cannot be named. 

6. Record types cannot be used. 

7. Process arrays must have constant lengths. 

8. Functions and procedures cannot be recursive. 

occam3 includes type definitions, but is considerably more complicated 
than occam2 (Kerridge 1993). 

occam was an invaluable source of inspiration for SuperPascal. Years 
ahead of its time, occam set a standard of simplicity and security against 
which future parallel languages will be measured. The parallel features of 
SuperPascal are a subset of occam2 with the added generality of dynamic 
process arrays and recursive parallel processes. This generality enables you 
to write parallel algorithms that cannot be expressed in occam. 

7 FIN AL REMARKS 

Present multicomputers are quite difficult to program. To achieve high per­
formance, each pro gram must be tailored to the configuration of a particular 
computer. Scientific users, who are primarily interested in getting numeri­
cal results, constantly have to reprogram new parallel architectures and are 
getting increasingly frustrated at having to do this (Sanz 1989). 

As educators, we should ignore this short-term problem and teach our 
students to write programs for the next generation of parallel computers. 
These will probably be general-purpose multi computers that can run portable 
scientific programs written in parallel programming languages. 

In this paper, I have suggested that universities should adopt a common 
programming language for publication of papers and textbooks on paral­
lel scientific algorithms. The language Pascal has played a major role as a 
publication language for sequential computing. Building on that tradition, 
I have developed SuperPascal as a publication language for computational 
science. SuperPascal extends Pascal with deterministic statements for par­
allel processes and message communication. The language enables you to 
define arbitrary configurations of parallel processes, both iteratively and re­
cursively. The number of processes may vary dynamically. 

I have used the SuperPascal notation to write portable programs for 
regular problems in computational science. I found it easy to express these 
programs in three different programming languages (SuperPascal, Joyce, and 
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occam2) and run them on three different architectures (a Unix workstation, 
an Encore Multimax, and a Meiko Computing Surface). 

Acknowledgements 

While writing this paper, I have benefited from the perceptive comments of 
James Allwright, Jonathan Greenfield and Peter O'Hearn. 

References 

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. 1983. Data Structures and Algorithms. 
Addison-Wesley, Reading, MA. 

Alagic, S., and Arbib, M.A. 1978. The Design of Well-Structured and Correct Programs. 
Springer-Verlag, New York. 

Ambler, A.L., Good, D.L, Browne, J.C., Burger, W.F., Cohen, R.M., and Wells, R.E. 
1977. Gypsy: a language for specification and implementation of verifiable programs. 
ACM SIGPLAN Notices 12, 2, 1-10. 

Brinch Hansen, P. 1973. Operating System Principles. Prentice-Hall, Englewood Cliffs, 
NJ. 

Brinch Hansen, P. 1985. Brinch Hansen on Pascal Compilers. Prentice-Hall, Englewood 
Cliffs, NJ. 

Brinch Hansen. P. 1987. Joy.ce-A programming language for distributed systems. Soft­
ware Practice and Experience 17, 1 (January), 29-50. 

Brinch Hansen, P. 1991a. Parallel divide and conquer. School of Computer and Informa­
tion Science, Syracuse University, Syracuse, NY. 

Brinch Hansen, P. 1991b. The n-body pipeline. School of Computer and Information 
Science, Syracuse University, Syracuse, NY. 

Brinch Hansen, P. 1992a. Primality testing. School oE Computer and Information Science, 
Syracuse University, Syracuse, NY. 

Brinch Hansen, P. 1992b. Parallel Monte Carlo trials. School of Computer and Information 
Science, Syracuse University, Syracuse, NY. 

Brinch Hansen, P. 1993a. Model programs for complltational science: A programming 
methodology for multicomputers. Concurrency--Practice and Experience 5, 5 (Au­
gust), 407-423. 

Brinch Hansen, P. 1993b. Parallel cellular alltomata: A model program for complltational 
science. Concurrency-Practice and Experience 5, 5 (August) 425-448. 

Brinch Hansen, P. 1994a. The programming language SuperPascal. Software-Practice 
and Experience 24, 5 (May), 467-483. 

Brinch Hansen, P. 1994b. Interference control in SuperPascal-A block-structured parallel 
language. Computer Journal 37, 5, 399-406. 

Dijkstra, E.W. 1968. Cooperating sequential processes. In Programming Languages, F. 
Genuys, Ed. Academic Press, New York, 43-112. 

Dunham, C.B. 1982. The necessity of publishing programs. Computer Journal 25, 1, 
61-62. 

Forsythe, G.E. 1966. Algorithms for scientific computing. Communications of the A CM 
g, 4 (April), 255-256. 



524 PER BRINCH HANSEN 

Hoare, C.A.R. 1971. Procedures and parameters: an axiomatic approach. Lecture Notes 
in Mathematics 188, 102-171. 

Hoare, C.A.R. 1972. Towards a theory of parallel programming. In Operating Systems 
Techniques, C.A.R. Hoare and R.H. Perrott, Eds. Academic Press, New York, 61-71. 

Hoare, C.A.R. 1985. Communicating Sequential Processes. Prentice Hall, Englewood 
Cliffs, NJ. 

IEEE 1983. IEEE Standard Pascal Computer Programming Language, Institute of Elec­
trical and Electronics Engineers, New York. 

Inmos, Ltd. 1988. occam 2 Relerence Manual, Prentice Hall, Englewood Cliffs, NJ. 
Kerridge, J. 1993. Using occam3 to build large parallel systems: Part 1, occam3 features. 

Transputer Communications 1 (to appear). 
Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G., and Popek, G.J. 1977. Report 

on the programming language Euclid. ACM SIGPLAN Notices 12,2 (February). 
McDonald, N. 1991. Meiko Scientific, Ltd. In Past, Present, Parallel: A Survey 01 Avail­

able Parallel Computing Systems, A. Trew and G. Wilson, Eds. Springer-Verlag, New 
York, 165-175. 

May, D. 1989. Discussion. In Scientific Applications 01 Multiprocessors, R. Elliott and 
C.A.R. Hoare, Eds. Prentice-Hall, Englewood Cliffs, NJ, 54. 

Perlis, A.J. 1966. A new policy for algorithms? Communications 01 the ACM 9,4 (April), 
255. 

Rabin, M.O. 1980. Probabilistic algorithms for testing primality. Journal 01 Nl1mber 
Theory 12, 128-138. 

Sanz, J.L.C., Ed. 1989. Opportl1nities and Constraints 01 Parallel Compl1ting, Springer­
Verlag, New York. 

Tennent, R.D. 1981. Principles 01 Programming Languages, Prentice-Hall, Englewood 
Cliffs, NJ. 

Welsh, J., and McKeag, M. 1980. Strl1ctl1red System Programming, Prentice-Hall, Engle­
wood Cliffs, N J. 

Wirth, N. 1971. The programming language Pascal. Acta Inlormatica 1, 35-63. 
Wirth, N. 1973. Systematic Programming: An Introdl1ction. Prentice-Hall, Englewood 

Cliffs, NJ. 



19 

EFFICIENT PARALLEL RECURSION 

PER BRINCH HANSEN 

(1995) 

A simple mechanism is proposed for dynamic memory allocation of a parallel 

recursive program with AIgol-like scope rules. The method is about as fast as 

the traditional stack discipline for sequential languages. It has been used to 

implement the parallel programming language SuperPascal. 

1 Introduction 

I will describe a memory allocation sehe me for block structured program­
ming languages that support unbounded activation of parallel processes and 
recursive procedures. This technique has been used to implement the parallel 
programming language SuperPascal (Brinch Hansen 1994). 

Three decades ago, Dijkstra (1960) proposed the standard method of 
dynamic memory allocation for recursive procedures in block structured, 
sequential languages, such as Algol 60 (Naur 1963), Pascal (Wirth 1971) 
and C (Kernighan 1978). 

The scope rules of AIgol-like languages support stack allocation of mem­
ory for sequential programs. All variables are kept in a single stack. When 
a block is activated, an activation record (a data segment of fixed length) 
is pushed on the stack. The activation record holds a fresh instance of ev­
ery local variable of the block. At the end of the activation, the activation 
record is popped from the stack. Since each activation creates a new instance 
of the local variables, stack allocation works for both recursive and nonre­
cursive procedures. The crucial assumption behind stack allocation is that 
dynamically nested block activations always terminate in last-in, first-out 
order. 

P. Brinch Hansen, Efficient parallel recursion, SIGPLAN Notices 30, 12 (December 1995), 
9-16. Copyright © 1995, Per Brinch Hansen. Reprinted by permission. 

525 



526 PER BRINCH HANSEN 

After two decades of research in parallel programming languages, there is 
still no efficient standard method for dynamic memory allocation of parallel 
recursion. When you add parallelism to a block structured language, the 
variable instances form a tree structured stack with branches that grow and 
shrink simultaneously. If dynamic parallelism is combined with unbounded 
recursion, the number and extent of the stack branches are unpredictable. 

In a parallel recursive program, there is no simple relationship between 
the order in which blocks are entered and exited. So, you cannot use the 
traditionallast-in, first-out allocation. This makes it more difficult to reclaim 
and reuse the memory space of activation records efficiently. 

With few exceptions, language designers have ignored the thorny prob­
lems of parallel memory allocation by outlawing recursion and restricting 
parallelism to the point where it is possible to use static memory allocation. 

In many languages, it is impossible to reclaim the memory space of par­
allel processes. These include Concurrent Pascal (Brinch Hansen 1975), Si­
mone (Kaubisch 1976), Modula (Wirth 1977), Distributed Processes (Brinch 
Hansen 1978), Pascal Plus (Welsh 1979), StarMod (Cook 1980), SR (An­
drews 1981), Concurrent Euclid (Holt 1983), Planet (Crookes 1984) and 
Pascal-FC (Davies 1990). 

CSP (Hoare 1978), Edison (Brinch Hansen 1981), and occam (Inmos 
1988) support process activation and termination, but only of a fixed number 
of parallel nonrecursive processes determined during compilation. 

Static memory allocation is adequate for many parallel computations 
(Fox 1988). However, parallel recursion is the natural programming tool 
for parallel versions of divide-and-conquer algorithms, such as quicksort, the 
fast Fourier transform and the Barnes-Hut algorithm for n-body simulation 
(Fox 1994). 

Parallel recursion requires dynamic allocation and release of activation 
records in a tree structured stack. B6700 Algol (Organick 1973) and Mesa 
(Larnpson, 1980) demonstrate that it is possible to support both parallelism 
and recursion in systems programming languages. The substantial overhead 
of parallel processes in these languages is acceptable in operating systems, 
wh ich support slowly changing configurations of user processes. It is, how­
ever, too inefficient for highly parallel computations. 

Is there a memory allocation method that makes parallel recursion as 
efficient as sequential recursion for all systems and user programs? I don't 
know any. Parallel recursion can probably only be implemented efficiently 
at the expense of some generality. 
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As a reasonable compromise, I will confine myself to the problem of 
allocating activation records of different lengths for a single parallel program 
in a memory of fixed size. The proposed technique is more ambitious than 
previous methods in the following sense: it succeeds in making the activation 

and termination of parallel processes and recursive procedl1,res equally fast! 
Joyce (Brinch Hansen 1989) was my first attempt to simplify memory 

allocation for parallel recursion. The multiprocessor implementation of Joyce 
uses a stack-like scheme for parallel block activation in a single memory heap. 
On entry to a block, an activation record is allocated at the top of the heap. 
On exit from the block, the activation record is marked as free. Free space 
is reclaimed only when it is at the top of the heap. This method works 
weIl for many parallel recursive programs. However, it fails if a program 
continues to demand space for parallel block activations beforc previously 
released space can be reclaimed. In that situation, thc heap grows until it 
runs out of memory. 

The occasional failure of the Joyce heap made me look for a more robust 
memory allocation for SuperPascal. After solving this problem, I found that 
I had reinvented a simplified version of the Quick Fit allocator, which was 
used for heap management in the sequential programming language Bliss 
(Weinstock 1988). 

The main contribution of this paper is the discovery that Quick Fit is 
an efficient memory allocator for a parallel recursive language that requires 
an unbounded, tree structured stack of activation records. The consistent 
omission of efficient parallel recursion in previous block structured languages 
shows that this insight only seems obvious once you know the solution. 

2 Assumptions 

I will state the assumptions behind thc method in general terms. How­
ever, I will use the implementation of block structured parallellanguages to 
motivate the assumptions. 

The general problem is to allocate and release segments of different 
lengths in a memory of fixed size under the following assumptions: 

• Each segment occupies a contiguous memory area of fixed length. 

In a block structured program, the unit of memory allocation is an activation 
record of fixed length that holds the local variable instances of a single 
activation of a block. 
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• A segment is never relocated in memory. 

During pro gram execution, the activation re cords in use are linked by point­
ers representing variable parameters, nested blocks, and activation sequen­
ces. Dynamic relocation of linked activation records would be complicated 
and time-consuming. 

• A segment is released only when no other segment in use points to it. 

The scope rules enable a compiler to check that the local variable instances 
of a block activation are accessed only during the activation. Consequently, 
the corresponding activation re cord can safely be released on exit from the 
block. 

• Segments are generally allocated and released in unpredictable order. 

The nondeterministic nature of parallel recursion complicates the dynamic 
memory allocation considerably. 

• There is a fixed number oi segment lengths. 

A block structured program consists of a fixed number of blocks. (In Super­
Pascal, a block is either a process statement or a procedure.) Each activation 
of the same block allocates an activation re cord of the same fixed length. 

• A program tends to use segments oi the same lengths repeatedly. 

This is a plausible hypothesis about any program that uses the same proce­
dures numerous times to transform different parts of large data structures 
sequentially or in parallel. The measurements in Section 4 strongly support 
this assumption. 

The above assumptions are satisfied by a single block structured program 
that runs in a fixed memory area. However, they are not realistic for an 
operating system, which allocates an unbounded number of segments, most 
of which are unique to particular user jobs. 
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var pool: array [1.. limit] of integer; 
memory: array [min .. max] of integer; 
top: integer; 

procedure initialize; 
var index: integer; 
begin 

for index : = 1 to limit do 
pool [index] := empty; 

top := min - 1 
end; 

procedure allocate( index, length: integer; 
var address: integer); 

begin 
address := pool[index]; 
if address <> empty then 

pool[index] := memory[address] 
else 

end; 

begin 
address := top + 1; 
top := top + length; 
assurne top < = max 

end 

procedure release( index, address: integer); 
begin 

memory[address] := pool[index]; 
pool[index] := address 

end; 

Algorithm 1 Memory allocation. 

529 
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3 Implementation 

Algorithm 1 defines the allocation of activation records for a parallel program 
that runs on a single processor in a memory area of fixed size. On a mul­
ticomputer with distributed memory, each processor must manage its own 
memory for local processes. On a multiprocessor with shared memory, the' 
allocation and release of activation records must be indivisible operations. 

I assume that an operating system allocates a fixed amount of memory 
for the execution of a parallel program. The allocation method used by the 
operating system is beyond the scope of this discussion. My only concern 
is the algorithms used by a running program to allocate activation records 
within its own memory. 

Adynamie boundary divides the program memory into two contiguous 
parts. One part is the heap, which holds a11 past and present activation 
records. The rest is free space. During program execution, the heap can 
only grow, and the free space can only shrink. A register holds the current 
top address of the heap. 

The blocks in a program have consecutive indices and fixed activation 
re cord lengths determined by a compiler. For each block, a running program 
maintains a pool consisting of a11 free activation records reclaimed after pre­
vious activations of the block. Each pool is represented by an address, wh ich 
either denotes an empty pool or is the first link in a list of free activation 
records of the same length. 

Initia11y, the entire memory is free and every pool is empty. 
On entry to a block with a given index and length, an attempt is made 

to a110cate a free activation record from the corresponding pool. If the pool 
is empty, a new activation record of the given length is a110cated in the free 
space, which is reduced accordingly. 

On exit from the block, the activation record is released and added to 
the corresponding pool. 

The algorithms for allocating and releasing an activation record are not 
intended to be implemented as separate procedures. They are part of the 
machine code executed at the beginning and end of every process statement 
and procedure. An activation re cord is allocated or released in constant 
time. Most processors can perform these simple operations by executing 
three or four machine instructions. 

When the execution of a program ends, its memory area is still divided 
into pools of free activation records and the remaining free space. However, 
that does not matter, since the operating system will reclaim thc entire 
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memory area as a single unit. 

4 Performance 

The heap allocation method described here has been used to implement the 
block structured parallellanguage SuperPascal. So far, I have written par­
allel SuperPascal programs for a dozen standard problems in computational 
science (Brinch Hansen 1995). 

Table 1 shows the ability of the heap allocator to recycle previous acti­
vation records during the execution of three parallel programs on a single 
processor. 

Table 1 Measurements. 

Parallel program Quicksort N-body Laplace 
tree pipeline matrix 

N umber of blocks 16 24 28 
Process activations 11 300 25,609 
Procedure activations 18,120 513,553 67,156 
N ew activation records 51 27 64 
Reused activation records 18,080 513,826 92,701 

The quicksort tree uses both parallel recursion (to create a binary tree of 
processes ) and sequential recursion (to quicksort in parallel). The program 
consists oE 16 blocks which are activated a total oE 18,131 times (eleven pro­
cess activations plus 18,120 proceelure activations). These block activations 
create 51 new activation recorels, which are reused 18,080 times. 

The n-body pipeline is a parallel nonrecursive program that repeateelly 
recreates a pipeline to perform force calculation for n gravitational bod­
ies. During an n-body simulation the program activates parallel processes 
300 times and proceelures 513,553 times. These activations are handled by 
reusing the same 27 activation re cords over and over again. 

The Laplace matrix is a highly parallel nonrecursive program. It creates 
parallel pro ces ses 25,609 times anel calls proceelures 67,156 times. These 
92,765 block activations require only 64 activation records. 

When these parallel program solve larger problems, the two nonrecursive 
programs run longer, but do not require more activation records. The num­
ber of activation records used by the quicksort tree increases slightly when 
the depth of the sequential recursion increases. 
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If no procedure is activated recursively or in parallel, the heap allocation 
uses the same amount of memory as static allocation (one activation record 
per block). In general, each block requires separate activation records for 
all activations of the block that may be in progress simultaneously (due to 
recursion or parallelism, or both). 

5 Conclusions 

I have described a simple heap mechanism for dynamic memory allocation 
of a parallel recursive program with AIgol-like scope rules. 

The mechanism has the following advantages: 

• The heap allocation supports unbounded dynamic activation and ter­
mination of parallel processes and recursive procedures. 

• The activation and termination of parallel processes and recursive pro­
cedures are equally fast. 

• The heap allocation for parallel recursion is as efficient in reusing mem­
ory as the traditional stack discipline for sequential recursion. 

• On a multicomputer with distributed memory, heap allocation is about 
as fast as stack allocation. 

In its simplest form (presented here) , the method has only two limita­
tions: 

• An activation re cord used to activate a block can only be reused by 
activating the same block again. This compromise makes it easy to 
release and reallocate the memory space of block activations. 

• On a multiprocessor with shared memory, the need to lock and un­
lock the heap twice during a block activation makes the method less 
attractive. 

Both limitations can probably be removed by more complicated variants 
of the basic idea. I leave that as an exercise for the reader. 
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