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FOR JONATHAN GREENFIELD



PREFACE

If you want to discover new ideas in computing, textbooks won’t help you.
You need to find out how the masters of the field did it. You need to read
their original papers!

That’s why I put twenty-four papers together in a previous volume called
Classic Operating Systems: From Batch Processing to Distributed Systems
(Springer-Verlag, 2001).

But there is another side to this story. You cannot build (or understand)
a modern operating system unless you know the principles of concurrent
programming. The classic papers in the present book cover the major break-
throughs in concurrent programming from the mid 1960s to the late 1970s.
These pioneering contributions have remained the foundation of concurrent
programming in operating systems and parallel computing.

All the papers were written by the computer scientists who invented these
ideas. Apart from a brief summary, I let the papers speak for themselves.

This book is for programmers, researchers, and students of electrical engi-
neering and computer science. I assume that you are familiar with operating
system principles.

I thank the copyright owners for permission to reprint these papers. A
footnote on the title page of each paper gives full credit to the publication in
which the work first appeared, including the name of the copyright holder.

PER BRINCH HANSEN

Syracuse University
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THE INVENTION OF
CONCURRENT PROGRAMMING
PER BRINCH HANSEN

(2001)

The author selects classic papers written by the computer scientists who made
the major breakthroughs in concurrent programming. These papers cover the
pioneering era of the field from the semaphores of the mid 1960s to the remote
procedure calls of the late 1970s. The author summarizes the classic papers

and puts them in historical perspective.
A PROGRAMMING REVOLUTION

This is the story of one of the major revolutions in computer programming:
the invention of concurrent programming.

Tom Kilburn and David Howarth pioneered the use of interrupts to simu-
late concurrent execution of several programs on the Atlas computer (Kilburn
1961). This programming technique became known as multiprogramming.

The early multiprogramming systems were programmed in assembly lan-
guage without any conceptual foundation. The slightest programming mis-
take could make these systems behave in a completely erratic manner that
made program testing nearly impossible.

By the end of the 1960s multiprogrammed operating systems had become
so huge and unreliable that their designers spoke openly of a software crisis
(Naur 1969).

As J. M. Havender (1968) recalled:

P. Brinch Hansen, The invention of concurrent programming. In The Origin of Concur-
rent Programming: From Semaphores to Remote Procedure Calls, P. Brinch Hansen, Ed.,
Copyright (© 2001, Springer-Verlag, New York.



4 PER BRINCH HANSEN

The original multitasking concept of the [IBM 0S/360] envisioned rel-
atively unrestrained competion for resources to perform a number of
tasks concurrently ... But as the system evolved many instances of
task deadlock were uncovered.

Elliott Organick (1973) pointed out that the termination of a task in the
Burroughs B6700 system might cause its offspring tasks to lose their stack
space!

In the mid 1960s computer scientists took the first steps towards a deeper
understanding of concurrent programming. In less than fifteen years, they
discovered fundamental concepts, expressed them by programming notation,
included them in programming languages, and used these languages to write
model operating systems. In the 1970s the new programming concepts were
used to write the first concise textbooks on the principles of operating systems
and concurrent programming. '

The development of concurrent programming was originally motivated
by the desire to develop reliable operating systems. From the beginning,
however, it was recognized that principles of concurrent programming “have
a general utility that goes beyond operating systems”—they apply to any
form of parallel computing (Brinch Hansen 1971a).

I would like to share the excitement of these discoveries with you by
offering my own assessment of the classic papers in concurrent programming.

This essay is not just an editorial overview of the selected papers. It is
also my personal reflections on the major contributions, which inspired me
(and others) in our common search for simplicity in concurrent programming.

If you compare my early papers with this essay, you will notice an oc-
casional change of perspective. With thirty years of hindsight, that is in-
evitable.

I have made an honest attempt to rely only on the publication record
to document historic events and settle issues of priority. However, as a
contributor to these ideas I cannot claim to have written an unbiased account
of these events. That can only be done by a professional historian.

THE CLASSIC PAPERS
Choosing the classic papers was easier than I thought:

o First I made a short list of fundamental contributions to abstract concurrent
programming of major and lasting technical importance.
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o Then I selected the original papers in which computer scientists first intro-
duced these ideas.

o [ added a few papers that illustrate the influence of concurrent programming
concepts on operating system principles and programming language imple-
mentation.

o Finally I put the papers in chronological order to illustrate how each new idea
was motivated by earlier successes and failures.

Fundamental Concepts

Asynchronous processes
Speed independence

Fair scheduling

Mutual exclusion
Deadlock prevention
Process communication
Hierarchical structure
Extensible system kernels

Programming Language Concepts

Concurrent statements

Critical regions

Semaphores

Message buffers

Conditional critical regions

Secure queueing variables

Monitors

Synchronous message communication
Remote procedure calls
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Classic Papers

P~

E. W. Dijkstra, Cooperating Sequential Processes (1965).

. E. W. Dijkstra, The Structure of the THE Multiprogramming System

(1968).

P. Brinch Hansen, RC 4000 Software: Multiprogramming System (1969).

E. W. Dijkstra, Hierarchical Ordering of Sequential Processes (1971).

C. A. R. Hoare, Towards a Theory of Parallel Programming (1971).

P. Brinch Hansen, An Outline of a Course on Operating System

Principles (1971).

P. Brinch Hansen, Structured Multiprogramming (1972).

P. Brinch Hansen, Shared Classes (1973).

9. C. A. R. Hoare, Monitors: An Operating System Structuring Concept

(1974).

10. P. Brinch Hansen, The Programming Language Concurrent Pascal (1975).

11. P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal
Program (1976).

12. P. Brinch Hansen, The Solo Operating System: Processes, Monitors and

Classes (1976).

13. P. Brinch Hansen, Design Principles (1977).

14. E. W. Dijkstra, A Synthesis Emerging? (1975).

15. C. A. R. Hoare, Communicating Sequential Processes (1978).

16. P. Brinch Hansen, Distributed Processes: A Concurrent Programming
Concept (1978).

17. P. Brinch Hansen, Joyce—A Programming Language for Distributed
Systems (1987).

18. P. Brinch Hansen, SuperPascal: A Publication Language for Parallel
Scientific Computing (1994).

19. P. Brinch Hansen, Efficient Parallel Recursion (1995).
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After following this selection procedure rigorously, I was surprised to see that
every single paper turned out to have been written by either Edsger Dijkstra,
Tony Hoare or me. In retrospect, this was, perhaps, not so surprising.

In Judy Bishop’s (1986) view:

The swing away from assembly language which gained genuine mo-
mentum during the seventies was slow to affect the area of concur-
rent systems—operating systems, embedded control systems and the
like. What happened was that three people—Edsger Dijkstra, Tony
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Hoare and Per Brinch Hansen—independently developed key abstrac-
tions which were taken up by researchers worldwide, realized in exper-
imental languages, reported on, adapted and refined. In this way, the
problems of concurrency could be expressed in well understood nota-
tion, and solutions and principles gradually evolved.

To produce an anthology of reasonable size (about 500 pages) I omitted:

e Subsequent work that built on the seminal papers without adding any-
thing fundamentally new.

e Survey papers and assessments of ideas.
e Implementation details (except in outline).
e Testing, verification, and formal theory.

e Functional multiprogramming and data parallel languages.

These guidelines eliminated many valuable contributions to concurrent pro-
gramming (as well as two dozen of my own papers). Some of them are listed
as recommended further reading in the bibliography at the end of this essay.

PART I CONCEPTUAL INNOVATION

It is difficult for students today to imagine how little anyone knew about
systematic programming in the early 1960s. Let me illustrate this by telling
you about my first modest experience with multiprogramming.

In 1963 I graduated from the Technical University of Denmark without
any programming experience (it was not yet being taught). There were
(as far as I remember) no textbooks available on programming languages,
compilers or operating systems.

After graduating I joined the Danish computer company Regnecentralen.
Working on a Cobol compiler project, headed by Peter Naur and Jgrn
Jensen, I taught myself to program.

In 1966 Peter Kraft and I were asked to design a real-time system for
supervising a large ammonia nitrate plant in Poland. A small computer
would be used to perform a fixed number of cyclical tasks simultaneously.
These tasks would share data tables and peripherals. Since plant operators
could change the frequencies of individual tasks (and stop some of them
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indefinitely), we could not make any assumptions about the relative (or
absolute) speeds of the tasks.

It was obvious that we needed multiprogramming with process synchro-
nization. But what kind of synchronization?

A common technique at the time was to suspend a process in a queue until
it was resumed by another process. The trouble was that resumption had no
effect if the queue was empty. This happened if resumption was attempted
before a process was suspended. (This pitfall reminds me of a mailman who
throws away your letters if you are not at home when he attempts to deliver
them!)

This mechanism is unreliable because it makes a seemingly innocent as-
sumption about the relative timing of parallel events: A process must never
attempt to resume another process that is not suspended. However, since
the timing of events is unpredictable in a real-time system, this would have
been a disastrous choice for our real-time system.!

Regnecentralen had no experience with multiprogramming. Fortunately,
Edsger Dijkstra was kind enough to send me a copy of his 1965 monograph
“Cooperating Sequential Processes,” with a personal dedication: “Especially
made for graceful reading!” (I still have it.)

Using Dijkstra’s semaphores, Peter Kraft, Charles Simonyi and I were
able to implement the RC 4000 real-time control system on the prototype of
Regnecentralen’s RC 4000 computer with only 4K words of memory (without
a drum or disk) (Brinch Hansen 1967a, 1967b).

1 Cooperating Sequential Processes
The first classic is one of the great works in computer programming:
E. W. Dijkstra, Cooperating Sequential Processes (1965)

Here Dijkstra lays the conceptual foundation for abstract concurrent pro-
gramming. He begins by making the crucial assumption about speed inde-
pendence:

We have stipulated that processes should be connected loosely; by this
we mean that apart from the (rare) moments of explicit intercommu-
nication, the individual processes themselves are to be regarded as

! Around 1965 IBM’s PL/I language included queueing variables of this kind known as
events. Surprisingly, the suspend and resume primitives are also included in the recent
Java language (Doug Lea 1997).
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completely independent of each other. In particular, we disallow any
assumption about the relative speeds of the different processes.

Indivisible operations were well-known in multiprogramming systems, in
the form of supervisor calls (Kilburn 1961). Dijkstra’s contribution was to
make explicit assumptions about these critical sections (as he calls them).?

For pedagogical reasons, Dijkstra first attempts to program critical sec-
tions using assignments and inspection of simple variables only.

Through a carefully presented sequence of rejected solutions, Dijkstra
arrives at the following correctness criteria for cyclical processes cooperating
by means of common variables and critical sections:

1. Mutual exclusion: “At any moment at most one of the processes is engaged
in its critical section.”

2. Fairness: “The decision which of the processes is the first to enter its critical
section cannot be postponed to eternity.”

3. Speed independence: “Stopping a process in its ‘remainder of cycle’ [that is,
outside its critical region| has no effect upon the others.”

The Dutch mathematician T. J. Dekker found a general solution to
the mutual exclusion problem without synchronizing primitives. For single-
processor systems, I have always viewed this as an ingenious, academic ex-
ercise. Computer designers had solved the problem (in a restricted way) by
the simple technique of disabling interrupts.

As a more realistic solution, Dijkstra introduces binary semaphores, which
make the mutual exclusion problem trivial.?

Using general semaphores (due to Carel Scholten), Dijkstra implements
message communication through a bounded buffer.* He achieves a pleasing
symmetric behavior of communicating processes by viewing senders as pro-
cesses that consume empty buffer slots and produce full slots. Similarly,
receivers consume full slots and produce empty ones.

Dijkstra also presents an ingenious method of deadlock prevention, known
as the banker’s algorithm.

*Hoare (1971) renamed them critical regions.

3Dijkstra used Dutch acronyms, P and V, for the semaphore operations. Being allergic
to acronyms in any language, I renamed them wait and signal (Brinch Hansen 1971a).

4The bounded buffer is used as a programming example throughout this essay.
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begin integer number of queuing portionms,
number of empty positions,
buffer manipulation;
number of queuing portions:= 0;
number of empty positions:= N;
buffer manipulation:= 1;
parbegin
producer: begin
again 1: produce next portion;
P(number of empty positions);
P(buffer manipulation);
add portion to buffer;
V(buffer manipulation);
V(number of queuing portions);
goto again 1
end;
consumer: begin
again 2: P(number of queuing portions);
P(buffer manipulation);
take portion from buffer;
V(buffer manipulation);
V(number of empty positions);
process portion taken;
goto again 2
end
parend
end

The Bounded Buffer with Semaphores

In the 1960s Alan Perlis noticed that Regnecentralen’s compiler group
discussed programming problems by writing Algol 60 statements on a black-
board. This was unusual at a time when systems programs were still being

written in assembly language.
Edsger Dijkstra was also firmly in the Algol 60 tradition (Naur 1960).
He writes parallel algorithms in Algol extended with a parallel statement:®

parbegin S;; So; ... S, parend
As Dijkstra defines it:

Initiation of a parallel compound implies simultaneous initiation of all

®Also known as a concurrent statement (Brinch Hansen 1972b).
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its constituent statements, its execution is completed after the comple-
tion of the execution of all its constituent statements.

This modest proposal is one of the first published examples of an abstract
programming notation for concurrent processes.

2 THE Multiprogramming System

Dijkstra demonstrated the depth of his ideas in the construction of an elegant
model operating system:

E. W. Dijkstra, The Structure of the THE Multiprogramming System (1968)

This was a spooling system that compiled and executed a stream of Algol
60 programs with paper tape input and printer output. It used software-
implemented demand paging between a 512K word drum and a 32K word
memory. There were five user processes and ten input/output processes,
one for each peripheral device. The system used semaphores for process
synchronization and communication.

Dijkstra’s multiprogramming system illustrated the conceptual clarity
of hierarchical ordering. His system consisted of several program layers,
which gradually transform the physical machine into a more pleasant abstract
machine:

Level 0: Processor allocation.

Level 1: Demand paging (“segment controller” ).
Level 2: Operator console (“message interpreter”).
Level 3: Virtual devices (“input/output streams”).
Level 4: User processes.

Level 5: System operator.

Apart from the operator, these program layers could be designed and tested
one at a time.
This short paper concentrates on Dijkstra’s most startling claim:

We have found that it is possible to design a refined multiprogramming
system in such a way that its logical soundness can be proved a priori
and its implementation can admit exhaustive testing. The only errors
that showed up during testing were trivial coding errors . . . the resulting
system is guaranteed to be flawless.

The hierarchical structure was used to prove the following properties of
harmoniously cooperating processes:
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1. “Although a process performing a task may in so doing generate a finite
number of tasks for other processes, a single initial task cannot give rise to
an infinite number of task generations.”

2. “It is impossible that all processes have returned to their homing position
while somewhere in the system there is still pending a generated but unac-
cepted task.”

3. “After the acceptance of an initial task all processes eventually will be (again)
in their homing position.”

Software managers continue to believe that software design is based on
a magical discipline, called “software engineering,” which can be mastered
by average programmers. Dijkstra explained that the truth of the matter is
simply that

the intellectual level needed for system design is in general grossly un-
derestimated. I am convinced more than ever that this type of work is
very difficult, and that every effort to do it with other than the best
people is doomed to either failure or moderate success at enormous

expense.

Nico Habermann (1967), Edsger Dijkstra (1971), Coen Bron (1972) and
Mike McKeag (1976) described the THE system in more detail.

3 RC 4000 Multiprogramming System
In 1974 Alan Shaw wrote:

There exist many approaches to multiprogramming system design, but
we are aware of only two that are systematic and manageable and at
the same time have been validated by producing real working operating
systems. These are the hierarchical abstract machine approach devel-
oped by Dijkstra (1968a) and the nucleus methods of Brinch Hansen
(1969) ... The nucleus and basic multiprogramming system for the RC
4000 is one of the most elegant existing systems.

The RC 4000 multiprogramming system was not a complete operating
system, but a small kernel upon which operating systems for different pur-
poses could be built in an orderly manner:

P. Brinch Hansen, RC 4000 Software: Multiprogramming System (1969)
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The kernel provided the basic mechanisms for creating a tree of parallel
processes that communicated by messages. Jgrn Jensen, Sgren Lauesen and
I designed it for Regnecentralen’s RC 4000 computer. We started working
on the system in the fall of 1967. A well-documented reliable version was
running in the spring of 1969.

Before the RC 4000 multiprogramming system was programmed, I de-
scribed a design philosophy that drastically generalized the concept of an
operating system (Brinch Hansen 1968):

The system has no built-in assumptions about program scheduling and
resource allocation; it allows any program to initiate other programs in
a hierarchal manner.® Thus, the system providesfa general frame[work]
for different scheduling strategies, such as batch processing, multiple
console conversation, real-time scheduling, etc.

This radical idea was probably the most important contribution of the RC
4000 system to operating system technology. If the kernel concept seems
obvious today, it is only because it has passed into the general stock of
knowledge about system design. It is now commonly referred to as the
principle of separation of mechanism and policy (Wulf 1974).

The RC 4000 system was also noteworthy for its message communication.
Every communication consisted of an exchange of a message and an answer
between two processes. This protocol was inspired by an early decision to
treat peripheral devices as processes, which receive input/output commands
as messages and return acknowledgements as answers. In distributed systems
this form of communication is now known as remote procedure calls.

The system also enabled a server process to be engaged in nondetermin-
istic communication with several client processes at a time. This was known
as a conwversational process.

The RC 4000 system was programmed in assembly language. As a purely
academic exercise for this essay, I have used an informal Pascal notation
(Wirth 1971) to outline a conversational process that implements a bounded
buffer used by client processes. In retrospect, such a process is equivalent
to the “secretary” concept that Dijkstra (1971) would sketch two years later
(in very preliminary form).

In the RC 4000 system, the initial process was a conversational process
that spawned other processes in response to messages from console processes.

SHere I obviously meant “processes” rather than “programs.”
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{ The buffer process receives messages from client processes
requesting it to accept or return data items. The messages
arrive in buffer elements, which are linked to a message
queue. The buffer process receives a message in a buffer
element and uses the same buffer element to return an
answer to the client process. }

number of items := 0;

{ Inspect the message queue from the beginning }

current buffer := nil;

cycle
{ Postpone receipt of the current buffer element (if any) }
previous buffer := current buffer;

{ Wait for the next buffer element in the queue (which
may already have arrived) }
wait event(previous buffer, current buffer);
case current buffer.request of
accept item:
if number of items < N then
begin
take a data item from the current buffer element
and store it within the buffer process;
number of items := number of items + 1;
{ Remove the current buffer element from the queue }
get event(current buffer);
{ Use the same buffer element to return an
acknowledgment to the client process }
send answer (acknowledgment, current buffer);
{ Reinspect the queue from the beginning }
current buffer := nil;
end;
return item:
if number of items > O then

begin
select a data item stored within the buffer process;
number of items := number of items - 1;

{ Remove the current buffer element from the queue }
get event(current buffer);
{ Use the same buffer element to return the
data item to the client process }
send answer(data item, current buffer);
{ Reinspect the queue from the beginning }
current buffer := nil;
end
end
end

The Bounded Buffer as a Conversational Process
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If this basic operating system temporarily was unable to honor a request, it
would postpone the action by delaying its receipt of the message. In the
meantime, it would attempt to serve other clients.

According to Sgren Lauesen (1975):

The RC 4000 software was extremely reliable. In a university envi-
ronment, the system typically ran under the simple operating system
for three months without crashes ... The crashes present were possibly
due to transient hardware errors.

When the RC 4000 system was finished I described it in a 5-page journal
paper (Brinch Hansen 1970). I then used this paper as an outline of the
160-page system manual (Brinch Hansen 1969) by expanding each section of
the paper.” The third article in this book is a reprint of the most important
part of the original manual, which has been out of print for decades.®

As usual, Niklaus Wirth (1969) immediately recognized the advantages
and limitations of the system:

I am much impressed by the clarity of the multiple process concept, and
even more so by the fact that a computer manufacturer adopts it as the
basis of one of his products. I have come to the same conclusion with
regard to semaphores, namely that they are not suitable for higher level
languages. Instead, the natural synchronization events are exchanges
of messages.

What does not satisfy me completely at your scheme is that a specific
mechanism of dynamic buffer space allocation is inextricably connected
with the problem of process synchronization, I would prefer a scheme
where the programmer himself declares such buffers in his programs
(which of course requires an appropriate language).

4 Hierarchical Ordering of Sequential Processes

E. W. Dijkstra, Hierarchical Ordering of Sequential Processes (1971)

"In May 1968 I outlined these ideas in a panel discussion on Operating Systems at
the Tenth Anniversary Algol Colloquium in Zurich, Switzerland. The panelists included
Edsger Dijkstra and Niklaus Wirth, both of whom received copies of the RC 4000 system
manual in July 1969.

8My operating system book (Brinch Hansen 1973b) includes a slightly different version
of the original manual supplemented with abstract (untested) Pascal algorithms.
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With deep insight, Dijkstra explains his layered approach to operating sys-
tem design in greater detail. This time he proves the correctness of critical
sections and the bounded buffer implemented with semaphores. He also in-
troduces and solves the scheduling problem of the dining philosophers, which
poses subtle dangers of deadlock and unfairness (described in flamboyant ter-
minology as “deadly embrace” and “starvation”).

The THE multiprogramming system was implemented in assembly lan-
guage without memory protection. Every process could potentially access
and change any variable in the system. However, using well-defined pro-
gramming rules and systematic testing, Dijkstra and his students were able
to verify that all processes cooperated harmoniously.

At the end of the paper, Dijkstra briefly sketches an alternative scenario
of secretaries and directors:®

Instead of N sequential processes cooperating in critical sections via
common variables, we take out the critical sections and combine them
into a N+1°¢ process, called a “secretary”; the remaining N processes
are called “directors”. Instead of N equivalent processes, we now have
N directors served by a common secretary.

What used to be critical sections in the N processes are in the directors
“calls upon the secretary”.

A secretary presents itself primarily as a bunch of non-reentrant rou-
tines with a common state space.

When a director calls a secretary ... the secretary may decide to keep
him asleep, a decision that implies that she should wake him up in one
of her later activities. As a result the identity of the calling program
cannot remain anonymous as in the case of the normal subroutine. The
secretaries must have variables of type “process identity”.

In general, a director will like to send a message to his secretary when
calling her ... and will require an answer back from his secretary when
she has released his call.

On the basis of this proposal, Greg Andrews (1991) credits Dijkstra with
being “the first to advocate using data encapsulation to control access to
shared variables in a concurrent program.” Twenty-five years ago, I repeated
the prevailing opinion that “Dijkstra (1971) suggested the idea of monitors”
(Brinch Hansen 1975a). Today, after reading the classic papers again, I find
this claim (which Dijkstra never made) debatable.

®The gender bias in the terminology was not considered unusual thirty years ago.
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Dijkstra had implemented his multiprogramming system as cooperating
processes communicating through common variables in unprotected memory.
From his point of view, the idea of combining critical regions and common
variables into server processes ( “secretaries”) was a new approach to resource
scheduling.

However, this idea was obvious to the designers of the RC 4000 mul-
tiprogramming system, based, as it was, on a paradigm of processes with
disjoint memories communicating through messages only. There was simply
no other way of using the RC 4000 system!

The “secretaries,” which Dijkstra described informally, had already been
implemented as “conversational processes” in the RC 4000 system. Mike
McKeag (1972) demonstrated the similarity of these ideas by using the RC
4000 message primitives to outline simple secretaries for well-known syn-
chronization problems, such as the bounded buffer, the dining philosophers,
and a readers and writers problem.

I am not suggesting that the RC 4000 primitives would have been a good
choice for a programming language. They would not. They lacked a crucial
element of language design: notational elegance. And I certainly did not
view conversational processes (or “secretaries”) as the inspiration for the
future monitor concept.

I am simply pointing out that the idea of a resource manager was already
known by 1969, in the form of a basic monitor, invoked by supervisor calls,
or a conversational process (a “secretary”), invoked by message passing.

What was new, was the goal of extending programming languages with
this paradigm (Discussions 1971). And that had not been done yet.

PART II PROGRAMMING LANGUAGE CONCEPTS

The invention of precise terminology and notation plays a major role not
only in the sciences but in all creative endeavors.

When a programming concept is understood informally it would seem to
be a trivial matter to invent a programming notation for it. But in practice
this is hard to do. The main problem is to replace an intuitive, vague idea
with a precise, unambiguous definition of its meaning and restrictions. The
mathematician George Pdlya (1957) was well aware of this difficulty:

An important step in solving a problem is to choose the notation. It
should be done carefully. The time we spend now on choosing the
notation may well be repaid by the time we save later by avoiding
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hesitation and confusion. Moreover, choosing the notation carefully,
we have to think sharply of the elements of the problem which must be
denoted. Thus, choosing a suitable notation may contribute essentially
to understanding the problem.

A programming language concept must represent a general idea that is
used often. Otherwise, it will just increase the complexity of the language at
no apparent gain. The meaning and rules of a programming concept must be
precisely defined. Otherwise, the concept is meaningless to a programmer.
The concept must be represented by a concise notation that makes it easy
to recognize the elements of the concept and their relationships. Finally, it
should be possible by simple techniques to obtain a secure, efficient imple-
mentation of the concept. A compiler should be able to check that the rules
governing the use of the concept are satisfied, and the programmer should
be able to predict the speed and size of any program that uses the concept
by means of performance measurements of its implementation.

As long as nobody studies your programs, their readability may not seem
to be much of a problem. But as soon as you write a description for a wider
audience, the usefulness of an abstract notation that suppresses irrelevant de-
tail becomes obvious. So, although Dijkstra’s THE system was implemented
in assembly language, he found it helpful to introduce a programming nota-
tion for parallel statements in his description (Dijkstra 1965).

5 Conditional Critical Regions

In the fall of 1971, Tony Hoare enters the arena at a Symposium on Operating
Systems Techniques at Queen’s University of Belfast:

C. A. R. Hoare, Towards a Theory of Parallel Programming (1971)

This is the first notable attempt to extend programming languages with ab-
stract features for parallel programming. Hoare points out that the search for
parallel language features is “one of the major challenges to the invention,
imagination and intellect of computer scientists of the present day.”

Hoare boldly formulates design principles for parallel programming lan-
guages:

1. Interference control. The idea of preventing time-dependent errors by
compile-time checking was novel at a time when multiprogramming systems
relied exclusively on run-time checking of variable access:
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Parallel programs are particularly prone to time-dependent errors, which
either cannot be detected by program testing nor by run-time checks.

It is therefore very important that a high-level language designed for

this purpose should provide complete security against time-dependent

errors by means of a compile-time check.

2. Disjoint processes. Dijkstra’s parallel statement {Q1//Q2//...//Qn}
is used to indicate that the program statements Q, Qa, . .., Q, define disjoint
processes to be executed in parallel. According to Hoare:

It is expected that the compiler will check the disjointness of the pro-
cesses by ensuring that no variable subject to change in any of the Q;
is referred to at all in any Q; for i#j. Thus it can be guaranteed by a
compile-time check that no time-dependent errors could ever occur at

run time.

3. Resources. The programming language Pascal is extended with a
notation indicating that a variable r of some type 7" is a resource shared
by parallel processes:

r: T; ... {resource r; Q1//Qx//...//Q}

4. Critical regions. Inside the process statements Qi, Q2, ..., Qn @
critical region C on the resource r is expressed by the structured notation

with r do C

A compiler is expected to check that the resource is neither used nor referred
to outside its critical regions.

5. Conditional critical regions. Sometimes the execution of a critical
region C must be delayed until a resource r satisfies a condition, defined by
a Boolean expression B:

with r when B do C

The conditional form of a critical region is the most original language feature
proposed in Hoare’s paper.10

19Gimula I and SOL also included statements for waiting on Boolean conditions (later
removed from Simula). However, these were simulation languages without any concept (or
need) of critical regions (Dahl 1963, Knuth 1964).
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B: record inpointer, outpointer, count: Integer;
buffer: array 0...N-1 of T end;

with B do
begin inpointer:= 0; outpointer:= 0;
count:= 0;
end;

{resource B;

with B when count < N do
begin buffer[inpointer]:= next value;
inpointer:= (inpointer + 1) mod N;
count:= count + 1
end

//

with B when count > 0 do
begin this value:= buffer[outpointer];
outpointer:= (outpointer + 1) mod N;
count:=count - 1
end

The Bounded Buffer with Conditional Critical Regions

Hoare emphasized that “The solutions proposed in this paper cannot
claim to be final, but it is believed that they form a sound basis for further
advance.”

At the Belfast symposium (Brinch Hansen 1971a), I expressed some reser-
vations from a software designer’s point of view:

The conceptual simplicity of simple and conditional critical regions
is achieved by ignoring the sequence in which waiting processes enter
these regions. This abstraction is unrealistic for heavily used resources.
In such cases, the operating system must be able to identify competing
processes and control the scheduling of resources among them. This
can be done by means of a monitor—a set of shared procedures which
can delay and activate individual processes and perform operations on
shared data.

Hoare’s response (Discussions 1971):

As a result of discussions with Brinch Hansen and Dijkstra, I feel that
this proposal is not suitable for operating system implementation ...
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My proposed method encourages the programmer to ignore the ques-
tion of which of several outstanding requests for a resource should be
granted.

A year ago I would have said that this was a very serious criticism
indeed of a language proposal that it encouraged the programmer to
ignore certain essential problems. I now believe that a language should
be usable at a high level of abstraction, and at high levels of abstraction
it is an excellent thing to encourage the programmer to ignore certain
types of problems, in particular scheduling problems.

Hoare’s paper was as an eye-opener for me: It was my introduction to
the difficult art of language design. The idea of checking interference during
scope analysis struck me as magical!

Years later, I included variants of conditional critical regions in two pro-
gramming languages, Distributed Processes (Brinch Hansen 1978) and Edi-
son (Brinch Hansen 1981).

6 Operating System Principles

Abstract concurrent programming had an immediate and dramatic impact
on our fundamental understanding of computer operating systems.

The implementation techniques of operating systems were reasonably
well understood in the late 1960s. But most systems were too large and
poorly described to be studied in detail. All of them were written either in
assembly language or in sequential programming languages extended with
assembly language features. Most of the literature on operating systems
emphasized low-level implementation details of particular systems rather
than general concepts. The terminology was unsystematic and incomplete
(Brinch Hansen 2000).

Before the invention of abstract concurrent programming, it was im-
practical to include algorithms in operating system descriptions. Technical
writers mixed informal prose with unstructured flowcharts and complicated
pictures of linked lists and state transitions.!!

In its Cosine Report (1971), the National Academy of Engineering sum-
marized the state of affairs at the time [with emphasis added]:

1See, for example, IBM (1965), Elliott Organick (1972), and Stuart Madnick (1974).
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The subject of computer operating systems, if taught at all, is typi-
cally a descriptive study of some specific operating system, with little
attention being given to emphasizing the relevant basic concepts and
principles. To worsen matters, it has been difficult for most university
departments to develop a new course stressing operating systems prin-
ciples ... There are essentially no suitable textbooks on the subject.

I consider myself lucky to have started in industry. The RC 4000 project
convinced me that a fundamental understanding of operating systems would
change computer programming radically. I was so certain of this that I
decided to leave industry and become a researcher.

In November 1970 I became a research associate at Carnegie-Mellon Uni-
versity, where I wrote the first comprehensive textbook on operating system
principles:

P. Brinch Hansen, An Outline of a Course on Operating System Principles (1971)

While writing the book I reached the conclusion that operating systems are
not radically different from other programs. They are just large programs
based on the principles of a more fundamental subject: parallel programming.

Starting from a concise definition of the purpose of an operating system,
I divided the subject into five major areas. First, I presented the principles of
parallel programming as the essence of operating systems. Then I described
processor management, memory management, scheduling algorithms and
resource protection as techniques for implementing parallel processes.

I defined operating system concepts by abstract algorithms written in Pas-
cal extended with a notation for structured multiprogramming. My (unimple-
mented) programming notation included concurrent statements, semaphores,
conditional critical regions, message buffers, and monitors. These program-
ming concepts are now discussed in all operating system texts.

The book includes a concise vocabulary of operating system terminology,
which is used consistently throughout the text. The vocabulary includes the
following terms:

concurrent processes, processes that overlap in time; concurrent
processes are called disjoint if each of them only refers to pri-
vate data; they are called interacting if they refer to common
data.

synchronization, a general term for any constraint on the order in
which operations are carried out; a synchronization rule can, for
example, specify the precedence, priority, or mutual exclusion in
time of operations.
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monitor, a common data structure and a set of meaningful operations
on it that exclude one another in time and control the synchroniza-
tion of concurrent processes.

My book Operating System Principles was published in July 1973. Peter
Naur (1975) reviewed it:

The presentation is generally at a very high level of clarity, and gives
evidence of deep insight. In pursuing his general aim, the establish-
ment of a coherent set of basic principles for the field, the author is
highly successful. The principles are supported by algorithms written
in Pascal, extended where necessary with carefully described primitives.
Close attention is paid to the thorny question of terminology.

In my outline of the book I made a prediction that would guide my future
research:

So far nearly all operating systems have been written partly or com-
pletely in machine language. This makes them unnecessarily difficult
to understand, test and modify. I believe it is desirable and possible
to write efficient operating systems almost entirely in a high-level lan-
guage. This language must permit hierarchal structuring of data and
program, extensive error checking at compile time, and production of
efficient machine code.

7 Structured Multiprogramming

P. Brinch Hansen, Structured Multiprogramming (1972)

The conditional critical region, proposed by Hoare (1971), had minor nota-
tional limitations and a potentially serious implementation problem:

1. A shared variable is declared as both a variable and a resource. The
textual separation of these declarations can be misused to treat the same
variable as a scheduled resource in some contexts and as an ordinary variable
in other contexts. This would enable a process to refer directly to a variable
while another process is within a “critical” region on the same variable.

I closed this loophole by using a single declaration to introduce a shared
variable (of some type T'):

var v: shared T
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2. When a process is delayed by a Boolean expression without side ef-
fects, it cannot indicate the urgency of its request to other processes. This
complicates the programming of priority scheduling.

It was an obvious remedy to permit a conditional await statement to
appear anywhere within a critical region:

region v do
begin ... await B; ... end

3. The major concern was that it did not seem possible to implement con-
ditional critical regions efficiently. The root of the problem is the unbounded
reevaluation of Boolean expressions until they are true.

Many years later, Charles Reynolds (1993) asked:

How does a process wait for some condition to be true? It seems to me
that the critical insight occurred in realizing that the responsibility for
determining an awaited event has occurred must lie with the applica-
tion programmer and not with the underlying run-time support. The
awakening of processes awaiting events is part of the application algo-
rithm and must be indicated by explicit announcement of the events
by means of “signal” or “cause” commands present in the applica-
tion algorithm. This idea is clearly present as early as Brinch Hansen
(1972b).

I suggested that programmers should be able to associate secure queueing
variables with shared data structures and control the transfers of processes
to and from them.

In my proposal, the declaration

var e: event v;

associates a queuing variable e of type event with a shared variable v.
A process can leave a critical region associated with v and join the queue
e by executing the standard procedure

await(e)
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var B: shared record
buffer: array 0..max—1 of T,
p, ¢: 0..max—1;

full: 0..max;
nonempty, nonfull: event B;
end;

procedure send(m: T);
region B do

begin
while full = max do await(nonfull);
buffer[p] := m;
p := (p + 1) mod max;
full := full + 1;
cause(nonempty);
end

procedure receive(var m: T);
region B do
begin
while full = 0 do await(nonempty);
m := buffer[c];
¢ := (c + 1) mod max;

full ;= full — 1;
cause(nonfull);
end

The Bounded Buffer with Secure Events

Another process can enable all processes in the queue e to reenter their
critical regions by executing the standard procedure

cause(e)

If several processes are waiting in the same queue, a cause operation on the
queue will (eventually) enable all of them to resume their critical regions
(one at a time). Mutual exclusion is still maintained, and processes waiting
to resume critical regions have priority over processes that are waiting to
enter the beginning of critical regions.

In this situation, a resumed process may find that another process has
made its scheduling condition B false again. Consequently, processes must
use waiting loops of the form!?

12 Mesa (Lampson 1980) and Java (Lea 1997) would also require waiting loops on Boolean
conditions.
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while not B do await(e)

My proposal was completely unrelated to the unpredictable event queues
of the 1960s, which caused the programmer to lose control over schedul-
ing. The crucial difference was that the new queues were associated with
a shared variable, so that all scheduling operations were mutually exclusive
operations. The programmer could control the scheduling of processes to
any degree desired by associating each queue with a group of processes or an
individual process.

The idea of associating secure scheduling queues with a shared data struc-
ture to enable processes to delay and resume critical regions has been used
in all monitor proposals. In an unpublished draft, Hoare (1973a) proposed
wast and signal operations on condition variables, which, he says, “are very
similar to Brinch Hansen’s await and cause operations.” In the following I
will call all these kinds of queues secure queueing variables.

Secure queueing variables were an efficient solution to the problem of
process scheduling within critical regions. However, like semaphores, queue-
ing variables always struck me (and others) as somewhat too primitive for
abstract concurrent programming. To this day nobody has found a better
compromise between notational elegance and efficient implementation. Still,
I cannot help feeling that we somehow looked at the scheduling problem
from the wrong point of view.

We now had all the pieces of the monitor puzzle, and I had adopted a
programming style that combined shared variables, critical regions, secure
queueing variables, and procedures in a manner that closely resembled mon-
itors. But we still did not have an abstract monitor notation.

8 Shared Classes

The missing element in conditional critical regions was a concise represen-
tation of data abstraction. The declaration of a resource and the operations
associated with it were not combined into a single syntactical form, but were
distributed throughout the program text.

In the spring of 1972 I read two papers by Dahl (1972) and Hoare (1972)
on the class concept of the programming language Simula 67. Although
Simula is not a concurrent programming language, it inspired me in the
following way: So far I had thought of a monitor as a program module that
defines all operations on a single instance of a data structure. From Simula
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I learned to regard a program module as the definition of a class of data
structures accessed by the same procedures.

This was a moment of truth for me. Within a few days I wrote a chapter
on resource protection for my operating system book:

P. Brinch Hansen, Shared Classes (1973)

I proposed to represent monitors by shared classes and pointed out that re-
source protection and type checking are part of the same problem: to verify
automatically that all operations on data structures maintain certain prop-
erties (called invariants).

My book includes a single monitor for a bounded buffer. The shared class
defines a data structure of type B, two procedures that can operate on the
data structure, and a statement that defines its initial state.

shared class B =
buffer: array 0..max—1 of T}
p, ¢: 0..max—1;
full: 0..max;
procedure send(m: T);
begin
await full < max;
buffer(p] := m;
p:= (p + 1) mod max;
full := full + 1;
end
procedure receive(var m: T);
begin
await full > 0;
m := buffer[c];
¢ := (c + 1) mod max;
full := full — 1;
end
begin p := 0; ¢ := 0; full := 0 end

The Bounded Buffer as a Shared Class

The shared class notation permits multiple instances of the same monitor
type. A buffer variable b of type B is declared as

var b: B

Upon entry to the block in which the buffer variable is declared, storage is



28 PER BRINCH HANSEN

allocated for its data components, and the buffer is initialized by executing
the statement at the end of the class definition.
Send and receive operations on a buffer b are denoted

b.send(x)  b.receive(y)

A shared class is a notation that explicitly restricts the operations on an
abstract data type and enables a compiler to check that these restrictions are
obeyed. It also indicates that all operations on a particular instance must
be executed as critical regions. In short, a shared class is a monitor type.

My decision to use await statements in the first monitor proposal was a
matter of taste. I might just as well have used secure queueing variables.

You might well ask why after inventing shared classes with secure queue-
ing variables I published my original ideas in a textbook, instead of a pro-
fessional journal. Well, I was young and idealistic. I felt that my first book
should include at least one original idea. It did not occur to me that re-
searchers rarely look for original ideas in undergraduate textbooks.!3

Why didn’t I publish a tutorial on the monitor concept? My professional
standards were deeply influenced by the Gier Algol compiler (Naur 1963), the
THE multiprogramming system (Dijkstra 1968), the RC 4000 multiprogram-
ming system (Brinch Hansen 1969), and the Pascal compiler (Wirth 1971).
Every one of these systems had been implemented before it was described in
a professional journal.

Since this was my standard of software research, I decided to implement
monitors in a programming language before writing more about it.

9 Monitor Papers

In his first paper on monitors, Hoare (1973b) used my shared classes and
secure queueing variables (with minor changes) to outline an unimplemented
paging system. A year later, he published a second paper on monitors (Hoare
1974b). He acknowledged that “This paper develops Brinch Hansen’s con-
cept of a monitor.”

Avi Silberschatz (1992) concluded that “The monitor concept was devel-
oped by Brinch Hansen (1973b). A complete description of the monitor was
given by Hoare (1974b).”

131 did, however, send the complete manuscript of Operating System Principles, which
included my monitor concept, to Edsger Dijkstra and Tony Hoare in May 1972 (Horning
1972).
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C. A. R. Hoare, Monitors: An Operating System Structuring Concept (1974)

Hoare’s contribution to the monitor concept was to refine the rules of process
resumption:

1. He replaced the “resume-all, one-at-a-time” policy of secure event vari-
ables with the more convenient “first-come, first-served” policy of con-
dition variables.

2. He decreed “that a signal operation be followed immediately by re-
sumption of a waiting program, without possibility of an intervening
procedure call from yet a third program.” This eliminated the need
for waiting loops.

3. He advocated Ole-Johan Dahl’s simplifying suggestion that a signal
operation should terminate a monitor call (Hoare 1973c).

bounded buffer: monitor
begin buffer: array 0..N—1 of portion;
lastpointer: 0..N—1;
count: 0..N;
nonempty, nonfull: condition;
procedure append(x: portion);
begin if count = N then nonfull. wait;
note 0 < count < N;
buffer[lastpointer] := x;
lastpointer := lastpointer @ 1;
count := count + 1;
nonempty.signal
end append;
procedure remove(result x: portion);
begin if count = 0 then nonempty.wait;
note 0 < count < N;
x := buffer[lastpoint © count];
count := count — 1;
nonfull.signal
end remove;
count := 0; lastpointer := 0
end bounded buffer;

The Bounded Buffer as a Monitor

This influential paper deserves a place in the history of concurrent pro-
gramming as the first monitor tutorial:
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1. The monitor concept is illustrated by solutions to familiar programming
ezercises: a single resource scheduler, a bounded buffer, an alarm clock,
a buffer pool, a disk head optimizer, and a readers and writers problem.

2. As an academic exercise he presents a semaphore implementation of
monitors. (In practice, monitors would, of course, be implemented by
uninterruptible operations in assembly language.)

3. Finally, he defines simple proof rules for condition variables.

PART III CONCURRENT PROGRAMMING LANGUAGES

Hoare (1974a) introduced the essential requirement that a programming lan-
guage must be secure in the following sense: A language should enable its
compiler and run-time system to detect as many cases as possible in which
the language concepts break down and produce meaningless results.!

For a parallel programming language the most important security measure
is to check that processes access disjoint sets of variables only and do not
interfere with each other in time-dependent ways.

Unless the parallel features of a programming language are secure in this
sense, the effects of parallel programs are generally both unpredictable and
time-dependent and may therefore be meaningless. This does not necessarily
prevent you from writing correct parallel programs. It does, however, force
you to use a low-level, error-prone notation that precludes effective error
checking during compilation and execution.

The only secret about secure concurrent languages was that they could be
designed at all. Once you have seen that this is possible, it is not so difficult
to invent other concurrent languages. That is why I have included only the
first secure concurrent language, Concurrent Pascal.

In the first survey paper on concurrent programming I cited 11 papers
only, written by four researchers. None of them described a concurrent pro-
gramming language (Brinch Hansen 1973e). The development of monitors
and Concurrent Pascal started a wave of research in concurrent programming
languages. A more recent survey of the field includes over 200 references to
nearly 100 languages (Bal 1989).

Concurrent Pascal had obvious limitations by today’s standards. But
in 1975 it laid the foundation for the development of secure programming
languages with abstract concepts for parallelism.

4This definition of security differs somewhat from its usual meaning of “the ability of
a system to withstand attacks from adversaries” (Naur 1974).
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10 Concurrent Pascal

On July 1, 1972, I became associate professor of computer science at Cal-
ifornia Institute of Technology. During my first academic year I prepared
‘three new courses and introduced Pascal on campus. These tasks kept me
busy for a while.

I also started thinking about designing a programming language with
concurrent processes and monitors. To reduce the effort, I decided to include
these concepts in an existing sequential language. Since I had used the
language in my operating system book, Pascal was an obvious choice for me.

In September 1973, I sent Mike McKeag “a copy of a preliminary working
document that describes my suggestion for an extension of Pascal with con-
current processes and monitors” (Brinch Hansen 1973d). This is the earliest
evidence of Concurrent Pascal.

By January 1975, the Concurrent Pascal compiler and its run-time sup-
port were running on a PDP 11/45 minicomputer at Caltech (Hartmann
1975, Brinch Hansen 1975f).

In May 1975, I published a paper on the new language:

P. Brinch Hansen, The Programming Language Concurrent Pascal (1975)

Concurrent Pascal extends Pascal with abstract data types known as pro-
cesses, monitors, and classes. Each type module defines the representation
and possible transformations of a single data structure. The syntax clearly
shows that each module consists of a set of variable declarations, a set of
procedures, and an initial statement.

A module cannot access the variables of another module. The compiler
uses this scope rule to detect synchronization errors before a program is ex-
ecuted. The run-time synchronization of monitor calls prevents other race
conditions.

A process can delay itself in a monitor variable of type queue. When an-
other process performs a continue operation on the same queue, the delayed
process (if any) immediately resumes execution of its monitor procedure. In
any case, the process performing the continue operation immediately returns
from its monitor procedure.

A queue is either empty or holds a single process. A multiprocess queue
can be implemented as an array of single-process queues.

As a language designer, I have always felt that one should experiment
with the simplest possible ideas before adopting more complicated ones. This
led me to use single-process queues and combine process continuation with
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type buffer =

monitor

var contents: array [1..max] of T;
head, tail, length: integer;
sender, receiver: queue;

procedure entry send(x: T);

begin
if length = max then delay(sender);
contents[tail] := x;
tail := tail mod max + 1;
length := length + 1;
continue(receiver)
end;
procedure entry receive(var x: T);
begin

if length = 0 then delay(receiver);
x := contents[head];
head := head mod max + 1;
length := length — 1;
continue(sender)

end;

begin head := 1; tail := 1; full := 0 end

The Bounded Buffer in Concurrent Pascal

monitor exit.

I felt that the merits of a signaling scheme could be established only by
designing real operating systems (but not by looking at small programming
exercises). Since Concurrent Pascal was the first monitor language, I was
unable to benefit from the practical experience of others. After designing
small operating systems, I concluded that first-in, first-out queues are indeed
somewhat more convenient to use.

In any case, the virtues of different signaling mechanisms still strike me
as being only mildly interesting. In most cases, any one of them will do,
and all of them (including my own) are slightly complicated. Fortunately,
monitors have the marvelous property of hiding the details of scheduling from
concurrent processes.

The programming tricks of assembly language were impossible in Concur-
rent Pascal: there were no typeless memory words, registers, and addresses
in the language. The programmer was not even aware of the existence of
physical processors and interrupts. The language was so secure that concur-
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rent processes ran without any form of memory protection.

The portable compiler (written in Sequential Pascal) generated platform-
independent code, which was executed by a small kernel written in assembly
language (Hartmann 1975, Brinch Hansen 1975¢). The language was moved
from one computer to another by rewriting the kernel of 4K words in the
assembly language of the target computer (Brinch Hansen 1975f).1°

Greg Andrews (1993) felt that:

The contribution of Concurrent Pascal was indeed that it added a new
dimension to programming languages: modular concurrency. Monitors
(and classes) were essential to this contribution. And the modulariza-
tion they introduced has greatly influenced most subsequent concurrent
language proposals.

In a later essay on language description (Brinch Hansen 1981), I said:

The task of writing a language report that explains a programming
language with complete clarity to its implementors and users may look
deceptively easy to someone who hasn’t done it before. But in reality it
is one the most difficult intellectual tasks in the field of programming.

Well, I was someone who hadn’t done it before, and the Concurrent Pascal
report (Brinch Hansen 1975d) suffered from all the problems I mentioned in
the essay. I added, “I am particularly uncomfortable with the many ad hoc

restrictions in the language.”
Ole-Johan Dahl (1993) disagreed:

I take issue with some of your reservations about Concurrent Pascal.
Of course a language built around a small number of mechanisms used
orthogonally is an ideal worth striving for. Still, when I read your
1977 book my reaction was that the art of imposing the right restric-
tions may be as important from an engineering point of view. So, here
for once was a language, beautiful by its orthogonal design, which at
the same time was the product of a competent engineer by the re-
strictions imposed in order to achieve implementation and execution
efficiency. The adequacy of the language as a practical tool has been
amply demonstrated.

15T wenty years later, the designers of the Java language resurrected the idea of platform-
independent parallel programming (Gosling 1996). Unfortunately, they replaced the secure
monitor concept of Concurrent Pascal with insecure shortcuts (Brinch Hansen 1999).
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Concurrent Pascal was followed by more than a dozen monitor languages,
listed in Brinch Hansen (1993a), among them Modula (Wirth 1977a), Pascal
Plus (Welsh 1979), and Mesa (Lampson 1980).

PART IV MODEL OPERATING SYSTEMS

By the end of 1975, I had used Concurrent Pascal to implement three small
operating systems of 600-1400 lines each:

o The single-user operating system Solo
e A job stream system

o A real-time scheduler

The development and documentation effort of each system took a few months
(or weeks) only.

11 Solo Operating System

As a realistic test of the new programming language, I used Concurrent
Pascal to program a small operating system:

P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal Program
(1976)

Solo was a portable single-user operating system for the development of
Sequential and Concurrent Pascal programs. It was implemented on a
PDP 11/45 minicomputer with removable disk packs. Every user disk was
organized as a single-level file system. The heart of Solo was a job pro-
cess that compiled and ran programs stored on the disk. Two additional
processes performed input/output spooling simultaneously.

Al Hartmann (1975) had already written the Concurrent Pascal compiler.
I wrote the operating system and its utility programs in three months. Wolf-
gang Franzen measured and improved the performance of the disk allocation
algorithm.

The Solo system demonstrated that it is possible to write small opera-
ting systems in a secure programming language without machine-dependent
features. The discovery that this was indeed possible for small operating
systems was more important (I think) than the invention of monitors.
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12 Solo Program Text

Solo was the first modular operating system implemented by means of abstract
data types (classes, monitors and processes) with compile-time checking of
access rights. The most significant contribution of Solo was undoubtedly
that the program text was short enough to be published in its entirety in a
computer journal:

P. Brinch Hansen, The Solo Operating System: Processes, Monitors and Classes
(1976)

The new programming language had a dramatic (and unexpected) impact on
my programming style. It was the first time I had programmed in a language
that enabled me to divide programs into modules that could be programmed
and tested separately. The creative part was clearly the initial selection of
modules and the combination of modules into hierarchical structures. The
programming of each module was often trivial. I soon adopted the rule that
each module should consist of no more than one page of text. Since each
module defined all the meaningful operations on a single data type (private
or shared), the modules could be studied and tested one at a time. As
a result these concurrent programs became more reliable than the hardware
they ran on.

In July 1975, when the Solo operating system had been working for three
months, I described it at the International Summer School in Marktoberdorf,
Germany. Hoare presented an outline of an unimplemented operating system
(Hoare 1976a).

At Caltech we prepared a distribution tape with the source text and
portable code of the Solo system, including the Concurrent and Sequential
Pascal compilers. The system reports were supplemented by implementation
notes (Brinch Hansen 1976b). By the spring of 1976 we had distributed the
system to 75 companies and 100 universities in 21 countries.

In a guest editorial on the Solo papers (Brinch Hansen 1976a), I wrote:

It is not uncommon for a computer scientist to make a proposal without
testing whether it is any good in practice. After spending 3 days writing
up the monitor proposal and 3 years implementing it, I can very well
understand this temptation. It is perhaps also sometimes a human
response to the tremendous pressure on university professors to get
funding and recognition fast.

Nevertheless, we must remember that only one thing counts in en-
gineering: Does it work (not “might it work” or “wouldn’t it be nice
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if it did”)? What would we think of mathematicians if most of their
papers contained conjectures only? Sometimes an educated guess can
be a great source of inspiration. But we must surely hope that the
editors of computer journals will reject most proposals until they have
been tried at least experimentally.

All reviewers of my [operating system] book correctly pointed out
that the chapter on resource protection [introducing shared classes]
was highly speculative. The Solo operating system described here is
an attempt to set the record straight by putting monitors to a realistic
test.

13 The Architecture of Concurrent Programs

In July 1976 I joined University of Southern California as professor and
chair of computer science. Now that Concurrent Pascal was running I knew
that the time was ripe for a book on the principles of abstract parallel
programming.

My second book, The Architecture of Concurrent Programs, includes the
complete text of the model operating systems written in Concurrent Pascal
(Brinch Hansen 1977b).

In a book review, Roy Maddux and Harlan Mills (1979) wrote: “This is,
as far as we know, the first book published on concurrent programming.”
They were particularly pleased with the Solo system:

Here, an entire operating system is visible, with every line of program
open to scrutiny. There is no hidden mystery, and after studying such
extensive examples, the reader feels that he could tackle similar jobs
and that he could change the system at will. Never before have we seen
an operating system shown in such detail and in a manner so amenable
to modification.

Twenty years later, two of my former Ph.D. students recalled their ex-
perience of working with Concurrent Pascal:

Jon Fellows (1993): “The beauty of the structures you created using
Concurrent Pascal created an aura of magical simplicity. While work-
ing with my own programs and those of other graduate students, I
soon learned that ordinary, even ugly, programs could also be written
in Concurrent Pascal ... My current feeling is that the level of intel-
lectual effort required to create a beautiful program structure cannot
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be reduced by programming language features, but that these features
can more easily reveal a program’s beauty to others who need to un-
derstand it.”

Charles Hayden (1993): “I think the significance of the system was
... that one could provide a protected environment for concurrent
programming—a high-level language environment which could main-
tain the illusion that there was no “machine” level. It was remarkable
that through compile time restrictions and virtual machine error check-
ing ... you could understand the program behavior by looking at the
Pascal, not at the machine’s registers and memory. It was remarkable
that the machine could retain its integrity while programs were being
developed, without hardware memory protection.”

In designing Concurrent Pascal and the model operating systems written
in the language I followed a consistent set of programming principles. These
principles carried structured programming (Dijkstra 1972a) into the realm of
modular, concurrent programming:

P. Brinch Hansen, Design Principles (1977)
Roy Maddux and Harlan Mills (1979) agreed that:

An author does well to start by stating those beliefs and biases he holds
that are relevant to his work so that the reader is forewarned about
what will follow and can understand the motivation behind subsequent
decisions and choices. Brinch Hansen’s opening chapter—a reasoned
essay on the fundamental principles of programming today—does this
remarkably well. The quotations at the end of the chapter are partic-
ularly well-chosen and make delightful reading.

PART V DISTRIBUTED COMPUTING

In the late 1970s, parallel computing was moving from multiprocessors with
shared memory towards multicomputers with distributed memory. For micro-
computer networks, Dijkstra, Hoare and I suggested different programming
models. Although our ideas opened the way for abstract distributed comput-
ing, they clearly needed further refinement before they could be incorporated
into programming languages.
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14 A Synthesis Emerging?

Edsger Dijkstra led the way. In a brief note he gave a personal account
of a discussion with Tony Hoare at the International Summer School in
Marktoberdorf, Germany, in July 1975:

E. W. Dijkstra, A Synthesis Emerging? (1975)

Hoare was trying to explain the class concept of Simula 67, when Dijkstra
began to:

change terminology, notation and a way of looking at it, things I had
to do in order to make it all fit within my frame of mind. To begin
with, I shall record how our discussions struck root in my mind. I don’t
know whether a real Simula fan will still recognize the class-concept;
he may get the impression that I am writing about something totally
different.

Indeed! What emerges is the exciting possibility of modular programs with

nondeterministic process types (called generators). In his usual colorful ter-

minology, Dijkstra calls these programs “elephants built from mosquitoes.”
His simplest example is a generator, named nn, for natural numbers:

nn gen begin privar x; x virint := 0;
do 7inc - x:=x+1
[ x>0cand 7dec » x:=x —1
od
end

(The notational details are not important here.)
The main program can declare a variable y as a natural number:

privar y; y vir nn;

The generator instance y keeps a natural number in a private variable x.
After initializing its value to zero, the generator is ready to perform an end-
less series of increase and decrease operations on x in response to commands
from the main program:

y.inc y.dec

The generator defines the increment operation as a guarded command
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7inc > x:=x+1
When the main program issues an increment command, the guard
?inc

is regarded as being true (once), enabling the generator to execute the
guarded statement

x:=x+1
However, if the main program issues a decrement command, the guard
x > 0 cand ?dec

does not become true until z > 0.
So far, the generator looks very much like a monitor implementation of
a semaphore, but there are subtle differences:

e Dijkstra views the main program and its generators as processes that
are synchronized during the execution of guarded commands.

e When the main program terminates, all guards within its local gener-
ators become false, and the generator loops terminate too.

Dijkstra emphasizes that:

[In the past] it was the purpose of our programs to instruct our ma-
chines: now it is the purpose of the machines to execute our programs.
Whether the machine does so sequentially, one thing at a time, or with a
considerable amount of concurrency, is a matter of implementation and
should not be regarded as a property of the programming language.

This viewpoint naturally leads him to conclude that

e If the main program is concurrent, the generator does indeed imple-
ment a semaphore that delays a decrement operation until > 0.

e However, if the main program is sequential, an attempt to decrement
a natural number equal to zero will cause the main program to get
stuck.
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At this point Dijkstra introduces the powerful concept of recursive non-
deterministic processes. He programs a generator that defines a sequence of
integers recursively. A parallel execution of this program can be visualized as
a pipeline of processes. Each process accepts commands from its predecessor
(which is either another pipeline process or the main program).

An insert command, issued by the main program, propagates to the end
of the chain, where the last process extends the pipeline with another process.

A membership query moves down the pipeline until it either reaches a
process that holds the desired element or is absorbed at the end of the
pipeline. In a parallel implementation, a wave of queries can move down the
pipeline simultaneously.

Edsger Dijkstra called it “A surprising discovery, the depth of which is
as far as I am concerned still unfathomed.” In 1982 he added a final remark:

In retrospect this text is not without historical interest: it records the
highlights of a discussion mentioned [as “Verbal communication” (Dijk-
stra 1975)] in C. A. R. Hoare’s “Communicating sequential processes”,
Comm. ACM 21, 8 (Aug. 1978), 666-677. The text was evidently writ-
ten in a state of some excitement; in retrospect we may conclude that
this excitement was not entirely unjustified. Seeing Hoare keenly in-
terested in the topic, I left that arena.

15 Communicating Sequential Processes

Three years after his discussion with Edsger Dijkstra in Marktoberdorf, Tony
Hoare publishes a paper on communicating sequential processes (also known

as CSP):
C. A. R. Hoare, Communicating Sequential Processes (1978)

This classic paper develops Dijkstra’s (1975a) vision of nondeterministic pro-
cesses communicating by means of guarded commands (but without recur-
sion).

The bounded buffer, shown here, is a CSP process, named X, that can hold
up to ten buffer portions. After making the buffer empty to begin with, the
process executes a repetitive command (prefixed by an asterisk *). In each
cycle, the buffer process is delayed until one of two possible communications

takes place:

1. A process named producer is ready to execute an output command
X!e. In that case, the buffer process inputs the value of the expression
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X::
buffer:(0..9)portion;
in,out:integer; in:= 0; out:= 0;
comment 0 < out < in < out + 10;
*[in < out + 10; producer?buffer(in mod 10) — in:= in + 1
Oout < in; consumer?more() — consumer!buffer(out mod 10);
out := out + 1

]

The Bounded Buffer in CSP

e in the last buffer element, provided that there is room for it in the
buffer. This is the effect of the guarded input command:

in < out + 10; producer?buffer(in mod 10) — in:= in + 1

2. A process named consumer outputs a request for more input, X'more (),
and inputs the next buffer portion in a local variable v by executing
the command X?v. When the buffer is nonempty, it accepts the request
before outputting the first portion:

out < in; consumer?more() —
consumer !buffer(out mod 10); out:= out + 1

This paper describes highly original ideas:

1. Synchronous communication. Hoare introduces this idea, which was
well-known in computer architectures but novel in programming languages:

Communication occurs when one process names another as destination
for output and the second process names the first as source for input.
In this case, the value to be output is copied from the first process to
the second. There is no automatic buffering: In general, an input or
output command is delayed until the other process is ready with the
corresponding output or input. Such delay is invisible to the delayed
process.

2. Input guards. CSP incorporates Dijkstra’s (1975a) concept of nonde-
terministic process interactions controlled by guarded commands:
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A guarded command with an input guard is selected for execution only
if and when the source named in the input command is ready to execute
the corresponding output command. If several input guards of a set of
alternatives have ready destinations, only one is selected and the others
have no effect; but the choice between them is arbitrary.

3. Coincidence of events. In 1965, Dijkstra demonstrated that mutual
exclusion of events is a fundamental programming concept. In 1975, he
showed that the opposite idea, the coincidence of events, is just as important!
This strikes me as the most profound idea incorporated in CSP.

4. Programming ezamples. The CSP paper includes solutions to a wide
variety of interesting problems.

However, the CSP proposal also has some awkward details:

1. Direct process naming. One of the major advantages of monitors is
their ability to communicate with processes and schedule them without be-
ing aware of process identities. In CSP, an input/output command must
name the source or destination process directly. The text of a process must
therefore be modified when it is used in different contexts. This complicates
the examples in Hoare’s paper: the user of a process array S(1..n) is itself
named S(0). And the prime sieve is composed of three different kinds of
processes to satisfy the naming rules.

2. Pattern matching. The CSP notation does not include type declara-
tions of communication channels, but depends (conceptually) on dynamic
checking to recognize matching input and output commands in parallel pro-
cesses.

3. Conditional input. Hoare mentions that:

conditions can be used to delay acceptance of inputs which would vio-
late scheduling constraints—postponing them until some later occasion
when some other process has brought the monitor into a state in which
the input can validly be accepted. This technique is similar to a condi-
tional critical region (Hoare 1971) and it obviates the need for special
synchronizing variables such as events, queues, or conditions. However,
the absence of these special facilities certainly makes it more difficult
or less efficient to solve problems involving priorities.!6

Notice, however, that a monitor with await statements on Boolean conditions does not
require queueing variables either (Brinch Hansen 1973c).
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4. No output guards. This restriction forces Hoare to publish a CSP
version of the bounded buffer with asymmetric input/output operations. For
aesthetic reasons, I find this lack of elegance regrettable.

5. Process termination. CSP uses Dijkstra’s (1975a) termination rule:

A repetitive command may have input guards. If all the sources named
by them have terminated, then the repetitive command also termi-

nates.
Hoare maintains that:

The automatic termination of a repetitive command on termination
of the sources of all its input guards is an extremely powerful and
convenient feature but it also involves some subtlety of specification to
ensure that it is implementable; and it is certainly not primitive, since
the required effect can be achieved (with considerable inconvenience)

”

by explicit exchange of “end()” signals.

Seven years later, Hoare (1985) realizes that:

The trouble with this convention is that it is complicated to define
and implement; and methods of proving program correctness seem no
simpler with it than without.

6. No recursion. The most obvious weakness of CSP is the omission
of Dijkstra’s beautiful concept of recursive nondeterministic processes. A
CSP process cannot activate itself recursively. It is, however, possible to
activate fized-length process arrays, which can imitate the behavior (but not
the elegance) of recursive processes.!”

CSP was a major achievement and the inspiration for a new generation
of concurrent programming languages, including the nonrecursive language
occam for the transputer (Inmos 1989a, 1989b) and the recursive language
Joyce (Brinch Hansen 1987a).

Seven years later Hoare (1985) published a mathematical theory of com-
municating sequential processes using a recursive variant of CSP. This nota-
tion has played a significant role in research on the mathematical foundations
of concurrency. Hoare (1981) is an early example of this theoretical work
(which is beyond the scope of this essay).

"My alternative programming model, Distributed Processes, is also nonrecursive (Brinch
Hansen 1978c).
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16 Distributed Processes

For microcomputer networks with distributed memory I introduced the idea
of a synchronized procedure that can be called by one process and executed
by another process. This proposal combines processes and monitors into a
single concept, called distributed processes. In distributed operating systems,
this communication paradigm is known as remote procedure calls.

P. Brinch Hansen, Distributed Processes: A Concurrent Programming Concept
(1978)

Distributed Processes have the following properties:

e A real-time program consists of a fixed number of concurrent processes that
are started simultaneously and exist forever. Each process can access its own
variables only. There are no common variables.

e A process can call common procedures defined within other processes. These
procedures are executed when the other processes are waiting for some condi-
tions to become true. A procedure call from one process to another is called
an external request. This is the only form of process communication.

e Processes are synchronized by means of nondeterministic guarded regions
(Hoare 1971, Dijkstra 1975b, Brinch Hansen 1978c).

The bounded buffer, shown here, is a process that stores a sequence of
characters transmitted between processes by means of send and receive pro-
cedures.

process buffer

s: seq[n]char

proc send(c: char) when not s.full: s.put(c) end
proc rec(#v: char) when not s.empty: s.get(v) end

5= (]

The Bounded Buffer with Distributed Processes

The initial statement makes the buffer empty and terminates. The buffer
process, however, continues to exist and can now be called by other processes:

call buffer.send(e) call buffer.rec(v)
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After initialization, the buffer process is idle between external calls. This
process is similar to a monitor (Brinch Hansen 1973c) with conditional crit-
ical regions (Hoare 1971).

In general, an external call of a procedure R, declared in a process @,
may include both value and result parameters:

call Q.R(expressions, variables)

The parameter passing between two distributed processes requires a single
input operation when an external procedure is activated, followed by a single
output operation when it terminates.

The relationship between two communicating processes is asymmetrical
and requires only that the caller of a procedure name the process that per-
forms it. This asymmetry is useful in hierarchical systems, in which server
processes should be unaware of the identities of client processes.

Every process is quasiparallel in the following sense:

e A process begins by executing its initial statement. This continues until the
statement either terminates or waits for a condition to become true. Then
another operation is started (as the result of an external request). When
this operation in turn terminates or waits the process will either begin yet
another operation (requested by another process) or it will resume an earlier
operation (as the result of a condition becoming true). This interleaving
of the initial statement and the external requests continues forever. If the
initial statement terminates, the process continues to exist and will still accept
external statements.

e In a microprocessor network where each processor is dedicated to a single
process it is an attractive possibility to let a process carry out computa-
tions between external calls of its procedures. The shortest job next scheduler
(shown in the paper) takes advantage of this capability by selecting the next
user while the resource is being used by the present user.

The major weaknesses of distributed processes are (1) the implicit waiting
loops on Boolean conditions and (2) the absence of parallel recursion.

It was Jim White (1976) who first proposed remote procedure calls, as an
informal programming style. However, White did not explain how to prevent
race conditions between unsynchronized remote calls and local processes that
are being executed by the same processor. This flaw potentially made remote
procedure calls as unsafe as interrupts that cannot be disabled! Nevertheless,
the original idea was his.



46 PER BRINCH HANSEN

My Ph.D. student Charles Hayden (1979) implemented an experimen-
tal language with distributed processes on an LSI-11 microcomputer and
evaluated the new paradigm by writing small simulation programs.

Greg Andrews (1991) acknowledged that:

Per Brinch Hansen (1978) developed the first programming language
based on [remote procedure calls] RPC. His language is called Dis-
tributed Processes (DP).18

According to Olivier Roubine (1980), my proposal was “a source of inspi-
ration in the design of the Ada tasking facilities.” The rendezvous concept
in the language Ada combines the remote procedure calls of distributed pro-
cesses with the selection of alternative interactions in CSP.

Since then, operating system designers have turned remote procedure
calls into an unreliable mechanism of surprising complezity. In their present
form, remote procedure calls are an attempt to use unreliable message pass-
ing to invoke procedures through local area networks.

Tay (1990) admits that “Currently, there are no agreed definition on
the semantics of RPC.” Leach (1983) goes one step further and advocates
that “each remote operation implements a protocol tailored to its need.”
Since it can be both system-dependent and application-dependent, a remote
procedure call is no longer an abstract concept.

After implementing a remote procedure call mechanism for the distributed
operating system Uniz United, Santosh Shrivastava and Fabio Panzieri (1982)
concluded:

At a superficial level it would seem that to design a program that
provides a remote procedure call abstraction would be a straightforward
exercise. Surprisingly, this is not so. We have found the problem of the
design of the RPC to be rather intricate.

18Rarely does anyone replace single words, like “Pascal,” “Monitor,” “Solo” or “Joyce,”
by baflling acronyms—P, M, S or J. But carefully chosen longer names, like “Condi-
tional Critical Region,” “Concurrent Pascal,” “Communicating Sequential Processes,”
“Distributed Processes” and “Remote Procedure Call,” are doomed to be abbreviated
as CCR, CP, CSP, DP and RPC. If you believe that papers should be easy to read (but
not necessarily easy to write), the lesson is clear: Always use single words to name your
concepts!
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17 Joyce

The most surprising idea in Dijkstra’s “Emerging Synthesis” (1975a) was his
introduction of recursive nondeterministic processes. This idea was clearly
ahead of its time. Some ten years would pass before Hoare (1985) published
a theoretical recursive variant of CSP.

Two years later, I published the first recursive CSP language imple-
mented on a computer:

P. Brinch Hansen, Joyce—A Programming Language for Distributed Systems
(1987)

Joyce is a secure CSP language based on a minimal subset of Pascal. A Joyce
program activates recursive processes, known as agents. These agents com-
municate through synchronous channels. A channel can transfer messages of
different (but fixed) types between two or more agents. The compiler checks
message types and ensures that agents use disjoint variables only.

type stream = [int(integer)];

agent buffer(inp, out: stream);
const n = 10;
type contents = array [1..n] of integer;
var head, tail, length: integer;
ring: contents;
begin
head := 1; tail := 1; length := 0;
while true do
poll
inp?int(ring[tail]) & length < n —>
tail := tail mod n + 1;
length := length + 1|
out!int(ring[head]) & length > 0 —>
head := head mod n + 1;
length := length — 1
end
end;

The Bounded Buffer in Joyce

The bounded buffer, shown here, is defined by an agent procedure. A
buffer agent uses two channels of type stream. Every communication through
a stream channel transmits a single symbol, named int, from one agent to
another. The symbol carries a message of type integer.
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A buffer agent transmits an endless stream of symbols from one channel
to another in response to input/output commands from other agents. In
each cycle, a buffer agent executes a polling statement that delays it until a
conditional communication takes place through one of its channels.

In general:

A Joyce program consists of nested procedures which define commu-
nicating agents. Joyce permits unbounded (recursive) activation of
agents. The execution of a program activates an initial agent. Agents
may dynamically activate subagents which run concurrently with their
creators. The variables of an agent are inaccessible to other agents.

Agents communicate by means of symbols transmitted through
channels. Every channel has an alphabet—a fixed set of symbols that
can be transmitted through the channel. A symbol has a name and
may carry a message of a fixed type.

Two agents match when one of them is ready to output a symbol
to a channel and the other is ready to input the same symbol from
the same channel. When this happens, a communication takes place
in which a message from the sending agent is assigned to a variable of
the receiving agent.

The communications on a channel take place one at a time. A
channel can transfer symbols in both directions between two agents.

A channel may be used by two or more agents. If more than two
agents are ready to communicate on the same channel, it may be pos-
sible to match them in several different ways. The channel arbitrarily
selects two matching agents at a time and lets them communicate.

A polling statement enables an agent to examine one or more chan-
nels until it finds a matching agent. Both sending and receiving agents
may be polled.

Agents create channels dynamically and access them through local
port variables. When an agent creates a channel, a channel pointer
is assigned to a port variable. The agent may pass the pointer as a
parameter to subagents.

When an agent reaches the end of its defining procedure, it waits
until all its subagents have terminated before terminating itself. At
this point, the local variables and any channels created by the agent

cease to exist.

Hoare (1978) emphasized that CSP should not be regarded as suitable
for use as a programming language but only as a partial solution to the

problems tackled.
Joyce removed unnecessary limitations of CSP by introducing:
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e Recursive agent procedures.
e Simple agent termination.

e Typed channel alphabets.

e Typed port variables.

Bidirectional synchronous channels.

o Nondeterministic shared channels.

Symmetric input/output polling.

To be able to experiment with parallel recursion, I developed portable im-
plementations of Joyce for a personal computer and a multiprocessor (Brinch
Hansen 1987b, 1989b).

I still marvel at the beauty of recursive agents, such as the bounded
buffer, the sorting array, the prime sieve, the integer set, and the Fibonacct
tree (shown in the paper).

How can I explain the joy of being able, for the first time, to explore this
new class of algorithms in a concise, executable language? The experience
reminds me of the wise observation by the logician Susanne K. Langer (1967):

There is something uncanny about the power of a happily chosen ideo-
graphic language; for it often allows one to express relations which have
no names in natural language and therefore have never been noticed by
anyone. Symbolism, then, becomes an organ of discovery rather than
mere notation.

PART VI IMPLEMENTATION ISSUES

I promised to omit “Implementation details (except in outline).” Parallel
programming languages do, however, pose special implementation problems
that deserve your attention:

o Interference control during compilation.

o Memory allocation of parallel recursion.
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18 SuperPascal

When Hoare (1971) published his paper on conditional critical regions, we
did not fully appreciate the complexity of checking interference in a block-
structured parallel language. You see, the subsequent invention of modular
parallelism made interference checking so simple that we hardly noticed how
hard it could have been!

Out of curiosity I asked myself twenty-three years later, Is it feasible to
detect process interference in a block-structured language with nonmodular
parallelism?

P. Brinch Hansen, SuperPascal—A Publication Language for Parallel Scientific
Computing (1994)

The parallel features of SuperPascal are a subset of occam 2 with the added
generality of dynamic process arrays and recursive parallel processes (Inmos
1988b, Cok 1991). SuperPascal omits ambiguous and insecure features of
Pascal. Restrictions on the use of variables enable a single-pass compiler to
check that parallel processes are disjoint, even if the processes use procedures
with global variables.'®

When you have read this paper, you can judge for yourself how com-
plicated concurrent programming would have been without some form of
modularity, such as the process and monitor types of Concurrent Pascal.

After reading the paper, Dave Parnas (1993) felt that “Some might sug-
gest that nobody would be able to build practical programs in a language
with so many restrictions.” I answered (Brinch Hansen 1993d):

I too was surprised at the restrictions required to make parallelism se-
cure in a block-structured language. However, I think that the exercise
merely forced me explicitly to recognize the complexity of the procedure
concept in our programming languages (such as Pascal). SuperPascal
forced me to use a more restricted procedure concept. So far, I have
found that the rules enforced by the compiler contribute to program

clarity.

After developing a portable implementation of SuperPascal on a Sun
workstation:

9Since the language does not support conditional communication, a bounded buffer
cannot be programmed in SuperPascal.
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[I used] the SuperPascal notation to write portable programs for regu-
lar problems in computational science (Brinch Hansen 1995). I found
it easy to express these programs in three different programming lan-
guages (SuperPascal, Joyce,?’ and occam 2) and run them on three
different architectures (a Unix workstation, an Encore Multimax, and
a Meiko Computing Surface).?!

19 Efficient Parallel Recursion

In CSP and Distributed Processes, Hoare and 1 shied away from paral-
lel recursion because of the difficulty of implementing an unbounded tree-
structured stack without using garbage collection.

Dijkstra (1975a) was well aware of this stumbling block:

the storage requirements for a sequence are very simple, viz. a stack.
(In our rejected example of the binary tree, although lifetimes are, in
a fashion, nested, life is not so simple.)

After using static memory allocation in Concurrent Pascal, it took me
twenty years to discover a simple method for efficient parallel recursion
(which I used to implement SuperPascal):

P. Brinch Hansen, Efficient Parallel Recursion (1995)

I now believe that we should have used parallel recursion from the beginning,
even though we didn’t know how to implement it.?? This kind of intellectual
courage paid off handsomely when Peter Naur (1960) included sequential
recursion in his famous Algol 60 report, before Dijkstra (1960) had shown
how to implement it efficiently using a run-time stack.

THE END OF AN ERA

The development of abstract language notation for concurrent programming
started in 1965. Twenty years later Judy Bishop (1986) concluded:

20Brinch Hansen (1988).

*1The Encore Multimax was a multiprocessor with 18 processors sharing a memory of
128 MB (Trew 1991). The Computing Surface was a multicomputer with 48 transputers,
each with 1 MB of local memory (Inmos 1988a, Trew 1991).

22 As you can tell, I am now a middle-aged idealist.
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It is evident that the realm of concurrency is now firmly within the
ambit of reliable languages and that future designs will provide for
concurrent processing as a matter of course.

So passed an exciting era.
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PART 1

CONCEPTUAL INNOVATION



COOPERATING
SEQUENTIAL PROCESSES
EDSGER W. DIJKSTRA

(1965)

INTRODUCTION

This chapter is intended for all those who expect that in their future activities
they will become seriously involved in the problems that arise in either the
design or the more advanced applications of digital information processing
equipment; they are further intended for all those who are just interested in
information processing.

The applications are those in which the activity of a computer must
include the proper reaction to a possibly great variety of messages that can
be sent to it at unpredictable moments, a situation which occurs in process
control, traffic control, stock control, banking applications, automatization
of information flow in large organizations, centralized computer service, and,
finally, all information systems in which a number of computers are coupled
to each other.

The desire to apply computers in the ways sketched above has often a
strong economic motivation, but in this chapter the not unimportant ques-
tion of efficiency will not be stressed too much. Logical problems which
arise, for example, when speed ratios are unknown, communication possibil-
ities restricted, etc., will be dealt with much more. This will be done in order
to create a clearer insight into the origin of the difficulties one meets and
into the nature of solutions. Deciding whether under given circumstances

E. W. Dijkstra, Cooperating sequential processes. Technological University, Eindhoven,
The Netherlands, September 1965. Reprinted in Programming Languages, F. Genuys, Ed.,
Academic Press, New York, 1968, 43-112. Copyright © 1968, Academic Press. Reprinted
by permission.
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the application of our techniques is economically attractive falls outside the
scope of this chapter.

There will not be a fully worked out theory, complete with Greek letter
formulae, so to speak. The only thing that can be done under the present
circumstances is to offer a variety of problems, together with solutions. And
in discussing these we can only hope to bring as much system into it as we
possibly can, to find which concepts are relevant, as we go along.

1 ON THE NATURE OF SEQUENTIAL PROCESSES

Our problem field proper is the co-operation between two or more sequential
processes. Before we can enter this field, however, we have to know quite
clearly what we call “a sequential process”. To this preliminary question the
present section is devoted.

To begin, here is a comparison of two machines to do the same example
job, the one a non-sequential machine, the other a sequential one.

Let us assume that of each of four quantities, named a[1], a[2], a[3],
and a[4] respectively, the value is given. Our machine has to process these
values in such a way that, as its reaction, it “tells” us which of the four
quantities has the largest value. E.g. in the case:

al1] = 7, al[2] = 12, a[3] = 2, a[4] = 9

the answer to be produced is a[2] (or only 2, giving the index value pointing
to the maximum element).

Note that the desired answer would become incompletely defined if the
set of values were—in order—7, 12, 2, 12, for then there is no unique
largest element, and the answer a[2] would have been as good (or as bad)
as a[4]. This is remedied by the further assumption that of the four values
given, no two are equal.

Remark 1. If the required answer would have been the maximum value
occurring among the given ones, the last restriction would have been super-
fluous, for the answer corresponding to the value set 7, 12, 2, 12 would
then have been 12.

Remark 2. Our restriction “Of the four values no two are equal” is
still somewhat loosely formulated, for what do we mean by “equal”’? In
the processes to be constructed pairs of values will be compared with one
another, and what is really meant is that every two values will be sufficiently
different, so that the comparator will unambiguously decide which of the two



COOPERATING SEQUENTIAL PROCESSES 67

is the larger one. In other words, the difference between any two must be
large compared with “the resolving power” of our comparators.

We shall first construct our non-sequential machine. When we assume
our given values to be represented by currents we can imagine a compara-
tor consisting of a two-way switch, the position of which is schematically
controlled by the currents in the coils of electromagnets, as in Figs. 1 and 2.

A LQXQJ @2} A
B Tc BT c

Fig. 1. x<y Fig. 2. y<x

When current y is larger than current x, the left electromagnet pulls
harder than the right one and the switch switches to the left (Fig. 1) and
the input A is connected to output B; if current x is the larger one we shall
get the situation (Fig. 2), where the input A is connected to output C.

In our diagrams we shall omit the coils and shall represent such a com-
parator by a small box

only representing at the top side the input and at the bottom side the two
outputs. The currents to be led through the coils are identified in the ques-
tion written inside the box, and the convention is that the input will be
connected to the right-hand side output when the answer to the question is
“Yes”, to the left-hand side output when the answer is “No”.

Now we can construct our machine as indicated in Fig. 3. At the output
side we have drawn four indicator lamps, one, and only one, of which will
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light up to indicate the answer.

| a(1)<a(2m
| a()<a(3)? | [ a<a(3)? |
L—;/
| al<a@)? | [ a(2)<a®)? | [ a(3)<a(4)°
[ I
e = *g '
+ + F
Fig. 3

In Fig. 4 we indicate the position of the switches when the value set 7,
12, 2, 9 is applied to it. In the boxes the positions of the switches are
indicated, wires not connected to the input are drawn dotted.

T T T
P ____r_____‘______ _._:___.__.:
2 13 :4
Fig. 4

We draw the reader’s attention to the fact that now only the positions
of the three switches that connect output 2 to the input matter; the reader
is invited to convince himself that the position of the other three switches is
indeed immaterial.

It is also worthwhile to give a moment’s attention to see what happens in
time when our machine of Fig. 3 is fed with four “value currents”. Obviously
it cannot be expected to give the correct answer before the four value currents
start going through the coils. But one cannot even expect it to indicate the
correct answer as soon as the currents are applied, for the switches must get
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into their correct position, and this may take some time. In other words,
as soon as the currents are applied (simultaneously or the one after the
other) we must wait a period of time —characteristic for the machine—and
only after that the correct answer will be shown at the output side. What
happens during this waiting time is immaterial, provided that the interval
is long enough for all switches to find their final position. They may start
switching simultaneously, the exact order in which they attain their final
position is immaterial, and therefore we shall no longer pay any attention to
it.

From the logical point of view the switching time can be regarded as a
marker on the time axis: before it the input data have to be supplied, after
it the answer is available.

In the use of our machine the progress of time is only reflected in the ob-
vious “before-after” relation, which tells us that we cannot expect an answer
before the question has been properly put. This sequence relation is so obvi-
ous (and fundamental) that it cannot be regarded as a characteristic property
of our machine. And our machine is therefore called a “non-sequential ma-
chine” to distinguish it from the kind of equipment—or processes that can
be performed by it—to be described now.

Up till now we have interpreted the diagram of Fig. 3 as the (schematic)
picture of a machine to be built in space. But we can interpret this same
diagram in a very different manner if we place ourselves in the mind of the
electron entering at the top input and wondering where to go. First, it finds
itself faced with the question whether a[1] < a[2] holds. Having found
the answer to this question, it can proceed. Depending on the previous
answer, it will enter one of the two boxes a[1] < a[3] or a[2] < a[3],i.e.
it will only know what to investigate next, after the first question has been
answered. Having found the answer to the question selected from the second
line, it will know which question to ask from the third line and, having found
this last answer, it will now know which bulb should start to glow. Instead
of regarding the diagram of Fig. 3 as that of a machine, the parts of which
are spread out in space, we have regarded it as rules of behaviour, to be
followed in time.

With respect to our earlier interpretation two differences are highly sig-
nificant. In the first interpretation all six comparators started working si-
multaneously, although finally only three switch positions were relevant. In
the second interpretation only three comparisons are actually evaluated—
the wondering electron asks itself three questions—but the price of this gain
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is that they have to be performed the one after the other, as the outcome
of the previous one decides what to ask next. In the second interpretation
three questions have to be asked in sequence, the one after the other. The
existence of such an order relation is the distinctive feature of the second
interpretation, which in contrast to the first one is therefore called “a se-
quential process”. We should like to make two remarks.

Remark 3. In actual fact, the three comparisons will each take a finite
amount of time (“switching time”, “decision time”, or, in the jargon, “ex-
ecution time”), and as a result the total time taken will at least be equal
to the sum of these three execution times. We stress once more that for
many investigations these executions can be regarded as ordered markers on
a scaleless time axis and that it is only the relative ordering that matters
from this (logical) point of view.

Remark 4. As a small side line we note that the two interpretations
(call them “simultaneous comparisons” and “sequential comparisons”) are
only extremes. There is a way of, again, only performing three comparisons,
in which two of them can be done independently from one another, i.e.
simultaneously; the third one, however, can be done only after the other two
have been completed. It can be represented with the aid of a box in which
two questions are put and which, as a result, has four possible exits, as in
Fig. 5.

a[l] <af2]? , a[3] < a[4]?

/ NN [NY YN YS\

a[l] < a[3]?| |a[1] < a[4]?| [a[2] < a[3]?] |a[2] < a[4]?

— |1 |
—_—

1 2 3 4
Fig. 5

The total time taken will be at least the sum of the comparison execution
times. The process is of the first kind in the sense that the first two com-
parisons can be performed simultaneously, it is of sequential nature, as the
third comparison can be selected from the second line only when the first
two have both been completed.
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We return to our purely sequential interpretation. Knowing that the di-
agram is meant for purely sequential interpretations, we can take advantage
of this circumstance to make the description of the “rules of behaviour” more
compact. The idea is that the two questions on the second line only one of
which will be actually asked are highly similar: the questions on the same
line differ only in the subscript value of the left operand of the comparison.
And we may ask ourselves: “Can we map the questions on the same line of
Fig. 3 on to a single question?”

This can be done, but it implies that the part that varies along a line—i.e.
the subscript value in the left operand— must be regarded as a parameter,
the task of which is to determine which of the questions mapped on each
other is meant, when its turn to be executed has come. Obviously the value
of this parameter must be defined by the past history of the process.

Such parameters, in which past history can be condensed for future use,
are called “variables”. To indicate that a new value has to be assigned to
it we use the so-called assignment operator := (read: “becomes”), a kind of
directed equality sign which defines the value of the left-hand side in terms
of the value of the right-hand side.

We hope that the previous paragraph is sufficient for the reader to recog-
nize also in the diagram of Fig. 6 a set of “rules of behaviour”. Our variable
is called i; and the reader may wonder why the first question, which is in-
variably a[1] < a[2] 7 is not written that way, but with patience he will
understand.

When we have followed the rules of Fig. 6 as intended from top till
bottom, the final value of i will identify the maximum value, viz. a[i].

The transition from the scheme of Fig. 3 to the one of Fig. 6 is a drastic
change, for the latter’s “rules of behaviour” can only be interpreted sequen-
tially. And this is due to the introduction of the variable i: having only
al[1], a[2], a[3], and a[4] available as values to be compared, the question
ali] < a[2] 7 is meaningless, unless it is known for which value of i this
comparison has to be made.

Remark 5. It is somewhat unfortunate that the jargon of the trade
calls the thing denoted by i a variable, because in normal mathematics
the concept of a variable is a completely timeless concept. Time has nothing
to do with the x in the relation

sin(2 * x) = 2 * sin(x) * cos(x)

if such a variable ever denotes a value it denotes “any value”.
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ali] <a[2]?

it=2

afi] < a[3]?

Fig. 6

Each time, however, that a variable in a sequential process is used—such
as i in a[i]—it denotes a very specific value, viz. the last value assigned
to it, and nothing else! As long as no new value is assigned to a variable, it
denotes a constant value!

Remark 6. One may well ask what we are actually doing when we intro-
duce a variable without specifying, for instance, a domain for it, i.e. a set of
values which is guaranteed to comprise all its future actual values. We shall
not pursue this question here.

Now we are going to subject our scheme to a next transformation. In
Fig. 3 we have “wrapped up” the lines, now we are going to wrap up the
scheme of Fig. 6 in the vertical direction, an operation to which we are
invited by the repetitive nature of it and which can be performed at the
price of a next variable, j say.

The change is a dramatic one, for the fact that the original problem was
to identify the maximum value among four given values is no longer reflected
in the “topology” of the rules of behaviour: in Fig. 7 we only find the number
4 mentioned once. By introducing another variable, say n, and replacing the
4 in Fig. 7 by n we have suddenly the rules of behaviour to identify the
maximum occurring among the n elements a[1], a[2], ..., a[n], and
this practically only for the price that before application the variable n must
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be given its proper value.

Fig. 7

The change is dramatic, for now we have not only given rules of behaviour
which must be interpreted sequentially this was already the case with Fig. 6
but we have devised a single mechanism for identifying the maximum value
among any number of given elements, whereas our original non-sequential
machine could only be built for a previously well-defined number of elements.
We have mapped our comparisons in time instead of in space, and if we wish
to compare the two methods it is as if the sequential machine “extends itself”
in terms of Fig. 3 as the need arises. It is our last transition which displays
the sequential processes in their full glory.

The technical term for what we have called “rules of behaviour” is an al-
gorithm or a program. (It is not customary to call it “a sequential program”,
although this name would be fully correct.) Equipment able to follow such
rules, “to execute such a program” is called “a general-purpose sequential
computer” or “computer” for short; what happens during such a program
execution is called “a sequential process”.

There is a commonly accepted technique of writing algorithms without
the need of pictures such as we have used, viz. ALGOL 60 (“ALGOL” being
short for Algorithmic Language). For a detailed discussion of ALGOL 60 I
must refer the reader to the existing literature. We shall use it in future,
whenever convenient for our purposes.

For the sake of illustration we shall describe the algorithm of Fig. 7 (but
for n instead of 4) by a sequence of ALGOL statements:
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ir=1; j:=1;
back: if j <> n then
begin j:= j + 1;
if a[i] < a[j] then i:= j;
goto back;
end

The first two statements: i:= 1; j:= 1 are—one hopes—self-
explanatory. Then comes back:, a so-called label, used to identify this
place in the program. Then comes if j <> n then, a so-called conditional
clause. If the condition expressed by it is satisfied the following statement
will be performed, otherwise it will be skipped. (Another example of it
can be found two lines lower.) When the extent of the program which may
have to be skipped presents itself primarily as a sequence of more than one
statement, then one puts the so-called statement brackets begin and end
around this sequence, thereby making it into a single statement as far as
its surroundings are concerned. (This is entirely analogous to the effect of
parentheses in algebraic formulae, such asa * (b + c) where the parenthe-
sis pair indicates that the whole expression contained within it is to be taken
as factor.) The last statement goto back means that the process should be
continued at the point thus labelled; it does exactly the same thing for us
as the upward-pointing line of Fig. 7.

2 LOOSELY CONNECTED PROCESSES

The subject matter of this chapter is the co-operation between loosely con-
nected sequential processes, and this section will be devoted to a thorough
discussion of a simple, but representative problem, in order to give the reader
some feeling for the problems in this area.

In the previous section we have described the nature of a single sequential
process, performing its sequence of actions autonomously, i.e. independent
of its surroundings as soon as it has been started.

When two or more of such processes have to co-operate with each other
they must be connected, i.e. they must be able to communicate with each
other in order to exchange information. As we shall see below, the properties
of these means of intercommunication play a vital role.

Furthermore, we have stipulated that the processes should be connected
loosely; by this we mean that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to be regarded
as completely independent of each other. In particular, we disallow any
assumption about the relative speeds of the different processes. (Such an
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assumption—say, “processes geared to the same clock” —could be regarded
as implicit intercommunication.) This independence of speed ratios is in
strict accordance with our appreciation of the single sequential process: its
only essential feature is that its elementary steps are performed in sequence
If we prefer to observe the performance with a chronometer in our hand
we may do so, but the process itself remains remarkably unaffected by this
observation.

The consistent refusal to make any assumptions about the speed ratios
will at first sight appear to the reader as a mean trick to make things more
difficult than they already are. I feel, however, fully justified in my refusal.
First, we may have to cope with situations in which, indeed, very little is
known about the speeds. For instance, part of the system may be a manu-
ally operated input station, another part of the system might be such that
it can be stopped externally for any period of time, thus reducing its speed
temporarily to zero. Secondly—and this is much more important—when we
think that we can rely upon certain speed ratios we shall discover that we
have been “penny wise and pound foolish”. It is true that certain mecha-
nisms can be made simpler under the assumption of speed-ratio restrictions.
The verification, however, that such an assumption is always justified is,
in general, extremely tricky and the task to make, in a reliable manner, a
well-behaved structure out of many interlinked components is seriously ag-
gravated when such “analogue interferences” have to be taken into account
as well. (For one thing: it will make the proper working a rather unstable
equilibrium, sensitive to any change in the different speeds, as may easily
arise by replacement of a component by another—say, replacement of a line
printer by a faster model—or reprogramming of a certain portion.)

2.1 A Simple Example

In considering two sequential processes, process 1 and process 2, they
can for our purposes be regarded as cyclic. In each cycle a so-called “critical
section” occurs, critical in the sense that at any moment at most one of the
two processes is allowed to be engaged in its critical section. In order to
effectuate this mutual exclusion, the two processes have access to a number
of common variables. We postulate that inspecting the present value of such
a common variable and assigning a new value to such a common variable
are to be regarded as indivisible, non-interfering actions, i.e. when the two
processes assign a new value to the same common variable “simultaneously”,
then the assignments are to be regarded as done the one after the other, the
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final value of the variable will be one of the two values assigned, but never
a “mixture” of the two. Similarly, when one process inspects the value of a
common variable “simultaneously” with the assignment to it by the other
one, then the former process will find either the old or the new value, but
never a mixture.

For our purposes ALGOL 60 as it stands is not suited, as ALGOL 60
has been designed to describe one single sequential process. We therefore
propose the following extension to enable us to describe parallelism of execu-
tion. When a sequence of statements—separated by semicolons as usual in
ALGOL 60—is surrounded by the special statement bracket pair parbegin
and parend this is to be interpreted as parallel execution of the constituent
statements. The whole construction—let us call it “a parallel compound”—
can be regarded as a statement. Initiation of a parallel compound implies
simultaneous initiation of all its constituent statements, its execution is com-
pleted after the completion of the execution of all its constituent statements.
E.g.:

begin S1; parbegin S2; S3; S4 parend; S5 end

(in which S1, S2, S3, S4, and S5 are used to indicate statements) means that
after the completion of S1, the statements S2, $3, and S4 will be executed in
parallel, and only when they are all finished will the execution of statement

S5 be initiated.
With the above conventions we can describe our first solution:

begin integer turn; turn:= 1;
parbegin
process 1: begin L1: if turn = 2 then goto L1;
critical section 1;
turn:= 2;
remainder of cycle 1, goto L1
end;
process 2: begin L2: if turn = 1 then goto L2;
critical section 2;
turn:= 1;
remainder of cycle 2; goto L2
end;
parend
end

(Note for the inexperienced ALGOL 60 reader. After begin in the first
line we find the so-called declaration integer turn, thereby sticking to the
rule of ALGOL 60 that program text is not allowed to refer to variables
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without having introduced them with the aid of a declaration. As this dec-
laration occurs after the begin of the outermost statement bracket pair, it
means that for the whole duration of the program a variable has been intro-
duced that will only take on integer values and to which the program text
can refer by means of the name turn.)

The two processes communicate with each other via the common integer
turn, the value of which indicates which of the two processes is the first to
perform (or rather: to finish) its critical section. From the program it is
clear that after the first assignment the only possible values of the variable
turn are 1 and 2. The condition for process 2 to enter its critical section is
that it finds at some moment turn <> 1, i.e. turn = 2. But the only way
in which the variable turn can get this value is by the assignment turn:= 2
in process 1. As process 1 performs this assignment only at the completion
of its critical section, process 2 can only initiate its critical section after
the completion of critical section 1. And critical section 1 could indeed
be initiated, because the initial condition turn = 1 implied turn <> 2, so
that the potential wait cycle, labelled L1, was initially inactive. After the
assignment turn:= 2 the roles of the two processes are interchanged. (N.B.
It is assumed that the only references to the variable turn are the ones
explicitly shown in the program.)

Our solution, though correct, is, however, unnecessarily restrictive: after
the completion of critical section 1 the value of the variable turn becomes
2, and it must be = 1 again, before the next entrance into critical section 1.

As a result, the only admissible succession of critical sections is the
strictly alternating one 1, 2, 1, 2, 1, 2, 1, ...; in other words, the
two processes are synchronized In order to stress explicitly that this is not
the kind of solution we wanted, we impose the further condition: “If one of
the processes is stopped well outside its critical section, this is not allowed
to lead to potential blocking of the other process.” This makes our previous
solution unacceptable, and we have to look for another.

Our second effort works with two integers c1 and c2, where c1, c2 =
0/1 respectively will indicate that the corresponding process is inside /outside
its critical section respectively. We may try the following construction:
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begin integer cl1, c2;
cl:=1; c2:=1,;

parbegin
processl: begin L1: if c2 = 0 then goto L1;
cl:=0;
critical section 1;
cl:=1;
remainder of cycle 1; goto L1
end;
process2: begin L2: if c1 = 0 then goto L2;
c2:= 0;
critical section 2;
c2:=1,;
remainder of cycle 2; goto L2
end
parend

end

The first assignments set both ¢’s = 1, in accordance with the fact that
the processes are started outside their critical sections. During the entire
execution of critical section 1 the relation c1 = 0 holds, and the first line
of process 2 is effectively a wait: “Wait as long as process 1 is in its critical
section.” The trial solution gives indeed some protection against simultane-
ity of critical section execution, but is, alas, too simple, because it is wrong.
Let first process 1 find that ¢2 = 1; let process 2 inspect cl immediately af-
terwards, then it will (still) find c1 = 1. Both processes, each having found
that the other is not in its critical section, will conclude that they can enter
their own critical section safely!

We have been too optimistic, we must play a safer game. Let us invert,
at the beginning of the parallel processes, the inspection of the c of the other
and the setting of the own c. We then get the construction:

begin integer cl, c2;
cl:=1; c2:=1;
parbegin
process 1: begin Al: cl:= 0;
L1: if c2 = 0 then goto L1;
critical section 1;
cl:=1,;
remainder of cycle 1; goto Al
end;
process 2: begin A2: c2:= 0;
L2: if c1 = 0 then goto L2;
critical section 2;
c2:=1;
remainder of cycle 2; goto A2
end
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parend
end

It is worthwhile to verify that this solution is at least completely safe.

Let us focus our attention on the moment that process 1 finds c¢2 =1
and therefore decides to enter its critical section. At this moment we can
conclude:

(1) that the relation c1 = 0 already holds and will continue to hold until
process 1 has completed the execution of its critical section;

(2) that, since c2 = 1 holds, process 2 is well outside its critical section,
which it cannot enter while c1 = 0 holds, i.e. while process 1 is still
engaged in its critical section.

Thus the mutual exclusion is indeed guaranteed.

But this solution, alas, must also be rejected: in its safety measures it
has been too drastic, for it contains the danger of definite mutual blocking.
When after the assignment c1:= 0 but yet before the inspection of ¢2 (both
by process 1) process 2 performs the assignment c2:= 0, then both processes
have arrived at label L1 or L2 respectively and both relations c¢1 = 0 and
c2 = 0 hold, with the result that both processes will wait for each other to
eternity. Therefore this solution, too, must be rejected.

It was all right to set one’s own c before inspecting the c of the other,
but it was wrong to stick to one’s own c-setting and just to wait. This is
(somewhat) remedied in the following construction:

begin integer cl, c2;
cl:=1; c2: = 1;
parbegin
process 1: begin L1: cl:= 0;
if c2 = 0 then
begin cl:= 1; goto L1 end;
critical section 1;
cl:= 1;
remainder of cycle 1; goto L1
end;
process 2: begin L2: c2:= 0;
if c1 = 0 then
begin c2:= 1; goto L2 end;
critical section 2;
c2:= 1;
remainder of cycle 2; goto L2
end
parend
end
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This construction is as safe as the previous one, and when the assignments
cl:= 0 and c2:= 0 are performed “simultaneously” it will not necessarily
lead to mutual blocking ad infinitum, because both processes will reset their
own c back to 1 before restarting the entry rites, thereby enabling the other
process to catch the opportunity. But our principles force us to reject this
solution also, for the refusal to make any assumptions about the speed ratio
implies that we have to cater for all speeds, and the last solution admits
the speeds to be so carefully adjusted that the processes inspect the other’s
c only in those periods of time that its value is = 0. To make clear that
we reject such solutions that only work with some luck, we state our next
requirement: “If the two processes are about to enter their critical sections,
it must be impossible to devise for them such finite speeds, that the decision
which one of the two is the first to enter its critical section is postponed to
eternity.”

In passing we note that the solution just rejected is quite acceptable in
everyday life, e.g. when two people are talking over the telephone and they
are suddenly disconnected, as a rule both try to re-establish the connection.
They both dial and if they get the signal “Number Engaged” they put down
the receiver and, if not already called, they try “some” seconds later. Of
course, this may coincide with the next effort of the other party, but as a
rule the connection is re-established successfully after very few trials. In
our mechanical circumstances, however, we cannot accept this pattern of
behaviour: our parties might very well be identical!

Quite a collection of trial solutions have been shown to be incorrect, and
at some moment people that had played with the problem started to doubt
whether it could be solved at all. To the Dutch mathematician Th. J. Dekker
the credit is due for the first correct solution. It is, in fact, mixture of our
previous efforts: it uses the “safe sluice” of our last constructions, together
with the integer turn of the first one, but only to resolve the indeterminacy
when neither of the two immediately succeeds. The initial value of turn
could have been 2 as well.
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begin integer cl, c2, turn;
cl:=1; c2:=1; turn:= 1;
parbegin
process 1: begin Al: cl:= 0;
L1: if ¢2 = 0 then
begin if turn
cl:=1;
Bi: if turn
goto Al

1 then goto L1;

2 then goto Bi;

end;
critical section 1;
turn:= 2; cl:= 1;
remainder of cycle 1; goto Al
end;
process 2: begin A2: c2:= 0;
L2: if c1 = 0 then
begin if turn = 2 then goto L2;
c2:= 1;
B2: if turn = 1 then goto B2;
goto A2
end;
critical section 2;
turn:= 1; c2:= 1;
remainder of cycle 2; goto A2
end
parend
end

We shall now prove the correctness of this solution. Our first observation
is that each process only operates on its own c. As a result, process 1 inspects
c2 only while c1 = 0, it will only enter its critical section provided it finds
c2 = 1, for process 2 the analogous observation can be made.

In short, we recognize the safe sluice of our last constructions, and the
solution is therefore safe in the sense that the two processes can never be in
their critical sections simultaneously. The second part of the proof has to
show that in case of doubt the decision which of the two will be the first to
enter cannot be postponed until eternity. Now we should pay some attention
to the integer turn: we note that assignment to this variable occurs only
at the end or, if you wish, as part of critical sections, and therefore we can
regard the variable turn as a constant during the decision process. Suppose
that turn = 1. Then process 1 can only cycle via L1, that is with c1 = 0
and only as long as it finds c2 = 0. But if turn = 1, then process 2 can only
cycle via B2, but this state implies c2 = 1, so that process 1 cannot cycle
and is bound to enter its critical section. For turn 2 the mirrored reasoning
applies. As third and final part of the proof we observe that stopping, say,
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process 1 in “remainder of cycle 1” will not restrict process 2: the relation c1
= 1 will then hold, and process 2 can merrily enter its critical section, quite
independently of the current value of turn. And this completes the proof of
the correctness of Dekker’s solution. Those readers that fail to appreciate
its ingenuity are kindly asked to realize that for them I have prepared the
ground by means of a carefully selected set of rejected constructions.

2.2 The Generalized Mutual Exclusion Problem

The problem of Section 2.1 has a natural generalization: given N cyclic
processes, each with a critical section, can we construct them in such a way
that at any moment at most one of them is engaged in its critical section?
We assume the same means of intercommunication to be available, i.e. a set
of commonly accessible variables. Furthermore, our solution has to satisfy
the same requirements, viz. that stopping one process well outside its critical
section may in no way restrict the freedom of the others, and that if more
than one process is about to enter its critical section it must be impossible
to devise for them such finite speeds that the decision which one of them is
to be first to enter its critical section can be postponed to eternity.

In order to be able to describe the solution in ALGOL 60, we need the
concept of the array. In Section 2.1 we had to introduce a c for each of the
two processes and we did so by declaring

integer cl, c2
Instead of enumerating the quantities, we can declare—under the assumption
that N has a well-defined positive value—

integer array c[1 : N]
which means, that at one stroke we have introduced N integers, accessible
under the names

c[subscript]
where subscript might take the values 1, 2, ... N.

The next ALGOL 60 feature we introduce is the so-called “for clause”,
which we shall use in the following form:

for j:= 1 step 1 until N do statement S
and which enables us to express repetition of statement S quite conve-

niently. In principle, the for clause implies that statement S will be exe-
cuted N times, with j in succession = 1, = 2,... = N. (We have added “in
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principle”, for via a goto statement as constituent part of statement S and
leading out of it, the repetition can be ended earlier.)

Finally, we need the logical operator that in this monograph is denoted
by and. We have met the conditional clause in the form:

if condition then statement

We shall now meet:

if condition 1 and condition 2 then statement

meaning that statement S will be executed only if condition 1 and
condition 2 are both satisfied. (Once more we should like to stress that
this monograph is not an ALGOL 60 programming manual: the above—
loose!-—explanations of parts of ALGOL 60 have been introduced only to
make this monograph as self-contained as possible.)

With the notational aids just sketched we can describe our solution for
fixed N as follows.

The overall structure is:

begin integer array b, c[0 : NJ];

integer turn;

for turn:= 0 step 1 until N do
begin b[turn]:= 1; c[turn]:= 1 end;

turn:= 0;

parbegin

process 1: begin ... end;
process 2: begin ... end;
process N: begin ... end;
parend

end

The first declaration introduces two arrays with N + 1 elements each,
the next declaration introduces a single integer turn. In the following for
clause this variable turn is used to take on the successive values 1, 2, 3,...
N, so that the two arrays are initialized with all elements 1. Then turn is
set = 0 (i.e. none of the processes, numbered from 1 onwards, is privileged).
After this the N processes are started simultaneously.

The N processes are all similar. The structure of the ith process is as
follows (1 < i < N):
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process i: begin integer j;
Ai: b[i]:= 0;
Li: if turn <> i then
begin c[i]:= 1;

if b[turn] = 1 then turn:= i;
goto Li

end;

cl[i]:= 0;

for j:= 1 step 1 until N do
begin if j <> i and c[j] = 0 then goto Li
end;
critical section i;
turn:= 0; c[i]:= 1; b[i):= 1;
remainder of cycle i; goto Ai
end

Remark. The description of the N individual processes starts with a
declaration integer j. According to the rules of ALGOL 60 this means
that each process introduces its own, private, integer j (a so-called “local
quantity”).

We leave the proof to the reader. It has to show again:

(1) that at any moment at most one of the processes is engaged in its
critical section;

(2) that the decision which of the processes is the first to enter its critical
section cannot be postponed to eternity;

(3) that stopping a process in its “remainder of cycle” has no effect upon
the others.

Of these parts, the second one is the more difficult one. (Hint: As soon
as one of the processes has performed the assignment turn:= i, no new
processes can decide to assign their number to turn before a critical section
has been completed. Mind that two processes can decide “simultaneously”
to assign their i-value to turn!)

(Remark that can be skipped at first reading)

The program just described inspects the value of b[turn] where both
the array b and the integer turn are in common store. We have stated that
inspecting a single variable is an indivisible action and inspecting b[turn]
can therefore only mean: inspect the value of turn, and if this happens to
be = 5, well, then inspect b[5]. Or, in more explicit ALGOL:
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process i: begin integer j, k;

k:= turn; if b[k] = 1 then ...

implying that by the time that b[k] is inspected, turn may already have a
value different from the current one of k.

Without the stated limitations in communicating with the common store,
a possible interpretation of “the value of b[turn]” would have been “the
value of the element of the array b as indicated by the current value of
turn”. In so-called uniprogramming i.e. a single sequential process oper-
ating on quantities local to it the two interpretations are equivalent. In
multiprogramming, where other active processes may access and change the
same common information, the two interpretations make a great difference!
In particular, for the reader with extensive experience in uniprogramming
this remark has been inserted as an indication of the subtleties of the games
we are playing.

2.3 A Linguistic Interlude

In Section 2.2 we described the co-operation of N processes; in the overall
structure we used a vertical sequence of dots between the brackets parbegin
and parend. This is nothing but a loose formalism, suggesting to the human
reader how to compose in our notation a set of N co-operating sequential
processes, under the condition that the value of N has been fixed beforehand.
It is a suggestion for the construction of 3, 4, or 5071 co-operating processes,
it does not give a formal description of N such co-operating processes in
which N occurs as a parameter, i.e. it is not a description valid for any value
of N.

It is the purpose of this section to show that the concept of the so-called
“recursive procedure” of ALGOL 60 caters for this. This concept will be
sketched briefly.

We have seen how after begin declarations could occur in order to intro-
duce and to name either single variables (by enumeration of their names) or
whole ordered sets of variables (viz. in the array declaration). With the so-
called “procedure declaration” we can define and name a certain action; such
an action may then be invoked by using its name as a statement, thereby
supplying the parameters to which the action should be applied.

As an illustration we consider the following ALGOL 60 program:
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begin integer a, b;
procedure square(u, v); integer u, v;
begin u:= v * v end;
L: square(a, 3); square(b, a); square(a, b)
end

In the first line the integers named a and b are declared. The next line
declares the procedure named square" operating on two parameters, which
are specified to be single integers (and not, say, complete arrays). This line is
called “the procedure heading”. The immediately following statement—the
so-called “procedure body”’—describes by definition the action named: in
the third line—in which the bracket pair begin ... end is superfluous—
it is told that the action of square is to assign to the first parameter the
square of the value of the second one. Then, labelled L, comes the first
statement. Before its execution the values of both a and b are undefined,
after its execution a = 9. After the execution of the next statement the
value of b is therefore = 81, after the execution of the last statement the
value of a is = 6561, the value of b is still = 81.

In the previous example the procedure mechanism was essentially intro-
duced as a means for abbreviation, a means for avoiding to have to write
down the “body” three times, although we could have done so quite easily:

begin integer a, b;

L: a:=3 * 3; b:=a *x a; a:=b x b
end

When the body is much more complicated than in this example a program
along the latter lines tends to be much lengthier indeed.

This technique of “substituting for the call the appropriate version of the
body” is, however, no longer possible as soon as the procedure is a so-called
recursive one, i.e. may call itself. It is then that the procedure really extends
the expressive power of the programming language.

A simple example might illustrate the recursive procedure. The greatest
common divisor of two given natural numbers is:

(1) if they have the same value equal to this value;

(2) if they have different values equal to the greatest common divisor of
the smaller of the two and their difference.

In other words, if the greatest common divisor is not trivial (first case) the
problem is replaced by finding the greatest common divisor of two numbers
with a smaller maximum value.
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(In the following program the insertion value v, w; can be skipped by
the reader as being irrelevant for our present purposes; it indicates that for
the parameters listed the body is only interested in the numerical value of
the actual parameter, as supplied by the call.)

begin integer a;

procedure GCD(u, v, w); value v, w; integer u, v, w;
if v = w then u:=v
else
begin if v < w then GCD(u, v, w - V)
else GCD(u, v - w, w)

end;

GCD(a, 12, 33)
end

(In this example the more elaborate form of the conditional statement is
used, viz.:

if condition then statement 1 else statement 2,

meaning that if condition is satisfied, statement 1 will be executed
and statement 2 will be skipped, and that if condition is not satisfied
statement 1 will be skipped and statement 2 will be executed.)

The reader is invited to follow the pattern of calls of GCD and to see
how the variable a becomes = 3; he is also invited to convince himself of the
fact that the (dynamic) pattern of calls depends on the parameters supplied
and that the substitution technique—replace call by body—as applied in the
previous example would lead to difficulties here.

We shall now write a program to perform a matrix * vector multiplication
in which:

(1) the order in which the M scalar * scalar products are to be calculated
is indeed prescribed (the rows of the matrix will be scanned from left
to right);

(2) the N rows of the matrix can be processed in parallel.

(Where we do not wish to impose the restriction of purely integer values,
we have used the declarator real instead of the declarator integer; further-
more, we have introduced an array with two subscripts in what we hope is

an obvious manner.)
It is assumed that, upon entry of this block of program, the integers M

and N have positive values.
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begin real array matrix[1 : N, 1 : M];
real array vector[1 : M];
real array product[l : NJ];
procedure rowmult(k); value k; integer k;
begin if k > O then
parbegin
begin real s; integer j;
s:= 0;
for j:= 1 step 1 until M do
s:= s + matrix[k, j] * vector[j];
product[k] := s

end;
rowmult(k - 1)
parend
end

rowmult (N) ;

end

3 THE MUTUAL EXCLUSION PROBLEM REVISITED

We return to the problem of mutual exclusion in time of critical sections, as
introduced in Section 2.1 and generalized in Section 2.2. This section deals
with a more efficient technique for solving this problem; only after having
done so we have adequate means for the description of examples, with which
I hope to convince the reader of the rather fundamental importance of the
mutual exclusion problem, in other words, I must appeal to the patience
of the wondering reader (suffering, as I am, from the sequential nature of
human communication!).

3.1 The Need for a More Realistic Solution

The solution given in Section 2.2 is interesting in as far as it shows that the
restricted means of communication provided are, from a theoretical point of
view, sufficient to solve the problem. From other points of view, which are
just as dear to my heart, it is hopelessly inadequate.

To start with, it gives rise to a rather cumbersome description of the
individual processes, in which it is anything but transparent that the overall
behaviour is in accordance with the (conceptually so simple) requirement of
the mutual exclusion. In other words, in some way or another this solution
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is a tremendous mystification. Let us try to isolate in which respect this
solution represents indeed a mystification, for this investigation could give
the clue to improvement.

Let us consider the period of time during which one of the processes is in
its critical section. We all know, that during that period no other processes
can enter their critical section and that, if they want to do so, they have
to wait until the current critical section execution has been completed. For
the remainder of that period hardly any activity is required from them: they
have to wait anyhow, and as far as we are concerned “they could go to sleep”.

Our solution does not reflect this at all: we keep the processes busy
setting and inspecting common variables all the time, as if no price has
to be paid for this activity. But if our implementation—i.e. the ways in
which or the means by which these processes are carried out—is such that
“sleeping” is a less-expensive activity than this busy way of waiting, then
we are fully justified (now also from an economic point of view) to call our
solution misleading.

In present-day computers there are at least two ways in which this active
way of waiting can be very expensive. Let me sketch them briefly. These
computers have two distinct parts, usually called “the processor” and “the
store”. The processor is the active part, in which the arithmetic and logical
operations are performed, it is “active and small”’; in the store, which is
“passive and large”, there resides at any moment the information which is not
being processed at that very moment but only kept there for future reference.
In the total computational process information is transported from store to
processor as soon as it has to play an active role, the information in store
can be changed by transportation in the inverse direction.

Such a computer is a very flexible tool for the implementation of sequen-
tial processes. Even a computer with only one single processor can be used
to implement a number of concurrent sequential processes. From a macro-
scopic point of view it will seem as though all these processes are being
carried out simultaneously, a closer inspection will reveal, however, that at
any “microscopic” moment the processor serves only one single program at
a time, and the overall picture only results because at well-chosen moments
the processor will switch from one process to another. In such an implemen-
tation the different processes share the same processor, and activity (i.e. a
non-zero speed) of any single process will imply zero speed for the others;
it is then undesirable that precious processor time is consumed by processes
which cannot go on anyhow.
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Apart from processor sharing, the store sharing could make the unneces-
sary activity of a waiting process undesirable. Let us assume that inspection
of or assignment to a “common variable” implies the access to an informa-
tion unit a so-called “word” in a ferrite-core store. Access to a word in a
core store takes a non-zero time, and for technical reasons only one word can
be accessed at a time. When more than one active process may wish access
to words of the same core store the usual arrangement is that in the case of
imminent coincidence the storage access requests from the different active
processes are granted according to a built-in priority rule: the lower prior-
ity process is automatically held up. (The literature refers to this situation
when it describes “a communication channel stealing a memory cycle from
the processor”.) The result is that frequent inspection of common variables
may slow down any processes which share the same core storage for their
local quantities.

3.2 The Synchronizing Primitices

The origin of the complications, which lead to such intricate solutions as
the one described in Section 2.2, is the fact that the indivisible accesses to
common variables are always “one-way information traffic’: an individual
process can either assign a new value or inspect a current value. Such an
inspection itself, however, leaves no trace for the other processes, and the
consequence is that, when a process wants to react to the current value of a
common variable, that variable’s value may have been changed by the other
processes between the moment of its inspection and the following effectuation
of the reaction to it. In other words: the previous set of communication
facilities must be regarded as inadequate for the problem at hand, and we
should look for more appropriate alternatives.
Such an alternative is provided by introducing:

(a) among the common variables special-purpose integers, which we shall
call “semaphores”;

(b) among the repertoire of actions, from which the individual processes
have to be constructed, two new primitives, which we call the “P-
operation” and the “V-operation” respectively.

The latter operations always operate on a semaphore and represent the only
way in which the concurrent processes may access the semaphores.
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The semaphores are essentially non-negative integers; when used only to
solve the mutual exclusion problem the range of their values will even be
restricted to 0 and 1. It is the merit of the Dutch physicist and computer
designer C. S. Scholten to have shown a considerable field of applicability for
semaphores that can also take on larger values. When there is a need for dis-
tinction we shall talk about “binary semaphores” and “general semaphores”
respectively. The definition of the P- and V-operation that I shall give now
holds regardless of this distinction.

Definition. The V-operation is an operation with one argument, which
must be the identification of a semaphore. (If S1 and S2 denote semaphores
we can write V(S1) and V(82).) Its function is to increase the value of its
argument semaphore by 1; this increase is to be regarded as an indivisible
operation.

Note that this last sentence makes V(S1) inequivalent to S1:= S1 + 1.
For suppose that two processes A and B both contain the statement V(S1)
and that both should like to perform this statement at a moment when,
say, S1 = 6. Excluding interference with S1 from other processes, A and B
will perform their V-operations in an unspecified order—at least: outside our
control—and after the completion of the second V-operation the final value of
S1 will be = 8. If S1 had not been a semaphore but just an ordinary common
integer, and if processes A and B had contained the statement S1:= S1 +
instead of the V-operation on S1, then the following could happen. Process A
evaluates S1 + 1 and computes 7; before effecting, however, the assignment
of this new value, process B has reached the same stage and also evaluates
S1 + 1, computing 7. Thereafter both processes assign the value 7 to S1,
and one of the desired incrementations has been lost. The requirement of
the “indivisible operation” is meant to exclude this occurrence when the
V-operation is used.

Definition. The P-operation is an operation with one argument, which
must be the identification of a semaphore. (If S1 and S2 denote semaphores
we can write P(S1) and P(S2).) Its function is to decrease the value of
its argument semaphore by 1 as soon as the resulting value would be non-
negative. The completion of the P-operation—i.e. the decision that this
is the appropriate moment to effectuate the decrease and the subsequent
decrease itself—is to be regarded as an indivisible operation.

It is the P-operation which represents the potential delay, viz. when a
process initiates a P-operation on a semaphore, that at that moment is = 0,
in that case this P-operation cannot be completed until another process has
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performed a V-operation on the same semaphore and has given it the value
1. At that moment more than one process may have initiated a P-operation
on that very same semaphore. The clause that completion of P-operation
is an indivisible action means that when the semaphore has got the value
1 only one of the initiated P-operations on it is allowed to be completed.
Which one, again, is left unspecified, i.e. at least outside our control.

At this stage we shall take the implementability of the P- and V-
operations for granted.

3.3 The Synchronizing Primitives Applied to the Mutual Exclusion
Problem

The construction of the N processes, each with a critical section, the exe-
cutions of which must exclude one another in time (see Section 2.2) is now
trivial. It can be done with the aid of a single binary semaphore, say free.
The value of free equals the number of processes allowed to enter their
critical section now, or;

free = 1 means: none of the processes is engaged in its critical section
free = 0 means: one of the processes is engaged in its critical section.

The overall structure of the solution becomes:

begin integer free; free:= 1;

parbegin
process 1: begin ... end;
process 2: begin ... end;
process N: begin ... end;
parend

end

with the ith process of the form:
process i: begin
Li: P(free); critical section i; V(free);
remainder of cycle i; goto Li
end

4 THE GENERAL SEMAPHORE
4.1 Typical Uses of the General Semaphore

We consider two processes, which are called the “producer” and the “con-
sumer” respectively. The producer is a cyclic process, and each time it goes
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through its cycle it produces a certain portion of information that has to be
processed by the consumer. The consumer is also a cyclic process, and each
time it goes through its cycle it can process the next portion of information,
as produced by the producer. A simple example is given by a computing
process, producing as “portions of information” punched-card images to be
punched out by a card punch, which plays the role of the consumer.

The producer-consumer relation implies a one-way communication chan-
nel between the two processes, along which the portions of information can
be transmitted. We assume the two processes to be connected for this pur-
pose via a buffer with unbounded capacity, i.e. the portions produced need
not be consumed immediately, but they may queue in the buffer. The fact
that no upper bound has been given for the capacity of the buffer makes this
example slightly unrealistic, but this should not trouble us too much now.

(The reason for the name “buffer” becomes understandable when we in-
vestigate the consequences of its absence, viz. when the producer can only
offer its next portion after the previous portion has been actually consumed.
In the computer-card punch example, we may assume that the card punch
can punch cards at a constant speed, say 4 cards per second. Let us assume
that this output speed is well matched with the production speed, i.e. that
the computer can perform the card image production process with the same
average speed. If the connection between computing process and card punch
is unbuffered, then the couple will only work continuously at full speed when
the card-production process produces a card every quarter of a second. If,
however, the nature of the computing process is such that after one or two
seconds vigorous computing it produces 4 to 8 card images in a single burst,
then unbuffered connection will result in a period of time during which the
punch will be idle (for lack of information), followed by a period in which
the computing process has to be idle, because it cannot get rid of the next
card image before the preceding one has been actually punched. Such irreg-
ularities in production speed, however, can be smoothed out by a buffer of
sufficient size and that is why such a queuing device is called “a buffer”.)

In this section we shall not deal with the various techniques of implement-
ing a buffer. It must be able to contain successive portions of information,
it must therefore be a suitable storage medium, accessible to both processes.
Furthermore, it must not only contain the portions themselves, it must also
represent their linear ordering. (In the literature two well-known techniques
are known as “cyclic buffering” and “chaining” respectively.) When the pro-
ducer has prepared its next portion to be added to the buffer we shall denote
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this action simply by add portion to buffer, without going into further
details; similarly, the take portion from buffer describes the consumer’s
behaviour, where the oldest portion still in the buffer is understood. (An-
other name of a buffer is a “First-In-First-Out-Memory”.)

Omitting in the outermost block all declarations for the buffer, we can
now construct the two processes with the aid of a single general semaphore,
called number of queuing portions.

begin integer number of queuing portions;

number of queuing portions:= 0;
parbegin
producer: begin
again 1: produce the next portion;
add portion to buffer;
V(number of queuing portions);
goto again 1
end;
consumer: begin
again 2: P(number of queuing portions);
take portion from buffer;
process portion taken;
goto again 2
end

parend
end

The first line of the producer represents the coding of the process which
forms the next portion of information; it has a meaning quite independent of
the buffer for which this portion is intended; when it has been executed the
next portion has been successfully completed, the completion of its construc-
tion can no longer be dependent on other (unmentioned) conditions. The
second line of coding represents the actions which define the finished portion
as the next one in the buffer; after its execution the new portion has been
added completely to the buffer, apart from the fact that the consumer does
not know it yet. The V-operation finally confirms its presence, i.e. signals
it to the consumer. Note that it is absolutely essential that the V-operation
is preceded by the complete addition of the portion. About the structure of
the consumer analogous remarks can be made.

Particularly in the case of buffer implementation by means of chaining the
operations add portion to buffer and take portion from buffer—
operating as they are on the same clerical status information of the buffer—
may interfere with each other in a most undesirable fashion, unless we see to
it, that they exclude each other in time. This can be catered for by a binary
semaphore, called buffer manipulation, the values of which mean:
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= 0: either adding to or taking from the buffer is taking place
= 1: neither adding to nor taking from the buffer is taking place.

The program is as follows:

begin integer number of queuing portions,
buffer manipulation;
number of queuing portions:= 0;
buffer manipulation:= 1;
parbegin
producer: begin
again 1: produce next portion;
P(buffer manipulation);
add portion to buffer;
V(buffer manipulation);
V(number of queuing portioms);
goto again 1
end;
consumer: begin
again 2: P(number of queuing portions);
P(buffer manipulation);
take portion from buffer;
V(buffer manipulation);
process portion taken;
goto again 2
end
parend
end

The reader is requested to convince himself that:
(a) the order of the two V-operations in the producer is immaterial;
(b) the order of the two P-operations in the consumer is essential.

Remark. The presence of the binary semaphore buffer manipulation
has another consequence. We have given the program for one producer
and one consumer, but now the extension to more producers and/or more
consumers is straightforward: the same semaphore sees to it that two or more
additions of new portions will never get mixed up, and the same applies to
two or more takings of a portion by different consumers. The reader is
requested to verify that the order of the two V-operations in the producer
is still immaterial.

4.2 The Superfluity of the General Semaphore

In this section we shall show the superfluity of the general semaphore and we
shall do so by rewriting the last program of the previous section, using binary
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semaphores only. (Intentionally I have written “we shall show” and not “we
shall prove”. We do not have at our disposal the mathematical apparatus
that would be needed to give such a proof, and I do not feel inclined to
develop such mathematical apparatus now. Nevertheless, I hope that my
show will be convincing!) We shall first give a solution and postpone the
discussion till afterwards.

begin integer numqueupor, buffer manipulation,
consumer delay;
numqueupor:= 0; buffer manipulation:= 1;
consumer delay:= 0;
parbegin
producer: begin
again 1: produce next portion;
P(buffer manipulation);
add portion to buffer;
numqueupor:= numqueupor + 1;
if numqueupor = 1 then
V(consumer delay);
V(buffer manipulation);
goto again 1
end;
consumer: begin integer oldnumqueupor;
wait: P(consumer delay);
go on: P(buffer manipulation);
take portion from buffer;
numqueupor := numqueupor - 1;
oldnumqueupor := numqueupor;
V(buffer manipulation);
process portion taken;
if oldnumqueupor = 0 then goto wait
else goto go on
end
parend
end

Relevant in the dynamic behaviour of this program are the periods of
time during which the buffer is empty. (As long as the buffer is not empty,
the consumer can go on happily at its maximum speed.) Such a period can
only be initiated by the consumer (by taking the last portion present from
the buffer), it can only be terminated by the producer (by adding a por-
tion to an empty buffer). These two events can be detected unambiguously,
thanks to the binary semaphore buffer manipulation, that guarantees the
mutual exclusion necessary for this detection. Each such period is accom-
panied by a P- and a V-operation on the new binary semaphore consumer
delay. Finally, we draw attention to the local variable oldnumqueupor of the
consumer: its value is set during the taking of the portion and fixes whether
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it was the last portion then present. (The more expert ALGOL readers will
be aware that we only need to store a single bit of information, viz. whether
the decrease of numqueupor resulted in a value = 0; we could have used a
local variable of type Boolean for this purpose.) When the consumer decides
to go to wait, i.e. finds oldnumqueupor = O, at that moment numqueupor
itself could already be greater than zero again!

In the previous program the relevant occurrence was the period with
empty buffer. One can remark that emptiness is, in itself, rather irrelevant: it
only matters, when the consumer should like to take a next portion, which is
still absent. We shall program this version as well. In its dynamic behaviour
we may expect less P- and V-operations on consumer delay: they will not
occur when the buffer has been empty for a short while, but is filled again
in time to make delay of the consumer unnecessary. Again we shall first give
the program and then its discussion.

begin integer numqueupor, buffer manipulation,
consumer delay;
numqueupor:= 0; buffer manipulation:= 1;
consumer delay:= 0;
parbegin
producer: begin
again 1: produce next portion;
P(buffer manipulation);
add portion to buffer;
numqueupor : = numqueupor + 1;
if numqueupor = 0 then
begin V(buffer manipulation);
V(consumer delay) end
else
V(buffer manipulation);
goto again 1
end;
consumer: begin
again 2: P(buffer manipulation);
numqueupor:= numqueupor - 1;
if numqueupor = -1 then
begin V(buffer manipulation);
P(consumer delay);
P(buffer manipulation) end;
take portion from buffer;
V(buffer manipulation),
process portion taken;
goto again 2
end
parend
end
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Again, the semaphore buffer manipulation caters for the mutual
exclu- sion of critical sections. The last six lines of the producer could have
been formulated as follows:

if numqueupor = 0 then V(consumer delay);
V(buffer manipulation); goto again 1

In not doing so I have followed a personal taste, viz. to avoid P- and
V- operations within critical sections; a personal taste to which the reader
should not pay too much attention.

The range of possible values of numqueupor has been extended with the
value -1, meaning (outside critical section execution) “the buffer is not only
empty, but its emptiness has already been detected by the consumer, which
has decided to wait”. This fact can be detected by the producer when, after
the addition of one, numqueupor = 0 holds.

Note how, in the case of numqueupor = -1, the critical section of the
consumer is dynamically broken into two parts: this is most essential, for
otherwise the producer would never get the opportunity to add the portion
that is already so much wanted by the consumer.

(The program just described is known as “The Sleeping Barber”. There
is a barbershop with a separate waiting room. The waiting room has an entry
and next to it an exit to the room with the barber’s chair, entry and exit
sharing the same sliding door, which always closes one of them; furthermore,
the entry is so small that only one customer can enter it at a time, thus fixing
their order of entry. The mutual exclusions are thus guaranteed.

* l Barber’s Chair \

Waiting room

When the barber has finished a haircut he opens the door to the waiting
room and inspects it. If the waiting room is not empty he invites the next
customer, otherwise he goes to sleep in one of the chairs in the waiting room.
The complementary behaviour of the customers is as follows: when they find
zero or more customers in the waiting room they just wait their turn, when
they find, however, the Sleeping Barber—numqueupor = -1—they wake him
up.)

The two programs given present a strong indication that the general
semaphore is, indeed, superfluous. Nevertheless, we shall not try to abolish
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the general semaphore: the one-sided synchronization restriction expressible
by it is very common, and comparison of the solutions with and without
the general semaphore shows convincingly that it should be regarded as an
adequate tool.

4.3 The Bounded Buffer

I shall give a last simple example to illustrate the use of the general
semaphore. In Section 4.1 we have studied a producer and a consumer
coupled via a buffer with unbounded capacity. This is a typically one-sided
restriction: the producer can be arbitrarily far ahead of the consumer; on the
other hand, the consumer can never be ahead of the producer. The relation
becomes symmetric when the two are coupled via a buffer of finite size, say
of N portions. We give the program without discussion; we ask the reader
to convince himself of the complete symmetry. (“The consumer produces
and the producer consumes empty positions in the buffer.”) The value N,
as well as the buffer, is supposed to be defined in the surrounding universe
into which the following program should be embedded.

begin integer number of queuing portioms,
number of empty positions,
buffer manipulation;
number of queuing portions:= 0;
number of empty positions:= N;
buffer manipulation:= 1;
parbegin
producer: begin
again 1: produce next portion;
P(number of empty positions);
P(buffer manipulation);
add portion to buffer;
V(buffer manipulation);
V(number of queuing portions);
goto again 1
end;
consumer: begin
again 2: P(number of queuing portions);
P(buffer manipulation);
take portion from buffer;
V(buffer manipulation);
V(number of empty positionms);
process portion taken;
goto again 2
end
parend
end
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5 CO-OPERATION VIA STATUS VARIABLES

In Sections 4.1 and 4.3 we have illustrated the use of the general semaphore.
It proved an adequate tool, be it as implementation of a rather trivial form
of interaction. The rules for the consumer are very simple: if there is some-
thing in the buffer, consume it. They are of the same simplicity as the
behaviour of the wage-earner who spends all his money as soon as he has
been paid and is broke until the next pay day.

In other words: when a group of co-operating sequential processes have
to be constructed and the overall behaviour of these processes combined has
to satisfy more elaborate requirements—the community, formed by them,
has, as a whole, to be well behaved in some sense—we can only expect to
be able to achieve this if the individual processes themselves and the ways
in which they can interact will get more refined. We can no longer expect
a ready-made solution, such as the general semaphore, to do the job. In
general, we shall need such flexibility as can be expressed in a program for
a general-purpose computer.

We now have the raw material, we can define the individual processes,
they can communicate with each other via the common variables, and finally,
we have the synchronizing primitives. How we can compose from it what we
might want is, however, by no means obvious. We must now train ourselves
to use the tools, we must develop a style of programming, a style of “parallel
programming”. Two points should be stressed.

We shall be faced with a great amount of freedom. Interaction may imply
decisions bearing upon more than one process, and it is not always obvious
which of the processes should then take the decisions. If we cannot find
a guiding principle (e.g. efficiency considerations), then we must have the
courage to impose some rule for the sake of clarity.

Secondly, if we are interested in systems that really work we should
be able to convince ourselves (and anybody else who takes the trouble of
doubting) of the correctness of our constructions. In uniprogramming one
is already faced with the task of program verification a task the difficulty of
which is often underestimated but there one can hope to debug by testing
of the actual program. In our case the system will often have to work under
irreproducible circumstances, and we can hardly expect any serious help
from field tests. The duty of verification should concern us right from the
start.

We shall attack a more complicated example in the hope that this will
give us some of the experience which might be used as guiding principle.
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5.1 An Example of a Priority Rule

In Section 4.3 we have used the general semaphore to couple a producer and
a consumer via a bounded buffer. The solution given there is extendable to
more producers and/or more consumers; it is applicable when the “portion”
is at the same time a convenient unit of information, i.e. when we can regard
the different portions as all being of the same size.

In the present problem we consider producers that offer portions of dif-
ferent sizes; we assume the size of these portions to be expressed in portions
units. The consumers, again, will process the successive portions from the
buffer, and will therefore have to be able to process portions the size of which
is not given a priori. A maximum portion size will, however, be known.

The size of the portions is given in information units, we assume also
that the maximum capacity of the buffer is given in information units: the
question whether the buffer will be able to accommodate the next portion
will therefore depend on the size of the portion offered. The requirement
that “adding a portion to” and “taking a portion from the buffer” are still
conceivable operations implies that the size of the buffer is not less than the
maximum portion size.

We have a bounded buffer, and therefore a producer may have to wait
before it can offer a portion. With fixed-size portions this would only occur
when the buffer was full to the brim, now it can also happen because free
space in the buffer, although present, is insucient for the portion concerned.

Furthermore, when we have more than one producer and one of them is
waiting, then the other ones may go on and reach the state that they wish to
offer a portion. Such a portion from a next producer may also be too large,
or it may be smaller and it may fit in the available free space of the buffer.

Somewhat arbitrarily, we impose on our solution the requirement that
the producer wishing to offer the larger portion gets priority over the pro-
ducer wishing to offer the smaller portion to the buffer. (When two or more
producers are offering portions that happen to be of the same size we just
don’t care.)

When a producer has to wait because the buffer cannot accommodate
its portion, no other producers can therefore add their portions until further
notice: they cannot do so if the new portion is larger (for then it will not fit
either), they are not allowed to if the new portion is smaller, for then they
have a lower priority and must leave the buffer for the earlier request.

Suppose a moment at which there is a completely filled buffer and three
producers, waiting to offer portions of 1, 2, and 3 units respectively. When
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a consumer now comsumes a five-unit portion the priority rule implies that
the producers with the 2-unit portion and the 3-unit portion will get the
opportunity to go on and not the one offering the 1-unit portion. It is not
meant to imply that in that case the 3-unit portion will actually be offered
before the 2-unit portion!

We shall now try to introduce so-called “status variables” for the different
components of the system, with the aid of which we can characterize the state
of the system at any moment. Let us try.

For each producer we introduce a variable named desire; this variable
will denote the number of buffer units needed for the portion it could not add
to the buffer. As this number is always positive, we can attach to desire = 0
the meaning that no request from this producer is pending. Furthermore,
we shall introduce for each producer a private binary producer semaphore.

For the buffer we introduce the binary semaphore bufman, which takes
care of the mutual exclusion of buffer manipulations in the widest sense
(i.e. not only the adding to and taking from the buffer but also inspection
and modification of the status variables concerned).

Next we need a mechanism to signal the presence of a next portion to the
consumers. Assoon as a next portion is in the buffer, it can be consumed and
as we do not care which of the consumers takes it, we can hope that a general
semaphore number of queuing portions will do the job. (Note that it
counts portions queuing in the buffer and not number of filled information
units in the buffer.)

Vacated buffer space must be signalled back to the producers, but the
possible consequences of vacating buffer space are more intricate, and we
cannot expect that a general semaphore will be adequate. Tentatively we
introduce an integer status variable number of free buffer units. Note
that this variable counts units, not portions.

Remark. The value of number of free buffer units will at most be
equal to the size of the buffer diminished by the total size of the portions
counted in number of queuing portions, but it may be less! I refer to the
program given in section 4.3; there the sum

number of queuing portions + number of empty positions

is initially (and usually) = N, but it may be = N — 1, because the P-
operation on one of the semaphores always precedes the V-operation on the
other. (Verify that in the program of section 4.3 the sum can even be =
N — 2 and that this value could even be lower had we had more produc-
ers and/or consumers.) Here we may expect the same phenomenon: the
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semaphore number of queuing portions will count the portions-actually
and completely filled and still unnoticed will count the completely free, un-
allocated units in the buffer. But the units which have been reserved for
filling, which have been granted to a (waiting) producer, without already
being filled, will not be counted in either of them.

Finally, we introduce the integer buffer blocking, the value of which
equals the number of quantities desire that are positive. Obviously, this
variable is superfluous; it has been introduced as a recognition of one of our
earlier remarks, that as soon as one of the desires is positive, no further
additions to the buffer can be made, until further notice. At the same time
this variable may act as a warning to the consumers, that such a “further
notice” is wanted.

We now propose the following program, written for N producers and M
consumers. (N, M, Buffer size, and all that concerns the buffer is assumed
to be declared in the surroundings of this program.)

begin integer array desire, producer semaphore[l : N];
integer number of queuing portionms,
number of free buffer units,
buffer blocking, bufman, loop;
for loop:= 1 step 1 until N do
begin desire[loop]:= 0;
producer semaphore[loop]:= 0
end
number of queuing portions:= 0 ;
number of free buffer units:= Buffer size;

buffer blocking:= 0; bufman:= 1;
parbegin
producer 1:

begin ... end;

producer n:
begin integer portion size;
again n: produce next portion and set portion size;
P(bufman) ;
if buffer blocking = 0 and
number of free buffer units >= portion size
then
number of free buffer units:=
number of free buffer units - portion size
else
begin buffer blocking:= buffer blocking + 1;
desire[n] := portion size; V(bufman);
P(producer semaphore[n]); P(bufman) end;
add portion to buffer; V(bufman);
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V(number of queuing portions); goto again n
end;

producer N:

begin ... end;
consumer 1:
begin ... end;

consumer m:
begin integer portion size, n, max, nmax;
again m: P(number of queuing portions); P(bufman);
take portion from buffer and set portion size;
number of free buffer units:=
number of free buffer units + portion size;
test: if buffer blocking > O then
begin max:= 0,
for n:= 1 step 1 until N do
begin if max < desire[n] then
begin max:= desire[n]; nmax:= n
end end;
if max <=
number of free buffer units then
begin number of free buffer units:=
number of free buffer units
- max;
desire[nmax] := 0;
buffer blocking:=
buffer blocking - 1;
V(producer semaphore[nmax]) ;
goto test
end
end;
V(bufman); process portion taken;
goto again m
end;

consumer M:
begin ... end
parend
end

In the outermost block the common variables are declared and initialized.
This part of the program hopefully presents no difficulties to the reader who
has followed me until here.
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Let us first try to understand the behaviour of the producer. When it
wishes to add a new portion to the buffer there are essentially two cases:
either it can do so immediately or not. It can add immediately under the
combined condition:

buffer blocking = 0 and
number of free buffer units >= portion size;

if so, it will decrease number of free buffer units and—dynamically
speaking in the same critical section—it will add the portion to the buffer.
The two following V-operations (the order of which is immaterial) close the
critical section and signal the presence of the next portion to the combined
consumers. If it cannot add immediately, i.e. if (either)

buffer blocking > 0 or
number of free buffer units < portion size

(or both), then the producer decides to wait, “to go to sleep”, and delegates
to the combined consumers the task to wake it up again in due time. The fact
that it is waiting is coded by desire[n] > 0, buffer blocking is increased
by 1 accordingly. After all clerical operations on the common variables have
been carried out the critical section is left (by V(bufman)) and the producer
initiates a P-operation on its private semaphore. When it has completed
this P-operation it re-enters the critical section, merges dynamically with
the first case and adds the portion to the buffer. (See also the consumer in
the second program of section 4.2, where we have already met the cutting
open of a critical section.) Note that in the waiting case the producer has
skipped the decrease of number of free buffer units. Note also that the
producer initiates the P-operation on its private semaphore at a moment
that the latter may already be = 1, i.e. this P-operation, again, is only a
potential delay.

Let us now inspect whether the combined consumers fulfil the tasks del-
egated to them. The presence of a next portion is correctly signalled to
them via the general semaphore number of queuing portions and, as the
P-operation on it occurs outside any critical section, there is no danger of
consumers not initiating it. After this P-operation the consumer enters its
critical section, takes a portion, and increases the number of free buffer
units. If buffer blocking = 0 holds, the following compound statement is
skipped completely and the critical section is left immediately; this is cor-
rect, for buffer blocking = 0 means that none of the quantities desire is
positive, i.e. that none of the producers is waiting for the free space just cre-
ated in the buffer. If, however, it finds buffer blocking > 0 it knows that
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at least one of the producers has gone to sleep and it will inspect, whether
one or more producers have to be woken up. It looks for the maximum value
of desire. If this is not too large it decides that the corresponding producer
has to go on. This decision has three effects:

(a) The number of free buffer units is decreased by the number of
units desired. Thus we guarantee that the same free space in the
buffer cannot be granted to more than one producer. Furthermore,
this decrease is in accordance with the producer behaviour.

(b) Desire of the producer in question is set to zero; this is correct, for
its request has now been granted; buffer blocking is decreased by 1
accordingly.

(c) A V-operation on the producer semaphore concerned wakes the sleep-
ing producer.

After that, control of the consumer returns to test to inspect whether
more sleeping producers should be woken up. The inspection process can
end in one of two ways: either there are no sleeping producers left (buffer
blocking = 0) or there are still sleeping processes, but the free space is
insufficient to accommodate the maximum desire. The final value of buffer
blocking is correct in both cases. After the waking up of the producers is
done the critical section is left.

5.2 An Example of Conversations

In this section we shall discuss a more complicated example, in which one of
the co-operating processes is not a machine but a human being, the “oper-
ator”.

The operator is connected with the processes via a so-called “semi-duplex
channel” (say “telex connection”). It is called a duplex channel because it
conveys information in either direction: the operator can use a keyboard to
type in a message for the processes, the processes can use the teleprinter
to type out a message for the operator. It is called a semi-duplex channel,
because it can only transmit information in one direction at a time.

Let us now consider the requirements of the total construction, admit-
tedly somewhat simplified yet hopefully sufficiently complicated to pose to
us a real problem, yet sufficiently simple so as not to drown the basic pattern
of our solution in a host of inessential details.
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We have N identical processes (numbered from 1 through N), and essen-
tially they can each ask a single question, called Q1, meaning “How shall I
go on 7”7, to which the operator may give one of two possible answers, called
A1 and A2. We assume that the operator must know which of the processes
is asking the question since his answer might depend on this knowledge and
we therefore specify that the ith process identifies itself when posing the
question; we indicate this by saying that it transmits the question Q1(i). In
a sense this is a consequence of the fact that all N processes use the same
communication channel.

A next consequence of this channel sharing between the different pro-
cesses is that no two processes can ask their question simultaneously: be-
hind the scenes some form of mutual exclusion must see to this. If only
Q1l-questions are mutually exclusive the operator may meet the following
situation: a question—say Q1(3)—is posed, but before he has decided how
to answer it a next question—say, Q1(7)—is put to him. Then the single
answer A1l is no longer sufficient, because now it is no longer clear whether
this answer is intended for process 7 or for process 3. This could be over-
come by adding to the answers the identification of the process concerned,
say, A1(i) and A2(i) with the appropriate value of i.

But this is only one way of doing it: an alternative solution is to make the
question, followed by its answer, together a critical occurrence: it relieves
the operator from the duty to identify the process, and we therefore select
the latter arrangement. So we stick to the answers A1 and A2. We have
two kinds of conversations Q1(i), Al and Q1(i), A2 with the rule that
a next conversation can be initiated only when the previous one has been
completed.

We shall now complicate the requirements in three respects.

First, the individual processes may wish to use the communication chan-
nel for single-shot messages M(i) say which do not require any answer from
the operator.

Secondly, we wish to give the operator the possibility to postpone an
answer. Of course, he can do so by just not answering, but this would have
the undesirable effect that the communication channel remains blocked for
the other N — 1 processes. We introduce a next answer A3, meaning: “The
channel becomes free again, but the conversation with the process concerned
remains unfinished.” Obviously, the operator must have the opportunity to
reopen the conversation again. He can do so via A4(i) or A5(i), where
i runs from 1 through N and identifies the process concerned, where A4
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indicates that the process should continue in the same way as after A1, while
A5 prescribes the reaction as to A2. Possible forms of conversation are now:

a) Q1(i), Al

(a)

(b) Q1(i), A2

(c) Q1(i), A3 - - - A4(d)
)

(d) Q1(i), A3 - - - A5(i)

As far as process i is concerned (a) is equivalent with (c) and (b) is equivalent
with (d).

The second-requirement has a profound influence: without it—i.e. only
A1 and A2 permissible answers—the process of incoming message interpreta-
tion can always be subordinate to one of the N processes, viz. the one that
has put the question, this can wait for an answer and can act accordingly.
We do not know beforehand, however, when the message A4 (i) or A5(1) will
arrive, and we cannot delegate its interpretation to the ith process, because
the discovery that this incoming message is concerned with the ith process
is part of the message interpretation itself!

Thirdly, A4- and A5-messages must have priority over Q1- and M- mes-
sages, i.e. while the communication channel is occupied (in a Q1- or M-
message), processes might reach the state that they want to use the channel,
but the operator too might come to this conclusion at the same time. As
soon as the channel becomes available, we wish that the operator can use
it and that, if he so desires, it won’t be snatched away by one of the pro-
cesses. This implies that the operator has a means to express this desire a
rudimentary form of input even if the channel itself is engaged in output.

We assume that the operator

(a) can give externally a
V(incoming message)
which he can use to announce a message (Al, A2, A3, A4, or A5);

(b) can detect by the machine’s reaction, whether his intervention is ac-
cepted or ignored.

Remark. The situation is not unlike the school teacher shouting, “Now
children, listen!” If this is regarded as a normal message it is nonsensical:
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either the children are listening and it is therefore superfluous, or they are
not listening and therefore they do not hear it. It is, in fact, a kind of “meta-
message”, which only tells that a normal message is coming and which should
even penetrate if the children are not listening (talking, for instance).

This priority rule may cause the communication channel to be reserved
for an announced A4—or A5 message. By the time the operator gets the
opportunity to give it the situation or his mood may have changed, and
therefore we extend the list of answers with A6—the dummy opening—which
enables the operator to withhold, on second thoughts, the A4 or Ab5.

A final feature of the message interpreter is the applicability test. The
operator is a human being, and we may be sure that he will make mistakes.
The states of the message interpreter are such that at any moment not all
incoming messages are applicable; when a message has been rejected as non-
applicable the interpreter should return to such a state that the operator
can then give the correct version.

Our attack will be along the following lines:

(1) Besides the N processes we introduce another process, called message
interpreter; this is done because it is difficult to make the interpre-
tation of the messages A4, A5, and A6 subordinate to one of the N
processes.

(2) Interpretation of a message always implies, besides the message itself,
a state of the interpreter. (In the trivial case this is a constant state,
viz. the willingness to understand the message.) We have seen that not
all incoming messages are acceptable at all times, so our message in-
terpreter will have to have different states. We shall code them via the
(common) state variable comvar. The private semaphore, which can
delay the action of the message interpreter, is the semaphore incoming
message, already mentioned.

(3) For the N processes we shall introduce an array procsem of private
semaphores and an array procvar of state variables, through which
the different processes can communicate with each other, with the
message interpreter, and vice versa.

(4) Finally, we introduce a single binary semaphore mutex which caters
for the mutual exclusion during inspection and/or modification of the
common variables.
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(5) We shall use the binary semaphore mutex only for the purpose just
described, and never, say, will mutex = 0 be used to code that the
channel is occupied. Such a convention would be a dead alley in the
sense that the technique used would fall into pieces as soon as the
N processes would have two channels (and two operators) at their
disposal. We aim to make the critical sections, governed by mutex,
rather short, and we won’t shed a tear if some critical section is shorter
than necessary.

The above five points are helpful, and in view of our previous experiences
they seem a set of reasonable principles. One facet of this subject has been
to present a solution along the lines just given and show that it is correct. I
would do a better job if I could show as well how such a solution is found.
Admittedly any such solution is found by trial and error, but even so, we
could try to make the then prevailing guiding principle (in mathematics
usually called “The feeling of the genius”) somewhat more explicit. For we
are still faced with problems:

(a) what structure should we give to the N + 1 processes?

(b) what states should we introduce (i.e. how many possible values should
the state variables have and what should be their meanings)?

The problem (both in constructing and in presenting the solution) is
that the two points just mentioned are interdependent. For the values of
the state variables have only an unambiguous, interpretable meaning, when
mutex = 1 holds, i.e. when none of the processes is inside a critical section,
in which these values are subject to change. In other words, the conditions
under which the meaning of the state variable values should be applicable
is only known when the programs have been constructed, but we can only
construct the programs after we know what inspections of and operations on
the state variables are to be performed. In my experience, one starts with a
rough picture of both programs and state variables, then starts to enumerate
the different states and finally tries to build the programs. Then two things
may happen: either one finds that one has introduced too many states or
one finds that—having overlooked a need for cutting a critical section into
parts—one has not introduced enough of them. One modifies the states
and then the program, and with luck and care the design process converges.
Usually I found myself content with a working solution and did not bother
to minimize the number of states introduced.
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In my experience it is easier to conceive first the states (these being
statically interpretable) and then the programs. In conceiving the states we
have to bear three points in mind.

(a) State variables should have a meaning when mutex is = 1; on the other
hand, a process must leave the critical section before it starts to wait
for a private semaphore. We must be very keen on all those points
where a process may have to wait for something more complicated
than permission to complete P (mutex) .

(b) The combined state variables specify the total state of the system.
Nevertheless, it helps a great deal if we can regard some state variables
as “belonging to that and that process”. If some aspect of the total
state increases linearly with N it is easier to conceive that part as
equally divided among the N processes.

(c) If a process decides to wait on account of a certain (partial) state each
process that makes the system leave this partial state should inspect
whether on account of this change some waiting process should go on.
(This is only a generalization of the principle already illustrated in The
Sleeping Barber.)

The first two points are mainly helpful in the conception of the different
states, the last one is an aid to make the programs correct.

Let us now try to find a set of appropriate states. We start with the
element procvar[i], describing the state of process i.

procvar[i] = 0

This we call “the home position”. It will indicate that none of the fol-
lowing situations applies, that process i does not require any special service
from either the message interpreter or one of the other processes.

procvar[i] = 1

“On account of non-availability of the communication channel, process
i has decided to wait on its private semaphore.” This decision can be taken
independently in each process, it is therefore reasonable to represent it in
the state of the process. Up till now there is no obvious reason to distinguish
between waiting upon availability for a M-message and for a Ql-question,
so let us try to do without this distinction.
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procvar[i] = 2

“Question Q1(i) has been answered by A3, viz. with respect to process
i the operator has postponed his final decision.” The fact of the post-
ponement must be represented because it can hold for an indefinitely long
period of time (observation a); it should be regarded as a state variable of
the process in question, as it can hold in N-fold (observation b). Moreover,
procvar[i] = 2 will act as applicability criterion for the operator messages
A4[i] and A5[i].

procvar[i] = 3

“Q1[i] has been answered by Al or by A3 - - - A4[i].”

procvar[i] = 4

“Q1[i] has been answered by A2 or by A3 - - - A5[i].”

First of all we remark that it is of no concern to the individual process
whether the operator has postponed his final answer or not. The reader may
wonder, however, that the answer given is coded in procvar, while only one
answer is given at a time. The reason is that we do not know how long it
will take the individual process to react to this answer: before it has done
so, a next process may have received its final answer to the Q1l-question.

Let us now try to list the possible states of the communication organi-
sation. We introduce a single variable, called comvar to distinguish between
these states. We have to bear in mind three different aspects:

(1) availability of the communication possibility for M-messages, Q1-
questions, and the spontaneous message of the operator;

(2) acceptability—more general: interpretability—of the incoming mes-
sages.

(3) operator priority for incoming messages.

In order not to complicate matters too much at once, we shall start by
ignoring the third point. Without operator priority we can see the following
states.

comvar = 0
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“The communication facility is idle”, i.e. equally available for both pro-
cesses and operator. For the processes comvar = 0 means that the commu-
nication facility is available, for the message interpreter it means that an
incoming message need not be ignored, but must be of type A4, A5, or A6.

comvar = 1

“The communication facility is used for a M-message or a Q1l-question.”
In this period of time the value of comvar must be # 0, because the commu-
nication facility is not available for the processes; for the message interpreter
it means that incoming messages have to be ignored.

comvar = 2

“The communication facility is reserved for an Al-, A2-, or A3-answer.”
When the M-message has been finished the communication facility becomes
available again; after a Q1-question, however, it must remain reserved. Dur-
ing this period, characterized by comvar = 2, the message interpreter must
know to which process the operator answer applies. At the end of the answer
the communication facility becomes again available.

Let us now take the third requirement into consideration. This will lead
to a duplication of (certain) states. When comvar = 0 holds, an incom-
ing message is accepted, when comvar = 1, an incoming message must be
ignored. This occurrence must be noted down, because at the end of this
occupation of the communication facility the operator must get his priority.
We can introduce a new state:

comvar = 3

“As comvar = 1 with operator priority requested.”

When the transition to comvar = 3 occurred during a M-message the
operator could get his opportunity immediately at the end of it; if, however,
the transition to comvar = 3 took place during a Ql-question the prior-
ity can only be given to the operator after the answer to the Ql-question.
Therefore, also state 2 is duplicated:

comvar = 4

“As comvar = 2, with operator priority requested.”
Finally, we have the state:

comvar = 5
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“The communication facility is reserved for, or used upon, instigation of
the operator.” For the processes this means non-availability, for the message
interpreter the acceptability of the incoming messages of type A4, A5, and
A6. Usually, these messages will be announced to the message interpreter
while comvar is = 0. If we do not wish that the entire collection and interpre-
tation of these messages is done within the same critical section the message
interpreter can break it open. It is then necessary that comvar is # 0. We
may try to use the same value 5 for this purpose: for the processes it just
means non-availability, while the control of the message interpreter knows
very well whether it is waiting for a spontaneous operator message (i.e. “re-
served for ...”) or interpreting such a message (i.e. “used upon instigation
of ..”).
Before starting to try to make the program we must bear in mind point
c: remembering that availability of the communication facility is the great
(and only) bottleneck, we must see to it that every process that ceases to
occupy the communication facility decides upon its future usage. This occurs
in the processes at the end of the M-message (and not so much at the end
of the Ql-question, for then the communication facility remains reserved
for the answer) and in the message interpreter at the end of each message
interpretation.
The proof of the pudding is the eating: let us try whether we can make the
program. (In the program the sequence of characters starting with comment
and up to and including the first semicolon are inserted for explanatory
purpose only. In ALGOL 60 such a comment is admitted only immediately
after begin, but I do not promise to respect this (superfluous) restriction.
The following program should be interpreted to be embedded in a universe in
which the operator, the communication facility, and the semaphore incoming
message—initially = O—are defined.)
begin integer mutex, comvar, asknum, loop;
comment The integer "asknum" is a state variable of the
message interpreter, primarily during interpretation of
the answers A1, A2, and A3. It is a common variable, as
its value is set by the asking process;
integer array procvar, procsem[l : NJ];
for loop:= 1 step 1 until N do
begin procvar([loop]:= 0; procsem[loop]:= 0 end;
comvar:= 0; mutex:= 1;
parbegin

process 1: begin ... end;
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process n: begin

M message:

ready:

Q1 Question:

integer i; comment The integer "i" is a
local variable, very much like "loop";

P(mutex) ;
if comvar = 0 then
begin comment When the communication
facility is available, it is taken;
comvar:= 1; V(mutex) end
else
begin comment Otherwise the process records
itself as dormant and goes to sleep;
procvar([n]:= 1; V(mutex);
P(procsem[n])
comment At the completion of this
P-operation, "procsem[n]" will again
be = 0, but comvar - still untouched
by this process - will be = 1 or = 3;
end;
send M message;
comment Now the process has to analyse
whether the operator (first) or one of the
other processes should get the communication
facility; P(mutex);
if comvar = 3 then comvar:= 5
else
begin comment Otherwise "comvar = 1" will
hold and process n has to look whether
one of the other processes is waiting.
Note that "procvar[n] = 0" holds;
for i:= 1 step 1 until N do
begin if procvar([i] = 1 then
begin procvar[i]:= 0;
V(procsem[i]); goto ready
end
end;
comvar:= 0
end
V(mutex) ;

P(mutex) ;
if comvar = 0 then
begin comvar:= 1; V(mutex) end
else
begin procvar(n]:= 1; V(mutex);
P(procsem[n])
end;



116

EDSGER W. DIJKSTRA

end;

process N: begin ...

comment This entry is identical to that of
the M message. Note that we are out of the
critical section, nevertheless this process
will set "asknum". It can do so safely, for
neither another process nor the message
interpreter will access "asknum" as long as
"comvar = 1" holds;
asknum:= n, send question Q1(n);
P(mutex) ;
comment "comvar" will be = 1 or = 3;
if comvar = 1 then comvar:= 2

else comvar:= 4;
V(mutex); P(procsem[n]);
comment After completion of this
P-operation, procvar([n] will be = 3 or = 4.
This process can now inspect and reset its
procvar, although we are outside a critical
section;
if procvar[n] = 3 then Reaction 1

else Reaction 2;

procvar[n]:= 0;
comment This last assignment is
superfluous;

end;

message interpreter:

begin integer i;
wait: P(incoming message) ;

P(mutex) ;

if comvar = 1 then comvar:= 3;

if comvar = 3 then

begin comment The message interpreter
ignores the incoming message, but in
due time the operator will get the
opportunity;
V(mutex); goto wait end;

if comvar = 2 or comvar = 4 then

begin comment Only A1, A2 and A3 are
admissible. The interpretation of the
message need not be done inside a
critical section;
V(mutex) ;
interpretation of the message coming
in;
if message = Al then



COOPERATING SEQUENTIAL PROCESSES 117

begin procvar[asknum]:= 3;
V(procsem[asknum]) ;
goto after correct answer end;
if message = A2 then
begin procvar[asknum]:= 4;
V(procsem[asknum] ) ;
goto after correct answer end;
if message = A3 then
begin procvar[asknum]: = 2;
goto after correct answer end;
comment The operator has given an
erroneous answer and should repeat the
message; goto wait;
after correct answer: P(mutex);
if comvar = 4 then
begin comment The operator should now
get his opportunity;
comvar:= 5; V(mutex); goto wait
end;
perhaps comvar to zero:for i:= 1 step 1 until N do
begin if procvar([i] = 1 then
begin procvar([i]:= 0;
comvar:= 1;
V(procsem[i]); goto ready
end
end;
comvar:= 0;
ready: V(mutex); goto wait
end;
comment The cases "comvar = 0" and
"comvar = 5" remain.
Messages A4, A5, and A6 are admissible;
if comvar = O then comvar:= 5;
comment See Remark 1 after the program;
V(mutex) ;
interpretation of the message coming in;
P(mutex) ;
if message = A4[process number] then
begin i:= process number given in the
message;
if procvar[i] = 2 then
begin procvar[i]:= 3; V(procsem[i]);
goto perhaps comvar to zero end;
comment Otherwise process not waiting
for postponed answer;
goto wrong message
end;
if message = A5[process number] then
begin i:= process number given in the
message;
if procvar[i] = 2 then
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begin procvar(il:= 4; V(procsem[i]);
goto perhaps comvar to zero end;
comment Otherwise process not waiting
for postponed answer;
goto wrong message
end;
if message = A6 then
goto perhaps comvar to zero;
wrong message: comment "comvar = 5" holds, giving priority
to the operator to repeat his message;
V(mutex); goto wait
end
parend
end

Remark 1. If the operator, while comvar = 0 or comvar = 5 originally
holds, gives an uninterpretable (or inappropriate) message the communica-
tion facility will remain reserved for his next trial.

Remark 2. The final interpretation of the A4 and A5 messages is done
within the critical section, as their admissibility depends on the state of the
process concerned. If we have only one communication channel and one
operator this precaution is rather superfluous.

Remark 3. The for-loops in the program scan the processes in order,
starting at process 1; by scanning them cyclically, starting at an arbitrary
process (selected by means of a (pseudo) random number generator), we
could have made the solution more symmetrical in the N processes.

Remark 4. In this section we have first presented a rather thorough
exploration of the possible states and then the program. The reader might
be interested to know that this is the true picture—*“a live recording” — of
the birth of this solution. When I started to write this section the problem
posed was as new to me as it was to the reader: the program given is my
first version, constructed on account of the considerations and explorations
given. I hope that this section may thus give a hint as to how one may find
such solutions.

5.2.1 Improvements of the Previous Program

In Section 5.2 we have given a first version of the program; this version has
been included in the text, not because we are satisfied with it but because
its inclusion completes the picture of the birth of a solution. Let us now
try to embellish, in the name of greater conciseness, clarity, and, may be,
efficiency. Let us try to discover in what respects we have made a mess of
it.
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Let us compare the information flows from a process to the message
interpreter, and vice versa. In the one direction we have the common variable
asknum to tell the message interpreter which process is asking the question.
The setting and the inspection of asknum can safely take place outside the
critical sections, governed by mutex, because at any moment at most one of
the N + 1 processes will try to access asknum. In the inverse information
flow, where the message interpreter has to signal back to the ith process the
nature of the final operator answer, this answer is coded in procvar. This
is mixing things up, as is shown:

(a) by the procvar-inspection (whether procvar is = 3 or = 4), which is
suddenly allowed to take place outside a critical section;

b) by the superfluity of its being reset to zero.
g

The suggestion is to introduce a new

integer array operanswer[1l : N]

the elements of which will be used in a similar fashion as asknum. (An
attractive consequence is that the number of possible values of procvar—
the more fundamental quantity (see below) will no longer increase with the
number of possible answers to the question Q1.) :

I should like to investigate whether we can achieve a greater clarity
by separating the common variables into two (or perhaps more?) distinct
groups, in order to reflect an observable hierarchy in the way in which they
are used. Let us try to order them in terms of “basicness”.

The semaphore incoming message seems at first sight a fairly basic one,
being defined by the surrounding universe. This is, however, an illusion:
within the parallel compound we should have programmed (as the N + 2nd
process) the operator himself, and the semaphore incoming message is the
private semaphore for the message interpreter just as procsem[i] is for the
ith process.

Thus the most basic quantity is the semaphore mutex taking care of the
mutual exclusion of the critical sections.

Then come the state variables comvar and procvar, which are inspected
and can be modified within the critical sections.

The quantities just mentioned share the property that their values must
be set before entering the parallel compound. This property is also shared
by the semaphores procsem (and incoming message, see above) if we stick
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to the rules that parallel statements will access common semaphores via P-
and V-operations exclusively.

(Without this restriction, request for the communication facility by
process n could start with:

P(mutex) ;

if comvar = 0 then

begin comvar:= 1; V(mutex) end

else

begin procvar[n]:= 1; procsem([n]:= 0;
V(mutex); P(procsem[n]) end

We reject this solution on the further observation that the assignment
procsem[n] is void, except for the first time that it is executed; the ini-
tialization of procsem’s outside the parallel compound seems therefore ap-
propriate.)

For the common variables listed thus far I should like to reserve the name
“status variables”, to distinguish them from the remaining ones, asknum and
operanswer, which I should like to call “transmission variables”.

The latter are called “transmission variables” because, whenever one of
the processes assigns a value to such a variable, the information just stored
is destinated for a well-known “receiving party”. They are used to transmit
information between well-known parties.

Let us now turn our attention from the common variables towards the
programs. Within the programs we have learnt to distinguish the so-called
“critical sections” for which the semaphores mutex caters for the mutual
exclusion. Besides these, we can distinguish regions in which relevant actions
occur, such as:

In the ith Process
Region 1: sending an M-message
Region 2: sending a Q1(i)-question
Region 3: reacting to operanswer[i] (This region
is somewhat openended).

In the Message Interpreter

Region 4: ignoring incoming messages
Region 5: expecting Al, A2, or A3
Region 6: expecting A4(i), A5(i), or A6.

We come now to the following picture. In the programs we have critical
sections, mutually excluded by the semaphore mutex. The purpose of the
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critical sections is to resolve any ambiguity in the inspection and modification
of the remaining state variables, inspection and modification performed for
the purpose of more intricate “sequencing patterns” of the regions. These
sequencing patterns make the unambiguous use of the transmission variables
'possible. (If one process has to transmit information to another it can now do
so via a transmission variable, provided that the execution of the assigning
region is always followed by that of the inspecting region before that of the
next assigning region.)

In the embellished version of the program we shall stick to the rule that
the true state variables will only be accessed in critical sections (if they are
not semaphores) or via P- and V-operations (if they are semaphores), while
the transmission variables will only be accessed in the regions. (In more
complicated examples this rule might prove too rigid, and duplication might
be avoided by allowing transmission variables to be inspected at least within
the critical section. In this example, however, we shall observe the rule.)

The remaining program improvements are less fundamental.

Coding will be smoothed if we represent the fact of requested operator
priority not by additional values of comvar but by an additional two-valued
state variable:

Boolean operator priority

(Quantities of type Boolean can take on the two values denoted by true and
false respectively, viz. they have the same domain as “conditions” such as
we have met in the if-clause.)

Furthermore we shall introduce two procedures; they are declared outside
the compound and therefore at the disposal of the different constituents of
the parallel compound.

We shall first give a short description of the new meanings of the values
of the state variables procvar and comvar:

0 home position
1 waiting for availability of the communication
facility for M or Q1(i)

procvar [i]
procvar [i]

procvar[i] = 2 waiting for the answer A4 (i) or A5(i).
comvar = 0 home position (communication facility free)
comvar = 1 communication facility for M or Q1

comvar = 2 communication facility for A1, A2, or A3
comvar = 3 communication facility for A4, A5, or A6.

We give the program without comments, and shall do so in two stages:
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first the program outside the parallel compound and then the constituents
of the parallel compound.

begin integer mutex, comvar, asknum, loop;
Boolean operator priority;
integer array procvar, procsem, operanswer[l: NJ;
procedure M or Q entry(u); value u; integer u;
begin P(mutex);
if comvar = 0 then
begin comvar:= 1; V(mutex) end
else
begin procvar([u]:= 1; V(mutex); P(procsem[u]) end
end;
procedure select new comvar value;
begin integer i;
if operator priority then
begin operator priority:= false; comvar:= 3 end
else
begin for i:= 1 step 1 until N do
begin if procvar([i] = 1 then
begin procvar([i]:= 0; comvar:= 1;
V(procsem[i]); goto ready end
end;
comvar:= 0;
ready: end
end;
for loop:= 1 step 1 until N do
begin procvar[loop]:= 0; procsem[loop]:= 0 end,
comvar:= 0; mutex:= 1; operator priority:= false;

parbegin

process 1: begin ... end;

process N: begin ... end;

message interpreter:
begin ... end

parend

end

Here the nth process will be of the form

process n:  begin
M message: M or Q entry(n);
Region 1: send M message;

P(mutex); select new comvar value; V(mutex);
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Q1 question: M or Q entry(m);

Region 2:

Region 3:

asknum:= n;
send Q1(n);
P(mutex); comvar:= 2; V(mutex); P(procsem[n])
if operanswer([n] = 1 then Reaction 1
else Reaction 2;

end

When the message interpreter decides to enter Region 6 it copies, before
doing so, the array procvar: if an answer A4(i) should be acceptable, then

procvar[i] =

answer.

2 should already hold at the moment of announcement of the

Message Interpreter:

begin
wait:

Region 4:
leave:

Region 5:

signal to
preleave:
Region 6:

end

integer i; integer array pvcopy([l: NJ;

P(incoming message); P(mutex);

if comvar = 1 then

begin operator priority:= true;
V(mutex); goto wait end;

if comvar <> 2 then goto Region 6;

V(mutex); collect message;

if message <> Al and message <> A2

and message <> A3 then goto wait;

i:= asknum;

if message = Al then operanswer[i]:= 1 else

if message = A2 then operanswer[i]:= 2;

P(mutex) ;

if message = A3 then procvar[i]:= 2 else

i: V(procsem[i]);

select new comvar value; goto leave;

if comvar = 0 then comvar:= 3;

for i:= 1 step 1 until N do pvcopyl[i]:= procvar([il;

V(mutex); collect message;

if message = A6 then

begin P(mutex); goto preleave end;

if message <> A4(process number)

and message <> A5(process number) then goto wait;

i:= process number given in the message;

if pvcopy[i] <> 2 then goto wait;

operanswer[i] := if message = A4 then 1 else 2;

P(mutex); procvar[i]:= 0; goto signal to i

As an exercise we leave to the reader the version in which pending re-
quests for Ql-questions have priority over those for M-messages. As a next
extension we suggest a two-console configuration with the additional re-
striction that an A4- or A5-message is only acceptable via the console over
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which the conversation has been initiated. (Otherwise we have to exclude
simultaneous, contradictory messages A4 (i) and A5(i) via the two different
consoles. The solution without this restriction is left to the really fascinated
reader.)

5.2.2  Proving the Correctness

In this section title I have used the word “proving” in an informal way.
I have not defined what formal conditions must be satisfied by a “legal
proof”, and I do not intend to do so. When I can find a way to discuss the
program of Section 5.2.1, by which I can convince myself of—and hopefully
anybody else that takes the trouble of doubting!—the correctness of the
overall performance of this aggregate of processes I am satisfied.

In the following “state picture” we make a diagram of all the states
in which a process may find itself “for any considerable length of time”,
i.e. outside sections critical to mutex. The arrows describe the transitions
taking place within the critical sections; accompanying these arrows, we give
the modifications of comvar or the conditions under which the transition from
one state to another is made.

Calling the neutral region of a process before entry into a Region 1 or
Region 2, Region 0, we can give the state picture

Region 0
procvar =0
comvar 0 — 1 comvar #% 0
procvar =1
comvar — 1

Y
Region 1 or 2
procvar =0

Leaving Region 1 can be pictured as:
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I Region 1, procvar = 0 ]

comvar 1 - 3 11 1-0

operator procvar all procvar # 0
priority 1-0
Y i i

LRegion 0, procvar =0 1

Leaving Region 2, with the possibility of a delayed answer, can be pic-
tured as:

I Region 2, procvar =0 J

12
Y

I waiting for answer, procvar = 0 l

Al, A2 A3

comvar2—>3,1,0 comvar 2 —3,1,0
Y

waiting for answer, procvar = 2 J

comvar 0,3 — 0,1
A4, A5
[ [
Region 3, procvar =0
reaction to the answer

¥
Region 0, procvar = 0 J

We can try to do the same for the message interpreter. Here we indicate
along the arrows the relevant occurrences, such as changes of a procvar and
the kind of message. We use WIM as abbreviation for “Waiting for Incoming
Message”.
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procvar 1 — 0 all procvar # 1
Region 01,2
WIM WIM
comvar =1 Region 0 —» comvar =0
no priority Region 1,2 no priority
X message
Region 1 —» message rejected
Region 0
Region 4
WIM
comvar = 1
priority
end of Region 2 end of Region 2 [ =—Region 1+
Region 0
—
WIM WIM
comvar = 2 comvar =2
no priority priority
[message message
Region 5 Region 5
comvar = 2 comvar =2
no priority priority
e
Al A2, A3 wrong Al, wrong
Region 2-> message A2, ‘message
2,3 A3,
—
WIM
comvar = 3
no priority
message
Region 6
comvar = 3
no priority
wrong
‘message

A4, A5 (Region 2 -> 3, procvar
2 -»0) or A6

These diagrams, of course, tell us nothing new, but they may be a pow-
erful aid to program inspection.

We verify first that comvar = O represents indeed the home position
of the communication facility, i.e. its availability either for entrance into
Region 1 or Region 2 (by one of the processes) or for entrance into Region 6
(by the message interpreter, as result of an incoming message for which it is
waiting).

If comvar = 0 and one of the processes wants to enter Region 1 or Re-
gion 2, or a message comes from the operator, Region 1, 2, or 6 is en-
tered; furthermore, this entrance is accompanied by either comvar:= 1 or
comvar:= 3, and in this way care is taken of the mutual exclusion of the
Regions 1, 2, and 6.

The mutual exclusion implies that processes may fail to enter Region 1
or 2 immediately, or that an incoming message must be rejected when
it comes at an inacceptable moment. In the first case the process sets
procvar:= 1, in the second case (in Region 4) the message interpreter sets
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operator priority:= true.

These assignments are performed only under the condition comvar <> 0;
furthermore, the assignment comvar:= 0—only occurring in the procedure
select new comvar value—is only performed provided “non-operator pri-
ority and all procvar # 1”. From these two observations and the initial
values we can conclude:

comvar = 0 excludes operator priority as well as the occurrence of
one or more procvar = 1.

Since all ways of ceasing to occupy the communication facility (i.e. the
end of Region 1, 5, and 6) call select new comvar value, we have estab-
lished:

(a) that entrance into the Region 1, 2, and 6 is only delayed if necessary;

(b) that such a delay is guaranteed to end at the earliest opportunity.

The structure of the message interpreter shows clearly that:

(a) it can execute Region 5 only if comvar = 2

(b) it can only execute Region 5 if comvar = 2

(c) execution of Region 5 is the only way to make comvar again # 2.

The only assignment comvar:= 2 occurs at the end of Region 2. As a
result, each Region 2 can be followed only by a Region 5 and, conversely,
each Region 5 must be preceded by a Region 2. This sequencing allows us to
use the transmission variable asknum, which is set in Region 2 and inspected
in Region 5.

For the uses of the transmission variables operanswer an analogous anal-
ysis can be made. Region 2 will be followed by Region 5 (see above); if
here the final answer (Al or A2) is interpreted, operanswer [i] is set before
V(procsem[i]), so that the transmission variable has been set properly be-
fore the process can (and will) enter Region 3, where its operanswer will be
inspected. If in Region 5 the answer A3 is detected, the message interpreter
sets procvar [i] := 2 for this process, thus allowing the answer A4 or A5 for
this process exactly once in Region 6. Again V(procsem[i]) is performed
only after the assignment to operanswer. Thus we have verified that:

(a) operanswer is only set once by the message interpreter after a request
in Region 2;
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(b) this operanswer will only be inspected in the following Region 3 after
the request to set it has been fulfilled (in Region 5 or Region 6).

This completes the analysis of the soundness of the use of the transmis-
sion variables operanswer.

Inspection of the message interpreter (particularly the scheme of its
states) shows:

(a) that a rejected message (Region 4) sooner or later is bound to give rise
to Region 6;

(b) that wrong messages are ignored, giving the operator the opportunity
of correction.

By the above analysis we hope to have created sufficient confidence in
the correctness of our construction. The analysis followed the steps already
hinted at in section 5.2.1: after creation of the critical sections (with the aid
of mutex) the latter are used to sequence Regions properly, thanks to which
sequencing the transmission variables can be used unambiguously.

6 THE PROBLEM OF THE DEADLY EMBRACE

In the introductory part of this section I shall draw attention to a rather
logical problem that arises in the co-operation between various processes
when they have to share the same facilities. We have selected this problem
for various reasons. First, it arises by a straightforward extension of the
sound principle that no two persons should use a single compartment of a
revolving door simultaneously. Secondly, its solution, which I regard as non-
trivial and which will be given in Section 6.1, gives us a nice example of
more subtle co-operation rules than we have met before. Thirdly, it gives us
the opportunity to illustrate (in Section 6.2) a programming technique by
which a further gain in clarity can be achieved.

Let me first give an example of the kind of facility-sharing I have in mind.

As “processes” we might take “programs”, describing some computa-
tional process to be performed by a computer. Execution of such a com-
putational process takes time, during which information must be stored in
the computer. We restrict ourselves to those processes of which is known in
advance:

(1) that their demand on storage space will not exceed a certain limit, and
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(2) that each computational process will end, provided that storage space
requested by the process will be put at its disposal. The ending of the
computational process will imply that its demand on storage space will
reduce to zero.

We assume that the available store has been subdivided into fixed-size
“pages” which, from the point of view of the programs, can be regarded as
equivalent.

The actual demand on storage space needed by a process may be a func-
tion varying in time as the process proceeds—subject, of course, to the a
priori known upper bound. We assume that the individual processes request
from and return to “available store” in single page units. By “equivalence”
(see the last word of the previous paragraph) is meant that a process requir-
ing a new page only asks for “a new page” but never for a special one nor
one out of a special group.

We now request that a process, once initiated, will—sooner or later—get
the opportunity to complete its action and reject any organization in which
it may happen that a process may have to be killed half-way through its
activity, thereby throwing away the computation time already invested in it.

If the computer has to perform the different processes one after the other
the only condition that must be satisfied by a process is that its maximum
demand does not exceed the total storage capacity.

If, however, the computer can serve more than one process simultaneously
one can adhere to the rule that one only admits programs as long as the sum
of their maximum demands does not exceed the total storage capacity. This
rule, safe though it is, is unnecessarily restrictive, for it means that each
process effectively occupies its maximum demand during the complete time
of its execution. When we consider the following table (in which we regard
the processes as "borrowing” pages from available store)

Process Maximum demand Present loan Further claim
P1 80 40 40
P2 60 20 + 40
Available store = 100 — 60 = 40

(a total store of 100 pages is assumed), we have a situation in which is still
nothing wrong. If, however, both processes request their next page, and if
they should both get it, we should get the following situation:
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Process Maximum demand Present loan Further claim
P1 80 41 39
P2 60 21 + 39
Available store = 100 — 62 = 38

This is an unsafe situation, for both processes might want to realize their
full further claim before returning a single page to available store. So each
of them may first need a further 39 pages, while there are only 38 available.

This situation, when one process can continue only provided the other
one is killed first, is called “The Deadly Embrace”. The problem to be
solved is: how can we avoid the danger of the Deadly Embrace without
being unnecessarily restrictive.

6.1 The Banker’s Algorithm

A banker has a finite capital expressed in florins. He is willing to accept
customers, that may borrow florins from him on the following conditions:

1.

The customer makes the loan for a transaction that will be completed
in a finite period of time.

The customer must specify in advance his maximum “need” for florins
for this transaction.

As long as the “loan” does not exceed the “need” stated in advance,
the customer can increase or decrease his loan florin by florin.

A customer when asking for an increase in his current loan undertakes
to accept without complaint the answer “If I gave you the florin you
ask for you would not exceed your stated need, and therefore you
are entitled to a next florin. At present, however, it is somewhat
inconvenient for me to pay you, but I promise you the florin in due
time.”

His guarantee that this moment will indeed arrive is founded on the
banker’s cautiousness and the fact that his co-customers are subject
to the same condition as he: that as soon as a customer has got the
florin he asked for he will proceed with his transactions at a non-zero
speed, i.e. within a finite period of time he will ask for a next florin
or will return a florin or will finish the transaction, which implies that
his complete loan has been returned (florin by florin).
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The primary questions are:

(a) under which conditions can the banker enter into contract with a new
customer?

(b) under which conditions can the banker pay a (next) florin to a request-
ing customer without running into the danger of the Deadly Embrace?

The answer to question (a) is simple: he can accept any customer, whose
stated need does not exceed the banker’s capital.

In order to answer question (b), we introduce the following terminology.

The banker has a fixed capital at his disposal; each new customer states
in advance his maximum need and for each customer will hold

need[i] < capital (for all 1).

The current situation for each customer is characterized by his loan.
Each loan is initially = 0 and shall satisfy at any instant

0 < loan[i] < need[i] (for all i).

A useful quantity to be derived from this is the maximum further claim,
given by

claim[i] = need[i] - loan[i] (for all i).

Finally, the banker notes the amount in cash, given by

cash = capital - sum of the loans

Obviously
0 < cash < capital

has to hold.

In order to decide whether a requested florin can be paid to the customer,
the banker essentially inspects the situation that would arise if he had paid
it. If this situation is “safe”, then he pays the florin, if the situation is not
“safe” he has to say: “Sorry, but you have to wait.”

Inspection whether a situation is safe amounts to inspecting whether all
customer transactions can be guaranteed to be able to finish. The algorithm
starts to investigate whether at least one customer has a claim not exceed-
ing cash. If so, this customer can complete his transactions, and therefore
the algorithm investigates the remaining customers as if the first one had
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finished and returned its complete loan. Safety of the situation means that
all transactions can be finished, i.e. that the banker sees a way of getting all
his money back.

If the customers are numbered from 1 through N the routine inspecting
a situation can be written as follows:

integer free money; Boolean safe;
Boolean array finish doubtful(1l : NJ;
free money:= cash;
for i:= 1 step 1 until N do finish doubtful[i]:= true;
L: for i:= 1 step 1 until N do
begin if finish doubtful[i] and claim[i] <= free money
then
begin finish doubtful(il:= false;
free money:= free money + loan[i]; goto L
end
end;
if free money = capital then safe:= true else safe:= false

The above routine inspects any situation. An improvement of the Al-
gorithm has been given by L. Zwanenburg, who takes into account that
the only situations to be investigated are those, where, starting from a safe
situation, a florin has been tentatively given to customer[i]. As soon as
finish doubtful[i]:= false can be executed the algorithm can decide
directly on safety of the situation, for then clearly this attempted payment
was reversible. This short cut will be implemented in the program in the
next section.

6.2 The Banker’s Algorithm Applied

In this example also the florins are processes. (Each florin, say, represents
the use of a magnetic tape deck; the loan of a florin is then the permission
to use one of the tape decks.)

We assume that the customers are numbered from 1 through N and that
the florins are numbered from 1 through M. Each customer has a variable
florin number in which, after each granting of a florin, it can find the num-
ber of the florin it has just borrowed; also each florin has a variable customer
number in which it can find by which customer it has been borrowed.

Each customer has a state variable cusvar, where cusvar = 1 means
“T am anxious to borrow.” (otherwise cusvar = 0); each florin has a state
variable flovar, where flovar = 1 means “I am anxious to get borrowed,
ie. I am in cash.” (otherwise flovar = 0). Each customer has a binary
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semaphore cussem, each florin has a binary semaphore flosem, which will
be used in the usual manner.

We assume that each florin is borrowed and returned upon customer
indication, but that he cannot return a borrowed florin immediately. After
the customer has indicated that he has no further use for this florin the
florin may not be instantaneously available for subsequent use. It is as if
the customer can say to a borrowed florin “run home to the banker”. The
actual loan will only be ended after the florin has indeed returned to cash:
it will signal its return into the banker’s cash to the customer from which
it came via a customer semaphore florin returned. A P-operation on
this semaphore should guard the customer against an inadvertent overdraft.
Before each florin request the customer will perform a P-operation on its
florin returned; the initial value of florin returned will be = need.

We assume that the constant integers N and M (= capital) and the
constant integer array need are declared and defined in the universe in which
the following program is embedded.

The procedure try to give to is made into a Boolean procedure, the
value of which indicates whether a delayed request for a florin has been
granted. In the florin program it is exploited that returning a florin may at
most give rise to a single delayed request to be granted now. (If more than
one type of facility is shared under control of the banker this will no longer
hold. Jumping out of the for loop to the statement labelled leave at the
end of the florin program is then not permissible.)

begin integer array loan, claim, cussem, cusvar,
florin number, florin returned[1 : N],
flosem, flovar, customer number[1 : M];
integer mutex, cash, k;
Boolean procedure try to give to (j); value j;
integer j;
begin if cusvar[j] = 1 then
begin integer i, free money;
Boolean array finish doubtful[l : NJ];
free money:= cash - 1;
claim(j]:= claim[j] - 1;
loan(j]:= loan[j] + 1;
for i:= 1 step 1 until N do
finish doubtful[i]:= true;
LO: for i:= 1 step 1 until N do
begin if finish doubtful[i]
and claim[i] <= free money then
begin if i <> j then
begin
finish doubtful[i]:= false;
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free money:=
free money + loan[i];
goto LO
end
else
begin comment Here more

sophisticated ways for
selecting a free florin
may be implemented;
i:= 0;

Li: i:=1i + 1;
if flovar[i] = O then
goto L1;
florin number[j]:=
customer number[i]:
cusvar[j]l:= 0;
flovar([i] := 0;
cash:= cash - 1;
try to give to:= true;
V(cussem[jl);
V(flosem[il]);
goto L2

i;
=J;

end
end
end;
claim[j]:= claim[j] + 1;
loan[j]:= loan(j] - 1
end;
try to give to:= false;
L2: end,
mutex:= 1; cash:= M;
for k:= 1 step 1 until N do
begin loan[k]:= 0; cussem[k]:= 0; cusvar(k]:= 0;
claim(k] := need[k]; florin returned[k]:= need[k]
end;
for k:= 1 step 1 until M do
begin flosem([k]:= 0; flovar[k]:= 1 end;

parbegin
customer 1: begin ... end;
customer N: begin ... end;
florin 1: begin ... end;
florin M: Dbegin ... end
parend

end
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In customer n the request for a new florin consists of the following se-
quence of statements:

P(florin returned([n]);

P(mutex) ;

cusvar[n] := 1; try to give to (n);
V(mutex) ;

P(cussem([n]);

after completion of the last statement florin number [n] gives the identity
of the florin just borrowed, the customer has the opportunity to use it and
the duty to return it in due time to the banker.

The structure of a florin is as follows:

florin m:
begin integer h;
start: P(flosem[m]);
comment Now customer number[m] identifies the
customer that has borrowed it. The florin can serve
that customer until it has finished the task required
from it during this loan. To return itself to the
cash, the florin proceeds as follows;
P(mutex) ;
claim[customer number[m]]:=
claim[customer number[m]] + 1;
loan[customer number[m]]:=
loan[customer number[m]] - 1;
flovar[m]:= 1; cash:= cash + 1;
V(florin returned[customer number[m]]);
for h:= 1 step 1 until N do
begin if try to give to(h) then goto leave end;
leave: V(mutex);
goto start
end

Remark. Roughly speaking, a successful loan can take place only when
two conditions are satisfied: the florin must be requested and the florin must
be available. In this program the mechanism of cusvar and cussem is also
used (by the customer) when the requested florin is immediately available,
likewise the mechanism of flovar and flosen is also used (by the florin) if,
after its return to cash, it can immediately be borrowed again by a waiting
customer. This programming technique has been suggested by C. Ligtmans
and P.A. Voorhoeve, and I mention it because in the case of more intricate
rules of co-operation it has given rise to a simplification that proved to be
indispensable. The underlying cause of this increase in simplicity is that
the dynamic way through the topological structure of the program no longer
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distinguishes between an actual delay or not, just as in the case of the P-
operation itself.

7 CONCLUDING REMARKS

In the literature one sometimes finds a sharp distinction between “con-
current programming”—more than one central processor operating on the
same job—and “multi-programming”—a single processor dividing its time
between different jobs. I have always felt that this distinction was rather
artificial and therefore confusing. In both cases we have, macroscopically
speaking, a number of sequential processes that have to co-operate with each
other, and our discussions on this co-operation apply equally well to “concur-
rent programming” as to “multi-programming” or any mixture of the two.
What in concurrent programming is spread out in space (e.q. equipment)
is in multi-programming spread out in time: the two present themselves
as different implementations of the same logical structure, and I regard the
development of a tool to describe and form such structures themselves, i.e. in-
dependent of these implementational differences, as one of the major contri-
butions of the work from which this monograph has been born. As a specific
example of this unifying train of thought I should like to mention—for those
that are only meekly interested in multi-processors, multi-programming, and
the like—the complete symmetry between a normal sequential computer, on
the one hand, and its peripheral gear, on the other (as displayed, for instance,
in Section 4.3: “The Bounded Buffer”).

Finally, I should like to express, once more, my concern about the cor-
rectness of programs, because I am not too sure whether all of it is duly
reflected in what I have written.

If T suggest methods by which we could try to attain a greater security,
then this is, of course, more psychology than, say, mathematics. I have the
feeling that for the human mind it is just terribly hard to think in terms of
processing evolving in time and that our greatest aid in controlling them is
by attaching meanings to the values of identified quantities. For instance, in
the program section

i:= 10;

LO: x:= sqrt(x); i:=1i - 1;

if i > 0 then goto LO

we conclude that the operation x:= sqrt(x) is repeated ten times, but I
have the impression that we can do so by attaching to i the meaning of
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“the number of times that the operation x:= sqrt(x) still has to be re-
peated”. But we should be aware of the fact that such a timeless meaning (a
statement of fact or relation) is not permanently correct: immediately after
the execution of x:= sqrt(x) but before that of the subsequent i:= i - 1
the value of i is “one more than the number of times that the operation
x:= sqrt(x) still has to be repeated”. In other words, we have to specify
at what stages of the process such a meaning is applicable and, of course,
it must be applicable in every situation where we rely on this meaning in
the reasoning that convinces us of the desired overall performance of the
program.

In purely sequential programming, as in the above example, the regions
of applicability of such meanings are usually closely connected with places in
the program text (if not, we have just a tricky and probably messy program).
In multi-programming we have seen in particular in Section 5.2.1 that it
is a worth-while effort to create such regions of applicability of meaning
very consciously. The recognition of the hierarchical difference between the
presence of a message and the message itself, here forced upon us, might
give a clue even to clearer uniprogramming.

For example, if I am married to one out of ten wives, numbered from
1 through 10, this fact may be represented by the value of a variable wife
number associated with me. If I may also be single it is a commonly used pro-
grammer’s device to code the state of the bachelor as an eleventh value, say
wife number = 0. The meaning of the value of this variable then becomes
“If my wife number is = 0, then I am single, otherwise it gives the number of
my wife”. The moral is that the introduction of a separate Boolean variable
married might have been more honest.

We know that the von Neumann-type machine derives its power and
flexibility from the fact that it treats all words in store on the same footing.
It is often insufficiently realized that, thereby, it gives the user the duty to
impose structure wherever recognizable.

Sometimes it is. It has often been quoted as The Great Feature of the
von Neumann-type machine that it can modify its own instructions, but
most modern algorithmic translators, however, create an object program
that remains in its entire execution phase just as constant as the original
source text. Instead of chaotically modifying its own instructions just be-
fore or after their execution, creation of instructions and execution of these
instructions now occur in different sequenced regions: the translation phase
and the execution phase. And this for the benefit of us all.
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It is my firm belief that in each process of any complexity the variables
occurring in it admit analogous hierarchical orderings, and that when these
hierarchies are clearly recognizable in the program text the gain in clarity of
the program and in effiiciency of the implementation will be considerable. If
this chapter gives any reader a clearer indication of what kind of hierarchi-
cal ordering can be expected to be relevant I have reached one of my goals.
And may we not hope that a confrontation with the intricacies of Multipro-
gramming gives us a clearer understanding of what Uniprogramming is all
about?



THE STRUCTURE OF THE
“THE” MULTIPROGRAMMING
SYSTEM
EDSGER W. DIJKSTRA

(1968)

A multiprogramming system is described in which all activities are divided
over a number of sequential processes. These sequential processes are placed
at various hierarchical levels, in each of which one or more independent ab-
stractions have been implemented. The hierarchical structure proved to be
vital for the verification of the logical soundness of the design and the correct-

ness of its implementation.

Introduction

In response to a call explicitly asking for papers “on timely research and
development efforts,” I present a progress report on the multiprogramming
effort at the Department of Mathematics at the Technological University in
Eindhoven.

Having very limited resources (viz. a group of six people of, on the av-
erage, half-time availability) and wishing to contribute to the art of system
design—including all the stages of conception, construction, and verification,
we were faced with the problem of how to get the necessary experience. To
solve this problem we adopted the following three guiding principles:

(1) Select a project as advanced as you can conceive, as ambitious as you
can justify, in the hope that routine work can be kept to a minimum; hold
out against all pressure to incorporate such system expansions that would

E. W. Dijkstra, The structure of the “THE” multiprogramming system. Communications
of the ACM 11, 5 (May 1968), 341-346. Copyright (©) 1968, Association for Computing
Machinery, Inc. Reprinted by permission.
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only result into a purely quantitative increase of the total amount of work
to be done.

(2) Select a machine with sound basic characteristics (e.g. an interrupt
system to fall in love with is certainly an inspiring feature); from then on
try to keep the specific properties of the configuration for which you are
preparing the system out of your considerations as long as possible.

(3) Be aware of the fact that experience does by no means automatically
lead to wisdom and understanding; in other words, make a conscious effort
to learn as much as possible from your previous experiences.

Accordingly, I shall try to go beyond just reporting what we have done
and how, and I shall try to formulate as well what we have learned.

I should like to end the introduction with two short remarks on working
conditions, which I make for the sake of completeness. I shall not stress
these points any further.

One remark is that production speed is severely slowed down if one works
with half-time people who have other obligations as well. This is at least
a factor of four; probably it is worse. The people themselves lose time
and energy in switching over; the group as a whole loses decision speed
as discussions, when needed, have often to be postponed until all people
concerned are available.

The other remark is that the members of the group (mostly mathemati-
cians) have previously enjoyed as good students a university training of five
to eight years and are of Master’s or Ph.D. level. I mention this explicitly
because at least in my country the intellectual level needed for system de-
sign is in general grossly underestimated. I am convinced more than ever
that this type of work is very difficult, and that every effort to do it with
other than the best people is doomed to either failure or moderate success
at enormous expense.

The Tool and the Goal

The system has been designed for a Dutch machine, the EL X8 (N.V. Elec-
trologica, Rijswijk (ZH)). Characteristics of our configuration are:

(1) core memory cycle time 2.5 pusec, 27 bits; at present 32K;

(2) drum of 512K words, 1024 words per track, rev. time 40 msec;

(3) an indirect addressing mechanism very well suited for stack imple-
mentation;

(4) a sound system for commanding peripherals and controlling of inter-
rupts;
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(5) a potentially great number of low capacity channels; ten of them are
used (3 paper tape readers at 1000 char/sec; 3 paper tape punches at 150
char/sec; 2 teleprinters; a plotter; a line printer);

(6) absence of a number of not unusual, awkward features.

The primary goal of the system is to process smoothly a continuous
flow of user programs as a service to the university. A multiprogramming
system has been chosen with the following objectives in mind: (1) a reduction
of turn-around time for programs of short duration, (2) economic use of
peripheral devices, (3) automatic control of backing store to be combined
with economic use of the central processor, and (4) the economic feasibility
to use the machine for those applications for which only the flexibility of a
general purpose computer is needed, but (as a rule) not the capacity nor the
processing power.

The system is not intended as a multiaccess system. There is no common
data base via which independent users can communicate with each other:
they only share the configuration and a procedure library (that includes a
translator for Algol 60 extended with complex numbers). The system does
not cater for user programs written in machine language.

Compared with larger efforts one can state that quantitatively speaking
the goals have been set as modest as the equipment and our other resources.
Qualitatively speaking, I am afraid, we became more and more immodest as
the work progressed.

A Progress Report

We have made some minor mistakes of the usual type (such as paying too
much attention to eliminating what was not the real bottleneck) and two
major ones.

Our first major mistake was that for too long a time we confined our
attention to “a perfect installation”; by the time we considered how to make
the best of it, one of the peripherals broke down, we were faced with nasty
problems. Taking care of the “pathology” took more energy than we had
expected, and some of our troubles were a direct consequence of our earlier
ingenuity, i.e. the complexity of the situation into which the system could
have maneuvered itself. Had we paid attention to the pathology at an earlier
stage of the design, our management rules would certainly have been less
refined.

The second major mistake has been that we conceived and programmed
the major part of the system without giving more than scanty thought to
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the problem of debugging it. I must decline all credit for the fact that this
mistake had no serious consequences—on the contrary! one might argue as
an afterthought.

As captain of the crew I had had extensive experience (dating back to
1958) in making basic software dealing with real-time interrupts, and I knew
by bitter experience that as a result of the irreproducibility of the interrupt
moments a program error could present itself misleadingly like an occasional
machine malfunctioning. As a result I was terribly afraid. Having fears
regarding the possibility of debugging, we decided to be as careful as possible
and, prevention being better than cure, to try to prevent nasty bugs from
entering the construction.

This decision, inspired by fear, is at the bottom of what I regard as the
group’s main contribution to the art of system design. We have found that
it is possible to design a refined multiprogramming system in such a way
that its logical soundness can be proved a priori and its implementation can
admit exhaustive testing. The only errors that showed up during testing
were trivial coding error (occurring with a density of one error per 500 in-
structions) each of them located within 10 minutes (classical) inspection by
the machine and each of them correspondingly easy to remedy. At the time
this was written the testing had not yet been completed, but the resulting
system is guaranteed to be flawless. When the system is delivered we shall
not live in the perpetual fear that a system derailment may still occur in
an unlikely situation, such as might result from an unhappy “coincidence”
of two or more critical occurrences, for we shall have proved the correctness
of the system with a rigor and explicitness that is unusual for the great
majority of mathematical proofs.

A Survey of the System Structure

Storage Allocation. In the classical von Neumann machine, information is
identified by the address of the memory location containing the information.
When we started to think about the automatic control of secondary storage
we were familiar with a system (viz. GIER ALGOL) in which all information
was identified by its drum address (as in the classical von Neumann machine)
and in which the function of the core memory was nothing more than to make
the information “page-wise” accessible.

We have followed another approach and, as it turned out, to great ad-
vantage. In our terminology we made a strict distinction between memory
units (we called them “pages” and had “core pages” and “drum pages”) and
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corresponding information units (for lack of a better word we called them
“segments” ), a segment just fitting in a page. For segments we created a
completely independent identification mechanism in which the number of
possible segment identifiers is much larger than the total number of pages
in primary and secondary store. The segment identifier gives fast access
to a so-called “segment variable” in core whose value denotes whether the
segment is still empty or not, and if not empty, in which page (or pages) it
can be found.

As a consequence of this approach, if a segment of information, residing
in a core page, has to be dumped onto the drum in order to make the core
page available for other use, there is no need to return the segment to the
same drum page from which it originally came. In fact, this freedom is
exploited: among the free drum pages the one with minimum latency time
is selected.

A next consequence is the total absence of a drum allocation problem:
there is not the slightest reason why, say, a program should occupy consec-
utive drum pages. In a multiprogramming environment this is very conve-
nient.

Processor Allocation. We have given full recognition to the fact that in a
single sequential process (such as can be performed by a sequential automa-
ton) only the time succession of the various states has a logical meaning, but
not the actual speed with which the sequential process is performed. There-
fore we have arranged the whole system as a society of sequential processes,
progressing with undefined speed ratios. To each user program accepted by
the system corresponds a sequential process, to each input peripheral corre-
sponds a sequential process (buffering input streams in synchronism with the
execution of the input commands), to each output peripheral corresponds
a sequential process (unbuffering output streams in synchronism with the
execution of the output commands); furthermore, we have the ”segment
controller” associated with the drum and the ”"message interpreter” associ-
ated with the console keyboard.

This enabled us to design the whole system in terms of these abstract “se-
quential processes.” Their harmonious cooperation is regulated by means of
explicit mutual synchronization statements. On the one hand, this explicit
mutual synchronization is necessary, as we do not make any assumption
about speed ratios; on the other hand, this mutual synchronization is pos-
sible because “delaying the progress of a process temporarily” can never
be harmful to the interior logic of the process delayed. The fundamental
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consequence of this approach—viz. the explicit mutual synchronization—is
that the harmonious cooperation of a set of such sequential processes can be
established by discrete reasoning; as a further consequence the whole har-
monious society of cooperating sequential processes is independent of the
actual number of processors available to carry out these processes, provided
the processors available can switch from process to process.

System Hierarchy. The total system admits a strict hierarchical struc-
ture.

At level 0 we find the responsibility for processor allocation to one of
the processes whose dynamic progress is logically permissible (i.e. in view of
the explicit mutual synchronization). At this level the interrupt of the real-
time clock is processed and introduced to prevent any process to monopolize
processing power. At this level a priority rule is incorporated to achieve
quick response of the system where this is needed. Our first abstraction
has been achieved; above level 0 the number of processors actually shared
is no longer relevant. At higher levels we find the activity of the different
sequential processes, the actual processor that had lost its identity having
disappeared from the picture.

At level 1 we have the so-called “segment controller,” a sequential pro-
cess synchronized with respect to the drum interrupt and the sequential
processes on higher levels. At level 1 we find the responsibility to cater to
the bookkeeping resulting from the automatic backing store. At this level
our next abstraction has been achieved; at all higher levels identification of
information takes place in terms of segments, the actual storage pages that
had lost their identity having disappeared from the picture.

At level 2 we find the “message interpreter” taking care of the allocation
of the console keyboard via which conversations between the operator and
any of the higher level processes can be carried out. The message interpreter
works in close synchronism with the operator. When the operator presses
a key, a character is sent to the machine together with an interrupt signal
to announce the next keyboard character, whereas the actual printing is
done through an output command generated by the machine under control
of the message interpreter. (As far as the hardware is concerned the console
teleprinter is regarded as two independent peripherals: an input keyboard
and an output printer.) If one of the processes opens a conversation, it iden-
tifies itself in the opening sentence of the conversation for the benefit of the
operator. If, however, the operator opens a conversation, he must identify
the process he is addressing, in the opening sentence of the conversation, i.e.



“THE” MULTIPROGRAMMING SYSTEM 145

this opening sentence must be interpreted before it is known to which of the
processes the conversation is addressed! Here lies the logical reason for the
introduction of a separate sequential process for the console teleprinter, a
reason that is reflected in its name, “message interpreter.”

Above level 2 it is as if each process had its private conversational console.
The fact that they share the same physical console is translated into a re-
source restriction of the form “only one conversation at a time,” a restriction
that is satisfied via mutual synchronization. At this level the next abstrac-
tion has been implemented; at higher levels the actual console teleprinter
loses its identity. (If the message interpreter had not been on a higher level
than the segment controller, then the only way to implement it would have
been to make a permanent reservation in core for it; as the conversational vo-
cabulary might become large (as soon as our operators wish to be addressed
in fancy messages), this would result in too heavy a permanent demand upon
core storage. Therefore, the vocabulary in which the messages are expressed
is stored on segments, i.e. as information units that can reside on the drum
as well. For this reason the message interpreter is one level higher than the
segment controller.)

At level 3 we find the sequential processes associated with buffering of
input streams and unbuffering of output streams. At this level the next
abstraction is effected, viz. the abstraction of the actual peripherals used
that are allocated at this level to the “logical communication units” in terms
of which are worked in the still higher levels. The sequential processes as-
sociated with the peripherals are of a level above the message interpreter,
because they must be able to converse with the operator (e.g. in the case
of detected malfunctioning). The limited number of peripherals again acts
as a resource restriction for the processes at higher levels to be satisfied by
mutual synchronization between them.

At level 4 we find the independent user programs and at level 5 the
operator (not implemented by us).

The system structure has been described at length in order to make the
next section intelligible.

Design Experience

The conception stage took a long time. During that period of time the
concepts have been born in terms of which we sketched the system in the
previous section. Furthermore, we learned the art of reasoning by which we
could deduce from our requirements the way in which the processes should
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influence each other by their mutual synchronization so that these require-
ments would be met. (The requirements being that no information can be
used before it has been produced, that no peripheral can be set to two tasks
simultaneously, etc.). Finally we learned the art of reasoning by which ve
could prove that the society composed of processes thus mutually synchro-
nized by each other would indeed in its time behavior satisfy all requirements.

The construction stage has been rather traditional, perhaps even old-
fashioned, that is, plain machine code. Reprogramming on account of a
change of specifications has been rare, a circumstance that must have con-
tributed greatly to the feasibility of the “steam method.” That the first two
stages took more time than planned was somewhat compensated by a delay
in the delivery of the machine.

In the verification stage we had the machine, during short shots, com-
pletely at our disposal; these were shots during which we worked with a
virgin machine without any software aids for debugging. Starting at level 0
the system was tested, each time adding (a portion of) the next level only
after the previous level had been thoroughly tested. Each test shot itself
contained, on top of the (partial) system to be tested, a number of test-
ing processes with a double function. First, they had to force the system
into all different relevant states; second, they had to verify that the system
continued to react according to specification.

I shall not deny that the construction of these testing programs has been
a major intellectual effort: to convince oneself that one has not overlooked
“a relevant state” and to convince oneself that the testing programs generate
them all is no simple matter. The encouraging thing is that (as far as we
know) it could be done.

This fact was one of the happy consequences of the hierarchical structure.

Testing level 0 (the real-time clock and processor allocation) implied a
number of testing sequential processes on top of it, inspecting together that
under all circumstances processor time was divided among them according
to the rules. This being established, sequential processes as such were im-
plemented.

Testing the segment controller at level 1 meant that all “relevant states”
could be formulated in terms of sequential processes making (in various
combinations) demands on core pages, situations that could be provoked
by explicit synchronization among the testing programs. At this stage the
existence of the real-time clock—although interrupting all the time—was so
immaterial that one of the testers indeed forgot its existence!
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By that time we had implemented the correct reaction upon the (mutu-
ally unsynchronized) interrupts from the real-time clock and the drum. If
we had not introduced the separate levels 0 and 1, and if we had not cre-
ated a terminology (viz. that of the rather abstract sequential processes) in
which the existence of the clock interrupt could be discarded, but had in-
stead tried in a nonhierarchical construction, to make the central processor
react directly upon any weird time succession of these two interrupts, the
number of “relevant states” would have exploded to such a height that ex-
haustive testing would have been an illusion. (Apart from that it is doubtful
whether we would have had the means to generate them all, drum and clock
speed being outside our control.)

For the sake of completeness I must mention a further happy consequence.
As stated before, above level 1, core and drum pages have lost their identity,
and buffering of input and output streams (at level 3) therefore occurs in
terms of segments. While testing at level 2 or 3 the drum channel hardware
broke down for some time, but testing proceeded by restricting the number
of segments to the number that could be held in core. If building up the line
printer output streams had been implemented as “dumping onto the drum”
and the actual printing as “printing from the drum,” this advantage would
have been denied to us.

Conclusion

As far as program verification is concerned I present nothing essentially new.
In testing a general purpose object (be it a piece of hardware, a program,
a machine, or a system), one cannot subject it to all possible cases: for
a computer this would imply that one feeds it with all possible programs!
Therefore one must test it with a set of relevant test cases. What is, or is not,
relevant cannot be decided as long as one regards the mechanism as a black
box; in other words, the decision has to be based upon the internal structure
of the mechanism to be tested. It seems to be the designer’s responsibility to
construct his mechanism in such a way—i.e. so effectively structured—that
at each stage of the testing procedure the number of relevant test cases will
be so small that he can try them all and that what is being tested will be so
perspicuous that he will not have overlooked any situation. I have presented
a survey of our system because I think it a nice example of the form that
such a structure might take.

In my experience, I am sorry to say, industrial software makers tend
to react to the system with mixed feelings. On the one hand, they are
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inclined to think that we have done a kind of model job; on the other hand,
they express doubts whether the techniques used are applicable outside the
sheltered atmosphere of a University and express the opinion that we were
successful only because of the modest scope of the whole project. It is not my
intention to underestimate the organizing ability needed to handle a much
bigger job, with a lot more people, but I should like to venture the opinion
that the larger the project the more essential the structuring! A hierarchy
of five logical levels might then very well turn out to be of modest depth.
especially when one designs the system more consciously than we have done,
with the aim that the software can be smoothly adapted to (perhaps drastic)
configuration expansions.

Acknowledgments. 1 express my indebtedness to my five collaborators,
C. Bron, A. N. Habermann, F. J. A. Hendriks, C. Ligtmans, and P. A.
Voorhoeve. They have contributed to all stages of the design, and together
we learned the art of reasoning needed. The construction and verification
was entirely their effort; if my dreams have come true, it is due to their faith,
their talents, and their persistent loyalty to the whole project.

Finally I should like to thank: the members of the program committee,
who asked for more information on the synchronizing primitives and some
justification of my claim to be able to prove logical soundness a priori. In
answer to this request an appendix has been added, which I hope will give
the desired information and justification.

APPENDIX
Synchronizing Primitives

Explicit mutual synchronization of parallel sequential processes is imple-
mented via so-called “semaphores.” They are special purpose integer vari-
ables allocated in the universe in which the processes are embedded; they are
initialized (with the value 0 or 1) before the parallel processes themselves
are started. After this initialization the parallel processes will access the
semaphores only via two very specific operations, the so-called synchroniz-
ing primitives. For historical reasons they are called the P-operation and
the V-operation.

A process, “Q” say, that performs the operation “P(sem)” decreases
the value of the semaphore called “sem” by 1. If the resulting value of
the semaphore concerned is nonnegative, process () can continue with the
execution of its next statement; if, however, the resulting value is nega-
tive, process @ is stopped and booked on a waiting list associated with the
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semaphore concerned. Until further notice (i.e. a V-operation on this very
same semaphore), dynamic progress of process @ is not logically permissible
and no processor will be allocated to it (see above “System Hierarchy,” at
level 0).

A process, “R” say, that performs the operation “V(sem)” increases the
value of the semaphore called “sem” by 1. If the resulting value of the
semaphore concerned is positive, the V-operation in question has no fur-
ther effect; if, however, the resulting value of the semaphore concerned is
nonpositive, one of the processes booked on its waiting list is removed from
this waiting list, i.e. its dynamic progress is again logically permissible and
in due time a processor will be allocated to it (again, see above “System
Hierarchy,” at level 0).

COROLLARY 1. If a semaphore value is nonpositive its absolute value
equals the number of processes booked on its waiting list.

COROLLARY 2. The P-operation represents the potential delay, the
complementary V-operation represents the removal of a barrier.

Note 1. P- and V-operations are “indivisible actions”; i.e. if they occur
“simultaneously” in parallel processes they are noninterfering in the sense
that they can be regarded as being performed one after the other.

Note 2. If the semaphore value resulting from a V-operation is negative,
its waiting list originally contained more than one process. It is undefined—
i.e. logically immaterial-which of the waiting processes is then removed from
the waiting list.

Note 3. A consequence of the mechanisms described above is that a pro-
cess whose dynamic progress is permissible can only loose this status by
actually progressing, i.e. by performance of a P-operation on a semaphore
with a value that is initially nonpositive.

During system conception it transpired that we used the semaphores in
two completely different ways. The difference is so marked that, looking
back, one wonders whether it was really fair to present the two ways as uses
of the very same primitives. On the one hand, we have the semaphores used
for mutual exclusion, on the other hand, the private semaphores.

Mutual Exclusion

In the folloving program we indicate two parallel, cyclic processes (between
the brackets “parbegin” and “parend”) that come into action after the sur-
rounding universe has been introduced and initialized.
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begin semaphore mutezr; mutezr := 1;
parbegin
begin L1: P(mutez); critical section 1; V(mutez);
remainder of cycle 1; go to L1
end;
begin L2: P(mutez); critical section 2; V(mutez);
remainder of cycle 2; go to L2
end
parend
end

As a result of the P- and V-operations on “mutex” the actions, marked
as “critical sections” exclude each other mutually in time; the scheme given
allows straightforward extension to more than two parallel processes, the
maximum value of mutex equals 1, the minimum value equals —(n — 1) if we
have n parallel processes.

Critical sections are used always, and only for the purpose of unam-
biguous inspection and modification of the state variables (allocated in the
surrounding universe) that describe the current state of the system (as far as
needed for the regulation of the harmonious cooperation between the various
processes).

Private Semaphores

Each sequential process has associated with it a number of private semaphores
and no other process will ever perform a P-operation on them. The universe
initializes them with the value equal to 0, their maximum value equals 1,
and their minimum value equals —1.

Whenever a process reaches a stage where the permission for dynamic
progress depends on current values of state variables, it follows the pattern:

P(mutez);

Yinspection and modification of state variables including
a conditional V(private semaphore)”;

V(mutez);

P(private semaphore)

If the inspection learns that the process in question should continue, it
performs the operation “V (private semaphore)”—the semaphore value then
changes from 0 to 1—otherwise, this V-operation is skipped, leaving to the
other processes the obligation to perform this V-operation at a suitable
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moment. The absence or presence of this obligation is reflected in the final
values of the state variables upon leaving the critical section.

Whenever a process reaches a stage where as a result of its progress pos-
sibly one (or more) blocked processes should now get permission to continue,
it follows the pattern:

P(mutez);

"modification and inspection of state variables including
zero or more V-operations on private semaphores
of other processes”;

V(mutez)

By the introduction of suitable state variables and appropriate program-
ming of the critical sections any strategy assigning peripherals, buffer areas,
etc. can be implemented.

The amount of coding and reasoning can be greatly reduced by the ob-
servation that in the two complementary critical sections sketched above the
same inspection can be performed by the introduction of the notion of “an
unstable situation,” such as a free reader and a process needing a reader.
Whenever an unstable situation emerges it is removed (including one or
more V-operations on private semaphores) in the very same critical section
in which it has been created.

Proving the Harmonious Cooperation

The sequential processes in the system can all be regarded as cyclic pro-
cesses in which a certain neutral point can be marked, the so-called “homing
position,” in which all processes are when the system is at rest.

When a cyclic process leaves its homing position “it accepts a task”;
when the task has been performed afd not earlier, the process returns to its
homing position. Each cyclic process has a specific task processing power
(e.g. the execution of a user program or unbuffering a portion of printer
output, etc.).

The harmonious cooperation is mainly proved in roughly three stages.

(1) It is proved that although a process performing a task may in so
doing generate a finite number of tasks for other processes, a single initial
task cannot give rise to an infinite number of task generations. The proof
is simple as processes can only generate tasks for processes at lower levels
of the hierarchy so that circularity is excluded. (If a process needing a
segment from the drum has generated a task for the segment controller,
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special precautions have been taken to ensure that the segment asked for
remains in core at least until the requesting process has effectively accessed
the segment concerned. Without this precaution finite tasks could be forced
to generate an infinite number of tasks for the segment controller, and the
system could get stuck in an unproductive page flutter.)

(2) It is proved that it is impossible that all processes have returned to
their homing position while somewhere in the system there is still pending a
generated but unaccepted task. (This is proved via instability of the situation
just described.)

(3) It is proved that after the acceptance of an initial task all processes
eventually will be (again) in their homing position. Each process blocked in
the course of task execution relies on the other processes for removal of the
barrier. Essentially, the proof in question is a demonstration of the absence
of “circular waits”: process P waiting for process () waiting for process R
waiting for process P. (Our usual term for the circular wait is “the Deadly
Embrace.”) In a more general society than our system this proof turned out
to be a proof by induction (on the level of hierarchy, starting at the lowest
level), as A. N. Habermann has shown in his doctoral thesis.



RC 4000 SOFTWARE:
MULTIPROGRAMMING SYSTEM
PER BRINCH HANSEN

(1969)

The RC 4000 multiprogramming system consists of a monitor program that
can be extended with a hierarchy of operating systems to suit diverse require-
ments of program scheduling and resource allocation. This manual defines the
functions of the monitor and the basic operating system, which allows users
to initiate and control parallel program execution from typewriter consoles.
The excerpt reprinted here is the general description of the philosophy and
structure of the system. This part will be of interest to anyone wishing an un-
derstanding of the system in order to evaluate its possibilities and limitations
without going into details about exact conventions. The discussion treats the

hardware structure of the RC 4000 only in passing.

1 SYSTEM OBJECTIVES

This chapter outlines the philosophy that guided the design of the RC 4000
multiprogramming system. It emphasizes the need for different operating
systems to suit different applications.

The primary goal of multiprogramming is to share a central processor and its
peripheral equipment among a number of programs loaded in the internal
store. This is a meaningful objective if single programs only use a fraction
of the system resources and if the speed of the machine is so fast, compared
to that of peripherals, that idle time within one program can be utilized by
other programs.

P. Brinch Hansen, RC 4000 Software: Multiprogramming System, Part I General Descrip-
tion. Regnecentralen, Copenhagen, Denmark, April 1969, 13-52. Copyright © 1969, Per
Brinch Hansen. Reprinted by permission.
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The present system is implemented on the RC 4000 computer, a 24-bit,
binary computer with typical instruction execution times of 4 microseconds.
It permits practically unlimited expansion of the internal store and standard-
ized connection of all kinds of peripherals. Multiprogramming is facilitated
by concurrency of program execution and input/output, program interrup-
tion, and storage protection.

The aim has been to make multiprogramming feasible on a machine
with a minimum internal store of 16 k words backed by a fast drum or disk.
Programs can be written in any of the available programming languages and
contain programming errors. The storage protection system guarantees non-
interference among 8 parallel programs, but it is possible to start up to 23
programs provided some of them are error free.

The system uses standard multiprogramming techniques: the central pro-
cessor is shared between loaded programs. Automatic swapping of programs
in and out of the store is possible but not enforced by the system. Backing
storage is organized as a common data bank, in which users can retain named
files in a semi-permanent manner. The system allows a conversational mode
of access from typewriter consoles.

An essential part of any multiprogramming system is an operating system,
a program that coordinates all computational activities and input/output.
An operating system must be in complete control of the strategy of program
execution, and assist the users with such functions as operator communica-
tion, interpretation of job control statements, allocation of resources, and
application of execution time limits.

For the designer of advanced information systems, a vital requirement of
any operating system is that it allows him to change the mode of operation
it controls; otherwise his freedom of design can be seriously limited. Unfor-
tunately this is precisely what present operating systems do not allow. Most
of them are based exclusively on a single mode of operation, such as batch
processing, priority scheduling, real-time scheduling, or time-sharing.

When the need arises, the user often finds it hopeless to modify an op-
erating system that has made rigid assumptions in its basic design about a
specific mode of operation. The alternative—to replace the original operat-
ing system with a new one—is in most computers a serious, if not impossible,
matter, the reason being that the rest of the software is intimately bound to
the conventions required by the original system.

This unfortunate situation indicates that the main problem in the design
of a multiprogramming system is not to define functions that satisfy specific
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operating needs, but rather to supply a system nucleus that can be extended
with new operating systems in an orderly manner. This is the primary
objective of the RC 4000 system.

The nucleus of the RC 4000 multiprogramming system is a monitor pro-
gram with complete control of storage protection, input/output, and in-
terrupts. Essentially the monitor is a software extension of the hardware
structure, which makes the RC 4000 more attractive for multiprogramming.
The following elementary functions are implemented in the monitor:

scheduling of time slices among programs executed
in parallel by means of a digital clock,

initiation and control of program execution at
the request of other running programs,

transfer of messages among running programs,
initiation of data transfers to or from peripherals.

The monitor has no built-in strategy of program execution and resource
allocation; it allows any program to initiate other programs in a hierarchal
manner and to execute them according to any strategy desired. In this hi-
erarchy of programs an operating system is simply a program that controls
the execution of other programs. Thus operating systems can be intro-
duced in the system as other programs without modification of the monitor.
Furthermore operating systems can be replaced dynamically, enabling each
installation to switch among various modes of operation; several operating
systems can, in fact, be active simultaneously.

In the following chapters we shall explain this dynamic operating system
concept in detail. In accordance with our philosophy all questions about
particular strategies of program scheduling will be postponed, and the dis-
cussion will concentrate on the fundamental aspects of the control of an
environment of parallel processes.

2 ELEMENTARY MULTIPROGRAMMING PROBLEMS

This chapter introduces the elementary multiprogramming problems of mu-
tual exclusion and synchronization of parallel processes. The discussion is
restricted to the logical problems that arise when independent processes try
to access common variables and shared resources. An understanding of these
concepts is indispensable to the uninitiated reader, who wants to appreciate
the difficulties of switching from uniprogramming to multiprogramming.
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2.1 Multiprogramming

In multiprogramming the sharing of computing time among programs is
controlled by a clock, which interrupts program execution frequently and
activates a monitor program. The monitor saves the registers of the inter-
rupted program and allocates the next slice of computing time to another
program and so on. Switching from one program to another is also performed
whenever a program must wait for the completion of input/output.

Thus although the computer is only able to execute one instruction at
a time, multiprogramming creates the illusion that programs are being exe-
cuted simultaneously, mainly because peripherals assigned to different pro-
grams indeed operate in parallel.

2.2 Parallel Processes

Most of the elementary problems in multiprogramming arise from the fact
that one process (e.g. an executed program) cannot make any assumptions
about the relative speed and progress of other processes. This is a potential
source of conflict whenever two processes try to access a common variable
or a shared resource.

It is evident that this problem will exist in a truly parallel system, in
which programs are executed simultaneously on several central processors.
It should be realized, however, that the problem will also appear in a quasi-
parallel system based on the sharing of a single processor by means of inter-
rupts; since a program cannot detect when it has been interrupted, it does
not know how far other programs have progressed.

Another way of stating this is that if one considers the system as seen
from within a program, it is irrelevant whether multiprogramming is im-
plemented on one or more central processors—the logical problems are the
same.

Consequently a multiprogramming system must in general be viewed as
an environment with a number of truly parallel processes. Having reached
this conclusion, a natural generalization is to treat not only program exe-
cution but input/output also as independent, parallel processes. This point
will be illustrated abundantly in the following chapters.

2.3 Mutual Exclusion

The idea of multiprogramming is to share the computing equipment among
a number of parallel programs. At any moment, however, a given resource
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must belong to one program only. In order to ensure this it is necessary to
introduce global variables, which programs can inspect to decide whether a
given resource is available or not.

As an example consider a typewriter used by all programs for messages
to the operator. To control access to this device we might introduce a global
boolean typewriter available. When a program p wishes to output a message,
it must examine and set this boolean by means of the following instructions:

wait: load typewriter available
skip if  true
jump to wait
load false
store typewriter available

While this is taking place the program may be interrupted after the loading
of the boolean, but before inspection and assignment to it. The register
containing the value of the boolean is then stored within the monitor, and
program q is started. QQ may load the same boolean and find that the type-
writer is available. Q accordingly assigns the value false to the boolean and
starts using the typewriter. After a while q is interrupted, and at some later
time p is restarted with the original contents of the register reestablished by
the monitor. Program p continues the inspection of the original value of the
boolean and concludes erroneously that the typewriter is available.

This conflict arises because programs have no control over the interrupt
system. Thus the only indivisible operations available to programs are single
instructions such as load, compare, and store. This example shows that one
cannot implement a multiprogramming system without ensuring a mutual
exclusion of programs during the inspection of global variables. Evidently
the entire reservation sequence must be executed as an indivisible function.
One of the purposes of a monitor program is to execute indivisible functions
in the disabled mode.

In the use of reservation primitives one must be aware of the problem
of “the deadly embrace” between two processes, p and ¢, which attempt to
share the resources r and s as follows:

process p: wait and reserve(r) ... wait and reserve(s) ...
process q: wait and reserve(s) ... wait and reserve(r) ...

This can cause both processes to wait forever, since neither is aware of that
it wants what the other one has.
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To avoid this problem we need a third process (an operating system) that
controls the allocation of shared resources between p and q in a manner that
guarantees that both will be able to proceed to completion (if necessary by
delaying the other until resources become available).

2.4 Mutual Synchronization

In a multiprogramming system parallel processes must be able to cooperate
in the sense that they can activate one another and exchange information.
One example of a process activating another process is the initiation of in-
put/output by a program. Another example is that of an operating system
that schedules a number of programs. The exchange of information between
two processes can also be regarded as a problem of mutual exclusion, in
which the receiver must be prevented from inspecting the information until
the sender has delivered it in a common storage area.

Since the two processes are independent with respect to speed, it is not
certain that the receiver is ready to accept the information at the very mo-
ment the sender wishes to deliver it, or conversely the receiver can become
idle at a time when there is no further information for it to process.

This problem of the synchronization of two processes during a transfer
of information must be solved by indivisible monitor functions, which allow
a process to be delayed on its own request and activated on request from
another process.

For a more extensive analysis of multiprogramming fundamentals, the
reader should consult E. W. Dijkstra’s monograph: Cooperating Sequential
Processes. Math. Dep. Technological University, Eindhoven, (Sep. 1965).

3 BASIC MONITOR CONCEPTS

This chapter opens a detailled description of the RC 4000 monitor. A mul-
tiprogramming system is viewed as an environment in which program exe-
cution and input/output are handled uniformly as cooperating, parallel pro-
cesses. The need for an exact definition of the process concept is stressed.
The purpose of the monitor is to bridge the gap between the actual hardware
and the abstract concept of multiprogramming.

3.1 Introduction

The aim has been to implement a multiprogramming system that can be
extended with new operating systems in a well-defined manner. In order
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to do this a sharp distinction must be made between the control and the
strategy of program execution.

The mechanisms provided by the monitor solve the logical problems of
the control of parallel processes. They also solve the safety problems that
arise when erroneous or malicious processes try to interfere with other pro-
cesses. They do, however, leave the choice of particular strategies of program
scheduling to the processes themselves.

With this objective in mind we have implemented the following funda-
mental mechanisms within the monitor:

simulation of parallel processes,
communication among processes,
creation, control, and removal of processes.

3.2 Programs and Internal Processes

As a first step we shall assign a precise meaning to the process concept, i.e.
introduce an unambiguous terminology for what a process is and how it is
implemented on the RC 4000.

We distinguish between internal and external processes, roughly corre-
sponding to program execution and input/output.

More precisely: an internal process is the execution of one or more inter-
ruptable programs in a given storage area. An internal process is identified
by a unique process name. Thus other processes need not be aware of the
actual location of an internal process in the store, but can refer to it by
name.

The following figure illustrates a division of the internal store among the
monitor and three internal processes, p, q, and r.

Later it will be explained how internal processes are created and how
programs are loaded into them. At this point it should only be noted that
an internal process occupies a fixed, contiguous storage area during its whole
lifetime. The monitor has a process description of each internal process; this
table defines the name, storage area, and current state of the process.

Computing time is shared cyclically among all active internal processes;
as a standard the monitor allocates a maximum time slice of 25 milliseconds
to each internal process in turn; after the elapse of this interval the process is
interrupted and its registers are stored in the process description; following
this the monitor allocates 25 milliseconds to the next internal process, and
so on. The cyclic queue of active internal processes is called the time slice
queue.
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MONITOR

INTERNAL
PROCESS P

INTERNAL
PROCESS Q

INTERNAL
PROCESS R

A sharp distinction is made between the concepts program and internal
process. A program is a collection of instructions describing a computational
process, whereas an internal process is the execution of these instructions in
a given storage area.

An internal process like p can involve the execution of a sequence of
programs, for example, editing followed by translation and execution of an
object program. It is also possible that copies of the same program (e.g. the
Algol compiler) can be executed simultaneously in two processes q and r.
These examples illustrate the need for a distinction between programs and
processes.

3.3 Documents and External Processes

In connection with input/output the monitor distinguishes between periph-
eral devices, documents, and external processes.

A peripheral device is an item of hardware connected to the data channel
and identified by a device number.

A document is a collection of data stored on a physical medium. Exam-
ples of documents are:

a roll of paper tape,

a deck of punched cards,

a printer form,

a reel of magnetic tape,

a data area on the backing store.
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By the expression external process we refer to the input/output of a given
document identified by a unique process name. This concept implies that
once a document has been mounted, internal processes can refer to it by
name without knowing the actual device it uses.

For each external process the monitor keeps a process description defining
its name, kind, device number, and current state. The process kind is an
integer defining the kind of peripheral device on which the document is
mounted.

For each kind of external process the monitor contains an interrupt pro-
cedure that can initiate and terminate input/output on request from internal
processes.

3.4 Monitor

The monitor is a program activated by means of interrupts. It can execute
privileged instructions in the disabled mode, meaning that (1) it is in com-
plete control of input/output, storage protection, and the interrupt system,
and that (2) it can execute a sequence of instructions as an indivisible entity.
After initial system loading the monitor resides permanently in the in-
ternal store. We do not regard the monitor as an independent process, but
rather as a software extension of the hardware structure, which makes the
computer more attractive for multiprogramming. Its function is to (1) keep
descriptions of all processes; (2) share computing time among internal and
external processes; and (3) implement procedures that processes can call in
order to create and control other processes and communicate with them.
So far we have described the multiprogramming system as a set of inde-
pendent, parallel processes identified by names. The emphasis has been on a
clear understanding of relationships among resources (store and peripherals),
data (programs and documents), and processes (internal and external).

4 PROCESS COMMUNICATION

This chapter deals with the monitor procedures for the exchange of informa-
tion between two parallel processes. The mechanism of message buffering is
defended on the grounds of safety and efficiency.

4.1 Message Buffers and Queues

Two parallel processes can cooperate by sending messages to each other. A
message consists of eight words. Messages are transmitted from one process
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to another by means of message buffers selected from a common pool within
the monitor.

The monitor administers a message queue for each process. Messages are
linked to this queue when they arrive from other processes. The message
queue is a part of the process description.

Normally a process serves its queue on a first-come, first-served basis.
After the processing of a message, the receiving process returns an answer
of eight words to the sending process in the same buffer.

As described in Section 2.4, communication between two independent
processes requires a synchronization of the processes during a transfer of
information. A process requests synchronization by executing a wait opera-
tion; this causes a delay of the process until another process executes a send
operation.

The term delay means that the internal process is removed temporarily
from the time slice queue; the process is said to be activated when it is again
linked to the time slice queue.

4.2 Send and Wait Procedures

The following monitor procedures are available for communication among
internal processes:

send message(receiver, message, buffer)
wait message(sender, message, buffer)
send answer (result, answer, buffer)
wait answer (result, answer, buffer)

Send message copies a message into the first available buffer within the
pool and delivers it in the queue of a named receiver. The receiver is acti-
vated if it is waiting for a message. The sender continues after being informed
of the address of the message buffer.

Wait message delays the calling process until a message arrives in its
queue. When the process is allowed to proceed, it is supplied with the name
of the sender, the contents of the message, and the address of the message
buffer. The buffer is removed from the queue and is now ready to transmit
an answer.

Send answer copies an answer into a buffer in which a message has been
received and delivers it in the queue of the original sender. The sender of the
message is activated if it is waiting for the answer. The answering process
continues immediately.
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Wait answer delays the calling process until an answer arrives in a given
buffer. On arrival, the answer is copied into the process and the buffer is
returned to the pool. The result specifies whether the answer is a response
from another process, or a dummy answer generated by the monitor in re-
sponse to a message addressed to a non-existing process.

The use of these procedures can be illustrated by the following example
of a conversational process. The figure below shows one of several user pro-
cesses, which deliver their output on the backing store. After completion of
its output a user process sends a message to a converter process requesting it
to print the output. The converter process receives and serves these requests
one by one, thus ensuring that the line printer is shared by all user processes
with a minimum delay.

INPUT CONVERTER
PROCESS MESSAGE
AND
\ USER ANSWER
OUTPUT PROGESS
BACKING INTERNAL
STORE STORE

The algorithms of the converter and the user are as follows:

converter process:
wait message(sender, message, buffer);
print from backing store(message);
send answer(result, answer, buffer);
goto converter process;
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user process:

output on backing store;
send message(converter, message, buffer);
wait answer (result, answer, buffer);

4.3 General Event Procedures

The communication procedures enable a conversational process to receive
messages simultaneously from several other processes. To avoid becoming a
bottleneck in the system, however, a conversational process must be prepared
to be actively engaged in more than one conversation at a time. As an
example think of a conversational process that engages itself, on request
from another process, in a conversation with one of several human operators
in order to perform some manual operation (mounting of a tape etc.). If
one restricts a conversational process to only accepting one request (i.e. a
message) at a time, and to completing the requested action before receiving
the next request, the unacceptable consequence of this is that other processes
(including human operators at consoles) can have their requests for response
delayed for a long or even undefined time.

As soon as a conversational process has started a lengthy action, by
sending a message to some other process, it must receive further messages
and initiate other actions. It will then be reminded later of the completion
of earlier actions by means of normal answers. In general a conversational
process is now engaged in several requests at one time. This introduces a
scheduling and resource problem: when the process receives a request, some
of its resources (storage or peripheral devices) can be tied up by already
initiated actions; thus in some cases the process will not be able to honor
new requests before old ones are completed. In this case the process wants
to postpone the reception of some requests and leave them pending in the
queue, while examining others.

The procedures wait message and wait answer, which force a process to
serve its queue in a strict sequential order and delay itself while its own
requests to other processes are completed, do not fulfill the above require-
ments.

Consequently we have introduced two more general communication pro-
cedures, which enable a process to wait for the arrival of the next message
or answer and serve its queue in any order:
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wait event(last buffer, next buffer, result)
get event(buffer)

The term event denotes a message or an answer. In accordance with this the
queue of a process from now on will be called the event queue.

Wait event delays the calling process until either a message or an answer
arrives in its queue after a given last buffer. The process is supplied with
the address of the next buffer and a result indicating whether it contains
a message or an answer. If the last buffer address is zero, the queue is
examined from the start. The procedure does not remove the next buffer
from the queue or in any other way change its status.

As an example, consider an event queue with two pending buffers A and
B:

queue = buffer A, buffer B

The monitor calls: wait event(0, buffer) and wait event(A, buffer) will
cause immediate return to the process with buffer equal to A and B, re-
spectively; while the call: wait event(B, buffer) will delay the process until
another message or answer arrives in the queue after buffer B.

Get event removes a given buffer from the queue of the calling process.
If the buffer contains a message, it is made ready for the sending of an
answer. If the buffer contains an answer, it is returned to the common pool.
The copying of the message or answer from the buffer must be done by the
process itself before get event is called.

The following algorithm illustrates the use of these procedures within a
conversational process:
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first event: buffer:=0;

next event: last buffer:=buffer;
wait event(last buffer, buffer, result);
if result = message then

begin
exam request: if resources not available then go to next event;
init action: get event(buffer);

reserve resources;

send message to some other process;

save state of action;

end else

begin comment: result = answer;
term action: restore state of action;

get event(buffer);

release resources,

send answer to original sender;

end;

go to first event;

The process starts by examining its queue; if empty, it awaits the arrival
of the next event. If it finds a message, it checks whether it has the necessary
resources to perform the requested action; if not, it leaves the message in
the queue and examines the next event. Otherwise it accepts the message,
reserves resources, and initiates an action. As soon as this involves the
sending of a message to some other process, the conversational process saves
information about the state of the incomplete action and proceeds to examine
its queue from the start in order to engage itself in another action.

Whenever the process finds an answer in its queue, it immediately accepts
it and completes the corresponding action. It can now release the resources
used and send an answer to the original sender that made the request. After
this it examines the entire queue again to see whether the release of resources
has made it possible to accept pending messages.

One example of a process operating in accordance with this scheme is the
basic operating system s, which creates internal processes on request from
typewriter consoles. S can be engaged in conversations with several consoles
at the same time. It will only postpone an operator request if its storage
is occupied by other requests, or if it is already in the middle of an action
requested from the same console.
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4.4 Advantages of Message Buffering

In the design of the communication scheme we have given full recognition
to the fact that the multiprogramming system is a dynamic environment, in
which some of the processes may turn out to be black sheep.

The system is dynamic in the sense that processes can appear and disap-
pear at any time. Therefore a process does not in general have a complete
knowledge about the existence of other processes. This is reflected in the
procedure wait message, which makes it possible for a process to be unaware
of the existence of other processes until it receives messages from them.

On the other hand once a communication has been established between
two processes (e.g. by means of a message), they need a common identifi-
cation of it in order to agree on when it is terminated (e.g. by means of
an answer). Thus we can properly regard the selection of a buffer as the
creation of an identification of a conversation.

A happy consequence of this is that it enables two processes to exchange
more than one message at a time. We must be prepared for the occurence of
erroneous or malicious processes in the system (e.g. undebugged programs).
This is tolerable only if the monitor ensures that no process can interfere
with a conversation between two other processes. This is done by storing
information about the sender and receiver in each buffer, and checking it
whenever a process attempts to send or wait for an answer in a given buffer.

Efficiency is obtained by the queuing of buffers, which enables a sending
process to continue immediately after delivery of a message or an answer
regardless of whether the receiver is ready to process it or not.

In order to make the system dynamic it is vital that a process can be
removed at any time, even if it is engaged in one or more conversations.
In the previous example of user processes that deliver their output on the
backing store and ask a converter process to print it, it would be sensible to
remove a user process that has completed its task and is now only waiting
for an answer from the converter process. In this case the monitor leaves
all messages from the removed process undisturbed in the queues of other
processes. When these processes terminate their actions by sending answers,
the monitor simply returns the buffers to the common pool.

The reverse situation is also possible: during the removal of a process, the
monitor finds unanswered messages sent to the process. These are returned
as dummy answers to the senders. A special instance of this is the generation
of a dummy answer to a message addressed to a process that does not exist.

The main drawback of message buffering is that it introduces yet another
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resource problem, since the common pool contains a finite number of buffers.
If a process was allowed to empty the pool by sending messages to ignorant
processes, which do not respond with answers, further communication within
the system would be blocked. We have consequently set a limit to the
number of messages a process can send simultaneously. By doing this, and
by allowing a process to transmit an answer in a received buffer, we have
placed the entire risk of a conversation on the process that opens it (see
Section 7.4).

5 EXTERNAL PROCESSES

This chapter clarifies the meaning of the external process concept. It explains
initiation of input/output by means of messages from internal processes,
dynamic creation and removal of external processes, and exclusive access to
documents by means of reservation. The similarity of internal and external
processes is stressed.

5.1 Initiation of Input/Output

Consider the following situation, in which an internal process, p, inputs a
block from an external process, q (say, a magnetic tape):

—————— FIRST ADDRESS
INPUT
BLOCK
______ LAST ADDRESS
EXTERNAL INTERNAL
PROCESS Q PROCESS P

P initiates input by sending a message to q:
send message(q, message, buffer)

The message consists of eight words defining an input/output operation
and the first and last addresses of a storage area within process p:
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message: operation
first storage address
last storage address
(five irrelevant words)

The monitor copies the message into a buffer and delivers it in the queue of
process q. Following this it uses the kind parameter in the process description
of process q to switch to a piece of code common to all magnetic tapes. If
the tape station is busy, the message is merely left in its queue; otherwise
input is initiated to the given storage area. On return, program execution
continues in process p.

When the tape station completes input by means of an interrupt, the
monitor generates an answer and delivers it in the queue of p, which in turn
receives it by calling wait answer:

wait answer(result, answer, buffer)

The answer contains status bits sensed from the device and the actual block
length expressed as the number of bytes and characters input:

answer: status bits
number of bytes
number of characters
(five irrelevant words)

After delivery of the answer, the monitor examines the queue of the ex-
ternal process q and initiates its next operation (unless the queue is empty).

Essentially all external processes follow this scheme, which can be defined
by the following algorithm:

external process: wait message;
analyse and check message;
initiate input/output;
walit interrupt;
generate answer;
send answer;
goto external process;

With low-speed, character-oriented devices, the monitor repeats in-
put/output and the interrupt response for each character until a complete
block has been transferred; (while this is taking place, the time between
interrupts is of course shared among internal processes). Internal processes
can therefore regard all input/output as block oriented.
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5.2 Reservation and Release

The use of message buffering provides a direct way of sharing an external
process among a number of internal processes: an external process can sim-
ply accept messages from any internal process and serve them in their order
of arrival. An example of this is the use of a single typewriter for output of
messages to a main operator. This method of sharing a device ensures that
a block of data is input or output as an indivisible entity. When sequential
media such as paper tape, punched cards, or magnetic tape are used, how-
ever, an internal process must have exclusive access to the entire document.
This is obtained by calling the following monitor procedure:

reserve process(name, result)

The result indicates whether the reservation has been accepted or not. An
external process that handles sequential documents of this kind rejects mes-
sages from all internal processes except the one that has reserved it. Rejec-
tion is indicated by the result of the procedure wait answer.

During the removal of an internal process, the monitor removes all reser-
vations made by it. Internal processes can, however, also do this explicitly
by means of the monitor procedure:

release process(name)

5.3 Creation and Removal

From the operator’s point of view an external process is created when he
mounts a document on a device and names it. The name must, however,
be communicated to the monitor by means of an operating system, i.e. an
internal process that controls the execution of programs. Thus it is more
correct to say that external processes are created when internal processes
assign names to peripheral devices. This is done by means of the monitor
procedure:

create peripheral process(name, device number, result)

The monitor has, in fact, no way of ensuring whether a given document
is mounted on a device. Furthermore, there are some devices which operate
without documents, e.g. the real-time clock.

The name of an external process can be explicitly removed by a call of
the monitor procedure:
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remove process(name, result)

It is also possible to implement an automatic removal of the process name
when the monitor detects operator intervention in a device. At present, this
is done only in connection with magnetic tapes (see Section 10.1).

5.4 Replacement of External Processes

The decision to control input/output by means of interrupt procedures
within the monitor, instead of using dedicated internal processes for each
kind of peripheral device, was made to obtain immediate initiation of in-
put/output after the sending of messages. In contrast the activation of an
internal process merely implies that it is linked to the time slice queue; after
activation several time slices can elapse before the internal process actually
starts to execute instructions.

The price paid for the present implementation of external processes is
a prolongation of the time spent in the disabled mode within the monitor.
This limits the system’s ability to cope with real-time events, i.e. data that
are lost unless they are input and processed within a certain time.

An important consequence of the uniform handling of internal and ex-
ternal processes is that it allows us to replace any external process by an
internal process of the same name; other processes that communicate with
it are quite unaware of this replacement.

Thus it is possible to improve the response time of the system by replacing
a time-consuming external process, such as the paper tape reader, by a
somewhat slower internal process, which executes privileged instructions in
the enabled mode.

This type of replacement also makes it possible to enforce more complex
rules of access to a document. In the interests of security, for example, one
might want to limit the access of an internal process to one of several files
recorded on a particular magnetic tape. This can be ensured by an internal
process that traps all messages to the tape and decides whether they should
be passed on to it.

As a final example let us consider the problem of debugging a process
control system before it is connected to an industrial plant. A convenient
way of doing this is to replace analog inputs with an internal process that
simulates relevant values of actual measuring instruments.

We conclude that the ability to replace any process in the system with
another process is a very useful tool. This can now be seen as a practical
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result of the general, but somewhat vague idea (expressed in Section 2.2)
that internal and external processes are independent processes, which differ
only in their processing capability.

6 INTERNAL PROCESSES

This chapter explains the creation and control of internal processes. The
emphasis is on the hierarchal structuring of internal processes, which makes
it possible to extend the system with new operating systems. The dynamic
behaviour of the system is explained in terms of process states and the
transition between these.

6.1 Creation, Control, and Removal

Internal processes are created on request from other internal processes by
means of the monitor procedure:

create internal process(name, parameters, result)

The monitor initializes the process description of the new internal process
with its name and storage area selected by the parent process. The storage
area must be within the parent’s own area. Also specified by the parent is
a protection key, which must be set in all storage words of the child process
before it is started.

PARENT
PROCESS

CHILD
PROCESS

After creation the child process is simply a named storage area, which
is described within the monitor. It has not yet been linked to the time slice

queue.
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The parent process can now load a program into the child process by
means of an input operation. Following this the parent can initialize the
registers of its child using the monitor procedure:

modify internal process(name, registers, result)

The register values are stored in the process description until the child pro-
cess is started. As a standard convention adopted by parent processes (but
not enforced by the monitor), the registers inform the child about the pro-
cess descriptions of itself, its parent, and the typewriter console it can use
for operator communication.

Finally the parent can start program execution within the child by calling;:

start internal process(name, result)

which sets the protection keys within the child and links it to the time slice
queue. The child now shares time slices with other active processes including
the parent.

On request from a parent process, the monitor waits for the completion
of all input/output initiated by a child process and stops it, i.e. removes it
from the time slice queue:

stop internal process(name, buffer, result)

The meaning of the message buffer will be made clear in Section 6.3.
In the stopped state a child process can be modified and started again,
or it can be completely removed by the parent process:

remove process(name, result)

During removal, the monitor generates dummy answers to all messages sent
to the child and releases all external processes used by it. Finally the protec-
tion keys are reset to the value used within the parent process. The parent
can now use the storage area to create other child processes.

6.2 Process Hierarchy

The idea of the monitor has been described as the simulation of an environ-
ment in which program execution and input/output are handled uniformly as
parallel, cooperating processes. A fundamental set of procedures allows the
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dynamic creation and control of processes as well as communication among
them.

For a given installation we still need, as part of the system, programs
that control strategies for operator communication, program scheduling, and
resource allocation. But it is essential for the orderly growth of the systems
that these operating systems be implemented as other programs. Since the
difference between operating systems and production programs is one of
jurisdiction only, this problem is solved by arranging the internal processes
in a hierarchy in which parent processes have complete control over child
processes.

After initial loading the internal store contains the monitor and an in-
ternal process, s, which is the basic operating system. S can create parallel
processes, a, b, c, etc., on request from consoles. These processes can in
turn create other processes, d, e, f, etc. Thus while s acts as a primitive
operating system for a, b, and c, these in turn act as operating systems for
their children, d, e, f, etc. This is illustrated by the following figure, which
shows a family tree of processes on the left and the corresponding storage
allocation on the right:

MONITOR

W @ © "
E
& O :

This family tree of processes can be extended to any level, subject only
to a limitation of the total number or processes. At present the maximum
number of internal processes is 23 including the basic operating system s.
It must, however, be remembered that the storage protection system only
provides mutual protection of 8 independent processes. When this number
is exceeded, one must rely on some of the processes being error free.
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In this multiprogramming system all privileged functions are imple-
mented in the monitor, which has no built-in strategy. Strategies can be
introduced at the various higher levels, where each process has the power to
control the scheduling and resource allocation of its own children. The only

‘rules enforced by the monitor are the following: a process can only allocate
a subset of its own resources (including storage) to its children; a process
can only modify, start, stop, and remove its own children.

The structure of the family tree is defined in the process descriptions
within the monitor. We emphasize that the only function of the tree is to
define the basic rules of process control and resource allocation. Time slices
are shared evenly among active processes regardless of their position in the
hierarchy, and each process can communicate with all other processes.

As regards the future development of operating systems, the most im-
portant characteristics can now be seen as the following:

1. New operating systems can be implemented as other programs without
modification of the monitor. In this connection we should mention that the
Algol and Fortran languages for the RC 4000 contain facilities for calling
the monitor and initiating parallel processes. Thus it is possible to write
operating systems in high-level languages.

2. Operating systems can be replaced dynamically, thus enabling an in-
stallation to switch among various modes of operation; several operating
systems can, in fact, be active simultaneously,

3. Standard programs and user programs can be executed under different
operating systems without modification; this is ensured by a standardization
of communication between parents and children.

6.3 Process States

We are now in a position to define the possible states of an internal process
as described within the monitor. An understanding of the transition from
one state to the other is vital as a key to the dynamic behaviour of the
system.

An internal process is either running (executing instructions or ready to
do so) or waiting (for an event outside the process). In the running state the
process is linked to the time slice queue; in the waiting state it is temporarily
removed from this queue.

A process can either be waiting for a message, an answer, or an event,
as explained in Chapter 4.

Of a more complex nature are the situations in which a process is waiting
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to be stopped or started by another process. In order to explain this we shall
once more refer to the family tree shown in the previous section.

Let us say that process b wants to stop its child f. The purpose of doing
this is to ensure that all program execution and input/output within the
storage area of process f is stopped. Since a part of the storage area has
been allocated to children of f, it is obviously necessary to stop not only the
child f but also all descendants of f. This is complicated by the fact that some
of these descendants may already have been stopped by their own parents.
In the present example process g may still be running, while process h may
have been stopped by its parent f. Consequently the monitor should only
stop processes f and g.

Consider now the reverse situation, in which process b starts its child
f again. Now the purpose is to reestablish the situation exactly as it was
before process f was stopped. Thus the monitor must be very careful only to
start those descendants of f that were stopped along with f. In our example
the monitor must start processes f and g but not h. Otherwise we confuse f,
which still relies on its child h being stopped.

Obviously, then, the monitor must distinguish between processes that
are stopped by their parents and by their ancestors.

The possible states of an internal process are the following;:

running

running after error

waiting for message

waiting for answer

waiting for event

waiting for start by parent
waiting for stop by parent
waiting for start by ancestor
waiting for stop by ancestor
waiting for process function

A process is created in the state waiting for start by parent. When it is
started, its state becomes running. The meaning of the state running after
error is explained in Section 8.1.

When a parent wants to stop a child, the state of the child is changed
to waiting for stop by parent, and all running descendants of the child are
described as waiting for stop by ancestor. At the same time these processes
are removed from the time slice queue.
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What remains to be done is to ensure that all input/output initiated by
these processes is terminated. In order to control this each internal process
description contains an integer called the stop count. The stop count is
increased by one each time the internal process initiates input/output from
an external process. On arrival of an answer from an external process,
the monitor decreases the stop count by one and examines the state of the
internal process. If the stop count becomes zero and the process is waiting
for stop by parent (or ancestor), its state is changed to waiting for start by
parent (or ancestor).

Only when all involved processes are waiting for start is the stop opera-
tion finished. This can last some time, and it may not be acceptable to the
parent (being an operating system with many other duties) to be inactive
for so long. For this reason the stop operation is split into two parts. The
stop procedure:

stop internal process(name, buffer, result)

only initializes the stopping of a child and selects a message buffer for the
parent. When the child and its running descendants are completely stopped,
the monitor delivers an answer to the parent in this buffer. Thus the parent
can use the procedures wait answer or wait event to wait for the completion
of the stop.

A process can be in any state when a stop is initiated. If it is waiting for
a message, answer, or an event, its state will be changed to waiting for stop,
as explained above, but at the same time its instruction counter is decreased
by two in order that it can, repeat the call of wait message, wait answer, or
wait event when it is started again.

It should be noted that a process can receive messages and answers in
its queue in any state. This ensures that a process does not loose contact
with its surroundings while stopped.

The meaning of the state waiting for process function is explained in
Section 9.1.

7 RESOURCE CONTROL

This chapter describes a set of monitor rules that enables a parent process
to control the allocation of resources to its children.
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7.1 Introduction

In the multiprogramming system the internal processes compete for the fol-
lowing limited resources:

computing time

storage and protection keys
message buffers

process descriptions
peripheral devices

backing storage

Initially all resources are owned by the basic operating system s. As a
basic principle enforced by the monitor a process can only allocate a subset
of its own resources to a child process. These are returned to the parent
process when the child is removed.

7.2 Time Slice Scheduling

All running processes are allocated time slices in a cyclical manner. Depend-
ing on the interrupt frequency of the hardware interval timer, the length of a
time slice can vary between 1.6 and 1638.4 milliseconds. A reasonable time
slice is 25.6 milliseconds; with shorter intervals the percentage of computing
time consumed by timer interrupts grows drastically; with longer intervals
the delay between activation and execution of an internal process increases.

In practice internal processes often initiate input/output and wait for it
in the middle of a time slice. This creates a scheduling problem when internal
processes are activated by answers: Should the monitor link processes to the
beginning or to the end of the time slice queue? The first possibility ensures
that processes can use peripherals with maximum speed, but there is the
danger that a process can monopolize computing time by communicating
frequently with fast devices. The second choice prevents this, but introduces
a delay in the time slice queue, which slows down peripherals.

We have introduced a modified form of round-robin scheduling to solve
this dilemma. As soon as a process is removed from the time slice queue,
the monitor stores the actual value of the time quantum used by it. When
the process is activated again, the monitor compares this quantum with the
maximum time slice. As long as this limit is not exceeded, the process is
linked to the beginning of the queue; otherwise it is linked to the end of the
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queue and its time quantum is reset to zero. The same test is applied when
the interval timer interrups an internal process.

This scheduling attempts to share computing time evenly among active
internal processes regardless of their position in the hierarchy. It permits
a process to be activated immediately until it threatens to monopolize the
central processor, only then is it pushed into the background to give other
processes a chance. This is admittedly a built-in strategy at the microlevel.
Parent processes can in fact only control the allocation of computing time
to their children in larger portions (on the order of seconds) by means of the
procedures start and stop internal process.

For accounting purposes the monitor retains the following information
for each internal process: the time at which the process was created and the
sum of time quantums used by it; these quantities are denoted start time
and run time.

7.3 Storage Allocation and Protection

An internal process can only create child processes within its own storage
area. The monitor does not check whether storage areas of child processes
overlap each other. This freedom can be used to implement time-sharing
of a common storage area among several processes as described in Sections
10.2 and 10.4.

During creation of an internal process the parent must specify the values
of the protection register and the protection key used by the child. In the
protection register each bit corresponds to one of the eight possible protec-
tion keys; if a bit is zero the process can change or execute storage words
with the corresponding key.

The protection key is the key that is set in all storage words of the
child process itself. A parent process can only allocate a subset of its own
protection keys to a child. It has complete freedom to allocate identical or
different keys to its children. The keys remain accessible to the parent after
creation of a child.

7.4 Message Buffers and Process Descriptions

The monitor only has room for a finite number of message buffers and tables
describing internal processes and the so-called area processes (files on the
backing store used as external processes). A message buffer is selected when
a message is sent to another process; it is released when the sending process
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receives an answer. A process description is selected when an internal process
creates another internal process or an area process, and released when the
process is removed.

Thus it is clear that message buffers and process descriptions only assume
an identity when they are actually used. As long as they are unused, they can
be regarded as anonymous pools of resources. Consequently it is sufficient to
specify the maximum number of each resource an internal process can use.
These so-called buffer claim, internal claim, and area claim are defined by
the parent when a child process is created. The claims must be a subset of
the parent’s own claims, which are diminished accordingly, they are returned
to the parent when the child is removed.

The buffer claim defines the maximum number of messages an internal
process can exchange simultaneously with other internal and external pro-
cesses. The internal claim limits the number of children an internal process
can have at the same time. The area claim defines how many backing store
areas an internal process can access simultaneously.

The monitor decreases a claim by one each time a process actually uses
one of its resources, and increases it by one when the resource is released
again. Thus at any moment the claims define the number of resources that
can still be used by the process.

7.5 Peripheral Devices

A distinction has been made between peripheral devices and external pro-
cesses. An external process is created when a name is assigned to a device.
Thus it is also true of peripheral devices that they only assume an identity
when they are actually used for input/output. Indeed the whole idea of
identification by name is to give the operator complete freedom in allocation
of devices. It would therefore seem natural to control the allocation of devices
to internal processes by a complete set of claims—one for each kind of device.
In a system with remote peripherals, however, it is unrealistic to treat all
devices of a given kind as a single, anonymous pool. An operating system
must be able to force its children and their human operators to remain within
a certain geographical configuration of devices. It should be noted that the
concept of configuration must be defined in terms of physical devices and
not in terms of external processes, since a parent generally speaking does
not know in advance which documents its children are going to use.
Configuration control is exercised as follows. From the point of view
of other processes an internal process is identified by a name. Within the
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monitor, however, an internal process can also be identified by a single bit
in a machine word. The process descriptions of peripheral devices include a
word in which each bit indicates whether the corresponding internal process
is a potential user of the device. Another word indicates the current user that
has reserved the device in order to obtain exclusive access to a document.

Initially the basic operating system s is a potential user of all peripherals.
A parent process can include or exclude a child as a user of any device,
provided the parent is also a user of it:

include user(child, device number, result)
exclude user(child, device number, result)

During removal of a child, the monitor excludes it as a user of all devices.
All in all three conditions must be fulfilled before an internal process can
initiate input/output:

The device must be an external process with a unique name.

The internal process must be a user of the device.

The internal process must reserve the external process if it controls a
sequential document.

7.6 Privileged Functions

Files on the backing store are described in a catalog, which is also kept on
the backing store. Clearly there is a need to be able to prevent an internal
process from reserving an excessive amount of space in the catalog or on the
backing store as such. It seems difficult, however, to specify a reasonable
rule in the form of a claim that is defined once and for all when a child
process is created. The main difficulty is that catalog entries and data areas
can survive the removal of the process that created them; in other words
backing storage is a resource a parent process can loose permanently by
allocating it to its children.

As a half-hearted solution we have introduced the concept of privileged
monitor procedures. A parent process must supply each of its children with
a function mask, in which each bit specifies whether the child is allowed
to perform a certain monitor function. The mask must be a subset of the
parent’s own mask.

At present the privileged functions include all monitor procedures that:
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change the catalog on the backing store,
create and remove names of peripheral devices,
change the real-time clock.

8 MONITOR FEATURES

This chapter is a survey of specific monitor features such as internal interrup-
tion, the real-time clock, conversational access from consoles, and permanent
storage of files on the backing store. Although these are not essential primi-
tive concepts, they are indispensable features of practical multiprogramming
systems.

8.1 Internal Interruption

The monitor can assist internal processes with the detection of infrequent
events such as violation of storage protection or arithmetic overflow. This
causes an interruption of the internal process followed by a jump to an
interrupt procedure within the process.

The interrupt procedure is defined by calling the monitor procedure:

set interrupt(interrupt address, interrupt mask)

When an internal interrupt occurs, the monitor stores the values of reg-
isters at the head of the interrupt procedure and continues execution of the
internal process in the body of the procedure:

interrupt address: working registers
instruction counter
interrupt cause
(execution continues here)

The system distinguishes between the following causes of internal inter-
ruption:

protection violation

integer overflow

floating-point overflow or underflow
parameter error in monitor call
breakpoint forced by parent
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The interrupt mask specifies whether arithmetic overflow should cause
internal interruption. Other kinds of internal interrupts cannot be masked
off.

If an internal process provokes an interrupt without having defined an
interrupt procedure after its creation, the monitor removes the process from
the time slice queue and changes its state to running after error. The process
does not receive any more computing time in this state, but from the point
of view of other processes it is still an existing process. The parent of the
erroneous process can, however, reactivate it by means of stop and start.

A parent can force a breakpoint in a child process as follows: first, stop
the child; second, fetch the registers and interrupt address from the process
description of the child and store the registers in the interrupt area together
with the cause; third; modify the registers of the child to ensure that program
execution continues in the interrupt procedure; fourth, start the child again.

8.2 Real-Time Clock

Real time is measured by means of a hardware interval timer, which counts
modulo 16384 in units of 0.1 msec and interrupts the computer regularly
(normally every 25.6 msec).

The monitor uses this timer to update a programmed real-time clock of
48 bits. This clock can be initialized and sensed by means of the procedures:

set clock(clock)
get clock(clock)

The setting of the clock is a privileged function. A standard convention
adopted by operating systems (but not enforced by the monitor) is to let the
clock express the time interval elapsed since midnight 31 December 1967 in
units of 0.1 msec.

The interval timer is also used to implement an external process that
permits the synchronization of internal processes with real time. All internal
processes can send messages to this clock process. After the elapse of a time
interval specified in the message, the clock process returns an answer to the
sender. In order to avoid a heavy overhead time of clock administration, the
clock process only examines its queue every second.

8.3 Console Communication

A multiprogramming system encourages a conversational mode of opera-
tion, in which users interact directly with internal processes from typewriter
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consoles. The external processes for consoles clearly reflect this objective.

Initially all program execution is ordered by human operators who com-
municate with the basic operating system. It would be very wasteful if the
operating system had to examine all consoles regularly for possible operator
requests. Therefore our first requirement is that consoles be able to activate
internal processes by sending messages to them. Note that other external
processes are only able to receive messages.

Second, it must of course be possible for an internal process to open a
conversation with any console.

Third, a console should accept messages simultaneously from several in-
ternal processes. This will enable us to control more than one internal pro-
cess from the same console, which is valuable in a small installation.

In short, consoles should be independent processes that can open conver-
sations with any internal process and vice versa. The console should assist
the operator with the identification of the internal processes using it.

An operator opens a conversation by depressing an interrupt key on the
console. This causes the monitor to select a line buffer and connect it to
the console. The operator must now identify the internal process to which
his message is addressed. Following this he can input a message of one line,
which is delivered in the queue of the receiving process.

A message to the basic operating system s can, for example, look like
this (the word in italics is output by the console process in response to the
key interrupt):

to s
new pbh run

An internal process opens a conversation with a console by sending a
message to <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>