

THE ORIGIN OF

CONCURRENT PROGRAMMING

From Semaphores to Remote Procedure CaUs

Springer Science+Business Media, LLC

THE ORIGIN OF

CONCURRENT PROGRAMMING

From Semaphores to Remote Procedure Calls

Edited by PER BRINCH HANSEN

Springer

Per Brinch Hansen
Center for Science and Technology
Syracuse University
Syracuse, NY 13244
USA
pbh@top.cis.syr.edu

Library of Congress Cataloging-in-Publication Data
The origin of concurrent programming: from semaphores to remote procedure calls/
editor, Per Brinch Hansen.

p. cm.
Includes bibliographie al references.
1. Parallel programming (Computer science) 1. Brinch Hansen, Per, 1938-

QA 76.642.075 2002
005.2'.75-dc21

Printed on acid-free paper
2002016002

Ada is a trademark of the United States Government. IBM is a trademark of IBM. Java is a
trademark of Sun Microsystems, Inc. occam and Transputer are trademarks of Inmos, Ltd. PDP-
11 is a trademark of Digital Equipment Corporation. Unix is a trademark of X/Open Company,
Ltd.

ISBN 978-1-4419-2986-0 ISBN 978-1-4757-3472-0 (eBook)
DOI 10.1007/978-1-4757-3472-0

© 2002 Springer Science+Business Media New York
Originally published by Springer-Verlag New York, Inc. in 2002.
Softcover reprint ofthe hardcover 1st edition 2002

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher Springer Science+Business Media, LLC,
except for brief excerpts in connection with reviews or scholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaption, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

9 8 7 6 543 2 1 SPIN 10860478

www.springer-ny.com

FOR JONATHAN GREENFIELD

PREFACE

If you want to discover new ideas in computing, textbooks won't help you.
You need to find out how the masters of the field did it. You need to read
their original papers!

That's why I put twenty-four papers together in a previous volume called
Classic Operating Systems: Fmm Batch Pmcessing to Distributed Systems
(Springer-Verlag, 2001).

But there is another side to this story. You cannot build (or understand)
a modern operating system unless you know the principles of concurrent
programming. The classic papers in the present book cover the major break­
throughs in concurrent programming fmm the mid 1960s to the la te 1970s.
These pioneering contributions have remained the foundation of concurrent
programming in operating systems and parallel computing.

All the papers were written by the computer scientists who invented these
ideas. Apart from a brief summary, I let the papers speak for themselves.

This book is for programmers, researchers, and students of electrical engi­
neering and computer science. I assume that you are familiar with operating
system principles.

I thank the copyright owners for permission to reprint these papers. A
footnote on the title page of each paper gives fuH credit to the publication in
wh ich the work first appeared, including the name of the copyright holder.

vii

PER BRINCH HANSEN
Syracuse University

CONTENTS

OVERVIEW

The Invention of Concurrent Programming
PER BRINCH HANSEN (2001)

PART I CONCEPTUAL INNOVATION

3

1 Cooperating Sequential Processes 65
EDSCER W. DIJKSTRA (1965)

2 The Structure of the THE Multiprogramming System 139

EDSCER W. DIJKSTRA (1968)

3 RC 4000 Software: Multiprogramming System 153

PER BRINCH HANSEN (1969)

4 Hierarchical Ordering of Sequential Processes
EDSCER W. DIJKSTRA (1971)

PART II PROGRAMMING LANGUAGE CONCEPTS

5 Towards a Theory of Parallel Programming
C. A. R. HOARE (1971)

6 An Outline of a Course on Operating System Principles
PER BRINCH HANSEN (1971)

7 Structured Multiprogramming
PER BRINCH HANSEN (1972)

8 Shared Classes
PER BRINCH HANSEN (1973)

9 Monitors: An Operating System Structuring Concept

C. A. R. HOARE (1974)

PART III CONCURRENT PROGRAMMING LANGUAGES

10 The Programming Language Concurrent Pascal
PER BRINCH HANSEN (1975)

IX

198

231

245

255

265

272

297

x CONTENTS

PART IV MODEL OPERATING SYSTEMS

11 The Solo Operating System: A Concurrent Pascal
Program 321

PER BRINCH HANSEN (1976)

12 The Solo Operating System: Processes, Monitors

and Classes 334
PER BRINCH HANSEN (1976)

13 Design Principles 382
PER BRINCH HANSEN (1977)

PART V DISTRIBUTED COMPUTING

14 A Synthesis Emerging? 397
EDSGER W. DIJKSTRA (1975)

15 Communicating Sequential Processes 413
C. A. R. HOARE (1978)

16 Distributed Processes: A Concurrent Programming
Concept 444

PER BRINCH HANSEN (1978)

17 Joyce-A Programming Language for Distributed
Systems 464

PER BRINCH HANSEN (1987)

PART VI IMPLEMENTATION ISSUES

18 SuperPascal: A Publication Language

for Parallel Scientific Computing 495
PER BRINCH HANSEN (1994)

19 Efficient Parallel Recursion 525

PER BRINCH HANSEN (1995)

OVERVIEW

THE INVENTION OF
CONCURRENT PROGRAMMING

PER BRINCH HANSEN

(2001)

The author selects classic papers written by the computer scientists who made

the major breakthroughs in concurrent programming. These papers cover the

pioneering era of the field from the semaphores of the mid 1960s to the remote

procedure calls of the Iate 1970s. The author summarizes the classic papers

and puts them in historical perspective.

A PROGRAMMING REVOLUTION

This is the story of one of the major revolutions in computer programming:
the invention of concurrent programming.

Tom Kilburn and David Howarth pioneered the use of interrupts to simu­
late concurrent execution of several programs on the Atlas computer (Kilburn
1961). This programming technique became known as multiprogramming.

The early multiprogramming systems were programmed in assembly lan­
guage without any conceptual foundation. The slightest programming mis­
take could make these systems behave in a completely erratic manner that
made program testing nearly impossible.

By the end of the 1960s multiprogrammed operating systems had become
so huge and unreliable that their designers spoke openly of a software crisis
(Naur 1969).

As J. M. Havender (1968) recalled:

P. Brinch Hansen, The invention of concurrent programming. In The Origin 0/ Goncur­
rent Programming: From Semaphores to Remote Procedure Galls, P. Brinch Hansen, Ed.,
Copyright © 2001, Springer-Verlag, New York.

3

4 PER BRINCH HANSEN

The original multitasking eoneept of the [IBM OS/360] envisioned rel­
atively unrestrained eompetion for resourees tQ per form a number of
tasks eoneurrently ... But as the system evolved many instanees of
task deadloek were uneovered.

Elliott Organick (1973) pointed out that the termination of a task in the
Burroughs B6700 system might cause its offspring tasks to lose their stack
space!

In the mid 1960s computer scientists took the first steps towards a deeper
understanding of concurrent prögramming. In less than fifteen years, they
discovered fundamental concepts, expressed them by programming notation,
included them in programming languages, and used these languages to write
model operating systems. In the 1970s the new programming concepts were
used to write the first concise textbooks on the principles of operating systems
and concurrent pr:ogramming.

The development of concurrent programming was originally motivated
by the des ire to develop reliable operating systems. From the beginning,
however, it was recognized that principles of concurrent programming "have
a general utility that goes beyond operating systems" -they apply to any
form of parallel computing (Brinch Hansen 1971a).

I would like to share the excitement of these discoveries with you by
offering my own assessment of the classic papers in concurrent programming.

This essay is not just an editorial overview of the selected papers. It is
also my personal refiections on the major contributions, whieh inspired me
(and others) in our common search for simplicity in concurrent programming.

If you compare my early papers with this essay, you will notiee an oc­
casional change of perspective. With thirty years of hindsight, that is in­
evitable.

I have made an honest attempt to rely only on the publication record
to document historie events and settle issues of priority. However, as a
contributor to these ideas I cannot claim to have written an unbiased account
of these events. That can only be done by a professional historian.

THE CLASSIC PAPERS

Choosing the classic papers was easier than I thought:

• First I made a short list of fundamental eontributions to abstract eoneurrent

programming of major and lasting teehnical importanee.

THE INVENTION OF CONCURRENT PROGRAMMING 5

• Then I selected the original papers in which computer scientists first intro­

duced these ideas.

• I added a few papers that illustrate the infiuence of concurrent programming

concepts on operating system principles and programming language imple­

mentation.

• Finally I put the papers in chronological order to illustrate how each new idea

was motivated by earlier successes and failures.

Fundamental Concepts

Asynchronous processes
Speed independence
Fair scheduling
Mutual exclusion
Deadlock prevention
Process communication
Hierarchical structure
Extensible system kern eIs

Programming Language Concepts

Concurrent statements
Critical regions
Semaphores
Message buffers
Conditional critical regions
Sec ure queueing variables
Monitors
Synchronous message communication
Remote procedure calls

6 PER BRINCH HANSEN

Classic Papers

1. E. W. Dijkstra, Cooperating Sequentia1 Processes (1965).

2. E. W. Dijkstra, The Structure of the THE Mu1tiprogramming System
(1968).

3. P. Brinch Hansen, RC 4000 Software: Mu1tiprogramming System (1969).

4. E. W. Dijkstra, Hierarchica1 Ordering of Sequentia1 Processes (1971).

5. C. A. R. Hoare, Towards a Theory of Parallel Programming (1971).

6. P. Brinch Hansen, An Out1ine of a Course on Operating System
Princip1es (1971).

7. P. Brinch Hansen, Structured Mu1tiprogramming (1972).

8. P. Brinch Hansen, Shared C1asses (1973).

9. C. A. R. Hoare, Monitors: An Operating System Structuring Concept
(1974).

10. P. Brinch Hansen, The Programming Language Concurrent Pascal (1975).

11. P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal
Program (1976).

12. P. Brinch Hansen, The Solo Operating System: Processes, Monitors and
C1asses (1976).

13. P. Brinch Hansen, Design Princip1es (1977).

14. E. W. Dijkstra, A Synthesis Emerging? (1975).

15. C. A. R. Hoare, Communicating Sequential Processes (1978).

16. P. Brinch Hansen, Distributed Processes: A Concurrent Programming
Concept (1978).

17. P. Brinch Hansen, Joyce-A Programming Language for Distributed
Systems (1987).

18. P. Brinch Hansen, SuperPascal: A Pub1ication Language for Parallel
Scientific Computing (1994).

19. P. Brinch Hansen, Eflicient Parallel Recursion (1995).

After following this selection procedure rigorously, I was surprised to see that
every single paper turned out to have been written by either Edsger Dijkstra,
Tony Hoare or me. In retrospect, this was, perhaps, not so surprising.

In Judy Bishop's (1986) view:

The swing away from assembly language which gained genuine mo­
mentum during the seventies was slow to affect the area of concur­

rent systems-operating systems, embedded control systems and the
like. What happened was that three people-Edsger Dijkstra, Tony

THE INVENTION OF CONCURRENT PROGRAMMING 7

Hoare and Per Brinch Hansen-independently developed key abstrac­
tions which were taken up by researchers worldwide, realized in exper­
imental languages, reported on, adapted and refined. In this way, the
problems of concurrency could be expressed in weIl understood nota­
tion, and solutions and principles gradually evolved.

To produce an anthology of reasonable size (about 500 pages) I omitted:

• Subsequent work that built on the seminal papers without adding any­
thing fundamentally new.

• Survey papers and assessments of ideas.

• Implementation details (except in outline).

• Testing, verification, and formal theory.

• Functional multiprogramming and data parallel languages.

These guidelines eliminated many valuable contributions to concurrent pro­
gramming (as weIl as two dozen of my own papers). Some of them are listed
as recommended further reading in the bibliography at the end of this essay.

PART I CONCEPTUAL INNOVATION

It is difficult for students today to imagine how little anyone knew about
systematic programming in the early 1960s. Let me illustrate this by telling
you about my first modest experience with multiprogramming.

In 1963 I graduated from the Technical University of Denmark without
any programming experience (it was not yet being taught). There were
(as far as I remember) no textbooks available on programming languages,
compilers or operating systems.

After graduating I joined the Danish computer company Regnecentralen.
Working on a Cobol compiler project, headed by Peter Naur and J0rn
Jensen, I taught myself to program.

In 1966 Pet er Kraft and I were asked to design a real-time system for
supervising a large ammonia nitrate plant in Poland. A small computer
would be used to perform a fixed number of cyclical tasks simultaneously.
These tasks would share data tables and peripherals. Since plant operators
could change the frequencies of individual tasks (and stop some of them

8 PER BRlNCH HANSEN

indefinitely), we could not make any assumptions about the relative (or
absolute) speeds of the tasks.

It was obvious that we needed multiprogramming with process synchro­
nization. But what kind of synchronization?

A common technique at the time was to suspend a process in a queue until
it was resumed by another process. The trouble was that resumption had no
effect if the queue was empty. This happened if resumption was attempted
before a process was suspended. (This pitfall reminds me of a mailman who
throws away your letters if you are not at horne when he attempts to deliver
them!)

This mechanism is unreliable because it makes a seemingly innocent as­
sumption about the relative timing of parallel events: A process must never
attempt to resurne another process that is not suspended. However, since
the timing of events is unpredictable in a real-time system, this would have
been a disastrous choice for our real-time system. 1

Regnecentralen had no experience with multiprogramming. Fortunately,
Edsger Dijkstra was kind enough to send me a copy of his 1965 monograph
"Cooperating Sequential Processes," with a personal dedication: "Especially
made for graceful reading!" (I still have it.)

Using Dijkstra's semaphores, Peter Kraft, Charles Simonyi and I were
able to implement the Re 4000 real-time control system on the prototype of
Regnecentralen's RC 4000 computer with only 4K words ofmemory (without
a drum or disk) (Brinch Hansen 1967a, 1967b).

1 Cooperating Sequential Processes

The first classic is one of the great works in computer programming:

E. W. Dijkstra, Cooperating Sequential Processes (1965)

Here Dijkstra lays the conceptual foundation for abstract concurrent pro­
grammmg. He begins by making the crucial assumption about speed inde­
pendence:

We have stipulated that pro ces ses should be connected loosely; by this
we mean that apart from the (rare) moments of explicit intercommu­
nication, the individual processes themselves are to be regarded as

1 Around 1965 IBM's PL/Ilanguage included queueing variables of this kind known as
events. Surprisingly, the suspend and resume primitives are also included in the recent
Java language (Doug Lea 1997).

THE INVENTION OF CONCURRENT PROGRAMMING 9

completely independent of each other. In particular, we disallow any
assumption ab out the relative speeds of the different processes.

Indivisible operations were well-known in multiprogramming systems, in
the form of supervisor calts (Kilburn 1961). Dijkstra's contribution was to
make explicit ass um pt ions about these critical sections (as he calls them).2

For pedagogical reasons, Dijkstra first attempts to program critical sec­
tions using assignments and inspection of simple variables only.

Through a carefully presented sequence of rejected solutions, Dijkstra
arrives at the following correctness criteria for cyclical processes cooperating
by means of common variables and critical sections:

1. Mutual exclusion: "At any moment at most one of the processes is engaged
in its critical section."

2. Fairness: "The decision which of the processes is the first to enter its critical
section cannot be postponed to eternity."

3. Speed independence: "Stopping a process in its 'remainder of cycle' [that is,
outside its critical region] has no effect upon the others."

The Dutch mathematician T. J. Dekker found a general solution to
the mutual exclusion problem without synchronizing primitives. For single­
processor systems, I have always viewed this as an ingenious, academic ex­
ercise. Computer designers had solved the problem (in a restricted way) by
the simple technique of disabling interrupts.

As a more realistic solution, Dijkstra intro duces binary semaphores, wh ich
make the mutual exclusion problem trivia1.3

Using general semaphores (due to Carel Scholten), Dijkstra implements
message communication through a bounded bujjer.4 He achieves a pleasing
symmetric behavior of communicating processes by viewing senders as pro­
cesses that consume empty buffer slots and produce full slots. Similarly,
receivers consume full slots and pro du ce empty ones.

Dijkstra also presents an ingenious method of deadlock prevention, known
as the banker's algorithm.

2Hoare (1971) renamed them critical regions.

3Dijkstra used Dutch acronyms, P and V, for the semaphore operations. Being allergie
to acronyms in any language, I renamed them wait and signal (Brinch Hansen 1971a).

4The bounded buffer is used as a programming example throughout this essay.

10 PER BRINCH HANSEN

beg in integer number of queuing portions,
number of empty positions,
buffer manipulation;

end

number of queuing portions:= 0;
number of empty positions:= N;
buffer manipulation:= 1;
parbegin
producer: begin

again 1: produce next portion;

end;
consumer: begin

P(number of empty positions);
P(buffer manipulation);
add portion to buffer;
V(buffer manipulation);
V(number of queuing portions);
goto again 1

again 2: P(number of queuing portions);
P(buffer manipulation);

end
parend

take portion from buffer;
V(buffer manipulation);
V(number of empty positions);
process portion taken;
goto again 2

The Bounded Buffer with Semaphores

In the 1960s Alan Perlis noticed that Regnecentralen's compiler group
discussed programming problems by writing Algol 60 statements on a black­
board. This was unusual at a time when systems programs were still being
written in assembly language.

Edsger Dijkstra was also firmly in the Algol 60 tradition (Naur 1960).
He writes parallel algorithms in Algol extended with a parallel statement:5

parbegin Si; S2; ... Sn parend

As Dijkstra defines it:

Initiation of a parallel compound implies simultaneous initiation of all

5 Also known as a concurrent statement (Brinch Hansen 1972b).

THE INVENTION OF CONCURRENT PROGRAMMING 11

its constituent statements, its execution is completed after the comple­
tion of the execution of all its constituent statements.

This modest proposal is one of the first published examples of an abstract
programming notation for concurrent processes.

2 THE Multiprogramming System

Dijkstra demonstrated the depth of his ideas in the construction of an elegant
model operating system:

E. W. Dijkstra, The Structure of the THE Multiprogramming System (1968)

This was a spooling system that compiled and executed a stream of Algol
60 programs with paper tape input and printer output. It used software­
implemented demand paging between a 512K word drum and a 32K word
memory. There were five user processes and ten input/output processes,
one for each peripheral device. The system used semaphores for process
synchronization and communication.

Dijkstra's multiprogramming system illustrated the conceptual clarity
of hierarchical ordering. His system consisted of several program layers,
which gradually transform the physical machine into a more pleasant abstract
machine:

Level 0: Processor allocation.
Level 1: Demand paging ("segment controller").
Level 2: Operator console ("message interpreter").
Level 3: Virtual devices ("input/output streams").
Level 4: User processes.
Level 5: System operator.

Apart from the operator, these program layers could be designed and tested
one at a time.

This short paper concentrates on Dijkstra's most startling claim:

We have found that it is possible to design a refined multiprogramming

system in such a way that its logical soundness can be proved apriori
and its implementation can admit exhaustive testing. The o"nly errors

that showed up during testing were trivial co ding errors ... the resulting
system is guaranteed to be flawless.

The hierarchical structure was used to prove the following properties of
harmoniously cooperating processes:

12 PER BRlNCH HANSEN

1. "Although a process performing a task may in so doing generate a finite
number of tasks for other processes, a single initial task cannot give rise to
an infinite number of task generations."

2. "It is impossible that all processes have returned to their homing position
while somewhere in the system there is still pending a generated but unac­
cepted task."

3. "After the acceptance of an initial task all processes eventually will be (again)
in their homing position."

Software managers continue to believe that software design is based on
a magical discipline, called "software engineering," which can be mastered
by average programmers. Dijkstra explained that the truth of the matter is
simply that

the intellectual level needed for system design is in general grossly un­
derestimated. I am convinced more than ever that this type of work is
very difficult, and that every effort to do it with other than the best
people is doomed to either failure or moderate success at enormous
expense.

Nico Habermann (1967), Edsger Dijkstra (1971), Coen Bron (1972) and
Mike McKeag (1976) described the THE system in more detail.

3 RG 4000 Multiprogramming System

In 1974 Alan Shaw wrote:

There exist many approaches to multiprogramming system design, but
we are aware of only two that are systematic and manageable and at
the same time have been validated by producing real working operating
systems. These are the hierarchical abstract machine approach devel­
oped by Dijkstra (1968a) and the nucleus methods of Brinch Hansen

(1969) ... The nucleus and basic multiprogramming system for the Re
4000 is one of the most elegant existing systems.

The Re 4000 multiprogramming system was not a complete operating
system, but a small kernel upon which operating systems for different pur­
poses could be built in an orderly manner:

P. Brinch Hansen. Re 4000 Software: Multiprogramming System (1969)

THE INVENTION OF CONCURRENT PROGRAMMING 13

The kernel provided the basic mechanisms for creating a tree 01 parallel
processes that communicated by messages. Jorn Jensen, SOren Lauesen and
I designed it for Regnecentralen's Re 4000 computer. We started working
on the system in the fall of 1967. A well-documented reliable version was
running in the spring of 1969.

Before the RC 4000 multiprogramming system was programmed, I de­
scribed a design philosophy that drastically generalized the concept of an
operating system (Brinch Hansen 1968):

The system has no built-in assumptions about program scheduling and
resource allocation; it allows any program to initiate other programs in
a hierarchal manner.6 Thus, the system provides'a general frame[work]
for different scheduling strategies, such as batch processing, multiple
console conversation, real-time scheduling, etc.

This radical idea was probably the most important contribution of the RC
4000 system to operating system technology. If the kernel concept seems
obvious today, it is only because it has passed into the general stock of
knowledge about system design. It is now commonly referred to as the
principle of separation of mechanism and policy (Wulf 1974).

The RC 4000 system was also noteworthy for its message communication.
Every communication consisted of an exchange of a message and an answer
between two processes. This protocol was inspired by an early decision to
treat peripheral devices as processes, which receive input/output commands
as messages and return acknowledgements as answers. In distributed systems
this form of communication is now known as remote procedure calls.

The system also enabled a server process to be engaged in nondetermin­
istic communication with several dient processes at a time. This was known
as a conversational process.

The RC 4000 system was programmed in assembly language. As a purely
academic exercise for this essay, I have used an informal Pascal notation
(Wirth 1971) to outline a conversational process that implements a bounded
buffer used by dient processes. In retrospect, such a process is equivalent
to the "secretary" concept that Dijkstra (1971) would sketch two years later
(in very preliminary form).

In the RC 4000 system, the initial process was a conversational process
that spawned other processes in response to messages from console processes.

6Rere I obviously meant "processes" rather than "programs."

14 PER BRINCH HANSEN

{ The buffer process receives messages from client processes
requesting it to accept or return data items. The messages
arrive in buffer elements, which are linked to a message
queue. The buffer process receives a message in a buffer
element and uses the same buffer element to return an
answer to the client process. }

number of items := 0;
{ Inspect the message queue from the beginning }
current buffer := nil;
cycle

{ Postpone receipt of the current buffer element (if any) }
previous buffer := current buffer;
{ Wait for the next buffer element in the queue (which

may already have arrived) }
wait event(previous buffer, current buffer);
case current buffer.request of

end

accept item:
if number of items < N then

begin
take a data item from the current buffer element

and store it within the buffer process;
number of items := number of items + 1;
{ Remove the current buffer element from the queue }
get event(current buffer);
{ Use the same buffer element to return an

acknowledgment to the client process }
send answer(acknowledgment, current buffer);
{ Reinspect the queue from the beginning }
current buffer := nil;

end;
return item:

end

if number of items > 0 then
begin

select a data item stored within the buffer process;
number of items := number of items - 1;
{ Remove the current buffer element from the queue }
get event(current buffer);
{ Use the same buffer element to return the

data item to the client process }
send answer(data item, current buffer);
{ Reinspect the queue from the beginning }
current buffer := nil;

end

The Bounded Buffer as a Conversational Process

THE INVENTION OF CONCURRENT PROGRAMMING 15

If this basic operating system temporarily was unable to honor arequest, it
would postpone the action by delaying its receipt oE the message. In the
meantime, it would attempt to serve other clients.

According to S0ren Lauesen (1975):

The Re 4000 software was extremely reliable. In a university envi­
ronment, the system typically ran under the simple operating system
for three months without crashes ... The crashes present were possibly
due to transient hardware errors.

When the RC 4000 system was finished I described it in a 5-page journal
paper (Brinch Hansen 1970). I then used this paper as an outline oE the
160-page system manual (Brinch Hansen 1969) by expanding each section oE
the paper. 7 The third article in this book is a reprint oE the most important
part oE the original manual, which has been out oE print Eor decades.8

As usual, Niklaus Wirth (1969) immediately recognized the advantages
and limitations oE the system:

I am much impressed by the clarity ofthe multiple process concept, and
even more so by the fact that a computer manufacturer adopts it as the
basis of one of his products. I have come to the same conclusion with
regard to semaphores, namely that they are not suitable for higher level
languages. Instead, the natural synchronization events are exchanges
of messages.

What does not satisfy me completely at your scheme is that a specific
mechanism of dynamic buffer space allocation is inextricably connected
with the problem of process synchronization, I would prefer a scheme
where the programmer hirnself declares such buffers in his programs
(which of course requires an appropriate language).

4 Hierarchical Ordering oE Sequential Processes

E. W. Dijkstra, Hierarchical Ordering of Sequential Processes (1971)

7In May 1968 I outlined these ideas in a panel discussion on Operating Systems at
the Tenth Anniversary Algol Colloquium in Zurich, Switzerland. The panelists included
Edsger Dijkstra and Niklaus Wirth, both of whom received copies of the RC 4000 system
manual in July 1969.

8My operating system book (Brinch Hansen 1973b) includes a slightly different version
of the original manual supplemented with abstract (untested) Pascal algorithms.

16 PER BRINCH HANSEN

With deep insight, Dijkstra explains his layered approach to operating sys­
tem design in greater detail. This time he proves the correctness of critical
sections and the bounded buffer implemented with semaphores. He also in­
troduces and solves the scheduling problem of the dining philosophers, which
poses subtle dangers of deadlock and unfairness (described in flamboyant ter­
minology as "deadly embrace" and "starvation").

The THE multiprogramming system was implemented in assembly lan­
guage without memory protection. Every process could potentially access
and change any variable in the system. However, using well-defined pro­
gramming rules and systematic testing, Dijkstra and his students were able
to verify that alt processes cooperated harmoniously.

At the end of the paper, Dijkstra briefly sketches an alternative scenario
of secretaries and directors: 9

Instead of N sequential processes cooperating in critical sections via
common variables, we take out the critical sections and combine them
into a N + 1 st process, called a "secretary"; the remaining N processes
are called "directors". Instead of N equivalent processes, we now have
N directors served by a common secretary.

What used to be critical sections in the N processes are in the directors
"calls upon the secretary" .

A secretary presents itself primarily as a bunch of non-reentrant rou­
tines with a common state space.

When a director calls a secretary . .. the secretary may decide to keep
hirn asleep, adecision that implies that she should wake hirn up in one
of her later activities. As a result the identity of the calling program
cannot remain anonymous as in the case of the normal subroutine. The
secretaries must have variables of type "process identity" .

In general, a director will like to send a message to his secretary when

calling her ... and will require an answer back from his secretary when

she has released his call.

On the basis of this proposal, Greg Andrews (1991) credits Dijkstra with
being "the first to advocate using data encapsulation to control access to
shared variables in a concurrent program." Twenty-five years ago, I repeated
the prevailing opinion that "Dijkstra (1971) suggested the idea of monitors"
(Brinch Hansen 1975a). Today, after reading the classic papers again, I find
this claim (which Dijkstra never made) debatable.

9The gender bias in the terminology was not considered unusual thirty years ago.

THE INVENTION OF CONCURRENT PROGRAMMING 17

Dijkstra had implemented his multiprogramming system as cooperating
processes communicating through common variables in unprotected memory.
From his point of view, the idea of combining critical regions and common
variables into server processes ("secretaries") was a new approach to resource
scheduling.

However, this idea was obvious to the designers of the RC 4000 mul­
tiprogramming system, based, as it was, on a paradigm of processes with
disjoint memories communicating through messages only. There was simply
no other way of using the RC 4000 system!

The "secretaries," which Dijkstra described informally, had already been
implemented as "conversational processes" in the RC 4000 system. Mike
McKeag (1972) demonstrated the similarity of these ideas by using the RC
4000 message primitives to outline simple secretaries for weIl-known syn­
chronization problems, such as the bounded buffer, the dining philosophers,
and areaders and writers problem.

I am not suggesting that the RC 4000 primitives would have been a good
choice for a programming language. They would not. They lacked a crucial
element of language design: notational elegance. And I certainly did not
view conversational processes (or "secretaries") as the inspiration for the
future monitor concept.

I am simply pointing out that the idea of a resource manager was already
known by 1969, in the form of a basic monitor, invoked by supervisor caIls,
or a conversational process (a "secretary"), invoked by message passing.

What was new, was the goal of extending programming languages with
this paradigm (Discussions 1971). And that had not been done yet.

PART II PROGRAMMING LANGUAGE CONCEPTS

The invention of precise terminology and notation plays a major role not
only in the sciences but in all creative endeavors.

When a progmmming concept is understood informally it would seem to
be a trivial matter to invent a progmmming notation for it. But in practice
this is hard to do. The main problem is to replace an intuitive, vague idea
with apreeise, unambiguous definition of its meaning and restrictions. The
mathematician George P6lya (1957) was weIl aware of this diffieulty:

An important step in solving a problem is to choose the notation. It
should be done carefuIly. The time we spend now on choosing the

notation may weIl be repaid by the time we save later by avoiding

18 PER BRINCH HANSEN

hesitation and confusion. Moreover, choosing the notation carefully,
we have to think sharply of the elements of the problem which must be
denoted. Thus, choosing a suitable notation may contribute essentially
to understanding the problem.

A programming language concept must represent a general idea that is
used often. Otherwise, it will just increase the complexity of the language at
nO apparent gain. The meaning and rules of a programming concept must be
precisely defined. Otherwise, the concept is meaningless to a programmer.
The concept must be represented by a CfJncise notation that makes it easy
to recognize the elements of the concept and their relationships. Finally, it
should be possible by simple techniques to obtain a secure, efficient imple­
mentation of the concept. A compiler should be able to check that the rules
governing the use of the concept are satisfied, and the programmer should
be able to predict the speed and size of any program that uses the concept
by means of performance measurements of its implementation.

As long as nobody studies your programs, their readability may not seem
to be much of a problem. But as so On as you write a description for a wider
audience, the usefulness of an abstract notation that suppresses irrelevant de­
tail becomes obvious. So, although Dijkstra's THE system was implemented
in assembly language, he found it helpful to introduce a programming nota­
tion for parallel statements in his description (Dijkstra 1965).

5 Conditional Critical Regions

In the fall of 1971, Tony Hoare enters the arena at a Symposium on Operating
Systems Techniques at Queen's University of Belfast:

C. A. R. Hoare, Towards a Theory of Parallel Programming (1971)

This is the first notable attempt to extend pragramming languages with ab­
stract features for parallel programming. Hoare points out that the search for
parallel language features is "one of the major challenges to the invention,
imagination and intellect of computer scientists of the present day."

Hoare boldly formulates design principles for parallel pragramming lan­
guages:

1. Interference contral. The idea of preventing time-dependent errors by
compile-time checking was novel at a time when multiprogramming systems
re lied exclusively On run-time checking of variable access:

THE INVENTION OF CONCURRENT PROGRAMMING 19

Parallel programs are particularly prone to time-dependent errors, which

either cannot be detected by program testing nor by run-time checks.

It is therefore very important that a high-level language designed for

this purpose should provide complete security against time-dependent

errors by means of a compile-time check.

2. Disjoint processes. Dijkstra's parallel statement {Qd /Q2/ / .. ./ /Qn}

is used to indicate that the program statements Ql, Q2, ... , Qn define disjoint
proeesses to be exeeuted in parallel. Aeeording to Hoare:

It is expected that the compiler will check the disjointness of the pro­

cesses by ensuring that no variable subject to change in any of the Qj

is referred to at all in any Qi for iyfj. Thus it can be guaranteed by a

compile-time check that no time-dependent errors could ever occur at

run time.

3. Resources. The programming language Pascal is extended with a
notation indieating that a variable r of some type T is a resouree shared
by parallel proeesses:

r: T; ... {resource r; Qd/Q2//" .//Qn}

4. Critical regions. Inside the proeess statements Ql, Q2, ... , Qn a
critical region C on the resouree r is expressed by the struetured notation

with r do C

A compiler is expected to eheek that the resouree is neither used nor referred
to outside its critical regions.

5. Conditional critical regions. Sometimes the exeeution of a eritieal
region C must be delayed until a resouree r satisfies a eondition, defined by
a Boolean expression B:

with r when B do C

The eonditional form of a critical region is the most originallanguage feature
proposed in Hoare's paper. lO

10 Simula I and SOL also included statements for waiting on Boolean conditions (later
removed from Simula). However, these were simulation languages without any concept (or
need) of critical regions (Dahl 1963, Knuth 1964).

20 PER BRlNCH HANSEN

B: record inpointer, outpointer, count: Integer;
buffer: array 0 ... N-1 of T end;

with B do
begin inpointer:= 0; outpointer:= 0;

count:= 0;
end;

{resource B;

}

with B when count < N do

//

begin buffer[inpointer] := next value;
inpointer:= (inpointer + 1) mod N;
count:= count + 1

end

with B when count > 0 do
begin this value:= buffer[outpointer];

outpointer:= (outpointer + 1) mod N;
count:=count - 1

end

The Bounded Buffer with Conditional Critical Regions

Hoare emphasized that "The solutions proposed in this paper cannot
claim to be final, but it is believed that they form a sound basis for furt her
advance."

At the Belfast symposium (Brinch Hansen 1971a), I expressed some reser­
vations from a software designer's point of view:

The eoneeptual simplicity of simple and eonditional eritieal regions
is aehieved by ignoring the sequenee in whieh waiting processes enter

these regions. This abstraction is unrealistie far heavily used resourees.
In such eases, the operating system must be able to identify eompeting
processes and eontrol the seheduling of resourees among them. This
ean be done by me ans of a monitor-a set of shared proeedures whieh
ean delay and activate individual processes and perform operations on

shared data.

Hoare 's response (Discussions 1971):

As a result of diseussions with Brineh Hansen and Dijkstra, I feel that
this proposal is not suitable for operating system implementation ...

THE INVENTION OF CONCURRENT PROGRAMMING 21

My proposed method eneourages the programmer to ignore the ques­
tion of whieh of several outstanding requests for a resouree should be
granted.

A year aga I would have said that this was a very serious eriticism
indeed of a language proposal that it eneouraged the programmer to
ignore eertain essential problems. I now believe that a language should
be usable at a high level of abstraction, and at high levels of abstraction
it is an exeellent thing to eneourage the programmer to ignore eertain
types of problems, in partieular seheduling problems.

Hoare's paper was as an eye-opener for me: It was my introduction to
the difficult art 0/ language design. The idea of checking interference during
scope analysis struck me as magical!

Years later, I included variants of conditional critical regions in two pro­
gramming languages, Distributed Processes (Brinch Hansen 1978) and Edi­
son (Brinch Hansen 1981).

6 Operating System Principles

Abstract concurrent programming had an immediate and dramatic impact
on our fundamental understanding of computer operating systems.

The implementation techniques of operating systems were reasonably
weIl understood in the late 1960s. But most systems were too large and
poorly described to be studied in detail. All of them were written either in
assembly language or in sequential programming languages extended with
assembly language features. Most of the literature on operating systems
emphasized low-Ievel implementation details of particular systems rather
than general concepts. The terminology was unsystematic and incomplete
(Brinch Hansen 2000).

Before the invention of abstract concurrent programming, it was im­
practical to include algorithms in operating system descriptions. Technical
writers mixed informal prose with unstructured flowcharts and complicated
pictures of linked lists and state transitions. ll

In its Cosine Report (1971), the National Academy of Engineering sum­
marized the state of affairs at the time [with emphasis added]:

llSee, for example, IBM (1965), Elliott Organick (1972), and Stuart Madnick (1974).

22 PER BRINCH HANSEN

The subject of computer operating systems, if taught at all , is typ i­
cally a descriptive study of some specific operating system, with little
attention being given to emphasizing the relevant basic concepts and
principles. To worsen matters, it has been difficult Jor most university
departments to develop a new course stressing operating systems prin­
ciples . .. There are essentially no suitable textbooks on the subject.

I consider myself lucky to have started in industry. The RC 4000 project
convinced me that a fundamental understanding of operating systems would
change computer programming radically. I was so certain of this that I
decided to leave industry and become a researcher.

In November 1970 I became a research associate at Carnegie-Mellon Uni­
versity, where I wrote the first comprehensive textbook on operating system
principles:

P. Brinch Hansen, An Outline of a Course on Operating System Principles {l971)

While writing the book I reached the conclusion that operating systems are
not radically different from other programs. They are just large programs
based on the principles of a more fundamental subject: parallel programming.

Starting from a concise definition of the purpose of an operating system,
I divided the subject into five major areas. First, I presented the principles of
parallel programming as the essence of operating systems. Then I described
processor management, memory management, scheduling algorithms and
resource protection as techniques for implementing parallel processes.

I defined operating system concepts by abstract algorithms written in Pas­
cal extended with a notation for structured multiprogramming. My (unimple­
mented) programming notation included concurrent statements, semaphores,
conditional critical regions, message buffers, and monitors. These program­
ming concepts are now discussed in all operating system texts.

The book includes a concise vocabulary of operating system terminology,
which is used consistently throughout the text. The vocabulary includes the
following terms:

concurrent processes, processes that overlap in time; concurrent
processes are called disjoint if each of them only refers to pri­
vate data; they are called interacting if they refer to common
data.

synchronization, a general term for any constraint on the order in
which operations are carried out; a synchronization rule can, for
example, specify the precedence, priority, or mutual exclusion in
time of operations.

THE INVENTION OF CONCURRENT PROGRAMMING 23

monitor, a common da ta structure and a set of meaningful operations

on it that exclude one another in time and control the synchraniza­

tion of concurrent processes.

My book Operating System Principles was published in July 1973. Pet er
Naur (1975) reviewed it:

The presentation is generally at a very high level of clarity, and gives
evidence of deep insight. In pursuing his general aim, the establish­
ment of a coherent set of basic principles for the field, the author is
highly successful. The principles are supported by algorithms written
in Pascal, extended where necessary with carefully described primitives.
elose attention is paid to the thorny quest ion of terminology.

In my outline of the book I made a prediction that would guide my future
research:

So far nearly all operating systems have been written partly or com­
pletely in machine language. This makes them unnecessarily difficult
to understand, test and modify. I believe it is desirable and possible
to write efficient operating systems almost entirely in a high-level lan­

guage. This language must permit hierarchal structuring of data and
program, extensive errar checking at compile time, and production of
efficient machine code.

7 Structured Multiprogramming

P. Brinch Hansen. Structured Multiprogramming (1972)

The conditional critical region, proposed by Hoare (1971), had minor nota­
tionallimitations and a potentially serious implementation problem:

1. A shared variable is declared as both a variable and aresource. The
textual separation of these declarations can be misused to treat the same
variable as a scheduled resource in some contexts and as an ordinary variable
in other contexts. This would enable a process to refer directly to a variable
while another process is within a "critical" region on the same variable.

I closed this loophole by using a single declaration to introduce a shared
variable (of some type T):

var v: shared T

24 PER BRINCH HANSEN

2. When a process is delayed by a Boolean expression without side ef­
feets, it cannot indicate the urgency of its request to other processes. This
complicates the programming of priority scheduling.

It was an obvious remedy to permit a conditional await statement to
appear anywhere within a critical region:

region v do
begin ... await B; ... end

3. The major concern was that it did not seem possible to implement con­
ditional critical regions efficiently. The root of the problem is the unbounded
reevaluation of Boolean expressions until they are true.

Many years later, Charles Reynolds (1993) asked:

How does a process wait for so me condition to be true? It seems to me

that the critical insight occurred in realizing that the responsibility for
determining an awaited event has occurred must lie with the applica­

tion programmer and not with the underlying run-time support. The
awakening of processes awaiting events is part of the application algo­

rithm and must be indicated by explicit announcement of the events
by means of "signal" or "cause" commands present in the applica­
tion algorithm. This idea is clearly present as early as Brinch Hansen

(1972b).

I suggested that programmers should be able to associate secure queueing
variables with shared data structures and control the transfers of processes
to and from them.

In my proposal, the declaration

var e: event v;

associates a queuing variable e of type event with a shared variable v.
A process can leave a critical region associated with v and join the queue

e by executing the standard procedure

await(e)

THE INVENTION OF CONCURRENT PROGRAMMING 25

var B: shared record
buffer: array O .. max-1 of T;
p, c: O .. max-1;
full: O .. max;
nonempty, nonfull: event B;

end;
procedure send(m: T);
region B do
begin

while full = max do await(nonfull);
buffer[p] := m;
p := (p + 1) mod max;
full := full + 1;
cause(nonempty);

end
procedure receive(var m: T);
region B do
begin

while full = 0 do await(nonempty);
m := buffer[c];
c := (c + 1) mod max;
full := full - 1;
cause(nonfull) ;

end

The Bounded Buffer with Secure Events

Another process can enable all processes in the queue e to reenter their
critical regions by executing the standard procedure

cause(e)

If several processes are waiting in the same queue, a cause operation on the
queue will (eventually) enable alt of them to resurne their critical regions
(one at a time). Mutual exclusion is still maintained, and processes waiting
to resurne critical regions have priority over processes that are waiting to
enter the beginning of critical regions.

In this situation, a resumed process may find that another process has
made its scheduling condition B false again. Consequently, processes must
use waiting laaps of the form 12

12 Mesa (Lampson 1980) and Java (Lea 1997) would also require waiting loops on Boolean
conditions.

26 PER BRINCH HANSEN

while not B do await(e)

My proposal was completely unrelated to the unpredictable event queues
of the 1960s, which caused the pragrammer to lose contral over schedul­
ing. The crucial difference was that the new queues were associated with
a shared variable, so that all scheduling operations were mutually exclusive
operations. The programmer could control the scheduling of processes to
any degree desired by associating each queue with a graup of processes or an
individual process.

The idea of associating secure scheduling queues with a shared data struc­
ture to enable processes to delay and resume critical regions has been used
in alt monitor praposals. In an unpublished draft, Hoare (1973a) proposed
wait and signal operations on condition variables, which, he says, "are very
similar to Brinch Hansen's await and cause operations." In the following I
will call all these kinds of queues secure queueing variables.

Seeure queueing variables were an efficient solution to the problem of
process scheduling within critical regions. However, like semaphores, queue­
ing variables always struck me (and others) as somewhat too primitive for
abstract concurrent programming. To this day nobody has found a better
compromise between notational elegance and efficient implementation. Still,
I cannot help feeling that we somehow looked at the scheduling problem
from the wrong point of view.

We now had all the pieces of the monitor puzzle, and I had adopted a
programming style that combined shared variables, critical regions, seeure
queueing variables, and procedures in a manner that closely resembled mon­
itors. But we still did not have an abstract monitor notation.

8 Shared Classes

The missing element in conditional critical regions was a concise represen­
tation of data abstraction. The declaration of a resource and the operations
associated with it were not combined into a single syntactical form, but were
distributed throughout the program text.

In the spring of 1972 I read two papers by Dahl (1972) and Hoare (1972)
on the dass concept of the programming language Simula 67. Although
Simula is not a concurrent programming language, it inspired me in the
following way: So far I had thought of a monitor as a program module that
defines all operations on a single instance of a data structure. From Simula

THE INVENTION OF CONCURRENT PROGRAMMING 27

I learned to regard a program module as the definition of a class of data
structures accessed by the same procedures.

This was a moment of truth for me. Within a few days I wrote a chapter
on resource protection for my operating "system book:

P. Brinch Hansen, Shared C/asses (1973)

I proposed to represent monitors by shared classes and pointed out that re­
source protection and type checking are part of the same problem: to verify
automatically that all operations on data structures maintain certain prop­
erties (called invariants).

My book includes a single monitor for a bounded buffer. The shared class
defines a data structure of type B, two procedures that can operate on the
data structure, and a statement that defines its initial state.

shared dass B =
buffer: array 0 .. max-1 of Tj
p, c: 0 .. max-1j
fuH: O .. maxj

procedure send(m: T)j
begin

await fuH < maxj
buffer[p] := mj
p := (p + 1) mod maxj
fuH := fuH + 1j

end
procedure receive(var m: T)j
begin

await fuH > Oj
m := buffer[c]j
c := (c + 1) mod maxj
fuH := fuH - 1j

end
begin p := Oj C := Oj fuH := 0 end

The Bounded Buffer as a Shared Class

The shared class notation permits multiple instances of the same monitor
type. A buifer variable b of type B is declared as

var b: B

Upon entry to the block in which the buifer variable is declared, storage is

28 PER BRINCH HANSEN

aIlocated for its data components, and the buffer is initialized by executing
the statement at the end of the dass definition.

Send and receive operations on a buffer bare denoted

b.send(x) b.receive(y)

A shared dass is a notation that explicitly restricts the operations on an
abstract data type and enables a compiler to check that these restrictions are
obeyed. It also indicates that aIl operations on a particular instance must
be executed as critical regions. In short, a shared class is a monitor type.

My decision to use await statements in the first monitor proposal was a
matter of taste. I might just as weIl have used secure queueing variables.

You might weIl ask why after inventing shared dasses with secure queue­
ing variables I published my original ideas in a textbook, instead of a pro­
fessional journal. WeIl, I was young and idealistic. I feIt that my first book
should indude at least one original idea. It did not occur to me that re­
searchers rarely look for original ideas in undergraduate textbooks. 13

Why didn't I publish a tutorial on the monitor concept? My professional
standards were deeply influenced by the Gier Algol compiler (Naur 1963), the
THE multiprogramming system (Dijkstra 1968), the Re 4000 multiprogram­
ming system (Brinch Hansen 1969), and the Pascal compiler (Wirth 1971).
Every one of these systems had been implemented before it was described in
a professional journal.

Since this was my standard of software research, I decided to implement
monitors in a programming language before writing more about it.

9 Monitor Papers

In his first paper on monitors, Hoare (1973b) used my shared dasses and
secure queueing variables (with minor changes) to outline an unimplemented
paging system. A year later, he published a second paper on monitors (Hoare
1974b). He acknowledged that "This paper develops Brinch Hansen's con­
cept of a monitor."

Avi Silberschatz (1992) conduded that "The monitor concept was devel­
oped by Brinch Hansen (1973b). A complete description of the monitor was
given by Hoare (1974b)."

13r did, however, send the complete manuscript of Operating System Principles, which
included my monitor concept, to Edsger Dijkstra and Tony Hoare in May 1972 (Horning
1972).

THE INVENTION OF CONCURRENT PROGRAMMING 29

C. A. R. Hoare, Monitors: An Operating System Structuring Concept (1974)

Hoare's contribution to the monitor concept was to refine the rules of process
resumption:

1. He replaced the "resume-all, one-at-a-time" policy of sec ure event vari­
ables with the more convenient "first-come, first-served" poliey of con­
dition variables.

2. He decreed "that a signal operation be followed immediately by re­
sumption of a waiting program, without possibility of an intervening
procedure call from yet a third program." This eliminated the need
for waiting loops.

3. He advocated Ole-Johan Dahl's simplifying suggestion that a signal
operation should terminate a monitor call (Hoare 1973c).

bounded buffer: monitor
begin buffer: array O .. N -1 of portion;

lastpointer: O .. N -1;
count: O .. N;
nonempty, nonfull: condition;

procedure append(x: portion);
begin if count = N then nonfull.wait;

note 0 :::: count< N;
buffer[lastpointer] := x;
last pointer : = lastpointer EIl 1;
count := count + 1;
nonempty.signal

end append;
procedure remove(result x: portion);

begin if count = 0 then nonempty.wait;
note 0 < count:::: N;
x := buffer[lastpoint e count];
count := count - 1;
nonful!. signal

end remove;
count := 0; lastpointer := 0

end bounded buffer;

The Bounded Buffer as a Monitor

This influential paper deserves a pI ace in the history of concurrent pro­
gramming as the first monitor tutorial:

30 PER BRINCH HANSEN

1. The monitor concept is illustrated by solutions to familiar programming
exercises: a single resource scheduler, a bounded buffer, an alarm clock,
a buffer pool, a disk head optimizer, and areaders and writers problem.

2. As an academic exercise he presents a semaphore implementation of
monitors. (In practice, monitors would, of course, be implemented by
uninterruptible operations in assembly language.)

3. Finally, he defines simple proof rules for condition variables.

PART III CONCURRENT PROGRAMMING LANGUAGES

Hoare (1974a) introduced the essential requirement that a programming lan­
guage must be secure in the following sense: A language should enable its
compiler and run-time system to detect as many cases as possible in which
the language concepts break down and produce meaningless results. 14

For a parallel programming language the most important security measure
is to check that processes access disjoint sets of variables only and do not
interfere with each other in time-dependent ways.

Unless the parallel features of a programming language are secure in this
sense, the effects of parallel programs are generally both unpredictable and
time-dependent and may therefore be meaningless. This does not necessarily
prevent you from writing correct parallel programs. It does, however, force
you to use a low-level, error-prone notation that precludes effective error
checking during compilation and execution.

The only secret about secure concurrent languages was that they could be
designed at all. Once you have seen that this is possible, it is not so difficult
to invent other concurrent languages. That is why I have included only the
first secure concurrent language, Concurrent Pascal.

In the first survey paper on concurrent programming I cited 11 papers
only, written by four researchers. None of them described a concurrent pro­
gramming language (Brinch Hansen 1973e). The development of monitors
and Concurrent Pascal started a wave of research in concurrent programming
languages. A more recent survey of the field includes over 200 re fe ren ces to
nearly 100 languages (BaI 1989).

Concurrent Pascal had obvious limitations by today's standards. But
in 1975 it laid the foundation for the development of secure programming
languages with abstract concepts for parallelism.

14This definition of security differs somewhat from its usual meaning of "the ability of
a system to withstand attacks from adversaries" (Naur 1974).

THE INVENTION OF CONCURRENT PROGRAMMING 31

10 Concurrent Pascal

On July 1, 1972, I became associate professor of computer science at Cal­
ifornia Institute of Technology. During my first academic year I prepared
three new courses and introduced Pascal on campus. These tasks kept me
busy for a while.

I also started thinking about designing a programming language with
concurrent processes and monitors. To reduce the effort, I decided to include
these concepts in an existing sequential language. Since I had used the
language in my operating system book, Pascal was an obvious choice for me.

In September 1973, I sent Mike McKeag "a copy of a preliminary working
document that describes my suggestion for an extension of Pascal with con­
current processes and monitors" (Brinch Hansen 1973d). This is the earliest
evidence of Concurrent Pascal.

By January 1975, the Concurrent Pascal compiler and its run-time sup­
port were running on a PDP 11/45 minicomputer at Caltech (Hartmann
1975, Brinch Hansen 1975f).

In May 1975, I published a paper on the new language:

P. Brinch Hansen, The Programming Language Concurrent Pascal (1975)

Concurrent Pascal extends Pascal with abstract data types known as pro­
cesses, monitors, and classes. Each type module defines the representation
and possible transformations of a single data structure. The syntax clearly
shows that each module consists of a set of variable declarations, a set of
procedures, and an initial statement.

A module cannot access the variables of another module. The compiler
uses this scope rule to detect synchronization errors before a program is ex­
ecuted. The run-time synchronization of monitor calls prevents other race
conditions.

A process can delay itself in a monitor variable of type queue. When an­
other process performs a continue operation on the same queue, the delayed
process (if any) immediately resurnes execution of its monitor procedure. In
any case, the process performing the continue operation immediately returns
from its monitor procedure.

A queue is either empty or holds a single process. A multiprocess queue
can be implemented as an array of single-process queues.

As a language designer, I have always feIt that one should experiment
with the simplest possible ideas before adopting more complicated ones. This
led me to use single-process queues and combine process continuation with

32

monitor exit.

PER BRINCH HANSEN

type bulfer =
monitor
var contents: array [l..max] of T;

head, tail, length: integer;
sender, receiver: queue;

procedure entry send(x: T);
begin

if length = max then delay(sender);
contents[tailJ := X;
tail := tail mod max + 1;
length := length + 1;
continue(receiver)

end;
procedure entry receive(var x: T);
begin

if length = 0 then delay(receiver);
x := contents[head];
head := head mod max + 1;
length := length - 1;
continue(send<;r)

end;

begin head := 1; tail := 1; full := 0 end

The Bounded Buffer in Concurrent Pascal

I feIt that the merits of a signaling scheme could be established only by
designing real operating systems (but not by looking at sm all programming
exercises). Since Concurrent Pascal was the first monitor language, I was
unable to benefit from the practical experience of others. After designing
small operating systems, I concluded that first-in, first-out queues are indeed
somewhat more convenient to use.

In any case, the virtues of different signaling mechanisms still strike me
as being only mildly interesting. In most cases, any one of them will do,
and all of them (including my own) are slightly complicated. Fortunately,
monitors have the marvelous praperty of hiding the details of scheduling fram
concurrent pracesses.

The pragmmming tricks of assembly language were impossible in Concur­
rent Pascal: there were no typeless memory words, registers, and addresses
in the language. The programmer was not even aware of the existence of
physical processors and interrupts. The language was so secure that concur-

THE INVENTION OF CONCURRENT PROGRAMMING 33

rent processes ran without any form of memory protection.
The portable compiler (written in Sequential Pascal) generated platform­

independent code, which was executed by a sm all kernel written in assembly
language (Hartmann 1975, Brinch Hansen 1975e). The language was moved
from one computer to another by rewriting the kernel of 4K words in the
assembly language of the target computer (Brinch Hansen 1975f) .15

Greg Andrews (1993) feIt that:

The contribution of Concurrent Pascal was indeed that it added a new
dimension to programming languages: modular concurrency. Monitors
(and classes) were essential to this contribution. And the modulariza­
tion they introduced has greatly influenced most subsequent concurrent
language proposals.

In a later essay on language description (Brinch Hansen 1981), I said:

The task of writing a language report that explains a programming
language with complete clarity to its implementors and users may look
deceptively easy to someone who hasn't done it before. But in reality it
is one the most difficult intellectual tasks in the field of programming.

WeIl, I was someone who hadn't done it before, and the Concurrent Pascal
report (Brinch Hansen 1975d) suffered from aIl the problems I mentioned in
the essay. I added, "I am particularly uncomfortable with the many ad hoc
restrictions in the language."

Ole-Johan Dahl (1993) disagreed:

I take issue with some of your reservations about Concurrent Pascal.
Of course a language built around a small number of mechanisms used
orthogonally is an ideal worth striving for. Still, when I read your
1977 book my reaction was that the art of imposing the right restric­
tions may be as important from an engineering point of view. So, he re
for once was a language, beautiful by its orthogonal design, which at
the same time was the product of a competent engineer by the re­
strictions imposed in order to achieve implement at ion and execution
efficiency. The adequacy of the language as a practical tool has been
amply demonstrated.

15Twenty years later, the designers of the Java language resurrected the idea of platform­
independent parallel programming (Gosling 1996). Unfortunately, they replaced the secure
monitor concept of Concurrent Pascal with insecure shortcuts (Brinch Hansen 1999).

34 PER BR1NCH HANSEN

Concurrent Pascal was followed by more than a dozen monitor languages,
listed in Brinch Hansen (1993a), among them Modula (Wirth 1977a), Pascal
Plus (Welsh 1979), and Mesa (Lampson 1980).

PART IV MODEL OPERATING SYSTEMS

By the end of 1975, I had used Concurrent Pascal to implement three small
operating systems of 600-1400 lines each:

• The single-user operating system Solo

• A job stream system

• Areal-time scheduler

The development and documentation effort of each system took a few months
(or weeks) only.

11 Solo Operating System

As a realistic test of the new programming language, I used Concurrent
Pascal to program a small operating system:

P. Brinch Hansen, The Solo Operating System: A Concurrent Pascal Program

(1976)

Solo was a portable single-user operating system for the development of
Sequential and Concurrent Pascal programs. It was implemented on a
PDP 11/45 minicomputer with removable disk packs. Every user disk was
organized as a single-level file system. The heart of Solo was a job pro­
cess that compiled and ran programs stored on the disk. Two additional
processes performed input/output spooling simultaneously.

Al Hartmann (1975) had already written the Concurrent Pascal compiler.
I wrote the operating system and its utility programs in three months. Wolf­
gang Franzen measured and improved the performance of the disk allocation
algorithm.

The Solo system demonstrated that it is possible to write small opera­
ting systems in a secure programming language without machine-dependent
features. The discovery that this was indeed possible for small operating
systems was more important (I think) than the invention of monitors.

THE INVENTION OF CONCURRENT PROGRAMMING 35

12 Solo Program Text

Solo was the first modular operating system implemented by means oi abstract
data types (classes, monitors and processes) with compile-time checking oi
access rights. The most significant contribution of Solo was undoubtedly
that the program text was short enough to be published in its entirety in a
computer journal:

P. Brinch Hansen, The Solo Operating System: Processes, Monitors and C/asses

(1976)

The new programming language had a dramatic (and unexpected) impact on
my programming style. It was the first time I had programmed in a language
that enabled me to divide programs into modules that could be programmed
and tested separately. The creative part was clearly the initial selection of
modules and the combination oi modules into hierarchical structures. The
programming of each module was often trivial. I so on adopted the rule that
each module should consist oi no more than one page oi text. Since each
module defined all the meaningful operations on a single data type (private
or shared), the modules could be studied and tested one at a time. As
a result these concurrent programs became more reliable than the hardware
they ran on.

In July 1975, when the Solo operating system had been working for three
months, I described it at the International Summer School in Marktoberdorf,
Germany. Hoare presented an outline of an unimplemented operating system
(Hoare 1976a).

At Caltech we prepared a distribution tape with the source text and
portable code of the Solo system, including the Concurrent and Sequential
Pascal compilers. The system reports were supplemented by implementation
notes (Brinch Hansen 1976b). By the spring of 1976 we had distributed the
system to 75 companies and 100 universities in 21 countries.

In a guest editorial on the Solo papers (Brinch Hansen 1976a), I wrote:

It is not uncommon for a computer scientist to make a proposal without
testing wh ether it is any good in practice. After spending 3 days writing
up the monitor proposal and 3 years implementing it, I can very weIl
understand this temptation. It is perhaps also sometimes a human
response to the tremendous pressure on university professors to get
fundingand recognition fast.

Nevertheless, we must remember that only one thing counts in en­
gineering: Does it work (not "might it work" or "wouldn't it be nice

36 PER BRINCH HANSEN

if it did")? What would we think of mathematicians if most of their
papers contained conjectures only? Sometimes an educated guess can
be a great source of inspiration. But we must surely hope that the
editors of computer journals will reject most proposals until they have
been tried at least experimentally.

All reviewers of my [operating system] book correctly pointed out
that the chapter on resource protection [introducing shared classes]
was highly speculative. The Solo operating system described here is
an attempt to set the record straight by putting monitors to a realistic
test.

13 The Architecture of Concurrent Programs

In July 1976 I joined University of Southern California as professor and
chair of computer science. Now that Concurrent Pascal was running I knew
that the time was ripe for a book on the principles of abstract parallel
programming.

My second book, The Architecture 01 Concurrent Pmgmms, includes the
complete text of the model operating systems written in Concurrent Pascal
(Brinch Hansen 1977b).

In a book review, Roy Maddux and Harlan Mills (1979) wrote: "This is,
as far as we know, the first book published on concurrent programming."
They were particularly pleased with the Solo system:

Here, an entire operating system is visible, with every line of program
open to scrutiny. There is no hidden mystery, and after studying such
extensive examples, the reader feels that he could tackle similar jobs
and that he could change the system at will. Never before have we seen
an operating system shown in such detail and in a manner so amenable
to modification.

Twenty years later, two of my former Ph.D. students recalled their ex­

perience of working with Concurrent Pascal:

Jon Fellows (1993): "The beauty of the structures you created using
Concurrent Pascal created an aura of magical simplicity. While work­
ing with my own programs and those of other graduate students, I
soon learned that ordinary, even ugly, programs could also be written
in Concurrent Pascal ... My current feeling is that the level of intel­
lectual effort required to create a beautiful program structure cannot

THE INVENTION OF CONCURRENT PROGRAMMING 37

be reduced by programming language features, but that these features
can more easily reveal a program's beauty to others who need to un­
derstand it."

Charles Hayden (1993): "I think the significance of the system was
. .. that one could provide a protected environment for concurrent
programming-a high-level language environment which could main­
tain the illusion that there was no "machine" level. It was remarkable
that through compile time restrictions and virtual machine error check­
ing ... you could understand the program behavior by looking at the
Pascal, not at the machine's registers and memory. It was remarkable
that the machine could retain its integrity while programs were being
developed, without hardware memory protection."

In designing Concurrent Pascal and the model operating systems written
in the language I followed a consistent set of programming principles. These
principles carried structured programming (Dijkstra 1972a) into the realm of
modular, concurrent programming:

P. Brinch Hansen, Design Principles (1977)

Roy Maddux and Harlan Mills (1979) agreed that:

An author does weIl to start by stating those beliefs and biases he holds
that are relevant to his work so that the reader is forewarned about
what will follow and can understand the motivation behind subsequent
decisions and choices. Brinch Hansen's opening chapter-a reasoned
essay on the fundamental principles of programming today-does this
remarkably weIl. The quotations at the end of the chapter are partic­
ularly weIl-chosen and make delightful reading.

PART V DISTRIBUTED COMPUTING

In the late 1970s, parallel computing was moving from multiprocessors with
shared memory towards multicomputers with distributed memory. For micro­
computer networks, Dijkstra, Hoare and I suggested different programming
models. Although our ideas opened the way for abstract distributed comput­
ing, they clearly needed furt her refinement before they could be incorporated
into programming languages.

38 PER BRINCH HANSEN

14 A Synthesis Emerging?

Edsger Dijkstra led the way. In a brief note he gave a personal account
of a discussion with Tony Hoare at the International Summer School in
Marktoberdorf, Germany, in July 1975:

E. W. Dijkstra, A Synthesis Emerging? (1975)

Hoare was trying to explain the class concept of Simula 67, when Dijkstra
began to:

change terminology, notation and a way of looking at it, things I had
to do in order to make it all fit within my frame of mind. To begin

with, I shall record how our discussions struck root in my mind. I don't

know whether areal Simula fan will still recognize the class-concept;

he may get the impression that I am writing about so met hing totally

different.

Indeed! What emerges is the exciting possibility of modular programs with
nondeterministic process types (calIed generators). In his usual colorful ter­
minology, Dijkstra calls these programs "elephants built from mosquitoes."

His simplest example is a generator, named nn, for natural numbers:

nn gen begin privar x; x virint := 0;
do ?inc ----+ x := x + 1

end

~ x > 0 cand ?dec ----+ x := x-I
od

(The notational details are not important here.)
The main program can declare a variable y as a natural number:

privar y; y vir nn;

The generator instance y keeps a natural number in a private variable x.
After initializing its value to zero, the generator is ready to perform an end­
less series of increase and decrease operations on x in response to commands
from the main program:

y.inc y.dec

The generator defines the increment operation as a guarded command

THE INVENTION OF CONCURRENT PROGRAMMING 39

?inc ----+ x := x + 1

When the main program issues an inerement eommand, the guard

?inc

is regarded as being true (onee), enabling the generator to exeeute the
guarded statement

x:= x + 1

However, if the main program issues a deerement eommand, the guard

x > 0 eand ?dec

does not become true until x > o.
So far, the generator looks very mueh like a monitor implement at ion of

a semaphore, but there are subtle differenees:

• Dijkstra views the main program and its generators as processes that
are synchronized during the execution of guarded commands.

• When the main program terminates, alt guards within its local gener­
ators become false, and the generator loops terminate too.

Dijkstra emphasizes that:

[In the past] it was the purpose of our programs to instruct our ma­
chines: now it is the purpose of the machines to execute our programs.
Whether the machine does so sequentially, one thing at a time, or with a
considerable amount of concurrency, is a matter of implement at ion and
should not be regarded as a property of the programming language.

This viewpoint naturally leads hirn to conclude that

• If the main program is concurrent, the generator does indeed imple­
ment a semaphore that delays a decrement operation until x > o.

• However, if the main program is sequential, an attempt to decrement
a natural number equal to zero will cause the main program to get
stuck.

40 PER BRINCH HANSEN

At this point Dijkstra introduces the powerful concept of recursive non­
deterministic processes. He programs a generator that defines a sequence oi
integers recursively. A parallel execution of this program can be visualized as
a pipeline oi processes. Each process accepts commands from its predecessor
(which is either another pipeline process or the main program).

An insert command, issued by the main program, propagates to the end
of the chain, where the last process extends the pipeline with another process.

A membership query moves down the pipeline until it either reaches a
process that holds the desired element or is absorbed at the end of the
pipeline. In a parallel implementation, a wave oi queries can move down the
pipeline simultaneously.

Edsger Dijkstra called it "A surprising discovery, the depth of which is
as far as I am concerned still unfathomed." In 1982 he added a final remark:

In retrospect this text is not without historical interest: it records the

highlights of a discussion mentioned las "Verbal communication" (Dijk­
stra 1975)] in C. A. R. Hoare's "Communicating sequential processes" ,
Comm. ACM 21, 8 (Aug. 1978),666-677. The text was evidently writ­

ten in astate of same excitement; in retrospect we may conclude that

this excitement was not entirely unjustified. Seeing Haare keenly in­
terested in the topic, I left that arena.

15 Communicating Sequential Processes

Three years after his discussion with Edsger Dijkstra in Marktoberdorf, Tony
Hoare publishes a paper on communicating sequential processes (also known
as eSP):

c. A. R. Hoare, Communicating Sequential Processes (1978)

This classic paper develops Dijkstra's (1975a) vision of nondeterministic pro­
cesses communicating by means of guarded commands (but without recur­
sion).

The bounded buffer, shown here, is a CSP process, named X, that can hold
up to ten buffer portions. After making the buffer empty to begin with, the
process executes a repetitive command (prefixed by an asterisk *). In each
cycle, the buffer process is delayed until one of two possible communications
takes place:

1. A process named producer is ready to execute an output command
X! e. In that case, the buffer process inputs the value of the expression

THE INVENTION OF CONCURRENT PROGRAMMING 41

x· .
buffer:CO .. 9)portion;
in,out:integer; in:= 0; out:= 0;
comment 0 :::; out :::; in :::; out + 10;

*[in < out + 10; producer?bufferCin mod 10) -4 in:= in + 1
Dout < in; consumer?moreO -4 consumer!bufferCout mod 10);

out := out + 1

The Bounded Buffer in CSP

e in the last buffer element, provided that there is room for it in the
buffer. This is the effect of the guarded input command:

in < out + 10; producer?bufferCin mod 10) -4 in:= in + 1

2. A process named consumer outputs arequest for more input, X! more (),
and inputs the next buffer portion in a local variable v by executing
the command X?v. When the buffer is nonempty, it accepts the request
before outputting the first portion:

out < in; consumer?moreC) -4

consumer!bufferCout mod 10); out:= out + 1

This paper describes highly original ideas:

1. Synchronous communication. Hoare introduces this idea, which was
well-known in computer architectures but novel in programming languages:

Communication occurs when one process names another as destination
for output and the second proeess names the first as souree for input.

In this ease, the value to be output is eopied from the first proeess to
the second. There is no automatie buffering: In general, an input or
output command is delayed until the other proeess is ready with the
corresponding output or input. Such delay is invisible to the delayed
process.

2. Input guards. CSP incorporates Dijkstra's (1975a) concept of nonde­
terministic process interactions controlled by guarded commands:

42 PER BRINCH HANSEN

A guarded command with an input guard is selected for execution only
if and when the source named in the input command is ready to execute
the corresponding output command. If several input guards of a set of

alternatives have ready destinations, only one is selected and the others

have no effect; but the choice between them is arbitrary.

3. Coincidence oi events. In 1965, Dijkstra demonstrated that mutual
exclusion of events is a fundamental programming concept. In 1975, he
showed that the opposite idea, the coincidence of events, is just as important!
This strikes me as the most profound idea incorporated in CSP.

4. Programming examples. The CSP paper includes solutions to a wide
variety of interesting problems.

However, the CSP proposal also has so me awkward details:

1. Direct process naming. One of the major advantages of monitors is
their ability to communicate with processes and schedule them without be­
ing aware of process identities. In CSP, an input/output command must
name the sour ce or destination process directly. The text of a process must
therefore be modified when it is used in different contexts. This complicates
the examples in Hoare's paper: the user of a process array S (1 .. n) is itself
named S (0). And the prime sieve is composed of three different kinds of
processes to satisfy the naming rules.

2. Pattern matching. The CSP notation does not include type declara­
tions of communication channels, but depends (conceptually) on dynamic
checking to recognize matching input and output commands in parallel pro­
cesses.

3. Conditional input. Hoare mentions that:

conditions can be used to delay acceptance of inputs which would vio­

late scheduling constraints-postponing them until so rne later occasion

when so me other process has brought the monitor into astate in which

the input can validly be accepted. This technique is similar to a condi­
tional critical region (Hoare 1971) and it obviates the need for special

synchronizing variables such as events, queues, or conditions. However,
the absence of these special facilities certainly makes it more difficult

or less efficient to solve problems involving priorities. 16

16Notice, however, that a monitor with await statements on Boolean conditions does not
require queueing variables either (Brinch Hansen 1973c).

THE INVENTION OF CONCURRENT PROGRAMMING 43

4. No output guards. This restriction forces Hoare to publish a CSP
version of the bounded buffer with asymmetrie input; output operations. For
aesthetic reasons, I find this lack of elegance regrettable.

5. Proeess termination. CSP uses Dijkstra's (1975a) termination rule:

A repetitive command may have input guards. If all the sources named
by them have terminated, then the repetitive command also term i­
nates.

Hoare maintains that:

The automatie termination of a repetitive command on termination
of the sources of all its input guards is an extremely powerful and
convenient feature but it also involves some subtlety of specification to
ensure that it is implementable; and it is certainly not primitive, since
the required effect can be achieved (with considerable inconvenience)
by explicit exchange of "endO" signals.

Seven years later, Hoare (1985) realizes that:

The trouble with this convention is that it is complicated to define
and implement; and methods of proving program correctness seem no
simpler with it than without.

6. No recursion. The most obvious weakness of CSP is the omzsswn
01 Dijkstra's beautiful concept of reeursive nondeterministie proeesses. A
CSP process cannot activate itself recursively. It is, however, possible to
activate fixed-Iength process arrays, which can imitate the behavior (but not
the elegance) of recursive processes. 17

CSP was a major achievement and the inspiration for a new generation
of concurrent programming languages, incIuding the nonrecursive language
occam for the transputer (Inmos 1989a, 1989b) and the recursive language
Joyce (Brinch Hansen 1987a).

Seven years later Hoare (1985) published a mathematieal theory of com­
munieating sequential proeesses using a recursive variant of CSP. This nota­
tion has played a significant role in research on the mathematical foundations
of concurrency. Hoare (1981) is an early example of this theoretical work
(which is beyond the scope of this essay).

17My alternative programming model, Distributed Processes, is also nonrecursive (Brinch
Hansen 1978c).

44 PER BRINCH HANSEN

16 Distributed Processes

For microcomputer networks with distributed memory I introduced the idea
of a synchronized procedure that can be called by one process and executed
by another process. This proposal combines processes and monitors into a
single concept, called distributed processes. In distributed operating systems,
this communication paradigm is known as remote procedure calls.

P. Brinch Hansen, Distributed Processes: A Concurrent Programming Concept

(1978)

Distributed Processes have the following properties:

• Areal-time program consists of a fixed number of concurrent processes that
are started simultaneously and exist forever. Each process can access its own
variables only. There are no common variables.

• A process can call common procedures defined within other processes. These
procedures are executed when the other processes are waiting for some condi­
tions to become true. A procedure call from one process to another is called
an external request. This is the only form of process communication.

• Processes are synchronized by means of nondeterministic guarded regions
(Hoare 1971, Dijkstra 1975b, Brinch Hansen 1978c).

The bounded buffer, shown here, is a process that stores a sequence of
characters transmitted between processes by means of send and receive pro­
cedures.

process buffer
s: seq[nJchar
proc send(c: char) when not s.full: s.put(c) end
proc rec(#v: char) when not s.empty: s.get(v) end
s:= [J

The Bounded Buffer with Distributed Processes

The initial statement makes the buffer empty and terminates. The buffer
process, however, continues to exist and can now be called by other processes:

call buffer.send(e) call buffer.rec(v)

THE INVENTION OF CONCURRENT PROGRAMMING 45

After initialization, the buffer process is idle between external calls. This
process is similar to a monitor (Brinch Hansen 1973c) with conditional crit­
ical regions (Hoare 1971).

In general, an external call of a procedure R, declared in a process Q,
may include both value and result parameters:

call Q.R(expressions, variables)

The parameter passing between two distributed processes requires a single
input operation when an extern al procedure is activated, followed by a single
output operation when it terminates.

The relationship between two communicating processes is asymmetrical
and requires only that the caller of a procedure name the process that per­
forms it. This asymmetry is useful in hierarchical systems, in which server
processes should be unaware of the identities of client processes.

Every process is quasiparallel in the following sense:

• A proeess beg ins by exeeuting its initial statement. This eontinues until the
statement either terminates or waits for a eondition to become true. Then
another operation is started (as the result of an external request). When
this operation in turn terminates or waits the proeess will either begin yet
another operation (requested by another proeess) or it will resume an earlier
operation (as the result of a eondition beeoming true). This interleaving
of the initial statement and the external requests eontinues forever. If the
initial statement terminates, the proeess eontinues to exist and will still aeeept
external statements.

• In a microproeessor network where eaeh proeessor is dedieated to a single
proeess it is an attractive possibility to let a proeess earry out eomputa­
tions between external ealls of its proeedures. The shortest job next scheduler
(shown in the paper) takes advantage of this eapability by selecting the next
user while the resouree is being used by the present user.

The major weaknesses of distributed processes are (1) the implicit waiting
loops on Boolean conditions and (2) the absence of parallel recursion.

It was Jim White (1976) who first proposed remote procedure calls, as an
informal programming style. However, White did not explain how to prevent
race conditions between unsynchronized remote ealls and loeal proeesses that
are being exeeuted by the same proeessor. This fiaw potentially made remote
proeedure ealls as unsafe as interrupts that eannot be disabled! Nevertheless,
the original idea was his.

46 PER BRINCH HANSEN

My Ph.D. student Charles Hayden (1979) implemented an experimen­
tal language with distributed proeesses on an LSI-11 mieroeomputer and
evaluated the new paradigm by writing small simulation programs.

Greg Andrews (1991) aeknowledged that:

Per Brinch Hansen (1978) developed the first programming language
based on [remote procedure caUs] RPC. His language is caUed Dis­
tributed Processes (DP).18

Aeeording to Olivier Roubine (1980), my proposal was "a souree of inspi­
ration in the design of the Ada tasking faeilities." The rendezvous eoneept
in the language Ada eombines the remote procedure calls of distributed pro­
ces ses with the selection of alternative interactions in CSP.

Since then, operating system designers have turned remote procedure
calls into an unreliable mechanism of surprising complexity. In their present
form, remote proeedure calls are an attempt to use unreliable message pass­
ing to invoke procedures through loeal area networks.

Tay (1990) admits that "Currently, there are no agreed definition on
the semantics of RPC." Leach (1983) goes one step further and advocates
that "each remote operation implements a protocol tailored to its need."
Sinee it ean be both system-dependent and application-dependent, a remote
proeedure eall is no longer an abstract eoneept.

After implementing a remote procedure call mechanism for the distributed
operating system Unix United, Santosh Shrivastava and Fabio Panzieri (1982)
concluded:

At a superficial level it would seem that to design a program that
provides a remote procedure caU abstraction would be a straightforward
exercise. Surprisingly, this is not so. We have found the problem of the
design of the RPC to be rather intricate.

18Rarely does anyone replace single words, like "Pascal," "Monitor," "Solo" or "Joyce,"
by baffling acronyms-P, M, S or J. But carefully chosen longer names, like "Condi­
tional Critical Region," "Concurrent Pascal," "Communicating Sequential Processes,"
"Distributed Processes" and "Remote Procedure CaU," are doomed to be abbreviated
as CCR, CP, CSP, DP and RPC. Ij you believe that papers should be easy to read (but
not necessarily easy to write) , the lesson is clear: Always use single words to name your
concepts!

THE INVENTION OF CONCURRENT PROGRAMMING 47

17 Joyce

The most surprising idea in Dijkstra's "Emerging Synthesis" (1975a) was his
introduction of recursive nondeterministic processes. This idea was clearly
ahead of its time. Some ten years would pass before Hoare (1985) published
a theoretical recursive variant of CSP.

Two years later, I published the first recursive esp language imple­
mented on a computer:

P. Brinch Hansen, Joyce-A Programming Language {or Distributed Systems

(1987)

Joyce is a secure CSP language based on a minimal subset of Pascal. A Joyce
program activates recursive processes, known as agents. These agents com­
municate through synchronous channels. A channel can transfer messages of
different (but fixed) types between two or more agents. The compiler checks
message types and ensures that agents use disjoint variables only.

type stream == [int(integer)];

agent buffer(inp, out: stream);
const n == 10;
type contents = array [Ln] of integer;
var head, tail, length: integer;

ring: contents;
begin

head := 1; tail := 1; length := 0;
while true do

poil
inp?int(ring[tailJ) & length < n - >

tail := tail mod n + 1;
length := length + 11

out!int(ring[headJ) & length > 0 - >
head := head mod n + 1;
length := length - 1

end
end;

The Bounded Buffer in Joyce

The bounded buffer, shown here, is defined by an agent procedure. A
buffer agent uses two channels of type stream. Every communication through
a stream channel transmits a single symbol, named int, from one agent to
another. The symbol carries a message of type integer.

48 PER BRINCH HANSEN

A buffer agent transmits an endless stream of symbols from one channel
to another in response to input/output commands from other agents. In
each cycle, a buffer agent executes a polling statement that delays it until a
conditional communication takes place through one of its channels.

In general:

A Joyce program consists of nested procedures which define commu­
nicating agents. Joyce permits unbounded (recursive) activation of
agents. The execution of a program activates an initial agent. Agents
may dynamically activate subagents which run concurrently with their
creators. The variables of an agent are inaccessible to other agents.

Agents communicate by means of symbols transmitted through
channels. Every channel has an alphabet-a fixed set of symbols that
can be transmitted through the channel. A symbol has a name and
may carry a message of a fixed type.

Two agents match when one of them is ready to output a symbol
to a channel and the other is ready to input the same symbol from
the same channel. When this happens, a communication takes place
in which a message from the sending agent is assigned to a variable of
the receiving agent.

The communications on a channel take place one at a time. A
channel can transfer symbols in both directions between two agents.

A channel may be used by two or more agents. If more than two
agents are ready to communicate on the same channel, it may be pos­
sible to match them in several different ways. The channel arbitrarily
selects two matching agents at a time and lets them communicate.

A polling statement enables an agent to examine one or more chan­
nels until it finds a matching agent. Both sen ding and receiving agents
may be polled.

Agents create channels dynamically and access them through local
port variables. When an agent creates a channel, a channel pointer
is assigned to a port variable. The agent may pass the pointer as a
parameter to subagents.

When an agent reaches the end of its defining procedure, it waits
until all its subagents have terminated before terminating itself. At
this point, the local variables and any channels created by the agent
cease to exist.

Hoare (1978) emphasized that CSP should not be regarded as suitable
for use as a programming language but only as a partial solution to the

problems tackled.
Joyce removed unnecessary limitations of esp by introducing:

THE INVENTION OF CONCURRENT PROGRAMMING 49

• Recursive agent procedures.

• Simple agent termination.

• Typed channel alphabets.

• Typed port variables.

• Bidirectional synehronous ehannels.

• Nondeterministie shared channels.

• Symmetrie input/output polling.

To be able to experiment with parallel recursion, I developed portable im­
plementations of Joyce for a personal computer and a multiprocessor (Brinch
Hansen 1987b, 1989b).

I still marvel at the beauty of recursive agents, such as the bounded
buffer, the sorting array, the prime sieve, the integer set, and the Fibonacci
tree (shown in the paper).

How can I explain the joy of being able, for the first time, to explore this
new dass of algorithms in a concise, executable language? The experience
reminds me of the wise observation by the logician Susanne K. Langer (1967):

There is something uneanny about the power of a happily chosen ideo­
graphie language; for it often allows one to express relations whieh have
no names in naturallanguage and therefore have never been notieed by
anyone. Symbolism, then, becomes an organ of diseovery rather than
me re notation.

PART VI IMPLEMENTATION ISSUES

I promised to omit "Implementation details (except in outline)." Parallel
programming languages do, however, pose special implementation problems
that deserve your attention:

• Interference controldurmg compilation .

• Memory allocation of parallel recursion.

50 PER BRINCH HANSEN

18 SuperPascal

When Hoare (1971) published his paper on conditional critical regions, we
did not fully appreciate the complexity of checking interference in a block­
structured parallellanguage. You see, the subsequent invention of modular
parallelism made interference checking so simple that we hardly noticed how
hard it could have been!

Out of curiosity I asked myself twenty-three years later, Is it feasible to
detect pT'Ocess interference in a block-structured language with nonmodular
parallelism?

P. Brinch Hansen. SuperPascal-A Publication Language for Parallel Scientific

Computing (1994)

The parallel features of SuperPascal are a subset of occam 2 with the added
generality of dynamic pT'Ocess arrays and recursive parallel pT'Ocesses (Inmos
1988b, Cok 1991). SuperPascal omits ambiguous and insecure features of
Pascal. Restrictions on the use of variables enable a single-pass compiler to
check that parallel pT'Ocesses are disjoint, even if the pT'Ocesses use pT'Ocedures
with global variables. 19

When you have read this paper, you can judge for yourself how com­
plicated concurrent programming would have been without some form of
modularity, such as the process and monitor types of Concurrent Pascal.

After reading the paper, Dave Parnas (1993) feIt that "Some might sug­
gest that nobody would be able to build practical programs in a language
with so many restrictions." I answered (Brinch Hansen 1993d):

I too was surprised at the restrictions required to make parallelism se­
eure in a bloek-structured language. However, I think that the exercise

merely foreed me explicitly to reeognize the eomplexity of the proeedure

eoneept in our programming languages (such as Pascal). SuperPascal

foreed me to use a more restricted proeedure eoneept. So far, I have
found that the rules enforeed by the compiler eontribute to program

clarity.

After developing a portable implementation of SuperPascal on a Sun
workstation:

19Since the language does not support conditional communication, a bounded buffer
cannot be programmed in SuperPascal.

THE INVENTION OF CONCURRENT PROGRAMMING 51

[I used] the Super Pascal notation to write portable programs for regu­
lar problems in computational science (Brinch Hansen 1995). I found
it easy to express these programs in three different programming lan­
guages (SuperPascal, Joyce,20 and occam 2) and run them on three

different architectures (a Unix workstation, an Encore Multimax, and
a Meiko Computing Surface).21

19 Efficient Parallel Recursion

In esp and Distributed Processes, Hoare and I shied away from paral­
lel recursion because of the difficulty of implementing an unbounded tree­
structured stack without using garbage collection.

Dijkstra (1975a) was well aware of this stumbling block:

the storage requirements for a sequence are very simple, viz. a stack.

(In our rejected example of the binary tree, although lifetimes are, in

a fashion, nested, life is not so simple.)

After using static memory allocation in Concurrent Pascal, it took me
twenty years to discover a simple method for efficient parallel recursion
(which I used to implement SuperPascal):

P. Brinch Hansen, Efficient Parallel Recursion (1995)

I now believe that we should have used parallel recursion from the beginning,
even though we didn't know how to implement it. 22 This kind of intellectual
courage paid off handsomely when Peter Naur (1960) included sequential
recursion in his famous Algol 60 report, before Dijkstra (1960) had shown
how to implement it efficiently using a run-time stack.

THE END OF AN ERA

The development of abstract language notation for concurrent programming
started in 1965. Twenty years later Judy Bishop (1986) concluded:

2°Brinch Hansen (1988).

21The Encore Multimax was a multiprocessor with 18 processors sharing a memory of
128 MB (Trew 1991). The Computing Surface was a multicomputer with 48 transputers,
each with 1 MB of local memory (Inmos 1988a, Trew 1991).

22 As you can tell, I am now a middle-aged idealist.

52 PER BRINCH HANSEN

It is evident that the realm of concurrency is now firmly within the
ambit of reliable languages and that future designs will provide for
concurrent processing as a matter of course.

So passed an exciting era.

Acknowledgements

It is a pleasure to acknowledge the perceptive comments of Charles Hayden,
Henk Kruijer, Peter O'Hearn and Charles Reynolds.

I thank the Association for Computing Machinery, the Institute of Elec­
trical and Electronics Engineers, and Springer-Verlag for permission to in­
clude parts of my earlier essays:

• P. Brinch Hansen, A keynote address on concurrent programming. Computer 12,
5 (May 1979), 50-56. Copyright © 1979, Institute of Electrical and Electronics
Engineers, Inc.

• P. Brinch Hansen, Monitors and Concurrent Pascal: A personal history. 2nd A CM
Conlerence on the History 01 Programming Languages, Cambridge, MA, April 1993.
In SIGPLAN Notices 28, 3 (March 1993), 1-35. Copyright © 1993, Association for
Computing Machinery, Inc.

• P. Brinch Hansen, The evolution of operating systems. In P. Brinch Hansen Ed.,
Classic Operating Systems: Prom Batch Processing to Distributed Systems. Springer­
Verlag, New York, 2001, 1-34. Copyright © 2001, Springer-Verlag New York, Inc.

BIBLIOGRAPHY

* Classic papers included in this book.
• Recommended for furt her reading.
o Cited for historical reasons.

1. • G. R. Andrews and F. B. Schneider 1983. Concepts and notations for concurrent
programming. Computing Surveys 15, 1 (March), 3-43.

2 .• G. R. Andrews 1991. Concurrent Programming: Principles and Practice. Benja­
minjCummings, Redwood City, CA.

3. 0 G. R. Andrews 1993. Reviewers' comments. In P. Brinch Hansen, Monitors and
Concurrent Pascal: a personal his tory. SIGPLAN Notices 28,3 (March 1993), 1-35.

4 .• H. E. Bai, J. G. Steiner and A. S. Tanenbaum 1989. Programming languages for
distributed computing systems. ACM Computing Surveys 21, (September), 261-
322.

5 .• J. Bishop 1986. Data Abstraction in Programming Languages. Addison-Wesley,
Reading, MA.

THE INVENTION OF CONCURRENT PROGRAMMING 53

6 .• J. Boyle, R. Butler, Terrence Disz, Barnett Glickfeld, Ewing Lusk, Ross Overbeek,
James Patterson and Rick Stevens 1987. Portable Programs for Parallel Processors.
Holt, Rinehart and Winston, New York.

7. 0 P. Brinch Hansen 1967a. The logical structure of the RC 4000 computer. BIT 7,
3,191-199.

8. 0 P. Brinch Hansen 1967b. The RC 4000 real-time control system at Pulawy. BIT
7, 4. 279-288.

9. 0 P. Brinch Hansen 1968. The Structure of the RC 4000 Monitor. Regnecentralen,
Copenhagen, Denmark (February).

10. * P. Brinch Hansen 1969. RC 4000 Software: Multiprogramming System. Regne­
centralen, Copenhagen, Denmark, (April). Article 3.

11. • P. Brinch Hansen 1970. The nucleus of a multiprogramming system. Communi­
cations of the ACM 13, 4 (April), 238-241, 250.

12. * P. Brinch Hansen 1971a. An outline of a course on operating system principles.
In C. A. R. Hoare and R. H. Perrott Eds. 1972, Operating Systems Techniques,
Proceedings of a Seminar at Queen's University, Belfast, Northern Ireland, August­
September 1971, Academic Press, New York, 29-36. Article 6.

13 .• P. Brinch Hansen 1972a. A comparison of two synchronizing concepts. Acta
Informatica 1, 3 (1972), 190-199.

14. * P. Brinch Hansen 1972b. Structured multiprogramming. Communications of the
ACM 15,7 (July), 574-578. Article 7.

15 .• P. Brinch Hansen 1973a. Testing a multiprogramming system. Software-Practice
and Experience 3, 2 (April-June), 145-150.

16 .• P. Brinch Hansen 1973b. Operating System Principles. Prentice-Hall, Englewood
Cliffs, NJ (May) ..

17. * P. Brinch Hansen 1973c. Class Concept. In Operating System Principles, P.
Brinch Hansen, Prentice Hall, Englewood Cliffs, NJ, (July 1973), 226-232. Article
8.

18. 0 P. Brinch Hansen 1973d. On September 6, 1973, I sent Mike McKeag "a copy of a
preliminary document that describes my suggestion for an extension of Pascal with
concurrent processes and monitors" (R. M. McKeag, letter to P. Brinch Hansen,
July 3, 1991). No longer available.

19. 0 P. Brinch Hansen 1973e. Concurrent programming concepts. ACM Computing
Surveys 5, 4, (December), 223-245.

20. 0 P. Brinch Hansen 1974a. Concurrent Pascal: a programming language for op­
erating system design. Information Science, California Institute of Technology,
Pasadena, CA, (April). (Referenced in A. Silberschatz, R. B. Kieburtz and A. J.
Bernstein 1977. Extending Concurrent Pascal to allow dynamic resource manage­
ment. IEEE Transactions on Software Engineering 3, (May), 210-217.)

21. * P. Brinch Hansen 1975a. The programming language Concurrent Pascal. IEEE
Transactions on Software Engineering 1, 2 (June), 199-207. Original version: In­
formation Science, California Institute of Technology, Pasadena, CA, (November
1974). Article 10.

54 PER BRlNCH HANSEN

22. * P. Brinch Hansen 1975b. The Solo operating system: a Concurrent Pascal pro­
gram. Information Science, California Institute of Technology, Pasadena, CA,
(June-July). Also in Software-Practice and Experience 6, 2 (April-June 1976),
141-149. Article 11.

23. * P. Brinch Hansen 1975c. The Solo operating system: processes, monitors and
classes. Information Science, California Institute of Technology, Pasadena, CA,
(June--July). Also in Software-Practice and Experience 6, 2 (April-June 1976),
165-200. Article 12.

24. 0 P. Brinch Hansen 1975d. Concurrent Pascal report. Information science, Cali­
fornia Institute of Technology, Pasadena, CA, (June). Also in P. Brinch Hansen
1977b, The Architecture of Concurrent Programs, Prentice-Hall, Englewood Cliffs,
NJ, (July), 231-270.

25. 0 P. Brinch Hansen and A. C. Hartmann 1975e. Sequential Pascal report. Infor­
mation science, California Institute of Technology, Pasadena, CA, (July).

26. 0 P. Brinch Hansen 1975f. Concurrent Pascal machine. Information Science, Cali­
fornia Institute of Technology, Pasadena, CA, (October). Also in P. Brinch Hansen
1977b, The Architecture of Concurrent Programs, Prentice-Hall, Englewood Cliffs,
NJ, (July), 271-297.

27. 0 P. Brinch Hansen 1976a. Innovation and trivia in program engineering. Guest
Editorial, Software-Practice and Experience 6, 2 (April-June), 139-140.

28. 0 P. Brinch Hansen 1976b. Concurrent Pascal implementation notes. Information
Science, California Institute of Technology, Pasadena, CA. No longer available.
(Referenced in M. S. Powell, Experience oftransporting and using the Solo operating
system. Software-Practice and Experience 9, 7 (July 1979), 561-570.)

29 .• P. Brinch Hansen 1977a. Experience with modular concurrent programming,
IEEE Transactions on Software Engineering 3, 2 (March), 156-159.

30 .• P. Brinch Hansen 1977b. The Architecture of Concurrent Programs. Prentice­
Hall, Englewood Cliffs, NJ, (July).

31. * P. Brinch Hansen 1977c. Design Principles. In P. Brinch Hansen, The Architectu,re
of Concurrent Programs, Prentice Hall, Englewood Cliffs, NJ, (July), 3-14. Article
13.

32 .• P. Brinch Hansen 1978a. Network: A multiprocessor program. IEEE Transac­
tions on Software Engineering 4,3 (May), 194-199.

33 .• P. Brinch Hansen and J. Staunstrup 1978b. Specification and implementation of
mutual exclusion. IEEE Transactions on Software Engineering 4, 4 (September),
365-370.

34. * P. Brinch Hansen 1978c. Distributed Processes: a concurrent programming con­
cept. Communications of the ACM 21, 11 (November), 934-941. Article 16.

35 .• P. Brinch Hansen 1978d. A keynote address on concurrent programming. IEEE
Computer Software and Applications Conference, Chicago, IL, (November), 1-6.
Also in Computer 12, 5 (May 1979), 50-56.

36 .• P. Brinch Hansen 1978e. Reproducible testing of monitors. Software-Practice
and Experience 8, 6 (November-December), 721-729.

THE INVENTION OF CONCURRENT PROGRAMMING 55

37 .• P. Brinch Hansen 1979. The end of a heroic era. In P. Wegner Ed. Research
Directions in Software Technology, MIT Press, Cambridge, MA, 646-649.

38 .• P. Brinch Hansen and J. A. Fellows 1980. The Trio operating system. Software­
Practice and Experience 10, 11 (November), 943-948.

39 .• P. Brinch Hansen 1981. The design of Edison. Software-Practice and Experience
11,4 (April), 363-396.

40. * P. Brinch Hansen 1987a. Joyce-A programming language for distributed sys­
tems. Software-Practice and Experience 17, 1 (January), 29-50. Artic1e 17.

41. • P. Brinch Hansen 1987b. A Joyce implementation. Software-Practice and Ex­
perience 17, 4 (April 1987), 267-276.

42. 0 P. Brinch Hansen and A. Rangachari 1988. Joyce performance on a multipro­
cessor. School of Computer and Information Science. Syracuse University, NY,
(September) .

43 .• P. Brinch Hansen 1989a. The Joyce language report. Software-Practice and
Experience 19, 6 (June) , 553-578.

44 .• P. Brinch Hansen 1989b. A multiprocessor implementation of Joyce. Software­
Practice and Experience 19, 6 (June) , 579-592.

45. • P. Brinch Hansen 1990. The nature of parallel programming. In M. A. Arbib
and J. A. Robinson Eds., Natural and Artificial Parallel Computation, MIT Press,
Cambridge, MA, 31-4.6.

46 .• P. Brinch Hansen 1993a. Monitors and Concurrent Pascal: a personal history.
SIGPLAN Notices 28, 3 (March), 1-35. Also in T. J. Bergin and R. G. Gibson Eds.
1996, History of Programming Languages 11, Addison-Wesley Publishing, Reading,
MA,121-172.

47 .• P. Brinch Hansen 1993b. Model programs for computational science: a program­
ming methodology for multicomputers. Concurrency-Practice and Experience 5,
5 (August), 407-423.

48 .• P. Brinch Hansen 1993c. Parallel cellular automata: a model program for com­
putational science. Concurrency-Practice and Experience 5, 5 (August), 425-448.

49. 0 P. Brinch Hansen 1993d. Letter to D. L. Parnas, (December 17).

50 .• P. Brinch Hansen 1994a. Do hypercubes sort faster than tree machines? Concur­
rency-Practice and Experience 6, 2 (April), 143-151.

51. • P. Brinch Hansen 1994b. The programming language SuperPascal. Software­
Practice and Experience 24, 5 (May), 467-483.

52. * P. Brinch Hansen 1994c. SuperPascal-A publication language for parallel sci­
entific computing. Concurrency-Practice and Experience 6, 5 (August), 461-483.
Article 18.

53 .• P. Brinch Hansen 1994d. Interference control in SuperPascal-a block-structured
parallellanguage. The Computer Journal 37, 5, 399-406.

54 .• P. Brinch Hansen 1995a. Studies in Computational Science: Parallel Program­
ming Paradigms. Prentice Hall, Englewood Cliffs, NJ, (March).

56 PER BRINCH HANSEN

55. * P. Brinch Hansen 1995b. Efficient parallel recursion, SIGPLAN Notices 30, 12
(December), 9-16. Article 19.

56. • P. Brinch Hansen 1996. The Search for Simplicity: Essays in Parallel Program­
ming. IEEE Computer Society Press, Los Alamitos, CA, (April).

57 .• P. Brinch Hansen 1999. Java's insecure parallelism. SIGPLAN Notices 34, 4
(April), 38-45.

58. • P. Brinch Hansen 2000. The evolution of operating systems. In P. Brinch Han­
sen Ed. 2001, Classic Operating Systems: From Batch Processing to Distributed
Systems, Springer-Verlag, New York, (January), 1-34.

59. • P. Brinch Hansen Ed. 2001. Classic Operating Systems: From Batch Processing
to Distributed Systems. Springer-Verlag, New York, (January).

60 .• C. Bron 1972. Allocation of virtual store in the THE multiprogramming system.
In C. A. R. Hoare and R. H. Perrott Eds., Operating Systems Techniques, Academic
Press, New York, 168-184.

61. • R. H. Campbell and A. N. Habermann 1974. The specification of process syn­
chronization by path expressions. Lecture Notes in Computer Science 16, Springer­
Verlag, New York, 89-102.

62. • N. Carriero and D. Gelernter 1989. Linda in context. Communications of the
ACM 32, 4 (April), 444-458.

63 .• R. S. Cok 1991. Parallel Programs for the Transputer. Prentice Hall, Englewood
Cliffs, NJ.

64 .• M. I. Cole 1989. Algorithmic Skeletons: Structured Management of Parallel Com­
putation. MIT Press, Cambridge, MA.

65 .• D. Coleman 1980. Concurrent Pascal-an appraisal. In R. M. McKeag and A. M.
Macnaghten Eds., On the Construction oi Programs, Cambridge University Press,
New York, 213-227.

66. 0 Cosine Report 1971, An Undergraduate Course on Operating Systems Principles,
P. J. Denning, J. B. Dennis, B. Lampson, A. N. Haberman, R. R. Muntz and
D. Tsichritzis Eds., Commission on Education, National Academy of Engineering,
Washington, DC, (June).

67 .• P. J. Courtois, F. Heymans and D. L. Parnas 1971. Concurrent control with
"readers" and "writers." Communications oi the ACM 14, 10 (October), 667-668.

68. 0 O.-J. Dahl and K. Nygaard 1963. Preliminary presentation of the Simula lan­
guage (as of May 18, 1963) and so me examples of network descriptions. Norwegian
Computing Center, Oslo, Norway.

69 .• O.-J. Dahl and C. A. R. Hoare 1972. Hierarchical program structures. In O.-J.
Dahl, E. W. Dijkstra and C. A. R. Hoare, Eds., Structured Programming, Academic
Press, New York, 175-220.

70. 0 O.-J. Dahl 1993. Reviewers' comments. In P. Brinch Hansen, Monitors and
Concurrent Pascal: a personal history. SIGPLAN Notices 28, 3 (March), 1-35.

71. 0 E. W. Dijkstra 1960. Recursive programming. Numerische Mathematik 2, 312-
318.

THE INVENTION OF CONCURRENT PROGRAMMING 57

72. * E. W. Dijkstra 1965. Cooperating sequential processes. Technological University,
Eindhoven, The Netherlands, (September). Also in F. Genuys Ed. 1968. Program­
ming Languages, Academic Press, New York, 43-112. Article 1.

73. * E. W. Dijkstra 1968. The structure of the THE multiprogramming system. Com­
munications of the ACM 11, 5 (May), 341-346. Article 2.

74. * E. W. Dijkstra 1971. Hierarchical ordering of sequential processes. Acta Infor­
matica 1, 2 (October), 115-138. Article 4.

75 .• E. W. Dijkstra 1972a. Notes on structured programming, In O.-J. Dahl, E. W.
Dijkstra and C. A. R. Hoare, Eds., Structured Programming, Academic Press, New
York,1-82.

76 .• E. W. Dijkstra 1972b. Information streams sharing a finite buffer. Information
Processing Letters 1, 5 (October), 179-180.

77. * E. W. Dijkstra 1975a. A synthesis emerging?, (July). In E. W. Dijkstra 1982,
Selected Writings on Computing: A Personal Perspective, Springer-Verlag, New
York, 147-160. Article 14.

78 .• E. W. Dijkstra 1975b. Guarded commands, nondeterminacy and formal derivation
of programs. Commmunication of the ACM 18,8 (August), 453-457.

79. • E. W. Dijkstra and C. S. Scholten 1982. A dass of simple communication pat­
terns. In E. W. Dijkstra, Selected Writings on Computing: A Personal Perspective,
Springer-Verlag, New York, 334-337.

80. 0 Discussions 1971. Discussions of conditional critical regions and monitors. In C.
A. R. Hoare and R. H. Perrott Eds. 1972, Operating Systems Techniques, Pro­
ceedings of a Seminar at Queen's University, Belfast, Northern Ireland, August­
September 1971. Academic Press, New York, 100-113.

81. 0 J. A. Fellows 1993. Reviewers' comments. In P. Brinch Hansen, Monitors and
Concurrent Pascal: a personal history. SIGPLAN Notices 28, 3 (March), 1-35.

82. 0 J. Gosling, B. Joy and G. Steele 1996. The Java Language Specijication. Addison­
Wesley, Reading, MA.

83 .• J. S. Greenfield 1991. Distributed programming with cryptography applications.
Lecture Notes in Computer Science 870, Springer-Verlag, New York.

84. 0 A. N. Habermann 1967. On the harmonious cooperation of abstract machines.
Ph.D. thesis. Technological University, Eindhoven, The Netherlands.

85 .• A. N. Habermann 1972. Synchronization of communicating processes. Commu­
nications ofthe ACM 15, 3 (March), 171-176.

86 .• A. C. Hartmann 1975. A Concurrent Pascal compiler for minicomputers. Ph.D.
thesis, Information Science, Calirornia Institute of Technology, Pasadena, CA, (Sep­
tember). Also published as Lecture Notes in Computer Science 50, (1977), Springer­
Verlag, New York.

87. 0 J. M. Havender 1968. Avoiding deadlock in multitasking systems. IBM Systems
Journal 7, 2, 74-88.

88 .• C. C. Hayden 1979. Distributed processes: experience and architectures. Ph.D.
thesis, Computer Science Department, University of Southern California, Los An­
geles, CA.

58 PER BRINCH HANSEN

89. 0 C. C. Hayden 1993. Reviewers' comments. In P. Brinch Hansen, Monitors and
Concurrent Pascal: a personal his tory. SIGPLAN Notices 28, 3 (March), 1-35.

90. * C. A. R. Hoare 1971. Towards a theory of parallel programming. In C. A. R.
Hoare and R. H. Perrott Eds. 1972, Operating Systems Techniques, Proceedings
of a Seminar at Queen's University, Belfast, Northern Ireland, August-September
1971. Academic Press, New York, 61-71. Article 5.

91. • C. A. R. Hoare 1972. Proof of correctness of data representations. Acta Infor­
matica 1, 271-281.

92. 0 C. A. R. Hoare 1973a. A pair of synchronising primitives. On January 11, 1973,
Hoare gave Jim Horning a copy of this undated, unpublished draft (J. J. Horning,
personal communication, May 1991).

93 .• C. A. R. Hoare 1973b. A structured paging system. Computer Journal 16, (Au­
gust), 209-214.

94. 0 C. A. R. Hoare 1973c. Letter to R. M. McKeag, (October 10).

95 .• C. A. R. Hoare 1974a. Hints on programming language design. In C. Bunyan Ed.,
Computer Systems Reliability, Infotech International, Berkshire, England, 505-534.

96. * C. A. R. Hoare 1974b. Monitors: an operating system structuring concept. Com­
munications of the ACM 17, 10 (October), 549-557. Article 9.

97. 0 C. A. R. Hoare 1976a. The structure of an operating system. In Language Hier­
archies and Interfaces, Springer-Verlag, 1976, 242-265.

98 .• C. A. R. Hoare 1976b. Hints on the design of a programming language for real­
time command and contro!. In J. P. Spencer Ed., Real-time Software: International
State of the Art Report, Infotech International, Berkshire, England, 685-699.

99. * C. A. R. Hoare 1978. Communicating sequential processes. Communications of
the ACM 21, 8 (August) 1978,666-677. Article 15.

100. 0 C. A. R. Hoare 1981. A calculus of total correctness for communicating sequential
processes. The Science of Computer Programming 1, 1-2 (October), 49-72.

101. • C. A. R. Hoare 1985. Communicating Sequential Processes. Prentice-Hall, Engle­
wood Cliffs, NJ.

102. 0 J. J. Horning 1972. Preliminary report to Karl Karlstrom, computer science
editor, Prentice-Hall, on the manuscript of "Operating System Principles" by P.
Brinch Hansen, (May 1).

103 .• J. H. Howard 1976. Proving monitors. Communications of the A GM 19, 5 (May) ,
273-274.

104. • M. E. C. Hull 1987. occam-a programming language for multiprocessor systems.
Computer Languages 12, 1,27-37.

105. 0 IBM 1965. IBM operating system/360 concepts and facilities. In S. Rosen, Ed.,
Programming Systems and Languages, McGraw-Hill, New York, 598-646.

106. 0 Inmos 1988a. Transputer Reference Manual. Prentice Hall, Englewood Cliffs, NJ.

107 .• Inmos 1988b. occam 2 Reference Manual, Prentice Hall, Englewood Cliffs, NJ.

THE INVENTION OF CONCURRENT PROGRAMMING 59

lOS .• G. Kahn and D. B. McQueen 1977. Coroutines and networks of parallel pro­
cesses. In B. Gilchrist Ed., Information Processing 77, North-Holland Publishing,
Ansterdam, The Netherlands, 993~99S.

109 .• W. H. Kaubisch, R. H. Perrott and C. A. R. Hoare 1976. Quasiparallel program­
ming. Software-Practice and Experience 6, (July~September), 341~356.

110 .• J. M. Kerridge 19S2. A Fortran implement at ion of Concurrent Pascal. Software­
Practice and Experience 12, 1 (January), 45~55.

111. • J. L. W. Kessels 1977. An alternative to event queues for synchronization in
monitors. Communications of the ACM 20, 7 (July), 500~503.

112. 0 T. Kilburn, R. B. Payne and D. J. Howarth 1961. The Atlas supervisor. AFIPS
Computer Conference 20, 279~294.

113. 0 D. Knuth and J. L. McNeley 1964. SOL-A symbolic language for general-purpose
systems simulation. IEEE Transactions on Electronic Computers 13, S (August),
401~40S.

114 .• H. S. M. Kruijer 19S2. A multi-user operating system for transaction processing
written in Concurrent Pascal. Software-Practice and Experience 12, 5 (May),
445~454.

115 .• B. W. Lampson and D. D. RedeIl 19S0. Experience with processes and monitors
in Mesa. Communications of the ACM 23,2 (February), 105~117.

116. 0 S. K. Langer 1967. An Introduction to Symbolic Logic. Dover Publications, New
York.

117 .• S. Lauesen 1975. A large semaphore based operating system. Communications
of the ACM 18,7 (July), 377~3S9.

11S. 0 D. Lea 1997. Concurrent Programming in Java: Design Principles and Patterns.
Addison-Wesley, Reading, MA.

119. 0 P. J. Leach, P. H. Levine, B. P. Douros, J. A. Hamilton, D. L. Nelson and B. L.
Stumpf 19S3. The architecture of an integrated local network. IEEE Journal on
Selected Areas in Communications 1, 5, S42~S56.

120 .• B. H. Liskov 1972. The design of the Venus operating system. Communications
oi the ACM 15, 3 (March), 144~149.

121. 0 R. A. Maddux and H. D. Mills 1979. Review of "The Architecture of Concurrent
Programs." IEEE Computer 12, (May), 102~1O3.

122. 0 R. M. McKeag 1972. A survey of system structure and synchronization tech­
niques. Department of Computer Science, Queen's University of Belfast, Northern
Ireland, (October). (Supplemented January 1973.)

123 .• R. M. McKeag 1976. THE multiprogramming system. In R. M. McKeag and R.
Wilson Eds., Studies in Operating Systems, Academic Press, New York, 145~lS4.

124 .• R, M. McKeag 19S0. A structured operating system. In J. Welsh and R. M.
McKeag, Structured System Programming, Prentice Hall, Englewood Cliffs, NY,
229~315.

125. 0 S. E. Madnick and J. J. Donovan 1974. Operating Systems. McGraw-Hill, New
York.

60 PER BRINCH HANSEN

126 .• D. May 1989. The infiuence of VLSI technology on computer architecture. In R.
Elliott and C. A. R. Hoare Eds., Scientijic Applications of Multiprocessors, Prentice­
Hall, Englewood Cliffs, NJ, 21-36.

127. 0 P. Naur Ed. 1960. Report on the algorithmic language Algol 60. Communications
of the ACM 3,5 (May), 299-314.

128 .• P. Naur Ed. 1963a. Revised report on the algorithmic language Algol 60. Com­
munications of the ACM 6, 1 (January), 1-17.

129 .• P. Naur 1963b. The design of the Gier Algol compiler. BIT 3, 2-3, 123-140 and
145-166.

130. 0 P. Naur and B. Randell Eds. 1969. Software Engineering. NATO Scientific Affairs
Division. Brussels, Belgium (October).

131. • P. Naur 1974. Concise Survey of Computer Methods. Studentlitteratur, Lund,
Sweden.

132. 0 P. Naur 1975. Review of "Operating System Principles." BIT 15, 455-457.

133 .• D. Neal and V. Wallentine 1978. Experiences with the portability of Concurrent
Pascal. Software-Practice and Experience 8, 3 (May-June), 341-354.

134. 0 E. 1. Organick 1972. The Multics System: An Examination of Its Structure. MIT
Press, Cambridge, MA.

135. 0 E. 1. Organick 1973. Computer System Organization: The B5700/B6700 Series.
Academic Press, New York.

136. 0 D. L. Parnas 1993. Letter to P. Brinch Hansen, November 23.

137 .• R. H. Perrott 1987. Parallel Programming. Addison-Wesley, Reading, MA.

138. 0 G. P61ya 1957. How to Solve It. Doubleday, Garden City, NY.

139 .• M. S. Powell 1979. Experience of transporting and using the Solo operating
system. Software-Practice and Experience 9, 7 (July), 561-570.

140 .• C. W. Reynolds 1988. The historical evolution of monitors and their languages.
Department of Mathematics and Computer Science, James Madison University,
Harrisonburg, VA, (August).

141. • C. W. Reynolds 1990. Signalling regions: multiprocessing in a shared memory
reconsidered. Software-Practice and Experience 20, 4 (April), 325-356.

142. 0 C. W. Reynolds 1993. Reviewers' comments. In P. Brinch Hansen, Monitors and
Concurrent Pascal: a personal history. SIGPLAN Notices 28, 3 (March 1993), 1-35.

143. 0 D. T. Ross 1974. In search of harmony: After-dinner talk. In W. L. van der
Poel and L. A. Maarssen Eds., Machine Oriented Higher Level Languages. North­
Holland Publishing Company, Amsterdam, The Netherlands, 445-447.

144 .• O. Roubine and J.-C. Heliard 1980. Parallel processing in Ada. In R. M. Mc­
Keag and A. M. Macnaghten Eds., On the Construction of Programs, Cambridge
University Press, New York, 193-212.

145. 0 A. C. Shaw 1974. The Logical Design of Operating Systems. Prentice-Hall, En­
glewood Cliffs, NJ.

THE INVENTION OF CONCURRENT PROGRAMMING 61

146. 0 S. K. Shrivastava and F. Panzieri 1982. The design of a reliable remote procedure
call mechanism. IEEE Transactions on Computers 31, 7 (July), 692~697.

147 .• A. Silberschatz, J. Peterson and P. Galvin 1992. Operating System Concepts
(third edition). Addison-Wesley Publishing, Reading, MA, 1992.

148. • C. R. Snow 1992. Concurrent Programming. Cambridge University Press, New
York.

149 .• F. Stepczyk and D. Heimbigner 1979. Application of a concurrent programming
language. In P. Wegner Ed., Research Directions in Software Technology, MIT
Press, Cambridge, MA, 666~671.

150 .• A. S. Tanenbaum and R. van Renesse 1988. A critique of the remote procedure call
mechanism. In R. Speth Ed., Research into Networks and Distributed Applications,
Elsevier Science Publishers, Amsterdam, The Netherlands, 775~782.

151. 0 B. H. Tay and A. L. Ananda 1990. A survey ofremote procedure calls. Operating
Systems Review 24, 3 (July), 68~79.

152. 0 A. Trew and G. Wilson Eds. 1991. Past, Present, Parallel: A Survey of Available
Parallel Computing Systems. Springer-Verlag, New York.

153 .• J. Welsh and D. W. Bustard 1979. Pascal-Plus-another language for modular
multiprogramming. Software-Practice and Experience 9, 11 (November), 947~957.

154 .• R. L. Wexelblat Ed. 1981. History of Programming Languages. Academic Press,
New York.

155. 0 J. E. White 1976. A high-level framework for network-based resource sharing.
National Computer Conference, (June), 561~570.

156. 0 N. Wirth 1969. Letter to P. Brinch Hansen, (July 14).

157 .• N. Wirth 1971. The programming language Pascal. Acta Informatica 1, 35~63.

158 .• N. Wirth 1977a. Modula: a programming language for modular multiprogram-
ming. Software-Practice and Experience 7, 1 (January~February), 3~35.

159 .• N. Wirth 1977b. The use of Modula. Software-Practice and Experience 7, 1
(January~February), 37~65.

160 .• N. Wirth 1977c. Design and implementation of Modula. Software-Practice and
Experience 7, 1 (January~February), 67~84.

161. 0 W. A. Wulf, E. S. Cohen, W. M. Corwin, A. K. Jones, R. Levin, C. Pierson,
and F. J. Pollack 1974. Hydra: the kernel of a multiprocessor operating system.
Communications of the ACM 17, 6 (June), 337~345.

PART I

CONCEPTUAL INNOVATION

COOPERATING
SEQUENTIAL PROCESSES

EDSGER W. DIJKSTRA

(1965)

INTRODUCTION

1

This chapter is intended for all those who expect that in their future activities
they will become seriously involved in the problems that arise in either the
design or the more advanced applications of digital information processing
equipment; they are furt her intended for all those who are just interested in
information processing.

The applications are those in which the activity of a computer must
include the proper reaction to a possibly great variety of messages that can
be sent to it at unpredictable moments, a situation which occurs in pracess
contral, traffic control, stock control, banking applications, automatization
of information fiow in large organizations, centralized computer service, and,
finally, all information systems in which a number of computers are coupled
to each other.

The desire to apply computers in the ways sketched above has often a
strong economic motivation, but in this chapter the not unimportant ques­
tion of efficiency will not be stressed too much. Logical problems which
arise, for example, when speed ratios are unknown, communication possibil­
ities restricted, etc., will be dealt with much more. This will be done in order
to create a clearer insight into the origin of the difficulties one meets and
into the nature of solutions. Deciding whether under given circumstances

E. W. Dijkstra, Cooperating sequential processes. Technological University, Eindhoven,
The Netherlands, September 1965. Reprinted in Frogmmming Languages, F. Genuys, Ed.,
Academic Press, New York, 1968,43-112. Copyright © 1968, Academic Press. Reprinted
by permission.

65

66 EDSGER W. DIJKSTRA

the application of our techniques is economically attractive falls outside the
scope of this chapter.

There will not be a fully worked out theory, complete with Greek letter
formulae, so to speak. The only thing that can be done under the present
circumstances is to offer a variety of problems, together with solutions. And
in discussing these we can only hope to bring as much system into it as we
possibly can, to find which concepts are relevant, as we go along.

1 ON THE NATURE OF SEQUENTIAL PROCESSES

Our problem field proper is the co-operation between two or more sequential
processes. Before we can enter this field, however, we have to know quite
clearly what we call "a sequential process". To this preliminary quest ion the
present section is devoted.

To begin, he re is a comparison of two machines to do the same example
job, the one a non-sequential machine, the other a sequential one.

Let us assume that of each of four quantities, named a [1J, a [2J, a [3J ,
and a [4J respectively, the value is given. Our machine has to process these
values in such a way that, as its reaction, it "teIls" us which of the four
quantities has the largest value. E.g. in the case:

a[1] = 7, a[2] = 12, a[3] = 2, a[4] = 9

the answer to be produced is a [2J (or only 2, giving the index value pointing
to the maximum element).

Note that the desired answer would become incompletely defined if the
set of values were-in order-7, 12, 2, 12, for then there is no unique
largest element, and the answer a [2J would have been as good (or as bad)
as a [4J. This is remedied by the further assumption that of the four values
given, no two are equal.

Remark 1. If the required answer would have been the maximum value
occurring among the given ones, the last restriction would have been super­
fluous, for the answer corresponding to the value set 7, 12, 2, 12 would
then have been 12.

Remark 2. Our restriction "Of the four values no two are equal" is
still somewhat loosely formulated, for what do we mean by "equal"? In
the processes to be constructed pairs of values will be compared with one
another, and what is really meant is that every two values will be sufficiently
different, so that the comparator will unambiguously decide which of the two

COOPERATING SEQUENTIAL PROCESSES 67

is the larger one. In other words, the difference between any two must be
large compared with "the resolving power" of our comparators.

We shall first construct our non-sequential machine. When we ass urne
our given values to be represented by currents we can imagine a compara­
tor consisting of a two-way switch, the position of which is schematically
controlled by the currents in the coils of electromagnets, as in Figs. 1 and 2.

y A x y x

l®J lQQ) (W ~
B fC BI C

Fig. 1. x<y Fig. 2. y<x

When current y is larger than current x, the left electromagnet pulls
harder than the right one and the switch switches to the left (Fig. 1) and
the input A is connected to output B; if current x is the larger one we shall
get the situation (Fig. 2), where the input A is connected to output C.

In our diagrams we shall omit the coils and shall represent such a com­
parator by a small box

A
I

y<x?

I I
B C

only representing at the top side the input and at the bot tom side the two
outputs. The currents to be led through the coils are identified in the ques­
tion written inside the box, and the convention is that the input will be
connected to the right-hand side output when the answer to the question is
"Yes", to the left-hand side output when the answer is "No".

Now we can construct our machine as indicated in Fig. 3. At the output
side we have drawn four indicator lamps, one, and only one, of which will

68 EDSGER W. DIJKSTRA

light up to indicate the answer.

a(1) < a(3)? a(2)<a(3)?

+ + + +
Fig.3

In Fig. 4 we indicate the position of the switches when the value set 7,
12, 2, 9 is applied to it. In the boxes the positions of the switches are
indicated, wires not connected to the input are drawn dotted.

Iz
I
I
I
11

, ,

r->'",s: I
, I

-----.-------~-----~ , I

'3 14
I I

Fig.4

We draw the reader's attention to the fact that now only the positions
of the three switches that connect output 2 to the input matter; the reader
is invited to convince himself that the position of the other three switches is
indeed immaterial.

It is also worthwhile to give a moment's attention to see what happens in
time when our machine of Fig. 3 is fed with four "value currents". Obviously
it cannot be expected to give the correct answer before the four value currents
start going through the coils. But one cannot even expect it to indicate the
correct answer as so on as the currents are applied, for the switches must get

COOPERATING SEQUENTIAL PROCESSES 69

into their correct position, and this may take so me time. In other words,
as soon as the currents are applied (simultaneously or the one after the
other) we must wait aperiod of time -characteristic for the machine-and
only after that the correct answer will be shown at the output side. What
happens during this waiting time is immaterial, provided that the interval
is long enough for all switches to find their final position. They may start
switching simultaneously, the exact order in which they attain their final
position is immaterial, and therefore we shall no longer pay any attention to
it.

From the logical point of view the switching time can be regarded as a
marker on the time axis: before it the input data have to be supplied, after
it the answer is available.

In the use of our machine the progress of time is only refiected in the 0 b­
vious "before-after" relation, which teIls us that we cannot expect an answer
before the quest ion has been properly put. This sequence relation is so obvi­
ous (and fundamental) that it cannot be regarded as a characteristic property
of our machine. And our machine is therefore called a "non-sequential ma­
chine" to distinguish it from the kind of equipment-or processes that can
be performed by it-to be described now.

Up till now we have interpreted the diagram of Fig. 3 as the (schematic)
picture of a machine to be built in space. But we can interpret this same
diagram in a very different manner if we place ourselves in the mind of the
electron entering at the top input and wondering where to go. First, it finds
itself faced with the quest ion whether a [1] < a [2] holds. Having found
the answer to this question, it can proceed. Depending on the previous
answer, it will enter one of the two boxes a[1J < a[3] or a[2] < a[3], i.e.
it will only know what to investigate next, after the first question has been
answered. Having found the answer to the question selected from the second
line, it will know which quest ion to ask from the third line and, having found
this last answer, it will now know which bulb should start to glow. Instead
of regarding the diagram of Fig. 3 as that of a machine, the parts of which
are spread out in space, we have regarded it as rules of behaviour, to be
followed in time.

With respect to our earlier interpretation two differences are highly sig­
nificant. In the first interpretation all six comparators started working si­
multaneously, although finally only three switch positions were relevant. In
the se co nd interpretation only three comparisons are actually evaluated­
the wondering electron asks itself three questions-but the price of this gain

70 EDSGER W. DIJKSTRA

is that they have to be performed the one after the other, as the outcome
of the previous one decides what to ask next. In the second interpretation
three quest ions have to be asked in sequence, the one after the other. The
existence of such an order relation is the distinctive feature of the second
interpretation, which in contrast to the first one is therefore called "a se­
quential process". We should like to make two remarks.

Remark 3. In actual fact, the three comparisons will each take a finite
amount of time ("switching time", "decision time", or, in the jargon, "ex­
ecution time"), and as a result the total time taken will at least be equal
to the sum of these three execution times. We stress once more that for
many investigations these executions can be regarded as ordered markers on
a scaleless time axis and that it is only the relative ordering that matters
from this (logical) point of view.

Remark 4. As a small side line we note that the two interpretations
(call them "simultaneous comparisons" and "sequential comparisons") are
onlyextremes. There is a way of, again, only performing three comparisons,
in wh ich two of them can be done independently from one another, i.e.
simultaneously; the third one, however, can be done only after the other two
have been completed. It can be represented with the aid of a box in which
two questions are put and which, as a result, has four possible exits, as in
Fig.5.

all] < a[2]? a[3] < a[4]?

NY YN

a[2] < a[3]?

1 2 3 4
Fig.5

The total time taken will be at least the sum of the comparison execution
times. The process is of the first kind in the sense that the first two com­
parisons can be performed simultaneously, it is of sequential nature, as the
third comparison can be selected from the second line only when the first
two have both been completed.

CO OPERATING SEQUENTIAL PROCESSES 71

We return to our purely sequential interpretation. Knowing that the di­
agram is meant for purely sequential interpretations, we can take advantage
of this circumstance to make the description of the "rules of behaviour" more
compact. The idea is that the two questions on the second line only one of
wh ich will be actually asked are highly similar: the questions on the same
line differ only in the subscript value of the left operand of the comparison.
And we may ask ourselves: "Can we map the questions on the same line of
Fig. 3 on to a single question 7"

This can be done, but it implies that the part that varies along a line-i.e.
the subscript value in the left operand- must be regarded as a parameter,
the task of which is to determine which of the quest ions mapped on each
other is meant, when its turn to be executed has come. Obviously the value
of this parameter must be defined by the past history of the process.

Such parameters, in which past history can be condensed for future use,
are called "variables". To indicate that a new value has to be assigned to
it we use the so-called assignment operator := (read: "becomes"), a kind of
directed equality sign which defines the value of the left-hand side in terms
of the value of the right-hand side.

We hope that the previous paragraph is sufficient for the reader to recog­
nize also in the diagram of Fig. 6 a set of "rules of behaviour". Our variable
is called i; and the reader may wonder why the first question, which is in­
variably a [lJ < a [2J ? is not written that way, but with patience he will
understand.

When we have followed the rules of Fig. 6 as intended from top till
bottom, the final value of i will identify the maximum value, viz. a [iJ .

The transition from the scheme of Fig. 3 to the one of Fig. 6 is a drastic
change, for the latter's "rules of behaviour" can only be interpreted sequen­
tially. And this is due to the introduction of the variable i: having only
a [lJ , a [2J , a [3J , and a [4J available as values to be compared, the question
a [iJ < a [2J ? is meaningless, unless it is known for which value of i this
comparison has to be made.

Remark 5. It is somewhat unfortunate that the jargon of the trade
calls the thing denoted by i a variable, because in normal mathematics
the concept of a variable is a completely timeless concept. Time has not hing
to do with the x in the relation

sin(2 * x) = 2 * sin(x) * cos(x)

if such a variable ever denotes a value it denotes "any value" .

72 EDSGER W. DIJKSTRA

Fig.6

Each time, however, that a variable in a sequential process is used~such
as i in a [iJ ~it denotes a very specific value, viz. the last value assigned
to it, and nothing else! As long as no new value is assigned to a variable, it
denotes a constant value!

Remark 6. One may well ask what we are actually doing when we intro­
duce a variable without specifying, for instance, a domain for it, i.e. a set of
values which is guaranteed to comprise all its future actual values. We shall
not pursue this quest ion here.

Now we are going to subject our scheme to a next transformation. In
Fig. 3 we have "wrapped up" the lines, now we are .going to wrap up the
scheme of Fig. 6 in the vertical direction, an operation to which we are
invited by the repetitive nature of it and which can be performed at the
price of a next variable, j say.

The change is a dramatic one, for the fact that the original problem was
to identify the maximum value among Jour given values is no longer reflected
in the "topology" of the rules of behaviour: in Fig. 7 we only find the number
4 mentioned once. By introducing another variable, say n, and replacing the
4 in Fig. 7 by n we have suddenIy the rules of behaviour to identify the
maximum occurring among the n elements a [lJ, a [2J, ... , a [nJ, and
this practically only for the price that before application the variable n must

COOPERATING SEQUENTIAL PROCESSES 73

be given its proper value.

t
i:= 1;

j:= 1;

j =4?

j:=j+l;

a[i] < a[j]?

I i:=j
I

Fig.7

The change is dramatic, for now we have not only given rules of behaviour
which must be interpreted sequentially this was already the case with Fig. 6
but we have devised a single mechanism for identifying the maximum value
among any number of given elements, whereas our original non-sequential
machine could only be built for a previously well-defined number of elements.
We have mapped our comparisons in time instead of in space, and if we wish
to compare the two methods it is as if the sequential machine "extends itself"
in terms of Fig. 3 as the need arises. It is our last transition which displays
the sequential processes in their full glory.

The technical term for what we have called "rules of behaviour" is an al­
gorithm or a program. (It is not customary to call it "a sequential program" ,
although this name would be fully correct.) Equipment able to follow such
rules, "to execute such a program" is called "a general-purpose sequential
computer" or "computer" for short; what happens during such a program
execution is called "a sequential process" .

There is a commonly accepted technique of writing algorithms without
the need of pictures such as we have used, viz. ALGOL 60 ("ALGOL" being
short for Algorithmic Language). For a detailed discussion of ALGOL 60 I
must refer the reader to the existing literature. We shall use it in future,
whenever convenient for our purposes.

For the sake of illustration we shall describe the algorithm of Fig. 7 (but
for n instead of 4) by a sequence of ALGOL statements:

74 EDSGER W. DIJKSTRA

i:= 1; j:= 1;
back: if j <> n then

begin j:= j + 1;

end

if a[i] < a[j] then i:= j;
goto back;

The first two statements: i : = 1; j: = 1 are-one hopes-self-
explanatory. Then comes back:, a so-called label, used to identify this
place in the program. Then comes if j <> n then, a so-called conditional
dause. If the condition expressed by it is satisfied the following statement
will be performed, otherwise it will be skipped. (Another example of it
can be found two lines lower.) When the extent of the program which may
have to be skipped presents itself primarily as a sequence of more than one
statement, then one puts the so-called statement brackets begin and end
around this sequence, thereby making it into a single statement as far as
its surroundings are concerned. (This is entirely analogous to the effect of
parentheses in algebraic formulae, such as a * eb + c) where the parenthe­
sis pair indicates that the whole expression contained within it is to be taken
as factor.) The last statement goto back means that the process should be
continued at the point thus labelled; it does exactly the same thing for us
as the upward-pointing line of Fig. 7.

2 LOOSELY CONNECTED PROCESSES

The subject matter of this chapter is the co-operation between loosely con­
nected sequential processes, and this section will be devoted to a thorough
discussion of a simple, but representative problem, in order to give the reader
so me feeling for the problems in this area.

In the previous section we have described the nature of a single sequential
process, performing its sequence of actions autonomously, Le. independent
of its surroundings as so on as it has been started.

When two or more of such processes have to co-operate with each other
they must be connected, i.e. they must be able to communicate with each
other in order to exchange information. As we shall see below, the properties
of these means of intercommunication playavital role.

Furthermore, we have stipulated that the processes should be connected
loosely; by this we me an that apart from the (rare) moments of explicit
intercommunication, the individual processes themselves are to be regarded
as completely independent of each other. In particular, we disallow any
assumption about the relative speeds of the different processes. (Such an

CO OPERATING SEQUENTIAL PROCESSES 75

assumption-say, "processes geared to the same clock"-could be regarded
as implicit intercommunication.) This independence of speed ratios is in
strict accordance with our appreciation of the single sequential process: its
only essential feature is that its elementary steps are performed in sequence
If we prefer to observe the performance with a chronometer in our hand
we may do so, but the process itself remains remarkably unaffected by this
observation.

The consistent refusal to make any assumptions about the speed ratios
will at first sight appear to the reader as a mean trick to make things more
difficult than they already are. I feel, however, fully justified in my refusal.
First, we may have to cope with situations in which, indeed, very little is
known about the speeds. Far instance, part of the system may be a manu­
ally operated input station, another part of the system might be such that
it can be stopped externally for any period of time, thus reducing its speed
temporarily to zero. Secondly-and this is much more important-when we
think that we can rely upon certain speed ratios we shall discover that we
have been "penny wise and pound foolish". It is true that certain mecha­
nisms can be made simpler under the assumption of speed-ratio restrictions.
The verification, however, that such an assumption is always justified is,
in general, extremely tricky and the task to make, in a reliable manner, a
well-behaved structure out of many interlinked components is seriously ag­
gravated when such "analogue interferences" have to be taken into account
as weIl. (For one thing: it will make the proper working a rather unstable
equilibrium, sensitive to any change in the different speeds, as may easily
arise by replacement of a component by another-say, replacement of a line
printer by a faster model-or reprogramming of a certain portion.)

2.1 A Simple Example

In considering two sequential processes, process 1 and process 2, they
can for our purposes be regarded as cyclic. In each cycle a so-called "critical
section" occurs, critical in the sense that at any moment at most one of the
two processes is allowed to be engaged in its critical section. In order to
effectuate this mutual exclusion, the two processes have access to a number
of common variables. We postulate that inspecting the present value of such
a common variable and assigning a new value to such a common variable
are to be regarded as indivisible, non-interfering actions, Le. when the two
processes assign a new value to the same common variable "simultaneously",
then the assignments are to be regarded as done the one after the other, the

76 EDSGER W. DIJKSTRA

final value of the variable will be one of the two values assigned, but never
a "mixt ure" of the two. Similarly, when one process inspects the value of a
common variable "simultaneously" with the assignment to it by the other
one, then the former process will find either the old or the new value, but
never a mixture.

For our purposes ALGOL 60 as it stands is not suited, as ALGOL 60
has been designed to describe one single sequential process. We therefore
propose the following extension to enable us to describe parallelism of execu­
tion. When a sequence of statements-separated by semicolons as usual in
ALGOL 60-is surrounded by the special statement bracket pair parbegin
and par end this is to be interpreted as parallel execution of the constituent
statements. The whole construction-let us call it "a parallel compound"­
can be regarded as a statement. Initiation of a parallel compound implies
simultaneous initiation of all its constituent statements, its execution is com­
pleted after the completion of the execution of all its constituent statements.
E.g.:

begin 81; parbegin 82; 83; 84 parend; 85 end

(in which 81, 82, 83, 84, and 85 are used to indicate statements) means that
after the completion of 81, the statements 82, 83, and 84 will be executed in
parallel, and only when they are all finished will the execution of statement
85 be initiated.

With the above conventions we can describe our first solution:

begin integer turn; turn:= 1;
parbegin

end

process 1: begin L1: if turn = 2 then goto L1;
critical section 1;
turn:= 2;
remainder of cycle 1, goto L1

end;
process 2: begin L2: if turn = 1 then goto L2;

critical section 2;
turn:= 1;
remainder of cycle 2; goto L2

end;
par end

(Note for the inexperienced ALGOL 60 reader. After begin in the first
line we find the so-called declaration integer turn, thereby sticking to the
rule of ALGOL 60 that program text is not allowed to refer to variables

COOPERATING SEQUENTIAL PROCESSES 77

without having introduced them with the aid of a declaration. As this dec­
laration occurs after the begin of the outermost statement bracket pair, it
means that for the whole duration of the program a variable has been intro­
duced that will only take on integer values and to which the program text
can refer by means of the name turn.)

The two processes communicate with each other via the common integer
turn, the value of which indicates which of the two processes is the first to
perform (or rather: to finish) its critical section. From the program it is
clear that after the first assignment the only possible values of the variable
turn are 1 and 2. The condition for process 2 to enter its critical section is
that it finds at so me moment turn <> 1, i.e. turn = 2. But the only way
in wh ich the variable turn can get this value is by the assignment turn: = 2
in process 1. As process 1 performs this assignment only at the completion
of its critical section, process 2 can only initiate its critical section after
the completion of critical section 1. And critical section 1 could indeed
be initiated, because the initial condition turn = 1 implied turn <> 2, so
that the potential wait cycle, labelled Ll, was initially inactive. After the
assignment turn: = 2 the roles of the two processes are interchanged. (N.B.
It is assumed that the only references to the variable turn are the ones
explicitly shown in the program.)

Our solution, though correct, is, however, unnecessarily restrictive: after
the completion of critical section 1 the value of the variable turn becomes
2, and it must be = 1 again, before the next entrance into critical section 1.

As a result, the only admissible succession of critical seetions is the
strictly alternating one 1, 2, 1, 2, 1, 2, 1, ... ; in other words, the
two processes are synchronized In order to stress explicitly that this is not
the kind of solution we wanted, we impose the furt her condition: "If one of
the processes is stopped weIl outside its critical section, this is not allowed
to lead to potential blocking of the other process." This makes our previous
solution unacceptable, and we have to look for another.

Our second effort works with two integers cl and c2, where cl, c2 =

0/1 respectively will indicate that the corresponding process is inside/outside
its critical section respectively. We may try the following construction:

78 EDSGER W. DIJKSTRA

begin integer ci, c2;
ci: = 1; c2: = 1;
parbegin

end

processi: begin Li: if c2 = 0 then goto Li;
c1:= 0;

end;

critical section 1;
c1:= 1;
remainder of cycle 1; goto Li

process2: begin L2: if ci = 0 then goto L2;
c2:= 0;

end
par end

critical section 2;
c2:= 1;
remainder of cycle 2; goto L2

The first assignments set both c's = 1, in accordance with the fact that
the processes are started outside their critical sections. During the entire
execution of critical section 1 the relation cl = 0 holds, and the first li ne
of process 2 is effectively a wait: "Wait as long as process 1 is in its critical
section." The trial solution gives indeed some protection against simultane­
ity of critical section execution, but is, alas, too simple, because it is wrong.
Let first process 1 find that c2 = 1; let process 2 inspect cl immediately af­
terwards, then it will (still) find cl = 1. Both processes, each having found
that the other is not in its critical section, will conclude that they can enter
their own critical seetion safely!

We have been too optimistic, we must playa safer game. Let us invert,
at the beginning of the parallel processes, the inspection of the c of the other
and the setting of the own c. We then get the construction:

begin integer ci, c2;
c1:= 1; c2:= 1;
parbegin
process 1: begin Al: cl:= 0;

end;

Li: if c2 = 0 then goto Li;
critical section 1;
ci:= 1;
remainder of cycle 1; goto Ai

process 2: begin A2: c2:= 0;

end

L2: if ci = 0 then goto L2;
critical section 2;
c2:= 1;
remainder of cycle 2; goto A2

COOPERATING SEQUENTIAL PROCESSES 79

parend
end

It is worthwhile to verify that this solution is at least completely safe.
Let us focus our attention on the moment that process 1 finds c2 = 1

and therefore decides to enter its critical section. At this moment we can
conclude:

(1) that the relation cl = 0 already holds and will continue to hold until
process 1 has completed the execution of its critical section;

(2) that, since c2 = 1 holds, process 2 is weIl outside its critical section,
which it cannot enter while cl = 0 holds, i.e. while process 1 is still
engaged in its critical section.

Thus the mutual exclusion is indeed guaranteed.
But this solution, alas, must also be rejected: in its safety measures it

has been too drastic, for it contains the danger of definite mutual blocking.
When after the assignment cl: = 0 but yet before the inspection of c2 (both
by process 1) process 2 performs the assignment c2: = 0, then both processes
have arrived at label L1 or L2 respectively and both relations cl = 0 and
c2 = 0 hold, with the result that both processes will wait for each other to
eternity. Therefore this solution, too, must be rejected.

It was aIl right to set one's own c before inspecting the c of the other,
but it was wrong to stick to one's own c-setting and just to wait. This is
(somewhat) remedied in the following construction:

begin integer cl, c2;
cl:= 1; c2: = 1;
parbegin
process 1: begin Ll: cl:= 0;

end

end;

if c2 = 0 then
begin cl:= 1; goto Ll end;

critical section 1;
ci:= 1;
remainder of cycle 1; goto Ll

process 2: begin L2: c2:= 0;

end
par end

if cl = 0 then
begin c2:= 1; goto L2 end;

critical section 2;
c2:= 1;
remainder of cycle 2; goto L2

80 EDSGER W. DIJKSTRA

This construction is as safe as the previous one, and when the assignments
ci: = 0 and c2: = 0 are performed "simultaneously" it will not necessarily
lead to mutual blocking ad infinitum, because both processes will reset their
own c back to 1 before restarting the entry rites, thereby enabling the other
process to catch the opportunity. But our principles force us to reject this
solution also, for the refusal to make any assumptions about the speed ratio
implies that we have to cater for all speeds, and the last solution admits
the speeds to be so carefully adjusted that the processes inspect the other's
c only in those periods of time that its value is = O. To make clear that
we reject such solutions that only work with some luck, we state our next
requirement: "If the two processes are ab out to enter their critical sections,
it must be impossible to devise for them such finite speeds, that the decision
which one of the two is the first to enter its critical section is postponed to
eternity."

In passing we note that the solution just rejected is quite acceptable in
everyday life, e.g. when two people are talking over the telephone and they
are suddenly disconnected, as a rule both try to re-establish the connection.
They both dial and if they get the signal "Number Engaged" they put down
the receiver and, if not already caIled, they try "some" seconds later. Of
course, this may coincide with the next effort of the other party, but as a
rule the connection is re-established successfully after very few trials. In
our mechanical circumstances, however, we cannot accept this pattern of
behaviour: our parties might very weIl be identical!

Quite a collection of trial solutions have been shown to be incorrect, and
at some moment people that had played with the problem started to doubt
whether it could be solved at all. To the Dutch mathematician Th. J. Dekker
the credit is due for the first correct solution. It is, in fact, mixture of our
previous efforts: it uses the "safe sluice" of our last constructions, together
with the integer turn of the first one, but only to resolve the indeterminacy
when neither of the two immediately succeeds. The initial value of turn
could have been 2 as weIl.

COOPERATING SEQUENTIAL PROCESSES

begin integer c1, c2, turn;
c1:= 1; c2:= 1; turn:= 1;
parbegin

end

process 1: begin A1: c1:= 0;

process 2:

par end

L1: if c2 = 0 then

end;
beg in A2:

L2:

end

begin if turn 1 then goto L1;
c1:= 1;

B1: if turn 2 then goto B1;
goto A1

end;
critical section l' ,
turn:= 2' , c1 := l' ,
remainder of cycle l' , goto A1

c2:= O· ,
if c1 = o then

begin if turn 2 then goto L2;
c2:= 1 ;

B2: if turn 1 then goto B2;
goto A2

end;
critical section 2;
turn:= l' , c2:= l' ,
remainder of cycle 2' , goto A2

81

We shall now prove the correctness of this solution. Our first observation
is that each process only oper at es on its own c. As a result, process 1 inspects
c2 only while ci = 0, it will only enter its critical section provided it finds
c2 = 1; for process 2 the analogous observation can be made.

In short, we recognize the safe sluice of our last constructions, and the
solution is therefore safe in the sense that the two processes can never be in
their critical sections simultaneously. The second part of the proof has to
show that in case of doubt the decision which of the two will be the first to
enter cannot be postponed until eternity. Now we should pay some attention
to the integer turn: we note that assignment to this variable occurs only
at the end or, if you wish, as part of critical sections, and therefore we can
regard the variable turn as a constant during the decision process. Suppose
that turn = 1. Then process 1 can only cycle via L1, that is with ci = 0
and only as long as it finds c2 = O. But if turn = 1, then process 2 can only
cycle via B2, but this state implies c2 = 1, so that process 1 cannot cycle
and is bound to enter its critical section. For turn 2 the mirrored reasoning
applies. As third and final part of the proof we observe that stopping, say,

82 EDSGER W. DIJKSTRA

process 1 in "remainder of cycle I" will not restrict process 2: the relation cl
= 1 will then hold, and process 2 can merrily enter its critical section, quite
independently of the current value of turn. And this completes the proof of
the correctness of Dekker's solution. Those readers that fail to appreciate
its ingenuity are kindly asked to realize that for them I have prepared the
ground by means of a carefully selected set of rejected constructions.

2.2 The Generalized Mutual Exclusion Problem

The problem of Section 2.1 has a natural generalization: given N cyclic
processes, each with a critical section, can we construct them in such a way
that at any moment at most one of them is engaged in its critical section?
We assume the same means of intercommunication to be available, i.e. a set
of commonly accessible variables. Furthermore, our solution has to satisfy
the same requirements, viz. that stopping one process weIl outside its critical
section may in no way restrict the freedom of the others, and that if more
than one process is about to enter its critical section it must be impossible
to devise for them such finite speeds that the decision which one of them is
to be first to enter its critical section can be postponed to eternity.

In order to be able to describe the solution in ALGOL 60, we need the
concept of the array. In Section 2.1 we had to introduce a c for each of the
two processes and we did so by declaring

integer cl, c2

Instead of enumerating the quantities, we can declare-under the assumption
that N has a well-defined positive value-

integer array c[l : N]

which means, that at one stroke we have introduced N integers, accessible
under the names

c[subscript]

where subscript might take the values 1, 2, ... N.
The next ALGOL 60 feature we introduce is the so-called "for clause",

which we shall use in the following form:

for j:= 1 step 1 until N do statement S

and wh ich enables us to express repetition of statement S quite conve­
niently. In principle, the for clause implies that statement S will be exe­
cuted N times, with j in succession = 1, = 2, ... = N. (We have added "in

CO OPERATING SEQUENTIAL PROCESSES 83

prineiple", for via a goto statement as eonstituent part of statement Sand
leading out of it, the repetition ean be ended earlier.)

Finally, we need the logical operator that in this monograph is denoted
by and. We have met the eonditional clause in the form:

if condition then statement

We shall now meet:

if condition 1 and condition 2 then statement

meaning that statement S will be exeeuted only if condi tion 1 and
condition 2 are both satisfied. (Onee more we should like to stress that
this monograph is not an ALGOL 60 programming manual: the above~
loose!~explanations of parts of ALGOL 60 have been introdueed only to
make this monograph as self-contained as possible.)

With the notational aids just sketched we can describe our solution for
fixed N as folIows.

The overall structure is:

begin integer array b, c[O : N];
integer turn;

end

for turn:= 0 step 1 until N do
begin b[turn]:= 1; c[turn)':= 1 end;

turn:= 0;
parbegin
process 1: begin end;
process 2: begin end;

process N: begin ... end;
par end

The first declaration intro duces two arrays with N + 1 elements each,
the next declaration introduces a single integer turn. In the following for
clause this variable turn is used to take on the successive values 1, 2, 3, ...
N, so that the two arrays are initialized with all elements 1. Then turn is
set = 0 (Le. none of the processes, numbered from 1 onwards,· is privileged).
After this the N processes are started simultaneously.

The N processes are all similar. The structure of the i th process is as
follows (1 :::; i :::; N):

84 EDSGER W. DIJKSTRA

process i: begin integer j;
Ai: b[i]:= 0;
Li: if turn <> i then

begin c[i]: = 1;

end

if b[turn] = 1 then turn:= i;
goto Li

end;
c[i]:= 0;
for j:= 1 step 1 until N do

begin if j <> i and c[j] = 0 then goto Li
end;

critical section i;
turn:= 0; c[i]:= 1; b[i]:= 1;
remainder of cycle i; goto Ai

Remark. The description of the N individual processes starts with a
declaration integer j. According to the rules of ALGOL 60 this means
that each process introduces its own, private, integer j (a so-called "local
quantity").

We leave the proof to the reader. It has to showagain:

(1) that at any moment at most one of the processes is engaged in its
critical section;

(2) that the decision which of the processes is the first to enter its critical
section cannot be postponed to eternity;

(3) that stopping a process in its "remainder of cycle" has no effect upon
the others.

Of these parts, the second one is the more difficult one. (Hint: As so on
as one of the processes has performed the assignment turn: = i, no new
processes can decide to assign their number to turn before a critical section
has been completed. Mind that two processes can decide "simultaneously"
to assign their i-value to turn!)

(Remark that can be skipped at first reading)

The program just described inspects the value of b [turn] where both
the array band the integer turn are in common store. We have stated that
inspecting a single variable is an indivisible action and inspecting b [turn]
can therefore only mean: inspect the value of turn, and if this happens to
be = 5, weH, then inspect b [5]. Or, in more explicit ALGOL:

COOPERATING SEQUENTIAL PROCESSES 85

process i: begin integer j, k;

k:= turn; if b[k] = 1 then ...

implying that by the time that b [k] is inspected, turn may already have a
value different from the current one of k.

Without the stated limitations in communicating with the common store,
a possible interpretation of "the value of b [turn]" would have been "the
value of the element of the array b as indicated by the current value of
turn". In so-called uniprogramming i.e. a single sequential process oper­
ating on quantities local to it the two interpretations are equivalent. In
multiprogramming, where other active processes may access and change the
same common information, the two interpretations make a great difference!
In particular, for the reader with extensive experience in uniprogramming
this remark has been inserted as an indication of the subtleties of the games
we are playing.

2.3 A Linguistic Interlude

In Section 2.2 we described the co-operation of N processes; in the overall
structure we used a vertical sequence of dots between the brackets parbegin
and parend. This is not hing but a loose formalism, suggesting to the human
reader how to compose in our notation a set of N co-operating sequential
processes, under the condition that the value of N has been fixed beforehand.
It is a suggestion for the construction of 3, 4, or 5071 co-operating processes,
it does not give a formal description of N such co-operating processes in
which N occurs as a parameter, i.e. it is not a description valid for any value
of N.

It is the purpose of this section to show that the concept of the so-called
"recursive procedure" of ALGOL 60 caters for this. This concept will be
sketched briefty.

We have seen how after begin declarations could occur in order to intro­
duce and to name either single variables (by enumeration of their names) or
whole ordered sets of variables (viz. in the array declaration). With the so­
called "procedure declaration" we can define and name a certain action; such
an action may then be invoked by using its name as astatement, thereby
supplying the parameters to which the action should be applied.

As an illustration we consider the following ALGOL 60 program:

86 EDSGER W. DIJKSTRA

begin integer a, b;
procedure square(u, v); integer u, v;

begin u:= v * v end;
L: square(a, 3); square(b, a); square(a, b)

end

In the first line the integers named a and bare declared. The next li ne
declares the procedure named square" operating on two parameters, wh ich
are specified to be single integers (and not, say, complete arrays). This li ne is
called "the procedure heading". The immediately following statement-the
so-called "procedure body" -describes by definition the action named: in
the third line-in which the bracket pair begin ... end is superfiuous­
it is told that the action of square is to assign to the first parameter the
square of the value of the second one. Then, labelled L, comes the first
statement. Before its execution the values of both a and bare undefined,
after its execution a = 9. After the execution of the next statement the
value of b is therefore = 81, after the execution of the last statement the
value of a is = 6561, the value of b is still = 8I.

In the previous example the procedure mechanism was essentially intro­
duced as a means for abbreviation, a means for avoiding to have to write
down the "body" three times, although we could have done so quite easily:

begin integer a, b;
L: a:= 3 * 3; b:= a * a; a:= b * b

end

When the body is much more complicated than in this example a program
along the latter lines tends to be much lengthier indeed.

This technique of "substituting for the call the appropriate version of the
body" is, however, no longer possible as so on as the procedure is a so-called
recursive one, i.e. may call itself. It is then that the procedure really extends
the expressive power of the programming language.

A simple example might illustrate the recursive procedure. The greatest
common divisor of two given natural numbers is:

(1) if they have the same value equal to this value;

(2) if they have different values equal to the greatest common divisor of
the sm aller of the two and their difference.

In other words, if the greatest common divisor is not trivial (first case) the
problem is replaced by finding the greatest common divisor of two numbers
with a sm aller maximum value.

COOPERATING SEQUENTIAL PROCESSES 87

(In the following program the insertion value v, w; can be skipped by
the reader as being irrelevant for our present purposes; it indicates that for
the parameters listed the body is only interested in the numerical value of
the actual parameter, as supplied by the call.)

begin integer a;

end

procedure GCD(u, v, w); value v, w; integer u, v, w;
if v = w then u:= v

else
begin if v < w then GCD(u, v, w - v)

else GCD(u, v - w, w)
end;

GCD(a, 12, 33)

(In this example the more elaborate form of the conditional statement is
used, viz.:

if condition then statement 1 else statement 2,

meaning that if condi tion is satisfied, statement 1 will be executed
and statement 2 will be skipped, and that if condi t ion is not satisfied
statement 1 will be skipped and statement 2 will be executed.)

The reader is invited to follow the pattern of calls of GCD and to see
how the variable a becomes = 3; he is also invited to convince himself of the
fact that the (dynamic) pattern of calls depends on the parameters supplied
and that the substitution technique-replace call by body-as applied in the
previous example would lead to difficulties here.

We shall now write a program to perform a matrix * vector multiplication
in which:

(1) the order in which the M scalar * scalar products are to be calculated
is indeed prescribed (the rows of the matrix will be scanned from left
to right);

(2) the N rows of the matrix can be processed in parallel.

(Where we do not wish to impose the restriction of purely integer values,
we have used the declarator real instead of the declarator integer; furt her­
more, we have introduced an array with two subscripts in what we hope is
an obvious manner.)

It is assumed that, upon entry of this block of program, the integers M
and N have positive values.

88 EDSGER W. DIJKSTRA

begin real array matrix[1 : N, 1 : M];
real array vector[1 : M];

end

real array product[1 : N];
procedure rowmult(k); value k; integer k;

begin if k > 0 then

end

parbegin
begin real s; integer j;

s:= 0;

end;

for j:= 1 step 1 until M do
s:= s + matrix[k, j] * vectorU];

product[k]:= s

rowmult (k - 1)
par end

rowmult(N);

3 THE MUTUAL EXCLUSION PROBLEM REVISITED

We return to the problem of mutual exclusion in time of critical sections, as
introduced in Section 2.1 and generalized in Section 2.2. This section deals
with a more efficient technique for solving this problem; only after having
done so we have adequate means for the description of examples, with which
I hope to convince the reader of the rather fundamental importance of the
mutual exclusion problem, in other words, I must appeal to the patience
of the wondering reader (suffering, as I am, from the sequential nature of
human communication!).

3.1 The Need for a More Realistic Solution

The solution given in Section 2.2 is interesting in as far as it shows that the
restricted means of communication provided are, from a theoretical point of
view, sufficient to solve the problem. From other points of view, which are
just as dear to my heart, it is hopelessly inadequate.

To start with, it gives rise to a rather cumbersome description of the
individual processes, in which it is anything but transparent that the overall
behaviour is in accordance with the (conceptually so simple) requirement of
the mutual exclusion. In other words, in so me way or another this solution

COOPERATING SEQUENTIAL PROCESSES 89

is a tremendous mystification. Let us try to isolate in which respect this
solution represents indeed a mystification, for this investigation could give
the clue to improvement.

Let us consider the period of time during which one of the processes is in
its critical section. We all know, that during that period no other processes
can enter their critical section and that, if they want to do so, they have
to wait until the current critical section execution has been completed. For
the remainder of that period hardly any activity is required from them: they
have to wait anyhow, and as far as we are concerned "they could go to sleep" .

Our solution does not reflect this at all: we keep the processes busy
setting and inspecting common variables all the time, as if no price has
to be paid for this activity. But if our implementation~i.e. the ways in
which or the means by which these processes are carried out~is such that
"sleeping" is a less-expensive activity than this busy way of waiting, then
we are fully justified (now also from an economic point of view) to call our
solution misleading.

In present-day computers there are at least two ways in which this active
way of waiting can be very expensive. Let me sketch them briefly. These
computers have two distinct parts, usually called "the processor" and "the
store". The processor is the active part, in wh ich the arithmetic and logical
operations are performed, it is "active and small"; in the store, which is
"passive and large" , there resides at any moment the information which is not
being processed at that very moment but only kept there for future reference.
In the total computational process information is transported from store to
processor as soon as it has to play an active role, the information in store
can be changed by transportation in the inverse direction.

Such a computer is a very flexible tool for the implementation of sequen­
tial processes. Even a computer with only one single processor can be used
to implement a number of concurrent sequential processes. From a macro­
scopic point of view it will seem as though all these processes are being
carried out simultaneously, a closer inspection will reveal, however, that at
any "microscopic" moment the processor serves only one single program at
a time, and the overall picture only results because at wen-chosen moments
the processor will switch from one process to another. In such an implemen­
tation the different processes share the same processor, and activity (i.e. a
non-zero speed) of any single process will imply zero speed for the others;
it is then undesirable that precious processor time is consumed by processes
wh ich cannot go on anyhow.

90 EDSGER W. DIJKSTRA

Apart from processor sharing, the store sharing could make the unneces­
sary activity of a waiting process undesirable. Let us assurne that inspection
of or assignment to a "common variable" implies the access to an informa­
tion unit a so-called "word" in a ferrite-core store. Access to a word in a
core store takes a non-zero time, and for technical reasons only one word can
be accessed at a time. When more than one active process may wish access
to words of the same core store the usual arrangement is that in the case of
imminent coincidence the storage access requests from the different active
processes are granted according to a built-in priority rule: the lower prior­
ity process is automatically held up. (The literat ure refers to this situation
when it describes "a communication channel stealing a memory cycle from
the processor" .) The result is that frequent inspection of common variables
may slow down any processes which share the same core storage for their
local quantities.

3.2 The Synchronizing Primitices

The origin of the complications, which lead to such intricate solutions as
the one described in Section 2.2, is the fact that the indivisible accesses to
common variables are always "one-way information traffic": an individual
process can either assign a new value or inspect a current value. Such an
inspection itself, however, leaves no trace for the other processes, and the
consequence is that, when a process wants to react to the current value of a
common variable, that variable's value may have been changed by the other
processes between the moment of its inspection and the following effectuation
of the reaction to it. In other words: the previous set of communication
facilities must be regarded as inadequate for the problem at hand, and we
should look for more appropriate alternatives.

Such an alternative is provided by introducing:

(a) among the common variables special-purpose integers, wh ich we shall
call "semaphores";

(b) among the repertoire of actions, from which the individual processes
have to be constructed, two new primitives, which we call the "P­
operation" and the "V-operation" respectively.

The latter operations always operate on a semaphore and represent the only
way in which the concurrent processes may access the semaphores.

COOPERATING SEQUENTIAL PROCESSES 91

The semaphores are essentially non-negative integers; when used only to
solve the mutual exclusion problem the range of their values will even be
restricted to 0 and 1. It is the merit of the Dutch physicist and computer
designer C. S. Scholten to have shown a considerable field of applicability for
semaphores that can also take on larger values. When there is a need for dis­
tinction we shall talk about "binary semaphores" and "general semaphores"
respectively. The definition of the P- and V-operation that I shall give now
holds regardless of this distinction.

Definition. The V-operation is an operation with one argument, which
must be the identification of a semaphore. (If Si and S2 denote semaphores
we can write V(S1) and V(S2).) Its function is to increase the value of its
argument semaphore by 1; this increase is to be regarded as an indivisible
operation.

Note that this last sentence makes V(Sl) inequivalent to Sl:= Si + 1.
For suppose that two processes A and B both contain the statement V(Sl)
and that both should like to perform this statement at a moment when,
say, Si = 6. Excluding interference with Si from other processes, A and B
will perform their V-operations in an unspecified order-at least: outside our
control-and after the completion of the second V-operation the final value of
Si will be = 8. If Si had not been a semaphore but just an ordinary common
integer, and if processes A and B had contained the statement Si: = Si +

instead of the V-operation on Si, then the following could happen. Process A
evaluates Si + 1 and computes 7; before effecting, however, the assignment
of this new value, process B has reached the same stage and also evaluates
Si + 1, computing 7. Thereafter both processes assign the value 7 to Si,
and one of the desired incrementations has been lost. The requirement of
the "indivisible operation" is meant to exclude this occurrence when the
V-operation is used.

Definition. The P-operation is an operation with one argument, which
must be the identification of a semaphore. (If Si and S2 denote semaphores
we can write P(S1) and P(S2).) Its function is to decrease the value of
its argument semaphore by 1 as so on as the resulting value would be non­
negative. The completion of the P-operation-i.e. the decision that this
is the appropriate moment to effectuate the decrease and the subsequent
decrease itself-is to be regarded as an indivisible operation.

It is the P-operation which represents the potential delay, viz. when a
process initiates a P-operation on a semaphore, that at that moment is = 0,
in that case this P-operation cannot be completed until another process has

92 EDSGER W. DIJKSTRA

performed a V-operation on the same semaphore and has given it the value
1. At that moment more than one process may have initiated a P-operation
on that very same semaphore. The clause that completion of P-operation
is an indivisible action means that when the semaphore has got the value
1 only one of the initiated P-operations on it is allowed to be completed.
Which one, again, is left unspecified, i.e. at least outside our control.

At this stage we shall take the implementability of the P- and V­
operations for granted.

3.3 The Synchronizing Primitives Applied to the Mutual Exclusion
Problem

The construction of the N processes, each with a critical section, the exe­
cutions of which must exclude one another in time (see Section 2.2) is now
trivial. It can be done with the aid of a single binary semaphore, say free.
The value of free equals the number of processes allowed to enter their
critical section now, or;

free = 1 means: none of the processes is engaged in its critical section
free = 0 means: one of the processes is engaged in its critical section.

The overall structure of the solution becomes:

begin integer free; free:= 1;
parbegin
process 1: begin end;
process 2: begin ... end;

process N: begin ... end;
par end

end

with the i th process of the form:

process i: begin
Li: P(free); critical section i; V(free);

remainder of cycle i; goto Li
end

4 THE GENERAL SEMAPHORE

4.1 Typical Uses of the General Semaphore

We consider two processes, which are called the "producer" and the "con­
sumer" respectively. The producer is a cyclic process, and each time it goes

COOPERATING SEQUENTIAL PROCESSES 93

through its cycle it produces a certain portion of information that has to be
processed by the consumer. The consumer is also a cyclic process, and each
time it goes through its cycle it can process the next portion of information,
as produced by the producer. A simple example is given by a computing
process, producing as "portions of information" punched-card images to be
punched out by a card punch, which plays the role of the consumer.

The producer-consumer relation implies a one-way communication chan­
nel between the two processes, along which the portions of information can
be transmitted. We assurne the two processes to be connected for this pur­
pose via a buffer with unbounded capacity, Le. the portions produced need
not be consumed immediately, but they may queue in the buffer. The fact
that no upper bound has been given for the capacity of the buffer makes this
example slightly unrealistic, but this should not trouble us too much now.

(The reason for the name "buffer" becomes understandable when we in­
vestigate the consequences of its absence, viz. when the producer can only
offer its next portion after the previous portion has been actually consumed.
In the computer-card punch example, we mayassume that the card punch
can punch cards at a constant speed, say 4 cards per second. Let us assurne
that this output speed is weIl matched with the production speed, i.e. that
the computer can perform the card image production process with the same
average speed. If the connection between computing process and card punch
is unbuffered, then the couple will only work continuously at full speed when
the card-production process pro duces a card every quarter of a second. If,
however, the nature of the computing process is such that after one or two
seconds vigorous computing it produces 4 to 8 card images in a single burst,
then unbuffered connection will result in aperiod of time during which the
punch will be idle (for lack of information), followed by aperiod in which
the computing process has to be idle, because it cannot get rid of the next
card image before the preceding one has been actually punched. Such irreg­
ularities in production speed, however, can be smoothed out by a buffer of
sufficient size and that is why such a queuing device is called "a buffer".)

In this section we shall not deal with the various techniques of implement­
ing a buffer. It must be able to contain successive portions of information,
it must therefore be a suitable storage medium, accessible to both processes.
Furthermore, it must not only contain the portions themselves, it must also
represent their linear ordering. (In the literat ure two weIl-known techniques
are known as "cyclic buffering" and "chaining" respectively.) When the pro­
ducer has prepared its next portion to be added to the buffer we shall denote

94 EDSGER W. DIJKSTRA

this action simply by add portion to buffer, without going into furt her
details; similarly, the take portion from buffer describes the consumer's
behaviour, where the oldest portion still in the buffer is understood. (An­
other name of a buffer is a "First-In-First-Out-Memory".)

Omitting in the outermost block all declarations for the buffer, we can
now construct the two processes with the aid of a single general semaphore,
called number of queuing portions.

begin integer number of queuing portions;
number of queuing portions:= 0;
parbegin

end

producer: begin
again 1: produce the next portion;

add portion to buffer;
V(number of queuing portions);
goto again 1

end;
consumer: begin

parend

again 2: P(number of queuing portions);
take portion from buffer;
process portion taken;
goto again 2

end

The first line of the producer represents the co ding of the process wh ich
forms the next portion of information; it has a meaning quite independent of
the buffer for which this portion is intended; when it has been executed the
next portion has been successfully completed, the completion of its construc­
tion can no longer be dependent on other (unmentioned) conditions. The
second li ne of co ding represents the actions which define the finished portion
as the next one in the buffer; after its execution the new portion has been
added completely to the buffer, apart from the fact that the consumer does
not know it yet. The V-operation finally confirms its presence, i.e. signals
it to the consumer. Note that it is absolutely essential that the V-operation
is preceded by the complete addition of the portion. About the structure of
the consumer analogous remarks can be made.

Particularly in the case of buffer implementation by means of chaining the
operations add portion to buffer and take portion from buffer­
operating as they are on the same clerical status information of the buffer­
may interfere with each other in a most undesirable fashion, unless we see to
it, that they exclude each other in time. This can be catered for by a binary
semaphore, called buffer manipulation, the values of which mean:

CO OPERATING SEQUENTIAL PROCESSES

= 0: either adding to or taking from the buffer is taking place
= 1: neither adding to nor taking from the buffer is taking place.

The program is as follows:

begin integer number of queuing portions,

end

buffer manipulation;
number of queuing portions:= 0;
buffer manipulation:= 1;
parbegin
producer: begin

again 1: produce next portion;

end;
consumer: begin

P(buffer manipulation);
add portion to buffer;
V(buffer manipulation);
V(number of queuing portions);
goto again 1

again 2: P(number of queuing portions);
P(buffer manipulation);

end
par end

take portion from buffer;
V(buffer manipulation);
process portion taken;
goto again 2

The reader is requested to convince himself that:

(a) the order of the two V-operations in the producer is immaterial;

(b) the order of the two P-operations in the consumer is essential.

95

Remark. The presence of the binary semaphore buffer manipulation
has another consequence. We have given the program for one producer
and one consumer, but now the extension to more producers and/or more
consumers is straightforward: the same semaphore sees to it that two or more
additions of new portions will never get mixed up, and the same applies to
two or more takings of a portion by different consumers. The reader is
requested to verify that the order of the two V-operations in the producer
is still immaterial.

4.2 The Superfluity of the General Semaphore

In this section we shall show the superfluity of the general semaphore and we
shall do so by rewriting the last program of the previous section, using binary

96 EDSGER W. DIJKSTRA

semaphores only. (Intentionally I have written "we shall show" and not "we
shall prove". We do not have at our disposal the mathematical apparatus
that would be needed to give such a proof, and I do not feel inclined to
develop such mathematical apparatus now. Nevertheless, I hope that my
show will be convincing!) We shall first give a solution and postpone the
discussion till afterwards.

begin integer numqueupor, buffer manipulation,

end

consumer delay;
numqueupor:= 0; buffer manipulation:= 1;
consumer delay:= 0;
parbegin
producer: begin

again 1: produce next portion;
P(buffer manipulation);

end;

add portion to buffer;
numqueupor:= numqueupor + 1;
if numqueupor = 1 then

V(consumer delay);
V(buffer manipulation);
goto again 1

consumer: begin integer oldnumqueupor;
wait: P(consumer delay);

par end

go on: P(buffer manipulation);

end

take portion from buffer;
numqueupor:= numqueupor - 1;
oldnumqueupor:= numqueupor;
V(buffer manipulation);
process portion taken;
if oldnumqueupor = 0 then goto wait

else goto go on

Relevant in the dynamic behaviour of this program are the periods of
time during which the buffer is empty. (As long as the buffer is not empty,
the consumer can go on happily at its maximum speed.) Such aperiod can
only be initiated by the consumer (by taking the last portion present from
the buffer), it can only be terminated by the producer (by adding a por­
tion to an empty buffer). These two events can be detected unambiguously,
thanks to the binary semaphore buffer manipulation, that guarantees the
mutual exclusion necessary for this detection. Each such period is accom­
panied by a P- and a V-operation on the new binary semaphore consumer
delay. Finally, we draw attention to the local variable oldnumqueupor of the
consumer: its value is set during the taking of the portion and fixes whether

CO OPERATING SEQUENTIAL PROCESSES 97

it was the last portion then present. (The more expert ALGOL readers will
be aware that we only need to store a single bit of information, viz. whether
the decrease of numqueupor resulted in a value = 0; we could have used a
local variable of type Boolean for this purpose.) When the consumer decides
to go to wait, i.e. finds oldnumqueupor = 0, at that moment numqueupor
itself could already be greater than zero again!

In the previous program the relevant occurrence was the period with
empty buffer. One can remark that emptiness is, in itself, rather irrelevant: it
only matters, when the consumer should like to take a next portion, which is
still absent. We shall program this version as weIl. In its dynamic behaviour
we may expect less P- and V-operations on consumer delay: they will not
occur when the buffer has been empty for a short while, but is filled again
in time to make delay of the consumer unnecessary. Again we shall first give
the program and then its discussion.

begin integer numqueupor, buffer manipulation,
consumer delay;

end

numqueupor:= 0; buffer manipulation:= 1;
consumer delay:= 0;
parbegin
producer: begin

again 1: produce next portion;
P(buffer manipulation);
add portion to buffer;
numqueupor:= numqueupor + 1;
if numqueupor = 0 then

begin V(buffer manipulation);
V(consumer delay) end

else
V(buffer manipulation);

goto again 1
end;

consumer: begin

par end

again 2: P(buffer manipulation);
numqueupor:= numqueupor - 1;
if numqueupor = -1 then

end

begin V(buffer manipulation);
P(consumer delay);
P(buffer manipulation) end;

take portion from buffer;
V(buffer manipulation),
process portion taken;
goto again 2

98 EDSGER W. DIJKSTRA

Again, the semaphore buffer manipulation caters for the mutual
exclu- sion of critical sections. The last six lines of the producer could have
been formulated as follows:

if numqueupor = 0 then V(consumer delay);
V(buffer manipulation); goto again 1

In not doing so I have followed a personal taste, VIZ. to avoid P- and
V- operations within critical sections; a personal taste to wh ich the reader
should not pay too much attention.

The range of possible values of numqueupor has been extended with the
value -1, meaning (outside critical section execution) "the buffer is not only
empty, but its emptiness has already been detected by the consumer, wh ich
has decided to wait". This fact can be detected by the producer when, after
the addition of one, numqueupor = 0 holds.

Note how, in the case of numqueupor = -1, the critical section of the
consumer is dynamically broken into two parts: this is most essential, for
otherwise the producer would never get the opportunity to add the portion
that is already so much wanted by the consumer.

(The program just described is known as "The Sleeping Barber". There
is a barbershop with aseparate waiting room. The waiting room has an entry
and next to it an exit to the room with the barber's chair, entry and exit
sharing the same sliding door, which always closes one of them; furthermore,
the entry is so sm all that only one customer can enter it at a time, thus fixing
their order of entry. The mutual exclusions are thus guaranteed.

t I Barber's Chair

jv-----C+
Waiting room

\,.

I
When the barber has finished a haircut he opens the door to the waiting

room and inspects it. If the waiting room is not empty he invites the next
customer, otherwise he goes to sleep in one of the chairs in the waiting room.
The complementary behaviour of the customers is as follows: when they find
zero or more customers in the waiting room they just wait their turn, when
they find, however, the Sleeping Barber-numqueupor = -l-they wake hirn
up.)

The two programs given present a strong indication that the general
semaphore is, indeed, superfiuous. Nevertheless, we shall not try to abolish

COOPERATING SEQUENTIAL PROCESSES 99

the general semaphore: the one-sided synchronization restrietion expressible
by it is very common, and comparison of the solutions with and without
the general semaphore shows convincingly that it should be regarded as an
adequate tool.

4.3 The Bounded Buffer

I shall give a last simple example to illustrate the use of the general
semaphore. In Seetion 4.1 we have studied a producer and a consumer
coupled via a buffer with unbounded capacity. This is a typically one-sided
restriction: the producer can be arbitrarily far ahead of the consumer; on the
other hand, the consumer can never be ahead of the producer. The relation
becomes symmetrie when the two are coupled via a buffer of finite size, say
of N portions. We give the program without discussion; we ask the reader
to convince himself of the complete symmetry. ("The consumer pro duces
and the producer consumes empty positions in the buffer.") The value N,
as weIl as the buffer, is supposed to be defined in the surrounding universe
into which the following program should be embedded.

begin integer number of queuing portions,
number of empty positions,
buffer manipulation;

end

number of queuing portions:= 0;
number of empty positions:= N;
buffer manipulation:= 1;
parbegin
producer: begin

again 1: produce next portion;

end;
consumer: begin

P(number of empty positions);
P(buffer manipulation);
add portion to buffer;
V(buffer manipulation);
V(number of queuing portions);
goto again 1

again 2: P(number of queuing portions) ;
P(buffer manipulation);

end
parend

take portion from buffer;
V(buffer manipulation);
V(number of empty positions);
process portion taken;
goto again 2

100 EDSGER W. DIJKSTRA

5 CO-OPERATION VIA STATUS VARIABLES

In Sections 4.1 and 4.3 we have illustrated the use of the general semaphore.
It proved an adequate tool, be it as implement at ion of a rather trivial form
of interaction. The rules for the consumer are very simple: if there is some­
thing in the buffer, consume it. They are of the same simplicity as the
behaviour of the wage-earner who spends all his money as soon as he has
been paid and is broke until the next pay day.

In other words: when a group of co-operating sequential processes have
to be constructed and the overall behaviour of these processes combined has
to satisfy more elaborate requirements~the community, formed by them,
has, as a whole, to be weIl behaved in some sense~we can only expect to
be able to achieve this if the individual processes themselves and the ways
in wh ich they can interact will get more refined. We can no longer expect
a ready-made solution, such as the general semaphore, to do the job. In
general, we shall need such fiexibility as can be expressed in a program for
a general-purpose computer.

We now have the raw material, we can define the individual processes,
they can communicate with each other via the common variables, and finally,
we have the synchronizing primitives. How we can compose from it what we
might want is, however, by no means obvious. We must now train ourselves
to use the tools, we must develop a style of programming, a style of "parallel
programming". Two points should be stressed.

We shall be faced with a great amount of freedom. Interaction may imply
decisions bearing upon more than one process, and it is not always obvious
which of the processes should then take the decisions. If we cannot find
a guiding principle (e.g. efficiency considerations), then we must have the
courage to impose some rule for the sake of clarity.

Secondly, if we are interested in systems that really work we should
be able to convince ourselves (and anybody else who takes the trouble of
doubting) of the correctness of our constructions. In uniprogramming one
is already faced with the task of program verification a task the difficulty of
which is often underestimated but there one can hope to debug by testing
of the actual program. In our case the system will often have to work under
irreproducible circumstances, and we can hardly expect any serious help
from field tests. The duty of verification should concern us right from the
start.

We shall attack a more complicated example in the hope that this will
give us some of the experience which might be used as guiding principle.

COOPERATING SEQUENTIAL PROCESSES 101

5.1 An Example of a Priority Rule

In Section 4.3 we have used the general semaphore to couple a producer and
a consumer via a bounded buffer. The solution given there is extendable to
more producers and/or more consumers; it is applicable when the "portion"
is at the same time a convenient unit of information, i.e. when we can regard
the different portions as all being of the same size.

In the present problem we consider producers that offer portions of dif­
ferent sizes; we assume the size of these portions to be expressed in portions
units. The consumers, again, will process the successive portions from the
buffer, and will therefore have to be able to process portions the size of which
is not given apriori. A maximum portion size will, however, be known.

The size of the portions is given in information units, we assume also
that the maximum capacity of the buffer is given in information units: the
quest ion whether the buffer will be able to accommodate the next portion
will therefore depend on the size of the portion offered. The requirement
that "adding a portion to" and "taking a portion from the buffer" are still
conceivable operations implies that the size of the buffer is not less than the
maximum portion size.

We have a bounded buffer, and therefore a producer may have to wait
before it can offer a portion. With fixed-sizeportions this would only occur
when the buffer was full to the brim, now it can also happen because free
space in the buffer, although present, is insucient for the portion concerned.

Furthermore, when we have more than one producer and one of them is
waiting, then the other ones may go on and reach the state that they wish to
offer a portion. Such a portion from a next producer may also be too large,
or it may be sm aller and it may fit in the available free space of the buffer.

Somewhat arbitrarily, we impose on our solution the requirement that
the producer wishing to offer the larger portion gets priority over the pro­
ducer wishing to offer the sm aller portion to the buffer. (When two or more
producers are offering portions that happen to be of the same size we just
don't care.)

When a producer has to wait because the buffer cannot accommodate
its portion, no other producers can therefore add their portions until furt her
notice: they cannot do so if the new portion is larger (for then it will not fit
either) , they are not allowed to if the new portion is smaller, for then they
have a lower priority and must leave the buffer for the earlier request.

Suppose a moment at which there is a completely filled buffer and three
producers, waiting to offer portions of 1, 2, and 3 units respectively. When

102 EDSGER W. DIJKSTRA

a consumer now comsumes a five-unit portion the priority rule implies that
the producers with the 2-unit portion and the 3-unit portion will get the
opportunity to go on and not the one offering the l-unit portion. It is not

meant to imply that in that case the 3-unit portion will actually be offered
before the 2-unit portion!

We shall now try to introduce so-called "status variables" for the different
components of the system, with the aid of which we can characterize the state
of the system at any moment. Let us try.

For each producer we introduce a variable named desire; this variable
will denote the number of buffer units needed for the portion it could not add
to the buffer. As this number is always positive, we can attach to desire = 0
the meaning that no request from this producer is pending. Furthermore,
we shall introduce for each producer a private binary producer semaphore.

For the buffer we introduce the binary semaphore bufman, wh ich takes
care of the mutual exclusion of buffer manipulations in the widest sense
(i.e. not only the adding to and taking from the buffer but also inspection
and modification of the status variables concerned).

Next we need a mechanism to signal the presence of a next portion to the
consumers. As soon as a next portion is in the buffer, it can be consumed and
as we do not care which of the consumers takes it, we can hope that a general
semaphore number of queuing portions will do the job. (Note that it
counts portions queuing in the buffer and not number of filled information
units in the buffer.)

Vacated buffer space must be signalled back to the producers, but the
possible consequences of vacating buffer space are more intricate, and we
cannot expect that a general semaphore will be adequate. Tentatively we
introduce an integer status variable number of free buffer uni ts. Note
that this variable counts units, not portions.

Remark. The value of number of free buffer uni ts will at most be
equal to the size of the buffer diminished by the total size of the portions
counted in number of queuing portions, but it may be less! I refer to the
program given in section 4.3; there the sum

number of queuing portions + number of empty positions

is initially (and usually) = N, but it may be = N - 1, because the P­
operation on one of the semaphores always precedes the V-operation on the
other. (Verify that in the program of section 4.3 the sum can even be =
N - 2 and that this value could even be lower had we had more produc­
ers and/or consumers.) Here we may expect the same phenomenon: the

CO OPERATING SEQUENTIAL PROCESSES 103

semaphore number of queuing portions will count the portions'actually
and completely filled and still unnoticed will count the completely free, un­
allocated units in the buffer. But the units which have been reserved for
filling, which have been granted to a (waiting) producer, without already
being filled, will not be counted in either of them.

Finally, we introduce the integer buffer blocking, the value of which
equals the number of quantities desire that are positive. Obviously, this
variable is superfluous; it has been introduced as a recognition of one of our
earlier remarks, that as so on as one of the desires is positive, no further
additions to the buffer can be made, until furt her notice. At the same time
this variable may act as a warning to the consumers, that such a "further
notice" is wanted.

We now propose the following program, written for N producers and M
consumers. (N, M, Buffer size, and all that concerns the buffer is assumed
to be declared in the surroundings of this program.)

begin integer array desire, producer semaphore[l N];
integer number of queuing portions,

number of free buffer units,
buffer blocking, bufman, loop;

for loop:= 1 step 1 until N do
begin des ire [loop] := 0;

producer semaphore [loop] := 0
end

number of queuing portions:= 0 ;
number of free buffer units:= Buffer size;
buffer blocking:= 0; bufman:= 1;
parbegin
producer 1:

begin end;

producer n:
begin integer portion size;
again n: produce next portion and set portion size;

P(bufman);
if buffer blocking = 0 and

number of free buffer units >= portion size
then

number of free buffer units:=
number of free buffer units - portion size

else
begin buffer blocking:= buffer blocking + 1;

desire[n]:= portion size; V(bufman);
P(producer semaphore[n]); P(bufman) end;

add portion to buffer; V(bufman);

104

end

EDSGER W. DIJKSTRA

V(number of queuing portions); goto again n
end;

producer N:
begin end;

consumer 1:
begin end;

consumer m:
begin integer portion size, n, max, nmax;
again m: P(number of queuing portions); P(bufman);

take portion from buffer and set portion size;
number of free buffer units:=

number of free buffer units + portion size;
test: if buffer blocking > 0 then

end;

consumer M:

begin max:= 0,

end;

for n:= 1 step 1 until N do
begin if max < desire[n] then

begin max:= desire[n]; nmax:= n
end end;

if max <=
number of free buffer units then

begin number of free buffer units:=
number of free buffer units
- max;

end

desire[nmax] := 0;
buffer blocking:=

buffer blocking - 1;
V(producer semaphore[nmax]);
goto test

V(bufman); process portion taken;
goto again m

begin end
par end

In the outermost block the common variables are declared and initialized.
This part of the program hopefully presents no difficulties to the reader who
has followed me until here.

COOPERATING SEQUENTIAL PROCESSES 105

Let us first try to understand the behaviour of the producer. When it
wishes to add a new portion to the buffer there are essentially two cases:
either it can do so immediately or not. It can add immediately under the
combined condition:

buffer blocking = 0 and
number of free buffer units >= portion size;

if so, it will decrease number of free buffer uni ts and-dynamically
speaking in the same critical seetion-it will add the portion to the buffer.
The two following V-operations (the order of which is immaterial) close the
critical section and signal the presence of the next portion to the combined
consumers. If it cannot add immediately, i.e. if (either)

buffer blocking > 0 or
number of free buffer units < portion size

(or both), then the producer decides to wait, "to go to sleep", and delegates
to the combined consumers the task to wake it up again in due time. The faet
that it is waiting is coded by desire [n] > 0, buffer blocking is increased
by 1 accordingly. After all clerical operations on the common variables have
been carried out the critical seetion is left (by V (bufman)) and the producer
initiates a P-operation on its private semaphore. When it has completed
this P-operation it re-enters the critical seetion, merges dynamically with
the first case and adds the portion to the buffer. (See also the consumer in
the second program of section 4.2, where we have already met the cutting
open of a critical section.) Note that in the waiting case the producer has
skipped the decrease of number of free buffer uni ts. Note also that the
producer initiates the P-operation on its private semaphore at a moment
that the latter may already be = 1, i.e. this P-operation, again, is only a
potential delay.

Let us now inspect whether the combined consumers fulfil the tasks del­
egated to them. The presence of a next portion is correctly signalIed to
them via the general semaphore number of queuing portions and, as the
P-operation on it occurs outside any critical seetion, there is no danger of
consumers not initiating it. After this P-operation the consumer enters its
critical seetion, takes a portion, and increases the number of free buffer
units. If buffer blocking = 0 holds, the following compound statement is
skipped completely and the critical seetion is left immediately; this is cor­
reet, for buffer blocking = 0 means that none of the quantities desire is
positive, i.e. that none of the producers is waiting for the free space just cre­
ated in the buffer. If, however, it finds buffer blocking > 0 it knows that

106 EDSGER W. DIJKSTRA

at least one of the producers has gone to sleep and it will inspect, whether
one or more producers have to be woken up. It looks for the maximum value
of desire. If this is not too large it decides that the corresponding producer
has to go on. This decision has three effects:

(a) The number of free buifer units is decreased by the number of
units desired. Thus we guarantee that the same free space in the
buffer cannot be granted to more than one producer. Furthermore,
this decrease is in accordance with the producer behaviour.

(b) Desire of the producer in question is set to zero; this is correct, for
its request has now been granted; buffer blocking is decreased by 1
accordingly.

(c) A V-operation on the producer semaphore concerned wakes the sleep­
ing producer.

After that, control of the consumer returns to test to inspect whether
more sleeping producers should be woken up. The inspection process can
end in one of two ways: either there are no sleeping producers left (buifer
blocking = 0) or there are still sleeping processes, but the free space is
insufficient to accommodate the maximum desire. The final value of buifer
blocking is correct in both cases. After the waking up of the producers is
done the critical section is left.

5.2 An Example of Conversations

In this section we shall discuss a more complicated example, in which one of
the co-operating processes is not a machine but a human being, the "oper­
ator".

The operator is connected with the processes via a so-called "semi-duplex
channel" (say "telex connection"). It is called a duplex channel because it
conveys information in either direction: the operator can use a keyboard to
type in a message for the processes, the processes can use the teleprinter
to type out a message for the operator. It is called a semi-duplex channel,
because it can only transmit information in one direction at a time.

Let us now consider the requirements of the total construction, admit­
tedly somewhat simplified yet hopefully sufficiently complicated to pose to
us a real problem, yet sufficiently simple so as not to drown the basic pattern
of our solution in a host of inessential details.

COOPERATING SEQUENTIAL PROCESSES 107

We have N identical processes (numbered from 1 through N), and essen­
tially they can each ask a single question, called Q i, meaning "How shall I
go on 7", to which the operator may give one of two possible answers, called
Ai and A2. We assurne that the operator must know which of the processes
is asking the question since his answer might depend on this knowledge and
we therefore specify that the i th process identifies itself when posing the
question; we indicate this by saying that it transmits the quest ion Q1(i). In
a sense this is a consequence of the fact that all N processes use the same
communication channel.

A next consequence of this channel sharing between the different pro­
cesses is that no two processes can ask their question simultaneously: be­
hind the scenes so me form of mutual exclusion must see to this. If only
Q1-questions are mutually exclusive the operator may meet the following
situation: a question-say Q1(3)-is posed, but before he has decided how
to answer it a next question-say, Qi (7)-is put to hirn. Then the single
answer Ai is no longer sufficient, because now it is no longer clear whether
this ans wer is intended for process 7 or for process 3. This could be over­
come by adding to the answers the identification of the process concerned,
say, A1(i) and A2 (i) with the appropriate value of i.

Eut this is only one way of doing it: an alternative solution is to make the
question, followed by its answer, together a critical occurrence: it relieves
the operator from the duty to identify the process, and we therefore select
the latter arrangement. So we stick to the answers Ai and A2. We have
two kinds of conversations Q1(i) , Ai and Q1(i), A2 with the rule that
a next conversation can be initiated only when the previous one has been
completed.

We shall now complicate the requirements in three respects.
First, the individual processes may wish to use the communication chan­

nel for single-shot messages M (i) say which do not require any answer from
the operator.

Secondly, we wish to give the operator the possibility to postpone an
answer. Of course, he can do so by just not answering, but this would have
the undesirable effect that the communication channel remains blocked for
the other N - 1 processes. We introduce a next answer A3, meaning: "The
channel becomes free again, but the conversation with the process concerned
remains unfinished." Obviously, the operator must have the opportunity to
reopen the conversation again. He can do so via A4(i) or A5(i), where
i runs from 1 through N and identifies the process concerned, where A4

108 EDSGER W. DIJKSTRA

indicates that the process should continue in the same way as after Al, while
A5 prescribes the reaction as to A2. Possible forms of conversation are now:

(a) Ql (i) , Al

(b) Ql Ci) , A2

(c) Ql(i), A3 - - - A4(i)

(d) Ql (i) , A3 - A5 (i)

As far as process i is concerned (a) is equivalent with (c) and (b) is equivalent
with (d).

The second-requirement has a profound infiuence: without it-i.e. only
Al and A2 permissible answers-the process of incoming message interpreta­
tion can always be subordinate to one of the N processes, viz. the one that
has put the question, this can wait for an answer and can act accordingly.
We do not know beforehand, however, when the message A4(i) or A5(i) will
arrive, and we cannot delegate its interpretation to the ith process, because
the discovery that this incoming message is concerned with the i th process
is part of the message interpretation itself!

Thirdly, A4- and A5-messages must have priority over Ql- and M- mes­
sages, i.e. while the communication channel is occupied (in a Ql- or M­
message), processes might reach the state that they want to use the channel,
but the operator too might co me to this conclusion at the same time. As
soon as the channel becomes available, we wish that the operator can use
it and that, if he so desires, it won't be snatched away by one of the pro­
cesses. This implies that the operator has a means to express this desire a
rudimentary form of input even if the channel itself is engaged in output.

We assurne that the operator

(a) can give externally a

V(incoming message)

which he can use to announce a message (Al, A2, A3, A4, or A5);

(b) can detect by the machine's reaction, whether his intervention is ac­
cepted or ignored.

Remark. The situation is not unlike the school teacher shouting, "Now
children, listen!" If this is regarded as a normal message it is nonsensical:

CO OPERATING SEQUENTIAL PROCESSES 109

either the children are listening and it is therefore superfluous, or they are
not listening and therefore they do not hear it. It is, in fact, a kind of "meta­
message" , which only teIls that a normal message is coming and which should
even penetrate if the children are not listening (talking, for instance).

This priority rule may cause the communication channel to be reserved
for an announced A4-or A5 message. By the time the operator gets the
opportunity to give it the situation or his mood may have changed, and
therefore we extend the list of answers with A6-the dummy opening-which
enables the operator to withhold, on second thoughts, the A4 or A5.

A final feature of the message interpreter is the applicability test. The
operator is a human being, and we may be sure that he will make mistakes.
The states of the message interpreter are such that at any moment not all
incoming messages are applicable; when a message has been rejected as non­
applicable the interpreter should return to such astate that the operator
can then give the correct version.

Our attack will be along the following lines:

(1) Besides the N processes we introduce another process, called message
interpreter; this,is done because it is difficult to make the interpre­
tation of the messages A4, A5, and A6 sub ordinate to one of the N
processes.

(2) Interpretation of a message always implies, besides the message itself,
astate of the interpreter. (In the trivial case this is a constant state,
viz. the willingness to understand the message.) We have seen that not
all incoming messages are acceptable at all times, so our message in­
terpreter will have to have different states. We shall code them via the
(common) state variable comvar. The private semaphore, which can
delay the action of the message interpreter, is the semaphore incoming
message, already mentioned.

(3) For the N processes we shall introduce an array procsem of private
semaphores and an array procvar of state variables, through which
the different processes can communicate with each other, with the
message interpreter, and vice versa.

(4) Finally, we introduce a single binary semaphore mutex which caters
for the mutual exclusion during inspection and/or modification of the
common variables.

110 EDSGER W. DIJKSTRA

(5) We shall use the binary semaphore mutex only for the purpose just
described, and never, say, will mutex = 0 be used to code that the
channel is occupied. Such a convention would be a dead alley in the
sense that the technique used would fall into pieces as soon as the
N processes would have two channels (and two operators) at their
disposal. We aim to make the critical sections, governed by mutex,
rather short, and we won't shed a tear if some critical section is shorter
than necessary.

The above five points are helpful, and in view of our previous experiences
they seem a set of reasonable principles. One facet of this subject has been
to present a solution along the lines just given and show that it is correct. I
would do a better job if I could show as weIl how such a solution is found.
Admittedly any such solution is found by trial and error, but even so, we
could try to make the then prevailing guiding principle (in mathematics
usually called "The feeling of the genius") somewhat more explicit. For we
are still faced with problems:

(a) what structure should we give to the N +1 processes?

(b) what states should we introduce (Le. how many possible values should
the state variables have and what should be their meanings)?

The problem (both in constructing and in presenting the solution) is
that the two points just mentioned are interdependent. For the values of
the state variables have only an unambiguous, interpretable meaning, when
mutex = 1 holds, i.e. when none of the processes is inside a critical section,
in which these values are subject to change. In other words, the conditions
under which the meaning of the state variable values should be applicable
is only known when the programs have been constructed, but we can only
construct the programs after we know what inspections of and operations on
the state variables are to be performed. In my experience, one starts with a
rough picture of both programs and state variables, then starts to enumerate
the different states and finally tries to build the programs. Then two things
may happen: either one finds that one has introduced too many states or
one finds that~having overlooked a need for cutting a critical section into
parts~one has not introduced enough of them. One modi fies the states
and then the program, and with luck and care the design process converges.
Usually I found myself content with a working solution and did not bother
to minimize the number of states introduced.

CO OPERATING SEQUENTIAL PROCESSES 111

In my experience it is easier to conceive first the states (these being
statically interpretable) and then the programs. In conceiving the states we
have to bear three points in mind.

(a) State variables should have a meaning when mutex is = 1; on the other
hand, a process must leave the critical section before it starts to wait
for a private semaphore. We must be very keen on all those points
where a process may have to wait for something more complicated
than permission to complete P (mutex) .

(b) The combined state variables specify the total state of the system.
Nevertheless, it helps a great deal if we can regard so me state variables
as "belonging to that and that process". If some aspect of the total
state increases linearly with N it is easier to conceive that part as
equally divided among the N processes.

(c) If a process decides to wait on account of a certain (partial) state each
process that makes the system leave this partial state should inspect
whether on ac count of this change so me waiting process should go on.
(This is only a generalization of the principle already illustrated in The
Sleeping Barber.)

The first two points are mainly helpful in the conception of the different
states, the last one is an aid to make the programs correct.

Let us now try to find a set of appropriate states. We start with the
element procvar [i], describing the state of process i.

procvar[i] = 0

This we call "the horne position". It will indicate that none of the fol­
lowing situations applies, that process i does not require any special service
from either the message interpreter or one of the other processes.

procvar [i] = 1

"On account of non-availability of the communication channel, process
i has decided to wait on its private semaphore." This decision can be taken
independently in each process, it is therefore reasonable to represent it in
the state of the process. Up till now there is no obvious reason to distinguish
between waiting upon availability for aM-message and for a Ql-question,
so let us try to do without this distinction.

112 EDSGER W. DIJKSTRA

procvar[i] = 2

"Question Ql Ci) has been answered by A3, viz. with respect to process
i the operator has postponed his final decision." The fact of the post­
ponement must be represented because it can hold for an indefinitely long
period of time (observation a); it should be regarded as astate variable of
the process in question, as it can hold in N-fold (observation b). Moreover,
procvar [i] = 2 will act as applicability criterion for the operator messages
A4 [i] and A5 [i] .

procvar[i] = 3

"Ql [i] has been answered by Al or by A3 - - - A4 [i]."

procvar[i] = 4

"Ql [i] has been answered by A2 or by A3 - - - A5 [i]."

First of all we remark that it is of no concern to the individual process
whether the operator has postponed his final answer or not. The reader may
wonder, however, that the answer given is coded in procvar, while only one
answer is given at a time. The reason is that we do not know how long it
will take the individual process to react to this answer: before it has done
so, a next process may have received its final answer to the Q1-question.

Let us now try to list the possible states of the communication organi­
sation. We introduce a single variable, called comvar to distinguish between
these states. We have to bear in mind three different aspects:

(1) availability of the communication possibility for M-messages, Q1-
quest ions , and the spontaneous message of the operator;

(2) acceptability-more general: interpretability-of the incoming mes­
sages.

(3) operator priority for incoming messages.

In order not to complicate matters too much at once, we shall start by
ignoring the third point. Without operator priority we can see the following
states.

comvar 0

COOPERATING SEQUENTIAL PROCESSES 113

"The communication facility is idle", i.e. equally available for both pro­
cesses and operator. For the processes comvar = 0 me ans that the commu­
nication facility is available, for the message interpreter it means that an
incoming message need not be ignored, but must be of type A4, A5, or A6.

comvar = 1

"The communication facility is used for aM-message or a Ql-question."
In this period of time the value of comvar must be i= 0, because the commu­
nication facility is not available for the processes; for the message interpreter
it me ans that incoming messages have to be ignored.

comvar = 2

"The communication facility is reserved for an Al-, A2-, or A3-answer."
When the M-message has been finished the communication facility becomes
available again; after a Ql-question, however, it must remain reserved. Dur­
ing this period, characterized by comvar = 2, the message interpreter must
know to which process the operator answer applies. At the end of the answer
the communication facility becomes again available.

Let us now take the third requirement into consideration. This will lead
to a duplication of (certain) states. When comvar = 0 holds, an incom­
ing message is accepted, when comvar = 1, an incoming message must be
ignored. This occurrence must be noted down, because at the end of this
occupation of the communication facility the operator must get his priority.
We can introduce a new state:

comvar = 3

"As comvar = 1 with operator priority requested."
When the transition to comvar = 3 occurred during aM-message the

operator could get his opportunity immediately at the end of it; if, however,
the transition to comvar = 3 took place during a Ql-question the prior­
ity can only be given to the operator after the answer to the Ql-question.
Therefore, also state 2 is duplicated:

comvar = 4

"As comvar = 2, with operator priority requested."
Finally, we have the state:

comvar = 5

114 EDSGER W. DIJKSTRA

"The communication facility is reserved for, or used upon, instigation of
the operator." For the processes this means non-availability, for the message
interpreter the acceptability of the incoming messages of type A4, A5, and
A6. UsuaIly, these messages will be announced to the message interpreter
while comvar is = O. If we do not wish that the entire collection and interpre­
tation of these messages is done within the same critical section the message
interpreter can break it open. It is then necessary that comvar is # o. We
may try to use the same value 5 for this purpose: for the processes it just
means non-availability, while the control of the message interpreter knows
very weIl whether it is waiting for a spontaneous operator message (i.e. "re­
served for ... ") or interpreting such a message (i.e. "used upon instigation
of ... ").

Before starting to try to make the program we must bear in mind point
c: remembering that availability of the communication facility is the great
(and only) bottleneck, we must see to it that every process that ceases to
occupy the communication facility decides upon its future usage. This occurs
in the processes at the end of the M-message (and not so much at the end
of the Ql-question, for then the communication facility remains reserved
for the answer) and in the message interpreter at the end of each message
interpretation.

The proof of the pudding is the eating: let us try whether we can make the
program. (In the program the sequence of characters starting with comment
and up to and including the first semicolon are inserted for explanatory
purpose only. In ALGOL 60 such a comment is admitted only immediately
after begin, but I do not promise to respect this (superfluous) restriction.
The following program should be interpreted to be embedded in a uni verse in
which the operator, the communication facility, and the semaphore incoming
message-initially = O-are defined.)

begin integer mutex, comvar, asknum, loop;
comment The integer "asknum" is astate variable of the
message interpreter, primarily during interpretation of
the answers A1, A2, and A3. It is a common variable, as
its value is set by the asking process;
integer array procvar, procsem[1 : N];
for loop:= 1 step 1 until N do
begin procvar[loop]:= 0; procsem[loop]:= 0 end;
comvar:= 0; mutex:= 1;
parbegin

process 1: begin ... end;

COOPERATING SEQUENTIAL PROCESSES

process n: begin integer i; comment The integer "i" is a
local variable, very much like "loop";

M message: P(mutex);
if comvar = 0 then
begin comment When the communication

facility is available, it is taken;
comvar:= 1; V(mutex) end

else
begin comment Otherwise the process re cords

itself as dormant and goes to sleep;
procvar[n]:= 1; V(mutex);
P(procsem[n])

end;

comment At the completion of this
P-operation, "procsem[n]" will again
be = 0, but comvar - still untouched
by this process - will be = 1 or = 3;

send M message;
comment Now the process has to analyse
whether the operator (first) or one of the
other pro ces ses should get the communication
facility; P(mutex);
if comvar = 3 then comvar:= 5

else
begin comment Otherwise "comvar = 1" will

hold and process n has to look whether
one of the other processes is waiting.
Note that "procvar[n] = 0" holds;
for i:= 1 step 1 until N do
begin if procvar[i] = 1 then

end;

begin procvar[i] := 0;
V(procsem[i]); goto ready

end

comvar:= 0
end

ready: V(mutex);

Q1 Question: P(mutex);
if comvar = 0 then
begin comvar:= 1; V(mutex) end

else
begin procvar[n]:= 1; V(mutex);

P(procsem[n])
end;

115

116

end;

EDSGER W. DIJKSTRA

comment This entry is identical to that of
the M message. Note that we are out of the
critical section, nevertheless this process
will set "asknum". It can do so safely, for
neither another process nor the message
interpreter will access "asknum" as long as
"comvar = 1" holds;
asknum:= n, send question Ql(n);
P(mutex);
comment "comvar" will be = 1 or 3;
if comvar = 1 then comvar:= 2

else comvar:= 4;
V(mutex); P(procsem[n]);
comment After completion of this
P-operation, procvar[n] will be = 3 or = 4.
This process can now inspect and reset its
procvar, although we are outside a critical
section;
if procvar[n] = 3 then Reaction 1

else Reaction 2;
procvar[n]:= 0;
comment This last assignment is
superfluous;

process N: begin ... end;
message interpreter:

begin integer i;
wait: P(incoming message);

P(mutex);
if comvar = 1 then comvar:= 3;
if comvar = 3 then
begin comment The message interpreter

ignores the incoming message, but in
due time the operator will get the
opportunity;
V(mutex); goto wait end;

if comvar = 2 or comvar = 4 then
begin comment Only Al, A2 and A3 are

admissible. The interpretation of the
message need not be done inside a
critical section;
V(mutex);
interpretation of the message coming
in;
if message = Al then

COOPERATING SEQUENTIAL PROCESSES

begin procvar[asknum] := 3;
V(procsem[asknum]);
goto after correct answer end;

if message = A2 then
begin procvar[asknum]:= 4;

V(procsem[asknum]);
goto after correct answer end;

if message = A3 then
begin procvar[asknum]: = 2;

goto after correct answer end;
comment The operator has given an
erroneous answer and should repeat the
message; goto wait;

after correct answer: P(mutex);
if comvar = 4 then
begin comment The operator should now

get his opportunity;
comvar:= 5; V(mutex); goto wait

end;
perhaps comvar to zero:for i:= 1 step 1 until N do

begin if procvar[i] = 1 then
begin procvar[i] := 0;

end
end;
comvar:= 0;

comvar:= 1;
V(procsem[i]); goto ready

ready: V(mutex); goto wait
end;
comment The cases "comvar 0" and
"comvar = 5" remain.
Messages A4, A5, and A6 are admissible;
if comvar = 0 then comvar:= 5;
comment See Remark 1 after the program;
V(mutex);
interpretation of the message coming in;
P(mutex);
if message = A4[process number] then
begin i:= process number given in the

end;

message;
if procvar[i] = 2 then
begin procvar[i]:= 3; V(procsem[i]);

goto perhaps comvar to zero end;
comment Otherwise process not waiting
for postponed answer;
goto wrong message

if message = A5[process number] then
begin i:= process number given in the

message;
if procvar[i] = 2 then

117

118 EDSGER W. DIJKSTRA

end;

begin procvar[il:= 4; V(procsem[i]);
goto perhaps comvar to zero end;

comment Otherwise process not waiting
for postponed answer;
goto wrong message

if message = A6 then
goto perhaps comvar to zero;

wrong message: comment "comvar = 5" holds, giving priority
to the operator to repeat his message;
V(mutex); goto wait

end

end
par end

Remark 1. If the operator, while comvar = 0 or comvar = 5 originally
holds, gives an uninterpretable (or inappropriate) message the communica­
tion facility will remain reserved for his next trial.

Remark 2. The final interpretation of the A4 and A5 messages is done
within the critical section, as their admissibility depends on the state of the
process concerned. If we have only one communication channel and one
operator this precaution is rather superfiuous.

Remark 3. The for-loops in the program scan the processes in order,
starting at process 1; by scanning them cyclically, starting at an arbitrary
process (selected by means of a (pseudo) random number generator), we
could have made the solution more symmetrical in the N processes.

Remark 4. In this section we have first presented a rather thorough
exploration of the possible states and then the program. The reader might
be interested to know that this is the true picture-"a live recording" - of
the birth of this solution. When I started to write this section the problem
posed was as new to me as it was to the reader: the program given is my
first version, constructed on account of the considerations and explorations
given. I hope that this section may thus give a hint as to how one may find
such solutions.

5.2.1 Improvements of the Previous Program

In Section 5.2 we have given a first version of the program; this version has
been included in the text, not because we are satisfied with it but because
its inclusion completes the picture of the birth of a solution. Let us now
try to embellish, in the name of greater conciseness, clarity, and, may be,
efficiency. Let us try to discover in what respects we have made a mess of
it.

COOPERATING SEQUENTIAL PROCESSES 119

Let us compare the information flows from a process to the message
interpreter, and vi ce versa. In the one direction we have the common variable
asknum to tell the message interpreter which process is asking the question.
The setting and the inspection of asknum can safely take place outside the
critical sections, governed by mutex, because at any moment at most one of
the N + 1 processes will try to access asknum. In the inverse information
flow, where the message interpreter has to signal back to the ith process the
nature of the final operator answer, this answer is coded in procvar. This
is mixing things up, as is shown:

(a) by the procvar-inspection (whether procvar is = 3 or = 4), which is
suddenly allowed to take place outside a critical section;

(b) by the superfluity of its being reset to zero.

The suggestion is to introduce a new

integer array operanswer[1 : NJ

the elements of which will be used in a similar fashion as asknum. (An
attractive consequence is that the number of possible values of procvar­
the more fundamental quantity (see below) will no longer increase with the
number of possible answers to the quest ion Ql.)

I should like to investigate whether we can achieve a greater clarity
by separating the common variables into two (or perhaps more?) distinct
groups, in order to reflect an observable hierarchy in the way in which they
are used. Let us try to order them in terms of "basicness".

The semaphore incoming message seems at first sight a fairly basic one,
being defined by the surrounding universe. This is, however, an illusion:
within the parallel compound we should have programmed (as the N + 2nd
process) the operator himself, and the semaphore incoming message is the
private semaphore for the message interpreter just as procsem [i] is for the
ith process.

Thus the most basic quantity is the semaphore mutex taking care of the
mutual exclusion of the critical sections.

Then co me the state variables comvar and procvar, which are inspected
and can be modified within the critical sections.

The quantities just mentioned share the property that their values must
be set before entering the parallel compound. This property is also shared
by the semaphores procsem (and incoming message, see above) if we stick

120 EDSGER W. DIJKSTRA

to the rules that parallel statements will access common semaphores via P­
and V-operations exclusively.

(Without this restrietion, re quest for the communication facility by
process n could start with:

P(mutex);
if comvar = 0 then
begin comvar:= 1; V(mutex) end

else
begin procvar[n]:= 1; procsem[n]:= 0;

V(mutex); P(procsem[n]) end

We reject this solution on the furt her observation that the assignment
procsem [n] is void, except for the first time that it is executed; the ini­
tialization of procsem's outside the parallel compound seems therefore ap­
propriate.)

For the common variables listed thus far I should like to reserve the name
"status variables" , to distinguish them from the remaining ones, asknum and
operanswer, which I should like to call "transmission variables".

The latter are called "transmission variables" because, whenever one of
the processes assigns a value to such a variable, the information just stored
is destinated for a well-known "receiving party". They are used to transmit
information between well-known parties.

Let us now turn our attention from the common variables towards the
programs. Within the programs we have learnt to distinguish the so-called
"critical sections" for which the semaphores mutex caters for the mutual
exclusion. Besides these, we can distinguish regions in which relevant actions
occur, such as:

In the ith Process

Region 1:
Region 2:
Region 3:

sending an M-message
sending a Q1(i)-question
reacting to operanswer[i] (This region
is somewhat openended).

In the Message Interpreter

Region 4:
Region 5:
Region 6:

ignoring incoming messages
expecting Al, A2, or A3
expecting A4(i), A5(i), or A6.

We come now to the following picture. In the programs we have critical
sections, mutually excluded by the semaphore mutex. The purpose of the

COOPERATING SEQUENTIAL PROCESSES 121

critical sections is to resolve any ambiguity in the inspection and modification
of the remaining state variables, inspection and modification performed for
the purpose of more intricate "sequencing patterns" of the regions. These
sequencing patterns make the unambiguous use of the transmission variables
possible. (If one process has to transmit information to another it can now do
so via a transmission variable, provided that the execution of the assigning
region is always followed by that of the inspecting region before that of the
next assigning region.)

In the embellished version of the program we shall stick to the rule that
the true state variables will only be accessed in critical sections (if they are
not semaphores) or via P- and V-operations (if they are semaphores), while
the transmission variables will only be accessed in the regions. (In more
complicated examples this rule might prove too rigid, and duplication might
be avoided by allowing transmission variables to be inspected at least within
the critical section. In this example, however, we shall observe the rule.)

The remaining program improvements are less fundamental.
Co ding will be smoothed if we represent the fact of requested operator

priority not by additional values of comvar but by an additional two-valued
state variable:

Boolean operator priority

(Quantities of type Boolean can take on the two values denoted by true and
false respectively, viz. they have the same domain as "conditions" such as
we have met in the if-clause.)

Furthermore we shall introduce two procedures; they are declared outside
the compound and therefore at the disposal of the different constituents of
the parallel compound.

We shall first give a short description of the new meanings of the values
of the state variables procvar and comvar:

procvar [i]
procvar[i]

procvar[i]
comvar 0
comvar = 1
comvar 2
comvar 3

o horne position
1 waiting for availability of the communication

facility for M or Q1(i)
2 waiting for the answer A4 (i) or A5 (i) .

horne position (communication facility free)
communication facility for M or Q1
communication facility for Al, A2, or A3
communication facility for A4, A5, or A6.

We give the program without comments, and shall do so in two stages:

122 EDSGER W. DIJKSTRA

first the program outside the parallel compound and then the constituents
of the parallel compound.

begin integer mutex, comvar, asknum, loop;
Boolean operator priority;

end

integer array procvar, procsem, operanswer[l: N];
procedure M or Q entry(u); value u; integer u;
begin P(mutex);

end;

if comvar = 0 then
begin comvar:= 1; V(mutex) end

else
begin procvar[u]:= 1; V(mutex); P(procsem[u]) end

procedure select new comvar value;
begin integer i;

if operator priority then
begin operator priority:= false; comvar:= 3 end

else
begin for i:= 1 step 1 until N do

begin if procvar[i] = 1 then

end;

begin procvar[i]:= 0; comvar:= 1;
V(procsem[i]); goto ready end

comvar:= 0;
ready: end

end;
for loop:= 1 step 1 until N do

beg in procvar[loop] := 0; procsem[loop]:= 0 end,
comvar:= 0; mutex:= 1; operator priority:= false;
parbegin
process 1: begin ... end;

process N: begin end;
message interpreter:

begin ... end
par end

Here the nth process will be of the form

process n:

M message:
Region 1:

begin

M or Q entry(n);
send M message;
P(mutex); select new comvar value; V(mutex);

COOPERATING SEQUENTIAL PROCESSES

Q1 question: M or Q entry(n);
Region 2: asknum:= n;

send Q1(n);
P(mutex); comvar:= 2; V(mutex); P(procsem[n])

Region 3: if operanswer[n] = 1 then Reaction 1
else Reaction 2;

end

123

When the message interpreter decides to enter Region 6 it copies, before
doing so, the array procvar: if an answer A4(i) should be acceptable, then
procvar [i] = 2 should already hold at the moment of announcement of the
answer.

Message Interpreter:

begin integer i; integer array pvcopy[l: N];
wait: P(incoming message); P(mutex);

if comvar = 1 then
Region 4:
leave:

Region 5:

signal to
preleave:
Region 6:

end

begin operator priority:= true;
V(mutex); goto wait end;

if comvar <> 2 then goto Region 6;
V(mutex); collect message;
if message <> A1 and message <> A2
and message <> A3 then goto wait;
i:= asknum;
if message A1 then operanswer[i]:= 1 else
if message = A2 then operanswer[i]:= 2;
P(mutex);
if message = A3 then procvar[i]:= 2 else
i: V(procsem[i]);
select new comvar value; goto leave;
if comvar = 0 then comvar:= 3;
for i:= 1 step 1 until N do pvcopy[i]:= procvar[i];
V(mutex); collect message;
if message = A6 then
begin P(mutex); goto preleave end;
if message <> A4(process number)
and message <> A5(process number) then goto wait;
i:= process number given in the message;
if pvcopy[i] <> 2 then goto wait;
operanswer[i]:= if message = A4 then 1 else 2;
P(mutex); procvar[i]:= 0; goto signal to i

As an exercise we leave to the reader the version in which pending re­
quests for Q1-questions have priority over those for M-messages. As a next
extension we suggest a two-console configuration with the additional re­
striction that an A4- or A5-message is only acceptable via the console over

124 EDSGER W. DIJKSTRA

which the conversation has been initiated. (Otherwise we have to exclude
simultaneous, contradictory messages A4 Ci) and A5 Ci) via the two different
consoles. The solution without this restriction is left to the really fascinated
reader.)

5.2.2 Proving the Correctness

In this section title I have used the word "proving" in an informal way.
I have not defined what formal conditions must be satisfied by a "legal
proof", and I do not intend to do so. When I can find a way to discuss the
program of Section 5.2.1, by which I can convince myself of-and hopefully
anybody else that takes the trouble of doubting!-the correctness of the
overall performance of this aggregate of processes I am satisfied.

In the following "state picture" we make a diagram of all the states
in which a process may find itself "for any considerable length of time",
i.e. outside sections critical to mutex. The arrows describe the transitions
taking place within the critical sections; accompanying these arrows, we give
the modifications of comvar or the conditions under which the transition from
one state to another is made.

Calling the neutral region of a process before entry into a Region 1 or
Region 2, Region 0, we can give the state picture

Region 0
procvar = 0

comvar 0-+ 1 comvar i= 0

Region 1 or 2
procvar = 0

Leaving Region 1 can be pictured as:

COOPERATING SEQUENTIAL PROCESSES

I Region 1, procvar = 0 I
comvar 1 -+ 3

operator
priority

procvar
1-+0

1-+0

all procvar i= 0

l Region 0, procvar = 0 I

125

Leaving Region 2, with the possibility of a delayed answer, can be pic­
tured as:

I

I
A1,A2
comvar2 -+

I
I

Region 2, procvar = 0 J
1-+2

waiting for answer, procvar = 0 I
A3

3, 1,0 comvar 2 -+ 3,1,0

I waiting for answer, procvar = 2 J
comvar 0,3 -+ 0,1
A4, A5

Region 3, procvar = 0 I
reaction to the answer ,
Region 0, procvar = ° I

We can try to do the same for the message interpreter. Here we indicate
along the arrows the relevant occurrences, such as changes of a procvar and
the kind of message. We use WIM as abbreviation for "Waiting for Incoming
Message".

126 EDSGER W. DIJKSTRA

Regionl-..

ReBlon 0

end of ReBlon 2

an procvar #: 1

These diagrams, of course, tell us nothing new, but they may be a pow­
erful aid to program inspection.

We verify first that comvar = 0 represents indeed the horne position
of the communication facility, i.e. its availability either for entrance into
Region 1 or Region 2 (by one of the processes) or for entrance into Region 6
(by the message interpreter, as result of an incoming message for which it is
waiting).

If comvar = 0 and one of the processes wants to enter Region 1 or Re­
gion 2, or a message comes from the operator, Region 1, 2, or 6 is en­
teredj furthermore, this entrance is accompanied by either comvar: = 1 or
comvar : = 3, and in this way care is taken of the mutual exclusion of the
Regions 1, 2, and 6.

The mutual exclusion implies that processes may fail to enter Region 1
or 2 immediately, or that an incoming message must be rejected when
it comes at an inacceptable moment. In the first case the process sets
procvar: = 1, in the second case (in Region 4) the message interpreter sets

COOPERATING SEQUENTIAL PROCESSES 127

operator priority:= true.
These assignments are performed only under the condition comvar <> 0;

furthermore, the assignment comvar: = O-only occurring in the procedure
select new comvar value-is only performed provided "non-operator pr i­
ority and all procvar i- 1". From these two observations and the initial
values we can conclude:

comvar = 0 excludes operator priori ty as weIl as the occurrence of
one or more procvar = 1.

Since all ways of ceasing to occupy the communication facility (i.e. the
end of Region 1, 5, and 6) call select new comvar value, we have estab­
lished:

(a) that entrance into the Region 1, 2, and 6 is only delayed if necessary;

(b) that such a delay is guaranteed to end at the earliest opportunity.

The structure of the message interpreter shows clearly that:

(a) it can execute Region 5 only if comvar 2

(b) it can only execute Region 5 if comvar 2

(c) execution of Region 5 is the only way to make comvar again i- 2.

The only assignment comvar: = 2 occurs at the end of Region 2. As a
result, each Region 2 can be followed only by a Region 5 and, conversely,
each Region 5 must be preceded by a Region 2. This sequencing allows us to
use the transmission variable asknum, which is set in Region 2 and inspected
in Region 5.

For the uses of the transmission variables oper ans wer an analogous anal­
ysis can be made. Region 2 will be followed by Region 5 (see above); if
here the final answer (Al or A2) is interpreted, operanswer Ei] is set before
V (procsem Ei]), so that the transmission variable has been set properly be­
fore the process can (and will) enter Region 3, where its operanswer will be
inspected. If in Region 5 the answer A3 is detected, the message interpreter
sets procvar Ei] : = 2 for this process, thus allowing the answer A4 or A5 for
this process exactly once in Region 6. Again V (procsem [i]) is performed
only after the assignment to operanswer. Thus we have verified that:

(a) operanswer is only set on ce by the message interpreter after arequest
in Region 2;

128 EDSGER W. DIJKSTRA

(b) this operanswer will only be inspected in the following Region 3 after
the request to set it has been fulfilled (in Region 5 or Region 6).

This completes the analysis of the soundness of the use of the transmis­
sion variables operanswer .

Inspection of the message interpreter (particularly the scheme of its
states) shows:

(a) that a rejected message (Region 4) so on er or later is bound to give rise
to Region 6;

(b) that wrong messages are ignored, giving the operator the opportunity
of correction.

By the above analysis we hope to have created sufficient confidence in
the correctness of our construction. The analysis followed the steps already
hinted at in section 5.2.1: after creation of the critical sections (with the aid
of mutex) the latter are used to sequence Regions properly, thanks to which
sequencing the transmission variables can be used unambiguously.

6 THE PROBLEM OF THE DEADLY EMBRACE

In the introductory part of this section I shall draw attention to a rather
logical problem that arises in the co-operation between various processes
when they have to share the same facilities. We have selected this problem
for various reasons. First, it arises by a straightforward extension of the
sound principle that no two persons should use a single compartment of a
revolving door simultaneously. Secondly, its solution, which I regard as non­
trivial and which will be given in Section 6.1, gives us a nice example of
more subtle co-operation rules than we have met before. Thirdly, it gives us
the opportunity to illustrate (in Section 6.2) a programming technique by
which a furt her gain in clarity can be achieved.

Let me first give an example of the kind of facility-sharing I have in mind.
As "processes" we might take "programs" , describing so me computa­

tional process to be performed by a computer. Execution of such a com­
putational process takes time, during which information must be stored in
the computer. We restrict ourselves to those processes of which is known in
advance:

(1) that their demand on storage space will not exceed a certain limit, and

CO OPERATING SEQUENTIAL PROCESSES 129

(2) that each computational process will end, provided that storage space
requested by the process will be put at its disposal. The ending of the
computational process will imply that its demand on storage space will
reduce to zero.

We ass urne that the available store has been subdivided into fixed-size
"pages" which, from the point of view of the programs, can be regarded as
equivalent.

The actual demand on storage space needed by a process may be a func­
tion varying in time as the process proceeds-subject, of course, to the a
priori known upper bound. We assurne that the individual processes request
from and return to "available store" in single page units. By "equivalence"
(see the last word of.the previous paragraph) is meant that a process requir­
ing a new page only asks for "a new page" but never for a special one nor
one out of a special group.

We now request that a process, once initiated, will-sooner or later-get
the opportunity to complete its action and reject any organization in which
it may happen that a process may have to be killed half-way through its
activity, thereby throwing away the computation time already invested in it.

If the computer has to perform the different processes one after the other
the only condition that must be satisfied by a process is that its maximum
demand does not exceed the total storage capacity.

If, however, the computer can serve more than one process simultaneously
one can adhere to the rule that one only admits pro grams as long as the sum
of their maximum demands does not exceed the total storage capacity. This
rule, safe though it is, is unnecessarily restrictive, for it means that each
process effectively occupies its maximum demand during the complete time
of its execution. When we consider the following table (in which we regard
the processes as "borrowing" pages from available store)

Process
PI
P2

Maximum demand
80
60

Present Ioan
40
20 +

A vailable store = 100 - 60 = 40

Further claim
40
40

(a total store of 100 pages is assumed), we have a situation in which is still
not hing wrong. If, however, both processes request their next page, and if
they should both get it, we should get the following situation:

130

Process
PI
P2

EDSGER W. DIJKSTRA

Maximum demand
80
60

Present loan
41
21 +

Available store = 100 - 62 = 38

Further claim
39
39

This is an unsafe situation, for both processes might want to realize their
full further claim before returning a single page to available store. So each
of them may first need a further 39 pages, while there are only 38 available.

This situation, when one process can continue only provided the other
one is killed first, is called "The Deadly Embrace". The problem to be
solved is: how can we avoid the danger of the Deadly Embrace without
being unnecessarily restrictive.

6.1 The Banker's Algorithm

A banker has a finite capital expressed in florins. He is willing to accept
customers, that may borrow florins from hirn on the following conditions:

1. The customer makes the loan for a transaction that will be completed
in a finite period of time.

2. The customer must specify in advance his maximum "need" for florins
for this transaction.

3. As long as the "loan" does not exceed the "need" stated in advance,
the customer can increase or decrease his loan florin by florin.

4. A customer when asking for an increase in his current loan undertakes
to accept without complaint the answer "If I gave you the florin you
ask for you would not exceed your stated need, and therefore you
are entitled to a next florin. At present, however, it is somewhat
inconvenient for me to pay you, but I promise you the florin in due
time."

5. His guarantee that this moment will indeed arrive is founded on the
banker's cautiousness and the fact that his co-customers are subject
to the same condition as he: that as so on as a customer has got the
florin he asked for he will proceed with his transactions at a non-zero
speed, i.e. within a finite period of time he will ask for a next florin
or will return a florin or will finish the transaction, which implies that
his complete loan has been returned (florin by florin).

CO OPERATING SEQUENTIAL PROCESSES 131

The primary questions are:

(a) under which conditions can the banker enter into contract with a new
customer?

(b) under which conditions can the banker pay a (next) florin to a request­
ing customer without running into the danger of the Deadly Embrace?

The answer to question (a) is simple: he can accept any customer, whose
stated need does not exceed the banker's capital.

In order to answer question (b), we introduce the following terminology.
The banker has a fixed capi tal at his disposal; each new customer states

in advance his maximum need and for each customer will hold

need[i] ::; capital (for an i).

The current situation for each customer is characterized by his loan.
Each loan is initially = 0 and shall satisfy at any instant

0::; loan[i] ::; need[i] (for an i).

A useful quantity to be derived from this is the maximum further claim,
given by

claim[i] = need[i] - loan[i] (for an i).

Finally, the banker notes the amount in cash, given by

cash = capital - sum of the loans

Obviously

o ::; cash::; capi tal

has to hold.
In order to decide whether a requested florin can be paid to the customer,

the banker essentially inspects the situation that would arise if he had paid
it. If this situation is "safe", then he pays the florin, if the situation is not
"safe" he has to say: "Sorry, but you have to wait."

Inspection whether a situation is safe amounts to inspecting whether all
customer transactions can be guaranteed to be able to finish. The algorithm
starts to investigate whether at least one customer has a claim not exceed­
ing cash. If so, this customer can complete his transactions, and therefore
the algorithm investigates the remaining customers as if the first one had

132 EDSGER W. DIJKSTRA

finished and returned its complete loan. Safety of the situation means that
all transactions can be finished, i.e. that the banker sees a way of getting all
his money back.

If the customers are numbered from 1 through N the routine inspecting
a situation can be written as follows:

integer free money; Boolean safe;
Boolean array finish doubtful[l : N];

free money:= cash;
for i:= 1 step 1 until N do finish doubtful[i]:= true;

L: for i:= 1 step 1 until N do
begin if finish doubtful[i] and claim[i] <= free money

then
begin finish doubtful[il:= false;

free money:= free money + loan[i]; goto L
end

end;
if free money = capital then safe:= true else safe:= false

The above routine inspects any situation. An improvement of the Al­
gorithm has been given by L. Zwanenburg, who takes into account that
the only situations to be investigated are those, where, starting from a safe
situation, a florin has been tentatively given to customer [i]. As soon as
finish doubtful[i] : = false can be executed the algorithm can decide
directly on safety of the situation, for then clearly this attempted payment
was reversible. This short cut will be implemented in the program in the
next section.

6.2 The Banker's Algorithm Applied

In this example also the florins are processes. (Each florin, say, represents
the use of a magnetic tape deck; the loan of a florin is then the permission
to use one of the tape decks.)

We assurne that the customers are numbered from 1 through N and that
the florins are numbered from 1 through M. Each customer has a variable
florin number in which, after each granting of a florin, it can find the num­
ber of the florin it has just borrowed; also each florin has a variable customer
number in which it can find by which customer it has been borrowed.

Each customer has astate variable cusvar, where cusvar = 1 me ans
"I am anxious to borrow." (otherwise cusvar = 0); each florin has astate
variable flovar, where flovar = 1 me ans "I am anxious to get borrowed,
i.e. I am in cash." (otherwise flovar = 0). Each customer has a binary

COOPERATING SEQUENTIAL PROCESSES 133

semaphore cussem, each florin has a binary semaphore flosem, which will
be used in the usual manner.

We assurne that each florin is borrowed and returned upon customer
indication, but that he cannot return a borrowed florin immediately. After
the customer has indicated that he has no further use for this florin the
florin may not be instantaneously available for subsequent use. It is as if
the customer can say to a borrowed florin "run horne to the banker". The
actual loan will only be ended after the florin has indeed returned to cash:
it will signal its return into the banker's cash to the customer from which
it came via a customer semaphore florin returned. A P-operation on
this semaphore should guard the customer against an inadvertent overdraft.
Before each florin re quest the customer will perform a P-operation on its
florin returned; the initial value of florin returned will be = need.

We assurne that the constant integers N and M (= capi tal) and the
constant integer array need are declared and defined in the universe in which
the following program is embedded.

The procedure try to gi ve to is made into a Boolean procedure, the
value of which indicates whether a delayed request for a florin has been
granted. In the florin program it is exploited that returning a florin may at
most give rise to a single delayed request to be granted now. (If more than
one type of facility is shared under control of the banker this will no Ion ger
hold. Jumping out of the for loop to the statement labelled leave at the
end of the florin program is then not permissible.)

begin integer array loan, claim, cussem, cusvar,
florin number, florin returned[1 : N],
flosem, flovar, customer number[1 : M];

integer mut ex , cash, k;
Boolean procedure try to give to (j); value j;
integer j;
begin if cusvar[j] = 1 then

begin integer i, free money;
Boolean array finish doubtful[1 N];
free money:= cash - 1;
claim[j]:= claim~] - 1;
loan[j] := loan[j] + 1;
for i:= 1 step 1 until N do

finish doubtful[i]:= true;
LO: for i:= 1 step 1 until N do

begin if finish doubtful[i]
and claim[i] <= free money then
begin if i <> j then

begin
finish doubtful[i] := false;

134

end;

EDSGER W. DIJKSTRA

end
end;

free money:=
free money + loan[i] ;

goto LO
end

else
begin comment Here more

sophisticated ways for
selecting a free florin
may be implemented;
i:= 0;

L1: i:= i + 1;

end

if flovar[i] = 0 then
goto L1;
florin number[j]:= i;
customer number[i]:= j;
cusvar[j]:= 0;
flovar[i]:= 0;
cash:= cash - 1;
try to give to:= true;
V(cussem[j]) ;
V (flosem Ci]) ;
goto L2

claim[j]:= claim[j] + 1;
loan[j]:= loan[j] - 1

try to give to:= false;
L2: end,

mutex:= 1; cash:= M;
for k:= 1 step 1 until N do
begin loan[k] := 0; cussem[k]:= 0; cusvar[k]:= 0;

claim[k] := need[k]; florin returned[k] := need[k]
end;
for k:= 1 step 1 until M do
begin flosem[k] := 0; flovar[k]:= 1 end;
parbegin

customer 1: begin ... end;

customer N: begin end;
florin 1: beg in end;

florin M: begin ... end
par end

end

COOPERATING SEQUENTIAL PROCESSES 135

In customer n the request for a new florin consists of the following se-
quence of statements:

P(florin returned[n]);
P(mutex);
cusvar[n]:= 1; try to give to (n);
V(mutex);
P(cussem[n]);

after completion of the last statement florin number [n] gives the identity
of the florin just borrowed, the customer has the opportunity to use it and
the duty to return it in due time to the banker.

The structure of a florin is as follows:

florin m:
begin integer h;
start: P(flosem[m]);

comment Now customer number[m] identifies the
customer that has borrowed it. The florin can serve
that customer until it has finished the task required
from it during this loan. To return itself to the
cash, the florin proceeds as follows;
P(mutex);
claim[customer number[m]] :=

claim[customer number[m]] + 1;
loan[customer number[m]] :=

loan[customer number[m]] - 1;
flovar[m]:= 1; cash:= cash + 1;
V(florin returned[customer number[m]]);
for h:= 1 step 1 until N do

begin if try to give to(h) then goto leave end;
leave: V(mutex);

goto start
end

Remark. Roughly speaking, a successful loan can take place only when
two conditions are satisfied: the florin must be requested and the florin must
be available. In this program the mechanism of cusvar and cussem is also
used (by the customer) when the requested florin is immediately available,
likewise the mechanism of flovar and flosem is also used (by the florin) if,
after its return to cash, it can immediately be borrowed again by a waiting
customer. This programming technique has been suggested by C. Ligtmans
and P.A. Voorhoeve, and I mention it because in the case of more intricate
rules of co-operation it has given rise to a simplification that proved to be
indispensable. The underlying cause of this increase in simplicity is that
the dynamic way through the topological structure of the program no longer

136 EDSGER W. DIJKSTRA

distinguishes between an actual delay or not, just as in the case of the P­
operation itself.

7 CONCLUDING REMARKS

In the literat ure one sometimes finds a sharp distinction between "con­
current programming" -more than one central processor operating on the
same job-and "multi-programming" -a single processor dividing its time
between different jobs. I have always feIt that this distinction was rather
artificial and therefore confusing. In both cases we have, macroscopicaIly
speaking, a number of sequential processes that have to co-operate with each
other, and our discussions on this co-operation apply equaIly weIl to "concur­
rent programming" as to "multi-programming" or any mixture of the two.
What in concurrent programming is spread out in space (e.q. equipment)
is in multi-programming spread out in time: the two present themselves
as different implement at ions of the same logical structure, and I regard the
development of a tool to describe and form such structures themselves, i.e. in­
dependent of these implementational differences, as one of the major contri­
butions of the work from which this monograph has been born. As a specific
example of this unifying train of thought I should like to mention-for those
that are only meekly interested in multi-processors, multi-programming, and
the like-the complete symmetry between anormal sequential computer, on
the one hand, and its peripheral gear, on the other (as displayed, for instance,
in Section 4.3: "The Bounded Buffer").

Finally, I should like to express, on ce more, my concern about the cor­
rectness of programs, because I am not too sure whether all of it is duly
refiected in what I have written.

If I suggest methods by which we could try to attain a greater security,
then this is, of course, more psychology than, say, mathematics. I have the
feeling that for the human mi nd it is just terribly hard to think in terms of
processing evolving in time and that our greatest aid in controlling them is
by attaching meanings to the values of identified quantities. For instance, in
the program section

i:= 10;
LO: x:= sqrt(x); i:= i-i;

if i > 0 then goto LO

we conclude that the operation x: = sqrt (x) is repeated ten times, but I
have the impression that we can do so by attaching to i the meaning of

COOPERATING SEQUENTIAL PRO CES SES 137

"the number of times that the operation x: = sqrt (x) still has to be re­
peated". But we should be aware of the fact that such a timeless meaning (a
statement of fact or relation) is not permanently correct: immediately after
the execution of x: = sqrt (x) but before that of the sub se quent i: = i - 1

the value of i is "one more than the number of times that the operation
x: = sqrt (x) still has to be repeated". In other words, we have to specify
at what stages of the process such a meaning is applicable and, of course,
it must be applicable in every situation where we rely on this meaning in
the reasoning that convinces us of the desired overall performance of the
program.

In purely sequential programming, as in the above example, the regions
of applicability of such meanings are usually closely connected with places in
the program text (if not, we have just a tricky and probably messy program).
In multi-programming we have seen in particular in Section 5.2.1 that it
is a worth-while effort to create such regions of applicability of meaning
very consciously. The recognition of the hierarchical difference between the
presence of a message and the message itself, here forced upon us, might
give a clue even to clearer uniprogramming.

For example, if I am married to one out of ten wives, numbered from
1 through 10, this fact may be represented by the value of a variable wife
number associated with me. If I may also be sIngle it is a commonly used pro­
grammer's device to code the state of the bachelor as an eleventh value, say
wife number = O. The meaning of the value of this variable then becomes
"If my wife nu mb er is = 0, then I am single, otherwise it gives the number of
my wife". The moral is that the introduction of aseparate Boolean variable
married might have been more honest.

We know that the von Neumann-type machine derives its power and
flexibility from the fact that it treats all words in store on the same footing.
It is often insufficiently realized that, thereby, it gives the user the duty to
impose structure wherever recognizable.

Sometimes it iso It has often been quoted as The Great Feature of the
von Neumann-type machine that it can modify its own instructions, but
most modern algorithmic translators, however, create an object program
that remains in its entire execution phase just as constant as the original
source text. Instead of chaotically modifying its own instructions just be­
fore or after their execution, creation of instructions and execution of these
instructions now occur in different sequenced regions: the translation phase
and the execution phase. And this for the benefit of us all.

138 EDSGER W. DIJKSTRA

It is my firm belief that in each process of any complexity the variables
occurring in it admit analogous hierarchical orderings, and that when these
hierarchies are clearly recognizable in the program text the gain in clarity of
the program and in effiiciency of the implementation will be considerable. If
this chapter gives any reader a clearer indication of what kind of hierarchi­
cal ordering can be expected to be relevant I have reached one of my goals.
And may we not hope that a confrontation with the intricacies of Multipro­
gramming gives us a clearer understanding of what Uniprogramming is all
about?

THE STRUCTURE OF THE
"THE" MULTIPROGRAMMING

SYSTEM
EDSGER w. DIJKSTRA

(1968)

2

A multiprogramming system is described in which all activities are divided

over a number of sequential processes. These sequential processes are placed

at various hierarchical levels, in each of which one or more independent ab­

stractions have been implemented. The hierarchical structure proved to be

vital for the verification of the logical soundness of the design and the correct­

ness of its implementation.

Introduction

In response to a call explicitly asking for papers "on timely research and
development efforts," I present a progress report on the multiprogramming
effort at the Department of Mathematics at the Technological University in
Eindhoven.

Having very limited resources (viz. a group of six people of, on the av­
erage, half-time availability) and wishing to contribute to the art of system
design-including all the stages of conception, construction, and verification,
we were faced with the problem of how to get the necessary experience. To
solve this problem we adopted the following three guiding principles:

(1) Select a project as advanced as you can conceive, as ambitious as you
can justify, in the hope that routine work can be kept to a minimum; hold
out against all pressure to incorporate such system expansions that would

E. W. Dijkstra, The strueture of the "THE" multiprogramming system. Communications
0/ the ACM 11, 5 (May 1968), 341-346. Copyright © 1968, Assoeiation for Computing
Maehinery, Ine. Reprinted by permission.

139

140 EDSGER W. DIJKSTRA

only result into a purely quantitative increase of the total amount of work
to be done.

(2) Select a machine with sound basic characteristics (e.g. an interrupt
system to fall in love with is certainly an inspiring feature); from then on
try to keep the specific properties of the configuration for wh ich you are
preparing the system out of your considerations as long as possible.

(3) Be aware of the fact that experience does by no means automatically
lead to wisdom and understanding; in other words, make a conscious effort
to learn as much as possible from your previous experiences.

Accordingly, I shall try to go beyond just reporting what we have done
and how, and I shall try to formulate as weIl what we have learned.

I should like to end the introduction with two short remarks on working
conditions, which I make for the sake of completeness. I shall not stress
these points any further .

One remark is that production speed is severely slowed down if one works
with half-time people who have other obligations as weIl. This is at least
a factor of four; probably it is worse. The people themselves lose time
and energy in switching over; the group as a whole loses decision speed
as discussions, when needed, have often to be postponed until all people
concerned are available.

The other remark is that the members of the group (mostly mathemati­
cians) have previously enjoyed as good students a university training of five
to eight years and are of Master's or Ph.D. level. I mention this explicitly
because at least in my country the intellectual level needed for system de­
sign is in general grossly underestimated. I am convinced more than ever
that this type of work is very difficult, and that every effort to do it with
other than the best people is doomed to either failure or moderate success
at enormous expense.

The Tool and the Goal

The system has been designed for a Dutch machine, the EL X8 (N.V. Elec­
trologica, Rijswijk (ZR)). Characteristics of our configuration are:

(1) co re memory cycle time 2.5 f-tsec, 27 bits; at present 32K;
(2) drum of 512K words, 1024 words per track, rev. time 40 msec;
(3) an indirect addressing mechanism very weIl suited for stack imple­

mentation;
(4) a sound system for commanding peripherals and controlling of inter­

rupts;

"THE" MULTIPROGRAMMING SYSTEM 141

(5) a potentially great number of low capacity channels; ten of them are
used (3 paper tape readers at 1000 char/sec; 3 paper tape punches at 150
char / sec; 2 teleprinters; a plotter; a line printer);

(6) absence of a number of not unusual, awkward features.
The primary goal of the system is to process smoothly a continuous

flow of user programs as a service to the university. A multiprogramming
system has been chosen with the following objectives in mind: (1) a reduction
of turn-around time for programs of short duration, (2) economic use of
peripher al deviees, (3) automatie control of backing store to be combined
with economie use of the central processor, and (4) the economic feasibility
to use the machine for those applications for which only the flexibility of a
general purpose computer is needed, but (as a rule) not the capacity nor the
processing power.

The system is not intended as a multiaccess system. There is no common
data base via whieh independent users can communieate with each other:
they only share the configuration and a procedure library (that includes a
translator for Algol 60 extended with complex numbers). The system does
not cater for user programs written in machine language.

Compared with larger efforts one can state that quantitatively speaking
the goals have been set as modest as the equipment and our other resources.
Qualitatively speaking, I am afraid, we became more and more immodest as
the work progressed.

A Progress Report

We have made some minor mistakes of the usual type (such as paying too
much attention to eliminating what was not the real bottleneck) and two
major ones.

Our first major mistake was that for too long a time we confined our
attention to "a perfeet installation"; by the time we considered how to make
the best of it, one of the peripherals broke down, we were faced with nasty
problems. Taking care of the "pathology" took more energy than we had
expected, and some of our troubles were a direct consequence of our earlier
ingenuity, i.e. the complexity of the situation into which the system could
have maneuvered itself. Had we paid attention to the pathology at an earlier
stage of the design, our management rules would certainly have been less
refined.

The second major mistake has been that we conceived and programmed
the major part of the system without giving more than scanty thought to

142 EDSGER W. DIJKSTRA

the problem of debugging it. I must decline all credit for the fact that this
mistake had no serious consequences-on the contrary! one might argue as
an afterthought.

As captain of the crew I had had extensive experience (dating back to
1958) in making basie software dealing with real-time interrupts, and I knew
by bitter experience that as a result of the irreproducibility of the interrupt
moments a program error could present itself misleadingly like an occasional
machine malfunctioning. As a result I was terribly afraid. Having fears
regarding the possibility of debugging, we decided to be as careful as possible
and, prevention being better than eure, to try to prevent nasty bugs from
entering the construction.

This decision, inspired by fear, is at the bottom of what I regard as the
group's main contribution to the art of system design. We have found that
it is possible to design a refined multiprogramming system in such a way
that its logieal soundness can be proved apriori and its implementation can
admit exhaustive testing. The only errors that showed up during testing
were trivial coding error (occurring with a density of one error per 500 in­
structions) each of them located within 10 minutes (classical) inspection by
the machine and each of them correspondingly easy to remedy. At the time
this was written the testing had not yet been completed, but the resulting
system is guaranteed to be flawless. When the system is delivered we shall
not live in the perpetual fear that a system derailment may still occur in
an unlikely situation, such as might result from an unhappy "coincidence"
of two or more critical occurrences, for we shall have proved the correctness
of the system with a rigor and explicitness that is unusual for the great
majority of mathematical proofs.

A Survey of the System Structure

Storage Allocation. In the classieal von Neumann machine, information is
identified by the address of the memory location containing the information.
When we started to think about the automatie control of secondary storage
we were familiar with a system (viz. GIER ALGOL) in which all information
was identified by its drum address (as in the classieal von Neumann machine)
and in which the function of the core memory was nothing more than to make
the information "page-wise" accessible.

We have followed another approach and, as it turned out, to great ad­
vantage. In our terminology we made astriet distinction between memory
units (we called them "pages" and had "core pages" and "drum pages") and

"THE" MULTIPROGRAMMING SYSTEM 143

corresponding information units (for lack of a better word we called them
"segments"), a segment just fitting in a page. For segments we created a
completely independent identification mechanism in wh ich the number of
possible segment identifiers is much larger than the total number of pages
in primary and secondary store. The segment identifier gives fast access
to a so-called "segment variable" in core whose value denotes whether the
segment is still empty or not, and if not empty, in which page (or pages) it
can be found.

As a consequence of this approach, if a segment of information, residing
in a core page, has to be dumped onto the drum in order to make the co re
page available for other use, there is no need to return the segment to the
same drum page from which it originally came. In fact, this freedom is
exploited: among the free drum pages the one with minimum latency time
is selected.

A next consequence is the total absence of a drum allocation problem:
there is not the slightest reason why, say, a program should occupy consec­
utive drum pages. In a multiprogramming environment this is very conve­
nient.

Processor Allocation. We have given full recognition to the fact that in a
single sequential process (such as can be performed by a sequential automa­
ton) only the time succession of the various states has a logical meaning, but
not the actual speed with which the sequential process is performed. There­
fore we have arranged the whole system as a society of sequential processes,
progressing with undefined speed ratios. To each user program accepted by
the system corresponds a sequential process, to each input peripheral corre­
sponds a sequential process (buffering input streams in synchronism with the
execution of the input commands), to each output peripher al corresponds
a sequential process (unbuffering output streams in synchronism with the
execution of the output commands); furthermore, we have the "segment
controller" associated with the drum and the "message interpreter" associ­
ated with the console keyboard.

This enabled us to design the whole system in terms of these abstract "se­
quential processes." Their harmonious cooperation is regulated by means of
explicit mutual synchronization statements. On the one hand, this explicit
mutual synchronization is necessary, as we do not make any assumption
about speed ratios; on the other hand, this mutual synchronization is pos­
sible because "delaying the progress of a process temporarily" can never
be harmful to the interior logic of the process delayed. The fundamental

144 EDSGER W. DIJKSTRA

consequence of this approach-viz. the explicit mutual synchronization-is
that the harmonious cooperation of a set of such sequential processes can be
established by discrete reasoning; as a further consequence the whole har­
monious society of cooperating sequential processes is independent of the
actual nu mb er of processors available to carry out these processes, provided
the processors available can switch from process to process.

System Hierarchy. The total system admits a strict hierarchical struc­
ture.

At level 0 we find the responsibility for processor allocation to one of
the processes whose dynamic progress is logically permissible (Le. in view of
the explicit mutual synchronization). At this level the interrupt of the real­
time dock is processed and introduced to prevent any process to monopolize
processing power. At this level a priority rule is incorporated to achieve
quick response of the system where this is needed. Our first abstraction
has been achieved; above level 0 the number of processors actually shared
is no longer relevant. At higher levels we find the activity of the different
sequential processes, the actual processor that had lost its identity having
disappeared from the picture.

At level 1 we have the so-called "segment controller," a sequential pro­
cess synchronized with respect to the drum interrupt and the sequential
processes on higher levels. At level 1 we find the responsibility to cater to
the bookkeeping resulting from the automatic backing store. At this level
our next abstraction has been achieved; at all higher levels identification of
information takes place in terms of segments, the actual storage pages that
had lost their identity having disappeared from the picture.

At level 2 we find the "message interpreter" taking care of the allocation
of the console keyboard via which conversations between the operator and
any of the higher level processes can be carried out. The message interpreter
works in dose synchronism with the operator. Wheri the operator presses
a key, a character is sent to the machine together with an interrupt signal
to announce the next keyboard character, whereas the actual printing is
done through an output command generated by the machine under control
of the message interpreter. (As far as the hardware is concerned the console
teleprinter is regarded as two independent peripherals: an input keyboard
and an output printer.) If one of the processes opens a conversation, it iden­
tifies itself in the opening sentence of the conversation for the benefit of the
operator. If, however, the operator opens a conversation, he must identify
the process he is addressing, in the opening sentence of the conversation, Le.

"THE" MULTIPROGRAMMING SYSTEM 145

this opening sentence must be interpreted before it is known to which of the
processes the conversation is addressed! Here lies the logical reason for the
introduction of aseparate sequential process for the console teleprinter, a
reason that is reflected in its name, "message interpreter."

Above level 2 it is as if each process had its private conversational console.
The fact that they share the same physical console is translated into a re­
source restriction of the form "only one conversation at a time," a restriction
that is satisfied via mutual synchronization. At this level the next abstrac­
tion has been implemented; at higher levels the actual console teleprinter
loses its identity. (If the message interpreter had not been on a higher level
than the segment controller, then the only way to implement it would have
been to make a permanent reservation in co re for it; as the conversational vo­
cabulary might become large (as soon as our operators wish to be addressed
in fancy messages), this would result in too heavy a permanent demand upon
core storage. Therefore, the vocabulary in which the messages are expressed
is stored on segments, Le. as information units that can reside on the drum
as weIl. For this reason the message interpreter is one level higher than the
segment controller.)

At level 3 we find the sequential processes associated with buffering of
input streams and unbuffering of output streams. At this level the next
abstraction is effected, viz. the abstraction of the actual peripherals used
that are allocated at this level to the "logical communication units" in terms
of which are worked in the still higher levels. The sequential processes as­
sociated with the peripherals are of a level above the message interpreter,
because they must be able to converse with the operator (e.g. in the case
of detected malfunctioning). The limited number of peripherals again acts
as a resource restriction for the processes at high er levels to be satisfied by
mutual synchronization between them.

At level 4 we find the independent user programs and at level 5 the
operator (not implemented by us).

The system structure has been described at length in order to make the
next section intelligible.

Design Experience

The conception stage took a long time. During that period of time the
concepts have been born in terms of which we sketched the system in the
previous section. Furthermore, we learned the art of reasoning by wh ich we
could deduce from our requirements the way in which the processes should

146 EDSGER W. DIJKSTRA

infiuence each other by their mutual synchronization so that these require­
ments would be met. (The requirements being that no information can be
used before it has been produced, that no peripheral can be set to two tasks
simultaneously, etc.). Finally we learned the art of reasoning by which ve
could prove that the society composed of processes thus mutually synchro­
nized by each other would indeed in its time behavior satisfy all requirements.

The construction stage has been rather traditional, perhaps even old­
fashioned, that is, plain machine code. Reprogramming on account of a
change of specifications has been rare, a circumstance that must have con­
tributed greatly to the feasibility of the "steam method." That the first two
stages took more time than planned was somewhat compensated by a delay
in the delivery of the machine.

In the verification stage we had the machine, during short shots, com­
pletely at our disposal; these were shots during which we worked with a
virgin machine without any software aids for debugging. Starting at level 0
the system was tested, each time adding (a portion of) the next level only
after the previous level had been thoroughly tested. Each test shot itself
contained, on top of the (partial) system to be tested, a number of test­
ing processes with a double function. First, they had to force the system
into all different relevant states; second, they had to verify that the system
continued to react according to specification.

I shall not deny that the construction of these testing programs has been
a major intellectual effort: to convince oneself that one has not overlooked
"a relevant state" and to convince oneself that the testing programs generate
them all is no simple matter. The encouraging thing is that (as far as we
know) it could be done.

This fact was one of the happy consequences of the hierarchical structure.
Testing level 0 (the real-time clock and processor allocation) implied a

number of testing sequential processes on top of it, inspecting together that
under all circumstances processor time was divided among them according
to the rules. This being established, sequential processes as such were im­
plemented.

Testing the segment controller at level 1 meant that all "relevant states"
could be formulated in terms of sequential processes making (in various
combinations) demands on core pages, situations that could be provoked
by explicit synchronization among the testing programs. At this stage the
existence of the real-time clock-although interrupting all the time-was so
immaterial that one of the testers indeed forgot its existence!

"THE" MULTIPROGRAMMING SYSTEM 147

By that time we had implemented the correct reaction upon the (mutu­
ally unsynchronized) interrupts from the real-time dock and the drum. If
we had not introduced the separate levels 0 and 1, and if we had not cre­
ated a terminology (viz. that of the rather abstract sequential processes) in
wh ich the existence of the dock interrupt could be discarded, but had in­
stead tried in a nonhierarchical construction, to make the central processor
react directly upon any weird time succession of these two interrupts, the
number of "relevant states" would have exploded to such a height that ex­
haustive testing would have been an illusion. (Apart from that it is doubtful
whether we would have had the means to generate them all, drum and dock
speed being outside our control.)

For the sake of completeness I must mention a further happy consequence.
As stated before, above level 1, core and drum pages have lost their identity,
and buffering of input and output streams (at level 3) therefore occurs in
terms of segments. While testing at level 2 or 3 the drum channel hardware
broke down for some time, but testing proceeded by restricting the number
of segments to the number that could be held in core. If building up the line
printer output streams had been implemented as "dumping onto the drum"
and the actual printing as "printing from the drum," this advantage would
have been denied to uso

Conclusion

As far as pro gram verification is concerned I present nothing essentially new.
In testing a general purpose object (be it a piece of hardware, a program,
a machine, or a system), one cannot subject it to all possible cases: for
a computer this would imply that one feeds it with all possible programs!
Therefore one must test it with a set of relevant test cases. What is, or is not,
relevant cannot be decided as long as one regards the mechanism as a black
box; in other words, the decision has to be based upon the internal structure
of the mechanism to be tested. It seems to be the designer's responsibility to
construct his mechanism in such a way-i.e. so effectively structured-that
at each stage of the testing procedure the number of relevant test cases will
be so small that he can try them all and that what is being tested will be so
perspicuous that he will not have overlooked any situation. I have presented
a survey of our system because I think it a nice example of the form that
such a structure might take.

In my experience, I am sorry to say, industrial software makers tend
to react to the system with mixed feelings. On the one hand, they are

148 EDSGER W. DIJKSTRA

inclined to think that we have done a kind of model job; on the other hand,
they express doubts whether the techniques used are applicable outside the
sheltered atmosphere of a University and express the opinion that we were
successful only because of the modest scope of the whole project. It is not my
intention to underestimate the organizing ability needed to handle a much
bigger job, with a lot more people, but I should like to venture the opinion
that the larger the project the more essential the structuring! A hierarchy
of five logical levels might then very weIl turn out to be of modest depth.
especially when one designs the system more consciously than we have done,
with the aim that the software can be smoothly adapted to (perhaps drastic)
configuration expansions.

Acknowledgments. I express my indebtedness to my five collaborators,
C. Bron, A. N. Habermann, F. J. A. Hendriks, C. Ligtmans, and P. A.
Voorhoeve. They have contributed to all stages of the design, and together
we learned the art of reasoning needed. The construction and verification
was entirely their effort; if my dreams have come true, it is due to their faith,
their talents, and their persistent loyalty to the whole project.

Finally I should like to thank: the members of the program committee,
who asked for more information on the synchronizing primitives and some
justification of my claim to be able to prove logical soundness apriori. In
answer to this request an appendix has been added, which I hope will give
the desired information and justification.

APPENDIX

Synchronizing Primitives

Explicit mutual synchronization of parallel sequential processes is imple­
mented via so-called "semaphores." They are special purpose integer vari­
ables allocated in the universe in which the processes are embedded; they are
initialized (with the value 0 or 1) before the parallel processes themselves
are started. After this initialization the parallel processes will access the
semaphores only via two very specific operations, the so-called synchroniz­
ing primitives. For historical reasons they are called the P-operation and
the V -operation.

A process, "Q" say, that performs the operation "P{sem)" decreases
the value of the semaphore called "sem" by 1. If the resulting value of
the semaphore concerned is nonnegative, process Q can continue with the
execution of its next statement; if, however, the resulting value is nega­
tive, process Q is stopped and booked on a waiting list associated with the

"THE" MULTIPROGRAMMING SYSTEM 149

semaphore concerned. Until further notice (i.e. a V-operation on this very
same semaphore), dynamic progress of process Q is not logically permissible
and no processor will be allocated to it (see above "System Hierarchy," at
level 0).

A process, "R" say, that performs the operation "V(sem)" increases the
value of the semaphore called "sem" by 1. If the resulting value of the
semaphore concerned is positive, the V-operation in question has no fur­
ther effect; if, however, the resulting value of the semaphore concerned is
nonpositive, one of the processes booked on its waiting list is removed from
this waiting list, i.e. its dynamic progress is again logically permissible and
in due time a processor will be allocated to it (again, see above "System
Hierarchy," at level 0).

COROLLARY 1. 1f a semaphore value is nonpositive its absolute value
equals the number of processes booked on its waiting list.

COROLLARY 2. The P-operation represents the potential delay, the
complementary V-operation represents the removal of a barrier.

Note 1. P- and V-operations are "indivisible actions"; i.e. if they occur
"simultaneously" in parallel pro ces ses they are noninterfering in the sense
that they can be regarded as being performed one after the other.

Note 2. If the semaphore value resulting from a V-operation is negative,
its waiting list originally contained more than one process. It is undefined­
i.e. logically immaterial~which of the waiting processes is then removed from
the waiting list.

Note 3. A consequence of the mechanisms described above is that a pro­
cess whose dynamic progress is permissible can only loose this status by
actually progressing, i.e. by performance of a P-operation on a semaphore
with a value that is initially nonpositive.

During system conception it transpired that we used the semaphores in
two completely different ways. The difference is so marked that, looking
back, one wonders whether it was really fair to present the two ways as uses
of the very same primitives. On the one hand, we have the semaphores used
for mutual exclusion, on the other hand, the private semaphores.

Mutual Exc1usion

In the folloving program we indicate two parallel, cyclic processes (between
the brackets "parbegin" and "parend") that come into action after the sur­
rounding universe has been introduced and initialized.

150 EDSGER W. DIJKSTRA

begin semaphore mutex; mutex := 1;
parbegin

begin Li: P(mutex); critical section 1; V(mutex);

remainder of cycle 1; go to Li

end;

begin L2: P(mutex); critical section 2,. V(mutex),.

remainder of cycle 2; go to L2
end

parend
end

As a result of the P- and V-operations on "mutex" the actions, marked
as "critical sections" exclude each other mutually in time; the scheme given
allows straightforward extension to more than two parallel processes, the
maximum value of mutex equals 1, the minimum value equals -(n - 1) if we
have n parallel processes.

Critical sections are used always, and only for the purpose of unam­
biguous inspection and modification of the state variables (allocated in the
surrounding universe) that describe the current state of the system (as far as
needed for the regulation of the harmonious cooperation between the various
processes).

Private Semaphores

Each sequential process has associated with it a number of private semaphores
and no other process will ever perform a P-operation on them. The universe
initializes them with the value equal to 0, their maximum value equals 1,
and their minimum value equals -1.

Whenever a process reaches a stage where the permission for dynamic
progress depends on current values of state variables, it follows the pattern:

P(mutex);

"inspection and modijication of state variables including

a conditional V(private semaphore)";

V(mutex);

P(private semaphore)

If the inspection learns that the process in quest ion should continue, it
performs the operation "V(private semaphore)"-the semaphore value then
changes from 0 to l-otherwise, this V-operation is skipped, leaving to the
other processes the obligation to perform this V -operation at a suitable

"THE" MULTIPROGRAMMING SYSTEM 151

moment. The absence or presence of this obligation is refiected in the final
values of the state variables upon leaving the critical section.

Whenever a process reaches a stage where as a result of its progress pos­
sibly one (or more) blocked processes should now get permission to continue,
it follows the pattern:

P(mutex);

"modification and inspection 01 state variables including

zero or more V-operations on private semaphores

01 other processes ";

V(mutex)

By the introduction of suitable state variables and appropriate program­
ming of the critical sections any strategy assigning peripherals, buffer areas,
etc. can be implemented.

The amount of co ding and reasoning can be greatly reduced by the ob­
servation that in the two complementary critical sections sketched above the
same inspection can be performed by the introduction of the notion of "an
unstable situation," such as a free reader and a process needing areader.
Whenever an unstable situation emerges it is removed (including one or
more V -operations on private semaphores) in the very same critical section
in which it has been created.

Proving the Harmonious Cooperation

The sequential processes in the system can all be regarded as cyc1ic pro­
cesses in which a certain neutral point can be marked, the so-called "homing
position," in which all processes are when the system is at rest.

When a cyclic process leaves its homing position "it accepts a task";
when the task has been performed aftd not earlier, the process returns to its
homing position. Each cyclic process has a specific task processing power
(e.g. the execution of a user program or unbuffering a portion of printer
output, etc.).

The harmonious cooperation is mainly proved in roughly three stages.
(1) It is proved that although a process performing a task may in so

doing generate a finite number of tasks for other processes, a single initial
task cannot give rise to an infinite number of task generations. The proof
is simple as processes can only generate tasks for processes at lower levels
of the hierarchy so that circularity is excluded. (If a process needing a
segment from the drum has generated a task for the segment controller,

152 EDSGER W. DIJKSTRA

special precautions have been taken to ensure that the segment asked for
remains in core at least until the requesting process has effectively accessed
the segment concerned. Without this precaution finite tasks could be forced
to generate an infinite number of tasks for the segment controller, and the
system could get stuck in an unproductive page flutter.)

(2) It is proved that it is impossible that all processes have returned to
their homing position while somewhere in the system there is still pending a
generated but unaccepted task. (This is proved via instability of the situation
just described.)

(3) It is proved that after the acceptance of an initial task all processes
eventually will be (again) in their homing position. Each process blocked in
the course of task execution relies on the other processes for removal of the
barrier. Essentially, the proof in question is a demonstration of the absence
of "circular waits": process P waiting for process Q waiting for process R
waiting for process P. (Our usual term for the circular wait is "the Deadly
Embrace.") In a more general society than our system this proof turned out
to be a proof by induction (on the level of hierarchy, starting at the lowest
level), as A. N. Habermann has shown in his doctoral thesis.

3

Re 4000 SOFTWARE:
MULTIPROGRAMMING SYSTEM

PER BRINCH HANSEN

(1969)

The RC 4000 multiprogramming system consists of a monitor program that

can be extended with a hierarchy of operating systems to suit diverse require­

ments of program scheduling and resource allocation. This manual defines the

functions of the monitor and the basic operating system, which allows users

to initiate and control parallel program execution from typewriter consoles.

The excerpt reprinted here is the general description of the philosophy and

structure of the system. This part will be of interest to anyone wishing an un­

derstanding of the system in order to evaluate its possibilities and limitations

without going into details about exact conventions. The discussion treats the

hardware structure of the RC 4000 only in passing.

1 SYSTEM OBJECTIVES

This ehapter outlines the philosophy that guided the design of the Re 4000
multiprogramming system. It emphasizes the need for different operating
systems to suit different applications.

The primary goal of multiprogramming isto share a eentral proeessor and its
peripheral equipment among a number of programs loaded in the internal
store. This is a meaningful objeetive if single programs only use a fraction
of the system resourees and if the speed of the machine is so fast, compared
to that of peripherals, that idle time within one program can be utilized by
other programs.

P. Brinch Hansen, Re 4000 Software: Multiprogramming System, Part I General Descrip­
tion. Regnecentralen, Copenhagen, Denmark, April 1969, 13-52. Copyright © 1969, Per
Brinch Hansen. Reprinted by permission.

153

154 PER BRINCH HANSEN

The present system is implemented on the RC 4000 computer, a 24-bit,
binary computer with typieal instruction execution times of 4 microseconds.
It permits practically unlimited expansion of the internal store and standard­
ized connection of all kinds of peripherals. Multiprogramming is facilitated
by concurrency of program execution and input/output, program interrup­
tion, and storage protection.

The aim has been to make multiprogramming feasible on a machine
with a minimum internal store of 16 k words backed by a fast drum or disko
Programs can be written in any of the available programming languages and
contain programming errors. The storage protection system guarantees non­
interference among 8 parallel programs, but it is possible to start up to 23
programs provided some of them are error free.

The system uses standard multiprogramming techniques: the central pro­
cessor is shared between loaded programs. Automatie swapping of programs
in and out of the store is possible but not enforced by the system. Backing
storage is organized as a common data bank, in which users can retain named
files in a semi-permanent manner. The system allows a conversational mode
of access from typewriter consoles.

An essential part of any multiprogramming system is an operating system,
a program that coordinates all computational activities and input/output.
An operating system must be in complete control of the strategy of program
execution, and assist the users with such functions as operator communiea­
tion, interpretation of job control statements, allocation of resources, and
application of execution time limits.

For the designer of advanced information systems, a vital requirement of
any operating system is that it allows hirn to change the mode of operation
it controls; otherwise his freedom of design can be seriously limited. Unfor­
tunately this is precisely what present operating systems do not allow. Most
of them are based exclusively on a single mode of operation, such as batch
processing, priority scheduling, real-time scheduling, or time-sharing.

When the need arises, the user often finds it hopeless to modify an op­
erating system that has made rigid assumptions in its basie design about a
specific mode of operation. The alternative-to replace the original operat­
ing system with a new one-is in most computers a serious, if not impossible,
matter, the reason being that the rest of the software is intimately bound to
the conventions required by the original system.

This unfortunate situation indicates that the main problem in the design
of a multiprogramming system is not to define functions that satisfy specific

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 155

operating needs, but rat her to supply a system nudeus that can be extended
with new operating systems in an orderly manner. This is the primary
objective of the Re 4000 system.

The nudeus of the Re 4000 multiprogramming system is a monitor pro­
gram with complete control of storage protection, input/output, and in­
terrupts. Essentially the monitor is a software extension of the hardware
structure, which makes the Re 4000 more attractive for multiprogramming.
The following elementary functions are implemented in the monitor:

scheduling of time slices among programs executed
in parallel by means of a digital dock,

initiation and control of program execution at
the request of other running programs,

transfer of messages among running programs,

initiation of data transfers to or from peripherals.

The monitor has no built-in strategy of program execution and resource
allocation; it allows any program to initiate other programs in a hierarchal
manner and to execute them according to any strategy desired. In this hi­
erarchy of programs an operating system is simply a program that controls
the execution of other programs. Thus operating systems can be intro­
duced in the system as other programs without modification of the monitor.
Furthermore operating systems can be replaced dynamically, enabling each
installation to switch among various modes of operation; several operating
systems can, in fact, be active simultaneously.

In the following chapters we shall explain this dynamic operating system
concept in detail. In accordance with our philosophy all questions about
particular strategies of program scheduling will be postponed, and the dis­
cussion will concentrate on the fundamental aspects of the control of an
environment of parallel processes.

2 ELEMENTARY MULTIPROGRAMMING PROBLEMS

This chapter introduces the elementary multiprogramming problems of mu­
tual exclusion and synchronization of parallel processes. The discussion is
restricted to the logical problems that arise when independent processes try
to access common variables and shared resources. An understanding of these
concepts is indispensable to the uninitiated reader, who wants to appreciate
the difficulties of switching from uniprogramming to multiprogramming.

156 PER BRINCH HANSEN

2.1 Multiprogramming

In multiprogramming the sharing of computing time among programs is
controlled by a dock, which interrupts program execution frequently and
activates a monitor program. The monitor saves the registers of the inter­
rupted program and allocates the next slice of computing time to another
program and so on. Switching from one program to another is also performed
whenever a program must wait for the completion of input/output.

Thus although the computer is only able to execute one instruction at
a time, multiprogramming creates the illusion that programs are being exe­
cuted simultaneously, mainly because peripherals assigned to different pro­
grams indeed operate in parallel.

2.2 Parallel Processes

Most of the elementary problems in multiprogramming arise from the fact
that one process (e.g. an executed program) cannot make any assumptions
about the relative speed and progress of other processes. This is a potential
source of conflict whenever two processes try to access a common variable
or a shared resource.

It is evident that this problem will exist in a truly parallel system, in
which programs are executed simultaneously on several central processors.
It should be realized, however, that the problem will also appear in a quasi­
parallel system based on the sharing of a single processor by means of inter­
rupts; since a program cannot detect when it has been interrupted, it does
not know how far other programs have progressed.

Another way of stating this is that if one considers the system as seen
from within a program, it is irrelevant whether multiprogramming is im­
plemented on one or more central processors-the logical problems are the
same.

Consequently a multiprogramming system must in general be viewed as
an environment with a number of truly parallel processes. Having reached
this conclusion, a natural generalization is to treat not only program exe­
cution but input/output also as independent, parallel processes. This point
will be illustrated abundantly in the following chapters.

2.3 Mutual Exclusion

The idea of multiprogramming is to share the computing equipment among
a number of parallel programs. At any moment, however, a given resource

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 157

must belong to one program only. In order to ensure this it is necessary to
introduce global variables, which programs can inspect to decide whether a
given resource is available or not.

As an example consider a typewriter used by all programs for messages
to the operator. To control access to this device we might introduce aglobai
boolean typewriter available. When a program p wishes to output a message,
it must examine and set this boolean by me ans of the following instructions:

wait: load typewriter available
skip if true
jump to wait
load false
store typewriter available

While this is taking place the program may be interrupted after the loading
of the boolean, but before inspection and assignment to it. The register
containing the value of the boolean is then stored within the monitor, and
program q is started. Q may load the same boolean and find that the type­
writer is available. Q accordingly assigns the value false to the boolean and
starts using the typewriter. After a while q is interrupted, and at some later
time p is restarted with the original contents of the register reestablished by
the monitor. Program p continues the inspection of the original value of the
boolean and concludes erroneously that the typewriter is available.

This confiict arises because programs have no control over the interrupt
system. Thus the only indivisible operations available to programs are single
instructions such as load, compare, and store. This example shows that one
cannot implement a multiprogramming system without ensuring a mutual
exclusion of programs during the inspection of global variables. Evidently
the entire reservation sequence must be executed as an indivisible junction.
One of the purposes of a monitor program is to execute indivisible functions
in the disabled mode.

In the use of reservation primitives one must be aware of the problem
of "the deadly embrace" between two processes, p and q, which attempt to
share the resources rand s as follows:

process p: wait and reserve(r) ... wait and reserve(s)
process q: wait and reserve(s) ... wait and reserve(r) ...

This can cause both processes to wait forever, since neither is aware of that
it wants what the other one has.

158 PER BRlNCH HANSEN

To avoid this problem we need a third process (an operating system) that
controls the allocation of shared resources between p and q in a manner that
guarantees that both will be able to proceed to completion (if necessary by
delaying the other until resources become available).

2.4 Mutual Synchronization

In a multiprogramming system parallel processes must be able to cooperate
in the sense that they can activate one another and exchange information.
One example of a process activating another process is the initiation of in­
put/output by a program. Another example is that of an operating system
that schedules a number of programs. The exchange of information between
two processes can also be regarded as a problem of mutual exclusion, in
which the receiver must be prevented from inspecting the information until
the sender has delivered it in a common storage area.

Since the two processes are independent with respect to speed, it is not
certain that the receiver is ready to accept the information at the very mo­
ment the sender wishes to deliver it, or conversely the receiver can become
idle at a time when there is no furt her information for it to process.

This problem of the synchronization of two processes during a transfer
of information must be solved by indivisible monitor functions, which allow
a process to be delayed on its own request and activated on re quest from
another process.

For a more extensive analysis of multiprogramming fundamentals, the
reader should consult E. W. Dijkstra's monograph: Cooperating Sequential
Processes. Math. Dep. Technological University, Eindhoven, (Sep. 1965).

3 BASIC MONITOR CONCEPTS

This chapter opens a detailled description of the RC 4000 monitor. A mul­
tiprogramming system is viewed as an environment in which program exe­
cution and input/output are handled uniformly as cooperating, parallel pro­
cesses. The need for an exact definition of the process concept is stressed.
The purpose of the monitor is to bridge the gap between the actual hardware
and the abstract concept of multiprogramming.

3.1 Introduction

The aim has been to implement a multiprogramming system that can be
extended with new operating systems in a well-defined manner. In order

RC 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 159

to do this a sharp distinction must be made between the contml and the
strategy of program execution.

The mechanisms provided by the monitor solve the logical problems of
the control of parallel processes. They also solve the safety problems that
arise when erroneous or malicious processes try to interfere with other pro­
cesses. They do, however, leave the choice of particular strategies of program
scheduling to the processes themselves.

With this objective in mind we have implemented the following funda­
mental mechanisms within the monitor:

simulation of parallel processes,
communication among processes,
creation, control, and removal of processes.

3.2 Programs and Internal Processes

As a first step we shall assign a precise meaning to the process concept, i.e.
introduce an unambiguous terminology for wh at a process is and how it is
implemented on the RC 4000.

We distinguish between internal and external processes, roughly corre­
sponding to program execution and input/output.

More precisely: an internal pmcess is the execution of one or more inter­
ruptable programs in a given storage area. An internal process is identified
by a unique process name. Thus other processes need not be aware of the
actual location of an internal process in the store, but can refer to it by
name.

The following figure illustrates a division of the internal store among the
monitor and three internal processes, p, q, and r.

Later it will be explained how internal processes are created and how
programs are loaded into them. At this point it should only be noted that
an internal process occupies a fixed, contiguous storage area during its whole
lifetime. The monitor has a pmcess description of each internal process; this
table defines the name, storage area, and current state of the process.

Computing time is shared cyclically among all active internal processes;
as a standard the monitor allocates a maximum time slice of 25 milliseconds
to each internal process in turn; after the elapse of this interval the process is
interrupted and its registers are stored in the process description; following
this the monitor allocates 25 milliseconds to the next internal process, and
so on. The cyclic queue of active internal processes is called the time slice
queue.

160 PER BRINCH HANSEN

MONITOR

INTERNAL

PROCESS P

INTERNAL

PROCESS Q

INTERNAL
PROCESS R

A sharp distinction is made between the concepts program and internal
process. A program is a collection of instructions describing a computational
process, whereas an internal process is the execution of these instructions in
a given storage area.

An internal process like p can involve the execution of a sequence of
programs, for example, editing followed by translation and execution of an
object program. It is also possible that copies of the same program (e.g. the
Algol compiler) can be executed simultaneously in two processes q and r.
These examples illustrate the need for a distinction between programs and
processes.

3.3 Documents and External Processes

In connection with input/output the monitor distinguishes between periph­
eral devices, documents, and extern al processes.

A peripheral device is an item of hardware connected to the data channel
and identified by a device number.

A document is a collection of data stored on a physical medium. Exam­
pIes of documents are:

a roll of paper tape,
a deck of punched cards,
a printer form,
a reel of magnetic tape,
a data area on the backing store.

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 161

By the expression external process we refer to the input/output of a given
document identified by a unique process name. This concept implies that
on ce a document has been mounted, internal processes can refer to it by
name without knowing the actual device it uses.

For each external process the monitor keeps a process description defining
its name, kind, device number, and current state. The process kind is an
integer defining the kind of peripheral device on which the document is
mounted.

For each kind of extern al process the monitor contains an interrupt pro­
cedure that can initiate and terminate input/output on request from internal
processes.

3.4 Monitor

The monitor is a program activated by me ans of interrupts. It can execute
privileged instructions in the disabled mode, meaning that (1) it is in com­
plete control of input/output, storage protection, and the interrupt system,
and that (2) it can execute a sequence of instructions as an indivisible entity.

After initial system loading the monitor resides permanently in the in­
ternal store. We do not regard the monitor as an independent process, but
rather as a software extension of the hardware structure, which makes the
computer more attractive for multiprogramming. Its function is to (1) keep
descriptions of all processes; (2) share computing time among internal and
external processes; and (3) implement procedures that processes can call in
order to create and control other processes and communicate with them.

So far we have described the multiprogramming system as a set of inde­
pendent, parallel processes identified by names. The emphasis has been on a
clear understanding ofrelationships among resources (store and peripherals),
data (programs and documents), and processes (internal and external).

4 PROCESS COMMUNICATION

This chapter deals with the monitor procedures for the exchange of informa­
tion between two parallel processes. The mechanism of message buffering is
defended on the grounds of safety and efficiency.

4.1 Message Buffers and Queues

Two parallel processes can cooperate by sending messages to each other. A
message consists of eight words. Messages are transmitted from one process

162 PER BRINCH HANSEN

to another by means of message buffers selected from a common pool within
the monitor.

The monitor administers a message queue for each process. Messages are
linked to this queue when they arrive from other processes. The message
queue is apart of the process description.

Normally a process serves its queue on a first-come, first-served basis.
After the processing of a message, the receiving process returns an answer
of eight words to the sending process in the same buffer.

As described in Section 2.4, communication between two independent
processes requires a synchronization of the processes during a transfer of
information. A process requests synchronization by executing a wait opera­
tion; this causes a delay of the process until another process executes a send
operation.

The term delay means that the internal process is removed temporarily
from the time slice queue; the process is said to be activated when it is again
linked to the time slice queue.

4.2 Send and Wait Procedures

The following monitor procedures are available for communication among
internal processes:

send message(receiver, message, buffer)
wait message(sender, message, buffer)
send answer(result, answer, buffer)
wait answer (result, answer, buffer)

Send message co pies a message into the first available buffer within the
pool and delivers it in the queue of a named receiver. The receiver is acti­
vated if it is waiting for a message. The sender continues after being informed
of the address of the message buffer.

Wait message delays the calling process until a message arrives in its
queue. When the process is allowed to proceed, it is supplied with the name
of the sender, the contents of the message, and the address of the message
buffer. The buffer is removed from the queue and is now ready to transmit
an answer.

Send answer copies an answer into a buffer in which a message has been
received and deli vers it in the queue of the original sender. The sender of the
message is activated if it is waiting for the answer. The answering process
continues immediately.

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 163

Wait answer delays the calling process until an answer arrives in a given
buffer. On arrival, the answer is copied into the process and the buffer is
returned to the pool. The result specifies whether the answer is a response
from another process, or a dummyanswer generated by the monitor in re­
sponse to a message addressed to a non-existing process.

The use of these procedures can be illustrated by the following example
of a conversational process. The figure below shows one of several user pro­
cesses, wh ich deliver their output on the backing store. After completion of
its output a user process sends a message to a converter process requesting it
to print the output. The converter process receives and serves these requests
one by one, thus ensuring that the line printer is shared by all user processes
with a minimum delay.

INPUT CONVERTER
PROCESS MESSAGE

AND

USER ANSWER

OUTPUT PROCESS

BACKING INTERNAL
STORE STORE

The algorithms of the converter and the user are as follows:

converter process:
wait message(sender, message, buffer);
print from backing store(message);
send answer(result, answer, buffer);
goto converter process;

164 PER BRINCH HANSEN

user process:

output on backing store;
send message(converter, message, buffer);
wait answer(result, answer, buffer);

4.3 General Event Procedures

The communication procedures enable a conversational process to receive
messages simultaneously from several other processes. To avoid becoming a
bottleneck in the system, however, a conversational process must be prepared
to be actively engaged in more than one conversation at a time. As an
example think of a conversational process that engages itself, on request
from another process, in a conversation with one of several human operators
in order to perform some manual operation (mounting of a tape etc.). If
one restricts a conversational process to only accepting one request (i.e. a
message) at a time, and to completing the requested action before receiving
the next request, the unacceptable consequence of this is that other processes
(including human operators at consoles) can have their requests for response
delayed for a long or even undefined time.

As soon as a conversational process has started a lengthy action, by
sending a message to some other process, it must receive further messages
and initiate other actions. It will then be reminded later of the completion
of earlier actions by means of normal answers. In general a conversational
process is now engaged in several requests at one time. This intro duces a
scheduling and resource problem: when the process receives arequest, some
of its resources (storage or peripheral devices) can be tied up by already
initiated actions; thus in some cases the process will not be able to honor
new rcquests before old ones are completed. In this case the process wants
to postpone the reception of some requests and leave them pending in the
queue, while examining others.

The procedures wait message and wait answer, which force a process to
serve its queue in a strict sequential order and delay itself while its own
requests to other processes are completed, do not fulfill the above require­
ments.

Consequently we have introduced two more general communication pro­
cedures, which enable a process to wait for the arrival of the next message
or answer and serve its queue in any order:

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 165

wait event(last buffer, next buffer, result)
get event (buffer)

The term event denotes a message or an answer. In accordance with this the
queue of a process from now on will be called the event queue.

Wait event delays the calling process until either a message or an answer
arrives in its queue after a given last buffer. The process is supplied with
the address of the next buffer and a result indicating whether it contains
a message or an answer . If the last buffer address is zero, the queue is
examined from the start. The procedure does not remove the next buffer
from the queue or in any other way change its status.

As an example, consider an event queue with two pending buffers A and
B:

queue = buffer A, buffer B

The monitor calls: wait event(O, buffer) and wait event(A, buffer) will
cause immediate return to the process with buffer equal to A and B, re­
spectively; while the call: wait event(B, buffer) will delay the process until
another message or answer arrives in the queue after buffer B.

Get event removes a given buffer from the queue of the calling process.
If the buffer contains a message, it is made ready for the sending of an
answer. If the buffer contains an answer, it is returned to the common pool.
The copying of the message or ans wer from the buffer must be done by the
process itself before get event is called.

The following algorithm illustrates the use of these procedures within a
conversational process:

166

first event:
next event:

exam request:
init action:

term action:

PER BRINCH HANSEN

buffer:=O;
last buffer:=buffer;
wait event (last buffer, buffer, result);
if result = message then
begin
if resources not available then go to next event;
get event (buffer) ;
reserve resources;

send message to some other process;
save state of action;
end else
begin comment: result = answer;
restore state of action;
get event(buffer);
release resources,
send answer to original sender;
end;
go to first event;

The process starts by examining its queue; if empty, it awaits the arrival
of the next event. If it finds a message, it checks whether it has the necessary
resources to perform the requested action; if not, it leaves the message in
the queue and examines the next event. Otherwise it accepts the message,
reserves resources, and initiates an action. As so on as this involves the
sending of a message to some other process, the conversational process saves
information about the state of the incomplete action and proceeds to examine
its queue from the start in order to engage itself in another action.

Whenever the process finds an answer in its queue, it immediately accepts
it and completes the corresponding action. It can now release the resources
used and send an answer to the original sender that made the request. After
this it examines the entire queue again to see whether the release of resources
has made it possible to ac ce pt pending messages.

One example of a process operating in accordance with this scheme is the
basic operating system s, which creates internal processes on request from
typewriter consoles. S can be engaged in conversations with several consoles
at the same time. It will only postpone an operator request if its storage
is occupied by other requests, or if it is already in the middle of an action
requested from the same console.

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 167

4.4 Advantages of Message Buffering

In the design of the communication scheme we have given fuH recognition
to the fact that the multiprogramming system is a dynamic environment, in
which some of the processes may turn out to be black sheep.

The system is dynamic in the sense that processes can appear and disap­
pear at any time. Therefore a process does not in general have a complete
knowledge about the existence of other processes. This is reflected in the
procedure wait message, which makes it possible for a process to be unaware
of the existence of other processes until it receives messages from them.

On the other hand once a communication has been established between
two processes (e.g. by means of a message), they need a common identifi­
cation of it in order to agree on when it is terminated (e.g. by means of
an answer). Thus we can properly regard the selection of a buffer as the
creation of an identification of a conversation.

A happy consequence of this is that it enables two processes to exchange
more than one message at a time. We must be prepared for the occurence of
erroneous or malicious processes in the system (e.g. undebugged programs).
This is tolerable only if the monitor ensures that no process can interfere
with a conversation between two other processes. This is done by storing
information about the sender and receiver in each buffer, and checking it
whenever a process attempts to send or wait for an answer in a given buffer.

Efficiency is obtained by the queuing of buffers, which enables asending
process to continue immediately after delivery of a message or an answer
regardless of whether the receiver is ready to process it or not.

In order to make the system dynamic it is vital that a process can be
removed at any time, even if it is engaged in one or more conversations.
In the previous example of user processes that deliver their output on the
backing store and ask a converter process to print it, it would be sensible to
remove a user process that has completed its task and is now only waiting
for an answer from the converter process. In this case the monitor leaves
aH messages from the removed process undisturbed in the queues of other
processes. When these processes terminate their actions by sen ding answers,
the monitor simply returns the buffers to the common pool.

The reverse situation is also possible: during the removal of a process, the
monitor finds unanswered messages sent to the process. These are returned
as dummy answers to the senders. A special instance of this is the generation
of a dummyanswer to a message addressed to a process that does not exist.

The main drawback of message buffering is that it introduces yet another

168 PER BRlNCH HANSEN

resource problem, since the common pool contains a finite number of buffers.
If a process was allowed to empty the pool by sending messages to ignorant
processes, which do not respond with answers, furt her communication within
the system would be blocked. We have consequently set a limit to the
number of messages a process can send simultaneously. By doing this, and
by allowing a process to transmit an answer in a received buffer, we have
placed the entire risk of a conversation on the process that opens it (see
Section 7.4).

5 EXTERN AL PROCESSES

This chapter clarifies the meaning of the external process concept. It explains
initiation of input/output by means of messages from internal processes,
dynamic creation and removal of external processes, and exclusive access to
documents by me ans of reservation. The similarity of internal and external
processes is stressed.

5.1 Initiation of Input/Output

Consider the following situation, in which an internal process, p, inputs a
block from an external process, q (say, a magnetic tape):

EXTERNAL

PROCESS a

INPUT
BLOCK

INTERNAL
PROCESS P

FIRST ADDRESS

LAST ADDRESS

P initiates input by sending a message to q:

send message(q, message, buffer)

The message consists of eight words defining an input/output operation
and the first and last addresses of a storage area within process p:

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 169

message: operation
first storage address
last storage address
(five irrelevant words)

The monitor copies the message into a buffer and deli vers it in the queue of
process q. Following this it uses the kind parameter in the process description
of process q to switch to a piece of code common to all magnetic tapes. If
the tape station is busy, the message is merely left in its queue; otherwise
input is initiated to the given storage area. On return, program execution
continues in process p.

When the tape station completes input by means of an interrupt, the
monitor generates an answer and delivers it in the queue of p, which in turn
receives it by calling wait answer:

wait answer(result, answer, buffer)

The answer contains status bits sensed from the device and the actual block
length expressed as the number of bytes and characters input:

answer: status bits
number of bytes
number of characters
(five irrelevant words)

After delivery of the answer, the monitor examines the queue of the ex­
ternal process q and initiates its next operation (unless the queue is empty).

Essentially all external processes follow this scheme, which can be defined
by the following algorithm:

extern al process: wait message;
analyse and check message;
initiate input/output;
wait interrupt;
generate answer;
send answer;
goto extern al process;

With low-speed, character-oriented devices, the monitor repeats in­
put/output and the interrupt response for each character until a complete
block has been transferred; (while this is taking place, the time between
interrupts is of course shared among internal processes). Internal processes
can therefore regard all input/output as block oriented.

170 PER BRINCH HANSEN

5.2 Reservation and Release

The use of message buffering provides a direct way of sharing an external
process among a number of internal processes: an external process can sim­
ply accept messages from any internal process and serve them in their order
of arrival. An example of this is the use of a single typewriter for output of
messages to a main operator. This method of sharing a device ensures that
a block of data is input or output as an indivisible entity. When sequential
media such as paper tape, punched cards, or magnetic tape are used, how­
ever, an internal process must have exdusive access to the entire document.
This is obtained by calling the following monitor procedure:

reserve process(name, result)

The result indicates whether the reservation has been accepted or not. An
external process that handles sequential documents of this kind rejects mes­
sages from all internal processes except the one that has reserved it. Rejec­
tion is indicated by the result of the procedure wait answer.

During the removal of an internal process, the monitor removes all reser­
vations made by it. Internal processes can, however, also do this explicitly
by means of the monitor procedure:

release process(name)

5.3 Creation and Removal

Prom the operator's point of view an external process is created when he
mounts a document on a device and names it. The name must, however,
be communicated to the monitor by means of an operating system, i.e. an
internal process that controls the execution of programs. Thus it is more
correct to say that external processes are created when internal processes
assign names to peripher al devices. This is done by means of the monitor
procedure:

create peripheral process(name, device number, result)

The monitor has, in fact, no way of ensuring wh ether a given document
is mounted on a device. Furthermore, there are some devices which operate
without documents, e.g. the real-time dock.

The name of an external process can be explicitly removed by a call of
the monitor procedure:

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 171

remove process(name, result)

It is also possible to implement an automatie removal of the process name
when the monitor detects operator intervention in a device. At present, this
is done only in connection with magnetic tapes (see Seetion 10.1).

5.4 Replacement of External Processes

The decision to control input/output by me ans of interrupt procedures
within the monitor, instead of using dedicated internal processes for each
kind of peripheral device, was made to obtain immediate initiation of in­
put/output after the sending of messages. In contrast the activation of an
internal process merely implies that it is linked to the time slice queue; after
activation several time slices can elapse before the internal process actually
starts to execute instructions.

The price paid for the present implementation of external processes is
a prolongation of the time spent in the disabled mode within the monitor.
This limits the system's ability to cope with real-time events, i.e. data that
are lost unless they are input and processed within a certain time.

An important consequence of the uniform handling of internal and ex­
ternal processes is that it allows us to replace any extern al process by an
internal process of the same name; other processes that communicate with
it are quite unaware of this replacement.

Thus it is possible to improve the response time of the system by replacing
a time-consuming extern al process, such as the paper tape reader, by a
somewhat slower internal process, which executes privileged instructions in
the enabled mode.

This type of re placement also makes it possible to enforce more complex
rules of access to a document. In the interests of security, for example, one
might want to limit the access of an internal process to one of several files
recorded on a particular magnetic tape. This can be ensured by an internal
process that traps all messages to the tape and decides whether they should
be passed on to it.

As a final example let us consider the problem of debugging a process
control system before it is connected to an industrial plant. A convenient
way of doing this is to replace analog inputs with an internal process that
simulates relevant values of actual measuring instruments.

We conclude that the ability to replace any process in the system with
another process is a very useful tool. This can now be seen as a practical

172 PER BRINCH HANSEN

result of the general, but somewhat vague idea (expressed in Section 2.2)
that internal and extern al processes are independent processes, which differ
only in their processing capability.

6 INTERN AL PROCESSES

This chapter explains the creation and control of internal processes. The
emphasis is on the hierarchal structuring of internal processes, which makes
it possible to extend the system with new operating systems. The dynamic
behaviour of the system is explained in terms of process states and the
transition between these.

6.1 Creation, Control, and Removal

Internal processes are created on request from other internal processes by
means of the monitor procedure:

create internal process(name, parameters, result)

The monitor initializes the process description of the new internal process
with its name and storage area selected by the parent process. The storage
area must be within the parent's own area. Also specified by the parent is
a protection key, which must be set in all storage words of the child process
before it is started.

PARENT
PROCESS

CHILD

PROCESS

After creation the child process is simply a named storage area, which
is described within the monitor. It has not yet been linked to the time slice
queue.

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 173

The parent process can now load a program into the child process by
means of an input operation. Following this the parent can initialize the
registers of its child using the monitor procedure:

modify internal process(name, registers, result)

The register values are stored in the process description until the child pro­
cess is started. As a standard convention adopted by parent processes (but
not enforced by the monitor), the registers inform the child about the pro­
cess descriptions of itself, its parent, and the typewriter console it can use
for operator communication.

Finally the parent can start program execution within the child by calling:

start internal process(name, result)

which sets the protection keys within the child and links it to the time slice
queue. The child now shares time slices with other active processes including
the parent.

On request from a parent process, the monitor waits for the completion
of all input/output initiated by a child process and stops it, i.e. removes it
from the time slice queue:

stop internal process(name, buffer, result)

The meaning of the message buffer will be made clear in Section 6.3.
In the stopped state a child process can be modified and started again,

or it can be completely removed by the parent process:

remove process (name, result)

During removal, the monitor generates dummy answers to all messages sent
to the child and releases all external processes used by it. Finally the protec­
tion keys are reset to the value used within the parent process. The parent
can now use the storage area to create other child processes.

6.2 Process Hierarchy

The idea of the monitor has been described as the simulation of an environ­
ment in which program execution and input/output are handled uniformly as
parallel, cooperating processes. A fundamental set of procedures allows the

174 PER BRINCH HANSEN

dynamic creation and control of pro ces ses as weIl as communication among
them.

For a given installation we still need, as part of the system, programs
that control strategies for operator communication, program scheduling, and
resource allocation. But it is essential for the orderly growth of the systems
that these operating systems be implemented as other programs. Since the
difference between operating systems and production programs is one of
jurisdiction only, this problem is solved by arranging the internal processes
in a hierarchy in which parent processes have complete control over child
processes.

After initial loading the internal store contains the monitor and an in­
ternal process, s, which is the basic operating system. S can create parallel
processes, a, b, c, etc., on re quest from consoles. These processes can in
turn create other processes, d, e, f, etc. Thus while s acts as a primitive
operating system for a, b, and c, these in turn act as operating systems for
their children, d, e, f, etc. This is illustrated by the following figure, which
shows a family tree of processes on the left and the corresponding storage
allocation on the right:

MONITOR

A 0

E
S

8 FE F

C

This family tree of processes can be extended to any level, subject only
to a limitation of the total number or processes. At present the maximum
number of internal processes is 23 including the basic operating system s.
It must, however, be remembered that the storage protection system only
provides mutual protection of 8 independent processes. When this number
is exceeded, one must rely on some of the processes being error free.

RC 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 175

In this multiprogramming system all privileged functions are imple­
mented in the monitor, which has no built-in strategy. Strategies can be
introduced at the various higher levels, where each process has the power to
control the scheduling and resource allocation of its own children. The only

. rules enforced by the monitor are the following: a process can only allocate
a subset of its own resources (induding storage) to its children; a process
can only modify, start, stop, and remove its own children.

The structure of the family tree is defined in the process descri ptions
within the monitor. We emphasize that the only function of the tree is to
define the basic rules of process control and resource allocation. Time slices
are shared evenly among active processes regardless of their position in the
hierarchy, and each process can communicate with all other processes.

As regards the future development of operating systems, the most im­
portant characteristics can now be seen as the following:

1. New operating systems can be implemented as other programs without
modification of the monitor. In this connection we should mention that the
Algol and Fortran languages for the RC 4000 contain facilities for calling
the monitor and initiating parallel processes. Thus it is possible to write
operating systems in high-Ievellanguages.

2. Operating systems can be replaced dynamically, thus enabling an in­
stallation to switch among various mo des of operation; several operating
systems can, in fact, be active simultaneously,

3. Standard programs and user programs can be executed under different
operating systems without modification; this is ensured by a standardization
of communication between parents and children.

6.3 Process States

We are now in a position to define the possible states of an internal process
as described within the monitor. An understanding of the transition from
one state to the other is vital as a key to the dynamic behaviour of the
system.

An internal process is either running (executing instructions or ready to
do so) or waiting (for an event outside the process). In the running state the
process is linked to the time slice queue; in the waiting state it is temporarily
removed from this queue.

A process can either be waiting for a message, an answer, or an event,
as explained in Chapter 4.

Of a more complex nature are the situations in which a process is waiting

176 PER BRINCH HANSEN

to be stopped or started by another process. In order to explain this we shall
once more refer to the family tree shown in the previous section.

Let us say that process b wants to stop its child f. The purpose of doing
this is to ensure that all program execution and input/output within the
storage area of process f is stopped. Since apart of the storage area has
been allocated to children of f, it is obviously necessary to stop not only the
child f but also all descendants of f. This is complicated by the fact that some
of these descendants may already have been stopped by their own parents.
In the present example process g may still be running, while process h may
have been stopped by its parent f. Consequently the monitor should only
stop processes fand g.

Consider now the reverse situation, in which process b starts its child
f again. Now the purpose is to reestablish the situation exactly as it was
before process f was stopped. Thus the monitor must be very careful only to
start those descendants of f that were stopped along with f. In our example
the monitor must start processes fand g but not h. Otherwise we confuse f,
which still relies on its child h being stopped.

Obviously, then, the monitor must distinguish between processes that
are stopped by their parents and by their ancestors.

The possible states of an internal process are the following:

running
running after error
waiting for message
waiting for answer
waiting for event
waiting for start by parent
waiting for stop by parent
waiting for start by ancestor
waiting for stop by ancestor
waiting far process function

A process is created in the state waiting for start by parent. When it is
started, its state becomes running. The meaning of the state running after
error is explained in Section 8.1.

When a parent wants to stop a child, the state of the child is changed
to waiting for stop by parent, and all running descendants of the child are
described as waiting for stop by ancestor. At the same time these processes
are removed from the time slice queue.

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 177

What remains to be done is to ensure that all input/output initiated by
these processes is terminated. In order to control this each internal process
description contains an integer called the stop count. The stop count is
increased by one each time the internal process initiates input/output from
an external process. On arrival of an answer from an extern al process,
the monitor decreases the stop count by one and examines the state of the
internal process. If the stop count becomes zero and the process is waiting
for stop by parent (or ancestor) , its state is changed to waiting for start by
parent (or ancestor).

Only when all involved processes are waiting for start is the stop opera­
tion finished. This can last some time, and it may not be acceptable to the
parent (being an operating system with many other duties) to be inactive
for so long. For this reason the stop operation is split into two parts. The
stop procedure:

stop internal process(name, buffer, result)

only initializes the stopping of a child and selects a message buffer for the
parent. When the child and its running descendants are completely stopped,
the monitor delivers an answer to the parent in this buffer. Thus the parent
can use the procedures wait answer or wait event to wait for the completion
of the stop.

A process can be in any state when a stop is initiated. If it is waiting for
a message, answer, or an event, its state will be changed to waiting for stop,
as explained above, but at the same time its instruction counter is decreased
by two in order that it can, repeat the call of wait message, wait answer, or
wait event when it is started again.

It should be noted that a process can receive messages and answers in
its queue in any state. This ensures that a process does not loose contact
with its surroundings while stopped.

The meaning of the state waiting for process function is explained in
Section 9.1.

7 RESOURCE CONTROL

This chapter describes a set of monitor rules that enables a parent process
to control the allocation of resources to its children.

178 PER BRINCH HANSEN

7.1 Introduction

In the multiprogramming system the internal processes compete for the fol­
lowing limited resources:

computing time
storage and protection keys
message buffers
process descriptions
peripheral devices
backing storage

Initially all resources are owned by the basic operating system s. As a
basic principle enforced by the monitor a process can only allocate a subset
of its own resources to a child process. These are returned to the parent
process when the child is removed.

7.2 Time Slice Scheduling

All running processes are allocated time slices in a cyclical manner. Depend­
ing on the interrupt frequency of the hardware interval timer, the length of a
time slice can vary between 1.6 and 1638.4 milliseconds. A reasonable time
slice is 25.6 milliseconds; with shorter intervals the percentage of computing
time consumed by timer interrupts grows drastically; with longer intervals
the delay between activation and execution of an internal process increases.

In practice internal processes often initiate input/output and wait for it
in the middle of a time slice. This creates a scheduling problem when internal
processes are activated by answers: Should the monitor link processes to the
beginning or to the end of the time slice queue? The first possibility ensures
that processes can use peripherals with maximum speed, but there is the
danger that a process can monopolize computing time by communicating
frequently with fast devices. The second choice prevents this, but introduces
a delay in the time slice queue, which slows down peripherals.

We have introduced a modified form of round-robin scheduling to solve
this dilemma. As soon as a process is removed from the time slice queue,
the monitor stores the actual value of the time quantum used by it. When
the process is activated again, the monitor compares this quantum with the
maximum time slice. As long as this limit is not exceeded, the process is
linked to the beginning of the queue; otherwise it is linked to the end of the

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 179

queue and its time quantum is reset to zero. The same test is applied when
the interval timer interrups an internal process.

This scheduling attempts to share computing time evenly among active
internal processes regardless of their position in the hierarchy. It permits
a process to be activated immediately until it threatens to monopolize the
central processor, only then is it pushed into the background to give other
processes a chance. This is admittedly a built-in strategy at the microlevel.
Parent processes can in fact only control the allocation of computing time
to their children in larger portions (on the order of seconds) by means of the
procedures start and stop internal process.

For accounting purposes the monitor retains the following information
for each internal process: the time at which the process was created and the
sum of time quantums used by it; these quantities are denoted start time
and run time.

7.3 Storage Allocation and Protection

An internal process can only create child processes within its own storage
area. The monitor does not check whether storage areas of child processes
overlap each other. This freedom can be used to implement time-sharing
of a common storage area among several processes as described in Sections
10.2 and 10.4.

During creation of an internal process the parent must specify the values
of the protection register and the protection key used by the child. In the
protection register each bit corresponds to one of the eight possible protec­
tion keys; if a bit is zero the process can change or execute storage words
with the corresponding key.

The protection key is the key that is set in all storage words of the
child process itself. A parent process can only allocate a subset of its own
protection keys to a child. It has complete freedom to allocate identical or
different keys to its children. The keys remain accessible to the parent after
creation of a child.

7.4 Message Buffers and Process Descriptions

The monitor only has room for a finite number of message buffers and tables
describing internal processes and the so-called area processes (files on the
backing store used as external processes). A message buffer is selected when
a message is sent to another process; it is released when the sending process

180 PER BRINCH HANSEN

receives an answer. A process description is selected when an internal process
creates another internal process or an area process, and released when the
process is removed.

Thus it is clear that message buffers and process descriptions only assurne
an identity when they are actually used. As long as they are unused, they can
be regarded as anonymous pools of resources. Consequently it is sufficient to
specify the maximum number of each resource an internal process can use.
These so-called buJJer claim, internal claim, and area claim are defined by
the parent when a child process is created. The claims must be a subset of
the parent's own claims, which are diminished accordingly, they are returned
to the parent when the child is removed.

The buffer claim defines the maximum number of messages an internal
process can exchange simultaneously with other internal and extern al pro­
cesses. The internal claim limits the number of children an internal process
can have at the same time. The area claim defines how many backing store
areas an internal process can access simultaneously.

The monitor decreases a claim by one each time a process actually uses
one of its resources, and increases it by one when the resource is released
again. Thus at any moment the claims define the number of resources that
can still be used by the process.

7.5 Peripheral Devices

A distinction has been made between peripher al devices and external pro­
cesses. An external process is created when a name is assigned to a device.

Thus it is also true of peripher al devices that they only assurne an identity
when they are actually used for input/output. Indeed the whole idea of
identification by name is to give the operator complete freedom in allocation
of devices. It would therefore seem natural to control the allocation of devices
to internal processes by a complete set of claims-one for each kind of device.

In a system with remote peripherals, however, it is unrealistic to treat all
devices of a given kind as a single, anonymous pool. An operating system
must be able to force its children and their human operators to remain within
a certain geographical configuration of devices. It should be noted that the
concept of configuration must be defined in terms of physical devices and
not in terms of external processes, since a parent generally speaking does
not know in advance which documents its children are going to use.

Configuration control is exercised as follows. From the point of view
of other processes an internal process is identified by a name. Within the

RC 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 181

monitor, however, an internal process can also be identified by a single bit
in a machine word. The process descriptions of peripheral devices include a
word in which each bit indicates whether the corresponding internal process
is a potential user of the device. Another word indicates the current user that
has reserved the device in order to obtain exclusive access to a document.

Initially the basic operating system s is a potential user of all peripherals.
A parent process can include or exclude a child as a user of any device,
provided the parent is also a user of it:

include user(child, device number, result)
exclude user(child, device number, result)

During removal of a child, the monitor excludes it as a user of all devices.
All in all three conditions must be fulfilled before an internal process can

initiate input/output:

The device must be an external process with a unique name.

The internal proeess must be a user of the device.

The internal proeess must reserve the external proeess if it eontrols a
sequential doeument.

7.6 Privileged Functions

Files on the baeking store are deseribed in a catalog, which is also kept on
the backing store. Clearly there is a need to be able to prevent an internal
proeess from reserving an excessive amount of spaee in the catalog or on the
backing store as such. It seems difficult, however, to speeify a reasonable
rule in the form of a claim that is defined onee and for all when a ehild
proeess is created. The main diffieulty is that eatalog entries and data areas
ean survive the removal of the proeess that ereated them; in other words
baeking storage is a resource a parent process ean loose permanently by
alloeating it to its children.

As a half-hearted solution we have introdueed the eoneept of privileged
monitor pmcedures. A parent proeess must supply eaeh of its ehildren with
a junction mask, in which eaeh bit specifies whether the ehild is allowed
to perform a eertain monitor funetion. The mask must be a subset of the
parent's own mask.

At present the privileged functions include all monitor proeedures that:

182 PER BRINCH HANSEN

change the catalog on the backing store,
create and remove names of peripheral devices,
change the real-time dock.

8 MONITOR FEATURES

This chapter is a survey of specific monitor features such as internal interrup­
tion, the real-time dock, conversational access from consoles, and permanent
storage of files on the backing store. Although these are not essential primi­
tive concepts, they are indispensable features of practical multiprogramming
systems.

8.1 Internal Interruption

The monitor can assist internal processes with the detection of infrequent
events such as violation of storage protection or arithmetic overflow. This
causes an interruption of the internal process followed by a jump to an
interrupt procedure within the process.

The interrupt procedure is defined by calling the monitor procedure:

set interrupt(interrupt address, interrupt mask)

When an internal interrupt occurs, the monitor stores the values of reg­
isters at the head of the interrupt procedure and continues execution of the
internal process in the body of the procedure:

interrupt address: working registers
instruction counter
interrupt cause
(execution continues here)

The system distinguishes between the following causes of internal inter­
ruption:

protection violation
integer overflow
floating-point overflow or underflow
parameter error in monitor call
breakpoint forced by parent

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 183

The interrupt mask specifies whether arithmetic overflow should cause
internal interruption. Other kinds of internal interrupts cannot be masked
off.

If an internal process provokes an interrupt without having defined an
interrupt procedure after its creation, the monitor removes the process from
the time slice queue and changes its state to running after error. The process
does not receive any more computing time in this state, but from the point
of view of other processes it is still an existing process. The parent of the
erroneous process can, however, reactivate it by means of stop and start.

A parent can force a breakpoint in a child process as follows: first, stop
the child; second, fetch the registers and interrupt address from the process
description of the child and store the registers in the interrupt area together
with the cause; third; modify the registers of the child to ensure that program
execution continues in the interrupt procedure; fourth, start the child again.

8.2 Real-Time Clock

Real time is measured by means of a hardware interval timer, which counts
modulo 16384 in units of 0.1 msec and interrupts the computer regularly
(normally every 25.6 msec).

The monitor uses this timer to update a programmed real-time clock of
48 bits. This dock can be initialized and sensed by means of the procedures:

set dock(dock)
get dock(dock)

The setting of the dock is a privileged function. A standard convention
adopted by operating systems (but not enforced by the monitor) is to let the
dock express the time interval elapsed since midnight 31 December 1967 in
units of 0.1 msec.

The interval timer is also used to implement an external process that
permits the synchronization of internal processes with real time. All internal
processes can send messages to this clock process. After the elapse of a time
interval specified in the message, the dock process returns an answer to the
sender. In order to avoid a heavy overhead time of dock administration, the
dock process only ex amines its queue every second.

8.3 Console Communication

A multiprogramming system encourages a conversational mode of opera­
tion, in which users interact directly with internal processes from typewriter

184 PER BRINCH HANSEN

consoles. The external processes for consoles clearly refiect this objective.
Initially all program execution is ordered by human operators who com­

municate with the basic operating system. It would be very wasteful if the
operating system had to examine all consoles regularly for possible operator
requests. Therefore our first requirement is that consoles be able to activate
internal processes by sending messages to them. Note that other external
processes are only able to receive messages.

Second, it must of course be possible for an internal process to open a
conversation with any console.

Third, a console should accept messages simultaneously from several in­
ternal processes. This will enable us to control more than one internal pro­
cess from the same console, which is valuable in a small installation.

In short, consoles should be independent processes that can open conver­
sations with any internal process and vice versa. The console should assist
the operator with the identification of the internal processes using it.

An operator opens a conversation by depressing an interrupt key on the
console. This causes the monitor to select a li ne buffer and connect it to
the console. The operator must now identify the internal process to which
his message is addressed. Following this he can input a message of one line,
which is delivered in the queue of the receiving process.

A message to the basic operating system s can, for example, look like
this (the word in italics is output by the console process in response to the
key interrupt):

to s
new pbh run

An internal process opens a conversation with a console by sending a
message to it. Before the input/output operation is initiated, the console
identifies the internal process to the operator. This identification is sup­
pressed after the first of aseries of messages from the same process.

In the following example internal processes a and b share the same console
for input/output. Process identifications are in italics:

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 185

to a
first input line to a
second input line to a
from b
first output line from b
second output line from b
from a
first output line from a
etc.

Note that these processes are unaware of their sharing the same console.
From the point of view of internal processes the identification of user pro­
ces ses makes it irrelevant whether the system contains one or more consoles.
(Of course one cannot expect operators to feel the same way about it).

8.4 Files on Backing Store

8.4.1 Introduction

The monitor permits semi-permanent storage of files on a backing store
consisting of one or more drums and disks. The monitor makes these appear
as a single backing store with a number of segments of 256 words each. This
logical backing store is organized as a collection of named data areas. Each
area occupies a consecutive number of segments on a single backing store
device. A fixed part of the backing store is reserved for a catalog describing
the names and locations of data areas.

Data areas are treated as external processes by the internal processes;
input/output is initiated by sending messages to the areas specifying in­
put/output operations, storage areas, and relative segment numbers within
the areas. The identification of a data area requires a catalog search. In
order to reduce the number of searches, input/output must be preceded by
an explicit creation of an area process description within the monitor.

8.4.2 Catalog Entries

The catalog is a fixed area on the backing store divided into a number of
entries identified by unique names. Each entry is of fixed length and consists
of a head, which identifies the entry, and a tail, which contains the rest of
the information. The monitor distlnguishes between entries describing data
areas on the backing store and entries describing other things.

186 PER BRINCH HANSEN

An entry is created by calling the monitor procedure:

create entry(name, tail, result)

The first word of the tail defines the size of an area to be reserved and
described in the entry; if the size is negative or zero, no area is reserved.
The rest of the tail contains nine optional parameters, which can be selected
freely by the internal process.

Internal pro ces ses can look up, change, rename, or remove existing entries
by means of the procedures:

look up entry(name, tail, result)
change entry(name, tail, result)
rename entry(name, new name, result)
remove entry(name, result)

The catalog describes itself in an entry named catalog.
The search for catalog entries is minimized by using a hashed value of

names to define the first segment to be examined. Each segment contains
15 entries; thus most catalog searches only require the input of a single
segment unless the catalog is filled to the brim. The allocation of data areas
is speeded up by keeping a bit table of available segments within the monitor.
In practice the creation or modification of an entry therefore requires only
the input and output of a single catalog segment.

8.4.3 Catalog Protection

Since many users share the backing store as a common data base, it is
vital that they have a means of protecting their files gainst unintentional
modification or complete removal. The protection system used is similar to
the storage protection system: each catalog entry is supplied with a catalog
key in its head; the rules of access within an internal process are defined by a
catalog mask set by the parent of the internal process. Each bit in this mask
corresponds to one of 24 possible catalog keys; if a bit is one, the internal
process can modify or remove entries with the corresponding key; otherwise
it can only look up these entries. A parent can only allocate a subset of
its own catalog keys to a child process. Initially the basic operating system
owns all keys.

In order to prevent the catalog and the rest of the backing store from be­
ing filled with irrelevant data, the concept of temporary entry is introduced.

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 187

This is an entry that can be removed by another internal process as so on
as the internal process that created the entry has been removed. Typical
examples are working areas used during program compilation and data areas
created, but not removed, by faulty programs.

This concept is implemented as follows. After creation of an internal
process, the monitor increases an integer creation number by one and stores
it within the new process description. Each time an internal process creates
a catalog entry, the monitor includes its creation number in the entry head
indicating that it is temporary. Internal processes can at any time scan
the catalog and remove all temporary entries provided the corresponding
creators no longer exist within the monitor. Thus in accordance with our
basic philosophy the monitor only provides the necessary mechanism for the
handling of temporary entries, but leaves the actual strategy of removal to
the hierarchy of processes.

In order to ensure the survival of a catalog entry, an internal process
must call the privileged monitor function:

permanent entry(name, catalog key, result)

to replace the creation number with a catalog key. A process can of course
only set one of its own keys in the catalog; otherwise it might fill the catalog
with highly protected entries, which could be difficult to detect and remove.

8.4.3 Area Processes

In order to be used for input/output a data area must be looked up in the
catalog and described as an extern al process within the monitor:

create area process(name, result)

The area process is created with the same name as the catalog entry.
Following this internal processes can send messages with the following

format to the area process:

message: input/output operation
first storage address
last storage address
first relative segment

188 PER BRINCH HANSEN

The reader is reminded that the tables used to describe area processes
within the monitor are a limited resource, which is controlled by means of
area claims defined by parent processes (Section 7.4).

The backing store is a random access medium that serves as a common
data base. In order to utilize this property fully internal processes should be
able to input simultaneously from the same area (e.g. when several copies
of the Algol compiler are executed in parallel). On the other hand access to
an area should be exclusive during output, because its content is undefined
from the point of view of other processes.

Consequently we distinguish between internal processes that are poten­
tial users of an area process and the single process that may have reserved
the area exclusively. This distinction was also made for peripher al devices
(Section 5.2), but the rules of access are different here: An internal process
is a user of an area after the creation of it. This enables the internal process
to perform input as long as no other process reserves it. An internal pro­
cess can reserve an area process if its catalog mask permits modification of
the corresponding catalog entry. After reservation the internal process can
perform both input and output.

Finally we should mention that the catalog is described permanently as
an area process within the monitor. This enables internal processes to input
and scan the catalog sequentially, for instance, during the detection and
removal of temporary entries. Only the monitor itself, however, can perform
output to the catalog.

9 SYSTEM IMPLEMENTATION

This chapter gives important details ab out the implement at ion as well as
figures about the size and performance of the system.

9.1 Interruptable Monitor Functions

Some of the monitor functions are too long to be executed entirely in the dis­
abled mode, e.g. updating of the catalog on the backing store and creation,
start, stop, and removal of processes. These so-called process junctions are
called as other monitor procedures, but behind the scenes they are executed
by an anonymous internal process, which only operates in disabled mode
for short intervals while updating monitor tables, otherwise the anonymous
process shares computing time with other internal processes.

When an internal process calls a process function, the following takes

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 189

place: the calling process is removed from the time slice queue and its state
is changed to waiting fOT process function. At the same time the process
description is linked to the event queue of the anonymous process that is
activated. The anonymous process serves the calling processes one by one
and returns them to the time slice queue after completion of each function.

Process functions are interruptable like other internal processes. From
the point of view of calling processes, however, process functions are indi­
visible, since (1) they are executed only by the anonymous process one at a
time in their order of request, and (2) calling processes are delayed until the
functions are completed.

The following monitor procedures are implemented as interruptable func­
tions:

9.2 Stopping Processes

create entry
look up entry
change entry
rename entry
remove entry
permanent entry
create area process
create peripher al process
create interna! process
start interna! process
stop interna! process
modify interna! process
remove process

According to theory an internal process cannot be stopped while in­
put/output is in progress within its storage area (Section 6.3). This re­
quirement is inevitable in the case of high-speed devices such as a drum
or a magnetic tape station, which are beyond program control during in­
put/output. On the other hand it is not strictly necessary to enforce this
for low-speed devices controlled by the monitor on a character-by-character
basis.

In practice the monitor handles the stop situation as follows:
Before an extern al process initiates high-speed input/output, it examines

the state of the sending process. If the sender is stopped (or waiting to be
stopped), input/output is not initiated, but the external process immedi­
ately returns an answer with block length zero; the sender must then repeat

190 PER BRlNCH HANSEN

input/output after restart. If the sender is not stopped, its stop count is
increased and input/output is initiated. Note that if the stop count was
increased immediately after the sending of a message, the sending process
could only be stopped after completion of all previous operations pending
in the external queue. By increasing the stop count as late as possible, we
ensure that high-speed peripherals at most prevent the stopping of internal
processes during a single block transfer.

Low-speed devices never increase the stop count. During output an exter­
nal process fetches one word at a time from the sending process and outputs
it character by character regardless of whether the sender is stopped mean­
while. Before fetching a word the extern al process examines the state of the
sender. If it is stopped (or waiting to be stopped), output is terminated by
an answer defining the actual number of characters output; otherwise output
continues. During input an external process examines the state of the sender
after each character. If the sender is stopped (or waiting to be stopped), in­
put is terminated by an answer; otherwise the character is stored and input
continues. Some devices, such as the typewriter, lose the last input character
when stopped; others, such as the paper tape reader, do not. It can be seen
that low-speed devices never delay the stopping of a process.

9.3 System Size

After initial system loading the monitor and the basic operating system s
occupy a fixed part of the internal store. The size of a typical system is as
follows:

RC 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 191

words:
monitor procedures: 2400
code for external processes: 1150

clock 50
backing store 100
typewriters 300
paper tape readers 250
paper tape punches 150
line printers 100
magnetic tape stations 200

process descriptions and buffers: 1250
15 peripheral devices 350
20 area processes 200

6 internal processes 200
25 message buffers 300

6 console buffers 200
basic operating system s 1400

total system 6200

It should be noted that the 6 internal processes include the anonymous
process and the basic operating system, thus leaving room for 4 user pro­
cesses. As a minimum the standard programs (editor, assembler, and com­
pilers) require an internal process of 5-6000 words for their execution. This
means that a 16 k store can only hold the system plus 1-2 standard pro­
grams, while a 32 k store enables parallel execution of 4 such programs. A
small store can of course hold more programs, if these are written in machine
code and executed without the assistance of standard programs.

9.4 System Performance

The following execution times of monitor procedures are conservative esti­
mates based on a manual count of instructions. The reader should keep in
mind that the basic instruction execution time of the RC 4000 computer is
4 J-Lsec. A complete conversation between two internal processes takes about
2 milliseconds distributed as follows:

msec
send message 0.6
wait answer 0.4
wait message 0.4
send answer 0.6

192 PER BRINCH HANSEN

It can be seen that one internal process can activate another internal
process in 0.6 msec, this is also approximately the time required to activate
an external process. An analysis shows that the 2 msec required by an
internal communication are used as follows:

percent
validity checking 25
process activation 45
message buffering 30

This distribution is so even that one cannot hope to speed up the system
by introducing additional, ad hoc machine instructions. The only realistic
solution is to make the hardware faster.

The maximum time spent in the disabled mode within the monitor limits
the system's response to real-time events. The monitor procedures them­
selves are only disabled for 0.2-1 msec. The situation is worse in the case of
interrupt procedures that handle low-speed devices with hardware buffers,
because the monitor empties or fills such buffers in the disabled mode after
each interrupt. For the paper tape reader (fiexowriter input) and the line
printer, the worst-case figures are:

empty reader buffer (256 characters)
fill printer buffer (170 characters)

20 msec
7 msec

It should be noted, however, that these buffers normally only contain 64-
70 characters corresponding to 4-5 msec. The worst-case situations can be
remedied either by using sm aller input/output areas within internal pro­
cesses, or by replacing these extern al processes with dedicated internal pro­
ces ses (Section 5.4).

Finally we shalllook at the interruptable monitor functions. An internal
process of 5000 words can be created and controlled by a parent process with
the following speed:

msec
create internal process 3
modify internal process 2
start internal process 26
stop internal process 4
remove internal process 30

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 193

Most of the time required to start and remove an internal process is used to
set storage protections keys.

Assuming that the backing store is a drum with a transfer time of 15
msec per segment, the catalog can be accessed with the following speed:

msec
create entry 38
look up entry 20
change entry 38
rename entry 85
remove entry 38
permanent entry 38

The execution time of process functions should be taken with some reser­
vations. First it must be remembered that process functions, like other in­
ternal processes, can be delayed for some time before they receive a time
slice. In practice process functions will be activated immediately as long
as they have not used a complete time slice (Section 7.2). Second one must
take into consideration the fact that process function calls are queued within
the monitor. Thus when a process wants to stop another process, the worst
thing that can happen is that the anonymous process is engaged in updating
the catalog. In this situation the stop is not initiated before the catalog has
been updated. One also has to keep in mind that process functions share the
drum or disk with other processes, and must wait for the completion of all
input/output operations that preceed their own in the drum or disk queue.
The execution times given here assurne that process functions and catalog
input/output are initiated instantly.

9.5 System Tape

The first version of the multiprogramming system consists of the monitor,
the basic operating system s, and a program for initializing the catalog.
It is programmed in the Slang 3 language. Before assembly the system is
edited to include process descriptions of the peripheral devices connected to
a particular installation and to define the following options:

194 PER BRINCH HANSEN

number of storage bytes
number of internal processes
number of area processes
number of message buffers
number of console buffers
maximum time slice
inclusion of code for external processes
backing store configuration
size of catalog

The system is delivered in the form of a binary paper tape, which can
autoload and initialize itself. After loading the system starts the basic op­
erating system. Initially the operating system executes a program that can
initialize the backing store with catalog entries and binary Slang programs
input from paper tape. When this has been done, the operating system is
ready to accept operator commands from consoles.

10 SYSTEM POSSIBILITIES

The strength of the monitor is the generality of its basic concepts, its weak­
ness that it must be supported by operating systems to obtain realistic mul­
tiprogramming. We believe that the ultimate limits to the use of the system
will depend on the imagination of designers of future operating systems. The
purpose of this chapter is to stimulate creative thinking by pointing out a
few of the possibilities inherent in the system.

10.1 Identification of Documents

In tape-oriented installations, operating systems should assist the operator
with automatie identifieation of magnetic tapes. At present the external
process eoneept gives the operator eomplete freedom to mount a magnetic
tape on any station and identify it by name. When a tape station is set in
the loeal mode, the monitor immediately removes its name to indicate that
the operator has interfered with it. The station gives an interrupt when
the operator returns it to the remote mode. Thus the monitor distinguishes
between three states of a tape station:

document removed (after intervention)
unidentified document mounted (after remote interruption)
identified doeument mounted (after process ereation)

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 195

It is a simple matter to introduce a watch-dog process in the monitor,
to which internal processes can send messages in order to receive answers
each time an unidentified tape is mounted somewhere. After reception of an
answer, an internal process can give the actual station a temporary name,
identify the tape by reading its label, and re name it accordingly.

Automatie identification requires general aggreement on the format of
tape labels, at least to the extent of assigning a standard position to the
names of tapes.

10.2 Temporary Removal of Programs

We have not imposed any restrictions on individual programs with respect to
their demand for storage, run time, and peripherals. It is taken for granted
that some programs will need most of the system resources for several hours.
Such large programs must not, however, prevent other users from obtaining
immediate access to the machine in order to execute more urgent programs
of short duration. Thus the system must permit temporary removal of a
program in order to make its storage area and peripherals available for other
programs. One example, where this is absolutely necessary, is the periodic
supervision of areal-time process combined with the execution of large back­
ground programs in idle intervals.

A program can be removed temporarily by stopping the corresponding
internal process and dumping its storage area on the backing store by an
output operation. Note that this dump automatically includes all children
and descendants created within the area. The monitor is only aware of the
process being stopped; it is still described within the monitor and can receive
messages from other processes.

It is now possible to create and start other processes in the same storage
area, since the monitor does not check whether internal processes overlap
each other as long as they remain within their parent processes. Peripherals
can also be taken from the dumped process and assigned to others simply
by mounting new documents and renaming the peripherals.

Temporary removal makes sense only if it is possible to restart a program
at a later stage. This requires reloading the program into its original storage
area as well as mounting and repositioning of its documents. After rest art
the internal process can detect interference with its documents in one of two
ways: either it finds that a document does not exist any more, whereupon it
must ask the operator to mount and name it; or it discovers that an existing
document no longer is reserved by it, meaning that the operator has mounted

196 PER BRINCH HANSEN

it, but that it needs to be repositioned. These cases are indicated by the
result parameter after a call of wait answer.

The need for repositioning can also arise during normal program exe­
cution, if the operator interferes with a peripheral device (by mistake or in
order to move a document to a more reliable device). Consequently all major
programs should consider each input/output operation as a potential restart
situation.

10.3 Batch Processing

In the design of a batch processing system the distinction between parent and
child processes prevents the batch of programs from destroying the operating
system. Note that in general an operating system must remove a child
process (and not merely stop it) to ensure that all its resources are released
again (Section 7.4). Even then, it must be remembered that messages sent
by a child to other processes remain in their queues until these processes
either answer them or are removed (Section 4.4).

The multiprogramming capabilities can be utilized to accept job requests
in a conversational mode during execution of the bateh. Thus a batch process­
ing system can include facilities for remote job entry combined with priority
scheduling of programs.

10.4 Time-Sharing

The basic requirement of a time-sharing system, in which a large number of
users have conversational access to the system from consoles, is the ability
to swap programs between the internal store and the backing store. A time­
sharing operating system must create an internal process for each user, and
make these processes share the same storage area by frequent removal and
restart of programs (say, every few seconds). The problem is that stopping a
process temporarily also means stopping its communication with peripherals.
Thus in order to keep typewriter input/output alive while a user process is
dumped, the system must include an internal process that buffers all data
between programs and consoles.

10.5 Real-Time Scheduling

We conclude these hints with an example of a real-time system. The appli­
cation we have in mi nd is a process contral system, in which a nu mb er of

Re 4000 SOFTWARE: MULTIPROGRAMMING SYSTEM 197

programs must perform data logging, alarm scanning, trend logging, and so
forth periodically under the real-time control of an operating system.

This can be organized as follows: initially all task programs send mes­
sages to the operating system and wait for answers. The operating system
communicates with the dock process and is activated every second in order
to scan a time table of programs. If the real time exceeds the start time of
a task program, the operating system activates the program by an answer.
After completion of its task, the program again sends a message to the op­
erating system and waits for the answer. In response the operating system
increases the start time of the program by the period between two successive
executions of the task.

Acknowledgements

The design of the system is based on the ideas of Jorn Jensen, Soren Lauesen,
and the author; Leif Svalgaard participated in its implementation.

HIERARCHICAL ORDERING
OF SEQUENTIAL PROCESSES

EDSGER w. DIJKSTRA

(1971)

4

One of the primary functions of an operating system is to rebuild a machine

that must be regarded as non-deterministic (on account of cycle stealing and

interrupts) into a more or less deterministic automaton. Taming the degree

of indeterminacy in steps will lead to a layered operating system. A bottom

layer will be discussed and so will the adequacy of the interface it presents. An

analysis of the requirements of the correctness proofs will give us an insight

into the logical issues at hand. A "director-secretary" relationship will be

introduced to reftect a possible discipline in the use of sequencing primitives.

The processing unit of a working computer performs in a short period of
time a sequence of millions of instructions and as far as the processing unit
is concerned this sequence is extremely monotonous: it just performs in­
structions one after the other. And if we dare to interpret the output, if we
dare to regard the whole happening as "meaningful", we do so because we
have mentally grouped sequences of instructions in such a way that we can
distinguish a structure in the whole happening. Similar considerations apply
to the store: high speed stores contain typically millions of bits stored in a
monotonous sequence of consecutively numbered but otherwise equivalent
storage locations. And again, if we dare to attach a meaning to such a vast
amount of bits, we can only do so by grouping them in such a way that we
can distinguish some sort of structure in the vast amount of information.

E. W. Dijkstra, Hierarchical ordering of sequential processes. Acta Informatica 1, 2 (Oc­
tober 1971),115-138. Copyright © 1971, Springer-Verlag. Reprinted by permission.

198

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 199

In both cases the structure is our invention and not an inherent property
of the equipment: with respect to the structure mentioned the equipment
itself is absolutely neutral. It might even be argued that this "neutrality"
is vital for its fiexibility. On the other hand, it then follows that it is the
programmer's obligation to structure "what is happening where" in a useful
way. It is with this obligation that we shall concern ourselves. And it is in
view of this obligation that we intend to start with a rat her machine-bound,
historical introduction: this gives us the unordered environment in which we
have to create order, to invent structure adequate for our purposes.

In the very old days, machines were strictly sequential, they were con­
trolled by wh at was called "a program" but could be called very adequately
"a sequential program" . Characteristic for such machines is that when the
same program is executed twice-with the same input data, if any-both
times the same sequence of actions will be evoked. In particular: transport
of information to or from peripherals was performed as a program-controlled
activity of the central processor.

With the advent of higher electronic speeds the discrepancy in speed
between the central processor on the one hand and the peripher al devices on
the other became more pronounced. As a result there came for instance a
strong economic pressure to arrange matters in such a way that two or more
peripherals could be running simultaneously.

In the old arrangement one could write a program reading information
from a paper tape, say at a maximum speed of 50 char/sec. In that case
the progress through that piece of program would be synchronized with the
actual movement of the paper tape through the reader. Similarly one could
write a program punching a paper tape, say at a maximum speed of 30
char/sec. To have both peripherals running simultaneously and also closely
to their maximum speed would require a tricky piece of program specifically
designed for this mixt ure of activities. This was clearly too unattractive and
other technical solutions have been found. Channels were invented; a channel
is a piece of hardware dedicated to the task of regulating the information
trafiic between the store and the peripheral to which it is attached, and doing
this synchronized to the natural speed of the peripheral device, thus doing
away with the implicit mutual synchronization of the peripheral devices that
would be caused if both were controlled by the same sequential program
execution.

The introduction of channels created two problems, a microscopic and
a macroscopic one. The microscopic problem has to do with access to the

200 EDSGER W. DIJKSTRA

store. In the old arrangement only the central processor required access to
the store and when the central processor required access to the store it could
get it. In the new arrangement, with the channels added-channels that
can be regarded as "special purpose processors" -a number of processors
can be competing with each other as regards access to the store because
such accesses from different processors very often exclude each other in time
(for technicalor local reasons). This microscopic problem has been solved
by the invention of the "switch", granting the competing processors access
to the store according to some priority rule. Usually the channels have a
lower trafik density and a higher priority than the central processor: the
processor works at full speed until a channel requests access to the store, an
arrangement wh ich is called "cycle stealing". We draw attention to the fact
that the unit of information in which this interleaving takes place-usually
"a word" -is somewhat arbitrary; in a few moments we shall encounter a
similar arbitrariness.

The macroscopic problem has to do with the coordination of central pro­
cessor activity and channel activity. The central processor issues a command
to a channel and from that moment onwards, two activities are going on si­
multaneously and-macroscopically speaking-independent of each other:
the central processor goes on computing and the channel transports infor­
mation. How does the central processor discover, when the execution of the
channel command has been completed? The answer to this has been the
"interrupt". Upon completion of a channel command the channel sets an
interrupt flip-flop; at the earliest convenient moment (but never sooner than
after completion of the current instruction) the central processor interrupts
the execution of the current program (in such a neat way that the inter­
rupted computation can be resumed at a later moment as if not hing had
happened) and starts executing an interrupt program instead, under control
of which all now appropriate actions will be taken. From the point of view
of the central processor it interleaves the various program executions, the
unit of interleaving being-similarly arbitrarily-"the instruction".

The above scheme can be recognized in all larger, modern computers
that I have studied. It has been embellished in many directions but we
don't need to consider those embellishments now. We go immediately to the
next questions: given a piece of equipment constructed along the lines just
sketched, wh at are the problems when we try to use it and in what direction
should we look for their solution?

What are the problems? Well the main point is that from the point

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 201

of view of program control such a piece of equipment must be regarded as
a non-deterministic machine. Measured in a grain of time appropriate for
the description of the activity of the central processing unit-clockpulse or
instruction execution time-the time taken by a peripheral transport must
be regarded as undefined. If completion of such a peripheral is signalled to
the central processor by me ans of an interrupt, this means that we must
regard the moment when the interrupt will take pI ace (or more precisely:
the point of progress where the computation will be interrupted) as unpre­
dictable. The problem is that in spite of this indeterminacy of the basic
hardware, we must make a more or less deterministic automaton out of this
equipment: from the outside world the machine will be confronted with a
well-defined computational task and it has to produce a well-defined result
in a microscopically unpredictable way!

Let me give a simple example to explain what I mean by "a more or less
deterministic automaton" . Suppose that offering a program to the machine
consists of loading a pack of cards into a card reader (and pushing some
button on the reader in order to signal that it has been loaded). Suppose
now that we have a machine with two readers and that we want to load it
with two programs, A and B, and that we can do this by loading both card
readers and pressing both buttons. We assume that the two card readers are
not mutually synchronized, i.e. we regard both speeds as unpredictable. To
what extent will the total configuration be a deterministic automaton? It
will be fully deterministic in the sense that eventually it will produce both
output A and output B. If these outputs are to be produced by the same
printer, they will be produced in some order and the system may be such
that the order in which the respective outputs appear on the printer does

depend on the relative speeds of the two readers. As far as the operator
is concerned, who has to take the output from the printer and to dispatch
it to the customers, the installation is non-deterministic; what he has to
do depends on the unpredictable speed ratio of the two readers, which may
cause output A to precede or to follow output B. For both cases the operator
has his instructions such that in both cases all output is dispatched to the
proper customer. The "computation centre" -i.e. installation and operator
together-are deterministic. We can regard the operator's activity as an
outer layer, "wrapping up the installation", shielding from the outside world
a level of interior indeterminacy.

Now, even if the operator is aware of not having a fully deterministic
machine, we should recognize that he has only to deal with two cases-

202 EDSGER W. DIJKSTRA

output A before output B or the other way round-while the number of
possible sequences of occurrences at cycle time level is quite fantastic. In
other words, by far the major part of the "shielding of indeterminacy" is
done by the installation itself. We call the resulting installation "more or
less deterministic" because as the case may be, a few degrees of limited
freedom-here one Boolean degree of freedom-may be left unpredictable.

We have called the operator's activity "an outer layer", shielding a level
of indeterminacy, and of course we did so on purpose. At the other end we
may distinguish an inner layer, viz. in the channel signalling (via an interrupt
signal) that the next card has been read: it teIls the central processor that
the next card image is available in core, regardless which storage cycles have
been stolen to get it there. The terms "inner layer" and "out er layer" have
been chosen in order to suggest that in the total organization we shall be
able to distinguish many layers in between. But an important remark is
immediately appropriate: I assume that with the card read command an
area in core has been designated to receive this card image: the remark that
the interrupt signalled the completed transfer of the card image irrespective
of which cycles had been stolen to transport its constituents is only true,
provided that no other access to the designated co re area took place in the
period of time ranging from the moment the command was given up to the
moment that the completion was signalled! Obvious but vital.

It draws our attention to an element of structure that must be displayed
by the remaining programs if we wish to make the total organization insen­
sitive to the exact identity of the cycles stolen by the channel. And from
the above it is clear that this insensitivity must be one of our dearest goals.
And on next levels (of software) we shall have to invent similar elements
of structure, making the total organization insensitive (or "as insensitive as
possible") to the exact moment when interrupts are honoured. Again it is
clear that this must be one of our dearest goals. And on a next level we
must make our organization insensitive (or "as insensitive as possible") to
the exact number of cards put into the readers for program A and B, and so
on This "layered insensitivity" is, in two words, our grand plan.

I have used the term "layer" on purpose, because it has seemed to pro­
vide an attractive terminology in terms of which to talk about operating
systems and their total task. We can regard an operating system as the
basic software that "rebuilds" a given piece of hardware into a (hopefully)
more attractive machine. An operating system can then be regarded as a
sequence of layers, built on top of each other and each of them implementing

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 203

a given "improvement". Before going on, let me digress for a moment and
try to explain why I consider such an approach of ordered layers a fruitful
one.

There is an alternative approach, which I would like to call the approach
via unordered modules. There one makes a long list of all the functions of the
operating system to be performed, for each function a module is programmed
and finally all these modules are glued together in the fervent hope that they
will cooperate correctly and will not interfere disastrously with each other's
activity. It is such an approach which has given rise to the assumed law
of nature, that complexity grows as the square of the number of program
components, i.e. of the number of "functions".

In the layered approach we start at the bottom side with a given hardware
machine Ao, we add our bottom layer of software rebuilding Ao into the
slightly more attractive machine Al, for which the next layer of software is
programmed rebuilding it into the still more attractive machine A2 etc. As
the machines in the sequence Ao, Al, A2, ••. get more and more attractive,
adding a further layer gets easier and easier. This is in sharp contrast to the
approach via unordered modules, where adding new functions seems to get
progressively worse!

1. So much in favour of a layered approach in general. When one wishes
to design an operating system, however, one is immediately faced with the
burning question, which "improvement" is the most suitable candidate to be
implemented in the bottom layer.

For the purpose of this discussion I will choose a very modest bot tom
layer. I do so for two reasons. Firstly, it is a choice with which for historical
reasons I myself am most familiar. Secondly, as a bot tom layer it is very
modest and neutral, so neutral in fact that it provides us with amental
platform from where we can discuss various alternatives for the structure of
what is going to be built on top of it. As a bottom layer it seems dose to the
choice of minimal commitment. The fact that this bottom layer is chosen as
a starting point for our discussion is by no means to be interpreted as the
suggestion that this is the best possible choice: on the contrary, one of the
later purposes of this discussion is the consideration of alternatives.

With the hardware taking care of the cyde stealing we feIt that the soft­
ware's first responsibility was to take care of the interrupts, or, to put it
a little more strongly, to do away with the interrupt, to abstract from its
existence. (Besides all rational arguments this decision was also inspired by
fear based on the earlier experience that, due to the irreproducibility of the

204 EDSGER W. DIJKSTRA

interrupt moments, a program bug could present itself misleadingly like an
incidental machine malfunctioning.) What does it mean "to do away with
the interrupt"? WeIl, without the interrupt the central processor continues
the execution of the current sequential process while it is the function of
the interrupt to make the central processor available for the continuation
of another sequential process. We would not need interrupt signals if each
sequential process had its own dedicated processor. And here the function
of the bottom layer emerged: to create a virtual machine, able to execute a
number of sequential programs in parallel as if each sequential program had
its own private processor. The bottom layer has to abstract of the existence
of the interrupt or, wh at amounts to the same thing, it has to abstract from
the identity of the single hardware processor. If this abstraction is carried
out rigorously it implies that everything built on top of this bottom layer
will be equally applicable to a multiprocessor installation, provided that all
processors are logically equivalent (i.e. have the same access to main mem­
ory etc.). The remaining part of the operating system and user programs
together then emerges as a set of harmoniously cooperating sequential pro­
cesses.

The fact that these sequential processes out of the family have to coop­
erate harmoniously implies that they must have the me ans of doing so; in
particular, they must be able to communicate with each other and they must
be able to synchronize their activities with respect to each other. For rea­
sons which, in retrospect, are not very convincing, we have separated these
two obligations. The argument was that we wished to keep the bottom layer
as modest as possible, giving it only the duty of processor allocation; in
particular it would leave the "neutral, monotonous memory" as it stood;
it would not rebuild that part of the machine, and immediately above the
bottom layer the processes could communicate with each other via the still
available, commonly accessible memory.

The mutual synchronization, however, is a point of concern. Closely
related to this is the question: given the bottom layer, what will be known
about the speed ratios with which the different sequential processes progress?
Again we have made the most modest assumption we could think of, viz. that
they would proceed with speed ratios, unknown but for the fact that the
speed ratios would differ from zero; i.e. each process (when logically allowed
to proceed, see below) is guaranteed to proceed with so me unknown, but
finite speed. In actual fact we can say more about the way in which the
bottom layer grants processor time to the various candidates: it does it

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 205

"fairly" in the sense that in the long run a number of identical processes will
proceed at the same macroscopic speed. But we don't tell, how "long" this
run is and the said fairness has hardly a logical function.

This assumption about the relative speeds is a very "thin" one, but as
such it has great advantages. From the point of view of the bottom layer, we
remark that it is easy to implement: to prevent a running program from mo­
nopolizing the processor an interrupting clock is all that is necessary. From
the point of view of the structure built on top of it is also extremely attrac­
tive: the absence of any knowledge about speed ratios forces the designer to
code all synchronization measures explicitly. When he has done so he has
made a system that is very robust in more than one sense.

Firstly he has made a system that will continue to operate correctly when
an actual change in speed ratios is caused, and this may happen in a variety
of ways. The actual strategy for processor allocation as implemented by the
bottom layer, may be changed. In a multiprocessor installation the number
of active processors may change. A peripheral may temporarily work with
speed zero, e.g. when it requires operator attention. In our case the original
line printer was actually replaced by a faster model. But under all those
changes the system will continue to operate correctly (although perhaps not
optimally, but that is quite another matter).

Secondly-and we shall return to this in greater detail-the system is
robust thanks to the relative simplicity of the arguments that can convince
us of its proper operation. Nothing being guaranteed about speed ratios
means that in our understanding of the structure built on top of the bottom
layer we have to rely on discrete reasoning and there will be no place for
analog arguments, for other purposes than overall justification of chosen
strategies. I trust that the strength of this remark will become apparent as
we proceed.

2. Let us now focus our attention upon the synchronization. Here a key
problem is the so-called "mutual exclusion problem". Given a number of
cyclic processes of the form

cycle begin entry;

end

critical section;
exit;
remainder of cycle

program entry and exi t in such a way that at any moment at most one of
the processes is engaged in its critical section. The solution must satisfy the

206 EDSGER W. DIJKSTRA

following requirements:

(a) The solution must be symmetrical between the processes; as a result
we are not allowed to introduce a static priority.

(b) Nothing may be assumed about the ratio of the finite speeds of the
processes; we may not even assume their speeds to be constant in
time.

(c) If any of the processes is stopped somewhere in remainder of cycle,
this is not allowed to lead to potential blocking of any of the others.

(d) If more than one process is about to enter its critical section, it must
be impossible to devise for them such finite speeds, that the decision to
determine which of them will enter its critical section first is postponed
until eternity. In other words, constructions in which "After you"­
"After you" -blocking, although improbable, is still possible, are not
to be regarded as valid solutions.

I called the mutual exclusion problem "a key problem". We have met
something similar in the situation of programs A and B producing their out­
put in one of the two possible orders via the same printer: obviously those
two printing processes have to exclude each other mutually in time. But this
is a mutual exclusion on a rather macroscopic scale and in all probability
it is not acceptable that the decision to grant the printer to either one of
the two activities will be taken on decount of the requirement of mutual
exclusion alone: in all probability considerations of efficiency or of smooth­
ness of service require a more sophisticated printer granting strategy. The
explanation why mutual exclusion must be regarded as a key problem must
be found at the microseopie end of the scale. The switch granting access to
store on word basis provides a built in mutual exclusion, but only on a small,
fixed and rat her arbitrary scale. The same applies to the single processor
installation which can honour interrupts in between single instructions: this
is a rather arbitrary grain of activity. The problem arises when more compli­
cated operations on common data have to take place. Suppose that we want
to count the number of times something has happened in a family of parallel
processes. Each time such an occurrence has taken place, the program could
try to count it via

n:= n+l

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 207

If in actual fact such a statement is coded by three instructions

R:= n;
R:= R+1;
n:= R

then one of the increases may get lost when two such sequences are executed,
interleaved on single instruction basis. The des ire to compound such (and
more complicated) operators on common variables is equivalent to the desire
to have more explicit control over the degree of interleaving than provided
by the neutral, standard hardware. This more explicit control is provided
by a solution to the mutual exclusion problem.

We still have to solve it. Our solution depends criticaHy on the communi­
cation facilities available between the individual processes and the common
store. We can assume that the only mutual exclusion provided by the hard­
ware is to exclude a write instruction or a read instruction, writing or reading
a single word. Under that assumption the problem has been solved for two
processes by T. J. Dekker in the early sixties. It has been solved by me
for N processes in 1965 (CACM 8, 9 (1965), p.569). The solution for two
processes was complicated, the solution for N processes was terribly compli­
cated. (The program pieces for enter and exi t are quite small, but they
are by far the most difficult pieces of program I ever made. The solution is
only of historical interest.)

It has been suggested that the problem could be solved when the indi­
vidual processes had at their disposal an indivisible "add to store" which
would leave the value thus created in one of the private process registers as
weH, so that this value is available for inspection if so desired. Indicating this
indivisible operation with braces the suggested form of the parallel programs
was:

cycle begin while {x:= x+1} <> 1 do {x:= x-1};
critical section;
{x:= x-1};
remainder of cycle

end

Where the "add to store" operation is performed on the common variable
x which is initialized with the value zero before the parallel programs are
started.

As far as a single process is concerned the cumulative ~x (h''l affected by
this process since its start is = 0 or = 1; in particular, when a process is in
its critical section its cumulative ~x = 1. As a result we conclude that at

208 EDSGER W. DIJKSTRA

any moment when N processes are in their critical section simultaneously,
x 2': N will hold.

A necessary and sufficient condition for entering a critical section is that
this process effectuates for x the transition from 0 to 1. As long as one process
is engaged in its critical section (N = 1), x 2': 1 will hold. This excludes the
possibility of the transition from 0 to 1 taking place and therefore no other
process can enter its critical section. We conclude that mutual exclusion is
indeed guaranteed. Yet the solution must be rejected: it is not difficult to
see that even with two processes (after at least one successful execution of
a critical section) "After you"-"After you"-blocking may occur (with the
value of x oscillating between 1 and 2).

A correct solution exists when we ass urne the existence of an indivisible
operation, swap which causes a commonvariable (x) and a private variable
(loe) to exchange their values. With initially x = 0 the structure of the
parallel programs is:

begin integer loe; loe:= 1;
eyele begin repeat swap(x, loe) until loe 0;

eritieal seetion;
swap(x, loe);
remainder of eyele

end
end

The invariant relation is that of the N+l variables (i.e. the N loe's and the
single x) always exactly one will be = 0, the others being = 1. A process is
in its critical section if and only if its own loe = 0, as a result at most one
process can be engaged in its critical section. When none of the processes
is in its critical section, x = 0 and "After you" -" After you" -blocking is
impossible. So this is a correct solution.

In a multiprogramming environment, however, the correct solutions re­
ferred to or shown have a great drawback: the program section called enter
contains a loop in which the process will cycle when it cannot enter its crit­
ical section. This so-called "busy form of waiting" is expensive in terms of
processing power, because in a multiprogramming environment (with more
parallel processes than processing units) there is a fair chance that there will
be a more productive way of spending processing power than giving it to
a process that, to all intents and purposes, could go to sleep for the time
being.

If we want to do away with the busy form of waiting we need some sort of
synchronizing primitives by means of which we can indicate those program

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 209

points where~depending on the circumstances~a process may be put to
sleep. Similarly we must be able to indicate that potential sleepers may
have to be woken up. What form of primitives?

Suppose that process 1 is in its critical section and that process 2 will be
the next one to enter it. Now there are two possible cases.

(a) process 1 will have done exi t before process 2 has tried to enter; in
that case no sleeping occurs

(b) process 2 tries to enter before process 1 has done exi t; in that case
process 2 has to go to sleep temporarily until it is woken up as a side­
effect of the exi t done by process 1.

When both occurrences have taken place, i.e. when process 2 has suc­
cessfully entered its critical section it is no longer material whether we had
case (a) or case (b). In that sense we are looking for primitives (for enter
and exi t) that are commutative. What are the simplest commutative oper­
ations on common variables that we can think of? The simplest operation
is inversion of a common Boolean, but that is too simple for our purpose:
then we have only one operation at our disposal and lack the possibility of
distinguishing between enter and exi t. The next simplest commutative
operations are addition to (and subtraction from) a common integer. Fur­
thermore we observe that enter and exi t have to compensate each other: if
only the first process passes its critical section the common state before its
enter equals the common state after its exi t as far as the mutual exclusion
is concerned. The simplest set of operations we can think of are increas­
ing and decreasing a common variable by 1 and we introduce the special
synchronizing primitives

pes): s:=s-1

and

V(s): s:=s+1

special in the sense that they are "indivisible" operations: if a number of P
and V-operations on the same common variable are performed "simultane­
ously" the net effect of them is as if the increases and decreases are done "in
so me order" .

Now we are very elose to a solution: we have still to decide how we wish
to characterize that a process may go to sleep. We can do this by making

210 EDSGER W. DIJKSTRA

the P- and V-operations operate not on just a common variable, but on a
special pur pose integer variable, a so-called semaphore, whose value is by
definition non-negative, i.e. s :2 o.

With that restriction, the V-operation can always be performed: unsyn­
chronized execution of the P-operation, however, could violate it.

We therefore postulate that whenever a process initiates a P-operation
on a semaphore whose current value equals zero, the process in question will
go to sleep until (another) process has performed a V-operation on that very
same semaphore. A little bit more precise: if a semaphore value equals zero,
one or more processes may be blocked by it, eager to perform a P-operation
on it. If a V-operation is performed on a semaphore blocking a number
of processes, one of them is woken up, i.e. will perform its now admissible
P-operation and proceed. The choice of this latter process is such that no
process wIll be blocked indefnitely long. A way to implement this is to decide
that no two processes will initiate the blocking P-operation simultaneously
and that they will be treated on the basis "first come, first served" (but it
need not be done that way, see below).

With the aid of these two primitives the mutual exclusion problem is
solved very easily. We introduce a semaphore mutex say, with the initial
value

mutex = 1

after which the parallel processes controlled by the program

cycle begin P(mutex);

end

are started.

critical section;
V(mutex);
remainder of cycle

Before proceeding vith the discussion I would like to insert aremark.
In languages specifically designed far process control I have met two other
primitives, called "wait" and "cause", operating on an "event variable",
which is a (possibly empty) queue of waiting processes. Whenever a process
executes a "wait" it attaches itself to the queue until the next "cause" for
the same event, which empties the queue and signals to all processes in the
queue that they should proceed. Experience has shown that such primitives
are very hard to use. The reason for this is quite simple: a "wait" in one
process and a "cause" in another are non-commutative operations, their net
effect depends on the order in which they take place and at the level where

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 211

we need the synchronizing primitives we must assume that we have not yet
effective control over this ordering. The limited usefulness of such "wait",
and "cause" primitives could have been deduced apriori.

3. As a next interlude I am going to prove the correctness of our solution.
One may ask "Why bother about such a proof, for the solution is obviously
correct". WeIl, in due time we shall have to prove the correctness of the
implementation of more sophisticated rules of synchronization and the proof
structure of this simple case may then act as a source of inspiration.

With each process j we introduce astate variable Cj, characterizing the
progress of the process.

processj is in the remainder of cycle
processj is in its critical section.

While processj performs (i.e. "completes") the operation P(mutex)j the trans­
lation Cj=O ---+ Cj=l takes place, when it performs the operation V(mutex)j
the transition Cj=l ---+ Cj=O takes place. (Note that the Cj are not variables
occurring in the program, they are more like functions defined on the cur­
rent value of the order counters.) In terms of the Cj the number of processes
engaged in its critical section equals

N

I:Cj
j=l

In order to prove that this number will be at most = 1, we follow the life
history of the quantity

N

K = mutex+ I:Cj
j=l

The quantity K will remain constant as long as its constituents are constant:
the only operations changing its constituents are the 2N mutually exclusive
primitive actions P(mutex)j and V(mutex)j (for 1 ~ i ~ N).

We have as a result of

P(mutex)j : ~K I>mutcx + I> (~Cj)
~mutex+ ~Ci

-1 + 1 = 0

212 EDSGER W. DIJKSTRA

and similarly, as a result of

V(mutex)j : ~K ~mutex+ ~Cj

+1 - 1 = 0

As these 2N operations are the only ones affecting K's constituents, we
conclude that K is constant, in particular, that it is constantly equal to its
initial value,

As a result

N

K=l+L:0=l
j=l

N

L:Cj = 1- mutex
j=l

Because mutex is a semaphore, we have

o ::; mutex

and from the last two relations we conclude

Because this sum is the sum of non-negative terms we know

Combining this with

We conclude

N

mutex = 1- L:Cj

j=l

mutex::; 1

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 213

i.e. mutex is a so-called "binary semaphore" , only taking on the values 0 and
1.

Finally we observe that no process will be kept out of its critical section
without justification: if all processes are outside their critical sections, all
Cj 's are = 0 and therefore mutex is = 1, thereby allowing the first process
that wants to enter its critical section to do so.

For later reference we summarize the structure of this proof. A central
role is played by an invariant relation among common variables (here only the
semaphore) and "progress variables" (here the Cj 's). Its invariance is proved
by observing the net effect of the (mutually exclusive) operators operating
on its constituents, without any further assumptions about their mutual
synchronization, ab out which we can then make assertions on account of the
established invariance. In the sequel we shall see that this pattern of proof
is very gene rally applicable.

4. Before proceeding with more complicated ex am pIes of synchronization we
must make a little detour and make a connection with earlier observations.
When a process is engaged in its critical section, a great number of other
processes may go to sleep. When the first one leaves its critical section, it is
undefined which of the sleepers is woken up, the only requirement being that
no single process is kept sleeping indefinitely long. (This latter assumption
we have to make when, later, we wish to prove assertions about the finite
progress of individual processes.) In this sense our "family of sequential
processes" is still a mechanism of an undeterministic nature, but the degree
of undeterminacy is a mild one compared with the original hardware, in
which an interrupt could occur between any pair of instructions: the only
indeterminacy left is the relative order of much larger units of action, viz. the
critical sections. In this respect the bottom layer of our operating system
achieves a step towards our goal of "layered insensitivity" .

It is in this connection that I should like to make another remark of quan­
titative nature. The choice of the process to be woken up is left undefined
because it is assumed that it does not matter, i.e. we assume the system
load to be such that the total period of time that any of the processes will
be engaged in its critical section will be a negligible fraction of real time,
in other words, nearly always mutex = 1 will hold. It is for that reason
that such a neutral policy for waking up a sleeper is permissible. This is
no longer true for our macroscopic concerns regarding so-called "resource
allocation". In the case of a number of programs producing their output via
the same printer, these printing actions have to exclude each other mutually

214 EDSGER W. DIJKSTRA

in time, but it is no longer true that the total time spent in printing will be a
negligible fraction of real time! On the contrary: in a well-balanced system
the printer will be used with a duty cyele elose to 100 per cent! In order to
achieve this-and to satisfy other, perhaps conflicting design requirements­
such a neutral poliey which is adequate for granting entrance into critieal
sections will certainly be inadequate for granting a scarce resource like a
printer. For the implementation of a less neutral granting policy we shall
use the critical sections, entrance to which is granted on a neutral basis.
(For an example of a more elaborate synchronization implemented with the
aid of critieal sections we refer to the Problem of the Dining Philosophers
to be treated later.) This is the counterpart of the "layered insensitivity":
going upwards in levels we gain more and more control over the microscopie
indeterminacy, but simultaneously macroscopie strategie concerns begin to
enter the pieture: it seems vital that the bottom layer with its mieroscopic
concerns does not bother itself with such macroscopie considerations. This
observation seems to apply to all well-designed systems: I would call it a
principle if I had a bett er formulation for it.

5. We now turn to a slightly more complicated example, viz. a bunch of
producers and a bunch of consumers, coupled to each other via an unbounded
buffer. In this example all producers are regarded as equivalent to each other
and all consumers are regarded as equivalent to each other. Under these
assumptions-which are not very realistic-the semaphores provide us with
a ready-made solution.

In the commonly accessible universe we have

(a) a buffer, initialized empty

(b) a semaphore mutex, initialized = 1; this semaphore caters for the mu­
tual exelusion of operations changing buffer contents

(c) a semaphore numqueuepor; this gives (a lower bound of) the number
of portions queueing in the buffer.

Then a producer may have the form

cycle begin produce next portion;
P(mutex);

end

add portion produced to buffer;
V(numqueuepor);
V(mutex)

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 215

with consumers of the following structure

eyele begin P(numqueuepor);
P(mutex);

end

Notes:

take portion from buffer;
V(mutex);
eonsume portion taken

1. The order of the V-operations in the producer is immaterial, the order
of the P-operations in the consumer is absolutely essential.

2. The assumption is that the operations produce next portion and
consume portion taken are the slow, time-consuming operations~
possible in synchronism with other equipment~for which parallelism
is of interest, while the actions add portion produced to buffer
and take portion from buffer are very fast "clerical" operations.

In the above program the semaphore numqueuepor is a so-called "gen­
eral semaphore", i.e. a semaphore whose possible values are not restricted
to 0 and 1. We shall now give an alternative program, using only binary
semaphores.

In the commonly accessible universe we have

(a) a buffer and an integer n, counting the number of portions in the buffer.
The buffer is initialized empty (incl. n:=O)

(b) a semaphore mutex initialized = 1; this semaphore caters for the mu­
tual exclusion of the operations changing the buffer contents, the value
of n and the inspection of n.

(c) a semaphore consal, initialized = 0; if this semaphore is = 1, a next
consumption is allowed.

Then a producer may have the form

eyele begin produee next portion;
P(mutex) ;

end

add portion to buffer (inel. n:=n+1);
if n=1 do V(eonsal);
V(mutex)

216 EDSGER W. DIJKSTRA

with consumers of the following structure

cycle begin P(consal) ;
P(mutex);

end

take portion from the buffer (incl. n:=n-1);
if n > 0 do V(consal);
V(mutex);
consume portion taken

Although it is not too hard to convmce ourselves "by inspection" ~
whatever that may mean~that the above bunch of programs work properly,
it is illuminating to give a somewhat more formal treatment of their coop­
eration. (I am now used to calling such a more formal treatment of their
co operation "a correctness proof", although I did not formalize the require­
ments that such a piece of reasoning should satisfy in order to be a "valid
proof" .)

The proof consists of two steps. The first step uses our earlier result,
viz. that the P (mutex) and V (mutex) establish mutual exclusion of the crit­
ical sections. (Inside these critical sections we find no P-operations, as a
result they cannot give rise to deadlock situations.) This observation allows
us to regard the critical sections as indivisible operations and to confine our
attention to the state of the system at the discrete moments with mutex = 1
(i.e. no one engaged in its critical section).

In the se co nd step we define three mutually exclusive states for the whole
system and shall show that whenever the system is started in one of these
states, it will remain within these states. For the purpose of state description
we introduce a function defined on the progress of the consumers, viz.

K = the number of consumers that have performed P (consal)
but have not yet entered the following critical section.

Now we can introduce OUf three states

SI: n=O and K=O and consal=O
S2: n>O and K=O and consal=1
S3: n>O and K=1 and consal=O

Three operations; (viz. P (consal) and the two critical sections) operate on
the constituents of these Boolean expressions; for each state we investigate
all three.

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 217

81: (initial state)
P (consal): impossible (on account of consal=O)
critical producer section: transition to 82
critical consumer section: impossible (on account of K=O)

82:
P (consal): transition to 83
critical producer section: transition to 82
critical consumer section: impossible (on account of K=O)

83:
P (consal): impossible (on account of consal=O)
critical producer section: transition to 83
critical consumer section: transition to 81 or 82

This concludes the second step, showing the invariance of

81 or 82 or 83

(from which we conclude N2:0 and consal:::;1.
A few remarks, however, are in order, for we have cheated slightly. Let

us repair our cheating first and then give our further comments. In our
se co nd step we have investigated the isolated effect of either P (consa!) or
the critical producer section or the critical consumer section. For the critical
sections this is all right for they exclude each other mutually in time; the
operation P (consal), however, can take pI ace during a critical section, and
we did not pay any attention to such coincidence. We can save the situation
by observing that in the case of coincidence the net effect is equal to the
execution of the critical section immediately followed by P (consal). This is
really a messy patching up of a piece of reasoning that was intended to be
clean. Now our further comments.

1. The proof shows why the mutual exclusion problem is worthy, of the
name "a key problem". Thanks to the mutual exclusion of critical sections
we only need to consider the net effect of each single, isolated section. If
these sections were not critical, i.e. could take place in arbitrary interleaving,
we would have to consider the net effect of one section, the net effect of two
sections together, of three sections together, of four etc.! With N cooperating
processes the number of cases to be investigated would grow like 2N (i.e. the
powerset!). This is one of the strongest examples showing how the amount
of intellectual effort needed for a correctness proof may depend critically on
structural aspects of the program, here the aspect of mutual exclusion. It is

218 EDSGER W. DIJKSTRA

this observation that is meant to justify the inclusion of the above proof in
this text.

2. The proof is complicated considerably by the fact that P (consal) is
an operation sequentially separate from the following critical section: this
caused the messy patching up of our piece of reasoning, it called for the in­
troduction of the function K. If the conditional entrance of critical sections is
going to be a standard feature of the system, a more direct way of expressing
this would be essential. A minimal departure of the current formation would
be the introduction of the parallel P-operation, allowing us to combine the
two P-operations of the consumer into

P(consal, mutex)

3. For the sake of completeness we mention that in the T.H.E. mul­
tiprogramming system, where we used general semaphores to control syn­
chronization along information streams, each information stream had at any
moment in time at most one consumer attached to it. As a result a general
semaphore could block at most one process and when a V-operation was
performed on it there was never the problem which process should be woken
up. The absence of the possibility that more than one process is blocked by a
general semaphore is not surprising: it is the semaphore consal that may be
equal to zero for a long period of time; as a result it is not to be expected that
it is irrelevant which of the processes will be woken up when a V-operation
is performed on it. In the design phase of the T.H.E. multiprogramming
system the parallel P-operation has been considered but finally it has not
been implemented because we feIt that it contained the built-in solution to
an irrealistic problem. But it would have simplified proof procedures.

6. We now turn to the problem of the Five Dining Philosophers. The
life of a philosopher consists of an alternation of thinking and eating:

cycle begin think;
eat

end

Five philosophers, numbered from 0 through 4 are living in a house where
the table is laid for them, each philosopher having his own place at the table:

Their only problem-besides those of philosophy-is that the dish served
is a very difficult kind of spaghetti, that has to be eaten with two forks.
There are two forks next to each plate, so that presents no difficulty: as a
consequence, however, no two neighbours may be eating simultaneously.

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 219

A very naive solution associates with eaeh fork a binary semaphore with
the initial value=l (indicating that the fork is free) and, naming in eaeh
philosoph er these semaphores in a loeal terminology, we eould think the
following solution for the philosopher's life adequate

cycle begin think;

end

P(left-hand fork); P(right-hand fork);
eat;
V(left-hand fork); V(right-hand fork)

But this solution-although it guarantees that no two neighbours are
eating simultaneously-must be rejeeted beeause it eontains the danger of
the deadly embraee. When all five philosophers get hungry simultaneously,
eaeh will grab his left-hand fork and from that moment onwards the group
is stuck. This could be overcome by the introduction of the parallel P­
operation, eombining the two P-operations into the single

P(left-hand fork, right-hand fork)

For the time being we assurne the parallel P-operation denied to us­
later we shall reject the solution using it on other grounds-and we shall
show how (using only single P-operations and binary semaphores) we ean
derive our solution in a reasonably eontrolled manner.

In order to be able to give a formal deseription of our restrietion, we
associate with eaeh philosopher astate variable, C say, where

C [i] 0 means: philosopher i is thinking
C [i] 2 means: philosopher i is eating.

In accordance with their first act, all C's will be initialized = O. In terms of
the C's we ean state that it is disallowed

220 EDSGER W. DIJKSTRA

3 i (C[i] = 2 and C[(i + 1) mod 5] = 2) (1)

in words: no philosopher may be eating while his left hand neighbour is
eating as weIl. From this formula it follows that for a C the transition from 2
to 0 can never cause violation of the restrietion (1), while the transition from
o to 2 can. Therefore we introduce for the last transition an intermediate
state

C Ei] = 1 means: philosopher i is hungry

Now each philosopher will go cyclicaIly through the states 0, 1, 2, O ... , The
next question to ask is: when has the (dangerous) transition from 1 to 2 to
take place for philosopher K? WeIl, three conditions have to be satisfied

(1) C[KJ = 1, i.e. he himself must be hungry

(2) C [(K+1) mod 5J =1= 2, because otherwise
C [KJ : =2 would cause violation of (1) for i=K

(3) C [(K-1) mod 5J =1= 2, because otherwise
C [KJ : =2 would cause violation of (1) for i = (K -1) mod 5.

As a result we have to see to it that the state

3K(C[(K - 1) mod 5] =1= 2 and C[K] = 1 and C[(K + 1) mod 5] =1= 2) (2)

is unstable: whenever it occurs, it has to be resolved by assigning C [KJ : =2
and sending philosopher K to the table.

In a similar analysis we ask: which transitions in the life of philosopher
w can cause the unstable situation and for which values of K?

(1) when C[wJ :=1 is executed, instability may be created far K = w

(2) when C [wJ : = O-i.e. when C [wJ loses the value 2-instability may be
created for K=(w+1) mod 5 and for K=(w-1) mod 5.

In words: when philosopher w gets hungry, the test whether he himself should
be sent to the table is appropriate, when he leaves the table the test should
be done for both his neighbours.

In the universe we assume declared

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 221

(1) the semaphore mutex, initially = 1

(2) the integer array C [0; 4] , with initially all elements = 0

(3) the semaphore array prisem [0; 4] with initially all elements = 0

(4) procedure test(integer value K);
if C[(K-i) mod 5] i= 2 and C[K] = 1

and C [(K+i) mod 5] i= 2 do
begin C[K] ;=2; V(prisem[K]) end;

(This procedure, which resolves unstability for K when present, will only be
called from within a critical section.)

In this uni verse the life of philosopher w can now be coded

cycle begin think;
P(mutex);

end

C[w];= 1; test(w);
V(mutex) ;
P(prisem[w]); eat
P(mutex);

C[w];= 0;
test[(w+1) mod 5];
test[(w-1) mod 5];

V(mutex)

And this concludes the solution I was aiming at. I have shown it, together
with the way in which it was derived, for the following reasons.

(1) The arrangement with the private semaphore for each process and
the common semaphore for mutual exclusion in order to allow for unam­
biguous inspection and modification of common state variables is typical for
the way in which in the T.H.E. multiprogramming system all synchroniza­
tion restrictions have been implemented that were more complicated than
straight forward mutual exclusion or synchronization along an information
stream (the latter synchronization has been implemented directly with the
aid of a general semaphore).

(2) The solution (including the need for the introduction of the interme­
diate state called "hungry") has been derived by me ans of a formal analysis
of the synchronization restriction. It is exemplar for the way in which the
flows of mutual obligations for waking up have been derived in the design
phase of the T.H.E. multiprogramming system. It is this analysis that I have
called "A constructive approach to the problem of program correctness".

222 EDSGER W. DIJKSTRA

With respect to this partieular solution I would like to make some further
remarks.

Firstly the solution as presented is free from the danger of deadloek, as
it should be. Yet it is highly improbable that a solution like this ean be
aeeepted beeause it eontains the possibility of a particular philosopher being
starved to death bya conspiration of his two neighbours. This ean be over­
eome by more sophisticated rules (introducing besides the state "hungry"
also the state "very hungry"); this requires a more eomplieated analysis but
by and large it follows the same pattern as the derivation shown. This was
another reason not to introduee the parallel P-operation: for the solution
with the parallel P-operation we did not see an automatie way of avoiding
the danger of individual starvation.

Seeondly we eould have made a more erude solution: the proeedure test
has a parameter indicating for which philosoph er the test has to be done;
also in the eritical sections we eall the proeedure test preeisely for those
philosophers for whom there is a chance that they should be woken up and for
no others. This is very refined: we eould have made a test proeedure without
parameter that would simply test for any K if there was an unstability to be
removed. But the problem eould have been posed for 9 or 25 philosophers
and the larger the number of philosophers, the more prohibitive the overhead
of the erude solution would get.

Thirdly, I have stated that we "derived our solution in a reasonably eon­
trolled manner" : although the formal analysis has been earried out almost
meehanieally, I would not like to suggest that it should be done automat­
ically, beeause in real life, whether we like it or not, the situation ean be
more eomplieated.

We eonsider two dasses of processes, dass A and dass B, sharing the
same resouree from a large pool. (The situation oeeurred in the T.H.E. mul­
tiprogramming system with the total pool of pages in the system.) Suppose
now that processes from dass A ask and return items from this pool at high
frequeney, while those from dass B do so at low frequeney only. In that
ease it is highly unattraetive to pose upon the highly frequent item releases
of dass A the (possibly) eonsiderable overhead involved in the analysis of
whether it is neeessary to wake up one or more bloeked processes. This high­
frequeney overhead was avoided by delegating the waking-up obligation to
(some) processes of dass Band by guaranteeing that at least one of these
processes would be aetive when the boundary of the resouree restrietion was
in danger of being approaehed. In other words, in order to reduee system

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 223

overhead we removed the highly frequent inspection whether processes had
to be woken up at the price of increasing the "re action time" there where an
ultra short "response" was not required. The taking of such decisions seems
a basic responsibility of the system designer and I don't see how they could
be taken automatically.

The above concludes my discussion of the chosen bottom layer. In the
final part of this paper I would like to discuss briefly an alternative solution.

7. The chosen bottom layer implements a family of sequential processes
plus a few synchronizing primitives, the remaining part of the system, to
be composed on top of it, will exist of a set of harmoniously cooperating
sequential processes. The interface is characterized by a number of features

(a) the bottom layer treats all sequential processes on the same footing

(b) the sequential processes communicate with each other via commonly
accessible variables

(c) critical sections ensure the unambiguous interpretation and modifica­
ti on of these common variables.

One or two objections can be raised to this organization; they center
around the observation that each sequential process can be in one of two
mutually exclusive radically different states: either the process is inside its
critical section or it is not. Inside its critical section it is allowed to access the
common variables, outside it is not. In actual fact this difference does not
only pertain to accessibility of information it has also a bearing on processor
allocation as implemented in the bot tom layer. Given a process without
hurry it is permissible to take the processor away from it for longer periods
of time, but it is unattractive to do so in the middle of a critical section: if a
process is stopped within a critical section it blocks for the other processes
the mechanism needed for their cooperation and the remaining processes are
bound to come to a grinding halt. In the T.H.E. multiprogramming system
this has been overcome by giving processes two colours-red or white-by
making each process red while it is in a critical section and by never granting
the processor to a white process if a red one is logically allowed to proceed.

Furthermore there is the aspect ofreproducibility. To an individual user,
offering a strictly sequential program to the system, we should like to present
a strictly deterministic automation. In the system a nu mb er of sequential
processes are dedicated to the processing of user programs, they act as slots

224 EDSGER W. DIJKSTRA

into which a user program can be inserted; whenever the user program refers
to a shared resource the translator effectively inserts-via a subroutine call­
the critical section required for this cooperation. As a result, what happens
in this slot is perfectly reproducible as long as the sequential process remains
outside critical sections. But if we wish to charge our user and also insist
that the charge be reproducible, we can only charge hirn for the activity of
the slot outside critical sections! What happens inside the critical sections
is situation dependent system overhead: it does not really "belong" to the
activity of the process in which the critical section occurs.

Finally, we know how to interpret the evolution of a sequential process
as a path through "its" state space as is spanned by "its" variables. But
for this interpretation to be valid it is necessary that all variables "belong"
uniquely to one sequential process.

It is this collection of observations that was an incentive to redo some
of our thinking ab out sequential processes and to reorder the total activity
taking place in the system. Instead of N sequential processes cooperating in
critical sections via common variables, we take out the critical sections and
combine them into a N + 1st process, called a "secretary"; the remaining N
processes are called "directors". Instead of N equivalent processes, we now
have N directors served by a common secretary. (We have used the metaphor
of directors and a common secretary because in the director-secretary rela­
tion in real-life organization it's also unclear who is the master and who is
the slave!)

What used to be critical sections in the N processes are in the directors
"calls upon the secretary" .

The relation between a set of directors and their common secretary shows
great resemblance to the relation between a set of mutually independent
programs and a common library. What is regarded as a single, unanalysed
action on the level of a director , is a finite sequential process on the level of
the secretary, similar to the relation between main program and subroutines.

But there is also a difference. In the case of a common library of re­
entrant procedures, the library does not need to have a private state space;
whenever a library procedure is called its local state space can be embedded
(for the duration of the call) in thfJ (extendable) state space of the calling
program.

A secretary, however, has her own private state space, comprising all
"common variables". One of the main reasons to introduce the concept of
"a secretary" is that now we have identified a process to which the "common

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 225

variables" belong: they belong to the common secretary.
To stress the specific nature of a secretary, I call her "a semi-sequential

process". A fully sequential process consists of a number of actions to be
performed one after the other in an order,determined by the evolution of this
process. A secretary is a bunch of actions-"operators in her state space"­
to be performed one after the other, but in undefined order, i.e. depending
on the calls of her directors.

A secretary presents itself primarily as a bunch of non-reentrant routines
with common state space. But as far as the activity of the main program
is concerned there is a difference between the routine of a secretary and
anormal subroutine. During anormal subroutine call we can regard the
main program "asleep", while the return from the subroutine "wakes" the
main program again. When a director calls a secretary-for instance when
a philosopher wishes to notity the secretary that now he is hungry-the
secretary may decide to keep hirn asleep, adecision that implies that she
should wake hirn up in one of her later activities. As a result the identity of
the calling program cannot remain anonymous as in the case of the normal
subroutine. The secretary must have variables of type "process identity"
whenever she is called the identity of the calling process is handed over in
an implicit input parameter, when she signals a release-analogous to the
return of the normal subroutine--she will supply the identity of the process
to be woken up.

In real time a director can be in three possible states with respect to his
secretaries.

(a) "active", i.e. his progress is allowed

(b) "calling", Le. he has tried to initiate a call on a secretary, but the
call could not be honoured, e.g. because the secretary was busy with
another cal!.

(c) "sleeping", i.e. a call has been honoured but the secretary's activity in
which he will be released has not ended.

The state "calling" has hardly any logical significance: it would not occur
if the director was stopped just before the call that could not be honoured.

With respect to her directors a secretary can be

(a) "busy", i.e. engaged in one of her (finite) algorithms

(b) "i dIe" , Le. ready to honour a next call from one of her directors.

226 EDSGER W. DIJKSTRA

Note that a secretary may be simultaneously busy with respect to her
directors and calling or sleeping with respect to one of her subsecretaries.

In two respects, the above scheme asks for embellishments. Firstly, a
secretary may be in such astate that certain calls on her service are in­
convenient. With each call we can associate a masking bit, stating whether
with respect to that call she is "responding" or "deaf". A secretary man­
aging an unbounded buffer could be deaf for the consumer's call when her
buffer is empty. Here we have another reason why a director may be in
the state "calling": besides being busy the secretary could be deaf for the
call concerned. For the reasons stated I have my doubts as to whether this
embellishment is very useful, but I mention it because it seems more useful
than similar embellishments that have been suggested, e.g. making a secre­
tary responding to an enumerated list of directors. The secretary has to see
to it that certain constraints will not be violated i.e. she may be in such a
state that she can not allow certain of her possible actions to take place.
This has nothing to do with the identity of the director calling for such an
action.

A more vital embellishment is parameter passing: in general a director
will like to send a message to his secretary when calling her-a producing
director will wish to hand over the portion to be buffered; in general a direc­
tor will require an answer back from his secretary when she has released his
call-a consuming director will wish to receive the portion to be unbuffered.

Note that this message passing system is much more modest than various
mail box systems that have been suggested in which processes can send
messages (and proceed!) to other processes. In such systems elaborate
message queues can be built up. Such systems suffer from two possible
drawbacks. Firstly, implementation reasons are apt to impose upper limits
to lengths of message queues: "message queue full" may be another reason
to delay a process and to show the absence of the danger of deadly embraces
may prove to be very diffcult. Secondly, and that seems worse, with the
queueing messages we have reintroduced state information that cannot be
associated with an individual process.

From an aesthetic point of view the relation director-secretary is very
pleasing because it allows secretaries to act as directors with respect to
subsecretaries. This pI aces OUf processes in a hierarchy which avoids deadly
embraces as far as mutual exclusion is concerned in exactly the same way in
which mutual exclusion semaphore would need to be ordered in the case of
nested critical sections. Whether, however, actual systems can be built up

HIERARCHICAL ORDERING OF SEQUENTIAL PROCESSES 227

with a meaningful hierarchy of secretaries of reasonable depth-say larger
than two-remains to be seen. That is why I called this point of view
"aesthetically pleasing" .

Finally: I can only view a well-structured system as a hierarchy of layers
and in the design process the interface between these layers has to be de­
signed and decided upon each time. I am not so much bothered by designer's
willingness and ability to propose such interfaces, I am seriously bothered
by the lack of commonly accepted yardsticks along wh ich to compare and
evaluate such proposals. My "playing" with a bot tom layer should therefore
not be regarded as adefinite proposal for yet another interface, it was meant
to illustrate a way of thinking.

Acknowledgement is due to my former students J. Bomhoff and W. H.
J. Feyen and to Professor C. A. R. Hoare from the Queen's University of
Belfast.

References

Koestler, A., The act of creation. Macmillan, New York, 1970.
Simon, H.A., The sciences of the artificial. MIT Press, Cambridge, 1969.

PART 11

PROGRAMMING LANGUAGE
CONCEPTS

TOWARDS A THEORY OF
PARALLEL PROGRAMMING

C.A.R.HOARE

(1971)

OBJECTIVES

5

The objectives in the construction of a theory of parallel programming as a
basis for a high-level programming language feature are:

1. Security from error. In many of the applications of parallel programming
the cost of programming error is very high, often inhibiting the use of com­
puters in environments for which they would otherwise be highly suitable.
Parallel programs are particularly prone to time-dependent errors, which ei­
ther cannot be detected by program testing nor by run-time checks. It is
therefore very important that a high-levellanguage designed for this purpose
should provide complete security against time-dependent errors by means of
a compile-time check.
2. Efficiency. The spread of real-time computer applications is severely
limited by computing costs; and in particular by the cost of main store. If a
feature to assist in parallel programming is to be added to a language used
for this purpose, it must not entail any noticeable extra run-time overhead
in space or speed, neither on programs which use the feature heavily, nor
on programs which do not; efficient implement at ion should be possible on a
variety of hardware designs, both simple and complex; and there should be
no need for bulky or slow compilers.

C. A. R. Hoare, Towards a theory of parallel programming. In Operating Systems Tech­
niques, Proceedings of a Seminar at Queen's University, Belfast, Northern Ireland, August­
September 1971. C. A. R. Hoare and R. H. Perrott, Eds. Academic Press, New York
(1972),61-71. Copyright © 1972, Academic Press. Reprinted by permission.

231

232 C. A. R. HOARE

3. Conceptual simplicity. A good high-Ievellanguage feature should provide
a simple conceptual framework within wh ich the programmer can formulate
his problems and proceed in an orderly fashion to their solution. In particu­
lar, it should give guidance on how to structure a program in a perspicuous
fashion, and verify that each component of the structure contributes reliably
to a clearly defined overall goal.
4. Breadth of application. The purposes for which parallel programming
have been found useful are:

(a) To take advantage of genuine multi-processing hardware.

(b) To achieve overlap of lengthy input or output operations with comput­
ing.

(c) Operating system implementation.

(d) Real-time applications.

(e) Simulation studies.

(f) Combinatorial or Heuristic Programming.

Ideally, a language feature for parallel programming suitable for inclusion
in a general-purpose programming language should cater adequately for all
these highly disparate purposes.

The design of high-level programming languages which simultaneously
satisfy these four objectives is one of the major challenges to the invention,
imagination and intellect of Computer Scientists of the present day. The
solutions proposed in this paper cannot claim to be final, but it is believed
that they form a sound basis for furt her advance.

PARALLEL PROCESSES

The concept of two or more processes occurring simultaneously in the real
world is a familiar one; however, it has proved exceptionally difficult to apply
the concept to programs acting in parallel in a computer. The usual defini­
tion of the effect of parallel actions is in terms of "an arbitrary interleaving
of units of action from each program" . This presents three difficulties:

1. That of defining a "unit of action" .
2. That of implementing the interleaving on genuinely parallel hardware.

TOWARDS A THEORY OF PARALLEL PROGRAMMING 233

3. That of designing programs to control the fantastic number of combina­
tions involved in arbitrary interleaving.

Our approach to the solution of these problems is based on the observa­
tion that in the real world simultaneous processes gene rally occur in different
parts of physical space (it is difficult to give any explanation of what it would
mean for two processes to be occurring in the same place). Thus our normal
concept of simultaneity is closely bound up with that of spatial separation.
The concept of spatial separation has an analogue in computer programs that
are operating on entirely disjoint sets of variables, and interacting with their
environment through entirely disjoint sets of peripheral equipment. Obvious
ex am pIes are programs being run on separate computers, or on the same
computer under the control of a conventional multiprogramming system.

In such cases, where there is no possibility of communication or inter­
action between the programs, the question whether a given action of one
program preceded, followed, or was simultaneous with a given action of the
other program is wholly without significance. On a "Newtonian" view, the
quest ion must have adefinite answer , even if we can neither know nor care
what it iso For practical purposes, it is equally acceptable to take an "Ein­
steinian" view that there is no relative ordering between events occurring
in disjoint programs being executed in parallel; and that each action of one
program is simultaneous with all the actions of the other programs.

We introduce the notation

to indicate that the program statements Q 1, Q2, ... , Qn are disjoint processes
to be executed in parallel. It is expected that the compiler will check the
disjointness of the processes by ensuring that no variable subject to change in
any of the Qj is referred to at all in any Qi for i# j. Thus it can be guaranteed
by a compile-time check that no time-dependent errors could ever occur at
run time. It is is assumed that the high-levellanguage in use has the decent
property that it is possible to tell by inspection wh ich variables and array
names appear to the left of an assignment which might be executed in any
given statement or program.

The desired effect of the parallel statement described above is to initiate
execution of each of the Qi in parallel; and when they are all terminated,
execution of the parallel statement is also complete. Each Qi may contain
any of the normal program features-assignments, conditionals, iterations,
blocks, declarations, subroutine calls-of the base language; but if recursion

234 C. A. R. HOARE

or dynamic storage allocation is used, this will involve replacing the simple
stack by a "cactus" stack. It would be wise to ban the use of jumps out of
a parallel statement, since these would be not only difficult to define and to
use correctly, but can also cause considerable implementation problems. In
a language designed for parallel programming there is an even stronger case
far the abolition of jumps than in more conventional high-levellanguages.

Some languages (e.g. PL/I) give the programm er the ability to specify
and even to change the priorities of the parallel processes. Far most appli­
cations this appears to be an unnecessary complexity, whose effective use
will depend on many detailed machine and implement at ion oriented consid­
erations. In practice it has been found that the general-purpose scheduling
method of giving control to the process which has used least computer time
in the recent past achieves acceptably high efficiency in most circumstances.
The programmer can therefore safely be encouraged to "abstract from" the
relative speeds and priorities of his processes, and allow the implementor of
his programming language to decide on his behalf.

The way in which parallel programs can be proved to achieve some desired
objective is simple. Suppose each Qi is designed to ensure that Ri is true
when it finishes, on the assumption that Pi is true before it starts. Then on
completion of

all the Ri will be true, provided that all the Pi were true beforehand. Thus
each Qi makes its contribution to the common goal. But one caution is
necessary: none of the Pi or Ri may mention any variable which is subject
to change in any of the Qj for j =1= i. A formal statement of this and
following program proving principles will be found in the Appendix.

The facility for specifying parallelism of disjoint programs appears to be
adequate for use of genuine multiprocessing hardware, and for the overlap
of input and output operations with computing. But of course the more
interesting problems require some form of interaction between the parallel
programs; and this will be the topic of the following sections.

Example: input/output overlap.
A simple program inputs an array, processes it, and outputs it. In or­

der to achieve overlap of input, output and processing, it adopts a simple
buffering scheme.

TOWARDS A THEORY OF PARALLEL PROGRAMMING 235

input Clastone) ;
{process(lastone)//input(thisone)};
while some remain do
begin {input(nextone)//process(thisone)//output(lastone)}

lastone := thisone; thisone := nextone
end;
{process(thisone)//output (lastone)};
output(thisone).

RESOURCE CONSTRAINTS

One of the reasons why parallel programs need to interact with eaeh other
is beeause they need to share some limited resouree. For example, several
parallel programs may need to eommunicate with a single operator through a
single eonsole; or to present aseries of lines for output on a single line printer.
In such eases it is usually important that no other proeess be permitted
to aeeess the resouree while a given proeess is using it; for example, one
proeess must be permitted to eomplete its eonversation with the operator
without interruption from other processes; and an "arbitrary interleaving"
of lines from files output by different parallel processes would be wholly
unaeeeptable.

We may thus envisage the action of eaeh parallel proeess as follows: for
part of the time it operates freely in parallel with all the other processes, but
oeeasionally it enters a so-ealled critical region C; and while it is exeeuting
C, it must have exclusive use of some resouree r. On eompletion of C, the
resouree is freed, and may be alloeated to any other proeess (or the same
one again) whieh wishes to enter a eritieal region with respeet to the same
resouree. Thus the effect of a eritical region is to re-establish the neeessary
degree of serialism into the parallel exeeution, so that only one of the pro­
cesses may enter its eritical region at any time. Thus eritical regions from
different processes are exeeuted strictly serially, in an arbitrarily interleaved
order.

This reintroduction of "arbitrary interleaving" does not suffer from the
dis advantages mentioned earlier sinee:

1. The unit of action (= eritieal region) is defined by the programmer.
2. The necessary synehronization will be relatively infrequent, so that software­
assisted implementation is aeceptable.
3. The user has no des ire or need to eontrol the "interleaving" involved in
the use of eommon resourees, sinee these make no differenee whatsoever to
the results of his program.

236 c. A. R. HOARE

If a parallel statement is to include eritieal regions with respeet to a
resouree eonstraint, I suggest the following notation

{resource r; Otl 1021 I . . . 1 IOn}

where r is the name of the non-Ioeal quantity (e.g. lineprinter, eonsole, ete.)
wh ich eonstitutes the resouree.

Then inside the processes Ql, Q2, ... , Qn, a eritical region C is signalled
by the notation

with r do C

The compiler is expected to check that no resouree is used or referred to
outside its eritical regions.

The run-time implementation of this feature will depend on the nature of
the basic synehronization facility provided by the hardware of the computer.
If we assume that a Boolean semaphore meehanism is "built-in", the imple­
mentation is trivial. A resource declaration eauses a Boolean Semaphore to
be ereated; eaeh eritieal region in the object code is preeeded by seizing this
semaphore (the P-operation), and followed by releasing it (the V-operation).

This method of dealing with resource constraints encourages the pro­
grammer to ignore the question of which of several outstanding requests for
a resouree should be granted. In general, the density of utilization of a re­
souree should be sufficiently low that the chance of two requests arriving
during the eritical period of a third process should be relatively infrequent;
for if the resource is a serious bottleneek, it is hardly worth setting up paral­
lelism at all. Thus the relatively simple strategy of granting the resouree to
the one that has waited longest would seem to be perfeetly adequate. Where
it is not adequate, the faeilities described on in the next section can be used
to program a more subtle strategy.

Another problem which arises from re sour ce constraints is that of the
deadly embrace. Fortunately, a simple compile-time check can guarantee
against this danger, if the programmer is willing to observe a simple disci­
pline; when one critical region is nested inside another, the resource involved
in the out er region should always have been declared as such before that de­
clared in the inner region. This will mean that sometimes resourees are
acquired rather before they are actually needed, just as the nested nature of
critical regions may mean that resources are kept longer than needed. Even
when this occurs, it may be preferable to the alternatives, which include
run-time checks and the generalized banker's algorithm.

TOWARDS A THEORY OF PARALLEL PROGRAMMING 237

The proof of programs which share resourees will be virtually identieal
to that of non-sharing processes. However, the non-loeal variables whieh
eonstitute the resouree must be regarded for proof purposes as though they
were loeal to eaeh of their regions; sinee their initial values must be regarded
as arbitrary, and their final values are "lost" to the program on exit from the
eritieal region. This shows that from an abstract point of view, the seizure
of a eommon resouree eould have been replaeed simply by a loeal declaration
of the variable required; and the only reason for introducing the eonstraint
is beeause limitations of hardware availability make it unwise or impossible
to provide enough "loeal" quantities to enable two processes to enter their
eritical regions together.

CO OPERATING PROCESSES

In order for processes to cooperate on a eommon task, it is neeessary that
they eommunicate or interact through so me eommon item of data. Within
eaeh proeess, any updating of this item must be regarded as a eritical region,
not interruptable by similar updatings in other processes. However, on exit
from a eritieal region, this data item retains its value, whieh ean then be
examined and updated by other processes. Thus with the understanding
of the retention of the value of the "resource" , it appears that no new lan­
guage feature is required to permit the eonstruetion of programs involving
co operating processes.

In order to see how such a facility might be used, it is helpful to draw
an analogy. The resouree r may be a potentially large structure (building)
whieh starts off in some null eondition (empty site), and whieh is built up
to so me desired state by performance of a number of operations of different
types; Cd IC21 1 .. ./ ICrn (laying a briek, fitting a window). It does not matter
much in what order these operations are performed, so their exeeution may
be delegated to a set of parallel processes (builders), eaeh of whieh will on
occasion invoke one of the permissible operations. Since an operation will
update the eommon re sour ce r, it must be invoked as a eritieal region. When
eaeh proeess detects that it has fulfilled its task, it terminates. When the
tasks of all processes are eomplete, the strueture r will also be eomplete.

In many eases it will not be permissible to perform the updating oper­
ations on r in a wholly random order; for example, the windows cannot be
inserted in a building until the frames are installed. In general, a proeess
must be allowed to test the state of r before ente ring a eritieal region, to
see whether the corresponding operation is permissible or not; and if not, to

238 C. A. R. HOARE

wait until other processes have brought r into astate in wh ich the operation
can be carried out. Let B be a Boolean expression which tests the permissi­
bility of an operation carried out by a critical region C. Then I suggest the
notation:

with r when B da C

to specify that C is not to be carried out until B is true.
Some care must be exercised in the implementation of this new feature.

The first action (as before) is to seize the semaphore associated with r. Then
the condition B is tested. If it is false, the given process will hang itself up
on a queue of processes waiting for r, and must then release the semaphore.
If Bis true, the critical region C is executed normally; and on completion the
queue of waiting processes (if any) will be inspected, in the order of longest
wait.

Then the waiting eondition B for eaeh waiting proeess is re-evaluated. If it
is still false, the proeess remains on the queue. If true, it executes its eritieal
region C, and then repeats the sean of the queue. Thus it is guaranteed
that B will be true on entry to a eritical region prefixed by when B; it is also
guaranteed at all times (outside eritical regions) that no proeess is waiting
when its B is true; for B ean only become true as a result of some eritical
operation by another proeess, and it is retested after each such operation.
The programmer must be eneouraged to ensure that this retesting is not too
time-eonsuming.

In order to verify the correctness of a system of co operating processes,
it is neeessary to define what is meant by a permissible operation on the
resouree r. This may usually be aceomplished by giving some propositional
formula I, specifying some property of r, whieh must remain true at all times
(outside eritieal regions); such a proposition is known as an invariant for the
resouree. Obviously I must not mention any variable subjeet to change in
any of the parallel processes. Now the eondition for harmonious co operation
of the processes is that eaeh proeess after updating the resouree in a eritieal
region must leave the resouree in astate whieh satisfies I; and in return the
proeess may assume that I is true before eaeh entry to one of its own eritical
regions. Also, eaeh process may assume that its eondition B for entry of a
eritical region will be true before exeeution of the eritical region starts. If
all processes of a parallel program cooperate harmoniously, and if I is true
before entering the program, then it is known that on eompletion of the
program I will still be true.

TOWARDS A THEORY OF PARALLEL PROGRAMMING 239

Example: Bounded Buffer.
A process Ql pro duces a stream of values which are consumed by a par­

allel process Q2' Since the production and consumption of values proceeds
at a variable but roughly equal pace, it is profitable to interpose a buffer
between the two processes; but since storage is limited the buffer can only
contain N values. Our program takes the form (using Pascal notations):

B: record inpointer, outpointer, count: Integer;
buffer:array O .. N-1 of T end;

{resource B; Ql//Q2}

We maintain the following variables:

count: the number of values in the buffer.
inpointer: if count < N, this is first empty place in the

buffer; otherwise it equals outpointer.
outpointer: if count > 0 this is the place where the next

consumed value will be taken from;
otherwise it equals inpointer.

The initial values of these variables are all zero.
The critical region inside the producer is as follows:

with B when count< N do
begin buffer[inpointer] := next value;

inpointer:= (inpointer + 1) mod N;
count:= count + 1

end

The critical region inside the consumer is

with B when count> 0 do
begin this value:= buffer[outpointer];

outpointer:= (outpointer + 1) mod N;
count:=count - 1

end

Example: Spaghetti Eaters
Five Benthamite philosophers spend their lives between eating and think­

ing. To provide them sustenance, a wealthy benefactor has given each of
them his own place at a round table, and in the middle is a large and con­
tinually replenished bowl of spaghetti, from which they can help themselves
when they are seated. The spaghetti is so long and tangled that it requires
two forks to be conveyed to the mouth; but unfortunately the wealthy bene­
factor has provided only five forks in all, one between each philosopher's

240 c. A. R. HOARE

Fork A

Philosopher 5

Fork E Fork B

Philosopher 4 Philosopher 2

Philosopher 3

plaee. The only forks that a philosopher ean pick up are those on his imme­
diate right and his immediate left.

It ean be seen that no two neighbours ean be eating at a time. The
problem is to write a program for eaeh philosopher whieh will ensure that
he eontributes at all times to the greatest good of the greatest number.

When a philosopher is hungry, he must go to his own plaee and piek
up two forks. Supposing eaeh philosopher adopts the praetice of picking up
his left fork first. Then there is a grave danger that all philosophers will
get hungry simultaneously, and all piek up their left forks; then they would
slowly but inexorably starve to death. If the philosophers all put their left
forks down on finding the right fork unobtainable, there is still a danger that
they will eontinue to starve while repeatedly pieking up and putting down
their left forks in perfeet unison.

One solution to this vicious circle is to arrange that one of the philoso­
phers always picks up his right fork first. Then either he or the philosopher
on his left must always have the opportunity of eating. This is basically
the solution suggested earlier, of establishing a linear sequenee of resourees,
and ensuring that all claims of more than one resouree observe the standard
sequenee. The period of eating for eaeh philosopher may be regarded as
eritieal a region with respect to his right fork, nested immediately within
the eritieal region for his left fork, for example:

with fark A da with fark B da eat spaghetti;

but for the last philosopher the nesting is reversed:

with fark A da with fark E da eat spaghetti

This solution is a great improvement, and eertainly prevents universal

TOWARDS A THEORY OF PARALLEL PROGRAMMING 241

starvation; but it still does not ensure optimum utilization of resources, since
it is possible for three adjacent philosophers to remain holding one fork each
while one of their colleagues is eating; and one would hope that a slightly
more intelligent strategy could be devised in such a case to enable the middle
one to eat.

The correct solution requires the use of synchronization facilities to guar­
antee that each philosopher either picks up no forks or he picks up both his
forks. Picking up a single fork must be avoided. Thus we introduce an array:

integer array possforks[O:4];

possforks [i] takes values 0, 1 or 2 (with initial value 2), and indicates the
number of forks available to philosoph er i. This array itself is aresource,
wh ich can be inspected or updated by any philosopher. Each philosopher
on feeling hungry first waits until two forks are available to hirn, and then
re duces the number of forks available to his immediate neighbours, seizes the
forks, and eats. On completion, he increases the number of forks available
to his neighbours. Thus three successive critical regions are required in
philosopher i:

with possforks when possforks[i] = 2 do
begin possforks[(i-1)mod 5] := possforks[(i-1)mod 5]-1;

possforks[(i+l)mod 5]:= possforks[(i+l)mod 5]-1
end;

with fork A do with fork B do eat spaghetti;
with possforks do

begin possforks[(i-1)mod 5]:= possforks[(i-1)mod 5]+1;
possforks[(i+l)mod 5]:= possforks[(i+1)mod 5]+1

end

ADDITIONAL POINTS

It is hoped that the basic concepts and facilities introduced in the previous
sections will be found adequate for most purposes. However, it seems that a
few additional simple notations and features may increase their convenience
and range of application.

Array remapping

This paper proposes that the introduction of parallelism is meaningful only
when no process refers to variables changed by another process (excluding
critical regions). However, a compile time check on the observance of this
discipline is sometimes too restrictive, since it would prevent two processes

242 C. A. R. HOARE

operating in parallel on different elements of the same array. A proposal
to mitigate this problem is to permit the programmer to declare a local
remapping of an array, within a block; this splits the array down into disjoint
parts, each with its own name; and these separate names can now be updated
in separate processes. A notation for expressing the remapping might be:

beg in map a [1: 12], b, c [0: i] on X; ... end

which declares a as a local name for an array consisting of the first 12
elements of X, b as the thirteenth element, and the next i + 1 elements are
renamed c. C itself should not be referred to within the block.

Example: Quicksort.
Using this facility it is possible, if sufficient parallel hardware is available,

to sort an array of size N in time proportional to N.

procedure Quicksort(A, m, n);
begin integer i, j;

partition(A, i, j, m, n);
begin map B[m:j] X[j+l:i-1], C[i:n] on A;

{Quicksort(B, m, j)//Quicksort(C, i, n)}
end

end Quicksort

Resource arrays

The facility for remapping storage gives a simple method by wh ich parallel
processes can operate simultaneously on different parts of a data structure.
However, it can be used only when it is known in advance which parts are
going to be used by each process. Sometimes, the choice of which element
or elements of an array are to be seized for a particular critical region can
only be made on entry to that region; this means that each element of the
array must be regarded as aseparate resource, which can be allocated and
deallocated independently of its neighbours. Such an array may be declared

resource array R

and the critical regions may take the form:

with r = R[i] do Q

where r is used within Q as a local name for R[i]; and R itself must not be
mentioned in Q.

One obvious application of resource arrays is in the real time maintenance
of a table of information; and if a random access file is regarded as a form

TOWARDS A THEORY OF PARALLEL PROGRAMMING 243

of sparse array, this gives the faeility of the PLII EXCLUSIVE attribute.
Another applieation is in dealing with a set of homogeneous resourees, sueh
as dise handlers, where the programmer does not eare which handler(s) he
is alloeated in a particular eritical region. As an example of the use of the
feature, we suppose that the number of handlers required in eaeh eritieal
region is different, and that as before we wish to avoid the possibility that
more than one proeess should have a partially fulfilled request.

To aehieve this, we use a resouree request, whieh is alloeated to a proeess
during the time that its request is being fulfilled. There is also a set resouree
free whieh eontains the numbers of all free handlers; mine is a loeal set
variable, eontaining the numbers of the handlers alloeated to me. A eritical
region requiring two handlers would be surrounded by small eritical regions
whieh earry out the administration, thus:

with request do {with free when size(free) 2 2 do
{mine:=first two of (free); free:= free & ' mine}}

with a = handler[first(mine)] do {with b = handler[second(mine)] do
use a and b};

with free do free := free V mine;

ACKNOWLEDGEMENTS

It will be obvious to all how mueh this paper owes to the thought and writings
of Professor E. W. Dijkstra, to whom I owe the eoneepts of the eritical region,
the semaphore, the deadly embraee and the simple method of its avoidanee;
and the examples of the bounded buffer and the spaghetti eaters. Less
obvious but equally invaluable has been his eonstant encouragement in the
search for a concept to "replace" the semaphore in a high-level programming
language, and my ambition of meeting his high standards of rigour and
programming style.

I am also deeply indebted to many friends and eolleagues who have kindly
followed me in many a wild goose chase, and in particular to Mauriee Clint,
whose advice and experienee have been especially valuable.

APPENDIX

Formal definition

It has been suggested that a specification of proof procedures for proving
correetness of programs would be a useful method of defining languages

244 C. A. R. HOARE

with a certain desired degree of indeterminacy. This appendix applies the
formal language definition technique to parallel programming.

Let Vi be the set of variables subject to change in Qi' Then it is assured,

1. no variable of Vi -{ r} occurs free in I or in Pj , Qj, or Rj for j i- i
2. r is not free in P, R, Pi, Qi, Ri , except in a critical region with respect to
r.

Then letting r inv I state that I is the invariant for r, we can formulate
the following two rules:

Criticality:

Simultaneity:

r inv I, B & I & P {c} R & I
P {with r when B' do c} R

These two rules cover all cases if we adopt the conventions:

1. when true can be omitted.
2. If there are no critical regions with respect to r, resource r can be
omitted; and I may then be taken as true.

AN OUTLINE OF A COURSE ON
OPERATING SYSTEM PRINCIPLES

PER BRINCH HANSEN

(1971)

6

In 1970 the author began writing a comprehensive textbook on operating

system principles. This is a description of its structure and how far it had

progressed a year later.

COMPUTER SCIENCE AND OPERATING SYSTEMS

In November 1970 I began writing a textbook on operating system principles
at Carnegie-Mellon University. This is a description of its structure and how
far it has progressed.

The goal is to give students of computer science and professional pro­
grammers a general understanding of operating systems. The only back­
ground required is an understanding of the basic structure of computers and
programming languages and some practical experience in writing and test­
ing non-trivial programs. In a few cases a knowledge of elementary calculus
and probability theory is also needed. The components of the course are
well-known to a small group of designers, but most operating systems reveal
an inadequate understanding of them.

The first and most obvious problem is to delimit the subject and eonsider
its place in computer scienee edueation. I define an operating system as a set
of manual and automatie proeedures whieh enable a group of users to share
a computer system efficiently. The keyword in this definition is sharing: it
means eompetetion for the use of physical resources but also cooperation

P. Brinch Hansen, An outline of a course on operating system principles. In Operating
Systems Techniques, Proceedings of a Seminar at Queen's University, Belfast, Northern
Ireland, August~September 1971. C. A. R. Hoare and R. H. Perrott, Eds. Academic Press,
New York (1972), 29~36. Copyright © 1972, Academic Press. Reprinted by permission.

245

246 PER BRINCH HANSEN

among users exchanging programs and data on the same computer system.
All shared computer systems must schedule user computations in some order,
protect them against one each other, and give them means of long-term
storage of programs and data. They must also perform accounting of the
cost of computing and measure the actual performance of the system.

In early computer systems, operators carried out most of these functions,
but during the last fifteen years the programs that we call operating systems
have gradually taken over these aspects of sharing.

Although most components of present computers are sequential in na­
ture, they can work simultaneously to some extent. This infiuences the
design of operating systems so much that the subject can best be described
as the management of shared multiprogramming systems.

Operating systems are large programs developed and used by achanging
group of people. They are often modified considerably during their life­
time. Operating systems must necessarily impose certain restrictions on all
users. But this should not lead us to regard them as being radically different
from other programs. They are just examples of large programs based on
fundamental principles of computer science. The proper aim of education is
to identify these fundamentals.

The student should realize that principles and methods of resource shar­
ing have a general utility that goes beyond operating systems. Any large
programming effort will be heavily infiuenced by the presence of several lev­
els of storage, by the possibility of executing smaller tasks independently,
and by the need for sharing a common set of data among such tasks. We
find it convenient to distinguish between operating systems and user com­
putations because the former can enforce certain rules of behavior on the
latter. It is important, however, to realize that each level of programming
solves some aspect of resource allocation.

I argue therefore that the study of operating systems leads to the recog­
nition of general principles which should be taught as part of a core of com­
puter science. Assuming that the student has an elementary background
in programming languages, data structures and computer organization, the
course concentrates on the following areas of computer science: concurrent
computations, resource sharing and program construction.

Let us look at the course in some detail. It consists of eight parts which
are summarized in the Appendix. The following is a more informal presen­
tation of its basic attitude.

A COURSE ON OPERATING SYSTEM PRINCIPLES 247

TECHNOLOGICAL BACKGROUND

The necessity of controlling access to shared computer systems automatically
is made clear by simple arguments about the poor utilization of equipment in
an open shop operated by the users themselves, one at a time. As a first step
in this direction, I describe the classical bat eh proeessing system wh ich carries
out computations on a main computer while a sm aller computer prepares
and prints magnetic tapes. The strict sequential nature of the processors
and their backing storage in this early scheme made it necessary to prevent
human interaction with computations and schedule them in their order of
arrival inside a batch.

These restrictions on scheduling disappear to some extent with the in­
troduction of multiprogramming techniques and large backing stores with
random access. This is illustrated by two simple operating systems: the first
one is a spooling system which handles a continuous stream of input, com­
putation and output on a multiprogrammed computer with drum storage;
the other is an interactive system in which main storage is shared cyclically
among several computations requested from remote terminals.

Through a chain of simple arguments the student gradually leams to
appreciate the infiuence of teehnological constraints on the service offered by
operating systems.

THE SIMILARITY OF OPERATING SYSTEMS

The main theme of the course is the similarity of problems faced by all oper­
ating systems. To mention one example: all shared computer systems must
handle concurrent activities at some level. Even if a system only schedules
one computation at a time, users can still make their requests simultaneously.
This problem can, of course, be solved by the users themselves (forming a
waiting line) and by the operators (writing down requests on paper). But
the observation is important, since our goal is to handle the problems of
sharing automatically.

It is also instructive to compare a batch processing and a spooling sys­
tem. Both achieve high efficiency by means of concurrent activities: in a
batch processing system independent processors work together; in a spool­
ing system a single processor switches among independent programs. Both
systems use backing storage (tape and drum) as a buffer to compensate for
speed variations between the producers and consumers of data.

As another example, consider real-time systems for process control or

248 PER BRINCH HANSEN

conversational interaction. In these systems, concurrent processes must be
able to exchange data in order to cooperate on common tasks. But again,
this problem exists in all shared computer systems: in a spooling system
user computations exchange data with concurrent input/output processes;
and in a batch processing system we have another set of concurrent processes
which exchange data by means of tapes mounted by operators.

So I find that all operating systems face a common set of problems.
To recognize these we must reject the established classification of operating
systems into batch processing, time sharing, and real time systems wh ich
stresses the dissimilarities of various forms of technology and user service.
This does not mean that the problems of adjusting an operating system
to the constraints of a certain environment are irrelevant. But the students
will solve them much better when they have grasped the underlying common
principles.

You will also look in vain for chapters on input/output and filing systems.
For a particular operating system considerations about how these problems
are handled are highly relevant; but again I have concentrated on the more
elementary problems involved in these complicated tasks, namely, process
synchronization, storage management and resource protection.

SEQUENTIAL AND CONCURRENT COMPUTATIONS

After this introduction, the nature of computations is described. A com­

putation is a set of operations applied to a set of data in order to solve a
problem. The operations must be carried out in a certain order to ensure
that the results of some of them can be used by others. In a sequential
process operations are carried out strictly one at a time. But most of our
computational problems only require a partial ordering of operations in time:
so me operations must be carried out before others, but many of them can
be carried out concurrently.

The main obstacles to the utilization of concurrency in computer systems
are economy and human imagination. Sequential processes can be carried
out cheaply by repeated use of simple equipment; concurrent computations
require duplicated equipment and time-consuming synchronization of opera­
tions. Human beings find it extremely difficult to comprehend the combined
effect of a large number of activities which evolve simultaneously with in­
dependent rates. In contrast, our understanding of a sequential process is
independent of its actual speed of execution. All that matters is that op­
erations are carried out one at a time with finite speed, and that certain

A COURSE ON OPERATING SYSTEM PRINCIPLES 249

relations hold between the data before and after each operation.
So sequential processes closely mirror our thinking habits, but a computer

system is utilized better when its various parts operate concurrently. As a
compromise, we try to partition our problems into a moderate number of
sequential activities which can be programmed separately and then combined
for concurrent execution. These processes are loosely connected in the sense
that they can proceed simultaneously with arbitrary rates except for short
intervals when they exchange data.

After a brief review of methods of structuring data and sequential pro­
grams, I consider the synchronizing requirements of concurrent processes. It
is shown that the results of concurrent processes which share data cannot
be predicted unless some operations exclude each other in time. Operations
which have this property are called critical regions. Mutual exclusion can be
controlled by a data structure, called a semaphore, consisting of aboolean,
defining whether any process is inside its critical region, and a queue, con­
taining the set of processes waiting to enter their regions.

A critical region is one example of a timing constraint or synchronization
imposed on concurrent processes. Synchronization is also needed when some
processes produce data which are consumed by other processes. The simplest
input/output relationship is the exchange of timing signals between processes.
The constraint here is that signals cannot be received faster than they are
sent. This relationship can be represented by an integer semaphore accessed
by signal and wait operations only.

Realistic communication between processes requires the exchange of data
structures. This problem can be solved by synchronizing primitives operat­
ing on semaphores and data structures which are accessible to all the pro­
cesses involved. It is tempting to conclude that critical regions, common
data, and wait and signal operations are the proper concepts to include in
a programming language. Experience shows that the slightest mistake in
the use of these tools can result in erroneous programs which are practically
impossible to correct because their behavior is infiuenced by external factors
in a time-dependent, irreproducible manner.

A more adequate solution is to include message buffers as primitive data
structures in the programming language and make them accessible only
through well-defined send and receive operations. The crucial point of this
language feature is that storage containing shared data (messages) is ac­
cessible to at most one process at a time. It has been proved that when
a set of sm aller systems with time-independent behavior are connected by

250 PER BRINCH HANSEN

means of message buffers only, the resulting system can also be made time­
independent in behavior.

The most general form of process inter action is one in wh ich a process
must be delayed until another process has ensured that certain relationships
hold between the components of a shared data structure. This form of
synchronization can be expressed directly by means of conditional critical
regIOns.

The conceptual simplicity of simple and conditional critical regions is
achieved by ignoring the sequence in which waiting processes enter these
regions. This abstraction is unrealistic for heavily used resourees. In such
cases, the operating system must be able to identify competing processes
and control the scheduling of resources among them. This can be done by
means of a monitor-a set of shared procedures which can delay and activate
individual processes and perform operations on shared data.

Finally, I consider the problems of deadlocks and their prevention by
hierarchical ordering of process interactions.

RESOURCE MANAGEMENT

Most of the previous concepts are now widely used. Far more controversial
are the problems of how abstract computations are represented and man­
aged on physical systems with limited resources. At first sight, problems
caused by the physical constraints of computers seem to be of secondary
importanee to the computational problems we are trying to solve. But in
practice most programming efforts are dominated by technologieal problems
and will continue to be so. It will always be economically attractive to share
resources among competing computations, use severallevels of storage, and
accept occasional hardware malfunction.

It seems unrealistic to look for a unifying view of how different kinds of
technology are used efficiently. The student should realize that these issues
can only be understood in economic terms. What we can hope to do is to
describe the circumstances under which certain techniques will work well.

The implementation of the process concept is considered in two chapters
on processor multiplexing and storage organization. The first of these de­
scribes the representation of processes and scheduling queues at the lowest
level of programming and the implementation of synchronizing primitives.
Hardware registers, docks and interrupts are treated as technological tools
which in many cases can be replaced by more appropriate concepts at higher
levels of programming. The second of these chapters discusses the compro-

A COURSE ON OPERATING SYSTEM PRINCIPLES 251

mises between associative and location-dependent addressing, and the dy­
namic allocation of fixed and variable-length data structures in storage with
one or more levels.

Following this, I discuss the influence of various scheduling algorithms:
first-come first-served, shortest job next, highest response ratio next, round
robin, and so on, on the behavior of the system in terms of average response
times to user requests.

A CASE STUDY

At the end of the course, the conceptual framework is used to describe an
existing operating system in depth using a consistent terminology.

I have selected the RC 4000 multiprogramming system (Brinch Hansen
1970) as a case study, because it is the only one I know in detail, and
is a small, consistent design which illustrates essential ideas of concurrent
processes, message communication, scheduling and resource protection.

THE CHOICE OF A DESCRIPTION LANGUAGE

So far nearly all operating systems have been written partly or completely in
machine language. This makes them unnecessarily difficult to understand,
test and modify. I believe it is desirable and possible to write efficient oper­
ating systems almost entirely in a high-level language. This language must
permit hierarchal structuring of data and program, extensive error checking
at compile time, and production of efficient machine code.

To support this belief, I have used the programming language Pascal
(Wirth 1971) throughout the text to define operating system concepts con­
cisely by algorithms. Pascal combines the clarity needed for teaching with
the efficiency required for design. It is easily understood by programmers
familiar with Algol 60 or Fortran, but is a far more natural tool than these
for the description of operating systems because of the presence of data
structures of type record, class and pointer.

At the moment, Pascal is designed for sequential programming only,
but I extend it with a suitable notation for multiprogramming and resource
sharing. I have illustrated the description of operating systems in Pascal
elsewhere (Brinch Hansen 1971a, 1971b).

252 PER BRINCH HANSEN

STATUS OF THE COURSE

I conceived the plan for the course in March 1970 and started to work on
it in November 1970. Now, in November 1971, drafts have been written of
parts 1-4, and 6 (see the Appendix). Most of the work on parts 5, and 7-8
remains to be done. It is unlikely that the structure of the course will change
significantly, although the details certainly will.

APPENDIX: THE CONTENTS OF THE COURSE

1. An overview of operating systems

The purpose of an operating system. Technological background: manual
scheduling, non-interactive scheduling with sequential and random access
backing storage, interactive scheduling. The similarity of operating systems.
Special versus general-purpose systems.

2. Sequential processes

Abstraction and structure. Data and operations. Sequential and concur­
rent computations. Methods of structuring data and sequential programs.
Hierarchal program construction. Programming levels viewed as virtual ma­
chines. Our understanding and verification of programs.

3. Concurrent processes

Time-dependent programming errors in concurrent computations. Definition
of functional behavior in terms of input/output histories. The construction
of functional systems from sm aller functional components. Concurrent sys­
tems with inherent time-dependent behavior: priority scheduling and shared
processes.

Disjoint and interacting processes. Mutual exclusion of operations on
shared data. Simple and conditional critical regions. Process communication
by semaphores and message buffers. Explicit control of process scheduling
by monitors.

The deadlock problem. Prevention of deadlocks by hierarchal ordering
of process interactions.

4. Processor multiplexing

Short-term and medium-term scheduling. A computer system with identical
processors connected to a single store. Peripheral versus central processors.

A COURSE ON OPERATING SYSTEM PRINCIPLES 253

Process descriptions, states and queues. Processor execution cyde. Schedul­
ing of critical regions by means of a storage arbiter. Implementation of the
scheduling primitives wait, signal, initiate and terminate process. Influence
of critical regions on preemption. Processor multiplexing with static and
dynamic priorities. Implementation details: hardware registers, dock, inter­
rupts. Timing constraints.

5. Storage organization

Properties of abstract and physical storage. Methods of address mapping:
searching, key transformation and base registers.

Single-level storage: fixed partitioning, dynamic allocation of fixed and
variable-length data structures. Compacting and fragmentation.

Hierarchal storage: swapping, demand paging and extended storage. Lo­
cality principle. Prevention of thrashing. Placement and replacement strate­
gies. Hardware support.

Influence of input/output, process communication, and scheduling on
storage allocation.

6. Scheduling algorithms

Objectives of scheduling policies. Queueing models of user requests and
computations. Performance measures. A conservation law for a dass of
priority scheduling algorithms.

Non-preemptive scheduling: fixed priorities, first-come first-served, short­
est job next, and highest response ratio next.

Preemptive scheduling: round robin with swapping. Methods of reducing
transfers between storage levels. Scheduling with performance feedback.

7. Resource protection

The concept of a process environment of shared objects. Requirements of
naming and protection. Existing protection mechanisms: privileged execu­
tion state, storage protection, file systems with private and public data, user
password identification, protection levels and process hierarchies.

8. A case study

A detailed analysis of the structure, size and performance of the RC 4000
multiprogramming system.

254 PER BRINCH HANSEN

Acknowledgements

Without the encouragement of Alan Perlis this work would not have been
undertaken. I am indebted to Nico Habermann, Anita Jones and Bill Wulf
who read and criticized all or part of the manuscript. I learned much from
discussions with Tony Hoare. It should also be mentioned that without the
foundation of laid by Edsger Dijkstra (1965) we would still be unable to
separate principles from their applications in operating systems. The idea of
looking upon the management of shared computer systems as a general data
processing problem was inspired by a similar attitude of Peter Naur (1966)
towards program translation.

References

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system. Communications of
the ACM 13, 4 (April), 238-250.

Brinch Hansen, P. 1971a. Short-term scheduling in multiprogramming systems. 3rd ACM
Symposium on Operating System Principles, Stanford University, Stanford, CA, (Oc­
tober), 101-105.

Brinch Hansen, P. 1971b. A comparison of two synchronizing concepts. (November). In
Acta Informatica 1,3 (1972), 190-199.

Dijkstra, E.W. 1965. Cooperating sequential processes. Technological University, Eind­
hoven, Thc Netherlands, (September).

Naur, P. 1966. Program translation viewed as a general data processing problem. Com­
munications of the ACM 9, 3 (March), 176-179.

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 1, 35-63.

STRUCTURED
MULTIPROGRAMMING

PER BRINCH HANSEN

(1972)

7

This paper presents a proposal for structured representation of multiprogram­

ming in a high level language. The notation used explicitly associates a data

structure shared by concurrent processes with operations defined on it. This

darifies the meaning of programs and permits a large dass of time-dependent

errors to be caught at compile time. A combination of critical regions and

event variables enables the programmer to control scheduling of resources

among competing processes to any degree desired. These concepts are suf­

ficiently safe to use not only within operating systems but also within user

programs.

1 Introduction

The failme of operating systems to provide reliable long-term service can
often be explained by excessive emphasis on functional capabilities at the
expense of efficient resomce utilization, and by inadequate methods of pro­
gram construction.

In this paper, I examine the latter cause of failme and propose a language
notation for structmed multiprogramming. The basic idea is to associate
data shared by concmrent processes explicitly with operations defined on
them. This clarifies the meaning of programs and permits a large class of
time-dependent errors to be caught at compile time.

The notation is presented as an extension to the sequential programming
language Pascal (Wirth 1971). It will be used in a forthcoming textbook to

P. Brinch Hansen, Structured multiprogramming. Gommunications 0/ the A GM 15, 7 (July
1972), 574-578. Copyright © 1972, Association for Computing Machinery, Inc. Reprinted
by permission.

255

256 PER BRINCH HANSEN

explain operating system principles concisely by algorithms (Brinch Hansen
1971). Similar ideas have been explored independently by Hoare. The con­
ditional critical regions proposed in (Hoare 1971) are a special case of the
ones introduced here.

2 Disjoint Processes

Our starting point is the concurrent statement

cobegin SI; S2; ... ; Sn coend

introduced by Dijkstra (1965). This notation indicates that statements
51, 52, ... , Sn can be executed concurrently; when all of them are termi­
nated, the following statement in the program (not shown here) is executed.

This restricted form of concurrency simplifies the understanding and ver­
ification of programs considerably, compared to unstructured Jork and join
primitives (Conway 1963).

Algorithm 1 illustrates the use of the concurrent statement to copy
records from one sequential file to another.

var f, g: file of T;
s, t: T; eof: Boolean;

begin
input(f, s, eof);
while not eof do

begin t := s;
cobegin

output(g, t);
input(f, s, eof);

coend
end

end

Algorithm 1 Copying of a sequential file.

The variables here are two sequential files, J and 9, with records of
type T; two buffers, sand t, holding one re cord each; and aBoolean, eoJ,
indicating whether or not the end of the input file has been reached.

Input and output of single records are handled by two standard proce­
dures. The algorithm inputs arecord, copies it from one buffer to another,

STRUCTURED MULTIPROGRAMMING 257

outputs it, and at the same time, inputs the next record. The copying,
output, and input are repeated until the input file is empty.

Now suppose the programmer by mistake expresses the repetition as
follows:

while not eof do
cobegin

t := s;
output(g, t);
input(f, s, eof);

coend

The copying, output, and input of arecord can now be executed concur­
rently. To simplify the argument, we will only consider cases in which these
processes are arbitrarily interleaved but not overlapped in time. The erro­
neous concurrent statement can then be executed in six different ways with
three possible results: (1) if copying is completed before input and output
are initiated, the correct record will be output; (2) if output is completed
before copying is initiated, the previous record will be output again; and (3)
if input is completed before copying is initiated, and this in turn completed
before output is initiated, the next record will be output instead.

This is just for a single record of the output file. If we copy a file of
10,000 records, the program can give of the order of 310,000 different results!

The actual sequence of operations in time will depend on the presence of
other (unrelated) computations and the (possibly time-dependent) schedul­
ing policy of the installation. It is therefore very unlikely that the program­
mer will ever observe the same result twice. The only hope of locating the
error is to study the program text. This can be very frustrating (if not im­
possible) when it consists of thousands of lines and one has no clues about
where to look.

Multiprogramming is an order of magnitude more hazardous than se­
quential programming unless we ensure that the results of our computations
are reproducible in spite oi errors. In the previous example, this can easily
be checked at compile time.

In the correct version of Algorithm 1, the output and input processes
operate on disjoint sets of variables (g, t) and (1, s, eof). They are called
disjoint or noninteracting processes.

In the erroneous version of the algorithm, the processes are not disjoint:
the output process refers to a variable t changed by the copying process; and
the latter refers to a variable s changed by the input process.

258 PER BRINCH HANSEN

This can be detected at compile time if the following rule is adopted: a
concurrent statement defines disjoint processes SI, S2, ... , Sn which can be
executed concurrently. This means that a variable Vi changed by statement
Si cannot be referenced by another statement Sj (where j i- i). In other
words, we insist that a variable subject to change by a process must be
strictly private to that process; but disjoint processes can refer to shared
variables not changed by any of them.

Throughout this paper, I tacitly assume that sequential statements and
assertions made about them only refer to variables wh ich are accessible to
the statements according to the rules of disjointness and mutual exclusion.
The latter rule will be defined in Section 3.

Violations of these rules must be detected at compile time and prevent
execution. To enable a compiler to check the disjointness of processes the
language must have the following property: it must be possible by simple
inspection of a statement to distinguish between its constant and variable
parameters. I will not discuss the influence of this requirement on language
design beyond mentioning that it makes unrestricted use of pointers and
side-effects unacceptable.

The rule of disjointness is due to Hoare (1971). It makes the axiomatic
properly of a concurrent statement S very simple: if each component state­
ment Si terminates with a result R i provided a predicate Pi holds before its
execution then the combined effect of S is the following:

"P" S "R"

where

P == PI & P2 & ... & Pn

R == R l & R2 & ... & Rn

As Hoare puts it: "Each Si makes its contribution to the common goal."

3 Mutual Exclusion

The usefulness of disjoint processes has its limits. We will now consider
intemcting processes~concurrent processes which access shared variables.

A shared variable v of type T is declared as folIows:

var v: shared T

STRUCTURED MULTIPROGRAMMING 259

Concurrent processes can only refer to and change a shared variable
inside a structured statement called a critical region

region v do S

This notation associates a statement S with a shared variable v.
Critical regions referring to the same variable exclude each other in time.

They can be arbitrarily interleaved in time. The idea of progressing towards
a final result (as in a concurrent statement) is therefore meaningless. All
one can expect is that each critical region leaves certain relationships among
the components of a shared variable v unchanged. These relationships can
be defined by an assertion I about v which must be true after initialization
of v and before and after each subsequent critical region associated with v.
Such an assertion is called an invariant.

When a process enters a critical region to execute a statement S, a pred­
icate P holds for the variables accessible to the process outside the critical
region and an invariant I holds for the shared variable v accessible inside the
critical region. After the completion of S, a result R holds for the former
variables and invariant I has been maintained. So a critical region has the
following axiomatic property:

"P"
region v do "P&I" S "R&I";
"R"

4 Process Communication

Mutual exclusion of operations on shared variables makes it possible to make
meaningful statements about the effect of concurrent computations. But
when processes cooperate on a common task they must also be able to wait
until certain conditions have been satisfied by other processes.

For this purpose I introduce a synchronizing primitive, await, which de­
lays a process until the components of a shared variable v satisfy a condition
B:

region v do
begin ... await B; ... end

The await primitive must be textually enclosed by a critical region. If
critical regions are nested, the synchronizing condition B is associated with
the innermost enclosing region.

260 PER BRINCH HANSEN

The await primitive can be used to define conditional critical regions of
the type proposed in (Hoare 1971):

"Consumer"
region v do
begin await B; 81 end

"Producer"
region v do 82

The implementation of critical regions and await primitives is illustrated
in Fig. 1. When a process, such as the consumer above, wishes to enter a
critical region, it enters a main queue Qv associated with a shared variable v.
After entering its critical region, the consumer inspects the shared variable
to determine whether it satisfies a condition B. In that case, the consumer
completes its critical region by executing a statement 81; otherwise, the
process leaves its critical region temporarily and joins an event queue Qe
associated with the shared variable.

Figure 1 Scheduling of conditional
critical regions V by me ans of process
queues Qv and Qe.

All processes waiting for one condition or another on variable v enter the
same event queue. When another process (here called the producer) changes
v by a statement 82 inside a critical region, it is possible that one or more
of the conditions expected by processes in the event queue will be satisfied.
So, after completion of a critical region, all processes in the event queue Qe
are transferred to the main queue Qv to enable them to reenter their critical
regions and inspect the shared variable v again.

It is possible that a consumer will be transferred in vain between Qv and
Qe several times before its condition B holds. But this can only occur as
frequently as producers change the shared variable. This controlled amount
of busy waiting is the price we pay for the conceptual simplicity achieved by
using arbitrary Boolean expressions as synchronizing conditions.

STRUCTURED MULTIPROGRAMMING 261

The desired invariant I for the shared variable v must be satisfied before
an await primitive is exeeuted. When the waiting eyde terminates, the
assertion B & I holds.

As an example, eonsider the following resouree alloeation problem: two
kinds of eoneurrent proeesses, ealled readers and writers, share a single re­
souree. The readers ean use the resouree simultaneously, but the writers
must have exdusive aeeess to it. When a writer is ready to use the resouree,
it should be enabled to do so as so on as possible.

This problem is solved by Algorithm 2. Here variable v is a reeord eon­
sisting of two integer eomponents defining the number of readers eurrently
using the resouree and the number of writers eurrently waiting for or using
the resouree. Both readers and writers are initialized to zero.

var v: shared record readers, writers: integer end
w: shared Büülean;

"Reader"
region v do
begin

await writers = 0;
readers := readers + 1;

end
read;
region v do
readers : = readers - 1;

"Writer"
region v do
begin

writers := writers + 1;
await readers = 0;

end
region w do write;
region v do
writers := writers - 1;

Algorithm 2 Resüuree sharing by readers and writers.

Mutual exdusion of readers and writers is aehieved by letting readers
wait until the number of writers is zero, and viee versa. Mutual exdusion of
individual writers is ensured by the eritieal region on the Boolean w.

The priority rule is obeyed by inereasing the number of writers as so on
as one of them wishes to use the resouree. This will delay subsequent reader
requests until all pending writer requests are satisfied.

A eorrectness proof of Algorithm 2 is outlined in (Brineh Hansen 1972).
In this paper I also point out the superiority of eonditional eritical regions
over semaphores (Dijkstra 1965). Compared to the original solution to the
problem (Courtois 1971) Algorithm 2 demonstrates the eoneeptual advan-

262 PER BRINCH HANSEN

tage of a structured notation. 1

The conceptual simplicity of critical regions is achieved by ignoring de­
tails of scheduling: the programmer is unaware of the sequence in which
waiting processes enter critical regions and access shared resources. This
assumption is justified for processes which are so loosely connected that si­
multaneous requests for the same resource rarely occur.

But in most computer installations TeSOUTces are heavily used by a large
group of users. In this situation, an operating system must be able to control
the scheduling of resources explicitly among competing processes.

To do this a programmer must be able to associate an arbitrary number
of event queues with a shared variable and control the transfers of processes
to and from them. In general, I would therefore replace the previous proposal
for conditional delays with the following One:

The declaration

var e: event V;

associates an event queue e with a shared variable v.
A process can leave a critical region associated with v and join the event

queue e by executing the standard procedure

await(e)

Another process can enable all processes in the event queue e to reenter
their critical regions by executing the standard procedure

cause(e)

A consumer jproducer relationship must now be expressed as follows:

"Consumer"
region v do
begin

while not B do await(e);
SI;

end

"Producer"
region v do
begin

S2;
cause(e);

end

lThe original solution includes the following refinement: when a writer decides to
make arequest at most one more reader can complete arequest ahead of it. This can
be ensured by surrounding the reader request in Algorithm 2 with an additional critical
region associated with a shared Boolean r.

STRUCTURED MULTIPROGRAMMING

var v: shared record
available: set of R;
requests: set of P;
grant: array P of event v;

end

procedure reserve(prüeess: P; var resüuree: R);
region v do
begin

while empty(available) do
begin enter(proeess, requests);

await(grant[proeess]);
end
remüve(resüuree, available);

end

procedure release(resüuree: R);
var proeess: P;
region v do
begin enter(resüuree, available);

if not empty(requests) then
begin remüve(proeess, requests);

eause(grant [proeess]);
end

end

Algorithm 3 Seheduling üf heavily used resüurees.

263

Although less elegant than the previous notation, the present one still
clearly shows that the eonsumer is waiting for eondition B to hold. And we
ean now eontrol proeess seheduling to any degree desired.

To simplify explicit scheduling, I suggest that processes reentering their
eritieal regions from event queues take priority over processes entering eritical
regions direetly through a main queue (see Fig. 1). If the seheduling rule
is eompletely unknown to thc programmer as before, additional variables
are required to ensure that resourees granted to waiting processes remain
available to them until they reenter their eritical regions.

Algorithm 3 is a simple example of eompletely eontrolled resouree alloea­
tion. A number of processes share a pool of equivalent resourees. Processes
and resourees are identified by indices of type P and R respectively. When

264 PER BRlNCH HANSEN

resources are available, a process can acquire one immediately; otherwise, it
must enter arequest in a data structure of type set of P and wait until a
resource is granted to it. It is assumed that the program controls the entry
and removal of set elements completely.

5 Conclusion

I have presented structured multiprogramming concepts which have simple
axiomatic properties and permit extensive compile time checking and gen­
eration of efficient machine code.

The essential properties of these concepts are:

1. A distinction between disjoint and interacting processes;

2. An association of shared data with operations defined on them;

3. Mutual exclusion of these operations in time;

4. Synchronizing primitives which permit partial or complete control of
process scheduling.

These are precisely the concepts needed to implement monitor procedures
such as the ones described in (Brinch Hansen 1970). They appear to be
sufficiently safe to use not only within operating systems but also within
user programs to control local resources.

References

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system. Gommunications of
the AGM 13, 4 (April), 238~250.

Brinch Hansen, P. 1971. An outline of a course on operating system principles. Interna­
tional Seminar on Operating System Techniques, Belfast, Northern Ireland, (August~
September) .

Brinch Hansen, P. 1972. A comparison of two synchronizing concepts. Acta Informatica
1, 190~199.

Conway, M.E. 1963. A multiprocessor system design. Proc. AFIPS FlGG 24, Spartan
Books, New York, 139~146.

Courtois, P.J, Heymans, F., and Parnas, D.L. 1971. Concurrent control with "readers"
and "writers." Gommunications of the AGM 14, 10 (October), 667~668.

Dijkstra, E.W. 1965. Cooperating sequential processes. Technological University, Eind­
hoven. Also in Programming Languages, F. Genyus, Ed. Academic Press, New York,
1968.

Hoare, C.A.R. 1971. Towards a theory of parallel programming. International Seminar
on Operating System Techniques, Belfast, Northern Ireland, (August~September).

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 35~63.

8

SHARED CLASSES

PER BRINCH HANSEN

(1973)

The author discusses the elose relationship between data and operations and

suggests that a compiler should be able to check that data structures are ac­

cessed by meaningful procedures only. This idea leads to the introduction of

shared elasses-a programming notation for the monitor concept. The nota­

tion is illustrated by a message buffer for concurrent processes.

We will discuss the dose relationship between data and operations and use
it to define a very important form of resource protection.

If we consider variables of primitive types such as integer and boolean, it
is quite possible that values of different types will be represented by identical
bit strings at the machine level. For example both the boolean value true
and the integer value 1 might be represented by the bit string

000 ... 001

in single machine words.
So data of different types are distinguished not only by the representa­

tion of their values, but also by the operations associated with the types.
An integer, for example, is a datum subject only to arithmetic operations,
comparisons, and assignments involving other data subject to the same re­
strictions.

Now consider structured types. Take for example a variable that repre­
sents a message buffer which contains a sequences of messages sent, but not

P. Brinch Hansen, Operating System Principles, Section 7.2 Cl ass Concept, Prentice Hall,
Englewood Cliffs, NJ, (July 1973), 226-232. Copyright © 1973, Prentice Hall. Reprinted
by permission.

265

266 PER BRINCH HANSEN

yet received. A static picture of process communication can be defined by
assertions about the relationships of the components of the message buffer.
But to understand how and when messages are exchanged dynamically, one
must also study the send and receive procedures defined for a message buffer.
These operations in turn are only meaningful for the particular representa­
tion of the message buffer chosen and can only be understood precisely by
studying its type definition.

These examples illustrate the point made by Dahl (1972): "Data and
operations on data seem to be so closely connected in our minds, that it
takes elements of both kinds to make any concept useful for understanding
computing processes."

Simon (1962) has pointed out that the search for state and process
descriptions of the same phenomenon is characteristic of problem solving:
"These two modes of apprehending structure are the warp and weft of our
experience. Pictures, blueprints, most diagrams, chemical structural for­
mulae are state descriptions. Recipes, differential equations, equations for
chemical reactions are process descriptions. The former characterize the
world as sensed; they provide the criteria for identifying objects, often by
modeling the objects themselves. The latter characterize the world as acted
upon; they provide the me ans for producing or generating objects having
the desired characteristics."

"The distinction between the world as sensed and the world as acted
upon defines the basic condition for the survival of adaptive organisms. The
organism must develop correlations between goals in the sensed world and
actions in the world of process."

In Section 2.6 on program construction, I have illustrated this alternation
between a refinement of data (representing states) and program (representing
processes). The essence of this form of problem solving is the following:

When a programmer needs a concept such as process communication, he
first postulates a set of operations (in this case, send and receive) that have
the desired effect at his present level of thinking. Later, he chooses a specific
representation of a data structure (a message buffer), that enables hirn to
implement the operations efficiently on the available machine.

When the programmer is trying to convince hirnself of the correctness
of a program (by formal proof or testing), he will tacitly ass urne that these
operations (send and receive) are the only ones carried out on data structures
of this type (message buffers).

If other statements in his program are able to operate on message buffers,

SHARED CLASSES 267

he cannot make this assumption. The most extreme case is unstructured ma­
chine language, which potentially permits each statement to influence any
other statement, intentionally or by mistake. This makes program verifica­
tion an endless task since one can never be sure, when a new component is
added to a large program, how this will influence previously tested compo­
nents.

If, on the other hand, the previous assumption is justified, the program­
mer can convince hirnself of the correctness of process communication by
studying only the type definition of a message buffer and the procedures send
and receive. Once this program component has been shown to be correct,
the designer can be confident that subsequent addition of other components
will not invalidate this proof. This makes the task of verification grow lin­
early with the number and size of components-an essential requirement for
the design of large, reliable programs.

According to the previous definition, it is an obvious protection problem
to check that data are accessed by operations consistent with their type.
To what extent do the structures of present high-level languages enable a
compiler to do this?

Adecent compiler for an algorithmic language such as Fortran, Algol 60,
or Pascal will check the compatibility of data and operations on them for
primitive types (Naur 1963). The compiler can do this because the permis­
sible operations on primitive types are part of the language definition.

But in the case of structured types, only the most rudimentary kind of
checking is possible with these languages. All the compiler can check is that
data in assignment statements and comparisons for equality are of the same
type. But, since the languages mentioned do not enable the programmer
to associate a set of procedures with a type definition, the compiler cannot
check whether the operations on a message buffer are restricted to send
and receive procedures as intended by the programmer. This is a serious
deficiency of most programming languages available today.

An exception is the Simula 67language (Dahl 1968), an extension of
Algol 60 originally designed for simulation. In Simula 67, the definition of
a structured data type and the meaningful operations on it form a single,
syntactical unit called a dass. 1

I will briefly describe a simplified, restricted form of the Simula 67 dass
concept in a Pascal-inspired notation.

1 Readers of the Pascal report by Wirth (1971) should notice that the Simula dass
concept is completely unrelated to the Pascal dass concept.

268 PER BRlNCH HANSEN

The notation

procedure P1(. ..) begin S1 end

procedure Pn (. ..) begin Sn end

begin So end

defines: (1) a data structure of type T eonsisting of the eomponents VI, V2,

... , Vm of types Tl, T2, ... , Tm; (2) a set of proeedures (or funetions), PI,
P2, ... , Pn that operate on the data strueture; and (3) a statement So that
ean define its initial value.

A variable V of type T is declared as usual:

var v: T

Upon entry to the eontext in whieh the variable V is declared, storage is
alloeated for its eomponents VI, V2, ... , Vm , and the initial statement So is
earried out for this variable.

A eall of a proeedure Pi on the variable v is denoted:

Proeedure Pi ean refer to the eomponents vI, V2, ... , vm of v, to its own
loeal variables, and to the parameters of the given eall. The operations PI,
P2 , ... , Pn are the only ones permitted on the variable v.

An obvious idea is to represent eritieal regions by the eoneept shared
class, implying that the operations PI, P2 , ... , Pn on a given variable v of
type T exclude one another in time.

The eoneept message buffering is defined as a shared class in Algorithm l.
A buffer variable band a message variable t are dedared and aceessed as
follows:

var b: B; t: T;

b.send(t) b.receive(t)

Strictly speaking, assignment to a message parameter m ean only be
made within the dass B if its type T is primitive. But it seems reasonable
to retain the simple type definition

SHARED CLASSES

shared dass B =

buffer: array o .. max-1 of T;
p, c: 0 .. max-1;
full: o .. max;

procedure send(m: T);
begin

await fuH < maxi
buffer[p] := m;
p := (p + 1) mod maxi
fuH := fuH + 1;

end

procedure receive(var m: T);
begin

await fuH > 0;
m := buffer[c];
c := (c + 1) mod maxi
fuH := fuH - 1;

end

begin p := 0; c := 0; fuH := 0 end

Algorithm 1 Representation of a

message buffer by a shared dass.

type T = <type>

to indicate that variables of this type can be accessed directly.

269

The dass concept in Simula 67 has several other aspects, among them a
mechanism for defining a hierarchy of dasses (Dahl1972). My main purpose
he re is to show a notation which explicitly restricts operations on data and
enables a compiler to check that these restrictions are obeyed. Although such
restrictions are not enforced by Simula 67, this would seem to be essential
for effective protection.

Many computers support arestricted form of shared dass at the ma­
chine level of programming. I am referring to the basic monitor procedures
and data structures which control the sharing of processors, storage, and
peripherals at the lowest level of programming. This dass conccpt enforced
at run time is implemented as follows: The address mapping performed by
a central processor prevents computations from referring directly to data

270 PER BRINCH HANSEN

structures belonging to the basic monitor, but permits them to call a well­
defined set of monitor procedures. Mutual exdusion in time of such calls
is achieved by means of an arbiter and by delaying interrupt response. To
prevent computations from bypassing the monitor and referring directly to
physical resources, the central processor recognizes two states of execution:
the privileged state, in which all machine instructions can be executed; and
the user state, in which certain instructions cannot be executed (those that
control program interruption, input/output, and address mapping). The
privileged state is entered after a monitor caIl; the user state is entered after
a monitor return.

In Chapter 1 I said "It is now recognized that it is desirable to be able
to distinguish in a more flexible manner between many levels of protection
(and not just two)." We have seen that it is indeed desirable to be able
to enforce a separate set of access rules for each data type used. The dass
concept is a general structuring tool applicable at all levels of programming,
sequential as weIl as concurrent.

The dass concept was introduced here to protect loeal data structures
within a program against inconsistent operations. But the concept is appli­
cable also to data structures which are retained within the computer after
the termination of computations.

One example of retained data structures are those used within an operat­
ing system to control resource sharing among unrelated computations. These
data structures must be accessed only through well-defined procedures; oth­
erwise, the operating system might crash. So an operating system defines
a set of standard procedures which can be called by computations. Since
these procedures remain unchanged over reasonable periods of time, a com­
piler should be able to use a description of them to perform type checking
of calls of them within user programs in advance of their execution.

We are thus lead to the idea of maintaining dala structures defining
environments 01 compilation and execution. An environment defines a set of
retained data structures and procedures accessible to a given computation.

Another example of retained data structures are files stored semiperma­
nently on backing stores. In most present file systems, a computation can
either be denied access to a given file or be permitted to read, write, or ex­
ecute it. This seems a rather crude distinction. In most cases, a data file is
intended to be used only in a particular manner; for example, a source text
of a program is intended to be edited or compiled by a particular compiler;
most other operations on it may be entirely meaningless from the user's point

SHARED CLASSES 271

of view. To maintain the integrity of a file, its creator should therefore be
able to associate it with a set of procedures through wh ich it can be accessed
in a meaningful manner. This is possible, for example, in the file system for
the B5500 computer (McKeag 1971).

Assuming that this set of procedures remains unchanged over reasonable
periods of time, it would again be possible to check the consistency of refer­
ences to files within user programs at compile time. The basic requirement
is that the access rules remain fixed between compilation and execution of
programs.

Such a system differs from the present ones in two aspects: (1) a program
is compiled to be executed in a particular environment; and (2) a compiled
program may become invalid if its environment changes. This is acceptable
only if most programs are compiled shortly before execution or if they oper­
ate in a fairly constant environment. The benefits of this approach would be
an early detection of program errors and a more efficient execution because
fewer protection rules would have to be checked dynamically.

References

Dahl, O.-J., Myhrhaug, B., and Nygaard, K. 1968. Simula 67-common base language.
Norsk Regnesentral, Oslo, Norway, (May).

Dahl, O.-J., and Hoare, C.A.R 1972. Hierarchical program structures. In Structured
Programming, O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Eds., Academic Press,
New York, 175-220.

McKeag, RM. 1971. Burroughs B5500 master contral program. In Studies in Operating
Systems, RM. McKeag and R. Wilson, Academic Press, New York, (1976), 1-66.

Naur, P. 1963. The design ofthe GIER Algol compiler. BIT 3,2-3,124-140 and 145-166.
Simon, H.A. 1962. The architecture of complexity. Proceedings 0/ the American Philo­

sophical Society 106, 6, 468-482.

Wirth, N. 1971. The programming language Pascal. Acta In/ormatica 1, 1, 35-63.

9

MONITORS: AN OPERATING
SYSTEM STRUCTURING CONCEPT

C.A.R.HOARE

(1974)

This paper develops Brinch Hansen's concept of a monitor as a method of

structuring an operating system. It introduces a form of synchronization, de­

scribes a possible method of implementation in terms of semaphores and gives

a suitable proof rule. Illustrative examples include a single resource scheduler,

a bounded buffer, an alarm clock, a buffer pool, a disk head optimizer, and a

version of the problem of readers and writers.

1 Introduction

A primary aim of an operating system is to share a computer installation
among many programs making unpredietable demands upon its resourees.
A primary task of its designer is therefore to eonstruct resouree alloeation
(or seheduling) algorithms for resourees of various kinds (main store, drum
store, magnetie tape handlers, eonsoles, ete.). In order to simplify his task,
he should try to eonstruet separate sehedulers for eaeh dass of resouree.
Eaeh seheduler will eonsist of a eertain amount of loeal administrative data,
together with some proeedures and functions whieh are ealled by programs
wishing to aequire and release resourees. Such a eollection of assoeiated data
and proeedures is known as a monitor; and a suitable notation ean be based
on the class notation of Simula 67 (Dahl 1972).

C. A. R. Hoare, Monitors: an operating system strueturing eoneept, Communications oi
the ACM 17, 10 (October 1974), 549-557. Copyright © 1974, Assoeiation for Computing
Maehinery, Ine. Reprinted by permission.

272

MONITORS

monitorname: monitor
begin ... declarations of data loeal to the monitor;

procedure procname (... formal parameters ...);
begin ... proeedure body ... end;

... declarations of other proeedures loeal to the monitor;

... initialization of loeal data of the monitor ...
end;

Note that the proeedure bodies may have loeal data, in the normal way.

273

In order to eall a proeedure of a monitor, it is neeessary to give the name
of the monitor as weH as the name of the desired proeedure, separating them
by a dot:

monitorname. procname(.. . aetual parameters ...);

In an operating system it is sometimes desirable to dedare several mon­
itors with identical strueture and behaviour, for example to sehedule two
similar resourees. In such eases, the dedaration shown above will be pre­
eeded by the word class, and the separate monitors will be dedared to belong
to this dass:

monitor 1, monitor 2: classname;

Thus the strueture of a dass of monitors is identieal to that deseribed for a
data representation in Hoare (1972b), except for addition of the basic word
monitor. Brinch Hansen (1973) used the word shared for the same purpose.

The proeedures of a monitor are eommon to aH running programs, in the
sense that any program may at any time attempt to eall such a procedure.
However, it is essential that only one program at a time aetually succeed
in entering a monitor procedure, and any sub se quent call must be held up
until the previous eall has been eompleted. Otherwise, if two proeedure
bodies were in simultaneous execution, the effects on the loeal variables of
the monitor eould be chaotic. The procedures loeal to a monitor should not
access any nonloeal variables other than those local to the same monitor,
and these variables of the monitor should be inaeeessible from outside the
monitor. If these restrictions are imposed, it is possible to guarantee against
eertain of the more obseure forms of time-dependent co ding error; and this
guarantee eould be underwritten by a visual sean of the text of the program,
whieh eould readily be automated in a compiler.

Any dynamic resouree allocator will sometimes need to delay a program
wishing to aequire a resouree which is not eurrently available, and to res urne

274 c. A. R. HOARE

that program after some other program has released the resouree required.
We therefore need: a "wait" operation, issued from inside a proeedure of
the monitor, which eauses the ealling program to be delayed; and a "sig­
nal" operation, also issued from inside a proeedure of the same monitor,
whieh eauses exaetly one of the waiting programs to be resumed immedi­
ately. If there are no waiting programs, the signal has no effeet. In order to
enable other programs to release resourees during a wait, a wait operation
must relinquish the exclusion whieh would otherwise prevent entry to the
releasing proeedure. However, we deeree that a signal operation be followed
immediately by resumption of a waiting program, without possibility of an
intervening proeedure eall from yet a third program. It is only in this way
that a waiting program has an absolute guarantee that it ean aequire the
resouree just released by the signalling program without any danger that a
third program will interpose a monitor entry and seize the resouree instead.

In many eases, there may be more than one reason for waiting, and these
need to be distinguished by both the waiting and the signalling operation.
We therefore introduee a new type of "variable" known as a "eondition";
and the writer of a monitor should declare a variable of type eondition for
eaeh reason why a program might have to wait. Then the wait and signal
operations should be preeeded by the name of the relevant eondition variable,
separated from it by a dot:

condvariable.wait;
condvariable.signal;

Note that a eondition "variable" is neither true nor false; indeed, it does
not have any stored value aeeessible to the program. In praetiee, a eondition
variable will be represented by an (initially empty) queue of proeesses whieh
are eurrently waiting on the eondition; but this queue is invisible both to
waiters and signallers. This design of the eondition variable has been de­
liberately kept as primitive and rudimentary as possible, so that it may be
implemented efficiently and used fiexibly to aehieve a wide variety of effeets.
There is a great temptation to introduee a more eomplex synehronization
primitive, whieh may be easier to use for many purposes. We shall res ist
this temptation for a while.

As the simplest example of a monitor, we will design a seheduling algo­
rithm for a single resouree, whieh is dynamically aequired and released by
an unknown number of eustomer proeesses by ealls on proeedures:

procedure acquire;
procedure release;

MONITORS 275

A variable l

busy: Boolean

determines whether or not the resouree lS muse. If an attempt is made
to aequire the resouree when it is busy, the attempting program must be
delayed by waiting on a variable,

nonbusy: eondition

whieh is signalled by the next subsequent release. The initial value of busy
is false. These design decisions lead to the following eode for the monitor:

Notes

single resouree: monitor
begin busy: Boolean;

nonbusy: eondition;
procedure aequire;

begin if busy then nonbusy.wait;
busy := true

end;
procedure release;

begin busy := false;
nonbusy.signal

end;
busy := false; comment initial value;

end single resouree

1. In designing a monitor, it seems natural to design the proeedure head­
ings, the data, the eonditions, and the proeedure bodies, in that order. All
subsequent examples will be designed in this way.
2. The aequire proeedure does not have to re test that busy has gone false
when it resumes after its wait, sinee the release proeedure has guaranteed
that this is so; and as mentioned before, no other program ean intervene
between the signal and the eontinuation of exaetly one waiting program.
3. If more than one program is waiting on a eondition, we postulate that the
signal operation will reactivate the longest waiting program. This gives a
simple neutral queuing discipline which ensures that every waiting program
will eventually get its turn.

1 As in Pascal (Wirth 1971), a variable declaration is of the form:
< variable identifier>: < type>;

276 c. A. R. HOARE

4. The single resource monitor simulates a Boolean semaphore (Dijk­
stra 1968a) with acquire and release used for P and V respectively. This
is a simple proof that the monitorjcondition concepts are not in principle
less powerful than semaphores, and that they can be used for all the same
purposes.

2 Interpretation

Having proved that semaphores can be implemented by a monitor, the next
task is to prove that monitors can be implemented by semaphores.

Obviously, we shall require for each monitor a Boolean semaphore "mu­
tex" to ensure that the bodies of the local procedures exclude each other.
The semaphore is initialized to 1; a P(mutex) must be executed on entry to
each local procedure, and a V(mutex) must usually be executed on exit from
it.

When a process signals a condition on which another process is wait­
ing, the signalling process must wait until the resumed process permits it
to proceed. We therefore introduce for each monitor a second semaphore
"urgent" (initialized to 0), on which signalling processes suspend themselves
by the operation P(urgent). Before releasing exclusion, each process must
test whether any other process is waiting on urgent, and if so, must release it
instead by a V(urgent) instruction. We therefore need to count the number
of processes waiting on urgent, in an integer "urgent count" (initially zero).
Thus each exit from a procedure of a monitor should be coded:

if urgent count > 0 then V(urgent) else V(mutex)

Finally, for each condition local to the monitor, we introduce a semaphore
"condsem" (initialized to 0), on which a process desiring to wait suspends
itself by a P(condsem) operation. Since a process signalling this condition
needs to know whether anybody is waiting, we also need a count of the
number of waiting processes held in an integer variable "condcount" (initially
0). The operation cond.wait may now be implemented as follows (recall that
a waiting program must release exclusion before suspending itself):

condcount := condcount + 1;
if urgentcount > 0 then V(urgent) else V(mutex);
P(condsem); comment This will always wait;
condcount := condcount - 1

The signal operation may be coded:

MONITORS

urgent count := urgent count + 1;
if condcount > 0 then {V(condsem); P(urgent)};
urgentcount := urgentcount - 1

277

In this implementation, possession of the monitor is regarded as a priv­
ilege which is explicitly passed from one process to another. Only when no
one further wants the privilege is mutex finally released.

This solution is not intended to correspond to recommended "style" in
the use of semaphores. The concept of a condition-variable is intended as a
substitute for semaphores, and has its own style of usage, in the same way
that while-loops or coroutines are intended as a substitute for jumps.

In many cases, the generality of this solution is unnecessary, and a sig­
nificant improvement in efficiency is possible.
1. When a procedure body in a monitor contains no wait or signal, exit from
the body can be coded by a simple V(mutex), since urgent count cannot have
changed during the execution of the body.
2. If a cond.signal is the last operation of a procedure body, it can be
combined with monitor exit as follows:

if condcount > 0 then V(condsem)
else if urgent count > 0 then V(urgent)

else V(mutex)

3. If there is no other wait or signal in the procedure body, the second line
shown above can also be omitted.
4. If every signal occurs as the last operation of its procedure body, the
variables urgentcount and urgent can be omitted, together with all operations
upon them. This is such a simplifcation that O.-J. Dahl suggests that signals
should always be the last operation of a monitor procedure; in fact, this
restriction is a very natural one, which has been unwittingly observed in all
examples of this paper.

Significant improvements in efficiency mayaiso be obtained by avoiding
the use of semaphores, and by implementing conditions directly in hardware,
or at the lowest and most uninterruptible level of software (e.g. supervisor
mode). In this case, the following optimizations are possible.
1. urgentcount and condcount can be abolished, since the fact that someone is
waiting can be established by examining the representation of the semaphore,
which cannot change surreptitiously within noninterruptible mode.
2. Many monitors are very short andcontain no calls to other monitors.
Such monitors can be executed wholly in non-interruptible mode, using, as

278 C. A. R. HOARE

it were, the common exclusion mechanism provided by hardware. This will
often involve less time in non-interruptible mode than the establishment of
separate exclusion for each monitor.

I am grateful to J. Bezivin, J. Horning, and R. M. McKeag for assisting
in the discovery of this algorithm.

3 Proof rules

The analogy between a monitor and a data representation has been noted
in the introduction. The mutual exclusion on the code of a monitor ensures
that procedure calls follow each other in time, just as they do in sequential
programming; and the same restrictions are placed on access to nonlocal
data. These are the reasons why the same proof rules can be applied to
monitors as to data representations.

As with a data representation, the programm er may associate an invari­
ant J with the local data of a monitor, to describe some condition which
will be true of this data before and after every procedure call. J must also be
made true after initialization of the data, and before every wait instruction;
otherwise the next following procedure call will not find the local data in a
state which it expects.

With each condition variable b the programmer may associate an asser­
tion B which describes the condition under which a pro gram waiting on b
wishes to be resumed. Since other programs may invoke a monitor procedure
during a wait, a waiting program must ensure that the invariant J for the
monitor is true beforehand. This gives the proof rule for waits:

.J {b.wait} .J&B

Since a signal can cause immediate resumption of a waiting program, the
conditions J&B which are expected by that program must be made true
before the signal; and since B may be made false again by the resumed
program, only J may be assumed true afterwards. Thus the proof rule for
a signal is:

.J&B {b.signal} .J

This exhibits a pleasing symmetry with the rule for waiting.
The introduction of condition variables makes it possible to write moni­

tors subject to the risk of deadly embrace (Dijkstra 1968a). It is the respon­
sibility of the programmer to avoid this risk, together with other scheduling

MONITORS 279

disasters (thrashing, indefinitely repeated overtaking, etc. (Dijkstra 1972c)).
Assertion-oriented proof methods cannot prove absence of such risk; perhaps
it is bett er to use less formal methods for such proofs.

Finally, in many cases an operating system monitor constructs some
"virtual" resource which is used in place of actual resources by its "cus­
tomer" programs. This virtual resource is an abstraction from the set of
local variables of the monitor. The program prover should therefore define
this abstraction in terms of its concrete representation, and then express the
intended effect of each of the procedure bodies in terms of the abstraction.
This proof method is described in detail in Hoare (1972b)

4 Example: bounded buffer

A bounded buffer is a concrete representation of the abstract idea of a se­
quence of portions. The sequence is accessible to two programs running in
parallel: the first of these (the producer) updates the sequence by appending
a new portion x at the end; and the second (the consumer) updates it by
removing the first portion. The initial value of the sequence is empty. We
thus require two operations:

(1) append(x: portion);

wh ich should be equivalent to the abstract operation

sequence := sequence n <x>;

where <x> is the sequence whose only item is x and n denotes concatenation
of two sequences.

(2) remove(result x: portion);

which should be equivalent to the abstract operations

x:= first(sequence); sequence:= rest(sequence);

where first selects the first item of a sequencc and rest denotes the sequence
with its first item removed. Obviously, if the sequence is empty, first is
undefined; and in this case we want to ensure that the consumer waits until
the producer has made the sequence nonempty.

We shall assurne that the amount of time taken to produce a portion or
consume it is large in comparison with the time taken to append or remove
it from the sequence. We may therefore be justifed in making a design

280 c. A. R. HOARE

in which producer and consumer can both update the sequence, but not
simultaneously.

The sequence is represented by an array:

buffer: array O .. N -1 of portion;

and two variables:

(1) lastpointer: 0 .. N-1;

which points to the buffer position into which the next append operation
will put a new item, and

(2) count: O .. N;

which always holds the length of the sequence (initially 0).
We define the function

seq(b,l,c) = df if c = 0 then empty
else seq(b,181,c-1) n <b[181]>

where the circled operations are taken modulo N. Note that if c '1= 0,

first(seq(b,l,c)) = b[18c]

and

rest(seq(b,l,c)) = seq(b,l,c-1)

The definition of the abstract sequence in terms of its concrete representa­
tion may now be given:

sequence = df seq(buffer, lastpointer, count)

Less formally, this may be written

sequence = df <buffer[lastpointer8count],
buffer[lastpointer8countEB1] ,
... ,
buffer [lastpointer81] >

Another way of conveying this information would be by an ex am pie and a
picture, which would be even less formal. The invariant for the monitor is:

MONITORS 281

o ::; count ::; N & 0 ::; lastpointer ::; N -1

There are two reasons for waiting, which must be represented by condi­
tion variables:

nonempty: condition;

means that the count is greater than 0, and

nonfull: condition;

means that the count is less than N.
With this constructive approach to the design (Dijkstra 1968b), it lS

relatively easy to code the monitor without error.

bounded buffer: monitor
begin buffer: array O .. N -1 of portion;

lastpointer: O .. N -1;
count: O .. N;
nonempty, nonfull: condition;

procedure append(x: portion);
begin if count = N then nonfull.wait;

note 0 ::; count < N;
buffer[lastpointer] := x;
last pointer := lastpointer EB 1;
count : = count + 1;
nonempty.signal

end append;
procedure remove(result x: portion);

begin if count = 0 then nonempty.wait;
note 0 < count ::; N;
x := buffer[lastpointer 8 count];
count : = count - 1;
nonfull. signal

end remove;
count := 0; lastpointer := 0

end bounded buffer;

A formal proof of the correctness of this monitor with respect to the
stated abstraction and invariant can be given if desired by techniques de­
scribed in Hoare (1972b). However, these techniques seem not capable of
dealing with subsequent examples of this paper.

282 C. A. R. HOARE

Single-buffered input and output may be regarded as a special case of
the bounded buffer with N = 1. In this case, the array can be replaced by
a single variable, the lastpointer is redundant, and we get:

iostream: monitor
begin buifer: portion;

count: 0 .. 1;
nonempty,nonfull: condition;

procedure append(x: portion);
begin if count = 1 then nonfull.wait;

buifer := x;
count := 1;
nonempty.signal

end append;
procedure remove(result x: portion);

begin if count = 0 then nonempty.wait;
x:= buifer;
count := 0;
nonfull. signal

end remove;
count := 0;

end iostream;

If physical output is carried out by aseparate special-purpose channel, then
the interrupt from the channel should simulate a call of iostream.remove(x};
and similarly for physical input, simulating acall of iostream.append(x}.

5 Scheduled waits

Up to this point, we have assumed that when more than one program is wait­
ing for the same condition, a signal will cause the longest waiting program
to be resumed. This is a good simple scheduling strategy, which precludes
indefinite overtaking of a waiting process.

However, in the design of an operating system, there are many cases
when such simple scheduling on the basis of first-come-first-served is not
adequate. In order to give a closer control over scheduling strategy, we
introduce a furt her feature of a conditional wait, which makes it possible
to specify as a parameter of the wait so me indication of the priority of the
waiting program, e.g.:

busy.wait(p);

MONITORS 283

When the condition is signalled, it is the program that specified the lowest
value of p that is resumed. In using this facility, the designer of a monitor
must take care to avoid the risk of indefinite overtaking; and often it is
advisable to make priority a nondecreasing function of the time at whieh the
wait commences.

This introduction of a "scheduled wait" concedes to the temptation to
make the condition concept more elaborate. The main justifications are:
1. It has no effect whatsoever on the logic of a program, or on the formal
proof rules. Any program which works without a scheduled wait will work
with it, but possibly with better timing characteristies.
2. The automatie ordering of the queue of waiting processes is a simple
fast-scheduling technique, except when the queue is exceptionally long-and
when it is, central processor time is not the major bottleneck.
3. The maximum amount of storage required is one word per process. With­
out such a built-in scheduling method, each monitor may have to allocate
storage proportional to the number of its customers; the alternative of dy­
namic storage allocation in small chunks is unattractive at the low level of
an operating system where monitors are found.

I shall yield to one furt her temptation, to introduce a Boolean function
of conditions:

condname.queue

which yields the value true if anyone is waiting on condname and false other­
wise. This can obviously be easily implemented by a couple of instructions,
and affords valuable information which could otherwise be obtained only at
the expense of extra storage, time, and trouble.

A trivially simple example is an alarmclock monitor, which enables a
calling program to delay itself for astated number n of time units, or"ticks".
There are two entries:

procedure wakeme(n: integer);
procedure tick;

The second of these is invoked by hardware (e.g. an interrupt) at regular
intervals, say ten times per second. Local variables are

now: integer;

whieh re cords the current time (initially zero) and

284 C.A.R.HOARE

wakeup: condition;

on which sleeping programs wait. But the alarmsetting at which these pro­
grams will be aroused is known at the time when they start the wait; and
this can be used to determine the correct sequence of waking up.

alarmclock: monitor
begin now: integer;

wakeup: condition;
procedure wakeme(n: integer);

begin alarmsetting: integer;
alarmsetting := now + n;
while now < alarmsetting do wakeup.wait(alarmsetting);
wakeup.signal;
comment In case the next process is due to wake up at the
same time;

end;
procedure tick;

begin now: = now + 1;
wakeup .signal

end;
now:= 0

end alarmclock

In the program given above, the next candidate for wakening is actually
woken at every tick of the dock. This will not matter if the frequency of
ticking is low enough, and the overhead of an accepted signal is not too high.

I am grateful to A. Ballard and J. Horning for posing this problem.

6 Further examples

In proposing a new feature for a high-levellanguage it is very diffcult to make
a convincing case that the feature will be both easy to use efficiently and
easy to implement efficiently. Quality of implement at ion can be proved by
a single good example, but ease and efficiency of use require a great number
of realistic examples; otherwise it can appear that the new feature has been
specially designed to suit the examples, or vice versa. This section contains
a number of additional examples of solutions of familiar problems. Further
examples may be found in Hoare (1973).

MONITORS 285

6.1 Buffer allocation

The bounded buffer described in Section 4 was designed to be suitable only
for sequences, with small portions, for example, message queues. If the
buffers contain high-volume information (for example, files for pseudo off­
line input and output), the bounded buffer may still be used to store the
addresses of the buffers which are being used to hold the information. In this
way, the producer can be filling one buffer while the consumer is emptying
another buffer of the same sequence. But this requires an allocator for
dynamic acquisition and relinquishment of buffer addresses. These may be
declared as a type

type bufferaddress= l..B;

where B is the number of buffers available for allocation.
The buffer allocator has two entries:

procedure acquire(result b: bufferaddress);

which deli vers a free buffer address b; and

procedure release(b: bufferaddress);

wh ich returns a buffer address when it is no longer required. In order to
keep arecord of free buffer addresses the monitor will need:

freepool: powerset bufferaddress;

which uses the Pascal powerset facility to define a variable whose values range
over all sets of buffer addresses, from the empty set to the set containing all
buffer addresses. It should be implemented as a bitmap of B consecutive
bits, where the ith bit is 1 if and only if i is in the set. There is only one
condition variable needed:

nonempty: condition

which means that jreepool i- empty. The code for the allocator is:

286 C. A. R. HOARE

bufIerallocator: monitor
begin freepool: powerset bufIeraddress;

nonempty: condition;
procedure acquire(result b: bufIeraddress);

begin if freepool = empty then nonempty.wait;
b := first(freepool);
comment Any one would do;
freepool := freepool - {b};
comment Set subtraction;

end acquire;
procedure release(b: bufIeraddress);

begin freepool:= freepool + {b};
nonempty.signal

end release;
freepool := all bufIer addresses

end bufIer allocator

The action of a producer and consumer may be summarized:

producer: begin b: bufIeraddress; ...
while not finished do
begin bufferallocator.acquire(b);

... fill bufIer b ... ;
bounded buffer .append(b)

end; ...
end producer;

consumer: begin b: bufferaddress; ...
while not finished do
begin bounded bufIer .remove(b);

... empty bufIer b ... ;
bufIer allocator.release(b)

end; ...
end consumer;

This buffer allocator would appear to be usable to share the buffers
among several streams, each with its own producer and its own consumer,
and its own instance of a bounded buffer monitor. Unfortunately, when the
streams operate at widely varying speeds, and when the freepool is empty,
the scheduling algorithm can exhibit persistent undesirable behaviour. If
two producers are competing for each buffer as it becomes free, a first-come­
first-served dis ci pli ne of allocation will ensure (apparently fairly) that each
gets alternate buffers; and they will consequently begin to produce at equal

MONITORS 287

speeds. But if one consumer is a 1000 lines/min printer and the other is a
10 lines/min teletype, the faster consumer will be eventually reduced to the
speed of the slower, since it cannot forever go faster than its producer. At
this stage nearly all buffers will belong to the slower stream, so the situation
could take a long time to clear.

A solution to this is to use a scheduled wait, to ensure that in heavy load
conditions the available buffers will be shared reasonably fairly between the
streams that are competing for them. Of course, inactive streams need not
be considered, and streams for which the consumer is currently faster than
the producer will never ask for more than two buffers anyway. In order to
achieve fairness in allocation, it is sufficient to allocate a newly freed buffer
to that one among the competing producers whose stream currently owns
fewest buffers. Thus the system will seek a point as far away from the
undesirable extreme as possible.

For this reason, the entries to the allocator should indicate for what
stream the buffer is to be (or has been) used, and the allocator must keep a
count of the current allocation to each stream in an array:

count: array stream of integer;

The new version of the allocator is:

bufferallocator: monitor
begin freepool: powerset bufferaddress;

nonempty: condition
count: array stream of integer;

procedure acquire(result b: bufferaddress; s: stream);
begin if freepool = empty then nonempty.wait(count[s]);

count[s] := count[s] + 1;
b:= first(freepool);
freepool := freepool - {b}

end acquire;
procedure release(b: bufferaddress; s: stream)

begin count[s] := count[s] - 1;
freepool := freepool + {b};
nonempty.signal

end
freepool := all buffer addresses;
for s: stream do count[s] := 0

end bufferallocator

Of course, if a consumer stops altogether, perhaps owing to mechanical
failure, the producer must also be halted before it has acquired too many

288 C. A. R. HOARE

buffers, even if no one else eurrently wants them. This ean perhaps be most
easily aeeomplished by appropriate fixing of the size of the bounded buffer
for that stream and/or by ensuring that at least two buffers are reserved far
eaeh stream, even when inaetive. It is an interesting comment on dynamic
resouree alloeation that, as so on as resources are heavily loaded, the system
must be designed to fall back toward a more static regime.

I am grateful to E. W. Dijkstra (1972b) for pointing out this problem
and its solution.

6.2 Disk head scheduler

On a moving-head disk, the time taken to move the heads increases mono­
tonically with the distance travelled. If several programs wish to move the
heads, the average waiting time can be redueed by selecting, first, the pro­
gram whieh wishes to move them the shortest distance. But unfortunately
this poliey is subject to an instability, since a program wishing to access a
eylinder at one edge of the disk can be indefinitely overtaken by programs
operating at the other edge or the middle.

A solution to this is to minimize the frequency of change of direction of
movement of the heads. At any time, the heads are kept moving in a given
direction, and they service the program requesting the nearest cylinder in
that direetion. If there is no such request, the direction changes, and the
heads make another sweep across the surfaee of the disko This may be called
the "elevator" algorithm, sinee it simulates the behaviour of a lift in a multi­
storey building.

There are two entries to a disk head scheduler:

(1) request(dest: eylinder);

where

type cylinder = O .. cylmax;

whieh is entered by a program just before issuing the instruction to move the
heads to eylinder desto

(2) release;

whieh is entered by a program when it has made all the transfers it needs
on the current cylinder.

The loeal data of the monitor must include arecord of the current head
position, headpos, the current direction of sweep, and whether the disk is
busy:

MONITORS

headpos: cylinder;
direction: (up, down);
busy: Boolean

289

We need two conditions, one for requests waiting for an upsweep and the
other for requests waiting for a downsweep:

upsweep, downsweep: condition

diskhead: monitor
begin headpos: cylinder;

direction: (up, down);
busy: Boolean;
upsweep, downsweep: condition;

procedure request(dest: cylinder);
begin if busy then

{if headpos < dest V headpos = dest & direction = up
then upsweep.wait(dest)
else downsweep.wait(cylmax - dest)};

busy := true; headpos := dest
end request;

procedure release;
begin busy := false;

if direction = up then
{if upsweep.queue then upsweep.signal

else {direction := down;
downsweep.signal} }

else if downsweep.queue then downsweep.signal
else {direction := up;

upsweep.signal}
end release;
headpos := 0; direction := up; busy := false

end diskhead;

6.3 Readers and writers

As a more significant example, we take a problem which arises in on-line
real-time applications such as airspace control. Suppose that each aircraft is
represented by arecord, and that this record is kept up to date by a number
of "writer" processes and accessed by a number of "reader" processes. Any
number of "reader" processes may simultaneously access the same record,
but obviously any process which is updating (writing) the individual com­
ponents of the record must have exclusive access to it, or chaos will ensue.

290 C. A. R. HOARE

Thus we need a dass of monitors; an instanee of this dass loeal to each
individual aircraft reeord will enforee the required diseipline for that record.
If there are many aircraft, there is a strong motivation for minimizing local
data of the monitor; and if eaeh read or write operation is brief, we should
also minimize the time taken by eaeh monitor entry.

When many readers are interested in a single aircraft record, there is a
danger that a writer will be indefinitely prevented from keeping that record
up to date. We therefore deeide that a new reader should not be permitted to
start if there is a writer waiting. Similarly, to avoid the danger of indefinite
exdusion of readers, all readers waiting at the end of a write should have
priority over the next writer. Note that this is a very different scheduling
rule from that propounded in Courtois (197la), and does not seem to require
such subtlety in implementation. Nevertheless, it may be more suited to this
kind of application, where it is better to read stale information than to wait
indefinitely!

The monitor obviously requires four local procedures:

startread
endread
startwrite
endwrite

entered by reader who wishes to read.
entered by reader who has finished reading.
entered by writer who wishes to write.
entered by writer who has finished writing.

We need to keep a count of the number of users who are reading, so that
the last reader to finish will known this fact:

readercount: integer

We also need a Boolean to indicate that someone is actually writing:

busy: Boolean;

We introduce separate conditions for readers and writers to wait on:

OKtoread, OKtowrite: condition;

The following annotation is relevant:

OKtoread == -, busy
OKtowrite == -, busy & readercount = 0
invariant: busy =} readercount = 0

MONITORS

dass readers and writers: monitor
begin readereount: integer;

busy: Boolean;
OKtoread, OKtowrite: eondition;

procedure startread;
begin if busy V OKtowrite.queue then OKtoread.wait;

readereount : = readereount + 1;
OKtoread.signal;
eomment Onee one reader ean start, they all ean;

end startread;
procedure endread;

begin readereount := readereount - 1;
if readereount = 0 then OKtowrite.signal

end endread;
procedure startwrite;

begin
if readereount -I 0 V busy then OKtowrite.wait;
busy := true

end startwrite;
procedure endwrite;

begin busy := false;
if OKtoread.queue then OKtoread.signal

else OKtowrite.signal
end endwrite;

readereount := 0;
busy : = false;

end readers and writers;

291

I am grateful to Dave Gorman for assisting in the discovery of this solu­
tion.

7 Condusion

This paper suggests that an appropriate structure for a module of an oper­
ating system, which sehedules resourees for parallel user processes, is very
similar to that of a data representation used by a sequential program. How­
ever, in the case of monitors, the bodies of the procedure must be protected
against re-entranee by being implemented as eritical regions. The textual
grouping of eritieal regions together with the data whieh they update seems
mueh superior to eritical regions scattered through the user program, as de­
seribed in Dijkstra (1968a) and Hoare (1972a). It also eorresponds to the
traditional practiee of the writers of operating system supervisors. It ean be
recommended without reservation.

292 C. A. R. HOARE

However, it is mueh more diffieult to be eonfident about the eondition
eoneept as a synehronizing primitive. The synehronizing faeility whieh is
easiest to use is probably the eonditional wait (Brineh Hansen 1972b; Hoare
1972a).

wait(B);

where B is a general Boolean expression (it eauses the given proeess to
wait until B beeomes true); but this may be too inefficient for general use
in operating systems, beeause its implementation requires re-evaluation of
the expression B after every exit from a proeedure of the monitor. The
eondition variable gives the programmer better eontrol over effieieney and
over seheduling; it was designed to be very primitive, and to have a simple
proof rule. But perhaps so me other eompromise between eonvenienee and
effieieney might be better. The quest ion whether the signal should always
be the last operation of a monitor proeedure is still open. These problems
will be studied in the design and implementation of a pilot project operating
system, eurrently enjoying the support of the Scienee Research Council of
Great Britain.

Another quest ion which will be studied will be that of the disjointness
of monitors: Is it possible to design aseparate isolated monitor for eaeh
kind of resouree, so that it will make sensible seheduling decisions for that
resouree, using only the minimal information about the utilization of that
resouree, and using no information about the utilization of any resouree
administered by other monitors? In prineiple, it would seem that, when
more knowledge of the status of the entire system is available, it should
be easier to take decisions nearer to optimality. Furthermore, in principle,
independent seheduling of different kinds of re sour ce ean lead to deadly
embraee. These eonsiderations would lead to the design of a traditional
"monolithie" monitor, maintaining large system tables, all of which ean be
aeeessed and updated by any of the proeedures of the monitor.

There is no apriori reason why the attempt to split the functions of
an operating system into a number of isolated disjoint monitors should sue­
eeed. It ean be made to sueeeed only by discovering and implementing good
seheduling algorithms in eaeh monitor. In order to avoid undesirable inter­
actions between the separate seheduling algorithms, it appears neeessary to
observe the following principles:
1. Never seek to make an optimal deeision; merely seek to avoid persistently
pessimal deeisions.

MONITORS 293

2. Do not seek to present the user with a virtual machine which is better
than the actual hardware; merely seek to pass on the speed, size, and Bat
unopiniated structure of a simple hardware design.
3. Use preemptive techniques in preference to nonpreemptive ones where
possible.
4. Use "grain of time" (Dijkstra 1972a) methods to seeure independence of
scheduling strategies.
5. Keep a low variance (as well as a low mean) on waiting times.
6. A void fixed priorities; instead, try to ensure that every program in the
system makes reasonably steady progress. In particular, avoid indefinite
overtaking.
7. Ensure that when demand for resources outstrips the supply (i.e. in over­
load conditions), the behaviour of the scheduler is satisfactory (i.e. thrashing
is avoided).
8. Make rules for the correct and sensible use of monitor calls, and assume
that user programs will obey them. Any checking which is necessary should
be done not by a central shared monitor, but rat her by an algorithm (called
"user envelope") which is local to each process executing a user program.
This algorithm should be implemented at least partially in the hardware
(e.g. base and range registers, address translation mechanisms, capabilities,
etc.).

It is the possibility of constructing separate monitors for different pur­
poses, and of separating the scheduling decisions embodied in monitors from
the checking embodied in user envelopes, that may justify a hope that mon­
itors are an appropriate concept for the structuring of an operating system.

Acknowledgements

The development of the monitor concept is due to frequent discussions and
communications with E. W. Dijkstra and P. Brinch Hansen. A monitor
corresponds to the "secretary" described in Dijkstra (1972a), and is also
described in Brinch Hansen (1972a, 1973).

Acknowledgement is also due to the support of IFIP WG.2.3, which
provides a meeting place at which these and many other ideas have been
germinated, fostered, and tested.

References

Brinch Hansen, P. 1972a. Structured multiprogramming. Communications oj the ACM
15,7 (July), 574-578.

294 c. A. R. HOARE

Brinch Hansen. P. 1972b. A comparison of two synchronizing concepts. Acta Informatica
1, 190-199,

Brinch Hansen, P. 1973. Operating System Principles. Prentice-Hall, Englewood Cliffs,
NJ, (July).

Courtois, P.J., Heymans, F. and Parnas, D.L. 1971a. Concurrent control with readers and
writers. Communications of the ACM 14, 10 (October), 667-668.

Courtois, P.J., Heymans, F. and Parnas, D.L. 1971b. Comments on "A comparison of two
synchronizing concepts." Acta Informatica 1, 375-376.

Dahl, O.-J. 1972. Hierarchical program structures. In Structured Progmmming, O.-J.
Dahl, E.W. Dijkstra and C.A.R Hoare, Eds., Academic Press, New York, 175-220.

Dijkstra, E.W. 1968a. Cooperating sequential processes. In Programming Languages, F.
Genuys, Ed., Academic Press, New York, 43-112.

Dijkstra, E.W. 1968b. A constructive approach to the problem of program correctness.
BIT 8, 174-186.

Dijkstra, E.W. 1972a. Hierarchical ordering of sequential processes. In Operating Systems
Techniques, C.A.R. Hoare and RH. Perrott, Eds., Academic Press, New York, 72-93.

Dijkstra, E.W. 1972b. Information streams sharing a finite buffer. Information Processing
Letters 1, 5 (October), 179-180.

Dijkstra, E.W. 1972c. A dass of allocation strategies inducing bounded delays only. AFIPS
Spring Joint Computer Conference 40, AFIPS Press, Montvale, NJ, 933-936.

Hoare, C.A.R 1972a. Towards a theory of parallel programming. In Operating Systems
Techniques, C.A.R. Hoare and R.H. Perrott, Eds., Academic Press, New York, 61-71.

Hoare, C.A.R 1972b. Proof of correctness of data representations. Acta Informatica 1,
271-281.

Hoare, C.A.R 1973. A structured paging system. Computer Journal 16, 3 (August),
209-215.

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 35-63.

PART 111

COl'~CURRENT

PROGRAMJ\1ING LANGUAGES

10

THE PROGRAMMING LANGUAGE

CONCURRENT PASCAL
PER BRINCH HANSEN

(1975)

The paper describes a new programming language for structured program­

ming of computer operating systems. It extends the sequential programming

language Pascal with concurrent programming tools called processes and moni­

tors. Part I explains these concepts informally by means of pictures illustrating

a hierarchical design of a simple spooling system. Part n uses the same exam­

pIe to introduce the language notation. The main contribution of Concurrent

Pascal is to extend the monitor concept with an explicit hierarchy of access

rights to shared data structures that can be stated in the program text and

checked by a compiler.

I THE PURPOSE OF CONCURRENT PASCAL

A Background

Since 1972 I have been working on a new programming language for struc­
tured programming of computer operating systems. This language is called
Concurrent Pascal. It extends the sequential programming language Pascal
with concurrent programming tools called processes and monitors (Wirth
1971; Brinch Hansen 1973; Hoare 1974).

This is an informal description of Concurrent Pascal. It uses examples,
pictures, and words to bring out the creative aspects of new programming
concepts without getting into their finer details. I plan to define these con­
cepts precisely and introduce a notation for them in later papers. This form

P. Brinch Hansen, The programming language Concurrent Pascal, IEEE Transactions on
Software Engineering 1, 2 (June 1975), 199-207. Copyright © 1975, Institute of Electrical
and Electronics Engineers, Inc. Reprinted by permission.

297

298 PER BRINCH HANSEN

of presentation may be imprecise from a formal point of view, but is perhaps
more effective from a human point of view.

B Processes

We will study concurrent processes inside an operating system and look at
one small problem only: How can large amounts of data be transmitted from
one process to another by means of buffers stored on a disk?

Figure 1 shows this little system and its three components: A process
that pro duces data, a process that consumes data, and a disk buffer that
connects them.

Disk buffer

Producer process Consumer process

Figure 1 Process communication

The circles are system components and the arrows are the access rights
of these components. They show that both processes can use the buffer (but
they do not show that data fiows from the producer to the consumer). This
kind of picture is an access graph.

The next picture shows a process component in more detail (Fig. 2).

Access rights

Private data

Sequential program

Figure 2 Process.

A process consists of a private da ta structure and a sequential program
that can operate on the data. One process cannot operate on the private

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 299

data of another process. But concurrent processes can share certain data
structures (such as a disk buffer). The access rights of a process mention the
shared data it can operate on.

C Monitors

A disk buffer is a data structure shared by two concurrent processes. The
details of how such a buffer is constructed are irrelevant to its users. All the
processes need to know is that they can send and receive data through it.
If they try to operate on the buffer in any other way it is probably either a
programming mistake or an example of tricky programming. In both cases,
one would like a compiler to detect such misuse of a shared data structure.

To make this possible, we must introduce a language construct that will
enable a programmer to tell a compiler how a shared data structure can be
used by processes. This kind of system component is called a monitor. A
monitor can synchronize concurrent processes and transmit data between
them. It can also control the order in which competing processes use shared,
physical resources. Figure 3 shows a monitor in detail.

Access rights

Shared data

Synchronizing operations

Initial operation

Figure 3 Monitor.

A monitor defines a shared data structure and all the operations pro­
cesses can perform on it. These synchronizing operations are called monitor
procedures. A monitor also defines an initial operation that will be executed
when its data structure is created.

We can define a disk buffer as a monitor. Within this monitor there will
be shared variables that define the location and length of th€ buffer on the
disko There will also be two monitor procedures, send and receive. The
initial operation will make sure that the buffer starts as an empty one.

Processes cannot operate directly on shared data. They can only call
monitor procedures that have access to shared data. A monitor procedure
is executed as part of a calling process (just like any other procedure).

300 PER BRINCH HANSEN

If concurrent pro ces ses simultaneously call monitor procedures that op­
erate on the same shared data these procedures will be executed strictly one
at a time. Otherwise, the results of monitor calls would be unpredictable.
This me ans that the machine must be able to delay processes for short pe­
riods of time until it is their turn to execute monitor procedures. We will
not be concerned with how this is done, but will just notice that a monitor
procedure has exclusive access to shared data while it is being exeeuted.

So the (virtual) machine on wh ich eoneurrent programs run will handle
short-term scheduling of simultaneous monitor calls. But the programmer
must also be able to delay processes for longer periods of time if their requests
for data and other resourees eannot be satisfied immediately. If, for example,
a process tries to receive data from an empty disk buffer it must be delayed
until another process sends more data.

Concurrent Pascal includes a simple data type, called a queue, that ean be
used by monitor procedures to control medium-term scheduling of processes.
A monitor can either delay a calling process in a queue or continue another
process that is waiting in a queue. It is not important he re to understand
how these queues work except for the following essential rule: A proeess
only has exclusive access to shared data as long as it eontinues to exeeute
statements within a monitor procedure. As soon as a process is delayed
in a queue it loses its exclusive aeeess until another proeess ealls the same
monitor and wakes it up again. (Without this rule, it would be impossible
to enter a monitor and let waiting proeesses continue their exeeution.)

Although the disk buffer example does not show this yet, monitor proee­
dures should also be able to call procedures defined within other monitors.
Otherwise, the language will not be very useful for hierarchieal design. In
the case of the disk buffer, one of these other monitors could perhaps define
simple input/output operations on the disk. So a monitor can also have
access rights to other system components (see Fig. 3).

D System Design

A process executes a sequential program-it is an active component. A
monitor is just a collection of procedures that do nothing until they are called
by processes-it is a passive component. But there are strong similarities
between a process and a monitor: both define a data structure (private or
shared) and the meaningful operations on it. The main differenee between
proeesses and monitors is the way they are scheduled for execution.

It seems natural therefore to regard proeesses and monitors as abstract

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 301

data types defined in terms of the operations one can perform on them. If
a compiler can check that these operations are the only ones carried out
on data structures, then we may be able to build very reliable, concurrent
programs in which controlled access to data and physical resources is guar­
anteed before these programs are put into operation. We have then to some
extent solved the resource protection problem in the cheapest possible man­
ner (without hardware mechanisms and run time overhead).

So we will define processes and monitors as data types and make it
possible to use several instances of the same component type in a system.
We can, for example, use two disk buffers to build a spooling system with an
input process, a job process, and an output process (Fig. 4).

Input process Job process Output process

Figure 4 Spooling system.

I will distinguish between definitions and instances of components by
calling them system types and system components. Access graphs (such as
Fig. 4) will always show system components (not system types).

Peripheral devices are considered to be monitors implemented in hard­
ware. They can only be accessed by a single procedure io that delays the
calling process until an input/output operation is completed. Interrupts are
handled by the virtual machine on which processes run.

To make the programming language useful for stepwise system design
it should permit the division of a system type, such as a disk buffer, into
smaHer system types. One of these other system types should give a disk
buffer access to the disko We will caH this system type a virtual disko It
gives a disk buffer the illusion that it has its own private disko A virtual
disk hides the details of disk input/output from the rest of the system and
makes the disk look like a data structure (an array of disk pages). The only
operations on this data structure are read and write a page.

Each virtual disk is only used by a single disk buffer (Fig. 5). A system
component that cannot be called simultaneously by several other compo-

302 PER BRlNCH HANSEN

? Virtual disk

6 Disk buffer

Figure 5 Buffer refinement.

nents will be called a class. A dass defines a data structure and the possible
operations on it (just like a monitor). The exdusive access of dass proce­
dures to dass variables can be guaranteed completely at compile time. The
virtual machine does not have to schedule simultaneous calls of dass proce­
dures at run time, because such calls cannot occur. This makes dass calls
considerably faster than monitor calls.

The spooling system indudes two virtual disks but only one real disk.
So we need a single disk resource monitor to control the order in which com­
peting processes use the disk (Fig. 6). This monitor defines two procedures,
request and release access, to be called by a virtual disk before and after each
disk transfer.

Virtual consoles

Disk

Disk resource

Virtual disks

Figure 6 Decomposition of virtual disks.

It would seem simpler to re pI ace the virtual disks and the disk resource
by a single monitor that has exdusive access to the disk and does the in­
put/output. This would certainly guarantee that processes use the disk one
at a time. But this would be done according to the built-in short-term
scheduling policy of monitor calls.

Now to make a virtual machine efficient, one must use a very simple

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 303

short-term scheduling rule, such as first-come, first-served (Brinch Hansen
1973). If the disk has a moving access head this is about the worst possible
algorithm one can use for disk transfers. It is vital that the language make it
possible for the programmer to write a medium-term scheduling algorithm
that will minimize disk head movement (Hoare 1974). The data type queue
mentioned earlier makes it possible to implement arbitrary scheduling rules
within a monitor.

The difficulty is that while a monitor is performing an input/output
operation it is impossible for other processes to enter the same monitor
and join the disk queue. They will automatically be delayed by the short­
term scheduler and only allowed to enter the monitor one at a time after
each disk transfer. This will, of course, make the attempt to control disk
scheduling within the monitor illusory. To give the programmer complete
control of disk scheduling, processes should be able to enter the disk queue
during disk transfers. Since arrival and service in the disk queueing system
potentially are simultaneous operations they must be handled by different
system components, as shown in Fig. 6.

If the disk fails persistently during input/output this should be reported
on an operator's console. Figure 6 shows two instances of a dass type, called
a virtual console. They give the virtual disks the illusion that they have their
own private consoles.

The virtual consoles get exdusive access to a single, real console by calling
a console resource monitor (Fig. 7). Notice that we now have a standard
technique for dealing with virtual devices.

Console

Console resouree

Virtual eonsoles

Figure 7 Decomposition of virtual consoles.

If we put all these system components together, we get a complete picture
of a simple spooling system (Fig. 8). Classes, monitors, and processes are
marked C, M, and P.

304 PER BRINCH HANSEN

Console

Console resource

Virtual consoles

Disk

Disk resource

Virtual disks

Input process Job process Output process

Figure 8 Hierarchical system structure.

E Scope Rules

Some years aga I was part of a team that built a multiprogramming system
in which processes can appear and disappear dynamically (Brinch Hansen
1970). In practice, this system was used mostly to set up a fixed config­
uration of processes. Dynamic process deletion will certainly complicate
the semantics and implementation of a programming language considerably.
And since it appears to be unnecessary for a large dass of real-time applica­
tions, it seems wise to exdude it altogether. So an operating system written
in Concurrent Pascal will consist of a fixed number of processes, monitors,
and dasses. These components and their data structures will exist forever
after system initialization. An operating system can, however, be extended
by recompilation. It remains to be seen whether this restriction will sim­
plify or complicate operating system design. But the poor quality of most
existing operating systems dearly demonstrates an urgent need for simpler
approaches.

In existing programming languages the data structures of processes, mon­
itors, and dasses would be called "global data." This term would be mis-

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 305

leading in Concurrent Pascal where each data structure can be accessed by
a single component only. It seems more appropriate to call them permanent
data structures.

I have argued elsewhere that the most dangerous aspect of concurrent
programming is the possibility of time-dependent programming errors that
are impossible to locate by testing ("lurking bugs") (Brinch Hansen 1972,
1973, 1974b). If we are going to depend on real-time programming systems
in our daily lives, we must be able to find such obscure errors before the
systems are put into operation.

Fortunately, a compiler can detect many of these errors if processes and
monitors are represented by a structured notation in a high-level program­
ming language. In addition, we must exclude low-Ievel machine features
(registers, addresses, and interrupts) from the language and let a virtual
machine control them. If we want real-time systems to be highly reliable, we
must stop programming them in assembly language. (The use of hardware
protection mechanisms is merely an expensive, inadequate way of making
arbitrary machine language programs behave almost as predictably as com­
piled programs.)

A Concurrent Pascal compiler will check that the private data of a process
only are accessed by that process. It will also check that the data structure
of a class or monitor only is accessed by its procedures.

Figure 8 shows that access rights within an operating system normally
are not tree structured. Instead they form a directed graph. This partly
explains why the traditional scope rules of block-structured languages are
inconvenient for concurrent programming (and for sequential programming
as well). In Concurrent Pascal one can state the access rights of components
in the program text and have them checked by a compiler.

Since the execution of a monitor procedure will delay the execution of
further calls of the same monitor, we must prevent a monitor from calling
itself recursively. Otherwise, processes can become deadlocked. So the com­
piler will check that the access rights of system components are hierarchically
ordered (or, if you like, that there are no cycles in the access graph).

The hierarchical ordering of system components has vital consequences
for system design and testing (Brinch Hansen 1974a).

A hierarchical operating system will be tested component by component,
bottom up (but could, of course, be conceived top down or by iteration).
When an incomplete operating system has been shown to work correctly (by
proof or testing), a compiler can ensure that this part of the system will con-

306 PER BRINCH HANSEN

tinue to work correctly when new untested program components are added
on top of it. Programming errors within new components cannot cause old
components to fail because old components do not call new components, and
new components only call old components through well-defined procedures
that have already been tested.

(Strictly speaking, a compiler can only check that single monitor calls
are made correctly; it cannot check sequences of monitor calls, for example
whether a resource is always reserved before it is released. So one can only
hope for compile time assurance of partial correctness.)

Several other reasons besides program correctness make a hierarchie al
structure attractive:

1. A hierarchical operating system can be studied in a step-wise manner
as a sequence of abstract machines simulated by programs (Dijkstra
1971).

2. A partial ordering of process interactions permits one to use math­
ematical induction to prove certain overall properties of the system,
such as the absence of deadlocks (Brinch Hansen 1973).

3. Efficient resource utilization can be achieved by ordering the program
components according to the speed of the physical resources they con­
trol, with the fastest resources being controlled at the bottom of the
system (Dijkstra 1971).

4. A hierarchical system designed according to the previous criteria is
often nearly decomposable from an analytical point of view. This means
that one can develop stochastic models of its dynamic behavior in· a
stepwise manner (Simon 1962).

F Final Remarks

It seems most natural to represent a hierarchical system structure, such
as Fig. 8, by a two-dimensional picture. But when we write a concurrent
program we must somehow represent these access rules by linear text. This
limitation of written language tends to obscure the simplicity of the original
structure. That is why I have tried to explain the purpose of Concurrent
Pascal by means of pictures instead of language notation.

The dass concept is a restricted form of the dass concept of Simula 67
(Dahl 1972). Dijkstra (1971) suggested the idea of monitors. The first

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 307

structured language notation for monitors was proposed in Brinch Hansen
(1973), and illustrated by examples in Hoare (1974). The queue variables
needed by monitors for process scheduling were suggested in Brinch Hansen
(1972) and modified in Hoare (1974).

The main contribution of Concurrent Pascal is to extend monitors with
explicit access rights that can be checked at compile time. Concurrent Pascal
has been implemented at Caltech for the PDP 11/45 computer. Our system
uses sequential Pascal as a job control and user programming language.

11 THE USE OF CONCURRENT PASCAL

A Introduction

In Part I the concepts of Concurrent Pascal were explained informally by
means of pictures of a hierarchical spooling system. I will now use the
same example to introduce the language notation of Concurrent Pascal. The
presentation is still informal. I am neither trying to define the language
precisely nor to develop a working system. This will be done in other papers.
I am just trying to show the fiavor of the language.

B Processes

We will now program the system components in Fig. 8 one at a time from
top to bot tom (but we could just as weIl do it bottom up).

Although we only need one input process, we mayas weIl define it as a
general system type of which several copies may exist:

type inputprocess =
process(buffer: diskbuffer);
var block: page;
cycle

readcards(block) ;
buffer .send(block);

end

An input process has access to a buffer of type diskbuffer (to be defined
later). The process has a private variable block of type page. The data type
page is declared elsewhere as an array of characters:

type page = array [1..512J of char

308 PER BRINCH HANSEN

A process type defines a sequential program-in this case, an endless
cycle that inputs a block from a card reader and sends it through the buffer
to another process. We will ignore the details of card reader input.

The send operation on the buffer is called as follows (using the block as
a parameter):

buffer .send(block)

The next component type we will define is a job process:

type jobprocess =
process(input, output: diskbuffer);
var block: page;
cycle

input.receive(block);
update(block);
output.send(block) ;

end

A job process has access to two disk buffers called input and output. It
receives blocks from one buffer, updates them, and sends them through the
other buffer. The details of updating can be ignored here.

Finally, we need an output process that can receive data from a disk
buffer and output them on a li ne printer:

type outputprocess =
process(buffer: diskbuffer);
var block: page;
cycle

buffer .receive(block);
printlines (block);

end

The following shows a declaration of the main system components:

var bufferl, buffer2: diskbuffer;
reader: inputprocess;
master: jobprocess;
writer: outputprocess;

There is an input process, called the reader, a job process, called the master,
and an output process, called the writer. Then there are two disk buffers,
buffer 1 and buffer2, that connect them.

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 309

Later I will explain how a disk buffer is defined and initialized. If we
assume that the disk buffers already have been initialized, we can initialize
the input process as follows:

init reader(bufferl)

The init statement allocates space for the private variables of the reader
process and starts its execution as a sequential process with access to bufferl.

The access rights of a process to other system components, such as
bufferl, are also called its parameters. A process can only be initialized
once. After initalization, the parameters and private variables of a process
exist forever . They are called permanent variables.

The init statement can be used to start concurrent execution of several
processes and define their access rights. As an example, the statement

init reader(bufferl), master(bufferl, buffer2), writer(buffer2)

starts concurrent execution of the reader process (with access to buffer 1), the
master process (with access to both buffers), and the writer process (with
access to buffer2).

A process can only access its own parameters and private variables. The
latter are not accessible to other system components. Compare this with the
more liberal scope rules of block-structured languages in which a program
block can access not only its own parameters and local variables, but also
those declared in outer blocks. In Concurrent Pascal, all variables accessible
to a system component are declared within its type definition. This access
rule and the init statement make it possible for a programmer to state access
rights explicitly and have them checked by a compiler. They also make it
possible to study a system type as a self-contained program unit.

Although the programming examples do not show this, one can also
define constants, data types, and procedures within a process. These objects
can only be used within the process type.

C Monitors

The disk buffer is a monitor type:

310 PER BRINCH HANSEN

type diskbuffer =

monitor(consoleaccess, diskaccess: resource;
base, limit: integer);

var disk: virtualdisk; sender, receiver: queue;
head, tail, length: integer;

procedure entry send(block: page);
begin

if length = limit then delay(sender);
disk.write(base + tail, block);
tail := (tail + 1) mod limit;
length : = length + 1;
continue(receiver);

end;

procedure entry receive(var block: page);
begin

if length = 0 then delay(receiver);
disk.read(base + head, block);
head := (head + 1) mod limit;
length := length - 1;
continue(sender);

end;

begin "initial statement"
init disk(consoleaccess, diskaccess);
head := 0; tail := 0; length := 0;

end

A disk buffer has aeeess to two other eomponents, consoleaccess and
diskaccess, of type resouree (to be defined later). It also has aeeess to two
integer eonstants defining the base address and limit of the buffer on the
disko

The monitor declares a set of shared variables: The disk is declared as
a variable of type virtualdisk. Two variables of type queue are used to
delay the sender and receiver proeesses until the buffer beeomes nonfull and
nonempty. Three integers define the relative addresses of the head and tail
elements of the buffer and its eurrent length.

The monitor defines two monitor procedures, send and reeeive. They are
marked with the word entry to distinguish them from loeal proeedures used
within the monitor (there are none of these in this example).

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 311

Receive returns a page to the ealling proeess. If the buffer is empty, the
ealling proeess is delayed in the receiver queue until another proeess sends a
page through the buffer. The reeeive proeedure will then read and remove
a page from the head of the disk buffer by ealling a read operation defined
within the virtualdisk type:

disk.read(base + head, block)

Finally, the reeeive proeedure will continue the exeeution of asending proeess
(if the latter is waiting in the sender queue).

Send is similar to reeeive.
The queueing meehanism will be explained in detail in the next seetion.
The initial statement of a disk buffer initializes its virtual disk with aeeess

to the eonsole and disk resourees. It also sets the buffer length to zero.
(Notiee, that a disk buffer does not use its aeeess rights to the eonsole and
disk, but only passes them on to a virtual disk declared within it.)

The following shows a declaration of two system eomponents of type
resouree and two integers defining the base and limit of a disk buffer:

var consoleaccess, diskaccess: resource;
base, limit: integer;
buffer: diskbuffer;

If we assume that these variables already have been initialized, we ean
initialize a disk buffer as folIows:

init buffer(consoleaccess, diskaccess, base, limit)

The init statement alloeates storage for the parameters and shared variables
of the disk buffer and exeeutes its initial statement.

A monitor ean only be initialized onee. After initialization, the parame­
ters and shared variables of a monitor exist forever. They are ealled perma­
nent variables. The parameters and loeal variables of a monitor proeedure,
however, exist only while it is being executed. They are called tempomry
variables.

A monitor procedure can only aecess its own temporary and permanent
variables. These variables are not accessible to other system components.
Other eomponents ean, however, call procedure entries within a monitor.
While a monitor proeedure is being executed, it has exclusive access to the

312 PER BRINCH HANSEN

permanent variables of the monitor. If concurrent processes try to call pro­
cedures within the same monitor simultaneously, these procedures will be
executed strictly one at a time.

Only monitors and constants can be permanent parameters of processes
and monitors. This rule ensures that processes only communicate by means
of monitors.

It is possible to define constants, data types, and local procedures within
monitors (and processes). The local procedures of a system type can only
be called within the system type. To prevent deadlock of monitor calls and
ensure that access rights are hierarchical the following rules are enforced:
A procedure must be declared before it can be called; procedure definitions
cannot be nested and cannot call themselves; a system type cannot call its
own procedure entries.

The absence of recursion makes it possible for a compiler to determine the
store requirements of all system components. This and the use of permanent
components make it possible to use fixed store allocation on a computer that
does not support paging.

Since system components are permanent they must be declared as per­
manent variables of other components.

D Queues

A monitor procedure can delay a calling process for any length of time by
executing a delay operation on a queue variable. Only one process at a
time can wait in a queue. When a calling process is delayed by a monitor
procedure it loses its exclusive access to the monitor variables until another
process calls the same monitor and executes a continue operation on the
queue in which the process is waiting.

The continue operation makes the calling process return from its monitor
call. If any process is waiting in the selected queue, it will immediately
resurne the execution of the monitor procedure that delayed it. After being
resumed, the process again has exclusive access to the permanent variables
of the monitor.

Other variants of process queues (called "events" and "conditions") are
proposed in Brinch Hansen (1972) and Hoare (1974). They are multiprocess
queues that use different (but fixed) scheduling rules. We do not yet know
from experience which kind of queue will be the most convenient one for op­
erating system design. A single-process queue is the simplest tool that gives
the programmer complete control of the scheduling of individual processes.

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 313

Later, I will show how multiprocess queues can be built from single-process
queues.

A queue must be declared as a permanent variable within a monitor type.

E Classes

Every disk buffer has its own virtual disko A virtual disk is defined as a class
type:

type virtualdisk =
class(consoleaccess, diskaccess: resource);

var terminal: virtualconsole; peripheral: disk;

procedure entry read(pageno: integer; var block: page);
var error: boolean;
begin

repeat
diskaccess.request;
peripheral.read(pageno, block, error);
diskaccess.release;
if error then terminal.write('disk failure');

until not error;
end;

procedure entry write(pageno: integer; block: page);
begin "similar to read" end;

begin "initial statement"
init terminal(consoleaccess), peripheral;

end

A virtual disk has access to a console resource and a disk resource. Its
permanent variables define a virtual console and a disko A process can access
its virtual disk by means of read and write procedures. These procedure
entries request and release exclusive access to the real disk before and after
each block transfer. If the real disk fails, the virtual disk calls its virtual
console to report the error.

The initial statement of a virtual disk initializes its virtual console and
the real disko

Section II-C shows an example of how a virtual disk is declared and
initialized (within a disk buffer).

314 PER BRINCH HANSEN

A class can only be initialized once. After initialization, its parameters
and private variables exist forever. A class procedure can only access its
own temporary and permanent variables. These cannot be accessed by other
components.

A class is a system component that cannot be called simultaneously by
several other components. This is guaranteed by the following rule: A class
must be dedared as a permanent variable within a system type; a dass
can be passed as a permanent parameter to another dass (but not to a
process or monitor). So a chain of nested dass calls can only be started by
a single process or monitor. Consequently, it is not necessary to schedule
simultaneous class calls at run time-they cannot occur.

F Input/Output

The real disk is controlled by a class

type disk = dass

with two procedure entries

read(pageno, block, error)
write(pageno, block, error)

The dass uses a standard procedure

io(block, param, device)

to transfer a block to or from the disk device. The io parameter is arecord

var param:
record

operation: iooperation;
result: ioresult;
pageno: integer

end

that defines an input/output operation, its result, and a page number on the
disko The calling process is delayed until an io operation has been completed.

A virtual console is also defined as a dass

type virtualconsole =
dass(access: resource);
var terminal: console;

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 315

It can be accessed by read and write operations that are similar to each
other:

procedure entry read(var text: !ine);
begin

access.request;
terminal.read(text);
access.release;

end

The real console is controlled by a dass that is similar to the disk dass.

G Multiprocess Scheduling

Access to the console and disk is controlled by two monitors of type re­
source. To simplify the presentation, I will assume that competing processes
are served in first-come, first-served order. (A much better disk scheduling
algorithm is defined in Hoare (1974). It can be programmed in Concurrent
Pascal as weIl, but involves more details than the present one.)

We will define a multiprocess queue as an array of single-process queues

type multiqueue = array [O .. qlength-l] of queue

where qlength is an upper bound on the number of concurrent processes in
the system.

A first-come, first-served scheduler is now straightforward to program:

316 PER BRINCH HANSEN

type resüuree =

monitor

var free: büülean; q: multiqueue;
head, tail, length: integer;

procedure entry request;
var arrival: integer;
begin

if free then free := false
else

begin
arrival := tail;
tail := (tail + 1) mod qlength;
length := length + 1;
delay(q[arrival]);

end;
end;

procedure entry release;
var departure: integer;
begin

if length = 0 then free : = true
else

begin
departure := head;
head := (head + 1) mod qlength;
length : = length - 1;
eüntinue(q [departure]);

end;
end;

begin "initial statement"
free := true; length := 0;
head := 0; tail := 0;

end

H Initial Process

Finally, we will put all these components together into a concurrent pro­
gram. A Concurrent Pascal program consists of nested definitions of system
types. The outermost system type is an anonymous process, called the ini­
tial process. An instance of this process is created during system loading. It

THE PROGRAMMING LANGUAGE CONCURRENT PASCAL 317

initializes the other system components.
The initial process defines system types and instances of them. It exe­

cutes statements that initializes these system components. In our example,
the initial process can be sketched as follows (ignoring the problem of how
base addresses and limits of disk buffers are defined):

type
resouree = monitor ... end;
eonsole = dass ... end;
virtualconsole = dass(aeeess: resouree); ... end;
disk = dass ... end;
virtualdisk = dass(eonsoleaeeess, diskaeeess: resouree); ... end;
diskbuffer =

monitor(eonsoleaeeess, diskaeeess: resouree; base, limit: integer); ...
end;

inputproeess = process(buffer: diskbuffer); ... end;
jobproeess = process(input, output: diskbuffer); ... end;
outputproeess = process(buffer: diskbuffer); ... end;

var
eonsoleaeeess, diskaeeess: resouree;
bufferl, buffer2: diskbuffer;
reader: inputproeess;
master: jobproeess;
writer: outputproeess;

begin
init eonsoleaeeess, diskaeeess,

end.

bufferl (eonsoleaeeess, diskaeeess, basel, limitl),
buffer2 (eonsoleaeeess, diskaeeess, base2, limit2),
reader(bufferl) ,
master(buffer l, buffer2),
writer (b uffer2) ;

When the execution of a process (such as the initial process) terminates,
its private variables continue to exist. This is necessary because these vari­
ables may have been passed as permanent parameters to other system com­
ponents.

Acknowledgements

It is a pleasure to acknowledge the immense value of a continuous exchange
of ideas with C.A.R. Hoare on structured multiprogramming. I also thank

318 PER BRINCH HANSEN

my students L. Medina and R. Varela for their helpful comments on this
paper.

References

Brinch Hansen, P. 1970. The nucleus of a multiprogramming system. Gommunications 0/
the AGM 13, 4 (April), 238-250.

Brinch Hansen, P. 1972. Structured multiprogramming. Gommunications 0/ the A GM 15,
7 (July), 574-578.

Brinch Hansen, P. 1973. Operating System Principles. Prentice-Hall, Englewood Cliffs,
NJ, (July).

Brinch Hansen, P. 1974a. A programming methodology for operating system design. Pro­
ceedings 0/ the IFIP Gongress 74, Stockholm, Sweden, (August). North-Holland, Am­
sterdam, The Netherlands, 394-397.

Brinch Hansen, P. 1974b. Concurrent programming concepts. AGM Gomputing Surveys
5,4 (December), 223-245.

Dahl, O.-J., and Hoare, C.A.R. 1972. Hierarchical program structures. In Structured
Programming, O.-J. Dahl, E.W. Dijkstra, and C.A.R. Hoare, Eds. Academic Press,
New York.

Dijkstra, E.W. 1971. Hierarchical ordering of sequential processes. Acta Informatica 1, 2,
115-138.

Hoare, C.A.R. 1974. Monitors: An operating system structuring concept. Gommunica­
tions 0/ the AGM 17,10 (October), 549-557.

Simon, H.A. 1962. The architecture of complexity. Proceedings 01 the American Philo­
sophical Society 106, 6, 468-482.

Wirth, N. 1971. The programming language Pascal. Acta In/ormatica 1, 1,35-63.

PART IV

MODEL OPERATING SYSTEMS

11

THE SOLO OPERATING SYSTEM:
A CONCURRENT PASCAL

PROGRAM
PER BRINCH HANSEN

(1976)

This is a description of the single-user operating system Solo written in the

programming language Concurrent Pascal. It supports the development of

Sequential and Concurrent Pascal programs for the PDP 11/45 computer.

Input/output are handled by concurrent processes. Pascal programs can call

one another recursively and pass arbitrary parameters among themselves. This

makes it possible to use Pascal as a job control language. Solo is the first

major example of a hierarchical concurrent program implemented in terms

of abstract data types (classes, monitors and processes) with compile-time

control of most access rights. It is described he re from the user's point of view

as an introduction to another paper describing its internal structure.

INTRODUCTION

This is a description of the first operating system Solo written in the pro­
gramming language Concurrent Pascal (Brinch Hansen 1975). It is a simple,
but useful single-user operating system for the development and distribution
of Pascal programs for the PDP 11/45 computer. It has been in use since
May 1975.

From the user's point of view there is nothing unusual about the system.
It supports editing, compilation and storage of Sequential and Concurrent
Pascal programs. These programs can access either console, cards, printer,

P. Brinch Hansen, The Solo operating system: a Concurrent Pascal program. Sojtware­
Pmctice and Experience 6, 2 (April-June 1976), 141-149. Copyright © 1975, Per Brinch
Hansen. Reprinted by permission.

321

322 PER BRINCH HANSEN

tape or disk at several levels (character by character, page by page, file
by file, or by direct device access). Input, processing, and output of files
are handled by concurrent processes. Pascal programs can call one another
recursively and pass arbitrary parameters among themselves. This makes it
possible to use Pascal as a job controllanguage (Brinch Hansen 1976a).

To the system programmer, however, Solo is quite different from many
other operating systems:

1. Less than 4 per cent of it is written in machine language. The rest is
written in Sequential and Concurrent Pascal.

2. In contrast to machine-oriented languages, Pascal does not contain
low-level programming features, such as registers, addresses and inter­
rupts. These are all handled by the virtual machine on which compiled
programs run.

3. System protection is achieved largely by means of compile-time check­
ing of access rights. Run-time checking is minimal and is not supported
by hardware mechanisms.

4. Solo is the first major example of a hierarchical concurrent program
implemented by means of abstract data types (classes, monitors, and
processes) .

5. The complete system consisting of more than 100,000 machine words of
code (including two compilers) was developed by a student and myself
in less than a year.

To appreciate the usefulness of Concurrent Pascal one needs a good un­
derstanding of at least one operating system written in the language. The
purpose of this description is to look at the Solo system from a user's point
of view before studying its internal structure (Brinch Hansen 1976b). It teIls
how the user operates the system, how data flow inside it, how programs call
one another and communicate, how files are stored on disk, and how weIl
the system performs in typical tasks.

JOB CONTROL

The user controls program execution from a display (or a teletype). He calls
a program by writing its name and its parameters, for example:

SOLO: A CONCURRENT PASCAL PROGRAM 323

move(5)
read(maketemp, seqcode, true)

The first command positions a magnetic tape at file number 5. The second
one inputs the file to disk and stores it as sequential code named maketemp.
The boolean true protects the file against accidental deletion in the future.

Programs try to be helpful to the user when he needs it. If the user
forgets which programs are available, he may for example type:

help

(or anything else). The system responds by writing:

not executable, try
list (catalog, seqcode, console)

The suggested command lists the names of all sequential programs on the
console.

If the user knows that the disk contains a certain program, but is un­
certain about its parameter conventions, he can simply call it as a program
without parameters, for example:

read

The program then gives the necessary information:

tryagain
read(file: identifier; kind: filekind; protect: boolean)

using
filekind = (scratch, ascii, seqcode, concode)

Still more information can be gained about a program by reading its
manual:

copy(readman, console)

A user session may begin with the input of a new Pascal program from
cards to disk:

copy(cards, sorttext)

followed by a compilation:

324 PER BRINCH HANSEN

pascal(sorttext, printer, sort)

If the compiler reports errors on the program listing:

pascal:
compilation errors

the next step is usually to edit the program text:

edi t (sorttext)

and compile it again. After a successful compilation, the user program can
now be called directly:

sort(...)

The system can also read job control commands from other media, for
example:

do(tape)

A task is preempted by pushing the bell key on the console. This causes
the system to reload and initialize itself. The command start can be used to
replace the Solo system with any other concurrent program stored on disko

DATA FLOW

Figure 1 shows the data fiow inside the system when the user is processing
a single text file sequentially by copying, editing, or compiling it.

The input, processing, and output of text take place simultaneously.
Processing is done by a job process that starts input by sen ding an argument
through a buffer to an input process. The argument is the name of the input
device or disk file.

The input process sends the data through another buffer to the job pro­
cess. At the end of the file the input process sends an argument through
yet another buffer to the job process indicating whether transmission errors
occurred during the input.

Output is handled similarly by means of an output process and another
set of buffers.

In a single-user operating system it is desirable to be able to process a
file continuously at the highest possible speed. So the data are buffered in
core instead of on disko The capacity of each buffer is 512 characters.

SOLO: A CONCURRENT PASCAL PROGRAM 325

ARG BUFFER ARG BUFFER

INPUT
PROCESS

JOB
PROCESS

OUTPUT
PROCESS

Figure 1 Processes and buffers.

CONTROL FLOW

Figure 2 shows what happens when the user types a command such as:

edit(cards, tape)

After system loading the machine executes a Concurrent Pascal program
(Solo) consisting of three processes. Initially the input and output processes
both load and call a sequential program ia while the job process calls another
sequential program da. The do program reads the user command from the
console and calls the edit pro gram with two parameters, cards and tape.

The editor starts its input by sending the first parameter to the io pro­
gram executed by the input process. This causes the io program to call
another program cards which then begins to read cards and send them to
the job process.

The editor starts its output by sending the second parameter to the io
program executed by the output process. The latter then calls a program
tape which reads data from the job process and puts them on tape.

At the end of the file the cards and tape programs return to the io
programs which then await further instructions from the job process. The
editor returns to the do program which then reads and interprets the next
command from the console.

It is worth observing that the operating system itself has no built-in
drivers for input/output from various devices. Data are simply produced

326 PER BRINCH HANSEN

CARDS TAPE

10 10

INPUT JOB OUTPUT
PROCESS PROCESS PROCESS

Figure 2 Concurrent processes and sequential programs.

and consumed by Sequential Pascal programs stored on disko The operat­
ing system only contains the mechanism to call these. This gives the user
complete freedom to supplement the system with new devices and simulate
complicated input/output such as the merging, splitting and formatting of
files without changing the job programs.

Most important is the ability of Sequential Pascal programs to call one
another recursively with arbitrary parameters. In Fig. 2, for example, the
do program calls the edit program with two identifiers as parameters. This
removes the need for aseparate (awkward) job controllanguage. The job
contral language is Pascal.

This is illustrated more dramatically in Fig. 3 which shows how the
command:

pascal(sorttext, printer, sort)

causes the do program to call the program pascal. The latter in turn calls
seven compiler passes one at a time, and (if the compiled program is correct)
pascal finally calls the filing system to store the generated code.

A program does not know whether it is being called by another program
or directly from the console. In Fig. 3 the program pascal calls the filing sys­
tem. The user, may, however, also call the file system directly, for example,
to protect his program against accidental deletion:

SOLO: A CONCURRENT PASCAL PROGRAM 327

PASS 1 PASS 2 PASS 7 FILE

DO

JOB PROCESS

Figure 3 Compilation.

file(protect, sort, true)

The Pascal pointer and heap concepts give programs the ability to pass
arbitrarily complicated data structures among each other, such as symbol
tables during compilation (Jensen 1974). In most cases, however, it suffices
to be able to use identifiers, integers, and booleans as program parameters.

STORE ALLOCATION

The run-time environment of Sequential and Concurrent Pascal is a kernel of
4 K words. This is the only program written in machine language. The user
loads the kernel from disk into co re by means of the operator's panel. The
kernel then loads the Solo system and starts it. The Solo system consists
of a fixed number of processes. They occupy fixed amounts of co re store
determined by the compiler.

All other programs are written in Sequential Pascal. Each process stores
the code of the currently executed program in a fixed core segment. After
termination of a program called by another, the process reloads the previous
program from disk and returns to it. The data used by a process and the
programs called by it are all stored in a core resident stack of fixed length.

328 PER BRINCH HANSEN

FILE SYSTEM

The backing store is a slow disk with removable packs. Each user has his
own disk pack containing the system and his private files. So there is no
need for a hierarchical file system.

A disk pack contains a catalog of all files stored on it. The catalog
describes itself as a file. A file is described by its name, type, protection and
disk address. Files are looked up by hashing.

All system programs check the types of their input files before operating
on them and associate types with their output files. The Sequential Pascal
compiler, for example, will take input from an ascii file (but not from a
scratch file), and will make its output a sequential code file. The possible
file types are scratch, ascii, seqcode and concode.

Since each user has his own disk pack, files need only be protected against
accidental overwriting or deletion. All files are initially unprotected. To
protect one the user must call the file system from the console as described
in Section 4.

To avoid compacting of files (lasting several minutes), file pages are scat­
tered on disk and addressed indirectly through a page map (Fig. 4). A file is
opened by looking it up in the catalog and bringing its page map into core.

CATALOG PAGE MAP PAGES

FILE

Figure 4 File system.

The resident part of the Solo system implements only the most frequently
used file operations: lookup, open, elose, get and put. A nonresident, sequen­
tial program, called file, handles the more complicated and less frequently
used operations: create, replace, rename, protect, and delete file.

SOLO: A CONCURRENT PASCAL PROGRAM 329

DISK ALLOCATION

The disk always contains a scratch file of 255 pages called next. A program
creates a new file by outputting data to this file. It then calls the file system
to associate the data with a new name, a type, and a length (::; 255). Having
done this the file system creates a new instance of next.

This scheme has two advantages:

1. All files are initialized with typed data.

2. A program creating a file need only call the nonresident file system
on ce (after producing the file). Without the file next the file system
would have to be called at least twice: before output to create the file,
and after output to define its finallength..

The disadvantages of having a single file next is that a program can only
create one file at a time.

Unused disk pages are defined by apowerset of page indices stored on
the disk.

On a slow disk special care must be taken to make program loading fast.
If program pages were randomly scattered on the disk it would take 16
seconds to load the compiler and its input/output drivers. An algorithm
described in Brinch Hansen (1976c) reduces this to 5 seconds. When the
system creates the file next it tries to place it on consecutive pages within
neighboring cylinders as far as possible (but will scatter the pages somewhat
if it has to). It then rearranges the page indices within the page map to
minimize the number of disk revolutions and cylinder movements needed to
load the file. Since this is done before a program is compiled and stored on
disk it is called disk scheduling at compile time.

The system uses a different allocation technique for the two temporary
files used during compilation. Each pass of the compiler takes input from
a file produced by its predecessor and delivers output to its successor on
another file. A program maketemp creates these files and interleaves their
page indices (making every second page belong to one file and every second
one to the other). This makes the disk head sweep slowly across both files
during a pass instead of moving wildly back and forth between them.

OPERATOR COMMUNICATION

The user communicates with the system through a console. Since a task
(such as editing) usually involves several programs executed by concurrent

330 PER BRINCH HANSEN

processes these programs must identify themselves to the user before asking
for input or making output:

do:
edit(cards, tape)
edit:

do:

Program identity is only displayed every time the user starts talking to a
different program. A program that communicates several times with the
user without interruption (such as the editor) only identifies itself once.

Normally only one program at a time tries to talk to the user (the current
program executed by the job process). But an input/output error may cause
a message from another process:

tape:
inspect

Since processes rarely compete for the console, it is sufficient to give a process
exclusive access to the user for input or output of a single line. A conversation
of severallines will seldom be interrupted.

A Pascal program only calls the operating system once with its identifi­
cation. The system will then automatically display it when necessary.

SIZE AND PERFORMANCE

The Solo system consists of an operating system written in Concurrent Pas­
cal and a set of system programs written in Sequential Pascal:

Program Pascal Machine
lines words

operating system 1,300 4K
do, io 700 4K
file system 900 5K
concurrent compiler 8,300 42 K
sequential compiler 8,300 42 K
editor 400 2K
input/ output programs 600 3K
others 1,300 8K

21,800 1l0K

SOLO: A CONCURRENT PASCAL PROGRAM 331

(The two Pascal compilers can be used under different operating systems
written in Concurrent Pascal-not just Solo.)

The amount of code written in different programming languages is:

Language %
machine language 4
Concurrent Pascal 4
Sequential Pascal 92

This clearly shows that a good sequential programming language is more
important for operating system design than a concurrent language. But
although a concurrent program may be small it still seems worthwhile to
write it in a high-level language that enables a compiler to do thorough
checking of data types and access rights. Otherwise, it is far too easy to
make time-dependent programming errors that are extremely difficult to
locate.

The kernel written in machine language implements the process and mon­
itor concepts of Concurrent Pascal and res ponds to interrupts. It is inde­
pendent of the particular operating system running on top of it.

The Solo system requires a core store of 39 K words for programs and
data:

Programs K words
kernel
operating system
input/output programs
job programs
core store

4
11

6
18
39

This amount of space allows the Pascal compiler to compile itself.
The speed of text processing using disk input and tape output is:

Program
copy
edit
compile

char/sec
11,600

3,300-6,200
240

All these tasks are 60-100 per cent disk limited. These figures do not distin­
guish between time spent waiting for peripherals and time spent executing
operating system or user code since this distinction is irrelevant to the user.
They illustrate an overall performance of a system written in a high-level
language using straight forward code generation without any optimization.

332 PER BRINCH HANSEN

FINAL REMARKS

The compilers for Sequential and Concurrent Pascal were designed and im­
plemented by Al Hartmann and me in half a year. I wrote the operating
system and its utility programs in 3 months. In machine language this
would have required 20-30 man-years and nobody would have been able
to understand the system fully. The use of an efficient, abstract program­
ming language reduced the development cost to less than 2 man-years and
produced a system that is completely understood by two programmers.

The low cost 01 programming makes it acceptable to throw away awkward
programs and rewrite them. We did this several times: An early 6-pass com­
piler was never released (although it worked perfectly) because we found its
structure too complicated. The first operating system written in Concurrent
Pascal (called Deamy) was used only to evaluate the expressive power of the
language and was never built (Brinch Hansen 1974). The second one (called
Pilot) was used for several months but was too slow.

From a manufacturer's point of view it is now realistic and attractive to
replace a huge ineffective "general-purpose" operating system with a range
of small, efficient systems for special purposes.

The kernei, the operating system, and the compilers were tested very
systematically initially and appear to be correct.

Acknowledgements

The work of Bob Deverill and Al Hartmann in implementing the kernel and
compiler of Concurrent Pascal has been essential for this project. I am also
grateful to Gilbert McCann for his encouragement and support.

Stoy and Strachey (1972) recommend that one should learn to build
good operating systems for single-users before trying to satisfy many users
simultaneously. I have found this to be very good advice. I have also tried
to follow the advice of Lampson (1974) and make both high- and low-Ievel
abstract ions available to the user programmer.

The Concurrent Pascal project is supported by the National Science
Foundation under grant number DCR 74-17331.

P. Brinch Hansen 1974. Deamy-A structured operating system. Information Science,
California Institute of Technology, (May) , (out of print).

P. Brinch Hansen 1975. The programming language Concurrent Pascal. IEEE Trans. on
Software Engineering, 1, 2 (June).

P. Brinch Hansen 1976a. The Solo operating system: job interface. Software-Practice
and Experience, 6, 2 (April-June).

SOLO: A CONCURRENT PASCAL PROGRAM 333

P. Brinch Hansen 1976b. The Solo operating system: processes, monitors and classes.
Software-Practice and Experience, 6, 2 (April-June).

P. Brinch Hansen 1976c. Disk scheduling at compile-time. Software-Practice and Expe­
rience 6, 2 (April-June), 201-205.

K. Jensen and N. Wirth 1974. Pascal-User manual and report. Lecture Notes in Computer
Science, 18, Springer-Verlag, New York.

B. W. Lampson 1974. An open operating system for a single-user machine. In Operating
Systems, Lecture Notes in Computer Science, 16, Springer Verlag, 208-217.

J. E. Stoy and C. Strachey 1972. OS6-an experimental operating system for a small
computer. Comput. J., 15, 2.

12

THE SOLO OPERATING SYSTEM:
PROCESSES, MONITORS

AND CLASSES

PER BRINCH HANSEN

(1976)

This paper describes the implementation of the Solo operating system written

in Concurrent Pascal. It explains the overall structure and details of the

system in wh ich concurrent processes communicate by means of a hierarchy

of monitors and classes. The concurrent program is a sequence of nearly

independent components of less than one page of text each. The system has

been operating since May 1975.

INTRODUCTION

This is a description of the program structure of the Solo operating system.
Solo is a single-user operating system for the PDP 11/45 computer writ­
ten in the programming language Concurrent Pascal (Brinch Hansen 1976a,
1976b).

The main idea in Concurrent Pascal is to divide the global data structures
of an operating system into small parts and define the meaningful operations
on each of them. In Solo, for example, there is a data structure, called a
resource, that is used to give concurrent processes exclusive access to a disk.
This data structure can only be accessed by means of two procedures that
request and release access to the disk. The programmer specifies that these
are the only operations one can perform on aresource, and the compiler

P. Brinch Hansen, The Solo operating system: processes, monitors and classes. Sojtware­
Pmctice and Experience 6, 2 (April-June 1976), 165-200. Copyright © 1975, Per Brinch
Hansen. Reprinted by permission.

334

SOLO: PROCESSES, MONITORS AND CLASSES 335

checks that this rule is obeyed in the rest of the system. This approach
to program reliability has been called resource protection at compile-time
(Brinch Hansen 1973). It makes programs more reliable by detecting incor­
rect interactions of program components before they are put into operation.
It makes them more efficient by reducing the need for hardware protection
mechanisms.

The combination of a data structure and the operations used to access
it is called an abstract data type. It is abstract because the rest of the
system need only know what operations one can perform on it but can
ignore the details of how they are carried out. A Concurrent Pascal program
is constructed from three kinds of abstract data types: processes, monitors
and classes. Processes perform concurrent operations on data structures.
They use monitors to synchronize themselves and exchange data. They
access private data structures by means of classes. Brinch Hansen (1975a)
is an overview of these concepts and their use in concurrent programming.

Solo is the first major example of a hierarchical concurrent program
implemented in terms of abstract data types. It has been in use since May
1975. This is a complete, annotated program listing of the system. It also
explains how the system was tested systematically.

PROGRAM STRUCTURE

Solo consists of a hierarchy of program layers, each of which controls a par­
ticular kind of computer resource, and a set of concurrent processes that use
these resourees (Fig. 1):

• Resource management controls the scheduling of the operator's eonsole
and the disk among eoneurrent processes.

• Console management lets proeesses eommunieate with the operator
after they have gained aecess to the eonsole.

• Disk management gives processes access to the disk files and a catalog
deseribing them.

• Program management fetehes program files from disk into eore on de­
mand from processes that wish to execute them.

• Buffer management transmits data among proeesses.

These facilities are used by seven concurrent processes:

336 PER BRINCH HANSEN

INITIAL CARD INPUT JOB OUTPUT PRINTER LOADER
PROCESS PROCESS PROCESS PROCESS PROCESS PROCESS PROCESS

Figure 1 Program layers and processes.

• A job process executes Pascal programs upon request from the opera­
tor.

• Two input/output processes produce and consume the data of the job
process.

• A card process feeds punched cards to the input process which then
removes trailing blanks from them and packs the text into blocks.

• A printer process prints lines that are unpacked from blocks and sent
to it by the output process.

• A loader process preempts and reinitializes the operating system when
the operator pushes the bell key on the console.

• An initial process starts up the rest of the system after system loading.

The term program layer is only used as a convenient way of explaining
the gross division of labor within the system. It cannot be represented by
any language notation in Concurrent Pascal.

SOLO: PROCESSES, MONITORS AND CLASSES 337

ABSTRACT DATA TYPES

Each program layer consists of one or more abstract data types (monitors
and classes).

Resource management

A fifa class implements a first-in, first-out queue that is used to maintain
multiprocess queues and message buffers.

A resaurce monitor gives processes exclusive access to a computer re­
süurce. It is used to control disk access.

A typewriter resaurce monitor gives processes exclusive access to a console
and teIls them whether they need to identify themselves to the operator.

Console management

A typewriter class transmits a single line between a process and a console
(but does not give a process exclusive access to it).

A terminal class gives a process the illusion that it has its own private
console by giving it exclusive access to the operator for input or output of a
single line.

A terminal stream makes a terminal look character oriented.

Disk management

A disk class can access a page anywhere on disk (but does not give a process
exclusive access to it). It uses a terminal to report disk failure.

A disk file can access any page belonging to a particular file. The file
pages, wh ich may be scattered on disk, are addressed indirectly through a
page map. The disk address of the page map identifies the file. It uses a
disk to access the map and its pages.

A disk table class makes a disk catalog of files look like an array of entries,
some üf which describe files, and some of which are empty. The entries are
identified by numeric indices. It uses a disk file tü access the catalog page
by page.

A disk catalag monitor can look up files in a disk catalog by means of
their names. It uses a resource to get exclusive acess to the disk and a disk
table to scan the catalog.

A data file class gives a process access to a named disk file. It uses a
resource, a disk catalog, and a disk file to access the disk.

338 PER BRINCH HANSEN

Program management

A program file dass ean load a named disk file into eore when a proeess
wishes to exeeute it. It uses a resouree, a disk eatalog, and a disk file to do
this.

A program stack monitor keeps traek of nested program ealls within a
proeess.

Buifer management

The buffer monitors transmit various kinds of messages between proeesses:
arguments (sealars or identifiers), lines, and pages.

The following defines the purpose, specifieation, and implementation of
eaeh of these abstract data types.

INPUT/OUTPUT

The following data types are used in elementary input/output operations:

type iodevice =
(typedevice, diskdevice, tapedevice, printdevice, carddevice);

type iooperation = (input, output, move, contral);

type ioarg = (writeeof, rewind, upspace, backspace);

type ioresult =
(complete, intervention, transmission, failure,
endfile, endmedium, startmedium);

type ioparam =
record

operation: iooperation;

status: ioresult;

arg: ioarg

end;

const nl = '(:10:)'; ff = '(:12:)'; er = '(:13:)'; em = '(:25:)';

const linelength = 132;

SOLO: PROCESSES, MONITORS AND CLASSES 339

type line = array [l..linelength] of char;

const pagelength = 512;
type page = array [l..pagelength] of char;

They define the identifiers of peripheral devices, input/output operations
and their results as wen as the data types to be transferred (printer lines or
disk pages). The details of input/output operations are explained in Brinch
Hansen (1975b).

FIFO QUEUE

type fifa = dass (limit: integer)

A fifo keeps track of the length and the head and tail indices of an array
used as a first-in, first-out queue (but does not contain the queue elements
themselves). A fifo is initialized with a constant that defines its range of
queue indices 1. .limit. A user of a fifo must ensure that the length of the
queue remains within its physicallimit:

o :::; arrivals - departures :::; limit

The routines of a fifo are:

functian arrival: integer

Returns the index of the next queue element in which an arrival can take
place.

functian departure: integer

Returns the index of the next queue element from which adeparture can
take place.

function empty: boolean

Defines whether the queue is empty (arrivals = departures).

function full: boolean

Defines whether the queue is fun (arrivals = departures + limit).

340 PER BRINCH HANSEN

Implementation:

A fifo queue is represented by its head, tail and length. The Concurrent
Pascal compiler will ensure that these variables are only accessed by the
routines of the dass. In general, a dass variable can only be accessed by
calling one of the routines associated with it (Brinch Hansen 1975a). The
final statement of the dass is executed when an instance of a fifo queue is
dedared and initialized.

type fifo =

class(limit: integer);

var head, tail, length: integer;

function entry arrival: integer;

begin

arrival := tail;
tail := tail mod limit + 1;
length := length + 1;

end;

function entry departure: integer;
begin

departure := head;
head := head mod limit + 1;
length : = length - 1;

end;

function entry empty: boolean;

begin empty := (length = 0) end;

function entry full: boolean;

begin full := (length = limit) end;

begin head := 1; tail := 1; length := 0 end;

SOLO: PROCESSES, MONITORS AND CLASSES 341

RESOURCE

type resource = monitor

A resüuree gives exdusive aeeess tü a eümputer resüuree (but dües nüt per­
fürm any üperatiüns ün the resüuree itself). A user üf a resüuree must request
it befüre using it and release it afterwards. If the resüuree is released within
a finite time it will also. become available tü any prüeess requesting it within
a finite time. In shürt, the resüuree seheduling is fair.

procedure request

Gives the ealling proeess exdusive aeeess tü the resüuree.

procedure release

Makes the resüuree available für üther prücesses.

Implementation:

A resüuree is represented by its state (free ür used) and a queue üf processes
waiting for it. The multiprüeess queue is represented by twü data structures:
an array üf single-prücess queues and a fifü tü keep track üf the queue indices.

The initial statement at the end üf the münitür sets the resüuree state tü
free and initializes the fifü variable with a constant defining the tütal number
of processes that can wait in the queue.

The cümpiler will ensure that the münitür variables only ean be aeeessed
by ealling the routine entries assüciated with it. The generated code will
ensure that at most üne process at a time is executing a münitür routine
(Brinch Hansen 1975a). The monitür ean delay and (later) cüntinue the
exeeutiün üf a ealling proeess.

A routine assüciated with a dass ür münitür is ealled by mentioning the
dass ür münitür variable füllüwed by the name üf the routine. As an example

next.arrival

will perfürm an arrival üperatiün ün the fifü variable next.

const processcount = 7;
type processqueue = array [l..processcount] of queue;

type resource =

342 PER BRINCH HANSEN

monitor

var free: boolean; q: processqueue; next: fifo;

procedure entry request;

begin
if free then free := false
else delay(q[next.arrival]);

end;

procedure entry release;
begin

if next.empty then free := true
else continue(q[next.departure]);

end;

begin free := true; init next(processcount) end;

TYPEWRITER RESOURCE

type typeresource = monitor

A typewriter resource gives proeesses exclusive a,eeess to a typewriter eon­
sole. A ealling proeess supplies an identifieation of itself and is told whether
it needs to display it to the operator. The resouree seheduling is fair as
explained in the definition of the resource monitor.

procedure request(text: line; var changed: boolean}

Gives the ealling proeess exclusive aeeess to the resouree. The proeess iden­
tifies itself by a text line. A boolean ehanged defines whether this is the
same identifieation that was used in the last eall of re quest (in whieh ease
there is no need to display it to the operator again).

procedure release

Makes the resouree available again for other proeesses.

SOLO: PROCESSES, MONITORS AND CLASSES 343

Implementation:

type typeresource =
monitor

var free: boolean; q: processqueue; next: fifo; header: line;

procedure entry request(text: line; var changed: boolean);

begin

if free then free := false

else delay(q[next.arrival]);

changed : = (header < > text);
he ader := text;

end;

procedure entry release;
begin

if next.empty then free := true

else continue(q[next,departure]);
end;

begin

free := true; header[l] := nl;
init next(processcount);

end;

TYPEWRITER

type typewriter = dass (device: iodevice)

A typewriter can transfer a text line to or from a typewriter console. It does
not identify the calling process on the console or give it exclusive access to
it. A typewriter is initialized with the identifier of the device it controls.

A newline character (nI) terminates the input or output of a line. A li ne
that exceeds 73 characters is forcefully terminated by a newline character.

procedure write(text: line)

Writes a line on the typewriter.

344 PER BRINCH HANSEN

procedure read(var text: line)

Rings the bell on the typewriter and reads a li ne from it. Single characters
or the whole line can be erased and retyped by typing control c or control l.
The typewriter responds to erasure by writing a question mark.

Implementation:

The procedure writechar is not a routine entry; it can only be called within
the typewriter dass. The standard procedure io delays the calling process
until the transfer of a single character is completed.

type typewriter =
class(device: iodevice);

const linelimit = 73;
cancelchar = '(:3:)'; "control c"
cancelline = '(:12:)'; "controll"

procedure writechar(x: char);
var param: ioparam; c: char;
begin

param.operation := output;
c:= X;

io(c, param, device);
end;

procedure entry write(text: line);

var param: ioparam; i: integer; c: char;

begin
param.operation := output;

i:= 0;

repeat

i := i + 1; c := text[iJ;
io(c, param, device);

until (c = nl) or (i = linelimit);

if c <> nl then writechar(nl);

end;

procedure entry read(var text: line);

SOLO: PROCESSES, MONITORS AND CLASSES 345

const bel = '(:7:)';
var param: ioparam; i: integer; c: char;
begin

writechar (bel) ;

param.operation := input;

i := 0;

repeat

io(c, param, device);

if c = cancelline then

begin

writechar(nl);

writechar(' ?');
i:= 0;

end

else if c = cancelchar then
begin

if i > 0 then

begin

writechar(' ?');

i := i-I;

end

end

else
begin i := i + 1; text[i] := c end

until (c = nl) or (i = linelimit);

if c <> nl then
begin

writechar(nl);

text[linelimit + 1] := nl;

end;

end;

begin end;

346 PER BRINCH HANSEN

TERMINAL

type terminal = class (access: typeresource)

A terminal gives a single proeess exdusive aeeess to a typewriter, identifies
the proeess to the operator and transfers a line to or from the device. The
terminal uses a typewriter resouree to get exdusive aeeess to the device.

procedure read(header: line; var text: line)

Writes a header (if neeessary) on the typewriter and reads a text line from
it.

procedure write(header, text: line)

Writes a he ader (if neeessary) followed by a text line on the typewriter.

The header identifies the ealling proeess. It is only output if it is different
from the last header output on the typewriter.

Implementation:

A dass or monitor ean only eall other dasses or monitors if they are dedared
as variables within it or passed as parameters during initialization (Brineh
Hansen 1975a). So a terminal ean only eall the monitor access and the dass
unit. These aeeess rights are eheeked during eompilation.

type terminal =
class(access: typeresource);

var unit: typewriter;

procedure entry read(header: line; var text: line);

var changed: boolean;

begin

access.request (header , changed);
if changed then unit.write(header);

unit.read(text);

access.release;

end;

procedure entry write(header, text: line);

SOLO: PROCESSES, MONITORS AND CLASSES 347

var changed: boolean;
begin

access. request (header , changed);
if changed then unit.write(header);
unit.write(text) ;
access.release;

end;

begin init unit(typedevice) end;

TERMIN AL STREAM

type terminalstream = class(operator: terminal)

A terminal stream enables a proeess to identify itself onee and for all and
then proeeed to read and write single eharacters on a terminal. A terminal
stream uses a terminal to input or output a line at a time.

procedure read(var c: char)

Reads a eharacter from the terminal.

procedure write(c: char)

Writes a character on the terminal.

procedure reset(text: line)

Identifies the ealling proeess.

Implementation:

The terminal stream eontains two line buffers for input and output.

type terminalstream =

class(operator: terminal);

const !ine!imit = 80;

var header: !ine; endinput: boolean;
inp, out: record count: integer; text: !ine end;

348 PER BRINCH HANSEN

procedure initialize(text: line);
begin

he ader := text;
endinput := true;

out.count := 0;
end;

procedure entry read(var c: char);

begin
with inp do

begin
if endinput then

begin
operator.read(header, text);
count := 0;

end;
count := count + 1;
c := text[count];
endinput := (c = nl);

end;
end;

procedure entry write(c: char);
begin

with out do
begin

count := count + 1;
text [count] := c;
if (c = nl) or (count = linelimit) then

begin

operator. write(header, text);

count := 0;

end;
end;

end;

procedure entry reset(text: line);

SOLO: PROCESSES, MONITORS AND CLASSES 349

begin initialize(text) endj

begin initialize('unidentified:(:10:)') end;

DISK

type disk = class(typeuse: typeresource)

A disk ean transfer any page to or from a disk deviee. A disk uses a type­
writer resouree to get exclusive aeeess to a terminal to report disk failure.
After a disk failure, the disk writes a message to the operator and repeats
the operation when he types a newline character.

procedure read(pageaddr: integer; var block: univ page)

Reads a page identified by its absolute disk address.

procedure write(pageaddr: integer; var block: univ page)

Writes a page identified by its absolute disk address.

A page is declared as a universal type to make it possible to use the disk
to transfer pages of different types (and not just text).

Implementation:

The standard procedure io delays the calling process until the disk transfer
is eompleted (Brinch Hansen 1975b).

type disk =
class(typeuse: typeresource);

var operator: terminal;

procedure transfer(command: iooperation;

pageaddr: univ ioargj var block: page);

var param: ioparamj response: line;

begin

with param, operator do

begin

operation := command;

350

end;

PER BRINCH HANSEN

arg := pageaddr;

io(block, param, diskdevice);

while status <> complete do

end;

begin

write('disk: (:10:)', 'error(:10:) ');

read('push return(: 10:)', response);

io(block, param, diskdevice);
end;

procedure entry read(pageaddr: integer; var block: univ page);
begin transfer(input, pageaddr, block) end;

procedure entry write(pageaddr: integer; var block; univ page);

begin transfer (output, pageaddr, block) end;

begin init operator(typeuse) end;

DISK FILE

type diskfile = class(typeuse: typeresource)

A disk file enables a proeess to aeeess a disk file eonsisting of a fixed number
of pages (:s: 255). A disk file uses a typewriter resouree to get exdusive
aeeess to the operator after a disk failure.

The disk file is identified by the absolute address of a page map that
defines the length of the file and the disk addresses of its pages. To a ealling
proeess the pages of a file are numbered 1, 2, ... , length.

Initially, the file is dosed (inaeeessible). A user of a file must open it
before using it and dose it afterwards. Read and write have no effeet if the
file is dosed or if the page number is outside the range 1. .length.

procedure open(mapaddr: integer)

Makes a disk file with a given page map aeeessible.

procedure close

Makes the disk file inaeeessible.

SOLO: PROCESSES, MONITORS AND CLASSES 351

junction length: integer

Returns the length of the disk file (in pages). The length of a dosed file is
zero.

procedure read(pageno: integer; var block: univ page)

Reads a page with a given number from the disk file.

procedure write(pageno: integer; var block: univ page)

Writes a page with a given number on the disk file.

Implementation:

The variable length is prefixed with the word entry. This means that its
value can be used directly outside the dass. It can, however, only be changed
within the dass. So a variable entry is similar to a function entry. Variable
entries can only be used within dasses.

const maplength = 255;
type filemap =

record

filelength: integer;

pageset: array [l..maplength] of integer
end;

type diskfile =
class(typeuse: typeresource);

var unit: disk; map: filemap; opened: boolean;

entry length: integer;

function includes(pageno: integer): boolean;

begin

includes := opened &
(1 < = pageno) & (pageno < = length);

end;

procedure entry open(mapaddr: integer);

352 PER BRINCH HANSEN

begin
unit.read(mapaddr, map);

length := map.filelength;

opened : = true;

end;

procedure entry elose;

begin

length := 0;

opened : = false;

end;

procedure entry read(pageno: integer; 'var block: univ page);

begin

if ineludes(pageno) then

unit.read(map.pageset[pageno], block);
end;

procedure entry write(pageno: integer; var block: univ page);

begin
if ineludes(pageno) then

unit. write(map. pageset [pageno], block);

end;

begin

init unit(typeuse);

length := 0;

opened := false;

end;

CATALOG STRUCTURE

The disk contains a catalog of all files. The following data types define the
structure of the catalog:

const idlength = 12;

type identifier = array [l..idlength] of char;

type filekind = (empty, scratch, ascii, seqcode, concode);

SOLO: PROCESSES, MONITORS AND CLASSES 353

type fileattr =

record
kind: filekind;
addr: integer;
protected: boolean;
notused: array [1..5] of integer

end;

type catentry =

record
id: identifier;
attr: fileattr;
key, searchlength: integer

end;

const catpagelength = 16;
type catpage = array [1..catpagelength] of catentry;

const cataddr = 154;

The catalog is itself a file defined by a page map stored at the catalog
address. Every catalog page contains a fixed number of catalog entries. A
catalog entry describes a file by its identifier, attributes and hash key. The
search length defines the number of files that have a hash key equal to the
index of this entry. It is used to limit the search for a non-existing file name.

The file attributes are its kind (empty, scratch, ascii, sequential or con­
current code), the address of its page map, and a boolean defining whether it
is protected against accidental deletion or overwriting. The latter is checked
by all system programs operating on the disk, but not by the operating
system. Solo provides a mechanism for protection, but does not enforce it.

DISK TABLE

type disktable = class(typeuse: typeresource; cataddr: integer)

A disk table makes a disk catalog look like an array of catalog entries iden­
tified by numeric indices 1, 2, ... , length. A disk table uses a typewriter
resource to get exclusive access to the operator after a disk failure and a
catalog address to locate a catalog on disk.

354 PER BRINCH HANSEN

junction length: integer

Defines the number of entries in the catalog.

procedure read(i: integer; var elem: catentry)

Reads entry number i in the catalog. If the entry number is outside the
range 1 . .length the contents of the entry is undefined.

Implementation:

A disk table stores the most recently used catalog page to make a sequential
search of the catalog fast.

type disktable =
class(typeuse: typeresource; cataddr: integer);

var file: diskfile; pageno: integer; block: catpage;

entry length: integer;

procedure entry read(i: integer; var eIern: catentry);
var index: integer;
begin

index := (i - 1) div catpagelength + 1;

if pageno < > index then
begin

pageno := index;
file.read(pageno, block);

end;
eIern := block[(i - 1) mod catpagelength + 1];

end;

begin
init file(typeuse);
file.open(cataddr);
length := file.length * catpagelength;
pageno := 0;

end;

SOLO: PROCESSES, MONITORS AND CLASSES 355

DISK CATALOG

type diskcatalog =
monitor(typeuse: typeresource,- diskuse: resource,- cataddr: integer)

The disk catalog describes all disk files by me ans of a set of named entries
that can be looked up by proeesses. A disk eatalog uses a resouree to get
exclusive aecess to the disk during a eatalog lookup and a typewriter resource
to get exclusive aecess to the operator after a disk failure. It uses a eatalog
address to locate the catalog on disk.

procedure lookup(id: identifier,- var attr: fileattr,- var found: boolean)

Searehes for a catalog entry describing a file with a given identifier and
indicates whether it found it. If so, it also returns the file attributes.

Implementation:

A disk eatalog uses a disk table to make a eyclical search for an identifier.
The initial catalog entry is selected by hashing. The seareh stops when the
identifier is found or when there are no more entries with the same hash
key. The disk eatalog has exclusive aeeess to the disk during the lookup to
prevent eompeting processes from causing disk arm movement.

type diskcatalüg =
monitor(typeuse: typeresüurce; diskuse: resüuree; eataddr: integer);

var table: disktable;

function hash(id: identifier): integer;
var key, i: integer; c: char;
begin

key := 1; i := 0;

repeat
i := i + 1; c := id[i];
if e <> ' , then

key := key * ürd(c) mod table.length + 1;

until (c = ' ') or (i = idlength);
hash := key;

end;

356 PER BRINCH HANSEN

procedure entry lookup(id: identifier;

var attr: fileattr; var found: boolean);

var key, more, index: integer; eIern: catentry;
begin

diskuse.request;

key := hash(id);

table.read(key, eIern);

more := elem.searchlength;

index := key; found := false;

while not found & (more> 0) do
begin

table.read(index, eIern);
if elem.id = id then

begin attr := elem.attr; found := true end

else

begin
if elem.key = key then more := more - 1;

index := index mod table.length + 1;

end;

end;
diskuse.release;

end;

begin init table(typeuse, cataddr) end;

DATA FILE

type datafile =
class(typeuse: typeresource; diskuse: resource; catalog: diskcatalog)

A data file enables a proeess to aeeess a disk file by me ans of its name in a
diskeatalog. The pages of a data file are numbered 1, 2, ... , length. A data
file uses a resouree to get exclusive aeeess to the disk during a page transfer
and a typewriter resouree to get eXclusive aeeess to the operator after disk
failure. It uses a eatalog to look up the the file.

Initially a data file is inaeeessible (closed). A user of a data file must
open it before using it and close it afterwards. If a proeess needs eXclusive
aeeess to a data file while using it, this must be ensured at higher levels of
programmmg.

SOLO: PROCESSES, MONITORS AND CLASSES 357

procedure open(id: identifier,. var jound: boolean)

Makes a file with a given identifier accessible if it is found in the catalog.

procedure close

Makes the file inaccessible.

procedure read(pageno: integer,. var block: univ page)

Reads a page with a given number from the file. It has no effect if the file is
closed or if the page number is outside the range l..length.

procedure write(pageno: integer,. var block: univ page)

Writes a page with a given number on the file. It has no effect if the file is
closed or if the page number is outside the range l..length.

junction length: integer

Defines the number of pages in the file. The length of a closed file is zero.

Implementation:

type datafile =

class(typeuse: typeresüuree; diskuse: reSÜuree; eatalüg: diskeatalüg);

var file: diskfile; üpened: büülean;

entry length: integer;

procedure entry open(id: identifier; var found: boolean);
var attr: fileattr;
begin

catalog.lookup(id, attr, found);
if found then

begin
diskuse.request;
file.open(attr.addr);
length := file.length;

358

diskuse.release;
end;

opened := found;

end;

PER BRlNCH HANSEN

procedure entry dose;
begin

file. dose;
length := 0;
opened := false;

end;

procedure entry read(pageno: integer; var block: univ page);

begin
if opened then

end;

begin

diskuse.request;
file.read(pageno, block);
diskuse.release;

end;

procedure entry write(pageno: integer; var block: univ page);
begin

if opened then

end;

begin
diskuse.request;
file.write(pageno, block);

diskuse.release;

end;

begin

init file(typeuse);

length := 0;
opened := false;

end;

SOLO: PROCESSES, MONITORS AND CLASSES 359

PRO GRAM FILE

type progfile =

class(typeuse: typeresource; diskuse: resource; catalog: diskcatalog)

A program file ean transfer a sequential program from a disk file into eore.
The program file is identified by its name in a disk eatalog. A program file
uses a resouree to get exclusive aeeess to the disk during program loading
and a typewriter resouree to get exclusive aeeess to the operator after disk
failure. It uses a disk eatalog to look up the file.

procedure open(id: identifier; var state: progstate)

Loads a program with a given identifier from disk and returns its state. The
program state is one of the following: ready for exeeution, not found, the
disk file is not sequential code, or the file is too big to be loaded into eore.

junction store: progstore

Defines the variable in whieh the program file is stored. A program store is
an array of disk pages.

Implementation:

A program file has exclusive aeeess to the disk until it has loaded the entire
program. This is to prevent eompeting processes from slowing down program
loading by eausing disk arm movement.

type progstate = (ready, notfound, notseq, toobig);

const storelengthl = 40;
type progstorel = array [l..storelengthl] of page;

type progfilel =
class(typeuse: typeresouree; diskuse: resouree; eatalog: diskeatalog);

var file: diskfile;

entry store: progstorel;

procedure entry open(id: identifier; var state: progstate);

360 PER BRINCH HANSEN

var attr: fileattr; found: boolean; pageno: integer;
begin

catalog.lookup(id, attr, found);
with diskuse, file, attr do

if not found then state : = notfound
else if kind <> seqcode then state := notseq
else

begin
request;

open(addr);
if length <= storelengthl then

begin
for pageno := 1 to length do

read(pageno, store[pageno]);

state : = ready;
end

else state := toobig;
elose;
release;

end;
end;

begin init file(typeuse) end;

Solo uses two kinds of program files (progfilel and progfile2); one for large
programs and another one for smaIl ones. They differ only in the dimension
of the program store used. The need to repeat the entire dass definition to
handle arrays of different lengths is an awkward inheritance from Pascal.

PRO GRAM STACK

type progstack = monitor

A program stack maintains a last-in, first-out list of identifiers of programs
that have called one another. It enables a process to keep track of nested
caIls of sequential programs.

For historical reasons a program stack was defined as a monitor. In the
present version of the system it might as weIl have been a dass.

SOLO: PROCESSES, MONITORS AND CLASSES 361

junction space: boolean

Tells whether there is more space in the program stack.

junction any: boolean

TeIls whether the stack contains any program identifiers.

procedure push{id: identifier)

Puts an identifier on top of the stack. It has no effect if the stack is fuIl.

procedure pop (var line, result: univ integer)

Removes a program identifier from the top of the stack and defines the
li ne number at which the program terminated as weIl as its result. The
result either indicates normal termination or one of several run-time errors
as explained in the Concurrent Pascal report (Brinch Hansen 1975b).

procedure get{var id: identifier)

Defines the identifier stored in the top of the stack (without removing it). It
has no effect if the stack is empty.

Implementation:

A program stack measures the extent of the heap of the calling process
before pushing an identifier on the stack. If a pop operation shows abnormal
program termination, the heap is reset to its original point to prevent the
calling process from crashing due to lack of data space.

The standard routines, attribute and setheap, are defined in the Concur­
re nt Pascal report.

type resulttype =
(terminated, overflow, pointererror, rangeerror, varianterror,
heaplimit, stacklimit, codelimit, timelimit, callerror);

type attrindex =

(caller, heaptop, progline, progresult, runtime);

type progstack =

362 PER BRINCH HANSEN

monitor

const stacklength = 5;

var stack:

array [1..stacklength] of
re cord progid: identifier; heapaddr: integer end;

top: O .. stacklength;

function entry space: boolean;

begin space := (top< stacklength) end;

function entry any: boolean;
begin any := (top> 0) end;

procedure entry push(id: identifier);
begin

if top < stacklength then
begin

top := top + 1;
with stack[top] do

begin
progid := id;
heapaddr := attribute(heaptop);

end;
end;

end;

procedure entry pop(var line, result: univ integer);

const terminated = 0;
begin

line := attribute(progline);
result : = attribute(progresult);

if result < > terminated then
setheap(stack[top] .heapaddr);

top := top - 1;

end;

SOLO: PROCESSES, MONITORS AND CLASSES 363

procedure entry get(var id: identifier);

begin
if top> 0 then id := stack[top].progid;

end;

begin top := 0 end;

PAGE BUFFER

type pagebuffer = monitor

A page buffer transmits a sequence of data pages from one process to another.
Each sequence is terminated by an end of file mark.

procedure read(var text: page,. var eof: boolean)

Receives a message consisting of a text page and an end of file indication.

procedure write(text: page,. eof: boolean)

Sends a message consisting of a text page and an end of file indication.

If the end of file is true then the text page is empty.

Implementation:

A page buffer stores a single message at a time. It will delay the sending
process as long as the buffer is fuH and the receiving process until it becomes
fuH (0 :::; writes - reads :::; 1).

type pagebuffer =
monitor

var buffer: page; last, fuH: boolean;

sender, receiver: queue;

procedure entry read(var text: page; var eof: boolean);

begin

if not fuH then delay(receiver);

text := buffer; eof := last; fuH := false;

continue(sender);

364 PER BRINCH HANSEN

end;

procedure entry write(text: page; eof: boolean);
begin;

iffull then delay(sender);
buffer := text; last := eof; full := true;
continue(receiver);

end;

begin full := false end;

Solo also implements buffers for transmission of arguments (enumerations
and identifiers) and lines. They are similar to the page buffer (but use no
end of file marks). The need to duplicate routines for each message type is
an inconvenience caused by the fixed data types of Pascal.

CHARACTER STREAM

type eharstream = class(buffer: pagebuffer)

A character stream enables a process to communicate with another process
character by character. A character stream uses a page buffer to transmit
one page of characters at a time from one process to another.

Asending process must open its stream for writing before using it. The
last character transmitted in a sequence should be an end of medium (ern).

A receiving process must open its stream for reading before using it.

proeedure initread

Opens a character stream for reading.

proeedure initwrite

Opens a character stream for writing.

proeedure read(var e: eh ar)

Reads the next character from the stream. The effect is undefined if the
stream is not open for reading.

SOLO: PROCESSES, MONITORS AND CLASSES 365

procedure write(c: char)

Writes the next character in the stream. The effect is undefined if the stream
is not open for writing.

Implementation:

type charstream =

class(buffer: pagebuffer);

var text: page; count: integer; eof: boolean;

procedure entry read(var c: char);
begin

if count = pagelength then
begin

buffer.read(text, eof);
count := 0;

end;

count := count + 1;
c := text[count];
if c = em then

end;

begin

while not eof do buffer.read(text, eof);
count := pagelength;

end;

procedure entry initread;
begin count := pagelength end;

procedure entry write(c: char);
begin

count : = count + 1;
text [count] := c;

if (count = pagelength) or (c = em) then
begin

buffer.write(text, false); count := 0;

if c = em then buffer.write(text, true);

366 PER BRINCH HANSEN

end;
end;

procedure entry initwrite;
begin count := 0 end;

begin end;

TASKS AND ARGUMENTS

The following data types are used by several processes:

type taskkind = (inputtask, jobtask, outputtask);

type argtag = (niltype, booltype, inttype, idtype, ptrtype);

argtype = record tag: argtag; arg: identifier end;

const maxarg = 10;
type arglist = array [l..maxarg] of argtype;

type argseq = (inp, out);

The task kind defines whether a process is performing an input task, a
job task, or an output task. It is used by sequential programs to determine
whether they have been loaded by the right kind of process. As an example,
a program that controls card reader input can only be called by an input
process.

A process that executes a sequential program can pass a list of argu­
ments to it. A program argument consists of a tag field defining its type
(boolean, integer, identifier, or pointer) and another field defining its value.
(Since Concurrent Pascal does not include the variant records of Sequential
Pascal one can only represent a program argument by the largest one of its
variants-an identifier.)

A job process is connected to two input and output processes by argument
buffers called its input and output sequences.

SOLO: PROCESSES, MONITORS AND CLASSES 367

JOB PROCESS

type jobpmcess =
pmcess

(typeuse: typeresource; diskuse: resource;
catalog: diskcatalog; inbufJer, outbufJer: pagebufJer;
inrequest, inresponse, outrequest, outresponse: argbufJer;
stack: pmgstack)

"pmgram data space" +16000

A job process executes Sequential Pascal programs that can call one another
recursively. Initially, it executes a program called do with console input. A
job process also implements the interface between sequential programs and
the Solo operating system as defined in Brinch Hansen (1976b).

A job process needs access to the operator's console, the disk, and its
catalog. It is connected to an input and an output process by two page
buffers and four argument buffers as explained in Brinch Hansen (1976a). It
uses a pro gram stack to handle nested calls of sequential programs.

It reserves a data space of 16,000 bytes for user programs and a code
space of 20,000 bytes. This enables the Pascal compiler to compile itself.

Implementation:

The private variables of a job process give it access to a terminal stream,
two charaeter streams for input and output, and two data files. It uses a
large program file to store the currently executed program. These variables
are inaccessible to other processes.

The job process contains a declaration of a sequential program that de­
fines the types of its arguments and the variable in which its code is stored
(the latter is inaccessible to the program). It also defines a list of interface
routines that can be called by a program. These routines are implemented
within the job process. They are defined in Brinch Hansen (1976b).

Before a job process can call a sequential program it must load it from
disk into a program store and push its identifier onto a program stack. After
termination of the program, the job process pops its identifier, line number,
and result from the program stack, reloads the previous program from disk
and returns to it.

A process can only interaet with other processes by calling routines
within monitors that are passed as parameters to it during initialization

368 PER BRINCH HANSEN

(such as the catalog declared at the beginning of a job process). These
access rights are checked at compile-time (Brinch Hansen 1975a).

type jobprocess =
process

(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog; inbuffer, outbuffer: pagebuffer;

inrequest, inresponse, out re quest , outresponse: argbuffer;

stack: progstack);

"program data space" +16000

const maxfile = 2;

type file = l..maxfile;

var operator: terminal; opstream: terminalstream;

instream, outstream: charstream;

files: array [file] of datafile;

code: progfile1;

program job(var param: arglist; store: progstore1);

entry read, write, open, elose, get, put, length,
mark, release, identify, accept, display, readpage,
writepage, readline, writeline, readarg, writearg,

lookup, iotransfer, iomove, task, run;

procedure call(id: identifier; var param: arglist;
var line: integer; var result: resulttype);

var state: progstate; lastid: identifier;

begin

with code, stack do

begin

line := 0;

open(id, state);
if (state = ready) & space then

begin

push(id);

job(param, store);

pop(line, result);

end

end;

SOLO: PROCESSES, MONITORS AND CLASSES 369

else if state = toobig then result := codelimit
else result := callerror;
if any then

begin get(lastid); open(lastid, state) end;

end;

procedure entry read(var c: char);

begin instream.read(c) end;

procedure entry write(c: char);

begin outstream. write(c) end;

procedure entry open(f: file; id: identifier; var found: boolean);

begin files[f].open(id, found) end;

procedure entry close(f: file);

begin files[f].close end;

procedure entry get(f: file; p: integer; var block: page);

begin files[f].read(p, block) end;

procedure entry put(f: file; p: integer; var block: page);
begin files[f].write(p, block) end;

function entry length(f: file): integer;

begin length := files[f].length end;

procedure entry mark(var top: integer);

begin top : = attribute(heaptop) end;

procedure entry release(top: integer);

begin setheap(top) end;

procedure entry identify(header: line);

begin opstream.reset(header) end;

procedure entry accept(var c: char);

370 PER BRINCH HANSEN

begin opstream.read(c) end;

procedure entry display(c: char);
begin opstream. write(c) end;

procedure entry readpage(var block: page; var eof: boolean);
begin inbuffer.read(block, eof) end;

procedure entry writepage(block: page; eof: boolean);

begin outbuffer.write(block, eof) end;

procedure entry readline(var text: line);
begin end;

procedure entry writeline(text: line);
begin end;

procedure entry readarg(s: argseq; var arg: argtype);

begin
if s = inp then inresponse.read(arg)
else outresponse.read(arg);

end;

procedure entry writearg(s: argseq; arg: argtype);
begin

if s = inp then inrequest.write(arg)
else outrequest.write(arg);

end;

procedure entry lookup(id: identifier;

var attr: fileattr; var found: boolean);

begin catalog.lookup(id, attr, found) end;

proced ure entry iotransfer(device: iodevice;
var param: ioparam; var block: page);

begin
if device = diskdevice then

begin

SOLO: PROCESSES, MONITORS AND CLASSES 371

diskuse.request;
io(block, param, device);
diskuse.release;

end
else io(block, param, device);

end;

procedure entry iomove(device: iodevice; var param: ioparam);
begin io(param, param, device) end;

function entry task: taskkind;
begin task := jobtask end;

procedure entry run(id: identifier; var param: arglist;
var line: integer; var result: resulttype);

begin call(id, param, line, result) end;

procedure initialize;

var i: integer; param: arglist; line: integer; result: resulttype;

begin
init operator(typeuse), opstream(operator),

instream(inbuffer), outstream(out buffer);
instream.initread; outstream.initwrite;
for i : = 1 to maxfile do

init files[i](typeuse, diskuse, catalog);
init code(typeuse, diskuse, catalog);
with param[2] do

begin tag := idtype; arg := 'console ' end;
call('do " param, line, result);
operator.write('jobprocess: (:10:)', 'terminated (: 10) ');

end;

begin initialize end;

372

10 PROCESS

type ioprocess =
process

PER BRINCH HANSEN

(typeuse: typeresource; diskuse: resource;

catalog: diskcatalog; slowio: linebuffer;
buffer: pagebuffer; request, response: argbuffer;
stack: progstack; iotask: taskkind)

"program data space" +2000

An io process executes Sequential Pascal programs that produce or con­
sume data for a job process. It also implements the interface between these
programs and the Solo operating system.

An io process needs access to the operator, the disk, and the catalog. It
is connected to a card reader (or a line printer) by a line buffer and to a job
process by a page buffer and two argument buffers. It uses a program stack
to handle nested calls of sequential programs.

It reserves a data space of 2,000 bytes for input/output programs and a
code space of 4,000 bytes.

Initially, it executes a program called io

Implementation:

The implementation details are similar to a job process.

type ioprocess =

process
(typeuse: typeresource; diskuse: resource;
catalog: diskcatalog; slowio: linebuffer;
buffer: pagebuffer; request, response: argbuffer;
stack: progstack; iotask: taskkind);

"program data space" +2000

type file = 1..1;

var operator: terminal; opstream: terminalstream;
iostream: charstream; iofile: datafile;
code: progfile2;

program driver(var param: arglist; store: progstore2);

SOLO: PROCESSES, MONITORS AND CLASSES 373

entry read, write, open, close, get, put, length,
mark, release, identify, accept, display, readpage,

writepage, readline, writeline, readarg, writearg,
lookup, iotransfer, iomove, task, run;

procedure call(id: identifier; var param: arglist;

var line: integer; var result: resulttype);

var state: progstate; lastid: identifier;

begin
with code, stack do

begin

line := 0;
open(id, state);

if (state = ready) & space then

begin

push(id);

driver(param, store);

pop(line, result);

end

else if state = toobig then result := codelimit

else result := callerror;

if any then

begin get(lastid); open(lastid, state) end;

procedure entry read(var c: char);
begin iostream.read(c) end;

procedure entry write(c: char);

begin iostream. write(c) end;

procedure entry open(f: file; id: identifier; var found: boolean);

begin iofile.open(id, found) end;

procedure entry close(f: file);

begin iofile.close end;

374 PER BRINCH HANSEN

procedure entry get(f: file; p: integer; var block: page);
begin iofile.read(p, block) end;

procedure entry put(f: file; p: integer; var block: page);

begin iofile.write(p, block) end;

function entry length(f: file): integer;
begin length := iofile.length end;

procedure entry mark(var top: integer);

begin top := attribute(heaptop) end;

procedure entry release(top: integer);
begin setheap(top) end;

procedure entry identify(header: line);

begin opstream. reset (header) end;

procedure entry accept(var c: char);
begin opstream.read(c) end;

procedure entry display(c: char);
begin opstream. write(c) end;

procedure entry readpage(var block: page; var eof: baalean);
begin buffer.read(block, eof) end;

procedure entry writepage(block: page; eof: baalean);

begin buffer.write(block, eof) end;

procedure entry readline(var text: line);

begin slowio.read(text) end;

procedure entry writeline(text: line);
begin slowio.write(text) end;

procedure entry readarg(s: argseq; var arg: argtype);

begin request.read(arg) end;

SOLO: PROCESSES, MONITORS AND CLASSES 375

procedure entry writearg(s: argseq; arg: argtype);
begin response. write(arg) end;

procedure entry lookup(id: identifier;

var attr: fileattr; var found: boolean);

begin catalog.lookup(id, attr, found) end;

procedure entry iotransfer(device: iodevice;

var param: ioparam; var block: page);

begin

if device = diskdevice then
begin

diskuse.request;

io(block, param, device);

diskuse.release;

end
else io(block, param, device);

end;

procedure entry iomove(device: iodevice; var param: ioparam);

begin io(param, param, device) end;

function entry task: taskkind;
begin task := iotask end;

procedure entry run(id: identifier; var param: arglist;
var line: integer; var result: resulttype);

begin call(id, param, line, result) end;

procedure initialize;

var param: arglist; line: integer; result: resulttype;

begin

init operator(typeuse), opstream(operator),

iostream(buffer), iofile(typeuse, diskuse, catalog),

code(typeuse, diskuse, catalog);

if iotask = inputtask then iostream.initwrite

else iostream.initread;

376 PER BRINCH HANSEN

call('io " param, line, result);
operator.write('ioprocess:(:10:)', 'terminated (: 10) ');

end;

begin initialize end;

CARD PROCESS

type cardprocess =

process(typeuse: typeresource; buffer: linebuffer)

A eard proeess transmits eards from a eard reader through a li ne buffer to
an input proeess. The eard process ean access the operator to report device
failure and a line buffer to transmit data. It is assumed that the eard reader
is eontrolled by a single eard proeess. As long as the eard reader is turned
off or is empty the eard proeess waits. It begins to read eards as so on as
they are available in the reader. After a transmission error the eard proeess
writes a message to the operator and eontinues the input of eards.

Implementation:

The standard proeedure wait delays the eard proeess one seeond (Brineh
Hansen 1975b). This reduees the processor time spent waiting for operator
intervention.

type cardprocess =
process(typeuse: typeresource; buffer: linebuffer);

var operator: terminal; param: ioparam;

text: line; ok: boolean;

begin

init operator(typeuse);

param.operation := input;

cycle

repeat

io(text, param, carddevice);

case param.status of

complete:

ok := true;

intervention:

SOLO: PROCESSES, MONITORS AND CLASSES 377

begin ok := false; wait end;
transmission, failure:

begin
operator.write('cards:(:10:)', 'error(:10:) ');
ok := false;

end
end

untilok;

buffer. write(text);
end;

end;

PRINTER PROCESS

type printerprocess =

process(typeuse: typeresource; buffer: linebuffer)

A printer process transmits lines from an output process to a line printer.
The printer process can access the operator to report device failure and a
li ne buffer to receive data. It is assumed that the line printer is controlled
only by a single printer process. After a printer failure the printer process
writes a message to the operator and repeats the output of the current li ne
until it is successful.

Implementation:

type printerprocess =
process(typeuse: typeresource; buffer: linebuffer);

var operator: terminal; param: ioparam; text: line;
begin

init operator(typeuse);

param.operation := output;

cycle

buffer .read(text);
io(text, param, printdevice);

if param.status <> complete then
begin

operator.write('printer: (:10:)', 'inspect(:10:) ');

378

end;
end;

repeat
wait;

PER BRlNCH HANSEN

io(text, param, printdeviee);
until param.status = eomplete;

end;

LOADER PROCESS

type loaderprocess =

process(diskuse: resource)

A loader process preempts the operating system and reinitializes it when
the operator pushes the bell key (contral g) on the console. A loader process
needs access to the disk to be able to re load the system.

Implementation:

A control operation on the typewriter delays the loader process until the
operator pushes the bell key (Brinch Hansen 1975b).

The operating system is stored on eonsecutive disk pages starting at
the Solo address. It is loaded by me ans of a control operation on the disk
as defined in Brinch Hansen (1975b). Consecutive disk pages are used to
make the system kernel of Concurrent Pascal unaware of the structure of a
particular filing system (such as the one used by Solo). The disk contains a
sequential program start that can copy the Solo system from a concurrent
code file into the consecutive disk segment defined above.

type loaderproeess =
process(diskuse: resomee);

const soloaddr = 24;
var param: ioparam;

procedure initialize(pageno: univ ioarg);
begin

with param do
begin

operation : = control;

end;

SOLO: PROCESSES, MONITORS AND CLASSES 379

arg := pageno;

end;

begin
initialize(soloaddr);
"await bel signal"

io(param, param, typedevice);
"reload solo system"

diskuse.request;

io(param, param, diskdevice);

diskuse. release;

end;

INITIAL PROCESS

The initial process initializes all other processes and monitors and defines
their access rights to one another. After initialization the operating system
consists of a fixed set qf components: a card process, an input process,
a job process, an output process, a printer process, and a loader process.
They have access to an operator, a disk, and a catalog of files. Process
communication takes place by means of two page buffers, two line buffers
and four argument buffers (see also Fig. 1).

Implementation:

When a process, such as the initial process, terminates its execution, its
variables continue to exist (because they may be used by other processes).

var
typeuse: typeresource;

diskuse: resource; catalog: diskcatalog;

inbuffer, outbuffer: pagebuffer;

cardbuffer, printerbuffer: linebuffer;

inrequest, inresponse, outrequest, outresponse: argbuffer;

instack, outstack, jobstack: progstack;

reader: cardprocess; writer: printerprocess;

producer, consumer: ioprocess; master: jobprocess;

watchdog: loaderprocess;

begin

380 PER BRINCH HANSEN

init

end;

typeuse, diskuse,
catalog(typeuse, diskuse, cataddr),
inbuffer, outbuffer,
cardbuffer, printerbuffer,
inrequest, inresponse, outrequest, outresponse,
instack, outstack, jobstack,
reader(typeuse, cardbuffer),
writer(typeuse, printerbuffer),
producer(typeuse, diskuse, catalog, cardbuffer,

inbuffer, inrequest, inresponse, instack, inputtask),
consumer(typeuse, diskuse, catalog, printerbuffer),

outbuffer, outrequest, outresponse, outstack, outputtask),
master(typeuse, diskuse, catalog, inbuffer, outbuffer,

inrequest, inresponse, outrequest, outresponse,
jobstack),

watchdog(diskuse);

CONCLUSION

The Solo system consists of 22 line printer pages of Concurrent Pascal text
divided into 23 component types (10 classes, 7 monitors, and 6 processes). A
typical component is less than one page long and can he studied in isolation
as an (almost) independent piece of program. All program components called
hy a given component are explicitly declared within that component (either
as permanent variahles or a parameters to it). To understand a component
it is only necessary to know what other components called hy it do, hut how
they do it is irrelevant.

The entire system can he studied component hy component as one would
read a hook. In that sense, Concurrent Pascal supports abstraction and
hierarchical structuring of concurrent programs very nicely.

It took 4 compilations to remove the formal programming errors from
the Solo system. It was then tested systematically from the hottom up hy
adding one component type at a time and trying it hy means of short test
processes. The whole program was tested in 27 runs (or ahout 1 run per
component type). This revealed 7 errors in the test processes and 2 trivial
ones in the system itself. Later, ahout one third of it was rewritten to speed

SOLO: PROCESSES, MONITORS AND CLASSES 381

up program loading. This took about one week. It was then compiled and
put into operation in one day and has worked ever since.

I can only suggest two plausible explanations for this unusual testing
experience. It seems to be vital that the compiler prevents new components
from destroying old ones (since old components cannot call new ones, and
new ones can only call old on es through routines that have al ready been
tested). This strict checking of hierarchical access rights makes it possible
for a large system to evolve gradually through a sequence of intermediate,
stable subsystems.

I am also convinced now that the use of abstract data types which hide
implementation details within a fixed set of routines encourages a clarity of
design that makes programs practically correct before they are even tested.
The slight inconvenience of strict type checking is of minor importance com­
pared to the advantages of instant program reliability.

Although Solo is a small concurrent program of only 1,300 lines it does
implement a virtual machine that is very convenient to use for program de­
velopment (Brinch Hansen 1976a). The availability of cheap microprocessors
will put increasing pressure on software designers to develop special-purpose
operating systems at very low cost. Concurrent Pascal is one example of a
programming tool that may make this possible.

P. Brinch Hansen 1973. Operating System Principles, Chapter 7, Resüurce Protection.
Prentice-Hall, Englewood Cliffs, N J.

P. Brinch Hansen 1975a. The programming language Concurrent Pascal. IEEE Trans. on
Software Engineering, 1, 2.

P. Brinch Hansen 1975b. Concurrent Pascal Report. Information Science, California In­
stitute of Technology, (June).

P. Brinch Hansen 1976a. The Solo operating system: a Concurrent Pascal program.
Software-Practice and Experience, 6, 2 (April-June).

P. Brinch Hansen 1976b. The Solo operating system: job interface. Software-Practice
and Experience, 6, 2 (April-June),.

Acknowledgements

The development of Concurrent Pascal and Solo has been supported by the
National Science Foundation under grant number DCR74-17331.

13

DESIGN PRINCIPLES
PER BRINCH HANSEN

(1977)

This is the opening chapter of the author's book on concurrent programming.

The essay describes the fundamental principles of programming which guided

the design and implementation of the programming language Concurrent Pas­

cal and the model operating systems written in that language.

This book describes a method for writing concurrent programs of high qual­
ity. Since there is no common agreement among programmers about the
qualities a good program should have, I will begin by describing my own
requirements.

Program Quality

A good program must be simple, reliable, and adaptable. Without simplicity
one cannot expect to understand the purpose and details of a large program.
Without reliability one cannot seriously depend on it. And without adapt­
ability to changing requirements a program eventually becomes a fossil.

Fortunately, these essential requirements go hand in hand. Simplicity
gives one the confidence to believe that a program works and makes it clear
how it can be changed. Simplicity, reliability, and adaptability make pro­
grams manageable.

In addition, it is desirable to make programs that can work efficiently
on several different computers for a variety of similar applications. But
efficiency, portability, and generality should never be sought at the expense

P. Brinch Hansen, The Architecture 0/ Concurrent Programs, Chapter 1 Design Principles,
Prentice Hall, Englewood Cliffs, NJ, (July 1977), 3-14. Copyright © 1977, Prentice Hall.
Reprinted by permission.

382

DESIGN PRINCIPLES 383

of simplicity, reliability, and adaptability, for only the latter qualities make
it possible to understand what programs do, depend on them, and extend
their capabilities.

The poor quality of much existing software is, to a large extent, the
result of turning these priorities upside down. Some programmers justify
extremely complex and incomprehensible programs by their high efficiency.
Others claim that the poor reliability and efficiency of their huge programs
are outweighed by their broad scope of application.

Personally I find the efficiency of a tool that nobody fully understands
irrelevant. And I find it difficult to appreciate a general-purpose tool which
is so slow that it cannot do anything well. But these are matters of taste
and style and are likely to remain so.

Whenever program qualities appear to be in confiict with one another I
shall consistently settle the issue by giving first priority to manageability, sec­
ond priority to efficiency, and third priority to generality. This boils down
to the simple rule of limiting our computer applications to those which pro­
grammers fully understand and which machines can handle weil. Although
this is too narrow a view for experimental computer usage it is sound advice
for professional programming.

Let us now look more closely at these program qualities to see how they
can be achieved.

Simplicity

We will be writing concurrent programs which are so large that one cannot
understand them all at once. So we must reason about them in sm aller
pieces. What properties should these pie ces have? Well, they should be so
small that any one of them is trivial to understand in itself. It would be
ideal if they were no more than one page of text each so that they can be
comprehended at a glance.

Such a program could be studied page by page as one reads a book. But
in the end, when we have understood wh at all the pieces do, we must still
be able to see what their combined effect as a whole iso If it is a program of
many pages we can only do this by ignoring most of our detailed knowledge
about the pieces and relying on a much simpler description of what they do
and how they work together.

So our program pieces must allow us to make a clear separation of their
detailed behavior and that small part of it which is of interest when we
consider combinations of such pieces. In other words, we must distinguish

384 PER BRINCH HANSEN

between the inner and outer behavior of a program piece.
Program pieces will be built to perform well-defined, simple functions.

We will then combine program pieces into larger configurations to carry out
more complicated functions. This design method is effective because it splits
a complicated task into simpler ones: First you convince yourself that the
pie ces work individually, and then you think about how they work together.
During the second part of the argument it is essential to be able to forget how
a piece works in detail-otherwise, the problem becomes too complicated.
But in doing so one makes the fundamental assumption that the piece always
will do the same when it carries out its function. Otherwise, you could not
afford to ignore the detailed behavior of that piece in your reasoning about
the whole system.

So reproducible behavior is a vital property of program pieces that we wish
to build and study in small steps. We must clearly keep this in mind when we
select the kind of program pieces that large concurrent programs will be made
of. The ability to repeat program behavior is taken for granted when we write
sequential programs. Here the sequence of events is completely defined by
the program and its input data. But in a concurrent program simultaneous
events take place at rates not fully controlled by the programmer. They
depend on the presence of other jobs in the machine and the scheduling
policy used to execute them. This means that a conscious effort must be
made to design concurrent programs with reproducible behavior.

The idea of reasoning first about what a piece does and then studying
how it does it in detail is most effective if we can repeat this process byex­
plaining each piece in terms of simpler pieces which themselves are built from
still simpler pieces. So we shall confine ourselves to hierarchical structures
composed of layers of program pieces.

It will certainly simplify our understanding of hierarchical structures if
each part only depends on a small number of other parts. We will therefore
try to build structures that have minimal interfaces between their parts.

This is extremely difficult to do in machine language since the slightest
programming mistake can make an instruction destroy any instruction or
variable. Here the whole store can be the interface between any two instruc­
tions. This was made only too clear in the past by the practice of printing
the contents of the entire store just to locate a single programming error.

Programs written in abstract languages (such as Fortran, Algol, and Pas­
cal) are unable to modify themselves. But they can still have broad interfaces
in the form of global variables that can be changed by every statement (by

DESIGN PRINCIPLES 385

intention or mistake).
We will use a programming language called Concurrent Pascal, which

makes it possible to divide the global variables into smaller parts. Each of
these is accessible to a small number of statements only.

The main contribution of a good programming language to simplicity
is to provide an abstract readable notation that makes the parts and struc­
ture of a program obvious to a reader. An abstract programming language
suppresses machine detail (such as addresses, registers, bit patterns, inter­
rupts, and sometimes even the number of processors available). Instead the
language relies on abstract concepts (such as variables, data types, synchro­
nizing operations, and concurrent processes). As a result, program texts
written in abstract languages are often an order of magnitude shorter than
those written in machine language. This textual reduction simplifies program
engineering considerably.

The fastest way to discover whether or not you have invented a simple
pro gram structure is to try to describe it in completely readable terms­
adopting the same standards of clarity that are required of a survey paper
published by a journal. If you take pride in your description you have prob­
ably invented a good program structure. Eut if you discover that there is no
simple way of describing what you intend to do, then you should probably
look for some other way of doing it.

Once you appreciate the value of description as an early warning signal
of unnecessary complexity it becomes self-evident that program structures
should be described (without detail) beiore they are built and should be
described by the designer (and not by anybody else). Programming is the
art of writing essays in crystal clear prose and making them executable.

Reliability

Even the most readable language notation cannot prevent programmers from
making mistakes. In looking for these in large programs we need all the help
we can get. A whole range of techniques is available

correctness proofs
proofreading
compilation checks
execution checks
systematic testing

With the exception of correctness proofs, all these techniques played a vital
role in making the concurrent programs described in this book work.

386 PER BRINCH HANSEN

Formal proofs are still at an experimental stage, particularly for concur­
rent programs. Since my aim is to describe techniques that are immediately
useful in professional software development, I have omitted proofs here.

Among the useful verification techniques, I feel that those that reveal
errors at the earliest possible time during the program development should
be emphasized to achieve reliability as so on as possible.

One of the primary goals of Concurrent Pascal is to push the role of com­
pilation checks to the limit and reduce the use of execution checks as much
as possible. This is not done just to make compiled programs more efficient
by reducing the overhead of execution checks. In program engineering, com­
pilation and execution checks play the same roles as preventive maintenance
and flight recorders do in aviation. The latter only tell you why a system
crashed; the former prevents it. This distinction seems essential to me in the
design of real-time systems that will control vital functions in society. Such
systems must be highly reliable before they are put into operation.

Extensive compilation checks are possible only if the language notation
is redundant. The programmer must be able to specify important proper­
ties in at least two different ways so that a compiler can look for possible
inconsistencies. An example is the use of declarations to introduce variables
and their types before they are used in statements. The compiler could eas­
ily derive this information from the statements-provided these statements
were always correct.

We shall also follow the crucial principle of language design suggested
by Hoare: The behavior of a program written in an abstract language should
always be explainable in terms of the concepts of that language and should
never require insight into the details of compilers and computers. Otherwise,
an abstract notation has no significant value in reducing complexity.

This principle immediately rules out the use of machine-oriented features
in programming languages. So I shall assume that all programming will take
place in abstract programming languages.

Dijkstra has remarked that testing can be used only to show the presence
of errors but never their absence. However true that may be, it seems very
worthwhile to me to show the presence of errors and remove them one at a
time. In my experience, the combination of careful proofreading, extensive
compilation checks, and systematic testing is a very effective way to make a
program so dependable that it can work for months without problems. And
that is about as reliable as most other technology we depend on. I do not
know of better methods for verifying large programs at the moment.

DESIGN PRINCIPLES 387

I view programming as the art of building program pyramids by adding
one brick at a time to the structure and making sure that it does not collapse
in the process. The pyramid must remain stable while it is being built. I will
regard a (possibly incomplete) program as being stable as long as it behaves
in a predictable manner.

Why is program testing so often difficult? Mainly, I think, because the
addition of a new program piece can spread a burst of errors throughout the
rest of a program and make previously tested pieces behave differently. This
clearly violates the sound principle of being able to assume that when you
have built and tested apart of a large program it will continue to behave
correctly under all circumstances.

So we will make the strong requirement that new program pieces added on
top of old ones must not be able to make the latter fail. Since this property
must be verified before program testing takes place, it must be done by a
compiler. We must therefore use a language notation that makes it clear
what program pieces can do to one another. This strong confinement of
program errors to the part in which they occur will make it much easier to
determine from the behavior of a large program where its errors are.

Adaptability

A large program is so expensive to develop that it must be used for several
years to make the effort worthwhile. As time passes the users' needs change,
and it becomes necessary to modify the program somewhat to satisfy them.
Quite often these modifications are done by people who did not develop
the program in the first place. Their main difficulty is to find out how the
program works and whether it will still work after being changed.

A small group of people can often succeed in developing the first version
of a program in a low-level language with little or no documentation to
support them. They do it by talking to one another daily and by sharing a
mental picture of a simple structure.

But later, when the same program must be extended by other program­
mers who are not in frequent contact with the original designers, it becomes
painfuIly clear that the "simple" structure is not described anywhere and
certainly is not revealed by the primitive language notation used. It is impor­
tant to realize that for program maintenance a simple and well-documented
structure is even more important than it is during program development. I
will not talk about the situation in which a program that is neither simple
nor weIl documented must be changed.

388 PER BRINCH HANSEN

There is an interesting relationship between programming errors and
changing user requirements. Both of them are sources of instability in the
program construction process that make it difficult to reach astate in which
you have complete confidence in what a program does. They are caused by
our inability to fully comprehend at once what a large program is supposed
to do in detail.

The relative frequencies of program errors and changing requirements
are of crucial importance. If programming intro duces numerous errors that
are difficult to locate, many of them may still be in the program when the
user requests changes of its function. And when an engineer constantly finds
himself changing a system that he never succeeded in making work correctly
in the first place, he will eventually end up with a very unstable product.

On the other hand, if pro gram errors can be located and corrected at a
much faster rate than the system develops, then the addition of a new piece
(or a change) to the program will soon lead to a stable situation in which the
current version of the program works reliably and predictably. The engineer
can then, with much greater confidence, adapt his product to slowly changing
needs. This is a strong incentive to make pro gram verification and testing
fast.

A hierarchical structure consists of program pieces that can be studied
one at a time. This makes it easier to read the program and get an initial
understanding of what it does and how it does it. Once you have that insight,
the consequences of changing a hierarchical program become dear. When
you change apart of a program pyramid you must be prepared to inspect
and perhaps change the program parts that are on top of it (for they are the
only ones that can possibly depend on the one you changed).

Port ability

The ability to use the same program on a variety of computers is desirable
for economic reasons: Many users have different computers; sometimes they
replace them with new ones; and quite often they have a common interest
in sharing programs developed on different machines.

Portability is only practical if pro grams are written in abstract languages
that hide the differences between computers as much as possible. Otherwise,
it will require extensive rewriting and testing to move programs from one
machine to another. Programs written in the same language can be made
portable in several ways:

DESIGN PRINCIPLES 389

1. by having different compilers for different machines. This is only prac­
tical for the most widespread languages.

2. by having a single compiler that can be modified to generate code for
different machines. This requires a clear separation within the compiler
of those parts that check programs and those that generate code.

3. by having a single computer that can be simulated efficiently on differ­
ent machines.

The Concurrent Pascal compiler generates code for a simple machine
tailored to the language. This machine is simulated by an assembly language
program of 4 K words on the PDP 11/45 computer. To move the language
to another computer one rewrites this interpreter. This approach sacrifices
so me efficiency to make portability possible. The loss of efficiency can be
eliminated on a microprogrammable machine.

Efficiency

Efficient programs save time for people waiting for results and reduce the
cost of computation. The programs described here owe their efficiency to

special-purpose algorithms
statie store alloeation
minimal run-time eheeking

Initially the loading of a large program (such as a compiler) from disk
took about 16 sec on the PDP 11/45 computer. This was later reduced to 5
sec by a disk allocation algorithm that depends on the special characteristics
of program files (as opposed to data files). A scheduling algorithm that tries
to reduce disk head movement in general would have been useless here. The
reasons for this will be made clear later.

Dynamic store algorithms that move programs and data segments around
during execution can be a serious source of inefficiency that is not under the
programmer's control. The implementation of Concurrent Pascal does not
require garbage collection or demand paging of storage. It Uses static allo­
cation of store among a fixed number of processes. The store requirements
are determined by the compiler.

When programs are written in assembly language it is impossible to pre­
dict what they will do. Most computers depend on hardware mechanisms to
prevent such programs from destroying one another or the operating system.

390 PER BRINCH HANSEN

In Concurrent Pascal most of this protection is guaranteed by the compiler
and is not supported by hardware mechanisms during execution. This dras­
tic reduction of run-time checking is only possible because all programs are
written in an abstract language.

Generality

To achieve simplicity and reliability we will depend exclusively on a machine­
independent language that makes programs readable and extensive compila­
tion checks possible. To achieve efficiency we will use the simplest possible
store allocation.

These decisions will no doubt reduce the usefulness of Concurrent Pascal
for some applications. But I see no way of avoiding that. To impose structure
upon yourself is to impose restrictions on your freedom of programming. You
can no longer use the machine in any way you want (because the language
makes it impossible to talk directly about some machine features). You can
no longer delay certain pro gram decisions until execution time (because the
compiler checks and freezes things much earlier). But the freedom you lose
is often illusory anyhow, since it can complicate programming to the point
where you are unable to cope with it.

This book describes a range of small operating systems. Each of them
provides a special service in the most efficient and simple manner. They show
that Concurrent Pascal is a useful programming language for minicomputer
operating systems and dedicated real-time applications. I expect that the
language will be useful (but not sufficient) for writing large, general-purpose
operating systems. But that still remains to be seen. I have tried to make a
programming tool that is very convenient for many applications rather than
one which is tolerable for all purposes.

Conclusion

I have discussed the programming goals of

simplicity
reliability
adaptability
efficiency
port ability

and have suggested that they can be achieved by careful design of program
structure, language notation, compiler, and code interpreter. The properties

DESIGN PRINCIPLES

that we must look for are the following:

structure:

notation:

compiler:

hierarchical structure
small parts
minimal interfaces
reproducible behavior
readable documentation

abstract and readable
structured and redundant

reliable and fast
extensive checking
portable code

interpreter: reliable and fast
minimal checking
static store allocation

391

This is the philosophy we will follow in the design of concurrent programs.

Literature

For me the most enjoyable thing about computer programming is the insight
it gives into problem solving and design. The search for simplicity and
structure is common to all intellectual disciplines.

Here are a historian and a biologist talking about the importance of
recognizing structure:

"lt is a matter of some importance to link teaching and research, even
very detailed research, to an acceptable architectonic vision of the whole.
Without such connections, detail becomes mere antiquarianism. Yet while
history without detail is inconceivable, without an organizing vision it quickly
becomes incomprehensible ... What cannot be understood becomes meaning­
less, and reasonable men quite properly refuse to pay attention to meaningless
matters. "

William H. McNeill (1974)

"There have been a number of physicists who suggested that biological
phenomena are related to the finest aspects of the constitution of matter,
in a manner of speaking below the chemical level. But the evidence, which
is almost too abundant, indicates that biological phenomena opemte on the
'systems' level, that is, above chemistry."

392 PER BRINCH HANSEN

Walter M. Elsasser (1975)

A linguist, a psychologist, and a logician have this to say ab out writing
and notation:

"Omit needless words. Vigorous writing is concise. A sentence should
eontain no unneeessary words, a paragraph no unnecessary sentenees, for the
same reason that a drawing should have no unnecessary lines and a machine
no unneeessary parts. This requires not that the writer make all his sentenees
short, or that he avoid all detail and treat his subjeet only in outline, but that
every word tell."

William Strunk, Jr. (1959)

"How eomplex or simple a strueture is depends eritieally upon the way
in whieh we deseribe it. Most of the eomplex struetures found in the world
are enormously redundant, and we ean use this redundancy to simplify their
description. But to use it, to aehieve the simplifieation, we must find the
right representation. "

Herbert A. Simon (1969)

"There is something uneanny about the power of a happily chosen ideo­
graphie language; for it often allows one to express relations which have no
names in natural language and therefore have never been noticed by anyone.
Symbolism, then, beeomes an organ of discovery rather than mere notation. "

Susanne K. Langer (1967)

An engineer and an architect discuss the infiuence of human errors and
cultural changes on the design process:

"First, one must perform perfectly. The computer resembles the magic
of legend in this respect, too. If one character, one pause, of the incantation
is not strictly in proper form, the magic doesn't work. Human beings are
not accustomed to being perfect, and few areas of human activity demand it.
Adjusting to the requirement for perfection is, 1 think, the most difficult part
of leaming to program. "

Frederick P. Brooks, Jr. (1975)

"Misfit provides an incentive to change ... However, for the fit to occur in
practice, one vital condition must be satisfied. It must have time to happen.
The proeess must be able to achieve its equilibrium before the next culture
change upsets it again. It must actually have time to reach its equilibrium

DESIGN PRINCIPLES 393

every time it is disturbed~or, if we see the process as continous rather than
intermittent, the adjustment of forms must proceed more quickly than the
drift of the culture context."

Christopher Alexander (1964)

Finally, he re are a mathematician and a physicist writing about the
beauty and joy of creative work:

"The mathematician's patterns, like the painter 's or the poet 's, must be
beautiful; the ideas, like the colours or the words, must fit together in a
harmonious way. Beauty is the first test: there is no permanent place in the
world for ugly mathematics. "

G.H. Hardy (1967)

"The most powerful drive in the ascent of man is his pleasure in his own
skilt. He loves to do what he does welt and, having done it welt, he loves
to do it better. You see it in his science. You see it in the magnificence
with which he carves and builds, the loving care, the gaiety, the effrontery.
The monuments are supposed to commemorate kings and religions, heroes,
dogmas, but in the end the man they commemorate is the builder."

Jacob Bronowski (1973)

References

Alexander, C. 1964. Notes on the Synthesis of Form. Harvard University Press, Cam­
bridge, MA.

Bronowski, J. 1973. The Ascent of Man. Little, Brown and Company, Boston, MA.
Brooks, F.P. 1975. The Mythical Man-Month. Essays on Software Engineering. Addison-

Wesley, Reading, MA.
Elsasser, W.M. 1975. The Chief Abstractions of Biology. American Elsevier, New York.
Hardy, G.H. 1967. A Mathematician's Apology. Cambridge University Press, New York.
Langer, S.K. 1967. An Introduction to Symbolic Logic. Dover Publications, New York.
McNeill, W.H. 1974. The Shape of European History. Oxford University Press, New York.
Simon, H.A. 1969. The Sciences of the Artificial. The MIT Press, Cambridge, MA.

Strunk, W., and White, E.B. 1959. The Elements of Style. Macmillan, New York.

PART V

DISTRIBUTED COMPUTING

14

A SYNTHESIS EMERGING?
EDSGER W. DIJKSTRA

(1975)

Author's comment (added 1982): In retrospect this text is not without histor­

ical interest: it records the highlights of a discussion mentioned [as "Verbal

communication" (Dijkstra 1915») in C. A. R. Hoare's "Communicating se­

quential processes" , Comm. ACM 21, 8 (Aug. 1918), 666-611. The text was

evidently written in astate of some excitement; in retrospect we may con­

clude that this excitement was not entirely unjustified. Seeing Hoare keenly

interested in the topic, lIeft that arena.

Introduction

This document does not contain language proposals; at a later stage they
may be inspired by it. It has no other purpose than to record discussions
and programming experiments. It is exciting because it seems to open the
possibility of writing programs that could be implemented

(a) either by normal sequential techniques
(b) or by elephants built from mosquitoes
(c) or by a data-driven machine.

That programs intended for the se co nd or third implementation could be
"inefficient" when regarded as sequential programs is he re irrelevant. The
important result would be that the same mathematical technique for the in­
tellectual mastery of sequential programs can be taken over-hopefully lock,
stock and barrel-for the intellectual mastery of those, as yet less familiar,
designs. Finally, and this seems the most important promise, it introduces
the possibility of concurrent execution in a non-operational manner.

E. W. Dijkstra, A synthesis emerging? In E. W. Dijkstra, Selected Writings on Computing:
A Personal Perspective, (1982), 147-160. Copyright © 1982, Springer-Verlag New York.
Reprinted by permission.

397

398 EDSGER W. DIJKSTRA

From the past, terms as "sequential programming" and "parallel pro­
gramming" are still with us, and we should try to get rid of them, for they
are a great souree of eonfusion. They date from the period that it was the
purpose of our programs to instruet our maehines: now it is the purpose of
the maehines to exeeute our programs. Whether the maehine does so sequen­
tially, one thing at a time, or with a eonsiderable amount of eoneurreney, is
a matter of implementation and should not be regarded as a property of the
programming language. In the years behind us we have earried out this pro­
gram of non-operational definition of semantics for a simple programming
language that admits (trivially) a sequential implementation; our ultimate
goal is a programming language that admits (highly?) eoneurrent imple­
mentations equally trivially. The experiments deseribed in this report are a
first step towards that goal.

27th and 31st July, 1975

It all started on Sunday 27th of July 1975, when Tony Hoare explained to
me in the garden of Hotel Sepp in Marktoberdorf (Western Germany) upon
my request the dass-eoneept of SIMULA (induding the so-ealled inner­
eoneept); at least he explained his version of it. I had always stayed away
from it as far as possible, in order to avoid eontamination with the extremely
operational point of view as practised by Dahl et al. , and, after some time
I eould not even (under)stand their meehanistie deseriptions anymore; they
just made me shudder. In late 1974, Tony sent me a paper that looked
better, but still made me shudder; I read it onee, but, doubting whether I
eould endure the exposure, I eonseiously refused to study it at that moment.
On Saturday 26th I deeided that the moment to be eourageous had eome
and asked Tony to explain to me what he was eonsidering. He was a tolerant
master, allowing me to ehange terminology, notation and a way of looking at
it, things I had to do in order to make it all fit within my frame of mind. To
begin with, I shall reeord how our diseussions struek root in my mind. I don't
know whether areal SIMULA fan will still reeognize the dass-eoneept; he
may get the impression that I am writing about something totally different.
My deseriptions are definitely still more operational and meehanistic than I
would like them to be; it is hard to get rid of old habits!

* *
*

A SYNTHESIS EMERGING? 399

Suppose that we consider a natural number, wh ich can be introduced
with the initial value zero, and can be decreased and increased by 1, provided
it remains non-negative. A nondeterministic, never-ending program that
may generate any history of a natural number is then

nn begin privar X; X vir int := 0;
do true -+ x : = x + 1

end

~ x > 0 -+ x := x-I
od

Suppose we want to write a main program operating on two natural
numbers y and z, a main program that "commands" these values to be
increased and decreased as it pleases. In that case we can associate with
each of the two natural numbers y and z a nondeterministic program of
the above type, be it that the nondeterminacy of each of these two program
executions has to be resolved ("settled" , if you prefer) in such a way that the
two histories are in accordance with the "commands" in the main program.
For this purpose we consider the following program. (Please remember that
the chosen notations are not aproposal: they have been introduced only to
make the discussion possible!)

nn gen begin privar x; x vir int : = 0;
do ?inc -+ x := x + 1

end

~ x > 0 cand ? dec -+ x : = x-I
od

main program:

begin privar y, z; y vir nn; z vir nn;

y.inc; ... ; y.dec; ... ; z.inc; ... ; z.dec; ...
end

NOTES

1) We have written two programs. Eventually we shall have three se­
quential processes, two of type nn-one for y and one for z-and one of
type "main program" . The fact that the first one can be regarded as a kind
of "template" I have indicated by writing gen (suggesting "generator") in
front of its begin.

400 EDSGER W. DIJKSTRA

2) The main program is the only one to start with; upon the initialization
y vir nn the second one is started~and remains idling in the repetitive
construct~, upon the initialization z vir nn, the last one is introduced in
an identical fashion. It is assumed~e.g because the "main program" is
written after nn~that the main program is within the lexical scope of the
identifier nn.

3) The two identifiers ine and dee~preceded in the text of nn by a
question mark~are subordinate to the type nn; i.e. if y is declared and
initialized as a variable of type nn, the operations ine and dee~invoked by
y. ine and y. dec respectively~are defined on it and can be implemented by
suitably synchronizing and sequencing the execution of the y-program with
that of the main program.

4) When in the main program y.ine is commanded, this is regarded in
the y-program as the guard fine being true (once). Otherwise guards (or
guard components) with the question mark are regarded as undefined. Only
a true guard makes the guarded statement eligible for execution.

5) The block exit of the main program, to which the variables y and
z are local, implies that all the "query-guards" are made false: when fine
and ?dee are false for the y-program, the repetitive construct terminates and
that local block exit is performed: the x local to the y-program may cease
to exist. It is sound to view the implicit termination of the blocks associated
with the variables y and z to be completed before the exit of the block to
which they are local~the main program~is completed. (End of Notes.)

* *
*

In the preceding section we have assumed that the main program was
somehow within the scope of nn. But one can ask what funny kind of
identifier this is; it is the name of a program text, however, there are as many
nns as the main program intro duces natural numbers. The decent way to
overcome this is to introduce a fourth program, a "natural number maker",
say peano. Suppose that the purpose of peano is not only to provide~i.e. to
create and to destroy~natural numbers, but also to print at the end of its
life the maximum natural number value that has ever existed.

A SYNTHESIS EMERGING? 401

peano
begin privar totalmax; totalmax vir int := 0;

do ?nn -t gen begin privar x, localmax;

od;
print(totalmax)

end

main program

x vir int, localmax vir int := 0, 0;
U /do ?inc -t x := x + 1;

do localmax < x -t localmax := x od
~ x > 0 cand ?dec -t x := x-I

od/ I);
do totalmax < localmax -t totalmax := localmax od

end

begin privar y, Z; Y vir peano.nn; z vir peano.nn;

y.inc; ... ; y.dec; ... ; z.inc; ... ; z.dec
end

The idea was, that the program called peano is read in and executed, until
it gets stuck at the repetitive construct with the (undefined) query ?nn. With
the knowledge ofthe identifier peano (and its subordinate peano.nn) the main
program is read in and executed, and because inc is subordinate to peano.nn,
it becomes subordinate to y by the initializing declaration y vir peano. nn.

NOTES

1) In the above it has not been indicated when peano will terminate and
print the value of totalmax.

2) The generator describing the natural number exists of three parts:

its opening code;
(j /its local code/ /)
; its closing code.

Access to the local variable totalmax of peano is permitted only in the opening
code-here the facility is not used and in nn the "(j /" could have been
moved forward-and in the closing code. Different natural numbers may
inc simultaneously, only their opening and closing codes are assumed to be
performed in mutual exclusion.

402 EDSGER W. DIJKSTRA

3) If the main program is a purely sequential one, immediately after
initialization y.dec will cause the main program to get stuck. If the main
program consists of a number of concurrent ones, the one held up in y. dec

may proceed after another process has performed y. inc. Our natural num­
bers would then provide an implementation for semaphores!

4) It is now possible to introduce, besides the peano given above, a pean­
odash that, for instance, omits the recording of maximum values. The main
program could then begin with

begin privar y, z; y vir peano.nn; z vir peanodash.nn; ...

The importance of the explicitly named maker in the declarationjinitial­
ization lies in the fact that it allows us to provide alternative implementations
for variables of the same (abstract) type. (End of Notes.)

The above re cords the highlights of Sunday's discussion as I remember
them. Many of the points raised have been recorded for the sake of com­
pleteness: we may pursue them later, but most of them not in this report,
as the discussion took another turn on the next Thursday.

* *
*

On Thursday, a couple of hours were wasted by considering how also
in the local code instances of generated processes-natural numbers-could
be granted mutually exclusive access to the local variables of their maker.
Although we came up with a few proposals of reasonable consistency, Tony
became suddenly disgusted, and I had to agree. The whole effort had been
"to separate", and now we were re-introducing a tool for fine-grained in­
terference! Our major result that day was the co ding of a recursive data
structure of type sequence. The coding was as follows (omitting the type of
parameters and of function procedures). It is not exactly the version coded
on that Thursday afternoon, but the differences are minor.

A SYNTHESIS EMERGING?

sequencemaker begin
do ?sequence ----+ gen begin
U /do ?empty ----+ result := true

~ ?has(i) ----+ result := false
~ ?truncate ----+ result : = false
~ ?back ----+ result := nil
~ ?remove(i) ----+ skip
~ ?insert(i) ----+ begin privar first, rest; first vir nint := i;

rest vir sequencemaker.sequence;
do first #- nil cand ?empty ----+ result := false

~ first #- nil cand ?has(i) ----+ if first = i ----+

result := true ~ first #- i ----+ result := rest.has(i) fi
~ first #- nil cand ?truncate ----+ result : = true;

begin pricon absorbed;
absorbed vir bool := rest.truncate;
if absorbed ----+ skip ~ non absorbed ----+ first := nil fi

end
~ first #- nil cand ?back ----+ result := first; first := rest. back
~ first #- nil cand ?remove(i) ----+ if i #- first ----+ rest.remove(i)

~ i = first ----+ first := rest.back fi
~ first #- nil cand ?insert(i) ----+ if i #- first ----+ rest.insert(i)

~ i = first ----+ skip fi
od end

od/ /) end
od end

403

It is a recursive definition oE a sequence oE different integers. Let s be a
variable oE type sequence.

s.empty is a boolean function, true if the sequence s is empty,
otherwise false

s.has(i) is a boolean function with an argument i of type
integer; it is true if i occurs in the sequence,
otherwise false

s.truncate is an operator upon s, which also returns a boolean
value; if s is nonempty, the last value is removed and
the value true is returned; if s is empty, it remains so
and the value false is returned

s. back is an operator upon s, which returns a value of type
nint (i.e. the integers, extended with the value nil);
if s is nonempty, the first value is returned and
removed from S; if s is empty, it remains so and the
value nil is returned

A SYNTHESIS EMERGING? 405

It is also instructive to follow how, upon exit from block

begin privar s; s vir sequencemaker.sequence; ... end

at a moment that s may contain many elements, the sequence s disappears.
All query-guards to s are set to false, which forces termination of the in­
ner repetitive construct for s, which results in a block exit from its inner
block (which first requires deletion ofits rest); upon completion of this block
exit, the query-guards still being false, termination of the outer repetitive
construct and block exit from the outer block of s are forced. This is very
beautiful: the hint to delete itself, given to the head of the sequence, propa­
gates up to its end, reflects there, travels back, folding up the sequence in a
nice stack-wise fashion, as, of course, it should. In its elegance- or should
I say: completeness?-it had a great appeal to uso

* *
*

It was at this stage, that I realized that the same program could be
visualized as a long sequence-long enough, to be precise-of mosquitoes:

where each mosquito is essentially a copy of the text between U / and / I),
and each mosquito is the rest for its left-hand neighbour. Execution of the
declaration rest vir sequencemaker.sequence can be interpreted as a com­
mand to one's right-hand neighbour to initialize its instruction counter to
the beginning of the program. Each mosquito is ready to accept a next com­
mand from the left as so on as it has nothing more to do, i.e. its control has
successfully returned to one of the sets of query-guards. Giving a command
to the right lasts until the command has been accepted when no answer is
required and until the answer has been returned when an answer is required.

It is instructive to follow the propagation of activity for the various co m­
mands.

?empty is immediately reflected.

?has(i) propagates up the sequence until i has been detected or the se­
quence has been exhausted, and from there the boolean value (true or false,

406 EDSGER W. DIJKSTRA

respectively) is reflected and travels to the left until it leaves the sequence
at the front end. All the time the sequence is busy and cannot accept an­
other command. The time it takes to return the answer true depends on the
distance of i from the beginning of the sequence; the time it takes to return
the answer false is the longest one, and depends on the actual length of the
sequence (not on the number of mosquitoes available).

?truncate and ?back propagate at practically full speed to the right; at
each mosquito, there is a reflection one place back to absorb the answer. Note
that ?truncate (in the inner block) starts with result := true and ?back starts
with result := first-actions, which can be taken to be completed when the
mosquito to the left has absorbed the value. This is done in order to allow
the mosquito to the left to continue as quickly as possible.

?remove(i) propagates still more simply (until it becomes a ?back).

?insert(i) propagates also quite simply, until the wave is either absorbed­
because i = first is encountered-or the sequence is extended with one ele­
ment. The fascinating observation is that any sequence of ?remove(i), ?in­
sert(i), ?back, and ?truncate may enter the sequence at the left: they will
propagate with roughly the same speed along the sequence; if the sequence
is long, a great number of such commands will travel along the sequence
to the right. It is guaranteed to be impossible that one command "over­
takes" the other, and we have introduced the possibility of concurrency in
implementation in an absolutely safe manner.

NOTE. Originally ?truncate was coded differently. It did not return a
boolean value, and was in the outer guarded command set

?truncate ---) skip

and in the inner guarded command set

first =I nil cand ?truncate ---)
if rest.empty ---) first := nil
~ non rest.empty ---) rest.truncate
fi

As soon as we started to consider the implementation by a sequence of
mosquitoes, however, we quickly changed the code, because the earlier ver­
sion had awkward propagation properties: two steps forward, one step back­
ward. The version returning the boolean was coded when we had not yet
introduced the type nint; after we had done so, we could also have coded

A SYNTHESIS EMERGING? 407

truncate with a parameter of type integer: in the outer guarded command
set

?truncate(j) ----+ result := nil

and in the inner guarded command set

first =1= nil cand ?truncate(i) ----+

result := i; first := rest.truncate(first)

The last part of this note is rather irrelevant. (End of Note.)
This was the stage at which we were when we left Marktoberdorf. As

I wrote in my trip report EWD506 "A surprising discovery, the depth of
which is-as far as I am concerned-still unfathomed.".

* *
*

What does one do with "discoveries of unfathomed depth"? WeIl, I de­
cided to let it sink in and not to think about it for a while-the fact that
we had a genuine heatwave when I returned from Marktoberdorf helped to
take that decision!. The discussion was only taken up again last Tuesday
afternoon in the company of Martin Rem and the graduate student Poirters,
when we tried to follow the remark, made in my trip report, that it would
be ni ce to do away with von Neumann's instruction counter. (This morn­
ing I found a similar suggestion in "Recursive Machines and Computing
Technology", by V.M. Gluskov, M.B. Ignatyev, V.A. Myasnikov, and V.A.
Torgashev, IFIP 1974; this morning I received a copy of that article from
Philip H. Enslow, who had drawn my attention to it.)

We had, of course, observed that the propagation properties of has(i) are
very awkward. It can keep a whole sequence of mosquitoes occupied, all of
them waiting for the boolean value to be returned. As long as this boolean
value has not been returned to the left-most mosquito, no new command can
be accepted by the first mosquito, and that is sad. The string of mosquitoes,
as shown above, is very much different from the elephant structure that we
have already encountered very often, viz. all mosquitoes in a' ring.

Nice propagation properties would be displayed by astring of mosquitoes
that send the result as soon as found to the right, instead of back to the left!
Before we pursue that idea, however, I must describe how I implemented
(recursive) function procedures in 1960-a way, which, I believe, is still the
standard one.

408 EDSGER W. DIJKSTRA

Upon call of a function procedure the stack was extended with an "empty
element" , an as yet undefined anonymous intermediate result. On top of that
the procedure's local variables would be allocated, and during the activation
of the procedure body, that location-named result-would be treated as
one of the local variables of the procedure. A call

?has(i) ----+ if i = first ----+ result := true
~ i oF first ----+ result := rest.has(i)
fi

could result in 9 times the second alternative and once the first, so that the
answer is found at a moment of dynamic depth of nesting equal to 10. In the
implementation technique described, the boolean result is then handed down
the stack in ten successive steps: the anonymous result at level n + 1 becomes
at procedure return the anonymous result at level n, which is assigned to
the anonymous result of level n, etc.: a sequence of alternating assignments
and procedure returns. Under the assumption that assignment is not an
expensive operation, this implementation technique can be defended very
weIl.

But it is an implementation choice! When implementing

result := rest.has(i)

no one forces us to manipulate the value of rest.has(i) as an intermediate
result that subsequently can be assigned! An alternative interface with the
function procedure would have been to give it an additional implicit parame­
ter, viz. the destination of the result-e.g. in a sufficiently global terminology,
such as distance from stack bottom. In that case the implementation of

result := rest.has(i)

would consist of a recursive call on has in which the implicit destination
parameter received would just be handed over to the next activation. When,
at dynamic depth 10, the boolean value would become known, it would
instantaneously be placed at its final destination, after which the stack could
collapse. In the case of a fixed number of mosquitoes, always present, needed
or not-that is the simplification I am thinking about now-there is not
much stack collapse, and the configuration that now suggests itself is the
following

A SYNTHESIS EMERGING? 409

m m m m m m

The mosquitoes still have the same mutual interconnection pattern, but I
assume that each request for a value that enters the network at the left at
the quest ion mark is accompanied by "a destination" for the result. The
reason that I have added the line at the bot tom is the following. A sequence
is a very simple arrangement, and in that case also the "external result",
as soon as known, could be handed to the right-hand neighbour for further
transmission. If, however, we consider the tree that would correspond to a
variable of the type "binary tree", the result would then finally arrive in one
of the many leaves. If we associate areal copper wire with each connection
between two mosquitoes, and we wish the result to appear at a single point,
then we must introduce some connecting network so that the various paths
of the results can merge. Hence the additionalline. The points marked m
are binary merge points. We have arranged them linearly, we could have
arranged them logarithmically, logically-and perhaps even physically-we
can think of them as "multi-entry merges" .

I am not now designing in any detail the appropriate mechanism for
collecting the extern al result as soon as it has been formed somewhere in the
network. My point is that there are many techniques possible, which all can
be viewed as different implementation techniques for the same (recursive)
program. Their only difference is in "propagation characteristics". The
reason that I draw attention to the difference in implement at ion technique
for the sequential machine (without and with implicit destination parameter)
is the following. In the case of the linear arrangement of mosquitoes, each
mosquito only being able to send to its right-hand neighbour when its right
hand neighbour is ready to accept, we have a pipeline that, by the nature
of its construction, pro duces results in the order in which they have been
requested. This, in general, seems too severe a restriction, and for that
purpose each re quest is accompanied by a "destination" that as a kind of
tag accompanies the corresponding result when finally produced. Obviously,
the environment driving the network must be such that never two requests
with the same destination could reside simultaneously in the network.

* *
*

410 EDSGER W. DIJKSTRA

True to our principle that about everything sensible that can be said
about computing can be illustrated with Euclid's Algorithm, we looked at
good old Euclid's Algorithm with our new eyes. We also took a fairly recent
version that computes the greatest common divisor of three positive num­
bers. It is

x, y, z := X, Y, Z;
do x > y ----> x := x - y
~ y > z ----> y := y - z
~ z > x ----> z := z - x
od

with the obvious invariant relation

gcd(x, y, z) = gcd(X, Y, Z) and x > 0 and y > 0 and z > 0

Our next version was semantically equivalent, but written down a little bit
differently, in an effort to represent that in each repetition we were really
operating on a tripIe x, y, z. That is, we regarded the above program as an
abbreviation of

x, y, z := X, Y, Z;
do x > y ----> x, y, z : = x - y, y, z
~ y > z ----> x, y, z := x, y - z, z
~ z > x ----> x, y, z := x, y, z - x
od

We then looked at it and said, why only change one value? This, indeed, is
not necessary, and we arrived at the following similar, but mathematically
different, program:

x, y, z := X, Y, Z;
do non x = y = z ----> x, y, z := f(x, y), f(y, z), f(z, x) od

with

f(u, v): ifu > v ----> result:= u - v
~ u :::; v ----> result := u
fi

(program 3)

or, if we want to go one step further for the sake of argument, with

f(u, v): if u > v ----> result := dif(u, v)
~ u :::; v ----> result := u
fi

A SYNTHESIS EMERGING? 411

and

dif(u, v): result := u - v

How do we implement this? We can look at program 3 with our traditional
sequential eyes, which means that at each repetition the function f is invoked
three times, each next invocation only taking pI ace when the former one has
returned its answer. We can also think of three different f-networks, which
can be activated simultaneously. We can also think of a single f-network
that is activated three times in succession, but where the comparison of the
next pair of arguments can coincide in time with forming the difference of
the preceding pair. To be quite honest, we should rewrite program 3 in the
form

x, y, z := X, Y, Z;
do non x = y = z --) tx, ty, tz := f(x, y), f(y, z), f(z, x);

x, y, z := tx, ty, tz
od

(program 4)

The reason is simple: we want to make quite clear that always the old values
of x, y, z are sent as arguments to the f-network, and we want to code our
cycle without making any assumptions about the information capacity of the
f-network. The above program works also if we have an f-network without
pipelining capacity.

* *
*

I was considering a mosquito that would have six local variables, x, y, z,
tx, ty, and tz; it would first "open" tx, ty, and tz, i.e. make them ready to
receive the properly tagged results, then send the argument pairs in any order
to either one or three f-networks, and finally, as a merge node, wait until
all three values had been received. When I showed this to C. S. Scholten,
he pointed out to me that the same result could be obtained by two, more
sequential mosquitoes: one only storing the x, y, z values, and another
storing the tx, ty, tz values, waiting for the three values to be delivered by
the f-network. This is right.

Some remarks, however, are in order. I can now see networks of mos­
quitoes, implementing algorithms that I can also interpret sequentially and
for which, therefore, all the known mathematical techniques should be ap­
plicable. Each mosquito represents a nondeterministic program that will be

412 EDSGER W. DIJKSTRA

activated by its "query-guards" when it is ready to be so addressed and is
so addressed, and where the act of addressing in the addressing mosquito is
only completed by the time that the mosquito addressed has honoured the
request. We should realize, however, that these synchronization rules are
more for safety than for "scheduling", because dynamically such networks
may have awkward macroscopic properties when overloaded. Take the long
string of mosquitoes that, together, form a bounded buffer, each of them al­
ternatingly waiting for a value from the left and then trying to transmit this
value to the right. If this is to be a transmission line, it has the maximum
throughput when, with n mosquitoes, it contains n/2 values. Its capacity,
however, is n. If we allow its contents to grow-because new values are
pumped in at the left while no values are taken out at the right-it gets
stuck: taking out values from the sequence filled to the brim empties the
buffer, but this effect only propagates slowly to the left and the danger of
awkward macroscopic oscillations seems not excluded.

The next re mark is that I have now considered elephants built from
mosquitoes, but the design becomes very similar to that of a program for
a data-driven machine. The programs I have seen for data-driven machines
were always pictorial ones-and I don't like pictures with arrows, because
they tend to become very confusing-and their semantics were always given
in an operation al fashion. Both characteristics point to the initial stage of
unavoidable immaturity. I now see a handle for separating the semantics
from the (multi-dimensional, I am tempted to add) computational histories
envisaged. In a sense we don't need to envisage them anymore, and the
whole quest ion of parallelism and concurrency has been pushed a little bit
more into the domain where it belongs: implementation. This is exciting.

* *
*

A sobering remark is not misplaced either, and that is that we have al­
ready considered highly concurrent engines-e.g. the hyperfast Fourier trans­
form via the perfect shuffie-that seem to fall as yet outside the scope of
constructs considered here. And so does apparently the on-the-fly garbage
collection. We can only conclude that there remains enough work to be done!

PS. For other reasons forced to go to town, I combine that trip with a visit to
the Eindhoven Xerox branch. The time to reread my manuscript for typing
errors is lacking and I apologize for their higher density.

COMMUNICATING
SEQUENTIAL PROCESSES

C.A.R.HOARE

(1978)

15

This paper suggests that input and output are basic primitives of program­

ming and that parallel composition of communicating sequential processes is

a fundamental program structuring method. When combined with a develop­

ment of Dijkstra's guarded command, these concepts are surprisingly versatile.

Their use is illustrated by sampIe solutions of a variety of familiar program­

ming exercises.

1 Introduction

Among the primitive concepts of computer programming, and of the high­
level languages in which programs are expressed, the action of assignment
is familiar and weH understood. In fact, any change of the intern al state
of a machine executing a program can be modeHed as an assignment of a
new value to some variable part of that machine. However, the operations
of input and output, which affect the external environment of a machine,
are not nearly so weH understood. They are often added to a programming
language only as an afterthought.

Among the structuring methods for computer programs, three basic con­
structs have received widespread recognition and use: A repetitive con­
struct (e.g. the while loop), an alternative construct (e.g. the conditional
if. .. then ... else), and normal sequential program composition (often de­
noted by a semicolon). Less agreement has been reached about the de­
sign of other important program structures, and many suggestions have

C. A. R. Hoare, Communicating sequential processes. Communications of the ACM 21,8
(August) 1978, 666-677. Copyright © 1978, Association for Computing Machinery, Inc.
Reprinted by permission.

413

414 C. A. R. HOARE

been made: Subroutines (Fortran), procedures (Algol 60 (Naur 1960)), en­
tries (PL/I), coroutines (UNIX (Thompson 1976)), classes (SIMULA 67
(Dahl et al. 1967)), processes and monitors (Concurrent Pascal (Brinch
Hansen 1975)), clusters (CLU (Liskov 1974)), forms (ALPHARD (Wulf
et al. 1976)), actors (Atkinson and Hewitt 1976).

The traditional stored-program digital computer has been designed pri­
marily for deterministic execution of a single sequential program. Where
the desire for greater speed has led to the introduction of parallelism, every
attempt has been made to disguise this fact from the programmer, either
by hardware itself (as in the multiple function units of CDC 6600) or by
the software (as in an 1/0 control package, or a multiprogrammed operat­
ing system). However, developments of processor technology suggest that a
multiprocessor machine, constructed from a number of similar self-contained
processors (each with its own store), may become more powerful, capacious,
reliable, and economical than a machine which is disguised as a monopro­
cessor.

In order to use such a machine effectively on a single task, the component
processors must be able to communicate and to synchronize with each other.
Many methods of achieving this have been proposed. A widely adopted
method of communication is by inspection and updating of a common store
(as in Algol 68 (van Wijngaarden 1969), PL/I, and many machine codes).
However, this can create severe problems in the construction of correct pro­
grams and it may lead to expense (e.g. cross bar switches) and unreliability
(e.g. glitches) in some technologies of hardware implementation. A greater
variety of methods has been proposed for synchronization: semaphores (Dijk­
stra 1968), events (PL/I), conditional critical regions (Hoare 1972a), moni­
tors and queues (Concurrent Pascal (Brinch Hansen 1975)), and path expres­
sions (Campbell 1974). Most of these are demonstrably adequate for their
purpose, but there is no widely recognized criterion· for choosing between
them.

This paper makes an ambitious attempt to find a single simple solution
to all these problems. The essential proposals are:
(1) Dijkstra's guarded commands (1975a) are adopted (with a slight change
of notation) as sequential control structures, and as the sole means of intro­
ducing and controlling nondeterminism.
(2) A parallel command, based on Dijkstra's parbegin (1968), specifies con­
current execution of its constituent sequential commands (processes). All the
processes start simultaneously, and the parallel command ends only when

COMMUNICATING SEQUENTIAL PROCESSES 415

they are all finished. They may not communicate with each other by updat­
ing global variables.
(3) Simple forms of input and output command are introduced. They are
used for communication between concurrent processes.
(4) Such communieation occurs when one process names another as destina­
tion for output and the second process names the first as source for input.
In this case, the value to be output is copied from the first process to the
second. There is no automatie buffering: In general, an input or output
command is delayed until the other process is ready with the corresponding
output or input. Such delay is invisible to the delayed process.
(5) Input commands may appear in guards. A guarded command with an in­
put guard is selected for execution only if and when the source named in the
input command is ready to execute the corresponding output command. If
several input guards of a set of alternatives have ready destinations, only one
is selected and the others have no effect; but the choiee between them is ar­
bitrary. In an efficient implementation, an output command which has been
ready for a long time should be favoured; but the definition of a language
cannot specify this since the relative speed of execution of the processes is
undefined.
(6) A repetitive command may have input guards. If all the sources named
by them have terminated, then the repetitive command also terminates.
(7) A simple pattern-matching feature, similar to that of Reynolds (1965),
is used to discriminate the structure of an input message, and to access its
components in aseeure fashion. This feature is used to inhibit input of
messages that do not match the speeified pattern.

The programs expressed in the proposed language are intended to be
implementable both by a eonventional machine with a single main store,
and by a fixed network of processors eonneeted by input/output ehannels
(although very different optimizations are appropriate in the different cases).
It is eonsequently a rather statie language: The text of a program determines
a fixed upper bound on the number of processes operating eoneurrently; there
is no recursion and no facility for process-valued variables. In other respeets
also, the language has been stripped to the barest minimum neeessary for
explanation of its more novel features.

The concept of a communicating sequential process is shown in Sec­
tions 3-5 to provide a method of expressing solutions to many simple pro­
gramming exercises which have previously been employed to illustrate the
use of various proposed programming-language features. This suggests that

416 C. A. R. HOARE

the process may constitute a synthesis of a number of familar and new pro­
gramming ideas. The reader is invited to skip the examples which do not
interest hirn.

However, this paper also ignores many serious problems. The most seri­
ous is that it fails to suggest any proof method to assist in the development
and verification of correct programs. Secondly, it pays no attention to the
problems of efficient implementation, which may be particularly serious on a
traditional sequential computer. It is probable that a solution to these prob­
lems will require (1) imposition of restrietions in the use of the proposed
features; (2) re-introduction of distinctive notations for the most common
and useful special cases; (3) development of automatie optimization tech­
niques; and (4) the design of appropriate hardware.

Thus the concepts and notations introduced in this paper (although de­
scribed in the next section in the form of a programming language fragment)
should not be regarded as suitable for use as a programming language, either
for abstract or for concrete programming. They are at best only a partial so­
lution to the problems tackled. Further discussion of these and other points
will be found in Section 7.

2 Concepts and notations

The style of the following description is borrowed from Algol 60 (Naur 1960).
Types, declarations, and express ions have not been treated; in the exam­
pIes, a Pascal-like notation (Wirth 1971) has usually been adopted. The
curly braces { } have been introduced into BNF to denote none or more
repetitions of the enclosed material. (Sentences in parentheses refer to an
implementation: they are not strictly part of a language definition.)

<command> ::= <simple command> I <structured command>

<simple command> ::= <null command> I <assignment command>

I <input command> I <output command>
<structured command> ::= <alternative command>

I <repetitive command> I <parallel command>
<null command> ::= skip

<command list> ::= {<declaration>jl <command>j}<command>

A command specifies the behaviour of a device executing the command.
It may succeed or fail. Execution of a simple command, if successful, may
have an effect on the internal state of the executing device (in the case of
assignment), or on its external environment (in the case of output), or on

COMMUNICATING SEQUENTIAL PROCESSES 417

both (in the case of input). Execution of a structured command involves
execution of some or all of its constituent commands, and if any of these
fail, so does the structured command. (In this case, whenever possible, an
implementation should provide some kind of comprehensible error diagnostic
message.)

A null command has no effect and never fails.
A command list specifies sequential execution of its constituent co m­

mands in the order written. Each declaration introduces a fresh variable
with a scope which extends from its declaration to the end of the command
list.

2.1 Parallel commands

<parallel command> ::= [<process>{11 <process>}]
<process> ::= <process label><command list>
<process label> ::= <empty> I <identifier> ::

I <identifier> (<label subscript> { ,<label subscript> }) ::
<label subscript> ::= <integer constant> I <range>

<integer constant> ::= <numeral> I <bound variable>
<bound variable> ::= <identifier>
<range> ::= <bound variable>:<lower bound> .. <upper bound>
<lower bound> ::= <integer constant>
<upper bound> ::= <integer constant>

Each process of a parallel command must be disjoint from every other
process of the command, in the sense that it does not mention any variable
which occurs as a target variable (see Sections 2.2 and 2.3) in any other
process.

A process label without subscripts, or one whose label subscripts are
all integer constants, serves as a name for the command list to which it
is prefixed; its scope extends over the whole of the parallel command. A
process whose label subscripts include Olle or more ranges stands for aseries
of processes, each with the same label and command list, except that each has
a different combination of values substituted for the bound variables. These
values range between the lower bound and the upper bound inclusively. For
example, X (i : 1 .. n) :: CL stands for

X(1) :: CL1 1IX(2) :: CL2 11·· .IIX(n) :: CLn

where each CLj is formed from CL by replacing every occurrence of the bound
variable i by the numeral j. After all such expansions, each process label

418 C. A. R. HOARE

in a parallel eommand must oeeur only onee and the processes must be weIl
formed and disjoint.

A parallel eommand specifies eoneurrent exeeution of its eonstituent pro­
cesses. They all start simultaneously and the parallel command terminates
sueeessfully only if and when they have all suceessfully terminated. The
relative speed with which they are exeeuted is arbitrary.

Examples:

(1) [cardreader?cardimage[[lineprinter! lineimage]

Performs the two constituent eommands in parallel, and terminates only
when both operations are eomplete. The time taken may be as low as the
longer of the times taken by eaeh constituent proeess, i.e. the sum of its
computing, waiting, and transfer times.

(2) [west :: DISASSEMBLE[[X :: SQUASH[[east :: ASSEMBLE]

The three processes have the names west, X, and east. The eapitalized
words stand for eommand lists whieh will be defined in later examples.

(3) [room :: ROOMllfork(i:O .. 4) :: FORKllphilCi:O .. 4) :: PHIL]

There are eleven proeesses. The behaviour of room is specifed by the
command list ROOM. The behaviour of the five processes f ork (0), f ork (1) ,

fork(2), fork(3), fork(4), is specifed by the eommand list FORK, within
whieh the bound variable i indicates the identity of the partieular fork.
Similar remarks apply to the five proeesses PHIL.

2.2 Assignment commands

<assignment command> ::= <target variable> := <expression>

<expression> ::= <simple expression> I <structured expression>

<structured expression> ::= <constructor>(<expression list»

<constructor> ::= <identifier> I <empty>
<expression list> ::= <empty> I <expression> {, <expression> }

<target variable> ::= <simple variable> I <structured target>
<structured target> ::= <constructor>(<target variable list»

<target variable list> ::= <empty> I <target variable>
{,<target variable>}

COMMUNICATING SEQUENTIAL PROCESSES 419

An expression denotes a value which is computed by an executing device
by application of its constituent operators to the specified operands. The
value of an expression is undefined if any of these operations are undefined.
The value denoted by a simple expression may be simple or structured. The
value denoted by a structured expression is structured; its constructor is
that of the expression, and its components are the list of values denoted by
the constituent expressions of the expression list.

An assignment command specifies evaluation of its expression, and as­
signment of the denoted value to the target variable. A simple target variable
may have assigned to it a simple or a structured value. A structured target
variable may have assigned to it a structured value, with the same construc­
tor. The effect of such assignment is to assign to each constituent simpler
variable of the structured target the value of the corresponding component of
the structured value. Consequently, the value denoted by the target variable,
if evaluated after a successful assignment, is the same as the value denoted
by the expression, as evaluated before the assignment.

An assignment fails if the value of its expression is undefined, or if that
value does not match the target variable, in the following sense: A simple
target variable matches any value of its type. A structured target variable
matches a structured value, provided that: (1) they have the same construc­
tor, (2) the target variable list is the same length as the list of components of
the value, (3) each target variable of the list matches the corresponding com­
ponent of the value list. A structured value with no components is known
as a "signal".

Examples:

(1) x:= x + 1

(2) (x, y) := (y, x)

(3) x:= cons(left, right)

(4) cons(left, right) := x

the value of x after the assignment
is the same as the value of x + 1
before.

exchanges the va1ues of x and y.
constructs a structured va1ue and

assigns it to x.
fai1s if x does not have the form

cons (y, z); but if it does, then
y is assigned to 1eft, and z is
assigned to right.

(5) insert (n) insert(2*x + 1) equiva1ent to n:= 2*x + 1.

420 C. A. R. HOARE

(6) c : = P 0 assigns to c a "signal" wi th
constructor P, and no components.

(7) PO: = c fails if the value of c is not PO;
otherwise has no effect.

(8) insert (n) : = has (n) fails, due to mismatch.

Note: Successful execution of both (3) and (4) ensures the truth of the
postcondition x = cons Cleft, right); but (3) does so by changing x and
(4) does so by changing left and right. Example (4) will fail if there is no
value of left and right wh ich satisfes the postcondition.

2.3 Input and output commands

<input command> ::= <source> ?<target variable>
<output command> ::= <destination>kexpression>
<source> ::= <process name>
<destination> ::= <process name>
<process name> ::= <identifier> I <identifier>(<subscripts»
<subscripts> ::= <integer expression> { ,<integer expression>}

Input and output commands specify communication between two concur­
rently operating sequential processes. Such a process may be implemented in
hardware as a special-purpose device (e.g. cardreader or line printer), or its
behaviour may be specified by one of the constituent processes of a parallel
command. Communication occurs between two processes of a parallel com­
mand whenever (1) an input command in one process specifies as its source
the process name of the other process; (2) an output command in the other
process specifies as its destination the process name of the first process; and
(3) the target variable of the input command matches the value denoted by
the expression of the output command. On these conditions, the input and
output commands are said to correspond. Commands which correspond are
executed simultaneously, and their combined effect is to assign the value of
the expression of the output command to the target variable of the input
command.

An input command fails if its source is terminated. An output command
fails if its destination is terminated or if its expression is undefined.

(The requirement of synchronization of input and output commands
means that an implementation will have to delay whichever of the two com­
mands happens to be ready first. The delay is ended when the corresponding
command in the other process is also ready, or when the other process termi­
nates. In the latter case the first command fails. It is also possible that the

COMMUNICATING SEQUENTIAL PROCESSES 421

delay will never be ended, for example, if a group of processes are attempting
communication but none of their input and output commands correspond
with each other. This form of failure is known as a deadlock.)

Examples:

(1) cardreader?cardimage from cardreader, read a card and assign its
value (an array of characters) to the
variable cardimage.

(2) lineprinter! lineimage to lineprinter, send the value of lineimage
for printing.

(3) X?(x,y) from process named X, input a pair of
values and assign them to x and y.

(4) DrV! (3*a + b, 13) to process DrV, output the two specifed
values.

Note: If a process named Drv issues command (3), and a process named X issues
command (4), these are executed simultaneously, and have the same effect as the

assignment: (x, y):= (3*a + b, 13) (= x:= 3*a + b; y:= 13).

(5) console(i)?c

(6) console (j - 1)! "A"

(7) X(i)?VO

(8) sem!PO

from the i th element of an array of
consoles, input a value and assign it to c.

to the (j - 1) th console, output character
"A".

from the ith of an array of processes X,
input a signal V 0; refuse to input any
other signal.

to sem output a signal PO.

2.4 Alternative and repetitive commands

<repetitive command> ::= * <alternative command>
<alternative command> ::= [<guarded command>

{~<guarded command>}]
<guarded command> ::= <guard>~<command list>

I «range>{,<range>}) <guard>~<command list>
<guard> ::= <guard list> I <guard list>;<input command>

I <input command>

<guard list> ::= <guard element> {;<guard element>}
<guard element> ::= <boolean expression> I <declaration>

A guarded command with one or more ranges stands for aseries of

guarded commands, each with the same guard and command list, except

422 C. A. R. HOARE

that each has a different combination of values substituted for the bound
variables. The values range between the lower bound and upper bound in­
clusive. For example, (i: 1 .. n) G -t CL stands for

G1 ----+ CL1 0 G2 ----+ CL2 0 ... ~Gn ----+ CLn 0

where each Gj -t CLj is formed from G -t CL by replacing every occurrence
of the bound variable i by the numeral j.

A guarded command is executed only if and when the execution of its
guard does not fail. First its guard is executed and then its command list.
A guard is executed by execution of its constituent elements from left to
right. A Boolean expression is evaluated: If it denotes false, the guard fails,
but an expression that denotes true has no effect. A declaration introduces
a fresh variable with a scope that extends from the declaration to the end
of the guarded command. An input command at the end of a guard is
executed only if and when a corresponding output command is executed. (An
implementation may test whether a guard fails simply by trying to execute
it, and discontinuing execution if and when it fails. This is valid because
such a discontinued execution has no effect on the state of the executing
device.)

An alternative command specifies execution of exact1y one of its con­
stituent guarded commands. Consequently, if all guards fail, the alternative
command fails. Otherwise an arbitrary one with successfully executable
guard is selected and executed. (An implementation should take advantage
of its freedom of selection to ensure efficient execution and good response.
For example, when input commands appear as guards, the command which
corresponds to the earliest ready and matching output command should in
general be preferred; and certainly, no executable and ready output com­
mand should be passed over unreasonably often.)

A repetitive command specifies as many iterations as possible of its con­
stituent alternative command. Consequently, when all guards fail, the repet­
itive command terminates with no effect. Otherwise, the alternative com­
mand is executed on ce and then the whole repetitive command is executed
again. (Consider a repetitive command when all its true guard lists end in
an input guard. Such a command may have to be delayed until either (1) an
output command corresponding to one of the input guards becomes ready,
or (2) all the sources named by the input guards have terminated. In case
(2), the repetitive command terminates. If neither event ever occurs, the
process fails (in deadlock).)

COMMUNICATING SEQUENTIAL PROCESSES 423

Examples:

(1) [x:::: y ----) m: = x 0 y :::: x ----) m: = y]

If x 2: y, assign x to m; if y 2: x assign y to m; if both x > y and y >
x, either assignment can be executed.

(2) i:=O;*[i < size; eontent(i) # n ----) i:= i + 1]

The repetitive command scans the elements content(i), for i = 0, 1,
... , until either i 2: size, or a value equal to n is found.

(3) *[e: eharaeter; west?e ----) east!e]

This reads all the characters output by west, and outputs them one by
one to east. The repetition terminates when the process west terminates.

(4) *[(i:1 .. 10)eontinue(i); eonsole(i)?e ----) X!(i, e);
eonsole(i)!aek(); eontinue(i):= (e # sign off)]

This command inputs repeatedly from any of ten consoles, provided that
the corresponding element of the Boolean array continue is true. The bound
variable i identifies the originating console. Its value, together with the char­
acter just input, is output to X, and an acknowledgment signal is sent back to
the originating console. Ifthe character indicated sign off, continueCi) is
set false, to prevent further input from that console. The repetitive command
terminates when all ten elements of continue are false. (An implementation
should ensure that no console which is ready to provide input will be ignored
unreasonably often.)

(5) *[n:integer; X?insert(n) ----) INSERT
Dn:integer; X?has(n) ----) SEARCH; X! ü<size)
]

(Here, and elsewhere, capitalized words INSERT and SEARCH stand as abbre­
viations for program text defined separately.}

On each iteration this command accepts from X either (a) arequest to
insert (n), (followed by INSERT) or (b) a quest ion has (n), to which it
outputs an answer back to X. The choice between (a) and (b) is made by
the next output command in X. The repetitive command terminates when X
does. If X sends a non-matching message, deadlock will result.

(6) *[X?VO ----) val:= val + 1
Oval > 0; Y?P 0 ----) val: = val - 1
]

On each iteration, accept either a VO signal from X and increment val, or
aPO signal from Y, and decrement val. But the se co nd alternative cannot

424 C. A. R. HOARE

be selected unless val is positive (after wh ich val will remain invariantly
nonnegative). (When val> 0, the choice depends on the relative speeds of
X and Y, and is not determined.) The repetitive command will terminate
when both X and Y are terminated, or when X is terminated and val S 0.

3 Coroutines

In parallel programming coroutines appear as a more fundamental program
structure than subroutines, which can be regarded as a special case (treated
in the next section).

3.1 Copy

Problem: Write a process X to copy characters output by process west to
process east.
Solution:

X" *[c:character; west?c ~ east!c]

Notes: (1) When west terminates, the input west?c will fail, causing termi­
nation of the repetitive command, and of process X. Any subsequent input
command from east will fail. (2) Process X acts as a single-character buffer
between west and east. It permits west to work on production of the next
character, before east is ready to input the previous one.

3.2 Squash

Problem: Adapt the previous program to replace every pair of consecutive
asterisks ** by an upward arrow T. Assurne that the final character input is
not an asterisk.
Solution:

X" *[c:character; west?c ~

[c i asterisk ~ east! c

Oe = asterisk ~ west?c;

[c i asterisk ~ east! asterisk; east! c

Oe = asterisk ~ east! upward arrow

]]]

Notes: (1) Since west does not end with asterisk, the second west?c will not
fail. (2) As an exercise, adapt this process to deal sensibly with input which
ends with an odd number of asterisks.

COMMUNICATING SEQUENTIAL PROCESSES 425

3.3 Disassemble

Problem: To read cards from a cardfile and output to process X the stream
of characters they contain. An extra space should be inserted at the end of
each card.
Solution:

* [cardimage: (1 .. 80)character; cardfile?cardimage -4

i:integer; i:= 1;
*[iS80 -4 X!cardimage(i); i:= i + 1J

X!space

Notes: (1) (1 .. 80) character declares an array of 80 characters, with sub­
scripts ranging between 1 and 80. (2) The repetitive command terminates
when the cardfile process terminates.

3.4 Assemble

Problem: To read a stream of characters from process X and print them in
lines of 125 characters on a lineprinter. The last line should be completed
with spaces if necessary.
Solution:

lineimage:(1 .. 125)character;
i:integer; i:=1;
*[c:character; X?c -4

lineimage(i):= c;
[iS124 -4 i:= i + 1
o i = 125 -4 lineprinter! lineimage; i: = 1
J;

[i=1 -4 skip
Oi>1 -4 *[iS125 -4 lineimage(i):= space; i:= i + 1];

lineprinter!lineimage

Note: When X terminates, so will the first repetitive c0l!lmand of this
process. The last line will then be printed, if it has any characters.

3.5 Reformat

Problem: Read a sequence of cards of 80 characters each, and print the
characters on a line printer at 125 characters per line. Every card should be

426 c. A. R. HOARE

followed by an extra space, and last line should be completed with space if
necessary.
Solution:

[west: : DISASSEMBLEllx: : COPYII east: : ASSEMBLE]

Notes: (1) The capitalized names stand for program text defined in previous
sections. (2) The parallel command is designed to terminate after the card
file has terminated. (3) This elementary problem is difficult to solve elegantly
without coroutines.

3.6 Conway's problem (1963)

Problem: Adapt the above program to replace every pair of consecutive
asterisks by an upward arrow.
Solution:

[west: :DISASSEMBLEIIX: :SQUASHlleast: : ASSEMBLE]

4 Subroutines and data representations

A conventional nonrecursive subroutine can be readily implemented as a
coroutine, provided that (1) its parameters are called "by value" and "by
result", and (2) it is disjoint from its calling program. Like a Fortran sub­
routine, a coroutine may retain the values of local variables (own variables,
in Algol terms) and it may use input commands to achieve the effect of
"multiple entry points" in a safer way than PLI!. Thus a coroutine can be
used like a SIMULA dass instance as a concrete representation for abstract
data.

A coroutine acting as a subroutine is a process operating concurrently
with its user process in a parallel command: [subr:: SUBROUTINEIIX: : USER] .
The SUBROUTINE will contain (or consist of) a repetitive command:

* [X? (value params) -4 ... ; X! (result params)]

where ... computes the results from the values input. The subroutine will
terminate when its user does. The USER will call the subroutine by a pair
of commands: subr! (arguments); ... ; subr? (resul ts). Any commands
between these two will be executed concurrently with the subroutine.

A multiple-entry subroutine, acting as a representation for data (Hoare
1972b), will also contain a repetitive command wh ich represents each en­
try by an alternative input to a structured target with the entry name as
constructor. For example,

COMMUNICATING SEQUENTIAL PROCESSES 427

*[X?entry1(value params) ~
OX?entry2(value params) ~
]

The calling process X will determine which of the alternatives is activated
on each repetition. When X terminates, so does this repetitive command.
A similar technique in the user program can achieve the effect of multiple
exits.

A recursive subroutine can be simulated by an array of processes, one
for each level of recursion. The user process is level zero. Each activation
communicates its parameters and results with its predecessor and calls its
successor if necessary:

[recsub(O): :USERllrecsub(i: 1. .reclimit): :RECSUB]

The user will call the first element of

recsub: recsub(1)! (arguments); ... ; recsub(1)?(results);

The imposition of a fixed upper bound on recursion depth is necessitated by
the "static" design of the language.

This clumsy simulation of recursion would be even more clumsy for a
mutually recursive algorithm. It would not be recommended for conventional
programming; it may be more suitable for an array of microprocessors for
which the fixed upper bound is also realistic.

In this section, we assume each subroutine is used only by a single user
process (which may, of course, itself contain parallel commands).

4.1 Function: division with remainder

Problem: Construct a process to represent a function-type subroutine, which
accepts a positive dividend and divisor, and returns their integer quotient
and remainder. Efficiency is of no concern.
Solution:

[Drv: :*[x,y:integer; X?(x,y) ~
quot,rem:integer;quot:= 0; rem:= x;
*[rem ~ y ~ rem:= rem - y; quot:= quot + 1];
X! (quot, rem)
]

IIX: : USER
]

428 C. A. R. HOARE

4.2 Recursion: factorial

Problem: Compute a factorial by the recursive method, to a given limit.
Solution:

[fac(i:l .. limit)::
*[n:integer;fact(i - l)?n -4

[n = 0 -4 fac Ci - 1)! 1
On> 0 -4 f ac(i + 1)! n - 1;

r:integer;fac(i + l)?r; fac(i - l)!(n * r)

JJ
Ilfac(O) : :USER

J

Note: This unrealistic example introduces the technique of the "iterative
array" which will be used to better effect in later examples.

4.3 Data representation: small set of integers (Haare 1972b)

Problem: To represent a set of not more than 100 integers as a process,
S, which accepts two kinds of instruction from its calling process X: (1)
S! insert (n), insert the integer n in the set, and (2) S! has (n); ... ; S?b,
b is set true if n is in the set, and false otherwise. The initial value of the
set is empty.

Solution:

S' .

content:(O .. 99)integer; size:integer; size:= 0;
* [n:integer; X?has(n) -4 SEARCH;X!(i < size)
Dn:integer; X?insert(n) -4 SEARCH;

[i < size -4 skip
o i = size; size < 100 -4

content(size):= n; size:= size + 1

J J

where SEARCH is an abbreviation for:

i:integer; i:= 0;
*[i < size; cOhtent(i) -I- n -4 i:= i + lJ

COMMUNICATING SEQUENTIAL PROCESSES 429

Notes: (1) The alternative command with guard size < 100 will fail if
an attempt is made to insert more than 100 elements. (2) The activity of
insertion will in general take place concurrently with the calling process.
However, any subsequent instruction to S will be delayed until the previous
insertion is complete.

4.4 Scanning a set

Problem: Extend the solution to 4.3 by providing a fast method for scanning
all members of the set without changing the value of the set. The user
program will contain a repetitive command of the form:

S!scan(); more:boolean; more:= true;

* [more; x: integer; S?next (x) ----+ ... deal wi th x ...

o more; S?noneleft () ----+ more: = false

J

where S! scan () sets the representation into a scanning mode. The repetitive
command serves as a for statement, inputting the successive members of x
from the set and inspecting them until finally the representation sends a
signal that there are no members left. The body of the repetitive command
is not permitted to communicate with S in any way.

Solution: Add a third guarded command to the outer repetitive command
of S:

... 0 X?scan ----+ i: integer; i: = 0;

*[i < size ----+ X!next(content(i)); i:= i + lJ;

X! noneleft ()

4.5 Recursive data representation: small set of integers

Problem: Same as above, but an array of processes is to be used to achieve
a high degree of parallelism. Each process should contain at most one num­
ber. When it contains no number, it should answer false to all inquiries
about mernbership. On the first insertion, it changes to a second phase of
behaviour, in which it deals with instructions frorn its predecessor, passing
some of them on to its successor. The calling process will be named S (0).

For efficiency, the set should be sorted, i.e. the ith process should contain
the i th largest number.

430

Solution:

S(i:1..100)::

*[n:integer; Sei

C. A. R. HOARE

l)?has(n) ~ S(O) !false
Dn:integer; Sei 1)?insert(n) ~

*[m:integer; Sei - l)?has(m) ~
[m ::; n ~ S (0) ! (m = n)

Dm > n ~ sei + 1) !has(m)

Dm:integer; Sei - 1)?insert(m) ~
[m < n ~ Sei + 1) !insert(n); n:= m
Dm = n ~ skip
Dm > n ~ sei + 1) !insert(m)

]]]

Notes: (1) The user process S(O) inquires whether n is a me mb er by the com­
mands S(1)!has(n); ... ; [(i:1. .. 100)S(i)?b --t skipJ. The appropri­
ate process will respond to the input command by the output command in
line 2 or line 5. This trick avoids passing the answer back "up the chain". (2)
Many insertion operations can proceed in parallel, yet any subsequent has

operation will be performed correctly. (3) All repetitive commands and all
processes of the array will terminate after the user process S (0) terminates

4.6 Multiple exits: remove the least member

Exercise: Extend the above solution to respond to a command to yield the
least member of the set and to remove it from the set. The user pro gram
will invoke the facility by a pair of commands:

S(l) !least(); [x:integer;S(l)?x ~ deal with x
D S (1) ?noneleft 0 ~ ...
]

or, if he wishes to scan and empty the set, he may write:

S(l) !least();more:boolean; more:= true;
* [more; x: integer; S(l)?x ~ ... deal with x
Dmore; S(l)?noneleft() ~ more:= false
]

S(1) !leastO

Hint: Introduce a Boolean variable, b, initialized to true, and prefix this to
all the guards of the inner loop. After responding to a ! least () command
from its predecessor, each process returns its contained value n, asks its

COMMUNICATING SEQUENTIAL PROCESSES 431

successor for its least, and stores the response in n. But if the successor
returns noneleft 0, b is set false and the inner loop terminates. The process
therefore returns to its initial state (solution due to David Gries).

5 Monitors and scheduling

This section shows how a monitor can be regarded as a single process wh ich
communicates with more than one user process. However, each user process
must have a different name (e.g. producer, consumer) or a different subscript
(e.g. X (i)) and each communication with a user must identify its source or
destination uniquely.

Consequently, when a monitor is prepared to communicate with any of its
user processes (i.e. whichever of them calls first) it will use a guarded co m­
mand with a range. For example: * [(i: 1. .100)X(i)? (value parameters)
~ ... ; X (i) ! (results) J. Here, the bound variable i is used to send the
results back to the calling process. If the monitor is not prepared to accept
input from some particular user (e.g. X (j)) on a given occasion, the input
command may be preceded by a Boolean guard. For example, two successive
inputs from the same process are inhibited by j = 0; * [(i : 1 .. 100) i =I- j;
X(i)?(values) ~ ... ; j:= iJ. Any attempted output from X(j) will be
delayed until a subsequent iteration, after the output of some process X Ci)

has been accepted and dealt with.
Similarly, conditions can be used to delay acceptance of inputs which

would violate scheduling constraints-postponing them until some later oc­
casion when some other process has brought the monitor into astate in
which the input can validly be accepted. This technique is similar to a con­
ditional critical region (Hoare 1972a) and it obviates the need for special
synchronizing variables such as events, queues, or conditions. However, the
absence of these special facilities certainly makes it more difficult or less ef­
ficient to solve problems involving priorities-for example, the scheduling of
head movement on a disko

5.1 Bounded buffer

Problem: Construct a buffering process X to smooth variations in the speed
of output of portions by a producer process and input by a consumer process.
The consume.r contains pairs of commands X! more 0; X?p, and the producer
contains commands of the form X! p. The buffer should contain up to ten
portions.

432 C. A. R. HOARE

Solution:

X· .

buffer:(O .. 9)portion;
in,out:integer; in:= 0; out:= 0;
comment 0 ~ out ~ in ~ out + 10;

*[in < out + 10; producer?buffer(in mod 10) ~ in:= in + 1
Dout < in; consumer?moreO ~ consumer!buffer(out mod 10);

out:= out + 1
]

Notes: (1) When out < in < out + 10, the selection of the alternative
in the repetitive command will depend on whether the producer pro duces
before the consumer consumes, or vice versa. (2) When out = in, the buffer
is empty and the second alternative cannot be selected even if the consumer
is ready with its command X! more (). However, after the producer has
produced its next portion, the consumer's re quest can be granted on the
next iteration. (3) Similar remarks apply to the producer, when in = out
+ 10. (4) Xis designed to terminate when out = in and the producer has
terminated.

5.2 Integer semaphore

Problem: To implement an integer semaphore, S, shared among an array
X (i : 1 .. 100) of dient processes. Each process may increment the semaphore
by S ! V () or decrement it by S! P (), but the latter command must be delayed
if the value of the semaphore is not positive.
Solution:

S: :val:integer; val:= 0;
*[(i:1 .. 100)X(i)?V() ~ val:= val + 1
o (i:1. .100)val > 0; X(i)?PO ~ val:= val - 1
]

Notes: (1) In this process, no use is made of knowledge of the subscript i

of the calling process. (2) The semaphore terminates only when all hundred
processes of the process array X have terminated.

5.3 Dining philosophers (Problem due to E.W. Dijkstra)

Problem: Five philosophers spend their lives thinking and eating. The
philosophers share a common dining room where there is a circular table

COMMUNICATING SEQUENTIAL PROCESSES 433

surrounded by five chairs, each belonging to one philosopher. In the cent re
of the table there is a large bowl of spaghetti, and the table is laid with
five forks (see Figure 1). On feeling hungry, a philosopher enters the dining
roorn, sits in his own chair, and picks up the fork on the left of his place.
Unfortunately, the spaghetti is so tangled that he needs to pick up and use
the fork on his right as weIl. When he has finished, he puts down both
forks, and leaves the roorn. The roorn should keep a count of the nurnber of
philosophers in it.

o

Fig.l

Solution: The behaviour of the i th philosopher rnay be described as folIows:

PHIL = *[... during ith lifetime ... ~
THINK;
room! enter () ;
fork(i) !pickup(); fork((i + 1) mod 5) !pickup();
EAT;

fork(i) !putdown(); fork((i + 1) mod 5) !putdown();
room! exitO
]

The fate of the ith fork is to be picked up and put down by a philosopher
sitting on either side of it:

FORK =
*[phil(i)?pickup() ~ phil(i)?putdown ()
o phil (Ci - 1) mod 5) ?pickupO ~ phil((i - 1) mod 5) ?putdownO
]

434 C. A. R. HOARE

The story of the room may be simply told:

ROOM = occupancy:integer; occupancy:= 0;
*[(i:O .. 4)phil(i)?enter() ~ occupancy:= occupancy + 1
O(i:0 .. 4)phil(i)?exit() ~ occupancy:= occupancy - 1
]

All these components operate in parallel:

[room: :ROOMllfork(i:O .. 4): :FORKllphil(i:O . .4): :PHIL]

Notes: (1) The solution given above does not prevent all five philosophers
from entering the room, each picking up his left fork and starving to death
because he cannot pick up his right fork. (2) Exercise: Adapt the above pro­
gram to avert this sad possibility. Hint: Prevent more than four philosophers
from entering the room. (Solution due to E.W. Dijkstra.)

6 Miscellaneous

This section contains furt her examples of the use of communicating sequen­
tial processes for the solution of some less familiar problems; a parallel ver­
sion of the sieve of Eratosthenes, and the design of an iterative array. The
proposed solutions are even more speculative than those of the previous
sections, and in the second example, even the quest ion of termination is
ignored.

6.1 Prime numbers: the sieve of Eratosthenes (McIlroy 1968)

Problem: To print in ascending order all primes less than 10000. Use an array
of processes, SIEVE, in which each process inputs a prime from its predecessor
and prints it. The process then inputs an ascending stream of numbers from
its predecessor and passes them on to its successor, suppressing any that are
multiples of the original prime.

COMMUNICATING SEQUENTIAL PROCESSES 435

Solution

[SIEVE(i:l .. 100)::

p,mp:integer;

SIEVE(i - 1)?p;

printip;

mp:= p; comment mp is a multiple of p;

*[m:integer; SIEVE(i - l)?m -4

* [m > mp -4 mp: = mp + p] ;

[m = mp -4 skip

Dm < mp -4 SIEVE(i + 1) im

]

IISIEVE(O): :printi2; n:integer; n:= 3;

*[n< 10000 -4 SIEVE(l) in; n:= n + 2]

IlsIEVE(101): :*[n:integer;SIEVE(100)?n -4 printin]

Ilprint::*[(i:0 .. l01) n:integer; SIEVE(i)?n -4 ...]

]

Note: (1) This beautiful solution was contributed by David Gries. (2) It
is algorithmically similar to the program developed in (Dijkstra 1972, pp.
27-32).

6.2 An iterative array: matrix multiplication

Problem: A square matrix A of order 3 is given. Three streams are to be
input, each stream representing a column of an array IN. Three streams are
to be output, each representing a column of the product matrix IN x A.
After an initial delay, the results are to be produced at the same rate as the
input is consumed. Consequently, a high degree of parallelism is required.
The solution should take the form shown in Figure 2. Each of the nine
nonborder nodes inputs a vector component from the west and a partial
sum from the north. Each node outputs the vector component to its east,
and an updated partial sum to the south. The input data is produced by
the west border nodes, and the desired results are consumed by south border
nodes. The north border is a constant source of zeros and the east border
is just a sink. No provision need be made for termination nor for changing
the values of the array A.

436 C. A. R. HOARE

Fig.2

Solution: There are twenty-one nodes, in five groups, comprising the central
square and the four borders:

[M(i:1 .. 3,0): :WEST
IIM(O,j: 1. .3): : NORTH
IIM(i:1. .3,4): :EAST
IIM(4,j: 1. .3): :SOUTH
IIM(i: 1. .3,j : 1. .3) : :CENTRE
]

The WEST and SOUTH borders are processes of the user program; the the
remaining processes are:

NORTH = *[true -4 M(1,j) 10]
EAST = *[x:real; M(i,3)?x -4 skip]
CENTER = *[x:real; M(i,j - 1)?x -4

M(i,j + 1) Ix; sum:real;
M(i - 1,j)?sum; M(i + 1,j) !(A(i,j)*x + sum)

]

7 Discussion

A design for a programming language must necessarily involve a number of
decisions which seem to be fairly arbitrary. The discussion of this section is

COMMUNICATING SEQUENTIAL PROCESSES 437

intended to explain some of the underlying motivation and to mention some
unresolved questions.

7.1 Notations

I have chosen single-character notations (e.g. !,7) to express the primitive
concepts, rat her than the more traditional boldface or underlined English
words. As a result, the examples have an APL-like brevity, which some
readers find distasteful. My excuse is that (in contrast to APL) there are only
a very few primitive concepts and that it is standard practice of mathematics
(and also good co ding practice) to denote common primitive concepts by
brief notations (e.g. +, x). When read aloud, these are replaced by words
(e.g. plus, times).

Some readers have suggested the use of assignment notation for input
and output:

<target variable> := <source>
<destination> := <expression>

I find this suggestion misleading: it is better to regard input and output as
distinct primitives, justifying distinct notations.

I have used the same pair of brackets ([' .. J) to bracket all program struc­
tures, instead of the more familiar variety of brackets (if..fi, begin .. end,
case .. esac, etc.). In this I follow normal mathematical practice, but I must
also confess to a distaste for the pronunciation of words like fi, od, or esac.

I am dissatisfed with the fact that my notation gives the same syntax for
a structured expression and a subscripted variable. Perhaps tags should be
distinguished from other identifers by a special symbol (say #).

I was tempted to introduce an abbreviation for combined declaration and
input, e.g. X? Cn: integer) for n: integer; X?n.

7.2 Explicit naming

My design insists that every input or output command must name its source
or destination explicitly. This makes it inconvenient to write a library of
processes wh ich can be included in subsequent programs, independent of the
process names used in that prograrrl. A partial solution to this problem is
to allow one process (the main process) of a parallel command to have an
empty label, and to allow the other processes in the command to use the
empty process name as source or destination of input or output.

438 C. A. R. HOARE

For eonstruetion of large programs, some more general teehnique will
also be neeessary. This should at least permit substitution of program text
for names defined elsewhere-a teehnique whieh has been used informally
throughout this paper. The Cobol COPY verb also permits a substitution
far formal parameters within the eopied text. But whatever facility is in­
trodueed, I would reeommend the following prineiple: Every program, after
assembly with its library routines, should be printable as a text expressed
wholly in the language, and it is this printed text whieh should deseribe the
exeeution of the program, independent of whieh parts were drawn from a
library.

Sinee I did not intend to design a eomplete language, I have ignored
the problem of libraries in order to eoneentrate on the essential semantie
eoneepts of the program which is aetually exeeuted.

7.3 Port names

An alternative to explicit naming of souree and destination would be to name
a port through whieh eommunieation is to take plaee. The port names would
be loeal to the proeesses, and the manner in whieh pairs of ports are to be
eonneeted by ehannels eould be declared in the head of a parallel eommand.

This is an attraetive alternative wh ich eould be designed to introduee a
useful degree of syntaetically eheekable redundaney. But it is semantieally
equivalent to the present proposal, provided that eaeh port is eonnected to
exactly one other port in another proeess. In this ease eaeh ehannel ean be
identifed with a tag, together with the name of the proeess at the other end.
Since I wish to concentrate on semanties, I preferred in this paper to use the
simplest and most direct notation, and to avoid raising quest ions about the
possibility of connecting more than two ports by a single channel.

7.4 Automatie buffering

As an alternative to synchronization of input and output, it is often proposed
that an outputting process should be allowed to proceed even when the
inputting process is not yet ready to accept the output. An implementation
would be expected automatically to interpose a ehain of buffers to hold
output messages that have not yet been input.

I have deliberately rejected this alternative, for two reasons: (1) It is less
realistic to implement in multiple disjoint processors, and (2) when buffering
is required on a particular channel, it can readily be specified using the given

COMMUNICATING SEQUENTIAL PROCESSES 439

primitives. Of course, it could be argued equally weIl that synchronization
can be specifed when required by using a pair of buffered input and output
commands.

7.5 Unbounded process activation

The notation for an array of processes permits the same program text (like an
Algol recursive procedure) to have many simultaneous "activations"; how­
ever, the exact number must be specifed in advance. In a conventional
single-processor implementation, this can lead to inconvenience and waste­
fulness, similar to the fixed-length array of Fortran. It would therefore be
attractive to allow a proc~ss array with no apriori bound on the number of
elements; and to specify that the exact number of elements required for a
particular execution of the program should be determined dynamically, like
the maximum depth of recursion of an Algol procedure or the number of
iterations of a repetitive command.

However, it is a good principle that every actual run of a program with
unbounded arrays should be identical to the run of some program with all
its arrays bounded in advance. Thus the unbounded program should be
defined as the "limit" (in some sense) of aseries of bounded programs with
increasing bounds. I have chosen to concentrate on the semantics of the
bounded case~which is necessary anyway and which is more realistic for
implementation on multiple microprocessors.

7.6 Fairness

Consider the parallel command:

[X: :YlstopOIIY: :continue:boolean;continue:= true;

* [continue; X?stop() -4 continue

o continue -4 n:= n + 1

]

false

If the implementation always prefers the second alternative in the repetitive
command of Y, it is said to be unfair, because although the output command
in X could have been executed on an infinite number of occasions, it is in
fact always passed over.

The question arises: Should a programming language definition specify
that an implementation must be fair? Here, I am fairly sure that the answer

440 C. A. R. HOARE

is NO. Otherwise, the implementation would be obliged to successfully com­
plete the example program shown above, in spite of the fact that its nondeter­
minism is unbounded. I would therefore suggest that it is the programmer's
responsibility to prove that his program terminates correctly-without rely­
ing on the assumption of fairness in the implementation. Thus the program
shown above is incorrect, since its termination cannot be proved.

Nevertheless, I suggest that an efficient implement at ion should try to be
reasonably fair and should ensure that an output command is not delayed
unreasonably often after it first becomes executable. But a proof of correct­
ness must not rely on this property of an efficient implementation. Consider
the following analogy with a sequential program: An efficient implementa­
tion of an alternative command tends to favour the alternative which can be
most efficiently executed, but the programmer must ensure that the logical
correctness of his program does not depend on this property of his imple­
mentation.

This method of avoiding the problem of fairness does not apply to pro­
grams such as operating systems which are intended to run forever , because
in this case termination proofs are not relevant. But I wonder whether it
is ever advisable to write or to execute such programs. Even an operating
system should be designed to bring itself to an orderly conclusion reasonably
soon after it inputs a message instructing it to do so. Otherwise, the only
way to stop it is to "crash" it.

7.7 Functional coroutines

It is interesting to compare the pro ces ses described here with those pro­
posed in Kahn (1974); the differences are most striking. There, coroutines
are strictly deterministic: No choice is given between alternative sources of
input. The output commands are automatically buffered to any required
degree. The output of one process can be automatically fanned out to any
number of processes (including itself!) which can consume it at differing
rates. Finally, the processes there are designed to run forever, whereas my
proposed parallel command is normally intended to terminate. The design
in Kahn (1974) is based on an elegant theory which permits proof of the
properties of programs. These differences are not accidental-they seem to
be natural consequences of the difference between the more abstract applica­
tive (or functional) approach to programming and the more machine-oriented
imperative (or procedural) approach, which is taken by communicating se­
quential processes.

COMMUNICATING SEQUENTIAL PROCESSES 441

7.8 Output guards

Since input commands may appear in guards, it seems more symmetrie to
permit output commands as weIl. This would allow an obvious and useful
simplification in some of the example programs, for example, in the bounded
buffer (5.1). Perhaps a more convincing reason would be to ensure that
the externally visible effect and behaviour of every parallel command can
be modelled by some sequential command. In order to model the parallel
command

Z:: [X!21IY!3J

we need to be able to write the sequential alternative command:

Z: : [X! 2 -* Y! 3 D Y ! 3 -* X! 2J

Note that this cannot be done by the command

Z:: [true -* X!2; Y!3Dtrue -* Y!3; X!2J

whieh can fail if the process Z happens to choose the first alternative, but
the processes Y and X are synchronized with each other in such a way that
Y must input from Z before X does, e.g.

Y: :Z?y; X!goO

IIX: : Y?go 0; Z?x

7.9 Restrietion: Repetitive command with input guard

In proposing an unfamiliar programming-Ianguage feature, it seems wiser at
first to specify a highly restrietive version rather than to propose extensions­
especially when the language feature claims to be primitive. For example, it
is clear that the multidimensional process array is not primitive, since it can
readily be constructed in a language which permits only single-dimensional
arrays. But I have a rat her more serious misgiving about the repetitive
command with input guards.

The automatie termination of a repetitive command on termination of
the sources of all its input guards is an extremely powerful and convenient
feature but it also involves so me subtlety of specification to ensure that it
is implementable; and it is certainly not primitive, since the required effect
can be achieved (with considerable inconvenience) by explicit exchange of
end() signals. For example, the subroutine DIV (4.1) could be rewritten:

442 C. A. R. HOARE

[DIV: :continue:boolean; continue:= true;
* [continue; X?end() ~ continue:= false
Dcontinue; x,y:integer; X?(x,y) ----> .•• ; Xl(quot,rem)

IIX: : USER PROG; DIVlendO
]

Other examples would be even more inconvenient.
But the dangers of convenient facilities are notorious. For example the

repetitive commands with input guards may tempt the programmer to write
them without making adequate plans for their termination; and if it turns
out that the automatie termination is unsatisfactory, reprogramming for
explicit termination will involve severe changes, affecting even the interfaces
between the processes.

8 Conclusion

This paper has suggested that input, output, and concurrency should be
regarded as primitives of programming, which underlie many familiar and
less familiar programming concepts. However, it would be unjustified to
conclude that these primitives can wholly replace the other concepts in a
programming language. Where a more elaborate construction (such as a
procedure or monitor) is frequently useful, has properties which are more
simply provable, and can be implemented more efficiently than the general
case, there is a strong reason for including in a programming language a
special notation for that construction. The fact that the construction can
be defined in terms of simpler underlying primitives is a useful guarantee
that its inclusion is logically consistent with the remainder of the language.

Acknowledgments. The research reported in this paper has been encour­
aged and supported by a Senior Fellowship of the Science Research Council
of Great Britain. The technical inspiration was due to Edsger W. Dijkstra
(1975b), and the paper has been improved in presentation and content by
valuable and painstaking advice from D. Gries, D. Q. M. Fay, E. W. Dijk­
stra, N. Wirth, R. Milne, M. K. Harper, and its referees. The role of IFIP
W.G.2.3 as a forum for presentation and discussion is acknowledged with
pleasure and gratitude.

References

Atkinson, R., and Hewitt, C. 1976. Synchronisation in actor systems. Working Paper 83,
M.I.T., Cambridge, Mass., Nov.

COMMUNICATING SEQUENTIAL PROCESSES 443

Brinch Hansen, P. 1975. The programming language Concurrent Pascal. IEEE Trans. Soft­
ware Eng. 1,2 (June) , 199-207.

Campbell, R.H., and Habermann, A.N. 1974. The specification of process synchronisation
by path expressions. Lecture Notes in Computer Science 16, Springer, 89-102.

Conway, M.E. 1963. Design of a separable transition-diagram compiler. Comm. ACM 6,
7 (July), 396-408.

Dahl, O.-J., et al. 1967. SIMULA 67, common base language. Norwegian Computing
Centre, Forskningveien, Oslo.

Dijkstra, E.W. 1968. Co-operating sequential processes. In Programming Languages,
F. Genuys, Ed., Academic Press, New York, 43-112.

Dijkstra, E.W. 1972. Notes on structured programming. In Structured Programming,
Academic Press, New York, 1-82.

Dijkstra, E.W. 1975a. Guarded commands, nondeterminacy, and formal derivation of
programs. Comm. ACM 18,8 (Aug.), 453-457.

Dijkstra, E.W. 1975b. Verbal communication, Marktoberdorf, Aug.
Hoare, C.A.R. 1972a. Towards a theory of parallel programming. In Operating Systems

Techniques, Academic Press, New York, 61-71.
Hoare, C.A.R. 1972b. Proof of correctness of data representations. Acta Informatica 1, 4,

271-281.
Kahn, G. 1974. The semantics of a simple language for parallel programming. In Proc. IFIP

Congress 74, North Holland.
Liskov, B.H. 1974. A note on CLU. Computation Structures Group Memo. 112, M.I.T.,

Cambridge, Mass.
McIlroy, M.D. 1968. Coroutines. Bell Laboratories, Murray Hill, N.J.
Naur, P., Ed. 1960. Report on the algorithmic language ALGOL 60. Comm. ACM 3, 5

(May) , 299-314.
Reynolds, J.C. 1965. COGENT. ANL-7022, Argonne Nat. Lab., Argonne, Ill.
Thompson, K. 1976. The UNIX command language. In Structured Programming, Infotech,

Nicholson House, Maidenhead, England, 375-384.
van Wijngaarden, A., Ed. 1969. Report on the algorithmic language ALGOL 68. Nu­

mer. Math. 14, 79-218.
Wulf, W.A., London, R.L., and Shaw, M. 1976. Abstraction and verification in AL­

PHARD. Dept. of Comptr. ScL, Carnegie-Mellon U., Pittsburgh, Pa., June.
Wirth, N. 1971. The programming language PASCAL. Acta Informatica 1, 1,35-63.

DISTRIBUTED PROCESSES:
A CONCURRENT

PROGRAMMING CONCEPT
PER BRINCH HANSEN

(1978)

16

A language concept for concurrent processes without common variables is in­

troduced. These processes communicate and synchronize by means of proce­

dure calls and guarded regions. This concept is proposed for real-time applica­

tions controlled by microcomputer networks with distributed storage. The pa­

per gives several examples of distributed processes and shows that they include

procedures, coroutines, classes, monitors, processes, semaphores, buffers, path

expressions, and input/output as special cases.

1 INTRODUCTION

This paper intro duces distributed processes-a new language concept for con­
current programming. It is proposed for real-time applications controlled by
microcomputer networks with distributed storage. The paper gives several
examples of distributed processes and shows that they include procedures,
coroutines, classes, monitors, processes, semaphores, buffers, path expres­
sions and input/output as special cases.

Real-time applications push computer and programming technology to
its limits (and sometimes beyond). A real-time system is expected to moni­
tor simultaneous activities with critical timing constraints continuously and
reliably. The consequences of system failure can be serious.

P. Brinch Hansen, Distributed processes: A concurrent programming eoneept, Communi­
cations 0/ the ACM 21, 11 (November 1978), 934-94l. Copyright © 1978, Association for
Computing Maehinery, Ine. Reprinted by permission.

444

DISTRIBUTED PROCESSES 445

Real-time programs must achieve the ultimate in simplicity, reliability,
and efficiency. Otherwise one can neither understand them, depend on them,
nor expect them to keep pace with their environments. To make real-time
programs manageable it is essential to write them in an abstract program­
ming language that hides irrelevant machine detail and makes extensive com­
pilation checks possible. To make real-time programs efficient at the same
time will probably require the design of computer architectures tailored to
abstract languages (or even to particular applications).

From a language designer's point of view, real-time programs have these
characteristics:

1. Areal-time program interacts with an environment in wh ich many
things happen simultaneously at high speeds.

2. Areal-time program must respond to a variety of nondeterministic
requests from its environment. The program cannot predict the order
in which these requests will be made but must respond to them within
certain time limits. Otherwise, input data may be lost or output data
may lose their significance.

3. Areal-time program controls a computer with a fixed configuration of
processors and peripherals and performs (in most cases) a fixed number
of concurrent tasks in its environment.

4. Areal-time program never terminates but continues to serve its envi­
ronment as long as the computer works. (The occasional need to stop a
real-time program, say at the end of an experiment, can be handled by
ad hoc mechanisms, such as turning the machine off or loading another
program into it.)

What is needed then for real-time applications is the ability to specify
a fixed number of concurrent tasks that can respond to nondeterministic
requests. The programming languages Concurrent Pascal and Modula come
dose to satisfying the requirements for abstract concurrent programming
(Brinch Hansen 1975, 1977; Wirth 1977). Both of them are based on the
monitor concept (Brinch Hansen 1973; Hoare 1974). Modula, however, is
primarily oriented towards multiprogramming on a single processor. And a
straightforward implementation of Concurrent Pascal requires a single pro­
cessor or a multiprocessor with a common store. In their present form,
these languages are not ideal for a microcomputer network with distributed
storage only.

446 PER BRINCH HANSEN

It may weIl be possible to modify Concurrent Pascal to satisfy the con­
straints of distributed storage. The ideas proposed here are more attractive,
however, because they unify the monitor and process concepts and result in
more elegant programs. The new language concepts for real-time applica­
tions have the following properties:

1. Areal-time program consists of a fixed number of concurrent processes
that are started simultaneously and exist forever. Each process can
access its own variables only. There are no common variables.

2. A process can call common procedures defined within other processes.
These procedures are executed when the other processes are waiting
for some conditions to become true. This is the only form of process
communication.

3. Processes are synchronized by means of nondeterministic statements
called guarded regions (Hoare 1972; Brinch Hansen 1978).

These processes can be used as program modules in a multiprocessor sys­
tem with common or distributed storage. To satisfy the real-time constraints
each processor will be dedicated to a single process. When a processor is
waiting for some condition to become true then its processor is also waiting
until an external procedure call makes the condition true. This does not
represent a waste of resources but rather a temporary lack of useful work for
that processor. Parameter passing between processes can be implemented ei­
ther by copying within a common store or by input/output between separate
stores.

The problems of designing verification rules and computer architectures
for distributed processes are currently being studied and are not discussed.
This paper also ignores the serious problems of performance evaluation and
fault tolerance.

2 LANGUAGE CONCEPTS

A concurrent program consists of a fixed number of sequential processes
that are executed simultaneously. A process defines its own variables, some
common procedures, and an initial statement

process name
own variables
common procedures
initial statement

DISTRIBUTED PROCESSES 447

A process may only access its own variables. There are no common variables.
But a process may call common procedures defined either within itself or
within other processes. A procedure call from one process to another is
called an external request.

A process performs two kinds of operations then: the initial statement
and the external requests made by other processes. These operations are
executed one at a time by interleaving. A process begins by executing its
initial statement. This continues until the statement either terminates or
waits for a condition to become true. Then another operation is started (as
the result of an external re quest). When this operation in turn terminates
or waits the process will either begin yet another operation (requested by
another process) or it will res urne an earlier operation (as the result of a
condition becoming true). This interleaving of the initial statement and the
external requests continues forever. If the initial statement terminates, the
process continues to exist and will still accept external statements.

So the interleaving is controlled by the program (and not by dock signals
at the machine level). A process switches from one operation to another
only when an operation terminates or waits for a condition within a guarded
region (introduced later).

A process continues to execute operations except when all its current
operations are delayed within guarded regions or when it makes arequest to
another process. In the first case, the process is idle until another process
calls it. In the second case, the process is idle until the other process has
completed the operation requested by it. Apart from this not hing is assumed
about the order in which a process performs its operations.

A process guarantees only that it will perform some operations as long
as there are any unfinished operations that can proceed. But only the pro­
grammer can ensure that every operation is performed within a finite time.

A procedure defines its input and output parameters, some local variables
perhaps, and a statement that is executed when it is called.

proc name(input param#output param)
loeal variables
statement

A process P can call a procedure R defined within another process Q as
folIows:

call Q.R(expressions, variables)

448 PER BRINCH HANSEN

Before the operation R is performed the expression values of the call are
assigned to the input parameters. When the operation is finished the values
of the output parameters are assigned to the variables of the call. Parameter
passing between processes can therefore be implemented either by copying
within a common store or by input/output between processors that have no
common store.

In this paper processes can call procedures within one another without
any restrictions. In a complete programming language additional notation
would be added to limit the access rights of individual processes. It may
also be necessary to eliminate recursion to simplify verification and imple­
mentation. But these are issues that will not concern us here.

Nondeterminism will be controlled by two kinds of statements called
guarded commands and guarded regions. A guarded region can delay an
operation, but a guarded command cannot.

A guarded command (Dijkstra 1975) enables a process to make an ar­
bitrary choice among several statements by inspecting the current state of
its variables. If none of the alternatives are possible in the current state the
guarded command cannot be executed and will either be skipped or cause a
program exception.

The guarded commands have the following syntax and meaning:

if BI: 51 I B 2 : 52 I ... end

1f statement: If some of the conditions BI, B2, ... , are true then select
one of the true conditions Bi and execute the statement Si that follows it;
otherwise, stop the program.

(If the language includes a mechanism whereby one process can detect
the failure of another process, it is reasonable to let an exception in one
process stop that process only. But, if recovery from programming errors
is not possible then it is more consistent to stop the whole program. This
paper does not address this important issue.)

Do statement: While some of the conditions are true, select one of them
arbitrarily and execute the corresponding statement.

A guarded region (Hoare 1972; Brinch Hansen 1978) enables a process
to wait until the state of its variables makes it possible to make an arbitrary
choice among several statements. If none of the alternatives are possible in
the current state the process postpones the execution of the guarded region.

The guarded regions have the following syntax and meaning:

DISTRIBUTED PROCESSES 449

When statement: Wait until one of the conditions is true and execute
the corresponding statement.

Cycle statement: Endless repetition of a when statement.
If several conditions are true within a guarded command or region it is

unpredictable which one of the corresponding statements the machine will
select. This uncertainty reflects the nondeterministic nature of real-time
applications.

The data types used are either integers, booleans, or characters, or they
are finite sets, sequences, and arrays with at most n elements of some type
T:

int bool char set[n]T seq[n]T array[n]T

The following statement enumerates all the elements in a data structure:

for x in y: Send

For statement: For each element x in the set or array y execute the
statement S. A for statement can access and change the values of array
elements but can only read the values of set elements.

Finally, it should be mentioned that the empty statement is denoted skip
and the use of semicolons is option al.

3 PROCESS COMMUNICATION

The following presents several examples of the use of these language concepts
in concurrent programming. We will first consider communication between
processes by means of procedure calls.

Example: Semaphore

A general semaphore initialized to zero can be implemented as a process sem
that defines wait and signal operations.

process sem
s: int
proc wait when s > 0: s := s - 1 end
proc signal; s := s + 1
s := 0

450 PER BRINCH HANSEN

The initial statement assigns the value zero to the semaphore and terminates.
The process, however, continues to exist and can now be called by other
processes

call sem.wait call sem.signal

Example: Message buffer

A buffer process stores a sequence of characters transmitted between pro­
ces ses by means of send and receive operations.

process buffer
s: seq[n]ehar
proc send(e: eh ar) when not s.full: s. put(e) end
proc ree(Iv: ehar) when not s.empty: s.get(v) end
s:= []

The initial statement makes the buffer empty to begin with. The buffer
operations are called as follows:

call buffer.send(x) call buffer .ree(y)

The semaphore and buffer processes are similar to monitors (Brinch Han­
sen 1973; Hoare 1974): They define the representation of a shared data
structure and the meaningful operations on it. These operations take place
one at a time. After initialization, a monitor is idle between external calls.

Example: Character stream

A process inputs punched cards from a card reader and outputs them as a
sequence of characters through a buffer process. The process deletes spaces
at the end of each card and terminates it by a newline character.

process stream
b: array[80]ehar; n, i: int
do true:

call eardreader .input(b)
if b = blankline: skip I

b i- blankline: i := 1; n := 80;
do b[n] = spaee: n := n - 1 end
do i ~ n: call buffer.send(b[i]); i := i + 1 end

end
call buffer.send(newline)

end

DISTRIBUTED PROCESSES 451

This use of a proeess is similar to the traditional process eoneept: the
proeess exeeutes an initial statement only. It ealls eommon proeedures within
other processes, but does not define any within itself. Such a proeess does
not eontain guarded regions beeause other processes are unable to eall it and
make the eonditions within it true.

The example also illustrates how peripheral devices ean be eontrolled by
distributed processes. A deviee (such as the eard reader) is assoeiated with a
single proeess. Other processes ean aeeess the deviee only through eommon
proeedures. So a peripheral deviee is just another proeess.

While a proeess is waiting for input/output, no other operations ean
take plaee within it. This is a special ease of a more general rule: When a
proeess P ealls a proeedure R within another proeess Q then R is eonsidered
an indivisible operation within proeess P, and P will not exeeute any other
operation until R is finished (see Section 2).

Notiee, that there is no need for interrupts even in areal-time language.
Fast response to external requests is aehieved by dedicating a proeessor to
eaeh eritieal event in the environment and by making sure that these pro ees­
sors interact with a small number of neighboring proeessors only (to prevent
them from being overloa,ded with too many requests at a time).

Exercise: Write a proeess that reeeives a sequenee of eharaeters from a
buffer proeess and outputs them line by li ne to a printer. The proeess should
output a formfeed after every 60 lines.

4 RESOURCE SCHEDULING

We will now look at a variety of seheduling problems solved by means of
guarded regions. It should perhaps be mentioned that resouree sehedulers
are by nature bottlenecks. It would therefore be wise in areal-time program
to make sure that eaeh resouree either is used frequently by a small number
of processes or very infrequently by a larger number of processes. In many
applications it is possible to avoid resouree seheduling altogether and ded­
icate a resouree to a single proeess (as in the eard reader and line printer
examples).

Example: Resource scheduler

A set of user processes ean obtain exclusive aeeess to an abstract resouree
by ealling request and release operations within a seheduling proeess.

452 PER BRINCH HANSEN

process resouree
free: bool
proc request when free: free := false end
proc release if not free: free := true end
free := true

call resouree.request ... call resouree.release

The use of the boolean free forees a strict alternation of request and release
operations. The program stops if an attempt is made to release a resouree
that is already free.

In this example, the seheduler does not know the identity of individual
user processes. This is ideal when it does not matter in whieh order the
users are served. But, if a seheduler must enforee a partieular seheduling
poliey (such as shortest job next) then it must know the identity of its users
to be able to grant the resouree to a speeifie user. The following example
shows how this ean be done.

Example: Shortest job next scheduler

A seheduler alloeates a resouree among n user processes in shortest job next
order. Arequest enters the identity and service time of a user process in a
queue and waits until that user is selected by the seheduler. Arelease makes
the resouree available again.

The seheduler waits until one of two situations arises:

1. A proeess enters or leaves the queue: The seheduler will sean the queue
and seleet the next user (but will not grant the resouree to it yet).

2. The resouree is not being used and the next user has been selected:
The seheduler will grant the resouree to that user and remove it from
the queue.

User processes identify themselves by unique indices 1, 2, ... , n. The
eonstant nil denotes an undefined proeess index.

The seheduler uses the following variables:

queue the indices of waiting processes
rank the service times of waiting processes
user the index of the eurrent user (if any)
next the index of the next user (if any)

DISTRIBUTED PROCESSES

process sjn
queue: set [n]int; rank: array[n]int
user, next, min: int

proc request(who, time: int)
begin queue.include(who); rank[who] := time

next := nil; when user = who: next := nil end
end

proc release; user := nil

begin queue := []; user := nil; next := nil
cycle

not queue.empty & (next = nil):
min : = maxinteger
for i in queue:

if rank[i] > min: skip I
rank[i] ::; min: next := i; min := rank[i]

end
endl

(user = nil) & (next ~ nil):
user := next; queue.exclude(user)

end
end

453

In a microprocessor network where each processor is dedicated to a single
process it is an attractive possibility to let a process carry out computations
between external calls of its procedures. The above scheduler takes advantage
of this capability by selecting the next user while the resource is being used
by the present user. It would be simpler (but less efficient) to delay the
selection of the next user until the previous one has released the resource.

The scheduling of individual processes is handled completely by means of
guarded regions without the use of synchronizing variables, such as semaphores
or event queues.

The periodic reevaluation of a synchronizing condition, such as

user = who

might be a serious load on a eommon store shared by other processors. But it
is quite acceptable when it only involves the loeal store of a single processor
that has nothing else to do. This is a good example of the infiuence of
hardware technology on abstract algorithms.

Exereise: Write a first-come, first-served scheduler.

454 PER BRINCH HANSEN

Example: Readers and writers

Two kinds of proeesses, ealled readers and writers, share a single resouree.
The readers ean use the resouree simultaneously, but eaeh writer must have
exdusive aeeess to it. The readers and writers behave as folIows:

call resouree.startread
read
call resouree.endread

call resouree.startwrite
write
call resouree.endwrite

A variable s defines the eurrent resouree state as one of the following:

s = 0
s = 1
s = 2
s = 3

1 writer uses the resouree
o proeesses use the resouree
1 reader uses the resouree
2 readers use the resouree

This leads to the following solution (Brineh Hansen 1978):

process resouree
s: int
proc startread when s ~ 1: s := s + 1 end
proc endread if s > 1: s := S - 1 end
proc startwrite when s = 1: s := 0 end
proc endwrite if s = 0: s := 1 end
s := 1

Exercise: Solve the same problem with the additional constraint that
further reader requests should be delayed as long as some writers are either
waiting for or are using the resouree.

Example: Alarm clock

An alarm doek proeess enables user proeesses to wait for different time
intervals. The alarm doek reeeives a signal from a timer proeess after eaeh
time unit. (The problems of representing a doek with a finite integer are
ignored here.)

DISTRIBUTED PROCESSES

process alarm
time: int

proc wait(interval: int)
due: int
begin due := time + interval

when time = due: skip end
end

proc tick; time := time + 1

time := 0

5 PROCESS ARRAYS

455

So far we have only used one instance of each process. The next example
uses an array of n identical processes (Hoare 1978):

process name[n]

A standard function this defines the identity of an individual process within
the array (1 ~ this ~ n).

Example: Dining philosophers

Five philosophers alternate between thinking and eating. When a philoso­
pher gets hungry, he joins a round table and picks up two forks next to his
plate and starts eaiting. There are, however, only five forks on the table.
So a philosopher can eat only when none of his neighbors are eating. When
a philosopher has finished eating he puts down his two forks and leaves the
table again.

process philosopher[5]
do true: think

call table.join(this); eat; call table.leave(this)
end

process table
eating: set [5Jint
proc join(i: int)
when([i 8 1, i EB 1] & eating) = []: eating.include(i) end
proc leave(i: int); eating.exclude(i)
eating := []

456 PER BRINCH HANSEN

This solution does not prevent two philosophers from starving a philosopher
between them to death by eating alternately.

Exercise: Solve the same problem without starvation.

Example: Sorting array

A process array sorts m data items in order O(m). The items are input
through sort process 1 that stores the smallest item input so far and passes
the rest to its successor sort process 2. The latter keeps the second smallest
item and passes the rest to its successor sort process 3, and so on. When the
m items have been input they will be stored in their natural order in sort
processes 1, 2, ... , m. They can now be output in increasing order through
sort process 1. After each output the processes receive the remaining items
from their successors.

A user process behaves as follows:

A: array[mJint
für x in A: call sort[l].put(x) end
für x in A: call sort[l].get(x) end

The sorting array can sort n elements or less (m ::; n). A sorting process is in
equilibrium when it holds one item only. When the equilibrium is disturbed
by its predecessor, a process takes the following action:

1. If the process holds two items, it will keep the smallest one and pass
the largest one to its successor.

2. If the process holds no items, but its successor does, then the process
will fetch the smallest item from its successor.

A sorting process uses the following variables:

he re the items stored in this process (0 ::; here.length ::; 2)
rest the number of items stored in its successors

A standard function succ defines the index of the successor process (succ
= this + 1).

DISTRIBUTED PROCESSES

process sort[n]
here: seq[2]int; rest, temp: int
proc put(c: int) when here.length < 2: here.put(c) end
proc get(#v: int) when here.length = 1: here.get(v) end

begin here := []; rest := 0
cycle

here.length = 2:
if here[l] s:: here[2]: temp := here[2]; here := [here[llli

here[l] > here[2]: temp := here[l]; he re := [here[2]]
end
call sort[succ].put(tcmp); rest := rest + 1 I

(here.length = 0) & (rest> 0):
call sort[succ].get(temp); rest := rest - 1
here := [temp]

end
end

457

A hardware implementation of such a sorting array could be used as a very
efficient form of priority scheduling queue.

BTercise: Program a process array that contains N = 2n numbers to
begin with and which will add them in time 0(1og2N).

Since a process can define a common procedure it obviously includes
the procedure concept as a special case. Hoare (1978) shows that a process
array also can simulate a recursive procedure with a fixed maximum depth
of recursion.

Exercise: Write a process array that computes a Fibonacci nu mb er by
recursion.

6 ABSTRACT DATA TYPES

A process combines a data structure and all the possible operations on it into
a single program module. Since other processes can perform these operations
only on the data structure, but do not have direct access to it, it is called
an abstract data structure.

We have already seen that a process can function as a monitor-an ab­
stract data type that is shared by several processes. The next example shows
that a process also can simulate a class-an abstract data type that is used
by a single process only.

458 PER BRINCH HANSEN

Example: Vending machine

A vending machine accepts one coin at a time. When a button is pushed
the machine returns an item with change provided there is at least one item
left and the coins cover the cost of it; otherwise, all the coins are returned.

process vending_machine
items, paid, cash: int
proc insert(coin: int) paid := paid + coin
proc push(#change, goods: int)
if (items > 0) & (paid ;::: price)

change := paid - price; cash := cash + price
goods := 1; items := items - 1; paid := 0 I

(items = 0) or (paid < price):
change := paid; goods := 0; paid := 0

end
begin items := 50; paid := 0; cash := 0 end

7 COROUTINES

Distributed processes can also function as coroutines. In a coroutine rela­
tionship between two processes P and Q only one of them is running at a
time. A resume operation transfers control from one process to the other.
When a process is resumed it continues at the point where it has transferred
control to another process.

process P
go: bool
proc resurne; go := true

begin go : = false

call Q .resume
when go: go := false end

end

Process Q is very similar.

8 PATH EXPRESSIONS

Path expressions define meaningful sequences of operations P, Q, " ., (Camp­
bell 1974). A path expression can be implemented by a scheduling process

DISTRIBUTED PROCESSES 459

that defines the operations P, Q, ... , as procedures and uses astate vari­
able s to enforce the sequence in which other processes may invoke these
procedures.

Suppose, for example, that the operation P only can be followed by the
operation Q as shown by the graph below:

-+-P-+-Q-+-

To implement this path expression one associates a distinct state a, b, and
c with each arrow in the graph and programs the operations as folIows:

proc P if s = a: ... s := b end

proc Q if s = b: ... s := c end

If P is called in the state s = a it will change the state to s = band make Q
possible. Q, in turn, changes the state from b to c. An attempt to perform
P or Q in astate where they are illegal will cause a program exception (or
a delay if a when statement is used within the operation).

The next path expression specifies that either P or Q can be performed.
This is enforced by means of two states a and b.

proc P if s = a: ... s := b end

proc Q if s = a: ... S := b end

If an operation P can be performed zero or more times then the execution
of Pleaves the state s = a unchanged as shown below.

proc P if s = a: ... end

The simple resource scheduler in Seetion 4 implements a composite path
expression in wh ich the sequence request ... release is repeated zero or more
times.

460 PER BRINCH HANSEN

The readers and writers problem illustrates the use of astate variable to
permit some operations to take place simultaneously while other operations
are temporarily excluded (in this case, simultaneous reading by several pro­
cesses excludes writing). Each simultaneous operation P is surrounded by
a pair of scheduling operations, startP and endP. The state variable counts
the number of P operations in progress.

9 IMPLEMENTATION HINTS

The following outlines the general nature of an implementation of distributed
processes but ignores the details which are currently being studied.

In a well-designed concurrent program one may assume that each process
communicates with a small number of neighboring processes only. For if the
interactions are not strongly localized one cannot expect to gain much from
concurrency. (A few resource schedulers may be an exception to this rule.)

Each processor will contain a distributed process P and a small, fixed
number of anonymous processes which are the representatives of those dis­
tributed processes that can call process P. Additional notation in the lan­
guage should make it possible for a compiler to determine the number of
processes which call a particular process.

Whenever a processor is idle it activates a local representative wh ich
then waits until it receives arequest with input data from another processor.
The representative now calls the local procedure requested with the available
input. When the procedure terminates, its output data are returned to the
other processor and the representative becomes passive again. The switching
from one quasiconcurrent process to another within a processor takes place
as described in Section 2.

Since processes are permanent and procedures are nonrecursive, a com­
piler can determine the maximum storage required by a distributed process
and the local representatives of its environment. So the storage allocation is
static within each processor.

The parameter passing between two processors requires a single input
operation before a procedure is executed and a single output operation when
it terminates.

The speed of process switching within a single processor will probably
be crucial for its real-time response.

The technique of representing the environment of a processor by local
processes synchronized with extern al processes seems conceptually attrac­
tive. Although these processes are anonymous in this proposal one could

DISTRIBUTED PROCESSES 461

design a language in which the store of a single process is shared by qua­
siconcurrent processes which communicate with nonlocal processes by in­
put/output only.

10 FINAL REMARKS

It would certainly be feasible to adapt the processes and monitors of Concur­
rent Pascal to multiprocessor networks with distributed storage by restrict­
ing the parameter passing mechanism as proposed here. All the examples
discussed here could then be programmed in that language-but not nearly
as elegantly!

What then are the merits of distributed processes? Primarily, that they
are a combination of well-known programming concepts (processes, proce­
dures, and conditional critical regions) which unify the dass, monitor, and
process concepts. They indude a surprising number of basic programming
concepts as special cases:

procedures
coroutines
classes
monitors
processes
semaphores
buffers
path expressions
input/output

Since there is a common denominator for all these concepts, it may weIl be
possible to develop common proof rules for them. The use of a single concept
will certainly simplify the language implementation considerably.

The Concurrent Pascal machine distinguishes between 15 virtual instruc­
tions far dasses, monitors, and processes. This number would be reduced
by a factor of three for distributed processes. In addition, numerous special
cases would disappear in the compiler.

It is also encouraging that distributed processes can be used to write
elegant algorithms both for the more weIl-known concurrent' problems and
far some new ones that are nontrivial.

Arecent proposal by Hoare (1978) has the same pleasant properties.
Both proposals attack the problem of concurrency without shared variables
and recognize the need for nondeterminacy within a single process.

462 PER BRINCH HANSEN

Hoare's communicating sequential processes can be created and termi­
nated dynamically. A single data transfer from one process to another is
the communication mechanism. A process synchronizes itself with its envi­
ronment by guarded input commands which are executed when a boolean
expression is true and input is available from another process. The rela­
tionships between two communicating processes is symmetrical and requires
both of them to name the other. The brief and nonredundant notation does
not require dedarations of communication channels but depends (concep­
tually) on dynamic type checking to recognize matching input and output
commands in two processes.

In their present form communicating sequential processes seem well­
suited to a theoretical investigation of concurrency and as a concise spec­
ification language that suppresses minor details, However, as Hoare points
out, the language concepts and the notation would have to be modified to
make them practical for program implementation.

The proposal for distributed processes is intended as a first step toward a
practical language for networks. The proposal recognizes that the exchange
of input and output in one operation is a frequent case, particularly for pe­
ripheral devices which return a result after each operation. The notation is
redundant and enables a compiler to determine the number of processes and
their storage requirements. The relationship between two communicating
processes is asymmetrical and requires only that the caller of an operation
name the process that performs it. This asymmetry is useful in hierarchi­
cal systems in which servants should be unaware of the identities of their
masters.

Distributed processes derive much of their power from the ability to de­
lay process interactions by means of boolean expressions which may involve
both the global variables of a process and the input parameters from other
processes (as illustrated by the sjn scheduler and the alarm dock). The
price for this flexibility is the need for quasiconcurrent processes in the im­
plementation. A more restricted form of Hoare's proposal might be able
to implement process synchronization by the simpler method of polling a
number of data channels until one of them transmits data.

But more work remains to be done on verification rules and network
architectures for these new concepts. And then the ideas must be tested in
practice before a final judgment can be made.

DISTRIBUTED PROCESSES 463

Acknowledgements

I am grateful to Nissim Francez, Wolfgang Franzen, Susan Gerhart, Charles
Hayden, John Hennessy, Tony Hoare, David Lomet, David MacQueen, Jo­
hannes Madsen, David Musser, Michel Sintzoff, Jelrgen Staunstrup and the
referees for their constructive comments.

References

Brinch Hansen, P. 1973. Operating System Principles. Prentice Hall, Englewood Cliffs,
NJ.

Brinch Hansen, P. 1975. The programming language Concurrent Pascal. IEEE Transac­
tions on Software Engineering 1, 2 (June), 199-207.

Brinch Hansen, P. 1977. The Architecture of Concurrent Programs. Prentice Hall, Engle­
wood Cliffs, NJ.

Brinch Hansen, P., and Staunstrup, J. 1978. Specification and implementation of mutual
exclusion. IEEE Transactions on Software Engineering 4,4 (September), 365-370.

Campbell, RH., and Habermann, A.N. 1974. The specification ofprocess synchronization
by path expressions. Lecture Notes in Computer Science 16, 89-102.

Dijkstra, E.W. 1975. Guarded commands, nondeterminacy, and formal derivation of pro­
grams. Communications of the ACM 18,8 (August), 453-457.

Hoare, C.A.R 1972. Towards a theory of parallel programming. In Operating Systems
Techniques, C.A.R. Hoare and RH. Perrott, Eds., Academic Press, New York.

Hoare, C.A.R 1974. Monitors: An operating system structuring concept. Communica­
tions of the ACM 17, 10 (October), 549-557.

Hoare, C.A.R 1978. Communicating sequential processes. Communications of the ACM
21, 8 (August), 666-677.

Wirth, N. 1977. Modula: A programming language for modular multiprogramming.
Software-Practice and Experience 7, 1 (January), 3-35.

JOYCE-A PROGRAMMING

LANGUAGE FOR

DISTRIBUTED SYSTEMS

PER BRINCH HANSEN

(1987)

17

This paper describes a sec ure programming language called Joyce based on

CSP and Pascal. Joyce permits unbounded (recursive) activation of communi­

cating agents. The agents exchange messages through synchronous channels.

A channel can transfer messages of different types between two or more agents.

A compiler can check message types and ensure that agents use disjoint sets

of variables only. The use of Joyce is illustrated by a variety of examples.

1 INTRODUCTION

Two years after the invention of the monitor concept (Brinch Hansen 1973;
Hoare 1974), Concurrent Pascal had been developed (Brinch Hansen 1975)
and used for operating system design (Brinch Hansen 1976). Within ten
years, half a dozen production-quality languages were monitor-based, among
them Modula (Wirth 1977), Pascal-Plus (Welsh 1979), Mesa (Lampson 1980)
and Concurrent Euclid (Holt 1982).

Eight years after the CSP proposal (Hoare 1978), several CSP-based lan­
guages have been developed: these include CSP80 (Jazayeri 1980), RBCSP
(Roper 1981), ECSP (Baiardi 1984), Planet (Crookes 1984) and the low­
level language occam (Inmos 1984). But no experience has been reported
on the use of these languages for non-trivial system implementation. Al­
though CSP has been highly successful as a notation for theoretical work

P. Brinch Hansen, Joyce-A programming language for distributed systems. Software­
Pmctice and Experience 17 , 1 (January 1987), 29-50. Copyright © 1987, Per Brinch
Hansen. Reprinted by permission.

464

JOYCE-A PROGRAMMING LANGUAGE 465

(Hoare 1985), it has probably been too far removed from the requirements
of a secure programming language.

This paper describes a secure programming language called Joyce for the
design and implementation of distributed systems. Joyce is based on CSP
and Pascal (Wirth 1971).

A Joyce program consists of nested procedures which define communicat­
ing agents. Joyce permits unbounded (recursive) activation of agents. The
execution of a program activates an initial agent. Agents may dynamically
activate subagents which run concurrently with their creators. The variables
of an agent are inaccessible to other agents.

Agents communicate by means of symbols transmitted through channels.
Every channel has an alphabet-a fixed set of symbols that can be trans­
mitted through the channel. A symbol has a name and may carry a message
of a fixed type.

Two agents match when one of them is ready to output a symbol to a
channel and the other is ready to input the same symbol from the same chan­
nel. When this happens, a communication takes place in which a message
from the sending agent is assigned to a variable of the receiving agent.

The communications on a channel take place one at a time. A channel
can transfer symbols in both directions between two agents.

A channel may be used by two or more agents. If more than two agents
are ready to communicate on the same channel, it may be possible to match
them in several different ways. The channel arbitrarily selects two matching
agents at a time and lets them communicate.

A polling statement enables an agent to examine one or more channels
until it finds a matching agent. Both sending and receiving agents may be
polled.

Agents create channels dynamically and access them through local port
variables. When an agent creates a channel, a channel pointer is assigned to
a port variable. The agent may pass the pointer as a parameter to subagents.

When an agent reaches the end of its defining procedure, it waits until
all its subagents have terminated before terminating itself. At this point,
the local variables and any channels created by the agent cease to exist.

This paper defines the concepts of Joyce and illustrates the use of the
language to implement a variety of well-known programming concepts and
algorithms.

466 PER BRINCH HANSEN

2 LANGUAGE CONCEPTS

Joyce is based on a minimal Pascal subset: type integer, boolean, char and
real; enumerated, array and re cord types; constants, variables and expres­
sions; assignment, if, while, compound and empty statements.

This subset is extended with concurrent programming concepts called
agent procedures, port types and channels, agent, port, input/output and
polling statements.

The Joyce grammar is defined in extended BNF notation: [E] denotes
an E sentence (or none). {E} denotes a finite (possibly empty) sequence of
E sentences. Tokens are endosed in quotation marks, e.g. "begin" .

This paper concentrates on the concurrent aspects of Joyce.

Port types

TypeDefinition = TypeName "=" NewType ";" .

NewType = PascalType I PortType .
PortType = "[" Alphabet "]" .
Alphabet = SymbolClass { "," SymbolClass } .

SymbolClass = SymbolName ["(" MessageType ")"] .

MessageType = TypeName .

A Joyce program defines abstract concurrent machines called agents. The
agents communicate by means of values called symbols transmitted through
entities called channels. The set of possible symbols that can be transmitted
through a channel is called its alphabet.

Agents create channels dynamically and access them through variables
known as port variables. The types of these variables are called port types.

A type definition

defines a port type named T. The port value nil T is of type T and denotes a
non-existing channel. All other port values of type T denote distinct channels
with the given alphabet. The port values (also known as channel pointers)
are unordered.

The alphabet is the union of a fixed number of disjoint symbol dasses
named Sl,S2, ... ,Sn.

A symbol dass Si (Ti) consists of every possible value of type Ti prefixed
with the name si. The Ti values are called messages.

JOYCE-A PROGRAMMING LANGUAGE 467

A symbol dass Sj consists of a single symbol named Sj without a message.
The symbol is called a signal.

The symbol names SI, S2, ... , Sn must be distinct, and Tl, T2 , . .. , Tn must
be names of known types. (Every type has a name and is said to be known
within its scope.) The message types cannot be (or include) port types.

Examples:

1. A port type named stream with two symbol dasses named int and eos.
Every int symbol indudes a message of type integer. The eos symbol
is a signal:

stream = [int(integer), eos];

2. A port type named PV with two signals P and V:

PV = [P, V];

Note. Symbols of the same alphabet must have distinct names. Symbols
of different alphabets may have the same names. Different symbols of the
same alphabet may carry messages of the same type.

Port variables

PortAccess = VariableAccess .

A variable v : T of a port type T holds a port value. If the value of v is
nil T, a port access v denotes a non-existing channel; otherwise, it denotes a
channel with the alphabet given by T. (The channel itself is not a variable,
but a communication device shared by agents.)

Examples:

1. Access a port variable named inp:

inp

2. Access the ith element of an array of port variables named ring:

ring[i]

468 PER BRINCH HANSEN

Port statements

Statement = PascalStatement I PortStatement I
InputOutputStatement I PollingStatement I
AgentStatement .

PortStatement = "+" PortAccess .

The creation of a new channel is called the activation of the channel. A
port statement +c denotes activation of a new channel. The variable access
c must be of a known port type T.

When an agent executes the port statement, a new channel with the
alphabet given by T is created and apointer to the channel is assigned to
the port variable c. The agent is called the creator of the channel. The
channel itself is known as an internal channel of the agent. The channel
ceases to exist when its creator terminates.

Examples:

1. Create a new channel and assign the pointer to the port variable inp:

+inp

2. Create a new channel and assign the pointer to the port variable ring[i]:

+ring[i]

Input/output statements

InputOutputCommand = OutputCommand I InputCommand .
OutputCommand = PortAccess "!" OutputSymbol .
OutputSymbol = SymbolName ["(" OutputExpression ")"] .
OutputExpression = Expression .
InputCommand = PortAccess "7" InputSymbol .
InputSymbol = SymbolName ["(" InputVariable ")"] .
InputVariable = VariableAccess .
InputOutputStatement = InputOutputCommand .

A communication is the transfer of a symbol from one agent to another
through a channel. The sending agent is said to output the symbol, and the

JOYCE-A PROGRAMMING LANGUAGE 469

receiving agent is said to input the symbol. The agents access the channel
through local port variables.

Consider an agent p which accesses a channel through a port variable
b, and another agent q which accesses the same channel through a different
port variable c. The port variables must be of the same type:

An output command blsi(ei) denotes output of a symbol si(ei) through the
channel denoted by the port variable b. Si must be the name of one of the
symbol classes of T, and the expression ei must be of the corresponding
message type Ti.

An input command C?Si(Vi) denotes input of a symbol Si(Vi) through the
channel denoted by the port variable c. Si must be the name of one of the
symbol classes of T, and the variable access Vi must be of the corresponding
message type Ti.

When an agent p is ready to output the symbol Si on a channel, and
another agent q is ready to input the same symbol from the same channel,
the two agents are said to match and a communication between them is said
to be feasible. If and when this happens, the two agents execute the output
and input commands simultaneously. The combined effect is defined by the
following sequence of actions:

1. p obtains a value by evaluating the output expression ei.

2. q assigns the value to its input variable Vi.

(If the symbol Si is a signal, steps 1 and 2 denote empty actions.)
After a communication, the agents proceed concurrently.
When an agent reaches an input/output command which denotes a com­

munication that is not feasible, the behavior of the agent depends on whether
the command is used as an input/output statement or as a polling command
(defined in the next section).

The effect of an input/output statement is to delay an agent until the
communication denoted by the statement has taken place.

The communications on a channel take pI ace one at a time. A channel
can transfer symbols in both directions between two agents.

A channel may be llsed by two or more agents. If more than two agents
are ready to commllnicate on the same channel, it may be possible to match
them in several different ways. The channel arbitrarily selects two matching
agents at a time and lets them commllnicate.

470 PER BRINCH HANSEN

Examples:

1. Use the port variable out to output an int symbol with the message
x + 1:

out!int(x + 1)

2. Use the port variable inp to input an int symbol and assign the message
to y:

inp?int(y)

3. Use the port variable out to output an eos signal:

out!eos

4. Use the port variable inp to input an eos signal:

inp?eos

5. Use the port variable ring[ij to output a token signal:

ring[i] !token

Polling statements

PollingStatement =
"poIl" GuardedStatementList "end"

GuardedStatementList =

GuardedStatement { "I" GuardedStatcment } .

GuardedStatement = Guard "->" StatementList .
Guard = PollingCommand ["&" PollingExpression] .

PollingCommand = InputOutputCommand .
PollingExpression = BooleanExpression .

A polling statement

JOYCE-A PROGRAMMING LANGUAGE

poIl
Cl & BI - > SL I I
C2 & B 2 -> SL2 I

denotes execution of exactly one of the guarded statements

Ci & Bi -> SLi

471

An agent executes a polling statement in two phases, known as the polling
and completion phases:

1. Polling: the agent examines the guards C1&B1, C2&B2 , ... , Cn&Bn
cyclically until finds one with a polling command Ci that denotes a
feasible communication and a polling expression Bi that denotes true
(or is omitted).

2. Completion: the agent executes the selected polling command Ci fol­
lowed by the corresponding statement list S Li.

While an agent is polling, it can be matched only by another agent that
is ready to execute an input/output statement. Two agents polling at the
same time do not match.

Example:

Use a port variable named user to either (1) input a P signal (provided an
integer x > 0) and decrement x, or (2) input a V signal and increment x:

poIl
user?P & x > 0 - > x := x-I I
user?V - > x := x + 1

end

Note. Polling has no side-effects, but may cause program failure if the
expression evaluation causes a range error (or overflow).

472 PER BRINCH HANSEN

Agent statements

J\gentStatell1ent =
J\gentN all1e ["(" J\ctualParall1eter List ")" 1 .

J\ctualParall1eterList =
J\ctualParall1eter { "," J\ctualParall1eter } .

J\ctualParall1eter = Expression .

An agent procedure P defines a dass of agents. The creation and start
of an agent is called its activation. The activation of a P agent creates a new
instance of every variable defined in procedure P. These variable instances
are called the own variables of the newagent. When the agent refers to a
variable x in P, it refers to its own instance of x. The own variables of an
agent are inaccessible to other agents.

An agent is always activated by another agent (called its creator). The
new agent is called a subagent of its creator. After the creation, the subagent
and its creator run concurrently.

An agent statement

denotes activation of a newagent. P must be the name of a known agent
procedure (defined in the next section). The actual parameter list must
contain an actual parameter ei for every formal parameter ai defined by P.
ei must be an expression of the same type as ai.

When an agent executes an agent statement, a subagent is created in
two steps:

1. The own variables of the subagent are created as follows:

(a) The formal parameters of P are created one at a time in the order
listed. Every formal parameter ai is assigned the value denoted
by the corresponding actual parameter ei.

(b) The variables defined in the procedure body of P are created with
unpredictable initial values.

2. The subagent is started.

A port operand used as an actual parameter denotes a channel which is
accessible to both the subagent and its creator. It is known as an external
channel of the subagent.

JOYCE-A PROGRAMMING LANGUAGE 473

An agent defined by a proeedure P may aetivate P reeursively. Every
activation ereates a new P agent with its own variables.

Example:

Activate a semaphore agent with two actual parameters: the integer 1 and
a port value named user:

semaphore(l, user)

Agent procedures

AgentProcedure = "agent" AgentName ProcedureBlock ";"
ProcedureBlock =

["(" FormalParameterList ")" 1 ";" ProcedureBody .
FormalParameter List =

ParameterDefinition { ";" ParameterDefinition } .
ParameterDefinition =

VariableName { "," VariableName } ";" TypeName .
ProcedureBody =

[ConstantDefinitionPart 1 [TypeDefinitionPart 1
{ AgentProcedure } [VariableDefinitionPart 1
CompoundStatement .

An agent proeedure P defines a dass of agents. Every formal parameter
is a loeal variable that is assigned the value of an expression when a P agent
is aetivated.

After its aetivation, a P agent exeeutes the eorresponding proeedure
body in two steps:

1. The agent exeeutes the eompound statement of P.

2. The agent waits until all its subagents (if any) have terminated. At
this point, the own variables and internal ehannels of the agent eease
to exist, and the agent terminates.

Example: semaphore

An agent procedure that defines a semaphore wh ich accepts P and V signals:

474

Programs

Program =

PER BRINCH HANSEN

agent semaphore(x: integer; user: PV);
begin

while true do
poIl

end;

user?P & x> 0 -> x := x-li
user?V -> x := x + 1

end

[ConstantDefinitionPart 1 [TypeDefinitionPart 1
AgentProcedure .

A program defines an agent procedure P. The program is executed by
activating and executing a single P agent (the initial agent). The activation
of the initial agent is the result of executing an agent statement in another
program (an operating system). A program communicates with its operat­
ing system through the extern al channels of the initial agent (the system
channels).

3 PROGRAM EXAMPLES

The following examples illustrate the use of Joyce to implement stream pro­
cessing, functions, data representations, monitors and ring nets. The ex am­
pIes have been compiled and run on an IBM PC using a Joyce compiler and
interpreter written in Pascal.

Stream processing

First, we look at agents that input and output bounded data streams. Every
stream is a (possibly empty) sequence of integers ending with an eos signal:

type stream = [int(integer), eos];

Example: generate

An agent that generates an arithmetic progression ao, al,' .. , an-I, where
ai = a + ixb:

agent generate(out: stream;
a, b, n: integer);

JOYCE-A PROGRAMMING LANGUAGE

var i: integer;
begin

i := 0;

while i < n do

begin

out!int(a + i*b); i := i + 1
end;

out!eos

end;

Example: copy

An agent that copies a stream:

agent copy(inp, out: stream);

var more: boolean; x: integer;

begin
more := true;

while more do
pon

inp?int(x) - > out!int(x) 1

inp?eos -> more := false

end;
out!eos

end;

Example: merge

An agent that outputs an arbitrary interleaving of two input streams:

agent merge(inp1, inp2, out: stream);

var n, x: integer;

begin

n:= 0;

while n < 2 do

pon

inpl?int(x) - > out!int(x) 1

inpl?eos -> n := n + 11

inp2?int(x) -> out!int(x) 1

inp2?eos -> n := n + 1

475

476

end;
outleos

end;

PER BRINCH HANSEN

A value input from one of the streams inpl and inp2 is immediately output.
The agent terminates when both input streams have been exhausted (n =
2).

Example: SuppT'ess duplicates

An agent that outputs a stream derived from an ordered input stream by
suppressing duplicates:

agent suppress(inp, out: stream);

var more: boolean; x, y: integer;

begin

poIl

inp?int(x) -> more := truel
inp?eos -> more := false

end;

while more do

poIl
inp?int(y) ->

ifx <> y then
begin outlint(x); x := yendl

inp?eos - > outlint(x); more := false

end;
out!eos

end;

Example: iterative buffeT'

A buffer implemented as a pipeline of 10 copy agents:

agent buffer(inp, out: stream);

const n = 9;

type net = array [Ln] of stream;

use copy;

var a: net; i: integer;

begin

+a[l]; copy(inp, all]); i := 2;

JOYCE-A PROGRAMMING LANGUAGE

while i <= n da
begin

+a[iJ; copy(a[i-1], a[i]); i := i + 1
end;

copy(a[n], out)

end;

477

The buffer agent is a composite agent which activates an array of copy agents
and channels by iteration. The length n + 1 of the iterative array is specified
by a constant n. During compilation, the use sentence is replaced by the
text of the copy agent.

This algorithm is an example of "information hiding". A user agent
may regard the copy and buffer agents as different implementations of the
same mechanism: a copying agent with an input and an output channel.
The subagents and internal channels of the buffer agent are therefore made
invisible to its environment.

Example: recursive buffer

A recursive version of the previous buffer:

agent buffer(n: integer; inp, out: stream);

use copy;

var succ: stream;

begin
if n = 1 then copy(inp, out)
else

end;

begin

+succ; copy(inp, succ);
buffer(n - 1, succ, out)

end

The length n of the recursive array is specified when it is activated. If n = 1,
the buffer consists of a single copy agent only; otherwise, it consists of a copy
agent followed by a buffer of length n - l.

The next two examples illustrate the use of a programming paradigm
known as a dynamic accumulator. This is a pipeline which uses an in­
put stream to compute another stream. The pipeline accumulates the new
stream while it is being computed and outputs it as a whole when it is com­
plete. Every agent (except the last one) in the pipeline holds one element of

478 PER BRINCH HANSEN

the new stream. The last agent is empty. Each time the pipeline has co m­
puted another element, the last agent receives an element and extends the
pipeline with a new empty agent. Since the length of the computed stream
is not known apriori, the pipeline begins as a single empty agent. At the
end of the input stream, the pipeline outputs the elements of the computed
stream one at a time and terminates.

Example: recursive sorting

Adynamie accumulator that inputs a (possibly empty) stream and outputs
the elements in non-decreasing order:

agent sort(inp, out: stream);

var more: boolean; x, y: integer;

suce: stream;

begin

poIl

inp?int(x) - > +suce;

sort(suce, out); more := true;1

inp?eos - > out!eos; more := false

end;
while more do

poIl

end;

inp?int(y) ->
ifx > y then

begin succ!int(x); x := yend

else suec!int(y) I
inp?eos - > out!int(x);

succ!eos; more := false

end

The sorting agents share a common output channel. Initially, an agent
is the last one in the chain and is empty. After receiving the first value from
its predecessor, the agent creates a successor and becomes non-empty. The
agent now inputs the rest of the stream from its predecessor and keeps the
smallest value x received so far. The rest it sends to its successor. When
the agent inputs an eos signal it terminates as folIows: if it is empty, the
agent sends eos through the common channel; otherwise it outputs x on the
common channel and sends eos to its successor.

JOYCE-A PROGRAMMING LANGUAGE 479

As an example, while sorting the sequence

3, 1, 2, eos

the accumulator s starts as a single empty agent denoted by < cjJ > and is
extended by a new agent for every value input:

Initially: s =< cp >
After inputting 3: s =< 3 >, < cP >
After inputting 1: s =< 1 >, < 3 >, < cP >
After inputting 2: s =< 1 >, < 2 >, < 3 >, < cP >

The sorting accumulator may be tested by means of a pipeline with three
agents:

agent pipelineI;
use generate, sort, print;
var a, b: stream;
begin

+a; +b; generate(a, 10, -1, 10);

sort(a, b); print(b)
end;

The print agent accepts a stream and prints it.
The next pipeline merges two unordered streams, sorts the results, sup­

presses duplicates and prints the rest:

agent pipeline2;
use generate, merge, sort, suppress, print;
var a, b, c, cl, e: stream;
begin

+a; +b; +c; +cl; +e;
generate(a, 1, 1,10);

generate(b, 10, -1, 10);

merge(a, b, c); sort(c, cl);
suppress(cl, e); print(e)

end;

Example: prime sieve

Adynamie accumulator that inputs a finite sequence of natural numbers 1,
2, 3, ... , n and outputs those that are primes:

480 PER BRINCH HANSEN

agent sieve(inp, out: stream);
var more: boolean; x, y: integer;

succ: stream;

begin
poIl

inp?int(x) - > +succ;
sieve(succ, out); more := truel

inp?eos -> out!eos; more := false
end;

while more do
poIl

inp?int(y) - >
ify mod x<> 0 then succ!int(y)I

inp?eos -> out!int(x);
succ!eos; more := false

end;
end;

Initially, a sieve agent inputs a prime x from its predecessor and activates a
successor. The agent then skips all further input which is divisible by x and
sends the rest to its successor. At the end, the agent sends x through the
common channel and sends eos either to its successor (if any) or through the
output channel.

The sieve can be optimized somewhat by letting every agent output its
prime as soon as it has been input. The present form of the algorithm was
chosen to show that the sort and sieve agents are almost identical variants
of the same programming paradigm. (They differ in one statement only!)

Since 2 is the only even prime, we mayas well feed the sieve with odd
numbers 3, 5, 7, ... only. The following pipeline prints all primes between 3
and 9999:

agent primes;

use generate, sieve, print;

var a, b: stream;
begin

+a; +b; generate(a, 3, 2, 4999);

sieve(a, b); print(b)

end;

JOYCE-A PROGRAMMING LANGUAGE 481

Function evaluation

A function f(x) can he evaluated hy activating an agent with two parameters
denoting the argument x and a channel. The agent evaluates f(x), outputs
the result on the channel and terminates.

A procedure can he implemented similarly.

Example: recursive Fibonacci

An agent that computes a Fihonacci numher recursively hy means of a tree
of suhagents:

type func = [val(integer)];

agent fibonacci(f: func; x: integer);
var g, h: func; y, z: integer;

beg in

if x <= 1 then f!val(x)
else

begin

+g; fibonacci(g, x-I);
+h; fibonacci(h, x - 2);
g?val(y); h?val(z); f!val(y + z)

end

end;

Data representation

An agent can also implement a set of operations on a data representation.

Example: recursive set

Problem. Represent a set of integers as an agent with an input and an
output channel. Initially, the set is empty. The set agent accepts three
kinds of commands from a single user agent only:

1. Insert an integer n in the set:

inp!insert(n)

2. Return a hoolean b indicating if n is in the set:

482 PER BRINCH HANSEN

inp!has(n); out?return(b)

3. Delete the set:

inp!delete

Solution.

type

setinp = [insert(integer), has(integer), delete];
set out = [return(boolean)];

agent intset(inp: setinp; out: setout);
type state = (empty, nonempty, deleted);
var s: state; x, y: integer; succ: setinp;

begin
s := empty;
while s = empty do

poIl

inp?insert(x) -> +succ;
intset(succ, out); s := nonemptyl

inp?has(x) -> out!return(false)I
inp?delete - > s := deleted

end;
while s = nonempty do

poIl

end;

inp?insert(y) ->

ifx> y then
begin succ!insert(x); x := yend

else ifx < y then succ!insert(y)I

inp?has(y) ->

if x >= y then out!return(x = y)

else succ!has(y)I

inp?delete - > succ!delete; s := deleted

end

The set agent is very similar to the sort and sieve agents. It contains either
one member of the set or none. Initially, the agent is empty and answers false

JOYCE-A PROGRAMMING LANGUAGE 483

to all membership queries. After the first insertion, it aetivates an empty
sueeessor to whieh it passes any eommand it eannot handle. To speed up
proeessing, the set is ordered. Many insertions ean proeeed simultaneously in
the pipeline. Insertion of an already existing member has no effect. A delete
signal propagates through all the set agents and makes them terminate.

Monitors

A monitor is a seheduling agent that enables two or more user agents to
share a resouree. The user agents ean invoke operations on the resouree one
at a time only. A monitor may use boolean expressions to delay operations
until they are feasible.

Example: ring buffer

A monitor that implements a non-terminating ring buffer whieh can hold up
to ten messages:

agent buffer(inp, out: stream);
const n = 10;
type contents = array [Ln] of integer;
var head, tail, length: integer;

ring: contents;
begin

head := 1; tail := 1; length := 0;

while true do

end;

poIl
inp?int(ring[tail]) & length < n - >

tail := tail fiod n + 1;

length : = length + 11
out!int(ring[head]) & length > 0 ->

head := head fiod n + 1;
length : = /ength - 1

end

An empty buffer may input a message only. A full buffer may output only.
When the buffer contains at least. one and at most ni ne values, it is ready
either to input or to output a message.

484 PER BRINCH HANSEN

Example: scheduled printer

A monitor that gives one user agent at a time exdusive access to a printer
during a sequence of write operations. The user agent must open the printer
before writing and dose it afterwards:

type printsym = [open, write(char), dose];

agent printer(user: printsym);

var more: boolean; x: char;

begin

while true do

begin

end;

user?open; more := true;

while more do

end

poll
user?write(x) - > print(x) I

user?dose -> more := false

end

When the printer has received an open symbol from a user agent, it accepts
onlya (possibly empty) sequence of write symbols followed by a dose symbol.
This protocol prevents other agents from opening the printer and using it
simultaneously. (The details of printing are ignored.)

Ring nets

So far, we have only considered agents connected by acydic nets of channels.
In the final example, the agents are connected by a cydic net of channels.

Example: nim players

Prom a pile of 20 coins, three players take turns picking one, two or three
coins from the pile. The player forced to pick the last coin loses the game.

The game is simulated by three agents connected by a ring of three
channels. When the game begins, one of the agents receives all the coins:

agent nim;

use player;

var a, b, c: stream;

JOYCE-A PROGRAMMING LANGUAGE

begin
+a; +b; +c; player(20, a, b);
player(O, b, c); player(O, c, a);

end;

The players behave as follows:

agent player(pile: integer;
pred, succ: stream);

var more: boolean;
begin

if pile > ° then succ!int(pile - 1);
more := true;
while more do

end;

pon

pred'?int(pile) - >
if pile > 1 then succ!int(pile - 1)
else { loser }

begin
succ!eos; pred'?eos; more := false

endl
pred!eos - > succ!eos; more := false

end

485

When an agent receives the pile from its predecessor, it reduces it and sends
the rest (if any) to its successor. (To simplify the algorithm slightly, an
agent always removes a single coin). The agent that picks the last coin
sends eos to its successor and waits until the signal has passed through the
other two agents and comes back from its predecessor. At that point, the
loser terminates. When a non-losing agent receives eos instead of a pile, it
passes the signal to its successor and terminates.

The dining philosophers problem (Hoare 1978) is another example of a
ring net. It is left as an exercise to the reader.

4 DESIGN ISSUES

The following motivates some of the design decisions of Joyce.

486 PER BRINCH HANSEN

Terminology and notation

In the literat ure, the word "process" often denotes a sequential process.
Since a composite agent is not sequential, I prefer to use another word for
communicating machines (namely, "agents").

It was tempting to use the notation of CSP (Hoare 1978) or one of
the successors of Pascal, for example Modula-2 (Wirth 1982). However,
in spite of its limitations, Pascal has a readable notation which is familiar to
everyone. Chosing a pure Pascal subset has enabled me to concentrate on
the concurrent aspects of Joyce.

Indirect naming

One of the major advantages of monitors is their ability to communicate
with processes and schedule them without being aware of process names.
Joyce agents also refer indirectly to one another by means of port variables.

In CSP, an input/output command must name the source or destination
process directly. The text of a process must therefore be modified when it is
used in different contexts. This complicates the examples in (Hoare 1978):
the user of a process array 8(1..n) is itself named 8(0)! And the prime sieve
is composed of three different kinds of processes to satisfy the naming rules.

Direct process naming also makes it awkward to write a server with
multiple clients of different kinds (such as the scheduled printer). If the
clients are not known apriori, it is in fact impossible.

ECSP and RBCSP use process variables for indirect naming. CSP80,
occam, Planet and a theoretical variant of CSP, which I shall call TCSP
(Hoare 1985), use ports or channels.

Message declarations

So far, the most common errors in Joyce programs have been type errors in
input/output commands. I am therefore convinced that any CSP language
must include message declarations which permit complete type checking dur­
ing compilation. In this respect, CSP and occam are insecure languages.
Although ECSP does not include message declarations, the compiler per­
forms type checking of messages after recognizing (undeclared) channels by
statement analysis.

The simplest idea is to declare channels which can transfer messages of
a single type only (as in CSP80 or Planet). But this does not even work
well for a simple agent that co pies a bounded stream. Such an agent needs

JOYCE-A PROGRAMMING LANGUAGE 487

two ehannels, both eapable of transferring two different kinds of symbols.
Otherwise, four ehannels are required: two for stream values and two for eos
signals.

As a modest inerease in complexity, I eonsidered a channel which ean
transfer messages of a finite number of distinet types Tl, T2 , . .. , Tn . But
this proposal is also problematic sinee (1) it is neeessary to treat signals
as distinet data types, and (2) an agent still needs multiple ehannels to
distinguish between different kinds of messages of the same type (such as
the has and insert symbols in the intset example).

To avoid a eonfusing proliferation of ehannels, the ability to define chan­
nel alphabets with named symbols seems essential. The symbol names play
the same role as the (undeclared) "constructors" of CSP or the procedure
names of monitors: they deseribe the nature of an event in whieh a process
participates.

Channel sharing

The intset pipeline is made simpler and more efficient by the use of a single
output ehannel shared by all the agents. A set agent which reeeives a query
about the member it hoIds ean immediately output the answer through the
eommon ehannel instead of sending it through all its sueeessors. This im­
provement was suggested in (Dijkstra 1982).

Channel sharing also simplifies the scheduled printer. If every ehannel
ean be used by two processes only, it is necessary to connect a resouree
process to multiple users by means of a quantifier called a "replieator."

I expeet channel sharing to work well for lightly used resourees. But,
if a shared resouree is used heavily, some user agents may be bypassed by
others and thus prevented from using the resouree. In such eases, it may be
neeessary to introduce separate user ehannels to achieve fairness.

Output polling

In CSP, ECSP, RBCSP and oceam, polling is done by input commands only.
This restrietion prevents asender and receiver from polling the same channel
simultaneously. Unfortunately, it also makes the input and output of a ring
buffer asymmetrie (Hoare 1978).

Like CSP80 and TCSP, Joyce permits both input and output polling. It
is the programmer's responsibility to ensure that a polling agent is always
matched by an agent that executes an input/output statement. This prop-

488 PER BRINCH HANSEN

erty is automatically satisfied in a hierarchical system in which every agent
poIls its masters only (Silberschatz 1979).

Polling loops

CSP includes a polling loop that terminates when all the processes polled
have terminated. Hoare (1985) remarks: "The trouble with this convention
is that it is complicated to define and implement."

In RBCSP, a process waiting for input from a terminated process is
terminated only when all processes are waiting or terminated.

A Joyce agent terminates when it reaches the end of its procedure. This
is a much more flexible mechanism which enables an agent to send a termi­
nation signal to another agent without terminating itself.

I resisted the temptation to include polling loops, such as

do inp?int(x) -> out!int(x)
until inp?eos -> out!eos end

Although this simplifies the copy and printer agents, it cannot be used di­
rectly in the other examples. It may even complicate programs, if it is used
where it is inappropriate.

U nbounded activation

In CSP one can activate only a fixed number of processes simultaneously.
If these processes terminate, they do it simultaneously. A process cannot
activate itself recursively. It is, however, possible to activate a fixed-length
array of indexed processes which can imitate the behavior (but not quite the
elegance) of a recursive process.

Joyce supports unbounded (recursive) agent activation. The beauty of
the recursive algorithms is sufficient justification for this feature. The ability
to activate identical agents by iteration and recursion removes the need for
indexed agents (as in CSP, RBCSP, Planet and occam). The rule that an
agent terminates only when all its subagents have terminated was inspired
by the task concept of Ada (Roubine 1980).

Procedures and functions

To force myself to make agents as general as possible, I excluded ordinary
procedures and functions from Joyce. As a result, I feIt obliged to design an
agent concept wh ich includes the best features of Pascal procedures: value

JOYCE-A PROGRAMMING LANGUAGE 489

parameters, recursion and efficient implementation. Although agent proce­
dures may be recursive, every agent has one instance only of its own vari­
ables. Consequently, a compiler can determine the lengths of agent activation
records. This simplifies storage allocation considerably.

Security

A programming language is secure if its compiler and run-time support can
detect all violations of the language rules (Hoare 1973). Programs written in
an insecure language may cause obscure system-dependent errors which are
inexplicable in terms of the language report. Such errors can be extremely
difficult to locate and correct.

Joyce is a far more seeure language than Pascal (Welsh 1977). A compiler
can check message types and ensure that agents use disjoint sets of variables
only. (The disjointness is automatically guaranteed by the syntax and scope
rules.)

When an agent is activated, every word of its activation record may be
set to nil. Afterwards a simple run-time check can detect unitialized port
variables.

There are no dangling references, either, to channels that have ceased to
exist. Every port variable of an agent is either nil or points to an internal or
extern al channel of the agent. Now, an internal channel exists as long as the
agent and its port variables exist. And an external channel exists as long as
the ancestor that created it. This ancestor, in turn, exists at least as long
as the given agent. So, a port variable is either nil or points to an existing
channel.

Implementability

The first Joyce compiler is a Pascal program of 3300 lines wh ich generates
P-code. The code is currently interpreted by a Pascal program of 1000 lines.
(Reals are not implemented yet.) The surprisingly simple implementation
of agents and channels will be described in a future paper.

Proof rules

The problems of finding proof rules for Joyce are currently being studied and
are not discussed here. However, the algorithms shown have a convincing
simplicity that makes me optimistic in this respect.

490 PER BRINCH HANSEN

Language comparison

Table 1 summarizes the key features of the CSP languages (except TCSP).

Table 1

CSP occam ECSP Planet RBCSP CSP80 Joyce
Indirect naming + + + + + +
Message declaration + + + +
Input polling + + + + + +
Output polling + +
Recursion +

Hoare (1978) emphasized that CSP should not be regarded as suitable
for use as a programming language but only as a partial solution to the
problems tackled. However, all that remained to be done was to modify these
concepts. CSP is still the foundation for the new generation of concurrent
programming languages discussed here.

5 FIN AL REMARKS

This paper has presented a secure programming language wh ich removes
several restrictions of the original CSP proposal by introducing:

l. port variables

2. channel alphabets

3. output polling

4. channel sharing

5. recursive agents

The language has been implemented on a personal computer.
More work remains to be done on verification rules and implementation

of the language on a parallel computer. The language needs to be used
extensively for the design of parallel algorithms before a final evaluation can
be made.

JOYCE-A PROGRAMMING LANGUAGE 491

Acknowledgements

It is a pleasure to acknowledge the helpful comments of Birger Andersen,
Peter T. Andersen, Lotte Bangsborg, Peter Brinch, Niels Christian Juul and
Bo Salomon.

References

Baiardi, F., Ried, L., and Vannesehi, M. 1984. Statie eheeking of interproeess eommuni­
eation in ECSP. AGM SIGPLAN Notices 19,6 (June), 290-299.

Brineh Hansen, P. 1973. Operating System Principles. Prentice-Hall, Englewood Cliffs,
NJ.

Brineh Hansen, P. 1975. The programming language Coneurrent Pascal. IEEE Transac­
tions on Software Engineering 1, 2 (June), 199-205.

Brineh Hansen, P. 1976. The Solo operating system. Software-Practice and Experience
6,2 (April-June), 141-205.

Crookes, D., and EIder, J.W.G. 1984. An experiment in language design for distributed
systems. Software-Practice and Experience 14, 10 (October), 957-971.

Dijkstra, E.W. 1982. Selected Writings on Gomputing: A Personal Perspective. Springer­
Verlag, New York, 147-160.

Hoare, C.A.R. 1973. Hints on programming language design. Computer Seienee Depart­
ment, Stanford University, Stanford, CA, (Deeember).

Hoare, C.A.R. 1974. Monitors: An operating system strueturing eoneept. Gommunica­
tions of the AGM 17,10 (October), 549-557.

Hoare, C.A.R. 1978. Communieating sequential processes. Gommunications of the AGM
21,8 (August), 666-677.

Hoare, C.A.R. 1985. Gommunicating Sequential Processes. Prentiee-Hall, Englewood
Cliffs, NJ.

Holt, R.C. 1982. A short intro duc ti on to Coneurrent Euclid. AGM SIGPLAN Notices 17,
(May),60--79.

Inmos, Ltd. 1984. occam Programming Manual. Prentice-Hall, Englewood Cliffs, NJ.
Jazayeri, M., Ghezzi, C., Hoffman, D., Middleton, D., and Smotherman, M. 1980. CSP /80:

A language for eommunieating sequential processes. IEEE Gompcon Fall, (Septem­
ber), 736-740.

Lampson, B.W., and RedelI, D.D. 1980. Experienee with processes and monitors in Mesa.
Gommunications of the A GM 23, 2 (February), 105-117.

Roper, T.J., and Barter, C.J. 1981. A eommunieating sequential proeess language and
implementation. Software-Practice and Experience 11, 11 (November), 1215-1234.

Roubine, 0., and Heliar, J.-C. 1980. Parallel proeessing in Ada. In On the Gonstruction
of Programs, R.M. MeKeag, and A.M. Macnaghten, Eds. Cambridge University Press,
Cambridge, 193-212.

Silberschatz, A. 1979. Communieation and synehronization in distributed systems. IEEE
Transactions on Software Engineering 5, 6 (November), 542-546.

Welsh, J., Sneeringer, W.J., and Hoare, C.A.R. 1977. Ambiguities and inseeurities In

Pascal. Software-Practice and Experience 7, 6 (November-Deeember), 685-696.

492 PER BRINCH HANSEN

Welsh, J., and Bustard, D.W. 1979. Pascal-Plus~Another language far modular multi­
programming. Sojtware-Practice and Experience 9, 11 (November), 947-957.

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 35-63.
Wirth, N. 1977. Modula~A language for modular multiprogramming. Sojtware-Practice

and Experience 7, 1 (January-February), 3-35.

Wirth, N. 1982. Programming in Modula-2. Springer-Verlag, New York.

PART VI

IMPLEMENTATION ISSUES

18

SUPERPASCAL:
A PUBLICATION LANGUAGE FOR

PARALLEL SCIENTIFIC COMPUTING
PER BRINCH HANSEN

(1994)

Parallel computers will not become widely used until scientists and engineers

adopt a common programming language for publication of parallel scientific

algorithms. This paper describes the publication language SuperPascal by ex­

amples. SuperPascal extends Pascal with deterministic statements for parallel

processes and synchronous message communication. The language permits

unrestricted combinations of recursive procedures and parallel statements.

SuperPascal omits ambiguous and insecure features of Pascal. Restrictions

on the use of variables enable a single-pass compiler to check that parallel

processes are disjoint, even if the processes use procedures with global vari­

ables. A portable implementation of SuperPascal has been developed on a Sun

workstation under Unix.

1 INTRODUCTION

One of the major challenges in computer science today is to develop effective
programming tools for the next generation of parallel computers. It is equally
important to design educational programming tools for the future users of
parallel computers. Since the 1960s, computer scientists have recognized the
distinction between publication languages that emphasize clarity of concepts,
and implementation languages that refiect pragmatic concerns and historical
traditions (Forsythe 1966; Perlis 1966). I believe that parallel computers

P. Brinch Hansen, SuperPascal-A publication language for parallel scientific computing.
Concurrency-Practice and Experience 6, 5 (August 1994),461-483. Copyright © 1994,
John Wiley & Sons, Ltd. Reprinted by permission.

495

496 PER BRINCH HANSEN

will not become widely used until scientists and engineers adopt a common
programming language for publication of parallel scientific algorithms.

It is instructive to consider the historical role of Pascal as a publication
language for sequential computing. The first paper on Pascal appeared in
1971 (Wirth 1971). At that time, there were not very many textbooks
on computer science. A few years later, universities began to use Pascal
as the standard programming language for computer science courses. The
spreading of Pascal motivated authors to use the language in textbooks for a
wide variety of computer seience courses: introductory programming (\iVirth
1973), operating systems (Brinch Hansen 1973), program verification (Alagic
1978), compilers (Welsh 1980), programming languages (Tennent 1981), and
algorithms (Aho 1983). In 1983, IEEE acknowledged the status of Pascal as
the lingua franca of computer seien ce by publishing a Pascal standard (IEEE
1983). Pascal was no longer just another programming tool for computer
users. It had become a thinking tool for researchers exploring new fields in
computer seience.

We now face a similar need for a common programming language for
students and researchers in computational science. To understand the re­
quirements of such a language, I spent three years developing a collection of
model programs that illustrate the use of structured programming in parallel
scientific computing (Brinch Hansen 1993a). These programs solve regular
problems in science and engineering: linear equations, n-body simulation,
matrix multiplication, shortest paths in graphs, sorting, fast Fourier trans­
forms, simulated annealing, primality testing, Laplace's equation, and forest
fire simulation. I wrote these programs in occam and tested their perfor­
mance on a Computing Burface configured as a pipeline, a tree, a cube, or a
matrix of transputers (Inmos 1988; McDonald 1991).

This practical experience led me to the following conclusions about the
future of parallel scientific computing (Forsythe 1966; Dunham 1982; May
1989; Brinch Hansen 1993a):

1. A general-purpose parallel computer of the near future will probably
be a multicomputer with tens to thousands of processors with local
memories only. The computer will support automatie routing of mes­
sages between any pair of processors. The hardware architecture will
be transparent to programmers, who will be able to connect processors
arbitrarily by virtual communication channels. Such a parallel com­
puter will enable programmers to think in terms of problem-oriented
process configurations. There will be no need to map these configura-

SUPERPASCAL: A PUBLICATION LANGUAGE 497

tions onto a fixed architecture, such as a hypercube.

2. The regular problems in computational science can be solved efficiently
by deterministieparallel computations. I have not found it necessary to
use a statement that enables a parallel process to poll several channels
until a communication takes place on one of them. Nondeterministic
communication is necessary at the hardware level in a routing net­
work, but appears to be of minor importance in parallel programs for
computational science.

3. Parallel scientific algorithms can be developed in an elegant publica­
tion language and tested on a sequential computer. When an algo­
rithm works, it can easily be moved to a particular multicomputer by
rewriting the algorithm in another programming language chosen for
pragmatic rather than intellectual reasons. Subtle parallel algorithms
should be published in their entirety as executable programs written in
a publication language. Such programs may serve as models for other
scientists, who wish to study them with the assurance that every detail
has been considered, explained, and tested.

A publication language for computational science should, in my opinion,
have the following properties:

1. The language should extend a widely used standard language with
deterministic parallelism and message communication. The extensions
should be defined in the spirit of the standard language.

2. The language should make it possible to program arbitrary config­
urations of parallel processes connected by communication channels.
These configurations may be defined iteratively or recursively and cre­
ated dynamically.

3. The language should enable a single-pass compiler to check that paral­
lel processes do not interfere in a time-dependent manner. This check
is known as syntactic interference contral.

The following describes SuperPascal-a publication language for par­
allel scientific computing. SuperPascal extends Pascal with deterministic
statements for parallel processes and synchronous communication. The lan­
guage permits unrestricted combinations of recursive procedures and parallel
statements. SuperPascal omits ambiguous and insecure features of Pascal.

498 PER BRINCH HANSEN

Restrictions on the use of variables per mit a single-pass compiler to check
that parallel processes are disjoint, even if the processes use procedures with
global variables.

Since the model programs cover a broad spectrum of algarithms far scien­
tific computing, I have used them as a guideline for language design. Super­
Pascal is based on well-known language features (Dijkstra 1968; Hoare 1971,
1972, 1985; Ambler 1977; Lampson 1977; IEEE 1983; Brinch Hansen 1987;
Inmos 1988). My only contribution has been to select the smallest number of
concepts that enable me to express the model programs elegantly. This paper
illustrates the parallel features of SuperPascal by examples. The SuperPas­
cal language report defines the syntax and semantics concisely and explains
the differences between SuperPascal and Pascal (Brinch Hansen 1994a). The
interference control is further discussed in (Brinch Hansen 1994b).

A portable implementation of SuperPascal has been developed on a Sun
workstation under Unix. It consists of a compiler and an interpreter writ­
ten in Pascal. The SuperPascal compiler is based on the Pascal compiler
described and listed in (Brinch Hansen 1985). The compiler and interpreter
are in the public domain. You can obtain the SuperPascal software by us­
ing anonymous FTP from the directory pbh at top. cis.syr. edu. The software
has been used to rewrite the model programs for computational science in
SuperPascal.

2 A PROGRAMMING EXAMPLE

I will use pieces of a model program to illustrate the features of SuperPascal.
The Miller-Rabin algorithm is used for primality testing of a large integer
(Rabin 1980). The model program performs p probabilistic tests of the
same integer simultaneously on p processors. Each test either proves that
the integer is composite, ar it fails to prove anything. However, if, say, 40
trials of a 160-digit decimal number all fail, the number is prime with virtual
certainty (Brinch Hansen 1992a, 1992b).

The program performs multiple-length arithmetic on natural numbers
represented by arrays of w digits (plus an overflow digit):

type nu mb er = array [O .. w] of integer;

A single trial is defined by a procedure with the heading

procedure test(a: number; seed: real;
var composite: boolean)

SUPERPASCAL: A PUBLICATION LANGUAGE 499

Each trial initializes a random number generator with a distinct seed.
The parallel computation is organized as a ring network consisting of

a master process and a pipeline connected by two communication channels
(Fig. 1).

pipeline

right

master

Figure 1 A ring network.

The pipeline consists of p identical, parallel nodes connected by p + 1
communication channels (Fig. 2).

~c~
~---~

Figure 2 A pipeline.

The master sends a number through the pipeline and receives p boolean
values from the pipeline. The booleans are the results of p independent trials
performed in parallel by the nodes.

3 MESSAGE COMMUNICATION

3.1 Communication channels

The communication channels of SuperPascal are deterministic synchronaus
channels:

1. A channel can transmit one message at a time in either direction be­
tween two parallel processes.

500 PER BRINCH HANSEN

2. Before a communication, a process makes a deterministic selection of
a communication channel, a communication direction, and a message
type.

3. A communication takes place when one process is ready to send a
message of some type through a channel, and another process is ready
to receive a message of the same type through the same channel.

3.2 Channel and message types

A channel is not a variable, but a communication medium shared by two
parallel processes. Each channel is created dynamically and identified by a
distinct value, known as a channel reference. A variable that holds a channel
reference is called a channel variable. An expression that denotes a channel
reference is called a channel expression. These concepts are borrowed from
Joyce (Brinch Hansen 1987).

As an example, the declarations

type chan ne 1 = *(boolean, number);
var left: channel;

define a new type, named channel, and a variable of this type, named leit.
The value of the variable is a reference to a channel that can transmit mes­
sages of types boolean and number only.

In general, a type definition of the form

introduces a new channel type T. The values of type T are an unordered set
of channel references created dynamically. Each channel reference of type T
denotes a distinct channel that can transmit messages of types Tl, T2 , ... ,Tn

only (the message types).

3.3 Channel creation

The effect of an open statement

open(v)

is to create a new channel and assign the corresponding channel reference
to a channel variable v. The channel reference is of the same type as the
channel variable.

The abbreviation

SUPERPASCAL: A PUBLICATION LANGUAGE 501

is equivalent to

begin open(vd; open(v2"'" vn) end

As an example, two channels, Zeft and right, can be opened as follows

open(left, right)

or as shown below

begin open(left); open(right) end

A channel exists until the program execution ends.

3.4 Communication procedures

Consider a process that receives a number a through a channel, Zeft, and
sends it through another channel, right:

var left, right: channel; a: number;
receive(left, a); send(right, a)

The message communication is handled by two required procedures, send
and receive.

In general, a send statement

send(b, e)

denotes output of the value of an expression e through the channel denoted
by an expression b. The expression b must be of a channel type T, and the
type of the expression e must be a message type of T.

A receive statement

receive(c, v)

denotes input of the value of a variable v through the channel denoted by an
expression c. The expression c must be of a channel type T, and the type of
the variable v must be a message type of T.

The send and receive operations defined by the above statements are said
to match if they satisfy the following conditions:

502 PER BRINCH HANSEN

1. The channel expressions band c are of the same type T and denote
the same channel.

2. The output expression e and the input variable v are of the same type,
which is a message type of T.

The execution of a send operation delays a process until another process
is ready to execute a matching receive operation (and vice versa). If and
when this happens, a communication takes place as follows:

1. The sen ding process obtains a value by evaluating the output expres­
sion e.

2. The receiving process assigns the value to the input variable v.

After the communication, the sending and receiving processes proceed
independently.

The abbrevation

is equivalent to

begin send(b, el); send(b, e2, .. . , en) end

Similarly,

is equivalent to

begin receive(c, vI); receive(c, V2, ... , vn) end

The following communication erTOrs are detected at run-time:

1. Undefined channel reference: A channel expression does not denote a
channel.

2. Channel contention: Two parallel processes both attempt to send (or
receive) through the same channel at the same time.

SUPERPASCAL: A PUBLICATION LANGUAGE 503

3. Message type errar: Two parallel processes attempt to communicate
through the same channel, but the output expression and the input
variable are of different message types.

Message communication is illustrated by two procedures in the primality
testing program. The master process, shown in Fig. 1, sends a number a
through its left channel, and receives p booleans through its right channel.
If at least one of the booleans is true, the number is composite; otherwise,
it is considered to be prime (Algorithm 1).

procedure master(
a: number; var prime: boolean;
left, right: channel);

var i: integer; composite: boolean;
begin

send (left, a); prime := true;
for i : = 1 to P do

end;

begin
receive(right, composite);
if composite then

prime : = false
end

Algorithm 1 Master.

The pipeline nodes, shown in Fig. 2, are numbered 1 through p. Each
node receives a number a through its left channel, and sends a through its
right channel (unless the node is the last one in the pipeline). The node
then tests the number for primality using the node index i as the seed of
its random number generator. Finally, the node outputs the boolean result
of its own trial, and copies the results obtained by its i-I predecessors (if
any) in the pipeline (Algorithm 2).

3.5 Channel arrays

Since channel references are typed values, it is possible to define an array of
channel refer~nces. A variable of such a type represents an array of channels.

The pipeline no des in Fig. 2 are connected by a row of channels created
as folIows:

504 PER BRINCH HANSEN

procedure node(i: integer;
left, right: channel);

var a: number; j: integer;
composite: boolean;

begin
receive(left, a);
if i < P then send(right, a);
test(a, i, composite);
send(right, composite);
for j : = 1 to i-I do

end;

begin
receive(left, composite);
send(right, composite)

end

Algorithm 2 Node.

type channel = *(boolean, number);
row = array [O .. p] of channel;

var c: row; i: integer;
for i := 0 to p do open(c[i])

Later, I will program a matrix of processes connected by a horizontal and
a vertical matrix of channels. The channel matrices, hand v, are defined
and initialized as folIows:

type
row = array [O .. q] of channel;
net = array [O .. q] of row;

var h, v: net; i, j: integer;
for i : = 0 to q do

for j : = 0 to q do
open(h[i,j], v[i,j])

3.6 Channel variables

The value of a channel variable v of a type T is undefined, unless a channel
reference of type T has been assigned to v by executing an open statement

open(v)

or an assignment statement

SUPERPASCAL: A PUBLICATION LANGUAGE 505

v:= e

If the value of the expression e is a channel reference of type T, the effect of
the assignment statement is to make the values of v and e denote the same
channel.

If e and f are channel express ions of the same type, the boolean expres­
sion

e=!

is true, if e and f denote the same channel, and is false otherwise. The
boolean expression

e <>!

is equivalent to

not (e = J)

In the following example, the references to two channels, left and right,
are assigned to the first and last elements of a channel array c:

c[O] := left; c[p] ;= right

After the first assignment, the value of the boolean expression

c[O] = left

is true.

4 PARALLEL PROCESSES

4.1 Parallel statements

The effect of a parallel statement

parallel 5\1521 ... ISn end

506 PER BRINCH HANSEN

procedure ring(a: number;
var prime: boolean);

var left, right: ehannel;
begin

open(left, right);
parallel

pi peline (left, right) I
master(a, prime, left, right)

end
end;

Algorithm 3 Ring.

is to execute the process statements 8 1 , 8 2 , ... , 8 n as parallel processes until
all of them have terminated.

Algorithm 3 defines a ring net that determines if a given integer a is
prime. The ring, shown in Fig. 1, consists of two parallel processes, a master
and a pipeline, which share two channels. The master and the pipeline run
in parallel until both of them have terminated.

A parallel statement enables you to run different kinds of algorithms
in parallel. This idea is useful only for a small number of processes. It
is impractical to write thousands of process statements, even if they are
identical.

4.2 Forall statements

To exploit parallel computing with many processors, we need the ability to
run multiple instances of the same algorithm in parallel.

As an example, consider the pipeline for primality testing. From the
abstract point of view, shown in Fig. 1, the pipeline is a single process with
two external channels. At the more detailed level, shown in Fig. 2, the
pipeline consists of an array of identical, parallel no des connected by a row
of channels.

Algorithm 4 defines the pipeline.
The first and last elements of the channel array c

e[O] = left e[p] = right

refer to the external channels of the pipeline. The remaining elements

SUPERPASCAL: A PUBLICATION LANGUAGE 507

procedure pipeline(left, right; ehannel);
type row = array [O .. p] of ehannel;
var e; row; i; integer;
begin

e[O] ;= left; e[p] ;= right;
for i ; = 1 to P - 1 do

open(e[i]);
forall i ;= 1 to p do

node(i, e[i -1], e[i])
end;

Algorithm 4 Iterative pipeline.

e[l], e[2], ... , e[p-1]

denote the internal ehannels.
For p :2 1, the statement

forall i ;= 1 to p do
node(i, e[i-1], e[i])

is equivalent to the following statement (whieh is too tedious to write out in
full for a pipeline with more than, say, ten no des):

parallel
node(1, e[O], c[l])1
node(2, c[l], e[2]) 1

node(p, e[p-1], e[p])
end

The variable i used in the farall statement is not the same variable as
the variable i declared at the beginning of the pipeline proeedure.

In the farall statement, the clause

i ;= 1 to p

is a declaratian of an index variable i that is loeal to the proeedure statement

node(i, e[i-1], e[i])

508 PER BRINCH HANSEN

Each node process has its own instance of this variable, which holds a distinct
index in the range from 1 to p.

It is a coincidence that the control variable of the for statement and
the index variable of the forall statement have the same identifier in this
example. However, the scopes of these variables are different.

In general, a forall statement

forall i := el to e2 do S

denotes a (possibly empty) array of parallel processes, called element pro­
cesses, and a corresponding range of values, called process indices. The lower
and upper bounds of the index range are denoted by two expressions, el and
e2, of the same simple type. Every index value corresponds to aseparate
element process defined by an index variable i and an element statement S.

The index variable declaration

introduces the variable i that is local to S.
A forall statement is executed as follows:

1. The expressions, el and e2, are evaluated. If el > e2, the execution of
the forall statement terminates; otherwise, step 2 takes place.

2. e2 - el + 1 element processes run in parallel until all of them have ter­
minated. Every element process creates a local instance of the index
variable i, assigns the corresponding process index to the variable, and
executes the element statement S. When an element process term i­
nates, its local instance of the index variable ceases to exist.

A model program for solving Laplace 's equation uses a process matrix

(Brinch Hansen 1993b). Figure 3 shows a q x q matrix of parallel nodes
connected by two channel matrices, hand v.

Each node process is defined by a procedure with the heading:

procedure node(i, j: integer;
up, down, left, right: channel)

Anode has a pair of indices (i, j) and is connected to its four nearest neigh­
bors by channels, up, down, left, and right.

The process matrix is defined by nested forall statements:

SUPERPASCAL: A PUBLICATION LANGUAGE 509

Figure 3 A process matrix.

forall i := 1 to q do
forall j := 1 to q do

node(i, j, v[i-l,j], v[i,j], h[i,j-l], h[i,j])

4.3 Recursive parallel processes

SuperPascal supports the beautiful concept of recursive parallel processes.
Figure 4 illustrates a recursive definition of a pipeline with p nodes:

node pipeline

---D-{f
left middle right

(a)

node

~
left right

(b)

Figure 4 A recursive pipeline.

510 PER BRINCH HANSEN

1. If p > 1, the pipeline consists of a single node followed by a shorter
pipeline of p - 1 nodes (Fig. 4a).

2. If p = 1, the pipeline consists of a single node only (Fig. 4b).

The pipeline is defined by combining a recursive procedure with a parallel
statement (Algorithm 5).

procedure pipeline(min, max: integer;
left, right: channel);

var middle: channel;
begin

if min < max then
begin

open(middle);
parallel

node(min, left, middle)I
pipeline(min + 1, max,

middle, right)
end

end
else node(min, left, right)

end;

Algorithm 5 Recursive pipeline.

The pipeline consists of nodes with indices in the range from min to max
(where min :s; max). The pipeline has a left and a right channel. If min <
max, the pipeline opens amiddie channel, and splits into a single node and
a smaller pipeline running in parallel; otherwise, the pipeline behaves as a
single node.

The effect of the procedure statement

pipeline(l, p, left, right)

is to activate a pipeline that is equivalent to the one shown in Fig. 2.
The recursive pipeline has a dynamic length defined by parameters. The

nodes and channels are created by recursive parallel activations of the pipeline
procedure. The iterative pipeline programmed earlier has a fixed length be­
cause it uses a channel array of fixed length (Algorithm 4).

SUPERPASCAL: A PUBLICATION LANGUAGE 511

A model program for divide and conquer algorithms uses a binary process
tree (Brinch Hansen 1991a). Figure 5 shows a tree of seven parallel processes
connected by seven channels.

41eaves

2 roots

1 root

Figure 5 A specific process tree.

The bot tom process of the tree inputs data from the bottom channel,
and sends half of the data to its left child process, and the other half to its
right child process. The splitting of data continues in parallel higher up in
the tree, until the data are evenly distributed among the leaf processes at
the top. Each leaf transforms its own portion of the data, and outputs the
results to its parent process. Each parent combines the partial results of its
children, and outputs them to its own parent. The parallel combination of
results continues at lower levels in the tree, until the final results are output
through the bottom channel.

A process tree can be defined recursively as illustrated by Fig. 6.

bottom

(a)

2 trees

1 root 91eaf

bottom

(b)

Figure 6 A recursive tree.

512 PER BRINCH HANSEN

A binary tree is connected to its environment by a single bot tom channel.
A closer look reveals that the tree takes one of two forms:

1. A tree with more than one node consists of a root process and two
sm aller trees running in parallel (Fig. 6a).

2. A tree with one node only is a leaf process (Fig. 6b).

The process tree is defined by a recursive procedure (Algorithm 6). The
depth of the tree is the number of process layers above the bot tom process.
Figure 5 shows a tree of depth 2.

procedure tree(depth: integer;
bottom: channe1);

var 1eft, right: channe1;
begin

if depth > 0 then
begin

open(left, right);
parallel

tree(depth - 1, 1eft) I
tree(depth - 1, right) I
raot (bottom, 1eft, right)

end
end

else 1eaf(bottom)
end;

Algorithm 6 Recursive tree.

The behavior of roots and leaves is defined by two procedures of the form:

procedure root(bottom, left, right: channel)

procedure 1eaf(bottom: channe1)

These procedures vary from one application of the tree to another ..
The effect of the procedure statement

tree(2, bottom)

SUPERPASCAL: A PUBLICATION LANGUAGE 513

is to activate a binary tree of depth 2.
A notation for recursive processes is essential in a parallel programming

language. The reason is simple. It is impractical to formulate thousands of
processes with different behaviors. Wemust instead rely on repeated use
of a small number of behaviors. The simplest problems that satisfy this
requirement are those that can be reduced to smaller problems of the same
kind and solved by combining the partial results. Recursion is the natural
programming tool for these divide and conquer algorithms.

5 INTERFERENCE CONTROL

5.1 Disjoint processes

The relative speeds of asynchronous, parallel processes are generally un­
known. If parallel processes update the same variables at unpredictable
times, the combined effect of the processes is time-dependent. Similarly, if
two parallel processes both attempt to send (or receive) messages through
the same channel at unpredictable times, the net effect is time-dependent.
Processes with time-dependent errors are said to interfere with one another
due to variable or channel confiicts.

When a program with a time-dependent error is executed repeatedly with
the same input, the output usually varies in an unpredictable manner from
one run to another. The irreproducible behavior makes it difficult to locate
interference by systematic program testing. The most effective remedy is
to introduce additional restrietions, which make process interference impos­
sible. These restrictions must be checked by a compiler before a parallel
program is executed.

In the following, I concentrate on syntactic detection of variable conflicts.
The basic requirement is simple: Parallel processes can only update disjoint
sets of variables. A variable that is updated by a process may only be used
by that process. Parallel processes may, however, share variables that are
not updated by any of them. Parallel processes that satisfy this requirement
are called disjoint processes.

5.2 Variable contexts

I will illustrate the issues of interference control by small examples only. The
problem is discussed concisely in (Brinch Hansen 1994b).

In theory, syntactic detection of variable conflicts is a straightforward
process. A single-pass compiler scans a program text once. For every state-

514 PER BRINCH HANSEN

ment S, the compiler determines the set of variables that may be updated
and the set of variables that may be used as expression operands during the
execution of S. These sets are called the target and expression variables of
S. Together they define the variable context of S. If we know the variable
context of every statement, it is easy to check if parallel statements define
disjoint processes.

As an example, the open statement

open(h[i,j])

denotes creation of a component hi,j of a channel array h. Since the index
values i and j are known during execution only, a compiler is unable to
distinguish between different elements of the same array. Consequently, the
entire array h is regarded as a target variable (the only one) of the open
statement. The expression variables of the statement are i and j.

An entire variable is a variable denoted by an identifier only, such as
h, i, or j above. During compilation, any operation on a component of a
structured variable is regarded as an operation on the entire variable. The
target and expression variables of a statement are therefore sets of entire
variables.

A compiler cannot predict if a component of a conditional statement will

be executed or skipped. To be on the safe side, the variable context of a
structured statement is defined as the union of the variable contexts of its
components.

Consider the conditional statement

if i < p then send(right, a)

It has no target variables, but uses three expression variables, i, right and a

(assuming that p is a constant).

5.3 Parallel statements

The choice of a notation for parallel processes is profoundly influenced by
the requirement that a compiler must be able to detect process interference.
The syntax of a parallel statement

SUPERPASCAL: A PUBLICATION LANGUAGE 515

clearly shows that the process statements 51,52, ... , Sn are executed in par­
allel.

The following restriction ensures that a parallel statement denotes dis­
joint processes: A target variable oi one proeess statement eannot be a target
or an expression variable oi another proeess statement. This rule is enforced
by a compiler.

Let me illustrate this restriction with three examples. The parallel state­
ment

parallel open(h[i,j]) lopen(v[i,j]) end

defines two open statements executed simultaneously. The target variable h
of the first process statement does not occur in the second process statement.
Similarly, the target variable v of the second process statement is not used
in the first process statement. Consequently, the parallel statement defines
disjoint processes.

However, the parallel statement

parallel
reeeive(left, a)1
if i < p then send(right, a)

end

is incorrect, because the target variable a of the first process statement is
also an expression variable of the second process statement.

Finally, the parallel statement

parallel e[O] := leftle[p] := right end

is incorrect, since the process statements use the same target variable c.
Occasionally, a programmer may wish to override the interference control

of parallel statements. This is useful when it is obvious that parallel processes
update distinct elements of the same array. The previous restriction does not
apply to a parallel statement prefixed by the clause [sie]. This is called an
unrestrieted statement. The programmer must prove that such a statement
denotes disjoint processes.

The following example is taken from a model program that uses the
process matrix shown in Fig. 3:

516 PER BRINCH HANSEN

[sie] { 1 <= k <= m }
parallel

receive(up, u[O,k]) I
send(down, u[m,k]) I
receive(Ieft, u[k,O]) I
send(right, u[k,m])

end

This statement enables anode process to simultaneously exchange four el­
ements of a local array u with its nearest neighbors. The initial comment
implies that the two input elements are distinct and are not used as output
elements.

The programmer should realize that the slightest mistake in an unre­
stricted statement may introduce a subtle time-dependent error. The incor­
reet statement

[sie] { 1 <= k <= m }
parallel

receive(up, u[l,k])1
send(down, u[m,k])I
receive(Ieft, u[k,l]) I
send(right, u[k,m])

end

is time-dependent, but only if k = 1.

5.4 Forall statements

The following restriction ensures that the statement

forall i := el to e2 do S

denotes disjoint processes: In a famll statement, the element statement S
cannat use target variables. This is checked by a compiler.

This restrietion implies that a process array must output its final results
to another process or a file. Otherwise, the results will be lost when the
element processes terminate and their local variables disappear. For tech­
nological reasons, the same restriction is necessary if the element processes
run on separate processors in a parallel computer with distributed memory.

In the primality testing program, a pipeline is defined by the statement

forall i := 1 to p do node(i, c[i-l], c[i])

SUPERPASCAL: A PUBLICATION LANGUAGE 517

Since the node procedure has value parameters only, the procedure statement

node(i, c[i~l], c[i])

uses expression variables only (i and c).
The incorrect statement

forall i := 1 to p ~ 1 do open(c[i])

denotes element processes that attempt to update the same variable c in
parallel.

If it is desirable to use the above statement, it must be turned into an
unrestricted statement:

[sie] { distinct elements c[i] }
forall i := 1 to p ~ 1 do open(c[i])

The initial comment shows that the node processes are disjoint, since they
update distinct elements of the channel array c.

Again, it needs to be said that a programming error in an unrestricted
statement may cause time-dependent behavior. The incorrect statement

[sie] forall i := 1 to p ~ 1 do open(c[l])

denotes parallel assignments of channel references to the same array element
Cl·

Needless to say, syntactic interference control is of limited value if it is
frequently overridden. A programmer should make a conscientious effort to
limit the use of unrestricted statements as much as possible. The thirteen
model programs, that I wrote, include five unrestricted statements only; all
of them denote operations on distinct array elements.

5.5 Variable parameters

To enable a compiler to recognize distinct variables, a language should have
the property that distinct variable identifiers occurring in the same state­
ment denote distinct entire variables. Due to the scope rules of Pascal, this
assumption is satisfied by all entire variables except variable parameters.

The following procedure denotes parallel creation of a pair of channels:

518 PER BRINCH HANSEN

procedure pair(var c, d: channel);
begin

parallel open(c) I open(d) end
end;

The parallel processes are disjoint only if the formal parameters, c and d,
denote distinct actual parameters.

The procedure statement

pair(h[i,j], v[i,j])

is valid, since the actual parameters are elements of different arrays, hand
v.

However, the procedure statement

pair (left, left)

is incorrect, because it makes the identifiers, c and d, aliases of the same
variable, left.

Aliasing of variable parameters is prevented by the following restrietion:
The actual variable parameters of a procedure statement must be distinct
entire variables (or components of such variables).

An unrestricted statement is not subject to this restriction. A model
program for n-body simulation computes the gravitational forces between a
pair of bodies, Pi and Pj, and adds each force to the total force acting on
the corresponding body (Brinch Hansen 1991b). This operation is denoted
by a procedure statement

{ i <> j } [sie] addforces(p[j], pli])

with two actual variable parameters. The initial comment shows that the
parameters, Pi and Pj, are distinct elements of the same array variable p.

5.6 Global variables

Global variables used in procedures are another source of aliasing. Con­
sider a procedure that updates aglobai seed and returns a random number
(Algorithm 7).

The procedure statement

random(x)

SUPERPASCAL: A PUBLICATION LANGUAGE 519

var seed: real;

procedure random(var number: real);
var temp: real;
begin

temp := a*seed;
seed := temp - m*trunc(temp/m);
number := seed/m

end;

Algorithm 7 Random number generator.

denotes an operation that updates two distinct variables, x and seed.
On the other hand, the procedure statement

random(seed)

turns the identifier number into an alias for seed.
To prevent aliasing, it is necessary to regard the global variable as an

implicit parameter of both procedure statements. Since the procedure uses
the global variable as a target and an expression variable, it is both an
implicit variable parameter and an implicit value parameter of the procedure
statements.

The rule that actual variable parameters cannot be aliases applies to
aIl variable parameters of a procedure statement, explicit as weIl as implicit
parameters. However, since implicit value parameters can also cause trouble,
we need astronger restriction defined as foIlows (Brinch Hansen 1994b):
The restricted actual parameters of a procedure statement are the explicit
variable parameters that occur in the statement and the implicit parameters
of the corresponding procedure block. The restricted actual parameters of a
procedure statement must be distinct entire variables (or components of such
variables).

In the primality testing program, the pipeline nodes use a random nu m­
ber generator. If the seed variable is global to the node procedure, then the
seed is also an implicit variable parameter of the procedure statement

node(i, c[i-l], c[i])

Consequently, the statement

520 PER BRINCH HANSEN

forall i := 1 to p do node(i, c[i-l], c[i])

denotes parallel processes that (indirectly) update the same global variable
at unpredictable times. The concept of implicit parameters enables a com­
piler to detect this variable conflict. The problem is avoided by making the
procedure, mndom, and its global variable, seed, local to the node procedure.
The node processes will then be updating different instances of this variable.

The parallel statement

parallel write(x) Jwriteln end

is invalid because the required textfile output is an implicit variable param­
eter of both write statements.

Similarly, the parallel statement

parallel
read(x)J
if eof then writeln

end

is incorrect because the required textfile input is an implicit variable parame­
ter of the read statement and an implicit value parameter of the eojfunction
designator.

5.7 Functions

Functions may use global variables as implicit value parameters only. The
following rules ensure that functions have no side-effects:

1. Functions cannot use implicit or explicit variable parameters.

2. Procedure statements cannot occur in the statement part of a function
block.

The latter restriction implies that functions cannot use the required pro­
cedures for message communication and file input/output. This rule may
seem startling at first. I introduced it after noticing that my model programs
include over 40 functions, none of which violate this restriction.

Since functions have no side-effects, expressions cannot cause process
interference.

SUPERPASCAL: A PUBLICATION LANGUAGE 521

5.8 Further restrictions

Syntactic detection of variable confiicts during single-pass compilation re­
quires additional language restrictions:

l. Pointer types are omitted.

2. Goto statements and labels are omitted.

3. Procedural and functional parameters are omitted.

4. Forward declarations are omitted.

5. Recursive functions and procedures cannot use implicit parameters.

These design decisions are discussed in (Brinch Hansen 1994b).

5.9 Channel conflicts

Due to the use of channel references, a compiler is unable to detect process
interference caused by channel confiicts. From a theoretical point of view,
I have serious misgivings about this fiaw. In practice, I have found it to be
a minor problem only. Some channel confiicts are detected by the run-time
checking of communication errors mentioned earlier. For regular process
configurations, such as pipelines, trees, and matrices, the remaining channel
confiicts are easy to locate by proofreading the few procedures that define
how parallel processes are connected by channels.

6 SUPERPASCAL VERSUS OCCAM

occam2 is an admirable implement at ion language for transputer systems (In­
mos 1988). It achieves high efficiency by relying on static allocation of
processors and memory. The occam notation is somewhat bulky and not
sufficiently general for a publication language:

1. Key words are capitalized.

2. Areal constant requires eight additional characters to define the length
of its binary representation.

3. Simple statements must be written on separate lines.

4. An if statement requires two additionallines to describe an empty else
statement.

522 PER BRINCH HANSEN

5. Array types cannot be named.

6. Record types cannot be used.

7. Process arrays must have constant lengths.

8. Functions and procedures cannot be recursive.

occam3 includes type definitions, but is considerably more complicated
than occam2 (Kerridge 1993).

occam was an invaluable source of inspiration for SuperPascal. Years
ahead of its time, occam set a standard of simplicity and security against
which future parallel languages will be measured. The parallel features of
SuperPascal are a subset of occam2 with the added generality of dynamic
process arrays and recursive parallel processes. This generality enables you
to write parallel algorithms that cannot be expressed in occam.

7 FIN AL REMARKS

Present multicomputers are quite difficult to program. To achieve high per­
formance, each pro gram must be tailored to the configuration of a particular
computer. Scientific users, who are primarily interested in getting numeri­
cal results, constantly have to reprogram new parallel architectures and are
getting increasingly frustrated at having to do this (Sanz 1989).

As educators, we should ignore this short-term problem and teach our
students to write programs for the next generation of parallel computers.
These will probably be general-purpose multi computers that can run portable
scientific programs written in parallel programming languages.

In this paper, I have suggested that universities should adopt a common
programming language for publication of papers and textbooks on paral­
lel scientific algorithms. The language Pascal has played a major role as a
publication language for sequential computing. Building on that tradition,
I have developed SuperPascal as a publication language for computational
science. SuperPascal extends Pascal with deterministic statements for par­
allel processes and message communication. The language enables you to
define arbitrary configurations of parallel processes, both iteratively and re­
cursively. The number of processes may vary dynamically.

I have used the SuperPascal notation to write portable programs for
regular problems in computational science. I found it easy to express these
programs in three different programming languages (SuperPascal, Joyce, and

SUPERPASCAL: A PUBLICATION LANGUAGE 523

occam2) and run them on three different architectures (a Unix workstation,
an Encore Multimax, and a Meiko Computing Surface).

Acknowledgements

While writing this paper, I have benefited from the perceptive comments of
James Allwright, Jonathan Greenfield and Peter O'Hearn.

References

Aho, A.V., Hopcroft, J.E., and Ullman, J.D. 1983. Data Structures and Algorithms.
Addison-Wesley, Reading, MA.

Alagic, S., and Arbib, M.A. 1978. The Design of Well-Structured and Correct Programs.
Springer-Verlag, New York.

Ambler, A.L., Good, D.L, Browne, J.C., Burger, W.F., Cohen, R.M., and Wells, R.E.
1977. Gypsy: a language for specification and implementation of verifiable programs.
ACM SIGPLAN Notices 12, 2, 1-10.

Brinch Hansen, P. 1973. Operating System Principles. Prentice-Hall, Englewood Cliffs,
NJ.

Brinch Hansen, P. 1985. Brinch Hansen on Pascal Compilers. Prentice-Hall, Englewood
Cliffs, NJ.

Brinch Hansen. P. 1987. Joy.ce-A programming language for distributed systems. Soft­
ware Practice and Experience 17, 1 (January), 29-50.

Brinch Hansen, P. 1991a. Parallel divide and conquer. School of Computer and Informa­
tion Science, Syracuse University, Syracuse, NY.

Brinch Hansen, P. 1991b. The n-body pipeline. School of Computer and Information
Science, Syracuse University, Syracuse, NY.

Brinch Hansen, P. 1992a. Primality testing. School oE Computer and Information Science,
Syracuse University, Syracuse, NY.

Brinch Hansen, P. 1992b. Parallel Monte Carlo trials. School of Computer and Information
Science, Syracuse University, Syracuse, NY.

Brinch Hansen, P. 1993a. Model programs for complltational science: A programming
methodology for multicomputers. Concurrency--Practice and Experience 5, 5 (Au­
gust), 407-423.

Brinch Hansen, P. 1993b. Parallel cellular alltomata: A model program for complltational
science. Concurrency-Practice and Experience 5, 5 (August) 425-448.

Brinch Hansen, P. 1994a. The programming language SuperPascal. Software-Practice
and Experience 24, 5 (May), 467-483.

Brinch Hansen, P. 1994b. Interference control in SuperPascal-A block-structured parallel
language. Computer Journal 37, 5, 399-406.

Dijkstra, E.W. 1968. Cooperating sequential processes. In Programming Languages, F.
Genuys, Ed. Academic Press, New York, 43-112.

Dunham, C.B. 1982. The necessity of publishing programs. Computer Journal 25, 1,
61-62.

Forsythe, G.E. 1966. Algorithms for scientific computing. Communications of the A CM
g, 4 (April), 255-256.

524 PER BRINCH HANSEN

Hoare, C.A.R. 1971. Procedures and parameters: an axiomatic approach. Lecture Notes
in Mathematics 188, 102-171.

Hoare, C.A.R. 1972. Towards a theory of parallel programming. In Operating Systems
Techniques, C.A.R. Hoare and R.H. Perrott, Eds. Academic Press, New York, 61-71.

Hoare, C.A.R. 1985. Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs, NJ.

IEEE 1983. IEEE Standard Pascal Computer Programming Language, Institute of Elec­
trical and Electronics Engineers, New York.

Inmos, Ltd. 1988. occam 2 Relerence Manual, Prentice Hall, Englewood Cliffs, NJ.
Kerridge, J. 1993. Using occam3 to build large parallel systems: Part 1, occam3 features.

Transputer Communications 1 (to appear).
Lampson, B.W., Horning, J.J., London, R.L., Mitchell, J.G., and Popek, G.J. 1977. Report

on the programming language Euclid. ACM SIGPLAN Notices 12,2 (February).
McDonald, N. 1991. Meiko Scientific, Ltd. In Past, Present, Parallel: A Survey 01 Avail­

able Parallel Computing Systems, A. Trew and G. Wilson, Eds. Springer-Verlag, New
York, 165-175.

May, D. 1989. Discussion. In Scientific Applications 01 Multiprocessors, R. Elliott and
C.A.R. Hoare, Eds. Prentice-Hall, Englewood Cliffs, NJ, 54.

Perlis, A.J. 1966. A new policy for algorithms? Communications 01 the ACM 9,4 (April),
255.

Rabin, M.O. 1980. Probabilistic algorithms for testing primality. Journal 01 Nl1mber
Theory 12, 128-138.

Sanz, J.L.C., Ed. 1989. Opportl1nities and Constraints 01 Parallel Compl1ting, Springer­
Verlag, New York.

Tennent, R.D. 1981. Principles 01 Programming Languages, Prentice-Hall, Englewood
Cliffs, NJ.

Welsh, J., and McKeag, M. 1980. Strl1ctl1red System Programming, Prentice-Hall, Engle­
wood Cliffs, N J.

Wirth, N. 1971. The programming language Pascal. Acta Inlormatica 1, 35-63.
Wirth, N. 1973. Systematic Programming: An Introdl1ction. Prentice-Hall, Englewood

Cliffs, NJ.

19

EFFICIENT PARALLEL RECURSION

PER BRINCH HANSEN

(1995)

A simple mechanism is proposed for dynamic memory allocation of a parallel

recursive program with AIgol-like scope rules. The method is about as fast as

the traditional stack discipline for sequential languages. It has been used to

implement the parallel programming language SuperPascal.

1 Introduction

I will describe a memory allocation sehe me for block structured program­
ming languages that support unbounded activation of parallel processes and
recursive procedures. This technique has been used to implement the parallel
programming language SuperPascal (Brinch Hansen 1994).

Three decades ago, Dijkstra (1960) proposed the standard method of
dynamic memory allocation for recursive procedures in block structured,
sequential languages, such as Algol 60 (Naur 1963), Pascal (Wirth 1971)
and C (Kernighan 1978).

The scope rules of AIgol-like languages support stack allocation of mem­
ory for sequential programs. All variables are kept in a single stack. When
a block is activated, an activation record (a data segment of fixed length)
is pushed on the stack. The activation record holds a fresh instance of ev­
ery local variable of the block. At the end of the activation, the activation
record is popped from the stack. Since each activation creates a new instance
of the local variables, stack allocation works for both recursive and nonre­
cursive procedures. The crucial assumption behind stack allocation is that
dynamically nested block activations always terminate in last-in, first-out
order.

P. Brinch Hansen, Efficient parallel recursion, SIGPLAN Notices 30, 12 (December 1995),
9-16. Copyright © 1995, Per Brinch Hansen. Reprinted by permission.

525

526 PER BRINCH HANSEN

After two decades of research in parallel programming languages, there is
still no efficient standard method for dynamic memory allocation of parallel
recursion. When you add parallelism to a block structured language, the
variable instances form a tree structured stack with branches that grow and
shrink simultaneously. If dynamic parallelism is combined with unbounded
recursion, the number and extent of the stack branches are unpredictable.

In a parallel recursive program, there is no simple relationship between
the order in which blocks are entered and exited. So, you cannot use the
traditionallast-in, first-out allocation. This makes it more difficult to reclaim
and reuse the memory space of activation records efficiently.

With few exceptions, language designers have ignored the thorny prob­
lems of parallel memory allocation by outlawing recursion and restricting
parallelism to the point where it is possible to use static memory allocation.

In many languages, it is impossible to reclaim the memory space of par­
allel processes. These include Concurrent Pascal (Brinch Hansen 1975), Si­
mone (Kaubisch 1976), Modula (Wirth 1977), Distributed Processes (Brinch
Hansen 1978), Pascal Plus (Welsh 1979), StarMod (Cook 1980), SR (An­
drews 1981), Concurrent Euclid (Holt 1983), Planet (Crookes 1984) and
Pascal-FC (Davies 1990).

CSP (Hoare 1978), Edison (Brinch Hansen 1981), and occam (Inmos
1988) support process activation and termination, but only of a fixed number
of parallel nonrecursive processes determined during compilation.

Static memory allocation is adequate for many parallel computations
(Fox 1988). However, parallel recursion is the natural programming tool
for parallel versions of divide-and-conquer algorithms, such as quicksort, the
fast Fourier transform and the Barnes-Hut algorithm for n-body simulation
(Fox 1994).

Parallel recursion requires dynamic allocation and release of activation
records in a tree structured stack. B6700 Algol (Organick 1973) and Mesa
(Larnpson, 1980) demonstrate that it is possible to support both parallelism
and recursion in systems programming languages. The substantial overhead
of parallel processes in these languages is acceptable in operating systems,
wh ich support slowly changing configurations of user processes. It is, how­
ever, too inefficient for highly parallel computations.

Is there a memory allocation method that makes parallel recursion as
efficient as sequential recursion for all systems and user programs? I don't
know any. Parallel recursion can probably only be implemented efficiently
at the expense of some generality.

EFFICIENT PARALLEL RECURSION 527

As a reasonable compromise, I will confine myself to the problem of
allocating activation records of different lengths for a single parallel program
in a memory of fixed size. The proposed technique is more ambitious than
previous methods in the following sense: it succeeds in making the activation

and termination of parallel processes and recursive procedl1,res equally fast!
Joyce (Brinch Hansen 1989) was my first attempt to simplify memory

allocation for parallel recursion. The multiprocessor implementation of Joyce
uses a stack-like scheme for parallel block activation in a single memory heap.
On entry to a block, an activation record is allocated at the top of the heap.
On exit from the block, the activation record is marked as free. Free space
is reclaimed only when it is at the top of the heap. This method works
weIl for many parallel recursive programs. However, it fails if a program
continues to demand space for parallel block activations beforc previously
released space can be reclaimed. In that situation, thc heap grows until it
runs out of memory.

The occasional failure of the Joyce heap made me look for a more robust
memory allocation for SuperPascal. After solving this problem, I found that
I had reinvented a simplified version of the Quick Fit allocator, which was
used for heap management in the sequential programming language Bliss
(Weinstock 1988).

The main contribution of this paper is the discovery that Quick Fit is
an efficient memory allocator for a parallel recursive language that requires
an unbounded, tree structured stack of activation records. The consistent
omission of efficient parallel recursion in previous block structured languages
shows that this insight only seems obvious once you know the solution.

2 Assumptions

I will state the assumptions behind thc method in general terms. How­
ever, I will use the implementation of block structured parallellanguages to
motivate the assumptions.

The general problem is to allocate and release segments of different
lengths in a memory of fixed size under the following assumptions:

• Each segment occupies a contiguous memory area of fixed length.

In a block structured program, the unit of memory allocation is an activation
record of fixed length that holds the local variable instances of a single
activation of a block.

528 PER BRINCH HANSEN

• A segment is never relocated in memory.

During pro gram execution, the activation re cords in use are linked by point­
ers representing variable parameters, nested blocks, and activation sequen­
ces. Dynamic relocation of linked activation records would be complicated
and time-consuming.

• A segment is released only when no other segment in use points to it.

The scope rules enable a compiler to check that the local variable instances
of a block activation are accessed only during the activation. Consequently,
the corresponding activation re cord can safely be released on exit from the
block.

• Segments are generally allocated and released in unpredictable order.

The nondeterministic nature of parallel recursion complicates the dynamic
memory allocation considerably.

• There is a fixed number oi segment lengths.

A block structured program consists of a fixed number of blocks. (In Super­
Pascal, a block is either a process statement or a procedure.) Each activation
of the same block allocates an activation re cord of the same fixed length.

• A program tends to use segments oi the same lengths repeatedly.

This is a plausible hypothesis about any program that uses the same proce­
dures numerous times to transform different parts of large data structures
sequentially or in parallel. The measurements in Section 4 strongly support
this assumption.

The above assumptions are satisfied by a single block structured program
that runs in a fixed memory area. However, they are not realistic for an
operating system, which allocates an unbounded number of segments, most
of which are unique to particular user jobs.

EFFICIENT PARALLEL RECURSION

var pool: array [1.. limit] of integer;
memory: array [min .. max] of integer;
top: integer;

procedure initialize;
var index: integer;
begin

for index : = 1 to limit do
pool [index] := empty;

top := min - 1
end;

procedure allocate(index, length: integer;
var address: integer);

begin
address := pool[index];
if address <> empty then

pool[index] := memory[address]
else

end;

begin
address := top + 1;
top := top + length;
assurne top < = max

end

procedure release(index, address: integer);
begin

memory[address] := pool[index];
pool[index] := address

end;

Algorithm 1 Memory allocation.

529

530 PER BRINCH HANSEN

3 Implementation

Algorithm 1 defines the allocation of activation records for a parallel program
that runs on a single processor in a memory area of fixed size. On a mul­
ticomputer with distributed memory, each processor must manage its own
memory for local processes. On a multiprocessor with shared memory, the'
allocation and release of activation records must be indivisible operations.

I assume that an operating system allocates a fixed amount of memory
for the execution of a parallel program. The allocation method used by the
operating system is beyond the scope of this discussion. My only concern
is the algorithms used by a running program to allocate activation records
within its own memory.

Adynamie boundary divides the program memory into two contiguous
parts. One part is the heap, which holds a11 past and present activation
records. The rest is free space. During program execution, the heap can
only grow, and the free space can only shrink. A register holds the current
top address of the heap.

The blocks in a program have consecutive indices and fixed activation
re cord lengths determined by a compiler. For each block, a running program
maintains a pool consisting of a11 free activation records reclaimed after pre­
vious activations of the block. Each pool is represented by an address, wh ich
either denotes an empty pool or is the first link in a list of free activation
records of the same length.

Initia11y, the entire memory is free and every pool is empty.
On entry to a block with a given index and length, an attempt is made

to a110cate a free activation record from the corresponding pool. If the pool
is empty, a new activation record of the given length is a110cated in the free
space, which is reduced accordingly.

On exit from the block, the activation record is released and added to
the corresponding pool.

The algorithms for allocating and releasing an activation record are not
intended to be implemented as separate procedures. They are part of the
machine code executed at the beginning and end of every process statement
and procedure. An activation re cord is allocated or released in constant
time. Most processors can perform these simple operations by executing
three or four machine instructions.

When the execution of a program ends, its memory area is still divided
into pools of free activation records and the remaining free space. However,
that does not matter, since the operating system will reclaim thc entire

EFFICIENT PARALLEL RECURSION 531

memory area as a single unit.

4 Performance

The heap allocation method described here has been used to implement the
block structured parallellanguage SuperPascal. So far, I have written par­
allel SuperPascal programs for a dozen standard problems in computational
science (Brinch Hansen 1995).

Table 1 shows the ability of the heap allocator to recycle previous acti­
vation records during the execution of three parallel programs on a single
processor.

Table 1 Measurements.

Parallel program Quicksort N-body Laplace
tree pipeline matrix

N umber of blocks 16 24 28
Process activations 11 300 25,609
Procedure activations 18,120 513,553 67,156
N ew activation records 51 27 64
Reused activation records 18,080 513,826 92,701

The quicksort tree uses both parallel recursion (to create a binary tree of
processes) and sequential recursion (to quicksort in parallel). The program
consists oE 16 blocks which are activated a total oE 18,131 times (eleven pro­
cess activations plus 18,120 proceelure activations). These block activations
create 51 new activation recorels, which are reused 18,080 times.

The n-body pipeline is a parallel nonrecursive program that repeateelly
recreates a pipeline to perform force calculation for n gravitational bod­
ies. During an n-body simulation the program activates parallel processes
300 times and proceelures 513,553 times. These activations are handled by
reusing the same 27 activation re cords over and over again.

The Laplace matrix is a highly parallel nonrecursive program. It creates
parallel pro ces ses 25,609 times anel calls proceelures 67,156 times. These
92,765 block activations require only 64 activation records.

When these parallel program solve larger problems, the two nonrecursive
programs run longer, but do not require more activation records. The num­
ber of activation records used by the quicksort tree increases slightly when
the depth of the sequential recursion increases.

532 PER BRINCH HANSEN

If no procedure is activated recursively or in parallel, the heap allocation
uses the same amount of memory as static allocation (one activation record
per block). In general, each block requires separate activation records for
all activations of the block that may be in progress simultaneously (due to
recursion or parallelism, or both).

5 Conclusions

I have described a simple heap mechanism for dynamic memory allocation
of a parallel recursive program with AIgol-like scope rules.

The mechanism has the following advantages:

• The heap allocation supports unbounded dynamic activation and ter­
mination of parallel processes and recursive procedures.

• The activation and termination of parallel processes and recursive pro­
cedures are equally fast.

• The heap allocation for parallel recursion is as efficient in reusing mem­
ory as the traditional stack discipline for sequential recursion.

• On a multicomputer with distributed memory, heap allocation is about
as fast as stack allocation.

In its simplest form (presented here) , the method has only two limita­
tions:

• An activation re cord used to activate a block can only be reused by
activating the same block again. This compromise makes it easy to
release and reallocate the memory space of block activations.

• On a multiprocessor with shared memory, the need to lock and un­
lock the heap twice during a block activation makes the method less
attractive.

Both limitations can probably be removed by more complicated variants
of the basic idea. I leave that as an exercise for the reader.

Acknowledgements

It is a pleasure to acknowledge the comments of Art Bernstein, Ole-Johan
Dahl, Ric Holt, Butler Lampson, Peter O'Hearn, Ron Perrott, and J0rgen
Staunstrup.

EFFICIENT PARALLEL RECURSION 533

References

Andrews, G.R. 1981. Synchronizing resources. ACM Tmnsactions on Progmmming Lan­
guages and Systems 3, 4 (October), 405~430.

Brinch Hansen, P. 1975. The programming language Concurrent Pascal. IEEE Tmnsac­
tions on Software Enginering 1, 2 (June), 199~207.

Brinch Hansen, P. 1978. Distributed processes: A concurrent programming concept. Com­
munications of the ACM 21, 11 (November), 934~941.

Brinch Hansen, P. 1981. Edison-a multiprocessor language. Software-Pmctice and
Experience 11,4 (April), 325~361.

Brinch Hansen, P. 1989. A multiprocessor implementation of Joyce. Software-Pmctice
and Experience 9,6 (June), 579~592.

Brinch Hansen, P. 1994. The programming language SuperPascal. Software-Pmctice and
Experience 24, 5 (May), 467~483.

Brinch Hansen, P. 1995. Studies in Computational Science: Pamllel Progmmming Pam­
digms. Prentice Hall, Englewood Cliffs, NJ, (March).

Cook, R. 1980. *Mod-a language for distributed programming. IEEE Tmnsactions on
Software Engineering 6, 6 (November), 563~571.

Crookes, D. and EIder, J.W.G. 1984. An experiment in language design for distributed
systems. Software-Pmctice and Experience 14, 10 (October), 957~971.

Davies G.L. and Bums, A. 1990. The teaching language Pascal-FC. Computer Journal 33,
147~154.

Dijkstra, E.W. 1960. Recursive programming. Numerische Mathematik 2, 312~318.
Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon, J.K. and Walker, D.W.

1988. Solving Problems on Concurrent Processors, Vol. 1. Prentice Hall, Englewood
Cliffs, NJ.

Fox, G.C., Messina, P.C. and Williams, R.D. 1994. Pamllel Computing Works! Morgan
Kaufman, San Francisco, CA.

Hoare, C.A.R. 1978. Communicating sequential processes. Communications of the A CM
21, 8 (August), 666~677.

Holt, R.C. 1983. Concurrent Euclid, the Unix Opemting System and Tunis. Addison­
Wesley, Reading, MA.

Inmos Ltd. 1988. occam 2 Reference Manual. Prentice Hall, Englewood Cliffs, NJ.
Kaubiseh, W.H., Perrott, R.H. and Hoare, C.A.R. 1976. Quasiparallel programming.

Software-Practice and Experience 6, 3 (July--September), 341~356.
Kemighan, B.W. and Ritchie, D.M. 1978. The C Progmmming Language. Prentice Hall,

Englewood Cliffs, NJ.
Lampson, B.W. and RedelI, D.D. 1980. Experience with processes and monitors in Mesa.

Communications of the ACM 23,2 (February), 105~117.
Naur, P. 1963. Revised report on the algorithmic language Algol 60. Communications of

the ACM 6, 1 (January), 1~17.
Organick, E.1. 1973. Computer System Organization: The B5700jB6700 Series. Academic

Press, New York.
Weinstock, C.B., and Wulf, W.A. 1988. Quick Fit: an efficient algorithm for heap storage

management. SIGPLAN Notices 23, 10 (October), 141~148.
Welsh, J. and Bustard, D.W. 1979. Pascal-Plus-another language for modular multipro­

gramming. Software-Pmctice and Experience 9, 11 (November), 947~957.

534 PER BRINCH HANSEN

Wirth, N. 1971. The programming language Pascal. Acta Informatica 1, 1, 35-·63.

Wirth, N. 1977. Modula: a programming language for modular multiprogramming.
Software-Pmctice and Experience 7, 1 (January-February), 3-35.

