

Tcl/Tk 8.5 Programming
Cookbook

Over 100 great recipes to effectively learn Tcl/Tk 8.5

Bert Wheeler

 BIRMINGHAM - MUMBAI

Tcl/Tk 8.5 Programming Cookbook

Copyright © 2011 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2011

Production Reference: 1080211

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-849512-98-5

www.packtpub.com

Cover Image by Asher Wishkerman (a.wishkerman@mpic.de)

Credits

Author
Bert Wheeler

Reviewers
Clif Flynt

Thomas J. Krehbiel

Acquisition Editor
Steven Wilding

Development Editor
Susmita Panda

Technical Editor
Pooja Pande

Indexer
Hemangini Bari

Editorial Team Leader
Aanchal Kumar

Project Team Leader
Ashwin Shetty

Project Coordinator
Joel Goveya

Proofreader

Jacqueline McGhee

Production Coordinator
Adline Swetha Jesuthas

Cover Work
Adline Swetha Jesuthas

About the Author

Bert Wheeler was born and raised in Louisville, Kentucky and is one of five sons. After
graduating from high school he entered the United States Navy and later retired in 1997,
after 20 years as an Air Traffic Controller. Following his military career, Bert returned to
college and graduated Magna Cum Laude with a degree in computer science.

After completion of his degree, Bert worked in all aspects of the IT and software
industries in numerous positions including Software Design and Development, Project
and Product Management, Director of Information Technologies, and Director of
Engineering Services. He continues to work and his primary area of expertise is in the
design and implementation of physical security solutions in the Access Control arena
throughout
the world.

Acknowledgment

This book would not have been completed without the help of numerous individuals.
I would like to thank the staff at Packt Publishing for their meticulous efforts and
editorial assistance throughout the completion of this book. Special thanks to Steven
Wilding, Susmita Panda, and Joel Goveya, whose tireless efforts have guided me and
kept me on track.

As with all writers, it is our families that provide the support and necessary
encouragement. To Claudia, my wife, partner and best friend, and my sons Jeremy, Justin,
Valentino, and Arrigo. Without your love and support throughout my lifetime, I would not
have become who I am today. Thank you for everything you have done, the lessons you
have taught me and the love that keeps me going. I am blessed.

About the Reviewers

Clif Flynt has been a professional programmer since 1978. He has used languages
ranging from Am2900 microcode to high level languages such as APL, HTML, and
Tcl/Tk. Clif has developed applications for many clients including the US Navy,
General Mills, and McDonalds, and also for his own amusement.

Clif has taught computer science at Grinnell College and Eastern Michigan University.
He's a member of the Washtenaw Community College Computer Science Advisory
Committee. He's delivered training sessions in the US, Canada, Europe, and India, and
has given talks at conferences in the US and Europe.

Clif is the president and founder of the Tcl Community Association, the organization that
runs the annual Tcl/Tk conference in the US and coordinates the Tcl/Tk and Open ACS
involvement with Google Summer of Code. Since 1999, Clif has owned his own company:
Noumena Corporation. Noumena Corporation provides computer training and software
development services, focusing on Tcl/Tk and other open source technologies.

Clif has written Tcl/Tk for Real Programmers, Tcl/Tk: A Developer's Guide; has edited
Interactive Web Applications with Tcl/Tk (Academic Press, Schroeder/Doyle), Practical
Programming in Tcl/Tk (Prentice Hall, Welch/Jones/Hobbs), Tcl and the Tk Toolkit (Addison
Wesley, Ousterhout/Jones), and Tcl/Tk Programmer's Reference (Osborne, Nelson).

Thomas J. Krehbiel is a graduate electrical engineer with a Masters' in solid state
semiconductor and device physics. During his career in the semiconductor industry, he
did IC circuit design, IC device design, managed a parametric test area, managed a CIM
group, and worked in a RET (Reticle Enhancement Technologies) software development
group. Along the way, he created a parametric data analysis system, a wafer tracking
system, and a RET processing system.

Thomas has many years of experience managing software development and the
hardware and system associated with that development. He has programmed for over
30 years, starting with FORTRAN and ending with his current favorite language Tcl/Tk. As
computers changed, Tom worked with mainframes (IBM360), minis (DEC), and desktops
(HPUX, Solaris, Linux, Windows).

When he was younger, he enjoyed playing baseball, basketball, handball, tennis, hiking
the Grand Canyon, and snow skiing.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt
ff Copy & paste, print and bookmark content
ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: The Tcl Shell	 5

Introduction	 5
The Tcl shell	 6
Writing to the Tcl console	 7
Mathematical expressions	 8
Tcl expr operands	 8
Mathematical functions	 11
Computing mathematical expressions	 12
Referencing files in Tcl	 13
Variables	 15
Command line arguments	 17

Chapter 2: Using the Building Blocks Control Constructs	 21
Introduction	 21
Controlling flow with the if statement	 23
Looping with for	 24
Looping with foreach	 25
Looping with while	 26
Continuing a procedure	 27
Breaking out of a procedure	 28
Nested looping	 29

Chapter 3: Error Handling	 31
Introduction	 31
Using the catch command	 32
Using the eval command	 34
Using the error command	 35
Error handling procedure	 36

ii

Table of Contents

Chapter 4: Handling String Expressions	 39
Introduction	 40
Appending to a string	 41
Formatting a string	 42
Matching a regular expression within a string	 44
Performing character substitution on a string	 46
Parsing a string using conversion specifiers	 47
Determining the length of a string	 49
Comparing strings	 50
Comparing a string of characters	 51
Locating the first instance of a character	 52
Locating the index of a character	 53
Determining the class of a string	 54
Locating the last instance of a string	 56
Determining the size of a string	 57
Replacing values within a string	 57
Locating a pattern within a string	 58
Returning a range of characters from a string	 59
Creating a string of repeated characters	 60
Replacing ranges of characters contained within a string	 60
Creating a reverse string	 61
Converting a string to lowercase	 62
Converting a string to title	 62
Converting a string to uppercase	 63
Trimming a string	 64
Trimming leading whitespace	 64
Trimming trailing whitespace	 65
Locating the word end	 65
Locating the word start	 66
Performing variable substitution	 67

Chapter 5: Expanding String Functionality Using Lists	 69
Introduction	 70
Creating a list	 70
Joining two lists	 71
Joining list elements	 72
Appending list elements	 73
Assigning list elements to variables	 73
Retrieving an element from a list	 74

iii

Table of Contents

Inserting elements into a list	 75
Determining the number of elements	 75
Getting a list element	 76
Repeating elements	 77
Replacing elements	 77
Reversing elements	 78
Searching a list	 79
Editing a list	 81
Sorting a list	 82
Splitting a string into a list	 83

Chapter 6: The Tcl Dictionary	 85
Introduction	 85
Creating a dictionary	 86
Appending to a dictionary	 87
Determining if a key exists	 88
Filtering a dictionary	 88
Searching a dictionary	 90
Getting a record	 91
Incrementing a value	 91
Getting the dictionary structure	 92
Getting a list of keys	 93
Appending to an existing record	 94
Merging two dictionaries	 94
Creating a blank dictionary structure	 95
Updating variables from a dictionary	 96
Determining the size of a dictionary	 96
Getting all records	 97
Assigning values	 97

Chapter 7: File Operations	 99
Introduction	 99
Opening a file	 100
Configuring a file	 102
Opening a command pipeline	 104
Writing a file	 106
Reading a file	 106
Closing a file	 107
File handling	 108

iv

Table of Contents

Chapter 8: Tk GUI Programming with Tcl/Tk	 111
Introduction	 111
Creating a widget	 113
Writing to the console	 115
Setting the attributes of the window through window manager	 116
Creating an additional window	 117
Destroying a window	 119
Creating a custom dialog	 121

Chapter 9: Configuring and Controlling Tk Widgets	 123
Introduction	 123
Creating a frame widget	 124
Creating a label widget	 126
Creating an entry widget	 128
Creating a button widget	 130
Creating a listbox widget	 133
Creating an image	 139
Creating a simple form	 140

Chapter 10: Geometry Management	 143
Introduction	 143
Controlling layout with the pack command	 144
Controlling layout with the grid command	 147
Combining pack and grid	 151
Creating an address book interface	 152

Chapter 11: Using Tcl Built-in Dialog Windows	 157
Introduction	 157
Displaying a message box	 158
Displaying a confirmation dialog	 159
Displaying the color picker	 161
Displaying the directory dialog	 162
Displaying the file selection dialog	 164
Selecting a directory and file	 166

Chapter 12: Creating and Managing Menus	 169
Introduction	 169
Creating a menu	 170
Adding menu buttons	 175
Displaying a pop-up menu	 178
Data entry application	 180

v

Table of Contents

Chapter 13: Creating the Address Book Application	 183
Introduction	 183
Creating the Address Book application	 184
Adding a record	 188
Navigating records	 191
Deleting a record	 192
Finding a record	 195
Full listing	 196

Index	 207

Preface
Created in 1988 by John Ousterhoult, while working at the University of Califormia, Berkeley,
Tcl (Tool Command Language) is a scripting language originally designed for embedded system
platforms. Since its creation, Tcl has grown far beyond its original design with numerous
expansions and additions (such as the graphical Took Kit or Tk) to become a full-featured
scripted programming language capable of creating elegant, cross-platform solutions.

This book is written for both the beginning developer looking for a instructions on how to get
their application up and running quickly to the experienced Tcl/Tk programmer looking to
sharpen their skills. You will find everything from utilization of the console commands through
to the creation of a stand-alone application.

What this book covers
Chapter 1, The Tcl Shell, gives an introduction to the Tcl shell.

Chapter 2, Using the Building Blocks Control Constructs, talks about using control
constructs (if statements, for statements, and so on) to perform control program flow.

Chapter 3, Error Handling, talks about using the built-in commands and the Tcl shell to
perform error handling.

Chapter 4, Handling String Expressions, explains how to create, manipulate, and manage
string variables.

Chapter 5, Expanding String Functionality Using List, shows how to create, manipulate,
and manage data in Tcl lists.

Chapter 6, The Tcl Dictionary, explains how to create, manipulate, and manage data in Tcl
dictionaries.

Chapter 7, File Operations, tells how to open, read, write, and configure access to files stored
on the system.

Chapter 8, Tk GUI Programming with Tcl/Tk, gives an introduction to the Tk shell, creating
and managing a widget or window.

Preface

2

Chapter 9, Configuring and Controlling Tk Widgets, explains about creating and managing the
most commonly used Tk widgets.

Chapter 10, Geometry Management, talks about managing the layout and design of the window.

Chapter 11, Using Tcl Built-In Dialog Windows, is about the creation and use of the Tcl
built-in dialog windows available in Tk.

Chapter 12, Creating and Managing Menus, explains creating and managing menus, menu
buttons, and pop-up menus.

Chapter 13, Creating the Address Book Application, gives full code listing and description of an
Address Book application that makes use of the information covered in the previous sections.

What you need for this book
To complete the recipes covered in this book you will need the following:

ff A computer running any supported operating system (Window, Linux, Mac OSX,
and so on)

ff A standard installation of Tcl/Tk

�� Available at www.tcl.tk

ff A non-formatting text editor such as Notepad

Who this book is for
If you are a beginner interested in adding Tcl/Tk 8.5 to your list of languages or an
experienced Tcl/Tk programmer looking to sharpen your knowledge, be assured you will
find your perfect guide in this book. Whether you are developing for your personal use or
commercial applications, this book will provide you with a ready reference to the building
blocks of Tcl/Tk 8.5.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "The catch construct is used to prevent errors from
aborting a script."

Preface

3

A block of code is set as follows:

If {[catch {set doubled [expr $value * 2]} errmsg]} {
puts "Script Failed - $errmsg"
} else {
puts "$value doubled is: $doubled"
}

Any command-line input or output is written as follows:

% unset x

%

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "If the user clicks on the
Cancel button, an empty string is returned."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Preface

4

Downloading the example code for this book
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
The Tcl Shell

In this chapter, we will cover the following topics:

ff The Tcl shell

ff Writing to the Tcl console

ff Mathematical expressions

ff Tcl expr operands

ff Tcl expr operators

ff Mathematical functions

ff Computing mathematical expressions

ff Referencing files in Tcl

ff Variables

ff Launching a Tcl script

Introduction
So, you've installed Tcl, written some scripts, and now you're ready to get a deeper
understanding of Tcl and all that it has to offer. So, why are we starting with the shell
when it is the most basic tool in the Tcl toolbox?

When I started using Tcl I needed to rapidly deliver a Graphical User Interface (GUI) to display
a video from the IP-based network cameras. The solution had to run on Windows and Linux
and it could not be browser-based due to the end user's security concerns. The client needed
it quickly and our sales team had, as usual, committed to a delivery date without speaking to
the developer in advance. So, with the requirement document in hand, I researched the open
source tools available at the time and Tcl/Tk was the only language that met the challenge.

The Tcl Shell

6

The original solution quickly evolved into a full-featured IP Video Security system with the
ability to record and display historic video as well as providing the ability to attach to live
video feeds from the cameras. Next search capabilities were added to review the stored video
and a method to navigate to specific dates and times. The final version included configuring
advanced recording settings such as resolution, color levels, frame rate, and variable speed
playback. All was accomplished with Tcl.

Due to the time constraints, I was not able get a full appreciation of the capabilities of the
shell. I saw it as a basic tool to interact with the interpreter to run commands and access the
file system. When I had the time, I returned to the shell and realized just how valuable a tool it
is and the many capabilities I had failed to make use of.

When used to its fullest, the shell provides much more that an interface to the Tcl interpreter,
especially in the early stages of the development process. Need to isolate and test a
procedure in a program? Need a quick debugging tool? Need real-time notification of the
values stored in a variable? The Tcl shell is the place to go.

Since then, I have learned countless uses for the shell that would not only have sped up the
development process, but also saved me several headaches in debugging the GUI and video
collection. I relied on numerous dialog boxes to pop up values or turned to writing debugging
information to error logs. While this was an excellent way to get what I needed, I could have
minimized the overhead in terms of coding by simply relying on the shell to display the desired
information in the early stages.

While dialog windows and error logs are irreplaceable, I now add in quick debugging by using
the commands the shell has to offer. If something isn't proceeding as expected, I drop in a
command to write to standard out and voila! I have my answer. The shell continues to provide
me with a reliable method to isolate issues with a minimum investment of time.

The Tcl shell
The Tcl Shell (Tclsh) provides an interface to the Tcl interpreter that accepts commands from
both standard input and text files. Much like the Windows Command Line or Linux Terminal,
the Tcl shell allows a developer to rapidly invoke a command and observe the return value or
error messages in standard output. The shell differs based on the Operating System in use.
For the Unix/Linux systems, this is the standard terminal console; while on a Windows system,
the shell is launched separately via an executable.

If invoked with no arguments, the shell interface runs interactively, accepting commands from
the native command line. The input line is demarked with a percent sign (%) with the prompt
located at the start position. If the shell is invoked from the command line (Windows DOS or
Unix/Linux terminal) and arguments are passed, the interpreter will accept the first as the
filename to be read. Any additional arguments are processed as variables. The shell will run
until the exit command is invoked or until it has reached the end of the text file.

Chapter 1

7

When invoked with arguments, the shell sets several Tcl variables that may be accessed
within your program, much like the C family of languages. These variables are:

Variable Explanation
argc This variable contains the number of arguments passed in with

the exception of the script file name.

A value of 0 is returned if no arguments were passed in.
argv This variable contains a Tcl List with elements detailing the

arguments passed in.

An empty string is returned if no arguments were provided.
argv0 This variable contains the filename (if specified) or the name

used to invoke the Tcl shell.
TCL_interactive This variable contains a '1' if Tclsh is running in interactive

mode, otherwise a '0' is contained.
env The env variable is maintained automatically, as an array in Tcl

and is created at startup to hold the environment variables on
your system.

Writing to the Tcl console
The following recipe illustrates a basic command invocation. In this example, we will use the
puts command to output a "Hello World" message to the console.

Getting ready
To complete the following example, launch your Tcl Shell as appropriate, based on your
operating platform. For example, on Windows, you would launch the executable contained
in the Tcl installation location within the bin directory, while on a Unix/Linux installation,
you would enter TCLsh at the command line, provided this is the executable name for your
particular system. To check the name, locate the executable in the bin directory of your
installation.

How to do it…
Enter the following command:

% puts "Hello World"

Hello World

The Tcl Shell

8

How it works…
As you can see, the puts command writes what it was passed as an argument to standard
out. Although this is a basic "Hello World" recipe, you can easily see how this 'simple'
command can be used for rapid tracking of the location within a procedure, where a problem
may have arisen. Add in variable values and some error handling and you can rapidly isolate
issues and correct them without the additional efforts of creating a Dialog Window or writing
to an error log.

Mathematical expressions
The expr command is used to evaluate mathematical expressions. This command can
address everything from simple addition and subtraction to advanced computations, such
as sine and cosine. This eliminates the need to make system calls to perform advanced
mathematical functions. The expr command evaluates the input and arguments, and returns
an integer or floating-point value.

A Tcl expression consists of a combination of operators, operands, and parenthetical
containers (parenthesis, braces, or brackets). There are no strict typing requirements, so any
white space is stripped by the command automatically. Tcl supports non-numeric and string
comparisons as well as Tcl-specific operators.

Tcl expr operands
Tcl operands are treated as integers, where feasible. They may be specified as decimal, binary
(first two characters must be 0b), hexadecimal (first two characters must be 0x), or octal (first
two characters must be 0o). Care should be taken when passing integers with a leading 0,
for example 08, as the interpreter would evaluate 08 as an illegal octal value. If no integer
formats are included, the command will evaluate the operand as a floating-point numeric
value. For scientific notations, the character e (or E) is inserted as appropriate. If no numeric
interpretation is feasible, the value will be evaluated as a string. In this case, the value must
be enclosed within double quotes or braces. Please note that not all operands are accepted
by all operators. To avoid inadvertent variable substitution, it is always best to enclose the
operands within braces. For example, take a look at the following:

ff expr 1+1*3 will return a value of 4.

ff expr (1+1)*3 will return a value of 6.

Chapter 1

9

Operands may be presented in any of the following:

Operand Explanation
Numeric Integer and floating-point values may be passed directly to the command.
Boolean All standard Boolean values (true, false, yes, no, 0, or 1) are supported.
Tcl variable All referenced variables (in Tcl, a variable is referenced using the $ notation, for

example, myVariable is a named variable, whereas $myVariable is the
referenced variable).

Strings
(in double
quotes)

Strings contained within double quotes may be passed with no need to
include backslash, variable, or command substitution, as these are handled
automatically (see the chapter on String Expressions and Handling for
clarification on these terms and their usage).

Strings
(in braces)

Strings contained within braces will be used with no substitution.

Tcl
commands

Tcl commands must be enclosed within square braces.
The command will be executed and the mathematical function is performed on
the return value.

Named
functions

Functions, such as sine, cosine, and so on.

Tcl supports a subset of the C programming language math operators and treats them in
the same manner and precedence. If a named function (such as sine) is encountered, expr
automatically makes a call to the mathfunc namespace to minimize the syntax required to
obtain the value.

Tcl expr operators may be specified as noted in the following table, in the descending order
of precedence:

Operator Explanation
- + ~ ! Unary minus, unary plus, bitwise NOT and logical NOT.

Cannot be applied to string operands.
Bit-wise NOT may be applied to only integers.

** Exponentiation
Numeric operands only.

*/ % Multiply, divide, and remainder.
Numeric operands only.

+ - Add and subtract.
Numeric operands only.

The Tcl Shell

10

Operator Explanation
<< >> Left shift and right shift.

Integer operands only.
A right shift always propagates the sign bit.

< > <= >= Boolean Less, Boolean Greater, Boolean Less Than or Equal To, Boolean
Greater Than or Equal To (A value of 1 is returned if the condition is true,
otherwise a 0 is returned).

If utilized for strings, string comparison will be applied.
== != Boolean Equal and Boolean Not Equal (A value of 1 is returned if the

condition is true, otherwise a 0 is returned).
eq ne Boolean String Equal and Boolean String Not Equal (A value of 1 is

returned if the condition is true, otherwise a 0 is returned).
Any operand provided will be interpreted as a string.

in ni List Containment and Negated List Containment (A value of 1 is returned
if the condition is true, otherwise a 0 is returned).
The first operand is treated as a string value, the second as a list.

& Bitwise AND
Integers only.

^ Bitwise Exclusive OR
Integers only.

| Bitwise OR
Integers only.

&& Logical AND (a value of 1 is returned if both operands are 0, otherwise a
1 is returned).
Boolean and numeric (integer and floating-point) operands only.

x?y:z If-then-else (if x evaluates to non-zero, then the return is the value
of y, otherwise the value of z is returned).
The x operand must have a Boolean or a numeric value.

Chapter 1

11

Mathematical functions
Mathematical functions (such as sine and cosine) are replaced with a call to the Tcl
mathfunc namespace. This does not require any additional syntax to access the namespace
as it is called automatically. These are invoked by passing the Function followed by the value
or values to evaluate to the expr command. Those functions that accept multiple arguments
require that the arguments be comma delimited. The default Mathematical functions are
listed below in alphabetical order. These functions require a specific syntax (for example expr
{function(value,value)}) to be accessed, as described in the Computing mathematical
expressions section that follows:

Function Result
abs arg Returns the absolute value of arg.

Numeric operators may be integer or floating-point. Value is returned in
the same format.

acos arg Returns the arc cosine of arg.
asin arg Returns the arc sine of arg.
atan arg Returns the Arc Tangent of x/y.
bool arg Returns the Boolean value of arg where non-numeric values are true,

otherwise the value is false.
ceil arg Returns the smallest floating-point integer value not less than arg.

Any numeric value is acceptable.
cos arg Returns the cosine of arg, measured in radians.

If the result produces an over-flow, an error is returned.

double arg Converts arg to its floating-point value.
May return INF or –INF when the numeric value is such that it exceeds
the floating-point value.

entier arg Converts arg to its integer value.
exp arg Returns the exponential of arg.

If the result produces an over-flow, an error is returned.
floor arg Returns the largest floating-point integer not greater than arg.

The argument may be any numeric value.
fmod x y Returns the remainder of x/y as a floating-point integer.

If y is a zero (0), then an error is returned.
hypot x y Returns the length of the hypotenuse of a right angled triangle.
int arg Returns the low order bits of arg up to the machine word size.
isqrt arg Returns the integer portion of the square root of arg.

Arg must be a positive value (integer or floating-point).

The Tcl Shell

12

Function Result
log arg Returns the natural logarithm of arg.

arg must be a positive value.
log10 arg Returns the base 10 logarithm of arg.

arg must be a positive value.
max arg This function accepts one or more numeric values and returns the

greatest.
min arg This function accepts one or more numeric and returns the least one.
pow x y Returns the value of x raised to the power y.

If x is zero (0), y must be an integer value.
rand Returns a pseudo-random floating-point integer in the range of 0, 1.
round arg Returns the rounded value of arg if arg is an integer value.

If arg is not an integer, it is converted to an integer by rounding and the
converted value is returned.

sin arg Returns the sine of arg as radians.
sinh arg Returns the hyperbolic sin of arg.

If the result produces an over-flow, an error is returned.
sqrt arg Returns the square root of arg.

Accepts any non-negative numeric value.
May return INF when the value is a numeric value that exceeds the
square of the maximum value for the floating-point range.

srand arg Resets the seed for the random number generator and returns a random
number as described in rand.

tan arg Returns the tangent of arg as radians.
tanh arg Returns the hyperbolic tangent of arg.
wide arg Returns the low order 64 bits of arg.

Accepts any numeric value.

Computing mathematical expressions
In the following examples, we will see the correct syntax for both simple and complex
mathematical formulas. To accomplish these computations, we will be using the Tcl expr
command. The expr command, as its name implies, is used to evaluate mathematical
expressions. This command can address everything from simple addition and subtraction to
advanced computations such as sine and cosine. This removes the need to make system calls
to perform advanced mathematical functions. The expr command evaluates the input and
arguments and returns an integer, floating-point, or string value as appropriate.

Chapter 1

13

A Tcl expression consists of a combination of operators, operands, and parenthetical
containers (parenthesis, braces, or brackets). There are no strict typing requirements so any
white space is stripped by the command automatically. Tcl supports non-numeric and string
comparisons as well as Tcl specific operators.

As you will see, some computations may be performed without parenthetical notations;
however, it is best to get into the habit of always using them. For example, expr 1+1 and
expr (1+1) will both return a value of 2. While the omission of the parenthetical notation
is completely acceptable in this usage of the expr command, I recommend developing the
habit of always using them.

My personal favorite is the if-then-else expression. It provides a rapid method for
comparison in a "single line" format. For example, if x and y are equal to 10, while z = 4 would
be entered as expr ($x?$y:$z). This expression evaluates $x as a Boolean expression. If
it's true the expression will return $y; if it's false, it returns $z.

Parenthetical notation is required for any operation that will access a specific mathematical
function. For example: expr {pow (8, 4)} will access the mathematical power function
and return a value of 4096.

Variable substitution is handled using the Tcl $ notation. The following example uses an
x variable with a value of 4 and is entered as expr {pow (8, $x)}. This expression
returns a value of 4096 as observed in the previous example. In the second case, $x has
been processed with its variable value of 4.

Referencing files in Tcl
Tcl commands that accept filenames as arguments require that they be in one of three
formats, depending on the platform in use. The platform in use is stored in the global
TCL_platform array variable, created at the start of the program. Please note that to
address issues of portability, you must manually manipulate the formats to ensure that
they are annotated correctly.

These formats are absolute, relative, and volume-related.

File Formats Explanation
Absolute Absolute names are fully qualified and give a path to the file relative to a

particular volume.
Relative Relative filenames are unqualified and give the path to the desired file

relative to the current working directory.
Volume-related Volume-related filenames are partially qualified and either accepts the

path relative to the current working directory on the current volume, or
relative to the directory of a specified directory.

The Tcl Shell

14

The following conventions are platform-specific annotations for both the directory structure
and the specific filenames.

UNIX (UNIX, Linux and Mac OS X)
On the UNIX style platforms, Tcl uses path names, wherein the various components are
separated by the slash (/) character. Multiple adjacent slashes are handled as a single
occurrence. Trailing slashes are ignored completely. For example, passwd and passwd/ both
refer to the file passwd in the current directory

Convention Meaning
. Special character that refers to the current directory
..	 Special character that refers to the parent directory
/ Root directory
/etc/passwd Absolute path to the file passwd in the directory etc
passwd Relative path to the file passwd in the current directory
etc/passwd Relative path to the file passwd in the directory etc from the current

working directory
../passwd Relative path to the file passwd in the parent directory

Windows
Tcl supports both drive-related and Universal Naming Convention (UNC) file naming
conventions. Both the slash (/) and backslash (\) characters may be used as separators;
however, care must be exercised when utilizing the backslash characters, as they can result
in undesirable effects if the filename is not enclosed within quotes. Drive-related filenames
consist of the optional drive letter followed by the absolute or relative path. UNC filenames
follow the form of \\servername\sharename\path\file. The UNC filename must
contain the server and share components, at least.

Convention Meaning
. Special character that refers to the current directory
.. Special character that refers to the parent directory
\\MyServer\
MyShare\passwd

Absolute UNC path to the file passwd on server MyServer in the share
MyShare

C:passwd Volume related path to the file passwd in the current directory
C:\passwd Absolute path to the file passwd in the root directory of the C drive

Chapter 1

15

Convention Meaning
\passwd Volume-related path to the file passwd in the root directory of the

current volume.
etc\passwd Volume-related path to the file passwd in the directory etc on the

current volume.

In addition to the filename conventions listed in the preceding table, Tcl supports the Berkeley
UNIX C Shell (csh) tilde (~) substitution. In the case of a filename with a preceding tilde, it
will be interpreted by replacing the tilde with the current user's home directory. This is not
platform-dependant.

Variables
As with all the programming languages, it is the variable that allows for true flexibility and
usability. Tcl differs from some scripted languages, as, there is no need to implicitly declare
the variable type. For example a variable of "3" will be stored within Tcl with the same internal
representation, as if it have been defined as the integer 3. If the variable is then used in
a calculation, Tcl will then convert it to an integer for computation. This is referred to as
shimmering in Tcl.

Basic variable commands

Variable command Explanation
global var This command is used to declare a global variable. It is only required

within the body of a procedure.

incr var value This command will increment the value stored in var by the value
provided. Value must contain an integer. If no value is passed, the
command defaults to increase the value by one (1).

set var value This command sets var to the value provided. Conversely, the value
may contain a Tcl command, the results of which will be utilized
as the final value. The Command must be enclosed within square
braces.

unset var var var The unset command deletes one or more variables. If the –
nocomplain flag is passed as the first argument, all the errors are
suppressed. Variable names are NOT comma delimited.

In the following examples, we will create a variable with an integer value of 3, increment that
value, and then delete the variable.

The Tcl Shell

16

Getting Ready
To complete the following examples, launch your Tcl Shell as appropriate, based on your
operating platform.

How to do it…
For setting a variable, enter the following command:

% set x 3

3

How it works…
The set command returns 3 to confirm that the value was set correctly.

There's more…
Enter the following command:

% incr x 3

6

The incr command has increased the value of x by 3 and returned 6.

Unsetting a variable
Enter the following command:

% unset x

%

The unset command deletes the variable x and simply returns to the command prompt.

If the named variable does not exist, an error will be generated, as shown in the following
example:

% unset y

can't unset "y": no such variable

To avoid error reporting for variables, include the –nocomplain switch, as illustrated here:

% unset –nocomplain y

%

Chapter 1

17

In this instance, the unset command has ignored the error and simply returned to the
command line. This is invaluable when passing a list of variables to unset to ensure
non-existing variables do not generate an error. Additionally, you should insert -- (double
minus, no spaces) after all the options, in order to remove a variable that has the same
name as the many options.

Command line arguments
With any scripting language, the ability to provide arguments allows you to write a script that
accepts arguments to perform a specific function.

As previously discussed, Tcl has several global variables to allow for the passing of command
line arguments. The number of command line arguments to a Tcl script is passed as the
global variable argc. The name of a Tcl script is passed to the script as the global variable
argv0, and the arguments are passed as a list in the argv global variable.

Launching a Tcl script
In the following example we will invoke a Tcl script contained within a text file. This script will
accept any number of arguments and print out the script name, the count of the arguments
and the values contained within the argv variable.

Getting Ready
To complete the following example we will need to create a Tcl script file in your working
directory. Open your text editor of choice and follow the instructions below.

How to do it…
Create a text file named args.tcl that contains the following commands.

If no command line arguments are passed perform no actions
if {$argc > 0} {
Print out the filename of the script
puts "The name of the script is: $argv0"
Print out the count of the arguments passed
puts "Total count of arguments passed is: $argc"
Print out a list of the arguments
puts "The arguments passed are: $argv"
Using the List Index of argv print a specific argument
puts "The first argument passed was [lindex $argv 0]"
}

The Tcl Shell

18

After you have created the file invoke the script with the following command line:

% Tclsh85 args.Tcl ONE 2 3

The name of the script is: args.Tcl

Total count of arguments passed is: 3

The arguments passed are: ONE 2 3

The first argument passed was ONE

%

How it works…
As you can see, the script accepts any number of arguments and using the Tcl global variables
allows access to the arguments passed as either a list or individual values. Keep in mind that
when passing control characters, they must be escaped using the backslash character.

There's more…
Invoke the script with the following command line:

% Tclsh85 args.Tcl \home \etc

The name of the script is: args.Tcl

Total count of arguments passed is: 2

The arguments passed are: home etc

The first argument passed was home

%

In the above example you can see that the backslash characters are removed. This is NOT
done by Tcl, but rather by the shell from which Tcl was invoked.

Now invoke the script with the escape character added:

% Tclsh85 args.Tcl \\home \\etc

The name of the script is: args.Tcl

Total count of arguments passed is: 2

The arguments passed are: {\home} {\etc}

The first argument passed was \home

%

Chapter 1

19

By adding the escape character the backslash characters are retained and curly braces
have been appended to define the values as strings. For UNC file paths that contain double
backslash characters you would need to enter one escape character for each backslash for
a total of four. You may also 'protect' the data by enclosing it within quotes, however this is a
feature of the shell used to invoke Tcl and not the Tcl shell.

2
Using the Building

Blocks Control
Constructs

In this chapter, we will cover:

ff Looping with if

ff Looping with for

ff Looping with foreach

ff Looping with while

ff Continuing a procedure

ff Breaking out of a procedure

ff Nested looping

Introduction
Control constructs are the building blocks of an action. In this chapter, we will explore the
creation of procedures, as well as managing the flow of events.

Prior to the creation of constructs the programmer's primary tool was the goto statement.
While this allowed recursive handling of conditions and minimized impact on memory usage,
it resulted in non-modular code and added substantially to the overhead of debugging and
maintenance.

Using the Building Blocks Control Constructs

22

In Tcl, as in all programming languages, a control construct is a command that instructs
the program to perform a certain action (or actions) based on a predefined condition. How
many times the action (or actions) is/are performed is based on the specific construct used.
For example, an if statement will perform the pre-defined actions once, whereas a while
statement will perform the actions until the condition is no longer met.

Tcl has a full contingent of control constructs. The basic usages or descriptions of these
commands are as follows:

ff if

The syntax for if command is as follows:
if [condition 1] then [body1] elseif [condition 2] else [body2]

Multiple elseif and then statements may be added as required.
ff for

The syntax for the for command is as follows:
for [start] [test] (next) [body]

ff foreach

The syntax for the foreach command is as follows:
foreach [varlist] [valuelist] [action]

ff while

The syntax for while command is as follows:
while [condition] [action]

ff continue

Typically, the continue command is invoked from within the body of a control
construct such as a for, foreach, or while. The continue command stops
processing the current action and proceeds to the next iteration of the containing
construct.

ff break

Typically, the break command is invoked from within the body of a control construct
such as a for, foreach, or while. The break command terminates processing of
the script out to the innermost containing loop of the construct.

In the following examples, I will discuss the various control constructs in detail. To illustrate
the differences better, all of the examples—with the exception of the if command—will result
in similar, and in many cases, an identical output. This was done to demonstrate how the
constructs interact with the values provided. To complete each of the following examples, you
will need to create a Tcl script file in your working directory. To accomplish this, you will open
the text editor of your choice and follow the instructions in each section.

Chapter 2

23

Controlling flow with the if statement
The if command evaluates a condition and if the condition evaluates to true, the actions
are performed. The condition must be Boolean. With the addition of the else and elseif
keywords, multiple conditions may be evaluated and numerous actions can be performed.

How to do it…
In the following recipe, we will create a Tcl script to be called from the command line that
evaluates the argument passed, and based on the argument provided, perform an action.

Create a text file named if.tcl that contains the following commands:

Set the variable x to the argument
set x [lindex $argv 0]
Test for condition 1
if {$x == 1} {
puts "Condition 1 - You entered: $x"
Test for condition 1
} elseif {$x == 2} {
 puts "Condition 2 - You entered: $x"
If neither condition is met perform the default action
} else {
 puts "$x is not a valid argument"
}

Now invoke the script using the following command line:

tclsh85 if.tcl 1

Condition 1 - You entered: 1

How it works…
The if command has evaluated the argument passed; based on the argument value passed,
it has evaluated the argument. As condition 1 was met, the first action was performed.

There's more…
Now invoke using the following command line:

tclsh85 if.tcl 2

You entered: 2

Using the Building Blocks Control Constructs

24

As condition 2 was met, the second action was performed.

Now invoke using the following command line:

tclsh85 if.tcl x

x is not a valid argument

The if construct also provides the then keyword. When using multiple conditions, the then
keyword can optionally be used for clarity, as you can see in the following example:

if {
 $x in {1 2 3}
} then {
 puts "$x"

}

Try rewriting the if.tcl script using multiple conditional statements.

Looping with for
The for command performs the actions desired as long as the condition is met. In this
manner the condition is repeatedly evaluated and the actions are performed as long as
the condition remains true. The syntax of the for statement consists of three arguments
(start, test, and next) and a body:

for start test next body

The start, next, and the body arguments must be in the form of Tcl command strings with
test as an expression string. The for command invokes the interpreter to execute start.
Then, it repeatedly evaluates test as an expression. While the result is non-zero, it invokes
the Tcl interpreter on body. Then, it invokes the interpreter on next and repeats the loop. The
command terminates when test is evaluated to 0.

Please note that the condition should always be enclosed within braces to avoid command
substitution prior to processing, which may result in the dreaded infinite loop.

How to do it…
In the following recipe, we will create a Tcl script to be called from the command line that
increments the value of x and prints out the value.

Create a text file named for.tcl that contains the following commands.

While x is less than 11 print out the value of x
for {set x 1} {$x < 11} {incr x} {
 puts "x = $x"
}

Chapter 2

25

Now invoke the script using the following command line:

tclsh85 for.tcl

x = 1	

x = 2

x = 3

x = 4

x = 5

x = 6

x = 7

x = 8

x = 9

x = 10

How it works…
As you can see, the action was invoked multiple times while the condition remained true. As
we wanted to start at 1 and print out up to 10, the condition was set to be true while x was
less than 11. This could have been done by setting the condition to <=10 (less than or equal
to 10) as well.

Looping with foreach
The foreach command implements a loop with the variable or variables assigned values
from one or more lists and then performs an action. The list or lists may be pre-existing or
created as part of the command. This command allows us to perform actions on a list or list
of values with minimal effort.

How to do it…
In the following recipe, we will create a Tcl script, to be called from the command line, that
recreates the previous recipe by providing hard coded values.

Create a text file named foreach.tcl that contains the following commands.

First we create a list containing the values to print
set numbers {1 2 3 4 5 6 7 8 9 10}
foreach x $numbers {
puts "x = $x"
}

Using the Building Blocks Control Constructs

26

Now invoke the script using the following command line:

% tclsh85 foreach.tcl

x = 1	

x = 2

x = 3

x = 4

x = 5

x = 6

x = 7

x = 8

x = 9

x = 10

How it works…
The action was invoked a total of 10 times as in the previous example. However, as we
provided a list to be used, there was no computation required. This is exceptionally
valuable for the manipulation of list data, previously created as a part of a larger program.

Looping with while
The while command implements a loop and applies the action as long as the condition
remains true, as seen in the for command example. However, as the while command
provides looping functionality, the action is repeated numerous times, as in the foreach
command.

How to do it…
In the following recipe, we will create a Tcl script, to be called from the command line, that
increments the value of x and prints out the value as in the for command recipe.

Create a text file named while.tcl that contains the following commands:

set x 1
while {$x < 11} {
 puts "x = $x"
 incr x
}

Chapter 2

27

Now invoke the script using the following command line:

tclsh85 while.tcl

x = 1	

x = 2

x = 3

x = 4

x = 5

x = 6

x = 7

x = 8

x = 9

x = 10

How it works…
The action was invoked a total of 10 times as in the previous example.

Continuing a procedure
While the continue keyword is not a control construct in itself, it allows you to affect the
control flow.

How to do it…
In the following recipe, we will create a Tcl script, to be called from the command line, that
increments the value of x and prints out the value as in the for command recipe. However,
the output will be skipped when x is equal to 5.

Create a text file named continue.tcl that contains the following commands.

Please note that within the comparison used to invoke the continue keyword, I have
added a blank line for clarification. This is not needed for the continue statement but
does make the output more legible as well as illustrating the usage of conditional check to
perform additional actions.

for {set x 1} {$x < 11} {incr x} {
 if {$x == 5} {
 puts " "
 continue
 }
 puts "x = $x"
}

Using the Building Blocks Control Constructs

28

Now invoke the script using the following command line:

% tclsh85 continue.tcl

x = 1	

x = 2

x = 3

x = 4

x = 6

x = 7

x = 8

x = 9

x = 10

How it works…
The action was invoked 10 times, as in the previous example. However, with the addition of
the continue keyword, we were able to skip the output for the undesired value.

Breaking out of a procedure
As with the continue keyword, break is not in and of itself a control construct. The break
keyword allows you to terminate the processing of a loop, whenever a specific condition
is encountered. I routinely use this as a method of avoiding an endless loop by setting a
maximum value to be detected and to break out of the loop.

How to do it…
In the following recipe, we will create a Tcl script, to be called from the command line, that
increments the value of x and without the break keyword, would create the endless loop as
mentioned. Once the upper limit has been reached the loop will break and the output will be
an error message.

Create a text file named break.tcl that contains the following commands:

for {set x 1} {$x > 0} {incr x} {
 if {$x == 5} {
 puts "Upper limit reached"
 break
 }
 puts "x = $x"
}

Chapter 2

29

Now invoke the script using the following command line:

% tclsh85 break.tcl

x = 1	

x = 2

x = 3

x = 4

Upper limit reached

How it works…
The action was invoked a total of five times, due to the inclusion of the break command.
Without the break command, it would have continued merrily on its way, until it hit the
maximum integer value for your platform.

Nested looping
Nesting of control constructs provides a valuable method for ensuring that you are acting
on the values desired, as well as combining multiple actions, within the same portion of the
code. In this section, we will be expanding on that premise to illustrate the nesting of different
control constructs within the same script.

How to do it…
In the following recipe, we will create a Tcl script, that accepts two numeric arguments (x and
y), where y is greater than x, evaluates the existence of the arguments, and prints out the
values between x and y.

Create a text file named nest.tcl that contains the following commands:

if {$argc == 2} {
 set x [lindex $argv 0]
 set y [lindex $argv 1]
 puts "Beginning the while loop"
 for {set i $x} {$i <= $y} {incr i} {puts $i}
} else {
 puts "Invalid number of arguments"
}

Using the Building Blocks Control Constructs

30

Now invoke the script using the following command line:

% tclsh85 nest.tcl 1

Invalid number of arguments

How it works…
As you can see by the output, the \if statement evaluated as false and the inner loop was
never reached.

There's more…
Now invoke the script using the following command line:

% tclsh85 nest.tcl 5 10

5

6

7

8

9

10

In this instance, we have entered the for loop and invoked the actions until our upper limit
was reached.

3
Error Handling

In this chapter, we will cover:

ff Using the catch command

ff Using the eval command

ff Using the error command

ff Error handling procedure

Introduction
As discussed in the introduction to this book, I eventually learned the true power of the Tcl
shell and how it can be used to locate and diagnose issues within the code. By using the puts
statement I was able to track changes in variables and isolate sections of the code that were
presenting issues.

In this chapter we will investigate the commands built into the Tcl shell that allow for more
elegant error handling and isolation of sections of code to ensure that they perform correctly
before proceeding with a procedure.

Error handling within Tcl allows the developer the freedom to determine how to react to an
error. In the following sections we will explore Tcl error handling by implementing these control
constructs to illustrate how you can use error handling to proceed with the command without
raising an error or returning a Tcl error code. Based on which error handling command you
decide to use, you can react accordingly and present the end user with the desired result.

Error Handling

32

The error handling constructs are as follows:

Control construct Explanation
catch catch script result optionalVarName.

The catch command will evaluate a script and trap all exceptional returns.

It the optionalVarName is provided it is set to the result of the
evaluation.

eval eval argument.

The eval command accepts one or more arguments that comprise a Tcl
script containing one or more commands.

Returns the result of the evaluation.
error error message information code.

The error command generates an error and is used to create the
messages to be logged or returned to the end user.

By using error handling control constructs, we can not only determine in advance if an error
might occur, but also present the end user with information or instructions on how to proceed.

Using the catch command
The catch construct is used to prevent errors from aborting a script. The catch construct
is a method of isolating errors and allowing you to determine how to proceed. This allows you
to present the end user with a customized notification, as opposed to a system-defined error
message, which may have no meaning to the user.

In the event an error condition exists, the catch command returns a non-zero integer value
corresponding to the Tcl return code. Tcl provides four exceptional return codes. A return value
of 1 (TCL_ERROR) indicates that an error has occurred and the value is stored in the result. A
return of 2 (TCL_RETURN) is generated by the return command. A return of 3 (TCL_BREAK)
is generated by the break command. A return of 4 (TCL_CONTINUE) is returned by the
continue command.

If the optionalVarName is provided, it will be set to a dictionary containing the return
values. This dictionary (see Chapter 6 for further information on the Tcl Dictionary data type)
will always contain two entries at least: -code (this will be the same as the return code) and
-level. For more information on level, see the return section in the command list.

When an error exists three additional entries are defined within the dictionary. These are
-errorinfo, -errorcode, and -errorline. The -errorinfo will contain a stack trace
containing the information of the error. The –errorcode is additional information on the
error stored in a list. The –errorline entry is an integer representing the line of the script
where the error occurred.

Chapter 3

33

Getting ready
To complete the following example, we will need to create a Tcl script file in your working
directory. Open the text editor of your choice and follow the instructions given next.

How to do it…
In the following example, we will prompt the user for a numeric value to be doubled. If an
incorrect value is provided, the script will generate an error. Using the editor of your choice,
create a text file named catch.tcl that contains the following commands:

Prompt the user for a number
puts -nonewline "Enter a number: "
Clear standard out
flush stdout
Assign the argument to a variable (value)
gets stdin value
Return a doubled value or error message
if {[catch {set doubled [expr $value * 2]} errmsg]} {
puts "Script Failed - $errmsg"
} else {
puts "$value doubled is: $doubled"
}
puts "Regardless of error the script continues…"

After you have created the file, invoke the script with the following command line:

% tclsh85 catch.tcl

Enter a number: 2

2 doubled is: 4

Regardless of error the script continues

How it works…
As you can see the script accepted the numeric value of 2 and processed it successfully.
On completion of the computation the script continued.

Now invoke the script with the following command line:

% tclsh85 catch.tcl

Enter a number: bad_data

Script Failed - invalid bareword "bad_data"

in expression "bad_data * 2";

Error Handling

34

should be "$bad_data" or "{bad_data}" or "bad_data(...)" or ...

Regardless of error the script continues.

%

In this instance, the script was unable to double the value of bad_data. Please note that the
error message not only indicates an error, but also suggests the acceptable values to correct
the problem.

Using the eval command
The eval command accepts one or more arguments that, when combined, create a Tcl script.
When invoked, it passes the stored script to the command interpreter and behaves as a
normal command, returning the values or errors that may have resulted.

Although the eval command is not an error handling construct in itself, it provides an
elegant methodology for utilizing Tcl commands as variables themselves. This allows greater
freedom for passing commands to procedures and constructs, for example the error handling
constructs referenced here.

Getting ready
To complete the following example, we will need to access Tcl from the command line. Launch
the Tcl shell appropriately for your operating system and follow the given instructions.

How to do it…
In addition to allowing the return of the error within the return value, any script can be stored
and evaluated using the eval command. In the following example, we will use the eval
command combined with the exec command to call a system program. In this example,
we will use Notepad, the Windows program. For other operating systems, please enter any
program that exists within your path. Enter the following into your Tcl command line:

% set command {puts "Hello world"}

puts "Hello World"

% eval $command

% Hello World

How it works…
The eval command has passed the command defined to the interpreter and executed
the puts.

Chapter 3

35

There's more…
At this point, you should see Notepad (or the program you selected running). Now add a
filename after the eval statement to pass this argument to the command.

% set command {exec notepad}

exec notepad

% eval $command catch.tcl

By employing the eval command, you can isolate scripts into a variable and evaluate the
script in its entirety. Encasing the eval command into a catch statement to determine
the success is a very effective means of trapping errors at the time they occur and avoiding
program failure or, inadvertently, accepting incorrect or undesirable values in your scripts.

Using the error command
The primary usage of the error command is to programmatically raise an error. This allows
you to interrupt the interpreter at the desired point and to present the user with an error
message of your choice.

Getting ready
To complete the following example, we will need to create a Tcl script file in your working
directory. Open the text editor of your choice and follow the given instructions.

How to do it…
In the following example, to illustrate, we will generate an error and a supporting error
message in a location where it should not occur. Using the editor of your choice, create a text
file named error.tcl that contains the following commands:

if {1+1==2} {
error "My Error"
}

After you have created the file, invoke the script with the following command line:

% tclsh85 error.tcl

My Error

 while executing

"error "My Error""

 invoked from within

"if {1+1==2} {

Error Handling

36

 error "My Error"

}"

 (file "error.tcl" line 1)

child process exited abnormally

%

How it works…
As you can see, in the command line output, we generated an error message (My Error) as
well as the Tcl error messaging; although there was no error in the math function. While this
is an unrealistic implementation, it illustrates the ability to raise an error at the desired point,
with the message of your choice.

Error handling procedure
In this section, we will build an error handling procedure to expand on the catch construct
example presented earlier. This recipe will accept a filename and a program name. If the
file exists and can be opened for reading it will attempt to open the file within the program
passed. If the file can be opened but the program fails for any other reason we will display an
error message of our own creation.

Getting ready
To complete the following example we will need to create a Tcl script file in your working
directory. Open the text editor of your choice and follow the given instructions.

How to do it…
Using the editor of your choice, create a text file named error_handling.tcl that contains
the following commands:

#Check that two arguments were passed
if { $argc == 2 } {
 #Define variables for the filename, program
 set fname [lindex $argv 0]
 set progname [lindex $argv 1]
 #Check that the file exists for reading
 set retval [file readable $fname]
 #If the file exists for reading we will open it with the desired
program
 if {$retval !=1} {
 puts "The file $fname is not available"

Chapter 3

37

 } else {
 # Attempt to open the file
 set status 0
 if {[catch {exec $progname $fname &} results options]} {
 # Obtain the dictionary values for the error
 set details [dict get $options -errorcode]
 set status [lindex $details 2]
 # Display the error message
 puts "$progname: $status"
 }
 }
} else {
 puts "This program requires two arguments - Filename and
ProgramName"
}

Now call the script with the following command line replacing notepad if that is not a valid
program for your operating system:

% tclsh85 error_handling.tcl catch.tcl notepad

%

How it works…
Our error handling procedure has evaluated the passed argument. It was provided a valid
argument and located a readable file. Based on this, it has proceeded to call the executable
file and load the desired file.

Call the script a second time with the following command line:

% tclsh85 error_handling.tcl nofile notepad

The file nofile is not available

%

As you can see, notepad (or the text editor of your choice) was not launched, as a readable file
did not exist.

Now call the script with the following command line:

% tclsh85 error_handling.tcl catch.tcl noprogram

noprogram: no such file or directory

The catch construct allowed us to trap the error and present the enduser with an error
message of our choice.

4
Handling String

Expressions

In this chapter, we will cover:

ff Appending to a string

ff Formatting a string

ff Matching a regular expression within a string

ff Performing character substitution on a string

ff Parsing a string using conversion specifiers

ff Determining the length of a string

ff Comparing strings

ff Comparing a string of characters

ff Locating the first instance of a character

ff Locating the index of a character

ff Determining the class of a string

ff Locating the last instance of a string

ff Determining the size of a string

ff Replacing values within a string

ff Locating a pattern within a string

ff Returning a range of characters from a string

ff Creating a string of repeated characters

ff Replacing ranges of characters contained within a string

ff Creating a reverse string

Handling String Expressions

40

ff Converting a string to lowercase

ff Converting a string to title

ff Converting a string to uppercase

ff Trimming a string

ff Trimming leading whitespace

ff Trimming trailing whitespace

ff Locating the word end

ff Locating the word start

ff Performing variable substitution

Introduction
When I first started using Tcl, everything I read or researched stressed the mantra "Everything is
a string". Coming from a hard-typed coding environment, I was used to declaring variable types
and in Tcl this was not needed. A set command could—and still does—create the variable and
assigns the type on the fly. For example, set variable "7" and set variable 7 will both
create a variable containing 7. However, with Tcl, you can still print the variable containing a
numeric 7 and add 1 to the variable containing a string representation of 7.

It still holds true today that everything in Tcl is a string. When we explore the Tk Toolkit and
widget creation, you will rapidly see that widgets themselves have a set of string values that
determine their appearance and/or behavior.

As a pre-requisite for the recipes in this chapter, launch the Tcl shell as appropriate for your
operating system. You can access Tcl from the command line to execute the commands.

As with everything else we have seen, Tcl provides a full suite of commands to assist in
handling string expressions. However due to the sheer number of commands and subsets,
I won't be listing every item individually in the following section. Instead we will be creating
numerous recipes and examples to explore in the following sections. Please refer to the
Tcl/Tk Commands listing at the end of this book. A general list of the commands is as follows:

Command Description
string The string command contains multiple keywords (see the section covering

the command) allowing for manipulation and data gathering functions.
append Appends to a string variable.
format Format a string in the same manner as C sprint.
regexp Regular expression matching.
regsub Performs substitution, based on Regular expression matching.

Chapter 4

41

Command Description
scan Parses a string using conversion specifiers in the same manner as C

sscanf.
subst Perform backslash, command, and variable substitution on a string.

Using the commands listed in the table, a developer can address all their needs as applies to
strings. In the following sections, we will explore these commands as well as many subsets of
the string command.

Appending to a string
Creating a string in Tcl using the set command is the starting point for all string commands.
This will be the first command for most, if not all of the following recipes. As we have seen
previously, entering a set variable value on the command line does this. However, to fully
implement strings within a Tcl script, we need to interact with these strings from time to time,
for example, with an open channel to a file or HTTP pipe. To accomplish this, we will need to
read from the channel and append to the original string.

To accomplish appending to a string, Tcl provides the append command. The append
command is as follows:

append variable value value value…

How to do it…
In the following example, we will create a string of comma-delimited numbers using the
for control construct. Return values from the commands are provided for clarity. Enter
the following command:

% set var 0

0

% for {set x 1} {$x<=10}{$x<=10} {incr x} {

append var , $x

}

%puts $var

0,1,2,3,4,5,6,7,8,9,10

Handling String Expressions

42

How it works…
The append command accepts a named variable to contain the resulting string and a
space delimited list of strings to append. As you can see, the append command accepted our
variable argument and a string containing the comma. These values were used to append to
original variable (containing a starting value of 0). The resulting string output with the puts
command displays our newly appended variable complete with commas.

Formatting a string
Strings, as we all know, are our primary way of interacting with the end user. Whether
presented in a message box or simply directed to the Tcl shell, they need to be as fluid as
possible, in the values they present. To accomplish this, Tcl provides the format command.
This command allows us to format a string with variable substitution in the same manner as
the ANSI C sprintf procedure. The format command is as follows:

format string argument argument argument…

The format command accepts a string containing the value to be formatted as well as %
conversion specifiers. The arguments contain the values to be substituted into the final string.
Each conversion specifier may contain up to six sections—an XPG2 position specifier, a set
of flags, minimum field width, a numeric precision specifier, size modifier, and a conversion
character. The conversion specifiers are as follows:

Specifier Description
d or i For converting an integer to a signed decimal string.
u For converting an integer to an unsigned decimal string.
o For converting an integer to an unsigned octal string.
x or X For converting an integer to an unsigned hexadecimal string.

The lowercase x is used for lowercase hexadecimal notations.

The uppercase X will contain the uppercase hexadecimal notations.
c For converting an integer to the Unicode character it represents.
s No conversion is performed.
f For converting the number provided to a signed decimal string of the form xxx.yyy,

where the number of ys is determined with the precision of six decimal places
(by default).

e or E If the uppercase E is used, it is utilized in the string in place of the lowercase e.

Chapter 4

43

Specifier Description
g or G If the exponent is less than -4 or greater than or equal to the precision, then

this is used for converting the number utilized for the %e or %E; otherwise for
converting in the same manner as %f.

% The % sign performs no conversion; it merely inserts a % character into the string.

There are three differences between the Tcl format and the ANSI C sprintf procedure:

ff The %p and %n conversion switches are not supported.

ff The % conversion for %c only accepts an integer value.

ff Size modifiers are ignored for formatting of floating-point values. See the full
description of the format command in Chapter 13, the Tcl/Tk Commands section
for the details on size modifiers.

How to do it…
In the following example, we format a long date string for output on the command line.
Return values from the commands are provided for clarity. Enter the following command:

% set month May

May

% set weekday Friday

Friday

% set day 5

5

% set extension th

th

%set year 2010

2010

%puts [format "Today is %s, %s %d%s %d" $weekday $month $day $extension
$year]

Today is Friday, May 5th 2010

Handling String Expressions

44

How it works…
The format command successfully replaced the desired conversion flag delimited regions
with the variables assigned.

Matching a regular expression within
a string

Regular expressions provide us with a powerful method to locate an arbitrarily complex
pattern within a string. The regexp command is similar to a Find function in a text editor. You
search for a defined string for the character or the pattern of characters you are looking for
and it returns a Boolean value that indicates success or failure and populates a list of optional
variables with any matched strings. The -indices and -inline options must be used to
modify the behavior, as indicated by this statement. But it doesn't stop there; by providing
switches, you can control the behavior of regexp. The switches are as follows:

Switch Behavior
-about No actual matching is made. Instead regexp returns a list containing

information about the regular expression where the first element is a
subexpression count and the second is a list of property names describing
various attributes about the expression.

-expanded Allows the use of expanded regular expression, wherein whitespaces and
comments are ignored.

-indices Returns a list of two decimal strings, containing the indices in the string to
match for the first and last characters in the range.

-line Enables the newline-sensitive matching similar to passing the –linestop
and –lineanchor switches.

-linestop Changes the behavior of [^] bracket expressions and the "." character so
that they stop at newline characters.

-lineanchor Changes the behavior of ^ and $ (anchors) so that they match both the
beginning and end of a line.

-nocase Treats uppercase characters in the search string as lowercase.
-all Causes the command to match as many times as possible and returns the

count of the matches found.
-inline Causes regexp to return a list of the data that would otherwise have been

placed in match variables.
Match variables may NOT be used if –inline is specified.

-start Allows us to specify a character index from which searching should start.
-- Denotes the end of switches being passed to regexp.

Any argument following this switch will be treated as an expression, even if
they start with a "-".

Chapter 4

45

Now that we have a background in switches, let's look at the command:

regexp switches expression string submatchvar submatchvar…

The regexp command determines if the expression matches part or all of the string and
returns a 1 if the match exists or a 0 if it is not found. If the variables (submatchvar) (for
example myNumber or myData) are passed after the string, they are used as variables to
store the returned submatchvar. Keep in mind that if the –inline switch has been
passed, no return variables should be included in the command.

Getting ready
To complete the following example, we will need to create a Tcl script file in your working
directory. Open the text editor of your choice and follow the next set of instructions.

How to do it…
A common use for regexp is to accept a string containing multiple words and to split it into
its constituent parts. In the following example, we will create a string containing an IP address
and assign the values to the named variables. Enter the following command:

% regexp "(\[0-9]{1,3})\.(\[0-9]{1,3})\.(\[0-9]{1,3})\.(\[0-9]{1,3})" \

 $ip all first second third fourth

% puts "$all \n$first \n$second \n$third \n$fourth"

192.168.1.65

192

168

1

65

How it works…
As you can see, the IP Address has been split into its individual octet values. What regexp
has done is match the groupings of decimal characters [0-9] of a varying length of 1 to
3 characters {1, 3} delimited by a "." character. The original IP address is assigned to the
first variable (all) while the octet values are assigned to the remaining variables (first,
second, third, and fourth).

Handling String Expressions

46

Performing character substitution
on a string

If regexp is a Find function, then regsub is equivalent to Find and Replace. The regsub
command accepts a string and using Regular Expression pattern matching, it locates and,
if desired, replaces the pattern with the desired value. The syntax of regsub is similar to
regexp as are the switches. However, additional control over the substitution is added. The
switches are as listed next:

Switch Description
-all Causes the command to perform substitution for each match found

The & and \n sequences are handled for each substitution
-expanded Allows use of expanded regular expression wherein whitespace and

comments are ignored
-line Enables newline-sensitive matching similar to passing the –linestop and

–lineanchor switches
-linestop Changes the behavior of [^] bracket expressions so that they stop at newline

characters
-lineanchor Changes the behavior of ^ and $ (anchors) so that they match both the

beginning and end of a line
-nocase Treats uppercase characters in the search string as lowercase
-start Allows specification of a character offset in the string from which to start

matching

Now that we have a background in switches as they apply to the regsub command, let's look
at the command:

regsub switches expression string substitution variable

The regsub command matches the expression against the string provided and either
copies the string to the variable or returns the string if a variable is not provided. If a match
is located, the portion of the string that matched is replaced by substitution. Whenever a
substitution contains an & or a \0 character, it is replaced with the portion of the string that
matches the expression. If the substitution contains the switch "\n" (where n represents a
numeric value between 1 and 9), it is replaced with the portion of the string that matches
with the nth sub-expression of the expression. Additional backslashes may be used in the
substitution to prevent interpretation of the &, \0, \n, and the backslashes themselves. As
both the regsub command and the Tcl interpreter perform backslash substitution, you should
enclose the string in curly braces to prevent unintended substitution.

Chapter 4

47

How to do it…
In the following example, we will substitute every instance of the word one, which is a word by
itself, with the word three. Return values from the commands are provided for clarity. Enter
the following command:

% set original "one two one two one two"

one two one two one two

% regsub -all {one} $original three new

3

% puts $new

three two three two three two

How it works…
As you can see, the value returned from the regsub command lists the number of matches
found. The string original has been copied into the string new, with the substitutions
completed. With the addition of additional switches, you can easily parse a lengthy string
variable and perform bulk updates. I have used this to rapidly parse a large text file prior to
importing data into a database.

Parsing a string using conversion specifiers
To parse a string in Tcl using conversion specifiers we will be using the scan command. The
scan command parses the string in a similar manner as in the ANSI C sscanf procedure. As
the scan command does not accept switches such as the regexp and regsub commands,
we will proceed directly to the command. The syntax of the command is as follows:

scan string format variable variable variable…

The scan command accepts a string to parse and based on the format provided, it
will convert the string. If variables are provided, they will be updated to the output of
the conversions.

The scan command supports the following conversion characters:

Character Description
d The input string must be a decimal integer.
o The input string must be an octal integer.

Handling String Expressions

48

Character Description
u The input string must be a decimal integer (as in the case of d).

The output is assigned to the variable as an unsigned decimal string.
s The input substring consists of all the characters up to the next whitespace

character.
e, f, or g The input substring must be a floating-point number consisting of an optional

sign, a string of decimals that may or may not contain a decimal point, and an
optional exponentiation consisting of either an e or E followed by an optional
sign and a string of decimal digits.

The value is read and stored in the variable as a floating-point value.
[chars] The input string consists of one or more characters as listed within the brackets.

The matching string is stored in the variable.
Note that if the first character contained within the brackets is a closed bracket,
it is treated as a character.
If chars contains a sequential notation of the form a-f, then any characters
between a and f (a and f inclusive) will result in a match.

[^chars] The input string consists of one or more characters not listed within the
brackets.
The matching string is stored in the variable.
Note that if the first character following the ^ contained within the brackets
is a closed bracket, it is treated as a character.
If chars contains a sequential notation of the form a-f, then any characters
between a and f (a and f inclusive) will be excluded from the match.

n No input is accepted from the input string.
Return the total number of characters scanned.

The differences between scan and the ANSI C sscanf are as follows:

ff The %p conversion specifiers are unsupported

ff For %c conversions, a single character value is converted to a decimal string

ff If the end of the input string is reached prior to any conversion having occurred
and no variables were provided, an empty string is returned

Chapter 4

49

How to do it…
In the following example, we will parse a hexadecimal RGB color and assign the values
returned to individual variables. Return values from the commands are provided for clarity.
Enter the following command:

% set color #34aa44

#34aa44

% scan $color #%2x%2x%2x r g b

% puts "$r $g $b"

52 170 68

How it works…
As you can see from the example, the scan command accepted the hexadecimal color and
returned it as its decimal equivalent to the variables provided. The scan command parses the
sub strings from the string provided and returns the number of conversions performed (or a
-1, if the end of the string is encountered with no conversions performed). The string provides
the input to be parsed, while the format instructs the command on how to parse it using the
% conversion specifiers. Each variable provided will receive the output of the conversion. If
no variables are provided then scan will behave in an inline mode and return the data. If no
variable is provided and no conversions occur, an empty string will be returned.

All of the remaining chapter will deal primarily with the string command. The various
options will address most of our needs where strings occur. The string command is
passed to the interpreter as follows:

string option argument argument…

The string command performs one or more operations, based on the option keyword
or the words provided. The arguments will contain the required input and output for the
specific option used. Rather than list these en masse, I will be exploring each within the
following sections.

Determining the length of a string
To determine the length of a string, Tcl provides the length keyword. The length command
will return a decimal string containing the number of bytes used to represent the value
contained within the variable in memory. Please note that as UTF-8 uses one to three bytes
for Unicode characters; the byte length will not be the same as the character length, in most
circumstances. The syntax of length is as follows:

string length variable

Handling String Expressions

50

How to do it…
In the following example, we will determine the byte length of a string of characters. Return
values from the commands are provided for clarity. Enter the following command:

% set input "The end is nigh"

The end is nigh

% string length $input

15

How it works…
As you can see in the example, the string command has read the input and returned a
value of 15.

Comparing strings
In any of the programs, string comparison is critical for many reasons. To perform string
comparison, Tcl provides two keywords for use with the string command—compare and
equal. The syntax for the first keyword compare is as follows:

string compare –nocase –length string1 string2

When invoked with the compare keyword, the string command performs a
character-by-character comparison of the strings passed in string1 and string2.

The string command accepts two switches as mentioned here:

ff -nocase

Strings are compared in a case-insensitive manner

ff -length

Instructs the interpreter to perform the comparison only on the first length characters

Getting ready
To complete the following example, we will need to create a Tcl script file in your working
directory. Open the text editor of your choice and follow the given instructions.

Chapter 4

51

How to do it…
In the following example, we will create a Tcl script to accept a string value to compare against
a static value. In this method, you can see the specific returns by altering the second string.
Using the editor of your choice create a text file named compare.tcl that contains the
following commands:

set string1 compare
set string2 [lindex $argv 0]
set output [string compare $string1 $string2]

puts $output

After you have created the file, invoke the script with the following command line:

% tclsh85 compare.tcl compare

0

How it works…
As it can be seen, where the return value is 0, the strings are compared and match. Try
invoking this script with different arguments to see the other return values. When invoked
with the compare keyword, it will perform a character-by-character comparison of the two
strings provided. The return values are -1, 0, or 1. These indicate if the string being compared
to is lexicographically less than, equal to, or greater than the comparison string. As such, the
string command will return more information on a comparison than the simple == method.

Comparing a string of characters
The second keyword for string comparison is equal.

The syntax for the string command is as follows:

string equal –nocase –length int string1 string2

When invoked with the equal keyword the string command will perform a
character-by-character comparison of the two strings provided.

The equal keyword accepts two switches, as follows:

ff -nocase

Strings are compared in a case insensitive manner

ff -length int

Instructs the interpreter to only perform the comparison on the first length characters

Handling String Expressions

52

How to do it…
In the following example, we will determine if the values passed as string1 and string2
are equal. Return values from the commands are provided for clarity. Enter the following
command:

% string equal Monday monday

0

How it works…
As you can see, the string equal command has compared the two strings provided and
found them to not be a match. When string is invoked with the equal keyword it will
perform a character-by-character comparison of the two strings provided in a similar manner
as the compare keyword. The difference is in the return values; equal returns a 1 if the
strings are identical or a 0 if the strings do not match.

Locating the first instance of a character
In our programs, the need to find the first occurrence of a character is not uncommon. For
example, we may be parsing a large text file and need to break it up into sections, based
on an instance of a character. To perform this action, the string command accepts the
keyword first.

The syntax for the string command is as follows:

string first varString string index

When invoked with the first keyword, the string command will search for a character
or a sequence of characters in the string. If no match is found, the command returns a -1.
If an index is provided, the search is constrained to the match at (or after) that index within
the string.

How to do it…

In the following example, we will locate the first instance of the character a within a string.
Return values from the commands are provided for clarity. Enter the following command:

% string first a 123abc123abc

3

Chapter 4

53

How it works…
As you can see, string has located the first instance of the character within our string value.

Locating the index of a character
What if we need to determine which character exists at a specific location within a string and
not just the first instance? To accomplish this, string, includes the index keyword.

The syntax for the string command is as follows:

string index string index

When invoked with the index keyword, the string command returns the character that
exists at the location specified in the switch. The accepted values are valid for all the Tcl
commands that accept an index and may be passed as follows:

Value Description
Any integer value Integer value for a specific index.

Please note that the index is 0-based.
end The last character in the string.
end-n The last character in the string minus the numeric offset represented

by n.
For example, end-2 would refer to "b" in the string "abcd".

end+n The last character in the string plus the numeric offset represented
by n.

A+B The character located at the index, as determined by adding the values
of A and B, where A and B are integer values.

A-B The character located at the index as determined by subtracting the
values of A and B where A and B are integer values.

How to do it…
In the following example we will locate the character that exists at a specific location within
a string. Return values from the commands are provided for clarity. Enter the following
command:

% string index abcde 3

d

Handling String Expressions

54

How it works…
As you can see string has returned the character d, based on the index of 3. Try the various
switch values to see how they react.

Determining the class of a string
Although a string is generally considered to be an alphanumeric character, it can also
belong to a class of strings. These classes allow us to manipulate the string in a manner
consistent with its class type. For example, adding 1 to the character # will produce an
error or unexpected return value. To assist us in determining the class of the string, Tcl
provides the is keyword and a list of associated classes.

The syntax for the string command is as follows:

string is class –strict –failindex variable string

When invoked with the is keyword the command will return 1, if the class is matched.

The classes is will check for are as follows:

Class Description
alnum Any Unicode alphabetic or digit character.
alpha Any Unicode alphabetic character.
ascii Any character with a value less than \u0080 (those that are in the 7-bit

ASCII range).
boolean Any of the forms allowed by TCL_GetBoolean.
control Any Unicode control character.
digit Any Unicode digit character.

This includes characters outside of the [0-9] range.
double Any of the valid forms for a double in Tcl, with optional surrounding

whitespace.
In case of under/overflow in the value, 0 is returned and the varname will
contain -1.

false Any of the forms allowed to Tcl_GetBoolean where the value is false.
graph Any Unicode printing character, except space.
integer Any of the valid string formats for a 32-bit integer value in Tcl, with optional

surrounding whitespace.
In case of under/overflow in the value, 0 is returned and the varname will
contain -1.

Chapter 4

55

Class Description
list Any proper list structure, with optional surrounding whitespace.

In case of improper list structure, 0 is returned and the varname will contain
the index of the "element" where the list parsing fails or -1 if this cannot be
determined.

lower Any Unicode lower case alphabet character.
print Any Unicode printing character, including space.
punct Any Unicode punctuation character.
space Any Unicode space character.
true Any of the forms allowed to Tcl_GetBoolean where the value is true.
upper Any upper case alphabet character in the Unicode character set.
wideinteger Any of the valid forms for a wide integer in Tcl, with optional surrounding

whitespace.

In case of under/overflow in the value, 0 is returned and the varname will
contain -1.

wordchar Any Unicode word character.

Any alphanumeric character, and any Unicode connector punctuation
characters, for example an underscore.

xdigit Any hexadecimal digit character ([0-9A-Fa-f]).

How to do it…
As you can see care has been taken to provide a full listing of the various classes of strings to
cover all situations. In the following example we will determine if a string is a member of the
digit class. Return values from the commands are provided for clarity. Enter the following
command:

% string is digit a

0

Handling String Expressions

56

How it works…
As you can see, string has returned a 0, informing us that the character supplied is not a
member of the digit class. While this is a very simple implementation of this specific keyword,
it is an invaluable tool to ensure that the class desired has been provided prior to utilization.
Try using various classes and string values to see the various classes and how they react
when given the correct or incorrect member of a class. When invoked with the is keyword, the
string command returns 1 if the class being tested for is matched, otherwise it will return
a 0. By applying the optional –strict switch, an empty string will return 0 as opposed to
1. This is useful to determine the existence of an empty string. If the optional –failindex
switch is passed and 0 is the return value, the index where the string failed the class test will
be stored in variable. If the return value is 1, the variable will not be set.

Locating the last instance of a string
To locate the last instance of a string for an exact match, Tcl provides the keyword last.
Let's look at the syntax to illustrate how this can be used.

The syntax for the string command is as follows:

string last string1 string2 index

When invoked with the last command, the string command locates the last instance of
string1 contained within string2.

How to do it…
In the following example, we locate the last instance of a string contained within another
string. Enter the following command:

% string last abc abcabcabc

6

How it works…
As you can see, string has returned 6, indicating that the last exact match of the search
phrase is located at the index of 6. When invoked with the last keyword, the string
command searches string1 for a sequence of characters that exactly matches string2. If
the match occurs, Tcl returns the index of the first letter of the occurrence. If no match exists,
-1 is returned. By passing a numeric value in the index, Tcl will commence the search at (or
before) the index value.

Chapter 4

57

Determining the size of a string
The size of a string can be an invaluable piece of information. Imagine if you will, loading data
to a database where the field sizes are fixed at 25 characters. Trying to load a string of 50
characters into a field designed for 25 will, at best, result in a truncation of the data. Keep in
mind that the byte-length of a string may be greater if multibyte characters exist. To assist us
in this, Tcl has provided the length keyword.

The syntax of the string command is as follows:

string length string

The only values passed to the string command in this instance are the length keyword
and the string to be checked.

How to do it…
In the following example, we will determine the length of a character string that contains
whitespace, as you might encounter in the database scenario I mentioned earlier. The
return value from the command is provided for clarity. Enter the following command:

% string length "123 Any Street"

14

How it works…
As you can see, the command has returned a value of 14 to reflect not only the alphanumeric
characters, but also the enclosed whitespace.

Replacing values within a string
Tcl has added a very useful keyword to the string command to simplify alteration of the string.
The map keyword allows us to replace values within a string as passed without having to
programmatically locate the target characters.

The syntax of the string command is as follows:

string map –nocase mapping string

The string command will read the mapping provided and replace the affected values
within the string. Mapping is passed as a valid Tcl list in a key-value pair format similar to
that returned by performing a get on an array. Bear in mind that the string is only mapped
once. If the optional –nocase switch is provided, a case insensitive match will be made.

Handling String Expressions

58

How to do it…
In the following example, we will replace every instance of a character set inside a string.
Return values from the commands are provided for clarity. Enter the following command:

% string map {abc def} abcabcabc

defdefdef

How it works…
Tcl has mapped each occurrence of the string "abc" and replaced it with the string "def".

Locating a pattern within a string
Many times, you may have the need to determine if a specific pattern exists within a string.
To accomplish this, Tcl provides the match keyword. Let's look at the syntax and then I will
explain the major differences and the real strength of this keyword.

The string syntax is as follows:

string match –nocase pattern string

When invoked with the match keyword, the string command will attempt to locate the
pattern specified.

The following details the various methods in which the pattern can be passed and illustrates
the special characters the pattern can store.

Special Characters Description
* Matches any sequence within the string, including null strings.
? Matches any single character in the string.
[characters] Matches any character in the set provided.

If chars contains a sequential notation of the form a-f, then any
characters between a and f (a and f inclusive) will result in a match.

\x Matches the character specified in x.
This avoids interpretation of the *, [], or \ in the pattern as special
characters.

Chapter 4

59

How to do it…
What these special characters allow us to accomplish is to locate a pattern within a string
using wildcards and ranges. In the following example, we will determine if a specific pattern
exists within a string. Return values from the commands are provided for clarity. Enter the
following command:

% string match a??12? abc123

1

How it works…
Tcl has returned a value of 1 to indicate that the pattern was located. Try running this again
with a single * instead of the double ? characters. The string command scans the string
provided and attempts to locate the pattern. If the pattern is located, 1 is returned; if not, the
return value is 0.

Returning a range of characters
from a string

It is not uncommon to cut a string into its constituent parts. This allows the data to be
stored in-line, without comma or space separation, thereby, minimizing the impact on the
disk storage. To assist us in this, and other instances where we need to extract a range of
characters from a string, Tcl has provided the range keyword.

The syntax of the string command is as follows:

string range string first last

When invoked with the range keyword, the string command will return all characters
inclusive between those specified in the first and last location.

How to do it…
In the following example we will locate a range of characters contained within a string. Return
values from the commands are provided for clarity. Enter the following command:

% string range abcdefg 2 4

cde

Handling String Expressions

60

How it works…
As you can see, Tcl has returned the characters "cde", based on the index values passed. The
string command returns a range of consecutive characters from the string, starting with the
index value stored in first and ending with the value stored in last. An index of 0 refers to
the first character. If first is a negative number or last is greater than the string length,
then Tcl will adjust them to meet the actual start and end of the string.

Creating a string of repeated characters
Why would you need to create a string of identical characters? For example, to create a
tabbed layout and you can't set/use tabs. To accomplish this and more Tcl has provided
the repeat keyword to do this programmatically and saved us hours of work in the process.

The syntax of the string command is as follows:

string repeat strRepeat count

The string command will create a string containing strRepeat repeated count times.

How to do it…
In the following example we will create a string containing five identical characters.
Return values from the commands are provided for clarity. Enter the following command:

% string repeat x 5

xxxxx

How it works…
As you can see, Tcl has created our string of five x characters.

Replacing ranges of characters
contained within a string

Should it become necessary to replace the values stored in a string, regardless of contents,
Tcl has provided the replace keyword.

The syntax of the string command is as follows:

string replace string first last replacement

Chapter 4

61

How to do it…
In the following example, we will replace the characters stored in a string with new values.
Return values from the commands are provided for clarity. Enter the following command:

% string replace abcdefg 2 5 123456789

ab123456789g

How it works…
Tcl has returned a new string containing the characters located within the index range, from
2 to 5. This illustrated not only the replacement of the characters, but also the command's
ability to create strings that differ in size from the original string. If your program requires that
the string, when altered, should be of the same length as the original, care should be taken to
avoid this alteration. The string command reads the value stored in string and replaces
it with the value stored in replacement, based on the index values passed in first and
last. Note that the replacement may increase or decrease the size of the string as needed,
based on the values passed. An index of 0 refers to the first character. If first is a negative
number or last is greater than the string length, then Tcl will adjust them to meet the actual
start and end of the string.

Creating a reverse string
There have been instances in the past where I had the need to reverse the characters I
had received from the user input. To assist us in creating a reverse string, Tcl provides the
reverse keyword.

The syntax of the string command is as follows:

string reverse string

The string command returns the value stored in string in reverse order.

Getting ready
To complete the following example, we will need to access Tcl from the command line. Launch
the Tcl shell appropriately for your operating system and follow the given instructions.

How to do it…
In the following example, we will create a string that is the reverse of the original. Return
values from the commands are provided for clarity. Enter the following command:

% string reverse abc

cba

Handling String Expressions

62

How it works…
Tcl returns a string containing the original string provided in a reverse order.

Converting a string to lowercase
To prevent the case of a string from impacting your programs, Tcl has provided several
keywords to manipulate the case of stored strings. The first of these is tolower. As its
name implies, the tolower keyword returns a string with all characters in lowercase.

The syntax of the string command is as follows:

string tolower string first last

The string command will convert all upper or title characters to their lowercase values and
return the newly created string. If an optional index value is passed in the first location, the
conversion will commence at that location. If an index value is passed in the last location,
this will designate the location at which the conversion will stop.

How to do it…
In the following example, we will create a string that contains only lowercase characters.
Return values from the commands are provided for clarity. Enter the following command:

% string tolower "NOW IS THE TIME"

now is the time

How it works…
As you can see Tcl has returned our lowercase string.

Converting a string to title
The second keyword that Tcl provides to alter the case of a string is totitle. As its name
implies, the totitle keyword returns a string with the first Unicode character capitalized.

The syntax of the string command is as follows:

string totitle string first last

When invoked with the totitle keyword the string command will convert the value stored
in string to its title equivalent.

Chapter 4

63

How to do it…
In the following example, we will convert a string that contains only lowercase characters to
its title case. Return values from the commands are provided for clarity. Enter the following
command:

% string totitle "john"

John

How it works…
The title command converts the first character of a string to its Unicode title case variant. If
no title variant exists, it is converted to uppercase. If an optional index value is passed in the
first location, the conversion will commence at that location. If an index value is passed in
the last location, this will designate the location at which the conversion will stop.

Converting a string to uppercase
The third keyword that Tcl provides to alter the case of a string is toupper. As its name
implies, the toupper keyword returns a string set to all uppercase characters.

The syntax of the string command is as follows:

string toupper string first last

The string command will convert all lowercase characters in a string to uppercase. If an
optional index value is passed in the first location, the conversion will commence at that
location. If an index value is passed in the last location, this will designate the location at
which the conversion will stop.

How to do it…
In the following example, we will convert a string that contains only lowercase characters
to uppercase. Return values from the commands are provided for clarity. Enter the
following command:

% string toupper "now is the time"

NOW IS THE TIME

How it works…
Tcl returns the entire string converted to its uppercase value.

Handling String Expressions

64

Trimming a string
When writing a program, there is no way to ensure that only correctly formatted data
is provided. An end-user may inadvertently enter whitespace, a test file may contain
whitespaces, and so on. To address this issue, Tcl provides keywords to trim the undesirable
whitespaces or characters if specified. The first of these is the trim keyword.

The syntax of the string command is as follows:

string trim string characters

If no characters are provided, the trim keyword will return the string with all leading
and trailing whitespace trimmed. If the characters are not specified (specifying the
characters is optional), only those whitespaces will be removed.

How to do it…
In the following example, we will trim the .gif extension from a string. Return values from
the commands are provided for clarity. Enter the following command:

% string trim "picture.gif " .gif

picture

How it works…
As you can see, Tcl has returned our trimmed string.

Trimming leading whitespace
The second keyword is trimleft. As its name implies, trimleft is used to trim leading
whitespaces or other characters as specified.

The syntax of the string command is as follows:

string trimleft string characters

If no characters are provided, the trimleft keyword will return string with all leading
whitespace trimmed. If the characters (optional) are not specified, only the whitespaces will
be removed.

Chapter 4

65

How to do it…
In the following example, we will trim all leading whitespace from a string. Return values from
the commands are provided for clarity. Enter the following command:

% string trimleft " Now is the time"

Now is the time

How it works…
Tcl has returned a string with all leading whitespace removed.

Trimming trailing whitespace
The third keyword is trimright. As its name implies, trimright is used to trim trailing
whitespace or other characters as specified.

The syntax of the string command is as follows:

string trimright string characters

The trimright keyword will return string with all trailing whitespace trimmed if no
characters are provided. If the optional characters are not specified only will be removed.

How to do it…
In the following example we will trim the trailing f characters from a string. Return values
from the commands are provided for clarity. Enter the following command:

% string trimright "Now is the timef " f

Now is the time

How it works…
Tcl has trimmed all occurrences of the character f from the right side of the string.

Locating the word end
In a large character string, it may become necessary to know what is the end of a word. For
example, we may require this information in order to determine where to extract data for a
variable. To accomplish this, Tcl has provided the wordend keyword.

Handling String Expressions

66

The syntax of the string command is as follows:

string wordend string index

This command will return the index of the first character that immediately follows the last
character of the word contained within the string that is located at the value passed in
index. In Tcl, a word is any contiguous range of alphanumeric characters (for example cat,
dog, 123).

How to do it…
In the following example, we will determine the end of a word contained within a string. Return
values from the commands are provided for clarity. Enter the following command:

% string wordend "Now is the time" 2

3

How it works…
Tcl returns the index for the character after the end of the word "Now".

Locating the word start
While it is all well and good that we know where our word ended, what if we need to know
where it starts? To accomplish this, Tcl has provided the wordstart keyword.

The syntax of the string command is as follows:

string wordstart string index

This command will return the index of the first character of the word contained within
string that is located at the value passed in index.

How to do it…
In the following example, we will determine the start of a word contained within a string.
Return values from the commands are provided for clarity. Enter the following command:

% string wordstart "Now is the time" 12

11

Chapter 4

67

How it works…
As you can see, Tcl has returned the index for the first character of the word "time".

Performing variable substitution
Now that we have mapped, formatted, counted, analyzed, and generally picked our strings
apart, let's look at programmatically performing variable substitution in a string. As Tcl always
seems to do, we have been provided with a powerful command to simplify the task with the
subst command. While you could easily invoke the set command to change the contents,
subst provides the ability to alter portions of a variable by providing optional switches.

The syntax of the subst command is as follows:

subst switch string

The subst command performs variable substitution to a string. The behavior may be
controlled with optional switches.

These switches are as follows:

Switch Description
-nobackslashes No backslash substitution will be performed.
-nocommands No command substitution will be performed.
-novariables No variable substitution will be performed.

How to do it…
In the following example, we will create a string that contains the value of a variable using
the subst command. Return values from the commands are provided for clarity. Enter the
following command:

% set a de

de

% subst {abc {$a}}

abc {de}

Handling String Expressions

68

How it works…
Tcl has returned abc {de} and not abc {$a}. By applying the subst command it becomes
very easy to create a string that contains control characters, backslashes, and the values we
require for the return. The subst command will perform variable, command, and backslash
substitution on string and return the newly created string value. Based on the switch or
switches passed in at the switch location, specific functionality of the command may be
suppressed.

5
Expanding String

Functionality Using
Lists

In this chapter, we will cover the following topics:

ff Creating a list

ff Joining two lists

ff Joining list elements

ff Appending list elements

ff Assigning list elements to variables

ff Retrieving an element from a list

ff Inserting elements into a list

ff Determining the number of elements

ff Getting a list element

ff Repeating elements

ff Replacing elements

ff Reversing elements

ff Searching a list

ff Editing a list

ff Sorting a list

ff Splitting a string into a list

Expanding String Functionality Using Lists

70

Introduction
Now that we have a firm grasp on the string type, let's look at the Tcl command list. As you
might have discerned from the command name, this command is used to create and manage
lists of information. While the various string handling commands allow for the creation of a
string containing anything from a single character to larger text files, the list allows you to
create, manipulate, and utilize a list of arguments in the same manner as a shopping list. In
Tcl, each of the separate items in a list are referred to as elements.

In the following sections, we will examine not only the creation of a list, but also the
many commands provided by Tcl to allow you to fully utilize the list and its elements. As
a pre-requisite for the recipes in this chapter, launch the Tcl shell appropriately for your
operating system. You can access Tcl from the command line to execute the commands.

Creating a list
One way to create a list is to simply use the list command. Bear it in mind that with this
command you must be aware of quotations. Inconsistent quotations can have unexpected
results on the list elements. The syntax is as follows:

list value1 value2…

How to do it…
In the following example, we will create a list containing single characters. Return values from
the commands are provided for clarity. Enter the following command:

% list John Mary Bill

John Mary Bill

How it works…
The list commands returns a list containing all the arguments supplied, or an empty string
if no arguments are specified. Backslashes and braces are added to the string representation
of the list as it is necessary to provide a properly formatted list that will work with any list
command.

There's more…
As mentioned earlier, quotation marks can alter how items are stored in our list. In the
following example, we will recreate our list; but this time the elements will be encased in
quotation marks to illustrate their effect on our list. Enter the following command:

Chapter 5

71

% list John "Mary Smith" Bill " "

John {Mary Smith} Bill { }

As you can see, the elements and the empty spaces enclosed within the quotation marks are
returned as elements, denoted by the curly braces. In later sections, when we access specific
elements, you can easily see how inadvertent or incorrect quotation usage can have an
unexpected return from commands.

Joining two lists
Now that we have seen how to make a list we will explore combining lists. To accomplish this,
Tcl provides the concat command. The syntax is as follows:

concat value1 value2 …

How to do it…
In the following example, we will concatenate a set of lists containing single characters.
Return values from the commands are provided for clarity. Enter the following command:

% concat {a b c} {1 2 3}

a b c 1 2 3

How it works…
The concat command joins each of its arguments together with spaces after first trimming
all leading and trailing whitespace, and in the case of a list, the results will be flattened.
Although this command will concatenate any arguments provided, we will be focusing on
its usage as it applies to the list elements. To denote that a list is being provided as the
argument, it should be encased within braces {}. This is another method of providing lists.
They may also be passed as named list variables, actual list commands, or within quotes. If no
arguments are provided, it will return an empty string.

There's more…
In the following example, we will concatenate a list containing string values with additional
string values to illustrate using concat to expand the elements in our list. Return values
from the commands are provided for clarity. Enter the following command:

% concat {John Mary Bill} Tom Fred Sally

John Mary Bill Tom Fred Sally

As you can see in this example, the return value is a string containing not only our list but also
the individual arguments provided.

Expanding String Functionality Using Lists

72

Joining list elements
While the concat command is more than capable of merging lists and arguments into
a single list, Tcl also provides the join command to expand the functionality. The join
command will not only merge the arguments, but also allows insertion of a separation
character into the returned string. Note that the variable provided must contain a list, set
of lists, or standalone values. The syntax is as follows:

join list delimiter

How to do it…
In the following example, we will join the elements of a list and create a comma-delimited
string. Return values from the commands are provided for clarity. Enter the following
command:

% set input {John Mary Bill}

John Mary Bill

% join $input ", "

John, Mary, Bill

How it works…
The join command returns the complete string created by joining all elements of the variable
provided. If a delimiter is specified, it will create a delimited list, otherwise the string will be
returned space delimited.

There's more…
In the following example, we will join two lists in the same manner as the concat command
and convert the lists into a single string value. Return values from the commands are provided
for clarity. Enter the following command:

% set input {{John Mary Bill} {Tom Fred Sally}}

{John Mary Bill} {Tom Fred Sally}

% join $input

John Mary Bill Tom Fred Sally

As you can see, the join command has accepted the arguments and returned a string
containing the elements of the two lists flattened.

Chapter 5

73

Appending list elements
Up to this point, we have manually populated the elements of our list. While this is a usable
method for list creation, it will become a necessity to programmatically populate the elements
of a list at some point. To accomplish this, Tcl provides the lappend command. The syntax is
as follows:

lappend variable value1 value2 …

How to do it…
In the following example, we will append elements to a list. Return values from the commands
are provided for clarity. Enter the following command:

% set input {John Mary Bill}

John Mary Bill

% lappend input Tom

John Mary Bill Tom

How it works…
The lappend command has treated the variable name provided in variable as a list and
appended all the following values to variable as list elements.

Assigning list elements to variables
At this point, we have created, concatenated, joined and appended to our list. Next we need
to know how to assign the elements of a list to variables to be able to access the individual
elements. To accomplish this, Tcl provides the lassign command. The syntax is as follows:

lassign list variable1 variable2 …

How to do it…
In the following example, we will assign the elements of our list to a set of variables and print
out the values contained within the variables. Return values from the commands are provided
for clarity. Enter the following command:

% lassign {John Mary Bill Tom Fred} 1 2 3

Tom Fred

% puts "$1 $2 $3"

John Mary Bill

Expanding String Functionality Using Lists

74

How it works…
The lassign command accepts a list as the first argument and assigns the elements to the
variables given in the following arguments. If there are more variables than list elements,
they will contain empty strings. If there are more elements than variables, a list of unassigned
elements will be returned, as in the preceding example with Tom and Fred. Note that the
command provides no return unless the number of elements exceeds the count of the
variables provided.

Retrieving an element from a list
While the ability to assign the elements of a list to variables is a wonderful method of
retrieving the values, it would be beneficial to access the elements directly without the
necessity of variable assignment. To accomplish this, Tcl provides the lindex command.
The syntax is as follows:

lindex list index1 index2 …

How to do it…
In the following example, we will create a list and pass an index to the lindex command to
retrieve the value stored at the index. Return values from the commands are provided for
clarity. Enter the following command:

% set input {John Mary Bill}

John Mary Bill

% lindex $input 1

Mary

How it works…
The lindex command accepts the list parameter and treats it as a Tcl list. If the index
values are provided, it will return the element referenced by the indices. Please note that a
list is returned if an element is a list and that additional index values will return the elements
from sublists.

Chapter 5

75

Inserting elements into a list
Now that we have an introduction to the usage of indices within a list, it is time to investigate
how to insert items into a list at an arbitrary position as opposed to simply appending data.
To accomplish this, Tcl provides the linsert command. The syntax is as follows:

linsert list index element1 element2 …

How to do it…
In the following example, we will insert an element into a list at a predefined location.
Return values from the commands are provided for clarity. Enter the following command:

% set input {John Mary Bill}

John Mary Bill

% set newinput [linsert $input 1 Tom]

John Tom Mary Bill

% puts $input

John Mary Bill

% puts $newinput

John Tom Mary Bill

How it works…
The linsert command returns a new list from the list provided by inserting additional
elements just before the element referenced by the index. This was illustrated by creation of
the list newinput and the subsequent puts commands to display the contents of both the
original and new lists. If the value contained in the index is less than or equal to 0, it will be
inserted at the beginning.

Determining the number of elements
To provide more flexibility to our programs, it will be necessary to create and maintain
your lists dynamically. As this will result in a list of indeterminate size, we need a means to
determine the number of elements in a list. To accomplish this, Tcl provides the llength
command. The syntax is as follows:

llength list

Expanding String Functionality Using Lists

76

How to do it…
In the following example, we will pass a list to the llength command to determine the
number of elements the list contains. Return values from the commands are provided for
clarity. Enter the following command:

% llength {John Mary { Bill Tom }}

3

How it works…
The llength command accepts a list (in this case, a list containing an embedded list with
multiple elements) as an argument and returns a decimal string containing the number of
elements. As the embedded list is a single item, in the parent list the total is 3.

Getting a list element
As we can now determine the number of elements contained within a list, it is time to retrieve
one or more of those elements. To accomplish this, Tcl provides the lrange command. The
syntax is as follows:

lrange list first last

How to do it…
In the following example, we will pass a list to the lrange command to retrieve the elements
contained with the indices provided. Return values from the commands are provided for
clarity. Enter the following command:

% lrange {John Mary Bill Fred Tom Sally} 0 1

John Mary

How it works…
The lrange command accepts a valid Tcl list and returns a new list consisting of the
elements referenced in the index values provided in first and last last inclusive. If the
index contained in first is less than 0, it is treated as 0. If the index contained in last is
greater than or equal to the number of elements, it is treated as if it were end, as described
previously, where indexes are concerned.

Chapter 5

77

Repeating elements
At some point, you may want to populate a list with a number of repeated elements. This
may be for testing or various other reasons. To accomplish this, Tcl provides the lrepeat
command. The syntax is as follows:

lrepeat number element1 element2 …

How to do it…
In the following example, we will use the lrepeat command to create a list of repeated
characters. Return values from the commands are provided for clarity. Enter the following
command:

% lrepeat 3 a

a a a

How it works…
The lrepeat command creates a list of the size referenced in the number variable multiplied
by the number of elements.

There's more…
In the following example we will combine lrepeat commands to create multiple lists
containing repeated characters. Return values from the commands are provided for clarity.
Enter the following command:

% lrepeat 3 [lrepeat 3 0]

{0 0 0} {0 0 0} {0 0 0}

As you can see, by combining the lrepeat command we have created a list containing the
same element repeated three times.

Replacing elements
To truly have a dynamic list we need the ability to replace existing elements with new values.
To accomplish this, Tcl provides the lreplace command. The syntax is as follows:

lreplace list first last element1 element2 …

Expanding String Functionality Using Lists

78

How to do it…
In the following example, we will use the lreplace command replace elements contained
within a list. Return values from the commands are provided for clarity. Enter the following
command:

% lreplace {a b c d e} 1 1 X

a X c d e

How it works…
The lreplace command returns a newly created list formed by replacing one or more
elements with the values contained within the element arguments. first and last refer to
the indices specifying the first and last elements to be replaced. If the list is empty, the
indices are ignored.

Reversing elements
Again, to maintain the dynamics of a list, it may be necessary to reverse the elements. To
accomplish this, Tcl provides the lreverse command. The syntax is as follows:

lreverse list

How to do it…
In the following example, we will use the lreverse command to reverse the elements in our
list. Return values from the commands are provided for clarity. Enter the following command:

% lreverse {a b c d e}

e d c b a

How it works…
The lreverse command accepts a list and returns a list containing the elements in
reverse order.

Chapter 5

79

Searching a list
As with any data contained within a program, it is the ability to locate and use that data that
makes the program usable. To accomplish this, Tcl provides not only a command, but also
a full complement of option flags to tailor the search. The lsearch command allows us to
search a list to determine if it contains a particular element. Before we explore the syntax,
we will first need to understand the options. The options are as follows:

Type of option Option name Interpretation
Matching style
options

-exact The pattern is a literal string that is compared
against each element.

-glob The pattern is a glob-style pattern that is matched
against each element in the same manner, as a
string match.

-regexp The pattern is treated as a regular expression and
matched against each element.

-sorted The list elements are sorted in order. If specified,
lsearch will use a more efficient search
algorithm. The list is assumed to be sorted in
ascending order and to contain ASCII strings. This
option is mutually exclusive with –glob and –
regexp options and is treated the same as the –
exact option when either –a or –not is specified.

General modifier
options

-all The option changes the result to be a list of
all matching indices (or values, if –inline is
specified). If indices are returned, they will be in
numeric order. If values are returned, the order will
be that of the input list.

-inline The matching value is returned rather than the
index (or an empty string, if no match exists). If the
–all option is specified, the result will be a list of
all the values that matched.

-not This option will negate the matching, returning the
index of the first non-matching value.

Expanding String Functionality Using Lists

80

Type of option Option name Interpretation
-start index The search is started at the index specified.

Content description
options

-ascii The list items are to be treated as Unicode strings.
	

-dictionary The list elements are to be compared using
dictionary style comparisons (see the next chapter
for more information on dictionaries).

-integer The list elements are to be compared as integers.

-nocase The comparison will be case-insensitive. This has
no effect when combined with –dictionary,
-integer, or –real options.

-real The list elements are to be compared as floating-
point values.

Sorted list options -decreasing The list elements are sorted in decreasing order.
This option must be used in concert with the –
sorted option.

-increasing The list elements are to be sorted in increasing
order. This option must be used in concert with the
–sorted option.

Nested list options -index
IndexList

This option is to be used when searching within
nested lists. The IndexList argument gives a
path of indices within each element.

-subindices If this option is used, the index results from the
command will be a given path within the list to the
term located.

The syntax for the lsearch command is as follows:

lsearch options list pattern

How to do it…
In the following example, we will use the lsearch command to locate a specific pattern
contained within a list. Return values from the commands are provided for clarity. Enter the
following command:

Chapter 5

81

% lsearch –all {John Mary Bill John Mary Bill} Bill

2 5

How it works…
The lsearch command accepts a list of arguments and based on the options specified
conducts a search of the list for the pattern specified. Return values are normally the indices
of the element unless the value is returned based on the options provided. Additional options,
as described in the table, can be used to tailor the search and the resulting returns, as
required.

Editing a list
Another method of editing the contents of a Tcl list is the lset command. The syntax is
as follows:

lset variable index1 index 2 … value

How to do it…
In the following example, we will use the lset command to edit the contents of our list.
Return values from the commands are provided for clarity. Enter the following command:

% set input {John Mary Fred}

John Mary Fred

% lset input 1 Tom

John Tom Fred

How it works…
The lset command accepts a variable containing a Tcl list and 0 or more indices. The indices
may be entered singly or provided as a Tcl list. The value is the new value to place into the list
in whole or in part if indices are provided.

Expanding String Functionality Using Lists

82

Sorting a list
In order to sort a list Tcl has provided the lsort command. As with other commands this one
accepts numerous options that we will cover prior to discussing the syntax. The options are
as follows:

Options Interpretations
-ascii Sorts using string comparison with Unicode code-point collation

order.
-dictionary Sorts using dictionary style comparison.
-integer Converts the list elements to integers and use integer comparison.

-real Converts the list elements to floating-point values and use
floating-point comparison.

-command command Uses the command provided as a comparison command.
-increasing Sorts in increasing order.
-decreasing Sorts in decreasing order.
-indices Returns a list of indices in sorted order as opposed to the values.

-index IndexList For this option to be specified each element of the list must be a
proper Tcl sublist.

-nocase Sorts using a case-insensitive comparison.
-unique Returns only the last set of duplicate items.

The syntax for the lsort command is as follows:

lsort options list

How to do it…
In the following example, we will use the lsort command to sort the contents of a list in
a decreasing order. Return values from the commands are provided for clarity. Enter the
following command:

% lsort –decreasing {a b c d e}

e d c b a

How it works…
Based on the options specified, the lsort command will return a sorted list or a sorted index
if –indices were specified.

Chapter 5

83

Splitting a string into a list
The last thing we will be covering is how to take a string and split its content into a proper Tcl
list. To accomplish this, Tcl provides the split command. The syntax is as follows:

split string characters

How to do it…
In the following example, we will use the split command to separate the contents of a
comma-delimited string into a list. Return values from the commands are provided for clarity.
Enter the following command:

% split {John,Mary,Tom,Fred,Sally},

John Mary Fred Tom Sally

How it works…
The split command accepts a string and splits it into a Tcl list by splitting at every character
defined. Caution must be exercised about the characters provided for splitting to avoid loss
of data.

6
The Tcl Dictionary

In this chapter, we will cover the following topics:

ff Creating a dictionary

ff Appending to a dictionary

ff Determining if a key exists

ff Filtering a dictionary

ff Searching a dictionary

ff Getting a record

ff Incrementing a value

ff Getting the dictionary structure

ff Getting a list of keys

ff Appending to an existing record

ff Merging two dictionaries

ff Create a blank dictionary structure

ff Updating variables from a dictionary

ff Determining the size of a dictionary

ff Getting all records

ff Assigning values

Introduction
Strings hold textual data from a single character to a large text file. Lists allow us to store
groups of strings and lists in an organized manner. But neither offers a simple method for
relating data elements to a key value, in the manner of an array or database. If you need to
organize multiple items under a single group, nothing beats a dictionary.

The Tcl Dictionary

86

Dictionary allows storage of data with a key/value mapping methodology, with each key in the
dictionary mapping to a single value. Dictionaries are textual in nature (like how lists are), but
allow association between key/value pairs. For example, if I create a dictionary "Fruits" with a
key of "Apple" and a value of "17"; I have the beginnings of a simple inventory system. With the
addition of nested dictionaries, you can rapidly emulate data storage and retrieval similar to a
database application without the overhead of a third-party product.

As with all things in Tcl, we have been provided with a command and a full complement of
options to create and manage our dictionaries. In the following sections, we will cover both,
the dict command as well as its options. The dict command is the workhorse for all of your
dictionary needs. By pairing it with the optional keywords, you instruct the interpreter how to
utilize the command. The syntax is as follows:

dict option argument1 argument2…

The dict command performs a function based on the option defined. Argument number and
type are predicated by the option that is selected. As a pre-requisite for the recipes in this
chapter, launch the Tcl shell, as appropriate for your operating system. You can access Tcl
from the command line to execute the commands.

Creating a dictionary
To create a dictionary, we will utilize the create option. The syntax is as follows:

dict create key value… key value… key value…

How to do it…
In the following example, we will create a dictionary containing a key/value pair. Return values
from the commands are provided for clarity. Enter the following command:

% dict create 1 John

1 John

How it works…
The dict create command creates a new dictionary that contains each of the key and
value mappings that follow.

There's more…
By adding additional key/value pairs on the command line, you can store numerous entries
simultaneously. In the following example, we will expand our dictionary by storing multiple
key/value pairs. Return values from the commands are provided for clarity. Enter the following
command:

Chapter 6

87

% dict create 1 John 2 Mary 3 Paul

1 John 2 Mary 3 Paul

As you can see, the dict create command accepted the arguments and created a
dictionary containing our three key/value pairs. Care should be taken that the key names are
not inadvertently repeated, as the last instance will be the one stored. For example, if I pass in
1 John 2 Mary 1 Paul, the value assigned to key 1 will be Paul and not John.

Using set with the dict create command
While the dict create command allows us to create a dictionary and easily add the key/
value pairs, we have no named variable to allow us to access our dictionary. To allow us to
access the dictionary, we will need to combine the Tcl set command with the dict create
command to have a named dictionary that we can access.

In the following example, we will create a named dictionary containing multiple key/value
pairs. The return values from the commands are provided for clarity. Enter the following
command:

% set names [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

While there is no noticeable difference in the return line, we now have a named dictionary
that can be referenced by other commands. At this point, we can create a named dictionary
and assign key/value pairs from the command line. However, without the ability to dynamically
maintain our dictionary, it is of little use in a real-time program.

In the following sections, we will investigate the various Tcl commands that allow us to fully
utilize the Tcl dictionary.

Appending to a dictionary
One way of adding key/value pairs to a dictionary is the dict append command. The syntax
is as follows:

dict append name key value…

How to do it…
In the following example, we will create a dictionary containing a set of key/value pairs and
then append an additional set. Return values from the commands are provided for clarity.
Enter the following command:

% set names [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

The Tcl Dictionary

88

% dict append names 4 Fred

1 John 2 Mary 3 Paul 4 Fred

How it works…
The dict append command appends a key and value pair (or pairs) to the dictionary
referenced by name.

Determining if a key exists
Now that we have a named dictionary with key/value pairs, it becomes necessary to
determine if the given key exists. To accomplish this, Tcl provides the dict exists
command. The syntax is as follows:

dict exists DictionaryValue key… key…

How to do it…
In the following example, we will create a dictionary containing a set of key/value pairs and
then determine whether or not a specific key exists. Return values from the commands are
provided for clarity. Enter the following command:

% set names [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% dict exists $names 3

1

How it works…
The dict exists command returns a Boolean value to indicate if the specified key exists
in the dictionary referenced in name. A return value of 1 indicates that the key exists, while
a return of 0 indicates that it does not. Be aware that this command will return an error if
dictionaryValue does not reference an existing dictionary.

Filtering a dictionary
Filtering a dictionary in Tcl allows us to create a new dictionary containing the filtered key/
value pairs, as opposed to simply returning a filtered listing. This allows us to isolate the data
desired and interact with it dynamically. To accomplish this, Tcl provides the dict filter
command. The syntax is as follows:

Chapter 6

89

dict filter dictionaryValue filter_type argument1 argument2 …

Various filter types are supported by the command. The filters are as follows:

Option Interpretation
Key The key rule matches the key/value pair whose keys match the defined pattern, as

in a string match.
Value The value rule matches the key/value pairs whose value matches the defined

pattern, as in a string match.
Script The script rule tests for matching by assigning the key to a key variable and the

value to a value variable, and then evaluating the given script, which must return a
Boolean value.
Only those sets that return the value true are included within the new dictionary.
If the script returns a TCL_BREAK, no other comparisons are performed.
In the event of a TCL_CONTINUE return, the return is treated as a TCL_OK.

How to do it…
In the following example we will create a dictionary containing a set of key/value pairs and
then filter to determine if a specific key exists. Return values from the commands are provided
for clarity. Enter the following command:

% set names [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% set filtered [dict filter $names key 1]

1 John

How it works…
The dict filter command accepts a named dictionary as referenced by dictionaryValue
and returns a new dictionary containing the key/value pairs that match the filtering criteria as
defined in the argument or arguments provided.

There's more…
In the following example, we will create a dictionary containing a set of key/value pairs and
then filter to determine if a specific value exists. Return values from the commands are
provided for clarity. Enter the following command:

% set names [dict create 1 John 2 Joe 3 Paul]

1 John 2 Joe 3 Paul

The Tcl Dictionary

90

% set filtered [dict filter $names value Jo*]

1 John 2 Joe

As you can see, the dict filter command accepted the arguments and based on the
existence of the value to be filtered, it has returned a new dictionary named filtered,
containing the located key/value pairs.

In the following example, we will create a dictionary containing a set of key/value pairs and
then filter to determine if a specific value exists, by using the script keyword. Return values
from the commands are provided for clarity. Enter the following command:

 % set filtered [dict filter $name script {key value} {

 Expr {$key < 2}

}]

1 John

In this instance, the filter command has evaluated each key/value pair and returned those
that evaluate as true, in the provided script.

Searching a dictionary
To iterate over a dictionary, Tcl provides the dict for command. The syntax is as follows:

dict for {key value} dictionaryValue script

How to do it…
In the following example, we will create a dictionary containing a set of key/value pairs and then
using the dict for command return a listing of all key/value pairs using the puts command.
Return values from the commands are provided for clarity. Enter the following command:

% set names [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% dict for {id data} $names {

puts "Key $id : Value $data"

}

Key 1 : Value John

Key 2 : Value Mary

Key 3 : Value Paul

Chapter 6

91

How it works…
The dict for command accepts three arguments. The first argument is a two-element list
of variable names for the key and value. The second is the dictionary that is to be searched.
The third is a script to be evaluated for each mapping with the key and variable values set, as
in the foreach command.

Getting a record
While the dict for command is generally used for processing multiple key/value pairs, Tcl
provides the dict get command to obtain the value assigned to a specific key. The syntax is
as follows:

dict get dictionaryValue key

How to do it…
In the following example, we will create a dictionary containing a set of key/value pairs and
then, using the dict get command, obtain the value associated with the specified key.
Return values from the commands are provided for clarity. Enter the following command:

% set names [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% dict get $names 3

Paul

How it works…
The dict get command will retrieve the value associated with the argument contained in
the key for the dictionary defined by dictionaryValue.

Incrementing a value
Tcl provides a simple method for incrementing a value stored within a dictionary with the
dict incr command. This is extremely useful when storing numeric values in the dictionary.
The syntax is as follows:

dict incr dictionaryValue key increment

The Tcl Dictionary

92

How to do it…
In the following example, we will create a dictionary containing a key/value pair and then
using the dict incr command, we will increase the value associated with the key specified.
Return values from the commands are provided for clarity. Enter the following command:

% set numbers [dict create one 1]

one 1

% dict incr $numbers one 3

one 4

How it works…
The dict incr command will increase the value stored in key by the amount defined within
the increment parenthesis for the dictionary referenced by dictionaryValue.

Getting the dictionary structure
In order to assist us with managing our dictionaries Tcl provides the dict info command.
The syntax is as follows:

dict info dictionaryValue

How to do it…
In the following example we will create a dictionary containing a key/value pair and then
using the dict info command obtain information for our dictionary. Return values from
the commands are provided for clarity. Enter the following command:

% set names [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% dict info $names

3 entries in table, 4 buckets

number of buckets with 0 entries: 1

number of buckets with 1 entries: 3

number of buckets with 2 entries: 0

number of buckets with 3 entries: 0

number of buckets with 4 entries: 0

number of buckets with 5 entries: 0

number of buckets with 6 entries: 0

Chapter 6

93

number of buckets with 7 entries: 0

number of buckets with 8 entries: 0

number of buckets with 9 entries: 0

number of buckets with 10 or more entries: 0

average search distance for entry: 1.0

How it works…
The dict info command returns human readable information about the dictionary
referenced in dictionaryValue.

Getting a list of keys
In order to minimize effort on dictionary maintenance Tcl has provided the dict keys
command to return a list of keys that exist within a dictionary. The syntax is as follows:

dict keys dictionaryValue pattern

How to do it…
In the following example we will create a dictionary containing a collection of key/value pairs
and then using the dict keys command obtain a list of valid keys. Return values from the
commands are provided for clarity. Enter the following command:

% set test [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% dict keys $test

1 2 3

How it works…
The dict keys command returns a list of keys that exists within the dictionary referenced by
dictionaryValue. If a pattern is supplied, only those keys that match are returned.

The Tcl Dictionary

94

Appending to an existing record
To append data to an existing value Tcl provides the dict lappend command. The syntax is
as follows:

dict lappend name key value…

How to do it…
In the following example, we will create a dictionary containing a collection of key/value pairs
and then using the dict lappend command we will append items to the key referenced.
Return values from the commands are provided for clarity. Enter the following command:

% set test [dict create 1 1 2 2 3 3]

1 1 2 2 3 3

% dict lappend test 2 more

1 1 2 {2 more} 3 3

How it works…
The dict lappend command appends the data stored in value for the key referenced in
key for the dictionary specified in name.

Merging two dictionaries
Let's assume that we have two dictionaries that we need to merge into a single dictionary. To
accomplish this, Tcl provides the dict merge command. The syntax is as follows:

dict merge dictionaryValue1 dictionaryValue2…

How to do it…
In the following example, we will create two dictionaries containing collections of key/value
pairs and then using the dict merge command create a dictionary containing the contents
of both. Return values from the commands are provided for clarity. Enter the following
command:

% set test1 [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% set test2 [dict create 4 Fred 5 Sue 6 Tom]

4 Fred 5 Sue 6 Tom

Chapter 6

95

% set merged [dict merge $test1 $test2]

1 John 2 Mary 3 Paul 4 Fred 5 Sue 6 Tom

How it works…
The dict merge command returns a dictionary containing the contents of two or more
dictionaries, as specified in the dictionaryValue arguments. In the event of duplicate key
mapping, the last dictionary merged will be the value that will be used. For example, if there
are two dictionaries that contain a key with different values, the second dictionary key/value
mapping would be retained.

Creating a blank dictionary structure
To create a new dictionary structure that contains some or all of the key/value mappings
present in an existing dictionary, Tcl provides the dict remove command. The syntax is as
follows:

dict remove dictionayValue key1… key2…

How to do it…
In the following example we will create a dictionary containing collections of key/value pairs
and then using the dict remove command create a new dictionary containing a portion
of the key/value pairs. Return values from the commands are provided for clarity. Enter the
following command:

% set test [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% set new [dict remove $test 2]

1 John 3 Paul

How it works…
As you can see, the dict remove command has created a new dictionary that contains only
the desired key/value pairs. In our example, the key/value pair for key 2 was removed.

The Tcl Dictionary

96

Updating variables from a dictionary
To update the values stored within a dictionary Tcl provides the dict set command. The
syntax of this command is as follows:

dict set name key value… key value…

How to do it…
In the following example, we will create a dictionary containing collections of key/value
pairs and then using the dict set we will update a stored value. Return values from the
commands are provided for clarity. Enter the following command:

% set test [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% dict set test 2 Martha

1 John 2 Martha 3 Paul

How it works…
The dict set command updates the value stored for the key in the dictionary referenced to
by the name argument.

Determining the size of a dictionary
To more effectively interact with a dictionary, it is beneficial to know how many entries are
contained within. To accomplish this, Tcl provides the dict size command. The syntax is as
follows:

dict size dictionaryValue

How to do it…
In the following example, we will create a dictionary containing collections of key/value pairs
and then we will use the dict size command to determine the number of key/value pairs.
Return values from the commands are provided for clarity. Enter the following command:

% set test [dict create 1 John 2 Mary 3 Paul]

1 John 2 Mary 3 Paul

% dict size $test

3

Chapter 6

97

How it works…
The dict size command returns a count of the key/value pairs contained in the dictionary.

Getting all records
Whereas the dict keys command returns a listing of all keys contained within a dictionary,
the dict values command will return a listing of all stored values. The syntax is as follows:

dict values dictionaryValue

How to do it…
In the following example we will create a dictionary containing collections of key/value pairs
and then using the dict values command we will obtain a list of all values stored within
the dictionary. Return values from the commands are provided for clarity. Enter the following
command:

% set test [dict create 1 one 2 two 3 three]

1 one 2 two 3 three

% dict values $test

one two three

How it works…
The dict values command will return a list of all values stored within the dictionary
specified in dictionaryValue.

Assigning values
In this section we will be creating a nested dictionary containing multiple entries for each
record. By using the Tcl dict with command we will then assign variables in the body of
our script that are based on the keys stored within our dictionary. The dict with command
allows us to accomplish this by assigning entries within our dictionary to variables and then
executing a script. The syntax is as follows:

dict with name keys… script

The Tcl Dictionary

98

How to do it…
In the following example, we will create a nested dictionary to hold a collection of key/value
pairs and then using the dict for and with commands we will execute a script to output
the values to the screen. Return values from the commands are provided for clarity. Enter the
following command:

% set person1 [dict create firstname John lastname Smith title Manager]

firstname John lastname Smith title Manager

% set person2 [dict create firstname Mary lastname Jones title Developer]

firstname Mary lastname Jones title Developer}

% set record [dict create 12345 $person1 12346 $person2]

12345 {firstname John lastname Smith title Manager} 12346 {firstname Mary
lastname Jones title Developer}

% dict for {id info} $record {

puts "Record #: $id"

dict with info {

puts "Title: $title"

puts "Name: $lastname, $firstname"

}

}

Record #: 12345

Title: Manager

Name: Smith, John

Record #: 12346

Title: Developer

Name: Jones, Mary

7
File Operations

In this chapter, we will cover:

ff Opening a file

ff Configuring a file

ff Opening a command pipeline

ff Writing a file

ff Reading a file

ff Closing a file

ff File handling

Introduction
Up to this point, we have primarily entered the data through the command line. While this
is fine for small scripts, it does not provide the means to obtain and store information. To
accomplish this, we need to read and write to the file system.

File access is a basic requirement for dynamic programs. Whether it's a text-based configuration
file or images to display, most programs use the file system as the storage and retrieval location.
All storage needs have—historically and continually—relied on the file system.

Although we will be dealing with strings in the coming sections, the requirements for
accessing any type of file, from the string data to images, remain the same.

In the following sections, for the majority of the examples, we will be accessing the file
system to read and write the data to a file. To accomplish this, you will need to launch
your Tcl shell appropriately, based on your operating platform and follow the instructions.

File Operations

100

Opening a file
The first item we will cover is how to open a file. When you open a file, Tcl creates what it
refers to as a "channel" that can be read from and written to. Channels are also created
for serial ports, external command pipelines, and when opening sockets.

The Tcl command to open a file is aptly named open. The open command accepts numerous
flags to control access and permissions. These are covered in the following:

Access Interpretation
r Opens the file for reading only.

The file must already exist.
Default access.

r+ Opens the file for reading and writing.
The file must already exist.

w Opens the file for writing only.
The file will be truncated if it already exists.
If no named file exists, it will be created.

w+ Opens the file for reading and writing.
The file will be truncated if it already exists.
If the named file does not exist, it will be created.

a Opens the file for writing only.
If the named file does not exist, it will be created.
This will set the file pointer (to the point at which writing will commence)
to the end of the file prior to each write.

a+ Opens the file for reading and writing.
If the named file does not exist, it will be created.
Sets the file pointer to the end of the file.

All the legal access in the table may have the character 'b' added as the second or third
character (for example wb) to indicate that the open channel should be configured for
binary access. Additionally, the file access can be altered after it has been opened with the
fconfigure command covered in the next section.

In the second acceptable form, access consists of a list of the following flags, all of which have
the standard POSIX meaning. One of the flags must be RDONLY, WRONLY, or RDWR.

Chapter 7

101

Permission Interpretation
RDONLY Opens the file for read only.
WRONLY Opens the file for writing only.
RDWR Opens the files for read and write access.
APPEND Sets the file pointer to the end of the file prior to each write.
BINARY Configures the channel for binary access.
CREAT Creates the file if it does not exist.
EXCL If CREAT is also specified, an error is returned if the file exists.
NOCTTY If the file is a terminal device, this will prevent the file from controlling

terminal processes.
NONBLOCK Prevents the process from blocking while opening the file.

The behavior of this flag is system and device dependant.
TRUNC If the file exists, it will be truncated.

If a new file is created as part of the opening, permissions (as an integer) are used to set
the permissions for the new file in conjunction with the processes' file mode creation.
Permissions, by default, provide full access.

Now that we have covered the access types and setting of permissions, let's look at the syntax
of the command. The syntax is as follows:

open filename access permissions

How to do it…
Enter the following command:

% set fp [open text.txt a+]

file5

How it works…
As you can see the open command has returned a file pointer named file5 to our existing
file with the permissions set to a+. See the preceding tables for an explanation of the
permission notations. Please note that the file pointer is intended to be an opaque value and
may not be the same for subsequent invocations.

The open command will open the file referenced by filename with the access type and
permissions provided and return a file pointer. Note that we have paired this with the
set command to allow access to the file pointer named fp. This is the standard method, as
access to the pointer is required to interact with the file.

File Operations

102

Bear it in mind that the access types may have hazardous consequences, if utilized
improperly. For example, opening a configuration file with the access set to w will result in
the file being truncated. This is probably not the method you wish to use for critical data that
needs to be retained.

There's more…
Now enter the following command line:

% set fp [open bad.txt RDONLY]

couldn't open "bad.txt": no such file or directory

As we have attempted to access a non-existent file, the Tcl error text for the command was
displayed.

Configuring a file
As mentioned previously, you may use the fconfigure command to set or get the
configuration options for an open channel. The syntax is as follows:

fconfigure channel name value name value…

If invoked with no option names or values, the fconfigure command will return the
configuration options for the channel specified. Optionally, a configuration name may be
passed to get the configurations for the option specified. If name and value pairs are passed
the file will be configured based on the name/value pairs supplied.

The syntax of acceptable options and their descriptions are as follows:

Option Description
-blocking boolean This determines if the I/O operations can result in indefinite

blocking. Acceptable values must be provided in the standard Tcl
Boolean format.

-buffering value If set to full all output is buffered until a flush command is
invoked. If set to line, then the system will automatically flush
when a newline character is output. If set to none the system will
flush after each operation.

-buffersize size The value of size may be any valid integer value. This will
configure the size for the buffer s in bytes and allocate the
specified amount for the channel.

-encoding name This will set the encoding for the channel to allow data to be
converted to and from Unicode for use by Tcl. Default encoding
is system and locale specific.

Chapter 7

103

Option Description
-eofchar char Specifies the end of file character.
-translation mode Acceptable values for mode are as follows:

auto treats any newline, carriage return or carriage return/
newline as the end of line representation.
binary no end of line translations are performed.
cr specifies that the end of line character is a carriage return.
crlf specifies that the end of line character is a carriage return/
linefeed pair.
Lf specifies that the end of line character is a linefeed.

 How to do it…
Enter the following command:

% set fp [open text.txt r]

file3f40

$fconfigure $fp

-blocking 1 –buffering full –buffersize 4096 –encoding cp1252 –eofchar ->
\

 -translation auto

In the preceding example, we have returned the current options for the file specified by $fp.
To obtain a single value, we would perform the following:

% fconfigure $fp –buffersize

4096

There's more…
Now enter the following command line:

% fconfigure $fp –blocking 0

% fconfigure $fp –blocking

 0

In the first command, we have set the blocking for $fp to false by passing a 0. The second
line returned the value for blocking, based on the new configuration.

File Operations

104

Opening a command pipeline
As mentioned previously, the open command can be used to open a command pipeline. A
command pipeline is a mechanism that allows us to read from or write to a command. The
syntax is similar to the standard open command. However, if the first character passed as an
argument to the open command is a pipe character (|) the remaining characters are treated
as a list of arguments describing a command pipeline that is to be invoked. The syntax is as
follows:

open | command access_permissions

The arguments provided by command are similar to those used for the exec command. The
open command will return a file pointer that may be used to write to the specified command's
input pipe or read from its output pipe. The specific functionality (read or write) is determined
by the access permissions.

If the open command or one of the commands provided as arguments should return an error,
a Tcl error will be generated when the close command is invoked on the channel unless the
pipeline has been configured for non-blocking. If the channel is configured for non-blocking,
no exit status will be returned.

How to do it…
Enter the following command:

%set fp [open "|cmd.exe /c dir text.txt" r]

fileabb5b0

%set data [read $fp]

 Volume in drive C has no label.

 Volume Serial Number is A02F-AD99

 Directoy of C:\Documents and Settings\Bert

12/09/2010 01:01 PM 13 text.txt

 1 File(s) 13 bytes

 0 Dir(s) 31,133,941,760 bytes free

%If {[catch {close $fp} err]} {

 Puts "Error: $err"

}

%

Chapter 7

105

How it works…
As you can see, the open command has returned a file pointer named fileabb5b0 to
our command. Also, note that because the command was invoked on a Windows platform
additional command syntax was required to access the dir command. This is due to the fact
that Windows built-in commands are not implemented by using the executables themselves.
This is not required on a Unix- or a Linux-based system.

The return of the command was accessible as we had set the file privileges to r (open the
file for "read-only" and the file must exist) and the return was read into our data variable and
displayed on the console. The returns are specific to your platform and will vary based on the
platform and path variables in place.

We next used a catch statement to trap any errors that might have resulted. These would be
returned by the close command. As we successfully executed our dir command, there were
no error codes returned and the catch statement simply returned us to our console prompt
without invoking the puts command.

There's more…
Now enter the following command line:

%set fp [open "|cmd.exe /c dir no_such_file" r]

fileaca748

%set data [read $fp]

 Volume in drive C has no label.

 Volume Serial Number is A02F-AD99

 Directoy of C:\Documents and Settings\Bert

%If {[catch {close $fp} err]} {

	 Puts "Error: $err"

}

ERROR: File Not Found

%

In this instance, we have performed the same command with the exception that we have
referenced a non-existing file. As you can see, the catch command has trapped the error
return and the puts command was used to display it on the console. Please note that the
basic return from the command was displayed when we set the variable data with the read
command, but this is not always indicative of a successful return code.

File Operations

106

Writing a file
Writing to a file is accomplished in the same manner as writing to the console. Using the puts
command with the addition of a file channel descriptor will result in the string provided being
written to the channel. The syntax is as follows:

puts -nonewline channel string

How to do it…
Enter the following command:

% set fp [open text.txt a]

file5

% puts $fp "Hello Again"

% flush $fp

How it works…
The puts command will write the data contained in string to the referenced file
pointer. If the optional –nonewline switch is provided the newline character will not
be added. Bear in mind that if you are not closing the file following the write action, it is
necessary to flush the channel to complete the write. The channel is automatically flushed
when the file pointer is closed or when the application exits.

To check the file, open it with the text editor of your choice. You should see a file that contains
the following:

Hello World

Reading a file
Reading a file allows us to retrieve the stored data from the open channel. To accomplish this
Tcl provides the read command. The command utilizes two forms. The syntax is as follows:

read -nonewline channel
read channel number

Chapter 7

107

How to do it…
Enter the following command:

% set fp [open text.txt r]

file5

% read $fp

Hello World

How it works…
In the first form, the read command reads all the data from the channel. If the optional –
nonewline switch is provided then the last character of the file is discarded if it is a newline.
In the second form, the number argument instructs the command to return the number of
characters specified unless there are fewer characters in the file in which case all characters
will be returned.

By using the read command we accessed the channel and the data read from the file was
displayed. As referenced in the previous tables detailing access permissions, the channel
can be set to non-blocking with the optional NONBLOCK POSIX keyword. If the channel is
configured for non-blocking, you may not obtain all data available rather than blocking for
more data. This is of primary importance when dealing with open sockets, serial ports, and
command channels.

Optionally, you may read from a file by utilizing the gets command. This command reads the
file line by line and is invoked with the following syntax:

gets channel optionalVariable

This command will read in the next line from the channel referenced by channel and display
it to the screen if no optionalVariable is provided. If an optionalVariable is provided,
it will be set to the contents of the line read in.

Closing a file
After any write to a file, you should close it to complete the process. Although exiting a
program will close the channel, this is not my preferred manner as a program error may result
in the loss of any data that has not been written to disk. To close the file, Tcl provides the
close command. The syntax is as follows:

close channel

File Operations

108

How to do it…
Enter the following command:

% set fp [open text.txt a]

file5

% puts $fp "Hello Again"

% close $fp

How it works…
The close command flushes the open channel of any pending data resulting in a write to disk
and closes the channel. As you can see the close command has closed the file successfully
as there were no errors returned.

To check the file, open it with your text editor of choice. You should see a file that contains
the following:

Hello World
Hello Again

File handling
Now that we can open, read, write, and close a file, it is time to put this knowledge to work in
a real world manner. We will now create a Tcl script that accesses a file, reorders the stored
data, and then outputs it to a secondary file. This is similar to a file handling procedure used
to clean up user supplied files.

Getting ready
Using the text editor of your choice create a text file containing the following text:

1,3,5,7,8,2,4,6,9

Save the file in your working directory as input.txt.

How to do it…
Using the text editor of your choice create the following Tcl script and save it in your working
directory as filehandler.tcl.

Check that a filename was provided
if { $argc>0 & $argv>0} {
 # Assign the filename to a variable

Chapter 7

109

 set fname [lindex $argv 0]
 # Open the file for read-only access
 set fp [open $fname r]
 # Read the contents of the file into a variable
 set data [read $fp]
 #Close the input file
 close $fp
 # Split the data and create a Tcl list
 set input [split $data ","]
 # Sort the list and load it into another list
 set output [lsort -increasing $input]
 # Open a file to write the data to
 set fp [open output.txt w]
 # Read through the list and write the data
 foreach item $output {
 puts $fp $item
 }
 #Close the file
 close $fp
} else {
 puts "No filename provided... Exiting Script"
 exit
}

Launch your Tcl shell appropriately, based on your operating platform. Enter the following
command line:

% tclsh filehandler.tcl input.txt

%

How it works…
By combining the capabilities of the Tcl, file handling commands with the Tcl list functionality
we are able to read in a comma delimited list of data and output it to a file sorted and line-by-
line. To confirm the output, use the text editor of your choice and view the file output.txt. It
should contain a sorted listing of the integers provided, one per line, as shown next:

1

2

3

4

5

6

7

8

9

8
Tk GUI Programming

with Tcl/Tk

In this chapter, we will cover:

ff Creating a widget

ff Writing to the console

ff Window manager

ff Creating a window

ff Destroying a window

ff Creating a custom dialog

Introduction
Up to this point, we have exclusively used the Tcl shell and its command set. While this is a
wonderful method for writing scripts and non-graphical programs, it fails to provide the end
user with a Graphical User Interface (GUI) to interact with. To allow for the creation and
control of GUI and window elements, Tcl includes the Graphical Tool Kit (Tk).

Tk GUI Programming with Tcl/Tk

112

Tk is a platform-independent GUI framework included in the Tcl package. By using the native
Tk widgets and applying the correct theme, the GUI elements can be made to assume the
native look and feel of the system on which they run, providing a polished appearance. Tk
provides a full complement of window controls such as buttons, text boxes, and labels. In
addition to the standard controls, Tk also includes several top-level dialog windows (for
example File Selection, Color Picker, and so on) and includes three methods of geometry
management. Additional third-party packages are available to provide expanded functionality
and additional controls, many of which are open source. Add to this the fact that almost all
features of a widget are customizable during design or runtime, and you are allowed to have
a GUI framework that is capable of creating dynamic applications that provide real-time user
interaction and feedback with minimal effort on the part of the developer.

As we are now venturing into the creation and manipulation of the GUI, it is more important
than ever to ensure the maintainability of your programs. The best method of doing this is by
writing your programs with a debugging mindset. What I mean by this is to keep in mind the
future requirements to read and understand your, when you design and write your programs.

Imagine the number of commands, windows and widgets (A widget is a Tk control; text box,
label, image, and so on) that are required for a standard data entry interface. Buttons, text
boxes, menus, labels, and all the other items necessary for interacting with the end user
each have a potentially large amount of coding involved. If you design and write with the
requirement of returning to the program, or the requirement for another programmer to
perform these actions, you can greatly simplify the maintenance of your programs.

I have found that I can address most, if not all of these concerns with a few simple actions.
First consider the syntax. Tk allows you the freedom to display widgets in a very free form
manner. However, by following a consistent method of widget creation you can speed up the
maintenance and greatly improve the readability of your coding. While there are no set rules,
try to follow a standardized methodology in how your widgets are defined.

As you include error handling in your programs keep the concept of maintainability in mind at
all times. Non-descriptive or worse, humorous, error messages and logs can not only result
in an unprofessional product, but create a situation where the upkeep of your program is
frustrating at best and downright embarrassing in some situations. I have seen an "Oops,
something went wrong!" error message on more occasions than I care to remember.

To access and control our widgets, we will need to activate the Window Shell (wish) in the
same manner as the Tcl Shell (tclsh). To access the wish shell, simply enter wish at the
command line. As soon as you enter the wish command, Tk will create a window on which
all the widgets will be displayed as in the following image:

Chapter 8

113

Any widget based on window commands will automatically update the window as soon as you
press Enter, unless of course there is an error. In the event of an error, it will be displayed
within the wish console. In the following sections, we will introduce widgets, writing to the wish
console, and basic windowing.

To complete the following examples, we will need to access wish from the command line.
Launch the wish shell appropriately for your operating system and follow the instructions
provided in each section.

Creating a widget
The basic method for creating a widget is the same regardless of the widget being created.
The differences are in the properties of the widget and if any action can be assigned to it. In
the following chapters, we will investigate specific widgets and their properties in depth, but
before we reach this point, I would like to introduce you to the button widget and some basic
features.

How to do it…
In the following example, we will create a button widget with some basic properties and a
single action. Enter the following commands:

1 % button .b –text "Exit" –command exit

2 % pack .b

Tk GUI Programming with Tcl/Tk

114

At this point, your window should look like the following:

How it works…
The first line instructs the wish shell to create a button named b, which is a child of the parent
window identified by the '.' character. This button will have a text label containing the word Exit
and it will execute the exit command when clicked. Now click on the button that you have
created. You will see that you have exited the wish program by activating the exit command.

There's more…
As I stated in the previous section, the basic method for creating a widget is the same
regardless of which widget is being created. To illustrate this, we will now create a simple
label containing some text. To accomplish this, enter the following commands:

1 % label .l –text "Label"

2 % pack .l

At this point, your window should look like the following:

In the button example, we created a widget by specifying the label widget and set its
text property to contain the string "Label".

Since version 8.5, Tk has included themed widgets. They are designed to mimic the
appearance of the native operating system and provide a consistent look and feel to our
applications.

These widgets are accessed by invoking the ttk:: namespace. For example, where we
created our button with the button command, we would access the themed widgets via
the ttk::button command, as opposed to the button command.

Chapter 8

115

Writing to the console
Although rarely used in live programs, the console is a valuable tool during initial
development. It allows us to direct debugging information easily, without requiring the
overhead of creating dialog boxes (covered later in this book). To allow us to display a
console on systems that have no console, or to reveal a hidden console, Tcl provides
the console command. The console command accepts four keywords as follows:

Keyword Interpretation
eval script Evaluate the script argument as a Tcl script within the console interpreter.
hide Hide the console.
show Display the console.
title string Query OR modify the console title.

The syntax is as follows:

console keyword argument

How to do it…
In the following example, we will hide the console and then create a set of buttons to
display the console and to write a message. Enter the following commands:

1 % button .b –text "Show Console" –command {console show}

2 % button .c –text "Message" –command {puts "My Message"}

3 % pack .b .c

4 % console hide

At this point, your window should look like the following:

Tk GUI Programming with Tcl/Tk

116

How it works…
The first line instructs the wish shell to create a button named b, which is a child of the
parent window identified by the '.' character. This button will have a text label containing
Show Console and it will execute the console show command when clicked. The
second line instructs the wish shell to create a button named c, which is a child of the
parent window identified by the '.' character. This button will have a text label containing
Message and it will execute the puts command when clicked. Next, we have used the
pack command (this command is a windowing geometry manager) to pack our buttons
followed by hiding the console.

Now click on the Show Console button. At this point, the console will be visible. Next we will
click on the Message button to display the desired text. Using this methodology you can easily
direct messages to the console and provide yourself and your end user with information.

Setting the attributes of the window
through window manager

The window manager is accessed from Tcl with the wm command. The wm command allows
you to interact with the window manager to control the appearance and geometry of the
window. The color, size, titles, and other attributes are controlled via this command. The wm
command accepts numerous keywords. The syntax is as follows:

wm keyword window arguments

How to do it…
In the following example, we will create a window and set the title and size to be displayed.
Enter the following commands:

1 % wm title . "My Window"

2 % wm geometry . 320x240

Chapter 8

117

At this point, your window should look like the following:

How it works…
The wm command alters the appearance of the window, based on the keywords and
options specified.

Creating an additional window
As you have seen simply invoking the wish shell automatically creates a window for our needs.
However, many programs require the creation of secondary windows. To assist us in this
process Tcl has provided the toplevel command. The toplevel command accepts several
options as listed next:

Standard options:
ff -borderwidth or -bd: Specifies a non-negative value indicating the width of

the 3D border to draw around the outside of the window

ff -cursor: Specifies the mouse cursor to be used for the window

ff -highlightbackground: Specifies the color to display in the traversal highlight
region when the window does not have the input focus

ff -highlightcolor: Specifies the color to use for the traversal highlight rectangle
that is drawn around the window when it has the input focus

ff -highlightthickness: Specifies a non-negative value indicating the width of the
highlight rectangle to draw around the outside of the window

ff -padx: Specifies a non-negative value indicating how much extra space to request
for the window in the X-direction

ff -pady: Specifies a non-negative value indicating how much extra space to request
for the window in the Y-direction

Tk GUI Programming with Tcl/Tk

118

ff -relief: Specifies the 3-D effect desired for the window. Acceptable values are
raised, sunken, flat, ridge, solid, and groove

ff -takefocus: Determines if the window accepts the focus during keyboard traversal

Window-specific options
ff -background: Specifies the background color to use when drawing.

ff -class: Specifies a class for the window.

ff -colormap: Specifies a color map to use for the window.

ff -container: The value must be a Boolean value. If true, it means that this window
will be used as a container in which some other application will be embedded (for
example, a Tk top level can be embedded using the -use option). The window will
support the appropriate window manager protocols for things such as geometry
requests. The window should not have any children of its own in this application.
This option may not be changed with the configure window command.

ff -height, height, Height: Specifies the desired height for the window.

ff -menu, menu, Menu: Specifies a menu widget to be used as a menu bar.

ff -screen: Specifies the screen on which the new window is placed.

ff -use, use, Use: This option is used for embedding. If the value is not an empty
string, it must be the window identifier of a container window, specified as a
hexadecimal string like the ones returned by the winfo id command. The top level
window will be created as a child of the given container instead of the root window for
the screen. If the container window is in a Tk application, it must be a frame or top
level window for which the -container option was specified. This option may not be
changed with the configure window command.

ff -visual, visual, Visual: Specifies visual information for the new window.

ff -width, width, Width: Specifies the desired width for the window.

Commands
ff pathname cget option: Returns the current value of the configuration option

given by option.

ff pathname configure option value option value: Query or modify the
configuration options of the window.

The syntax is as follows:
toplevel name options

Chapter 8

119

How to do it…
In the following example, we will create a window and set the title and size to be displayed
while still retaining the original window. Enter the following commands:

1 % toplevel .top -width 320 -height 240

2 % wm title .top "My Window"

At this point, your top level window should be displayed in addition to the console and
default window:

How it works…
By invoking the toplevel command, we have created a second window that can be
configured at creation (as with the size) or by using the wm command, as seen in setting
the title.

Destroying a window
In the first example, we configured our button widget to execute the exit command to close
the program. Unfortunately, the exit command closes the wish shell as well. In order to close
a window, as well as any individual widget, Tk provides the destroy command. The syntax is
as follows:

destroy window

The destroy command unloads the window specified, widget or multiples thereof and in the
case of the root window "." it will stop all currently running processes.

Tk GUI Programming with Tcl/Tk

120

How to do it…
In the following example, we will again create a window. However, this time we will add a
button widget to close our new window. Enter the following commands:

1 % toplevel .top

2 % button .top.b –text "Close Me" –command {destroy .top}

3 % pack .top.b

At this point, your window should look like the following:

How it works…
By clicking on the button labeled Close Me, we will call the destroy command to destroy the
new top level window. Do this now and you will observe that only the top level window closes
while the original window and wish shell stay resident.

There's more…
In addition to the destroy command, Tk provides the keyword withdraw for the
wm command. This keyword will cause the window specified to be withdrawn from the
screen as well as to be forgotten by the window manager. The syntax is:

wm withdraw window

The withdraw keyword of the wm command will cause the window specified to be withdrawn
from the screen and to be unmapped and forgotten by the window manager. Let's try our
previous sample and replace the destroy command with the withdraw command. Enter
the following commands:

1 % toplevel .top

2 % button .top.b –text "Close Me" –command {wm withdraw .top}

3 % pack .top.b

You will once again be presented with a window and button that appear identical to what we
saw previously, however the underlying method of removing the window has changed. Click
on the button labeled Close Me and you will see that the window is once again removed from
view. The difference is that we have withdrawn the window as opposed to destroying it.

Chapter 8

121

You may be asking yourself why you would use wm withdraw over destroy or vice versa.
The reason to choose withdraw is that it does not destroy the window. The window still
exists and can be redisplayed with the wm deiconify command. This will allow us to reuse
the same window numerous times without the overhead of completely creating it again from
the start. If we have no intention of accessing the window again within our program, then we
would use the destroy command.

For example, if we need to display a window containing an error message, we can reuse the
same window by simply changing the text displayed and using the wm deiconfiy command
to return it to view. Enter the following command:

wm deiconify .top

You will now see that our window has returned to view. Clicking on the Close Me button will
once again trigger the wm withdraw command.

Creating a custom dialog
Now let's pull all this together to create a custom dialog window. This is the same procedure
you will use numerous times as you develop your programs. Our custom dialog will simply
display a label widget and have a close button, but the basic methodology is the same that
you will utilize regardless of how complex your dialog needs may be.

How to do it…
In the following example, we again will create our custom dialog window. Enter the following
commands:

1 % toplevel .top

2 % label .top.msg –text "This is my Custom Dialog"

3 % button .top.ok –text "OK" –command {destroy .top}

4 % pack .top.ok –side bottom –fill x

5 % pack .top.msg –expand 1 –fill both

At this point, your window should look like the following:

Tk GUI Programming with Tcl/Tk

122

How it works…
The toplevel command has drawn the custom dialog window. We have added the widgets
(in this case, a label, and a button) to display the information and facilitate user interaction.
Click the OK button and once again you will remove our custom dialog window without closing
the wish shell or original window. The additional parameters passed to the pack command
control the specific placement of the widgets and will be addressed in following chapters.

9
Configuring and

Controlling Tk
Widgets

In this chapter, we will cover:

ff Creating a frame widget

ff Creating a label widget

ff Creating an entry widget

ff Creating a button widget

ff Creating a listbox widget

ff Creating an image

ff Creating a simple form

Introduction
In the following sections, we will explore some of the most commonly used Tk widgets. By
utilizing these widgets, you can easily create a data entry style form that includes not only
input and informative screen text, but also provides user interaction with the help of button
controls. In addition, the image command allows for the display of graphics to provide an
interface to the graphical data, as well as creating a polished look and feel, by displaying
images on the interface.

To complete the following examples, we will need to access wish from the command line.
Launch the wish shell as appropriate for your operating system and follow the instructions
provided in each section.

Configuring and Controlling Tk Widgets

124

The syntax for all widgets is as follows:

widget path keyword value

Create an element of the type specified by the command referenced in widget (frame, button,
and so on) with the path specified with one or more listed keyword and value pairs. Specific
keywords for each widget will be listed in the individual sections.

Creating a frame widget
The frame widget is used as a container for other widgets. Although it works in and of itself, it
accepts no input from the user nor does it provide feedback. It simplifies the layout of complex
screens and adds to the appearance of the final product. To add a widget to a frame, we use
the following syntax:

% 1 frame .f

% 2 button .f.b –text "My Button"

The naming hierarchy in Tcl is such that we prepend the name of the container. In this case,
a frame is prepended to the button to instruct the interpreter that the button is contained
within a container. A container can be a window, top level, canvas, or frame, as in the previous
example.

The keywords are described in the Tk main pages as follows:

Standard keywords Interpretation
-borderwidth or -bd Specifies a non-negative value indicating the width of the border

to draw around the outside of the window.
-cursor Specifies the mouse cursor to be used for the window.
-highlightbackground Specifies the color to display in the traversal highlight region

when the window does not have the input focus.
-highlightcolor Specifies the color to use for the traversal highlight rectangle

that is drawn around the window when it has the input focus.
-highlightthickness Specifies a non-negative value indicating the width of the

highlight rectangle to draw around the outside of the window.
-padx Specifies a non-negative value indicating how much extra space

to request for the window in the X-direction.
-pady Specifies a non-negative value indicating how much extra space

to request for the window in the Y-direction.
-relief Specifies the 3D effect desired for the window. Acceptable

values are raised, sunken, flat, ridge, solid, and
groove.

-takefocus Determines whether or not the window accepts the focus during
keyboard traversal.

Chapter 9

125

Standard keywords Interpretation
-background Specifies the background color to use when drawing.
-class Specifies a class for the window.
-colormap Specifies a color map to use for the window.
-container The value must be a Boolean value. If true, it means that

this window will be used as a container in which some other
application will be embedded (for example, a Tk top level can be
embedded using the -use keyword). The window will support
the appropriate window manager protocols for things such as
geometry requests. The window should not have any children
of its own in this application. This keyword may not be changed
with the configure window command.

-height Specifies the desired height for the window.
-visual Specifies visual information for the new window.
-width Specifies the desired width for the window.

How to do it…
In the following example, we again will create a frame widget with defined keywords to control
its appearance. Enter the following command:

1 % frame .f –width 160 –height 90 –borderwidth 5 –relief raised

.f

2 % pack .f

At this point, your window should look like the following:

How it works…
Based on the keywords provided, we have created a frame widget named .f, a width of 160
pixels, a height of 90 pixels, a border width of 5 pixels, and a raised border relief.

Configuring and Controlling Tk Widgets

126

Creating a label widget
The Tk label widget is used to display information that does not allow direct user input. This
information can be any alphanumeric information from simple labels for other controls to
large instructions to a user.

The keywords are described in the Tk main pages, as follows:

Standard keyword Interpretation
-activebackground Specifies the background color to be used when drawing the

element. The active background is the color used when the
mouse is over the element and when pressing the mouse
button will initiate an action.

-activeforeground Specifies the foreground color to be used when drawing the
element. The active foreground is the color used when the
mouse is over the element and pressing the mouse button will
initiate an action.

-anchor Specifies how the information (text, bitmap, and so on) is
displayed within the widget. Acceptable values are:
n – north, top
ne – northeast, top right
e – east, right-hand side
se – southeast, bottom right
s – south, bottom
sw – southwest, bottom left
w – west, left-hand side
nw – northwest, top right
center - center

-background or –bg Specifies the background color to be used when drawing the
element.

-bitmap Specifies a bitmap to display within the element.
-borderwidth or -bd Specifies a non-negative value indicating the width of the 3D

border to draw around the outside of the window.
-compound Specifies if the widget should display both text and bitmaps/

images simultaneously and the placement of where to display
the image in relation to the text. Acceptable values are: none,
bottom, top, left, right, or center (default).

-cursor Specifies the mouse cursor to be used for the window.
-disabledforeground Specifies the color to use when displaying a disabled element.
-font Specifies the font to use when drawing the element

Chapter 9

127

Standard keyword Interpretation
-foreground or –fg Specifies the normal foreground color to be used when drawing

the element.
-highlightbackground Specifies the color to display in the traversal highlight region

when the window does not have the input focus.
-highlightcolor Specifies the color to use for the traversal highlight rectangle

that is drawn around the window when it has the input focus.
-highlightthickness Specifies a non-negative value indicating the width of the

highlight rectangle to draw around the outside of the window.
-image Specifies the image to display within an element. The image

must first have been created using the image create
command.

-justify When multiple lines of text exist, this keyword specifies the
justification to apply within the element. Acceptable values
are: left, center, or right.

-padx Specifies a non-negative value indicating how much extra
space to request for the window in the X-direction

-pady Specifies a non-negative value indicating how much extra
space to request for the window in the Y-direction.

-relief Specifies the 3D effect desired for the window. Acceptable
values are raised, sunken, flat, ridge, solid, and
groove.

-takefocus Determines whether or not the window accepts the focus
during keyboard traversal.

-text Specifies a string to be displayed within the element.
-textvariable Specifies the name of a text variable that contains text to be

displayed within an element.
-underline Specifies the integer index of a character to be underlined,

zero-based.
-wraplength Specifies the maximum line length at which point the text will

be wrapped for those elements that support word wrap.
-height Specifies the desired height for the window.
-state Specifies the state of the widget. Acceptable values are

normal, active, and disabled.
-width, width, Width Specifies the desired width for the window.

How to do it…
In the following example, we will create a label with the desired text. Enter the following
command:

1 % label .l –text "My Label"

Configuring and Controlling Tk Widgets

128

.l

2 % pack .l

At this point, your window should look like the following:

How it works…
Based on the keywords provided, we have created a label widget named .l containing the
text My Label.

Creating an entry widget
Perhaps the most commonly used widget for collecting information from the end user is the
entry widget. The entry widget displays a single-line input area. The widget allows the end
user to enter or edit the string within the widget.

The keywords are as follows:

Standard keyword Interpretation
-background or –bg Specifies the background color to be used when drawing the

element.
-borderwidth or -bd Specifies a non-negative value indicating the width of the 3D

border to draw around the outside of the window.
-cursor Specifies the mouse cursor to be used for the window.
-exportselection Specifies if a selection within the widget should also be the X

selection. This keyword accepts a Boolean value such as true,
false, yes, no, 0, or 1.

-font Specifies the font to use when drawing the element.
-foreground or –fg Specifies the normal foreground color to be used when drawing

the element.
-highlightbackground Specifies the color to display in the traversal highlight region

when the window does not have the input focus.
-highlightcolor Specifies the color to use for the traversal highlight rectangle

that is drawn around the window when it has the input focus.

Chapter 9

129

Standard keyword Interpretation
-highlightthickness Specifies a non-negative value indicating the width of the

highlight rectangle to draw around the outside of the window.
-insertbackground Specifies the color to be used as the background color in the

insertion cursor.
-insertborderwidth Specifies a non-negative integer value to indicate the width of

the 3D border to draw around the insertion cursor.
-insertofftime Specifies a non-negative integer value to indicate the number

of milliseconds the insertion cursor should remain off in each
blink cycle. If set to 0 the insertion cursor does not blink.

-insertontime Specifies a non-negative integer value to indicate the number
of milliseconds the insertion cursor should remain on in each
blink cycle.

-insertwidth Specifies the width of the insertion cursor in pixels.
-justify This keyword is used to specify the justification to apply

within the input widget element. Acceptable values are left,
center, or right.

-relief Specifies the 3D effect desired for the window. Acceptable
values are raised, sunken, flat, ridge, solid, and
groove.

-selectbackground Specifies the background color to use for selected items.
-selectborderwidth Specifies the width of the 3D border to draw around selected

items.
-selectforeground Specifies the foreground color to use for selected items.
-takefocus Determines whether or not the window accepts the focus

during keyboard traversal.
-textvariable Specifies the name of a text variable that contains text to be

displayed within an element.
-xscrollcommand Specifies the command to be called during a scroll event. If this

value is not set, no command will be executed.
-height Specifies the desired height for the window.
-state Specifies the state of the widget. Acceptable values are

normal, active, and disabled.
-width Specifies the desired width for the window.

How to do it…
In the following example, we will create a label with the text desired. Enter the following
command:

1 % entry .e –borderwidth 3 –width 25

Configuring and Controlling Tk Widgets

130

.e

2 % pack .e

At this point, your window should look like the following:

How it works…
Based on the keyword and value pairs provided we have created an entry widget named .e
with a border width of 3 and a width of 25. Note that the width is based on the space required
to display 25 characters of the font specified or the default font and not on screen pixels.

Creating a button widget
Through the button the user is provided with a means to interact with the GUI and our
program. This is accomplished through the button's ability to manually execute commands
in your application. These actions may be default, as in the exit command, or custom
procedures that we have written.

The keywords are described in the Tk main pages as follows:

Standard Keywords Interpretation
-activebackground Specifies the background color to be used when drawing the

element. The active background is the color used when the
mouse is over the element and when pressing the mouse
button will initiate an action.

-activeforeground Specifies the foreground color to be used when drawing the
element. The active foreground is the color used when the
mouse is over the element and when pressing the mouse
button will initiate an action.

Chapter 9

131

Standard Keywords Interpretation
anchor Specifies how the information (text, bitmap, and so on) is

displayed within the widget. Acceptable vales are:
n – north, top
ne – northeast, top right
e – east, right-hand side
se – southeast, bottom right
s – south, bottom
sw – southwest, bottom left
w – west, left-hand side
nw – northwest, top right
center - center

-background or –bg Specifies the background color to be used when drawing the
element.

-bitmap Specifies a bitmap to display within the element.
-borderwidth or -bd Specifies a non-negative value indicating the width of the 3D

border to draw around the outside of the window.
-compound Specifies if the widget should display both text and bitmaps/

images simultaneously and the placement of where to display
the image in relation to the text. Acceptable values are:
none, bottom, top, left, right, or center (default).

-cursor Specifies the mouse cursor to be used for the window.
-disabledforeground Specifies the color to use when displaying a disabled element.
-font Specifies the font to use when drawing the element.
-foreground or –fg Specifies the normal foreground color to be used when drawing

the element.
-highlightbackground Specifies the color to display in the traversal highlight region

when the window does not have the input focus.
-highlightcolor Specifies the color to use for the traversal highlight rectangle

that is drawn around the window when it has the input focus.
-highlightthickness Specifies a non-negative value indicating the width of the

highlight rectangle to draw around the outside of the window.
-image Specifies the image to display within an element. The image

must first have been created using the image create command.
-justify When multiple lines of text exist, this keywords specifies the

justification to apply within the element. Acceptable values are:
left, center, or right.

-padx Specifies a non-negative value indicating how much extra
space to request for the window in the X-direction.

Configuring and Controlling Tk Widgets

132

Standard Keywords Interpretation
-pady Specifies a non-negative value indicating how much extra

space to request for the window in the Y-direction.
-relief Specifies the 3D effect desired for the window. Acceptable

values are raised, sunken, flat, ridge, solid, and
groove.

-repeatdelay Specifies the number of milliseconds a key or element must
be held down before it will auto-repeat.

-repeatinterval Used in conjunction with –repeatdelay, this keyword
specifies the interval between auto-repeats in milliseconds.

-takefocus Determines whether or not the window accepts the focus
during keyboard traversal.

-text Specifies a string to be displayed within the element.
-textvariable Specifies the name of a text variable that contains text to be

displayed within an element.
-underline Specifies the integer index of a character to be underlined,

zero-based.
-wraplength Specifies the maximum line length at which point the text will

be wrapped for those elements that support word wrap.
-command Specifies a Tcl command to be activated by a button.
-default Specifies the default state of the element (See state).
-height Specifies the desired height for the window.
-overrelief Specifies an alternate relief for a button to display during

mouse-over.
-state Specifies the state of the widget. Acceptable values are

normal, active, and disabled.
-width Specifies the desired width for the window.

How to do it…
In the following example, we will create a button with specific keywords designed to update the
text in a label widget. Enter the following commands:

1 % proc updater { } {

	 .l configure -text "Updated"

}

2 % label .l -width 70 -borderwidth 3 -text Original

.l

3 % button .b -text Update -command updater

Chapter 9

133

.b

4 % pack .l -side top

5 % pack .b -side bottom

At this point, your window should look like the following:

How it works…
Based on the keywords provided, we have created a button widget named .b with the text set
to Update tied to our procedure named updater. By clicking the button, we configure the
text displayed in the label named .l to the string Updated.

Creating a listbox widget
The Tk listbox widget provides a powerful tool for collecting and displaying string data. Each
entry is displayed on an individual line. Elements are added or deleted using the commands
inherent to the widget. For screen size consideration, the listbox supports both horizontal and
vertical scrolling.

The keywords are described in the Tk main pages as follows:

Standard Keyword Interpretation

-background or –bg Specifies the background color to be used when drawing the
element.

-borderwidth or -bd Specifies a non-negative value indicating the width of the 3D
border to draw around the outside of the window.

-cursor Specifies the mouse cursor to be used for the window.
-disabledforeground Specifies the color to use when displaying a disabled element.
-exportselection Specifies if a selection within the widget should also be the X

selection. This keyword accepts a Boolean value such as true,
false, yes, no, 0, or 1.

Configuring and Controlling Tk Widgets

134

Standard Keyword Interpretation
-font Specifies the font to use when drawing the element.
-foreground or –fg Specifies the normal foreground color to be used when drawing

the element.
-highlightbackground Specifies the color to display in the traversal highlight region

when the window does not have the input focus.
-highlightcolor Specifies the color to use for the traversal highlight rectangle

that is drawn around the window when it has the input focus.
-highlightthickness Specifies a non-negative value indicating the width of the

highlight rectangle to draw around the outside of the window.
-relief Specifies the 3D effect desired for the window. Acceptable

values are raised, sunken, flat, ridge, solid, and
groove.

-selectbackground Specifies the background color to use for selected items.
-selectborderwidth Specifies the width of the 3D border to draw around selected

items.
-takefocus Determines whether or not the window accepts the focus

during keyboard traversal.
-xscrollcommand Specifies the command to be called during a scroll event.

If this value is not set no, command will be executed.
-yscrollcommand Specifies the command to be called in the event of a scroll

event. If this value is not set no, command will be executed.
-activestyle Specifies the style in which the listbox should be drawn.

Acceptable values are: dotbox, none, or underline.
Windows default is underline, while dotbox is the default
for other operating systems.

-height Specifies the desired height for the window.
-listvariable Specifies the name of a variable the value of which will be

displayed inside the listbox. If the value changes, the listbox
will update automatically.

-selectmode Specifies the style available for selecting items within a listbox.
Acceptable values are: single, browse, multiple or extended.
The default is value is browse.

-state Specifies the state of the widget. Acceptable values are
normal, active, and disabled.

-width Specifies the desired width for the window.

Chapter 9

135

Most widgets have a specific set of commands associated with them. The commands
associated with the listbox are presented next, as we will be using the listbox command in
the following example. For specific widget commands, please refer to the main pages for
each widget.

Commands Interpretation
widgetname activate
index

Sets the active element to the one referenced by index.

widgetname bbox index Returns a list of four numbers describing the bounding box of
the text within the listbox referenced by index.

widgetname cget
keyword

Returns the configuration setting referenced by keyword.

widgetname configure
keyword value…

Configures the keyword or keywords to the value provided.
If no value is provided, this command will return a list
containing the keyword and value of the one named keyword.

widgetname
curselection

Returns a list containing the numeric indices of all the selected
elements contained within a listbox.

widgetname delete
first last:

Deletes one or more elements as referenced by first and
last. If no value for last is provided, this will delete a single
element.

widgetname get first
last

Returns the contents of the list as referenced by first and
last. If no value for last is provided, the value of a single
element is returned.

widgetname index
index

Returns the integer value corresponding to index. If the value
for index is end, this will return a count of all the elements.

widgetname insert
index element…

Inserts zero or more elements after the index referenced
by index. If the value for index is end, the data is inserted
after the last element.

widgetname itemcget
index keyword

Returns the item configuration setting referenced by keyword.

widgetname
itemconfigure index
keyword value…

This command will query or modify the configuration settings
for an item referenced by index within the listbox.
If no value is specified, it will return a list containing the
current keyword settings. The supported keywords
are: -backgroundcolor, -foregroundcolor,
-selectbackground, and -selectforeground.

widgetname nearest y Based on the coordinates referenced by y, return the visible
index of the nearest listbox element.

Configuring and Controlling Tk Widgets

136

Commands Interpretation
widgetname scan
keywords arguments

Implements scanning of a listbox with one of two forms,
based on the keyword referenced. They are:
mark x y: Records the current x and y associated with a
mouse button press event. Used in conjunction with the scan
dragto command below.
dragto x y: This command will compute the difference
between x and y of the scan mark command and the x and
y of the dragto command. It will then adjust the view by
ten times the difference between the coordinates giving the
appearance of rapidly dragging the list.
widgetname see index: Adjusts the view within the
listbox to ensure the element referenced by index is
visible.
widgetname selection keyword argument: This
command will adjust the selected element within the listbox
based on the keyword provided. The words are as follows:
anchor index: Sets the selection anchor to the element
referenced by index. If no element exists the index
referenced the closed element is anchored.
clear first last: Deselects any elements between
first and last.
includes index: Returns a 1 if the element referenced by
index is selected. If not selected, this command will return a
0.
set first last: Selects all elements that exist within the
range referenced by first and last without affecting the
selection of other elements that exist outside of the range.

widgetname size Returns a decimal string containing a count of the total number
of elements contained within a listbox.

Chapter 9

137

Commands Interpretation
widgetname xview
arguments

This command is used to query or re-orient the horizontal
position of the information contained within the listbox
window. If no arguments are provided, this command returns a
list containing two values representing a real fraction between
0 and 1 that describes the horizontal span currently visible
within the window. For example, if the first item is .3 and the
second item is .4, then 30% of the list is off-screen to the left,
40% of the list is off-screen to the right, and 30% is visible. The
acceptable values are:
index: Adjust the view so that the character referenced by
index is displayed at the left side of the window.
moveto fraction: Adjust the view so that the percentage
referenced by fraction is off-screen to the left.
scroll number mode: Shift the view in the window left
or right by the amount referenced by number in one of the
acceptable modes. Acceptable modes are: units (size of
character) or pages (screenfuls). If the value contained within
number is negative, then characters further left become
visible; if it is positive, characters further right become visible.

widgetname yview
arguments

This command is used to query or reorient the vertical position
of the information contained within the listbox window. If no
arguments are provided this command returns a list containing
two values representing a real fraction between 0 and 1 that
describe the vertical span currently visible within the window.
For example if the first item is .3 and the second item is .4 then
30% of the list is off-screen to the top, 40% of the list is off-
screen to the bottom and 30% is visible. The acceptable values
are:
index: Adjust the view so that the character referenced by
index is displayed at the top of the window.
moveto fraction: Adjust the view so that the percentage
referenced by fraction is off-screen to the top.
scroll number mode: Shift the view in the window up
or down by the amount referenced by number in one of the
acceptable modes. Acceptable modes are: units (lines) or
pages (screenfuls). If the value contained within number is
negative then characters become visible earlier; if positive
character become visible later.

Configuring and Controlling Tk Widgets

138

How to do it…
In the following example we will create a listbox with specific keywords and add items to the
list programmatically, using the insert command of the listbox widget. Enter the following
commands:

1 % listbox .l -borderwidth 3 -height 10 -width 25

pack .l

.l

2 % set x 1

1

3 % while {$x < 10} {

	 .l insert end $x;

	 incr x;

}

At this point, your window should look like the following:

How it works…
Based on the keywords provided we have created a listbox widget named .l with a border
width of 3, height of 10 and width of 25. Using the listbox insert command, we have
populated the listbox with the desired data.

Chapter 9

139

Creating an image
Before you can display a graphic in Tk, you must first create a Tk image. To accomplish this,
Tk provides the image command. This command allows you to create, delete, and query the
keywords for any of the supported image types. The built-in image types are bitmap (two color
graphics) and photo. The photo types as shipped in the base distribution are PPM/PGM and
GIF.

Based on the keyword used the image command takes several syntactic forms. The syntax
and keywords are as follows:

image keyword path

Keyword Interpretation
create Creates an image and a command with the same name.
delete Deletes the named image.
height Returns a decimal string containing the height of the image in pixels.
inuse Returns a Boolean value indicating if the named image provided is currently

in use.
names Returns a list containing the names of all created images.
type Returns the type of image as referenced by name.
types Returns a lost containing all valid image types.
width Returns a decimal string containing the width of the image in pixels.

Getting ready
To complete the following example you will need to have a GIF file to select. Please locate the
file tcllogo.gif in your Tcl installation in the demos/Tk8.5/images directory and copy it
into your working path.

How to do it…
In the following example we will create an image and display it within a label. Enter the
following commands:

1 % image create photo image1 –file tcllogo.gif

.image1

2 % label .l –image image1

.l

3 % pack .l

Configuring and Controlling Tk Widgets

140

At this point, your window should look like the following:

How it works…
In the first step, we have created a Tk image of the type photo that references the file
tcllogo.gif. Next, we have created a label named .l that contains our image.

Creating a simple form
As you can see this selection of widgets allows for a great deal of flexibility and provides
enough features to address most of your GUI needs. To illustrate this we will now create
a simple form.

How to do it…

In the following example, we will create a listbox with specific keywords and add items
to the list programmatically. Using the text editor of your choice create a file named
form.tcl containing the following text.

Load the TK package
package require Tk

#Procedure to add to the listbox
proc list_add { } {
	 set s [.e get]
	 .l insert end $s
	 .e delete 0 end
}

Create image and widgets
image create photo logo -file tcllogo.gif

Chapter 9

141

label .logo -image logo
listbox .l -borderwidth 3 -width 25 -height 10
entry .e -width 25
frame .f -width 25 -borderwidth 2 -relief groove
button .f.update -text "Add" -command list_add
button .f.exit -text "Exit" -command exit

Pack the widgets
pack .logo -side top -anchor w
pack .l -side top -anchor e
pack .f.update -side left
pack .f.exit -side right
pack .f -side bottom -padx 2 -pady 2 -fill both
pack .e -side bottom

Now access your program by calling it appropriately for your system. For example:

tclsh85 form.tcl

At this point, your window should look like the following:

Enter the data into the entry box and click the button marked Add to update the listbox.

Configuring and Controlling Tk Widgets

142

How it works…

The list_add procedure gets the string contained in entry widget e with the entry
widget's get command and assigns it to a variable s. This variable value is inserted into
the listbox, after which the entry widget is cleared.

10
Geometry

Management

In this chapter, we will cover the following topics:

ff Controlling layout with the pack command

ff Controlling layout with the grid command

ff Combining pack and grid

ff Creating an address book interface

Introduction
For the purpose of this chapter the term geometry management refers to the layout and the
design of the interface and not the wm command. The GUI is your primary method of interacting
with the end user and, as such, is your opportunity to make a good first impression.

Although the specifics of GUI design are not directly covered in this chapter, we need to keep
in mind that a poorly designed and executed interface may not only result in frustration for the
end user, but also may actually result in the end user looking elsewhere for a solution.

I am sure that you have seen interfaces with bizarre combinations of colors. While they may
be the developer's favorite colors in the world, they are not necessarily the best choice for an
application. Add in a poor selection for the font colors and you can rapidly create a GUI that is
not only shocking to the eye, but also utterly unreadable.

Geometry Management

144

There are many sources available that cover GUI design. Perhaps the most readily available
resource though is your own computer. Look at the programs installed on your own system.
One thing that you will notice is a similarity in design, color, and layout. Menus at the top,
status bar at the bottom, work area easily identifiable, and buttons logically labeled. Now
note the coloration. Most programs default to the system default colors as selected by the
user. What better way to ensure that the end user is comfortable with the colors selected
than using the ones that they have chosen? This not only provides the end user with a level
of comfort, but also requires no effort on your part, as this is the default. Additionally, Tk
will automatically emulate the window decorations (Frame, Maximize, Minimize, and Close
buttons) of the operating system. This ensures that the basic look and feel of your application
complies with the system that it is operating on.

Unless stated otherwise, we will need to access wish from the command line to complete the
following examples. Launch the wish shell appropriately for your operating system and follow
the instructions provided in each section.

Controlling layout with the pack command
Tk provides three methods of geometry management—pack, grid, and the rarely used
place command. We will be covering the pack and grid commands. The pack command
is the basic geometry manager for Tk. When invoked, the pack command instructs the packer
to arrange the widgets as specified. The packer is a geometry manager that arranges the
elements of a window in order around the edges. In the following examples, we will see how
to use the pack command.

Based on the options provided when invoked the pack command assumes several forms.
The syntactical options are as follows:

Chapter 10

145

Option	 Interpretation

pack widget widget options Behaves in the same manner as pack configure.
pack configure widget
widget options:

This command accepts one or more widgets and pairs of
options (if desired) to manage the pack.
-after parent: The parent provided must reference
a valid Tk widget. The widget being packed will be loaded
after the widget specified.
-anchor position: The widget will be anchored to
the position specified. Acceptable positions are n, ne, e,
se, s, sw, w, nw, or center (default).
-before parent: The parent provided must reference
a valid Tk widget. The widget being packed will be loaded
before the widget specified.
-expand boolean: This option instructs the packer to
consume the extra space available within the container.
Boolean must contain a valid value.
-fill method: This option instructs the packer to
stretch the widget. Acceptable methods are:
none: Provide the dimensions plus any internal padding,
as specified by –padx or –pady (default).
x: Stretch the widget to fill all available space along the
x axis.
y: Stretch the widget to fill all available space along the
y axis.
both: Stretch the widget to fill all available space along
both the x and y axis.
-in widget: Insert the widget at the end of the
packing order for the widget specified.
-ipadx value: Specifies the amount of internal
horizontal padding to utilize. Value must be a valid
screen distance (default value is 0).
-ipady value: Specifies the amount of internal vertical
padding to utilize. Value must be a valid screen distance
(default value is 0).
-side location: Specifies which side of the container
to pack against. Acceptable values for location are top
(default), bottom, left, and right.

pack forget widget widget Remove one or more widgets from the container.
pack info widget Returns a list of the current configuration for the widget

specified.

Geometry Management

146

Option	 Interpretation
pack propagate master
boolean

When invoked with a positive Boolean value propagation
for master. If invoked with a false value, propagation is
disabled.

pack slaves master Returns a list of all slave widgets contained within the
packing order for master.

 How to do it...
In the following example, we will create several labels and arrange them using the pack
command. Enter the following commands:

 1 % label .top -background red -text TOP

.top

 2 % label .bottom -background red -text BOTTOM

.bottom

 3 % label .left -background yellow -text LEFT

.left

 4 % label .right -background yellow -text RIGHT

.right

5 % pack .top -side top -fill x

6 % pack .bottom -side bottom -fill x

7 % pack .left -side left -fill y

8 % pack .right -side right -fill y

After you resize the window to expose the entirety of the labels, your window should look like
the following screenshot:

Chapter 10

147

How it works…
The first statement requests that .top be put at the top of the window. The pack command
allocates the top of the window to this widget, and makes it fill the top in the x direction.
The next statement does the same for the bottom of the window. For .left, it takes any
remaining space on the left that is not taken up by the .top and .bottom widgets and
allocates that to the .left widget in the y axis. The next statement does the same for the
.right widget. While this is a very basic example, I would like to point out some details
in regard to the order in which the labels were packed. Note that the .top and .bottom
labels are packed prior to the .left and .right labels. As such, they fill the total top and
bottom of the window, while the left and right are contained within the confines of the top and
bottom. Had we packed .left and .right first, the x fill regions would be bounded by the y
regions, as shown in the following image. This illustrates the importance of correct ordering of
the packing of widgets.

Controlling layout with the grid command
Care must be taken in packing the widgets to ensure that the desired layout is obtained. The
pack command provides a convenient method of geometry management for simple forms.
However, for more complex forms, the grid command allows you to manage your widget
placement by creating and configuring rows and columns for widget placement.

To illustrate this better, think of the grid as being similar to a table or a spreadsheet, as it
contains rows and columns, as follows:

Column 0 Column 1 Column 2
Row 0
Row 1
Row 2

Geometry Management

148

Please note that the column and row numbering are zero-based. This is the grid layout that we
will use in the following example.

Based on the options provided, when invoked, the grid command assumes several forms.
The syntactical options are as follows:

Option Interpretation
grid widget row column Behaves in the same manner as grid configure.
grid anchor parent anchor Controls placement of the grid itself. Acceptable values

are n, ne, e, se, s, sw, w, or nw (default).
grid bbox parent column1
row1 column2 row2

When no arguments are provided this command will
return the size of the bounding box in pixels as a four
digit integer. The first two are the pixel offset for the
top-left corner from the parent. The second two are the
size of the bounding box (width and height). If a single
column and row are provided, the bounding box for the
individual cell is returned. If two column and row pairs
are provided the values for the bounding box spanning
the rows is returned.

grid columnconfigure
parent column option value

Query or set the properties of the column referenced for
the parent provided. The valid options are:
-minsize: Set the minimum size for the column.
-weight: Set the relative weight for assigning extra
space within the column. A value of 0 indicates that the
column will not deviate from its defined size. A positive
value determines the rate at which the column will
increase in size.
-uniform: When a value is supplied, the column is
placed into a group with other defined columns. All the
members of the group have their space allocated in
strict proportion to their –weight value.
-pad: Specifies the number of screen units to be added
to the largest widget contained within a column. If no
value is specified the current value is returned. If only
the parent and column are provided all current settings
are returned in a list containing option/value pairs.

Chapter 10

149

Option Interpretation
grid configure widget
options

Accepts one or more widgets followed by option/value
pairs to configure. Acceptable values are:
-column n: Insert the widget such that it occupies
the column referenced by n. If this option is not utilized
the widget is placed to the right of the previous widget
configured by the command.
-columnspan n: Insert the widget such that it
occupies n columns.
-in parent: Place the widget within the parent
referenced. For example, placing a button within a
frame.
-ipadx value: Specifies the amount of internal
horizontal padding to utilize. Value must be a valid
screen distance (default value is 0).
-ipady value: Specifies the amount of internal
vertical padding to utilize. Value must be a valid screen
distance (default value is 0).
-row n: Insert the widget such that it occupies the row
referenced by n. If this option is not utilized the widget is
placed on the same row as the last widget configured by
the command.
-rowspan n: Insert the widget such that it occupies n
rows.
-sticky style: Used to configure placement of the
widget within a cell in the event the cell is larger than
the widget. Style accepts a string containing 0 or more
of the n, s, e, or w characters as well as optional spaces
or commas. If ns or ew are specified, the widget will be
stretched to occupy the entire height or width of the cell
as appropriate. Default placement is at the center of the
cell.

grid forget widget widget Remove one or more widgets from the grid.
Configuration values for the widget specified are
discarded. If the widget is then returned to the grid all
desired configurations must be specified.

grid info widget Returns a list containing the option/value pairs for the
current configuration of the widget referenced.

grid location parent x y Based on the screen location as referenced by x and y
this command returns the column and row number. For
locations above and left of the grid a -1 is returned.

Geometry Management

150

Option Interpretation
grid remove widget widget Remove one or more widgets from the grid.

Configuration values for the widget specified are not
discarded. If the widget is then returned to the grid, all
the desired configuration is reapplied.

grid size parent Returns the size of the grid as column the row.
grid slaves master option
value

If no options are provided, this command will return
a list of all widgets contained within master. The
acceptable values for option are –row or –column. If
these values are provided, only those widgets in the row
or column referenced are returned.

How to do it…
In the following example, we will create several widgets and arrange them using the grid
command. Enter the following commands:

1 % entry .e -width 10

.e

2 % label .1 -text ONE

.1

3 % label .2 -text TWO

.2

4 % label .3 -text THREE

.3

5 % button .b -text Exit -command exit

.b

6 % grid .e -row 0 -column 2

7 % grid .1 -row 1 -column 0

8 % grid .2 -row 1 -column 1

9 % grid .3 -row 1 -column 2

10 % grid .b -row 2 -column 2

Chapter 10

151

At this point, your window should look like the following:

How it works…
Based on the placement instructions passed to the grid command, we have placed our
widgets at various locations within the grid as illustrated in the following table:

Column 0 Column 1 Column 2

Row 0 Entry Widget

Row 1 Label Label Label
Row 2 Button

Combining pack and grid
It is not possible to combine pack and grid within the same container. If you attempt this the
geometry managers will both attempt to control the screen geometry resulting in the screen
failing to load. If you choose to combine the two, you may use pack to display a container (for
example, a frame), which then utilizes the grid command to place the widgets within a grid
located within the frame.

How to do it…
In the following example, we will create a frame and load it using the pack command. We
will then arrange several widgets using the grid command identical to the previous example
whose parent is the frame. Enter the following commands:

1 % frame .f –borderwidth 3 –relief raised

.f

2 % entry .f.e -width 10

.f.e

3 % label .f.1 -text ONE

Geometry Management

152

.f.1

4 % label .2 -text TWO

.f.2

5 % label .f.3 -text THREE

.f.3

6 % button .f.b -text Exit -command exit

.f.b

7 % pack .f

8 % grid .f.e -row 0 -column 2

9 % grid .f.1 -row 1 -column 0

10 % grid .f.2 -row 1 -column 1

11 % grid .f.3 -row 1 -column 2

12 % grid .f.b -row 2 -column 2

At this point, your window should look like the following:

How it works…
We are able to combine the two geometry managers due to the fact that the container of the
frame is the window itself, while the container of the grid is the frame. In this manner, the
geometry managers are not competing for control of the geometry.

Creating an address book interface
In the following example, we will create an address book interface containing button, entry,
label, and frame widgets. This will be the basis for the final application and illustrate how to
use the grid and pack commands to create a more complex layout. The interface design is
as follows:

Chapter 10

153

Column 0 Column 1 Column 2 Column 3

Row 0 First Name Entry Last Name Entry Photo Label
Row 1 First Name Label Last Name Label
Row 2 Address Entry
Row 3 Address Label
Row 4 City Entry State Entry Zip Entry
Row 5 City Label State Label Zip Label
Row 6 Phone Entry

Row 7 Phone Label Photo Label

Row 8 Previous Button Next Button

Row 9 Add Button Save Button Delete Button Exit Button

Getting ready
To complete the following example, open the text editor of your choice and enter the following
text. Then save the file in your path with the name address_book.tcl.

Load the Tk Package
package require Tk

Main Frame
frame .main -borderwidth 1 -relief solid -padx 10 -pady 10

Entry Widgets
entry .main.efirst -width 25
entry .main.elast -width 25
entry .main.eaddress -width 50
entry .main.ecity -width 25
entry .main.estate -width 3
entry .main.ezip -width 5
entry .main.ephone -width 25

Label Widgets
label .main.first -text "First Name"
label .main.last -text "Last Name"
label .main.address -text "Address"
label .main.city -text "City"
label .main.state -text "ST"
label .main.zip -text "Zip"
label .main.phone -text "Phone"
label .main.photo -text "Photo" -width 15

Frame for Photo Widget

Geometry Management

154

label .main.picture -width 120 -height 160 -borderwidth 3 -background
black

Button Widgets
button .main.previous -text "Previous" -width 15
button .main.next -text "Next" -width 15
button .main.add -text "Add" -width 15
button .main.save -text "Save" -width 15
button .main.delete -text "Delete" -width 15
button .main.exit -text "Exit" -width 15 -command exit

Pack Command
pack .main

Grid command
grid .main.efirst -row 0 -column 0 -sticky nw
grid .main.elast -row 0 -column 1 -columnspan 2 -sticky nw
grid .main.picture -row 0 -column 3 -rowspan 7 -sticky nw
grid .main.first -row 1 -column 0 -sticky nw
grid .main.last -row 1 -column 1 -columnspan 2 -sticky nw
grid .main.eaddress -row 2 -column 0 -columnspan 3 -sticky nw
grid .main.address -row 3 -column 0 -columnspan 3 -sticky nw
grid .main.ecity -row 4 -column 0 -sticky nw
grid .main.estate -row 4 -column 1 -sticky nw
grid .main.ezip -row 4 -column 2 -sticky nw
grid .main.city -row 5 -column 0 -sticky nw
grid .main.state -row 5 -column 1 -sticky nw
grid .main.zip -row 5 -column 2 -sticky nw
grid .main.ephone -row 6 -column 0 -columnspan 2 -sticky nw
grid .main.phone -row 7 -column 0 -columnspan 2 -sticky nw
grid .main.photo -row 7 -column 3 -sticky nw
grid .main.previous -row 8 -column 0 -sticky ne
grid .main.next -row 8 -column 2 -sticky nw
grid .main.add -row 9 -column 0 -sticky ne
grid .main.save -row 9 -column 1 -sticky nw
grid .main.delete -row 9 -column 2 -sticky nw
grid .main.exit -row 9 -column 3 -sticky nw

How to do it…
Launch your program by calling the program from the Tcl shell, as appropriate for your
platform:

tclsh85 addressbook.tcl

Chapter 10

155

At this point, your window should look like the following screenshot:

How it works…
We have used the pack command to display the .main frame. By assigning the widgets
proper rows and columns as defined in our interface design, we obtained a form that
matches the desired layout.

11
Using Tcl Built-in
Dialog Windows

In this chapter, we will cover:

ff Displaying a message box

ff Displaying a confirmation dialog

ff Displaying the color picker

ff Displaying the directory dialog

ff Displaying the file selection dialog

ff Selecting a directory and file

Introduction
Thankfully, we are not limited to dialog windows of our own creation. Tk provides a full suite
of predefined dialog windows to assist us in the more common tasks of collecting, notifying,
and general interactions with the end user. These dialog windows allow us to rapidly create
an interface that is both professional in appearance and familiar in functionality with
minimum effort. As with all Tk-based windows, the appearance of the native OS is duplicated
automatically.

Although you are displaying a full graphical window, the dialog windows are invoked in the same
manner as a Tcl command. As such, to assign the return values from the various dialog windows
to a variable, you must utilize the set command in conjunction with the dialog commands.

Unless otherwise stated, we will need to access wish from the command line to complete the
following examples. Launch the wish shell appropriately for your operating system and follow
the instructions provided in each section.

Using Tcl Built-in Dialog Windows

158

Displaying a message box
The tk_messageBox command displays a message window with a defined message, an
icon and a collection of command buttons and waits on the user's response. The return value
provided is the symbolic value (see the –type option in the following table) assigned to the
button selected.

The syntax is as follows:

tk_messageBox option value …

The tk_messageBox command accepts one or more option value pairs as detailed
below. If no option value pairs are provided the command will display an empty window with
an OK button.

Option Interpretation
-default name Designates which button is the default.
-detail string Displays a secondary message to the message provided by the –

message option.
-icon name Sets the icon to display, based on the value referenced by name.

Acceptable values are: error, info (default), question, or
warning.

-message string Sets the message to be displayed
-parent window Specifies the parent of the dialog. The dialog is displayed on top of

the parent.
-title string Sets the text to be displayed in the dialog title bar.
-type name Specifies the button set to be utilized by the dialog. Acceptable

values are:
abortretryignore: Displays three buttons with the symbolic
names abort, retry, and ignore.
ok: Displays a single button with the symbolic name ok.
okcancel: Displays two buttons with the symbolic names ok and
cancel.
retrycancel: Displays two buttons with the symbolic names retry
and cancel.
yesno: Displays two buttons with the symbolic names yes and no.
yesnocancel: Displays three buttons with the symbolic names yes,
no, and cancel.

Chapter 11

159

How to do it…
In the following example, we will display a message box and assign the return value to a
named variable. Enter the following commands:

1 % set response [tk_messageBox –message "Confirm Exit" –icon question –
type okcancel –detail "Please select \"OK\" to exit"

You should now see the following dialog displayed.

Note that in your shell window, the input line is no longer active and if this dialog were being
displayed from an application, we could no longer interact with any other widgets in the
same application. This is due to the fact that the application (in this case, the wish shell) is
awaiting a response. Click on the OK button and you will notice that the symbolic value of ok
is displayed on the command line and you can now interact with your shell. Enter the following
command to confirm that the symbolic value was assigned to the named variable:

2 % puts $response

ok

How it works…
Based on the option value pairs provided, Tk has displayed a tk_messageBox with the
messages and buttons desired. On completion, the return value of the button selected was
assigned to a named variable.

Displaying a confirmation dialog
The tk_dialog command displays a modal message window and awaits the user's
response. The value returned provides the index of the button selected: 0 for the leftmost;
with the value increasing by 1 for each additional button. If the dialog is destroyed prior to
the user making a selection, the return value is -1. All arguments must be provided.

Using Tcl Built-in Dialog Windows

160

The syntax is as follows:

tk_dialog window title text bitmap default string…

Option Interpretation
window Name to assign to the dialog (for example confirmDialog).
title Sets the text to be displayed in the dialog title bar.
text Sets the message to be displayed
bitmap Sets the bitmap (icon) to be displayed in the top of the dialog to the left of

the text. If an empty string is passed no bitmap will be displayed.
default Designates which button is default. This may have an effect on the visual

appearance of the buttons and can also be tied to the <return> key.
string Sets the text to display in each button from left to right. One button will be

displayed for each string provided.

How to do it…
In the following example, we will display a dialog box and assign the return value to a named
variable. Enter the following commands:

1 % set response [tk_dialog .my_dialog "Confirmation" "Do you wish to
proceed?" "" 0 Yes No "Maybe Later"]

You should now see the following dialog displayed, as shown next:

Note that in your shell window the input line is no longer active. This is due to the fact that
the application (in this case the wish shell) is awaiting a response. Click on the No button
and you will notice that the return value of 1 is displayed on the command line and you can
now interact with your shell. Enter the following command to confirm that the index value was
assigned to the named variable:

2 % puts $response

1

Chapter 11

161

How it works…
Based on the option value pairs provided, Tk has displayed a tk_dialog with multiple
buttons, each displayed with defined string values. On completion, the dialog has returned
the index value of the button selected and that value was assigned to a named variable.

Displaying the color picker
The tk_chooseColor command displays a dialog window that allows the user to select a
color. The actual appearance of the color picker will vary, based on the display manager in
use. The return hexadecimal value of the color selected is returned. If the user clicks on the
Cancel button, an empty string is returned.

The syntax is as follows:

tk_chooseColor option value …

The tk_chooseColor command accepts one or more option value pairs as detailed in
the following table. If no option value pairs are provided, the command will display a dialog
with the default values.

Option Interpretation
-initialcolor color Sets the starting color to display in the color picker.
-parent window Specifies the parent of the dialog. The dialog is displayed

on top of the parent.
-title string Sets the text to be displayed in the dialog title bar.

How to do it…
In the following example, we will create a frame and then display a color picker dialog and
assign the return value to our frame as the background color. Enter the following commands:

1 % frame .f –width 250 –height 250 –borderwidth 3 –background white

.f

2 % pack .f

3 % .f configure –background [tk_chooseColor –initialcolor gray –title
"Pick A Color"]

Using Tcl Built-in Dialog Windows

162

You should see the Tk window with the frame .f displayed following the second command
line entry. After you enter the third command line, you will see the color picker dialog (refer to
the next screenshot):

Note that in your shell window, the input line is no longer active. This is due to the fact that the
application (in this case, the wish shell) is awaiting a response. Select a color and click on the
OK button and you will see that the background color of your frame has been changed to the
color selected.

How it works…
Based on the option value pairs provided, Tk has displayed a tk_chooseColor dialog. When
a color has been selected, the value is returned; in this case, to the configure command for
the frame widget.

Displaying the directory dialog
The tk_chooseDirectory command displays a dialog window that allows the end user
to select a directory, as the name implies. The return value is the absolute directory path
selected or an empty string (if the Cancel button is clicked).

The syntax is as follows:

tk_chooseDirectory option value …

Chapter 11

163

The tk_chooseDirectory command accepts one or more option value pairs as
detailed below. If no option value pairs are provided, the command will display the default
values for the dialog.

Option Interpretation
-initialdir directory Sets the initial directory to display. If not set, the current

working directory will be displayed.
-mustexist boolean Specifies if the user may specify a non-existing directory.
-parent window Specifies the parent of the dialog. The dialog is displayed on

top of the parent.
-title string Sets the text to be displayed in the dialog title bar.

How to do it…
In the following example, we will display a message box and assign the return value to a
named variable. Enter the following commands:

1 % set response [tk_chooseDirectory -initialdir ~ -title "Select a
Directory"]

You should now see a similar dialog displayed, based on your display manager.

Using Tcl Built-in Dialog Windows

164

Note that in your shell window, the input line is no longer active. This is due to the fact that the
application (in this case, the wish shell) is awaiting a response. Select a directory (in this case
I have selected my home directory) and click on the OK button and you will notice that full
path for the directory selected is displayed. Enter the following command to confirm that the
symbolic value was assigned to the named variable:

2 % puts $response

C:/Documents and Settings/Bert

How it works…
Based on the option value pairs provided, Tk has displayed a tk_chooseDirectory
with the messages and buttons desired. On completion, the return value was assigned
to a named variable.

Displaying the file selection dialog
The tk_getOpenFile and tk_getSaveFile commands both display a dialog window
that allows the end user to select a file to either be opened or saved. The tk_getOpenFile
is used for selecting an existing file only. The tk_getSaveFile is similar to the Windows
Save As dialog box and allows a user to specify a name or select an existing file. If an existing
file is selected, the end user is automatically prompted to confirm if the existing file may be
overwritten. If the Cancel button is selected, an empty string is returned.

The syntaxes are as follows:

tk_getOpenFile option value …
tk_getSaveFile option value …

Both commands accept one or more option value pair(s), as detailed in the following
table. If no option value pairs are provided, the command will display the default values for
the dialog.

Option Interpretation
-defaultextension extension This is used to specify a string to be appended

to the filename if the filename provided has no
extension.

-filetypes pattern If the platform supports a file type listbox, this
option is used to set those file types desired. If the
file types listbox is not supported or this value is
not specified all file types are displayed. These are
passed as a list of the form:

{{typename} {extension}}

Chapter 11

165

Option Interpretation
-initialdir directory Sets the initial directory to display. If not set, the

current working directory will be displayed.
-initialfile filename Sets the initial filename to be displayed.
-message string Specifies a message to display in the dialog.

(MAC OS X only)
-multiple boolean If true, this allows for selection of multiple files.
-parent window Specifies the parent of the dialog. The dialog is

displayed on top of the parent.
-title string Sets the text to be displayed in the dialog title bar.
-typevariable variable If defined, this must contain a global variable to be

used to set the default filter to use in the file types
listbox.

How to do it…
In the following example, we define a file type to be used when we display a dialog box and
assign the return value to a named variable. Enter the following commands:

1 % set types {

 {{Text Files} {.txt}}

 {{Rich Text} {.rtf}}

 {{All Files} *}

}

2 % set response [tk_getOpenFile -filetypes $types]

You should now see the following dialog displayed:

Using Tcl Built-in Dialog Windows

166

Note that in your shell window the input line is no longer accessible. This is due to the fact
that the application (in this case the wish shell) is awaiting a response. Select a file (in this
case break.tcl) and click on the Open button and you will notice that full path for the file
selected is displayed. Enter the following command to confirm that the symbolic value was
assigned to the named variable:

3 % puts $response

C:/Documents and Settings/Bert/break.tcl

How it works…
Based on the option value pairs provided, Tk has displayed a tk_getOpenFile with the file
types desired. When activated, the return value was assigned to a named variable.

Selecting a directory and file
In the following example, we will see how simple it is to combine the functionality of the tk_
chooseDirectory dialog (which returns only a directory listing) with the tk_getOpenFile
dialog (which returns a full file path) to assign the directory in use and the file selected to
separate variables. This will be accomplished by the Tcl file command in combination with the
tk_getOpenFile dialog. I use this to allow a user to select or define a configuration file and
default directory without requiring the use of two separate dialogs.

How to do it…
In the following example we display a File Selection dialog box and assign the return value to a
named variable as well as strip out the directory and assign this to a second named variable.
Enter the following commands:

1 % set response [tk_getOpenFile -filetypes $types]

You should now see the following dialog displayed.

Chapter 11

167

Note that in your shell window the input line is no longer active. This is due to the fact that the
application (in this case the wish shell) is awaiting a response. Select a file and click on the
Open button and you will notice that the full path for the file selected is displayed. Enter the
following command to assign the directory path to the second named variable:

2 % set my_directory [file dirname $response]

C:/Documents and Settings/Bert

3 % puts "$response $my_directory"

C:/Documents and Settings/Bert/break.tcl C:/Documents and Settings/Bert

How it works…
Based on the option value pairs provided, Tk has displayed a tk_getOpenFile with the file
types desired, as in a previous example. On completion, the return value was assigned to a
named variable and by utilizing the file command, we were able to isolate the directory at
the same time.

12
Creating and

Managing Menus

In this chapter, we will cover the following topics:

ff Creating a menu

ff Adding menu buttons

ff Displaying a pop-up menu

ff Data entry application

Introduction
Menus are an integral part of the Graphical User Interface (GUI). Most GUI-based applications
contain a menu and follow a standard layout and implementation. By following the standard
presentation of a menu, we can provide our users with an effective and familiar interface. But
what is the standard?

Thankfully, there are numerous standards available to assist in the design and layout of
a menu. IEEE, US Government provides requirements for accessibility, language-specific
documents, and others provide numerous examples of menu design and these are readily
available in print or online. As always, the programs on your computer are an invaluable
resource. The companies that sell these programs have invested hundreds of hours and
vast amounts of money to ensure that their menus are compliant with the standards.

Unless otherwise stated, we will need to create a text file containing the commands provided
within the recipes. To complete the following example, open the text editor of your choice
and enter the text that follows the recipe. Then save the file in your path with the name
my_menu.tcl.

Creating and Managing Menus

170

Creating a menu
In Tk the menu is not just a name for a part of your GUI, but also the actual widget command
name as well. The menu command will create a new menu widget.

The syntax is as follows:

menu name option value…

The menu command accepts one or more option value pairs, as detailed in the
following table:

Option Interpretation
-accelerator Specifies an accelerator or keyboard hotkeys to be displayed to

the right-hand side of the menu text. The specific acceptable
values are dependent on the display manager in use. For
example, in a Windows application, Control+N would be an
acceptable value.

-activebackground Specifies the background color to be used when drawing the
element. The active background is the color used when the
mouse is over the element and when pressing the mouse
button will initiate an action.

-activeborderwidth Specifies the width of the 3D border to draw around the active
item.

-activeforeground Specifies the foreground color to be used when drawing the
element. The active foreground is the color used when the
mouse is over the element and when pressing the mouse
button will initiate an action.

-background or –bg Specifies the background color to be used when drawing the
element.

-borderwidth or -bd Specifies a non-negative value indicating the width of the 3D
border to draw around the outside of the window.

-cursor Specifies the mouse cursor to be used for the window.
-disabledforeground Specifies the color to use when displaying a disabled element.
-font Specifies the font to use when drawing the element.
-foreground or –fg Specifies the normal foreground color to be used when drawing

the element.
-relief Specifies the 3D effect desired for the window. Acceptable

values are raised, sunken, flat, ridge, solid, and
groove.

-takefocus Determines whether or not the window accepts the focus
during keyboard traversal.

Chapter 12

171

Option Interpretation
-postcommand If specified, this provides a command to execute each time the

menu is posted.
-selectcolor Specifies the color to display as the background for menus

containing check or radio buttons when they are selected.
-tearoff This option accepts a Boolean value and specifies if a menu

should include a tear-off entry. A tearoff entry allows the
user to detach the menu item and display it independent of the
menu.

-tearoffcommand If specified, this provides a command to execute each time the
menu is torn off.

-title Specifies the title to display for the window created if a menu is
torn off. If not specified, the window title will display the label
for the top level menu item.

-type Specifies the type of menu. Acceptable values are menubar,
tearoff, or normal.

Creation of the menu widget additionally created a new Tcl command of the same name.
These commands are accessed using the following syntax:

name command arguments

Several of the menu commands accept an argument to indicate which menu entry to affect.
These are referred to as the indexes and may be specified in any of the following manners.
Note that those items displayed in italics are not keywords but indicate a specific numeric or
textual value placeholder.

Index Interpretation
number A numeric designation of the index with a base of 0.
active The menu item that is currently active.
end Last entry in a menu.
last Last entry in a menu.
none Normally used with the activate command, this is used to deactivate all

menu items.
@number When utilized in this manner, the number is treated as a y-coordinate and

the entry closest to the coordinate is used.
pattern Used to perform pattern matching on the label of each entry when none of

the above index methods is sufficient.

Creating and Managing Menus

172

The commands are as follows:

Specific commands Interpretation
name activate
index

Set the menu item at index to activated.

name add type
option value…

This command adds a new menu item at the bottom of the menu.
The type of entry is specified by type. The acceptable values for
type are cascade, checkbutton, command, radiobutton, or
separator. Additional arguments are specified as an option/value
pair, as detailed below:
-activebackground value: Specifies a background color to
display when the item is active.
-activeforeground value: Specifies a foreground color to
display when the item is active.
-accelerator value: Specifies a string to display at the right
side of the menu item. Normally, used to display a keyboard
shortcut. This is not available for separator or tearoff items.
-background value: Specifies a background color to display
when the item is in a normal state.
-bitmap value: Specifies a bitmap to display in the menu instead of
a textual label. This is not available for separator or tearoff items.
-columnbreak value: When set to 0, the entry appears below the
previous entry. When set to 1, the item appears at the top of a new
column.
-command value: Specifies a Tcl command to execute when the
menu item is activated.
-compound value: Specifies if the menu should display both
an image and text and where the image should be displayed.
Acceptable values are bottom, center, left, none (default),
right, or top.
-font value: Specifies the font to use when displaying the item.
-foreground value: Specifies the foreground color to use for
displaying the menu item.
-hidemargin value: Specifies whether or not the standard
margins should be drawn for this menu. The 0 indicates that the
margin is used, 1 indicates that it is not.
-image value: Specifies an image to display in place of a bitmap
or textual label. This is not available for separator or tearoff
items.
-indicatoron value: Only applies to checkbox or radio button
items. Accepts a Boolean value.

Chapter 12

173

Specific commands Interpretation
-label value: Specifies a string to display for the item. This is not
available for separator or tearoff items.
-menu value: Cascade items only. Specifies the name for the
submenus associated with this item.
-offvalue value: Check button only. Specifies the value to store in
the item's associated variable when the entry is deselected.
-onvalue value: Check button only. Specifies the value to store in
the item's associated variable when the entry is deselected.
-selectcolor value: Check button and radio button only. Specifies
the color to display when the item is selected.
-selectimage value: Check button and radio button only. Specifies
an image to display in place of the default image when the item is
selected.
-state value: Specifies the state of the item. Acceptable values are
normal, active or disabled. This is not available for separator
items.
-underline value: Specifies the index of a character in the label to
underline as a keyboard accelerator. This index is 0 based and is not
available for separator or tearoff items.
-value value: Radio button only. Specifies the value to store in the
item's variable when the item is selected.
-variable value: Check button and radio button only. Specifies the
name of a global variable to store the value for the item.

name cget option Returns the current configuration value for the option specified.
name clone
newname type

Create a clone of the menu with the name as specified in newname
of the type normal, menubar, or tearoff. Changes to one menu
propagate to the other and are bidirectional.

name configure
option value…

Query or modify the option of the menu.

name delete
index1 index2

Delete all menu items between index1 and index2 inclusive. If no
value is passed for index2, only the item at index1 is deleted.

name entrycget
index option

Returns the current configuration value for the option specified for
the item at index.

name
entryconfigure
index options

Query or modify the option of the menu item specified at index.

name index
index

Returns the index for the corresponding index.

name insert
index type
option value…

This is the same as the add command except it inserts a new item
after the item located at index.

Creating and Managing Menus

174

Specific commands Interpretation
name invoke
index

Invoke the action for the item specified by index.

name post x y Display the menu at the coordinates provided by x and y.
name
postcascade
index

Display the submenu associated with the cascade item specified by
index and unpost any previously displayed submenus.

name type index Returns the type of item as specified by index.
name unpost Remove the menu from display. Not available on Windows or

Macintosh.
name xposition
index

Returns the x-coordinate of the leftmost pixel in the item specified
in index.

name yposition
index

Returns the y-coordinate of the leftmost pixel in the item specified
in index.

How to do it…
In the following example, we will create a menu that contains an option to exit the application.
Create the following text file and save it in your working path with the name my_menu.tcl:

Load the TK Package
package require Tk

#Define our interface
wm geometry . 320x240
wm title . "Menu Example"

Create a menu to exit our application
menu .myMenu
.configure -menu .myMenu

Add a pull down
set File [menu .myMenu.myfile]
.myMenu add cascade -label File -menu .myMenu.myfile

Add the Exit entry
$File add command -label Exit -command exit

Now launch the program by invoking the following command line command.

tclsh85 my_menu.tcl

Chapter 12

175

You should now see the following window:

Click on the File menu item to display the Exit option. Select this option to exit the window.

How it works…
Based on the configuration options provided to the menu command we have created a menu
with an entry to exit our program.

Adding menu buttons
The menubutton command is very similar to the menu command. However, as opposed to
creating a standard or pop-up menu, it creates a menu consisting of buttons, as the name
implies. The syntax is as follows:

menubutton name option value …

The menubutton command accepts one or more option value pairs, as detailed in the
following table:

Option Interpretation
-activebackground Specifies the background color to be used when drawing the

element. The active background is the color used when the
mouse is over the element and when pressing the mouse
button will initiate an action.

-activeforeground Specifies the foreground color to be used when drawing the
element. The active foreground is the color used when the
mouse is over the element and when pressing the mouse
button will initiate an action.

-anchor Specifies how the information within the widget is displayed.
Acceptable values are n, ne, se, s, sw, w, nw, or center
(default).

Creating and Managing Menus

176

Option Interpretation
-background or –bg Specifies the background color to be used when drawing the

element.
-bitmap Specifies a bitmap to display in the menu instead of a textual

label. This is not available for separator or tearoff items.
-compound Specifies if the button should display both an image and text

and where the image should be displayed. Acceptable values
are bottom, center, left, none (default), right, or top.

-cursor Specifies the mouse cursor to be used for the window.
-disabledforeground Specifies the color to use when displaying a disabled element.
-font Specifies the font to use when drawing the element.
-foreground or –fg Specifies the normal foreground color to be used when drawing

the element.
-highlightbackground Specifies the color to display in the highlight region when the

button does not have focus.
-highlightcolor Specifies the color to display in the highlight region when the

button does have focus.
-highlightthickness Specifies the width of the highlight region (rectangle) to draw

around the outside of the button when it has focus.
-image Specifies an image to display in place of a bitmap or textual

label. This is not available for separator or tearoff items.
-justify Specifies how to display textual information when the button

contains multiple lines of text. Acceptable values are left,
center, or right.

-padx Specifies the amount of additional x-space to allot for the
button.

-pady Specifies the amount of additional y-space to allot for the
button.

-takefocus Determines whether or not the window accepts the focus
during keyboard traversal.

-direction Specifies where the pop up menu will be displayed in relation
to the button. Acceptable values are above, below, flush,
left, and right.

-height Specifies the height of the menu button. If an image or a
bitmap is used, the value is supplied as screen units, if textual
then it refers to the number of lines. If not specified the button
height is computed based on the contents.

-indicatoron A Boolean value is provided to determine if a small indicator
rectangle is displayed to the right of the button.

-menu Specifies the pathname of a menu to associate with the button.

Chapter 12

177

Option Interpretation
-state Specifies the state of the menu button. Acceptable values are

normal, active, or disabled.
-width Specifies the height of the menu button. If an image or bitmap

is used the value is supplied as screen units, if textual, it refers
to the number of lines. If not specified, the button height is
computed based on the contents.

Creation of the menubutton widget additionally created a new Tcl command of the same
name. These commands are accessed using the following syntax:

name command arguments

The commands are as follows:

Specific commands Interpretation
name cget option Returns the current configuration value for the option

specified.
name configure option
value…

Query or modify the option of the menu.

How to do it…
In the following example, we will create a menu button that contains an option to exit a
window. Create the following text file and save it in your working path with the name my_
menubutton.tcl:

Load the TK Package
package require Tk

#Define our interface
wm geometry . 320x240
wm title . "Menu Example"

Create a menubutton to exit our window
menubutton .menu1 –text File –menu .menu1.m –underline 0 –relief
raised

Add a pull down
menu .menu1.m
.menu1.m add command –label Quit –command exit

Pack the menubutton
pack .menu1 –anchor nw

Creating and Managing Menus

178

Now launch the program by invoking the following command line command.

tclsh85 my_menubutton.tcl

You should now see the following window:

Access your cascading menu and select the Exit option to close the window.

How it works…
Based on the configuration options provided to the menubutton command, we have created
a menu button with a submenu. Selecting the Quit entry we can close our program.

Displaying a pop-up menu
A pop-up menu is exactly as the name implies: a menu that appears arbitrarily. It is accessed
via a user action (normally a mouse click). The menu is created as normally, but is accessed
by binding to an event. The actual display of the menu is accomplished by the tk_popup
command.

The syntax is as follows:

tk_popup name x y

How to do it…
In the following example, we will create a menu that contains an option to exit a window.
Create the following text file and save it in your working path with the name my_popup.tcl:

Load the TK Package
package require Tk

#Define our interface

Chapter 12

179

wm geometry . 320x240
wm title . "Menu Example"

Create a menu to exit our window
set File [menu .popup]

Add the Exit entry
$File add command -label Exit -command exit

Now we add a label to bind to
label .l -text "Click here to access your menu"
pack .l

Now bind to the right mouse click
bind .l <3> {tk_popup .popup %X %Y}

Now launch the program by invoking the following command line command.

tclsh85 my_popup.tcl

You should now see the following window after you right-click on the label:

Click on the label to access your pop up menu and select the Exit option to close the window.

How it works…
By binding the right mouse click to the label we have displayed a pop up menu. Bear in mind
that specific platform differences may exist for example between Windows and the MacOS
X platforms. The %X and %Y are returned by the mouse click event and the upper-left-hand
side corner of the pop up is positioned at this location. To remove the menu from the display
without invoking a menu command, you simply click on any area of the window.

Creating and Managing Menus

180

Data entry application
We will now add a more complex menu to our data entry application. This menu will allow the
user to manage the functionality of the application via the menu in the same manner as they
would when using the buttons.

How to do it…
In the following example, we will create a menu that contains an option to exit a window.
Create the following text file and save it in your working path with the name address_book.
tcl:

Load the Tk Package
package require Tk

Main Frame
frame .main -borderwidth 1 -relief solid -padx 10 -pady 10

Entry Widgets
entry .main.efirst -width 25
entry .main.elast -width 25
entry .main.eaddress -width 50
entry .main.ecity -width 25
entry .main.estate -width 3
entry .main.ezip -width 5
entry .main.ephone -width 25

Label Widgets
label .main.first -text "First Name"
label .main.last -text "Last Name"
label .main.address -text "Address"
label .main.city -text "City"
label .main.state -text "ST"
label .main.zip -text "Zip"
label .main.phone -text "Phone"
label .main.photo -text "Photo" -width 15

Frame for Photo Widget
frame .main.picture -width 120 -height 160 -borderwidth 3 -background
black

Button Widgets
button .main.previous -text "Previous" -width 15
button .main.next -text "Next" -width 15
button .main.add -text "Add" -width 15
button .main.save -text "Save" -width 15
button .main.delete -text "Delete" -width 15

Chapter 12

181

button .main.exit -text "Exit" -width 15 -command exit

Pack Command
pack .main

Grid command
grid configure .main.efirst -row 0 -column 0 -sticky nw
grid configure .main.elast -row 0 -column 1 -columnspan 2 -sticky nw
grid configure .main.picture -row 0 -column 3 -rowspan 7 -sticky nw
grid configure .main.first -row 1 -column 0 -sticky nw
grid configure .main.last -row 1 -column 1 -columnspan 2 -sticky nw
grid configure .main.eaddress -row 2 -column 0 -columnspan 3 -sticky
nw
grid configure .main.address -row 3 -column 0 -columnspan 3 -sticky nw
grid configure .main.ecity -row 4 -column 0 -sticky nw
grid configure .main.estate -row 4 -column 1 -sticky nw
grid configure .main.ezip -row 4 -column 2 -sticky nw
grid configure .main.city -row 5 -column 0 -sticky nw
grid configure .main.state -row 5 -column 1 -sticky nw
grid configure .main.zip -row 5 -column 2 -sticky nw
grid configure .main.ephone -row 6 -column 0 -columnspan 2 -sticky nw
grid configure .main.phone -row 7 -column 0 -columnspan 2 -sticky nw
grid configure .main.photo -row 7 -column 3 -sticky nw
grid configure .main.previous -row 8 -column 0 -sticky ne
grid configure .main.next -row 8 -column 2 -sticky nw
grid configure .main.add -row 9 -column 0 -sticky ne
grid configure .main.save -row 9 -column 1 -sticky nw
grid configure .main.delete -row 9 -column 2 -sticky nw
grid configure .main.exit -row 9 -column 3 -sticky nw

Menu Creation
menu .menubar
. configure -menu .menubar

Add the first item
set File [menu .menubar.myfile]
.menubar add cascade -label File -menu .menubar.myfile

Add entries
$File add command -label "Add Record" -command addRecord
$File add command -label "Save Record" -command saveRecord
$File add command -label "Delete Record" -command deleteRecord
$File add separator
$File add command -label "Quit" -command exit

set Edit [menu .menubar.myedit]
.menubar add cascade -label Edit -menu .menubar.myedit

$Edit add command -label "Find" -command findRecord

Creating and Managing Menus

182

Now launch the program by invoking the following command line.

tclsh85 address_book.tcl

You should now see the following window:

How it works…
We have now added a menu to our Address Book application. The entries are bound in such
a manner that they will mirror the functionality of the buttons. At this point, there are no
associated commands, as they will be written in the following chapter, when we complete
the application.

13
Creating the Address

Book Application

In this chapter, we will cover:

ff Creating the address book application

ff Adding a record

ff Navigating records

ff Deleting a record

ff Finding a record

ff Full listing

Introduction
In the Address Book application, we will bring together everything covered within the previous
chapters. This will include not only the Tcl commands and Tk widgets, but also the creation
of global variables and calling Tcl procedures. We will leverage the flexibility of the dict
command combined with the list command to read and write our data to disk in a manner
similar to a database.

I have also added comments to clarify understanding of various sections. Although these
comments are not necessary for the program to operate, you should add them to aid you in
the event of any issues you might encounter.

Please note that I have intentionally used step-by-step methodology to complete several
items, as opposed to a control construct methodology, to more clearly illustrate sections. For
example, rather that storing the widgets in a list and creating them with a while statement, I
have created them one by one.

Creating the Address Book Application

184

To complete the following example, open the text editor of your choice and enter the text as
directed. Then save the file in your path with the name address_book.tcl. Also, note that
I have left code that will write messages to the console, based on specific actions to illustrate
using the console output to debug your programs as you create them.

Creating the Address Book application
As with any Tcl/Tk application, the manner in which the script is created determines the
behavior. This is especially apparent when interacting with global variables. The global
variables for our application are defined in the main body of the script to allow them to
be accessed by the procedures. For the sake of formatting, I have used line continuation
characters, "\" that may not be required in your text editor.

How to do it…
First, we will start by creating the graphical user interface. Enter the following into the
address_book Tcl file:

Load the Tk Package
package require Tk

Configure the Window
wm title . "Address Book"

Main Frame
frame .main -borderwidth 1 -relief solid -padx 10 -pady 10

Entry Widgets
entry.main.efirst -width 25
entry .main.elast -width 25
entry .main.eaddress -width 50
entry .main.ecity -width 25
entry .main.estate -width 3
entry .main.ezip -width 5
entry .main.ephone -width 25

Label Widgets
label .main.first -text "First Name"
label .main.last -text "Last Name"
label .main.address -text "Address"
label .main.city -text "City"
label .main.state -text "ST"
label .main.zip -text "Zip"
label .main.phone -text "Phone"
label .main.photo -text "Click to Update" -width 15

Label for Photo Widget

Chapter 13

185

label .main.picture -background black

Button Widgets
button .main.previous -text "Previous" -width 15 -command
previousRecord
button .main.next -text "Next" -width 15 -command nextRecord
button .main.add -text "Add" -width 15 -command addRecord
button .main.save -text "Save" -width 15 -command saveRecord
button .main.delete -text "Delete" -width 15 -command deleteRecord
button .main.exit -text "Exit" -width 15 -command exit

Pack command
pack .main

Grid command
grid .main.efirst -row 0 -column 0 -sticky nw
grid .main.elast -row 0 -column 1 -columnspan 2 -sticky nw
grid .main.picture -row 0 -column 3 -rowspan 7 -sticky news
grid .main.first -row 1 -column 0 -sticky nw
grid .main.last -row 1 -column 1 -columnspan 2 -sticky nw
grid .main.eaddress -row 2 -column 0 -columnspan 3 -sticky nw
grid .main.address -row 3 -column 0 -columnspan 3 -sticky nw
grid .main.ecity -row 4 -column 0 -sticky nw
grid .main.estate -row 4 -column 1 -sticky nw
grid .main.ezip -row 4 -column 2 -sticky nw
grid .main.city -row 5 -column 0 -sticky nw
grid .main.state -row 5 -column 1 -sticky nw
grid .main.zip -row 5 -column 2 -sticky nw
grid .main.ephone -row 6 -column 0 -columnspan 2 -sticky nw
grid .main.phone -row 7 -column 0 -columnspan 2 -sticky nw
grid .main.photo -row 7 -column 3 -sticky nw
grid .main.previous -row 8 -column 0 -sticky ne
grid .main.next -row 8 -column 2 -sticky nw
grid .main.add -row 9 -column 0 -sticky ne
grid .main.save -row 9 -column 1 -sticky nw
grid .main.delete -row 9 -column 2 -sticky nw
grid .main.exit -row 9 -column 3 -sticky nw

Menu Creation
menu .menubar
. configure -menu .menubar

Add the first item
set File [menu .menubar.myfile]
.menubar add cascade -label File -menu .menubar.myfile

Add entries
$File add command -label "Add Record" -command addRecord

Creating the Address Book Application

186

$File add command -label "Save Record" -command saveRecord
$File add command -label "Delete Record" -command deleteRecord
$File add separator
$File add command -label "Quit" -command exit

Add the second item
set Edit [menu .menubar.myedit]
.menubar add cascade -label Edit -menu .menubar.myedit

Add entry
$Edit add command -label "Find" -command findRecord

Bind the mouse click to the picture label
bind .main.picture <B1-ButtonRelease> getPicture

Text file containing stored records
global addressFile
Dictionary used for working with records
global addressInfo
Current Record
global currentRecord
Record Count
global recordCount
Image File location
global pictureFile

Initialization of the address file
set addressFile "address.txt"

Create the dictionary from the file on disk
if it exists and contains entries

if { [file exists $addressFile]} {
 # If the file exists check that it has contents
 # Since we are managing the file through the application we can
assume
 # for the sake of our application that it is in the correct format

 if { [file size $addressFile] > 0 } {
 set fp [open $addressFile r+]
 gets $fp data

 while {$data >0} {
 set data2 [split $data ","]

 set recno [lindex $data2 0]

 dict set addressInfo $recno ID [lindex $data2 0]
 dict set addressInfo $recno FNAME [lindex $data2 1]
 dict set addressInfo $recno LNAME [lindex $data2 2]
 dict set addressInfo $recno ADDRESS [lindex $data2 3]
 dict set addressInfo $recno CITY [lindex $data2 4]

Chapter 13

187

 dict set addressInfo $recno STATE [lindex $data2 5]
 dict set addressInfo $recno ZIP [lindex $data2 6]
 dict set addressInfo $recno PHONE [lindex $data2 7]
 dict set addressInfo $recno PHOTO [lindex $data2 8]
 # Open the file
 set pictureFile [dict get $addressInfo $recno PHOTO]
 # Read the data using the gets
 gets $fp data
 }

 close $fp

 set recordCount [dict size $addressInfo]
 set currentRecord 1

 # Load the first record
 loadRecord
 } else {
 set myTitle "Missing Records"
 set myMessage \ "No records exist, please add an entry and click
 save"
 tk_messageBox -message $myMessage \
 -title $myTitle \
 -type ok \
 -icon warning

 set currentRecord 0
 set recordCount 0
 set pictureFile ""

 }
} else {
 set myTitle "Missing configuration file"
 set myMessage \ "No address file exists, please add an entry and
click save."
 tk_messageBox -message $myMessage \
 -title myTitle \
 -icon warning

 set currentRecord 0
 set recordCount 0
 set pictureFile ""
}

Creating the Address Book Application

188

How it works…
First, we created our interface using a set of Tk widgets. After the creation of the interface
we checked for the existence of a data file. If no file existed, we notified the end user. If the
file existed, we checked its contents. If no contents existed, we notified the end user. If the
file existed and it had entries, we opened the file. After opening the file we configured it for
reading line-by-line and then read the data into our dictionary. Note that at this time, if you run
the program, it will fail due to the fact that there are missing procedures to load the records
and display the photos. These procedures are contained in the following sections.

Adding a record
Now that we have an interface it would be nice to have records. To accomplish this, we need
to give the user the ability to add a record including a photo if desired. This will require that we
set up our variables to support adding a record, clear the interface, associate a picture to the
entry and then save the record when the user is complete as well as a procedure to load the
record for display.

How to do it…
In the address book file, enter the following text at the location defined in our main page for
procedures as defined within the comments:

proc addRecord {} {
 global currentRecord
 global recordCount
 global addressInfo
 global pictureFile
 # Clear current entries
 clearRecord
 set pictureFile ""
 set currentRecord [expr $recordCount +1]
}

Clear any contents from the entry widgets
proc clearRecord {} {
 .main.efirst delete 0 end
 .main.elast delete 0 end
 .main.eaddress delete 0 end
 .main.ecity delete 0 end
 .main.estate delete 0 end
 .main.ezip delete 0 end
 .main.ephone delete 0 end
 .main.picture configure -image ""

Chapter 13

189

}
proc getPicture {} {
 global currentRecord
 global addressInfo
 global pictureFile

 set types {
 {{GIF} {.gif} }
 {{PPM} {.ppm} }
 {{All Files} * }
 }

 set filename [tk_getOpenFile -filetypes $types]

 if {$filename != ""} {
 # Now that we have the path to the desired picture
 # we copy it to the working directory

 # Get the destination filename
 # by splitting the fullpath into
 # elements and retrieving the last
 set listFile [file split $filename]
 set listCount [llength $listFile]
 set listIndex [expr $listCount - 1]

 set pictureFile [lindex $listFile $listIndex]

 # If the pictureFile already exists within the
 # working directory we do not copy it again
 if { [file exists $pictureFile] == 0 } {
 # Copy the image to the current directory
 if {[catch {file copy -force "$filename" $pictureFile} sError]}
 {
 tk_messageBox -message "File Copy Error $filename to
 $pictureFile"
 }
 }

 # Update the dictionary entry

 dict set addressInfo $currentRecord PHOTO $pictureFile

 # Update the image onscreen
 image create photo newPicture -file $pictureFile
 .main.picture configure -image newPicture
 }
}

proc saveRecord {} {

Creating the Address Book Application

190

 global currentRecord
 global recordCount
 global addressFile
 global addressInfo
 global pictureFile

 # No Records Exist
 if { $currentRecord == 0 } {
 incr currentRecord
 incr recordCount
 }

 dict set addressInfo $currentRecord ID "$currentRecord"
 dict set addressInfo $currentRecord FNAME "[.main.efirst get]"
 dict set addressInfo $currentRecord LNAME "[.main.elast get]"
 dict set addressInfo $currentRecord ADDRESS "[.main.eaddress get]"
 dict set addressInfo $currentRecord CITY "[.main.ecity get]"
 dict set addressInfo $currentRecord STATE "[.main.estate get]"
 dict set addressInfo $currentRecord ZIP "[.main.ezip get]"
 dict set addressInfo $currentRecord PHONE "[.main.ephone get]"
 dict set addressInfo $currentRecord PHOTO "$pictureFile"

 # Write the records to the file

 set fp [open $addressFile w+]

 dict for {id info} $addressInfo {
 dict with info {
 # Create an entry for the file
 set data "$ID,$FNAME,$LNAME,$ADDRESS,$CITY,$STATE,$ZIP, \
 $PHONE,$PHOTO\n"
 # Write the entry to the file
 puts -nonewline $fp $data
 }
 }
 set recordCount [dict size $addressInfo]
 # Close the file
 close $fp
}
This procedure is used to load and display a record
from the dictionary
proc loadRecord { } {
 global currentRecord
 global addressInfo

 .main.efirst insert 0 [dict get $addressInfo $currentRecord FNAME]
 .main.elast insert 0 [dict get $addressInfo $currentRecord LNAME]

Chapter 13

191

 .main.eaddress insert 0 [dict get $addressInfo $currentRecord \
ADDRESS]
 .main.ecity insert 0 [dict get $addressInfo $currentRecord CITY]
 .main.estate insert 0 [dict get $addressInfo $currentRecord STATE]
 .main.ezip insert 0 [dict get $addressInfo $currentRecord ZIP]
 .main.ephone insert 0 [dict get $addressInfo $currentRecord PHONE]

 # Load the photo
 if {[dict get $addressInfo $currentRecord PHOTO] > 0} {
 set pictureFile [dict get $addressInfo $currentRecord PHOTO]
 image create photo addressPhoto -file $pictureFile
 .main.picture configure -image addressPhoto
 }
}

How it works…
First, we configured our counters (record and total) and then cleared the screen. This is in
preparation for the user to add some data. Once the user selects the Save button, we add the
contents of the entry widgets to the dictionary and write them to the data file for future use.
Then we display the record. Note that if the user simply changes a record and clicks on Save,
he will be performing an edit of the existing record.

Navigating records
Now that we can add records, we need a means to scroll through them. This is where the
Next and Previous command buttons come into play. To accomplish this, we will create
two procedures.

How to do it…
In the address book file, enter the following text at the location defined in our main page for
procedures, as defined within the comments after the previous section's procedures.

proc nextRecord {} {
 global currentRecord
 global recordCount

 if {$currentRecord < $recordCount} {
 # Clear current entries
 clearRecord
 incr currentRecord
 loadRecord
 }

Creating the Address Book Application

192

}

proc previousRecord {} {
 global currentRecord
 global recordCount

 if {$currentRecord > 1} {
 # Clear current entries
 clearRecord

 set currentRecord [expr $currentRecord - 1]
 loadRecord
 }
}

How it works…
These procedures simply increment or decrement the record counter if it is within the range of
the number of records and then calls our previously created procedure to load the record.

Deleting a record
Adding records is complete as is navigating between them. So now we need the ability to
remove records from both the active dictionary and the data file. This is accomplished with
a single procedure. Care must be taken to address the fact that a user may click on Delete
when no records exist and to handle the condition where the user has deleted all records.

How to do it…
In the address book file, enter the following text at the location defined in our main page for
procedures, as defined within the comments after the previous section's procedures.

proc deleteRecord {} {
 global addressFile
 global addressInfo
 global currentRecord
 global recordCount

 if {$recordCount > 0} {
 set myTitle "Confirm Request"
 set myMessage "Select OK to delete the current record"
 set response [tk_messageBox -message $myMessage \
 -title myTitle \
 -type okcancel \
 -icon warning]

 if {$response == "ok"} {

Chapter 13

193

 puts "DELETE COUNT: $recordCount CURRENT: $currentRecord"
 set tempDict [dict remove $addressInfo $currentRecord]

 clearRecord

 puts "IN DELETE"
 set fp [open $addressFile w+]
 puts "DELETE FILE ID: $fp"

 set recnum 0

 dict for {id info} $tempDict {

 dict with info {
 incr recnum
 # Create an entry for the file
 set data "$recnum,$FNAME,$LNAME,$ADDRESS,$CITY, \
 $STATE,$ZIP, $PHONE,$PHOTO\n"
 puts "---"
 puts "NEW DATA: $data"
 # Write the entry to the file
 puts -nonewline $fp $data
 }
 }
 flush $fp
 close $fp

 puts "POST DELETE FILE WRITE - READING IN NEW FILE"

 # Clean up the dictionary files
 unset addressInfo
 unset tempDict

 # If we deleted the last record this avoid trying to read in an
 empty file
 if {[file size $addressFile] > 0} {
 set fp [open $addressFile r+]
 fconfigure $fp -buffering line
 gets $fp data

 set recno 0
 while {$data > 0} {
 puts "DATA ADDED TO DICT: $data TO RECNO: $recno"
 set data2 [split $data ","]

 incr recno

 dict set addressInfo $recno ID [lindex $data2 0]
 dict set addressInfo $recno FNAME [lindex $data2 1]
 dict set addressInfo $recno LNAME [lindex $data2 2]
 dict set addressInfo $recno ADDRESS [lindex $data2 3]
 dict set addressInfo $recno CITY [lindex $data2 4]

Creating the Address Book Application

194

 dict set addressInfo $recno STATE [lindex $data2 5]
 dict set addressInfo $recno ZIP [lindex $data2 6]
 dict set addressInfo $recno PHONE [lindex $data2 7]
 dict set addressInfo $recno PHOTO [lindex $data2 8]
 set pictureFile [dict get $addressInfo $recno PHOTO]
 gets $fp data
 }

 set recordCount [dict size $addressInfo]
 puts "NEW addressInfo recordCount $recordCount\n\n"
 set currentRecord 1

 # Load the first record
 loadRecord

 } else {
 set myTitle "Missing Records"
 set myMessage \ "No records exist, please add an entry and
 click save"
 tk_messageBox -message $myMessage \
 -title $myTitle \
 -type ok \
 -icon warning

 set currentRecord 0
 set recordCount 0
 set pictureFile ""
 }
 }
 }
}

How it works…
First we check to ensure that for a record to be deleted, it exists. This addresses the user
selecting delete when there are no records or deleting all records. Once we are convinced that
we can proceed, we remove the entry from the dictionary using the dict remove command
to create a temporary dictionary containing only the record set desired, write the data to file,
read it back into our global dictionary, and display the record.

Chapter 13

195

Finding a record
Locating a record is a common procedure in most data-driven applications. In our application,
we have limited this to locating the first occurrence by last name. To accomplish this, we will
create a new toplevel window to request input and trigger procedures that interact with our
main window.

How to do it…
In the address book file, enter the following text at the location defined in our main page for
procedures, as defined within the comments after the previous section's procedures.

proc findRecord { } {

	 set strLast ""	

	 toplevel .find
	 frame .find.f -borderwidth 1 -relief solid -padx 10 -pady 10
	 entry .find.f.e -borderwidth 5 -relief solid
	 button .find.f.ok -text "Find" -command {set strLast [.find.f.e \
 get]; lookup $strLast}
	 button .find.f.cancel -text "Cancel" -command {destroy .find}

	 pack .find.f
	 grid .find.f.e -row 0 -column 0 -columnspan 2 -sticky news
	 grid .find.f.ok -row 1 -column 0 -sticky news
	 grid .find.f.cancel -row 1 -column 1 -sticky news
}
 	
proc lookup {strLast} {
	 global addressInfo
	 global currentRecord
		
	 puts "LOOKING for $strLast"
	
	 dict for {id info} $addressInfo {
		 dict with info {

 			 if {"$strLast" == "$LNAME"} {
				 puts "NAME: $LNAME"
				 puts "FOUND ONE"
				 set currentRecord "$ID"
				 clearRecord
				 loadRecord
			 }
		 }
	 }
}

Creating the Address Book Application

196

How it works…
After creating and displaying a new top level window, we perform a string comparison on the
global dictionary to find the first matching instance. The top level window will remain visible
until the Cancel button is clicked and the user can complete numerous searches.

Full listing
This section contains a full listing of the address book application, as it should look in your
program. This is a basic data entry application that highlights many of the functionalities
of the Tcl/Tk language. At this point, you may wish to sort the dictionary to provide an
alphabetical listing of the data, implement multiple field search capability, and toggle the state
of the buttons and menu entries to limit the user's abilities in a logical manner or anything
else you might want to add.

It's all there in Tcl/Tk. The only limit is your imagination.

Source the Tk Package
package require Tk

#Configure the Window
wm title . "Address Book"

Main Frame
frame .main -borderwidth 1 -relief solid -padx 10 -pady 10

Entry Widgets
entry .main.efirst -width 25
entry .main.elast -width 25
entry .main.eaddress -width 50
entry .main.ecity -width 25
entry .main.estate -width 3
entry .main.ezip -width 5
entry .main.ephone -width 25

Label Widgets
label .main.first -text "First Name"
label .main.last -text "Last Name"
label .main.address -text "Address"
label .main.city -text "City"
label .main.state -text "ST"
label .main.zip -text "Zip"
label .main.phone -text "Phone"
label .main.photo -text "Click to Update" -width 15

Label for Photo Widget
label .main.picture -background black

Chapter 13

197

-width 15 -height 10

Button Widgets
button .main.previous -text "Previous" -width 15 -command
previousRecord
button .main.next -text "Next" -width 15 -command nextRecord
button .main.add -text "Add" -width 15 -command addRecord
button .main.save -text "Save" -width 15 -command saveRecord
button .main.delete -text "Delete" -width 15 -command deleteRecord
button .main.exit -text "Exit" -width 15 -command exit

Pack command
pack .main

Grid command
grid .main.efirst -row 0 -column 0 -sticky nw
grid .main.elast -row 0 -column 1 -columnspan 2 -sticky nw
grid .main.picture -row 0 -column 3 -rowspan 7 -sticky news
grid .main.first -row 1 -column 0 -sticky nw
grid .main.last -row 1 -column 1 -columnspan 2 -sticky nw
grid .main.eaddress -row 2 -column 0 -columnspan 3 -sticky nw
grid .main.address -row 3 -column 0 -columnspan 3 -sticky nw
grid .main.ecity -row 4 -column 0 -sticky nw
grid .main.estate -row 4 -column 1 -sticky nw
grid .main.ezip -row 4 -column 2 -sticky nw
grid .main.city -row 5 -column 0 -sticky nw
grid .main.state -row 5 -column 1 -sticky nw
grid .main.zip -row 5 -column 2 -sticky nw
grid .main.ephone -row 6 -column 0 -columnspan 2 -sticky nw
grid .main.phone -row 7 -column 0 -columnspan 2 -sticky nw
grid .main.photo -row 7 -column 3 -sticky nw
grid .main.previous -row 8 -column 0 -sticky ne
grid .main.next -row 8 -column 2 -sticky nw
grid .main.add -row 9 -column 0 -sticky ne
grid .main.save -row 9 -column 1 -sticky nw
grid .main.delete -row 9 -column 2 -sticky nw
grid .main.exit -row 9 -column 3 -sticky nw

Menu Creation
menu .menubar
.configure -menu .menubar

Add the first item
set File [menu .menubar.myfile]
.menubar add cascade -label File -menu .menubar.myfile

Add entries
$File add command -label "Add Record" -command addRecord

Creating the Address Book Application

198

$File add command -label "Save Record" -command saveRecord
$File add command -label "Delete Record" -command deleteRecord
$File add separator
$File add command -label "Quit" -command exit

set Edit [menu .menubar.myedit]
.menubar add cascade -label Edit -menu .menubar.myedit

$Edit add command -label "Find" -command findRecord

Bind the mouse click to the picture label
bind .main.picture <B1-ButtonRelease> getPicture

Global Variables
Text file containing stored records
global addressFile
Dictionary used for working with records
global addressInfo
Current Record
global currentRecord
Record Count
global recordCount
Image File location
global pictureFile

set addressFile "address.txt"

###
Procedures
###

proc findRecord { } {

 set strLast ""

 toplevel .find
 frame .find.f -borderwidth 1 -relief solid -padx 10 -pady 10
 entry .find.f.e -borderwidth 5 -relief solid
 button .find.f.ok -text "Find" -command {set strLast [.find.f.e \
get]; lookup $strLast}
 button .find.f.cancel -text "Cancel" -command {destroy .find}

 pack .find.f
 grid .find.f.e -row 0 -column 0 -columnspan 2 -sticky news
 grid .find.f.ok -row 1 -column 0 -sticky news
 grid .find.f.cancel -row 1 -column 1 -sticky news
}

proc lookup {strLast} {
 global addressInfo
 global currentRecord

Chapter 13

199

 puts "LOOKING for $strLast"

 dict for {id info} $addressInfo {
 dict with info {

 if {"$strLast" == "$LNAME"} {
 puts "NAME: $LNAME"
 puts "FOUND ONE"
 set currentRecord "$ID"
 clearRecord
 loadRecord
 }
 }
 }
}

This procedure is used to load and display a record
from the dictionary
proc loadRecord { } {
 global currentRecord
 global addressInfo

 .main.efirst insert 0 [dict get $addressInfo $currentRecord FNAME]
 .main.elast insert 0 [dict get $addressInfo $currentRecord LNAME]
 .main.eaddress insert 0 [dict get $addressInfo $currentRecord
 ADDRESS]
 .main.ecity insert 0 [dict get $addressInfo $currentRecord CITY]
 .main.estate insert 0 [dict get $addressInfo $currentRecord STATE]
 .main.ezip insert 0 [dict get $addressInfo $currentRecord ZIP]
 .main.ephone insert 0 [dict get $addressInfo $currentRecord PHONE]

 # Load the photo
 if {[dict get $addressInfo $currentRecord PHOTO] > 0} {
 set pictureFile [dict get $addressInfo $currentRecord PHOTO]
 image create photo addressPhoto -file $pictureFile
 .main.picture configure -image addressPhoto
 }
}

proc clearRecord {} {
 .main.efirst delete 0 end
 .main.elast delete 0 end
 .main.eaddress delete 0 end
 .main.ecity delete 0 end
 .main.estate delete 0 end
 .main.ezip delete 0 end
 .main.ephone delete 0 end

Creating the Address Book Application

200

 .main.picture configure -image ""
}

proc addRecord {} {
 global currentRecord
 global recordCount
 global addressInfo
 global pictureFile
 # Clear current entries
 clearRecord
 set pictureFile ""
 set currentRecord [expr $recordCount +1]
}

proc nextRecord {} {
 global currentRecord
 global recordCount

 if { $currentRecord < $recordCount } {
 # Clear current entries
 clearRecord
 incr currentRecord
 loadRecord
 }
}

proc previousRecord {} {
 global currentRecord
 global recordCount

 if { $currentRecord > 1 } {
 # Clear current entries
 clearRecord

 set currentRecord [expr $currentRecord - 1]
 loadRecord
 }
}

proc saveRecord {} {
 global currentRecord
 global recordCount
 global addressFile
 global addressInfo
 global pictureFile

 # No Records Exist
 if {$currentRecord == 0} {
 incr currentRecord

Chapter 13

201

 incr recordCount
 }

 dict set addressInfo $currentRecord ID "$currentRecord"
 dict set addressInfo $currentRecord FNAME "[.main.efirst get]"
 dict set addressInfo $currentRecord LNAME "[.main.elast get]"
 dict set addressInfo $currentRecord ADDRESS "[.main.eaddress get]"
 dict set addressInfo $currentRecord CITY "[.main.ecity get]"
 dict set addressInfo $currentRecord STATE "[.main.estate get]"
 dict set addressInfo $currentRecord ZIP "[.main.ezip get]"
 dict set addressInfo $currentRecord PHONE "[.main.ephone get]"
 dict set addressInfo $currentRecord PHOTO "$pictureFile"

 # Write the records to the file

 set fp [open $addressFile w+]

 dict for {id info} $addressInfo {
 dict with info {
 # Create an entry for the file
 set data "$ID,$FNAME,$LNAME,$ADDRESS,$CITY,$STATE,$ZIP, \
$PHONE,$PHOTO\n"
 # Write the entry to the file
 puts -nonewline $fp $data

 }
 }
 set recordCount [dict size $addressInfo]
 # Close the file
 close $fp
}

proc deleteRecord {} {
 global addressFile
 global addressInfo
 global currentRecord
 global recordCount

 if {$recordCount > 0} {
 set myTitle "Confirm Request"
 set myMessage "Select OK to delete the current record"
 set response [tk_messageBox -message $myMessage \
 -title myTitle \
 -type okcancel \
 -icon warning]

 if {$response == "ok"} {
 puts "DELETE COUNT: $recordCount CURRENT: $currentRecord"
 set tempDict [dict remove $addressInfo $currentRecord]

Creating the Address Book Application

202

 clearRecord

 puts "IN DELETE"
 set fp [open $addressFile w+]
 puts "DELETE FILE ID: $fp"

 set recnum 0

 dict for {id info} $tempDict {

 dict with info {
 incr recnum
 # Create an entry for the file
 set data "$recnum,$FNAME,$LNAME,$ADDRESS,$CITY, \
 $STATE, $ZIP,$PHONE,$PHOTO\n"
 puts "---"
 puts "NEW DATA: $data"
 # Write the entry to the file
 puts -nonewline $fp $data
 }
 }
 flush $fp
 close $fp

 puts "POST DELETE FILE WRITE - READING IN NEW FILE"

 # Clean up the dictionary files
 unset addressInfo
 unset tempDict

 # If we deleted the last record this avoids trying to read in an
 empty file
 if {[file size $addressFile] > 0} {
 set fp [open $addressFile r+]
 fconfigure $fp -buffering line
 gets $fp data

 set recno 0
 while { $data > 0 } {
 puts "DATA ADDED TO DICT: $data TO RECNO: $recno"
 set data2 [split $data ","]

 incr recno

 dict set addressInfo $recno ID [lindex $data2 0]
 dict set addressInfo $recno FNAME [lindex $data2 1]
 dict set addressInfo $recno LNAME [lindex $data2 2]
 dict set addressInfo $recno ADDRESS [lindex $data2 3]
 dict set addressInfo $recno CITY [lindex $data2 4]
 dict set addressInfo $recno STATE [lindex $data2 5]

Chapter 13

203

 dict set addressInfo $recno ZIP [lindex $data2 6]
 dict set addressInfo $recno PHONE [lindex $data2 7]
 dict set addressInfo $recno PHOTO [lindex $data2 8]
 set pictureFile [dict get $addressInfo $recno PHOTO]
 gets $fp data
 }

 set recordCount [dict size $addressInfo]
 puts "NEW addressInfo recordCount $recordCount\n\n"
 set currentRecord 1

 # Load the first record
 loadRecord

 } else {
 set myTitle "Missing Records"
 set myMessage "No records exist, please add an entry and click
 save"
 tk_messageBox -message $myMessage \
 -title $myTitle \
 -type ok \
 -icon warning

 set currentRecord 0
 set recordCount 0
 set pictureFile ""
 }
 }
 }
}

proc getPicture {} {
 global currentRecord
 global addressInfo
 global pictureFile

 set types {
 {{GIF} {.gif} }
 {{PPM} {.ppm} }
 {{All Files} * }
 }

 set filename [tk_getOpenFile -filetypes $types]

 if {$filename != ""} {
 # Now that we have the path to the desired picture
 # we copy it to the working directory

 # Get the destination filename
 # by splitting the fullpath into

Creating the Address Book Application

204

 # elements and retrieving the last
 set listFile [file split $filename]
 set listCount [llength $listFile]
 set listIndex [expr $listCount - 1]

 set pictureFile [lindex $listFile $listIndex]

 # If the pictureFile already exists within the
 # working directory we do not copy it again
 if { [file exists $pictureFile] == 0 } {
 # Copy the image to the current directory
 if {[catch {file copy -force "$filename" $pictureFile} sError]}
 {
 tk_messageBox -message "File Copy Error $filename to
 $pictureFile"
 }
 }

 # Update the dictionary entry

 dict set addressInfo $currentRecord PHOTO $pictureFile

 # Update the image onscreen
 image create photo newPicture -file $pictureFile
 .main.picture configure -image newPicture
 }
}

###
END OF PROCEDURES

###
Create the dictionary from the file on disk
if it exists and contains entries

if { [file exists $addressFile]} {
 # If the file exists check that it has contents
 # Since we are managing the file through the application we can
assume
 # for the sake of our application that it is in the correct format

 if { [file size $addressFile] > 0 } {
 set fp [open $addressFile r+]
 gets $fp data

 while {$data >0} {
 set data2 [split $data ","]

 set recno [lindex $data2 0]

 dict set addressInfo $recno ID [lindex $data2 0]

Chapter 13

205

 dict set addressInfo $recno FNAME [lindex $data2 1]
 dict set addressInfo $recno LNAME [lindex $data2 2]
 dict set addressInfo $recno ADDRESS [lindex $data2 3]
 dict set addressInfo $recno CITY [lindex $data2 4]
 dict set addressInfo $recno STATE [lindex $data2 5]
 dict set addressInfo $recno ZIP [lindex $data2 6]
 dict set addressInfo $recno PHONE [lindex $data2 7]
 dict set addressInfo $recno PHOTO [lindex $data2 8]
 # Open the file
 set pictureFile [dict get $addressInfo $recno PHOTO]
 # Read the data using the gets
 gets $fp data
 }

 close $fp

 set recordCount [dict size $addressInfo]
 set currentRecord 1

 # Load the first record
 loadRecord
 } else {
 set myTitle "Missing Records"
 set myMessage "No records exist, please add an entry and click
 save"
 tk_messageBox -message $myMessage \
 -title $myTitle \
 -type ok \
 -icon warning

 set currentRecord 0
 set recordCount 0
 set pictureFile ""

 }
} else {
 set myTitle "Missing configuration file"
 set myMessage "No address file exists, please add an entry and click
 save."
 tk_messageBox -message $myMessage \
 -title myTitle \
 -icon warning

 set currentRecord 0
 set recordCount 0
 set pictureFile ""
}

Index
A
acceptable options

-blocking boolean 102
-buffering value 102
-buffersize size 102
-encoding name 102
-eofchar char 103
-translation mode 103

additional window
creating 117

address book application
creating 184-188
full listing 196-205
record, adding 188, 190, 191
record, deleting 192-194
record, locating 195, 196
records, navigating 191, 192

address book interface
creating 152-154
working 155

append command 41, 42

B
basic variable commands

global var 15
incr var value 15
set var value 15
unset var var var 15

blank dictionary structure
creating 95

break command 22, 28, 29
button command 114
button widget

about 130
creating 113, 130-133

standard keywords 130-132

C
catch command 105

using 32
working 33

catch construct 32
catch statement 105
character substitution

performing, on string 46, 47
class, string

alnum 54
alpha 54
ascii 54
boolean 54
control 54
determining 54, 55
digit 54
double 54
false 54
graph 54
integer 54
list 55
lower 55
print 55
punct 55
space 55
true 55
upper 55
wideinteger 55
wordchar 55
xdigit 55

close command 105, 107
color picker

displaying 161, 162
command line arguments 17

208

command pipeline
about 104
opening 104, 105

concat command 71
confirmation dialog

displaying 159, 160
console

about 115
writing to 115

console command 115
working 116

continue command 22, 27, 28
control constructs, Tcl

about 21
break 22
continue 22
for 22
foreach 22
if 22
nesting 29, 30
while 22

conversion characters, scan command
[^chars] 48
[chars] 48
d 47
e, f, or g 48
n 48
o 47
s 48
u 48
x 48

conversion specifiers
c 42
d or i 42
e or E 42
f 42
g or G 43
o 42
u 42
x or X 42

custom dialog window
creating 121
working 122

D
data entry application

menu, adding 180-182
destroy command 120
dialog windows, Tk

about 157
color picker, displaying 161, 162
confirmation dialog, displaying 159, 160
directory dialog, displaying 162, 163
file selection dialog, displaying 164-166
message box, displaying 158, 159

dict create command 86
dict exists command 88
dict filter command 88
dict for and with commands 98
dict for command 90
dict get command 91
dict incr command 91
dict info command 92
dict keys command 93, 97
dict lappend command 94
dict merge command 94
dict remove command 95
dict set command 96
dict size command 96
dict values command 97
dict with command 97
dictionaries

merging 94, 95
dictionary

about 85, 86
appending to 87
creating 86
creating, dict create command used 87
existing record, appending 94
filtering 88, 89
key existence, determining 88
list of keys, obtaining 93
record, obtaining 91
records, obtaining 97
searching 90
size, determining 96
value, incrementing 91
values, assigning 97, 98
variables, updating 96

209

dictionary structure
obtaining 92

dir command 105
directory and file selection dialog

displaying 166, 167
directory dialog

displaying 162-164

E
element

inserting into list 75
repeating 77
replacing 77, 78
retrieving, from list 74
reversing 78

elseif keyword 23
else keyword 23
entry widget

about 128
creating 128-130
standard keywords 128, 129

error command
using 35
working 36

error handling 31
error handling constructs

about 32
catch 32
error 32
eval 32

error handling procedure
building 36, 37
working 37

eval command
using 34
working 34

exit command 114
expr command 8

F
fconfigure command 102
file

closing 107
configuring 102
opening 100, 101

reading 106
writing 106

file formats
absolute 13
relative 13
volume-related 13

file handling 108
file handling commands 109
file operations

about 99
command pipeline, opening 104
file, closing 107
file, configuring 102, 103
file, handling 108
file, opening 100, 101
file, reading 106, 107
file, writing 106

file selection dialog
displaying 164-166

files, referencing
about 13
UNIX 14
Windows 14

filter types
key 89
script 89
value 89

first instance, string
locating 52

flags, open command
a 100
a+ 100
APPEND 101
BINARY 101
CREAT 101
EXCL 101
NOCTTY 101
NONBLOCK 101
r 100
r+ 100
RDONLY 101
RDWR 101
TRUNC 101
w 100
w+ 100
WRONLY 101

210

flow
controlling, with if statement 23

for command
about 22
looping with 24
syntax 22

foreach command
about 22
looping with 25, 26
syntax 22

format command 42
frame widget

about 124
creating 124, 125
standard keywords 124, 125

full listing, address book application 196

G
geometry management

about 143, 144
address book interface, creating 152- 154
grid command 147
layout, controlling with grid command

 147-151
layout, controlling with pack command

 144-147
pack and grid, combining 151, 152
pack command 144

gets command 107
goto statement 21
Graphical Tool Kit. See Tk
Graphical User Interface (GUI) 5 112, 169
grid command

layout, controlling with 147, 148
syntactical options 148

I
if statement

about 22, 24
example 24
flow, controlling with 23
syntax 22

image command
creating 139, 140
keywords 139

index, string
locating 53

J
join command 72

L
label widget

about 126
creating 126, 127
standard keywords 126, 127

lappend command 73
lassign command 73
last instance, string

locating 56
leading whitespace, string

trimming 64, 65
length command 49
lindex command 74
linsert command 75
list

creating 70, 71
editing 81
element, inserting 75
element, retrieving from 74
searching 79-81
sorting 82

list_add procedure 142
listbox insert command 138
listbox widget

about 133
creating 133-138
standard keywords 133, 134

list command 70
list elements

appending 73
assigning, to variables 73
combining 72
retrieving 76

lists
combining 71

llength command 75
looping

with, for command 24
with, foreach command 25, 26
with, while statement 26, 27

211

lrange command 76
lrepeat command 77
lreplace command 78
lreverse command 78
lsearch command 79
lsort command 82

M
mathematical expressions

about 8
computing 12

mathematical functions
about 11
acos arg 11
asin arg 11
atan arg 11
bool arg 11
ceil arg 11
double arg 11
entier arg 11
exp arg 11
floor arg 11
fmod x y 11
int arg 11
isqrt arg 11
log10 arg 12
max arg 12
pow x y 12
rand 12
sin arg 12
sinh arg 12
sqrt arg 12
srand arg 12
wide arg 12

menu
adding, to data entry application 180-182
creating 170-174

menubutton command
about 175
option value pairs 175

menu buttons
creating 175, 177, 178

menubutton widget
creating 177

menu command
about 170

option value pairs 170
menu widget

creating 171
message box

displaying 158, 159

N
nested looping 29, 30
number of elements

determining 75

O
open command 100
options, lsearch command

-all 79
-ascii 80
-decreasing 80
-dictionary 80
-exact 79
-glob 79
-increasing 80
-index IndexList 80
-inline 79
-integer 80
-nocase 80
-not 79
-real 80
-regexp 79
-sorted 79
-start index 80
-subindices 80

options, lsort command
-ascii 82
-command command 82
-decreasing 82
-dictionary 82
-increasing 82
-index IndexList 82
-indices 82
-integer 82
-nocase 82
-real 82
-unique 82

options, tk_dialog command
bitmap 160
default 160

212

string 160
text 160
title 160
window 160

option value pairs, menubutton command
-activebackground 175
-activeforeground 175
-anchor 175
-background or -bg 176
-bitmap 176
-compound 176
-cursor 176
-direction 176
-disabledforeground 176
-font 176
-foreground or -fg 176
-height 176
-highlightbackground 176
-highlightcolor 176
-highlightthickness 176
-image 176
-indicatoron 176
-justify 176
-menu 176
-padx 176
-pady 176
-state 177
-takefocus 176
-width 177

option value pairs, menu command
-accelerator 170
-activebackground 170
-activeborderwidth 170
-activeforeground 170
-background or -bg 170
-borderwidth or -bd 170
-cursor 170
-disabledforeground 170
-font 170
-foreground or -fg 170
-postcommand 171
-relief 170
-selectcolor 171
-takefocus 170
-tearoff 171
-tearoffcommand 171

-title 171
-type 171

option value pairs, tk_chooseColor command
-initialcolor color 161
-parent window 161
-title string 161

option value pairs, tk_chooseDirectory
command

-initialdir directory 163
-mustexist boolean 163
-parent window 163
-title string 163

option value pairs, tk_getSaveFile command
-defaultextension extension 164
-filetypes pattern 164
-initialdir directory 165
-initialfile filename 165
-message string 165
-multiple boolean 165
-parent window 165
-title string 165
-typevariable variable 165

option value pairs, tk_messageBox command
-default name 158
-detail string 158
-icon name 158
-message string 158
-parent window 158
-title string 158
-type name 158

P
pack and grid commands

combining 151
pack command

layout, controlling with 144
syntactical options 144
working 147

packer 144
pattern

locating, within string 58, 59
platform-specific annotations

UNIX style platforms 14
pop-up menu

about 178
displaying 178, 179

213

procedure
breaking out 28, 29
continuing 27, 28

puts command 42, 105

R
range of characters

replacing, within string 60, 61
returning, from string 59

read command 105, 106
record

adding, to address book application 188,
190, 191

deleting 192-194
locating 195, 196
navigating 191, 192

records, dictionary
obtaining 91, 97

regexp command 45
regsub command 46
regular expression

matching, within string 44, 45
reverse string

creating 61, 62

S
scan command 47

conversion characters 47
set command 41
shimmering 15
simple form

creating 140-142
size, dictionary

determining 96
specific commands

name activate index 172
name cget option 173, 177
name clone newname type 173
name configure option value 173, 177
name delete index1 index2 173
name entrycget index option 173
name entryconfigure index options 173
name index index 173
name insert index type option value 173
name invoke index 174
name postcascade index 174

name post x y 174
name type index 174
name unpost 174
name xposition index 174
name yposition index 174

split command 83
sprintf procedure 42
standard options, toplevel command

-borderwidth or -bd 117
-cursor 117
-highlightbackground 117
-highlightcolor 117
-highlightthickness 117
-padx 117
-pady 117
-relief 118
-takefocus 118

string
appending to 41, 42
character substitution, performing 46, 47
class of character, determining 54, 55
converting, to lowercase 62
converting, to title 62
converting, to uppercase 63
first instance of character, locating 52
formatting 42-44
index of character, locating 53
last instance, locating 56
leading whitespace, trimming 64
length, determining 49
parsing, conversion specifiers used 47, 49
pattern, locating 58, 59
range of characters, returning 59
ranges of characters, replacing 60, 61
regular expression, matching 44, 45
reverse string, creating 61, 62
size, determining 57
splitting, into list 83
 of identical characters, creating 60
trailing whitespace, trimming 65
trimming 64
values, replacing 57, 58
variable substitution, performing 67
word end, locating 65
word start, locating 66

string command 41

214

string comparison
performing 50-52

string of repeated characters
creating 60

switches
-- 44
-about 44
-all 44, 46
-expanded 44, 46
-indices 44
-inline 44
-line 44, 46
-lineanchor 44, 46
-linestop 44, 46
-nocase 44, 46
-start 44, 46

syntactical options, grid command
grid anchor parent anchor 148
grid bbox parent column1 row1 column2 row2

148
grid columnconfigure parent column option

value 148
grid configure widget options 149
grid forget widget widget 149
grid info widget 149
grid location parent x y 149
grid remove widget widget 150
grid size parent 150
grid slaves master option value 150
grid widget row column 148

syntactical options, pack command
pack configure widget widget options, 145
pack forget widget widget, 145
pack info widget, 145
pack propagate master boolean, 146
pack slaves master, 146
pack widget widget options, 145

T
Tcl

character substitution, performing on string
46, 47

control constructs 21, 22
error handling 31
file operations 99
files, referencing 13, 14

regular expression, matching within string
 44, 45

shimmering 15
string, creating 41, 42
string expression, handling 40
string, formatting 42-44
string length, determining 49
string parsing, conversion specifiers used

 47, 49
strings, comparing 50, 51

Tcl console
writing to 7

Tcl dictionary. See dictionary
Tcl expression 8
Tcl expr operands

about 8
boolean 9
named functions 9
numeric 9
Strings (in braces) 9
Strings (in double quotes) 9
Tcl commands 9
Tcl variable 9

Tcl expr operators
^ 10
- + ~ ! 9
** 9
*/ % 9
& 10
&& 10
+ - 9
< > <= >= 10
<< >> 10
== != 10
| 10
about 9, 10
eq ne 10
in ni 10
x?y:z 10

tcl_platform array variable 13
Tcl script

creating 17, 19
launching 17

tclsh 6, 112
Tcl shell

about 6, 7, 112
introducing 5, 6

215

Tcl/Tk commands
append 40
format 40
regexp 40
regsub 40
scan 41
string 40
subst 41

Tcl variables
about 7
argc 7
argv 7
argv0 7
env 7
tcl_interractive 7

then keyword 24
Tk

about 112
address book application, creating 184
dialog windows 157
geometry management 143
menu buttons, creating 175-178
menu, creating 170, 171, 174
pop-up menu, displaying 178, 179

tk_chooseColor command
about 161
option value pairs 161

tk_chooseDirectory command
about 162
option value pairs 163

tk_chooseDirectory dialog
about 166
combining, with tk_getOpenFile dialog 166,

167
tk_dialog command

about 159
options 160

tk_getOpenFile command 164
tk_getSaveFile command

about 164
option value pairs 164

tk_messageBox command
about 158
option value pairs 158

tk_popup command 178
Tk widgets

about 123

button widget 130
entry widget 128
frame widget 124
image, creating 139
label widget 126
listbox widget 133
simple form, creating 140

toplevel command
about 117
standard options 117
window specific options 118
working 119

trailing whitespace, string
trimming 65

U
UNC file naming conventions 14, 15

V
value, dictionary

assigning 97, 98
incrementing 91

values
replacing, within string 57, 58

variables
about 15
creating 15
list elements, assigning to 73
unsetting 16

variables, dictionary
updating 96

variable substitution
performing 67, 68

W
while statement

about 22
looping with 26, 27
syntax 22

widget
about 112
creating 113
working 114

widget commands
widgetname activate index 135

216

widgetname bbox index 135
widgetname cget keyword 135
widgetname configure keyword value� 135
widgetname curselection 135
widgetname delete first last 135
widgetname get first last 135
widgetname index index 135
widgetname insert index element� 135
widgetname itemcget index keyword 135
widgetname itemconfigure index keyword

value� 135
widgetname nearest y 135
widgetname scan keywords arguments 136
widgetname size 136
widgetname xview arguments 137
widgetname yview arguments 137

window
attributes, setting through window manager

116, 117
destroying 119-121

Window Shell (wish) 112

window specific options, toplevel command
-background 118
-class 118
-colormap 118
-container 118
-height 118
-menu 118
-screen 118
-use 118
-visual 118
-width 118

word end, string
locating 65, 66

word start, string
locating 66

Thank you for buying
Tcl/Tk 8.5 Programming Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Tcl 8.5 Network
Programming
ISBN: 978-1-849510-96-7 Paperback: 588 pages

Build network-aware applications using Tcl, a powerful
dynamic programming language

1.	 Develop network-aware applications with Tcl

2.	 Implement the most important network protocols
in Tcl

3.	 Packed with hands-on-examples, case studies,
and clear explanations for better understanding

wxPython 2.8 Application
Development Cookbook
ISBN: 978-1-84951-178-0 Paperback: 308 pages

Over 80 practical recipes for developing feature-rich
applications using wxPython

1.	 Develop flexible applications in wxPython.

2.	 Create interface translatable applications that will
run on Windows, Macintosh OSX, Linux, and other
UNIX like environments.

3.	 Learn basic and advanced user interface controls.

4.	 Packed with practical, hands-on cookbook recipes
and plenty of example code, illustrating the
techniques to develop feature rich applications
using wxPython.

Please check www.PacktPub.com for information on our titles

Expert Python Programming
ISBN: 978-1-847194-94-7 Paperback: 372 pages

Best practices for designing, coding, and distributing
your Python software

1.	 Learn Python development best practices from
an expert, with detailed coverage of naming and
coding conventions

2.	 Apply object-oriented principles, design patterns,
and advanced syntax tricks

3.	 Manage your code with distributed version control

4.	 Profile and optimize your code

Python 3 Object Oriented
Programming
ISBN: 978-1-849511-26-1 Paperback: 404 pages

Harness the power of Python 3 objects

1.	 Learn how to do Object Oriented Programming in
Python using this step-by-step tutorial

2.	 Design public interfaces using abstraction,
encapsulation, and information hiding

3.	 Turn your designs into working software by
studying the Python syntax

4.	 Raise, handle, define, and manipulate exceptions
using special error objects

Please check www.PacktPub.com for information on our titles

Python Geospatial
Development
ISBN: 978-1-84951-154-4 Paperback: 508 pages

Build a complete and sophisticated mapping application
from scratch using Python tools for GIS development

1.	 Build applications for GIS development using
Python

2.	 Analyze and visualize Geo-Spatial data

3.	 Comprehensive coverage of key GIS concepts

4.	 Recommended best practices for storing spatial
data in a database

Python Testing: Beginner's
Guide
ISBN: 978-1-847198-84-6 Paperback: 256pages

An easy and convenient approach to testing your
powerful Python projects

1.	 Covers everything you need to test your code in
Python

2.	 Easiest and enjoyable approach to learn Python
testing

3.	 Write, execute, and understand the result of tests
in the unit test framework

4.	 Packed with step-by-step examples and clear
explanations

Please check www.PacktPub.com for information on our titles

Python 2.6 Text Processing:
Beginners Guide
ISBN: 978-1-84951-212-1 Paperback: 380 pages

The easiest way to learn how to manipulate text with
Python

1.	 The easiest way to learn text processing with
Python

2.	 Deals with the most important textual data
formats you will encounter

3.	 Learn to use the most popular text processing
libraries available for Python

4.	 Packed with examples to guide you through

Python Text Processing with
NLTK 2.0 Cookbook
ISBN: 978-1-84951-360-9 Paperback: 272 pages

Use Python's NLTK suite of libraries to maximize your
Natural Language Processing capabilities.

1.	 Quickly get to grips with Natural Language
Processing – with Text Analysis, Text Mining, and
beyond

2.	 Learn how machines and crawlers interpret and
process natural languages

3.	 Easily work with huge amounts of data and learn
how to handle distributed processing

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Tcl Shell
	Introduction
	The Tcl shell
	Writing to the Tcl console
	Mathematical expressions
	Tcl expr operands
	Mathematical functions
	Computing mathematical expressions
	Referencing files in Tcl
	Variables
	Command line arguments

	Chapter 2: Using the Building Blocks Control Constructs
	Introduction
	Controlling flow with the if statement
	Looping with for
	Looping with foreach
	Looping with while
	Continuing a procedure
	Breaking out of a procedure
	Nested looping

	Chapter 3: Error Handling
	Introduction
	Using the catch command
	Using the eval command
	Using the error command
	Error handling procedure

	Chapter 4: Handling String Expressions
	Introduction
	Appending to a string
	Formatting a string
	Matching a regular expression within
	a string
	Performing character substitution
	on a string
	Parsing a string using conversion specifiers
	Determining the length of a string
	Comparing strings
	Comparing a string of characters
	Locating the first instance of a character
	Locating the index of a character
	Determining the class of a string
	Locating the last instance of a string
	Determining the size of a string
	Replacing values within a string
	Locating a pattern within a string
	Returning a range of characters
	from a string
	Creating a string of repeated characters
	Replacing ranges of characters
	contained within a string
	Creating a reverse string
	Converting a string to lowercase
	Converting a string to title
	Converting a string to uppercase
	Trimming a string
	Trimming leading whitespace
	Trimming trailing whitespace
	Locating the word end
	Locating the word start
	Performing variable substitution

	Chapter 5: Expanding String Functionality Using Lists
	Introduction
	Creating a list
	Joining two lists
	Joining list elements
	Appending list elements
	Assigning list elements to variables
	Retrieving an element from a list
	Inserting elements into a list
	Determining the number of elements
	Getting a list element
	Repeating elements
	Replacing elements
	Reversing elements
	Searching a list
	Editing a list
	Sorting a list
	Splitting a string into a list

	Chapter 6: The Tcl Dictionary
	Introduction
	Creating a dictionary
	Appending to a dictionary
	Determining if a key exists
	Filtering a dictionary
	Searching a dictionary
	Getting a record
	Incrementing a value
	Getting the dictionary structure
	Getting a list of keys
	Appending to an existing record
	Merging two dictionaries
	Creating a blank dictionary structure
	Updating variables from a dictionary
	Determining the size of a dictionary
	Getting all records
	Assigning values

	Chapter 7: File Operations
	Introduction
	Opening a file
	Configuring a file
	Opening a command pipeline
	Writing a file
	Reading a file
	Closing a file
	File handling

	Chapter 8: Tk GUI Programming with Tcl/Tk
	Introduction
	Creating a widget
	Writing to the console
	Setting the attributes of the window
	through window manager
	Creating an additional window
	Destroying a window
	Creating a custom dialog

	Chapter 9: Configuring and Controlling Tk Widgets
	Introduction
	Creating a frame widget
	Creating a label widget
	Creating an entry widget
	Creating a button widget
	Creating a listbox widget
	Creating an image
	Creating a simple form

	Chapter 10: Geometry Management
	Introduction
	Controlling layout with the pack command
	Controlling layout with the grid command
	Combining pack and grid
	Creating an address book interface

	Chapter 11: Using Tcl Built-in Dialog Windows
	Introduction
	Displaying a message box
	Displaying a confirmation dialog
	Displaying the color picker
	Displaying the directory dialog
	Displaying the file selection dialog
	Selecting a directory and file

	Chapter 12: Creating and Managing Menus
	Introduction
	Creating a menu
	Adding menu buttons
	Displaying a pop-up menu
	Data entry application

	Chapter 13: Creating the Address Book Application
	Introduction
	Creating the Address Book application
	Adding a record
	Navigating records
	Deleting a record
	Finding a record
	Full listing

	Index

