IN ANUTSHELL

A Desktop Quick Reference

O’REILLY" Paul Raines & Jeff Tranter

http://www.oreilly.com
http://www.oreillynet.com/pub/au/672
http://www.oreillynet.com/pub/au/450
http://www.oreillynet.com/pub/au/672

UNIX Programming

TCL/TK IN A NUTSHELL

The Tcl language and Tk graphical toolkit are simple and powerful
building blocks for custom applications. The Tel/Tk combination
is increasingly popular because it lets you produce sophisticated
graphical interfaces with a few easy commands, develop and
change scripts quickly, and conveniently tie together existing

utilities or programming libraries.

One of the attractive features of Tcl/Tk is the wide variety of commands, many
offering a wealth of options. Most of the things you'd like to do have been
anticipated by the language’s creator, John Ousterhout, or byone of the developers
of Tel/Tk’s many powerful extensions. Thus, you'll find that a command or option
probably exists to provide just what you need.

And that's why it's valuable to have a quick reference that briefly describes every
command and option in the core Tcl/Tk distribution as well as the most popular
extensions. Keep this book on your desk as you write scripts, and you’ll be able to
find almost instantly the particular option you need.

Most chapters consist of alphabetical listings. Since Tk and mega-widget packages
break down commands by widget, chapters on these topics are organized by widget
along with a section of core commands where appropriate. Contents include:

e Core Tcl and Tk commands and Tk widgets

¢ Cinterface (prototypes)

e Expect

e [incr Tell and [iner Tk]

e Tix
e TcIX
e BLT

e Oratcl, Sybtcl, and Tclodbe

O’REILLY® www.oreilly.com

US $34.99 CAN $34.99
ISBN: 978-1-56592-433-8

9
OO v

7815657924338

http://www.oreilly.com
http://www.oreilly.com

TCL /TK

A Desktop Quick Reference

TCL/TK

A Desktop Quick Reference

Paul Raines & Jeff Tranter

O’REILLY"

Beijing « Cambridge » Farnbam * Koln * Sebastopol * Taipei « Tokyo

http://www.oreilly.com
http://www.oreillynet.com/pub/au/672
http://www.oreillynet.com/pub/au/450

Tel/Tk in a Nutshell

by Paul Raines and Jeft Tranter

Copyright © 1999 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
Editor: Andy Oram

Production Editor: Madeleine Newell

Printing History:

March 1999: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’'Reilly Media, Inc. The In a Nutshell series designations, 7cl/Tk in a Nutshell,
the image of an ibis, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

RepKover.
%é This book uses RepKover', a durable and flexible lay-flat binding.

ISBN: 1-56592-433-9
[M] [3/05]LCP

http://www.oreilly.com
http://www.oreilly.com
http://www.oreilly.com
htp://www.oreilly.com
http://www.oreilly.com
http://www.oreilly.com

1able of Contents

PHEJUCEooosnese s Xi
Chapter 1 — INIrOAUCTION ...t 1
WHhat IS TCL? oo 1
Structure of This BOOKcccoiiiiiiiiiiiiic e 2
Chapter 2 — Tcl Core COMMANCS ... 3
OVEIVIEW ..iiiiiiiiiiiiiiii 3
Basic Language FEeAtUIeSccoiiiiiiaiiiiieiie e 4
Command-Line OPtONSc.eiiiiiiiiiiiiiiie ettt 5
Environment Variables ..o 5
Special Variables ...t 5
Backslash SUDSHIUHONSooviiiiiiiiiiieic e 6
Operators and Math FUNCHONScooviiiiiiiiiiiiiii e 7
Regular EXPIeSSIONSiiiiiiiiiiiiiii it 9
Pattern GIODDINGoooviiiiiiii i 10
Predefined I/O Channel Identifiersccccccooiiiiiiiiiiiiiiiie, 11
Group Listing of Commandscccoooviiiiiiiiiiiiie e 11
Alphabetical Summary of Commandsccccocviniiiniiniiie, 16
Chapter 3 — Tk Core COMMANCSoowvecververerrrrerrersrrrirsrrir 47
EXAMPLE ©oiiiiiiiiii i 47
Command-Line OPtONScciiiuiiiiiiiiiiie et 49
Environment Variable ... 50
Special Variables ... 50

vii

Group Listing of Tk Commandsccccoocvvriiiiiiiiiiiiieiieeee 50

WAL OVEIVIEW ..ttt 52
Widget COMMEANGSooviviiiiiiiieiceiceieeee e, 56
Utility COMMANAS ..oeiiiiiiiiiiiiie e 101
Chapter 4 — The Tcl C Interfacecoeeeeonnncerrrnn. 137
CONSLANLS 1.ttt ittt 137
Data TYPES it 138
Group Listing of FUNCHONSoviiiiiiiiiiiiieiie e 140
Alphabetical Summary of FUNCHONScccoooviiiiiiiiiiiieie e 148
Chapter 5 —The Tk C INLerfaceeeeeeeeeeciiiiisssssnn 156
COMSEANIES ..ottt ettt ettt et e ettt e nteeieeene e ans 156
Data TYPES it 157
Group Listing of FUNCHONScooviiiiiiiiiiiiicieeee e 158
Alphabetical Summary of FUNCHONSc.oovovviiiieiiiieiiiiiieiciean 166
CHAPLET O — EXPOCLcoooooesesesesees s 174
OVEIVIEW .ttt ettt ans 174
EXAMIPLE .oiiiiiiiiiiei e 175
Command-Line OPtiONSccceiviiiiiiiiiiiiiiie et 175
Environment Variables ..o 177
Special Variables ... 177
Grouped Summary of Commandscoccevviiiiiiiiiiiii e 179
Alphabetical Summary of Commandscccoeviiiiiiiiiiiiiic, 181
Chapter 7 — [TNCE TCI ..o 193
Basic Class Definitionccocceiiiiiiiiiiiiii e 193
Special Variables ..ot 194
Group Listing of Commandscccooviiiiiiiiiiiiiiee 194
EXAMPIE oot 194
Alphabetical Summary of Commandscccoeviiiiiiiiiiiiie. 195
ChAPLET 8 — [INCH TR ..o 201
Basic Structure of a2 Mega-widgetccccovviiiiiiiiiiiiiiiiieeeiiee 201
Special Variable ... 202
Methods and Variables ... 202
Alphabetical Summary of Commandsccocceoviiiiiiiiiiiiiice, 204

Vit

CPAPLET D ——THEX ..o 205

TIX OVEIVIEW ittt 205
Special Variables ..o 205
Group Listing of Tix Commandsc.cccooeeeriiiriiiiiiniiiieiie, 206
Tix Mega-widget OVEIVIEWccciiiiiiiiiiiiiiaiie et 208
TiX MEZA-WIAZELS ...eiiiiiiiiiiiii et 208
Tix Standard Widgets OVEIrVIEWccceviiiiiiiiiiaiieiieiie e 248
Tix Standard Wid@ELSc.eoviiiiiiiiiiiiiie et 251
Tix Core COMMANGSveviiiiiiiiiiiiiii ettt 267
Tix Extensions to Tk image Commandccccevviieniiieniieeninn, 278
CDAPLET 1O ——TCIX ..o 281
Special Variables ..ot 281
Group Listing of Commandscccooviiiiiiiiiiiiiee e 282
Alphabetical Summary of Commandscccceoviiiiiiiiiiiiiiae. 285
CHAPLEY 11 —BLT ... 314
Environment Variable ..o 315
Special Variables ..ot 315
Group Listing of Commandsccccooviviiiiiiiiiiiee e 315
Alphabetical Summary of Commandsccocceveiiiiiniiiiiiiee, 316
ChAPLEr 12 — OFQICL ... 388
OVEIVIEW ittt 388
EXAMIPLE oottt 389
Environment Variables ... 389
Special Variablesccooiiiiiiiiiiii 389
Group Listing of Commandscccooviiiiiiiiiiiiiiee 391
Alphabetical Summary of Commandscccceeviiiiiiiiiiiiiiee, 391
ChAPLEr 13 —SYDICL ... 396
OVEIVIEW .ttt ettt ettt 396
EXAMPLE .ot 397
Environment Variables ... 397
Special Variables ..o 397
Group Listing of Commandsccoocviviiiiiiiiiiie e 399
Alphabetical Summary of Commandscccoeviiiiiiiiiiiiiie, 399

Chapter 14 —TClOADC ... 403

OVEIVIEW .ttt ettt ettt 403
Group Listing of Commandscc.occiiiiiiiiiiiiiiieie e 404
Summary of CommMANAScc.ovvieiiiiiiiiiiie e 405
Chapter 15 — Hints and Tips for the Tcl Programmer ... 411
Think Commands, NOt Statementscccccvvvveiiiiiiiiiiiiiiiieeeeeeeeeen 412
Comments Are Treated as Commandscccoovviviiiniiiiiiniiiieains 414
A SYMDONC GESLUTEvoviivieeiieicicciieii e, 416
Lists Are Strings, but Not All Strings Are LiStsccccocoveiviiiiiirnnnnn. 416
Indirect REfErencCesoociiiiiiiiiiiiiii e 418
Executing Other Programscccoocvieiiiiiiiiieiiieeeie e 419
When Is a Number Not @ NUMDEI?cocooiiiiiiiiiiiiiiiec e 420
Quoting and More QUOLINGcc.eovuiiiiiiiiiiieiie et 421
Write Once, Run WHhere?c.ccccooviiiiiiiii e, 422
CoMMON TK EITOTS .eiiiiiiiiiiiiiioiii ettt 424
Use the Source, LUKE!ccoiiiiiiiiiiiiiice e 426
APPendix — TCl RESOUVCESoovveooerererrersrresserrissnssisssssisasssonns 427
TIUACK ... 429

Preface

This book is about Tcl, the scripting language developed by John Ousterhout. Tcl
stands for tool command language and was originally designed as a simple script-
ing language interpreter that could be embedded inside applications written in the
C language. With the addition of the Tk graphical toolkit and a host of other lan-
guage extensions supporting such features as graphics, relational databases, and
object-oriented programming, Tcl has become a popular programming language
for developing applications in its own right. The freely available Tcl language
interpreter runs on many computer platforms, including most Unix-compatible sys-
tems, Microsoft Windows, and Apple Macintosh.

Tcl/Tk in a Nutshell is a quick reference for the basic commands of Tcl, Tk, and
several other popular Tcl language extensions. As with other books in O'Reilly’s
“In a Nutshell” series, this book is geared toward users who know what they want
to do but just can’t remember the right command or option. For subtle details, you
will sometimes want to consult the official Tcl reference documentation, but for
most tasks you should find the answer you need in this volume. We hope that this
guide will become an invaluable desktop reference for the Tcl user.

Conventions
This desktop quick reference uses the following typographic conventions:

Ttalic
Used for commands, methods, functions, programs, and options. All
terms shown in italic are typed literally. Italic is also used for filenames
and URLs, and to highlight terms under discussion.

Constant width
Used for code in program listings and for data structures and values to be
entered exactly as shown. Also used for special variables, global vari-
ables, options showing resource and class names, and subwidget names.

Xi

http://www.oreilly.com

Constant width italic
Used to show arguments, options, and variables that should be replaced
with user-supplied values.

Surround optional elements in a description of syntax. Note that square
braces are also a commonly used Tcl language construct and appear in
some Tcl program examples, in which case they are part of the Tcl code.

Used in syntax descriptions to separate items for which only one alterna-
tive may be chosen at a time.

Indicates that the preceding item may be repeated as many times as
desired.

The owl symbol is used to designate a note.

The turkey symbol is used to designate a warning.

Contact O’Reilly & Associates

We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing to us at the following address:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on a mailing list or
request a catalog, send email to:

info@oreilly.com

xii Preface

http://www.oreilly.com
http://www.oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

About This Book

When Jeff Tranter first started with Tcl sometime around 1992, he felt the need for
a simple language quick-reference card to help jog his memory when program-
ming. He created a simple one-page cheat sheet that listed all of the Tcl language
commands. In the spirit of freely sharing with other users, he uploaded his quick
reference to one of the Tcl archive sites.

Some time later, Paul Raines created a nice quick reference for the commands pro-
vided by the Tk toolkit. Again, initially this was one double-sized page in length.

Inspired by the excellent Perl 5 Pocket Reference by Johan Vromans (published by
O'Reilly & Associates), Paul combined the Tcl and Tk references into a small book-
let of about 40 half-size pages, and made it freely available on the Internet. The
current version is now over 80 pages in length and can also be purchased from
O'Reilly as the Tcl/Tk Pocket Reference.

After finishing O'Reilly’s first book on Tcl/Tk, Tcl/Tk Tools (by Mark Harrison et
al.), O'Reilly editor Andy Oram thought about doing a Tcl reference book. So he
approached us about expanding our work into a full-blown reference on Tcl, Tk,
and all of the popular language extensions. Thus, the one-page Tcl cheat sheet
that Jeff created for his own use has now grown into a 450-page book. We hope
that you are happy with the result and find it a useful reference.

Acknowledgments

A motivational speaker once said that the formula for a successful manager was to
give your people the tools they need to do the job and stay out of their way. Our
editor, Andy Oram, did a great job of keeping us on track but generally staying out
of our way. As the first Nutshell book to use SGML text-processing tools devel-
oped in-house, Tcl/Tk in a Nutshell had some teething pains but we were able to
get the job done with help from the O'Reilly tools group.

Special thanks go to the reviewers of the first draft of this book: Allan Brighton,
De Clarke, Robert Gray, Cameron Laird, Don Libes, Michael McLennan, Wayne
Miller, Tom Poindexter, and Mark Roseman. Their many useful comments helped
make this a better book.

One of the reviewers, Tom Poindexter, went beyond the call of duty. He sug-
gested that we add a chapter on Tcl programming hints, and even volunteered to
write it for us.

Paul would like to thank his wife, Deborah, for her understanding and patience
when he disappeared into “computerland.”

Jeft would like to thank his family—Veronica, Jennifer, and Jason—for bearing
with him while he wrote yet another book, taking more than his share of time on
the computer.

Preface xiii

http://oreilly.com/catalog/9780596003746/index.html
http://www.oreilly.com
http://www.oreilly.com

CHAPTER 1

Introduction

This chapter presents a brief history of and an introduction to the Tcl language
and describes how this book is organized.

What Is Tcl?

In the early 1980s John Ousterhout, then at the University of California at Berke-
ley, was working with a group that developed hardware design tools. They found
that they kept inventing a new scripting language with each new tool they devel-
oped. It was always added as an afterthought and poorly implemented. John
decided to create a general-purpose scripting language that could be reused when
developing new tools. He called the language Tcl, for tool command language,
made it freely available for download, and presented it at the Winter 1990 USENIX
conference. It soon became popular, with an estimated 50 Tcl applications written
or in development one year later.

One of the attendees at Ousterhout’s presentation, Don Libes, saw the applicability
of Tcl to a problem he was working on. Within a few weeks he developed the first
version of Expect, which became the first killer application for Tcl, driving many
people to install Tcl who might have otherwise ignored it.

Ousterhout’s philosophy is to embed a scripting language inside applications.
Combining the advantages of a compiled language like C (portability, speed,
access to operating system functions) with those of a scripting language (ease of
learning, runtime evaluation, no compilation) gives an overall reduction in devel-
opment time and opportunities for creating small, reliable, and reusable software
components. An application with an embedded Tcl interpreter can be extended
and customized by the end user in countless ways.

The Tcl interpreter has a well-defined interface and is typically built as an object
library, making it easy to extend the basic language with new commands. Tcl can
also be used as a prototyping language. An application can be written entirely in

S
g
=
2
—
(<)
S

Tcl, and once the design is proven, critical portions can be rewritten in C for per-
formance reasons.

A year later, at the Winter USENIX conference, Ousterhout presented Tk, a graphi-
cal toolkit for Tcl that made it easy to write applications for the X11 windowing
system. It also supported the send command, a simple yet powerful way to allow
Tk applications to communicate with each other.

Since then, with dozens of Tcl extensions, many of them designed to solve prob-
lems related to specific domains such as graphics and relational databases, the Tcl
programming environment has become even more powerful. Today, Tcl runs on
Unix, Macintosh, and Windows platforms, and even inside a web browser. It has a
huge installed base of users and applications, both free and commercial. As Tcl
approaches its tenth anniversary, it is poised to continue its growth in popularity.

Structure of This Book

Following this brief introduction, Chapter 2 covers the core features of the Tcl lan-
guage itself. Chapter 3 covers Tk, the graphical user interface (GUD toolkit that is
probably the most popular Tcl extension. Chapter 4 covers the C-language applica-
tion programming interface for Tcl, and Chapter 5 does the same for Tk.

Each language extension chapter follows a similar format: after a brief introduc-
tion, any special global and environment variables are described, followed by a
logically grouped summary of the commands. The heart of each chapter is an
alphabetical summary of each command that lists the options in detail. Short pro-
gramming examples are provided for the more complex commands.

Chapter 6 covers Expect, the first popular application to be built using Tcl. Chapter
7 is on [incr Tcll, which adds object-oriented programming features to Tcl. Chapter
8 covers lincr Tk], a framework for object-oriented graphical widgets built using
[incr Tcll.

Chapter 9 covers Tix, a Tk extension that adds powerful graphical widgets. Chap-
ter 10 is on TclX, also known as Extended Tcl, a number of extensions that make
Tcl more suited to general-purpose programming. Chapter 11 is on BLT, which
provides a number of useful new commands for producing graphs, managing data,
and performing other graphics-related functions.

Tcl has good support for relational databases. Chapter 12 and Chapter 13 cover the
Tcl extensions for the popular Oracle and Sybase relational databases, and Chapter
14 describes Tclodbc, which supports the Microsoft Windows ODBC database pro-
tocol.

Chapter 15, Hints and Tips for the Tcl Programmer, by Tom Poindexter, departs
from the style of the rest of the book somewhat by presenting a collection of tips
for using Tcl effectively, commonly made errors, and suggestions on programming

style.

The Appendix, Tcl Resources, lists further resources on Tcl, both in print and on
the Internet. The index cross-references the material in the book, including every
Tcl command described in the text.

2 Chapter 1— Introduction

CHAPTER 2

Tcl Core Commands

This chapter summarizes the features and commands of the core Tcl language,
which was developed by John Ousterhout. The chapter is based on Tcl Version
8.0; a few features are not part of Tcl per se, but are included in the Tcl shell and
most Tcl applications, so are included here and noted with (zcish).

Overview

The Tcl interpreter has a simple syntax, making it suitable as an interactive com-
mand language and allowing it to be reasonably small and fast.

Tcl programs consist of commands. Commands consist of a command name,
optionally followed by arguments separated by whitespace. Commands are sepa-
rated by newline or semicolon characters. All commands return a value. The user
can create new commands (usually called procs), which operate just like built-in
commands.

Within commands, the language supports several additional language constructs.
Double quotation marks are used to group characters, possibly containing white-
space, into one word. Curly braces group arguments. They can cross lines and be
nested, and no further substitutions are performed within them. Square brackets
perform command substitution. The text within the brackets is evaluated as a Tcl
command and replaced with the result. The dollar sign is used to perform variable
substitution and supports both scalar and array variables. C language—style back-
slash escape codes support special characters, such as newline. The pound sign or
hash mark (#) is the null command, acting as a comment.

In Tcl, all data is represented as strings. Strings often take one of three forms. Lists
are strings consisting of whitespace-separated values. Using curly braces, list ele-
ments can in turn be other lists. Tcl provides several utility commands for manipu-
lating lists. Numeric expressions support variables and essentially the same
operators and precedence rules as the C language. Strings often represent

[x)
S
=
3
Q
2
)

commands, the most common use being as arguments to control structure com-
mands such as if and proc.

Basic Language Features

; or newline
Statement separator

Statement continuation if last character in line

Comment (null command)

var
Simple variable

var(index)
Associative array variable

var(i,j,..)
Multidimensional array variable

$var
Variable substitution (also ${var})

[command]
Command substitution

\char
Backslash substitution (see “Backslash Substitutions,” later in this chapter)

"string"
Quoting with variable substitution

{string
Quoting with no substitution (deferred substitution)

The only data type in Tcl is a string. However, some commands interpret argu-
ments as numbers or boolean values. Here are some examples:

Integer
123 0xff 0377

Floating point
2.1 3. 6e4 7.91e+16

Boolean
true false 0 1 yes no

4 Chapter 2— Tcl Core Commands

Command-Line Options

The standard Tcl shell program tcish accepts a command line of the form:

tcish [fileName] larg. . .]

where fileName is an optional file from which to read Tcl commands. With no
fileName argument, fclsh runs interactively using standard input and output.

The filename and any additional arguments are stored in the Tcl variables arge,
argv, and argv0 (see the section “Special Variables”).

S5
§Q
ss
@
&>

Environment Variables
The following environment variables are used by the Tcl interpreter:

HOME
Used by commands such as cd, filename, and glob to determine the
user’s home directory

PATH
Used by exec to find executable programs

TCLLIBPATH
A Tcl list of directories to search when autoloading Tcl commands

TCL_LIBRARY
The location of the directory containing Tcl library scripts

Special Variables

The following global variables have special meaning to the Tcl interpreter:

argc
Number of command-line arguments, not including the name of the
script file (fclsh)

argv
List containing command-line arguments (fclsh)

argv0
Filename being interpreted, or name by which script was invoked (tclsh)

env
Array in which each element name is an environment variable

errorCode
Error code information from last Tcl error

errorInfo
Describes the stack trace of the last Tcl error

Special Variables 5

tcl_interactive
Set to 1 if running interactively, 0 otherwise (tcish)

tcl_library
Location of standard Tcl libraries

tcl_pkgPath
List of directories where packages are normally installed

tcl_patchLevel
Current patch level of Tcl interpreter

tcl_platform
Array with elements byteOrder, machine, osVersion, platform,
and os

tcl_precision
Number of significant digits to retain when converting floating-point
numbers to strings (default 12)

tcl_promptl
Primary prompt (tcish)

tcl_prompt2
Secondary prompt for incomplete commands (#clsh)

tcl_rcFileName
The name of a user-specific startup file

tcl_traceCompile
Controls tracing of bytecode compilation; 0 for no output, 1 for summary,
and 2 for detailed

tcl_traceExec
Controls tracing of bytecode execution; 0 for no output, 1 for summary,
and 2 for detailed

tcl_version
Current version of Tcl interpreter

Backslash Substitutions

The following backslash substitutions are valid in words making up Tcl com-
mands, except inside braces:

\a
Audible alert (0x07)

\b
Backspace (0x08)

\4
Form feed (0x0C)

6 Chapter 2— Tcl Core Commands

\n
Newline (0x0A)

\7r
Carriage return (0x0D)

\Vi
Horizontal tab (0x09)

\v

Vertical tab (0x0B)
\space

Space (0x20)

S5
§Q
ss
@
&>

\ newline
Newline (0x0A)

\ ddd
Octal value (d = 0-7)

\xd. ..
Hexadecimal value (d = 0-9, a—f)

\c
Replace \ ¢ with character ¢

\\
A backslash

Operators and Math Functions

The expr command recognizes the following operators, in decreasing order of
precedence:

-0
Unary plus and minus, bitwise NOT, logical NOT
*/ %
Multiply, divide, remainder
+ -
Add, subtract
<< >>
Bitwise shift left, bitwise shift right
<><=>=

Boolean comparison for less than, greater than, less than or equal,
greater than or equal

== |=

Boolean test for equality, inequality

Operators and Math Functions 7

&
Bitwise AND

Bitwise exclusive OR

Bitwise inclusive OR
&&

Logical AND
[l

Logical OR

X?y:z
If x =0, then y, else z

All operators support integers. All except ~, %, <<, >> &, ", and | support float-
ing-point values. Boolean operators can also be used for string operands, in which
case string comparison will be used. This will occur if any of the operands are not
valid numbers. The &&, |1, and ?: operators have lazy evaluation, as in C, in

which evaluation stops if the outcome can be determined.

The expr command also recognizes the following math functions:

abs (arg)
Absolute value of arg

acos (arg)
Arc cosine of arg

asin(arg)
Arc sine of arg

atan (arg)
Arc tangent of arg

atan2 (x, y)
Arc tangent of x/y

ceil (arg)
Rounds arg up to the nearest integer

cos (arqg)
Cosine of arg

cosh(arg)
Hyperbolic cosine of arg

double(arg)
Floating-point value of arg

exp (arg)
e to the power of arg

8 Chapter 2— Tcl Core Commands

floor (arg)
Round arg down to the nearest integer

fmod (x, y)
Remainder of x/y

hypot (x, y)
sqrt(x*x + y*y)
int (arg)
arg as integer by truncating

log(arg)
Natural logarithm of arg

S5
§Q
ss
@
&>

logl0 (arg)
Base 10 logarithm of arg

pow (X, y)
x raised to the exponent y

rand ()
Random floating-point number 2 0 and < 1

round (arg)
arg as integer by rounding

sin(arg)
Sine of arg

sinh (arg)
Hyperbolic sine of arg

sqgrt (arg)
Square root of arg

srand (arg)
Seeds random number generator using integer value arg

tan(arg)
Tangent of arg

tanh (arg)
Hyperbolic tangent of arg

Regular Expressions

Several Tcl commands, including regexp, support the use of regular expressions:

regex| regex
Match either expression.

regex *
Match zero or more of regex.

Regular Expressions 9

regex+
Match one or more of regex.

regex?’
Match zero or one of regex.

Any single character except newline.
Match beginning of string.

Match end of string.

\c
Match character c.

Match character c.

labcl
Match any character in set abc.

["abcl]
Match characters not in set abc.

la-z]
Match range of characters a through z.

[fa-z]
Match characters not in range a through z.

(regex)
Group expressions.

Pattern Globbing

Many Tcl commands, most notably glob, support filename globbing using the fol-
lowing forms:

?

Match any single character.

Match zero or more characters.

[abcl
Match characters in set abc.

la-z]
Match range of characters a through z.

10 Chapter 2 — Tcl Core Commands

\c
Match character c.

{a,b,...}
Match any of strings a, b, etc.

Home directory (for glob command).

“user
Match home directory of user (for glob command).

For the glob command, a period at the beginning of a file’s
name or just after “/” must be matched explicitly and all “/”
characters must be matched explicitly.

Predefined 1/0O Channel Identifiers

The following predefined I/O channel names can be used with commands that
perform input or output over channels (e.g., gefs):

stdin
Standard input

stdout
Standard output

stderr
Standard error output

Group Listing of Commands

This section briefly lists all Tcl commands, grouped logically by function.

Comntrol Statements

break Abort innermost containing loop command.

case Obsolete, see switch.

continue Skip to next iteration of innermost containing loop command.
exit Terminate process.

Sfor Loop based on an expression.
Sforeach Loop over each element of a list.

if Conditional evaluation.

return Return from procedure.

switch Evaluation based on pattern match.
while Loop based on a condition being true.

Group Listing of Commands 11

S5
§Q
ss
@
&>

File Manipulation

file atime

Jfile mtime

Jfile attributes
Jile copy

file delete

file dirname
file executable
Jfile exists

Jfile isdirectory
file isfile

file owned
Jfile readable
Jfile writable
Jfile extension
Jfile join

[file mkdir

[file nativename

file pathtype

file readlink
file rename
file rootname
file size

Jile split

file stat

Jfile Istat

file tail
Jile type

Jfile volume

Return file access time.

Return file modification time.

Set or get platform-dependent file attributes.

Make copy of a file or directory.

Remove file or directory.

Return directory portion of pathname.

Return 1 if file is executable, 0 otherwise.

Return 1 if file exists, 0 otherwise.

Return 1 if file is a directory, O otherwise.

Return 1 if file is a regular file, 0 otherwise.

Return 1 if file is owned by current user, 0 otherwise.
Return 1 if file is readable by current user, 0 otherwise.
Return 1 if file is writable by current user, 0 otherwise.
Return characters after and including last period.
Combine arguments with path separator to form pathname.
Create a directory.

Return platform-specific filename.

Return type of path: absolute, relative, or
volumerelative.

Return value of symbolic link.

Rename file, moving if necessary.

Return characters before last period in pathname.
Return file size in bytes.

Split pathname into separate elements.

Store file information in an array variable.

Same as file stat, but return information for target of symbolic
links.

Return characters in name after last file separator.
Return type of file: file, directory, characterSpecial,
blockSpecial, fifo, 1ink, or socket.

Return list of mounted volumes or drive letters.

Tcl Interpreter Information

info args

info body

info cmdcount
info commands
info complete
info default
info exists

info globals
info hostname
info level

info library
info loaded

Return information on procedure arguments.
Return body of procedure.

Return count of commands invoked by interpreter.
Return list of Tcl commands.

Return 1 if command is complete.

Return default procedure argument.

Return 1 if variable exists.

Return list of global variables.

Return machine hostname.

Return procedure stack level or stack arguments.
Return name of library directory.

Return list of loaded packages.

12 Chapter 2 — Tcl Core Commands

info locals

info nameofexecutable

info patchlevel
info procs
info script

info sharedlibextension

info tclversion
info vars

Lists

concat
Jjoin
lappend
lindex
linsert
list
llength
lrange
Ireplace
Isearch
Isort
split

Arrays

array anymore
array donesearch
array exists

array get

array names
array nextelement
array set

array size

array startsearch
parray

Strings

append

binary

format

regexp

regsub

scan

string compare
string first
string index

Return list of local variables.

Return name of application.

Return Tcl patch level.

Return list of Tcl procedures.

Return name of file being evaluated.
Return file extension for shared libraries.
Return Tcl version.

Return list of local and global variables.

Concatenate (join) lists into a new list.
Join lists into a string.

Append elements to list.

Retrieve element from list.

Insert element into list.

Create a list.

Number of elements in list.

Return sequential range of elements from list.
Replace elements in list.

Search list for element.

Sort elements of list.

Split a string into a list.

Return 1 if more array elements left during search.
Terminate array search.

Return 1 if array exists.

Return list of array element names and values.
Return list of array element names.

Return name of next element during search.

Set array values.

Return number of elements in array.

Initialize array search operation.

Print array.

Append values to variable.

Insert and extract fields from binary strings.
printf()-style string formatting.

Regular expression pattern matching.
Regular expression string substitution.
sscanf()-style string parsing.

Lexical string comparison.

Search for first occurrence of substring.
Return character from string.

S5
§Q
ss
@
&>

Group Listing of Commands

13

string last Search for last occurrence of substring.

string length Return number of characters in string.

string match Compare strings using shell glob pattern matching.
string range Return range of characters from string.

string tolower Convert to lowercase.

string toupper Convert to uppercase.

string trim Remove leading and trailing characters.

string trimleft Remove leading characters.

string trimright ~ Remove trailing characters.
string wordend Return end position of word in string.
string wordstart Return start position of word in string.

subst Backslash, command, variable substitutions.
Input/Output

close Close channel.

eof Check for end of file.

[blocked Return 1 if last operation exhausted available input.
feonfigure Set or get I/O options.

fecopy Copy from one channel to another.

Sfileevent Set file event handler.

Sflush Flush buffered output.

gets Read line of input.

open Open channel.

puts Write to channel.

read Read from channel.

seek Set the access position.

socket Open network connection.

tell Get access position.

System Interaction

cd Change working directory.

clock Time functions.

exec Invoke subprocesses.

glob Filename pattern matching.

pid Return process IDs.

pwd Return current working directory.

Command History

history Same as hbistory info.

bistory add Add command to history list.
bistory change Change command in history list.
bistory clear Clear history list.

bistory event Return event.

history info Return formatted history list.
bistory keep Get or set size of history list.

14 Chapter 2 — Tcl Core Commands

history nextid
history redo

Return next event number.
Execute command from history list.

The tclsh program also supports the following csh-style history commands:

i Repeat last command.

levent Repeat command, matching a number or name.

“old"new Repeat command, substituting occurrences of regular expression
old with new.

Multiple Interpreters

interp alias

interp aliases
interp create
interp delete

interp eval

interp exists

interp expose
interp hidden
interp bide

interp invokehidden
interp issafe

interp marktrusted
interp share

interp slaves

interp target
interp transfer

Packages

package forget
package ifneeded
package names
package provide
package require
package unknown
package vcompare
package versions
package vsatisfies
pkg_mkindex

[x)
S
=
3
Q
2
)

Create, delete, or return definition of an interpreter alias.
Return list of command aliases.

Create slave interpreter.

Delete slave interpreters.

Evaluate command using slave interpreter.

Test if slave interpreter exists.

Make hidden command visible to slave interpreter.
Return list of hidden commands.

Hide exposed command.

Invoke hidden command.

Return 1 if interpreter is safe.

Mark interpreter as trusted.

Share I/O channel between interpreters.

Return list of slave interpreters.

Return list describing target interpreter for an alias.
Move I/O channel to another interpreter.

Remove information about package from interpreter.
Tell interpreter how to load a package.

Return list of available packages.

Indicate that package is present in interpreter.
Indicate that package is needed.

Supply command to load packages when not found.
Compare package version numbers.

Return list of package versions available.

Return package version compatibility information.
Build index for automatic loading of packages.

Miscellaneous Commands

after
auto_execok
auto_load
auto_mkindex
auto_reset

Execute a command after a time delay.
Return path of executable.

Autoload Tcl command.

Generate tcllndex file.

Reset autoloading cache.

Group Listing of Commands 15

bgerror Process background errors.

catch Evaluate script and trap exceptional returns.
error Generate an error.

eval Evaluate a Tcl script.

expr Evaluate an expression.

global Access global variables.

incr Increment the value of a variable.

load Load machine code and initialize new commands.
namespace Create and manipulate contexts for commands and variables.
proc Create a Tcl procedure.

rename Rename or delete a command.

set Read and write variables.

source Evaluate a file or resource as a Tcl script.

time Time the execution of a script.

lrace Trace variable access.

unknown Handle attempts to use nonexistent commands.
unset Delete variables.

update Process pending events and idle callbacks.
uplevel Execute a script in a different stack frame.
upvar Create link to variable in a different stack frame.
variable Create and initialize a namespace variable.
vwait Process events until a variable is written.

Alphabetical Summary of Commands

This section describes all Tcl commands, listed in alphabetical order.

after

after options...

Delay execution of the current program or schedule another command to be

executed sometime in the future.
after ms
Delay execution of current program for ms milliseconds.

after ms script...

Return immediately but schedule the given list of command script arguments
to be executed ms milliseconds in the future and return an identifier that can

be used for after cancel.

after cancel 1d

Cancel a previous after command using the identifier 1d returned previously.

after cancel script...

Cancel a previously set affer command by specifying the command script

arguments originally used in the command.

16 Chapter 2 — Tcl Core Commands

after idle script...
Schedule a command script to be executed when the event loop is idle.
after info [1d]

If no id is specified, return a list of currently scheduled after commands.
With an id, return a list consisting of the command and the time of the speci-
fied idle or timer event.

append

&
—
()
S
)

append varName [value..]

[x)
S
=
3
Q
2
)

Append the specified values to variable varName The variable need not
already exist.

array
array option arrayName |arg...]
Provide functions to manipulate array variables.
array anymore arrayName searchId

Return 1 if there are more elements left in an array search, or 0 if all elements
have been returned. Accepts an array name and a search ID obtained from a
previous call to array startsearch.

array donesearch arrayName searchId

Terminate an array search. Accepts an array name and a search ID obtained
from a previous call to array startsearch.

array exists arrayName
Return 1 if an array variable with the given name exists; otherwise, return 0.
array get arrayName [pattern]

Return a list containing pairs of elements consisting of array names and val-
ues. If pattern is specified, only the elements that match the glob pattern
are included; otherwise, all are returned.

array names arrayName [pattern]

Return a list consisting of the names of array elements whose names match
the glob pattern (or all elements if pattern is omitted).

array nextelement arrayName searchId

Given an array name and a search ID from a previous call to array start-
search, return the name of the next element. Return an empty string if all ele-
ments have already been returned.

array set arrayName 1ist

Set values of array elements. The list should consist of pairs of words specify-
ing element names and values.

Alphabetical Summary of Commands — array 17

array size arrayName

Return the number of elements in the array, or 0 if arrayName is not the
name of an array.

array startsearch arrayName

Starts an array search, returning an identifier that can be used for subsequent
array nextelement, donesearch, and anymore commands.

auto_execok
auto_execok execFile

If an executable file named execFile is found in the user’s path, return the
full pathname; otherwise, return 0.

auto_load
auto_load command

Attempt to load a definition for command command by searching
Sauto_path and $env (TCLLIBPATH) for a fcllndex file that will inform
the interpreter where it can find command’s definition.

auto_mkindex
auto_mkindex directory pattern...

Generate a fcllndex file from all files in directory that match the given
glob patterns.

auto_reset
auto_reset

Discard cached information used by auto_execok and auto_load.

bgerror
bgerror message

A user-defined procedure that is called if an error occurs during background
processing. Passed the error message string as its argument.

binary
binary options...

Convert data between Tcl string format and machine-dependent binary repre-
sentation.

18 Chapter 2 — Tcl Core Commands

binary format formatString largs...]

Return a binary string in a format defined by formatString with data taken
from args. The format string consists of zero or more field codes, each fol-
lowed by an optional integer count. The field codes are listed here:

a Chars (null padding) A Chars (space padding)

b Binary (low-to-high) B Binary (high-to-low)

h Hex (low-to-high) H Hex (high-to-low)

c 8bitint s 16-bit int (little-endian) S -
S 16-bit int (big-endian) i 32-bit int (little-endian) §)
I 32-bitint (big-endian) £ Float 58
d Double x Nulls & @
X Backspace @ Absolute position

binary scan string formatString [varName...]

Parse a binary string according to the format defined in formatString and
place the results in the specified variable names. Return the number of vari-
ables that were set. The format string is the same as for binary format except
for the following:

a Chars (no stripping)
A Chars (stripping)
x Skip forward

Example

set i 1234

set j 3.14

set s hello

set str [binary format ida5 $i $j $sl
binary scan $str ida5 i j s

break
break

Cause a loop command, such as for, foreach, or while, to break out of the
innermost loop and abort execution.

case

Obsolete; see the switch command.

catch
catch script [varName]

Evaluate script using the Tcl interpreter, suspending normal error handling
if errors occur. Return a number indicating the Tcl interpreter error code, or 0
if there were no errors. If varName is specified, store the return value of the
script in the named variable.

Alphabetical Summary of Commands — catch 19

cd
cd [dirName]

Set the current working directory to dirname. If no directory name is speci-
fied, change to the home directory. Returns an empty string.

clock
clock options...
Perform time-related functions.
clock clicks
Return system time as a high-resolution, system-dependent number.
clock format clockValue [-format stringl [-gmt boolean]

Format time in human-readable format. ClockValue is a time value as
returned by clock seconds, clock scan, or the -atime, -mtime, or -ctime options
of the file command. The optional format string indicates how the string
should be formatted, using the symbols described below. The optional -gm¢
argument takes a boolean argument: if true, the time is formatted using
Greenwich Mean Time; otherwise, the local time zone is used.

%% % %a Weekday (abbr.)
%A Weekday (ful) %b Month (abbr.)

%$B Month (full) %c Local date and time
%d Day (01-3D $H Hour (00-23)

$h Hour (00-12) %3 Day (001-3606)
%$m Month (01-12) %M Minute (00-59)

%$p A.M./P.M. %S Seconds (00-59)
U Week (01-52) $w Weekday (0-6)
%x Local date %X Local time

%y Year (00-99) %Y Year (fulD
%$Z Time zone

clock scan dateString [-base clockVall] [-gmt boolean]

Parse dateString as a date and time, returning an integer clock value (the
reverse of clock format). If the optional -base argument is used, clockVal is
used to specify the date to be used for the resulting time value. If the boolean
-gmt argument is true, assume that time is specified in Greenwich Mean Time.

clock seconds

Return the current time, in seconds, using a system-dependent format.

close
close channelId

Close a previously opened I/O channel, specified by channel identifier
channelId. Returns an empty string.

20 Chapter 2 — Tcl Core Commands

concat
concat larg...]

Treating each argument as a list, concatenate all arguments and return the
resulting list.

continue

continue

&
—
()
S
)

Cause a loop command, such as for, foreach, or while, to break out of the
innermost loop and resume execution with the next iteration.

[x)
S
=
3
Q
2
)

eof
eof channel1d

Return a boolean value indicating if an end-of-file condition occurred during
the most recent input operation on channelId.

crror
error message [infol [code]

Generate a Tcl error. Return message as the optional error string to the call-
ing application. Optional string info is stored in global variable errorInfo,
and code is stored in errorCode.

eval
eval arg...

Treating each argument as a list, concatenate arguments and evaluate the
resulting list as a Tcl command, returning the result of the command.

€xec
exec l[options] arg [tag...]

Execute arguments as one or more shell commands. Return standard output
from the last command in the pipeline.

Options

-keepnewline
Keep trailing newline at end of command pipeline’s output.

Marks end of options (useful for commands that may start with a dash).

Alphabetical Summary of Commands — exec 21

Command arguments can include these special symbols:

|

| &

< fileName
<@ fileId
<< value

> fileName
2> fileName
>& fileName
>> fileName
2>> fileName
>>& fileName

Separate commands in pipeline.

Pipe standard out and standard error.

Use fileName as standard input for command.
Use fileId (from open command) as standard input.
Pass immediate value as standard input.

Redirect standard output to file.

Redirect standard error to file.

Redirect standard error and standard output to file.
Append standard output to file.

Append standard error to file.

Append standard error and standard output to file.

>@ fileId Redirect standard output to fileId.

2>@ fileId Redirect standard error to fileId.

>&@ fileId Redirect standard error and standard output to fileId.
exit

exit [returnCode]

Terminate the application using the specified return code (default is 0).

expr
expr arg...

Concatenate the command arguments, evaluate them as an expression, and
return the result.

fblocked
fblocked channelId

Return 1 if last input operation on channelId exhausted available input;
otherwise, return 0.

fconfigure
feconfigure options
Perform operations on an I/O channel.
Jfconfigure channelId
Return current settings for channelId as a list of name-value pairs.
feonfigure channelId name
Return current setting of name for channel channelId.
Sfeonfigure channelId name value...

Set one or more channel options for channelId.

22 Chapter 2 — Tcl Core Commands

Options

The command accepts the following standard options (other options are spe-
cific to certain types of I/O channels):

-blocking boolean
Set blocking or nonblocking I/O.

-buffering mode

Set I/O buffering mode to full, line, or none.
-buffersize size

Set size of I/O buffer, in bytes.

S5
§Q
ss
@
&>

-eofchar char
Set character to indicate end of file (disable with empty string).

-eofchar{inChar outChar}
Set input and output end-of-file characters.

-translation mode
Set end-of-line translation to auto, binary, cr, 1£f, or crlf.

-translation {inMode outMode}
Set input and output line translation mode.

fcopy

fcopy inchan outchan [-size sizel [-command callback]

Copy data from I/O channel inchan to channel outchan. Continue copying
until end of file is reached on the input channel or the maximum number of
bytes has been transferred. Return the number of bytes written to outchan.

Options
-Size size

Specify maximum number of bytes to transfer (default is to copy until
end of file is reached on the input channeD.

-command callback
Change behavior of fcopy to run in the background. When copying is
complete, the command callback will be invoked with an argument
list consisting of the number of bytes written and an optional error string.

file
file option name larg..]

This command provides operations for reading and writing attributes of files.
Option is one of the options described below. Name is a filename, which
can use tilde () expansion.

Alphabetical Summary of Commands — file 23

Jfile atime name

Return time that file was last accessed, in POSIX format (seconds since the
start of the epoch).

Jfile attributes name
file attributes name [option]
file attributes name [option value..]

Set or get platform-dependent file attributes. The first form returns attributes
as a list of name-value pairs. The second form returns the value of the named
attribute. The third form sets one or more named attributes.

Jile copy [-forcel [- -] source target
Jile copy [-forcel [- -] source... targetDir

Make a copy of a file or copy files to a directory.
Options

-force
Overwrite existing files.

Marks end of options.

file delete |-force] [- —] pathname...
Delete one or more files indicated by pathname.
Options

-force
Overwrite existing files.

Marks end of options.

file dirname name

Return directory portion of path name.

Jfile executable name

Return 1 if file name is executable by current user, 0 otherwise.
Jfile exists name

Return 1 if file name exists and current user has search permissions for direc-
tories leading to it, 0 otherwise.

file extension name

Return characters after and including last period. If there is no period in
name, return empty string.

[file isdirectory name

Return 1 if file name is a directory, 0 otherwise.

24 Chapter 2 — Tcl Core Commands

file isfile name

Return 1 if file name is a regular file, 0 otherwise.

Jfile join name...

Combine arguments using path separator to form a file pathname.
file Istat name varName

Same as stat, but return information for the target of a symbolic link rather
than the link itself.

Jfile mkdir dir...

S5
§Q
ss
@
&>

Create one or more directories, creating full path if necessary.

[file mtime name

Return time that file was last modified, in POSIX format (seconds since the
start of the epoch).

file nativename name

Return platform-specific form of file name.

file owned name

Return 1 if file is owned by current user, 0 otherwise.
file pathtype name

Return type of file or directory name as one of absolute, relative, or
volumerelative (e.g., C:filename).

Jfile readable name
Return 1 if file is readable by the current user, O otherwise.
file readlink name

Return name of file to which symbolic link points, or an error if name is not a
symbolic link.

file rename [-force] [- -] source target
file rename [-force] [- -] source [source..] targetDir

Rename one or more files. Target destination can be in a different directory.
Jfile rootname name

Return characters before the last period in path name, or name if last compo-
nent does not contain a period.

file size name
Return file size in bytes.
file split name

Split path name into a list of separate pathname elements, discarding path
separators.

Alphabetical Summary of Commands — file 25

Jfile stat name varName

Store file information in an array variable. The array element names are as
shown below, with numeric values corresponding to the result from the stat
system call. Returns an empty string.

atime Time of last access
ctime Time of last change

dev Device number
gid Group ID of owner
ino Inode number
mode Protection

mtime Time of last modification
nlink Number of hard links

size Total size in bytes
type Device type
uid User ID of owner

Jfile tail name

Return characters in name after the last directory separator, or name if it con-
tains no separators.

Jfile type name

Return a string indicating the type of file name: file, directory,
characterSpecial, blockSpecial, fifo, 1ink, or socket.

file volume
Return a list of the currently mounted volumes or drive letters.
Sfile writable name

Return 1 if file is writable by current user, 0 otherwise.

fileevent

Sfileevent channelId readable [script]
Sfileevent channelId writable [script]

Set up an event handler to execute script when an I/O channel becomes
readable or writable. ChannelId is an I/O channel identifier from a previous
call to open or socket. If script is omitted, returns the current script for the
channelId. If script is specified, returns an empty string.

flush
flush channel1d

Flush output that has been buffered for I/O channel channelId, which must
have been opened for writing. Returns an empty string.

26 Chapter 2 — Tcl Core Commands

for
Jfor start test next body
Implement a loop construct, similar to the forloop in C.

start Command string, executed once at beginning

test Expression string, for loop test
next Command string, executed at end of each iteration
body Command string, executed in each loop iteration

The interpreter executes start once. Then it evaluates the expression test;
if the result is zero, it returns an empty string. If non-zero, it executes body,
then next, and repeats the loop starting with test again.

S5
§Q
ss
@
&>

Example

for {set i 0} {$i < 100} {incr i} {
puts $i
}

foreach

foreach varname 1ist body
Sforeach varlistl listl [varlist2 1ist2..] body

Execute a loop that iterates over each element of a list. In the first form, vari-
able varname is repeatedly assigned the value of each element in list Iist,
and the expression body is evaluated. In the second form, there can be pairs
of lists of loop variables (varlistN) and lists (11stN). In each iteration of
the loop the variables in varlistN are assigned to the next values of the
corresponding list.

Example

foreach i {1 2 3 456 7 8 9 10} {
puts $i
}

format
Sformat formatString larg..]

Format a string using ANSI sprintf{)-style formatString and arguments.
Returns the formatted string. The format string placeholders have the form:

$[argposs] [flag] [width] [.prec] [h|1] char

where argpos, width, and prec are integers and possible values for char
are as follows:

d Signed integer

i Signed integer (n, On, or 0xn)
x Unsigned hex

c Int to char

Unsigned integer
Unsigned octal
Unsigned HEX
String

n X 0 ¢

Alphabetical Summary of Commands — format 27

f Float (fixed) e Float (0e0)
E Float (OE0) g Auto float (f or e)
G Auto float (F or E) % Percent sign

Possible values for flag are as follows:

- Left justified + Always signed
0 Zero padding space Space padding
Alternate output format

Example

set i 12

set j 1.2

puts [format "%4d %5.3f" $i $3jl
12 1.200

puts [format "%04X %5.3e" $i $3j]

000C 1.200e+00

gets
gets channelId [varName]

Read characters from I/O channel channelId until end-of-line character or
end of file is reached. Assign the resulting string (without end-of-line charac-
ter) to variable varName and return the number of characters read. If var-
Name is omitted, return the string that was read.

glob
glob [options] pattern...
Return a list of files that match the given glob patterns.
Options

-nocomplain
Prevents an error from occurring if there are no matches; an empty string
is returned instead.

Marks the end of options.

global
global varname...

Declare given names as global variables. Meaningful only inside a procedure.

history
bistory [option] larg..]

Perform operations using the history list, a list of recently executed com-
mands. Command events can be indicated using a number or a string that
matches the command itself.

28 Chapter 2 — Tcl Core Commands

history

The same as bistory info.

bistory add command [exec]

Add command to history list, optionally executing it.
bistory change newValue [event]

Change command in history list to newValue. If event is not specified, use
current event.

bistory clear

S5
§Q
ss
@
&>

Clear the history list and reset event numbers.

bistory event [event]
Return an event. Default is event —1.
bistory info [count]

Return formatted list of history commands and event numbers. Return the last
count events, or all if count is not specified.

bistory keep [count]

Change the maximum size of the history list to count. If count is omitted,
return the current history size limit.

history nextid
Return the next event number.
bistory redo [event]

Execute a command from the history list. If event not specified, uses event —1.

if exprl [then] body1 lelseif expr2 [then] body?2...] [else] [bodyN]

Execute a conditional expression. If boolean expression exprl is true, evalu-
ate body1. Otherwise, test optional additional expressions and execute the
matching body. The optional else keyword is followed by a command body
that is executed if no previous conditional expressions were true. The key-
words then and else are optional.

Example
if {$x < 0} {
set y 1
} elseif {s$x == 0} {
set y 2
} else {
set y 3

}

Alphabetical Summary of Commands — if 29

incr

incr varName [increment|

Increment the variable varName. The optional increment specifies the
value to be added to the variable; it defaults to 1. The new value is returned.

info

info option larg..]

Return information about the Tcl interpreter.

info args procname

Return a list of the argument names to procedure procname.
info body procname

Return the body of procedure procname.

info cmdcount

Return total count of commands invoked by the interpreter.
info commands [pattern]

Return a list of Tcl commands (built-in and procedures) matching pattern.
Return all commands if pattern is omitted.

info complete command
Return 1 if command is complete (i.e., no unmatched quotes, braces, etc.).
info default procname arg varname

Return 1 if argument arg of procedure procname has a default argument
value, otherwise 0. If there is a default value, it is placed in variable var-
name.

info exists varName
Return 1 if local or global variable varName exists.
info globals [pattern]

Return a list of global variables matching pattern. Return all variable names
if pattern is omitted.

info hostname
Return system hostname.
info level [number]

If number is not specified, return a number indicating the current procedure
stack level, or 0 for global level. With number, return a list containing the
name and arguments for the procedure at the specified stack level.

30

Chapter 2 — Tcl Core Commandls

info library

Return the name of the standard Tcl library directory; the same as global vari-
able tcl_library.

info loaded [interp]

Return a list of the currently loaded packages for interpreter interp (default
is for all interpreters; use empty string for current interpreter).

info locals [pattern]

Return list of local variables, including procedure arguments, that match
pattern (default is all).

[x)
S
=
3
Q
2
)

info nameofexecutable

Return full name of file from which application was invoked.

info patchlevel

Return Tcl patch level; same as global variable tcl_patchLevel.
info procs | pattern]

Return list of Tcl procedures matching pattern, or all procedures if
pattern is omitted.

info script
Return name of Tcl file being evaluated.
info sharedlibextension

Return the platform-dependent file extension used for shared libraries, or an
empty string if shared libraries are not supported.

info tclversion
Return Tcl version; same as global variable tcl_version.
info vars [pattern]

Return a list of local and global variables matching pattern, or all variables
if pattern is omitted.

interp
interp option larg..]

Manage Tcl interpreters. A master Tcl interpreter can create a new interpreter,
called a slave, which coexists with the master. Each interpreter has its own
namespace for commands, procedures, and global variables. Using aliases, a
command in a slave interpreter can cause a command to be invoked in the
master or another slave interpreter. Safe interpreters can be created that may
be used for executing untrusted code because all potentially dangerous com-
mands have been disabled by making them hidden.

Alphabetical Summary of Commands — interp 31

interp alias srcPath srcCmd

Return a list containing the target command and arguments for the alias
named srcCmd in interpreter specified by srcPath.

interp alias srcPath srcCmd {}
Delete the alias named srcCmd from the interpreter specified by srcPath.
interp alias srcPath srcCmd targetPath targetCmd larg...]

Create an alias between two slave Tcl interpreters. The source command is
named srcCmd in interpreter srcPath and is placed in interpreter target-
Path as command targetCmd. Additional arguments to be appended to
targetCmd can be specified.

interp aliases [path]

Return a list of the command aliases defined in interpreter path.
interp create [-safe] [- —] [path]

Create a slave interpreter using the specified path.

Options

-safe
Creates a safe interpreter.

Marks the end of options.

interp delete [path..]
Delete slave interpreters specified using zero or more pathnames.
interp eval path arg...

Concatenate arguments and evaluate them as a command using the slave
interpreter specified by path. Return result of command.

interp exists path
Return 1 if the slave interpreter with name path exists; otherwise, return 0.
interp expose path hiddenName [exposedCmdName]

Make the hidden command hiddenName visible to a slave interpreter path
with name exposedCmdName.

interp hidden path
Return a list containing the hidden commands in interpreter path.
interp bhide path exposedCmdName [hiddenCmdName |

Make the exposed command exposedCmdName a hidden command in inter-
preter path with name hiddenCmdName (default name is same as exposed
name).

32 Chapter 2— Tcl Core Commandls

interp invokebidden path [-global hiddenCmdName |arg...]

Invoke the hidden command hiddenCmdName in interpreter path with
specified arguments. With -global, invoke command at global level (default is
current level).

interp issafe [path]
Return 1 if the interpreter specified by path is a safe interpreter.
interp marktrusted path

Mark the interpreter path as a trusted interpreter.

&
—
()
S
)

interp share srcPath channelId destPath

[x)
S
=
3
Q
2
)

Share the I/O channel channelId between interpreters srcPath and
destPath.

interp slaves | path]

Return a list of the slave interpreters associated with interpreter path (default
is the invoking interpreter).

interp target path alias

Return a list describing the target interpreter for an alias.

interp transfer srcPath channelId destPath

Move the I/O channel channelId from srcPath to interpreter destPath.
Slave interpreter names are commands that also accept these options:

slave aliases

slave alias srcCmd

slave alias srcCmd {}

slave alias srcCmd targetCmd larg...]
slave eval arg...

slave expose hiddenName

slave hide exposedCmdName

slave hidden

slave invokebidden [-global hiddenName] larg..]
slave issafe

slave marktrusted

join
join 1ist [joinString]

Concatenate the elements of list 1ist and return the resulting string. Option-
ally separate the elements using joinString, which defaults to a single
space.

Alphabetical Summary of Commands — join 33

lappend
lappend varName [value..]

Append the value arguments to the list contained in variable varName,
interpreting each value as a list element. Works in place, making it relatively
efficient. If varName does not exist, it is created.

lindex
lindex 1ist index

Return item number index from list 1ist. Index starts at zero, and can be
the string “end” to return the last item.

linsert
linsert 1ist index element...

Insert elements into list starting at the specified index. An index of 0
inserts at the beginning, and the string “end” inserts at the end. Returns the
resulting list.

list
list larg...]

Return a list containing the given arguments.

llength
llength 1ist

Return the number of elements in list 1ist.

load
load fileName | packageName] [interp]

Loads a binary file containing new Tcl commands. £ileName is the filename
to load (i.e., shared library or DLL), and packageName is the name of a
package, used to compute the name of init procedure. interp is the path-
name of the interpreter into which to load the file (default is invoking inter-
preter).

Irange
lrange 1ist first last

Return a list consisting of elements from 1ist having indices first through
Iast. Indices start at zero, and can also be the string “end”.

34 Chapter 2— Tcl Core Commandls

Ireplace
Ireplace 1ist first last [element..]

Replace elements of l1ist having indices first through last with the
given elements and return the resulting list. If no new elements are supplied,
list elements are deleted.

Isearch

Isearch [model 1ist pattern

[x)
S
=
3
Q
2
)

Search list for an element that matches pattern. If found, return the
index of the matching element; otherwise, return —1. The type of search is
defined by one of the following mode options:

-exact Use exact matching.
-glob Use glob pattern matching (default).
-regexp Use regular expression matching.

Isort
Isort [options] 1ist
Sort the elements of list I1ist and return the resulting list.
Options

-ascii
Sort by ASCII collation order (default).

-dictionary
Sort using dictionary order (case insensitive, compare numbers as inte-
gers).

-integer
Compare elements as integer numbers.
-real
Compare elements as floating-point numbers.

-command command
Compare using a command that must return <0, 0, or >0.

-increasing
Sort in increasing order (default).
-decreasing
Sort in decreasing order.
-index index
Sort a list of lists based on the values with index index in each sublist.

Alpbabetical Summary of Commands — lIsort 35

namespace
namespace loption]larg...]
Create and manipulate contexts for commands and variables.
namespace children [namespacel [pattern]

Return a list of child namespaces that belong to the namespace matching
pattern. If pattern is omitted, return all namespaces. If namespace is
omitted, return children of the current namespace.

namespace code script

Accept a command script and return it wrapped such that the resulting
script can be evaluated from any namespace, but will execute in the current
namespace in which the namespace code command was invoked.

namespace current
Return the fully qualified name of the current namespace.
namespace delete [namespace...]

Delete the given namespaces and all associated variables, procedures, and
child namespaces.

namespace eval namespace arg...
Evaluate the arguments in the context of the specified namespace.
namespace export [-clear] [pattern..]

Export commands matching one or more patterns from the current name-
space. With the -clear option, first reset any previous exports. With no option
or patterns, return the current export list.

namespace forget [pattern..]

Remove previously exported commands matching one or more patterns from
a namespace.

namespace import [-forcel | pattern...]

Import commands matching one or more fully qualified patterns. Option
-force allows imported commands to replace existing commands.

namespace inscope namespace arg...

Evaluate arguments in the context of namespace.

namespace origin command

Return the fully qualified name of the imported command command.
namespace parent [namespacel

Return the fully qualified name of the parent for namespace namespace.
Return the parent of the current namespace if the argument is omitted.

36 Chapter 2— Tcl Core Commandls

namespace qualifiers string

Return the leading namespace qualifiers from string, which refers to a
namespace name.

namespace tail string

Return the simple name at the end of string, which refers to a namespace
name.

namespace which [-command| -variable] name

Return the fully qualified name of name. Option -command looks up name as
a command (default), and option -variable looks up name as a variable.

open
open fileName |laccess] |[permissions]

Open the specified file, device, or command pipeline using an access speci-
fier (described in the following list). Return a channel identifier that can be
used in subsequent I/O commands. FileName can be a string corresponding
to a regular file. If the first character is “1”, open a command pipeline (can be
open for read or write). FileName can also be a device name for a serial
port (platform dependent). When creating a new file, optionally specify the
access permissions to be given to the file in conjunction with the process’s file
creation mask (default is read and write access for alD).

Access specifiers:

r Open for reading; file must already exist (default).
r+ Open for read and write; file must already exist.

w Open for write; create new file if needed.

w+ Open for read and write; create new file if needed.
a Open existing file for write, appending to end.

a+ Open for read and write, appending to end.

Alternate (POSIX) form for access (must specify one of the first three):

RDONLY Open for reading.
WRONLY Open for writing.
RDWR Open for read and write.

You can add one or more of the following (as a list):

APPEND Open file for append.

CREAT Create file if it does not exist.

EXCL Report error if file does already exist.

NOCTTY For terminals, do not become controlling terminal for process.
NONBLOCK Open in nonblocking mode.

TRUNC Truncate file to zero length.

Alphabetical Summary of Commands — open 37

[x)
S
=
3
Q
2
)

package
package loptions]
Manage the loading and version control of Tcl packages.
package forget package
Remove package package from the current interpreter.
package ifneeded package version [script]

Indicate that version version of package package will be loaded when
script is executed. If script is omitted, return the current script.

package names

Return a list of the names of packages that have been indicated using a pack-
age provide or package ifneeded command.

package provide package [version]

Indicate that version version of package package is present in interpreter.
With no version argument, return the version of the package.

package require [-exact] package [version]

Load a package into the interpreter. Version indicates the version that is
desired; any package with the same major number will be loaded. -exact indi-
cates that exactly the specified version should be loaded.

package unknown [command]

Supply a command to be executed if the interpreter is unable to load a pack-
age. With no command argument, return the current package unknown com-
mand.

package vcompare versionl version2

Compare two package version numbers. Return -1 if versionl is earlier
than version2, 0 if equal, or 1 if newer.

package versions package

Return a list of the versions of package that have been registered by package
ifneeded commands.

package vsatisfies versionl version2

Return 1 if scripts written for version version2 work with versionl.

pid
pid[fileId]

Return a list of process IDs for the commands invoked by the command
pipeline associated with fileId With no fileId, return the current pro-
cess’s ID.

38 Chapter 2— Tcl Core Commandls

pkg_mkIndex
pkg _mkindex dir pattern...

Create an index file for autoloading packages. Dir is the directory containing
the files. Supply one or more glob patterns to match the files in the directory
to be indexed for autoloading.

proc

proc name arglist body

[x)
S
=
3
Q
2
)

Create a new Tcl procedure called name. The commands in body will be
executed when the command is invoked. Arglist is a list describing the for-
mal arguments. Each element can be a variable name, or a list containing a
variable name and its default value. Returns an empty string.

If the last argument has the special variable name args, it is set to a list of
the remaining arguments passed to the procedure, which can vary in number.

Example

proc myCommand { i j {k 0} } {
puts "This is my command"
return $k

puts
puts [-nonewline] [channelId] string

Output a string of characters to the I/O channel specified using channelId.
If channelId is omitted, uses standard output. Option -nonewline sup-
presses the newline character normally appended when printing.

pwd
pwd

Return the pathname of the current working directory.

read
read [-nonewline] channelId |[numBytes]

Read characters from the I/O channel channelId. Read the number of bytes
specified by numBytes, or if omitted, read all characters until end of file.
With option -nonewline, discard the last character in the file if it is a newline.
Returns the characters read.

Alphabetical Summary of Commands — read 39

regexp
regexp [options] exp string [matchVar] [subMatchVar..]

Return 1 if regular expression exp matches string string; otherwise, return
0. If specified, matchVar will contain the portion of string that matched,
whereas subMatchVar variables will contain strings matching parenthesized
expressions in exp.

Options

-nocase
Ignore case in pattern matching.

-indices
Rather than storing strings in subMatchVar, store the indices of the first
and last matching characters as a list.

Marks the end of options.

Example
regexp {"[0-9]+$} 123
1
regexp {"[0-9]1+$} abc
0
regsub

regsub [options] exp string subSpec varName

Match regular expression exp against string string, making replacements
defined by subSpec, and store the result in variable varName.

Options

-all
Replace all matching expressions in the string.

-nocase
Ignore case in pattern matching.

Marks the end of options.

Example

regsub {[0-9]} alb2c3 {#} result

set result

a#b2c3

regsub -all< {[0-9]} alb2c3 {#} result
set result

aftb#c#

40 Chapter 2 — Tcl Core Commands

rename
rename oldName newName

Rename the command oldName to have the new name newName. Delete
oldName if newName is an empty string.

return g
return [-code code] [-errorinfo infol [-errorcode code) [string] §
Return from a procedure, top-level command, or source command. Return §
string as the return value (default is an empty string). d
Options
-code

» o«

Return an error code, one of the strings “ok”, “error”, “return”, “break”, or
“continue”, or an integer value.

-errorinfo
Return an initial stack trace for the errorlnfo variable.

-errorcode
Return a value for the errorCode variable.

scan
scan string format varName...

Parse fields from the string string according to the ANSI C scanf{)-style
format format and place results in the specified variables. Return the num-
ber of conversions, or —1 if unable to match any fields. Format placeholders
have the form %[*[lwidthlchar, where * discards the field, width is an inte-
ger, and possible values of char are as follows:

d Decimal o Octal

b'e Hex c Char to int

e Float f Float

g Float S String (no whitespace)

[chars] Chars in given range ["chars] Chars not in given range

seek
seek channelId offset [origin]

Set position for random access to I/O channel channelId. Specify starting
byte position using integer value offset relative to origin, which must be
one of the following:

start Offset bytes from start of the file (default).
current Offset bytes from the current position (positive or negative).
end Offset bytes relative to the end of file (positive or negative).

Alphabetical Summary of Commands — seek 41

set
set varName [valuel

Set the value of variable varName to value and return the value. If value
is omitted, return the current value of varName.

socket
socket [options]| host port

Create a client-side connection to a socket using the specified host and port
number. Return a channel identifier that can be used for subsequent I/O com-
mands.

Options

-myaddr addr
Specify domain name or IP address of client interface.

-myport port
Specify port number to use for client side of connection.

-async
Connect asynchronously.

socket -server command [option] port

Create the server side of a socket using the specified port number. When a
client connects, invoke command.

Option

-myaddr addr
Specify domain name or IP address of server interface.

source
source fileName

Read file fileName and pass it to the current interpreter for evaluation.
Return the return value of last command executed in file.

source -rsrc resourceName [fi1leNamel
source -rsrcid resourceId [fileName]

On the Macintosh platform only, source the script using the text resource with
the given name or resource identifier.

split
split string [splitChars]

Split a string into a list. Elements are split if separated by any of the characters
in list splitChars (default is whitespace). Returns the resulting list.

42 Chapter 2 — Tcl Core Commands

string
stringoption arg...

Perform string operations on one or more strings, based on the value of
option. String indices start at 0.

string compare stringl string2

Compare strings lexicographically. Return -1 if stringl is less than
string2, 0 if equal, or 1 if greater.

string first stringl string2

S5
§Q
ss
@
&>

Return the index of the first occurrence of stringl in string2, or -1 if no
match.

string index string charIndex

Return the character in string that has index charIndex. Return empty
string if charIndex is out of range.

string last stringl string2

Return the index of the last occurrence of stringl in string2, or —1 if no
match.

string length string

Return the length of string in characters.

string match pattern string

Return 1 if string matches glob pattern pattern; otherwise, return 0.
string range string first last

Return substring of string consisting of characters from index first
through last. Last can be the string “end”.

string tolower string

Return string converted to lowercase.
string toupper string

Return string converted to uppercase.
string trim string [chars]

Return string with leading and trailing characters from the set chars
removed (default is whitespace characters).

string trimleft string [chars]

Return string with leading characters from the set chars removed (default
is whitespace characters).

string trimright string [chars]

Return string with trailing characters from the set chars removed (default
is whitespace characters).

Alphabetical Summary of Commands — string 43

string wordend string index

Return index of first character after word in string that occurs at character
position index.

string wordstart string index

Return index of first character of word in string that occurs at character
position index.

subst
subst loptions]| string

Perform variable, command, and backslash substitutions on string and
return result.

Options

-nobackslashes
Do not perform backslash substitution.

-nocommands
Do not perform command substitution.

-novariables
Do not perform variable substitution.

switch

switch loptions] string pattern body [pattern body..]
switch loptions] string {pattern body [pattern body..l}

Match string against each pattern argument. If a match is found, evaluate
the corresponding body and return result. Pattern can be “default” to
match anything. Body can be “-” to fall through to the next pattern.

Options
-exact

Use exact matching (default).

-glob
Use glob matching.

-regexp
Use regular expression matching.

Marks the end of options.

Example

switch $tcl_platform(platform) {
windows {puts "Running on Windows"}
unix {puts "Running on Unix"}
macintosh {puts "Running on Macintosh"}
default {puts "Running on unknown platform"}

44 Chapter 2 — Tcl Core Commands

tell
tell channelIld

Return the current access position of I/O channel channelId as a decimal
number, or —1 if the channel does not support random access.

time

time script [count]

&
—
()
S
)

Execute the command script and return a string indicating the average
elapsed time required. The command is run count times (default is 1) and
the result is averaged.

[x)
S
=
3
Q
2
)

trace
trace option larg..]

Trace variable accesses by executing a user-defined command whenever the
variable is read, written, or unset.

trace variable name ops command

Trace operations on variable name. Operations are specified by one or more
of the characters r (read), w (write), or u (unset). When the operation occurs,
execute command.

trace vdelete name ops command.
Delete a trace previously set on a variable.
trace vinfo name

Return a list describing the traces currently set on variable name.

unknown
unknown cmdName |arg...]

This command is invoked by the Tcl interpreter if a program attempts to per-
form a nonexistent command. The user can redefine the default implementa-
tion of unknown defined in the Tcl system startup file.

unset
unsel name...

Remove one or more variables specified by name.

Alpbabetical Summary of Commands — unset 45

update
update lidletasks)

Call the event handler loop until all pending events have been processed. The
idletasks option specifies only to update idle callbacks.

uplevel
uplevel [1evel] arg...

Concatenate arguments and evaluate them in the stack frame context indi-
cated by level, where level is either a number indicating the number of
levels up the stack relative to the current level or a number preceded by “#”,
indicating an absolute level. The default level is 1.

upvar
.sp -1p upvar[levell otherVar myVar...
Make local variable myVar become an alias for variable otherVar in the
stack frame indicated by level, where Ievel is either a number indicating

the number of levels up the stack relative to the current level or a number
preceded by “#”, indicating an absolute level. The default level is 1.

variable
.Sp -1p variable [name value..] name [value]

Create one or more variables in the current namespace and assign them the
given values.

vwait
.Sp -1p vwait varName

Call the event handler to process events and block until the value of variable
varName changes.

while
.sp -1p while test body

A loop construct that repeatedly evaluates expression test; if it returns a true
value, it executes body.

Example

set i 1

while {$i <= 10} {
puts $i
incr 1

46 Chapter 2 — Tcl Core Commands

CHAPTER 3

Tk Core Commands

Tk is the most popular extension to the Tcl language. John Ousterhout, the author
of Tcl itself, wrote the Tk extension soon after releasing Tcl to the public. Tk is
available at http.//www.scriptics.com. This chapter covers Version 8.0.

Tk adds many new commands to the Tcl interpreter for writing graphical user
interface (GUI) applications. Commands are available to create and lay out several
different types of windows, called widgets, bind Tcl scripts to window system
events, create and manipulate graphical images, and interact with the window
manager and server.

Tk scripting provides an excellent tool for quickly prototyping GUI applications.
Programs that take many hundreds of lines of Xlib or Motif C code can typically be
done in less than a hundred lines of Tk. Also, no compilation is necessary and
almost all aspects can be dynamically reconfigured during runtime. Using the pow-
erful I/O commands of Tcl, it is also easy to add graphical interfaces on top of
existing command-line applications.

The Tk extension can be loaded into a running Tcl interpreter by using the com-
mand:

package require Tk

on systems supporting dynamic loading. Typically, one runs the program wish,
which starts a Tcl interpreter with the Tk extension already loaded.

Example

The following Tcl code demonstrates the use of most of the major widget com-
mands and several of the non-widget commands. The resulting interface is shown
in Figure 3-1.

47

S
3 =
SS
Sa
(%)

http://www.scriptics.com

wm withdraw

set w [toplevel .t]

wm title .t {Tk Code Example}

set m [menu Sw.menubar -tearoff 0]

$m add cascade -label File -menu [menu $m.file]
$m.file add command -label Quit -command exit

$m add cascade -label Help -menu [menu $m.helpl]
sm.help add command -label Index -command {puts Sorry}
Sw configure -menu Sm

set £ [frame S$w.fl]

pack [label $f.label -text {A label}] -side left
pack [entry $f.entry] -side left -fill x -expand true
$f.entry insert 0 {This is an entry}

pack $f -fill x -padx 2 -pady 2

set £ [frame $w.f2]
pack [frame $f.rg -relief groove -bd 3] -side left -fill x -expand true
pack [label $f.rg.lbl -text Radiobuttons:] -side left
pack [radiobutton $f.rg.bl -text Tea -variable choice -value 1]
-side left
pack [radiobutton $f.rg.b2 -text Coffee -variable choice -value 0]
-side left
pack [frame $f.cg -relief groove -bd 3] -side left -fill x -expand true
pack [label $f.cg.lbl -text Checkbuttons:] -side left
pack [checkbutton $f.cg.bl -text Cream] -side left
pack [checkbutton $f.cg.b2 -text Sugar] -side left
pack $f -fill x -padx 2 -pady 2

set £ [frame $w.f3]

pack [label $f.1lbl -text Scale:] -side left

pack [label s$f.val -textvariable scaleval -width 4] -side left

pack [scale $f.scl -variable scaleval -orient horizontal -from 0 \
-to 10 -showvalue false] -side left -fill x -expand true

pack $f -fill x -padx 2 -pady 2

set £ [frame $w.fd -relief groove -bd 3]

pack [frame $f.1f] -side left -fill both -padx 3 -pady 3

pack [listbox $f.1f.lb -yscrollcommand "$f.1f.sb set" -height 4] \
-side left -fill both -expand true

pack [scrollbar $f.1f.sb -command "$f.1f.1lb yview"] \
-side left -fill y

$f.1f.1b insert end {Line 1 of listbox} {Line 2 of listbox}

pack [frame $f.tf] -side left -fill both -expand true -padx 3 -pady 3

grid columnconfigure $f.tf 0 -weight 1

grid rowconfigure $f.tf 0 -weight 1

grid [text $f.tf.tx -yscrollcommand "S$f.tf.sy set" -height 4 -width 25 \
-xscrollcommand "$f.tf.sx set"] -column 0 -row 0 -sticky nsew

grid [scrollbar $f.tf.sy -command "$f.tf.tx yview"] \
-column 1 -row 0 -sticky ns

grid [scrollbar $f.tf.sx -command "$Sf.tf.tx xview" -orient horizontal] \
-column 0 -row 1 -sticky ew

$f.tf.tx insert end {This is a text widget}

pack $f -fill both -expand true -padx 2 -pady 2

set £ [frame $w.f5]

button $f.bl -text Apply -default active -command {puts $scaleval}
button $f.b2 -text Reset -default normal -command {set scaleval 0}
button $f.b3 -text Quit -default normal -command exit

pack $f.bl $f.b2 $f.b3 -padx 10 -side left

pack $f -pady 2

48 Chapter 3 — Tk Core Commandls

& Tk Code Example ™ [=] E3

File Help

Alabel |This is an entry

‘Haﬂiuhuttuns: « Tea & Coffee ” Checkbuttons: _j Cream _j Sugarl
Scale: 5 | |

Line 1 of listhox | This is a text widget

Line Z of listhox J J
/R =

rpply | Reset | Quit

Figure 3—1: Resulting interface from sample Tk code

8109 y1

S
3
3
D
=
(%)

Command-Line Options

The wish program has the following command-line format:

wish [cmdfilel loptions][-—-]larg arg..]]

Its behavior is identical to the fcish program in the handling of the cmdfile and
arg arguments. In addition, the following options are available:

-colormap new
Specify that the root window should have a new colormap rather than
the default colormap of the screen.

-display display
For the X Window System, the display (and screen) on which to display
the root window.

-geometry geometry
Geometry to use for the root window in standard X Window System
geometry format. It will be stored in the geometry global variable.

-name name
Specify the title for the root window and the name of the interpreter for
send commands.

-sync
Execute all X Window System commands synchronously. This option
makes sure that all errors are reported immediately, but slows down exe-
cution.

Command-Line Options 49

-use id
Instead of the root window being a top-level window, it is embedded in
the window whose system identifier is id (as returned by winfo id com-
mand).

-visual visual
Visual class to use for the root window. Visual must be direct-
color, grayscale, pseudocolor, staticcolor, staticgray, or
truecolor.

Denote end of wish options. Additional arguments are passed to the
script’s argv global variable. Normally, all arguments are scanned for
matches to the above options.

Environment Variable
The following environment variable is used by Tk:

TK_LIBRARY Directory containing Tk scripts and other files needed by Tk
at runtime.

Special Variables

The following global variables are defined by the Tk extension:

tk_library Directory containing the standard Tk script library.
tk_patchLevel Current patch level of Tk extension.

tk_strictMotif When non-zero, Tk tries to adhere to Motif look and feel.
tk_version Current version of Tk extension.

Group Listing of Tk Commands

This section briefly lists all Tk commands, grouped logically by function.

Widgets
button Create a button widget.
canvas Create a canvas widget.

checkbutton Create a checkbutton widget.

entry Create an entry widget.
Sframe Create a frame widget.

label Create a label widget.
listbox Create a listbox widget.
menu Create a menu widget.
menubutton Create a menubutton widget.
message Create a message widget.
radiobutton Create a radiobutton widget.
scale Create a scale widget.

50 Chapter 3 — Tk Core Commands

scrollbar
text
toplevel

Create a scrollbar widget.
Create a text widget.
Create a top-level widget.

Geometry Management

grid Lay out widgets on a grid.

pack Lay out widgets by packing them along borders.

place Lay out widgets using explicit placement.

Event Handling

bind Bind window events to Tcl scripts.

bindtags Control the precedence order of event bindings.
event Generate window events and define virtual events.
Focus

Jfocus Give a window the keyboard focus.
grab Set focus grabs on windows.
tk_focusNext Get the next window in the focus order.
tk_focusPrev Get the previous window in the focus order.

tk_focusFollowsMouse

Dialogs

tk_chooseColor
tk_dialog
tk_getOpenFile
tk_getSaveFile
tk_messageBox

Arrange for the focus to follow the mouse pointer.

Pop up a dialog for choosing a color.

Pop up a message dialog with arbitrary buttons.
Pop up a dialog for choosing an existing file.

Pop up a dialog for choosing any filename.

Pop up a message dialog with predefined buttons.

Miscellaneous

bell Ring the window system’s bell.

clipboard Manipulate the window system’s clipboard.
destroy Destroy a widget.

font Create and delete named fonts.

image Create and manipulate images.

lower Lower a window in the stacking order.

option Manipulate the Tk option database.

raise Raise a window in the stacking order.
selection Manipulate selection ownership and handling.
send Evaluate a command in another interpreter.

1k Access Tk’s internal state.

thwait Pause program until a defined change occurs.
tk_bisque Set default color palette to old bisque scheme.

tk_optionMenu

Create an Option menu.

S
3 =
SS
Sa
(%)

Group Listing of Tk Commandls

51

tk_pop-up Post a popup menu.

tk_setPalette Change the Tk color scheme.
winfo Get information on various window properties.
wm Communicate with the window manager.

Widget Overview

All Tk widgets are created by a Tcl command of the same name as the widget.
These widget creation commands have the form:

widgetCmd pathName [option value..

where widgetCmd is the name of the widget type desired (e.g., button or listhbox)
and pathName is the pathname for the new widget. The return value for the com-
mand is pathName.

A widget’s pathname consists of a child name appended to the pathname of its
parent widget using a “.” character. The child name is an arbitrary string that
excludes the “.” character and is unique among its siblings, the other widget chil-
dren of its parent. The pathname for the Tk main (or root) window is simply a sin-
gle dot (i.e., “.”); its immediate children begin with a dot, and each additional
level of a child widget appears after an additional dot. This scheme is analogous to
file pathnames in the Unix file system, where the “/” character is used as a direc-
tory name separator. For example, the pathname of a frame widget named
framel whose parent is the main window would have the pathname .framel.
A button widget named buttonl who is a child of framel would have the path-
name .framel.buttonl. Almost all Tk commands require the full pathname for
arguments that specify a widget.

When a new widget is created with the pathname pathName, a new Tcl com-
mand is also defined with the same name. Invoking this command allows one to
manipulate the widget in various ways depending on the arguments passed. The
first argument to the widget’'s command is referred to as the widget method and
selects the action to be taken by the widget. Additional arguments to the widget’s
command may be allowed or required, depending on the method. The methods
available to each widget type are described in the “Widget Commands” section,
later in this chapter.

The optional option-value pair arguments to the widget creation command
allow one to set the value of the widget's supported configuration options. All
widgets support the configure and cget methods to change and query their config-
uration options after creation.

The configure method has the form:

pathName configurel option [valueloption value...]]]

If one or more option-value pairs are specified, the given options are set to the
given values. If no option-value pairs are specified, the command returns a list
with an element for each supported widget option. Each element itself is a list of
five items describing an option. These items are the option itself, its database
name, its class name, its default value, and its current value. For example, the list

52 Chapter 3 — Tk Core Commands

for -activebackground might look like this: {-activebackground active-
Background Foreground #ececec blue}. If only the first option argument
is specified, just the five-item list describing that option is returned.

The cget command has the form:

pathName cget option
and simply returns the current setting of the option option.

The configuration options available differ depending on the widget type. Many
options are supported by all or several of the widget types. These standard
options are described in the next section. Which standard options a widget type
supports and the options that are specific to a particular widget type are described
in the “Widget Commands” section .

For distance and coordinate options that take values in screen units, the valid for-
mat is a floating-point number followed by an optional one-character suffix: ¢ for
centimeters, i for inches, m for millimeters, p for printer’s points (1/5, inch), or no
character for pixels. Commands that return values for screen distances and coordi-
nates do so in pixels, unless otherwise stated.

Standard Widget Options

Each of the following entries lists the option or options used in Tk, the name in
the window system’s resource database for the option, the associated class name
in the resource database, and a description of the option.

-activebackground color (activeBackground, Foreground)
Background color of widget when it is active.

-activeborderwidth width (activeBorderWidth, BorderWidth)
Width, in screen units, of widget’s border when it is active.

-activeforeground color (activeForeground, Background)
Foreground color of widget when it is active.

-anchor anchorPos (anchor, Anchor)
How information is positioned inside widget. Valid anchorPos values are n,
ne, e, se, s, sw, w, nw, and center.

-background color (background, Background)
-bg color
Background color of widget in normal state.

-bitmap bitmap (bitmap, Bitmap)
A bitmap image to display in the widget in place of a textual label. Valid
bitmap values are the special sequence @filename, specifying a file from
which to read the bitmap data or one of the built-in bitmaps: error,
grayl2, gray25, gray50, gray75, hourglass, info, questhead,
question, or warning. On the Macintosh, the following bitmaps are avail-
able: document, stationery, edition, application, accessory,
folder, pfolder, trash, floppy, ramdisk, cdrom, preferences,
querydoc, stop, note, and caution.

Widget Overview 53

S
3 =
SS
Sa
(%)

-borderwidth width (borderwidth, BorderWidth)
-bd width
Width, in screen units, of widget’s border in its normal state.

-CUFSOT CUrsor (cursor, Cursor)
Cursor to display when mouse pointer is inside the widget’s borders. The
cursor argument may take the following forms:

name [fgColor [bgColorl]
Name is the name of a cursor font as defined in the X Window System
cursorfont.h include file (e.g., cross and left_ptr). If fgColor and
bgColor are specified, they give the foreground and background colors
for the cursor, respectively. If bgColor is omitted, the background will
be transparent. If neither is specified, the defaults will be black and
white, respectively.

@sourceName maskName fgColor bgColor
Sourcename and maskName are the names of files describing bitmaps
for the cursor’s source bits and mask. Fgcolor and bgColor indicate
the foreground and background colors, respectively, for the cursor. This
form is invalid on Macintosh and Windows platforms.

@sourceName fgColor
sourceName is the name of a file describing a bitmap for the cursor’s
source bits. fgColor is the foreground color for the cursor. This form is
invalid on Macintosh and Windows platforms.

-disabledforeground color (disabledForeground,
DisabledForeground)
Foreground color of widget when it is disabled.

-exportselection boolean (exportSelection, ExportSelection)
Whether a selection in the widget should also be made the X Window System
selection.

-font font (font, Font)
Font to use when drawing text inside the widget.

-foreground color (foreground, Foreground)

-fg color
Foreground color of widget in its normal state.

-highlightbackground color (highlightBackground,

HighlightBackground)

Color of the rectangle drawn around the widget when it does not have the
input focus.

-highlightcolor color (highlightColor, HighlightColor)

Color of the rectangle drawn around the widget when it has the input focus.
-highlightthickness width (highlightThickness,
HighlightThickness)

Width, in screen units, of highlighted rectangle drawn around widget when it
has the input focus.

54 Chapter 3 — Tk Core Commands

-image imageName (image, Image)
Name of image to display in the widget in place of its textual label (see the
image command).

-insertbackground color (insertBackground, Foreground)
Color to use for the background of the area covered by the insertion cursor.

-insertborderwidth width (insertBorderWidth, BorderWidth)
Width, in screen units, of the border to draw around the insertion cursor.

-insertofftime milliseconds (insertOffTime, OffTime)
Time the insertion cursor should remain “off” in each blink cycle.

-insertontime milliseconds (insertOnTime, OnTime)
Time the insertion cursor should remain “on” in each blink cycle.

-insertwidth width (insertWidth, InsertWidth)
Width, in screen units, of the insertion cursor.

-jump boolean (jump, Jump)
Whether to notify slider controls (e.g., scrollbars) connected to the widget to
delay making updates until mouse button is released.

-justify alignment (justify, Justify)
How multiple lines of text are justified. Valid alignment values are left,
center, or right.

-orient orientation (orient, Orient)
The orientation in which the widget should be laid out. Valid orientation
values are vertical or horizontal.

-padx width (padx, Pad)
Extra space, in screen units, to request for padding the widget’s top and bot-
tom sides.

-pady height (pady, Pad)
Extra space, in screen units, to request for padding the widget’s left and right
sides.

-relief ef fect (relief, Relief)

3D effect desired for the widget’s border. Valid effect values are flat,
groove, raised, ridge, or sunken.

-repeatdelay milliseconds (repeatDelay, RepeatDelay)

Time a button or key must be held down before it begins to autorepeat.
-repeatinterval milliseconds (repeatInterval,
RepeatInterval)

Time between autorepeats once action has begun.

-selectbackground color (selectBackground, Foreground)
Background color to use when displaying selected items or text.

Widget Overview 55

S
3 =
SS
Sa
(%)

-selectborderwidth width (selectBorderWidth, BorderWidth)
Width, in screen units, of border to draw around selected items or text.

-selectforeground color (selectForeground, Background)
Foreground color to use when displaying selected items or text.

-setgrid boolean (setGrid, SetGrid)
Whether the widget controls the resizing grid for its top-level window. See the
wm grid command for details.

-takefocus focusType (takeFocus, TakeFocus)
If 0 or 1, signals that the widget should never or always take the focus. If
empty, Tk decides. Otherwise, evaluates argument as script with widget name
appended as argument. Returned value must be 0, 1, or empty.

-lext string (text, Text)
Text string to be displayed inside the widget.

-textvariable variable (textVariable, Variable)
Variable whose value is a text string to be displayed inside the widget.

-troughcolor color (troughColor, Background)
Color to use for the rectangular trough areas in widget.

-underline index (underline, Underline)
Integer index of a character to underline in the widget.

-wraplength length (wrapLength, WrapLength)
Maximum line length, in screen units, for word wrapping.

-xscrollcommand cmdPrefix (xScrollCommand, ScrollCommand)
Prefix for a command used to communicate with an associated horizontal
scrollbar. Typically scrollbar set, where scrollbar is the pathname of
a horizontal scrollbar widget.

-yscrollcommand cmdPrefix (yScrollCommand, ScrollCommand)
Prefix for a command used to communicate with an associated vertical scroll-
bar. Typically scrollbar set, where scrollbar is the pathname of a ver-
tical scrollbar widget.

Widget Commands

This section describes each Tk widget type and the options and methods the wid-
get supports. Only the names of the standard options supported by the widget are
listed. Refer to the “Standard Widget Options” section earlier in this chapter for
option definitions.

button
button pathName [option value..]

The button command creates a new button widget named pathName.

56 Chapter 3 — Tk Core Commands

Standard Options

-activebackground -activeforeground -anchor

-background -bitmap -borderwidth

-cursor -disabledforeground -font

-foreground -highlightbackground -highlightcolor
-highlightthickness -image -justify

-padx -pady -relief

-takefocus -text -textvariable

-underline -wraplength

Widget-Specific Options

-command tclCommand (command, Command)

Command to be evaluated when button is invoked.

-default state (default, Default) b
State for the default ring, a platform-dependent border drawn around the 3
button to indicate it is the default button. Must be normal (button is not § S
the default), active (button is the default), or disabled (no ring is §_ ©
drawn). “

-height height (height, Height)

Desired height, in lines for text content or in screen units for images and
bitmaps.

-state state (state, State)

State of the button. State must be normal, active, or disabled.

~width width (width, width)
Desired width, in characters, for text content, or in screen units, for
images and bitmaps.

Methods

pathName flash
Flash button by alternating between active and normal colors.

pathName invoke
Invoke the Tcl command associated with the button and return its result.
An empty string is returned if there is no command associated with the
button. This command is ignored if the button’s state is disabled.

canvas
canvas pathName [option value...]

The canvas command creates a new canvas widget named pathName. The
canvas widget provides a drawing area for displaying a number of graphic
items, including arcs, bitmaps, images, lines, ovals, polygons, rectangles, text,
and windows (other widgets). Methods exist to draw, manipulate, and bind
events to items.

Widget Commands — canvas 57

Standard Options

-background -borderwidth -cursor

-bighlightbackground -highlightcolor -highlightthickness
-insertbackground -insertborderwidth -insertofftime

-insertontime -insertwidth -relief

-selectbackground -selectborderwidth -selectforeground

-takefocus -xscrollcommand -yscrollcommand
Widget-Specific Options

-closeenough float (closeEnough, CloseEnough)

How close the mouse cursor must be to an item to be considered inside
it. Default is 1. 0.

-confine boolean (confine, Confine)
Whether the view can be set outside the region defined by -scrollregion.
Default is true.

-height height (height, Height)
Desired height, in screen units, that the canvas should request from its
geometry manager.

-scrollregion region (scrollRegion, ScrollRegion)
Boundary for scrolling in the canvas as a list of four coordinates describ-
ing the left, top, right, and bottom coordinates of a rectangular region in
screen units.

-width width (width, width)
Width, in screen units, that the canvas should request from its geometry
manager.

-xscrollincrement increment (xScrollIncrement,

ScrollIncrement)

Increment, in screen units, for horizontal scrolling. If not set or equal to
zero or less, defaults to one-tenth of the visible width of the canvas.

-yscrollincrement increment (yScrollIncrement,

ScrollIncrement)

Increment, in screen units, for vertical scrolling. If not set or equal to
zero or less, defaults to one-tenth of the visible height of the canvas.

Item IDs and Tags

An item in a canvas widget is identified either by its unique ID or by an asso-
ciated tag. A unique ID (an integer number) is assigned to each item when it
is created. The ID assigned to an item cannot be changed.

Multiple tags may be associated with an item. A tag is just a string of charac-
ters that can take any form except that of an integer. For instance, “squares”
and “arc32” are valid, but “32” is not. The same tag can be associated with
multiple items.

Two special tag names are reserved. The tag all is implicitly associated with
every item in the canvas. The tag current is associated with the topmost

58

Chapter 3 — Tk Core Commands

item whose drawn area is underneath the mouse cursor. If the mouse cursor
is not in the canvas widget or over an item, no item has the current tag.

The canvas appends the ID of each item when created to its display list. This
list defines the stacking order, with items later in the display list obscuring
those that are earlier in the display list. Canvas methods exist to manipulate
the order of items in the display list. However, window items are always
drawn on top of other items. The normal raise and lower Tk commands con-
trol the stacking order of overlapping window items.

Unless otherwise stated, the token tagOrId is used in the method descrip-
tions below to indicate that either an item ID or tag is accepted. If a tag speci-
fies multiple items and the method operates only on a single item, the first
(lowest) item in the display list suitable for the operation is used.

Coordinates

Coordinates and distances are specified in screen units as described in the
“Widget Overview” section. Larger y-coordinates refer to points lower on the
screen; larger x-coordinates refer to points farther to the right.

Text Indices

Text items support the notion of an index for identifying particular character
positions within the item. A decimal number indicates the position of the
desired character within the item, with 0 referring to the first character. Special
index values are as follows:

end The character just after the last one in the item
insert The character just after the insertion cursor
sel.first The first selected character in the item
sel.last The last selected character in the item

@x,y The character closest to coordinates x, y

Item Event Binding

Binding events to canvas items using the bind method works in a similar
manner to binding events to widgets with the Tk bind command. However,
only events related to the mouse and keyboard or virtual events can be
bound to canvas items. Enter and Leave events for an item are triggered when
it becomes the current item or ceases to be the current item. Other
mouse-related events are directed to the current item, if any. Keyboard-
related events are directed to the item that has the keyboard focus as set by
the canvas focus method. If a virtual event is used in a binding, it can be trig-
gered only if the underlying “real” event is mouse related or keyboard
related.

When multiple bindings match a particular event, all of the matching bindings
are invoked. This can happen when an item is associated with two tags and
both tags have bindings for the same event. A binding associated with the
all tag is invoked first, followed by only one binding for each of the item’s
tags, followed by any binding associated with the item’s ID. If there are multi-
ple matching bindings for a single tag, the most specific binding is invoked. A
continue command in a binding script terminates just that binding. A break
command terminates the script for that binding and skips any remaining

Widget Commands — canvas 59

S
3 =
SS
Sa
(%)

bindings for the event. Any bindings made to the canvas widget using the
bind command are invoked after any matching item bindings.

Methods

pathName addtag tag searchSpec larg arg...]
Associate tag with each item in the canvas selected by the contraints of
searchSpec. Searchspec and args may take any of the following
forms:

above tagOrId
Select the item just after (above) the one identified by tagOrid in
the display list. If tagOrId denotes more than one item, the last
(topmost) item is used.

all
Select all items in the canvas.

below tagOrid
Select the item just before (below) the one identified by tagOrId in
the display list. If tagOrId denotes more than one item, the first
(lowest) item is used.

closest x ylhalo [start]]

Select the item closest to coordinates x, y. If more than one item is
at the same closest distance, the last one (topmost) in the display list
is selected. If halo is specified, any item closer than halo to the
point is considered to be close enough. The start argument may
be used to cycle through all the closest items. This form will select
the topmost closest item that is below start (a tag or ID) in the
display list; if no such item exists, the selection behaves as if the
start argument were not given.

enclosed x1 y1 x2 y2
Select all the items completely inside the rectangular region given by
x1,y1 on the top left and x2,y2 on the bottom right.

overlapping x1 y1 x2 y2
Select all the items that overlap or are fully enclosed within the rect-
angular region given by x1,y1 on the top-left corner and x2,y2 on
the bottom-right corner.

withtag tagorid
Select all the items identified by tagOrId.

pathName bbox tagOrId |[tagOrId...]
Return a coordinate list of the form {x1 y1 x2 y2} giving an approxi-
mate bounding box enclosing all the items named by the tagOrId argu-
ments.

pathName bind tagOrId [sequence [script]]
Associate script with all the items identified by tagOrId such that
whenever the event sequence given by sequence occurs for one of the
items, the script will be evaluated. If the script argument is not given,
the current associated script is returned. If the seguence is also not

60 Chapter 3 — Tk Core Commands

given, a list of all the sequences for which bindings have been defined
for tagName is returned. See the “Item Event Binding” section for more
details.

pathName canvasx screenx |gridspacing]
Return the canvas x-coordinate that is displayed at the location of win-
dow x-coordinate screenx. If gridspacing is specified, the canvas
coordinate is rounded to the nearest multiple of gridspacing units.

pathName canvasy screeny |gridspacingl]
Return the canvas y-coordinate that is displayed at the location of win-
dow y-coordinate screeny. If gridspacing is specified, the canvas
coordinate is rounded to the nearest multiple of gridspacing units.

pathName coords tagOrId|[x0 yO0..]
If no coordinates are specified, a list of the current coordinates for the
item named by tagOrId is returned. If coordinates are specified, the
item is moved to the specified coordinates. If tagOrId refers to multi-
ple items, the first one in the display list is used.

pathName create type x ylx y..lloption value...]
Create a new canvas item of type type and return the assigned ID. See
the following subsections on individual item types for the exact syntax of
this method.

pathName dchars tagOrId first[last]
For each item identified by tagOrId that supports text operations,
delete the characters in the range first through last, inclusive.

pathName delete tagOrId [tagOrid..]
Delete each item named by tagOrid.

pathName dtag tagOrIid [tagToDeletel
For each item identified by tagOrId, delete the tag tagToDelete from
the list of those associated with the item. If tagToDelete is omitted, it
defaults to tagorId.

pathName find searchSpec larg arg...]
Return a list of IDs for all items selected by the constraint searchSpec.
See the addtag method for possible values for searchSpec.

pathName focus tagOrId
Set the keyboard focus for the canvas widget to the first item in the dis-
play list identified by tagOrId that supports the insertion cursor. If
tagOrId is an empty string, the focus is cleared so that no item has it.
If tagOrId is omitted, the method returns the ID for the item that cur-
rently has the focus, or an empty string if no item has the focus.

pathName gellags tagOrId
Return a list of tags associated with the first item in the display list identi-
fied by tagorId.

Widget Commands — canvas 61

S
3 =
SS
Sa
(%)

pathName icursor tagOrId index
Set the position of the insertion cursor to just before the character at
index for all items identified by tagOrId that support text operations.

pathName index tagOrId index
Return the numerical index position of index within the first item in the
display list identified by tagOrId that supports text operations. This
value is guaranteed to lie between 0 and the number of characters within
the item.

pathName insert tagOrId beforeThis string
Insert string just before the character at index beforeThis in all
items identified by tagOrId that support text operations.

pathName ilemcgel tagOrId option
Return the current value of option for the first item in the display list
identified by tagOrId. Option may have any of the values accepted
by the create method when the item was created.

pathName itemconfigure tagOrId [option [value [option value..]]]
Query or modify the configuration options for the items identified by
tagOrId in the same manner as the general widget configure method.
For queries, only results for the first item in the display identified by
tagOrId are returned. The options and values are the same as those
accepted by the create method when the items were created.

pathName lower tagOrId [belowThis]
Move all of the items identified by tagOrId to a new position in the dis-
play list just before the first item in the display list identified by
belowThis, maintaining relative order.

pathName move tagOrId xAmount yAmount
Move each of the items identified by tagOrId in the canvas by adding
xAmount to the x-coordinate and yAmount to the y-coordinate of each
point associated with the item.

pathName postscript [option value...]
Return a PostScript representation for printing all or part of the canvas.
The following options are supported:

-channel channel
The generated PostScript will be written to the channel channel
(already opened), and the method will return an empty string.

-colormap varName
VarName is an array in which each element maps a color name to
PostScript code that sets a particular color value. If this option is not
specified or no color entry is found, Tk uses the standard X11 RGB
color intensities.

-colormode mode
How to output color information. Mode must be color for full
color, gray for grayscale equivalents, or mono for black and white.

62

Chapter 3 — Tk Core Commands

-file £i1leName
The generated PostScript will be written to file fileName and the
method will return an empty string.

-fontmap varName
VarName is an array in which each element maps a Tk font name to
a two-element list consisting of a PostScript font name and point
size. If this option is not specified or no font entry is found, Tk
makes its best guess.

-beight size
Height of the area of the canvas to print. Defaults to the height of
the canvas window. This is 7ot the height of the printed page.

-pageanchor anchor
Anchor specifies which cardinal point of the printed area of the
canvas should appear over the positioning point on the page (see
-pagex and -pagey). Must be n, nw, w, sw, s, se, e, ne, or center
(the default).

-pagebeight size
Specifies that the PostScript should be scaled equally in both x and y
so that the printed area is size high on the page.

-pagewidth size
Specifies that the PostScript should be scaled equally in both x and y
so that the printed area is size wide on the page. Overrides -page-
beight setting.

-pagex position
The x-coordinate of the positioning point on the PostScript page.
Defaults to page center.

-pagey position
The y-coordinate of the positioning point on the PostScript page.
Defaults to page center.

-rotate boolean
Whether the printed area is to be rotated 90 degrees (i.e., land-
scape).

-width size
Width of the area of the canvas to print. Defaults to the full width of
the canvas. This is not the width of the printed page.

-X position
The x-coordinate of the left edge of the area in the canvas that is to
be printed. Defaults to left edge set by the canvas -scrollregion
option.

-y position
The y-coordinate of the top edge of the area in the canvas that is to
be printed. Defaults to top edge set by the canvas -scroliregion
option.

Widget Commands — canvas 63

S
3 =
SS
Sa
(%)

pathName raise tagOrId [aboveThis]
Move all of the items identified by tagOrId to a new position in the dis-
play list just after the last item in the display list identified by
aboveThis, maintaining relative order.

pathName scale tagOrId xOrigin yOrigin xScale yScale
Rescale all of the items identified by tagOrId in canvas coordinate
space. For each of the points defining each item, the x-coordinate is
adjusted to change the distance from xOrigin by a factor of xScale.
Similarly, each y-coordinate is adjusted to change the distance from
yOrigin by a factor of yScale.

pathName scan dragto x y
Scroll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the difference between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

pathName scan mark x y
Record x and y as anchors for a following scan dragto method call.

pathName select adjust tagOrId index
If the selection is currently owned by an item identified by tagOrId,
locate the end of the selection nearest to index, adjust that end to be at
index, and make the other end of the selection the anchor point. If the
selection is not currently owned by an item identified by tagOrId, this
method behaves the same as the select to widget method.

pathName select clear
Clear the selection if it is owned by any non-window item in the canvas.

pathName select from tagOrId index
Set the selection anchor point to be just before the character given by
index in the first item identified by tagOrId that supports selection.

pathName select item
Return the ID of the item, if any, that owns the selection in the canvas.

pathName select to tagOrId index
For the first item identified by tagOrId that supports selection, set the
selection to consist of those characters between the anchor point and
index. If no anchor point has been set, it defaults to index. The new
selection will always include the character given by index; it will
include the character given by the anchor point only if it exists and is less
than or equal to index.

pathName type tagOrid
Return the item type of the first item in the display list identified by
tagOrId.

pathName xview
Return a two-element list describing the currently visible horizontal
region of the canvas. The elements are real numbers representing the

64 Chapter 3 — Tk Core Commands

fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget as described by the -scrollregion option.

pathName xview moveto fraction
Adjust the visible region of the canvas so that the point indicated by
fraction along the widget's horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the canvas horizontally by number. If what is
units, then number is in units of the -xscrollincrement option. If what
is pages, then number is in units of nine-tenths the visible region’s
width.

pathName yview
Return a two-element list describing the currently visible vertical region
of the canvas. The elements are real numbers representing the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget as described by the -scrollregion option.

pathName yview moveto fraction
Adjust the visible region of the canvas so that the point indicated by
fraction along the canvas’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Shift the visible region of the canvas vertically by number. If what is
units, then number is in units of the -yscrollincrement option. If what
is pages, then number is in units of nine-tenths the visible region’s
height.

Arc Items

An arc is a section of an oval delimited by two angles (see -start and -extent)
and can be displayed in one of several ways (see -style). Arcs are created with
a widget method of the following form:

pathName create arc x1 y1 x2 y2 loption value option value...]
The arguments x1,y1 and x2,y2 define the top-left and bottom-right corners

of a rectangular region enclosing the oval that defines the arc.

-extent degrees
Angle that the arc’s range should extend, measured counterclockwise
from the starting angle.

-fill color
Color used for filled region of the arc.

-outline color
Color used to draw the arc’s outline.

Widget Commands — canvas 65

S
3 =
SS
Sa
(%)

-outlinestipple bi tmap
Stipple pattern used to draw the arc’s outline.

-start degrees
Starting angle of the arc, as measured counterclockwise from the three
o’clock position.

-stipple bitmap
Stipple pattern used for filled region of the arc.

-style type
How to draw the arc. Type may be pieslice (the default), chord, or
arc. A pieslice is a region defined by the arc with two lines connect-
ing the ends to the center of the implied oval. A chord is a region
defined by the arc with the two ends connected by a line. An arc is sim-
ply the curve of the arc alone.

-tags tagList

List of tags to associate with the item. Replaces any existing list.
-width outlinewidth

Width of the outline to be drawn around the arc’s region.

Bitmap Items

Bitmap items display two-color images on the canvas. They are created with a
widget method of the following form:

pathName create bitmap x y loption value option value...]

The arguments x and y give the coordinates of a point used to position the
bitmap on the canvas (see -anchor).

-anchor anchorPos
Which cardinal point on the bitmap should line up over the positioning
point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or
center (the default).

-background color
Color to use for each of the bitmap pixels whose value is 0.

-bitmap bitmap
Bitmap to display in the item.

-foreground color
Color to use for each of the bitmap pixels whose value is 1. Default is
black.

-lags tagList
List of tags to associate with the item. Replaces any existing list.

66 Chapter 3 — Tk Core Commands

Image Items

Image items are used to display Tk images in the canvas. They are created
with a widget method of the following form:

pathName create image x y loption value option value...]

The arguments x and y give the coordinates of a point used to position the
image on the canvas (see -anchor).

-anchor anchorPos
Which cardinal point on the image should line up over the positioning
point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or
center (the default).

-image imageName
Name of image to display in the item.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

S
3 =
SS
Sa
(%)

Line Items

Line items display one or more connected line segments or curves on the can-
vas. They are created with a widget method of the following form:

pathName create line x1 y1... xn yn|loption value option value...]

The arguments x1 through yn give the coordinates for a series of two or
more points that describe a series of connected line segments.

-arrow where
Where to draw arrowheads. Where may be none (the default), first,
last, or both.

-arrowshape shape
How to draw the arrowheads. Shape is a three-element list indicating
the distance from neck to tip, from tip to trailing points, and from trailing
points to nearest outside edge of the line.

-capstyle style
How caps are drawn at endpoints of line. Style may be butt (the
default), projecting, or round.

-fill color
Color to use for drawing the line.

-joinstyle style
How joints are drawn. Style may be bevel, miter (the default), or
round.

-smooth boolean
Whether the line should be drawn as a curve using parabolic splines.

Widget Commands — canvas 67

-splinesteps number
Number of line segments with which to approximate each spline when
smoothing.

-stipple bitmap

Stipple pattern to use when drawing the line.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width 1inewWidth
Width of the line. Defaults to 1.0.
Oval Items
Oval items display circular or oval shapes on the canvas. They are created
with a widget method of the following form:

pathName create oval x1 y1 x2 y2 loption value option value...]

The arguments x1,y1 and x2,y2 define the top-left and bottom-right corners
of a rectangular region enclosing the oval. The oval will include the top and
left edges of the rectangle but not the lower or right edges.

-fill color
Color used for filled region of the oval.

-outline color

Color used for drawing oval’s outline.
-stipple bitmap

Stipple pattern used for filled region of oval.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width outlinewidth
Width of the oval’s outline. Defaults to 1.0.

Polygon Items

Polygon items display multisided or curved regions on the canvas. They are
created with a widget method of the following form:

pathName create polygon x1 yl... xn yn |option value option
value...]

The arguments xI through yn specify the coordinates for three or more
points that define a closed polygon. If the first and last points are not the
same, a line is drawn between them.

-fill color
Color used to fill the area of the polygon.

-outline color
Color used to draw the polygon’s outline.

68

Chapter 3 — Tk Core Commands

-smooth boolean
Whether the polygon should be drawn with a curved perimeter using
parabolic splines.

-splinesteps number
Number of line segments with which to approximate for each spline
when smoothing.

-stipple bitmap
Stipple pattern used to fill the area of the polygon.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width outlinewidth
Width of the polygon’s outline. Defaults to 1.0.
Rectangle Items

Rectangle items display rectangular shapes on the canvas. They are created
with a widget method of the following form:

S
3 =
SS
Sa
(%)

pathName create rectangle x1 yl x2 y2 [option value option
value...|

The arguments x1,y1 and x2,y2 define the top-left and bottom-right corners
of the rectangle (the region of the rectangle will include its upper and left
edges but not its lower or right edges).

-fill color
Color used to fill the area of the rectangle.

-outline color
Color used to draw the rectangle’s outline.

-stipple bitmap
Stipple pattern used to fill the area of the rectangle.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width outlinewidth
Width of the rectangle’s outline. Defaults to 1.0.

Text Items

Text items display one or more lines of characters on the canvas. They are
created with a widget method of the following form:

pathName create lext x y loption value option value...]

The arguments x and y specify the coordinates of a point used to position the
text on the display.

-anchor anchorPos
Which cardinal point of the text bounding region should line up over the
positioning point of the item. AnchorPos must be n, nw, w, sw, s, se,
e, ne, or center (the default).

Widget Commands — canvas 69

-fill color
Color to use for drawing the text characters.

-font fontName
Font for drawing text characters.

-justify how
How to justify the text within its bounding region. How may be left
(the default), right, or center.

-stipple bi tmap
Stipple pattern for drawing text characters.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-lext string
Characters to be displayed in the text item.

-width 1ineLength
Maximum length (using coordinate units) for a line of text. If 0, text is
broken only on newline characters. Otherwise, lines are broken on any
whitespace.

Window Items

Window items display other windows (i.e., Tk widgets) on the canvas. They
are created with a widget method of the following form:

pathName create window x y loption value option value...]

The arguments x and y specify the coordinates of a point used to position the
window on the display. A window item always obscures any graphics that
overlap it, regardless of their order in the display list.

-anchor anchorPos
Which cardinal point of the window should line up over the positioning
point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or
center (the default).

-beight pixels
Height to assign to item’s window.

-tags tagList
List of tags to associate with the item. Replaces any existing list.
~width pixels

Width to assign to item’s window.

-window pathName
Window to associate with the item, which must be a descendant of the
canvas widget.

70

Chapter 3 — Tk Core Commands

checkbutton
checkbutton pathName [option value..]

The checkbutton command creates a new checkbutton widget named path-
Name.

Standard Options

-activebackground -activeforeground -anchor
-background -bitmap -borderwidth
-cursor -disabledforeground -font
-foreground -highlightbackground -highlightcolor
-highlightthickness -image -justify
-padx -pady -relief
-takefocus -text -textvariable S
; =
-underline -wraplength § :
Widget-Specific Options § §
-command tclCommand (command, Command) *

Command to be evaluated when button is invoked.

-height height (height, Height)
Desired height, in lines for text content or in screen units for images and
bitmaps.

-indicatoron boolean (indicatorOn, IndicatorOn)

Whether the indicator should be drawn. If false, the -relief option is
ignored, and the widget’s relief is sunken if selected and raised if not.

-offvalue value (offvalue, Value)
Value to store in associated variable when button is not selected.

-onvalue value (onvalue, Value)
Value to store in associated variable when button is selected.

-selectcolor color (selectColor, Background)
Background color to use for indicator when button is selected (at all
times for Windows). If -indicatoron is £alse, the color is used for the
background of the entire widget when it is selected.

-selectimage image (selectImage, SelectImage)
Image to display instead of normal image when button is selected. This
option is ignored if -image option has not been set.

-state state (state, State)
State of the checkbutton. State must be normal, active, or dis-
abled.

-variable varName (variable, Variable)

Name of global variable (defaults to last element of pathName) to set to
indicate whether the checkbutton is selected.

Widget Commands — checkbutton 71

-width width (width, Width)
Desired width, in characters for text content or in screen units for images
and bitmaps.

Methods

pathName deselect
Deselect the checkbutton and set its associated variable to the value of its
-offvalue option.

pathName flash
Flash the button by alternating between active and normal colors.

pathName invoke
Toggle the selection state, invoke the Tcl command associated with the
button, and return its result. An empty string is returned if there is no
command associated with the button. This command is ignored if the
button’s state is disabled.

pathName select
Select the checkbutton and set its associated variable to the value of the
-onvalue option.

pathName
Toggle the selection state of the checkbutton and set its associated vari-
able appropriately.

entry

entry pathName [option value..]

The entry command creates a new entry widget named pathName. An entry
is a widget that displays a one-line text string that can be edited.

Standard Options

-background -borderwidth -cursor

-exportselection -font -foreground

-highlightbackground -highlightcolor -highlightthickness

-insertbackground -insertborderwidth — -insertofftime

-insertontime -insertwidth —justify

-relief -selectbackground -selectborderwidth

-selectforeground -seigrid -takefocus

-xscrollcommand

Widget-Specific Options

-show char (show, Show)
Character to show instead of actual characters typed. Useful for password
entries.

-state state (state, State)

State for the entry. State must be normal or disabled.

72

Chapter 3 — Tk Core Commands

-width width (width, Width)
Desired width in characters. If zero or less, the width is made large
enough to hold current text.

Text Indices

Several entry widget methods support the notion of an index for identifying
particular positions within the line of text. Valid index values are as follows:

number Character as a numerical index (starting from 0)
anchor Anchor point for the selection

end Character just after the last one in the entry’s string
insert Character just after the insertion cursor
sel.first First character in the selection, if in entry
sel.last Character just after last one in selection, if in entry
@x Character at x-coordinate x in entry

Methods

pathName bbox index
Return a list of four numbers giving coordinates of upper-left corner (rel-
ative to the widget) and width and height of character at index.

S
3 =
SS
Sa
(%)

pathName delete first [last]
Delete range of characters starting at first up to, but not including,
last. If last is omitted, only the character at first is deleted.

pathName get
Return the entry’s current string.

pathName icursor index
Place the insertion cursor just before the character at index.

pathName index index
Return the numerical index corresponding to position index.

pathName insert index string
Insert string just before the position indicated by index.

pathName scan dragto x
Scroll the widget's view horizontally. The distance scrolled is equal to 10
times the difference between this command’s x argument and the x argu-
ment to the last scan mark command for the widget.

pathName scan mark x
Record x as the anchor for a following scan dragto method call.

pathName selection adjust index
Locate the end of the selection nearest to index, adjust that end of the
selection to be at index, and make the other end of the selection the
selection anchor point. If no current selection exists, the selection is cre-
ated to encompass the characters between index and the current anchor
point, inclusive.

Widget Commands — entry 73

pathName selection clear
Clear the selection if it is owned by this widget.

pathName selection from index
Set the selection anchor point to just before the character at index.

pathName selection present
Return 1 if any characters in entry are currently selected, O otherwise.

pathName selection range start end
Set the selection to include characters starting at start up to, but not
including, the character at end.

pathName selection to index
If index is before the anchor point, set the selection to the character
range from index up to just before the anchor point. If index is after
the anchor point, set the selection to the character range from the anchor
point up to just before index.

pathName xview
Return a two-element list describing the currently visible horizontal
region of the entry. The elements are real numbers representing the frac-
tional distance that the view’s top and bottom edges extend into the ver-
tical span of the widget.

pathName xview index
Adjust the visible region of the entry so the character at index is at the
left edge of the view.

pathName xview movelo fraction
Adjust the visible region of the entry so that the point indicated by
fraction along the widget's horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the entry horizontally by number. If what is
units, then number is in units of the characters. If what is pages,
then number is in units of the visible region’s width.

frame
frame pathName [option value..]

The frame command creates a new frame widget named pathName. The
main purpose of a frame widget is to serve as a container for laying out other
widgets using one of Tk’s geometry managers.

Standard Options

-borderwidth -cursor -highlightbackground
-bighlightcolor -bighlightthickness -relief

-takefocus

74 Chapter 3 — Tk Core Commands

Widget-Specific Options

-background color (background, Background)
Same as standard option, but may be the empty string to display no
background or border.

-class name (class, Class)
Class to use when querying the option database and for bindings. May
not be changed with configure.

-colormap colormap (colormap, Colormap)
Colormap to use for window. Colormap may be either new, in which
case a new colormap is created, or the name of another window, in
which case that window’s colormap is used. The default is to use the col-
ormap of its parent. May not be changed with configure.

-container boolean (container, Container)
Whether the window will be used as a container in which to embed
some other application. May not be changed with configure.

S
3 =
SS
Sa
(%)

-height height (height, Height)
Desired height, in screen units, for the window.

-visual visual (visual, Visual)
Visual class to use for the window. Visual must be directcolor,
grayscale, pseudocolor, staticcolor, staticgray, or true-
color.

-width width (width, width)
Desired width, in screen units, for the window.

label
label pathName [option value..]

The label command creates a new label widget named pathName.

Standard Options

-anchor -background -bitmap
-borderwidth -cursor -font
-foreground -highlightbackground -highlightcolor
-bighlightthickness -image -justify

-padx -pady -relief
-takefocus -text -textvariable
-underline -wraplength

Widget-Specific Options

-height height (height, Height)
Desired height, in lines, for text content or in screen units for images or
bitmaps. If not set, widget is autosized.

Widget Commands — label 75

-width width (width, width)
Desired width, in characters, for text content or in screen units for images
or bitmaps. If not set, widget is autosized.

listbox

listbox pathName [option value..]

The listhox command creates a new listbox widget named pathName. A list-
box is a widget that displays a list of strings, one per line. When first created,
a new listbox has no elements. Elements can be added, deleted, and selected
using methods described here.

Many listbox methods take index arguments to identify elements. Listbox
indices are numbered starting at 0. Special index values are active,
anchor, end, and @x, y.

Standard Options

-background -borderwidth -cursor

-exportselection -font -foreground
-highlightbackground -highlightcolor -highlighttbhickness

-relief -selectbackground -selectborderwidth
-selectforeground -setgrid -takefocus

-xscrollcommand -yscrollcommand

Widget-Specific Options

-height height (height, Height)

Desired height of listbox in lines. If zero or less, the height is made just
large enough to hold all lines.

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default listbox bindings
for manipulation of the element selection. Supported styles are single,
browse, multiple, and extended. Any arbitrary string is allowed, but
the programmer must extend the bindings to support it.

-width width (width, width)
Desired width of listbox in characters. If zero or less, the width is made
just large enough to hold the longest element.

Methods

pathName active index
Set the active element to the one at index.

pathName bbox index
Return a list of numbers in the format {x y width height} describing
the bounding box around the text of element at index.

pathName curselection
Return a list of indices of all elements currently selected.

76

Chapter 3 — Tk Core Commands

pathName delete index] [index2]
Delete range of elements from indexl to index2. If index2 is not
given, only the element at index1 is deleted.

pathName get indexl [index2]
Return as a list the elements from indexl to index2. If index2 is not
given, only the element at index1 is returned.

pathName index index
Return the numeric index of the element at index.

pathName insert index [string...]
Insert given strings as new elements just before element at index. If
index is specified as end, the new elements are appended at the end of
the list.

pathName nearest y
Return the index of the element nearest to y-coordinate y.

8109 y1

pathName scan dragto x y
Scroll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the difference between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

S
3
3
D
=
(%)

pathName scan mark x y
Record x and y as anchors for a following scan dragto method call.

pathName see index
Adjust the view in the listbox so that the element at index is visible.

pathName selection anchor index
Set the anchor for selection dragging to the element at index (or closest
to it).

pathName selection clear first [last]
Deselect any selected elements between first and last, inclusive.

pathName selection includes index
Return 1 if the element at index is selected, 0 otherwise.

pathName selection set first [last]
Select all elements between first and last, inclusive.

pathName size
Return the total number of elements in the listbox.

pathName xview
Return a two-element list describing the currently visible horizontal
region of the listbox. The elements are real numbers representing the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget.

Widget Commands — listbox 77

pathName xview index
Adjust the visible region of the listbox so that the character position
index is at the left edge of the view.

pathName xview moveto fraction
Adjust the visible region of the listbox so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the listbox horizontally by number. If what is
units, then number is in units of characters. If what is pages, then
number is in units of the visible region’s width.

pathName yview
Return a two-element list describing the currently visible vertical region
of the listbox. The elements are real numbers representing the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget.

pathName yview index
Adjust the visible region of the listbox so that the element given by
index is at the top of the view.

pathName yview moveto fraction
Adjust the visible region of the listbox so that the point indicated by
fraction along the widget's vertical span appears at the region’s top
edge.

pathName yview scroll number what
Shift the visible region of the listbox vertically by number. If what is
units, then number is in units of text lines. If what is pages, then
number is in units of the visible region’s height.

Selection Modes

The behavior of the default bindings for a listbox is determined by the value
of the -selectmode option. If the selection mode is single or browse, only a
single element in the list may be selected at one time. Clicking button 1 on an
element selects it and deselects any other element. In browse mode, it is
possible to drag the selection.

If the selection mode is multiple or extended, then multiple elements
may be selected at once, including discontiguous ranges. In multiple mode,
clicking button 1 on an element alternately selects and deselects it. In
extended mode, pressing button 1 on an element selects it, makes that ele-
ment the new anchor element, and deselects all other elements. Dragging the
mouse button then extends the selection with respect to the anchor element.

78 Chapter 3 — Tk Core Commands

menu
menu pathName [option value..]

The menu command creates a new menu widget named pathName. A menu
is a top-level window that displays a collection of one-line entries arranged in
one or more columns. Several different types of menu entries exist and can be
combined in a single menu.

Standard Options
-activebackground -activeborderwidth — -activeforeground
-background -borderwidth -Cursor
-disabledforeground -font -foreground
-relief -takefocus
Q
Widget-Specific Options S, S|
-postcommand command (postCommand, Command) §, S
Command to evaluate each time the menu is posted. § @

-selectcolor color (selectColor, Background)
Color to display in the indicator when menu entries of type check-
button or radiobutton are selected.

-tearoff boolean (tearOff, TearOff)
Whether the menu should include a tear-off entry at the top.

-tearoffcommand command (tearOffCommand, TearOffCommand)
Command to evaluate whenever menu is torn off. The menu widget’s
name and the name of the window for the torn-off menu are appended
as the last two arguments.

-title string (title, Title)
String to use as a title for the window created when the menu is torn off.

-hype type (type, Type)
Menu’s type. Type must be menubar, tearoff, or normal. Can only
be set at menu’s creation.

Entry Indices
Several menu widget methods support the notion of an index for identifying

a particular entry position within the menu. Indices have the following form:

number
The entry numerically, where 0 is the topmost entry.

active
The entry that is currently active.

end
The bottommost entry in the menu.

Widget Commands — menu 79

last
Same as end.

none
Indicates “no entry at all.” Used mainly with activate method to make no
entry active.

ey
The entry closest to y-coordinate y in the menu’s window.

pattern
The first entry from the top with a label that matches pattern pattern
(see Tcl command string match for rules).

Special Menubar Menus

Any menu can be made into a menubar for a top-level window (see the
toplevel widget). Certain specially named menus that are children of a
menubar will be treated in a system-specific manner. For a menubar named
.menubar, on the Macintosh, the special menus would be
.menubar.apple and .menubar.help; on Windows, the special menu
would be .menubar.system; on X Window System, the special menu
would be .menubar.help.

On the Macintosh, items in the .menubar.apple will make up the first
items of the Apple menu, and items in the .menubar.help are appended to
the standard Help menu on the right of the menubar whenever the window
containing the menubar is in front. Under Windows, items in the
.menubar . system menu are appended to the system menu for the window
containing the menubar. On X Windows, when the last menu entry in
.menubar is a cascade entry with submenu .menubar.help, it is right-
justified on the menubar.

Methods

pathName activate index
Redisplay the entry at index in its active colors. If index is none, the
menu will end up with no active entry.

pathName add type loption value loption value..]]
Add a new entry of type type to the bottom of the menu, configured
with the given options. The possible values for type are cascade,
checkbutton, command, radiobutton, or separator. Possible
options are:

-activebackground color
Background color for entry when active. Not available for separator
or tear-off entries.

-activeforeground color
Foreground color for entry when active. Not available for separator
or tear-off entries.

80

Chapter 3 — Tk Core Commands

-accelerator string
String to display at right side of menu entry (usually to show acceler-
ator keystroke). Not available for separator or tear-off entries.

-background color
Background color for entry when it is in the normal state. Not avail-
able for separator or tear-off entries.

-bitmap bitmap
Bitmap to display in menu instead of textual label. Overrides -label.
Not available for separator or tear-off entries.

-columnbreak boolean
Whether entry should start a new column in the menu.

-command tclCommand
Command to evaluate when menu entry is invoked. Not available for
separator or tear-off entries.

-font font
Font to use when drawing label and accelerator for entry. Not avail-
able for separator or tear-off entries.

-foreground color
Foreground color for entry when in the normal state. Not available
for separator or tear-off entries.

-hidemargin boolean
Whether standard margins should be drawn for menu entry.

-image imageName
Name of image to display in menu instead of textual label. This
option overrides -label and -bitmap. Not available for separator or
tear-off entries.

-indicatoron boolean
Whether indicator should be displayed. Available only for check-
button and radiobutton entries.

-label string
String to display as identifying label of entry. Not available for sepa-
rator or tear-off entries.

-menu menuName
Pathname of submenu associated with entry. Available for cascade
entries only.

-offvalue value
Value to store in entry’s associated variable when it is deselected.
Available only for checkbutton entries.

-onvalue value
Value to store in entry’s associated variable when it is selected.
Available only for checkbutton entries.

Widget Commands — menu 81

S
3
3
D
=
(%)

=
()
S
)

-selectcolor color
Color to display in the indicator when entry is selected. Available
only for checkbutton and radiobutton entries.

-selectimage image
Image to display in entry when it is selected in place of the one
specified with -image. Available only for checkbutton and radiobut-
ton entries.

-state state
State of the menu entry. State must be normal, active, or
disabled.

-underline integer
Integer index of character to underline in entry’s label. Not available
for separator or tear-off entries.

-value value
Value to store in the entry’s associated variable when selected. Avail-
able only for radiobutton entries.

-variable varName
Global variable to associate with entry. Available only for check-
button and radiobutton entries.

pathName clone newPathName [cloneType]
Make a clone of the menu with name newPathName. The clone will
have type cloneType (one of normal, menubar, or tearoff).
Changes in configuration of the original are automatically reflected in the
clone. Any cascade menus pointed to are also cloned. Clones are
destroyed when the original is destroyed.

pathName delete index1 [index2]
Delete all menu entries between indexl and index2, inclusive. If
index2 is not given, only entry at index1 is deleted.

pathName entrycget index option
Return the current value of configuration option option for entry at
index. See the add method for available options.

pathName entryconfigure index [option [value [option value..]]]
Query or modify the configuration options for the menu entry at index
in the same manner as the general widget configure method. See the add
method for available options.

pathName index index
Return the numerical index corresponding to index (or none if index
is none).

pathName insert index type loption value [option value..]]
Same as add method except that it inserts the new entry just before the
entry at index. It is not possible to insert new entries before the tear-off
entry, if the menu has one.

82

Chapter 3 — Tk Core Commands

pathName invoke index
Invoke the action appropriate to the entry type of the menu entry at
index if it is not disabled.

pathName post x y
Arrange for the menu to be displayed at root-window coordinates x and
y (possibly adjusted to make sure the entire menu is visible on the
screen). If a script has been given to the -postcommand option, it is
evaluated first and the results returned. If an error occurs in the script,
the menu is not posted.

pathName postcascade index
If entry at index is a cascade entry, the submenu associated with it is
posted. Any other currently posted submenu is unposted.

pathName fype index
Return the type of menu entry at index.

pathName unpost
Unmap menu’s window so it is no longer displayed. Does not work on
Windows or Macintosh.

S
3 =
SS
Sa
(%)

pathName yposition index
Return the y-coordinate of the topmost pixel of the entry at index
within the menu window.

menubutton
menubutton pathName [option value..]

The menubutton command creates a new menubutton widget named path-
Name.

Standard Options

-activebackground -activeforeground -anchor

-background -bitmap -borderwidth

-cursor -disabledforeground -font

-foreground -highlightbackground -highlightcolor
-highlightthickness -image justify

-padx -pady -relief

-takefocus -text -textvariable

-underline -wraplength

Widget-Specific Options

-direction direction (direction, Height)

Where menu should pop up in relation to button. Valid direction val-
ues are above, below, right, left, or £lush (directly over button).

-height height (height, Height)
Desired height, in lines, for text content or in screen units for images and
bitmaps.

Widget Commands — menubutton 83

-indicatoron boolean (indicatorOn, IndicatorOn)
If true, a small indicator is drawn on the button’s right side and the
default bindings will treat the widget as an option menubutton.

-menu pathName (menu, menuName)
Name of menu widget to post when button is invoked.

-state state (state, State)
State of menubutton. State must be normal, active, or disabled.
~width width (width, wWidth)
Desired width, in characters for text content, or in screen units for images
and bitmaps.
message

message pathName [option value..]

The message command creates a new message widget named pathName.

Standard Options

-anchor -background -borderwidth

-cursor -font -foreground

-highlightbackground -highlightcolor -highlightthickness

-justify -padx -pady

-relief -takefocus -text

-textvariable

Widget-Specific Options

-aspect integer (aspect, Aspect)

Ratio of the text’s width to its height on a scale from 0 to 100. The ratio
is used to choose the line length for word wrapping.

-width width (width, width)
Desired line length in characters. If greater than zero, overrides -aspect
option.

radiobutton

radiobutton pathName [option value..]

The radiobutton command creates a new radiobutton widget named path-
Name.

Standard Options

-activebackground -activeforeground -anchor
-background -bitmap -borderwidth
-cursor -disabledforeground -font
-foreground -bighlightbackground -highlightcolor
-highlightthickness -image -justify

-padx -pady -relief

84

Chapter 3 — Tk Core Commands

-takefocus -text -textvariable
-underline -wraplength
Widget-Specific Options

-command tclCommand (command, Command)
Command to be evaluated when button is invoked.

-height height (height, Height)
Desired height, in lines for text content or in screen units for images and
bitmaps.

-indicatoron boolean (indicatorOn, IndicatorOn)

Whether the indicator should be drawn. If false, the -relief option is
ignored and the widget’s relief is sunken if selected and raised if not.

-selectcolor color (selectColor, Background)
Background color to use for indicator when button is selected (at all
times for Windows). If indicatorOn is false, the color is used for the
background of the entire widget when it is selected.

-selectimage imageName (selectImage, SelectImage)
Name of image to display instead of normal image when button is
selected. This option is ignored if the -image option has not been set.

-state state (state, State)
State of the radiobutton. State must be normal, active, or disabled.

-value value (value, Value)
Value to store in associated variable when button is selected.

-variable varName (variable, Variable)
Name of global variable (defaults to last element of pathName) to set to
indicate whether the radiobutton is selected.

-width width (width, width)
Desired width in characters for text content or screen units for image and
bitmap.

Methods

pathName deselect
Deselect the radiobutton and set the value of its associated variable to an
empty string.

pathName flash
Flash the button by alternating between active and normal colors.

pathName invoke
Select the button, invoke the Tcl command associated with the button,
and return its result. An empty string is returned if there is no command
associated with the button. This command is ignored if the button’s state
is disabled.

Widget Commands — radiobutton 85

S
3 =
SS
Sa
(%)

pathName select
Select the radiobutton and set its associated variable to the value of the
-value option.

scale

scale pathName [option value..]

The scale command creates a new scale widget named pathName. A scale is
a widget that displays a rectangular trough and a small slider. The position of
the slider selects a particular real value.

Standard Options

-activebackground -background -borderwidth

-Cursor -font -foreground

-highlightbackground -highlightcolor -highlightthickness

-orient -relief -repeatdelay

-repeatinterval -takefocus -troughcolor

Widget-Specific Options

-bigincrement value (bigIncrement, BigIncrement)

Real number for “large” increments of the scale. Default (or if set to 0) is
one-tenth the range of the scale.

-command tclCommand (command, Command)
Command to invoke whenever the scale’s value is changed. The scale’s
new value will be appended as an argument.

-digits integer (digits, Digits)
How many significant digits should be retained when converting scale’s
value to a string. If integer is zero or less, Tk chooses the smallest
value that guarantees each position is unique.

-from value (from, From)
Real value limit for the left or top end of the scale.

-label string (label, Label)
Text string to label the scale. Label is displayed just to the right of the top
end of vertical scales and just to the left of horizontal scales.

-length size (length, Length)
Desired long dimension, in screen units, for the scale.

-resolution value (resolution, Resolution)
Real value specifying the resolution of the scale. Defaults to 1 (i.e., the
scale’s value will be integral).

-showvalue boolean (showValue, ShowValue)
Whether the current value of the scale is displayed.

-sliderlength size (sliderLength, SliderLength)
Size of the slider, in screen units, along the long dimension.

86

Chapter 3 — Tk Core Commands

-sliderrelief relief (sliderRelief, SliderRelief)
The relief to use for drawing the slider.

-state state (state, State)
State of the scale. State must be normal, active, or disabled.

-tickinterval value (tickInterval, TickInterval)
Real value specifying spacing between numerical tick marks displayed
below or to the left of the slider. If 0, no tick marks will be displayed.

-to value (to, To)
Real value corresponding to the right or bottom end of the scale.

-variable varName (variable, Variable)
Name of global variable to associate with the scale. Changes to either
the variable or the scale will automatically update the value of the other.

-width size (width, width)
Desired narrow dimension, in screen units, of the scale’s trough.

S
3 =
SS
Sa
(%)

Methods

pathName coords [valuel
Return the x- and y-coordinates (as a two-element list) of the point along
the centerline of the trough corresponding to value. If value is not
given, the scale’s current value is used.

pathName get [x y]
Return the current value of the scale if x and y are not given. Otherwise,
return the value corresponding to the point on the scale closest to coor-
dinates x and y within the widget.

pathName identify x y
Return the name of the part of the scale that lies under the coordinates
given by x and y. The name will be one of slider, troughl (above or
to the left of the slider), or trough2 (below or to the right of the slider).
If the point is not within the widget, an empty string is returned.

pathName set value
Change the current value of the scale to value and update the slider’s
position.

scrollbar
scrollbar pathName [option value..]

The scrollbar command creates a new scrollbar widget named pathName.

Standard Options

-activebackground -background -borderwidth
-cursor -bighlightbackground -highlightcolor
-bighlightthickness — -jump -orient

-relief -repeatdelay -repeatinterval
-takefocus -troughcolor

Widget Commands — scrollbar 87

Widget-Specific Options

-activerelief relief (activeRelief, ActiveRelief)
Relief type to use when scrollbar is active.

-command string (command, Command)
Prefix of Tcl command to invoke to change view in widget associated
with the scrollbar. See “Scrolling Methods,” later in this section.

-elementborderwidth width (elementBorderWidth, BorderWidth)
Width of borders drawn around internal elements of scrollbar.

-width width (width, width)
Desired narrow dimension, in screen units, for the scrollbar.

Scrollbar Elements

arrowl Top (or left) arrow

troughl Region between slider and arrowl
slider Rectangle indicating visible region
trough2 Region between slider and arrow2
arrow?2 Bottom (or right) arrow

Methods

pathName activate [element]
Mark element indicated by element as active. If not given, return name
of current element, or an empty string if no element is active.

pathName delta deltaX deltaY
Return a real number indicating the change in the scrollbar setting that
will result if the slider moves deltaX pixels to the right and deltay
pixels to the left. The arguments may be zero or negative.

pathName fraction x y
Return real number between 0 and 1 indicating the fractional position of
coordinates x y (in pixels relative to the widget) along the scrollbar.

pathName get
Return a list containing the most recent arguments to the set method.

pathName identify x y
Return the name of the element at point x y (in pixels relative to the
widget) in the scrollbar. Return an empty string if the point is not inside
the scrollbar.

pathName set first last
Usually invoked by associated widget to inform the scrollbar about its
current view. Arguments first and last are real numbers between 0
and 1 describing the viewable range in the widget within the widget.

Scrolling Methods

When the user interacts with the scrollbar, for example, by dragging the slider,
the scrollbar notifies the associated widget that it must change its view. The
scrollbar makes the notification by evaluating a Tcl command generated by
appending action-specific arguments to the value of the scrollbar’s -command

88 Chapter 3 — Tk Core Commandls

option. The possible forms of the resulting command are described next. In
each case, prefix is the value of the -command option, which usually has a
form like pathName xview or pathName jyview, where pathName is the
associated widget pathname.

prefix moveto fraction
Tells associated widget to adjust its view so that the point indicated by
fraction appears at the beginning of the widget’s visible region. A
value of 0.333 means the visible region should begin one-third of the
way through the widget’s span.

prefix scroll number units
Tell associated widget to adjust its view by number units. The meaning
of units is widget specific.

prefix scroll number pages
Tell associated widget to adjust its view by number pages. The meaning
of pages is widget specific.

S
3 =
SS
Sa
(%)

text
text pathName [option value..]

The text command creates a new text widget named pathName. A text wid-
get displays one or more lines of text and allows that text to be edited. Sev-
eral options exist to change the text’s style (fonts, color, justification, etc.).
Tags can be assigned to regions of text to allow different styles to be applied.
The text widget also allows the embedding of images and other windows.
Floating marks can be set to keep track of special points in the text.

Standard Options

-background -borderwidth -cursor
-exportselection -font -foreground
-bighlightbackground -highlightcolor -highlighttbhickness
-insertbackground -insertborderwidth -insertofftime
-insertontime -insertwidth -padx

-pady -relief -selectbackground
-selectborderwidth -selectforeground -setgrid

-takefocus -xscrollcommand -yscrollcommand
Widget-Specific Options

-height (height, Height)

Desired height for the window, in characters.

-spacing1 (spacingl, Spacingl)
Space to add above each line of text. If the line wraps, the space is
added above the first displayed line only.

-spacing?2 (spacing2, Spacing2)
Space to add between the lines that display a long, wrapped line of text.

Widget Commands — text 89

-spacing3 (spacing3, Spacing3)
Space to add below each line of text. If the line wraps, the space is
added below the last displayed line only.

-state (state, State)
State of the text widget. State must be normal or disabled. If the
text is disabled, no insertions or deletions are allowed.

-tabs (tabs, Tabs)
List of screen distances giving the positions for tab stops. Each position
may optionally be followed in the next list element by one of left (the
default), right, center, or numeric (align on decimal point), which
specifies how to justify text relative to the tab stop. If a line contains
more tabs than defined tab stops, the last tab stop is used for the addi-
tional tabs. Example: {2c left 4c 6c center}

~width (width, width)
Desired width for window, in characters.

-wrap (wrap, Wrap)
How to handle lines of text longer than the window width. Allowed val-
ues are none for no wrapping, char for line breaking on any character,
or word for breaking only on word boundaries.

Text Indices

Several text widget methods support the notion of an index for identifying
particular positions within the text. Indices have the syntax:

base [modifier modifier..]]

where the base gives the starting point and the optional modifiers adjust the
index from the starting point. Possible values for base are as follows:

line.char
The charth character on line I1ine. Lines are numbered starting at 1,
characters starting at 0. If char is end, it refers to the newline character
that ends the line.

ex,y
The character that covers the pixel whose coordinates within the text’s
window are x and y.

end
The end of the text (the character just after the last newline).

mark
The character just after the mark whose name is mark.

tag.first
The first character in the text range tagged with tag.

tag.last
The character just after the last one in the text range tagged with tag.

90

Chapter 3 — Tk Core Commands

pathName
The position of the embedded window pathName.

imageName
The position of the embedded image imageName.

The modifier arguments may take the following form:

+ count chars
Adjust the index forward by count characters.

- count chars
Adjust the index backward by count characters.

+ count lines
Adjust the index forward by count lines, retaining the same character
position within the line.

- count lines
Adjust the index backward by count lines, retaining the same character
position within the line.

linestart
Adjust the index to refer to the first character on the line.

lineend
Adjust the index to refer to the last character on the line (the newline).

wordstart
Adjust the index to refer to the first character of the word containing the
index. A word consists of any number of adjacent characters that are let-
ters, digits, or underscores, or a single character that is not one of these
and is not whitespace.

wordend
Adjust the index to refer to the character just after the last one of the
word containing the index.

Several widget methods operate on a range of text defined by the arguments
index1 and index2. This range includes all characters from indexl up to,
but not including, the character at index2. If index2 is not given, the range
consists only of the character at index1.

Tags

A tag is a textual string that is associated with one or more ranges of charac-
ters. Tags are used in methods to change the character’s style (fonts, color,
etc.), bind events to the characters, and manage the selection. Since an indi-
vidual character may have any number of tags associated with it, a priority list
of tags is maintained to resolve conflicts in style. When a tag is created, it is
given highest priority. The tag raise and tag lower methods can be used to
change a tag’s priority.

Widget Commands — text 91

S
3 =
SS
Sa
(%)

The special tag sel exists when the -exportselection option for the text wid-
get is true. This tag is used to manipulate the current selection. Whenever
characters are tagged with sel, the text widget will claim ownership of the
selection and return those characters when the selection is retrieved. When
the selection is claimed by another window or application, the sel tag is
removed from all characters in the text.

Marks

A mark is a textual string associated with a single position (a gap between
characters). If the characters around a mark are deleted, the mark will still
remain; it will just have new neighbors. Each mark has a gravity, either left
or right (the default). The gravity specifies what happens when new text is
inserted at the mark. With left gravity, the mark will end up to the left of the
new text. With right gravity, the mark will end up to the right of new text.

Two marks are defined automatically and cannot be deleted. The insert
mark represents the position of the insertion cursor; the insertion cursor will
automatically be drawn at this point whenever the text widget has the input
focus. The current mark is associated with the character closest to the
mouse and is adjusted automatically to track the mouse motion (except dur-
ing dragging).

Tag Event Binding

Binding events to tagged characters using the fag bind method works in a
manner similar to binding events to widgets with the Tk bind command.
However, only events related to the mouse and keyboard or virtual events can
be bound to text tags. If a virtual event is used in a binding, it can be trig-
gered only if the underlying “real” event is mouse related or keyboard
related.

When multiple bindings for a character match a particular event, all of the
matching bindings are invoked. This can happen when a character is associ-
ated with two tags and both tags have bindings for the same event. One bind-
ing is invoked for each tag in order from lowest to highest priority. If there
are multiple matching bindings for a single tag, only the most specific binding
is invoked. A continue command in a binding script terminates just that bind-
ing. A break command terminates the script for that binding and skips any
remaining bindings for the event. Any bindings made to the text widget using
the bind command are invoked after any matching tag bindings.

Methods

pathName bbox index
Return a list of four numbers giving the x- and y-coordinates of the
upper-left corner (relative to the widget) and the width and height of the
visible area occupied by the character at index. If the character is not
visible, an empty list is returned.

pathName compare indexl op index2

Compare the two indices with relational operator op and return 1 if the
relationship is satisfied, O if it isn’t. Op may be <, <=, ==, >= > or !=.

92 Chapter 3 — Tk Core Commands

pathName debug [boolean]
Whether to turn on internal consistency checks in the B-tree code for all
text widgets. Return current setting if boolean is not given.

pathName delete indexl index2
Delete all characters (including embedded windows and images) from
the given text range. The final newline in the text cannot be deleted.

pathName dlineinfo index
Return a list of five numbers giving the x- and y-coordinates of the
upper-left corner (relative to the widget) and the width and height of the
area occupied by the line at index. The fifth element is the position of
the baseline for the line as measured from the top of the area. If the line
is not visible, an empty list is returned.

pathName dump [switches] index]1 [index2]
Return detailed information on the text widget contents in the given text
range. Information is returned in the following format:

keyl valuel indexl key2 value2 index2...

The possible key values are text, mark, tagon, tagoff, and win-
dow. The corresponding value is the text string, mark name, tag name,
or window name. The index information is the index of the start of the
text, the mark, the tag transition, or the window. One or more of the fol-
lowing switches are allowed:

-all Include information for all element types. This is the default.

-command tclCommand
Instead of returning information, invoke tclCommand on each ele-
ment, appending the key, value, and index as arguments.

-mark
Include information on marks in the dump.

-tag
Include information on tags in the dump.

-text
Include information on text in the dump. Will not span newlines,
marks, or tag transitions.

-window
Include information on windows in the dump.

pathName get index1 [index2]
Return characters from given text range.

pathName image cget index option
Return the value of configuration option option for the embedded
image at index.

Widget Commands — text 93

S
3 =
SS
Sa
(%)

pathName image configure index [option [value [option value..]]]
Query or modify the configuration options for an embedded image in the
same manner as the general widget configure method. Supported options
are as follows:

-align where
How to align the image on the line in which it is displayed. Where
may be top (align the top of the image with the top of the line),
bottom (bottom with bottom), center (center the image on the
line), or baseline (align the bottom of the image with the baseline
of the line).

-image imageName
Name of image to display.

-name imageName
Name by which image can be referenced in the text widget (defaults
to name of image set with -image).

-padx pixels
Amount of extra space to leave on each side of the image.

-pady pixels
Amount of extra space to leave on the top and bottom of the image.

pathName image create index loption value..]
Create an embedded image at position index configured with the given
options and return a unique identifier that may be used as an index to
refer to the image.

pathName image names
Return a list of the names of all embedded images in the text widget.

pathName index index
Return the position corresponding to index in the form line.char.

pathName insert index chars [tagList [chars [tagList...]]]
Insert the string chars just before the character at index. If tagList is
given, it is a list of tags to be associated with the inserted text. Otherwise,
any tags associated with both of the characters before and after index
are associated with the inserted text. If multiple chars-tagList argu-
ment pairs are given, they are inserted in order as if by separate insert
method calls.

pathName mark gravity markName [direction]
Set the gravity for mark markName to direction (either left or
right). If direction is not specified, returns current setting for the
mark.

pathName mark names
Return a list of the names of all marks currently set in the text widget.

94 Chapter 3 — Tk Core Commands

pathName mark next index
Return the name of the next mark at or after index. If index is itself a
mark name, that mark name is skipped as well as those marks at the
same position that come before it in the dump list. Return an empty
string if no marks appear after index.

pathName mark previous index
Return the name of the next mark at or before index. If index is itself
a mark name, that mark name is skipped as well as those marks at the
same position that come after it in the dump list. Return an empty string
if no marks appear before index.

pathName mark set markName index
Set a mark named markName just before the character at index.

pathName mark unset markName [markName...]
Remove the marks corresponding to each of the markName arguments.

pathName scan dragto x y
Scroll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the difference between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

S
3 =
SS
Sa
(%)

pathName scan mark x y
Record x and y as anchors for a following scan dragto method call.

pathName search [switches] pattern index [stopIndex]
Search the text for a range of characters that match pattern starting at
position index. If a match is found, the index of the first character of the
match is returned. Otherwise, an empty list is returned. If stopIndex is
given, the search will not go past that index. Possible switches are:

-forward
Search forward through the text. This is the default.

-backward
Search backward through the text, finding matching text closest to
index whose first character is before index.

-exact
The characters in the matching range must be identical to those in
pattern.

-regexp
Treats pattern as a regular expression (see the regexp command).

-nocase
Ignore case differences in matching.

-count varName
Store number of characters in matching range in the variable var-
Name.

Widget Commands — text 95

—— Terminate further processing of switches so that pattern may begin
with a hyphen.

pathName see index
Adjust the view in the window if needed so that the character at index
is completely visible.

pathName tag add tagName indexl [index2 [index1 [index2..]]]
Associate the tag tagName with the characters in each given text range.

pathName tag bind tagName [sequence [script]]

Associate script with tag tagName such that whenever the event
sequence given by sequence occurs for a character tagged with tag-
Name, the script will be evaluated. See “Tag Event Binding,” earlier in this
chapter. If the script argument is not given, the current associated
script is returned. If the sequence is also not given, a list of all the
sequences for which bindings have been defined for tagOrid is
returned.

pathName tag cget tagName option
Return the value of configuration option option for the tag tagName.

pathName tag configure tagName [option [value [option value..]]]
Query or modify the configuration options for tag tagName in the same
manner as the general widget configure method. Tag options are used to
change the displayed style of characters marked with the tag. Options
that change the line style (margins, spacing, justification) take effect only
if the first character of the line is associated with the tag. The following
options are available:

-background color
Background color for drawing characters.

-bgstipple bi tmap
Bitmap to use as stipple pattern for character background.

-borderwidth pixels
Width of a 3D border to draw around background.

-fgstipple bitmap
Bitmap to use as stipple pattern for character foreground.

-font fontName
Font to use for drawing characters.

-foreground color
Foreground color for drawing characters.

-justify justify
How to align lines in the window when the first character of the line
is associated with the tag. Must be left, right, or center.

-lmarginl pixels

How much to indent lines. If the line wraps, this indent applies only
to the first displayed line.

96 Chapter 3 — Tk Core Commands

-Imargin2 pixels
How much to indent lines that follow the first one in a long,
wrapped line.

-offset pixels
Amount to vertically offset the baseline of characters from the base-
line. Useful for superscripts and subscripts.

-overstrike boolean
Whether to draw a horizontal line through the middle of the charac-
ters.

-relief relief
3D relief to use for drawing background border.

-rmargin pixels
How much to indent all displayed lines of a line of text from the
right edge of the window.

-spacingl pixels
Space to add above each line of text. If the line wraps, the space is
added above the first displayed line only.

-spacing2 pixels
Space to add between the lines that display a long, wrapped line of
text.

-spacing3 pixels
Space to add below each line of text. If the line wraps, the space is
added below the last displayed line only.

-tabs tabList
Tab stops for a line of text (see the -tabs option in “Widget-Specific
Options,” earlier in this section).

-underline boolean
Whether to draw an underline beneath characters.

-wrap mode
How the line of text should be wrapped. Must be one of none,
char, or word.

pathName lag delete tagName [tagName...]
Delete all tag information for each of the tags identified by the tagName
arguments.

pathName tag lower tagName [belowThis]
Change the priority of tag tagName such that it is lower in priority than
tag belowThis. If belowThis is not given, the tag is changed to have
lowest priority.

pathName tag names [index]
Return a list of the names of all tags associated with the character at posi-
tion index. If index is not given, a list of all tags that exist in the text
is returned.

Widget Commands — text 97

S
3 =
SS
Sa
(%)

pathName tag nextrange tagName indexl [index2]
Return starting and ending index of the next range of characters associ-
ated with tag tagName in which the first character of the range is no ear-
lier than position index1 and no later than just before position index2
(or end if not given).

pathName lag prevrange tagName indexl [index2]
Return starting and ending index of the next range of characters associ-
ated with tag tagName in which the first character of the range is before
position indexl and no earlier than position index2 (or 1.0 if not
given).

pathName lag raise tagName [aboveThis]
Change the priority of tag tagName such that it is higher in priority than
tag aboveThis. If aboveThis is not given, the tag is changed to have
highest priority.

pathName tag ranges tagName
Return a list of all ranges of text that have been tagged with tagName.

pathName lag remove tagName indexl [index2 [indexl [index2...]]]
Remove tag tagName from those tags associated with the characters in
the given text ranges.

pathName window cget index option
Return the value of configuration option option for the window identi-
fied by index.

pathName window configure index [option [value [option value..]]]
Query or modify the configuration options for the window identified by
index in the same manner as the general widget configure method. The
following options are available:

-align where
How to align the window on the line in which it is displayed.
Where may be top (align the top of the window with the top of the
line), bottom (bottom with bottom), center (center the window
on the line), or baseline (align the bottom of the window with the
baseline of the line).

-create script
As an alternative to the -window option, specifies a script to evaluate
when a window is first displayed on screen. Script must return
the name of the window to display. If the window is ever destroyed,
script will be evaluated again the next time the text widget
requires the window to be displayed.

-padx pixels
Amount of extra space to leave on each side of the window.

-pady pixels

Amount of extra space to leave on the top and bottom of the win-
dow.

98 Chapter 3 — Tk Core Commands

-stretch boolean
Whether window should be stretched vertically to fill the height of
its line.

-window pathName
Pathname of the window to embed in the text widget.

pathName window create index [option value..]
Create an embedded window at position index configured with the
given options.

pathName window names
Return a list of the names of all windows currently embedded in the text
widget.

pathName xview
Return a two-element list describing the currently visible horizontal
region of the widget. The elements are real numbers representing the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget.

pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget's horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the widget horizontally by number. If what is
units, then number is in units of characters. If what is pages, then
number is in units of the visible region’s width.

pathName yview
Return a two-element list describing the currently visible vertical region
of the widget. The elements are real numbers representing the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget.

pathName yview -pickplace index
Adjust the visible region of the widget so position index is visible at the
top edge of the view. If -pickplace is specified, the widget chooses where
index appears in the view to cause the least possible screen movement
necessary to make the position visible. This method is made obsolete by
the see method.

pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Shift the visible region of the widget vertically by number. If what is
units, then number is in units of text lines. If what is pages, then
number is in units of the visible region’s height.

Widget Commands — text 99

S
3 =
SS
Sa
(%)

toplevel
toplevel pathName [option value..]

The toplevel command creates a new top-level widget named pathName. It is
similar to a frame widget, but its actual window system parent is the root win-
dow of the screen rather than the hierarchical parent from its pathname.

Standard Options

-borderwidth -cursor -bighlightbackground
-bighlightcolor -bighlightthickness -relief
-takefocus

Widget-Specific Options

-background color (background, Background)
Same as standard option, but may be the empty string to display no
background or border.

-class name (class, Class)
Class to use when querying the option database and for bindings. May
not be changed with configure.

-colormap colormap (colormap, Colormap)
Colormap to use for window. Colormap may be either new, in which
case a new colormap is created, or the name of another window, in
which case that window’s colormap is used. The default is to use the
colormap of its screen. May not be changed with configure.

-container boolean (container, Container)
Whether the window will be used as a container in which to embed
some other application. May not be changed with the configure method.

-height height (height, Height)
Desired height, in screen units, for the window.

-menu pathName (menu, Menu)
Menu widget to be used as a menubar.

-screen screen
Screen on which to place the new window. May not be changed with
the configure method.

-use windowId (use, Use)
Used for embedding. WindowId is the ID of a window to be the parent
of top-level widget instead of the root window. May not be changed
with the configure method.

-visual visual (visual, Visual)
Visual class to use for the window. Visual must be directcolor,
grayscale, pseudocolor, staticcolor, staticgray, or true-
color.

~width width (width, width)
Desired width, in screen units, for the window.

100 Chapter 3 — Tk Core Commands

Utility Commands

This section describes the commands in the Tk extension that do not create wid-
gets. These commands include those needed to bind to window system events,
control the layout of widgets, interact with the window manager, and several other
miscellaneous GUI-related operations.

bell
bell [-displayof window]

Ring the bell on the display of window. If window is not given, the bell is
rung on the display of the main window.

bind
bind tag | sequence [[+] scriptl]l

S
3 =
SS
Sa
(%)

Set or query event bindings. If all three arguments are specified, the Tcl script
script will be evaluated whenever the event specified by the pattern
sequence occurs in the windows identified by tag. If script is prefixed
by the character “+”, it is appended to any existing script bound to tag for
sequence. Otherwise, any current script is replaced. If script is an empty
string, any current binding to the event is destroyed.

If no script is specified, the script currently bound to tag for sequence is
returned. If only tag is given, a list of all the sequences for which there exist
bindings for tag is returned.

Binding Tags

The windows to which a binding applies are selected by the tag argument. If
tag begins with the “.” character, it must be a pathname for a window; oth-
erwise, it can be an arbitrary string. Each window has an associated list of
tags that can be manipulated with the bindtags command. The default tags for
a newly created window, in priority order, are as follows:

e The pathname of the window itself (e.g., .main.text). Binding to this
tag will bind the sequence to that window only, unless the window is
top-level.

e The pathname of the top-level window containing the window (e.g.,

.”). Binding to this tag will bind the sequence to all windows contained
by the top-level window.

e The widget class of the window (e.g., Text). Binding to this tag will
bind the sequence to all windows of that class. This is how the default
bindings for all widgets are set up in the standard Tk script library.

e The special value all. Binding to this tag will bind the sequence to all
windows in the application.

Utility Commands — bind 101

Event Patterns

The sequence argument consists of a sequence of one or more event pat-
terns. If multiple patterns are concatenated without whitespace, the binding
requires the matched events to happen in the order of events given. When
script is given, the sequence argument may also be a list of valid
sequences, in which case each sequence is bound to the same script sepa-
rately.

Event patterns in a sequence take one of three forms. The simplest form is a
single printable ASCII character, such as a or [, with the exclusion of the
space character and the character <. This form of an event pattern matches a
KeyPress event for the given character.

The second form of pattern is used to specify a user-defined, named virtual
event. It has the following syntax:

<<name>>

Name is an arbitrary string surrounded by double angle brackets. See the
event command. Bindings on a virtual event can be created before the virtual
event is defined. If the definition of a virtual event is later changed, all win-
dows bound to that virtual event will respond immediately to the new defini-
tion.

The third form has the following syntax:
<modifier-modifier-type-detail>

Surrounded by a single pair of angle brackets is a pattern of zero or more
modifiers, an event type, and an extra piece of information (the detail), which
can identify a particular button or keysym. All the fields are optional, except
that at least one of type and detail must be present. The fields can be sep-
arated by either whitespace or dashes.

Possible values for the modi fier elements are as follows:

Control Shift Lock
Buttonl or B1 Button2 or B2 Button3 or B3
Button4 or B4 Button5 or B5 Modl or M1

Mod2 or M2 Mod3 or M3 Mod4 or M4
Mod5 or M5 Meta or M Alt
Double Triple

Most of these indicate a key or mouse button that must be pressed in addition
to the action specified by type and detail. The Double and Triple
modifiers are a convenience for specifying repeated events with the addition
of a time and space requirement on the sequence.

For a binding to match a given event, the modifiers in the event must include
all of those specified in the event pattern. An event may also contain addi-
tional modifiers not specified in the binding. For example, if button 1 is
pressed while the Shift and Control keys are down, the pattern <Control-
Button-1> will match the event, but <Modl-Button-1> will not. If no
modifiers are specified, any combination of modifiers may be present in the
event.

102 Chapter 3 — Tk Core Commands

The type element may take any of the following values corresponding to the
standard X Window System event types:

ButtonPress or Button ButtonRelease Circulate

Colormap Configure Destroy
Enter Deactivate Expose
FocusIn FocusOut Gravity
KeyPress or Key KeyRelease Leave

Map Motion Property
Reparent Unmap Visibility
Activate

The allowed values for the detail element depend on the preceding type
element. For ButtonPress and ButtonRelease, the possible values are 1
through 5, identifying the number of the mouse button. For KeyPress and
KeyRelease, the possible values are any valid X Window System keysym.
This includes all alphanumeric ASCII characters (e.g., a and 8) and descrip-
tions for other characters (e.g., comma for the comma character). The actual
keysyms available will depend on your operating system and hardware. On
most Unix systems, the keysyms are listed in the include file /usw/include/
X11/keysymdef.b.

As a special shortcut, the type element may be omitted when a detail is
specified. For detail values 1 through 5, the type defaults to Button-
Press. For any other valid keysym value, the type defaults to KeyPress.

Binding Script and Substitutions

Whenever the given event sequence occurs, the script argument to bind
will be evaluated at global scope in the same interpreter in which the bind
was executed. If an error occurs in executing the script for a binding, the
bgerror mechanism is used to report the error.

The script is passed through a substitution phase before being executed.
Occurrences of the % character followed by a second character will be
replaced by a value dependent on the second character, when valid. The sub-
stitution will always be properly escaped or surrounded with braces to main-
tain a valid Tcl command. The possible substitutions are as follows:

%% Replaced with a single percent sign.
%# The number of the last client request (the serial field from the event).

%a The above field from the event as a hexadecimal number. Valid only for
Configure events.

$b The number of the button that was pressed or released. Valid only for
ButtonPress and ButtonRelease events.

%$c The count field from the event. Valid only for Expose events.

%d The detail field from the event. Valid only for Enter, Leave, FocusIn,
and FocusOut events. Will be one of the following:

Utility Commands — bind 103

S
3 =
SS
Sa
(%)

£

%h

%k

$m

%o

3D

s

st

W

X

Y%

%A

%B

SE

%K

SN

NotifyAncestor NotifyDetailNone

NotifyInferior NotifyNonlinear
NotifyNonlinearVirtual NotifyPointer
NotifyPointerRoot NotifyVirtual

The focus field from the event (0 or 1). Valid only for Enter and Leave
events.

The beight field from the event. Valid only for Configure and Expose
events.

The keycode field from the event. Valid only for KeyPress and Key-
Release events.

The mode field from the event. Valid only for Enter, Leave, FocusIn,
and FocusOut events. The value will be NotifyNormal, Notify-
Grab, NotifyUngrab, or NotifyWhileGrabbed.

The override_redirect field from the event. Valid only for Map, Repar-
ent, and Configure events.

The place field from the event. Valid only for Circulate events. The
value will be PlaceOnTop or PlaceOnBottom.

The state field from the event. For ButtonPress, ButtonRelease,
Enter, Leave, KeyPress, KeyRelease, and Motion events, a deci-
mal string is substituted. For Visibility, the wvalue will be
VisibilityUnobscured, VisibilityPartiallyObscured, or
VisibilityFullyObscured.

The time field from the event. Valid only for events that contain a time
field.

The width field from the event. Valid only for Configure and Expose
events.

The x field from the event. Valid only for events containing a x field.
The y field from the event. Valid only for events containing a y field.

Substitutes the ASCII character corresponding to the event (or the empty
string if there is none). Valid only for KeyPress and KeyRelease
events.

The border width field from the event. Valid only for Configure
events.

The send_event field from the event.

The keysym corresponding to the event as a textual string. Valid only for
KeyPress and KeyRelease events.

The keysym corresponding to the event as a decimal number. Valid only
for KeyPress and KeyRelease events.

104 Chapter 3 — Tk Core Commands

%R The root window identifier from the event. Valid only for events contain-
ing a root field.

%S The subwindow window identifier from the event. Valid only for events
containing a subwindow field.

$T The ppe field from the event.
$W The pathname of the window for which the event was reported.

%X The x_root field from the event. This is the x-coordinate in the root (or
virtual root) window. Valid only for ButtonPress, ButtonRelease,
KeyPress, KeyRelease, and Motion events.

%Y The y_root field from the event. This is the y-coordinate in the root (or
virtual root) window. Valid only for ButtonPress, ButtonRelease,
KeyPress, KeyRelease, and Motion events.

Multiple Matches

It is possible for an event to match several bindings. If the bindings are asso-
ciated with different tags, each of them will be executed in the order of the
tags as set by bindtags. The continue and break commands can be used
inside a binding to control processing of the matching scripts. The continue
command terminates the current script and continues on to the next tag’s
script. The break command terminates the current script and does not invoke
the scripts for the following tags.

If more than one binding matches a particular event and each has the same
tag, the script for the most specific binding is evaluated. The following tests
are applied, in order, to determine which of several matching sequences is
more specific:

1. An event pattern that specifies a specific button or key is more specific
than one that doesn't.

2. A longer sequence (in terms of number of events matched) is more spe-
cific than a shorter sequence.

3. If the modifiers specified in one pattern are a subset of the modifiers in
another pattern, the pattern with more modifiers is more specific.

4. A virtual event whose physical pattern matches the sequence is less spe-
cific than the same physical pattern that is not associated with a virtual
event.

5. Given a sequence that matches two or more virtual events, one of the vir-
tual events will be chosen, but the order is undefined.

If there are two (or more) virtual events bound to the same tag that are both
triggered by the same sequence, only one of the virtual events will be trig-
gered. Which one is chosen is undefined.

Multievent Sequences and Ignored Events

If a sequence contains multiple event patterns, its script is executed when-
ever the events leading up to and including the current event match the order

Utility Commands — bind 105

S
3 =
SS
Sa
(%)

of events given in the sequence. For example, if button 1 is clicked repeat-
edly, the sequence <Double-ButtonPress-1> will match each button
press but the first. Extraneous events that occur in the middle of an event
sequence will prevent a match only if they are KeyPress or ButtonPress
events not in the sequence. Extraneous modifier key presses are ignored,
however. When several Motion events occur in a row, only the last one is
considered for matching binding sequences.

bindtags
bindtags window [tagList]

With no tagList argument, the current list of binding tags associated with
window window is returned. Otherwise, the current list is replaced with the
list of tags given by tagList. If tagList is the empty list, the tag list is
reset to the default as described in the “Binding Tags” section of the bind
command.

clipboard
clipboard operation larg arg..]

Clear or append to the contents of the Tk clipboard for later retrieval using
the selection command. The following operations are defined:

clipboard append |-displayof window] [-format format] [-type type] [--]
data
Append data to the clipboard on window's display. type specifies the
form in which the selection is to be returned as an atom name such as
STRING or FILE_NAME (see the Inter-Client Communication Conven-
tions Manual). The default is STRING.

When compatibility with a non-Tk clipboard requester is needed, the
format argument can be used to specify the representation that should
be used to transmit the selection. Format defaults to STRING, which
transmits the selection as 8-bit ASCII characters.

clipboard clear [-displayof window]
Claim ownership of the clipboard on window's display (defaults to “.”)
and remove any previous contents.

destroy
destroy window [window...]

Destroy the windows given by the window arguments as well as all their
descendants. The windows are destroyed in the order given. If an error
occurs in destroying a window, the command aborts without destroying the
remaining windows. It is not an error if window does not exist.

106 Chapter 3 — Tk Core Commands

event

event operation larg arg..]

The event command provides several facilities for dealing with window sys-
tem events, such as defining virtual events and synthesizing events. The fol-
lowing operations are defined:

event add <<virtual>> sequence [sequence...]

Add the given event sequences to those associated with the virtual
event virtual. The virtual event will trigger whenever any one of the
given sequences occurs. See the bind command for allowed sequence
values.

event delete <<virtual>> [sequence [sequence...]]

Delete the given event sequences from those associated with the virtual
event virtual. If no sequence is given, all sequences associated with
the virtual event are removed.

event generate window sequence [option value..]

Generate an event for window window and arrange for it to be pro-
cessed just as if it had come from the window system. Window may be a
window pathname or an identifier (as returned by winfo id), as long as it
is in the current application. The sequence argument describes the
event to generate. It may have any of the forms allowed for the
sequence argument to the bind command, except that it must consist of
a single event pattern (e.g., <Shift-Button-2> or <<Paste>>).

The event generated can be further described with the optional option-
value pairs. In the descriptions of these options that follow, the [$char]
at the beginning identifies the corresponding bind command substitution.
The available options are as follows:

-above window
[#al The above field for the event, either as a window or integer
window ID.

-borderwidth size
[$B] The border_width field for the event as a screen distance.

-button number
[3b] The detail field for a ButtonPress or ButtonRelease
event.

-count integer
[$c] The count field for the event.

-detail detail
[%d] The detail field for the event.

-focus boolean
[$£] The focus field for the event.

Utility Commands — event 107

S
3 =
SS
Sa
(%)

-height size
[#h] The height field for the event as a screen distance.

-keycode integer
[#k] The keycode field for the event.

-keysym name
[%K] The keysym field for the event.

-mode notify
[%m] The mode field for the event.

-override boolean
[%0] The override_redirect field for the event.

-place where
[%p] The place field for the event.

-rool window
[3R] The root field for the event as a window pathname or integer
window ID.

-rootx coord
[$X] The x_root field for the event as a screen distance.

-rooty coord
[#Y] The y_root field for the event as a screen distance.

-sendevent boolean
[%E] The send_event field for the event.

-serial integer
[%#] The serial field for the event.

-State state
[%s] The state field for the event.

-subwindow window
[%S] The subwindow field for the event as a window pathname or an
integer window ID.

-time integer
[%t] The time field for the event.

~width size
[3w] The width field for the event as a screen distance.

-when when
Determines when the event will be processed. When must have one
of the following values:

now
Process the event immediately before the event command
returns. This is the default.

tail
Place the event at the end of Tcl's event queue.

108 Chapter 3 — Tk Core Commands

head
Place the event at the front of Tcl’s event queue.

mark
Place the event at the front of Tcl’s event queue but behind any
other events already queued with -when mark.

-x coord
[%x] The x field for the event as a screen distance.

-y coord
[#y] The y field for the event as a screen distance.

event info [<<virtual>>]
If the <<virtual>> argument is omitted, a list of all currently defined
virtual events is returned. Otherwise, the return value is the list of event
sequences currently associated with virtual event virtual.

=
()
S
)

focus

S
3
3
D
=
(%)

Jfocus [loption] window]

tk_focusFollowsMouse
tk_focusNext window
tk_focusPrev window

Manage the Tk input focus. At any given time, one window on each display is
given the focus so that key press and key release events for the display are
sent to that window. Tk remembers the last window in each top-level win-
dow to receive the focus. When the window manager gives the focus to a
top-level window, Tk automatically redirects it to the remembered window.

Focus within a Tk top-level window uses an explicit focus model by default
(i.e., moving the mouse within a top-level window does not change the
focus). The model can be changed to implicit (focus changes to a window
whenever the mouse enters it) by calling the tk_focusFollowsMouse procedure.

The Tcl procedures tk_focusNext and tk_focusPrev implement a focus order
among the windows of a top-level window. They return the next and previ-
ous windows after window in the focus order that accepts the focus (see the
-takefocus widget configuration option). The focus order is determined by the
structure of the window hierarchy and by the stacking order of the windows
among siblings.

The focus command can take the following forms:

Sfocus [-displayof window)
Return the pathname of the focus window on the display containing
window. If not given, window defaults to the root window.

Sfocus window
If the application currently has the input focus for window's display, the
focus is given to window. Otherwise, window is made the remembered
focus window for its top-level window.

Utility Commands — focus 109

Jfocus -force window
Set the focus of window's display to window even if the application
doesn’t currently have the input focus for the display.

Jfocus -lastfor window
Return the pathname of the window to most recently own the input
focus among all windows in the same top-level window as window (i.e.,
the remembered window). If no window currently present in that top
level has ever had the input focus, the name of the top-level window is
returned.

font

font operation larg arg...]

The font command provides several facilities for defining named fonts and
inspecting their attributes. If the window system does not have a font that
matches the requested attributes, Tk makes a best guess. The following opera-
tions are supported:

Sfont actual font [-displayof window] [option]
Return information on the actual attributes that are obtained when font
is used on window's display. If option is specified, only the value of
that attribute is returned. Otherwise, a list of all attributes and their values
is returned.

font configure fontName [option [value [option value..]]]
Query or modify the desired attributes for the named font fontName in
the same manner as the general widget configure method. The available
attribute options are as follows:

-family name
The case-insensitive font family name. The families Courier,
Times, and Helvetica are guaranteed to be supported on all plat-
forms.

-size size
The desired size for the font in points (or pixels if size is negative).

-weight weight
The thickness of the characters in the font. Weight may be normal
(the default) or bold.

-slant slant
How characters in the font are slanted away from the vertical.
Slant may be roman (the default) or italic.

-underline boolean
Whether characters in font should be underlined. Default is false.

-overstrike boolean
Whether a horizontal line is drawn through the middle of the charac-
ters of the font. Default is false.

110

Chapter 3 — Tk Core Commands

Sfont create [fontName] [option value..]l]
Create a new named font. FontName specifies the name for the font; if it
is omitted, Tk generates a unique name of the form fontx, where x is
an integer. Either way, the name of the font is then returned. See the font
configure command for options.

font delete fontName [fontName..]
Delete the specified named fonts. A named font will not actually be
deleted until all widgets using the font release it. If a deleted named font
is later recreated with another call to font create, the widgets will redis-
play themselves using the new attributes of that font.

Sfont families [-displayof window]
Return a list of all font families that exist on window’s display.

Sfont measure font [-displayof window] text
Return total width in pixels that the string text would use in the given
font when displayed in window.

Sfont metrics font [-displayof window] [option]
Return information about the metrics for font when it is used on
window’s display. If option is specified, returns only the value of that
metric. Otherwise, returns a list of all metrics and their values. The avail-
able metrics are as follows:

-ascent
Amount in pixels that the tallest letter sticks above the baseline, plus
any extra blank space added by the font’s designer.

-descent
Amount in pixels that any letter sticks down below the baseline, plus
any extra blank space added by the font’s designer.

-linespace
How far apart vertically, in pixels, two lines of text using the font
should be placed so there is no overlap.

-fixed
1 if this is a fixed-width font, or 0 if it is a proportionally spaced
font.

font names
Return a list of all the named fonts currently defined.

Font Description

The following formats are allowed as a font description anywhere font is
specified as an argument in the previous font commands and for the -font
option to widgets:

fontName
A named font created with the font create command.

Utility Commands — font 111

S
3 =
SS
Sa
(%)

systemfont
The platform-specific name of a font as interpreted by the window sys-
tem.

family[sizel[stylelstyle..]l
A Tcl list whose first element is the desired font family followed
optionally by the desired size and zero or more of the following style
arguments: normal or bold, roman or italic, underline, and
overstrike.

X-font names (XLFD)
An Xll-format font name of the form -foundry-family-weight-
slant-setwidth-addstyle-pixel-point-resx-resy-
spacing-width-charset-encoding. The “*” character can be
used to skip individual fields or at the end to skip remaining fields.

option value loption value..]
A Tcl list of option-value pairs as would be given to the font create com-
mand.

grab
grab operation larg arg...]

The grab command implements simple pointer and keyboard grabs. Tk
restricts all pointer events to the grab window and its descendants (which
may include top-level windows). Pointer events outside the grab window’s
tree are reported as events to the grab window. No window entry or window
exit events are reported to the grab window. A grab applies only to the dis-
play of the grab window.

Two types of grabs are possible: local and global. A local grab, the default,
affects only the grabbing application, so events are reported normally to other
applications on the display. A global grab blocks events to all other applica-
tions on the display so that only the specified subtree of the grabbing applica-
tion will receive pointer events.

The grab command can take the following forms:

grab [-global]l window
Same as grab set.

grab current [window]
Return the name of the application’s current grab window on window’s
display, or an empty string if there is no such window. If window is not
given, a list of all windows grabbed by this application for all displays is
returned.

grab release window
Release the grab on window if there is one.

112 Chapter 3 — Tk Core Commands

grab set [-global] window
Set a grab on window. If -global is specified, the grab will be global. Any
other grab by the application on window's display is released.

grab status window
Return none, local, or global to describe the grab currently set on
window.

grid
grid operation larg arg..]

Communicate with the grid geometry manager that arranges widgets in rows
and columns inside of another window called the master window. The grid
command can take the following forms:

grid slave [slave..] [options]
Same as grid configure.

grid bbox master [column rowlcolumn2 row2]]
With no arguments, the bounding box of grid is returned consisting of a
list of four integers: the pixel offset within the master window of the top-
left corner of the grid (x and y) and the pixel width and height of the
grid. If just column and row are specified, only the bounding box for
that cell is returned. If column2 and row2 are also specified, the bound-
ing box spanning the rows and columns indicated is returned.

grid columnconfigure master index |option value..]
Query or set the column properties of the index column in geometry
master master. If options are provided, index may be a list of column
positions. Valid options are as follows:

-minsize size
Minimum width, in screen units, permitted for column.

-pad amount
Number of screen units in padding to add to the left and right of the
widest window in column.

-weight integer
Relative weight for apportioning any extra space among columns. A
weight of 0 indicates that the column will not deviate from its
requested size. A column whose weight is 2 will grow at twice the
rate as a column of weight 1.

grid configure slave [slave..] loptions]
Configure how given slave windows should be managed by their grid
geometry master. Slave can be a pathname of a window to manage or
one of the special relative-placement characters -, x, or ~. Supported
options are as follows:

Utility Commands — grid 113

S
3 =
SS
Sa
(%)

-column n
Insert the slave slave in the nth column (starting from 0). If not
specified, the slave is placed in the column just to the right of the
previously placed slave, or column 0 if it is the first slave. For each x
that immediately precedes a slave, a column is skipped.

-columnspan n
Arrange for the slave to span n columns in the grid. The default is 1
unless the slave is followed by a “~” character in the slave list. The
columnspan is incremented by one for each immediately following
“=” character.

-in master
Insert the slaves in master window given by master. The master
window must either be the slave’s parent (the default) or a descen-
dant of the slave’s parent.

-ipadx amount
How much horizontal internal padding, in screen units, to add to the
side of the slaves.

-ipady amount
How much vertical internal padding, in screen units, to add to the
top and bottom of the slaves.

-padx amount
How much horizontal external padding, in screen units, to add to
the side of the slaves.

-pady amount
How much vertical external padding, in screen units, to add to the
top and bottom of the slaves.

-row n
Insert the slave in the nth row (starting from 0). If not specified, the
slave is placed on the same row as the last placed slave, or the first
unoccupied row for the first slave.

-rowspan n
Arrange for the slave to span n rows in the grid. The default is one
row. If the next grid command contains “*” characters instead of
window pathnames that line up with the columns of this slave, the
rowspan of this slave is extended by one.

-sticky sides
How the slave should be positioned and stretched within its cell.
Sides is a string containing zero or more of the characters n, s, e,
or w. Each letter refers to a side to which the slave will stick. If both
n and s (or e and w) are specified, the slave will be stretched to fill
the cell’s height (or width). The default is the empty string, which
causes the slave to be centered within its cell at its requested size.

114 Chapter 3 — Tk Core Commands

grid forget slave [slave..]
Remove each of the slaves from the grid of its master and unmap their
windows. The grid configuration options for each slave are forgotten.

grid info slave
Return the current configuration state of the slave slave in the same
option-value form given to grid configure. The first two elements will be
-in master.

grid location master x y
Return the column and row numbers at locations x and y (in screen
units) inside master’s grid. For locations above or to the left of the grid,
a —1 is returned.

grid propagate master [boolearn]
Set or query whether propagation has been enabled for master. Propa-
gation is enabled by default. If disabled, the master window will not be
resized to adjust to the size of its slaves.

grid rowconfigure master index loption value..]
Query or set the row properties of the index row in geometry master
master. If options are provided, index may be a list of row positions.
Valid options are as follows:

-minsize size
Minimum height, in screen units, permitted for row.

-pad amount
Number of screen units in padding to add to the top and bottom of
the tallest window in row.

-weight integer
Relative weight for apportioning any extra space among rows. A
weight of 0 indicates that the row will not deviate from its requested
size. A row whose weight is 2 will grow twice as fast as a row of
weight 1.

grid remove slave [slave..]
Remove each of the slaves from the grid of its master and unmap their
windows. The grid configuration options for each slave are remem-
bered as defaults for the next time they are managed by the same master.

grid size master
Return the size of the grid (in columns, then rows) for master.

grid slaves master [-row row] [-column column]
If no options are supplied, a list of all the slaves in master is returned.
The options specify that the list should include only the slaves in row
row and/or column column.

Utility Commands — grid 115

S
3 =
SS
Sa
(%)

image
image operation larg arg...]

Create and manipulate image objects. The image command can take the fol-
lowing forms:

image create type [name] [option value..]

Create a new image of type type and return its name. The currently sup-
ported image types are bitmap and photo. The option-value pairs valid
for these types are described in the individual sections that follow. The
name returned will be name if given; otherwise, Tk picks a unique name
of the form imageN. If an image already exists by the given name, it is
replaced with the new image and any instances of that image will be
redisplayed.

A new Tcl command is created with the image’s name. This command
supports the cget and configure operation for changing and querying the
image’s configuration options in the same manner as for widgets.

image delete image [image...]
Delete each of the given images. If a widget is using an instance of an
image, it won’t actually be deleted until all of the instances are released.
Existing instances will redisplay as empty areas. If a deleted image is
recreated, the existing instances will use the new image.

image height image
Return the height, in pixels, of the image image.

image names
Return a list of all existing images.

image type image
Return the type of the image image.

image types
Return a list of supported image types.

image width image
Return the width, in pixels, of image image.

Bitmap Images

A bitmap image is represented by a background color, a foreground color,
and two Xll-format bitmaps, called the source and the mask. Each of the
bitmaps specifies a rectangular array of 0’s and 1’s representing a pixel in the
image. The two bitmaps must have the same dimensions. For pixels for which
the mask is 0, the image displays nothing, producing a transparent effect. For
other pixels, the image displays the foreground color if the corresponding
source pixel is 1 and the background color if the corresponding source pixel
is 0. Bitmaps support the following options:

116 Chapter 3 — Tk Core Commands

-background color
Background color for the image. An empty value will make the back-
ground pixels transparent.

-data string
Contents of the source bitmap as a string.

-file £ileName
Name of a file from which to read source bitmap contents.

-foreground color
Foreground color for the image.

-maskdata string
Contents of the mask bitmap as a string.

-maskfile £i1leName
Name of a file from which to read mask bitmap contents.

Photo Images

A photo image can have pixels of any color. Only GIF and PPM/PGM
(Portable Pixmap/Portable Graymap) formats are supported in standard Tk,
but an interface exists to add additional image file formats easily. Pixels of a
photo image are transparent in regions where no image data has been sup-
plied. Photo images support the following options:

-data string
Contents of the image as a string.

-format format
The graphic format of the data. In standard Tk, format must be either
GIF or PPM.

-file fileName
Name of a file from which to read the image data.

-gamma value
Specifies that the colors allocated should be corrected for a nonlinear dis-
play with the gamma exponent value.

-beight size
Height of the image in pixels. A value of 0 (the default) allows the image
to expand or shrink vertically.

-palette paletteSpec
Specifies number of colors to use from the colormap for the image.
PaletteSpec may be either a single decimal number, specifying the
number of shades of gray to use, or three decimal numbers separated by
slashes, specifying the number of shades of red, green, and blue to use.

-width size
Width of the image in pixels. A value of 0 (the default) allows the image
to expand or shrink horizontally.

Utility Commands — image 117

S
3 =
SS
Sa
(%)

In addition to the cget and configure operation, the command created with
the image’s name supports the following operations:

imageName blank
Set the entire image to have no data so it will be displayed as transpar-
ent.

imageName copy sourceImage [option value..]
Copy a region from the image sourceImage to the image imageName
according to the following options:

-from x1 yl([x2 y2]
The top-left and bottom-right coordinates of rectangular region to
copy from the source image. If this option is not given, the default is
the whole image. If x2 and y2 are omitted, they default to the bot-
tom-right corner of the source image.

-shrink
Reduce the size of the destination image, if necessary, so the region
being copied into it is at the bottom-right corner.

-subsample x [y
Reduce the copied source region in size by using only every xth
pixel in the x direction and every yth pixel in the y direction. If y is
not given, it defaults to the value for x. If negative values are given,
the image is flipped about that axis.

-tox1 yl1[x2 y2l
The top-left and bottom-right coordinates of the rectangular region
in the destination image where the source region should be copied.
If x2 and y2 are omitted, the default is (x1,y1) plus the size of the
source region (after subsampling or zooming). If x2 and y2 are
specified, the source region will be tiled as necessary to fill the
region. If the -fo option is not given, imageName’s data is set to the
source region.

-zoom x [y’]
Magnify the copied source region by a factor of x in the x direction
and y in the y direction. If y is not given, it defaults to the value of
X

imageName get x y
Return a list of three integers, ranging from 0 to 255, representing the
RGB color of the pixel at coordinates (x,y).

imageName put data [-to x1 y1 [x2 y2]]

Set the pixels in imageName to the colors specified in data, a 2D array
of colors. Each color may be specified by name (e.g., red) or in RGB
hexadecimal form (e.g., #4576c0). The -to option specifies the region in
imageName affected. If only x1 and y1 are given, the area affected has
its top-left corner at (x1, y1) and is the same size as data. If x2 and y2
are given, they define the bottom-right corner of the region affected and
the colors in data are tiled as necessary to fill the region.

118 Chapter 3 — Tk Core Commands

imageName read [fileName [option value..]
Read image data from the file fileName into the image according to the
following options:

-format format
Graphic format of image data in £ileName.

-from x1 yl[x2 y2]
The top-left and bottom-right coordinates of rectangular region in
image file data to be copied into imageName. If x2 and y2 are
omitted, they default to the bottom right of the image in the file. If
the -from option is not specified, the whole image in the file is
copied.

-shrink
Reduce the size of imageName, if necessary, so the region into
which the image file data is copied is at the bottom-right corner of
imageName.

-lox y
The top-left coordinates of the region of imageName into which the
data from fileName is to be copied. The default is (0,0).

imageName redither
Recalculate the dithered image in each window where imageName is
displayed. Useful when the image data has been supplied in pieces.

imageName wrile [fileName [option value...]
Write image data from imageName to the file fileName according to
the following options:

-format format
Graphic format to use in writing data to fileName.

-fromx1 yl[x2 y2]
The top-left and bottom-right coordinates of rectangular region in
imageName to write to fileName. If x2 and y2 are omitted, they
default to the bottom right of the image. If the -from option is not
specified, the whole image is written to the file.

lower
lower window [belowThis]

Change the window's position in the stacking order. If belowThis is speci-
fied, it must be a sibling of window or a descendant of a sibling of window.
In this case, window is placed in the stacking order just below belowThis
(or its ancestor that is a sibling of window). If belowThis is not given, win-
dow is placed below all its siblings in the stacking order.

Utility Commands — lower 119

S
3 =
SS
Sa
(%)

option
option operation larg arg..]

Add or retrieve window options to or from the Tk option database. The fol-
lowing forms of the option command are supported:

option add pattern valuelpriorityl]
Add a new option specified by pattern to the database with value
value. Pattern consists of names and/or classes separated by aster-
isks or dots, in the usual X resource format. Priority, if given, indi-
cates the priority level for the option (see “Option Priorities”). The default
priority is interactive.

option clear
Clear all options from the database. The default options (from the
RESOURCE_MANAGER property or the .Xdefaults file) will be reloaded
into the database the next time the option database is modified.

option get window name class
Return the value of the option specified for window under name and
class with the highest priority. If there are several matching entries at
the same priority level, the most recently entered entry is returned. An
empty string is returned if no match is found.

option readfile £ileName [priority]
Add all the options specified in the file fileName with the proper X
resource format to the Tk option database. If priority is specified, it
indicates the priority level for the options added (see “Option Priorities”).
The default priority is interactive.

Option Priorities

The priority arguments to the option command can be either an integer
between 0 (lowest priority) and 100 (highest priority), inclusive, or one of the
following strings:

widgetDefault
Same as 20. Used for default values hardcoded into widgets.

startupFile
Same as 40. Used for options specified in application-specific startup
files.

userDefault
Same as 60. Used for options specified in the resource database of the X
server or user-specific startup files.

interactive
Same as 80. Used for options specified interactively after the application
starts running.

120 Chapter 3 — Tk Core Commands

pack
pack operation larg arg..]

Communicate with the packer, a geometry manager that arranges widgets
around the edges of another window called the master window. The pack
command can take the following forms:

pack slave [slave..] [options]
Same as pack configure.

pack configure slave [slave..] [options]
Pack the given slave windows into their master. Valid options are as
follows:

-after other
Insert slaves into the window other’s master just after other in the
packing order.

S
3 =
SS
Sa
(%)

-anchor anchorPos
Where to position each slave in its parcel. Valid anchorPos values
are n, ne, e, se, s, sw, w, nw, and center (the default).

-before other
Insert slaves into the window other’s master just before other in
the packing order.

-expand boolean
Whether the slaves should be expanded to consume extra space in
their master.

-fill direction
What direction the slaves should stretch if their parcel is larger than
the slave’s requested dimensions. Direction must be none (do
not stretch slave), x (stretch the slave horizontally to fill parcel’s
width), y (stretch the slave vertically to fill parcel’s height), or both
(stretch the slave both horizontally and vertically).

-in master
Insert the slaves at the end of the packing order for master window
master. A slave’s master must either be the slave’s parent (the
default) or a descendant of the slave’s parent.

-ipadx size
How much horizontal internal padding, in screen units, to leave on
each side of the slaves.

-ipady size
How much vertical internal padding, in screen units, to leave on the
top and bottom of the slaves.

-padx size
How much horizontal external padding, in screen units, to leave on
each side of the slaves.

Utility Commands — pack 121

-pady size
How much vertical external padding, in screen units, to leave on the
top and bottom of the slaves.

-side side
Which side of the master to pack the slaves against. Must be left,
right, top (the default), or bottom.

If no -in, -after, or -before option is specified, each slave is appended to the
end of the packing list for its parent unless already packed in another master.
A previously packed slave retains the previous values for any unspecified
options.

pack forget slave [slave..]
Remove each given slave from the packing order for its master and
unmap its window.

pack info slave
Return the current configuration state of the slave slave in the same
option-value form given to pack configure. The first two elements will be
-in master.

pack propagate master [boolean]
Set or query whether propagation has been enabled for master. Propa-
gation is enabled by default. If disabled, the master window will not be
resized to adjust to the size of its slaves.

pack slaves master
Return a list of all slaves in the packing order for master.

place
place operation|larg arg..

Communicate with the placer, which provides simple fixed placement geome-
try management of slave windows inside another window called the master.
The place command can take the following forms:

place slave [slave..] [options]
Same as place configure.

place configure slave [slave..] [options]
Place the given slave windows into their master. Valid options are as
follows:

-in master
Pathname of window relative to which slave is to be placed.
Master must be either slave’s parent (the default) or a descendant
of slave’s parent. Also, slave and master must be descendants
of the same top-level window.

122 Chapter 3 — Tk Core Commands

-x location
The x-coordinate within the master of the anchor point for slave in
screen units.

-relx Jocation
The x-coordinate within the master of the anchor point for sIave as
a relative distance along the master’s width. A value of 0.0 corre-
sponds to the left edge of the master and 1.0 to the right edge.
Location need not be in the range 0.0-1.0. If both -x and -relx
are specified, their values are summed.

-y location
The y-coordinate within the master of the anchor point for slave in
screen units.

-rely location
The y-coordinate within the master of the anchor point for slave as
a relative distance along the master’s height. A value of 0.0 corre-
sponds to the top edge of the master and 1.0 to the bottom edge.
Location need not be in the range 0.0-1.0. If both -y and -rely
are specified, their values are summed.

S
3 =
SS
Sa
(%)

-anchor anchorPos
Which point of slave is to be positioned at the location selected by
the -x, -y, -relx, and -rely options. Valid anchorPos values are n,
ne, e, se, s, sw, w, nw, and center. The default is nw.

~width size
Width for slave in screen units.

-relwidth size
Width for slave as a ratio to the width of the master. For instance,
a size of 0.5 means slave will be half as wide as the master. If
both -width and -relwidth are specified, their values are summed.

-height size
Height for sIave in screen units.

-relbeight size
Height for slave as a ratio to the height of the master. A size of
0.5 means slave will be half as high as the master. If both -beight
and -relbeight are specified, their values are summed.

-bordermode mode
How the master's borders are treated in placement. A value of
inside (the default) means that only the area inside the master’s
border is considered for placement, a value of outside causes the
placer to include the area of the borders for placement, and a value
of ignore means that only the official X area (includes internal bor-
der but no external border) will be used for placement.

place forget slave
Stop the placer from managing the placement of slave and unmap
slave from the display.

Utility Commands — place 123

place info slave
Return the current configuration state of the slave slave in the same
option-value form given to place configure.

place slaves master
Return a list of all slave windows placed in master.

raise
raise window [aboveThis|

Change the window's position in the stacking order. If aboveThis is speci-
fied, it must be a sibling of window or a descendant of a sibling of window.
In this case, window is placed in the stacking order just above aboveThis
(or the ancestor if this is a sibling of window). If aboveThis is not given,
window is placed above all its siblings in the stacking order.

selection
selection operationlarg arg..]

The selection command provides a Tcl interface to the X selection mechanism
as described in the X Inter-Client Communication Conventions Manual
(ICCCM). For the commands that follow, selection specifies the X selection
and should be an atom name such as PRIMARY (the default) or CLIPBOARD.
A selection is display specific. If the display is not specified with the -dis-
Pplayof option, it defaults to the display of the “.” window. The selection com-
mand can take the following forms:

selection clear |-displayof window] [-selection selection]
If selection exists anywhere on the display of window, clear it so that
no window owns the selection.

selection get [-displayof window] [-selection selection] [-type type]
Retrieve the value of selection from the display of window and return
it in the form specified by type. Type must be a valid atom name as
described in the ICCCM and defaults to STRING.

selection handle [-displayof windowl [-type typel [-format format] window
command
Arrange for command to be evaluated whenever selection is owned
by window and an attempt is made to retrieve it in the form given by
type (defaults to STRING).

Command will be executed as a Tcl command with two additional num-
bers appended as arguments: offset and maxBytes. The command
should return a value consisting of at most maxBytes of the selection
starting at position offset. If exactly maxBytes is returned, command
will be invoked again until it eventually returns a result shorter than
maxBytes.

124 Chapter 3 — Tk Core Commands

The format argument is for compatibility with non-Tk selection
requesters and specifies the representation that should be used to trans-
mit the selection. The default is STRING.

selection own [-displayof window] [-selection selection]
Return the pathname of the window in the application that owns
selection on window's display.

selection own [-command command] [-selection selection] window
Make window the new owner of selection on window's display. If
command is specified, it is a Tcl script that will be evaluated when own-
ership of selection is taken away from window.

send

send loptions] app command larg arg...)]

Arrange for command (concatenated with any given args) to be evaluated in
the application named by app and return the result or error from the evalua-
tion. App may be the name of any application (as returned by the tk appname
command) whose main window is on the same display as the sender’s main
window (unless the -displayof option is given). This command is not sup-
ported under Windows or Macintosh platforms. Possible options are:

-async
Forces the send command to complete immediately without waiting for
command to complete in target application. This option is ignored if the
target is in the same process as the sender.

-displayof window
Specifies that the target application’s main window is on window's dis-
play.

Terminates option processing in case app starts with a “-” character.

Security

For security reasons, the send mechanism will work only if the control mecha-
nism being used by the X server has xbost-style access control enabled and
the list of enabled hosts is empty. This means applications cannot connect to
the server unless they use some more secure form of authorization, such as
xauth. The send mechanism can be turned off (both sending and receiving)
by removing the send command using rename send {}. Communication can be
reenabled by invoking the tk appname command.

tk

tk operation larg arg...|

The tk command provides access to miscellaneous elements of Tk’s internal
state. The following operations are defined:

Utility Commands — th 125

S
3 =
SS
Sa
(%)

tk appname newName

Change the name of the application to newName. If the name newName
is already in use, a suffix of the form #2 or #3 is appended to make the
name unique. If newName is not given, the application’s current name is
returned. As a general rule, the application name should not begin with a
capital letter, as that form is reserved for class names. If sends have been
disabled by deleting the send command, this command will reenable
them and recreate the send command.

tk scaling [-displayof window] [number]

Set the scaling factor for conversion between physical units (e.g., points
or inches) and pixels. Number is a floating-point value that specifies the
number of pixels per point (I/5, inch) on window's display. If window is
not given, it defaults to the main window. If number is omitted, the cur-

rent scaling factor is returned.

tkwait

thkwait operation name

Wait for a variable to change, a window to be destroyed, or a window’s visi-
bility state to change. While waiting, events are processed in the normal fash-
ion. If an event handler invokes tkwait again, the nested call to thwait must
complete before the outer call can complete. Possible forms of the tkwait

command are as follows:

thwait variable varName
Wait for the global variable varName to be modified.

thwait visibility window
Wait for a change in the visibility state of window window.

thwait window window
Wait for window window to be destroyed.

tk_

tk_bisque

tk_chooseColor loption value..]

tk_dialog topw title text bitmap default string|string..]
tk_focusNext window

tk_focusPrev window

tk_focusFollowsMouse window

tk_getOpenFile loption value..]

tk_getSaveFile [option value..]

tk_messageBox [option value..]

tk_optionMenu window varName value [value..]

126 Chapter 3 — Tk Core Commands

th_popup menu x y lentry]
tk_setPalette color
tk_setPalette name color [name color...]

Each of these commands is a Tcl procedure defined at runtime in the Tk
script library. The tk_bisque procedure sets the default color scheme to the
light brown (“bisque”) scheme used by Tk 3.6 and earlier versions. The
tk_setPalette procedure called with a single argument color sets the default
color scheme to a computed one based on color as the default background
color. The tk_setPalette can be called with one or more name-color pairs to
set specific colors for the default color scheme. The possible values for name
are:

activeBackground activeForeground

background disabledForeground
foreground highlightBackground
highlightColor insertBackground
selectColor selectBackground

selectForeground troughColor

The tk_getOpenFile procedure posts a modal dialog for choosing an existing
filename. The tk_getSaveFile procedure does the same but does not require
the chosen file to exist. In fact, if an existing file is chosen, a separate dialog
box prompts for confirmation. Both procedures return the full pathname of
the chosen file, or the empty string if the user cancels the operation. The
available options for these procedures are as follows:

-defaultextension extension
A string that will be appended to the chosen file if it lacks an extension.
The default is an empty string. This option is ignored on the Macintosh.

-filetypes filePatternList

The possible file types for the File types listbox in the dialog (f it exists).
FilePatternList is a list of file patterns; each pattern is a two- or
three-element list. The first element is a string describing the type (e.g.,
{Text files}), and the second element is a list of extensions that
match this type (e.g., {.txt .log} or the special asterisk character to
match all extensions. The empty string is a valid extension that means
files with no extension. The third element is required only on the Macin-
tosh and is the appropriate Macintosh file type identifier (e.g., TEXT).
This element is ignored on Windows and Unix. Any file patterns with the
same first element are merged in the File types listbox.

-initialdir directory
The files in directory should be displayed when the dialog pops up.
The default is the current working directory.

-initialfile £11eName
Filename to be displayed in the dialog as a default choice when it pops
up.

Utility Commands — tk_ 127

8109 y1

S
3
3
D
=
(%)

-parent window
Make window the logical parent of the dialog and position the dialog on
top of it.

-title title
Text to appear in window manager’s titlebar for the dialog.

The tk_messageBox procedure pops up a message dialog window with but-
tons and waits for a user response. The symbolic name of the selected button
is returned. The following options are supported:

-default name
Make the button with symbolic name name the default button. See -type
for valid names. If the dialog has only one button, it is made the default
automatically. Otherwise, if this option is not specified, no button is
made the default.

-icon iconImage
Icon to display in the dialog. TconImage must be error, info, ques-
tion, or warning. The default is to display no icon.

-message string
Message to display in this dialog.
-parent window
Make window the logical parent of the dialog and position the dialog on
top of it.
-title title
Text to appear in window manager’s titlebar for the dialog.

-type type
The set of buttons to be displayed. The following values are possible for

type:

abortretryignore
Display three buttons with names Abort, Retry, and Ignore.

ok Display one button with the name OK.

okcancel
Display two buttons with names OK and Cancel.

retrycancel
Display two buttons with names Retry and Cancel.

yesno
Display two buttons with names Yes and No.

yesnocancel
Display three buttons with names Yes, No, and Cancel.

128 Chapter 3 — Tk Core Commands

The tk_dialog is an older, more configurable version of a message box dialog.
A message and a row of buttons are presented to the user. The numerical
index of the button chosen is returned. The arguments are as follows:

topw
Name of top-level window for dialog to use. Any existing window by this
name is destroyed.

title
Text to appear in window manager’s titlebar for the dialog.

text
Message to appear in top portion of the dialog.

bitmap
If nonempty, a bitmap to display to the left of message text.

default
Index of button that is to be the default button. The default is 0, which is
the first, leftmost button. If default is less than zero, there will be no
default button.

S
3 =
SS
Sa
(%)

string
There will be one button for each string argument, where string
specifies the text for the button.

The tk_optionMenu procedure creates an option menubutton whose name is
window, along with an associated menu. Invoking the menubutton will pop
up the associated menu with an entry for each of the value arguments. The
current choice will be stored in the global variable varName and be dis-
played as the label of the menubutton. The procedure returns immediately
with a value of the name of the associated menu.

The tk_popup procedure posts pop-up menu menu at the root coordinate
position x,y. If entry is omitted, the menu’s upper-left corner is positioned
at the given point. Otherwise, entry gives the index of a menu entry in
menu to position over the given point.

The tk_focusNext, tk_focusPrev, and tk_focusFollowsMouse procedures are
described in the listing for the focus command earlier in this chapter.

winfo
winfo operation larg arg..]

The winfo command provides information about the windows managed by
Tk. The following operations are supported:

winfo atom [-displayof window name]
Return as a decimal string the identifier for the atom named name on
window’s display.

Utility Commands — winfo 129

winfo atomname |-displayof window id]
Return the textual name of the atom on window's display whose integer
identifier is id.

winfo cells window
Return the number of cells in the colormap of window.

winfo children window
Return a list of the pathnames of all children of window, in stacking
order.

winfo class window
Return the class name for window.

winfo colormapfull window
Return 1 if the colormap for window is known to be full (the last attempt
to allocate a new color failed and this application has not freed any), 0
otherwise.

winfo containing [-displayof window] rootX rootY
Return the pathname of the window containing the point rootX and
rootY in the root window of window's display. If multiple windows
contain the point, children are given higher priority than parents. Among
siblings, the highest one in the stacking order has priority.

winfo depth window
Return the depth of window (number of bits per pixeD).

winfo exists window
Return 1 if a window named window exists, 0 otherwise.

winfo fpixels window size
Return as a floating-point value the number of pixels in window corre-
sponding to the distance size in screen units.

winfo geometry window
Return the geometry for window in the X geometry specification form
widthxheight+x+y, where dimensions are in pixels.

winfo beight window
Return window's height in pixels. A new window’s height is 1 pixel until
it is actually mapped.

winfo id window

Return the hexadecimal, platform-specific identifier for window.

winfo interps |-displayof window]
Return a list of the names of all Tk-based applications currently registered
on window's display.

winfo ismapped window
Return 1 if window is currently mapped, 0 otherwise.

130 Chapter 3 — Tk Core Commands

winfo manager window
Return the name of the geometry manager currently responsible for win-
dow (e.g., pack, place, or canvas).

winfo name window
Return window’s name within its parent. The command winfo name will
return the name of the application.

winfo parent window
Return the pathname of window’s parent, or an empty string if window
is the main window.

winfo pathname [-displayof window] id
Return the pathname of the window whose X identifier on window’s dis-
play is id.

winfo pixels window size
Return the number of pixels (rounded to the nearest integer) in window
corresponding to the distance size in screen units.

S
3 =
SS
Sa
(%)

winfo pointerx window
Return the pointer’s x-coordinate measured in pixels on the screen’s root
window. If the mouse pointer is not on the same screen as window,
return —1.

winfo pointerxy window
Return the pointer’s y-coordinate measured in pixels on the screen’s root
window. If the mouse pointer is not on the same screen as window,
return —1.

winfo pointery window
Return the pointer’s y-coordinate measured in pixels on the screen’s root
window. If the mouse pointer is not on the same screen as window,
return —1.

winfo regheight window
Return window’s requested height in pixels.

winfo requidth window
Return window’s requested width in pixels.

winfo rgb window color
Return a three-element list of the red, green, and blue intensities corre-
sponding to color in window.

winfo rootx window
Return the x-coordinate of the upper-left corner of window (including its
border) in the root window of its screen.

winfo rooty window
Return the y-coordinate of the upper-left corner of window (including its
border) in the root window of its screen.

Utility Commands — winfo 131

winfo screen window
Return the name of the screen associated with window in the form dis-
playName. screenIndex.

winfo screencells window
Return number of cells in the default colormap for window’s screen.

winfo screendepth window
Return the depth (bits per pixeD) of the root window of window’s screen.

winfo screenbeight window
Return the height of window’s screen in pixels.

winfo screenmmbeight window
Return the height of window’s screen in millimeters.

winfo screenmmuwidth window
Return the width of window’s screen in millimeters.

winfo screenvisual window
Return the default visual class for window’s screen. The result will be
directcolor, grayscale, pseudocolor, staticcolor, static-
gray, or truecolor.

winfo screenwidth window
Return the width of window's screen in pixels.

winfo server window
Return information about the server for window's display. For X servers,
the string has the form XmajorRminor vendor vendorVersion.

winfo toplevel window
Return the pathname of the top-level window containing window.

winfo viewable window
Return 1 if window and all its ancestors up through the nearest top-level
window are mapped, 0 otherwise.

winfo visual window
Return the visual class for window. The result will be directcolor,
grayscale, pseudocolor, staticcolor, staticgray, or true-
color.

winfo visualid window
Return the X identifier for the visual of window:.

winfo visualsavailable window lincludeids]
Return the list of visuals available for window’s screen. Each element
consists of a visual class (see winfo visual for possible values) and an
integer depth. If includeids is specified, the X identifier for each visual is
also provided.

winfo vrootheight window
Return the height of the virtual root window associated with window. If
there is no virtual root, the height of window'’s screen is returned.

132 Chapter 3 — Tk Core Commands

winfo vrootwidth window
Return the width of the virtual root window associated with window. If
there is no virtual root, the width of window's screen is returned.

winfo vrootx window
Return the x-offset of the virtual root window relative to the root window
of window's screen.

winfo vrooty window
Return the y-offset of the virtual root window relative to the root window
of window's screen.

winfo width window
Return window's height in pixels. A new window’s width is 1 pixel until
it is actually mapped.

winfo x window
Return the x-coordinate of the upper-left corner of window (including
any border) in its parent.

S
3 =
SS
Sa
(%)

winfo y window
Return the y-coordinate of the upper-left corner of window (including
any border) in its parent.

wm
wm operation window larg arg...]

The wm command communicates with the window manager to control such
things as window titles, geometry, and state. All window managers are differ-
ent and may not honor all of Tk’s requests. The possible operations are:

wm aspect window [minNumber minDenom maxNumer maxDenom]
Request that the window manager enforce a range of acceptable aspect
ratios for window. The aspect ratio of window (width/length) must lie
between minNumber/minDenom and maxNumer/maxDenom. If all the
aspect arguments are specified as empty strings, any existing constraint is
removed. If the aspect arguments are omitted, the current values are
returned as a Tcl list, which will be empty if there is no constraint.

wm client window [name]
Store in window's WM_CLIENT_MACHINE property the value name,
which should be the name of the host on which the application is run-
ning. If name is not given, the last name set for window is returned. If
name is the empty string, the WM_CLIENT_MACHINE property for win-
dow is deleted.

wm colormapwindows window [windowList]
Store in window's WM_COLORMAP_WINDOWS property the value
windowList, which should be a complete list of the internal window
pathnames within window whose colormaps differ from their parents. If
windowList is not given, the current setting is returned.

Utility Commands — wm 133

wm command window [cmdLinel
Store in window's WM_COMMAND property the value cmdLine, which
should be a proper list containing the words of the command used to
invoke the application. If emdLine is not given, the last value set for
window is returned. If ecmdLine is the empty string, the WM_COMMAND
property for window is deleted.

wm deiconifiy window
Request that the window manager display window in normal (non-iconi-
fied) form.

wm _focusmodel window [model]

Set the focus model for window to model, which must be active or
passive (the default). If model is omitted, the current model is
returned. An active focus model means that the window will claim the
input focus for itself or its descendants, even at times when the focus is
currently in some other application. A passive model means that win-
dow will never explicitly claim the focus for itself but will let the window
manager give it focus at appropriate times. Tk’s focus command assumes
a passive model.

wm frame window
If window has been reparented by the window manager into a decora-
tive frame, return the platform-specific window identifier for the outer-
most frame that contains window. Otherwise, return the identifier for
window.

wm geometry window [newGeometry]
Set the geometry for window to newGeometry, an X geometry specifi-
cation in the form widthxheight+x+y. If window is gridded, units for
width and height are in grid units; otherwise, they are specified in
pixels. If newGeometry is the empty string, the window will revert to
the size requested internally by its widgets. If newGeometry is omitted,
window's current geometry is returned.

wm grid window [baseWidth baseHeight widthInc heightInc]

Request that window be managed as a gridded window. BaseWidth
and baseHeight specify the number of grid units that the current
requested size of window represents. WidthInc and heightInc spec-
ify the number of pixels in each horizontal and vertical grid unit. Specify-
ing all values as empty strings turns off gridded management for win-
dow. If the arguments are omitted, their current values are returned (or
an empty string if window is not gridded).

wm group window [pathName]
Add window to the group of related windows led by window path-
Name. The window manager may use this information to unmap the
entire group of windows when the leader window is iconified. If path-
Name is the empty string, window is removed from any group with
which it is associated. If it is omitted, window's group leader is returned
(or the empty string if window is not part of a group).

134 Chapter 3 — Tk Core Commands

wm iconbitmap window [bitmap]
Request that the window manager display bitmap in window's icon. If
bitmap is the empty string, any current bitmap registered is canceled. If
it is omitted, the current bitmap registered, if any, is returned.

wm iconify window
Arrange for window to be iconified.

wm iconmask window [bitmap]
Request that the window manager use bitmap as a mask in window's
icon in conjunction with the bitmap set with the iconbitmap operation. If
bitmap is the empty string, any current bitmap mask is canceled. If it is
omitted, the current bitmap mask, if any, is returned.

wm iconname window [newName]
Request that the window manger use newName for the title of window's
icon. If newName is omitted, the current setting, if any, is returned.

wm iconposition window [x y]
Request that the window manager use coordinates x y on the root win-
dow as the location to place window's icon. If the coordinates are speci-
fied as empty strings, any current request is canceled. If they are not
given, the current setting, if any, is returned.

S
3 =
SS
Sa
(%)

wm iconwindow window [pathName]
Request that the window manager use window pathName as window's
icon. If pathName is the empty string, any current icon window request
is canceled. If it is omitted, the current icon window, if any, is returned.
Button press events are disabled for pathName while it is an icon win-
dow so that the window manager can own those events.

wm maxsize window [width height]
Request that the window manager restrict window's dimensions to be
less than or equal to width and height. If window is gridded, the
dimensions are in grid units; otherwise, they are in pixels. If the width
and height are not given, the current setting is returned. The default
setting is the dimensions of the screen.

wm minsize window [width height]
Request that the window manager restrict window's dimensions to be
greater than or equal to width and height. If window is gridded, the
dimensions are in grid units; otherwise, they are in pixels. If the width
and height are not given, the current setting is returned.

wm overrideredirect window [boolean]
Set the override-redirect flag for window if boolean is true; unset it
otherwise. Setting the override-redirect flag causes the window to be
ignored by the window manager. If boolean is not given, the current
setting is returned.

wm positionfrom window [whol
Set the position source of window to who, either program or user,
which tells the window manager whether window's position was set by
the program or user, respectively. If who is the empty string, the current

Utility Commands — wm 135

position source is canceled. If who is not given, the current setting is
returned. Tk will automatically set the position source to user when a
wm geometry command is invoked, unless the source has been explicitly
set to program.

wm protocol window [name [command]]

Set or query window manager protocols for window. Name is the name
of an atom for a window manager protocol, such as WM_DELETE_WIN-
DOW or WM_SAVE_YOURSELF. If command is specified, it is made the
handler for the given protocol and will be invoked whenever the win-
dow manager sends a message to the application for that protocol on
window. If command is the empty string, any current handler is can-
celed. If command is not given, the current associated command for
name is returned. If name is not given, a list of all protocols for which
handlers are currently defined for window is returned. Tk always sets up
a default handler for the WM_DELETE_WINDOW protocol, which simply
destroys the window.

wm resizeable window [widthBool heightBool]
Whether window should be resizeable along its width and height accord-
ing to the boolean values widthBool and heightBool. By default,
windows are resizeable in both dimensions. If the boolean arguments are
omitted, the current setting is returned.

wm sizefrom window [whol
Set the size source of window to who, either program or user, which
tells the window manager whether window's size was set by the pro-
gram or user, respectively. If who is the empty string, the current size
source is canceled. If who is not given, the current setting is returned.

wm state window
Return the current state of window: one of normal, iconic, with-
drawn, or icon. The value icon refers to a window that is being dis-
played as an icon (using the wm iconwindow command).

wm title window [string]
Request that the window manager use string as the title for window if
it has a titlebar. If string is not given, the current setting is returned.

wm transient window [master]
Request that the window manager treat window as a transient window
(e.g a pull-down menu) belonging to the window master. If master is
an empty string, window is treated as no longer transient. If it is omitted,
the command returns window's current master, or an empty string if
window is not transient.

wm withdraw window
Withdraw window from the screen. The window is unmapped and for-
gotten about by the window manager.

136 Chapter 3 — Tk Core Commands

CHAPTER 4

The Tcl C Interface

This chapter presents a summary of the Tcl C-language interface. Everything
described here is defined in the header file #cl.h, part of the Tcl distribution. For
clarity, ANSI C function prototypes are shown here, although the actual header file
supports non-ANSI compilers.

Eﬂ
3=
S o
S
©

To avoid name conflicts, all functions are prefixed with Tcl_ and constants are
prefixed with TCL_.

See the full Tcl reference documentation for the most detailed and up-to-date
information. C interfaces are typically found in Section 3 of the Tcl manpages.

Constants
The following constants contain Tcl interpreter version information:

TCL_MAJOR_VERSION
Tcl major version number (e.g., 8)

TCL_MINOR_VERSION
Tcl minor version number (e.g., 0)

TCL_RELEASE_LEVEL
Release level: 0 for alpha, 1 for beta, 2 for final/patch

TCL_RELEASE_SERIAL
Version number that changes with each patch (e.g., 2)

TCL_VERSION
Tcl version as a string (e.g., “8.0")

137

TCL_PATCH_LEVEL
Tcl version and patch level as a string (e.g., “8.0p2”)

The following constants contain completion codes for Tcl command procedures:

TCL_OK
Normal command completion

TCL_ERROR
Unrecoverable error occurred

TCL_RETURN
return command invoked

TCL_BREAK
break command invoked

TCL_CONTINUE
continue command invoked

Data Types
The more commonly used Tcl data structures are listed here:

ClientData
Application-defined data that can be stored by interpreter

Tcl_AsyncHandler
Token used to refer to asynchronous event handlers

Tcl_Channel
A Tcl 1I/O channel

Tcl_ChannelProc
Function implementing operations on an I/O channel

Tcl_ChannelType
Pointers to functions implementing operations on an I/O channel

Tcl_CloseProc
Type of procedure used by close and delete handlers

Tcl_CmdDeleteProc
Type of procedure called when Tcl command is deleted

Tcl_CmdInfo
Structure containing information about a Tcl command

Tcl_CmdProc
Type of procedure used to implement a Tcl command

Tcl_Command
Token used to refer to Tcl command procedures

138 Chapter 4— The Tcl C Interface

Tcl_DString
Structure used for Tcl dynamic strings

Tcl_Event
Data structure used by Tcl event queue

Tcl_EventCheckProc
Type of procedure for checking event queue

Tcl_EventDeleteProc
Type of procedure to invoke for delete events

Tcl_EventSetupProc
Type of procedure to invoke for prepare events

Tcl_ExitProc
Type of procedure to invoke before exiting application

Tcl_FileProc
Type of procedure to invoke for file handler

Tcl_FreeProc
Type of procedure for freeing storage

Tcl_HashEntry
Tcl hash table entry

Tcl_HashTable
Structure for Tcl hash table

Tcl_TInterp
Structure defining a Tcl interpreter

Tcl_TInterpDeleteProc
Procedure to call when interpreter is deleted

Tcl_Obj
Dual-ported object type for Tcl values

Tcl_ObjCmdProc
Type of procedure used to implement a Tcl command

Tcl_ObjType
Structure for representing type of Tcl object

Tcl_RegExp
Compiled regular expression

Tcl_Time
Data structure to represent time intervals

Tcl_Trace
Token for command trace

Tcl_VarTraceProc
Type of procedure to call for command tracing

Eﬂ
3=
S o
S
©

Data Types

139

Group Listing of Functions

Note that a few of these routines are implemented as macros for the sake of effi-
ciency, but logically they behave the same as functions.

Tcl Objects

Tcl_Obj *Tcl_NewODbjO
Tcl_Obj *Tcl_DuplicateObj(Tcl_Obj *objPtr)
void Tcl_IncrRefCount(Tcl_Obj *objPtr)
void Tcl_DecrRefCount(Tcl_Obj *objPtr)
int Tcl_IsShared(Tcl_Obj *objPtr)
void Tcl_InvalidateStringRep(Tcl_Obj *objPtr)
Tcl_Obj *Tcl_NewBooleanObj(int boolValue)
void Tcl_SetBooleanObj(Tcl_Obj *objPtr, int boolValue)
int Tcl_GetBooleanFromODbj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *boolPtr)
Tcl_Obj *Tcl_NewDoubleObj(double doubleValue)
void Tcl_SetDoubleObj(Tcl_Obj *objPtr, double doubleValue)
int Tcl_GetDoubleFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *doublePtr)
Tcl_Obj *Tcl_NewIntObj(int intValue)
Tcl_Obj *Tcl_NewLongObj(long longValue)
void Tcl_SetIntObj(Tcl_Obj *objPtr, int intValue)
void Tcl_SetLongODbj(Tcl_Obj *objPtr, long longValue)
int Tcl_GetIntFromODbj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *intPtr)
int Tcl_GetLongFromODbj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *longPtr)
int Tcl_ListObjAppendList(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *elemListPtr)
int Tcl_ListObjAppendElement(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *objPtr)
Tcl_Obj *Tcl_NewListObj(int objc, Tcl_Obj *cont objv[])
void Tcl_SetListObj(Tcl_Obj *objPtr, int objc, Tcl_Obj *const objv[])
int Tcl_ListObjGetElements(Tcl_Interp *interp, Tcl_Obj *listPtr, int *objcPtr,
Tcl_Obj **objvPtr)
int Tcl_ListObjIndex(Tcl_Interp *interp, Tcl_Obj *listPtr, int index,
Tcl_Obj **objPtrPtr)
int Tcl_ListObjLength(Tcl_Interp *interp, Tcl_Obj *listPtr, int *intPtr)
int Tcl_ListObjReplace(Tcl_Interp *interp, Tcl_Obj *listPtr, int first, int count,
int objc, Tcl_Obj *const objv[])
void Tcl_RegisterObjType(Tcl_ObjType *typePtr)
Tcl_ObjType *Tcl_GetObjType(char *typeName)
int Tcl_AppendAllObjTypes(Tcl_Interp *interp, Tcl_Obj *objPtr)
int Tcl_ConvertToType(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_ObjType *typePtr)
Tcl_Obj *Tcl_NewsStringObij(char *bytes, int length)
void Tcl_SetStringObj(Tcl_Obj *objPtr, char *bytes, int length)

140 Chapter 4— The Tcl C Interface

char *Tcl_GetStringFromODbj(Tcl_Obj *objPtr, int *lengthPtr)
void Tcl_AppendToObj(Tcl_Obj *objPtr, char *bytes, int length)
void Tcl_AppendStringsToObj(Tcl_Obj *interp, ...)

void Tcl_SetObjLength(Tcl_Obj *objPtr, int length)

Tcl_Obj *Tcl_ConcatObj(int objc, Tcl_Obj *const objv[])

Interpreters and Script Evaluation

Tcl_Interp *Tcl_Createlnterp(void)

void Tcl_Deletelnterp(Tcl_Interp *interp)

int Tcl_InterpDeleted(Tcl_Interp *interp)

int Tcl_Eval(Tcl_Interp *interp, char *string)

int Tcl_EvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)

int Tcl_EvalFile(Tcl_Interp *interp, char *fileName)

int Tcl_GlobalEval(Tcl_Interp *interp, char *command)

int Tcl_GlobalEvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)

int Tcl_VarEval(Tcl_Interp *interp, ...)

int Tcl_RecordAndEval(Tcl_Interp *interp, char *cmd, int flags)

int Tcl_RecordAndEvalObj(Tcl_Interp *interp, Tcl_Obj *cmdPtr, int flags)

void Tcl_AllowExceptions(Tcl_Interp *interp)

Tcl_AsyncHandler Tcl_AsyncCreate(Tcl_AsyncProc *proc, ClientData clientData)

void Tcl_AsyncMark(Tcl_AsyncHandler async)

int Tcl_AsyncInvoke(Tcl_Interp *interp, int code)

void Tcl_AsyncDelete(Tcl_AsyncHandler async)

int Tcl_AsyncReady(void)

void Tcl_CallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeleteProc *proc,
ClientData clientData)

void Tcl_DontCallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeleteProc *proc,
ClientData clientData)

int Tcl_IsSafe(Tcl_Interp *interp)

int Tcl_MakeSafe(Tcl_Interp *interp)

Tcl_Interp *Tcl_CreateSlave(Tcl_Interp *interp, char *slaveName, int isSafe)

Tcl_Interp *Tcl_GetSlave(Tcl_Interp *interp, char *slaveName)

Tcl_Interp *Tcl_GetMaster(Tcl_Interp *interp)

int Tcl_GetInterpPath(Tcl_Interp *askiInterp, Tcl_Interp *slavelnterp)

int Tcl_CreateAlias(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int argc, char **argv)

int Tcl_CreateAliasObj(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int objc, Tcl_Obj *const objv[])

int Tcl_GetAlias(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *argcPtr, char ***argvPtr)

Eﬂ
3=
S o
S
©

Group Listing of Functions

141

int Tcl_GetAliasObj(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *objcPtr, Tcl_Obj ***objv)

int Tcl_ExposeCommand(Tcl_Interp *interp, char *hiddenCmdToken,
char *cmdName)

int Tcl_HideCommand(Tcl_Interp *interp, char *cmdName,
char *hiddenCmdToken)

int Tcl_DoOneEvent(int flags)

void Tcl_DoWhenldle(Tcl_IdleProc *proc, ClientData clientData)

void Tcl_CancelldleCall(Tcl_IdleProc *idleProc, ClientData clientData)

void Tcl_Exit(int status)

void Tcl_Finalize(void)

void Tcl_CreateExitHandler(Tcl_ExitProc *proc, ClientData clientData)

void Tcl_DeleteExitHandler(Tcl_ExitProc *proc, ClientData clientData)

int Tcl_SetRecursionLimit(Tcl_Interp *interp, int depth)

void Tcl_StaticPackage(Tcl_Interp *interp, char *pkgName,
Tcl_PackagelnitProc *initProc, Tcl_PackagelnitProc *safelnitProc)

Creating New Tcl Commands

Tcl_Command Tcl_CreateCommand(Tcl_Interp *interp, char *cmdName,
Tcl_CmdProc *proc, ClientData clientData, Tcl_CmdDeleteProc *deleteProc)

Tcl_Command Tcl_CreateObjCommand(Tcl_Interp *interp, char *cmdName,
Tcl_ObjCmdProc *proc, ClientData clientData,
Tcl_CmdDeleteProc *deleteProc)

int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)

int Tcl_DeleteCommandFromToken(Tcl_Interp *interp, Tcl_Command command)
void Tcl_SetResult(Tcl_Interp *interp, char *string, Tcl_FreeProc *freeProc)

void Tcl_AppendResult(Tcl_Interp *interp, ...)

void Tcl_AppendElement(Tcl_Interp *interp, char *string)

void Tcl_ResetResult(Tcl_Interp *interp)

int Tcl_GetCommandInfo(Tcl_Interp *interp, char *cmdName,
Tcl_CmdInfo *infoPtr)

int Tcl_SetCommandInfo(Tcl_Interp *interp, char *cmdName, Tcl_CmdInfo *infoPtr)
char *Tcl_GetCommandName(Tcl_Interp *interp, Tcl_Command command)

void Tcl_SetObjResult(Tcl_Interp *interp, Tcl_Obj *resultObjPtr)

Tcl_Obj *Tcl_GetObjResult(Tcl_Interp *interp)

void Tcl_FreeResult(Tcl_Interp *interp)

char *Tcl_GetStringResult(Tcl_Interp *interp)

Initialization and Packages

int Tcl_AppInit(Tcl_Interp *interp)
int Tcl_Init(Tcl_Interp *interp)

142 Chapter 4— The Tcl C Interface

Parsing

int Tcl_GetInt(Tcl_Interp *interp, char *string, int *intPtr)

int Tcl_GetDouble(Tcl_Interp *interp, char *string, double *doublePtr)

int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *boolPtr)

int Tcl_ExprString(Tcl_Interp *interp, char *string)

int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *ptr)

int Tcl_ExprDouble(Tcl_Interp *interp, char *string, double *ptr)

int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int *ptr)

int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr, char ***argvPtr)

char *Tcl_Merge(int argc, char **argv)

char Tcl_Backslash(const char *src, int *readPtr)

void Tcl_CreateMathFunc(Tcl_Interp *interp, char *name, int numArgs,
Tcl_ValueType *argTypes, Tcl_MathProc *proc,
ClientData clientData)

int Tcl_ExprLongObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *ptr)

int Tcl_ExprDoubleObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *ptr)

int Tcl_ExprBooleanObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *ptr)

int Tcl_ExprObj(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_Obj **resultPtrPtr)

int Tcl_GetIndexFromODbj(Tcl_Interp *interp, Tcl_Obj *objPtr, char **tablePtr,
char *msg, int flags, int *indexPtr)

Eﬂ
3=
S o
S
©

void Tcl_PrintDouble(Tcl_Interp *interp, double value, char *dst)

int Tcl_ScanCountedElement(const char *string, int length, int *flagPtr)

int Tcl_ScanElement(const char *string, int *flagPtr)

int Tcl_ConvertCountedElement(const char *src, int length, char *dst, int flags)

int Tcl_ConvertElement(const char *src, char *dst, int flags)

Exceptions

void Tcl_AddErrorInfo (Tcl_Interp *interp, char *message)

void Tcl_AddObjErrorInfo(Tcl_Interp *interp, char *message, int length)

void Tcl_SetErrorCode(Tcl_Interp *argl, ...)

void Tcl_SetObjErrorCode(Tcl_Interp *interp, Tcl_Obj *errorObjPtr)

void Tcl_BackgroundError(Tcl_Interp *interp)

void Tcl_WrongNumArgs(Tcl_Interp *interp, int objc, Tcl_Obj *const objv[],
char *message)

Accessing Tcl Variables

char *Tcl_SetVar(Tcl_Interp *interp, char *varName, char *newValue, int flags)

char *Tcl_SetVar2(Tcl_Interp *interp, char *partl, char *part2, char *newValue,
int flags)

char *Tcl_GetVar(Tcl_Interp *interp, char *varName, int flags)

Group Listing of Functions 143

char *Tcl_GetVar2(Tcl_Interp *interp, char *partl, char *part2, int flags)

int Tcl_UnsetVar(Tcl_Interp *interp, char *varName, int flags)

int Tcl_UnsetVar2(Tcl_Interp *interp, char *partl, char *part2, int flags)

int Tcl_LinkVar(Tcl_Interp *interp, char *varName, char *addr, int type)

void Tcl_UnlinkVar(Tcl_Interp *interp, char *varName)

void Tcl_UpdateLinkedVar(Tcl_Interp *interp, char *varName)

int Tcl_TraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)

int Tcl_TraceVar2(Tcl_Interp *interp, char *partl, char *part2, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)

void Tcl_UntraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)

void Tcl_UntraceVar2(Tcl_Interp *interp, char *partl, char *part2, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)

ClientData Tcl_VarTracelnfo(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceProc *procPtr, ClientData prevClientData)

ClientData Tcl_VarTracelnfo2(Tcl_Interp *interp, char *partl, char *part2, int flags,
Tcl_VarTraceProc *procPtr, ClientData prevClientData)

Tcl_Obj *Tcl_ObjGetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
int flags)

Tcl_Obj *Tcl_ObjSetVar2(Tcl_Interp *interp, Tcl_ODbj *part1Ptr, Tcl_Obj *part2Ptr,
Tcl_Obj *newValuePtr, int flags)

int Tcl_UpVar(Tcl_Interp *interp, char *frameName, char *varName,
char *localName, int flags)

int Tcl_UpVar2(Tcl_Interp *interp, char *frameName, char *partl, char *part2,
char *localName, int flags)

Hasbh Tables

void Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)

void Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)

Tcl_HashEntry *Tcl_CreateHashEntry(Tcl_hashTable *tablePtr, char *key,
int *newPtr)

Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char *key)

void Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)

ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)

void Tcl_SetHashValue(Tcl_HashEntry *entryPtr, Clientdata value)

char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)

Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)

Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)
char *Tcl_HashStats(Tcl_HashTable *tablePtr)

144 Chapter 4— The Tcl C Interface

ClientData Tcl_GetAssocData(Tcl_Interp *interp, char *name,
Tcl_InterpDeleteProc **procPtr)

void Tcl_SetAssocData(Tcl_Interp *interp, char *name, Tcl_InterpDeleteProc *proc,
ClientData clientData)

void Tcl_DeleteAssocData(Tcl_Interp *interp, char *name)

String Utilities

void Tcl_DStringInit(Tcl_DString *dsPtr)

char *Tcl_DStringAppend(Tcl_DString *dsPtr, const char *string, int length)
char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, const char *string)
void Tcl_DStringStartSublist(Tcl_DString *dsPtr)

void Tcl_DStringEndSublist(Tcl_DString *dsPtr)

int Tcl_DStringLength(Tcl_DString *dsPtr)

char *Tcl_DStringValue(Tcl_DString *dsPtr)

void Tcl_DStringSetLength(Tcl_DString *dsPtr, int length)

void Tcl_DStringFree(Tcl_DString *dsPtr)

void Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)

void Tcl_DStringGetResult(Tcl_Interp *interp, Tcl_DString *dsPtr)

int Tcl_CommandComplete(char *cmd)

Eﬂ
3=
S o
S
©

int Tcl_StringMatch(char *string, char *pattern)

int Tcl_RegExpMatch(Tcl_Interp *interp, char *string, char *pattern)

Tcl_RegExp Tcl_RegExpCompile(Tcl_Interp *interp, char *string)

int Tcl_RegExpExec(Tcl_Interp *interp, Tcl_RegExp regexp, char *string, char *start)
void Tcl_RegExpRange(Tcl_RegExp regexp, int index, char **startPtr, char *endPtr)

char *Tcl_Concat(int argc, char **argv)

POSIX Utilities

char *Tcl_TildeSubst(Tcl_Interp *interp, char *name, Tcl_DString *resultPtr)
char *Tcl_PosixError(Tcl_Interp *interp)

char *Tcl_Errnold(void)

char *Tcl_Signalld(int sig)

char *Tcl_SignalMsg(int sig)

void Tcl_DetachPids(int numPids, Tcl_Pid *pidPtr)

void Tcl_ReapDetachedProcs(void)

void Tcl_SetErrno(int err)

int Tcl_GetErrno(void)

Group Listing of Functions 145

Input/Output

Tcl_Channel Tcl_OpenCommandChannel(Tcl_Interp *interp, int argc, char **argv,
int flags)

Tcl_Channel Tcl_CreateChannel(Tcl_ChannelType *typePtr, char *chanName,
ClientData instanceData, int mask)

ClientData Tcl_GetChannellnstanceData(Tcl_Channel chan)

Tcl_ChannelType *Tcl_GetChannelType(Tcl_Channel chan)

char *Tcl_GetChannelName(Tcl_Channel chan)

int Tcl_GetChannelHandle(Tcl_Channel chan, int direction, ClientData *handlePtr)

int Tcl_GetChannelFlags(Tcl_Channel channeD

void Tcl_SetDefaultTranslation(TclChannel channel, Tcl_EolTranslation transMode)

int Tcl_GetChannelBufferSize(Tcl_Channel chan)

void Tcl_SetChannelBufferSize(Tcl_Channel chan, int sz)

void Tcl_NotifyChannel(Tcl_Channel channel, int mask)

int Tcl_BadChannelOption(Tcl_Interp *interp, char *optionName, char *optionList)

void Tcl_CreateChannelHandler(Tcl_Channel chan, int mask,
Tcl_ChannelProc *proc, ClientData clientData)

void Tcl_DeleteChannelHandler(Tcl_Channel chan, Tcl_ChannelProc *proc,
ClientData clientData)

void Tcl_CreateCloseHandler(Tcl_Channel chan, Tcl_CloseProc *proc,
ClientData clientData)

void Tcl_DeleteCloseHandler(Tcl_Channel chan, Tcl_CloseProc *proc,
ClientData clientData)

int Tcl_GetOpenFile(Tcl_Interp *interp, char *string, int write, int checkUsage,
ClientData *filePtr)

Tcl_Channel Tcl_GetStdChannel(int type)

void Tcl_SetStdChannel(Tcl_Channel channel, int type)

Tcl_Channel Tcl_OpenFileChannel(Tcl_Interp *interp, char *fileName,
char *modeString, int permissions)

Tcl_Channel Tcl_MakeFileChannel(ClientData handle, int mode)
Tcl_Channel Tcl_GetChannel(Tcl_Interp *interp, char *chanName, int *modePtr)
void Tcl_RegisterChannel(Tcl_Interp *interp, Tcl_Channel chan)
int Tcl_UnregisterChannel(Tcl_Interp *interp, Tcl_Channel chan)
int Tcl_Close(Tcl_Interp *interp, Tcl_Channel chan)

int Tcl_Read(Tcl_Channel chan, char *bufPtr, int toRead)

int Tcl_Gets(Tcl_Channel chan, Tcl_DString *dsPtr)

int Tcl_GetsObj(Tcl_Channel chan, Tcl_Obj *objPtr)

int Tcl_Write(Tcl_Channel chan, char *s, int slen)

int Tcl_Flush(Tcl_Channel chan)

int Tcl_Seek(Tcl_Channel chan, int offset, int mode)

int Tcl_Tell(Tcl_Channel chan)

146 Chapter 4— The Tcl C Interface

int Tcl_GetChannelOption(Tcl_Interp *interp, Tcl_Channel chan,
char *optionName, Tcl_DString *dsPtr)

int Tcl_SetChannelOption(Tcl_Interp *interp, Tcl_Channel chan, char *optionName,
char *newValue)

int Tcl_Eof(Tcl_Channel chan)

int Tcl_InputBlocked(Tcl_Channel chan)

int Tcl_InputBuffered(Tcl_Channel chan)

Tcl_Channel Tcl_OpenTcpClient(Tcl_Interp *interp, int port, char *address,
char *myaddr, int myport, int async)

Tcl_Channel Tcl_MakeTcpClientChannel(ClientData tcpSocket)

Tcl_Channel Tcl_OpenTcpServer(Tcl_Interp *interp, int port, char *host,
Tcl_TepAcceptProc *acceptProc, ClientData callbackData)

int Tcl_Ungets(Tcl_Channel chan, char *str, int len, int atHead)

int Tcl_GetChannelMode(Tcl_Channel chan)

Notifier and Events

void Tcl_CreateEventSource(Tcl_EventSetupProc *setupProc,
Tcl_EventCheckProc *checkProc, ClientData clientData)

void Tcl_DeleteEventSource(Tcl_EventSetupProc *setupProc,
Tcl_EventCheckProc *checkProc, ClientData clientData)

void Tcl_SetMaxBlockTime(Tcl_Time *timePtr)

void Tcl_QueueEvent(Tcl_Event *evPtr, Tcl_QueuePosition position)

Eﬂ
3=
S o
S
©

void Tcl_DeleteEvents(Tcl_EventDeleteProc *proc, ClientData clientData)
int Tcl_WaitForEvent(Tcl_Time *timePtr)

void Tcl_SetTimer(Tcl_Time *timePtr)

int Tcl_ServiceAll(void)

int Tcl_ServiceEvent(int flags)

int Tcl_GetServiceMode(void)

int Tcl_SetServiceMode(int mode)

Miscellaneous

char *Tcl_Alloc(int size)
void Tcl_Free(char *ptr)
char *Tcl_Realloc(char *ptr, int size)

void Tcl_CreateFileHandler(int fd, int mask, Tcl_FileProc *proc,
ClientData clientData)

void Tcl_DeleteFileHandler(int fd)

Tcl_TimerToken Tcl_CreateTimerHandler(int milliseconds, Tcl_TimerProc *proc,
ClientData clientData)

void Tcl_DeleteTimerHandler(Tcl_TimerToken token)

Group Listing of Functions 147

Tcl_Trace Tcl_CreateTrace(Tcl_Interp *interp, int level, Tcl_CmdTraceProc *proc,
ClientData clientData)

void Tcl_DeleteTrace(Tcl_Interp *interp, Tcl_Trace trace)

void Tcl_FindExecutable(char *argv0)

int Tcl_PkgProvide(Tcl_Interp *interp, char *name, char *version)

char *Tcl_PkgRequire(Tcl_Interp *interp, char *name, char *version, int exact)
void Tcl_Preserve(ClientData data)

void Tcl_Release(ClientData clientData)

void Tcl_EventuallyFree(ClientData clientData, Tcl_FreeProc *freeProc)

void Tcl_Sleep(int ms)

void Tcl_SplitPath(char *path, int *argcPtr, char *argvPtr)

char *Tcl_JoinPath(int argc, char *argv, Tcl_DString *resultPtr)

Tcl_PathType Tcl_GetPathType(char *path)

void Tcl_Main(int argc, char **argv, Tcl_AppInitProc *applInitProc

char *Tcl_TranslateFileName(Tcl_Interp *interp, char *name, Tcl_DString *bufferPtr)

Alphabetical Summary of Functions

void Tcl_AddErrorInfo (Tcl_Interp *interp, char *message)

void Tcl_AddObjErrorInfo(Tcl_Interp *interp, char *message, int length)

char *Tcl_Alloc(int size)

void Tcl_AllowExceptions(Tcl_Interp *interp)

int Tcl_ApplInit(Tcl_Interp *interp)

int Tcl_AppendAllObjTypes(Tcl_Interp *interp, Tcl_Obj *objPtr)

void Tcl_AppendElement(Tcl_Interp *interp, char *string)

void Tcl_AppendResult(Tcl_Interp *interp, ...)

void Tcl_AppendStringsToObj(Tcl_Obj *interp, ...)

void Tcl_AppendToODbj(Tcl_Obj *objPtr, char *bytes, int length)

Tcl_AsyncHandler Tcl_AsyncCreate(Tcl_AsyncProc *proc, ClientData clientData)

void Tcl_AsyncDelete(Tcl_AsyncHandler async)

int Tcl_AsyncInvoke(Tcl_Interp *interp, int code)

void Tcl_AsyncMark(Tcl_AsyncHandler async)

int Tcl_AsyncReady(void)

void Tcl_BackgroundError(Tcl_Interp *interp)

char Tcl_Backslash(const char *src, int *readPtr)

int Tcl_BadChannelOption(Tcl_Interp *interp, char *optionName, char *optionList)

void Tcl_CallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeleteProc *proc,
ClientData clientData)

void Tcl_CancelldleCall(Tcl_IdleProc *idleProc, ClientData clientData)

int Tcl_Close(Tcl_Interp *interp, Tcl_Channel chan)

int Tcl_CommandComplete(char *cmd)

148 Chapter 4— The Tcl C Interface

Tcl_Obj *Tcl_ConcatObj(int objc, Tcl_Obj *const objvl])

char *Tcl_Concat(int argc, char **argv)

int Tcl_ConvertCountedElement(const char *src, int length, char *dst, int flags)

int Tcl_ConvertElement(const char *src, char *dst, int flags)

int Tcl_ConvertToType(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_ObjType *typePtr)

int Tcl_CreateAliasObj(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int objc, Tcl_Obj *const objvlD

int Tcl_CreateAlias(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int argc, char **argv)

void Tcl_CreateChannelHandler(Tcl_Channel chan, int mask,
Tcl_ChannelProc *proc, ClientData clientData)

Tcl_Channel Tcl_CreateChannel(Tcl_ChannelType *typePtr, char *chanName,
ClientData instanceData, int mask)

void Tcl_CreateCloseHandler(Tcl_Channel chan, Tcl_CloseProc *proc,
ClientData clientData)

Tcl_Command Tcl_CreateCommand(Tcl_Interp *interp, char *cmdName,
Tcl_CmdProc *proc, ClientData clientData, Tcl_CmdDeleteProc *deleteProc)

void Tcl_CreateEventSource(Tcl_EventSetupProc *setupProc,
Tcl_EventCheckProc *checkProc, ClientData clientData)

void Tcl_CreateExitHandler(Tcl_ExitProc *proc, ClientData clientData)

void Tcl_CreateFileHandler(int fd, int mask, Tcl_FileProc *proc,
ClientData clientData)

Tcl_HashEntry *Tcl_CreateHashEntry(Tcl_hashTable *tablePtr, char *key,
int *newPtr)

Eﬂ
3=
S o
S
©

Tcl_Interp *Tcl_Createlnterp(void)

void Tcl_CreateMathFunc(Tcl_Interp *interp, char *name, int numArgs,
Tcl_ValueType *argTypes, Tcl_MathProc *proc, ClientData clientData)

Tcl_Command Tcl_CreateObjCommand(Tcl_Interp *interp, char *cmdName,
Tcl_ObjCmdProc *proc, ClientData clientData,
Tcl_CmdDeleteProc *deleteProc)

Tcl_Interp *Tcl_CreateSlave(Tcl_Interp *interp, char *slaveName, int isSafe)

Tcl_TimerToken Tcl_CreateTimerHandler(int milliseconds, Tcl_TimerProc *proc,
ClientData clientData)

Tcl_Trace Tcl_CreateTrace(Tcl_Interp *interp, int level, Tcl_CmdTraceProc *proc,
ClientData clientData)

char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, const char *string)

char *Tcl_DStringAppend(Tcl_DString *dsPtr, const char *string, int length)

void Tcl_DStringEndSublist(Tcl_DString *dsPtr)

void Tcl_DStringFree(Tcl_DString *dsPtr)

void Tcl_DStringGetResult(Tcl_Interp *interp, Tcl_DString *dsPtr)

void Tcl_DStringInit(Tcl_DString *dsPtr)

int Tcl_DStringLength(Tcl_DString *dsPtr)

void Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)

Alphabetical Summary of Functions 149

void Tcl_DStringSetLength(Tcl_DString *dsPtr, int length)

void Tcl_DStringStartSublist(Tcl_DString *dsPtr)

char *Tcl_DStringValue(Tcl_DString *dsPtr)

void Tcl_DecrRefCount(Tcl_Obj *objPtr)

void Tcl_DeleteAssocData(Tcl_Interp *interp, char *name)

void Tcl_DeleteChannelHandler(Tcl_Channel chan, Tcl_ChannelProc *proc,
ClientData clientData)

void Tcl_DeleteCloseHandler(Tcl_Channel chan, Tcl_CloseProc *proc,
ClientData clientData)

int Tcl_DeleteCommandFromToken(Tcl_Interp *interp, Tcl_Command command)

int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)

void Tcl_DeleteEventSource(Tcl_EventSetupProc *setupProc,
Tcl_EventCheckProc *checkProc, ClientData clientData)

void Tcl_DeleteEvents(Tcl_EventDeleteProc *proc, ClientData clientData)
void Tcl_DeleteExitHandler(Tcl_ExitProc *proc, ClientData clientData)
void Tcl_DeleteFileHandler(int fd)

void Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)

void Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)

void Tcl_Deletelnterp(Tcl_Interp *interp)

void Tcl_DeleteTimerHandler(Tcl_TimerToken token)

void Tcl_DeleteTrace(Tcl_Interp *interp, Tcl_Trace trace)

void Tcl_DetachPids(int numPids, Tcl_Pid *pidPtr)

int Tcl_DoOneEvent(int flags)

void Tcl_DoWhenldle(Tcl_IdleProc *proc, ClientData clientData)

void Tcl_DontCallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeleteProc *proc,
ClientData clientData)

Tcl_Obj *Tcl_DuplicateObj(Tcl_Obj *objPtr)

int Tcl_Eof(Tcl_Channel chan)

char *Tcl_Errnold(void)

int Tcl_EvalFile(Tcl_Interp *interp, char *fileName)

int Tcl_EvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)

int Tcl_Eval(Tcl_Interp *interp, char *string)

void Tcl_EventuallyFree(ClientData clientData, Tcl_FreeProc *freeProc)

void Tcl_Exit(int status)

int Tcl_ExposeCommand(Tcl_Interp *interp, char *hiddenCmdToken,
char *cmdName)

int Tcl_ExprBooleanObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *ptr)

int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int *ptr)

int Tcl_ExprDoubleObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *ptr)

int Tcl_ExprDouble(Tcl_Interp *interp, char *string, double *ptr)

int Tcl_ExprLongODbj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *ptr)

int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *ptr)

150 Chapter 4— The Tcl C Interface

int Tcl_ExprObj(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_Obj **resultPtrPtr)

int Tcl_ExprString(Tcl_Interp *interp, char *string)

void Tcl_Finalize(void)

void Tcl_FindExecutable(char *argv0)

Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char *key)

Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)

int Tcl_Flush(Tcl_Channel chan)

void Tcl_FreeResult(Tcl_Interp *interp)

void Tcl_Free(char *ptr)

int Tcl_GetAliasObj(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char *targetCmdPtr, int *objcPtr, Tcl_Obj ***objv)

int Tcl_GetAlias(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *argcPtr, char **argvPtr)

ClientData Tcl_GetAssocData(Tcl_Interp *interp, char *name,
Tcl_InterpDeleteProc **procPtr)

int Tcl_GetBooleanFromODbj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *boolPtr)

int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *boolPtr)

int Tcl_GetChannelBufferSize(Tcl_Channel chan)

int Tcl_GetChannelFlags(Tcl_Channel channel)

int Tcl_GetChannelHandle(Tcl_Channel chan, int direction, ClientData *handlePtr)
ClientData Tcl_GetChannellnstanceData(Tcl_Channel chan)

int Tcl_GetChannelMode(Tcl_Channel chan)

char *Tcl_GetChannelName(Tcl_Channel chan)

int Tcl_GetChannelOption(Tcl_Interp *interp, Tcl_Channel chan,
char *optionName, Tcl_DString *dsPtr)

Eﬂ
3=
S o
S
©

Tcl_Channel Tcl_GetChannel(Tcl_Interp *interp, char *chanName, int *modePtr)
Tcl_ChannelType *Tcl_GetChannelType(Tcl_Channel chan)

int Tcl_GetCommandInfo(Tcl_Interp *interp, char *cmdName,
Tcl_CmdInfo *infoPtr)

char *Tcl_GetCommandName(Tcl_Interp *interp, Tcl_Command command)

int Tcl_GetDoubleFromODbj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *doublePtr)

int Tcl_GetDouble(Tcl_Interp *interp, char *string, double *doublePtr)

int Tcl_GetErrno(void)

char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)

ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)

int Tcl_GetIndexFromODbj(Tcl_Interp *interp, Tcl_Obj *objPtr, char **tablePtr,
char *msg, int flags, int *indexPtr)

int Tcl_GetIntFromODbj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *intPtr)

int Tcl_GetInt(Tcl_Interp *interp, char *string, int *intPtr)

int Tcl_GetInterpPath(Tcl_Interp *askInterp, Tcl_Interp *slavelnterp)

int Tcl_GetLongFromObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *longPtr)

Alphabetical Summary of Functions 151

Tcl_Interp *Tcl_GetMaster(Tcl_Interp *interp)

Tcl_Obj *Tcl_GetObjResult(Tcl_Interp *interp)

Tcl_ObjType *Tcl_GetObjType(char *typeName)

int Tcl_GetOpenFile(Tcl_Interp *interp, char *string, int write, int checkUsage,
ClientData *filePtr)

Tcl_PathType Tcl_GetPathType(char *path)

int Tcl_GetServiceMode(void)

Tcl_Interp *Tcl_GetSlave(Tcl_Interp *interp, char *slaveName)

Tcl_Channel Tcl_GetStdChannel(int type)

char *Tcl_GetStringFromObj(Tcl_Obj *objPtr, int *lengthPtr)

char *Tcl_GetStringResult(Tcl_Interp *interp)

char *Tcl_GetVar2(Tcl_Interp *interp, char *partl, char *part2, int flags)

char *Tcl_GetVar(Tcl_Interp *interp, char *varName, int flags)

int Tcl_GetsObj(Tcl_Channel chan, Tcl_Obj *objPtr)

int Tcl_Gets(Tcl_Channel chan, Tcl_DString *dsPtr)

int Tcl_GlobalEvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)

int Tcl_GlobalEval(Tcl_Interp *interp, char *command)

char *Tcl_HashStats(Tcl_HashTable *tablePtr)

int Tcl_HideCommand(Tcl_Interp *interp, char *cmdName,
char *hiddenCmdToken)

void Tcl_IncrRefCount(Tcl_Obj *objPtr)

void Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)

int Tcl_Init(Tcl_Interp *interp)

int Tcl_InputBlocked(Tcl_Channel chan)

int Tcl_InputBuffered(Tcl_Channel chan)

int Tcl_InterpDeleted(Tcl_Interp *interp)

void Tcl_InvalidateStringRep(Tcl_Obj *objPtr)

int Tcl_IsSafe(Tcl_Interp *interp)

int Tcl_IsShared(Tcl_Obj *objPtr)

char *Tcl_JoinPath(int argc, char **argv, Tcl_DString *resultPtr)

int Tcl_LinkVar(Tcl_Interp *interp, char *varName, char *addr, int type)

int Tcl_ListObjAppendElement(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *objPtr)
int Tcl_ListObjAppendList(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *elemListPtr)

int Tcl_ListObjGetElements(Tcl_Interp *interp, Tcl_Obj *listPtr, int *objcPtr,
Tcl_Obj **objvPtr)

int Tcl_ListObjIndex(Tcl_Interp *interp, Tcl_Obj *listPtr, int index,
Tcl_Obj *objPtrPtr)

int Tcl_ListObjLength(Tcl_Interp *interp, Tcl_Obj *listPtr, int *intPtr)

int Tcl_ListObjReplace(Tcl_Interp *interp, Tcl_Obj *listPtr, int first, int count,
int objc, Tcl_Obj *const objv[D

void Tcl_Main(int arge, char **argv, Tcl_ApplnitProc *applInitProc
Tcl_Channel Tcl_MakeFileChannel(ClientData handle, int mode)

152 Chapter 4— The Tcl C Interface

int Tcl_MakeSafe(Tcl_Interp *interp)

Tcl_Channel Tcl_MakeTcpClientChannel(ClientData tcpSocket)

char *Tcl_Merge(int argc, char **argv)

Tcl_Obj *Tcl_NewBooleanObj(int boolValue)

Tcl_Obj *Tcl_NewDoubleObj(double doubleValue)

Tcl_Obj *Tcl_NewIntObj(int intValue)

Tcl_Obj *Tcl_NewListObj(int objc, Tcl_Obj *cont objv[])

Tcl_Obj *Tcl_NewLongObj(long longValue)

Tcl_Obj *Tcl_NewObjO

Tcl_Obj *Tcl_NewsStringObij(char *bytes, int length)

Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)

void Tcl_NotifyChannel(Tcl_Channel channel, int mask)

Tcl_Obj *Tcl_ObjGetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
int flags)

Tcl_Obj *Tcl_ObjSetvar2(Tcl_Interp *interp, Tcl_ODbj *part1Ptr, Tcl_Obj *part2Ptr,
Tcl_Obj *newValuePtr, int flags)

Tcl_Channel Tcl_OpenCommandChannel(Tcl_Interp *interp, int argc, char **argv,
int flags)

Tcl_Channel Tcl_OpenFileChannel(Tcl_Interp *interp, char *fileName,
char *modeString, int permissions)

Eﬂ
3=
S o
S
©

Tcl_Channel Tcl_OpenTcpClient(Tcl_Interp *interp, int port, char *address,
char *myaddr, int myport, int async)

Tcl_Channel Tcl_OpenTcpServer(Tcl_Interp *interp, int port, char *host,
Tcl_TepAcceptProc *acceptProc, ClientData callbackData)

int Tcl_PkgProvide(Tcl_Interp *interp, char *name, char *version)

char *Tcl_PkgRequire(Tcl_Interp *interp, char *name, char *version, int exact)

char *Tcl_PosixError(Tcl_Interp *interp)

void Tcl_Preserve(ClientData data)

void Tcl_PrintDouble(Tcl_Interp *interp, double value, char *dst)

void Tcl_QueueEvent(Tcl_Event *evPtr, Tcl_QueuePosition position)

int Tcl_Read(Tcl_Channel chan, char *bufPtr, int toRead)

char *Tcl_Realloc(char *ptr, int size)

void Tcl_ReapDetachedProcs(void)

int Tcl_RecordAndEvalObj(Tcl_Interp *interp, Tcl_Obj *cmdPtr, int flags)

int Tcl_RecordAndEval(Tcl_Interp *interp, char *cmd, int flags)

Tcl_RegExp Tcl_RegExpCompile(Tcl_Interp *interp, char *string)

int Tcl_RegExpExec(Tcl_Interp *interp, Tcl_RegExp regexp, char *string, char *start)

int Tcl_RegExpMatch(Tcl_Interp *interp, char *string, char *pattern)

void Tcl_RegExpRange(Tcl_RegExp regexp, int index, char **startPtr, char *endPtr)

void Tcl_RegisterChannel(Tcl_Interp *interp, Tcl_Channel chan)

void Tcl_RegisterObjType(Tcl_ObjType *typePtr)

void Tcl_Release(ClientData clientData)

Alpbabetical Summary of Functions 153

void Tcl_ResetResult(Tcl_Interp *interp)

int Tcl_ScanCountedElement(const char *string, int length, int *flagPtr)

int Tcl_ScanElement(const char *string, int *flagPtr)

int Tcl_Seek(Tcl_Channel chan, int offset, int mode)

int Tcl_ServiceAll(void)

int Tcl_ServiceEvent(int flags)

void Tcl_SetAssocData(Tcl_Interp *interp, char *name, Tcl_InterpDeleteProc *proc,
ClientData clientData)

void Tcl_SetBooleanObj(Tcl_Obj *objPtr, int boolValue)

void Tcl_SetChannelBufferSize(Tcl_Channel chan, int sz)

int Tcl_SetChannelOption(Tcl_Interp *interp, Tcl_Channel chan, char *optionName,
char *newValue)

int Tcl_SetCommandInfo(Tcl_Interp *interp, char *cmdName, Tcl_CmdInfo *infoPtr)

void Tcl_SetDefaultTranslation(TclChannel channel, Tcl_EolTranslation transMode)

void Tcl_SetDoubleObj(Tcl_Obj *objPtr, double doubleValue)

void Tcl_SetErrno(int err)

void Tcl_SetErrorCode(Tcl_Interp *argl, ...)

void Tcl_SetHashValue(Tcl_HashEntry *entryPtr, Clientdata value)

void Tcl_SetIntObj(Tcl_Obj *objPtr, int intValue)

void Tcl_SetListObj(Tcl_Obj *objPtr, int objc, Tcl_Obj *const objv]

void Tcl_SetLongODbj(Tcl_Obj *objPtr, long longValue)

void Tcl_SetMaxBlockTime(Tcl_Time *timePtr)

void Tcl_SetObjErrorCode(Tcl_Interp *interp, Tcl_Obj *errorObjPtr)

void Tcl_SetObjLength(Tcl_Obj *objPtr, int length)

void Tcl_SetObjResult(Tcl_Interp *interp, Tcl_Obj *resultObjPtr)

int Tcl_SetRecursionLimit(Tcl_Interp *interp, int depth)

void Tcl_SetResult(Tcl_Interp *interp, char *string, Tcl_FreeProc *freeProc)

int Tcl_SetServiceMode(int mode)

void Tcl_SetStdChannel(Tcl_Channel channel, int type)

void Tcl_SetStringObj(Tcl_Obj *objPtr, char *bytes, int length)

void Tcl_SetTimer(Tcl_Time *timePtr)

char *Tcl_SetVar2(Tcl_Interp *interp, char *partl, char *part2, char *newValue,
int flags)

char *Tcl_SetVar(Tcl_Interp *interp, char *varName, char *newValue, int flags)

char *Tcl_Signalld(int sig)

char *Tcl_SignalMsg(int sig)

void Tcl_Sleep(int ms)

int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr, char ***argvPtr)

void Tcl_SplitPath(char *path, int *argcPtr, char **argvPtr)

void Tcl_StaticPackage(Tcl_Interp *interp, char *pkgName,
Tcl_PackagelnitProc *initProc, Tcl_PackagelnitProc *safelnitProc)

int Tcl_StringMatch(char *string, char *pattern)

154 Chapter 4— The Tcl C Interface

int Tcl_Tell(Tcl_Channel chan)

char *Tcl_TildeSubst(Tcl_Interp *interp, char *name, Tcl_DString *resultPtr)

int Tcl_TraceVar2(Tcl_Interp *interp, char *partl, char *part2, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)

int Tcl_TraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)

char *Tcl_TranslateFileName(Tcl_Interp *interp, char *name, Tcl_DString *bufferPtr)

int Tcl_Ungets(Tcl_Channel chan, char *str, int len, int atHead)

void Tcl_UnlinkVar(Tcl_Interp *interp, char *varName)

int Tcl_UnregisterChannel(Tcl_Interp *interp, Tcl_Channel chan)

int Tcl_UnsetVar2(Tcl_Interp *interp, char *partl, char *part2, int flags)

int Tcl_UnsetVar(Tcl_Interp *interp, char *varName, int flags)

void Tcl_UntraceVar2(Tcl_Interp *interp, char *partl, char *part2, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)

void Tcl_UntraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceProc *proc, ClientData clientData)

int Tcl_UpVar2(Tcl_Interp *interp, char *frameName, char *partl, char *part2,
char *localName, int flags)

int Tcl_UpVar(Tcl_Interp *interp, char *frameName, char *varName,
char *localName, int flags)

Eﬂ
3=
S o
S
©

void Tcl_UpdateLinkedVar(Tcl_Interp *interp, char *varName)

int Tcl_VarEval(Tcl_Interp *interp, ...)
ClientData Tcl_VarTraceInfo2(Tcl_Interp *interp, char *partl, char *part2, int flags,
Tcl_VarTraceProc *procPtr, ClientData prevClientData)

ClientData Tcl_VarTraceInfo(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTraceProc *procPtr, ClientData prevClientData)

int Tcl_WaitForEvent(Tcl_Time *timePtr)

int Tcl_Write(Tcl_Channel chan, char *s, int slen)

void Tcl_WrongNumArgs(Tcl_Interp *interp, int objc, Tcl_Obj *const objvl],
char *message)

Alphabetical Summary of Functions 155

CHAPTER 5

The Tk C Interface

This chapter presents a summary of the Tk C-language interface. Everything
described here is defined in the header file tk.h, part of the Tk distribution. For
clarity, ANSI C function prototypes are shown here, although the actual header file
supports non-ANSI compilers.

To avoid name conflicts, all functions are prefixed with Tk_ and constants are pre-
fixed with TK_. See the full Tk reference documentation for the most detailed and
up-to-date information. C interfaces are typically found in Section 3 of the Tk man-
pages.

Constants
The following constants contain Tk toolkit version information:

TK_MAJOR_VERSION
Tk major version number (e.g., 8)

TK_MINOR_VERSION
Tk minor version number (e.g., 0)

TK_RELEASE_LEVEL
Release level: 0 for alpha, 1 for beta, 2 for final/patch

TK_RELEASE_SERIAL
Version number that changes with each patch (e.g., 2)

TK_VERSION
Tk version as a string (e.g., “8.0")

TK_PATCH_LEVEL
Tk version and patch level as a string (e.g., “8.0p2”)

Data Types

The more commonly used Tk data structures are listed here:

Tk_3DBorder
Token for a three-dimensional window border

Tk_Anchor
Enumerated type describing point by which to anchor an object

Tk_ArgvInfo
Structure used to specify how to handle argv options

Tk_BindingTable
Token for a binding table

Tk_Canvas
Token for a canvas object

Tk_CanvasTextInfo
Structure providing information about the selection and insertion cursors

Tk_ConfigSpec
Structure used to specify information for configuring a widget

Tk_Cursor
Token for a cursor

Tk_ErrorHandler
Token for an X protocol error handler

Tk_ErrorProc
Type of procedure used to handle X protocol errors

S
g
Q
nh
©

Tk_EventProc
Type of procedure used to handle events

Tk_Font
Token for a font

Tk_FontMetrics
Data structure describing properties of a font

Tk_GenericProc
Type of procedure used to handle generic X events

Tk_GeomMgr
Structure describing a geometry manager

Tk_GetSelProc
Type of procedure to process the selection

Tk_TImage
Token for an image

Data Types 157

Tk_ImageChangedProc
Type of procedure to invoke when an image changes

Tk_TImageMaster
Token for an image master

Tk_TImageType
Token for an image instance

Tk_ItemType
Structure defining a type of canvas item

Tk_Justify
Enumerated type describing a style of justification

Tk_LostSelProc
Type of procedure invoked when window loses selection

Tk_PhotoHandle
Token for a photo image

Tk_PhotoImageBlock
Structure describing a block of pixels in memory

Tk_PhotoImageFormat
Structure representing a particular file format for storing images

Tk_RestrictProc
Type of procedure used to filter incoming events

Tk_SelectionProc
Type of procedure used to return selection

Tk_TextLayout
Token for a text layout

Tk_Uid
Type used as unique identifiers for strings

Tk_Window
Token for a window

Group Listing of Functions

Note that a few of these routines are implemented as macros for the sake of effi-
ciency, but logically they behave the same as functions.

Windows

XSetWindowAttributes *Tk_Attributes(Tk_Window tkwin)

void Tk_ChangeWindowAttributes(Tk_Window tkwin, unsigned long valueMask,
XSetWindowAttributes *attsPtr)

XWindowChanges *Tk_Changes(Tk_Window tkwin)

158 Chapter 5— The Tk C Interface

Tk_Uid Tk_Class(Tk_Window tkwin)

void Tk_ConfigureWindow(Tk_Window tkwin, unsigned int valueMask,
XWindowChanges *valuePtr)

Tk_Window Tk_CoordsToWindow(int rootX, int rootY, Tk_Window tkwin)

Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp, Tk_Window tkwin,
char *pathName, char *screenName)

Tk_Window Tk_CreateWindow(Tcl_Interp *interp, Tk_Window parent,
char *name, char *screenName)

int Tk_Depth(Tk_Window tkwin)

void Tk_DestroyWindow(Tk_Window tkwin)

char *Tk_DisplayName(Tk_Window tkwin)

Display Tk_Display(Tk_Window tkwin)

void Tk_DrawFocusHighlight(Tk_Window tkwin, GC gc, int width,
Drawable drawable)

char *Tk_GetAtomName(Tk_Window tkwin, Atom atom)

GC Tk_GetGC(Tk_Window tkwin, unsigned long valueMask, XGCValues *valuePtr)

int Tk_GetNumMainWindows(void)

Tk_Uid Tk_GetOption(Tk_Window tkwin, char *name, char *className)

void Tk_GetRootCoords(Tk_Window tkwin, int *xPtr, int *yPtr)

void Tk_GetVRootGeometry(Tk_Window tkwin, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)

int Tk_Height(Tk_Window tkwin)

Tk_Window Tk_IdToWindow(Display *display, Window window)

Atom Tk_InternAtom(Tk_Window tkwin, char *name)

int Tk_IsContainer(Tk_Window tkwin)

int Tk_IsEmbedded(Tk_Window tkwin)

int Tk_IsMapped(Tk_Window tkwin)

int Tk_IsTopLevel(Tk_Window tkwin)

Tk_Window Tk_MainWindow(Tcl_Interp *interp)

void Tk_MaintainGeometry(Tk_Window slave, Tk_Window master, int x, int y,
int width, int height)

void Tk_MakeWindowExist(Tk_Window tkwin)

void Tk_MoveToplevelWindow(Tk_Window tkwin, int x, int y)

Tk_Uid Tk_Name(Tk_Window tkwin)

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin)

Tk_Window Tk_Parent(Tk_Window tkwin)

char *Tk_PathName(Tk_Window tkwin)

int Tk_RestackWindow(Tk_Window tkwin, int aboveBelow, Tk_Window other)
int Tk_ScreenNumber(Tk_Window tkwin)

Screen *Tk_Screen(Tk_Window tkwin)

void Tk_SetClass(Tk_Window tkwin, char *className)

S
g
Q
nh
©

Group Listing of Functions 159

void Tk_SetWindowBackground(Tk_Window tkwin, unsigned long pixel)
void Tk_SetWindowBorderPixmap(Tk_Window tkwin, Pixmap pixmap)
void Tk_SetWindowBorder(Tk_Window tkwin, unsigned long pixel)
void Tk_SetWindowBorderWidth(Tk_Window tkwin, int width)

int Tk_StrictMotif(Tk_Window tkwin)

void Tk_Ungrab(Tk_Window tkwin)

void Tk_UnmaintainGeometry(Tk_Window slave, Tk_Window master)
void Tk_UnsetGrid(Tk_Window tkwin)

void Tk_UpdatePointer(Tk_Window tkwin, int x, int y, int state)

Visual *Tk_Visual(Tk_Window tkwin)

int Tk_Width(Tk_Window tkwin)

Window Tk_Windowld(Tk_Window tkwin)

int Tk_X(Tk_Window tkwin)

int Tk_Y(Tk_Window tkwin)

Configuring Widgets
int Tk_ConfigureInfo(Tcl_Interp *interp, Tk_Window tkwin, Tk_ConfigSpec *specs,
char *widgRec, char *argvName, int flags)
int Tk_ConfigureValue(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char *argvName, int flags)
int Tk_ConfigureWidget(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, int argc, char **argv, char *widgRec, int flags)
void Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec, Display *display,
int needFlags)
int Tk_Offset(type, field)

Bitmaps and Photo Images

void Tk_CreateIlmageType(Tk_ImageType *typePtr)

void Tk_CreatePhotolmageFormat(Tk_PhotolmageFormat *formatPtr)

int Tk_DefineBitmap(Tcl_Interp *interp, Tk_Uid name, char *source, int width,
int height)

void Tk_DeleteImage(Tcl_Interp *interp, char *name)

Tk_PhotoHandle Tk_FindPhoto(Tcl_Interp *interp, char *imageName)

void Tk_FreeBitmap(Display *display, Pixmap bitmap)

void Tk_FreeImage(Tk_Image image)

void Tk_FreePixmap(Display *display, Pixmap pixmap)

Pixmap Tk_GetBitmapFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, int width, int height)

Pixmap Tk_GetBitmap(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)

ClientData Tk_GetIlmageMasterData(Tcl_Interp *interp, char *name,
Tk_ImageType **typePtrPtr)

160 Chapter 5— The Tk C Interface

Tk_Image Tk_Getlmage(Tcl_Interp *interp, Tk_Window tkwin, char *name,
Tk_ImageChangedProc *changeProc, ClientData clientData)

void Tk_ImageChanged(Tk_ImageMaster master, int X, int y, int width, int height,
int imageWidth, int imageHeight)
char *Tk_NameOfBitmap(Display *display, Pixmap bitmap)
char *Tk_NameOflmage(Tk_ImageMaster imageMaster)
void Tk_PhotoBlank(Tk_PhotoHandle handle)
void Tk_PhotoExpand(Tk_PhotoHandle handle, int width, int height)
int Tk_PhotoGetImage(Tk_PhotoHandle handle, Tk_PhotoIlmageBlock *blockPtr)
void Tk_PhotoGetSize(Tk_PhotoHandle handle, int *widthPtr, int *heightPtr)
void Tk_PhotoPutBlock(Tk_PhotoHandle handle, Tk_PhotolmageBlock *blockPtr,
int x, int y, int width, int height)
void Tk_PhotoPutZoomedBlock(Tk_PhotoHandle handle,
Tk_PhotolmageBlock *blockPtr, int x, int y, int width, int height, int zoomX,
int zoomY, int subsampleX, int subsampleY)
void Tk_PhotoSetSize(Tk_PhotoHandle handle, int width, int height)
void Tk_RedrawImage(Tk_Image image, int imageX, int imageY, int width,
int height, Drawable drawable, int drawableX, int drawableY)
void Tk_SetWindowBackgroundPixmap(Tk_Window tkwin, Pixmap pixmap)
void Tk_SizeOfBitmap(Display *display, Pixmap bitmap, int *widthPtr,
int *heightPtr)
void Tk_SizeOflmage(Tk_Image image, int *widthPtr, int *heightPtr)

Events

void Tk_BindEvent(Tk_BindingTable bindingTable, XEvent *eventPtr,
Tk_Window tkwin, int numODbjects, ClientData *objectPtr)

Tk_BindingTable Tk_CreateBindingTable(Tcl_Interp *interp)

unsigned long Tk_CreateBinding(Tcl_Interp *interp,
Tk_BindingTable bindingTable, ClientData object, *eventString,
char *command, int append)

void Tk_CreateEventHandler(Tk_Window token, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

void Tk_CreateGenericHandler(Tk_GenericProc *proc, ClientData clientData)

void Tk_DeleteAllBindings(Tk_BindingTable bindingTable, ClientData object)

void Tk_DeleteBindingTable(Tk_BindingTable bindingTable)

int Tk_DeleteBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)

void Tk_DeleteEventHandler(Tk_Window token, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

void Tk_DeleteGenericHandler(Tk_GenericProc *proc, ClientData clientData)

void Tk_GetAllBindings(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object)

Group Listing of Functions 161

S
S
=
[x]
@

N
)

char *Tk_GetBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)

void Tk_HandleEvent(XEvent *eventPtr)

void Tk_MainLoop(void)

void Tk_QueueWindowEvent(XEvent *eventPtr, Tcl_QueuePosition position)

Tk_RestrictProc *Tk_RestrictEvents(Tk_RestrictProc *proc, ClientData arg,
ClientData *prevArgPtr)

Displaying Widgets

GC Tk_3DBorderGC(Tk_Window tkwin, Tk_3DBorder border, int which)

void Tk_3DHorizontalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int leftIn, int rightIn,
int topBevel, int relief)

void Tk_3DVerticalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int leftBevel, int relief)

void Tk_Draw3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)

void Tk_Draw3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int X, int y, int width, int height, int borderWidth,
int relief)

void Tk_Fill3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)

void Tk_Fill3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)

void Tk_Free3DBorder(Tk_3DBorder border)

Tk_3DBorder Tk_Get3DBorder(Tcl_Interp *interp, Tk_Window tkwin,
Tk_Uid colorName)

char *Tk_NameOf3DBorder(Tk_3DBorder border)

void Tk_SetBackgroundFromBorder(Tk_Window tkwin,
Tk_3DBorder border)

Canvases

void Tk_CanvasDrawableCoords(Tk_Canvas canvas, double x, double vy,
short *drawableXPtr, short *drawableYPtr)

void Tk_CanvasEventuallyRedraw(Tk_Canvas canvas, int x1, int y1, int X2, int y2)

int Tk_CanvasGetCoord(Tcl_Interp *interp, Tk_Canvas canvas, char *string,
double *doublePtr)
Tk_CanvasTextInfo *Tk_CanvasGetTextInfo(Tk_Canvas canvas)

162 Chapter 5— The Tk C Interface

int Tk_CanvasPsBitmap(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap,
int x, int y, int width, int height)

int Tk_CanvasPsColor(Tcl_Interp *interp, Tk_Canvas canvas, XColor *colorPtr)

int Tk_CanvasPsFont(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Font font)

void Tk_CanvasPsPath(Tcl_Interp *interp, Tk_Canvas canvas, double *coordPtr,
int numPoints)
int Tk_CanvasPsStipple(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap)
double Tk_CanvasPsY(Tk_Canvas canvas, double y)
void Tk_CanvasSetStippleOrigin(Tk_Canvas canvas, GC gc)
int Tk_CanvasTagsParseProc(ClientData clientData, Tcl_Interp *interp,
Tk_Window tkwin, char *value, char *widgRec, int offset)
char *Tk_CanvasTagsPrintProc(ClientData clientData, Tk_Window tkwin,
char *widgRec, int offset, Tcl_FreeProc **freeProcPtr)
Tk_Window Tk_CanvasTkwin(Tk_Canvas canvas)
void Tk_CanvasWindowCoords(Tk_Canvas canvas, double x, double y,
short *screenXPtr, short *screenYPtr)
void Tk_CreateltemType(Tk_ItemType *typePtr)
Pixmap Tk_GetPixmap(Display *display, Drawable d, int width, int height,
int depth)

Text

int Tk_CharBbox(Tk_TextLayout layout, int index, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)

Tk_TextLayout Tk_ComputeTextLayout(Tk_Font font, const char *string,
int numChars, int wrapLength, Tk_Justify justify, int flags, int *widthPrtr,
int *heightPtr)

S
g
Q
nh
©

int Tk_DistanceToTextLayout(Tk_TextLayout layout, int X, int y)

void Tk_DrawChars(Display *display, Drawable drawable, GC gc, Tk_Font tkfont,
const char *source, int numChars, int x, int y)

void Tk_DrawTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int firstChar, int lastChar)

Font Tk_FontId(Tk_Font font)
void Tk_FreeFont(Tk_Font)
void Tk_FreeTextLayout(Tk_TextLayout textLayout)

Tk_Font Tk_GetFontFromObj(Tcl_Interp *interp, Tk_Window tkwin,
Tcl_Obj *objPtr)
void Tk_GetFontMetrics(Tk_Font font, Tk_FontMetrics *fmPtr)
Tk_Font Tk_GetFont(Tcl_Interp *interp, Tk_Window tkwin, const char *string)
int Tk_GetJustify(Tcl_Interp *interp, char *string, Tk_Justify *justifyPtr)
int Tk_IntersectTextLayout(Tk_TextLayout layout, int X, int y, int width, int height)

int Tk_MeasureChars(Tk_Font tkfont, const char *source, int maxChars,
int maxPixels, int flags, int *lengthPtr)

Group Listing of Functions 163

char *Tk_NameOfFont(Tk_Font font)

char *Tk_NameOfJustify(Tk_Justify justify)

int Tk_PointToChar(Tk_TextLayout layout, int x, int y)

int Tk_PostscriptFontName(Tk_Font tkfont, Tcl_DString *dsPtr)

void Tk_TextLayoutToPostscript(Tcl_Interp *interp, Tk_TextLayout layout)

int Tk_TextWidth(Tk_Font font, const char *string, int numChars)

void Tk_UnderlineChars(Display *display, Drawable drawable, GC gc,
Tk_Font tkfont, const char *source, int x, int y, int firstChar, int lastChar)

void Tk_UnderlineTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int underline)

The Selection

void Tk_ClearSelection(Tk_Window tkwin, Atom selection)

int Tk_ClipboardAppend(Tcl_Interp *interp, Tk_Window tkwin, Atom target,
Atom format, char *buffer)

int Tk_ClipboardClear(Tcl_Interp *interp, Tk_Window tkwin)

void Tk_CreateSelHandler(Tk_Window tkwin, Atom selection, Atom target,
Tk_SelectionProc *proc, ClientData clientData, Atom format)

void Tk_DeleteSelHandler(Tk_Window tkwin, Atom selection, Atom target)

int Tk_GetSelection(Tcl_Interp *interp, Tk_Window tkwin, Atom selection,
Atom target, Tk_GetSelProc *proc, ClientData clientData)

void Tk_OwnSelection(Tk_Window tkwin, Atom selection, Tk_LostSelProc *proc,
ClientData clientData)

Geometry Management

void Tk_GeometryRequest(Tk_Window tkwin, int reqWidth, int reqHeight)
int Tk_InternalBorderWidth(Tk_Window tkwin)

void Tk_ManageGeometry(Tk_Window tkwin, Tk_GeomMgr *mgrPtr,
ClientData clientData)

void Tk_MapWindow(Tk_Window tkwin)
void Tk_MoveResizeWindow(Tk_Window tkwin, int X, int y, int width, int height)
void Tk_MoveWindow(Tk_Window tkwin, int x, int y)
int Tk_ReqHeight(Tk_Window tkwin)
int Tk_ReqWidth(Tk_Window tkwin)
void Tk_ResizeWindow(Tk_Window tkwin, int width, int height)
void Tk_SetGrid(Tk_Window tkwin, int reqWidth, int reqHeight,
int gridWidth, int gridHeight)
void Tk_SetInternalBorder(Tk_Window tkwin, int width)
void Tk_UnmapWindow(Tk_Window tkwin)

164 Chapter 5— The Tk C Interface

Application Startup and Initialization

int Tk_Init(Tcl_Interp *interp)

void Tk_Main(int argc, char **argv, Tcl_ApplInitProc *applnitProc)

int Tk_ParseArgv(Tcl_Interp *interp, Tk_Window tkwin, int *argcPtr, char **argv,
Tk_ArgvInfo *argTable, int flags)

int Tk_Safelnit(Tcl_Interp *interp)

char *Tk_SetAppName(Tk_Window tkwin, char *name)

Error Handling

void Tk_DeleteErrorHandler(Tk_ErrorHandler handler)

Tk_ErrorHandler Tk_CreateErrorHandler(Display *display, int errNum, int request,
int minorCode, Tk_ErrorProc *errorProc, ClientData clientData)

Color

XColor *Tk_3DBorderColor(Tk_3DBorder border)

Colormap Tk_Colormap(Tk_Window tkwin)

void Tk_FreeColor(XColor *colorPtr)

void Tk_FreeColormap(Display *display, Colormap colormap)

GC Tk_GCForColor(XColor *colorPtr, Drawable drawable)

XColor *Tk_GetColorByValue(Tk_Window tkwin, XColor *colorPtr)

XColor *Tk_GetColor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid name)
Colormap Tk_GetColormap(Tcl_Interp *interp, Tk_Window tkwin, char *string)
char *Tk_NameOfColor(XColor *colorPtr)

void Tk_PreserveColormap(Display *display, Colormap colormap)

S
g
Q
nh
©

void Tk_SetWindowColormap(Tk_Window tkwin, Colormap colormap)

int Tk_SetWindowVisual(Tk_Window tkwin, Visual *visual, int depth,
Colormap colormap)

Cursors

void Tk_DefineCursor(Tk_Window window, Tk_Cursor cursor)

void Tk_FreeCursor(Display *display, Tk_Cursor cursor)

Tk_Cursor Tk_GetCursor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)

Tk_Cursor Tk_GetCursorFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, char *mask, int width, int height, int xHot, int yHot, Tk_Uid fg,
Tk_Uid bg)

char *Tk_NameOfCursor(Display *display, Tk_Cursor cursor)

void Tk_UndefineCursor(Tk_Window window)

Group Listing of Functions 165

Miscellaneous

void Tk_FreeGC(Display *display, GC gc)

void Tk_FreeXId(Display *display, XID xid)

int Tk_GetAnchor(Tcl_Interp *interp, char *string, Tk_Anchor *anchorPtr)

int Tk_GetCapStyle(Tcl_Interp *interp, char *string, int *capPtr)

Tk_ItemType *Tk_GetltemTypes(void)

int Tk_GetJoinStyle(Tcl_Interp *interp, char *string, int *joinPtr)

int Tk_GetPixels(Tcl_Interp *interp, Tk_Window tkwin, char *string, int *intPtr)

int Tk_GetRelief(Tcl_Interp *interp, char *name, int *reliefPtr)

int Tk_GetScreenMM(Tcl_Interp *interp, Tk_Window tkwin, char *string,
double *doublePtr)

int Tk_GetScrollinfo(Tcl_Interp *interp, int argc, char **argv, double *dblPtr,
int *intPtr)

Tk_Uid Tk_GetUid(const char *string)

Visual *Tk_GetVisual(Tcl_Interp *interp, Tk_Window tkwin, char *string,
int *depthPtr, Colormap *colormapPtr)

int Tk_Grab(Tcl_Interp *interp, Tk_Window tkwin, int grabGlobal)

char *Tk_NameOfAnchor(Tk_Anchor anchor)

char *Tk_NameOfCapStyle(int cap)

char *Tk_NameOfJoinStyle(int join)

char *Tk_NameOfRelief(int relief)

Alpbabetical Summary of Functions

XColor *Tk_3DBorderColor(Tk_3DBorder border)

GC Tk_3DBorderGC(Tk_Window tkwin, Tk_3DBorder border, int which)

void Tk_3DHorizontalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int X, int y, int width, int height, int leftIn, int rightIn,
int topBevel, int relief)

void Tk_3DVerticalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int leftBevel, int relief)

XSetWindowAttributes *Tk_Attributes(Tk_Window tkwin)

void Tk_BindEvent(Tk_BindingTable bindingTable, XEvent *eventPtr,
Tk_Window tkwin, int numObjects, ClientData *objectPtr)

void Tk_CanvasDrawableCoords(Tk_Canvas canvas, double x, double vy,
short *drawableXPtr, short *drawableYPtr)

void Tk_CanvasEventuallyRedraw(Tk_Canvas canvas, int x1, int y1, int X2, int y2)

int Tk_CanvasGetCoord(Tcl_Interp *interp, Tk_Canvas canvas, char *string,
double *doublePtr)

Tk_CanvasTextInfo *Tk_CanvasGetTextInfo(Tk_Canvas canvas)

int Tk_CanvasPsBitmap(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap,
int x, int y, int width, int height)

166 Chapter 5— The Tk C Interface

int Tk_CanvasPsColor(Tcl_Interp *interp, Tk_Canvas canvas, XColor *colorPtr)

int Tk_CanvasPsFont(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Font font)

void Tk_CanvasPsPath(Tcl_Interp *interp, Tk_Canvas canvas, double *coordPtr,
int numPoints)

int Tk_CanvasPsStipple(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap)

double Tk_CanvasPsY(Tk_Canvas canvas, double y)

void Tk_CanvasSetStippleOrigin(Tk_Canvas canvas, GC gc)

int Tk_CanvasTagsParseProc(ClientData clientData, Tcl_Interp *interp,
Tk_Window tkwin, char *value, char *widgRec, int offset)

char *Tk_CanvasTagsPrintProc(ClientData clientData, Tk_Window tkwin,
char *widgRec, int offset, Tcl_FreeProc **freeProcPtr)

Tk_Window Tk_CanvasTkwin(Tk_Canvas canvas)

void Tk_CanvasWindowCoords(Tk_Canvas canvas, double x, double y,
short *screenXPtr, short *screenYPtr)

void Tk_ChangeWindowAttributes(Tk_Window tkwin, unsigned long valueMask,
XSetWindowAttributes *attsPtr)

XWindowChanges *Tk_Changes(Tk_Window tkwin)

int Tk_CharBbox(Tk_TextLayout layout, int index, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)

Tk_Uid Tk_Class(Tk_Window tkwin)

void Tk_ClearSelection(Tk_Window tkwin, Atom selection)

int Tk_ClipboardAppend(Tcl_Interp *interp, Tk_Window tkwin, Atom target,
Atom format, char *buffer)

int Tk_ClipboardClear(Tcl_Interp *interp, Tk_Window tkwin)

Colormap Tk_Colormap(Tk_Window tkwin)

Tk_TextLayout Tk_ComputeTextLayout(Tk_Font font, const char *string,
int numChars, int wrapLength, Tk_Justify justify, int flags, int *widthPtr,
int *heightPtr)

int Tk_ConfigureInfo(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char *argvName, int flags)

S
g
Q
nh
©

int Tk_ConfigureValue(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char *argvName, int flags)
int Tk_ConfigureWidget(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, int argc, char **argv, char *widgRec, int flags)
void Tk_ConfigureWindow(Tk_Window tkwin, unsigned int valueMask,
XWindowChanges *valuePtr)
Tk_Window Tk_CoordsToWindow(int rootX, int rootY, Tk_Window tkwin)
unsigned long Tk_CreateBinding(Tcl_Interp *interp,
Tk_BindingTable bindingTable, ClientData object, *eventString,
char *command, int append)
Tk_BindingTable Tk_CreateBindingTable(Tcl_Interp *interp)
Tk_ErrorHandler Tk_CreateErrorHandler(Display *display, int errNum, int request,
int minorCode, Tk_ErrorProc *errorProc, ClientData clientData)

Alphabetical Summary of Functions 167

void Tk_CreateEventHandler(Tk_Window token, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

void Tk_CreateGenericHandler(Tk_GenericProc *proc, ClientData clientData)
void Tk_CreateImageType(Tk_ImageType *typePtr)

void Tk_CreateltemType(Tk_ItemType *typePtr)

void Tk_CreatePhotoImageFormat(Tk_PhotoImageFormat *formatPtr)

void Tk_CreateSelHandler(Tk_Window tkwin, Atom selection, Atom target,
Tk_SelectionProc *proc, ClientData clientData, Atom format)

Tk_Window Tk_CreateWindowFromPath(Tcl_Interp *interp, Tk_Window tkwin,
char *pathName, char *screenName)

Tk_Window Tk_CreateWindow(Tcl_Interp *interp, Tk_Window parent,
char *name, char *screenName)

int Tk_DefineBitmap(Tcl_Interp *interp, Tk_Uid name, char *source, int width,
int height)

void Tk_DefineCursor(Tk_Window window, Tk_Cursor cursor)

void Tk_DeleteAllBindings(Tk_BindingTable bindingTable, ClientData object)

void Tk_DeleteBindingTable(Tk_BindingTable bindingTable)

int Tk_DeleteBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)

void Tk_DeleteErrorHandler(Tk_ErrorHandler handler)

void Tk_DeleteEventHandler(Tk_Window token, unsigned long mask,
Tk_EventProc *proc, ClientData clientData)

void Tk_DeleteGenericHandler(Tk_GenericProc *proc, ClientData clientData)

void Tk_DeleteImage(Tcl_Interp *interp, char *name)

void Tk_DeleteSelHandler(Tk_Window tkwin, Atom selection, Atom target)

int Tk_Depth(Tk_Window tkwin)

void Tk_DestroyWindow(Tk_Window tkwin)

char *Tk_DisplayName(Tk_Window tkwin)

Display Tk_Display(Tk_Window tkwin)

int Tk_DistanceToTextLayout(Tk_TextLayout layout, int x, int y)

void Tk_Draw3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)

void Tk_Draw3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)

void Tk_DrawChars(Display *display, Drawable drawable, GC gc, Tk_Font tkfont,
const char *source, int numChars, int x, int y)

void Tk_DrawFocusHighlight(Tk_Window tkwin, GC gc, int width,
Drawable drawable)

void Tk_DrawTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int firstChar, int lastChar)

168 Chapter 5— The Tk C Interface

void Tk_Fill3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)

void Tk_Fill3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)

Tk_PhotoHandle Tk_FindPhoto(Tcl_Interp *interp, char *imageName)

Font Tk_Fontld(Tk_Font font)

void Tk_Free3DBorder(Tk_3DBorder border)

void Tk_FreeBitmap(Display *display, Pixmap bitmap)

void Tk_FreeColor(XColor *colorPtr)

void Tk_FreeColormap(Display *display, Colormap colormap)

void Tk_FreeCursor(Display *display, Tk_Cursor cursor)

void Tk_FreeFont(Tk_Font)

void Tk_FreeGC(Display *display, GC gc)

void Tk_Freelmage(Tk_Image image)

void Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec, Display *display,
int needFlags)

void Tk_FreePixmap(Display *display, Pixmap pixmap)

void Tk_FreeTextLayout(Tk_TextLayout textLayout)

void Tk_FreeXId(Display *display, XID xid)

GC Tk_GCForColor(XColor *colorPtr, Drawable drawable)

void Tk_GeometryRequest(Tk_Window tkwin, int reqWidth, int reqHeight)

Tk_3DBorder Tk_Get3DBorder(Tcl_Interp *interp, Tk_Window tkwin,
Tk_Uid colorName)

void Tk_GetAllBindings(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object)

int Tk_GetAnchor(Tcl_Interp *interp, char *string, Tk_Anchor *anchorPtr)

char *Tk_GetAtomName(Tk_Window tkwin, Atom atom)

char *Tk_GetBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)

S
g
Q
nh
©

Pixmap Tk_GetBitmapFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, int width, int height)
Pixmap Tk_GetBitmap(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)
int Tk_GetCapStyle(Tcl_Interp *interp, char *string, int *capPtr)
XColor *Tk_GetColorByValue(Tk_Window tkwin, XColor *colorPtr)
XColor *Tk_GetColor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid name)
Colormap Tk_GetColormap(Tcl_Interp *interp, Tk_Window tkwin, char *string)
Tk_Cursor Tk_GetCursorFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, char *mask, int width, int height, int xHot, int yHot, Tk_Uid fg,
Tk_Uid bg)
Tk_Cursor Tk_GetCursor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)

Alphabetical Summary of Functions 169

Tk_Font Tk_GetFontFromODbj(Tcl_Interp *interp, Tk_Window tkwin,
Tcl_Obj *objPtr)

void Tk_GetFontMetrics(Tk_Font font, Tk_FontMetrics *fmPtr)

Tk_Font Tk_GetFont(Tcl_Interp *interp, Tk_Window tkwin, const char *string)

GC Tk_GetGC(Tk_Window tkwin, unsigned long valueMask, XGCValues *valuePtr)

ClientData Tk_GetImageMasterData(Tcl_Interp *interp, char *name,
Tk_ImageType **typePtrPtr)

Tk_Image Tk_GetImage(Tcl_Interp *interp, Tk_Window tkwin, char *name,
Tk_ImageChangedProc *changeProc, ClientData clientData)

Tk_ItemType *Tk_GetltemTypes(void)

int Tk_GetJoinStyle(Tcl_Interp *interp, char *string, int *joinPtr)

int Tk_GetJustify(Tcl_Interp *interp, char *string, Tk_Justify *justifyPtr)

int Tk_GetNumMainWindows(void)

Tk_Uid Tk_GetOption(Tk_Window tkwin, char *name, char *className)

int Tk_GetPixels(Tcl_Interp *interp, Tk_Window tkwin, char *string, int *intPtr)

Pixmap Tk_GetPixmap(Display *display, Drawable d, int width, int height,
int depth)

int Tk_GetRelief(Tcl_Interp *interp, char *name, int *reliefPtr)

void Tk_GetRootCoords(Tk_Window tkwin, int *xPtr, int *yPtr)

int Tk_GetScreenMM(Tcl_Interp *interp, Tk_Window tkwin, char *string,
double *doublePtr)

int Tk_GetScrollinfo(Tcl_Interp *interp, int argc, char **argv, double *dblPtr,
int *intPtr)

int Tk_GetSelection(Tcl_Interp *interp, Tk_Window tkwin, Atom selection,
Atom target, Tk_GetSelProc *proc, ClientData clientData)

Tk_Uid Tk_GetUid(const char *string)

void Tk_GetVRootGeometry(Tk_Window tkwin, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)

Visual *Tk_GetVisual(Tcl_Interp *interp, Tk_Window tkwin, char *string,
int *depthPtr, Colormap *colormapPtr)

int Tk_Grab(Tcl_Interp *interp, Tk_Window tkwin, int grabGlobal)

void Tk_HandleEvent(XEvent *eventPtr)

int Tk_Height(Tk_Window tkwin)

Tk_Window Tk_IdToWindow(Display *display, Window window)

void Tk_ImageChanged(Tk_ImageMaster master, int X, int y, int width, int height,
int imageWidth, int imageHeight)

int Tk_Init(Tcl_Interp *interp)

Atom Tk_InternAtom(Tk_Window tkwin, char *name)

int Tk_InternalBorderWidth(Tk_Window tkwin)

int Tk_IntersectTextLayout(Tk_TextLayout layout, int x, int y, int width, int height)

int Tk_IsContainer(Tk_Window tkwin)

int Tk_IsEmbedded(Tk_Window tkwin)

int Tk_IsMapped(Tk_Window tkwin)

170 Chapter 5— The Tk C Interface

int Tk_IsTopLevel(Tk_Window tkwin)

void Tk_MainLoop(void)

Tk_Window Tk_MainWindow(Tcl_Interp *interp)

void Tk_Main(int argc, char **argv, Tcl_AppInitProc *applnitProc)

void Tk_MaintainGeometry(Tk_Window slave, Tk_Window master, int x, int y,
int width, int height)

void Tk_MakeWindowExist(Tk_Window tkwin)

void Tk_ManageGeometry(Tk_Window tkwin, Tk_GeomMgr *mgrPtr,
ClientData clientData)

void Tk_MapWindow(Tk_Window tkwin)

int Tk_MeasureChars(Tk_Font tkfont, const char *source, int maxChars,
int maxPixels, int flags, int *lengthPtr)

void Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y, int width, int height)

void Tk_MoveToplevel Window(Tk_Window tkwin, int x, int y)

void Tk_MoveWindow(Tk_Window tkwin, int x, int y)

char *Tk_NameOf3DBorder(Tk_3DBorder border)

char *Tk_NameOfAnchor(Tk_Anchor anchor)

char *Tk_NameOfBitmap(Display *display, Pixmap bitmap)

char *Tk_NameOfCapStyle(int cap)

char *Tk_NameOfColor(XColor *colorPtr)

char *Tk_NameOfCursor(Display *display, Tk_Cursor cursor)

char *Tk_NameOfFont(Tk_Font font)

char *Tk_NameOfImage(Tk_ImageMaster imageMaster)

char *Tk_NameOfJoinStyle(int join)

char *Tk_NameOfJustify(Tk_Justify justify)

char *Tk_NameOfRelief(int relief)

Tk_Uid Tk_Name(Tk_Window tkwin)

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin)

int Tk_Offset(type, field)

void Tk_OwnSelection(Tk_Window tkwin, Atom selection, Tk_LostSelProc *proc,
ClientData clientData)

Tk_Window Tk_Parent(Tk_Window tkwin)

int Tk_ParseArgv(Tcl_Interp *interp, Tk_Window tkwin, int *argcPtr, char **argyv,
Tk_ArgvInfo *argTable, int flags)

char *Tk_PathName(Tk_Window tkwin)

void Tk_PhotoBlank(Tk_PhotoHandle handle)

void Tk_PhotoExpand(Tk_PhotoHandle handle, int width, int height)

int Tk_PhotoGetImage(Tk_PhotoHandle handle, Tk_PhotolmageBlock *blockPtr)

void Tk_PhotoGetSize(Tk_PhotoHandle handle, int *widthPtr, int *heightPtr)

void Tk_PhotoPutBlock(Tk_PhotoHandle handle, Tk_PhotoImageBlock *blockPtr,
int x, int y, int width, int height)

S
g
Q
nh
©

Alphabetical Summary of Functions 171

void Tk_PhotoPutZoomedBlock(Tk_PhotoHandle handle,
Tk_PhotolmageBlock *blockPtr, int x, int y, int width, int height, int zoomX,
int zoomY, int subsampleX, int subsampleY)

void Tk_PhotoSetSize(Tk_PhotoHandle handle, int width, int height)

int Tk_PointToChar(Tk_TextLayout layout, int X, int y)

int Tk_PostscriptFontName(Tk_Font tkfont, Tcl_DString *dsPtr)

void Tk_PreserveColormap(Display *display, Colormap colormap)

void Tk_QueueWindowEvent(XEvent *eventPtr, Tcl_QueuePosition position)

void Tk_RedrawImage(Tk_Image image, int imageX, int imageY, int width,
int height, Drawable drawable, int drawableX, int drawableY)

int Tk_ReqHeight(Tk_Window tkwin)

int Tk_ReqWidth(Tk_Window tkwin)

void Tk_ResizeWindow(Tk_Window tkwin, int width, int height)

int Tk_RestackWindow(Tk_Window tkwin, int aboveBelow, Tk_Window other)

Tk_RestrictProc *Tk_RestrictEvents(Tk_RestrictProc *proc, ClientData arg,
ClientData *prevArgPtr)

int Tk_SafeInit(Tcl_Interp *interp)

int Tk_ScreenNumber(Tk_Window tkwin)

Screen *Tk_Screen(Tk_Window tkwin)

char *Tk_SetAppName(Tk_Window tkwin, char *name)

void Tk_SetBackgroundFromBorder(Tk_Window tkwin, Tk_3DBorder border)

void Tk_SetClass(Tk_Window tkwin, char *className)

void Tk_SetGrid(Tk_Window tkwin, int reqWidth, int reqHeight, int gridWidth,
int gridHeight)

void Tk_SetInternalBorder(Tk_Window tkwin, int width)

void Tk_SetWindowBackgroundPixmap(Tk_Window tkwin, Pixmap pixmap)

void Tk_SetWindowBackground(Tk_Window tkwin, unsigned long pixel)

void Tk_SetWindowBorderPixmap(Tk_Window tkwin, Pixmap pixmap)

void Tk_SetWindowBorder(Tk_Window tkwin, unsigned long pixel)

void Tk_SetWindowBorderWidth(Tk_Window tkwin, int width)

void Tk_SetWindowColormap(Tk_Window tkwin, Colormap colormap)

int Tk_SetWindowVisual(Tk_Window tkwin, Visual *visual, int depth,
Colormap colormap)

void Tk_SizeOfBitmap(Display *display, Pixmap bitmap, int *widthPtr,
int *heightPtr)

void Tk_SizeOflmage(Tk_Image image, int *widthPtr, int *heightPtr)

int Tk_StrictMotif(Tk_Window tkwin)

void Tk_TextLayoutToPostscript(Tcl_Interp *interp, Tk_TextLayout layout)

int Tk_TextWidth(Tk_Font font, const char *string, int numChars)

void Tk_UndefineCursor(Tk_Window window)

void Tk_UnderlineChars(Display *display, Drawable drawable, GC gc,
Tk_Font tkfont, const char *source, int x, int y, int firstChar, int lastChar)

172 Chapter 5— The Tk C Interface

void Tk_UnderlineTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int underline)

void Tk_Ungrab(Tk_Window tkwin)

void Tk_UnmaintainGeometry(Tk_Window slave, Tk_Window master)
void Tk_UnmapWindow(Tk_Window tkwin)

void Tk_UnsetGrid(Tk_Window tkwin)

void Tk_UpdatePointer(Tk_Window tkwin, int x, int y, int state)
Visual *Tk_Visual(Tk_Window tkwin)

int Tk_Width(Tk_Window tkwin)

Window Tk_Windowld(Tk_Window tkwin)

int Tk_X(Tk_Window tkwin)

int Tk_Y(Tk_Window tkwin)

S
g
Q
nh
©

Alpbabetical Summary of Functions 173

CHAPTER 6

Expect

Expect, written by Don Libes, is a tool for communicating with interactive pro-
grams. Expect is not part of the core Tcl/Tk package, but can be obtained for free
at http.//expect.nist.gov. This chapter covers Version 5.25.0.

Expect can automate tasks that would normally require a user to interactively com-
municate with a program. Expect is a Tcl interpreter extended with additional
commands. It can be run as the standalone programs expect and expectk or used
with other Tcl language extensions.

Expect was the first major Tcl-based application. This chapter describes the fea-
tures that Expect adds to the Tcl language.

Overview

You normally run Expect by invoking the program expect (or expectk if you also
want Tk). Expect is a Tcl interpreter with about 40 additional commands. This sec-
tion briefly describes the most common commands.

The spawn command creates a new process that executes a specified program. It
creates a connection to that process so that it is accessible by using other Expect
commands.

The send command passes commands to a process started by spawn. It sends
strings, just as a user would type if interactively running the spawned program.

The expect command is the heart of the Expect program. It compares the output
from one or more spawned processes, looking for a match against a string or pat-
tern. If a match is found, it executes Tcl code associated with the pattern. The pat-
terns can be simple strings, glob-style patterns, or regular expressions. Multiple
patterns and actions can be specified.

174

http://expect.nist.gov

The interact command passes control of a spawned process back to the user. This
allows the user to connect to the process interactively. For example, an Expect
script could log a user on to a remote system, start a text editor, then pass control
back to the user. Like expect, it performs pattern matching that allows actions to
be performed. In our editor example, the script could watch for a pattern that indi-
cated that the text editor program had exited, then pass control back to the Expect
script to automatically perform cleanup and log out the user.

The close command closes the connection to a spawned process. This is not
always needed, as Expect closes all open connections when it exits.

Example

This simple example illustrates logging in to a host using anonymous FTP and
then passing control back to the user:

set host localhost
set name myname@myhost
spawn ftp S$host
expect "Name (*):"
send "anonymous\r"
expect "Password:"
send "$name\r"
expect {
"frp>" {
interact
}
"Login failed." {
exit 1
}
timeout {
exit 1

}

Command-Line Options
The expect program accepts the following command-line options:
expect [-v] [-d] [-D nl[-i][-n] [-N][-c emds][[-f] -b] cmdfilel [--]largs]

v

Display version number and exit.
-d

Enable diagnostic output.

-Dn
Enable interactive debugger if numeric argument n is non-zero.

Run in interactive mode.

Command-Line Options 175

Do not read the user’s startup file (/.expect.rc).

-N
Do not read the global startup file ($exp_library/expect.rc).

-c cmds
Specify commands to be executed before starting script. The commands
can be separated by semicolons. Multiple -¢ options can be specified.

S
Specify the file from which to read commands.

-b
Same as -f; but read the input file one line at a time rather than in its
entirety.

cmdfile
The file containing Tcl commands to execute. For standard input use “-".
Denote the end of Expect options.

args

Additional arguments to pass to the Tcl program.
The expectk program accepts the following command-line options:
expectk [options|[cmdfile] [args]
-version
Display version number and exit.

-Debug n
Enable interactive debugger if numeric argument n is non-zero.

-interactive
Run in interactive mode.

-command cmds
Specify commands to be executed before starting script. The commands
can be separated by semicolons. Multiple -command options can be
specified.

-diag
Enable diagnostic output.

-norc
Do not read the user’s startup file (/.expect.rc).

-NORC
Do not read the global startup file ($exp_library/expect.rc).

-file

Specify the file from which to read commands.

176 Chapter 6 — Expect

-bujfer
Same as -file, but read the input file one line at a time rather than in its
entirety.

cmdfile
The file containing Tcl commands to execute. For standard input use

«

Denote the end of Expect options.

args
Additional arguments to pass to the Tcl program.

Expectk also accepts any of the options supported by the wish program.

Environment Variables
The following environment variables are used by the Expect program:

DOTDIR
Directory in which to look for the user-specific startup file .expect.rc. The
default is the user’s home directory.

EXPECT_DEBUG_INIT
Initialization command to be executed by the debugger on startup.

EXPECT_PROMPT
By convention, used by some applications to specify a regular expression
that matches the end of the user’s login prompt.

Special Variables

The following variables have special meaning to the Expect program.

spawn_id
Spawn descriptor for the current spawned process (can be set).

user_spawn_id
Spawn descriptor for user input.

tty_spawn_id
Spawn descriptor for /deuv/tty.

any_spawn_id
Used in expect command to match input on any active spawn descriptor.

error_spawn_id
Spawn descriptor for standard error output.

argv
List containing the command-line arguments.

Special Variables 177

argc
The number of elements in argv.

argv0
The name of the script or program being run.

exp_exec_library
Directory containing architecture-dependent library files.

exp_library
Directory containing architecture-independent library files.

expect_out
Array containing output strings collected by the expect command (see the
description of expect, later in this chapter).

expect_out (buffer)
Matching any previously unmatched output.

expect_out(n, string)
Substring that matched regular expression n, where n is 1 through 9.

expect_out (0, string)
String that matched entire pattern.

expect_out(n ,start)
Starting index in buffer of regular expression n.

expect_out (n ,end)
Ending index in buffer of regular expression n.

expect_out (spawn_id)
Spawn ID associated with matching output.

spawn_out (slave, name)
Name of the pty slave device.

interact_out
Array containing output strings collected by interact command, in the
same format as expect_out.

send_human
Controls behavior of send with the -b option. A list of five numeric ele-
ments: (1) interarrival time of characters, (2) interarrival time of word
endings, (3) variability parameter, (4) minimum interarrival time, and (5)
maximum interarrival time. All times are in decimal seconds.

send_slow
Controls behavior of send with the -s option. A list of two numeric ele-
ments: (1) number of bytes to send atomically, and (2) number of sec-
onds between sending.

178 Chapter 6 — Expect

stty_init

Holds stty command settings to be used when initializing a pty for a
spawned process.

timeout

Time, in seconds, before expect command will time out. A value of -1
specifies no timeout.

Grouped Summary of Commands

Process Interaction

close
disconnect
exp_continue
expect

expect_after
expect_background
expect_before
expect_tty

expect_user
inter_return

interact
interpreter
overlay
send
send._error
send_log
send_tty
send_user
spawn
wait

Close connection to a spawned process.
Disconnect forked process from terminal.
Continue execution during expect command.
Match patterns and perform actions based on
process output.

Match patterns and specify actions to perform
after expect command pattern matching.
Match patterns and specify actions to perform
outside of expect command.

Match patterns and specify actions to perform
before expect command pattern matching.
Similar to expect, but reads from

/dev/tty.

Similar to expect, but reads from standard input.
Causes an interact or interpreter

command to perform a return in its caller.
Transfer control of a process to the user.
Connect user to the Tcl interpreter.

Execute a new program in place of Expect.
Send a string to a spawned process.

Send a string to standard error output.

Send a string to the log file.

Send a string to /deu/tty.

Send a string to standard output.

Create a new spawned process.

Wait for a spawned process to terminate.

Utility Commands

debug

exit
exp_getpid
exp_internal
exp_open
exp_pid
expect_version

Start, stop, or return status of the debugger.

Cause Expect to exit.

Return current process ID.

Enable, disable, or log diagnostic output.

Convert spawn ID to Tcl file descriptor.

Return process ID for spawned process.

Return, generate an error, or exit based on Expect version.

Grouped Summary of Commands 179

fork

log_file
log_user
match_max
parity
remove_nulls
sleep

strace

stty

system
timestamp
trap

Synonyms

Create a new process.

Start or stop logging of session to a file.

Start or stop logging of spawned process to standard output.
Set or return size of expect buffer.

Set or return parity generation setting.

Set or return null character setting.

Delay execution.

Trace statement execution.

Change terminal mode.

Execute shell command.

Return a timestamp.

Set or return commands to be executed on receipt of a signal.

To reduce the likelihood of name conflicts with other Tcl extensions, most Expect
commands have synonyms that are prefixed with exp_.

exp_close
exp_debug

exp_disconnect

exp_exit
exp_fork

exp_inter_return

exp_interact

exp_interpreter

exp_log_file
exp_log_user

exp_match_max

exp_overlay
exp_parity

exp_remove_nulls

exp_send

exp_send_error

exp_send_log
exp_send_tty

exp_send_user

exp_sleep
exp_spawn
exp_strace
exp._stty
exp_system

exp_timestamp

exp_trap
exp_version
exp_wait

Synonym for close
Synonym for debug
Synonym for disconnect
Synonym for exit
Synonym for fork
Synonym for inter_return
Synonym for interact
Synonym for interpreter
Synonym for log_file
Synonym for log_user
Synonym for match_max
Synonym for overiay
Synonym for parity
Synonym for remove_nulls
Synonym for send
Synonym for send_error
Synonym for send_log
Synonym for send_tty
Synonym for send_user
Synonym for sleep
Synonym for spawn
Synonym for strace
Synonym for stty
Synonym for system
Synonym for timestamp
Synonym for trap
Synonym for expect_version
Synonym for wait

180 Chapter 6 — Expect

Alpbabetical Summary of Commands

In addition to the following commands, a number of synonyms are provided to
prevent name conflicts with other libraries. See the preceding “Synonyms” section.

close
close [-slave] [-onexec 011] [-i spawn_id]
Close the connection to a spawned process, by default the current process.
Options

-slave
Close the slave pty associated with the spawn ID.

-onexec 011
With a 0 argument, the spawn ID will be left open in any new processes.
If 1, the ID will be closed (the default).

-i spawn_id
Specify the spawn ID of the process to close.

debug
debug [[-now] 011]

Control the Tcl debugger. With no arguments, return 1 if the debugger is run-
ning; otherwise, return 0.

An argument of 1 starts the debugger at execution of the next statement. An
argument of 0 stops the debugger.

The -now option starts the debugger immediately, rather than at the next
statement.

disconnect

disconnect

Disconnect a forked process from the terminal. The process continues run-
ning in the background with its standard input and output redirected to
/dev/null.

exit
exit [-onexit [handler]] [-noexit] [status]

Cause the Expect program to exit. Return the numeric exit status status
(default is 0).

The -onexit option specifies a command to use as the exit handler. By default
the current exit handler is used.

Alphabetical Summary of Commands — exit 181

The -noexit option causes Expect to prepare to exit, calling user-defined and
internal exit handlers, but not actually returning control to the operating sys-
tem.

When the end of a script is reached, an exit command is automatically exe-
cuted.

exp_continue
exp_continue

Within an expect command, continues execution rather than returning.

exp_getpid
exp_getpid

Return the process ID of the current process.

exp_internal
exp_internal [-infol [-f file] value

Control output of diagnostic information about data received and pattern
matching. Display to standard output is enabled if the numeric value param-
eter is non-zero, and disabled if it is zero.

Output can be sent to a file using the -foption and a filename argument.

The -info option causes the current status of diagnostic output to be dis-
played.

exp_open
exp_open [-leaveopen] [-i spawn_id]

Return a Tl file identifier corresponding to the process opened with spawn
ID spawn_id (or the current spawn ID, if the -i option is not used).

Normally the spawn ID should no longer be used. With the -leaveopen
option, it is left open for access using Expect commands.

exp_pid
exp_pid [-i spawn_id]

Return the process ID corresponding to the given spawn ID (by default the
current spawn ID).

182 Chapter 6 — Expect

expect
expect [loptions] patl bodyll] ... loptions] patn [bodyn]

Compare output from one or more spawned processes against patterns. If a
match is found, execute the associated code body and return.

The exp_continue command inside a body causes the expect statement to
continue execution rather than returning.

Patterns

The pattern can be a string. By default, shell globbing is used, but this can be
changed using options listed in the next section. A pattern can also be one of
the following special names:

eof
Matches end of file.

full_buffer
Matches when maximum number of bytes has been received with no pat-
tern match.

null
Matches a single ASCII NUL (0) character.

timeout
Matches when timeout occurs with no pattern matched.

default
Matches if timeout or eof occur.

Options

-timeout seconds
Specify amount to wait before timing out.

-i spawn_id_list
Match against the listed spawn IDs; either a literal list or a global variable
name containing the list.

_gl
Use glob-style pattern matching (default).

-re
Use regular expression pattern matching.

-ex

Use exact string pattern matching.
-nocdase

Make matching case-insensitive.

Alphabetical Summary of Commands — expect 183

expect_after
expect_after options

Accept the same options as the expect command, but return immediately. Pat-
terns and actions are implicitly added to the next expect command having the
same spawn ID. Matching patterns are executed after those in the expect com-
mand, in the same context.

Expect tests expect_before patterns first, expect patterns next, and expect_after
last. The first successful match gets its action executed. Patterns are tested in
the order listed.

expect_background
expect_background options

Accept the same options as the expect command, but return immediately. Pat-
terns and actions are tested whenever input arrives. Must be used outside of
an expect command.

expect_before
expect_before options

Accept the same options as the expect command, but return immediately. Pat-
terns and actions are implicitly added to the next expect command having the
same spawn ID. Matching patterns are executed before those in the expect
command, in the same context.

Expect tests expect_before patterns first, expect patterns next, and expect_after
last. The first successful match gets its action executed. Patterns are tested in
the order listed.

expect_tty
expecl_tty options

Accept the same options as the expect command, but read input from the user
using /deu/1ty.

expect_user
expect_user options

Accept the same options as the expect command, but read input from the user
using standard input.

184 Chapter 6 — Expect

expect_version
expect_version [[-exit] version]

Test version of Expect for compatibility. With no arguments, return the ver-
sion of Expect. With an argument, generate an error if the version of Expect is
different from the one specified.

The version parameter is a string in the form major-number.minor-
number.patch-level (e.g., 5.24.1). With the -exit option, the command
also exits if the version of Expect is not the same as specified.

fork
fork

Create a new process that is an exact copy of the current one. Returns 0 to
the new process and the new process ID to the parent process. Returns —1 if
the new process could not be created.

inter_return
inter_return

Cause a currently active interact or interpreter command to perform a return
in its caller. This differs from return. For example, if a procedure called inter-
act which then executed the action inter_return, the procedure would return
to its caller.

interact
interact [loptions| stringl bodyl] ... [loptions]| stringn [bodynl]]

Pass control of a spawned process to the user. Checks user input against zero
or more strings. If a match occurs, the corresponding body is executed.

Patterns

The pattern can be a string. By default, exact string matching is used but can
be changed using options listed in the next section. A pattern can also be one
of the following special names:

eof
Matches end of file.

null
Matches a single ASCII NUL (0) character.

timeout seconds
Matches when timeout occurs since the last pattern was matched.

Alpbabetical Summary of Commands — interact 185

Options

-re
Use regular expression pattern matching.

-ex
Use exact string pattern matching (default).

-indices
Used in conjunction with -re to store indices of matching patterns in the
interact_out array.

-output spawn_id_list
Specify a list of spawn IDs to be used for output.

-input spawn_id_list
Specify a list of spawn IDs to be used for input.

-jwrite
Cause all matches to set the variable interact_out (spawn_id)
before performing their associated action.

-reset
Reset the terminal mode to the settings it had before interact was exe-
cuted.

-echo
Send the characters that match the following pattern back to the process
that generated them.

-nobuffer
Send characters that match the pattern to the output process immediately
as they are read.

-0
Apply any following pattern body pairs against the output of the current
process.

Introduce a replacement for the current spawn ID when no other -input
or -output flags are used.

-u spawn_id
Cause the currently spawned process to interact with the named process
rather than the user.

interpreter
interpreter

Cause the user to be interactively prompted for Tcl commands. The return
and inter_return commands can be used to return to the Expect script.

186 Chapter 6 — Expect

log_file
log file loptions] [[-al file]
Record a transcript of the session to file file. With no file argument, stop
recording.
Options

-open
The file parameter is an open Tcl file identifier. The identifier should no
longer be used.

-leaveopen
The file parameter is an open Tcl file identifier. The identifier can con-
tinue to be used.

-a
Log all output, including that suppressed by the log_user command.

-noappend
Truncate existing output file (default is to append).

-info

Display the current status of transcript recording.

log_user
log_user -info| 0|1

Control the logging of send/expect dialog to standard output. An argument of
1 enables logging, and 0 disables it. With no arguments or the -info option,
displays the current setting.

match_max
match_max [-d) [-i spawn_1id] [sizel

Set the size of the internal expect buffer to size bytes. With no size param-
eter, returns the current size. The -d option makes the specified size become
the default value (the initial default is 2000). The -i option allows setting the
buffer size for the given spawn ID rather than the current process.

overlay
overlay [-# spawn_1id..] program [args]

Execute program program and optional arguments in place of the current
Expect program. Spawn IDs can be mapped to file identifiers for the new pro-
cess by specifying file number and spawn ID pairs.

Alphabetical Summary of Commands — overlay 187

Example

overlay -0 $spawn_id -1 S$spawn_id -2 $spawn_id emacs

parity
parity [-d] [-i spawn_1id] [valuel

Control handling of parity bits from the output of the current spawned pro-
cess. A value of 0 causes parity to be stripped; non-zero values retain parity.
With the -d option, makes the specified setting the default parity (the initial
default is 1). With no value parameter, returns the current setting. The -i
option allows specifying another spawn ID to be used.

remove_nulls
remove_nulls [-d] [-i spawn_id] [valuel

Control handling of nulls from the output of the current spawned process. A
value of 1 causes null characters to be removed; non-zero values retain null
characters. With the -d option, makes the specified setting the default value
(the initial default is 1). With no value parameter, returns the current setting.
The -7 option lets you specify another spawn ID to be used.

send
send loptions] string
Send a string to a spawned process.
Options

Indicate the end of options.

-i spawn_id
Send the string to the specified spawn ID.
-raw

Disable the translation of newline to return-newline when sending to the
user terminal.

-null num
Send num null characters (one if num is omitted).

-break
Send a break character (applicable only for terminal devices).

Send output slowly using the settings of the send_slow variable.

-h
Send output, like a human typing, using the settings of the send_human
variable.

188 Chapter 6 — Expect

Note that send conflicts with the Tk command of the same name. Use
exp_send instead.

send_error
send_errorloptions] string

Like the send command, except output is sent to standard error.

send_log
send_log |- -] string

Like the send command, except output is sent to the log file opened using the
log_file command.

send_tty
send_tty loptions] string

Like the send command, except output is sent to /deuv/tty.

send_user
send_useroptions] string

Like the send command, except output is sent to standard output.

sleep
sleep seconds

Delay execution of the current program for seconds seconds. The parameter
is a floating-point number.

spawn

spawn largs) program [args]

Create a new process executing program and optional arguments args. Sets
the variable spawn_1id to the spawn ID for the new process and makes it the
default spawn ID. Returns the Unix process ID of the new process, or 0 if the
process could not be spawned.

Options

-noecho
Disable echo of command name and arguments.

-console
Redirect console output to the spawned process.

Alphabetical Summary of Commands — spawn 189

-nottycopy
Skip initialization of spawned process pty to user’s tty settings.

-nottyinit
Skip initialization of spawned process pty to sane values.

-open fileid
Open an existing Tcl file identifier rather than a process. The identifier
should no longer be used.

-leaveopen fileid
Open an existing Tcl file identifier rather than a process. The identifier
can continue to be used.

p 24
Open a pty but do not spawn a process.

-ignore signal
Ignore the named signal in the spawned process. More than one -ignore
option can be specified.

strace
strace [-info] [1evell

Display statements before being executed. Statements are traced as deep as
stack level Ievel. The -info option displays the current trace setting.

stty
stty args

Set terminal settings. The arguments take the same form as the sty shell com-
mand.

system
sSystem args

Execute args as a shell command, with no redirection and waiting until the
command completes.

timestamp
timestamp [options]

Return a timestamp. With no arguments, returns the number of seconds since
the start of the epoch.

190 Chapter 6 — Expect

Options

-format format-string
Return time formatted using a format string. The string follows the format
of the POSIX strftime function, as described below. This command is
deprecated; use the Tcl clock command instead.

-seconds source
Return a timestamp based on the time source, expressed as a number
of seconds since the start of the epoch.

-gmt
Use Greenwitch Mean Time (UTC) rather than the local time zone.

Format Strings

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time, as in Wed Oct 6 11:45:56 1993
%d Day of the month (01-31)

$H Hour (00-23)

$T Hour (01-12)

%3 Day (001-3606)

gm Month (01-12)

%M Minute (00-59)

$p A.M. or PM.

%S Second (00-61)

%u Day (1-7, Monday is first day of week)

$U Week (00-53, first Sunday is first day of week one)
¥V Week (01-53, ISO 8601 style)

$w Day (0-6)

W Week (00-53, first Monday is first day of week one)
$x Date and time, as in Wed Oct 6 1993

%X Time, as in 23:59:59

%y Year (00-99)

%Y Year, as in 1993

%$Z Time zone (or nothing if not determinable)
%% A bare percent sign

trap
trap loptions] [lcommand] signal-1ist]

Set exception handling behavior. The command command will be executed
when any of the signals in the list signal-1ist occurs.

The command can be a Tcl command or the special values SIG_IGN (ignore)
or SIG_DFL (use default action). The signals can be specified by number or
name.

Alphabetical Summary of Commands — trap 191

Options

-code
Use return code of the handler command.

-interp
Evaluate command using the context active at the time of exception.

-name
Return signal name of the #rap command currently being executed.

-max
Return highest available signal number.

Example

trap {send_user "Control-C pressed"} SIGINT

wait
wait [-i spawn_1id] [-nowait] largs]

Wait until a spawned process terminates. By default the current process is
waited for; the -7 option can specify another spawn ID.

The command returns a list of four numbers: (1) the process ID for which to
wait, (2) the spawn ID of the process for which to wait, (3) 0 for success or
-1 if error occurred, and (4) the return status or error status of the terminating
process. Additional optional information may be returned, indicating the rea-
son for termination.

The -nowait option causes an immediate return. The process can then termi-
nate later without an explicit wait command.

192 Chapter 6 — Expect

CHAPTER 7

[incr Tcl]

[incr Tcll, written by Michael McLennan, is a Tcl extension that adds support for
object-oriented programming. Loosely based on the syntax of C++, it provides sup-
port for encapsulating Tcl code into classes that can be instantiated as objects.

[incr Tcl] is not part of the core Tcl/Tk package, but can be obtained for free at
bup://www.tcltk.com/itcl. This chapter covers Version 3.0. [incr Tcll provides the
foundation for [incr Tk], which is discussed in Chapter 8, [incr Thk/.

In general, [incr Tcl] is intended to make it easier to develop and maintain large
programs written in Tcl and to support Tcl extensions.

Basic Class Definition

An [incr Tcl] class definition takes the form shown here. Each of the commands
within the class definition are optional and can be listed in any order. The parame-
ters args, init, body, and config are Tcl lists.

class className {
inherit baseClass....
constructor args [init] body
destructor body
method name [args] [body]
proc name [args] [bodyl]
variable varName [init] [config]
common varName [init]
public command [arg...]
protected command [arg...]
private command [arg...]
set varName [valuel]
array option [arg...]

193

—
S
o
~
g
~

http://www.tcltk.com/itcl

Special Variables

itcl::library
Name of directory containing library of [incr Tcl] scripts; can be set using
ITCL_LIBRARY environment variable

itel: :patchLevel
Current patch level of [incr Tcll

itcl::purist
When 0, enables backward-compatibility mode for Tk widget access

itcl::version
Current revision level of [incr Tcl]

Group Listing of Commands

Classes

body Change the body of a class method or procedure.
class Create a class of objects.

configbody Change the configuration code for a public variable.
itcl_class Obsolete; see class.

Objects

className Create an object belonging to class className.
objName Invoke a method to manipulate object objName.
delete Delete an object, class, or namespace.
Miscellaneous

code Capture the namespace context for a code fragment.
ensemble Create or modify a composite command.

Jfind Search for classes and objects.

itcl_info ~ Obsolete; see find.

local Create an object local to a procedure.

scope Capture the namespace context for a variable.
Example

The following example illustrates a small class with several methods and some
code to exercise it:

class Toaster {
private variable toastTime 10
constructor {} {
puts "Toaster created"
}
destructor {
puts "Toaster destroyed"

194 Chapter 7— [incr Tcl]

}

method getToastTime {} {
return $toastTime

}

method setToastTime {newToastTime} {
set toastTime S$newToastTime

}

method toast {} {
puts "Toaster is toasting..."
after [expr $toastTime*1000]
puts "\aToast is ready!"

}

method clean {} {
puts "Cleaning toaster...
after 2000
puts "Toaster is clean"

puts "Starting test program"

Toaster machine

machine clean

machine setToastTime 5

puts "Toast time set to [machine getToastTime]"
machine toast

delete object machine

Alpbabetical Summary of Commands

className
className objName [arg...]

Create an object of class className with name objName. Any arguments
are passed to the constructor. The string #auto inside an objName is
replaced with a unique automatically generated name.

objName
objName method [arg...]

Invoke method method on object objName. Any arguments are passed as
the argument list of the method. The method can be constructor, destructor, a
method appearing in the class definition, or one of the built-in methods listed
below.

—
S
o
~
g
~

objName cget -varName

Return the current value of public variable varName.
objName configure [-varname] [valuel...

Provide access to public variables. With no arguments, return a list describing
all public variables. Each element contains a variable name, its initial value,
and its current value. With a single -varname option, return the same infor-
mation for one variable. With one or more -varname-value pairs, set public

Alphabetical Summary of Commands — objName 195

variable varname to value value. Any configbody code associated with the
variable is also executed.

objName isa className

Return true if className can be found in the object’s heritage; otherwise,
return false.

objName info option largs..]

Return information about objName or its class definition. Accepts any of the
arguments for the Tcl info command, as well as the following:

objName info class
Return the name of the most specific class for object objName.
objName info inherit

Return the list of base classes as they were defined in the inberit command,
or an empty string if this class has no base classes.

objName info heritage

Return the current class name and the entire list of base classes in the order
that they are traversed for member lookup and object destruction.

objName info function [cmdNamel [-protection] [-typel [-namel [-args]
[-body]

With no arguments, return a list of all class methods and procedures. If cmd-
Name is specified, return information for a specific method or procedure. If
no flags are specified, return a list with the following elements: the protection
level, the type (method/proc), the qualified name, the argument list, and
the body. Flags can be used to request specific elements from this list.

objName info variable [varName] [-protection] [-type] [-name] [-init] [-value)
[-config]

With no arguments, return a list of all object-specific variables and common
data members. If varName is specified, return information for a specific data
member. If no flags are specified, return a list with the following elements: the
protection level, the type (variable/common), the qualified name, the ini-
tial value, and the current value. If varName is a public variable, the config-
body code is included in this list. Flags can be used to request specific
elements from this list.

body
body className: : function args body

Define or redefine a class method or procedure that was declared in a class
command. The name of the method or procedure is specified by class-
Name: : function; the arguments are specified using the list args, followed
by the Tcl command script body:.

196 Chapter 7— [incr Tcl]

class
class className definition

Define a new class named className. The properties of the class are
described by definition, a list containing any of the following Tcl state-
ments:

inberit [baseClass...]
Cause class to inherit characteristics from one or more existing base classes.
constructor args [init] body

Define the argument list and body for the constructor method called when an
object is created. Can optionally specify init statement to pass parameters to
base class constructors. Constructor always returns the class name.

destructor body

Define the code body for the destructor method called when an object is
deleted.

method name [args] [body]

Declare a method named name. Can define the argument list args and code
body body. The body command can define or redefine the method body out-
side of the class definition.

proc name largs) [body]

Declare a procedure named name. Can define the argument list args and
code body body. The body command can define or redefine the body outside
of the class definition.

variable varName [init] [configl]

Define an object-specific variable named varName. Optional string init
supplies an initial value for the variable when the object is created. Optional
script config specifies code to be executed whenever a public variable is
modified using the configure command.

common varName [init]

Declare a common variable (shared by all class objects) named varName.
Optional string init supplies a value for the variable to be initialized with
whenever a new object is created.

—
S
o
~
g
~

public command |arg...]

Declares that the element defined by command is to be publicly accessible
(i.e., accessible from any namespace). The parameter command can be any of
the subcommands method, proc, variable, common, or a script containing
several member definitions.

Alphabetical Summary of Commands — class 197

protected command [arg...]

Declares that the element defined by command is to have protected access
(i.e., accessible from the same class namespace and any namespaces nested
within it).

private command larg..]

Declares that the element defined by command is to have private access (i.e.,
accessible only from the same class namespace).

set varName [valuel
Set the initial value of a variable or common variable.
array option larg..]

A standard Tcl array command can be used within a class definition, typically
to initialize variables.

code
code [-namespace name] command larg...]

Create a scoped value for a command and its associated arguments. The
scoped value is a list with three elements: the @scope keyword, a namespace
context, and a value string.

configbody
configbody className: : varName body

Allows you to change the configuration code associated with a public vari-
able. The name className: : varName identifies the public variable being
updated. The configuration code is automatically executed when a variable is
modified using an object’s configure command.

delete
delete option larg..]
Used to delete various things in the interpreter. Accepts the following options:
delete class name...
Delete one or more classes, as well as objects in the class and derived classes.
delete object name...

Delete one or more objects. Destructors in the class hierarchy are called, and
the object is removed as a command from the interpreter.

delete namespace name...

Delete one or more namespaces, including commands, variables, and child
namespaces.

198 Chapter 7— [incr Tcl]

ensemble
ensemble name command args...

Create or modify an ensemble command (i.e., a command such as #nfo, which
is a composite of many different functions). If an ensemble command name
already exists, then it is updated; otherwise, a new command is created.

The command accepts zero or more command arguments that take one of
two forms. The part command defines a new part for the ensemble, adding
it as a new option to the command. The argument list and body are defined
as for the proc command. The command parameter can also be ensemble,
allowing another subensemble to be nested.

Example

ensemble wait {

part variable {name} {
uplevel vwait S$name

}

part visibility {name} {
tkwait visibility $name

}

part window {name} {
tkwait window $name

}

find
find option larg..]

Return information about classes or objects. The command takes one of two
forms:

Jfind classes | pattern]

Return a list of classes available in the current namespace context matching
glob pattern pattern, or all classes if pattern is omitted.

Jfind objects | pattern] [-class classNamel [-isa classNamel

Return a list of objects available in the current namespace context matching
glob pattern pattern, or all objects if pattern is omitted. Can use the
-class option to restrict list to objects whose most specific class is class-
Name. Can also restrict list to objects having the given class name anywhere
in their heritage, using the -isa option.

—
S
o
~
g
~

itcl_class

Obsolete; see the class command.

Alphabetical Summary of Commands — itcl_class 199

itcl_info

Obsolete; see the find command.

local
local className objName [arg...]

Create an object that is local to the current stack frame. Object is automati-
cally deleted when stack frame goes away.

scope
scope string

Create a scoped value for a string. The scoped value is a list with three ele-
ments: the @scope keyword, a namespace context, and a value string.

200 Chapter 7— [incr Tcl]

CHAPTER 8

[incr TR]

[incr Tk] is not part of the core Tcl/Tk package, but can be obtained for free at
bitp://www.tcltk.com/itk. This chapter covers Version 3.0. *

lincr Tk] provides an object-oriented framework for creating new graphical wid-
gets, known as mega-widgets. Mega-widgets are made up of standard Tk widgets,
and one mega-widget can contain nested mega-widgets. The widgets and mega-
widgets that go into a mega-widget are called components.

Using the basic widgets provided by the Tk toolkit and the object-oriented pro-
gramming capabilities of [incr Tcll, [incr Tk] allows the user to write new widgets
in Tcl that look and act just like the ordinary Tk widgets.

The [incr Tk] distribution also comes with more than 30 predefined mega-widgets.

Basic Structure of a Mega-widget
The following code fragment shows the general structure of a mega-widget.

class className {
inherit itk::Widget # or itk::Toplevel

constructor {args} {
itk_option define optName {...}
itk_component add compName {...}
pack $itk_component (compName)
eval itk_initialize S$Sargs

}

public method methodName ...

protected method methodName ...

private variable varName ...

* This chapter is based on the quick reference in Michael McLennan’s Chapter 3 of 7cl/Tk Tools (O'Reilly
& Associates).

201

=
S
)
=
=
=

http://www.tcltk.com/itk

}
usual className {

}

Special Variable

itcl::library
Name of directory containing library of [incr Tk] scripts; can be set using
ITK_LIBRARY environment variable.

Methods and Variables

New mega-widgets built using [incr Tk] should be derived from either
itk::Widget or itk::Toplevel. Both classes are subclasses of
itk: :Archetype.

Public Methods

The following methods are built into all mega-widgets. For a mega-widget having
the Tk name pathName, the following methods are supported:

pathname cgel -option
Return the current value of option option.

pathname component
Return a list of the well-known components.

pathname component name command larg..]
Invoke the given command command as a method on the component
called name, optionally with additional arguments.

pathname configure
Return a list describing all of the available options.

pathname configure -option
Return the current value of option option.

pathname configure -option value...
Set the value of option option to value. Multiple option-value pairs
can be supplied.

The cget and configure commands work just like the corresponding Tk widget
commands.

Protected Methods

These methods are used in the implementation of a mega-widget:

itk_component add
[-protected] [-private] [--1]

202 Chapter 8— [incr Th]

symbolicName {
widget pathName [arg...]

YLA
ignore -option...
keep -option...

rename -option -newName resourceClass resourceClass
usual [tagl]

P

Commands in this format create a widget and register it as a mega-widget compo-
nent. The optional block containing ignore, keep, rename, and usual commands
controls how the configuration options for this component are merged into the
master option list for the mega-widget.

Ignore removes one or more configuration options from the composite list (the
default behavior). Keep integrates one or more configuration options into the
composite list, keeping them the same. Rename integrates the configuration
option into the composite list with a different name. Usual finds the usual option
handling commands for the specified tag name and executes them.

itk_option add optName...
Add an option that was previously ignored back into the master option
list.

itk_option remove name...
Remove an option that was previously merged into the master option list.

itk_option define -option resourceName resourceClass 1init
[configBody]
Define a new configuration option for a mega-widget class.

itk_initialize [-option value ..
Called when a mega-widget is constructed to initialize the master option
list.

Protected Variables

The following variables can be accessed within a mega-widget class:

itk_option (symbolicName)
An array element containing the Tk window pathname for the compo-
nent named symbolicName.

itk_interior
Contains the name of the top-level widget or frame within a mega-widget
that acts as a container for new components.

itk_option (-option)
An array element containing the current value of the configuration option
named option.

Methods and Variables 203

=
S
)
=
=
=

Alpbabetical Summary of Commands

usual
usual tag [commands]

Query or set “usual” option-handling commands for a widget in class tag.

204 Chapter 8 — [incr Th]

CHAPTER 9

Tix

Tix, written by Ioi Lam, is not part of the core Tcl/Tk package, but can be
obtained for free at hitp://www.neosoft.com/tcl/. This chapter covers Version 4.1.0.*

Tix Overview

Tix, which stands for the Tk interface extension, adds an object-oriented frame-
work for defining new widget types from existing widget types. Instances of these
new widget types are called mega-widgets. Tix includes over 40 predefined mega-
widget classes and several commands for designing new ones. Figure 9-1 shows
some examples of the mega-widgets added by Tix.

Tix also adds a few new standard widgets, commands for communicating with the
Motif window manager, a form-based geometry manager, and two new image
types: compound and pixmap.

Tix scripts are usually run using the supplied tixwish command interpreter. The
command-line arguments for tixwish are the same as for Tk’s wish. Tix can also be
dynamically loaded into a running Tcl interpreter using the command:

package require Tix

if the system is properly configured for dynamic loading.

Special Variables

The following global variables are defined by Tix:

tix library Directory containing the Tix script library
tix_patchLevel Current patch level of Tix extension

* At the time of writing, the Tix web site at http:/www.xpi.com/tix was down due to lack of funding.

http://www.neosoft.com/tcl/
http://www.xpi.com/tix

Fonts | Colors |

B 61 Adobe Attributes
= iskienca Boid
B Bit;;,l-l::;] Underline
E Char“lter _
courter Point Size: 12 2
Encoding: Wﬂ

Figure 9-1: Examples of some of the Tix mega-widgets

tix_release
tix_version

Release level of the Tix extension
Current version of Tix extension

Group Listing of Tix Commands

This section briefly lists all Tix commands, grouped logically by function.

Mega-widgets

tixBalloon Create a tixBalloon mega-widget.
tixButtonBox Create a tixButtonBox mega-widget.
tixCheckList Create a tixCheckList mega-widget.
tixComboBox Create a tixComboBox mega-widget.
tixControl Create a tixControl mega-widget.
tixDialogShell Create a tixDialogShell mega-widget.
tixDirList Create a tixDirList mega-widget.
tixDirSelectBox Create a tixDirSelectBox mega-widget.
tixDirSelectDialog Create a tixDirSelectDialog mega-widget.
tixDirTree Create a tixDirTree mega-widget.
tixExFileSelectBox Create a tixExFileSelectBox mega-widget.
tixExFileSelectDialog ~ Create a tixExFileSelectDialog mega-widget.
tixFileComboBox Create a tixFileComboBox mega-widget.
tixFileEntry Create a tixFileEntry mega-widget.
tixFileSelectBox Create a tixFileSelectBox mega-widget.
tixFileSelectDialog Create a tixFileSelectDialog mega-widget.
tixLabelEntry Create a tixLabelEntry mega-widget.
tixLabelFrame Create a tixLabelFrame mega-widget.
tixLabelWidget Create a tixLabelWidget mega-widget.
tixListNoteBook Create a tixListNoteBook mega-widget.
tixMeter Create a tixMeter mega-widget.
tixNoteBook Create a tixNoteBook mega-widget.

206 Chapter 9— Tix

tixOptionMenu Create a tixOptionMenu mega-widget.
tixPanedWindow Create a tixPanedWindow mega-widget.
tixPopupMenut Create a tixPopupMenu mega-widget.
tixPrimitive Create a tixPrimitive mega-widget.
tixScrolledGrid Create a tixScrolledGrid mega-widget.
tixScrolledHList Create a tixScrolledHList mega-widget.
tixScrolledListBox Create a tixScrolledListBox mega-widget.
tixScrolledTList Create a tixScrolledTList mega-widget.
tixScrolledText Create a tixScrolledText mega-widget.
tixScrolledWidget Create a tixScrolledWidget mega-widget.
tixScrolled Window Create a tixScrolledWindow mega-widget.
tixSelect Create a tixSelect mega-widget.

tixShell Create a tixShell mega-widget.
tixStackWindow Create a tixStackWindow mega-widget.
tixStdButtonBox Create a tixStdButtonBox mega-widget.
tixStdDialogShell Create a tixStdDialogShell mega-widget.
tixTree Create a tixTree mega-widget.

tixVStack Create a tixVStack mega-widget.
tixV1ree Create a tixVTree mega-widget.
Standard Widgets

tixGrid Create a tixGrid widget.

tixHList Create a tixHList widget.

tixInputOnly Create a tixInputOnly widget.

tixNBFrame Create a tixNBFrame widget.

tixTList Create a tixTList widget.

Core Commands

tix
tixCallMethod
tixChainMethod
tixClass
tixDescendants
tixDestroy
tixDisableAll
tixDisplayStyle
tixEnableAll
tixForm
tixGetBoolean
tixGetlnt
tixMwm
tixPushGrab
tixPopGrab
tixWidgetClass

Access the Tix application context.

Call method of derived class.

Call method of superclass.

Declare a new Tix class.

Get descendants of a widget.

Destroy a Tix class object.

Disable a widget and its descendants.

Create a style for display items.

Enable a widget and its descendants.
Communicate with the tixForm geometry manager.
Get the boolean value of a string.

Get the integer value of a string.

Communicate with the Motif window manager.

Set a grab on a window and push it on the grab stack.

Release a grab on a window and pop it off the grab stack.

Declare a new Tix widget class.

Group Listing of Tix Commands

207

Tix Mega-widget Overview

Tix mega-widgets are created and manipulated in the same manner as standard Tk
widgets. Options can be set both at creation or with the widget's configure
method. All mega-widgets let you specify option values using the Tk options
database and query option values with the cget method.

The widgets that are used to compose a mega-widget can be standard widgets or
other mega-widgets. Each of these subwidgets is identified by a unique name
defined in the mega-widget’s API. All mega-widgets support the subwidget method
to directly access their subwidgets. This method has the form:

pathName subwidget subwidget [method [args ...]]

where subwidget is the unique name given to the subwidget by the mega-wid-
get. When the method argument is omitted, the widget pathname of the subwid-
get is returned. Otherwise, the method method of the subwidget is called with
any optional arguments and the results returned. For example, to change the back-
ground color of the entry widget contained in the tixControl mega-widget .c, one
would use this code:

.c subwidget entry configure -bg white

The subwidget root is present in all mega-widgets and is the equivalent to the
name of the created mega-widget (i.e., the pathName argument to the mega-wid-
get creation command). It is the base container upon which each mega-widget is
built and is almost always either a frame or top-level widget.

The object-oriented framework for defining a mega-widget class supports inheri-
tance from another mega-widget class. The class being inherited from is called the
superclass of the class being defined. The mega-widget class tixPrimitive is at
the top of the mega-widget class hierarchy for the classes supplied with Tix. All
other classes are descendants of tixPrimitive. A mega-widget inherits all the
commands, options, and subwidgets of its superclass.

Tix Mega-widgets

This section describes the predefined mega-widget classes that are present in the
Tix extension. For options that are equivalent to the standard Tk widget options,
only the names are listed. Refer to the “Standard Widget Options” section of Chap-
ter 3, Tk Core Commands, for the full definition of these options. Since almost all
mega-widget classes are derived from another mega-widget class, it is important to
refer to the description of the superclass to see the full API of a mega-widget class.
Inherited commands, options, and subwidgets are sometimes listed for a mega-
widget class when they are overridden or are an integral part of the mega-widget’s
function.

208 Chapter 9— Tix

Balloon
tixBalloon pathName [option value..]

The tixBalloon command creates a new tixBalloon mega-widget named
pathName. The tixBalloon class is derived from the tixShell class. A
tixBalloon widget can be bound to one or more widgets so that when the
mouse cursor is inside the target widget, a window pops up with a descriptive
message. In addition, a message can be displayed in a connected status bar.

Widget-Specific Options

-inftwait milliseconds (initWait, InitWait)
How long the balloon should wait after the mouse cursor enters an asso-
ciated widget before popping up the balloon message. If the mouse cur-
sor leaves the widget before this time has elapsed, no message is popped
up.

-state state (state, State)
Which help messages should be displayed. Valid values for state are
both (balloon and status bar), balloon (balloon only), status (status
bar only), and none (display no message).

-statusbar pathName (statusBar, StatusBar)
Which widget to use as the status bar of the balloon. Any widget that
supports a -text configuration option can be a status bar.

Subwidgets

label
The label widget containing the arrow bitmap in the pop-up window.

message
The message widget that shows the descriptive message in the pop-up
window.

Methods

pathName bind window [option value..]
Arrange for the tixBalloon widget to be invoked when the mouse pointer
enters the widget window. The available options are as follows:

-balloonmsg string
String to show in the pop-up window.

-statusmsg string
String to show on the status bar.
-msg string
String to show in both the pop-up window and status bar. This

option has the lowest precedence.

pathName unbind window
Cancel the tixBalloon widget’s binding to window.

Tix Mega-widgets — Balloon 209

Example

label .status -relief sunken -bd 1 -width 40

button .btnl -text Exit -command exit

tixBalloon .balloonl -statusbar .status

.balloonl bind .btnl -balloonmsg "Exit Application" \
-statusmsg {Press this button to exit the applications}

pack .btnl .status

ButtonBox
tixButtonBox pathName [option value..]

The tixButtonBox command creates a new tixButtonBox mega-widget named
pathName. The tixButtonBox class is derived from the tixPrimitive
class. It serves as a container widget for button widgets, most commonly in
dialogs.

Widget-Specific Options

-orientation orientation (orientation, Orientation)
Orientation of the button subwidgets, either horizontal (the default)
or vertical.

-padx size (padX, Pad)
Horizontal padding between two neighboring button subwidgets.

-pady size (pady, Pad)
Vertical padding between two neighboring button subwidgets.

-state state (state, State)
State of all the button subwidgets, either normal or disabled.

Methods

pathName add buttonName [option value..]
Add a new button subwidget with name buttonName into the box.
Options are those valid for a normal button widget.

pathName invoke buttonName
Invoke the button subwidget buttonName.

CheckList
tixCheckList pathName [option value..]

The tixCheckList command creates a new tixCheckList mega-widget named
pathName. The tixCheckList class is derived from the tixTree class. It
displays a hierarchical list of items that can be selected by the user. The status
of an item can be one of four possible values: on (indicated by a check
bitmap), off (indicated by a cross bitmap), default (indicated by a gray
box bitmap), or none (no bitmap). Items with on, off, and default status
may be selected. The default status for an item is none.

210 Chapter 9— Tix

Widget-Specific Options

-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user invokes an entry (usually by a dou-
ble click). The pathname of the entry is appended as an argument.

-radio boolean (radio, Radio)
Whether only one item at a time can be selected.

Subwidgets

hlist
The tixHList mega-widget that displays the tixCheckList. Entries to the tix-
CheckList are added directly to the hlist subwidget. Entries must be dis-
play items of type imagetext. Once an entry is added, the tixCheckList
setstatus command should be called to set the entry’s status:

tixCheckList .c

.c subwidget hlist add choicel -itemtype imagetext
-text "Choice 1"

.c setstatus choicel on

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

Methods

pathName getselection [status]
Return a list of items whose status is status (default is on).

pathName gelstatus entryPath
Return the current status of entryPath.

pathName selstatus entryPath status
Set the status of entryPath to be status.

Example

tixCheckList .clist -scrollbar auto

set hlist [.clist subwidget hlist]

foreach attr {Bold Italic Underline} {
Shlist add Sattr -itemtype imagetext -text S$attr
.clist setstatus S$attr off

}

.clist setstatus Bold on

pack .clist

Tix Mega-widgets — CheckList 211

ComboBox
tixComboBox pathName [option value..]

The tixComboBox command creates a new tixComboBox mega-widget named
pathName. The tixComboBox class is derived from the tixLabelWidget
class. It provides an entry widget whose value is connected to the selected
item of a listbox widget.

The tixComboBox supports two selection modes with the -selectmode option.
When the mode is immediate, the current value is changed immediately
when the user enters a keystroke in the entry subwidgets or clicks (or drags
over) an item in the listbox. When the mode is browse, the current value is
not changed until the user presses the Return key or double-clicks an item in
the listbox. The selected item in the listbox or what the user has typed so far
is made the temporary value (see the -selection option). If the user presses the
Escape key, the string displayed in the entry is changed back to the current
value.

Widget-Specific Options

-anchor anchorPos (anchor, Anchor)
How the string in the entry subwidget should be aligned.

-arrowbitmap bitmap (arrowBitmap, ArrowBitmap)
Bitmap to use for arrow button beside the entry subwidget.

-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to be called when the selection mode is browse and the tem-
porary value has changed.

-command tclCommand (command, Command)
Command to be called when tixComboBox is invoked or when its current
value is changed.

-crossbitmap bitmap (crossBitmap, CrossBitmap)
Bitmap to use in cross button to the left of the entry subwidget.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (specified by the -command option) are disabled.

-dropdown boolean (dropDown, DropDown)
Whether the listbox should be in a drop-down window.

-editable boolean (editable, Editable)
Whether user is allowed to type into the entry subwidget.

-fancy boolean (fancy, Fancy)
Whether cross and tick button subwidgets should be shown.

-grab grabPolicy (grab, Grab)
Grab policy for listbox when in a drop-down window. Valid values are
global (default), local, or none.

212 Chapter 9— Tix

-historylimit integer (historyLimit, HistoryLimit)
How many previous user inputs are remembered in history list.

-history boolean (history, History)
Whether to store previous user inputs in a history list.

-label string (label, Label)
String to use as label for the tixComboBox.

-labelside position (labelsSide, LabelSide)
Where to position the tixComboBox label. Valid values are top, left,
right, bottom, none, or acrosstop.

-listcmd tclCommand (1istCmd, ListCmd)
Command to call whenever the listbox is dropped down.

-listwidth tclCommand (1istwidth, Listwidth)
Width for listbox subwidget.

-prunebistory boolean (pruneHistory, PruneHistory)
Whether previous duplicate user inputs should be pruned from history
list.

-selection tclCommand (selection, Selection)
The temporary value of the tixComboBox when the selection mode is
browse.

-selectmode mode (selectMode, SelectMode)
The selection mode of the tixComboBox. Valid values are browse and
immediate.

-state state (state, State)

Current state of the tixComboBox. Valid values are normal and dis-
abled.

-tickbitmap bitmap (tickBitmap, TickBitmap)
Bitmap to display in tick button to the left of the entry subwidget.

-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixComboBox is about to
change. The candidate new value is appended as an argument. The
command should return the value it deems valid.

-value string (value, Value)
The current value of the tixComboBox.

-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixComboBox.
Direct changes to the variable will also change the value of the tix-
ComboBox.

Tix Mega-widgets — ComboBox 213

Subwidgets

arrow
The down arrow button widget.

cross
The cross button widget (when -fancy is set).

entry
The entry widget that shows the current value.

label
The label widget.

listbox
The listbox widget that holds the list of possible values.

slistbox
The tixScrolledListBox widget.

tick
The tick button widget (when -fancy is set).

Methods

pathName addhistory string
Add string to the beginning of the listbox.

pathName appendbistory
Append string to the end of the listbox.

pathName flash
Flash the tixComboBox by alternating between active and normal colors.

pathName insert index string
Insert string into the listbox at specified index.

pathName pick index
Change the current value to that of the item at index in the listbox.

Example

tixComboBox .cb -label Encoding: -dropdown true -editable false \
-options { listbox.height 4 label.width 10 label.anchor w }

foreach type { Latinl Latin2 Latin3 Latin4 Cyrillic Arabic Greek } {
.cb insert end Stype

}

tixSetSilent .cb Latinl

pack .cb

Control
tixControl pathName [option value..]

The tixControl command creates a new tixControl mega-widget named
pathName. The tixControl class is derived from the tixPrimitive
class. The tixControl widget, also known as a spinbox, is generally used to

214 Chapter 9— Tix

control a denumerable value. The user can adjust the value by pressing the
two arrow buttons or by entering the value directly into the entry.

The tixControl supports two selection modes with the -selectmode option.
When the mode is immediate, the current value is changed immediately
when the user enters a keystroke. When the mode is normal, the current
value is not changed until the user presses the Return key. If the user presses
the Escape key, the string displayed in the entry is changed back to the cur-
rent value.

Widget-Specific Options

-allowempty boolean (allowEmpty, AllowEmpty)
Whether an empty string is a valid input value.

-autorepeat boolean (autoRepeat, AutoRepeat)
Whether increment and decrement buttons should autorepeat when held
down.

-command tclCommand (command, Command)

Command to call when the current value is changed. The value is
appended as an argument.

-decrcmd tclCommand (decrCmd, DecrCmd)
Command to call when the user presses the decrement button. The cur-
rent value is appended as an argument. The return value is made the
new current value.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (specified by the -command option) are disabled.
-disabledforeground color (disabledForeground,

DisabledForeground)

Color to use for the foreground of the entry subwidget when the tixCon-
trol widget is disabled.

-incremd tclCommand (incrCmd, IncrCmd)
Command to call when the user presses the increment button. The cur-
rent value is appended as an argument. The return value is made the
new current value.

-inftwait milliseconds (initWait, InitWait)
How long to wait before entering autorepeat mode.

-integer boolean (integer, Integer)
Whether only integer values are allowed.

-label string (label, Label)
String to display as the label of the tixControl widget.

-labelside position (labelSide, LabelSide)
Where to position the tixControl label. Valid values are top, left,
right, bottom, none, or acrosstop.

Tix Mega-widgets — Control 215

-max value (max, Max)
Upper-limit value of the tixControl. If set to the empty string, there is no
limit.

-min value (min, Min)
Lower-limit value of the tixControl. If set to the empty string, there is no
limit.

-repeatrate milliseconds (repeatRate, RepeatRate)
Time between increments or decrements when in autorepeat mode.

-selectmode mode (selectMode, SelectMode)
The selection mode of the tixControl. Valid values are normal and
immediate.

-state state (state, State)

Current state of the tixControl. Valid values are normal and disabled.

-step value (step, Step)
How much the value should be incremented or decremented when the
user presses the increment or decrement buttons.

-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixControl is about to
change. The candidate new value is appended as an argument. The
command should return the value it deems valid.

-value value (value, Value)
The current value of the tixControl.

-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixControl.
Direct changes to the variable will also change the value of the tix-
Control.

Subwidgets

decr
The decrement button widget.

entry

The entry widget that shows the current value.
incr

The increment button widget.

label
The label widget.

216 Chapter 9— Tix

Methods

pathName decr
Decrement the current value of the tixControl.

pathName incr
Increment the current value of the tixControl.

pathName invoke
Flash the tixControl by alternating between active and normal colors.

pathName update
Update the current value to whatever the user has typed in the entry sub-

widget.
Example
tixControl .ctl -label "Point Size:" -integer true \
-variable fontsize -min 1 -max 30
pack .ctl
DialogShell

tixDialogShell pathName [option value..]

The tixDialogShell command creates a new tixDialogShell mega-widget
named pathName. The tixDialogShell class is derived from the
tixShell class. It is used as a superclass for more functional dialog mega-
widgets.

Widget-Specific Options

-minbeight tclCommand (minHeight, MinHeight)
The minimum height of the dialog for resizing.

-minwidth tclCommand (minWidth, Minwidth)
The minimum width of the dialog for resizing.

-transient tclCommand (transient, Transient)
Whether dialog window should be a transient window.

Methods

pathName center (window]
Arrange for the dialog’s position on the screen to be centered over win-
dow (defaults to dialog’s parent). The position is adjusted to make sure
the dialog is fully visible.

pathName popdown
Withdraw the dialog from the screen.

pathName popup [windowl]
Pop up the dialog on the screen, centered on window (defaults to dia-
log’s parent).

Tix Mega-widgets — DialogShell 217

DirList
tixDirList pathName [option value...]

The tixDirList command creates a new tixDirList mega-widget named path-
Name. The tixDirList class is derived from the tixScrolledHList
class. It displays a list of the subdirectories and parent directory of a target
directory. The user can choose one of the directories or change to another
directory.

Widget-Specific Options

-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses on a directory (usually by a
single click). The directory is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user activates a directory (usually by a
double click). The directory is appended as an argument.

-dircmd tclCommand (dirCmd, DirCmd)
Command to call when a directory listing is needed. Two arguments are
appended: the name of the directory to be listed and a boolean that sig-
nifies whether hidden subdirectories should be listed. The return values
should be the list of subdirectories in the given directory. If this option is
not specified, the default is to read the directory as a Unix directory.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-showhidden boolean (showHidden, ShowHidden)
Whether hidden directories should be shown.

-rool directory (root, Root)
Name of the root directory.

-rootname string (rootName, RootName)
Text string to display as the root directory. Default is same as -root
option.

-value directory (value, Value)

Name of the current directory displayed.

Subwidgets
hlist

The tixHList mega-widget that displays the directory list.
hsb

The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

218 Chapter 9— Tix

Methods

pathName chdir directory
Change the current directory to directory.

DirSelectBox

tixDirSelectBox pathName [option value..]

The tixDirSelectBox command creates a new tixDirSelectBox mega-widget
named pathName. The tixDirSelectBox class is derived from the tix-
Primitive class. It combines a tixFileComboBox with a tixDirList to provide
a method for a user to select a directory by both keyboard entry and listbox
selection.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the current directory value is changed. The value
is appended as an argument.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-value directory (value, Value)
Name of the current directory displayed.

Subwidgets

dircbx
The tixFileComboBox mega-widget.

dirlist
The tixDirList mega-widget.

DirSelectDialog
tixDirSelectDialog pathName [option value..]

The tixDirSelectDialog command creates a new tixDirSelectDialog mega-
widget named pathName. The tixDirSelectDialog class is derived from
the tixDialogShell class. It presents a tixDirSelectBox in a pop-up dialog
window.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the user chooses a directory in the dialog box.
The complete pathname of the directory is appended as an argument.

Subwidgets

dirbox
The tixDirSelectBox mega-widget.

Tix Mega-widgets — DirSelectDialog 219

cancel
The Cancel button widget. Invoking this button pops down the dialog
with no choice being made.

ok
The OK button widget. Invoking this button pops down the dialog and
makes the current selected directory the user’s choice.

DirTree
tixDirTree pathName [option value..]

The tixDirTree command creates a new tixDirTree mega-widget named
pathName. The tixDirTree class is derived from the tixVTree class. It
displays a tree-style list of directories and their subdirectories for the user to
choose from.

Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)

Command to call whenever the user browses on a directory (usually by a
single click). The directory is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user activates a directory (usually by a
double click). The directory is appended as an argument.

-dircmd tclCommand (dirCmd, DirCmd)
Command to call when a directory listing is needed. Two arguments are
appended: the name of the directory to be listed and a boolean that sig-
nifies whether hidden subdirectories should be listed. The return values
should be the list of subdirectories in the given directory. If this option is
not specified, the default is to read the directory as a Unix directory.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-showbidden boolean (showHidden, ShowHidden)
Whether hidden directories should be shown.

-value directory (value, Value)
Name of the current directory displayed.
Subwidgets

hlist
The tixHList mega-widget that displays the directory list.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

220 Chapter 9— Tix

Methods

pathName chdir directory
Change the current directory to directory.

ExFileSelectBox

tixExFileSelectBox pathName [option value...]

The tixExFileSelectBox command creates a new tixExFileSelectBox mega-
widget named pathName. The tixExFileSelectBox class is derived from
the tixPrimitive class. It provides a method for a user to select a file simi-
lar to the style used in Microsoft Windows.

Widget-Specific Options

-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses on a file (usually by a sin-
gle click). The filename is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user activates a file (usually by a double
click). The filename is appended as an argument.

-dialog dialog (dialog, Dialog)
Dialog box that contains this tixExFileSelectBox widget (internal use
only).

-dircmd tclCommand (dirCmd, DirCmd)

Command to call when a file listing is needed. Three arguments are
appended: the name of the directory to be listed, a list of file patterns,
and a boolean that signifies whether hidden files should be listed. The
return value should be a list of files in the given directory. If this option
is not specified, the default is to read the directory as a Unix directory.

-directory directory (directory, Directory)
The current directory whose files and subdirectories are displayed.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-filetypes £ileTypes (fileTypes, FileTypes)
List of file types that can be selected from the “List Files of Type” tix-
ComboBox subwidget. Each item is a list of two items: a list of file pat-
terns and a description (e.g., {{*.c *.h} {C source files}}).

-showhidden boolean (showHidden, ShowHidden)
Whether hidden files and subdirectories should be shown.

-pattern pattern (pattern, Pattern)
List of file patterns to match with the files in the current directory.

-value £ileName (value, Value)
Name of the currently selected file.

Tix Mega-widgets — ExFileSelectBox 221

Subwidgets
cancel
The Cancel button widget.
dir
The tixComboBox mega-widget for the current directory.
dirlist
The tixDirList mega-widget for listing directories.
file
The tixComboBox mega-widget for the current file.

filelist
The tixScrolledListBox mega-widget for listing files.

hidden
The checkbutton widget for toggling display of hidden files.

ok
The OK button widget.

types
The tixComboBox mega-widget for selecting file filter types.

Methods

pathName filter
Force refiltering of listed filenames according to the -pattern option.

pathName invoke
Force the widget to perform actions as if the user had pressed the OK
button.

ExFileSelectDialog
tixExFileSelectDialog pathName [option value..]

The tixExFileSelectDialog command creates a new tixExFileSelectDialog mega-
widget named pathName. The tixExFileSelectDialog class is derived
from the tixDialogShell class. It simply presents a tixExFileSelectBox
mega-widget in a dialog.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the user chooses a file (clicks the OK button).
The name of the chosen file is appended as an argument.

Subwidgets

fsbox
The tixExFileSelectBox mega-widget.

222 Chapter 9— Tix

FileComboBox
tixFileComboBox pathName [option value...]

The tixFileComboBox command creates a new tixFileComboBox mega-widget
named pathName. The tixFileComboBox class is derived from the tix-
Primitive class. It provides a combo box for entering file and directory
names.

Widget-Specific Options

-command tclCommand (command, Command)
Command to be called when tixFileComboBox is invoked or when its
current value is changed. A list describing the file is appended as an
argument. The first element of the list is the absolute pathname to the
file, the second element is the directory part file’s pathname, and the
third element is the base filename.

-defaultfile £i1eName (defaultFile, DefaultFile)
If the value entered into the tixFileComboBox is a directory, £ileName
is appended to the value before calling the associated command.

-directory directory (directory, Directory)
Set the current working directory for the tixFileComboBox to direc-
tory.

-text £ileName (text, Text)

Change the value of the tixFileComboBox to fileName. The associated
command is not invoked.

Subwidgets

combo
The tixComboBox mega-widget.

Methods

pathName invoke
Invoke the tixFileComboBox.

FileEntry
tixFileEntry pathName [option value..]

The tixFileEntry command creates a new tixFileEntry mega-widget named
pathName. The tixFileEntry class is derived from the tixLabel-
Widget class. It provides an entry box for a user to enter a filename, along
with a button that will pop up a file selection dialog.

The tixFileEntry supports two selection modes with the -selectmode option.
When the mode is immediate, the current value is changed immediately
when the user enters a keystroke. When the mode is normal, the current
value is not changed until the user presses the Return key.

Tix Mega-widgets — FileEntry 223

Widget-Specific Options

-activatecmd tclCommand (activateCmd, ActivateCmd)
Command to call when user activates the button subwidget. This com-
mand is called before the file dialog is popped up.

-command tclCommand (command, Command)
Command to call when the current value of the tixFileEntry is changed.
The filename is appended as an argument.

-dialogtype dialogClass (dialogType, DialogType)
The type of file selection dialog that should be popped up when the user
invokes the button subwidget. Valid values are tixFileSelectDialog
and tixExFileSelectDialog.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-disabledforeground color (disabledForeground,
DisabledForeground)
Foreground color for entry subwidget when the tixFileEntry is disabled.

-filebitmap bitmap (fileBitmap, FileBitmap)
Bitmap to display in the button subwidget.

-label string (label, Label)
String to display as the label of the tixFileEntry.

-labelside position (labelSide, LabelSide)
Where to position the tixFileEntry label. Valid values are top, left,
right, bottom, none, or acrosstop.

-selectmode mode (selectMode, SelectMode)
The selection mode of the tixFileEntry. Valid values are normal and
immediate.

-state state (state, State)

Current state of the tixFileEntry. Valid values are normal and dis-
abled.

-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixFileEntry is about to
change. The candidate new value is appended as an argument. The
command should return the value it deems valid.

-value value
The current value of the tixFileEntry.

-variable varName
Global variable that should be set to track the value of the tixFileEntry.
Direct changes to the variable will also change the value of the tixFile-
Entry.

224 Chapter 9— Tix

Subwidgets
button
The button widget for popping up a file selection dialog.

entry
The entry widget for entering a filename.

Methods

pathName invoke
Force the tixFileEntry to act as if the user has pressed the Return key
inside the entry subwidget.

pathName filedialog [method [args]]
If no additional arguments are given, the pathname of the file selection
dialog associated with the tixFileEntry is returned. When additional argu-
ments are given, they translate to a method call on the file selection dia-
log.

pathName update
Update the current value of the tixFileEntry to the current contents of the
entry subwidget. Useful only in normal selection mode.

FileSelectBox
tixFileSelectBox pathName [option value..]

The tixFileSelectBox command creates a new tixFileSelectBox mega-widget
named pathName. The tixFileSelectBox class is derived from the tix-
Primitive class. It provides a method for a user to select a file similar to
the style used in Motif.

Widget-Specific Options

-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses a file (usually by a single
click). The filename is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user activates a file (usually by a double-
click). The absolute path of the filename is appended as an argument.

-directory directory (directory, Directory)
The current directory whose files and subdirectories are displayed.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-pattern pattern (pattern, Pattern)
List of file patterns to match with the files in the current directory.

-value fileName (value, Value)
Name of the currently selected file.

Tix Mega-widgets — FileSelectBox 225

Subwidgets
dirlist
The tixScrolledListBox mega-widget for listing directories.

filelist
The tixScrolledListBox mega-widget for listing files.

filter
The tixComboBox mega-widget for the filter string.

selection
The tixComboBox mega-widget for the selected file.

Methods

pathName filter
Force refiltering of listed filenames according to the -pattern option.

pathName invoke
Call the command given by -command with the current filename.

FileSelectDialog
tixFileSelectDialog pathName [option value..]

The tixFileSelectDialog command creates a new tixFileSelectDialog mega-
widget named pathName. The tixFileSelectDialog class is derived
from the tixStdDialogShell class. It simply presents a tixFileSelectBox
mega-widget in a dialog.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the user chooses a file (clicks the OK button).
The name of the chosen file is appended as an argument.

Subwidgets

btns
The tixStdButtonBox mega-widget containing the OK, Filter, Cancel, and
Help button widgets.

fsbox
The tixFileSelectBox mega-widget.

LabelEntry
tixLabelEntry pathName [option value..

The tixLabelEntry command creates a new tixLabelEntry mega-widget named
pathName. The tixLabelEntry class is derived from the tixLabel-
Widget class. It provides an entry box with an attached label.

226 Chapter 9— Tix

Widget-Specific Options

-disabledforeground color (disabledForeground,

DisabledForeground)

Color to use for the foreground of the entry subwidget when the tix-
LabelEntry widget is disabled.

-label string (label, Label)
String to display as the label of the tixLabelEntry widget.

-labelside position (labelSide, LabelSide)
Where to position the tixLabelEntry label. Valid values are top, left,
right, bottom, none, or acrosstop.

-state state (state, State)
Current state of the tixLabelEntry. Valid values are normal and dis-
abled.

Subwidgets

entry

The entry subwidget.

label
The label subwidget.

LabelFrame
tixLabelFrame pathName [option value..]

The tixLabelFrame command creates a new tixLabelFrame mega-widget
named pathName. The tixLabelFrame class is derived from the tix-
LabelWidget class. It provides a labeled frame for containing other widgets,
which should be children of the frame subwidget.

Widget-Specific Options

-label string (label, Label)
String to display as the label of the tixLabelFrame widget.

-labelside position (labelSide, LabelSide)
Where to position the tixLabelFrame label. Valid values are top, left,
right, bottom, none, or acrosstop.

-padx amount (padx, PadXx)
Amount of horizontal padding around the frame subwidget.

-pady amount (pady, Pady)
Amount of vertical padding around the frame subwidget.

Subwidgets

frame
The frame subwidget, which should be the parent of any widget to be
contained.

Tix Mega-widgets — LabelFrame 227

label
The label subwidget.

Methods

pathName frame [method largs]]
Shortcut to subwidget frame.

LabelWidget
tixLabelWidget pathName [option value...]

The tixLabelWidget command creates a new tixLabelWidget mega-widget
named pathName. The tixLabelWidget class is derived from the tix-
Primitive class. Its main purpose is to provide a base class for labeled
mega-widgets.

Widget-Specific Options

-label string (label, Label)
String to display as the label of the tixLabelWidget widget.

-labelside position (labelSide, LabelSide)
Where to position the tixLabelWidget label. Valid values are top, left,
right, bottom, none, or acrosstop.

-padx amount (padX, PadXx)
Amount of horizontal padding around the frame subwidget.

-pady amount (pady, Pady)
Amount of vertical padding around the frame subwidget.

Subwidgets

frame
The frame subwidget upon which derived mega-widget classes should
build.

label
The label subwidget.

ListNoteBook
tixListNoteBook pathName [option value..]

The tixListNoteBook command creates a new tixListNoteBook mega-widget
named pathName. The tixListNoteBook class is derived from the
tixVStack class. Similar to the tixNoteBook, it allows the user to select one
of several pages (windows) to be displayed at one time. The user chooses the
page to display by selecting its name from an hlist subwidget.

228 Chapter 9— Tix

Widget-Specific Options

-dynamicgeometry boolean (dynamicGeometry,

DynamicGeometry)

Whether the tixListNoteBook should dynamically resize to match the size

of the current page. The default is false, in which case the size of the
tixListNoteBook will match the size of the largest page.

-ipadx amount (ipadXx, Pad)
Amount of internal horizontal padding around the sides of the page sub-
widgets.

-ipady amount (ipady, Pad)
Amount of internal vertical padding around the sides of page subwidgets.

Subwidgets

hlist

The tixHList mega-widget that displays the names of the pages.

pageName
The frame widget of a notebook page as returned by the add method.

Methods

pathName add pageName [option value...]
Add a new page to the tixListNoteBook. The pageName option must be
the name of an existing entry in the hlist subwidget. The pathname of
the page’s master frame widget is returned. Available options are:

-createcmd tclCommand
Command to be called the first time a page is to be displayed.

-raisecmd tclCommand
Command to be called whenever the page is raised by the user.

pathName delete pageName
Delete the given page from the tixListNoteBook.

pathName pagecget pageName option
Similar to the c¢get method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pageconfigure pageName [option value..]
Similar to the configure method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pages
Return a list of the names of all the pages.

pathName raise pageName
Raise the page pageName.

pathName raised
Return the name of the currently raised page.

Tix Mega-widgets — ListNoteBook 229

Meter

XET N XE1 wmeter mega-widgets”" /XET tixMeter pathName [option
value..]"

The tixMeter command creates a new tixMeter mega-widget named path-
Name. The tixMeter class is derived from the tixPrimitive class. It pro-
vides a way to show the progress of a time-consuming background job.

Widget-Specific Options

-fillcolor color (fillColor, FillColor)
Color of the progress bar.

-text string (text, Text)
Text to place inside the progress bar. Defaults to percentage value speci-
fied by the -value option.

-value value (value, Value)
A real value between 0.0 and 1.0 that specifies the amount of progress.

NoteBook
tixNoteBook pathName [option value..]

The tixNoteBook command creates a new tixNoteBook mega-widget named
pathName. The tixNoteBook class is derived from the tixVStack class.
It allows the user to select one of several pages (windows) to be displayed at
one time. The user chooses the page to display by selecting a tab at the top
of the tixNoteBook widget.

Widget-Specific Options

-dynamicgeometry boolean (dynamicGeometry,

DynamicGeometry)

Whether the tixNoteBook should dynamically resize to match the size of

the current page. The default is false, in which case the size of the
tixNoteBook will match the size of the largest page.

-ipadx amount (ipadX, Pad)
Amount of internal horizontal padding around the sides of the page sub-
widgets.

-ipady amount (ipady, Pad)
Amount of internal vertical padding around the sides of the page subwid-
gets.

Subwidgets

nbframe

The tixNoteBookFrame that displays the tabs of the notebook. Most of
the display options of the page tabs are controlled by this subwidget.

230 Chapter 9— Tix

pageName
The frame widget of a notebook page as returned by the add method.

Methods

pathName add pageName [option value...]
Add a new page to the tixNoteBook. The pageName option must be the
name of an existing entry in the hlist subwidget. The pathname of the
page’s master frame widget is returned. Available options are as follows:

-anchor anchorPos
Specifies how the information in a page’s tab (e.g., text or bitmap)
should be anchored. Must be one of n, nw, w, sw, s, se, e, ne, or
center.

-bitmap bitmap
Bitmap to display in tab.

-createcmd tclCommand
Command to be called the first time a page is to be displayed.

-image imageName
Name of image to display in tab.

-justify position
How multiple lines of text in a tab should be justified. Must be one
of left, right, or center.

-label string
Text to display in the tab. Overrides -image and -bitmap.

-raisecmd tclCommand
Command to be called whenever the page is raised by the user.

-State state
Whether page can be raised by the user. Must be either normal or
disabled.

-underline index
Integer index (starting from 0) of character in text label to underline
in the tab. Used by default bindings to set up keyboard traversal of
tabs.

-wraplength chars

Maximum line length of text in the tab. If value is O or less, no wrap-
ping is done.

pathName delete pageName

Delete the given page from the tixNoteBook.

pathName pagecget pageName option
Similar to the cget method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

Tix Mega-widgets — NoteBook 231

pathName pageconfigure pageName [option value..]
Similar to the configure method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pages
Return a list of the names of all the pages.

pathName raise pageName
Raise the page pageName.

pathName raised
Return the name of the currently raised page.

Example

tixNoteBook .nb -ipadx 6 -ipady 6 -options
{ nbframe.backpagecolor gray }

.nb add fonts -label "Fonts" -underline 0

set fl1 [frame [.nb subwidget fonts].f]

pack [listbox $f1.1Db]

$fl.1b insert end Courier Helvetica Utopia

.nb add colors -label "Colors" -underline 0

set f2 [frame [.nb subwidget colors].f]

pack [listbox $£2.1Db]

$f2.1b insert end Red Green Blue

pack .nb $fl $f2 -expand true -fill both

OptionMenu
tixOptionMenu pathName [option value..]

The tixOptionMenu command creates a new tixOptionMenu mega-widget
named pathName. The tixOptionMenu class is derived from the tix-
LabelWidget class. It provides a method for the user to select an option
from a pop-up menu.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the current value of the tixOptionMenu is
changed. The filename is appended as an argument.

-disablecallback boolean (disableCallback, DisableCallback)

Whether callbacks (-command) are disabled.
-dynamicgeometry boolean (dynamicGeometry,
DynamicGeometry)

Whether the size of the menubutton subwidget should change dynami-
cally to match the width of the currently selected menu entry. If false,
its width is wide enough to contain the largest entry.

-label string (label, Label)
String to display as the label of the tixOptionMenu.

232 Chapter 9— Tix

-labelside position (labelSide, LabelSide)
Where to position the tixOptionMenu label. Valid values are top, left,
right, bottom, none, or acrosstop.

-state state (state, State)
Current state of the tixOptionMenu. Valid values are normal and dis-
abled.

-value value (value, Value)

The current value of the tixOptionMenu, which is the name of the menu
entry currently displayed in the menubutton subwidget.

-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixOption-
Menu. Direct changes to the variable will also change the value of the
tixOptionMenu.

Subwidgets

menu
The menu widget that is popped up when the user presses the menubut-
ton widget.

menubutton
The menubutton widget that displays the current selection.

Methods

pathName add type entryName [option value..]
Add a new entry to the tixOptionMenu named entryName. Type must
be either command or separator. The options are any of the valid
options for a menu entry of the given type, except -command.

pathName delete entryName
Delete the entry entryName from the tixOptionMenu.

pathName disable entryName
Disable the entry entryName.

pathName enable entryName
Enable the entry entryName.

pathName entrycget entryName option
Similar to the cget method, but operates on the entry entryName.
Option may have any of the values accepted by the add method.

pathName entryconfigure entryName [option value..]
Similar to the configure method, but operates on the entry entryName.
Option may have any of the values accepted by the add method.

pathName entries
Return a list of the names of all entries in the tixOptionMenu.

Tix Mega-widgets — OptionMenu 233

PanedWindow
tixPanedWindow pathName [option value...]

The tixPanedWindow command creates a new tixPanedWindow mega-widget
named pathName. The tixPanedWindow class is derived from the tix-
Primitive class.

Widget-Specific Options

-command tclCommand (command, Command)

Command to call when the panes change their sizes. A list of the new
sizes in the order of each pane’s creation is appended as an argument.

-dynamicgeometry boolean (dynamicGeometry,

DynamicGeometry)

Whether the size of the tixPanedWindow will dynamically change if the

size of any of its panes is changed. If false, the size of the tixPaned-
Window will increase but not decrease.

-handleactivebg color (handleActiveBg, HandleActiveBg)
Active background color for the resize handles.

-handlebg color (handleBg, HandleBg)
Background color for the resize handles.

-height amount (height, Height)
Desired height for the tixPanedWindow.

-orientation orientation (orientation, Orientation)
Orientation of the panes. Must be either vertical or horizontal.

-paneborderwidth amount (paneBorderWidth, PaneBorderWidth)
Border width of the panes.

-panerelief relief (paneRelief, PaneRelief)
Border relief of the panes.

-separatoractivebg color (separatorActiveBg,
SeparatorActiveBg)
Active background color of the separators.

-separatorbg color (separatorBg, SeparatorBg)
Background color of the separators.

-width amount (width, width)
Desired width of the tixPanedWindow.

Subwidgets

paneName
The frame widget of pane paneName as returned by the add method.

234 Chapter 9— Tix

Methods

pathName add paneName [option value..]
Add a new pane named paneName. The frame widget to serve as the
master container for the pane is returned. Available options are:

-after paneName
Place the pane after the pane named paneName.

-before paneName
Place the pane before the pane named paneName.

-expand factor
The weighting factor by which the pane should grow or shrink
when the tixPanedWindow is resized. The default is 0.0. If all panes
have a 0.0 factor, only the last visible pane is resized.

-max amount
The maximum size, in pixels, for the pane.

-min amount
The minimum size, in pixels, for the pane.

-size amount
Desired size of the pane along the tixPanedWindow’s orientation. If
not given, the pane’s natural default size is used.

pathName delete paneName
Remove the pane paneName and delete its contents.

pathName forget paneName
Remove the pane paneName but do not delete its contents, so that it
may be added back using the manage method.

pathName manage paneName [option value...]
Add the pane paneName back to those currently managed by the tix-
PanedWindow. Available options are the same as for the add method.

pathName panecget paneName option
Similar to the cget method, but operates on the pane paneName.
Option may have any of the values accepted by the add method.

pathName paneconfigure paneName [option value..]
Similar to the configure method, but operates on the pane paneName.
Option may have any of the values accepted by the add method.

pathName panes
Return a list of the names of all panes in the tixPanedWindow.

pathName setsize paneName newSize [direction]
Set the size of pane paneName to newSize. Direction may be next
(the default) or prev and directs the pane to grow or shrink by moving
the boundary between itself and the pane to its right or bottom (next)
or by moving the pane to its left or top (prewv).

Tix Mega-widgets — PanedWindow 235

PopupMenu

XET N XEl1 popup menus” /XET tixPopupMenu pathName [option
value..]"

The tixPopupMenu command creates a new tixPopupMenu mega-widget
named pathName. The tixPopupMenu class is derived from the tixShell
class. It provides a replacement for the tk_popup command with easier config-
uration and a menu title.

Widget-Specific Options

-buttons buttonList (buttons, Buttons)
A list that specifies the mouse buttons and key modifiers that pop up the
menu. Each item is a list with two elements: the button number and a list
of key modifiers. For example, {{1 {Control Meta}} {3 {Any}}}.
The default is {3 {Any}}.

-postcmd tclCommand (postCmd, PostCmd)
Command to call just before the menu is popped up. The x- and y-coor-
dinates of the button event are appended as the final two arguments. The
command must return a boolean value to indicate whether the menu
should be posted.

-spring boolean (spring, Spring)
Whether the menu should automatically pop down when the user
releases the mouse button outside the menu without invoking any menu
commands. The default is true. If false, the user must press the
Escape key to cancel the menu.

-state state (state, State)
Current state of the tixPopupMenu. Valid values are normal and dis-
abled. When disabled, the menu will not pop up.

-title string (title, Title)
Text for the title of the tixPopupMenu.
Subwidgets

menu
The menu widget that pops up.

menubutton
The menubutton widget used for the title.

Methods

pathName bind window [window...]
Arrange for the tixPopupMenu to be bound to the configured button
events over the given windows.

pathName post window x y
Post the tixPopupMenu inside window at the coordinates x, y.

236 Chapter 9— Tix

pathName unbindwindow [window...]
Cancel the tixPopupMenu’s binding to the given windows.

Primitive

tixPrimitive pathName [option value..]

The tixPrimitive command creates a new tixPrimitive mega-widget named
pathName. The tixPrimitive is a virtual base class that provides a root
widget that derived mega-widgets use as a base container upon which to
build. In fact, pathName is used as the pathname of the base widget. Unless
overridden by a derived class, this base widget is a frame widget. The only
class in the Tix core mega-widgets that overrides this is the tixShell class,
which uses a top-level widget for its root.

Widget-Specific Options

The tixPrimitive mega-widget supports the following options, which are sim-
ply passed to the underlying root widget. See the frame widget command in
Chapter 3.

-background -borderwidth -CUrsor

-height -highlightbackground -highlightcolor
-highlightthickness -relief -takefocus
-width

The tixPrimitive mega-widget supports the following special option to make it
easy for descendant classes to pass options to subwidgets:

-options optionList (options, Options)
List of resource options and values to apply to mega-widget. Each odd
element is the resource specification relative to the mega-widget. Each
following even element is its value. This option is mainly used to config-
ure a mega-widget’s subwidgets at creation time. For example:

tixComboBox .cb -label Color: -dropdown true \
-options { listbox.height 4 label.width 10 label.anchor e }

Subwidgets

root
The base frame widget in which derived mega-widgets should be built.
This will equal the pathName argument of the mega-widget creation
command (e.g., tixPrimitive) and therefore is almost never needed.

ScrolledGrid
tixScrolledGrid pathName [option value..

The tixScrolledGrid command creates a new tixScrolledGrid mega-widget
named pathName. The tixScrolledGrid class is derived from the
tixScrolledwidget class. It provides a scrollable tixGrid widget.

Tix Mega-widgets — ScrolledGrid 237

Subwidgets
grid
The tixGrid widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledHList
tixScrolledHList pathName [option value..]

The tixScrolledHList command creates a new tixScrolledHList mega-widget
named pathName. The tixScrolledHList class is derived from the
tixScrolledwidget class. It provides a scrollable tixHList mega-widget.

Subwidgets

hlist
The tixHList mega-widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledListBox
tixScrolledListBox pathName [option value..]

The tixScrolledListBox command creates a new tixScrolledListBox mega-
widget named pathName. The tixScrolledListBox class is derived from
the tixScrolledwidget class. It provides a scrollable listbox widget.

Widget-Specific Options

-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a sin-
gle click).

-command tclCommand (command, Command)
Command to call whenever the user activates an entry (usually by a dou-
ble click).

-state state (state, State)
Current state of the listbox subwidget. Valid values are normal and
disabled.

238 Chapter 9— Tix

Subwidgets

listbox
The listbox widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledText
tixScrolledText pathName [option value..]

The tixScrolledText command creates a new tixScrolledText mega-widget
named pathName. The tixScrolledText class is derived from the
tixScrolledwidget class. It provides a scrollable text widget.

Subwidgets

text
The text widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledTList
tixScrolledTList pathName [option value..]

The tixScrolledTList command creates a new tixScrolledTList mega-widget
named pathName. The tixScrolledTList class is derived from the
tixScrolledwidget class. It provides a scrollable tixTList mega-widget.

Subwidgets
tlist
The tixTList mega-widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledWidget
tixScrolledWidget pathName [option value..]

The tixScrolledWidget command creates a new tixScrolledWidget mega-widget
named pathName. The tixScrolledWidget class provides a virtual base

Tix Mega-widgets — ScrolledWidget 239

class for deriving mega-widgets that wrap scrollbars around a contained
widget.

Widget-Specific Options

-scrollbar policy (scrollbar, Scrollbar)

The display policy for the scrollbars. Valid values for policy are:

auto [xPolicyl [yPolicyl
Scrollbars are shown when needed. XPolicy may be +x or -x,
which state that the tixScrolledWidget should always or never show
the horizontal scrollbar, respectively. Similarly, yPolicy may be +y
or -y for the vertical scrollbar.

both
Always show both scrollbars.

none
Never show either scrollbar.

x At all times, show only the horizontal scrollbar.
vy At all times, show only the vertical scrollbar.

Subwidgets

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledWindow

tixScrolledWindow pathName [option value...]

The tixScrolledWindow command creates a new tixScrolledWindow mega-
widget named pathName. The tixScrolledWindow class is derived from
the tixScrolledWidget class. It provides a scrollable frame widget in
which any arbitrary windows may be placed.

Widget-Specific Options

-expandmode mode (expandMode, ExpandMode)
If mode is expand (the default), the size of the scrolled window will be
expanded to fill its containing frame. The size of the scrolled window
will not be expanded if mode is the empty string.

-shrink mode (shrink, Shrink)
If mode is x, the width of the scrolled window will be reduced to fit its
containing frame. The width of the scrolled window will not be reduced
if mode is the empty string (the default).

240 Chapter 9— Tix

Subwidgets

window
The frame widget that will be scrolled and that will serve as the container
for other widgets.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

Select
tixSelect pathName [option value..]

The tixSelect command creates a new tixSelect mega-widget named path-
Name. The tixSelect class is derived from the tixLabelWidget class. It
provides a set of button subwidgets that provide a radiobox or checkbox style
of selection options for the user.

Widget-Specific Options

-allowzero boolean (allowZero, AllowZero)
Whether the selection can be empty. When false, at least one button
subwidget must be selected at any time. At creation time, the selection is
alway empty no matter what the value of -allowzero.

-buttontype type (buttonType, ButtonType)
Type of buttons to be used as subwidgets inside the tixSelect mega-
widget. The default is the standard Tk button widget.

-command tclCommand (command, Command)
Command to call when the current value of the tixSelect mega-widget is
changed. Two arguments will be appended: the name of the button sub-
widget toggled and a boolean value indicating whether that button is
selected.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-label string (label, Label)
String to display as the label of the tixSelect mega-widget.

-labelside position (labelside, Labelside)
Where to position the label. Valid values are top, left, right, bot-
tom, none, or acrosstop.

-orientation orientation (orientation, Orientation)
Orientation of the button subwidgets. Must be either horizontal or
vertical. This option can only be set at creation.

-padx amount (padx, Pad)
Horizontal padding to add between button subwidgets.

Tix Mega-widgets — Select 241

-pady amount (pady, Pad)
Vertical padding to add between button subwidgets.

-radio boolean (radio, Radio)
Whether only one button subwidget can be selected at any time. This
option can only be set at creation.

-selectedbg color (selectedBg, SelectedBg)
Background color for all the selected button subwidgets.

-state state (state, State)
Current state of the tixSelect mega-widget. Valid values are normal and
disabled.

-validatecmd tclCommand (validateCmd, ValidateCmd)

Command to call when the current value of the tixSelect mega-widget is
about to change. The candidate new value is appended as an argument.
The command should return the value it deems valid.

-value value (value, Value)
The current value of the tixSelect mega-widget, which is a list of names
of the selected button subwidgets.

-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixSelect
mega-widget. Changes directly to the variable will also change the value
of the tixSelect mega-widget.

Subwidgets

label
The label widget.

buttonName
The button widget identified by the name buttonName as created by
the add method.

Methods

pathName add buttonName [option value..]
Add a new button subwidget named buttonName. Available options
are those valid for the type of button selected by -buttontype, with the
exclusion of -command and -takefocus.

pathName invoke buttonName
Invoke the button subwidget named buttonName.

Shell
tixShell pathName [option value..]

The tixShell command creates a new tixShell mega-widget named pathName.
The tixShell class is derived from the tixPrimitive class. It provides a
base class for mega-widgets that need a top-level root window.

242 Chapter 9— Tix

Widget-Specific Options

The tixShell mega-widget supports the following options of the top-level
widget. See the foplevel command in Chapter 3.

-background -borderwidth -colormap
-container -Cursor -height
-highlightbackground -bighlightcolor -bighlightthickness
-relief -takefocus -use

-screen -visual -width

The tixShell mega-widget also supports the following option:

-title string (title, Title)
Text to display in the titlebar (if any) of the top-level window.
Subwidgets

root
The top-level widget.

StackWindow
tixStackWindow pathName [option value..]

The tixStackWindow command creates a new tixStackWindow mega-widget
named pathName. The tixStackWindow class is derived from the tix-
VStack class. Similar to the tixNoteBook, it allows the user to select one of
several pages (windows) to be displayed at one time. The user chooses the
page to display by selecting its name from a tixSelect mega-widget.

Widget-Specific Options

-dynamicgeometry boolean (dynamicGeometry,

DynamicGeometry)

Whether the tixStackWindow should dynamically resize to match the size

of the current page. The default is false, in which case the size of the
tixStackWindow will match the size of the largest page.

-ipadx amount (ipadx, Pad)
Amount of internal horizontal padding around the sides of the page sub-
widgets.

-ipady amount (ipady, Pad)
Amount of internal vertical padding around the sides of the page subwid-
gets.

Subwidgets

tabs

The Stack mega-widget that displays a button for each page.

pageName
The frame widget of a page as returned by the add method.

Tix Mega-widgets — StackWindow 243

Methods

pathName add pageName [option value..]
Add a new page to the tixStackWindow and a button to select it in the
Select subwidget. The pageName option will be the name of the page
and the button in the Select subwidget. The pathname of the page’s mas-
ter frame widget is returned. Available options are as follows:

-createcmd tclCommand
Command to be called the first time a page is to be displayed.

-label tclCommand
Text label for the button in the Select subwidget.

-raisecmd tclCommand
Command to be called whenever the page is raised by the user.

pathName delete pageName
Delete the given page from the tixStackWindow.

pathName pagecget pageName option
Similar to the cget method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pageconfigure pageName [option value..]
Similar to the configure method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pages
Return a list of the names of all the pages.

pathName raise pageName
Raise the page pageName.

pathName raised
Return the name of the currently raised page.

StdButtonBox
tixStdButtonBox pathName [option value..|

The tixStdButtonBox command creates a new tixStdButtonBox mega-widget
named pathName. The tixStdButtonBox class is derived from the
tixButtonBox class. It adds four predefined buttons (OK, Apply, Cancel,
Help) for Motif-like dialog boxes.

Widget-Specific Options

-applycmd tclCommand (applyCmd, ApplyCmd)
Command to call when the Apply button is pressed.

-cancelcmd tclCommand (cancelCmd, CancelCmd)
Command to call when the Cancel button is pressed.

244 Chapter 9— Tix

-helpcmd tclCommand (helpCmd, HelpCmd)
Command to call when the Help button is pressed.

-okcmd tclCommand (okCmd, OkCmd)
Command to call when the OK button is pressed.

Subwidgets

apply
The Apply button widget.

cancel
The Cancel button widget.

help
The Help button widget.

ok
The OK button widget.

StdDialogShell
tixStdDialogShell pathName [option value..]

The tixStdDialogShell command creates a new tixStdDialogShell mega-widget
named pathName. The tixStdDialogShell class is derived from the
tixDialogShell class. It provides a base class for dialog mega-widgets that
need a tixStdButtonBox.

Subwidgets

btns
The tixStdButtonBox mega-widget.

Tree
tixTree pathName [option value..]

The tixTree command creates a new tixTree mega-widget named pathName.
The tixTree class is derived from the tixVTree class. It provides a display
of hierarchical data in a tree form. The user can adjust the view of the tree by
opening (expanding) or closing (collapsing) parts of the tree.

Widget-Specific Options
-browsecmd tclCommand (browseCmd, BrowseCmd)

Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-closecmd tclCommand (closeCmd, CloseCmd)
Command to call whenever an expanded entry needs to be closed. The
pathname of the entry is appended as an argument. The default action is
to hide all child entries of the specified entry.

Tix Mega-widgets — Tree 245

-command tclCommand (command, Command)
Command to call whenever the user activates an entry (usually by a dou-
ble click). The pathname of the entry is appended as an argument.

-ignoreinvoke boolean (ignoreInvoke, IgnoreInvoke)
If true, an entry is not expanded or collapsed when the entry is acti-
vated. The default is false.

-opencmd tclCommand (openCmd, OpenCmd)
Command to call whenever an expanded entry needs to be opened. The
pathname of the entry is appended as an argument. The default action is
to show all child entries of the specified entry.

Subwidgets

hlist
The tixHList mega-widget that displays the tree. Entries to the tree are
added directly to the hlist subwidget using its add method.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

Methods

pathName autosetmode
Call the setmode method for all entries. If an entry has no children, its
mode is set to none. If an entry has any hidden children, its mode is set
to open. Otherwise, the entry’s mode is set to close.

pathName close entryPath
Close the entry given by entryPath if its mode is close.

pathName getmode entryPath
Return the current mode of the entry given by entryPath.

pathName open entryPath
Open the entry given by entryPath if its mode is open.

pathName setmode entryPath mode
Set the mode of the entry given by entryPath to mode. If mode is
open, a (+) indicator is drawn next to the entry. If mode is close, a (-)
indicator is drawn next to the entry. If mode is none (the default), no
indicator is drawn.

Example

tixTree .tree -options { separator "/" }
set hlist [.tree subwidget hlist]
foreach d { Adobe Adobe/Courier Adobe/Helvetica Adobe/Times \
Bitstream Bitstream/Charter Bitstream/Courier } {
Shlist add $d -itemtype imagetext -text [file tail s$d] \
-image [tix getimage folder]
}
.tree autosetmode
pack .tree

246 Chapter 9— Tix

VStack
tixVStack pathName [option value..]

The tixVStack command creates a new tixVStack mega-widget named path-
Name. The tixVStack class is derived from the tixPrimitive class. It
serves as a virtual base class for tixNoteBook-style mega-widgets.

Widget-Specific Options
-dynamicgeometry boolean (dynamicGeometry,
DynamicGeometry)
Whether the tixVStack should dynamically resize to match the size of the
current page. The default is false, in which case the size of the tix-
VStack will match the size of the largest page.

-ipadx amount (ipadXx, Pad)
Amount of internal horizontal padding around the sides of the page sub-
widgets.

-ipady amount (ipady, Pad)
Amount of internal vertical padding around the sides of the page subwid-
gets.

Subwidgets

pageName

The frame widget of a notebook page as returned by the add method.

Methods

pathName add pageName [option value...]
Add a new page to the tixVStack named pageName. The pathname of
the page’s master frame widget is returned. Available options are:

-createcmd tclCommand
Command to be called the first time a page is to be displayed.

-raisecmd tclCommand
Command to be called whenever the page is raised by the user.

pathName delete pageName
Delete the given page from the tixVStack.

pathName pagecget pageName option
Similar to the c¢get method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pageconfigure pageName [option value..]
Similar to the configure method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pages
Return a list of the names of all the pages.

Tix Mega-widgets — VStack 247

pathName raise pageName
Raise the page pageName.

pathName raised
Return the name of the currently raised page.

VTree
tixVIree pathName [option value..]

The tixVTree command creates a new tixVTree mega-widget named path-
Name. The tixVTree class is derived from the tixScrolledHList class.
It serves as a virtual base class for tree-style mega-widgets.

Widget-Specific Options

-ignoreinvoke boolean (ignoreInvoke, IgnorelInvoke)
If true, an entry is not expanded or collapsed when the entry is acti-
vated. The default is false.

Subwidgets
hlist
The tixHList mega-widget that displays the tree.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

Tix Standard Widgets Overview

Tix adds five new standard widgets to Tk: tixGrid, tixHList, tixInputOnly, tixNote-
BookFrame, and tixTList. These widgets add new features to Tk that could not be
constructed from the standard Tk widgets.

Display Items

Three of the standard widgets added to Tk by Tix are designed to arrange and dis-
play items in a list or grid without regard to how each item is actually drawn. They
simply treat the items as rectangular boxes and leave the drawing part to the item
itself. To this end, all three widgets, called host widgets, support a set of items with
a common interface, called display items.

Tix currently has four types of display items: image, text, imagetext, and
window. A C API exists for the programmer to add more item types. The appear-
ance of each item is controlled by option-value pairs specified at creation in a
manner similar to how items of the canvas widget are configured. Each host
widget also supports an entryconfigure method for changing options for existing
items.

248 Chapter 9— Tix

Since several or all items in a host widget will share common display attributes,
Tix supports the concept of display styles. Each display item supports the -style
option, which accepts as a value a display style as returned by the tixDisplayStyle
command. The tixDisplayStyle command is described in detail in the “Tix Core
Commands” section, later in this chapter. In short, it defines a style by defining
values for a subset of the style options a display item type supports. Display items
are configured to use the style using the -style option. Changes to the style at a
later time will be reflected in all display items connected to the style.

Image Items

Display items of the type image are used to display Tk images. Image items sup-
port the following options:

-image imageName (image, Image)
Image to display in the item.

-style displayStyle (imageStyle, ImageStyle)
Display style to which to connect the item.

Image items support the following standard widget options as style options:

-activebackground -activeforeground -anchor
-background -disabledbackground -disabledforeground
-foreground -padx -pady
-selectbackground -selectforeground

Imagetext Items

Display items of the type imagetext are used to display an image and a text
string together. Imagetext items support the following options:

-bitmap bitmap (bitmap, Bitmap)
Bitmap to display in the item.

-image imageName (image, Image)
Image to display in the item. Overrides the -bitmap option.

-style displayStyle (imageTextStyle, ImageTextStyle)
Display style to which to connect the item.

-showimage boolean (showImage, ShowImage)
Whether image/bitmap should be displayed.

-showtext boolean (showText, ShowText)
Whether text string should be displayed.

-lext string (text, Text)
Text string to display in the item.

-underline string (underline, Underline)
Text string to display in the item.

Tix Standard Widgets Overview 249

Imagetext items support the following standard widget options as style options:

-activebackground -activeforeground -anchor
-background -disabledbackground -disabledforeground
-font -foreground -justify

-padx -pady -selectbackground
-selectforeground -wraplength

Imagetext items support the following special style option:
-gap amount (gap, Gap)
Distance in pixels between the bitmap/image and the text string.
Text Items

Display items of the type text are used to display a simple text string. Text items
support the following options:

-style displayStyle (textStyle, TextStyle)
Display style to which to connect the item.

-lext string (text, Text)
Text string to display in the item.

-underline string (underline, Underline)
Text string to display in the item.

Text items support the following standard widget options as style options:

-activebackground -activeforeground -anchor
-background -disabledbackground -disabledforeground
-font -foreground -justify

-padx -pady -selectbackground
-selectforeground -wraplength

Window Items

Display items of the type window are used to display a subwindow in a host
widget. Window items support the following options:

-style displayStyle (windowStyle, WindowStyle)
Display style to which to connect the item.

-window pathName (window, Window)
Pathname of widget to display as a subwindow in the item.

Window items support the following standard widget options as style options:

-anchor -padx -pady

250 Chapter 9— Tix

Tix Standard Widgets

Grid

tixGrid pathName [option value..]

The tixGrid command creates a new tixGrid widget named pathName. A tix-
Grid widget presents a 2D grid of cells. Each cell may contain one Tix display
item and can be formatted with a wide range of attributes.

Standard Options

-background -borderwidth -cursor

-font -foreground -highlightbackground
-highlightcolor -highlightthickness -padx

-pady -relief -selectbackground
-selectborderwidth -selectforeground -takefocus

-xscrollcommand — -yscrollcommand

Widget-Specific Options

-editdonecmd tclCommand (editDoneCmd, EditDoneCmd)

Command to call when the user has edited a grid cell. The column and
row numbers of the cell are appended as arguments.

-editnotifycmd tclCommand (editNotifyCmd, EditNotifyCmd)
Command to call when the user tries to edit a grid cell. The column and
row numbers of the cell are appended as arguments. The command
should return a boolean value to indicate whether the cell is editable.

-formatcmd tclCommand (formatCmd, FormatCmd)
Command to call when the grid cells need to be formatted on the screen.
Five arguments are appended: Type x1 y1 x2 y2. type is the logical
type of the region. It may be one of x-region (the horizontal margin),
y-region (the vertical margin), s-region (area where margins are
joined), or main (any other region). The last four arguments give the
column and row numbers of the top left cell and bottom right cell of the
affected region.

-height integer (height, Height)
Number of rows in the grid. The default is 10.

-itemtype tclCommand (itemType, ItemType)
The default item type for a cell when set with the set method. The default
is text.

-leftmargin integer (leftMargin, LeftMargin)

Number of cell columns, starting at column 0, that make up the vertical
margin. The default is 1. Left margin columns are not scrolled.

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default bindings for
manipulation of the selection. Supported styles are single, browse,

Tix Standard Widgets — Grid 251

multiple, and extended. Any arbitrary string is allowed, but the pro-
grammer must extend the bindings to support it.

-selectunit tclCommand (selectUnit, SelectUnit)
The unit of selection. Valid values are cell, column, or row.

-sizecmd tclCommand (sizeCmd, SizeCmd)
Command to call whenever the grid is resized or the size of a row or col-
umn is changed with the size method.

-state tclCommand (state, State)
Current state of the grid. Valid values are normal and disabled.

-topmargin tclCommand (topMargin, TopMargin)
Number of cell rows, starting from row 0, that make up the horizontal
margin. The default is 1. Rows in the top margin are not scrolled.

-width integer (width, width)
Number of columns in the grid. The default is 4.

Methods

pathName anchor operation largs..]
Manipulate the anchor cell of the grid. Available operations are:

clear
Make no cell the anchor cell.

get
Return the column and row of the anchor cell as a two-item list. A
result of {-1 -1} indicates there is no anchor cell.

setx y
Set the anchor cell to the cell at column x and row y.

pathName delete what from|[to]
Delete specified rows or columns. What may be row or column. If to
is omitted, only the row (or column) at from is deleted. Otherwise, all
rows (or columns) from position from through to, inclusive, are
deleted.

pathName edit apply
Un-highlight any cell currently being edited and apply the changes.

pathName edit set x y
Highlight the cell at column x, row y for editing.

pathName entrycgel x y option
Similar to the cget method, but operates on the cell at x y. Option may
have any of the values accepted by the set method used for that cell.

pathName entryconfigure x y loption value..]
Similar to the configure method, but operates on the cell at x y.
Option may have any of the values accepted by the set method for that
cell.

252 Chapter 9— Tix

pathName format borderType x1 yl x2 y2|loption value..]
Format the grid cells contained in the rectangular region with its top left
cell at x1,y1 and bottom right cell at x2,y2. This command can only be
called from the format command handler set with the -formatcmd option.
The borderType argument may be either border or grid. The fol-
lowing options are supported by both border types:

-background color (background, Background)
Background color for 3D borders when border type is border.
When -filled is true, the background of the cell is also drawn in
this color for both types. Otherwise, the tixGrid widget’s background
color is used.

-borderwidth amount (borderwWidth, BorderWidth)
Width of the border.

-filled boolean (filled, Filled)
Whether the -background and -selectbackground options should
override the tixGrid widget’s options. The default is false.

-selectbackground color (selectBackground, Foreground)
The background color of the cell when it is selected. Used only
when -filled is true.

-X0Nn xon (xon, Xon)
Using the -xon, -xoff, -yon, and -yoff options, borders can be drawn
around groups of cells. The given region is divided into subregions,
starting from the top left cell, that are xon+xoff cells wide by
yon+yoff cells high. Within this subregion, the border is drawn
only around the rectangular regions in the top left corner that are
xon cells wide and yon cells high. The default values are 1 for -xon
and -yon and 0 for -xoff and -yoff, which results in borders being
drawn around each individual cell.

-xoff xof £ (xoff, Xoff)
See -xon.

-yon yon (yon, Yon)
See -xon.

olf yoff (yoff, Yoff)
See -xon.

When borderType is border, cell borders are standard Tk 3D borders.
Available options are as follows:

-relief relief (relief, Relief)
3D effect for border.

Tix Standard Widgets — Grid 253

When borderType is grid, cell borders are plain grid lines. Available
options are as follows:

-anchor anchorPos (anchor, Anchor)
For grid lines, only one or two of the border’s sides are actually
drawn. AnchorPos identifies on which sides of the rectangular
region the grid lines are drawn. For example, ne states that grid
lines are drawn on the top and right sides, whereas e states that a
grid line is drawn only on the right side.

-bordercolor color (borderColor, BorderColor)
Color of the grid lines.

pathName info exists x y
Return a 1 if the cell at row x, column y contains a display item. Other-
wise, return 0.

pathName move what from to offset
Move the specified rows or columns. What may be row or column.
Move rows (or columns) from position from through to, inclusive, by
the distance offset.

pathName nearest X y
Return the row and column of the cell nearest to coordinates x y inside
the grid.

pathName set x y [-itemtype typel loption value..]
Create a new display item at row x, column y. If given, type specifies
the type of the display item. Valid options are those allowed for the
selected display item type. If a display item already exists in the cell, it
will be deleted automatically.

pathName size what index [option value..]
Query or set the size of the row or column. What may be row or col-
umn. Index may be the integer position of the row (or column) or the
string default, which sets the default size for all rows (or columns).
Available options are as follows:

-pad0 pixels
Padding to the left of a column or the top of a row.

-padl pixels
Padding to the right of a column or the bottom of a row.

-size amount
Width of a column or height of a row. Amount may be a real num-
ber in screen units or one of the following:

auto
Autosize to largest cell in column or row.

default
Use the default size (10 times the average character widths for
columns and 1.2 times the average character height for rows).

254

Chapter 9 — Tix

nchar
Set the size to n times the average character width for columns
and n times the average character height for rows.

pathName unset X y
Remove the display item from the cell at row x, column y.

pathName xview
Return a two-element list describing the currently visible horizontal
region of the widget. The elements are real numbers representing the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget. Columns in the left margin are not part of the
scrollable region.

pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget's horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Horizontally scroll the visible columns outside the left margin by num-
ber. If what is units, then number is in units of columns. If what is
pages, then number is in units of the visible region’s width.

pathName yview
Return a two-element list describing the currently visible vertical region
of the widget. The elements are real numbers representing the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget. Rows in the top margin are not part of the scrollable
region.

pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Vertically scroll the visible rows outside the top margin by number. If
what is units, then number is in units of rows. If what is pages, then
number is in units of the visible region’s height.

Example

proc SimpleFormat {w area x1 yl x2 y2} {
array set bg {s-margin gray65 x-margin gray65 \
y-margin gray65 main gray20 }
case S$area {
main { $w format grid $x1 $yl $x2 $y2 -anchor se -fill 0 \
-relief raised -bd 1 -bordercolor $bg($area)
}
{x-margin y-margin s-margin} {
$w format border $x1 $yl $x2 $y2 \
-fill 1 -relief raised -bd 1 -bg S$bg($area)

Tix Standard Widgets — Grid 255

set grid [[tixScrolledGrid .sg -bd 0] subwidget grid]
$grid configure -formatcmd "SimpleFormat S$grid"
for {set x 0} {$x < 10} {incr x} {
$grid size col $x -size auto
for {set y 0} {Sy < 10} {incr y} {
$grid set $x $y -itemtype text -text ($x,Sy)
}
}
$grid size col 0 -size 10char
pack .sg -expand true -fill both

HList
tixHList pathName [option value..|]

The tixHList command creates a new tixHList widget named pathName. A
tixHList is used to display any data that has a hierarchical structure (e.g.,
filesystem directory trees).

Standard Options

-background -borderwidth -cursor

-font -foreground -highlightbackground
-bighlightcolor -bighlightthickness -padx

-pady -relief -selectbackground
-selectborderwidth -selectforeground -takefocus

-xscrollcommand -yscrollcommand
Widget-Specific Options

-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-columns integer (columns, Columns)
Number of columns in the tixHList. Can be set at creation only. Column
numbering begins at 0. List entries alway appear in column 0. Arbitrary
display items can be placed in the columns to the right of an entry (e.g.,
file sizes and owner’s name).

-command tclCommand (command, Command)
Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-drawbranch boolean (drawBranch, DrawBranch)
Whether branch lines should be drawn to connect list entries to their par-
ents.

-header boolean (header, Header)

Whether headers should be displayed at the top of each column.

-height amount (height, Height)
Height for the window in lines of characters.

256 Chapter 9— Tix

-indent amount (indent, Indent)
Horizontal indentation between a list entry and its children.

-indicator boolean (indicator, Indicator)
Whether indicators should be displayed.

-indicatorcmd tclCommand (indicatorCmd, IndicatorCmd)
Command to call when an entry’s indicator is activated. The entryPath
of the entry is appended as an argument.

-itemtype type (itemType, ItemType)
The default item type for a new entry. The default is text.

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default bindings for
manipulation of the selection. Supported styles are single, browse,
multiple, and extended. Any arbitrary string is allowed, but the pro-
grammer must extend the bindings to support it.

-separator char (separator, Separator)
Character that serves as path separator for entry pathnames. The default
is the “.” character.

-sizecmd tclCommand (sizeCmd, SizeCmd)

Command to call whenever the tixHList changes its size.

-wideselection boolean (wideSelection, WideSelection)
Whether selection highlight extends the entire width of the tixHList or
just fits the selected entry. Default is true.

-width amount (width, width)
Width of the tixHList in characters.

Methods

pathName add entryPath [option value..]
Add a new top-level list entry with pathname entryPath. This path-
name is also the method’s return value. Available options are those
appropriate to the selected display item type, with these additions:

-at index
Insert the new entry at position index, an integer starting from 0.

-after afterWhich
Insert the new entry after the entry afterwhich.

-before beforewhich
Insert the new entry before the entry beforewhich.

-data string
String to associate with the new entry that will be returned by the
info method.

-itemtype type
Display item type for the new entry. Otherwise, the type is taken
from the tixHList's -itemtype option.

Tix Standard Widgets — HList 257

-State state
Whether entry can be selected and invoked. State must be either
normal or disabled.

pathName addchild parentPath
Add a new child entry underneath entry parentPath. If parentPath
is the empty string, a top-level entry is created. The pathname of the new
entry is returned. Available options are the same as for the add method.

pathName anchor set entryPath
Set the selection anchor to the entry entryPath.

pathName anchor clear
Make it so no entry is the selection anchor.

pathName column width col [[-char] widthl]
Set the width of column col to width, which is in screen units. If -char
is specified, the width is in characters. If width is the empty string, the
column is autosized to the widest element. If the only argument given is
col, the current width of column col is returned in pixels.

pathName delete what [entryPath]
Delete one or more entries. What may be one of the following:

all
Delete all of the entries in the tixHList.

entry
Delete the entry entryPath and all of its children.

offsprings
Delete all the children of entry entryPath.

siblings
Delete all entries that share the same parent as the entry entry-
Path (which is not deleted).

pathName entrycget entryPath option
Similar to the cget method, but operates on the entry entryPath.
Option may have any of the values accepted by the entry’s display item
type.

pathName entryconfigure entryPath [option value..]
Similar to the configure method, but operates on the entry entryPath.
Option may have any of the values accepted by the entry’s display item

type.

pathName header cget col option
Similar to the cget method, but operates on the header for column col.
Option may have any of the values accepted by the beader create
method.

pathName header configure col [option value..]
Similar to the configure method, but operates on the header for column
col. Option may have any of the values accepted by the header create
method.

258 Chapter 9— Tix

pathName header create col [-itemtype typel loption value..]
Create a new display item to serve as the header for column col. If
type is not given, the default is that of the tixHList's -itemtype option.
Available options are those appropriate to the selected display item type,
with the following additions:

-borderwidth amount (borderWidth, BorderWidth)
Border width for header item.

-headerbackground color (headerBackground, Background)
Background color for header item.

-relief relief (relief, Relief)
Relief for header item.

pathName header delete col
Delete the header item for column col.

pathName header exists col
Return 1 if a header item exists for column col, 0 otherwise.

pathName header size col
Return the size of the header in column col as a two-item list of its
width and height, or an empty list if no header item exists.

pathName hide entry entryPath
Hide the list entry entryPath.

pathName indicator cget entryPath option
Similar to the cget method, but operates on the indicator for entry
entryPath. Option may have any of the values valid for the display
item type of the indicator.

pathName indicator configure entryPath [option value..]
Similar to the configure method, but operates on the indicator for entry
entryPath. Option may have any of the values valid for the display
item type of the indicator.

pathName indicator create entryPath [-itemtype typel [option value..]
Create a new display item to be the indicator for the entry entryPath.
If type is not given, the default is that of the tixHList’s -ifemtype option.
Available options are those appropriate to the selected display item type.

pathName indicator delete entryPath
Delete the indicator display item for the entry entryPath.

pathName indicator exists entryPath
Return 1 if entry entryPath has an indicator, 0 otherwise.

pathName indicator size entryPath
Return the size of the indicator for the entry entryPath as a two-item
list of its width and height (or an empty list if no indicator exists).

Tix Standard Widgets — HList 259

pathName info anchor
Return the pathname of the entry that is the current anchor.

pathName info bbox entryPath
Return a coordinate list of the form {x1 y1 x2 y2} giving an approxi-
mate bounding box for the currently visible area of entry entryPath.

pathName info children lentryPath]
If entryPath is given, return a list of that entry’s children. Otherwise,
return a list of the top-level entries.

pathName info data entryPath
Return the associated data string for entry entryPath.

pathName info exists entryPath
Return 1 if an entry with pathname entryPath exists, 0 otherwise.

pathName info bhidden entryPath
Return 1 if the entry entryPath is hidden, 0 otherwise.

pathName info next entryPath
Return the pathname of the entry immediately below entry entryPath
in the list. An empty string is returned if entryPath is the last entry.

pathName info parent entryPath
Return the pathname of the entry that is the parent of entry entryPath.
An empty string is returned if entryPath is a top-level entry.

pathName info pref entryPath
Return the pathname of the entry immediately above entry entryPath
in the list. An empty string is returned if entryPath is the first entry.

pathName info selection
Return a list of the selected entries in the tixHList.

pathName item cget entryPath option
Similar to the cget method, but operates on the display item in column
col on the same line as entry entryPath. Option may have any of
the values valid for the display item’s type.

pathName item configure entryPath col [option value..]
Similar to the configure method, but operates on the display item in col-
umn col on the same line as entry entryPath. Option may have any
of the values valid for the display item’s type.

pathName item create entryPath col [-itemtype typel loption
value..]
Create a new display item in column col on the same line as entry
entryPath. If type is not given, the default is that of the tixHList's
-itemtype option. Available options are those appropriate to the selected
display item type. If col is 0, the display item of entry entryPath is
replaced with the new item.

260 Chapter 9— Tix

pathName item delete entryPath col
Delete the display item in column col that is on the same line as entry
entryPath. Col must be greater than 0. Use the delete entry method to
delete the entry.

pathName item exists entryPath col
Return 1 if a display item in column col exists on the same line as entry
entryPath, 0 otherwise.

pathName nearest y
Return the pathname of the entry nearest to the y-coordinate y.

pathName see entryPath
Adjust the view in the tixHList so the entry entryPath is visible.

pathName selection clear | from [tol]
With no arguments, all entries are deselected. If only from is given, just
the entry with pathname from is deselected. If to is also given, all
entries from the entry from up to and including the entry to are dese-
lected.

pathName selection get
Return a list of the selected entries in the tixHList.

pathName selection includes entryPath
Return 1 if entry entryPath is selected, 0 otherwise.

pathName selection set from [to)
If only from is given, just the entry with pathname from is selected. If
to is also given, all entries from the entry from up to and including the
entry to are selected.

pathName show entry entryPath
If entry entryPath is hidden, unhide it.

pathName xview
Return a two-element list describing the currently visible horizontal
region of the widget. The elements are real numbers representing the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget. Columns in the left margin are not part of the
scrollable region.

pathName xview entryPath
Adjust the view so that the entry entryPath is aligned at the left edge
of the window.

pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget's horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Scroll the view horizontally in the window by number. If what is
units, then number is in units of characters. If what is pages, then
number is in units of the visible region’s width.

Tix Standard Widgets — HList 261

pathName yview
Return a two-element list describing the currently visible vertical region
of the widget. The elements are real numbers representing the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget. Rows in the top margin are not part of the scrollable
region.

pathName yview entryPath
Adjust the view so that the entry entryPath is aligned at the top edge
of the window.

pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Scroll the view vertically in the window by number. If what is units,
then number is in units of characters. If what is pages, then number is
in units of the visible region’s height.

InputOnly
tixInputOnly pathName [option value..]

The tixInputOnly command creates a new tixInputOnly widget named path-
Name. TixInputOnly widgets are not visible to the user. The only purpose of a
tixInputOnly widget is to accept input from the user. It is useful for intercept-
ing events to other widgets when mapped invisibly on top of them.

Standard Options
-cursor -width -height

NoteBookFrame
tixNoteBookFrame pathName [option value..]

The tixNoteBookFrame command creates a new tixNoteBookFrame widget
named pathName. It provides page tabs for use in tixNoteBook-style mega-
widgets and serves as the container for any page frames to be controlled. It is
up to the programmer to set up event bindings to properly connect page tabs
and frames.

Standard Options

-background -borderwidth — -cursor
-disabledforeground -font -foreground
-height -relief -takefocus
-width

262 Chapter 9— Tix

Widget-Specific Options

-backpagecolor color (backPageColor, BackPageColor)
Color for the background behind the page tabs.

-focuscolor color (focusColor, FocusColor)
Color for the tab focus highlight.

-inactivebackground color (inactiveBackground, Background)
Background color for inactive tabs. The active tab always has the same
background color as the tixNoteBookFrame.

-slave boolean (slave, Slave)
Whether the tixNoteBookFrame is a slave and therefore should not make
its own geometry requests.

-tabpadx amount (tabPadX, Pad)
Horizontal padding around the text labels on the page tabs.

-tabpady amount (tabpPady, Pad)
Vertical padding around the text labels on the page tabs.

Methods

pathName activate tabName
Make the page tab tabName the active tab and also give it the tab focus.
Note that this does not raise the page frame associated with the tab. If
tabName is the empty string, no tab will be active or have the tab focus.

pathName add tabName [option value..]
Add a new page tab named tabName to the tixNoteBookFrame. It is up
to the programmer to create a new frame widget to associate with the
page tab. The frame must be a descendant of the tixNoteBookFrame.
Available options are as follows:

-anchor anchorPos
Specifies how the information in a page’s tab (e.g., text or bitmap)
should be anchored. Must be one of n, nw, w, sw, s, se, e, ne, or
center.

-bitmap bitmap
Bitmap to display in tab.

-image imageName
Name of image to display in tab.

-justify position
How multiple lines of text in the tab should be justified. Must be
left, right, or center.

-label string
Text to display in the tab. Overrides -image and -bitmap.

-State state
Whether page tab can be made active. Must be either normal or
disabled.

Tix Standard Widgets — NoteBookFrame 263

-underline index
Integer index (starting from 0) of character in text label to underline
in the tab. Used by default bindings to set up keyboard traversal of
tabs.

-wraplength chars
Maximum line length of text in the tab. If value is 0 or less, no wrap-
ping is done.

pathName delete tabName
Delete the page tab tabName.

pathName focus tabName
Give the page tab tabName the tab focus. If tabName is the empty
string, no tab will have the focus.

pathName geometryinfo
Return a two-item list of the form {width height} describing the size of
the area containing the page tabs.

pathName identify x y
Return the name of the page tab that contains the coordinates x y.
Returns an empty string if the coordinates are outside the tab area.

pathName info what
Return information about what in the tixNoteBookFrame. Valid values
for what are as follows:

pages
Return a list of the page tab names in the tixNoteBookFrame.

active
Return the name of the currently active page tab.

focus
Return the name of the page tab that currently has the focus.

focusnext
Return the name of the page tab that lies in the focus ring after the
current page tab with the focus.

focusprev
Return the name of the page tab that lies in the focus ring before the
current page tab with the focus.

pathName pagecgel tabName option
Similar to the cget method, but operates on the page tab tabName.
Option may have any of the values accepted by the add method.

pathName pageconfigure tabName [option value..]
Similar to the configure method, but operates on the page tab tabName.
Option may have any of the values accepted by the add method.

264 Chapter 9— Tix

TList
tixTList pathName [option value..]

The tixTList command creates a new tixTList widget named pathName.

Standard Options

-background -borderwidth -cursor

-font -foreground -highlightcolor
-bighlightthickness -padx -pady

-relief -selectbackground -selectborderwidth
-selectforeground -takefocus -xscrollcommand
-yscrollcommand

Widget-Specific Options

-browsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user browses an entry (usually by a dou-
ble click). The pathname of the entry is appended as an argument.

-height amount (height, Height)
Height for the window in lines of characters.

-itemtype type (itemType, ItemType)
The default item type for a new entry. The default is text.

-orient orient (orient, Orient)
Order for tabularizing the list entries. Orient may be vertical
(entries are arranged from top to bottom in columns) or horizontal
(entries are arranged from left to right in rows).

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default bindings for
manipulation of the selection. Supported styles are single, browse,
multiple, and extended. Any arbitrary string is allowed, but the pro-
grammer must extend the bindings to support it.

-sizecmd tclCommand (sizeCmd, SizeCmd)
Command to call whenever the tixTList changes its size.

-state state (state, State)
Whether tixTList entries can be selected or activated. State must be
either normal or disabled.

-width amount (width, wWidth)
Width of the tixTList in characters.

Tix Standard Widgets — TList 265

Methods

pathName anchor set index
Set the selection anchor to the entry at index.

pathName anchor clear
Make it so no entry is the selection anchor.

pathName delete from [to]
Delete all list entries between the indices from and to, inclusive. If to is
omitted, only the entry at from is deleted.

pathName entrycget index option
Similar to the cget method, but operates on the entry at index. Option
may have any of the values accepted by the insert method used to create
the entry.

pathName entryconfigure index [option value..]
Similar to the configure method, but operates on the entry at index.
Option may have any of the values accepted by the insert method used
to create the entry.

pathName insert index [-itemtype typel loption value..]
Create a new entry at position index. If type is not given, the default is
that of the tixTList's -itemtype option. Available options are those appro-
priate to the selected display item type, with the following addition:

-State state
State of the individual entry. Must be either normal or disabled.

pathName info anchor
Return the pathname of the entry that is the current anchor.

pathName info selection
Return a list of the selected entries in the tixTList.

pathName nearest X 'y
Return the index of the entry nearest to the coordinates x y.

pathName see index
Adjust the view in the tixTList so the entry at index is visible.

pathName selection clear [from [tol]
With no arguments, all entries are deselected. If only from is given, just
the entry at index from is deselected. If to is also given, all entries from
the entry at from up to and including the entry at to are deselected.

pathName selection includes index
Return 1 if the entry at index is selected, 0 otherwise.

pathName selection set from [tol
If only from is given, just the entry at index from is selected. If to is
also given, all entries from the entry at from up to and including the
entry at to are selected.

266 Chapter 9— Tix

pathName xview
Return a two-element list describing the currently visible horizontal
region of the widget. The elements are real numbers representing the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget. Columns in the left margin are not part of the
scrollable region.

pathName xview index
Adjust the view so that the entry at index is aligned at the left edge of
the window.

pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Scroll the view horizontally in the window by number. If what is
units, then number is in units of characters. If what is pages, then
number is in units of the visible region’s width.

pathName yview
Return a two-element list describing the currently visible vertical region
of the widget. The elements are real numbers representing the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget. Rows in the top margin are not part of the scrollable
region.

pathName yview index
Adjust the view so that the entry at index is aligned at the top edge of
the window.

pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Scroll the view vertically in the window by number. If what is units,
then number is in units of characters. If what is pages, then number is
in units of the visible region’s height.

Tix Core Commands

This section describes the commands added by the Tix extension that do not cre-
ate widgets or mega-widgets. These commands cover new mega-widget class defi-
nition, method writing, and configuration of the Tix internal state.

Tix Core Commands 267

tix

tix operationlarg arg..l

Access aspects of Tix’s internal state and the Tix application context.

Application- Context Options

Several of Tix’s internal settings are manipulated using the cget and configure
operations, which operate in the same manner as the identically named
widget methods. The settings that can be set this way are as follows:

-debug boolean
Whether Tix widget should run in debug mode.

-fontset fontSet
The font set to use as defaults for Tix widgets. Valid values are TK (stan-
dard Tk fonts), 12Point, and 14Point (the default).

-scheme scheme
Color scheme to use for the Tix widgets. Valid values are TK (standard Tk
colors), Gray, Blue, Bisque, SGIGray, and TixGray (the default).

-schemepriority priority
Priority level of the options set by the Tix schemes. See the Tk option
command for a discussion of priority levels. The default is 79.

Operations

tix addbitmapdir directory
Add directory to the list of directories searched by the getimage and
getbitmap operations for bitmap and image files.

tix filedialog [class]
Returns the pathname of a file selection mega-widget that can be shared
among different modules of the application. The mega-widget will be
created when this operation is first called. The class argument may be
used to specify the mega-widget class of the file selection dialog, either
tixFileSelectDialog (the default) or tixExFileSelectDialog.

tix getbitmap name
Search the bitmap directories for a file with the name name.xbm or
name. If found, return the full pathname to the file, prefixed with an @
character to make the result suitable for -bitmap options.

tix getimage name
Search the bitmap directories for a file with the name name.xpm,
name.gif, name ppm, name.xbm, or name. If found, the name of a newly
created Tk image is returned, suitable for use with -image options.

tix option get option
Return the setting of a Tix scheme option. Available options are:

-active_bg -active_fg -bg
-bold_font -dark1_bg -dark1_fg

268 Chapter 9— Tix

-dark2_bg -dark2_fg -disabled_fg
-fg ~fixed_font -font
-inactive_bg -inactive_fg -inputl_bg
-input2_bg -italic_font -light1_bg

-light1_fg -light2_bg -light2_fg
-menu_font -outputl_bg -output2_bg
-select_bg -select_fg -selector

tix resetoptions newScheme newFontSet [newSchemePriorityl]
Reset the scheme and font set of the Tix application context to
newScheme and newFontSet. NewSchemePriority can be speci-
fied to change the priority level of the scheme options in the Tk options
database. This command is preferred to using tix configure for the
-scheme, -fontset, and -schemepriority settings.

CallMethod
tixCallMethod pathName method larg arg...]

Invoke method method of the mega-widget pathName with the given argu-
ments. Most commonly used by a base class to call a method that a derived
class may have overridden.

ChainMethod
tixChainMethod pathName method larg arg..]

Invoke the method method with the given arguments in the context of the
superclass of mega-widget pathName. Most commonly used by a derived
class to call a method of its superclass that it has overridden.

Class
tixClass className { ... }

Define a new class in the Tix Intrinsics named className. TixClass is almost
identical to the tixWidgetClass command, except that it is not associated with
a widget. The new command that is created, named className, therefore
lacks widget-related methods, such as subwidget. Also, there are no methods
such as initWidgetRec that must be defined for the class.

There is one syntactical difference compared with the tixWidgetClass com-
mand. Each item in the -configspec list for tixClass is only a two- or three-
element list: the option, the default value, and an optional verification com-
mand. One example of a nonwidget Tix class is the #ix command, which is
defined at runtime using the tixClass command.

Descendants
tixDescendants window

Return a list of all the descendants of the widget window.

Tix Core Commands — Descendants 269

Destroy
tixDestroy objectName

Destroy the Tix object objectName, which must be an instance of class
defined with tixClass or tixWidgetClass. The Destructor method of the object
is called first, if defined.

DisableAll
tixDisableAll window

Set the -state option of window and all its descendants that have a -state
option to disabled.

DisplayStyle

tixDisplayStyle itemType [-stylename styleNamel [-refwindow
refwindowl [option value..]

Create a new display item style of type itemType. The name of the new
style will be styleName, if specified. Otherwise, a unique name is generated
and returned. Valid options are those defined for the chosen display item

type.

If refwindow is specified, the default values for the style will be taken from
the matching options of the window refwindow. Note that refWindow
need not exist; however, any options specified for it in the Tk resource
database will be used. If refWindow is omitted, the main window is used.

A new Tix object is created with the same name as the style (i.e., style-
Name). This object has the following methods:

styleName cget option
Return the current value of the configuration option option for the dis-
play style.

styleName configure [option [value [option value..]l]
Query or modify the configuration options of the display style in the
same manner as the standard widget configure method.

styleName delete
Destroy the display style object.

EnableAll
tixEnableAll window

Set the -state option of window and all its descendants that have a -state
option to normal.

270 Chapter 9— Tix

Form
tixForm operation larg arg...]

Communicate with the Tix Form geometry manager that arranges widgets
inside their master according to various attachment rules. The tixForm com-
mand can take the following forms:

tixForm slave [slave..] [options]
Same as tixForm configure.

tixForm check master
Return 1 if there is a circular dependency in the attachments for
masters slaves, 0 otherwise.

tixForm configure slave [slave..] [options]
Configure how the slave window slave should be managed by its Form
geometry master. Supported options are as follows:

-bottom attachment
Attachment for bottom edge of the slave. (Abbreviation: -b)

-bottomspring weight
Weight of the spring at the bottom edge of the slave. (Abbreviation:
-bs)

fill £111
Direction slave should fill. F111 may be x, y, both, or none.

-in master
Insert the slave in master window master, which must either be the
slave’s parent (the default) or a descendant of the slave’s parent.

-left attachment
Attachment for left edge of the slave. (Abbreviation: -/)

-lefispring weight
Weight of the spring at the left edge of the slave. (Abbreviation: -Is)

-padbottom amount
How much external padding to add to the bottom side of the slave.
(Abbreviation: -bp)

-padleft amount
How much external padding to add to the left side of the slave.
(Abbreviation: -Ip)

-padright amount
How much external padding to add to the right side of the slave.
(Abbreviation: -7p)

-padtop amount
How much external padding to add to the top side of the slave.
(Abbreviation: -1p)

Tix Core Commands — Form 271

-padx amount
How much external padding to add to both the right and left sides
of the slave.

-pady amount
How much external padding to add to both the top and bottom
sides of the slave.

-right at tachment
Attachment for right edge of the slave. (Abbreviation: -r)

-rightspring weight
Weight of the spring at the right edge of the slave. (Abbreviation:
-7s)

-top attachment
Attachment for top edge of the slave. (Abbreviation: -#)

-topspring weight
Weight of the spring at the top edge of the slave. (Abbreviation: -ts)

tixForm forget slave [slave..]
Remove each given slave from the list of slaves managed by its master
and unmap its window. The grid configuration options for each slave
are forgotten.

tixForm grid master [xSize ySizel
Set the number of horizontal and vertical grid cells in the master window
master to xSize and ySize, respectively. If the grid sizes are omitted,
the current setting is returned as a list of the form {xSize ySize}.

tixForm info slave
Return the current configuration state of the slave slave in the same
option-value form given to tixForm configure. The first two elements will
be -in master.

tixForm slaves master
Return a list of all the slaves managed by the master window master.

Attachments

The attachment argument to the -right, -left, -top, and -bottom configuration
options takes the general form {anchorPoint offset}. The second ele-
ment, offset, is given in screen units. If positive, it indicates a shift in posi-
tion to the right of or down from the anchor point. If negative, it indicates a
shift in position to the left of or up from the anchor point.

The first element, anchorPoint, specifies where the slave will be positioned
on the master. It may have the following forms:

%gridline
The slave’s side is attached to an imaginary grid line. By default, the
master window is divided into 100x100 grid cells. An anchor point of %0
specifies the first grid line (the left or top edge of the master), and an
anchor point of $100 specifies the last grid line (the right or bottom edge

272 Chapter 9— Tix

of the master). The number of grid cells can be changed with the #ix-
Form grid method.

pathName
The slave’s side is aligned to the opposite side of the window path-
Name, which must also be a slave. For example, a configuration
option-value of -top {.a O} will align the top side of the slave at the
same vertical position as the bottom side of the slave . a.

&pathName
The slave’s side is aligned with the same side of the window pathName,
which must also be a slave. For example, a configuration option-
value of -top {.a 0} will align the top side of the slave at the same verti-
cal position as the top side of the slave . a.

none
The slave’s side is attached to nothing. When none is the anchor point,
the offset must be 0. The side is unconstrained and its position deter-
mined from the attachments for the other sides and the slave’s natural
size.

The value attachment can be abbreviated as a single element. If the value
can be interpreted as an anchor point, the offset defaults to 0. If it can be
interpreted as an offset, the anchor point defaults to %0 for positive offsets
and to $100 (or whatever the maximum grid line is) for negative offsets.

GetBoolean
tixGetBoolean [-nocomplain] string

Return 0 if the string is a valid Tcl boolean value for false. Return 1 if the
string is a valid Tcl boolean value for true. Otherwise, an error is generated
unless -nocomplain is specified, in which case a 0 is returned.

Getlnt
tixGetInt [-nocomplain] [-trunc] string

Convert string into an integer if it is a valid Tcl numerical value. Otherwise, an
error is generated unless -nocomplain is specified, in which case a 0 is
returned. By default, the value is rounded to the nearest integer. If -trunc is
specified, the value is truncated instead.

Mwm
tixMwm operation larg arg...]

Communicate with mwm, the Motif window manager. The tixMwm command
can take the following forms:

Tix Core Commands — Mwm 273

tixMwm decoration pathName [option [value [option value..]]]
Query or modify the Motif window decoration options for the top-level
window pathName in the same manner as the standard widget configure
method. Valid options are -border, -menu, -maximize, -minimize,
-resizeh, and -title.

tixMwm ismwmrunning pathName
Return 1 if mwm is running on pathName’s screen, 0 otherwise.

tixMwm protocol pathName
Return a list of all protocols associated with the top-level window path-
Name.

tixMwm protocol pathName activate protocol
Activate the given mwm protocol in mwm’s menu.

tixMwm protocol pathName add protocol menuMsg
Add a new mwm protocol named protocol and add an item in mwm’s
menu according to menuMsg that will invoke the protocol. MenuMsg is a
valid X resource for a mwm menu item. The protocol invocation can be
caught using the Tk wm protocol command.

tixMwm protocol pathName deactivate protocol
Deactivate the given protocol in mwn’s menu.

tixMwm protocol pathName delete protocol
Delete the given protocol from mwm’s menu.

PopGrab
tixPopGrab

Release the last grab set with the tixPushGrab command and pop it off the
Tix grab stack.

PushGrab
tixPushGrab [-globall window

Identical to the standard Tk grab set command, with the added feature that
the grab is placed on Tix’s internal grab stack. The tixPopGrab command
must be used to release the grab.

WidgetClass
tixWidgetClass className {option value ...}

Define a new mega-widget class named className. A Tcl command named
className is also defined, which will create new instances of the class.
Available options are as follows:

274 Chapter 9— Tix

-alias aliasList
Aliases for the options defined by -flag. Each element of aliasList is
a two-item list consisting of the alias followed by the full option to which
it maps.

-classname classResName
Resource class name for the mega-widget for use by Tk resource
database. By convention, classResName is the same as the class-
Name argument with the first letter capitalized.

-configspec configList

Configuration of each option that the new mega-widget supports (see
-flag). Each element of configList is a four- or five-item list. The
required four elements are the option name (including the hyphen),
resource name, resource class, and default value. The optional fifth ele-
ment is a Tcl command used to validate a value for the option. This
command is called once the option is initialized at creation and when-
ever its value is set with the configure method. The candidate value is
appended to the call as an argument. The command should return the
value to actually be used or generate an error.

-default resList
List of Tk resource specifications to be applied for each instance of the
mega-widget. These resources are most often used to set up configura-
tion defaults for subwidgets of the mega-widget. Each element of
resList is a two-item list giving the pattern and value, as for an
option add command.

-flag optionList
List of options (also known as public variables) that the mega-widget
class supports.

-forcecall optionList
List of options that should have their private configuration methods called
during initialization of a mega-widget instance. Normally, an option’s
configuration method is called only when the option is set with the con-
Jfigure method.

-method methodList
List of public methods that the mega-widget class supports.

-readonly optionList
List of options that cannot be set or changed by the user.

-Sstatic optionList
List of options that can be set only at mega-widget creation (i.e., cannot
be changed with the configure method).

-superclass superClass
Superclass of the class being defined. All the options and methods of the
superclass are inherited. Note that superClass is the command name
of the superclass, not the resource class name from the -classname
option.

Tix Core Commands — WidgetClass 275

-virtual boolean
Whether the class is a virtual class. If true, then instances of the class
cannot be created.

Example

Here is an example class definition for a scrolling banner mega-widget:

tixWidgetClass tixScrollingBanner {
-classname TixScrollingBanner
-superclass tixPrimitive
-method {
start stop
}
-flag {
-orientation -rate -text
}
-static {
-orientation
}
-configspec {
{-orientation orientation Orientation horizontal}
{-rate rate Rate 2}
{-text text Text {}}
}
-alias {
{-orient -orientation}
}
-default {
{*Label.anchor e}
{*Label.relief sunken}

}

Writing Methods

The methods for a class are defined using the Tcl proc command with three
special requirements. First, the name of the procedure for a method must
match the format className: :method. For the example above, the pro-
grammer will need to define the Tcl procedures tixScrollingBanner::start and
tixScrollingBanner::stop. Second, each procedure must accept at least one
argument, which must be named w, which will be set to the name of the class
instance (i.e., mega-widget) for which the method was invoked. Additional
arguments can be defined if the method accepts any arguments.

The third requirement is that the first command executed in the procedure be:
upvar #0 $w data

which sets up access to the instance’s subwidgets and public and private vari-
ables through the Tcl array data. Public variables are available using the
name of the option (with the leading hyphen) as the element name. The pro-
grammer is free to create other elements in the data array as private vari-
ables, with the exception of the following reserved elements: ClassName,
className, context, and rootCmd. By convention, the names of subwid-
gets should be assigned to array elements with names beginning with the pre-
fix w: followed by the name of the subwidget known to the user. Using this
format will give the user access to the subwidget using the mega-widget

276 Chapter 9— Tix

subwidget method inherited from tixPrimitive. Private subwidgets should
use the prefix pw:. For example, the stop method for our tixScrolling-
Banner example may be defined as follows:

proc tixScrollingBanner::stop {w {ms 0}} {

upvar #0 $w data
after cancel $data(afterid)
if {st > 0} {

set data(afterid) [after Sms

tixScrollingBanner: :advance S$w]

} else {

Sdata(w:label) configure -text {}
}

This method stops the scrolling of the banner by canceling the timeout set for
the next banner advance. If an optional argument is given, it specifies that the
scrolling will be paused only for the given number of milliseconds (if non-
zero). Otherwise, the banner is cleared. Note the call to the procedure
tixScrollingBanner::advance. This is a private method of the class, since
advance is not in the list given to the -method option of the class definition.

Initialization Methods

When a new instance of a mega-widget is created, the private methods
InitWidgetRec, ConstructWidget, and SetBindings are called, in that order. The
purpose of the InitWidgetRec method is to initialize the private variables of
the mega-widget instance. The ConstructWidget method is used to create and
initialize its subwidgets, and the SetBindings method is used to create its ini-
tial event bindings.

The procedures to define the methods must follow the three rules outlined
previously. When defined, the methods override the respective methods of
their superclass. Therefore, the programmer should normally use the #ix-
ChainMethod command to call the superclass’s version of the method as a
first step. For example, the ConstructWidget method for the scrolling banner
example might be defined as follows:

proc tixScrollingBanner: :ContructWidget {w} {
upvar #0 $w data
tixChainMethod Sw ConstructWidget
set data(w:label) [label $w.label]
pack Sw.label -expand yes -fill x
}

Public Variables

When the configure mega-widget method is used to set the value of a public
variable, Tix will attempt to call a method with the name config-option with
the name of the mega-widget and the value as arguments. The programmer
should define this method when he or she needs to know immediately when
the value of a public variable changes. For example, the text option for the
scrolling banner example could be handled as follows:

proc tixScrollingBanner::config-text {w value} {
upvar #0 $w data

Tix Core Commands — WidgetClass 277

$data(w:label) configure -text $value

}

An option’s configuration method is called after any validation command
specified in the -configspec entry for the option. During the call to the
method, the element for the option in the data array will still be set to the
old value in case it is needed. One may override the value passed by explic-
itly setting the public variable’s element in the data array to the desired
value and also returning the value from the method. A public variable’s con-
figuration method is not called when a mega-widget is created unless the
option is listed in the -forcecall option of the class definition.

Tix Extensions to Tk image Command

Tix extends the standard Tk image command by adding support for two additional
image types: compound and pixmap.

image
image create compound imageName [option value..]

The compound image type allows a single image to be composed of multiple
lines, each of which contains one or more text items, bitmaps, or other
images. Available options are as follows:

-background color
Background color for the image and for bitmap items in the image.

-borderwidth amount
Width of 3D border drawn around the image.

-font font
Default font for text items in the image.

-foreground color
Foreground color for the bitmap and text items in the image.

-padx amount
Extra space to request for padding on the left and right side of the image.

-pady amount
Extra space to request for padding on the top and bottom side of the
image.

-relief relief

3D effect for the border around the image.

-showbackground boolean
Whether the background and 3D border should be drawn or the image
should have a transparent background. The default is false.

278 Chapter 9— Tix

-window pathName
Window in which the compound image is to be drawn. When the win-
dow is destroyed, the image is also destroyed. This option must be spec-
ified when a compound image is created and cannot be changed.

When a compound image is created, a Tcl command with the same name as
the image is created. This command supports the following operations:

imageName add line [-anchor anchorPos] [-padx amount]
Create a new line for items at the bottom of the image. If anchorPos is
specified, it specifies how the line should be aligned horizontally. If
amount is specified, it specifies the amount of padding to add to the left
and right of the line in the image.

imageName add itemType l[option value..]
Add a new item of the specified type to the end of the last line of the
compound image. ItemType may be bitmap, image, space, or text.
All item types support the following options:

-anchor anchorPos
How the item should be aligned on its line along the vertical axis.

-padx amount
Amount of padding to add to the left and right side of the item.

-pady amount
Amount of padding to add to the top and bottom side of the item.
Bitmap items support the following options:

-background color
Background color for the bitmap.

-bitmap bitmap
Bitmap to add to the compound image.

-foreground color
Foreground color for the bitmap.
Image items support the following option:
-image imageName
Name of an image to add to the compound image.
Space items reserve empty space in the image. Space items support the fol-
lowing options:

-height amount
Height of space to add to the compound image.

-width amount
Width of space to add to the compound image.

Tix Extensions to Tk image Command — image 279

Text items support the following options:

-background color

Background color for the text.
-font font

Font to be used for the text.
-foreground color

Foreground color for the text.
-justify justify

How to justify multiple lines of text. Justify may be left,
right, or center.

-text string

Text string to be added to the compound image.
-underline integer

Integer index of a character in the text that should be underlined.
-wraplength chars

Maximum line length in characters. If chars is less than or equal to
0, no wrapping is done.

imageName cget option

Return the current value of the configuration option option for the
compound image.
imageName configure [option [value [option value..]

Query or modify the configuration options of the compound image in the
same manner as the standard widget configure method.

image
image create pixmap imageName [option value..]
Create a Tk image using XPM format. Supported options are as follows:
-data string

Source for the XPM image is specified in string. Takes precedence
over the -file option.

-file fileName

Source for the XPM image is to be read from the file £ileName.

When a pixmap image is created, a Tcl command with the same name as the

image is created. This command supports the cget and configure operations
for querying and changing the image options.

280 Chapter 9— Tix

CHAPTER 10

TclX

TclX, also known as Extended Tcl, was developed by Karl Lehenbauer and Mark
Diekhans. TcIX is not part of the core Tcl/Tk package, but can be obtained for free
at bttp.//www.neosoft.com/TclX. This chapter covers TclX Version 8.0.2.

TclX enhances the Tcl language with a number of features designed to make it
more suited to general-purpose programming. The TclX software includes a num-
ber of new Tcl commands, a new Tcl shell, a standalone help facility, and a library
of handy Tcl procedures. Some features of TcIX have proven so useful that, over
time, they have been integrated into the core Tcl distribution.

This chapter describes only the commands in TcIX that are not in standard Tcl. As
noted in the text, some commands are not supported or have reduced functional-
ity when running on the Windows 95, Windows 98, and Windows NT platforms.
TclX does not support the Macintosh platform.

Special Variables

The following global variables have special meaning to the Extended Tcl inter-
preter (the programs tc/ and wishx):

argc
Number of command-line arguments, not including the name of the
script file

argv
List containing command-line arguments

argv0
Filename being interpreted, or name by which script was invoked

281

http://www.neosoft.com/TclX

auto_path
Path to search to locate autoload libraries

tcl_interactive
1 if running interactively, 0 otherwise

tcl_promptl
Primary prompt
tcl_prompt2

Secondary prompt for incomplete commands

tclx_library
Location of Extended Tcl libraries

tkx_library
Location of Extended Tcl Tk libraries

TCLXENV
Array containing information about Tcl procedures

Group Listing of Commands

This

section briefly lists all Extended Tcl commands, grouped logically by function.

General Commands

commandloop Create an interactive command loop.

dirs

List directories in directory stack.

echo Write strings to standard output.
Sfor_array_keys Loop over each key in an array.
Sfor_recursive_glob Loop recursively over files matching a pattern.
host_info Return information about a network host.
infox Return information about Extended Tcl.

loop Loop over a range of values.

mainloop Call event loop handler.

popd Pop top entry from the directory stack.

pushd Push entry onto directory stack.

recursive_glob Return list of files recursively matching pattern.

tclx_errorHandler User-defined procedure to handle errors.
try_eval Evaluate code and trap errors.

Debugging and Development Commands

cmdltrace Trace command execution.

edprocs Edit source code for procedures.
profile Collect performance data.
profrep Generate report from performance data.

saveprocs Save procedure definitions to file.
showproc List definitions of procedures.

282

Chapter 10— TclX

Unix Access Commands

alarm Send alarm signal.

chroot Change root directory.

execl Start a new program.

fork Create a child process.

id Set, get, or convert user, group, and process identifiers.
kill Send signal to a process.

link Create a hard or symbolic link.

nice Set or get process priority.

readdir Return list of directory entries.

signal Handle Unix signals.

sleep Delay process execution.

sync Flush pending buffered output.

system Execute shell command.

times Return process and child execution times.
umask Set or get file creation permission mask.
wait Wait for command to terminate.

File Commands

bsearch Search lines of file for a string.

chgrp Set group ID of files.

chmod Set file permissions.

chown Set owner of files.

dup Duplicate an open file identifier.

fentl Set or get attributes of file identifier.
Slock Apply lock on an open file.

Sfor_file Loop over contents of a file.

[stat Return status information about an open file identifier.
Struncate Truncate a file to a specified length.
Jfunlock Remove lock from an open file.

lgets Read Tcl list from a file.

Dpipe Create a pipe.

read_file Read file contents into a string.

select Check file identifiers for change in status.

write_file Write strings to a file.

File Scanning Commands

scancontext Create, delete, or modify file scan contexts.
scanfile Perform file context scanning.
scanmatch Specify commands for file context scanning.

Math Commands

These commands operate in the same fashion as their counterparts that are built
into the expr command. They accept as arguments any expression accepted by the
expr command. The trigonometric functions use values expressed in radians.

Group Listing of Commands 283

abs Absolute value.

acos Arc cosine.

asin Arc sine.

atan Arc tangent.

atan2 Arc tangent (accepts two parameters).

ceil Round up to the nearest integer.

cos Cosine.

cosh Hyperbolic cosine.

double Convert numeric value to double-precision floating-point value.
exp e raised to the power of the argument.

Sfloor Round down to the nearest integer.

fmod Floating-point remainder (accepts two arguments).
hypot Hypotenuse function (accepts two arguments).
int Convert to integer by truncating.

log Natural logarithm.

log10 Base 10 logarithm.

max Maximum value (accepts one or more arguments).
min Minimum value (accepts one or more arguments).
pow Exponentiation (accepts two parameters).

random Return random floating-point number.

round Convert to integer by rounding.

sin Sine.

sinb Hyperbolic sine.

sqrt Square root.

tan Tangent.

tanh Hyperbolic tangent.

List Manipulation Commands

intersect Return list of elements common to two lists.
intersect3 Accept two lists, returning items common to, and unique to, each list.
lassign Assign list elements to variables.

lcontain Return 1 if element is contained in a list.

lempty Return 1 if a list is empty.

Imatch Search list for elements matching a pattern.

Irmdups Remove duplicate list elements.

lvarcat Concatenate lists onto a variable.

lvarpop Delete or replace list element contained in a variable.
lvarpush Insert element into list contained in a variable.

union Return logical union of two lists.

Keyed List Commands

keyldel Delete entry from keyed list.
keyiget Return value from keyed list.
keylkeys Return list of keys from keyed list.
keylset Set value in keyed list.

284 Chapter 10— TclX

String and Character Manipulation Commands

ccollate Return collation ordering of two strings.
cconcat Concatenate strings.

cequal Compare strings for equality.

cindex Return one character from a string.
clength Return length of a string.

crange Return range of characters from a string.
csubstr Return substring of a string.

ctoken Parse a token out of a string.

cype Return type of characters in a string.
replicate Replicate a string several times.

translit Transliterate characters in a string.

XPG/3 Message Catalog Commands

catclose Close a message catalog.
catgets Retrieve message from a catalog.
catopen Open a message catalog.

Help Commands

apropos Locate help information based on a pattern.
belp Online help system for Extended Tcl.

helpcd Change current location in tree of help subjects.
belppwd List current help subject location.

Library and Package Commands

auto_commands List names of loadable commands.

auto_load_file Source a file using autoload path.

auto_packages Return names of defined packages.
buildpackageindex Build index files for package libraries.

convert_lib Convert Tcl index and source files into a package.
loadlibindex Load a package library index.

searchpath Search a path of directories for a file.

Alpbabetical Summary of Commands

This section describes all Extended Tcl commands, listed in alphabetical order.

abs
abs arg

Return the absolute value of expression arg. The argument may be in either
integer or floating-point format and the result is returned in the same form.

Alpbabetical Summary of Commands — abs 285

acos
acos arg

Return the arc cosine of expression arg.

alarm
alarm seconds

Instruct the system to send an alarm signal (SIGALRM) to the command inter-
preter seconds seconds in the future. The time is specified as a floating-
point value. A value of 0 cancels any previous alarm request. This command
is not supported under Windows.

apropos
apropos pattern

Search the online help system for entries that contain the regular expression
pattern in their summaries.

asin
asin arg

Return the arc sine of expression arg.

atan
atan arg

Return the arc tangent of expression arg.

atan2
atan2 x,y

Return the arc tangent of expression x divided by expression y, using the
signs of the arguments to determine the quadrant of the result.

auto_commands
auto_commands [-loaders]

List the names of all known loadable procedures. If the -loaders option is
specified, the output also lists the commands that will be executed to load
each command.

286 Chapter 10— TclX

auto_load_file
auto_load_file file

Load a file, as with the Tcl source command, but use the search path defined
by auto_path to locate the file.

auto_packages
auto_packages [-location]

Return a list of all defined package names. With the -location option, return a
list of pairs of package name and the .#/ib pathname, offset, and length of the
package within the library.

bsearch
bsearch fileId key [retvar] [compare_procl

Search file opened with fileId for lines of text matching the string key:.
Return the line that was found, or an empty string if no match exists. If the
variable name is specified with retvar, the matching line is stored in the
variable and the command returns 1 if the key matched or 0 if there was no
match. Can optionally specify a procedure compare_proc that will compare
the key and each line, returning a value indicating the collation order (see
ccollate).

buildpackageindex
buildpackageindex 1ibfilelist

Build index files for package libraries. Argument 1ibfilelist is a list of
package libraries. Each name must end with the suffix .#ib. A corresponding
.ndx file will be built.

catclose
catclose |-fail| -nofail cathandle
Close a previously opened message catalog.
Options

-fail
Return an error if the catalog cannot be closed.

-nofail
Ignore any errors when closing (default).

Alphabetical Summary of Commands — catclose 287

catgets
catgetls catHandle setnum msgnum defaultstr

Retrieve a message from a message catalog. The message catalog handle
returned by catopen should be contained in catHandle. The message set
number and message number are specified using setnum and msgnum. If the
message catalog was not opened or the message set or message number can-
not be found, then the default string, defaultstr, is returned.

catopen
catopen [-faill -nofail] catname

Open a message catalog using catname, which can be an absolute or rela-
tive pathname. Return a handle that can be used for subsequent catgets and
catclose commands.

Options
-fail

Return an error if the catalog cannot be opened.
-nofail

Ignore any errors when opening (default).

ccollate
ccollate [-locall stringl string2

Compare two strings and return their collation ordering. Return -1 if
stringl is less than string2, O if they are equal, and 1 if stringl is
greater than string2. With the option -local, compares according to current
locale.

cconcat
cconcat [string..|

Concatenate the strings passed as arguments and return the resulting string.

ceil
ceil arg

Return the value of expression arg, rounded up to the nearest integer.

cequal
cequal stringl string2

Compare two strings, returning 1 if they are identical, 0 if not.

288 Chapter 10— TclX

chgrp
chgip [-fileld] group filelist

Set the group ID of files in the list filelist to group, which can be either
a group name or a group ID number.

With option -fileld, the file list consists of open file identifiers rather than file-
names. This command is not supported under Windows.

chmod
chmod [-fileld] mode filelist

Set permissions on the files specified in list filelist to mode, which can
be a numeric mode or symbolic permissions as accepted by the Unix chmod
command.

With option -fileld, the file list consists of open file identifiers rather than file-
names. This command is not supported under Windows.

chown

chown [-fileld] owner filelist
chown [-fileld] {owner group} filelist

Set the ownership of each file in list filelist to owner, which can be a
username or numeric user ID. In the second form, a list consisting of the
owner and group names can be specified.

With option -fileld, the file list consists of open file identifiers rather than file-
names. This command is not supported under Windows.

chroot
chroot dirname

Set the process root directory to dirname. Can be run only by the superuser.

cindex
cindex string indexExpr

Return the character with index indexExpr in string string. Indices start at
0; the words end and len can be used at the beginning of the expression to
indicate the index of the last character and length of the string, respectively.

clength
clength string

Return the length of string in characters.

Alphabetical Summary of Commands — clength 289

cmdtrace
cmdtrace 1evel [noevall [notruncatel [procsl [£ileId] [command cmd]

Print a trace statement when commands are executed at depth level (1
being the top level) or at all levels if the level is specified as on.

Options

noeval
Cause arguments to be printed before being evaluated.

notruncate
Turn off truncation of output, which normally occurs when a command
line is longer than 60 characters.

procs
Enable tracing of procedure calls only.

fileld

Cause output to be written to an open file identifier.

command
Rather than producing normal output, the given command is executed
during tracing.

cmdltrace off

Turn off all tracing.

cmdltrace depth

Return the current trace depth level, or 0 if tracing is not enabled.

commandloop

commandloop [-async] [-interactive onloffltty] [-prompt1 cmdl [-prompt2
cmd] [-endcommand cmd)

Enter a command loop, reading from standard input and writing to standard
output.

Options

-async
Interpret commands on standard input.

-interactive
Controls interactive command mode (prompting of commands and dis-
play of results). If the argument is on, interactive mode is enabled; if
of £, it is disabled; if tty, it is enabled if standard input is associated
with a terminal.

290 Chapter 10— TcIX

-prompit1
The argument supplies a command that is executed and the result used
as the primary command prompt.

-prompit2
The argument supplies a command that is executed and the result used
as the secondary command prompt.

-endcommand
The argument supplies a command that is executed when the command

loop terminates.

convert_lib
convert_lib tclIndex packagelib [ignorel

Convert a Tcl index file tclIndex and its associated source files into an
Extended Tcl package library packagelib. The list ignore can specify files
that should not be included in the library.

COS
cos arg

Return the cosine of expression arg.

cosh
cosh arg

Return the hyperbolic cosine of expression arg.

crange
crange string firstExpr lastExpr

Return a range of characters from string string, from index firstExpr
through lastExpr.

Indices start at 0, and the words end and len can be used at the beginning
of an expression to indicate the index of the last character and length of the
string, respectively.

csubstr
csubstr string firstExpr lengthExpr

Return a range of characters from string string from index firstExpr for
a range of lengthExpr characters.

Indices start at 0, and the words end and len can be used at the beginning
of an expression to indicate the index of the last character and length of the
string, respectively.

Alphabetical Summary of Commands — csubstr 291

ctoken
cto/een strvar separa tors

Parse the next token from the string contained in variable strvar. Tokens
are separated by the characters specified in the string separators. Returns
the next token and removes it from the string.

ctype

ctype |-failindex varl class string

Examine the characters in string and determine if they conform to the spec-
ified class. Return 1 if they conform, 0 if they do not or the string is empty.
The class option takes one of the following forms:

alnum
All characters are alphabetic or numeric.

alpha
All characters are alphabetic.

ascii
All characters are ASCII characters.
char

Converts the string, which must be a number from 0 through 255, to an
ASCII character.

cntrl

All characters are control characters
digit

All characters are decimal digits.

graph
All characters are printable and nonspace.

lower
All characters are lowercase.

ord
Converts the first character in the string to its decimal numeric value.

space
All characters are whitespace.

print
All characters are printable (including space).

punct
All characters are punctuation.

292 Chapter 10— TcIX

upper
All characters are uppercase.

xdigit
All characters are valid hexadecimal digits.

With the option -failindex, the index of the first character in the string that
did not conform to the class is placed in the variable named var.

dirs

dirs

List the directories in the directory stack.

double

double arg

Evaluate the expression arg, convert the result to floating-point, and return
the converted value.

dup

dup fileId[targetFileId]

Create a new file identifier that refers to the same device as the open file
identifier fileId. The new file identifier is returned.

Can optionally specify the name of an existing file identifier targetFileId
(normally stdin, stdout, or stderr). In this case the targetFileId
device is closed if necessary, and then becomes a duplicate that refers to the
same device as fileId.

On Windows, only stdin, stdout, stderr, or a nonsocket file handle
number may be specified for targetFileId.

echo

echo[string..]

Write zero or more strings to standard output, followed by newline character.

edprocs

edprocs | proc...]

Write the definitions for the named procedures (by default, all currently
defined procedures) to a temporary file, invoke an editor, then reload the def-
initions if they were changed. Uses the editor specified by the EDITOR envi-
ronment variable, or vi if none is specified.

Alphabetical Summary of Commands — edprocs 293

execl
execl [-argv0 argv0l prog larglist]

Perform an exec/ system call, replacing the current process with program
prog and the arguments specified in the list arglist. The command does
not return unless the system call fails.

The -argvO option specifies the value to be passed as argv[0] of the new
program.

Under Windows, the exec/ command starts a new process and returns the pro-
cess ID.

exp
exp arg

Return the value of the constant e raised to the power of the expression arg.

fentl
fentl fileId attribute [valuel

Modifiy or return the current value of a file option associated with an open
file identifier. If only attribute is specified, its current value is returned. If
a boolean value is specified, the attribute is set. Some values are read only.
The following attributes may be specified:

RDONLY
File is opened for reading (read only).

WRONLY
File is opened for writing (read only).

RDWR
File is opened for reading and writing (read only).

READ
File is readable (read only).

WRITE
File is writable (read only).

APPEND
File is opened for appending.

NONBLOCK
File uses nonblocking I/O.

CLOEXEC
Close the file upon execution of a new process.

294 Chapter 10— TcIX

NOBUF
File is not buffered.

LINEBUF
File is line buffered.

KEEPALIVE
Keep-alive option is enabled for a socket.

The APPEND and CLOEXEC attributes are not available on Windows.

flock

flock options fileId |[start][length] origin]

Place a lock on all or part of the file open with identifier fileId. The file
data is locked from the beginning of byte offset start for a length of
Iength bytes. The default start position is the start of file, and the default
length is to the end of file. If the file is currently locked, the command waits
until it is unlocked before returning.

The value of origin indicates the offset for the data locked and is one of the
strings start (relative to start of file, the default), current (relative to the
current access position), or end (relative to end of file, extending backward).

This command is not supported on Windows 95/98. Also see funlock.
Options

-read
Place a read lock on the file.

-write
Place a write lock on the file.

-nowait
Do not block if lock cannot be obtained. Return 1 if the file could be
locked, or 0 if it could not.

floor

floor arg

Return the value of expression arg rounded down to the nearest integer.

fmod
Jfmod x y

Return the remainder after dividing expression x by expression y.

Alphabetical Summary of Commands — fmod 295

for_array_keys
for_array_keys var array_name code
Perform a foreach-style loop for each key in the array array._name.

Example

for_array_keys key tcl_platform {
echo $key => $tcl_platform(Skey)
}

for_file
Jfor_file var filename code

Loop over the file filename, setting var to the line and executing code for
each line in the file.

Example

for_file line /etc/passwd ({
echo $line

}

for_recursive_glob
Sfor_recursive_glob var dirlist globlist code

Perform a foreach-style loop over files that match patterns. All directories in
the list dirlist are recursively searched for files that match the glob pat-
terns in list globlist. For each matching file the variable var is set to the
file path and code code is evaluated.

Example

for_recursive_glob file {~ /tmp} {*.tcl *.c *.h} {
echo $file
}

fork
Sfork

Call the fork system call to duplicate the current process. Returns 0 to the
child process, and the process number of the child to the parent process. This
command is not supported under Windows.

fstat
fstat fileIditem | [stat arrayvar]

Return status information about the file opened with identifier fileId. If one
of the keys listed below is specified, the data for that item is returned. If stat
arrayvar is specified, the information is written into array arrayvar using

296 Chapter 10— TcIX

the listed keys. If only a file identifier is specified, the data is returned as a
keyed list.

The following keys are used:

atime
Time of last access.

ctime
Time of last file status change.

dev

Device containing a directory for the file.
gid

Group ID of the file’s group.
ino

Inode number.

mode
Mode of the file.

mtime
Time of last file modification.

nlink
Number of links to the file.

size
Size of file in bytes.

tty
1 if the file is associated with a terminal, otherwise 0.

type
Type of the file, which can be file, directory, character-
Special, blockSpecial, fifo, 1ink, or socket.

uid
User ID of the file’s owner.

The following additional keys may be specified, but are not returned with the
array or keyed list forms:

remotehost
If fileId is a TCP/IP socket connection, a list is returned, with the first
element being the remote host IP address. If the remote hostname can be
found, it is returned as the second element of the list. The third element
is the remote host IP port number.

localhost
If fileId is a TCP/IP socket connection, a list is returned, with the first
element being the local host IP address. If the local hostname can be
found, it is returned as the second element of the list. The third element
is the local host IP port number.

Alphabetical Summary of Commands — fstat 297

ftruncate
Sftruncate [-fileld] file newsize

Truncate a file to a length of at most newsize bytes. With the -fileld option,
the £file argument is an open file identifier rather than a filename. The -fileld
option is not available on Windows.

funlock
Sunlock fileId [startl] [lengthl l[originl

Remove a file lock that was previously set using an flock command on the file
open with identifier fileId. The portion of the file data that is locked is
from the beginning of byte offset start for a length of Iength bytes. The
default start position is the start of file, and the default length is to the end of
file.

The value of origin indicates the offset for the locked data and is one of the
strings start (relative to start of file, the default), current (relative to the
current access position), or end (relative to end of file).

This command is not supported on Windows 95/98. Also see flock.

help
belp [options]

Invoke the online Tcl help facility to provide information on all Tcl and
Extended Tcl commands. Information is structured as a hierarchical tree of
subjects with help pages at the leaf nodes. Without arguments, the command
lists all of the help subjects and pages under the current help subject.

belp subject
Display all help pages and lower-level subjects (if any) under the subject
subject.

belp subject/helppage
Display the specified help page.

belp belp!?
Display help on using the help facility itself. Valid at any directory level.

helpcd
belpcd [subject]

Change the current subject in the hierarchical tree of help information. With-
out a subject, goes to the top level of the help tree.

298 Chapter 10— TcIX

helppwd

belppwd

Display the current subject in the hierarchical documentation tree of online
help information.

host_info

bost_info option host

Return information about a network host. The command takes one of the fol-
lowing three forms:

bost_info addresses host
Return a list of the IP addresses for host.

bost_info official_name host
Return the official name for host.

bost_info aliases host
Return a list of aliases for host.

hypot

bypot x y

Return the hypotenuse function, equivalent to sgrt(x*x + y*y). The argu-
ments are expressions.

id

id options

Provides various functions related to getting, setting, and converting user,
group, and process identifiers. Some functions can be performed only by the
superuser. Under Windows only the host and process options are imple-
mented.

id user [namel

Without a name option, return the current username. With an option, sets the
real and effective user to name.

id userid [uidl

Without a uid option, return the current numeric user ID. With an option, set
the real and effective user to uid.

id convert userid uid
Return the username corresponding to numeric user ID uid.
id convert user name

Return the numeric user ID corresponding to user name.

Alphabetical Summary of Commands — id 299

id group [namel

Without a name option, return the current group ID name. With an option,
set the real and effective group ID to name.

id groupid [g1d]

Without a gid option, return the current numeric group ID. With an option,
set the real and effective group ID to gid.

id groups

Return a list of group names for the current process.

id groupids

Return a list of numeric group IDs for the current process.
id convert groupid gid

Return the group name corresponding to numeric group ID gid.
id convert group name

Return the numeric group ID corresponding to group name.
id effective user

Return the effective username.

id effective userid

Return the effective user ID number.

id effective group

Return the effective group name.

id effective groupid

Return the effective group ID number.

id bost

Return the hostname of the system on which the program is running.
id process

Return the process ID of the current process.

id process parent

Return the process ID of the parent of the current process.
id process group

Return the process group ID of the current process.

id process group set

Set the process group ID of the current process to its process ID.

300 Chapter 10— TclX

infox
infox option

Return information about the Extended Tcl interpreter or current application.
The command can take the following forms:

infox version
Return the Extended Tcl version number.
infox patchlevel

Return the Extended Tcl patch level.

infox bave_fchown

Return 1 if the fchown system call is available otherwise. If available, the
-fileld option on the chown and chgrp commands is supported.

infox have_fchmod

Return 1 if the fchmod system call is available otherwise. If available, the
-fileld option on the chmod command is supported.

infox bave_flock
Return 1 if the flock command is defined, 0 if it is not available.
infox bave_fsync

Return 1 if the fSync system call is available and the sync command will sync
individual files, 0 if fSync is not available and the sync command will always
sync all file buffers.

infox have_ftruncate

Return 1 if the ftruncate or chsize system call is available. If it is, the ftruncate
command -fileld option may be used.

infox bave_msgcats

Return 1 if XPG message catalogs are available, 0 if they are not. The catgets
command is designed to continue to function without message catalogs,
always returning the default string.

infox bave_posix_signals

Return 1 if POSIX signals (block and unblock options for the signal com-
mand) are available.

infox have_truncate

Return 1 if the trumcate system call is available. If it is, the ftruncate com-
mand may truncate by file path.

infox bave_waitpid

Return 1 if the waitpid system call is available and the wait command has full
functionality, 0 if the wait command has limited functionality.

Alphabetical Summary of Commands — infox 301

infox appname

Return the symbolic name of the current application linked with the Extended
Tcl library. The C variable tclAppName must be set by the application to
return an application-specific value for this variable.

infox applongname

Return a natural language name for the current application. The C variable
tclLongAppName must be set by the application to return an application-
specific value for this variable.

infox appuversion

Return the version number for the current application. The C variable tcl-
AppVersion must be set by the application to return an application-specific
value for this variable.

infox apppatchlevel

Return the patch level for the current application. The C variable tclApp-
Patchlevel must be set by the application to return an application-specific
value for this variable.

int

int arg

Evaluate the expression arg, convert the result to an integer, and return the
converted value.

intersect

intersect 1istl 1ist2

Return the logical intersection of two lists, i.e., a list of all elements contained
in both 1istl and 1ist2. The returned list is sorted alphabetically.

intersect?3

intersect3 1istl 1ist2

Return a list containing three lists. The first consists of all elements of 1ist1
that are not in 1ist2. The second contains the intersection of the two lists.
The third contains all elements of 1ist2 that are not in I1istl1. The returned
lists are sorted alphabetically.

keyldel

keyldel 1istvar key

Delete the field specified by key from the keyed list in variable Iistvar.
Removes both the key and the value from the keyed list.

302 Chapter 10— TclX

keylget
keylget 1istvar [key] [retvarl{}]

Return the value associated with key from the keyed list in variable Iist-
var. If retvar is not specified, the value will be returned as the result of the
command. In this case, if key is not found in the list, an error will result.

If retvar is specified and key is in the list, the value is returned in the vari-
able retvar and the command returns 1 if the key was present within the
list. If key is not in the list, the command will return 0, and retvar will be
left unchanged. If {} is specified for retvar, the value is not returned, allow-
ing the programmer to determine if a key is present in a keyed list without
setting a variable as a side effect.

If key is omitted, a list of all the keys in the keyed list is returned.

keylkeys
keylkeys 1istvar [key]

Return a list of the keys in the keyed list contained in variable I1istvar. If
key is specified, it is used as the name of a key field whose subfield keys are
to be retrieved.

keylset
keylset 1istvar key value...

Set the value associated with key to value in the keyed list contained in
variable 1istvar. If 1istvar does not exist, it is created. If key is not cur-
rently in the list, it is added. If it already exists, value replaces the existing
value. Multiple keywords and values may be specified if desired.

kill
kill [-pgroup] [signall idlist
Send a signal to each process in the list idlist, if permitted. Parameter
signal, if present, is the signal number or symbolic name of the signal. The
default is 15 (SIGTERM).
If -pgroup is specified, the numbers in idlist are taken as process group
IDs and the signal is sent to all of the processes in that process group. A pro-
cess group ID of 0 specifies the current process group. This command is not
supported under Windows.

lassign

lassign 1ist var...

Assign successive elements of a list to specified variables. If there are more
variable names than fields, the remaining variables are set to the empty string.

Alphabetical Summary of Commands — lassign 303

If there are more elements than variables, a list of the unassigned elements is
returned.

Icontain
lcontain 1ist element

Return 1 if element is an element of list 1ist; otherwise, return 0.

lempty
lempty 1ist

Return 1 if 1ist is an empty list; otherwise, return 0.

Igets
Igets fileId [varNamel
Read a Tcl list from the file given by file identifier £ileId, discarding the ter-
minating newline. If varName is specified, the command writes the list to the
variable and returns the number of characters read; otherwise, it returns the
list.

link
link [-sym) srcpath destpath

Create a link from existing pathname srcpath to destpath. With option
-sym, creates a symbolic rather than hard link. This command is not sup-
ported under Windows.

Imatch
Imatch [mode] 1ist pattern
Return a new list, consisting of the elements of 1ist that match pattern.

The type of pattern matching is determined by the mode parameter:

-exact
Exact match

-glob
Glob-style matching (default)

-regexp
Regular expression matching

loadlibindex
loadlibindex 1ibfile.tlib
Load the package library index of the library file 1ibfile. t1ib.

304 Chapter 10— TcIX

log

log arg

Return the natural logarithm of expression arg.

log10

log10 arg

Return the base 10 logarithm of expression arg.

loop

loop var first limit [increment] body

Loop construct in which the beginning and ending loop index variables and
increment are fixed. The loop index is variable var, which is initialized to
first. In each iteration of the loop, if the index is not equal to 1imit, the
command body is evaluated and the index is increased by the value incre-
ment.

Example

count from ten down to one
loop 1 10 0 -1 ¢
echo s$i

}

Irmdups

Irmdups 1ist

Remove duplicate elements from Iist; return the result, sorted alphabeti-
cally.

Ivarcat

lvarcat var string...

Concatenate one or more string arguments to the end of the list contained in
variable var, storing the result in var and returning the resulting list. String
arguments that are lists are deconstructed into individual elements before
being concatenated into the result list.

Ivarpop

lvarpop var |indexExpr] [stringl

Remove the element of the list contained in var having index indexExpr
(default 0). If string is given, the deleted element is replaced with the
string. Returns the replaced or deleted item.

Alpbabetical Summary of Commands — Ilvarpop 305

Indices start at 0, and the words end and len can be used at the beginning
of the expression to indicate the index of the last element and length of the
list, respectively.

Ivarpush
lvarpush var string [indexExpr]

Insert string as an element of the list stored in var before position index-
Expr (default 0).

Indices start at 0, and the words end and len can be used at the beginning
of the expression to indicate the index of the last element and length of the
list, respectively.

mainloop
mainloop

Start a top-level event handler. Process events until there are no more active
event sources, then exit.

max
max number...

Return the argument having the highest numeric value. The arguments can be
any mixture of integer or floating-point values.

min
min number...

Return the argument having the lowest numeric value. The arguments can be
any mixture of integer or floating-point values.

nice
nice [priorityIncr]
Without arguments, return the current process priority. With a numeric argu-
ment, add priorityIncr to the current process priority. A negative value
increases the process priority (this will work only for the superuser). This
command is not supported under Windows.

pipe
pipelfileld var r fileId var_w]

Create a pipe. Without options, return a list containing the file identifiers for
the read and write ends of the pipe. If passed two variable names, they are
set to the file identifiers for the opened pipe.

306 Chapter 10— TclX

popd
bopd

Remove the top entry from the directory stack; make it the current directory.

pow
powxy

Return the value of expression x raised to the power of expression y.

profile
profile [-commands] [-eval] on

Start collection of data for performance profiling of procedures. With the
-commands option, also profiles commands within a procedure. With the
-eval option, uses the procedure call stack rather than the procedure scope
stack when reporting usage.

profile off arrayVar

Turn off profiling and store the results in variable arrayVar for later analysis
by the profrep command.

profrep
profrep profDataVar sortKey loutFilel [userTitlel

Generate a report using profile data generated by the profile command. Data
must have been previously stored in variable profDataVar. The parameter
sortKey has one of the values calls, cpu, or real, indicating how to sort
the output. The output can optionally be written to file outFile (default is
standard out) using an optional title userTitle.

pushd
pushd [dir]

Push the current directory onto the directory stack and change to directory
dir. If no directory is specified, the current directory is pushed but remains
unchanged.

random
random 1imit

Return a pseudorandom integer greater than or equal to 0 and less than
Iimit.

Alphabetical Summary of Commands — random 307

random seed [seedvall

Reset the random number generator using the number seedval, or if omit-
ted, a seed based on the current date and time.

read_file
read_file [-nonewline] £ileName [numBytes]

Read the entire contents of file fileName and return it as a string. The
-nonewline option discards any final newline character in the file. The num-
Bytes option specifies the number of bytes to read.

readdir
readdir [-bidden] dirPath

Return a list of the files contained in directory dirPath. The option -hidden
causes hidden files to be included in the list (Windows platforms only).

recursive_glob
recursive_glob dirlist globlist

Recursively search the directories in list dirlist for files that match any of
the patterns in globlist. Returns a list of matching files.

replicate
replicate string countEXpr

Return string replicated the number of times indicated by integer expres-
sion countExpr.

round
round arg

Evaluate the expression arg, convert the result to an integer by rounding,
and return the converted value.

SAVEPIrocs
saveprocs £ileName [proc..]

Save the definitions of the listed Tcl procedures (by default, all procedures) to
file £ileName.

scancontext
scancontext [option]

Create, delete, or modify file scan contexts.

308 Chapter 10— TcIX

scancontext create

Create a new scan context.

scancontext delete contexthandle

Delete the scan context identified by contexthandle.
scancontext copyfile contexthandle

Return the file handle to which unmatched lines are copied.
scancontext copyfile contexthandle [filehandle]

Set the file handle to which unmatched lines are copied. A file handle of {}
removes any file copy specification.

scanfile
scanfile [-copyfile copyFileId| contexthandle fileId

Scan the file specified by fileId starting from the current file position.
Check all patterns in the scan context specified by contexthandle, execut-
ing the match commands corresponding to patterns matched.

If the optional -copyfile argument is specified, the next argument is a file ID to
which all lines not matched by any pattern (excluding the default pattern) are
to be written. If the copy file is specified with this flag, instead of using the
scancontext copyfile command, the file is disassociated from the scan context
at the end of the scan.

scanmatch
scanmatch [-nocase] contexthandle [regexpl commands

Specify Tcl commands to be evaluated when regexp is matched by a scanfile
command. The match is added to the scan context specified by context-
handle. Any number of match statements may be specified for a given con-
text. With option -nocase, the pattern matching is case insensitive.

searchpath
searchpath pathList file

Search the directories in list pathList for file file. Return the full path if
found; otherwise, return an empty string.

select
select readfileIds lwritefileIds] lexceptfileIds]|[timeout]

Wait for a change of status in file identifiers. Up to three lists, containing file
identifiers for files to be polled for read, write, or exceptions, can be speci-
fied. An optional parameter timeout indicates the maximum time, in sec-
onds, to wait (it can be 0 for polling). The command returns three lists,

Alphabetical Summary of Commands — select 309

corresponding to the file descriptors in each of the three categories that have
a change in status.

On Windows, only sockets can be used with the select command.

showproc

showproc [procname...]

List the definitions of the named Tcl procedures (by default, all procedures).

signal

signal action siglist [command)]

Set the action to take when a Unix signal is received. The siglist parame-
ter lists one or more signal names or numbers. Parameter action indicates
the action to take, as described in the following:

default
Take system default action.

ignore
Ignore the signal.

error
Generate a catchable Tcl error.

trap
Execute command indicated by command parameter.

get
Return current settings for the specified signals as a keyed list.

set
Set signals from a keyed list in the format returned by get.

block
Block signals from being received.

unblock
Allow the specified signal to be received.

sin

sin arg

Return the sine of expression arg.

sinh

sinh arg

Return the hyperbolic sine of expression arg.

310 Chapter 10— TcIX

sleep
sleep seconds

Delay execution of the current process for seconds seconds, which must be
an integer value.

sqrt
sqrt arg

Return the square root of expression arg.

sync
sync [fileId]
With no options, issue a sync system call to write pending data to disk. With a
file identifier fileId corresponding to a file open for writing, schedule out-

put for that file to disk. On platforms that do not support the fsync system
call, the fileId parameter is ignored.

system
system cmdstring...

Concatenate one or more command strings with space characters and execute
the command using the system command interpreter (/bin/sh on Unix and
command.com on Windows). Returns the numeric return code of the com-
mand.

tan
tan arg

Return the tangent of expression arg.

tanh
tanh arg

Return the hyperbolic tangent of expression arg.

tclx_errorHandler
tclx_errorHandler message

A user-written procedure to handle errors. Called before returning to the top-
level command interpreter after an unhandled error.

Alphabetical Summary of Commands — tclx_errorHandler 311

times
times

Return a list containing four process CPU usage time values, in the form
utime stime cutime cstime.

translit
translit inrange outrange string

Transliterate characters in string, replacing the characters occurring in
inrange to the corresponding characters in outrange. The ranges may be
lists of characters or a range in the form Iower-upper.

Example

translit a-z A-Z "A string"

try_eval
try_eval code catch [finally]

Evaluate the command string code. If an error occurs, evaluate code and
return the result. Last, execute the command string finally.

Example

try_eval {
code
puts -nonewline stderr "Enter a number:
set ans [gets stdin]
could fail, e.g. due to divide by zero
set res [expr 1.0 / $ans]
puts stderr "1 / Sans = $res"

catch
set msg [lindex $errorCode end]
puts stderr "Error: $msg"

finally
puts stderr "End of example"

umask
umask loctalmaskl

Set the file creation mode mask to octalmask, which must be an octal (base
8) number. With no parameters, return the current mask.

312 Chapter 10— TcIX

union
union 1istl 1ist2

Return the logical union of two lists, i.e., a list of all elements contained in
either 1istl or 1ist2. The returned list is sorted alphabetically and has no
duplicate elements.

wait

wait [-nobangl [-untraced) [-pgroupl [pid]

Wait for a child process with process ID pid to terminate (or any process if
pid is omitted).

Options

-nobang

Don’t block waiting on the process to terminate.

-untraced
Return status of other child processes.

-pgroup
Wait on any processes in process group.

The command returns a list with three elements: the process ID of the process
that terminated, the reason code (EXIT, SIG, SIGSTP, or STOP), and the
numeric exit code.

write_file
write_file fileName string...

Write one or more strings to the file named fileName. Each string is termi-
nated with a newline character.

Alphabetical Summary of Commands 313

CHAPTER 11

BLT

BLT, written by George A. Howlett, is not part of the core Tcl/Tk package, but can
be obtained for free at bitp.//wwuw.tcltk.com/bit. At the time of this writing, the final
2.4 version of BLT had not been released. However, because of the addition of the
tabset and hierbox widgets, it is bound to quickly become a popular version.
Therefore, this chapter documents prerelease 2.4f, which should be extremely
close to the final version. Footnotes in the description denote where changes may
be expected.

BLT is an extension to Tcl/Tk designed to simplify a number of tasks that would
normally require considerable coding. It provides commands for producing graphs
and managing numerical data, a table-based geometry manager, a drag-and-drop
facility, and several other graphical and utility commands. Several of BLT’s com-
mands have been partially incorporated into the standard Tcl/Tk distribution. It
works with Unix under the X Window System and with Windows.

BLT can be loaded from existing Tcl applications or one can use the supplied
bltwish command interpreter. In the former case, BLT can be loaded using the
command:

package require BLT

on a properly configured system. The BLT commands will be defined in the
blt:: namespace. To make the BLT commands globally accessible, issue the
command:

namespace import blt::*

Figure 11-1 shows some examples of BLT widgets.

314

http://www.tcltk.com/blt

Tah0 ITalﬂ I TahZI

Example Htext Example Container
This sentence is displayed as normal text. \'r
Butthisis a bution s -
which can invoke a Tcl command. B “\\ B

Example Graph Example Hierbox

- Ej maint
- Data Points a P2 -errors =
FVWHMI5-errors
Xauthority
Xdefaulis
-hash_history
_ 4
T i T i] ' I
0 2 < &

IR

hach oot

Figure 11-1: Examples of some of the BLT widgets

Environment Variable

The following environment variable is used by the BLT toolkit:

BLT_LIBRARY
Directory containing Tcl scripts and other files needed by BLT at runtime

Special Variables

The following global variables have special meaning to the BLT toolkit:

blt_library
Directory containing Tcl scripts and other files related to BLT. Uses the
BLT_LIBRARY environment variable if set; otherwise uses a compiled-in
library.

blt_version
The current version of BLT in the form major-number.minor-
number.

Group Listing of Commands

This section briefly lists all BLT commands, grouped logically by function.

Grapbical Commands

barchart Plot two-dimensional bar chart of data in a window.
bitmap Read and write bitmaps using inline Tcl code.

Group Listing of Commands 315

busy
container
drag&drop
graph
hierbox
htext
stripchart
table
tabset
winop

Prevent user interaction when a graphical application is busy.
Container for a window from another application.
Provide a drag-and-drop facility for Tk applications.
Plot two-dimensional graphics of data in a window.
Hierarchical listbox for displaying ordered trees.

A simple hypertext widget.

Plot strip charts of data in a window.

A table-based geometry manager.

A tab notebook or simple tabset.

Raise, lower, map, or unmap a window.

Numerical Data Commands

spline Compute a spline curve fitted to a set of data points.
vector A data structure for manipulating floating-point data values.

Tile Widget Commands

tilebutton

Version of Tk button supporting background tiles.

tilecheckbutton Version of Tk checkbutton supporting background tiles.

tileframe
tilelabel

Version of Tk frame supporting background tiles.
Version of Tk label supporting background tiles.

tileradiobutton ~ Version of Tk radiobutton supporting background tiles.

tilescrollbar
tiletoplevel

Version of Tk scrollbar supporting background tiles.
Version of Tk toplevel supporting background tiles.

Utility Commands

beep
bgexec

bltdebug
cutbuffer
watch

Ring the keyboard bell.

Similar to the Tcl exec command, but allows Tk

to handle events while a process is executing.

Simple Tcl command tracing facility.

Manipulate the eight X Window System cut buffers.
Call user-defined procedures before or after execution
of Tcl commands.

Alpbabetical Summary of Commands

This section

describes all BLT commands, listed in alphabetical order.

barchart

barchart pathName [option value..]

See the

graph command.

316 Chapter 11— BLT

beep
beep percent

Ring the keyboard bell. Percent is relative to the base volume of the bell
and can range from —-100 to 100 inclusive, such that the actual volume will be
between 0 and 100. The default percent is 50.

bgexec
bgexec varName [options...] command larg arg..]

Run an external program, like the Tcl exec command, but allow Tk to process
events while the program is running.

Parameter varName is a global variable that will be set to the program’s exit
status when the command is completed. Setting the variable will cause the
program to be terminated with a signal.

Parameters command and args specify an external command with optional
arguments in the same form as accepted by the Tcl exec command.

Normally, bgexec returns the results of the program. However, if the last argu-
ment is the ampersand (&), bgexec immediately returns a list of the spawned
process IDs. The variable varName can be used with the tkwait command to
wait for the program to finish.

Options

-error varName
Cause varName to be set to the contents of standard error when the
command has completed.

-update varName
Cause varName to be set whenever data is written to standard output by
the command.

-keepnewline boolean
Enable or disable truncation of newline from last line of output.

-killsignal signal
Specify (by name or number) the signal to be sent to the command when
terminating. The default signal is SIGKILL.

-lasterror varName
Same as the -error option, except varName is updated as soon as new
data is available.

-lastoutput varName
Same as the -output option, except varName is updated as soon as new
data is available.

Alphabetical Summary of Commands — bgexec 317

-onerror cmdPrefix
When new data from standard error is available, evaluate the command
cmdPrefix with the new data appended as an argument.

-onoutput cmdPrefix
When new data from standard output is available, evaluate the command
cmdPrefix with the new data appended as an argument.

-oulput varName
Cause varName to be set to the contents of standard output when the
command has completed.

-update varName
Deprecated. Same as the -lastoutput option.

Mark the end of options (useful for commands that may start with a
dash).

Example

global myStatus myOutput

set dir /tmp

bgexec myStatus -output myOutput du -s $dir
puts "Disk usage for $dir is S$myOutput"

bitmap
bitmap operation bitmapName [arg arg...|

Create or return information about a bitmap created using inline Tcl code.
The following operations are defined:

bitmap compose bitmapName text [option value..]
Create a new bitmap from a text string and associate it with the name
bitmapName. The bitmap is defined by the text in the parameter text.
The following options are available:

-font fontName
Specify the font to use when drawing text in the bitmap.

-rotate theta
Rotate the bitmap by theta degrees.

-scale value
Scale the bitmap by the factor of floating-point number value.

bitmap data bitmapName
Return a list of the bitmap data. The first element is a list of the height
and width, the second is a list of the source data.

bitmap define bitmapName data [option value..]
Create a new bitmap and associate it with the name bitmapName. The
bitmap is defined by parameter data, which is a list containing two ele-
ments. The first element is a list defining the height and width. The sec-
ond element is a list of the source data.

318 Chapter 11— BLT

The following options are available:

-rolate theta
Rotate the bitmap by theta degrees.

-scale value
Scale the bitmap by the factor of floating-point number value.

bitmap exists bitmapName
Return 1 if a bitmap named bitmapName exists; otherwise, return 0.

bitmap beight bi tmapName
Return the height of a bitmap in pixels.

bitmap source bitmapName
Return the source data for a bitmap as a list of hexadecimal values.

bitmap width bitmapName
Return the width of a bitmap in pixels.

Example

bitmap define crosshatch {{8 8} {0xaa 0x55 Oxaa 0x55 Oxaa 0x55 Oxaa
0x55}}

toplevel .t

tk_dialog .t title "<- Sample Bitmap" crosshatch 0 Continue

bitmap compose text "Some\nText" -rotate 90 -scale 2
toplevel .t
tk_dialog .t title "<- Sample Bitmap" text 0 Continue

bltdebug
bltdebug [1evell

Trace Tcl commands by printing each command before it is executed. The
command is shown both before and after substitutions. The integer value
Ievel indicates the number of stack levels to trace. A level of 0 disables all
tracing. If Ievel is omitted, the current level is returned.

busy
busy operation larg arg..]

Make Tk widgets busy, temporarily blocking user interaction. In many cases,
the busy command provides a more flexible alternative to the Tk grab com-
mand. The following operations are defined:

busy hold window [-cursor cursor]
Make the widget window and all of its descendants busy. The -cursor
option specifies the cursor to be displayed when busy. It accepts any of
the standard Tk cursors; the default is watch. It can also be defined in
the Tk resource database using resource and class names busyCursor
and BusyCursor, respectively.

Alphabetical Summary of Commands — busy 319

busy configure window [option [value [option value..]]]
Query or modify the configuration parameters for a window previously
made busy in the same manner as the general widget configure method.
Available options are the same as for the hold operation.

busy forget window...
Restore user interaction to the given windows. The input-only window
used by busy is destroyed.

busy isbusy [pattern]
Return the pathnames of all windows that are currently busy. With an
optional pattern, return the names of busy widgets matching the pattern.

busy release window...
Restore user interaction to the given windows. The input-only window
used by busy is not destroyed.

busy status window
Return the status of a window previously made busy. Return 1 if the win-
dow is busy, 0 otherwise.

busy windows [pat tern]
Return the pathnames of all windows that have previously been made
busy or are currently busy. With an optional pattern, return the names of
busy windows matching the pattern.

Example

frame .f

button .f.b -text "BUTTON"
pack .f.b

pack .f

busy hold .f.b

update

after 5000

busy release .f.b

container

container pathName [option value..]

The container command creates a new container widget named pathName.
A container widget is similar to a frame widget but is intended to contain a
window belonging to another application. Although the frame widget can do
this between other Tk applications, container works with non-Tk applica-
tions. This command is not supported under Windows.

Standard Options

-background -borderwidth -cursor
-bighlightbackground -highlightcolor -bighlightthickness
-relief -takefocus

320 Chapter 11— BLT

Widget-Specific Options
-height amount (height, Height)

Desired height, in screen units, for the window.

-width amount (width, width)
Desired width, in screen units, for the window.

~window windowID (window, Window)
The hexadecimal, platform-specific identifier for a window to be con-
tained in the widget.

Example

container .c -window 0x3c00009
pack .c

cutbuffer

cutbuffer operation larg..]

Read or modify the eight X Window System cut buffer properties. This com-
mand is not supported under Windows. The following operations are defined:

cutbuffer get [number]
Return the contents of cut buffer number, a number between 0 (the
default) and 7. Any NULL bytes are converted to the @ character.

cutbuffer rotate [count]
Rotate the cut buffers by count, a number between -7 and 7. The
default is 1.

cutbuffer set value [number]
Set the contents of cut buffer number to value. The default is 1.

drag&drop
drag&drop operation larg arg...]

Provide a drag-and-drop facility for Tk applications. Widgets registered as a
drag-and-drop source can export data to other widgets registered as targets.
The following operations are defined:

drag&drop active
Return 1 if a drag-and-drop operation is in progress, 0 otherwise. A drag-
and-drop operation officially starts after the package command has been
executed successfully, and ends after the send handler has been executed
(successfully or otherwise).

drag&drop drag window x y
Handle dragging of the token window for source window during a drag-
and-drop operation. If the token window is unmapped, the -packagecmd
for the source window is executed. If this command is successful and
returns a non-null string, the token window is mapped. On subsequent
calls, the token window is moved to the given x y location.

Alphabetical Summary of Commands — drag&drop 321

drag&drop drop window x y
Handle the end of a drag-and-drop operation. If the location x y is over
a compatible target window, the appropriate source handler for the first
compatible data type is invoked. If the data transfer is successful, the
token window is unmapped. Otherwise, a rejection symbol is drawn on
the token window, and the window is unmapped after a small delay.

drag&drop errors [proc]
Specify that the Tcl procedure proc be used to handle errors that occur
during drag-and-drop operations. If proc is not specified, the current
error handler is returned. By default, all errors are sent to the usual
tkerror command and therefore appear in a dialog box to the user.

drag&drop location [x y]
Set the pointer location during a drag-and-drop operation to location x y.
If the coordinates are not given, then the last reported location is
returned as a two-element list.

drag&drop source
Return a list of the pathnames of widgets registered as drag-and-drop
sources.

drag&drop source window loption [value [option value..]]]
Register window as a drag-and-drop source with the given options, or
modify the options for an existing source. The available options are as
follows:

-button n (buttonBinding, ButtonBinding)
Specify the mouse button (1-5) for invoking the drag-and-drop oper-
ation. The default is button 3. ButtonPress and Motion events
for this button will be bound to the drag operation, and Button-
Release events will be bound to the drop operation. If n is 0, then
no binding is made.

-packagecmd command (packageCommand, PackageCommand)
Specify a Tcl command used to establish the appearance of the
token window at the start of each drag-and-drop operation.

The following substitutions are made in the command string before
it is executed: %t is replaced with the window pathname for the
token that represents the data being dragged; $W is replaced with
the window pathname for the drag-and-drop source.

The return value of the command is remembered by the drag-and-
drop manager and made available to the appropriate source handler
command through the %v substitution. If no source handler com-
mand is defined, the value is used for the %v substitution for the tar-
get handler.

-rejectbg color (rejectBackground, Background)
Specify the color used to draw the background of the rejection sym-
bol on the token window. This appears whenever communication
fails.

322 Chapter 11— BLT

-rejectfg color (rejectForeground, Foreground)
Specify the color used to draw the foreground of the rejection sym-
bol on the token window.

-rejectstipple pattern (rejectStipple, Stipple)
Specify the stipple pattern used to draw the rejection symbol on the
token window.

-selftarget boolean (selfTarget, SelfTarget)
Whether a widget defined as a drag-and-drop source and target will
be permitted to transmit to itself. The default is false.

-send 1ist (send, Send)
Specify a list of the data types enabled for communication. Only data
types defined with the source window handler operation are
allowed. The order of data types in the list defines their priority for
targets that handle multiple types. The default is all, which enables
all data types in the order they were defined.

-sitecmd command (siteCommand, Command)
Specify a Tcl command used to update the appearance of the token
window while being dragged.

The following substitutions are made in the command string before
it is executed: %s is replaced with 1 if the token window is over a
compatible target, and 0 otherwise; %t is replaced with the window
pathname for the token that represents the data being dragged.

-tokenactivebackground color (tokenActiveBackground,

ActiveBackground)

Specify the color used to draw the background of the token window
when it is active.

-tokenanchor anchor (tokenAnchor, Anchor)
Specify how the token window is positioned relative to the mouse
pointer coordinates passed to the drag&drop drag operation. The
default is center.

-tokenbg color (tokenBackground, Background)
Specify the color used to draw the background of the token win-
dow.

-tokenborderwidth size (tokenBorderWidth, BorderWidth)

Specify the width, in pixels, of the border around the token window.
The default is 3.

-tokencursor cursor (tokenCursor, Cursor)
Specify the cursor used when a token window is active. The default
is center_ptr.

-tokenoutline color (tokenOutline, Outline)
Specify the color for the outline drawn around the token window.

Alphabetical Summary of Commands — drag&drop 323

drag&drop source window handler [dataType [command arg arg..]]
Define dataType as a data type for which window is a drag-and-drop
source. If command is given, it is concatenated with any args and eval-
uated whenever a target requests data of type dataType from the
source window. If only dataType is given, it is defined if necessary and
any command associated with it is returned.

The following substitutions are made in the command string before it is
executed: %1 is replaced with the name of the interpreter for the target
application; %v is replaced with the value returned from the -package-
cmd command, and %w is replaced with the window pathname for the
target window. The return value of the command is made available to the
target handler’'s command through its $v substitution.

drag&drop target
Return a list of pathnames for widgets registered as drag-and-drop tar-
gets.

drag&drop target window handler [dataType command arg..]
Register window as a drag-and-drop target capable of handling source
data of type dataType. Command is concatenated with any args and
evaluated whenever data of type dataType is dropped on the target.

The following substitutions are made in the command string before it is
executed: %v is replaced with the value returned from the source’s han-
dler command (or the source’s -packagecmd command if there is no han-
dler); %W is replaced with the window pathname for the target window.

drag&drop target window handle dataType
Search for data type dataType among the handlers registered for the
target window and invoke the appropriate command. An error is gener-
ated if no handler is found.

drag&drop token window loption value..]]]
With no options, return the pathname of the token window associated
with drag-and-drop source window. The token window is used to repre-
sent data as it is being dragged from the source to a target. When a
source is first established, its token window must be filled with widgets
to display the source data.

If options are specified, they specify configuration options for the token.
Available options are as follows:

-activebackground color (activeBackground,

ActiveBackground)

Specify the color used to draw the background of the token window
when it is active.

-activeborderwidth size (activeBorderWidth,

ActiveBorderWidth)

Specify the width, in pixels, of the border around the token window
when it is active.

324 Chapter 11— BLT

-activerelief relief (activeBackground, ActiveBackground)
3D effect for border of the token window when it is active.

-anchor anchor (anchor, Anchor)
Specify how the token window is positioned relative to the mouse
pointer coordinates passed to the drag&drop drag operation. The
default is center.

-background color (background, Background)
Specify the color used to draw the background of the token win-
dow.

-borderwidth size (borderwidth, BorderWidth)

Specify the width, in pixels, of the border around the token window.
The default is 3.

-CUrSOr cCursor (cursor, Cursor)
Specify the cursor used when a token window is active. The default
is center_ptr.

-outline color (outline, Outline)
Specify the color for the outline drawn around the token window.

-rejectbg color (rejectBackground, Background)
Specify the color used to draw the background of the rejection sym-
bol on the token window. This appears whenever communication
fails.

-rejectfg color (rejectForeground, Foreground)
Specify the color used to draw the foreground of the rejection sym-
bol on the token window.

-rejectstipple pattern (rejectStipple, Stipple)
Specify the stipple pattern used to draw the rejection symbol on the
token window.

-relief relief (relief, Relief)
3D effect for border of the token window.
Example

For a complete example of using this command, see the demo programs
included with the BLT distribution.

graph
graph pathName [option value..]
stripchart pathName [option value..]
barchart pathName [option value..]

BLT supports three types of charts with the graph, stripchart, and barchart
commands. The methods and options for each of these widgets are nearly
identical; therefore, all three are described here with the differences noted as
appropriate.

Alphabetical Summary of Commands — graph 325

The graph command creates a new graph widget named pathName for plot-
ting two-dimensional data (x- and y-coordinates) using symbols and/or con-
necting lines. A graph widget is composed of several components: coordinate
axes, data elements, a legend, a grid, crosshairs, pens, a PostScript generator,
and annotation markers. Methods exist for creating (if necessary) and manipu-
lating each of these components.

The stripchart command creates a new strip chart widget named pathName.
A strip chart widget is almost exactly the same as a graph widget except that
the x-axis typically refers to time points and has better support for maintain-
ing a view of recent data. The primary difference is support for the
-autorange and -shiftby axis options.

The barchart command creates a new bar chart widget named pathName. A
bar chart widget is essentially the same as a graph widget except that vertical
bars are used to represent the data rather than symbols and lines. Therefore
the bar chart has very different element and pen configuration options. It also
supports the additions to the axis configuration used by the strip chart to han-
dle dynamic data.

Any number of independent coordinate axes can be created and used to map
data points. Axes consist of the axis line, title, major and minor ticks, and tick
labels. Only four axes can be displayed at one time. They are drawn along
the four borders of the plotting area. Four axes are automatically created for
each graph. These are named x, x2, y, and y2, which are associated with the
bottom, top, left, and right boundaries, respectively. Only x and y are shown
by default.

Grid lines can be drawn to extend the major and minor ticks from axes.
Crosshairs can be displayed to track the position of the mouse on the plotting
area.

A set of data values plotted on the chart is called an element. Each element
can be drawn with connecting lines, symbols, or both. Pens can be defined
for controlling the display attributes of both lines and symbols. Each element
may use multiple pens. A legend can be displayed anywhere on the chart to
identify the plotted elements.

Six types of annotations, called markers, are supported: text, line, image,
bitmap, polygon, and window. A marker is created and manipulated with
the marker methods and can be placed at an arbitrary position on the chart.
Markers are similar in operation to canvas items.

Standard Options

-background -borderwidth -cursor

-font -foreground -relief

-takefocus

Widget-Specific Options

-aspect ratio (aspect, Aspect)

The height or width of the plotting area will be shrunk to maintain a ratio
of width to height of ratio.

326 Chapter 11— BLT

-barmode mode (barMode, BarMode)
[bar chart only] How bars with the same x-coordinate should be dis-
played. Valid values for mode are as follows:

normal
No effort is made to keep bars from obscuring each other.

aligned
Bars are reduced in width and drawn side by side in display order
so they do not overlap.

overlap
Bars are slightly offset and reduced in width so all bars are visible
but overlap each other in display order.

stacked
Bars are stacked on top of each other in display order.

-barwidth amount (barWidth, BarWidth)
[bar chart only] Width of bars in chart x-coordinates. The default is 1.0.

-baseline y (baseline, Baseline)
[bar chart only] Baseline along y-axis for bars. Bars for values greater
than y are drawn upward, and bars for values less than y are drawn
downward. The default is 0.0. For a log scale y-axis, the baseline is
always 1.0.

-bottommargin amount (bottomMargin, Margin)
Size, in screen units, of the margin from x-coordinate axis to the bottom
of the window. If amount is 0, the margin is autosized.

-bottomvariable varName (bottomvariable, BottomVariable)
Variable that will be automatically updated with the current size of the
bottom margin.

-bufferelements boolean (bufferElements, BufferElements)
Whether to use a pixmap to cache the display elements. Useful if data
points are frequently redrawn. The default is true.

-halo amount (halo, Halo)
Threshold distance when searching for the closest data point.

-height amount (height, Height)
Desired height, in screen units, for the window.

-inverixy boolean (invertXY, InvertXY)
Whether placement of the x- and y-axis should be inverted.

-justify justify (justify, Justify)
How the title should be aligned on the chart. Parameter justify may
be left, right, or center (the default).

-leftmargin amount (leftMargin, Margin)
Size, in screen units, of the margin from the left edge of the window to
the y-coordinate axis. If amount is 0, the margin is autosized.

Alphabetical Summary of Commands — graph 327

-leftvariable varName (leftvariable, LeftVariable)
Variable that will be automatically updated with the current size of the
left margin.

-plotbackground color (plotBackground, Background)
Background color for the plotting area.

-plotborderwidth amount (plotBorderWidth, BorderWidth)
Window of 3D border drawn around the plotting area.

-plotpadx amount (plotPadX, PlotPad)
Amount of padding, in screen units, to add to the left and right sides of
the plotting area. Parameter amount may be a list of two screen dis-
tances to set the left and right padding separately.

-plotpady amount (plotPady, PlotPad)
Amount of padding, in screen units, to add to the top and bottom sides
of the plotting area. Parameter amount may be a list of two screen dis-
tances to set the top and bottom padding separately.

-plotrelief relief (plotRelief, Relief)
3D relief for border drawn around the plotting area.

-rightmargin amount (rightMargin, Margin)
Size, in screen units, of the margin from the plotting area to the right
edge of the window.

-rightvariable varName (rightVariable, RightVariable)
Variable that will be automatically updated with the current size of the
right margin.

-shadow color (shadow, Shadow)
Color for the shadow drawn beneath the title text. The default is the
empty string (i.e., transparent).

-tile image (tile, Tile)
Image to use for a tiled background for the chart. If image is the empty
string (the default), no tiling is done.

-title string (title, Title)
Title for the chart. If string is the empty string (the default), no title is
displayed.

-topmargin amount (topMargin, Margin)

Size, in screen units, of the margin from the top edge of the window to
the plotting area.

-topvariable varName (topVariable, TopVariable)
Variable that will be automatically updated with the current size of the
top margin.

-width amount (width, width)

Desired width, in screen units, for the window.

328 Chapter 11— BLT

Methods

pathName axis cget axisName option
Return the current value of the option option for the axis axisName in
the same manner as the general widget cget method. Supported options
are those available to the axis create method used to create the axis.

pathName axis configure axisName |axisName..| [option value..]
Query or modify the configuration options for the axes axisNames in
the same manner as the general widget configure method. Supported
options are those available for the axis create method.

pathName axis create axisName [option value..]
Create a new axis in the chart named axisName configured with the
given options. Supported options are as follows:

-autorange range (autoRange, AutoRange)
[bar chart and strip chart only] Set the allowed range (difference
between the maximum and minimum limit values) for the axis to
range. If range is 0.0 (the default), the range is determined from
the limits of the data. The option is overridden by the -min and
-max options.

-color color (color, Color)
Foreground color for the axis and its labels.

-command tclCommand (command, Command)
Command to call when formatting the axis labels. The pathname of
the chart and the numeric value of the axis label are appended as
arguments. The return value of the command is used as the final
label.

-descending boolean (descending, Descending)
Whether coordinate values should decrease along the axis. The
default is false.

-hide boolean (hide, Hide)
Whether axis should be hidden (not drawn).

-justify justify (Justify, Justify)
How multiple lines in the axis title should be aligned. justify must be
left, right, or center (the default).

-limitcolor color (1imitColor, Color)
Color used to draw axis limits.

-limitfont font (limitFont, Font)
Font used to draw axis limits.

-limits formatStr (limits, Limits)
A printf-like format string to format the minimum and maximum
limits. If formatStr is a list with two elements, the two elements
are the format strings for the minimum and maximum limits. If
formatStr is the empty string (the default), the limits are not dis-
played.

Alphabetical Summary of Commands — graph 329

-limitshadow color (1imitShadow, Shadow)
Color to use to draw the shadow for axis limits.

-linewidth amount (linewWidth, LineWidth)
Line width for the axis and its ticks. The default is 1.

-logscale boolean (logScale, LogScale)
Whether the scale of the axis should be logarithmic. The default is
false.

-loose boolean (loose, Loose)

Whether the axis range, when autoscaling, should fit loosely around
the data points at the outer tick intervals. The default is false.

-mayjorticks majorList (majorTicks, MajorTicks)
Where to display major axis ticks. Parameter majorList is a list of
axis coordinates designating the location of major ticks. No minor
ticks are drawn. If the list is empty, major ticks are automatically
computed.

-max value (max, Max)
The maximum limit of the axis. Data points above this limit are
clipped. If value is the empty string, the maximum value of the
axis is autoscaled.

-min value (min, Min)
The minimum limit of the axis. Data points below this limit are
clipped. If value is the empty string, the minimum value of the
axis is autoscaled.

-minorticks minorList (minorTicks, MinorTicks)
Where to display minor axis ticks. Parameter minorList is a list of
real values between 0.0 and 1.0 designating the location of minor
ticks between each pair of major ticks. If the list is empty, minor
ticks are automatically computed.

-rotate theta (rotate, Rotate)
Angle, in degrees, to rotate the axis labels. The default is 0.0.

-shifthy value (shiftBy, ShiftBy)
[bar chart and strip chart only] How much to automatically shift the
range of the axis when new data exceeds the current axis maximum
limit. The limit is increased in increments of value. If value is 0.0
(the default), no automatic shifting is done.

-showticks boolean (showTicks, ShowTicks)
Whether axis ticks should be drawn. The default is true.

-stepsize value (stepSize, StepSize)
The step size between major axis ticks. If the value is not greater
than zero or is greater than the full range of the axis, the step size is
automatically calculated.

330

Chapter 11— BLT

-subdivisions number (subdivisions, Subdivisions)
Number of minor axis tick intervals between major ticks. The default
is 2, corresponding to one minor tick being drawn.

-tickfont fontName (tickFont, Font)
Font to use for drawing the axis tick labels.

-ticklength amount (tickLength, TickLength)
Length of the major ticks. Minor ticks are set to half this length. If
amount is negative, tick will point away from the plotting area.

-tickshadow color (tickShadow, Shadow)
Color to use for drawing the shadow for the axis tick labels.

-title string (title, Title)
Title for the axis.

-titlecolor color (titleColor, Color)
Foreground color to use for drawing the axis title.

-titlefont fontName (titleFont, Font)
Font to use for drawing the axis title.

-titleshadow color (titleShadow, Shadow)
Foreground color to use for drawing the axis title.

pathName axis delete axisName...
Delete the given axes. An axis is not really deleted until all elements and
markers mapped to it are deleted.

pathName axis invtransform axisName coord
Perform an inverse coordinate transformation, mapping the screen coor-
dinate coord to its corresponding chart coordinate on the axis axis-
Name. The calculated chart coordinate is returned.

pathName axis limits axisName
Return a list of two coordinates representing the minimum and maximum
limits of the axis.

pathName axis names [pattern..]
Return a list of axes with names that match any of the given patterns. If
no pattern is specified, the names of all axes are returned.

pathName axis transform axisName coord
Transform the chart coordinate coord on the axis axisName to its cor-
responding screen coordinate. The calculated screen coordinate is
returned.

pathName bar operation arg...
The bar method is identical to the element method in bar chart widgets.
In a future version of BLT, the bar method will be supported by graph
widgets in order to mix line- and bar-type elements.

Alphabetical Summary of Commands — graph 331

pathName crosshairs cget option
Return the current value of the option option for the crosshairs in the
same manner as the general widget cget method. Supported options are
those available to the crosshairs configure method.

pathName crosshairs configure [option value..]
Query or modify the configuration options for the chart’s crosshairs in the
same manner as the general widget configure method. Supported options
are as follows:

-color color (color, Color)
Color for the crosshair lines.

-dashes dashStyle (dashes, Dashes)
Dash style for the crosshair lines. Parameter dashStyle is a list of
up to 11 numbers that alternately represent the lengths of the dashes
and gaps. Each number must be between 1 and 255, inclusive. If
dashStyle is the empty string (the default), a solid line is drawn.

-hide boolean (hide, Hide)
Whether crosshairs should be hidden (not drawn). The default is
true.

-linewidth amount (linewWidth, LinewWidth)

Line width for the crosshairs.

-position @x, y (position, Position)
The chart x- and y- coordinates of the crosshairs.

pathName crosshairs off
Turn off the drawing of the crosshairs.

pathName crosshairs on
Turn on the drawing of the crosshairs.

pathName crosshairs toggle
Toggle drawing of the crosshairs.

pathName element activate elemName [index...]
Make the data points in element elemName at the given indices active. If
no indices are specified, all data points in the element are made active.

pathName element bind tagName [sequence [command]]
Bind command to all elements with tag tagName so it is invoked when
the given event sequence occurs for the element. The syntax for this
method is the same as for the standard Tk bind command except that it
operates on graph elements. TagName may be the name of a single ele-
ment, the special tag all (bind to all elements), or an arbitrary string.
Only keyboard and mouse events can be bound.

pathName element cget elemName option
Return the current value of the option option for the element elem-
Name in the same manner as the general widget cget method. Supported
options are those available to the element create method used to create
the axis.

332 Chapter 11— BLT

pathName element closest winX winY varName |option value..]
[elemName..]
Find the data point closest to window coordinates winX and winY. If
found, a 1 is returned and the variable varName is set equal to a list
containing the name of the closest element, the index of the closest
point, and the chart xy-coordinates of the point. If no data point is
found within the threshold distance given by the -halo option, a 0 is
returned. The optional elemName arguments restrict the search to the
given elements. The following options can be specified to further modify
the search:

-balo amount
Threshold distance outside of which points are ignored in search.
Overrides the chart -halo option.

-interpolate boolean
Whether interpolated points should also be considered in the search.
Useful for graph widgets only.

pathName element configure elemName [elemName...] [option value..]
Query or modify the configuration options for the elements elemNames
in the same manner as the general widget configure method. Supported
options are those available for the element create method.

pathName element create elemName [option value..]
Create a new element in the chart named elemName configured with the
given options. Options supported by all three chart widgets are:

-activepen penName (activePen, ActivePen)
Name of pen to use to draw element when it is active.

-bindtags tagList (bindTags, BindTags)
The binding tag list for the element, which determines the order of
evaluation of the commands for matching event bindings. Implicitly,
the name of the element itself is always the first tag in the list. The
default value is all.

-data coordList (data, Data)
Chart coordinates for the data points to be plotted. Parameter
coordList is a list of real numbers representing x- and y-coordi-
nate pairs.

-hide boolean (hide, Hide)
Whether element is hidden (not drawn).

-label string (label, Label)
Label for the element in the legend.

-labelrelief relief (labelRelief, LabelRelief)
3D effect of border around label for the element in the legend.

-mapx xaxis (mapX, MapX)
Name of x-axis onto which to map element’s data. The default is x.

Alphabetical Summary of Commands — graph 333

-mapy yaxis (mapY, MapY)
Name of y-axis onto which to map element’s data. The default is y.

-pen penName (pen, Pen)
Name of pen to use to draw element when it is not active. The pen’s
options override those explicitly set with element configure.

-styles styleList (styles, Styles)
Styles used to draw the data point symbols or bars. Each element of
styleList is a list consisting of a pen name and, optionally, two
numbers defining a minimum and maximum range. Data points
whose weights fall inside this range are drawn with this pen. If no
range is specified, the default range is a single value equal to the
index of the pen in the list.

-weights wVec (weights, Weights)
Weights of the individual data points. Parameter wVec is a BLT vec-
tor or list.

-xdata xvec (xData, XData)

The x-coordinates of the data points for the element. Overrides -data
option. Parameter xvec is a BLT vector or list.

-ydata yvec (yData, YData)
The y-coordinates of the data points for the element. Overrides -data
option. Parameter yvec is a BLT vector or list.

Options supported by only the graph and strip chart widgets are as fol-
lows:

-color color (color, Color)
Color for traces connecting the data points.

-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 num-
bers that alternately represent the lengths of the dashes and gaps.
Each number must be between 1 and 255, inclusive. If dashStyle
is the empty string (the default), a solid line is drawn.

-fill color (£111, Fill)
Interior color for the data point symbols. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-linewidth amount (1ineWidth, LineWidth)
Width of connecting lines between data points.

-offdash color (offDash, OffDash)
Color for stripes when traces are dashed. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

334 Chapter 11— BLT

-outline color (outline, Outline)
Color for outline drawn around each symbol. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-outlinewidth amount (outlinewWidth, OutlinewWidth)
Width of the outline drawn around each symbol. The default is 1.0.

-pixels amount (pixels, Pixels)
Size of the symbols. If amount is zero, no symbol is drawn. The
default is 0.1251.

-scalesymbols boolean (scaleSymbols, ScaleSymbols)
Whether the size of the symbols should change to scale with future
changes to the scale of the axes.

-smooth type (smooth, Smooth)
How connecting lines are drawn between the data points. If type is
linear, a single line segment is drawn. If type is step, first a
horizontal line is drawn to the next x-coordinate and then a vertical
line to the next y-coordinate. If type is natural or quadratic,
multiple segments are drawn between the data points using a cubic
or quadratic spline, respectively. The default is 1inear.

-symbol symbol (symbol, Symbol)
Type of symbol to use for data points. Parameter symbol may be
square, circle, diamond, plus, cross, splus, scross, tri-
angle, or a bitmap. Bitmaps are represented as a list specifying the
bitmap and an optional mask. If symbol is the empty string, no
symbol is drawn. The default is circle.

-trace type (trace, Trace)
[graph only] How to draw lines between data. If type is increas-
ing, lines are drawn only between monotonically increasing points.
If type is decreasing, lines are drawn only between monotoni-
cally decreasing points. If type is both, lines between points are
always drawn. The default is both.

Options supported by only the bar chart widget are as follows:

-background color (background, Background)
Color of border around each bar.

-barwidth amount (barwidth, BarWidth)
Width of the bar in x-coordinate values. Overrides the widget's
-barwidth option.

-borderwidth amount (borderwWidth, BorderWidth)
Width of 3D border drawn around each bar.

-foreground color (foreground, Foreground)
Color of the interior of each bar.

Alphabetical Summary of Commands — graph 335

-relief relief (relief, Relief)
3D relief for border drawn around each bar.

-stipple bitmap (stipple, Stipple)
Stipple pattern used to draw each bar. If bitmap is the empty string
(the default), the bar is drawn in solid color.

pathName element deactivate pattern...
Deactivate all elements whose names match any of the given patterns.

pathName element delete elemName...
Delete all the given elements from the chart.

pathName element exists elemName
Return 1 if an element named elemName exists, 0 otherwise.

pathName element names | pattern...]
Return a list of the names of all the elements that match the given pat-
terns. If no patterns are specified, the names of all elements in the chart
are returned.

pathName element show [nameList]
If nameList is specified, it is a list of elements that should be displayed
on the chart and in what order. Otherwise, the current display list is
returned. Elements not in the list are not drawn.

pathName element type elemName
Return the type of element elemName, either bar for bar charts or 1ine
for graphs and strip charts.

pathName extents Item
Return the size of an item in the chart. Item must be leftmargin,
rightmargin, topmargin, bottommargin, plotwidth, or
plotheight.

pathName grid cget option
Return the current value of the option option for the grid in the same
manner as the general widget cget method. Supported options are those
available to the grid configure method.

pathName grid configure [option value..]
Query or modify the configuration options for the chart’s grid in the same
manner as the general widget configure method. By default, the grid is
hidden for the graph and strip chart widgets, and only horizontal grid
lines are shown for the bar chart widget. Supported options are as fol-
lows:

-color color (color, Color)
Color for the grid lines.

-dashes dashStyle (dashes, Dashes)
Dash style for grid lines. Parameter dashStyle is a list of up to 11
numbers that alternately represent the lengths of the dashes and
gaps. Each number must be between 1 and 255, inclusive. If dash-
Style is the empty string (the default), a solid line is drawn.

336 Chapter 11— BLT

-hide boolean (hide, Hide)
Whether the grid lines should be hidden (not drawn). The default is
true.

-linewidth amount (lineWidth, LineWidth)
Line width for the grid lines.

-mapx xaxis (mapX, MapX)
Name of x-axis onto which to map vertical grid lines. If xaxis is
the empty string, no vertical grid lines are drawn. The default is the
empty string for bar charts and x for graphs and strip charts.

-mapy yaxis (mapY, MapY)
Name of y-axis onto which to map horizontal grid lines. If yaxis is
the empty string, no horizontal grid lines are drawn. The default is y.

-minor boolean (minor, Minor)
Whether grid lines should be drawn for minor ticks. The default is
true.

pathName grid off

Turn off the drawing of the grid lines.

pathName grid on
Turn on the drawing of the grid lines.

pathName grid toggle
Toggle drawing of the grid lines.

pathName invtransform winX winY
Perform an inverse coordinate transformation, mapping the given win-
dow coordinates to chart coordinates. The calculated x- and y- chart
coordinates are returned.

pathName inside x y
Return 1 if the given screen coordinates x y are inside the plotting area,
0 otherwise.

pathName legend activate pattern...
Activate all legend entries whose names match the given patterns.

pathName legend bind elemName [sequence [command]]
Bind command to the legend entry associated with element elemName
so it is invoked when the given event sequence occurs for the entry.
The syntax for this method is the same as for the standard Tk bind com-
mand except that it operates on legend entries. If elemName is all, the
binding applies to all entries. Only keyboard and mouse events can be
bound.

pathName legend cget option
Return the current value of the option option for the legend in the
same manner as the general widget cget method. Supported options are
those available to the legend configure method.

Alphabetical Summary of Commands — graph 337

pathName legend configure l[option value..]
Query or modify the configuration options for the chart’s legend in the
same manner as the general widget configure method. Supported options
are as follows:

-activebackground color (activeBackground,
ActiveBackground)
Background color for active legend entries.

-activeborderwidth amount (activeBorderWidth,
ActiveBorderWidth)
Width of 3D border around active legend entries.

-activeforeground color (activeForeground,
ActiveForeground)
Foreground color for active legend entries.

-activerelief relief (activeRelief, ActiveRelief)
Relief of border around active legend entries.

-anchor anchorPos (anchor, Anchor)
How legend should be positioned relative to its positioning point.
The default is center. How anchorPos is interpreted depends on
the value of the positioning point (see the -position option).

-background color (background, Background)
Background color for the legend. The default is an empty string
(transparent).

-borderwidth amount (borderWidth, BorderWidth)

Width of the 3D border around the legend.

-font fontName (font, Font)
Font to use for the labels of legend entries.

-foreground color (foreground, Foreground)
Foreground color for the legend.

-hide boolean (hide, Hide)
Whether the legend should be hidden (not drawn).

-ipadx amount (iPadx, Pad)
Internal horizontal padding between the legend border and entries.
If amount has two elements, it specifies the padding for the left and
right sides, in that order.

-ipady amount (iPadyY, Pad)
Internal vertical padding between the legend border and entries. If
amount has two elements, it specifies the padding for the top and
bottom, in that order.

-padx amount (padx, Pad)
Extra padding on the left and right side of the legend. If amount
has two elements, it specifies the padding for the left and right sides,
in that order.

338 Chapter 11— BLT

-pady amount (pady, Pad)
Extra padding on the top and bottom side of the legend. If amount
has two elements, it specifies the padding for the top and bottom, in
that order.

-position position (position, Position)
Positioning point for the legend in window coordinates. Valid values
for position (the default is right) are as follows:

ex,y
Legend is placed so its anchor point is at the given window
coordinates.

left or right

Legend is drawn in left or right margin. The anchor point affects
only the vertical position.

top or bottom
Legend is drawn in the top or bottom margin. The anchor point
affects only the horizontal position.

plotarea
Legend is placed inside the plotting area. The anchor point of
the legend is placed at the same cardinal point of the plotting
area. For example, if the anchor is ne, the legend will occupy
the upper-right corner of the plotting area.

-raised boolean (raised, Raised)
Whether legend should be drawn above data elements when in the
plotting area. The default is false.

-relief relief (relief, Relief)
Relief of the border around the legend.

-shadow color (shadow, Shadow)
Color for the shadow drawn beneath the entry labels. The default is
the empty string (i.e., transparent).

pathName legend deactivate pattern...
Deactivate the legend entries whose names match the given patterns.

pathName legend get @x,y
Return the name of the element with a legend entry at window coordi-
nates x,y in the legend.

pathName line operation arg...
The line method is identical to the element method in graph and strip
chart widgets. In a future version of BLT, the /ine method will be sup-
ported by bar chart widgets in order to mix line- and bar-type elements.

pathName marker after markerId [markerId]
Reorder the marker display list, placing the first specified marker after the
second. If the second markerId is omitted, the marker is placed at the
end of the list. Markers are drawn in order from this list.

Alphabetical Summary of Commands — graph 339

pathName marker before markerId [markerId]
Reorder the marker display list, placing the first specified marker before
the second. If the second markerId is omitted, the marker is placed at
the beginning of the list. Markers are drawn in order from this list.

pathName marker bind tagName [sequence [command]]

Bind command to all markers with tag tagName so it is invoked when
the given event sequence occurs for the marker. The syntax for this
method is the same as for the standard Tk bind command except that it
operates on graph markers. TagName may be the name of a single
marker, a capitalized marker type (e.g., Line, for all line markers), the
special tag all (bind to all markers), or an arbitrary string. Only key-
board and mouse events can be bound.

pathName marker cget markerId option
Return the current value of the option option for the marker markerIid
in the same manner as the general widget cget method. Supported
options are those available to the marker create method used to create
the marker.

pathName marker configure markerId|[option value..]
Query or modify the configuration options for the marker markerId in
the same manner as the general widget configure method. Supported
options are those available to the marker create method used to create
the marker.

pathName marker create type l[option value..]
Create a new marker in the chart of the selected type configured with the
given options. Type may be text, bitmap, image, line, polygon,
or window. A unique marker identifier for the newly created marker is
returned (see the -name option). Options that are specific to each marker
type are described in the following sections. Options that are supported
by all marker types are as follows:

-bindtags tagList (bindtags, bindTags)
The binding tag list for the marker, which determines the order of
evaluation of the commands for matching event bindings. Implicitly,
the name of the marker itself is always the the first tag in the list.
The default value is all.

-coords coordList (coords, Coords)
A list of real numbers that represent the appropriate x- and y-coordi-
nate pairs for the marker. For text and window markers, only two
coordinates are needed, which give the position point of the marker.
Bitmap and image markers can take two or four coordinates. Line
markers require at least four coordinates (two pairs), and polygon
markers require at least six (three pairs).

-element el emName (element, Element)
Indicates that the marker should be drawn only if element
elemName is currently displayed.

340 Chapter 11— BLT

-hide boolean (hide, Hide)
Whether markers should be hidden (not drawn).

-mapx xaxis (mapX, MapX)
The x-axis onto which to map the marker’s x-coordinates. Parameter
xaxis must be the name of an axis. The default is x.

-mapy xaxis (mapY, MapY)
The y-axis onto which to map the marker’s y-coordinates. Parameter
xaxis must be the name of an axis. The default is y.

-name markerId
ID to use to identify the marker. Parameter markerId must not be
used by another marker. If this option is not specified at creation, a
unique ID is generated.

-under boolean (under, Under)
Whether marker is drawn below the data elements so as not to
obscure them.

-xoffset amount (xOffset, XOffset)
Screen distance by which to offset the marker horizontally.

-yoffset amount (yOffset, YOffset)
Screen distance by which to offset the marker vertically.

pathName marker delete markerId...
Delete all markers from the chart with the given IDs.

pathName marker exists markerId
Return 1 if a marker with ID markerId exists, 0 otherwise.

pathName marker names | pattern]
Return a list of marker IDs defined in the chart. If pattern is given,
only those IDs that match it are returned.

pathName marker type markerId
Return the type of the marker markerId.

pathName pen cget penName option
Return the current value of the option option for the pen penName in
the same manner as the general widget cget method. Supported options
are those available to the pen create method used to create the axis.

pathName pen configure penName [penName...] [option value..]
Query or modify the configuration options for the pens penNames in the
same manner as the general widget configure method. Supported options
are those available for the pen create method.

pathName pen create penName [-type typel [option value..]
Create a new pen of the specified type in the chart named penName
configured with the given options. Type may be line or bar. If type
is not given, it defaults to 1ine for graph and strip chart widgets and to
bar for bar chart widgets.

Alphabetical Summary of Commands — graph 341

Supported options for pens of type 1ine are as follows:

-color color (color, Color)
Color of the traces connecting the data points.

-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 num-
bers that alternately represent the lengths of the dashes and gaps.
Each number must be between 1 and 255, inclusive. If dashStyle
is the empty string (the default), a solid line is drawn.

-fill color (£1i11, Fill)
Interior color for the data point symbols. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-linewidth amount (1ineWidth, LineWidth)
Width of connecting lines between data points. The default is 0.

-offdash color (offDash, OffDash)
Color for stripes when traces are dashed. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-outline color (outline, Outline)
Color for outline drawn around each symbol. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-outlinewidth amount (outlineWidth, OutlineWidth)
Width of the outline drawn around each symbol. The default is 1.0.

-pixels amount (pixels, Pixels)
Size of the symbols. If amount is 0, no symbol is drawn. The default
is 0.125i.

-symbol symbol (symbol, Symbol)

Type of symbol to use for data points. Parameter symbol may be
square, circle, diamond, plus, cross, splus, scross, tri-
angle, or a bitmap. Bitmaps are represented as a list specifying the
bitmap and an optional mask. If symbol is the empty string, no
symbol is drawn. The default is circle.

Supported options for pens of type bar are as follows:

-background color (background, Background)
Color of border around each bar.

-borderwidth amount (borderwidth, BorderWidth)
Width of 3D border drawn around each bar.

-foreground color (foreground, Foreground)
Color of the interior of each bar.

342 Chapter 11— BLT

-relief relief (relief, Relief)
3D relief for border drawn around each bar.

-stipple bitmap (stipple, Stipple)
Stipple pattern used to draw each bar. If bitmap is the empty string
(the default), the bar is drawn in solid color.

pathName pen delete penName...
Delete the given pens. A pen is not really deleted until all elements using
it are deleted.

pathName pen names [pattern...]
Return a list of the names of all pens that match the given patterns. If no
patterns are specified, the names of all pens in the chart are returned.

pathName postscript cget option
Return the current value of the PostScript option option in the same
manner as the general widget cget method. Supported options are those
available to the postscript configure method used to create the axis.

pathName postscript configure [option value..]
Query or modify the configuration options for PostScript generation in
the same manner as the general widget configure method. Supported
options are as follows:

-center boolean (psCenter, PsCenter)
Whether plot should be centered on the PostScript page. The default
is true.

-colormap varName (psColorMap, PsColorMap)

A global array variable that specifies the color mapping from the X
color to PostScript code to set that color. If no element of the array is
found for a color, default code is generated using RGB intensities.

-colormode mode (psColorMode, PsColorMode)
How to output color information. Parameter mode may be color,
gray, or mono. The default is color.

-decorations boolean (psDecorations, PsDecorations)
Whether PostScript commands generate color backgrounds and 3D
borders in the output. The default is true.

-fontmap varName (psFontMap, PsFontMap)
A global array variable that specifies the font mapping from X font
name to a two-element list specifying a PostScript font and point
size. If no mapping exits, BLT makes a best guess for Adobe X fonts
and uses Helvetica Bold for others.

-height amount (psHeight, PsHeight)
Height of the plot. If amount is 0, then the height is the same as the
widget height.

Alphabetical Summary of Commands — graph 343

-landscape boolean (psLandscape, PsLandscape)
Whether the printed area is to be rotated 90 degrees.

-maxpect boolean (psMaxpect, PsMaxpect)
Scale the plot so it fills the PostScript page. The aspect ratio is
retained. The default is false.

-padx amount (psPadX, PsPadX)
Padding on the left and right page borders. If amount has two ele-
ments, it specifies the padding for the left and right sides, in that
order. The default is 1i.

-pady amount (psPady, PsPady)
Padding on the top and bottom page borders. If amount has two
elements, it specifies the padding for the top and bottom, in that
order. The default is 1i.

-paperbeight amount (psPaperHeight, PsPaperHeight)
Set the height of the PostScript page. The default is 11.0i.

-paperwidth amount (psPaperWidth, PsPaperWidth)
Set the width of the PostScript page. The default is 8.5i.

-preview boolean (psPreview, PsPreview)
Whether an EPSI thumbnail preview image should be inserted into
the generated PostScript.

-width amount (psWidth, PsWidth)
Width of the plot. If amount is 0, the the width is the same as the
widget width.

pathName postscript output [filename] [option value..]
Output the chart as encapsulated PostScript. The output is written to the
file filename, if specified. Otherwise, the output is returned as the
method’s results.

pathName print
Prompt for a printer and print the image to the printer selected. This is
supported on Windows only.”

pathName snap photoName
Take a snapshot of the chart and store it in the contents of Tk photo
image photoName (which must already exist).

pathName transform x y
Transform the chart coordinates x and y into window coordinates. The x
and y window coordinates are returned. Results for chart coordinates out-
side the axes’ region are not guaranteed to be accurate.

pathName xaxis cget option
Same as the axis cget method for whichever axis is used along the bot-
tom boundary.

* The format of this command may change for the final Version 2.4 to require a specific printer ID.

344 Chapter 11— BLT

pathName xaxis configure [option value..]
Same as the axis configure method for whichever axis is used along the
bottom boundary.

pathName xaxis invtransform coord
Same as the axis invtransform method for whichever axis is used along
the bottom boundary.

pathName xaxis limits
Same as the axis limits method for whichever axis is used along the bot-
tom boundary.

pathName xaxis transform coord
Same as the axis transform method for whichever axis is used along the
bottom boundary.

pathName xaxis use laxisName]
Designate that axis axisName is to be used as the bottom boundary
axis. Parameter axisName cannot be already in use at another location.
If axisName is omitted, the name of the axis currently used for the bot-
tom axis is returned.

pathName x2axis cget option
Same as the axis cget method for whichever axis is used along the top
boundary.

pathName x2axis configure [option value..]
Same as the axis configure method for whichever axis is used along the
top boundary.

pathName x2axis invtransform coord
Same as the axis invtransform method for whichever axis is used along
the top boundary.

pathName x2axis limits
Same as the axis limits method for whichever axis is used along the top
boundary.

pathName x2axis transform coord
Same as the axis transform method for whichever axis is used along the
top boundary.

pathName x2axis use [axisName)]
Designate that axis axisName is to be used as the top boundary axis.
Parameter axisName cannot be already in use at another location. If
axisName is omitted, the name of the axis currently used for the top
axis is returned.

pathName yaxis cget option
Same as the axis cget method for whichever axis is used along the left
boundary.

Alphabetical Summary of Commands — graph 345

pathName yaxis configure [option value..]
Same as the axis configure method for whichever axis is used along the
left boundary.

pathName yaxis invtransform coord
Same as the axis invtransform method for whichever axis is used along
the left boundary.

pathName yaxis limits
Same as the axis limits method for whichever axis is used along the left
boundary.

pathName yaxis transform coord
Same as the axis transform method for whichever axis is used along the
left boundary.

pathName yaxis use [axisName]
Designate that axis axisName is to be used as the left boundary axis.
Parameter axisName cannot be already in use at another location. If
axisName is omitted, the name of the axis currently used for the left
axis is returned.

pathName y2axis cget option
Same as the axis cget method for whichever axis is used along the right
boundary.

pathName y2axis configure [option value..]
Same as the axis configure method for whichever axis is used along the
right boundary.

pathName y2axis invtransform coord
Same as the axis invtransform method for whichever axis is used along
the right boundary.

pathName y2axis limits
Same as the awxis limits method for whichever axis is used along the right
boundary.

pathName yZ2axis transform coord
Same as the axis transform method for whichever axis is used along the
right boundary.

pathName y2axis use [axisNamel
Designate that axis axisName is to be used as the right boundary axis.
Parameter axisName cannot be already in use at another location. If
axisName is omitted, the name of the axis currently used for the right
axis is returned.

Bitmap Markers

A bitmap marker displays a bitmap image. If two coordinates are specified for
the -coords option, they specify the position of the top-left corner of the
bitmap and the bitmap retains its normal width and height. If four coordinates
are specified, the last pair of coordinates represents the bottom-right corner

346 Chapter 11— BLT

for the bitmap. The bitmap will be stretched or reduced as necessary to fit
into the bounding rectangle. Options specific to bitmap markers are:

-anchor anchorPos (anchor, Anchor)
How to position the bitmap relative to the position point for the bitmap.
The default is center.

-background color (background, Background)
Same as the -fill option.

-bitmap bitmap (bitmap, Bitmap)
The bitmap to display.

-fill color (£il11, Fill)
Background color for the bitmap. The default is the empty string (i.e.,
transparent).

-foreground color (foreground, Foreground)

Same as the -outline option.

-outline color (outline, Outline)
Foreground color for the bitmap. The default is black.

-rotate theta (rotate, Rotate)
Angle in degrees to rotate the bitmap.

Image Markers

An image marker displays a Tk named image. Options specific to image mark-
ers are as follows:

-anchor anchorPos (anchor, Anchor)
How to position the image relative to the position point for the image.
The default is center.

-image imageName (image, Image)
Name of the Tk image to display.

Line Markers

A line marker displays one or more connected line segments on the chart.
Options specific to line markers are as follows:

-cap style (cap, Cap)
How caps are drawn at endpoints of lines. Style may be butt (the
default), projecting, or round.

-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 numbers
that alternately represent the lengths of the dashes and gaps. Each num-
ber must be between 1 and 255, inclusive. If dashStyle is the empty
string (the default), a solid line is drawn.

Alphabetical Summary of Commands — graph 347

-fill color (£il11, Fill)
Background color for the line when dashed or stippled. The default is the
empty string (i.e., transparent).

-join style (join, Join)
How line joints are drawn. Style may be bevel, miter (the default),
or round.

-linewidth amount (linewidth, Linewidth)

Width of the line. The default is 0.

-outline color (outline, Outline)
Foreground color for the line. The default is black.

-stipple bitmap (stipple, Stipple)
Stipple pattern used to draw the line.

-xor boolean (xor, Xor)
Whether outline and fill color should be determined from a logical XOR
of the colors on the plot underneath the marker. Overrides the -fill and
-outline options.

Polygon Markers

A polygon marker displays a closed region of two or more connected line
segments on the chart. Options specific to polygon markers are as follows:

-cap style (cap, Cap)
How caps are drawn at endpoints of lines. Style may be butt (the
default), projecting, or round.

-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 numbers
that alternately represent the lengths of the dashes and gaps. Each num-
ber must be between 1 and 255, inclusive. If dashStyle is the empty
string (the default), a solid line is drawn.

-fill color (£i11, Fill)
Fill color for the polygon. If color is the empty string, the interior of the
polygon is transparent.

-join style (join, Join)
How line joints are drawn. Style may be bevel, miter (the default),
or round.

-linewidth amount (lineWidth, LineWidth)

Width of the outline. The default is 0.

-outline color (outline, Outline)
Color for the outline of the polygon.

-stipple bitmap (stipple, Stipple)
Bitmap to use as a stipple pattern for drawing the fill color.

348 Chapter 11— BLT

-xor boolean (xor, Xor)
Whether outline and fill color should be determined from a logical XOR
of the colors on the plot underneath the marker. Overrides the -fill and
-outline options.

Text Markers

A text marker displays a string of characters at an arbitrary position inside the
chart. Embedded newlines cause line breaks. Options specific to text markers
are as follows:

-anchor anchorPos (anchor, Anchor)
How to position the text relative to the position point for the marker.
The default is center.

-background color (background, Background)
Same as the -fill option.

-fill color (£il11, Fill)
Background color for the text. The default is the empty string (i.e., trans-
parent).

-font font (font, Font)

Font to use for the text.

-foreground color (foreground, Foreground)
Same as the -outline option.

-justify justify (justify, Justify)
How multiple lines of text should be justified. Parameter justify may
be left, right, or center (the default).

-outline color (outline, Outline)
Foreground color for the text. The default is black.

-padx amount (padX, PadXx)
Amount of padding to add to the left and right sides of the text. Parame-
ter amount may be a list of two screen distances to set the left and right
padding separately.

-pady amount (pady, Pady)
Amount of padding to add to the top and bottom sides of the text.
Parameter amount may be a list of two screen distances to set the top
and bottom padding separately.

-rotate theta (rotate, Rotate)
Angle, in degrees, to rotate the text.

-shadow color (shadow, Shadow)
Color for the shadow drawn beneath the text. The default is the empty
string (i.e., transparent).

-lext string (text, Text)
The text string to display.

Alphabetical Summary of Commands — graph 349

Window Markers

A window marker displays the window of a Tk widget at an arbitrary position
inside the chart. Options specific to window markers are as follows:

-anchor anchorPos (anchor, Anchor)
How to position the window relative to the position point for the marker.
The default is center.

-height amount (height, Height)
Height to assign to the window. If not specified, the height will be what-
ever the window requests.

-width amount (width, Width)
Width to assign to the window. If not specified, the width will be what-
ever the window requests.

-window pathName (window, Window)
Pathname of window to use for the marker. The window must be a
descendant of the chart widget.

Example

set x {0.0 1.0 2.0 3.0 4.0 5.0 6.0}

set y {0.0 0.1 2.3 4.5 1.2 5.4 9.6}

graph .g -title "Example Graph"

.g element create x -label "Data Points" -xdata $x -ydata Sy
pack .g

hierbox
bierbox pathName [option value..]

The hierbox command creates a new hierbox widget named pathName. A
hierbox widget displays a hierarchy tree of entries for navigation and selec-
tion. Each entry consists of an icon image, a text label, and an optional text or
image data field. Also, an entry can contain a list of subentries, which in turn
can have their own subentries. Entries with subentries can be expanded or
collapsed using an optional open/close button drawn to the entry’s left side.

Standard Options

-activebackground -activeforeground — -background

-borderwidth -cursor -exportselection

-font -foreground -highlightbackground
-highlightcolor -bighlightthickness -relief

-selectbackground -selectborderwidth -selectforeground

-takefocus -xscrollcommand -yscrollcommand

Widget-Specific Options

-activerelief relief (activeRelief, Relief)

3D effect for the active entry.

350 Chapter 11— BLT

-allowduplicates boolean (allowDuplicates, AllowDuplicates)
Whether entries with identical names are allowed. The default is true.

-autocreate boolean (autoCreate, AutoCreate)
Whether an entry’s ancestors should automatically be created and
inserted if they do not exist when the entry is inserted. The default is
false.

-closecommand command (closeCommand, CloseCommand)
Tcl command to evaluate when an entry is closed. The following percent
sign substitutions are done on command :

%% Replaced with a single percent sign

$n Entry ID number of affected entry

%P Full pathname of affected entry

%p Tail part of the pathname of affected entry
%W Pathname of hierbox widget

-closerelief relief (closeRelief, Relief)
3D effect for buttons of closed entries.

-dashes number (dashes, Dashes)
Dash style for lines connecting entries. Parameter dashStyle is a list of
up to 11 numbers that alternately represent the lengths of the dashes and
gaps. Each number must be between 1 and 255, inclusive. If dashStyle
is the empty string (the default), a solid line is drawn.

-height amount (height, Height)
Requested height of the hierbox widget window.

-bideroot boolean (hideRoot, HideRoot)
Whether root entry should be hidden. The default is false.

-linecolor color (1ineColor, LineColor)
Color of the lines connecting entries.

-linespacing pixels (lineSpacing, LineSpacing)
Set the vertical spacing between entries. The default is 0.

-linewidth pixels (linewWidth, LineWidth)
Width of the lines connecting entries. The default is 1.

-opencommand command (openCommand, OpenCommand)
Tcl command to be evaluated when an entry is opened. The same per-
cent sign substitutions are made as for the widget -closecommand.

-openrelief relief (openRelief, Relief)
3D effect for buttons of open entries.

-scrollmode mode (scrollMode, ScrollMode)
Whether scrolling should follow the model of the Tk listbox widget or
the Tk canvas widget. Mode must be either 1listbox (the default) or
canvas.

Alphabetical Summary of Commands — hierbox 351

-scrolltile boolean (scrollTile, ScrollTile)
Whether tile should appear to scroll when the widget is scrolled.

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default hierbox bindings
for manipulation of the entry selection. Supported styles are single,
active, and multiple. Any arbitrary string is allowed, but the pro-
grammer must extend the bindings to support it. Default is multiple.

-separator string (separator, Separator)
Path separator string of components of entries. The default is the empty
string, which implies no sublevels.

-tile imageName (tile, Tile)
Image to use as a tiled background for the widget.

-trimleft string (trimLeft, Trim)
Leading characters to trim from entry pathnames.

-width amount (width, width)
Requested width of the hierbox widget window.

-xscrollincrement amount (xScrollIncrement, ScrollIncrement)
Increment, in pixels, for horizontal scrolling by units (see view method).

-yscrollincrement amount (yScrollIncrement, ScrollIncrement)
Increment, in pixels, for vertical scrolling by units (see view method).

Entry Indices
The following special indices can be used to identify entries in the hierbox:
number

Integer ID number of the entry. This number does not indicate the loca-

tion of the entry in the hierbox. However, the root entry will always be
number 0.

current
Entry that is currently active, usually the one under the mouse pointer.

anchor
Entry that is the anchor point for selection.

focus
Entry that currently has the focus.

root
The root entry of the hierarchy.

end
Last entry currently displayed (i.e., not hidden by closing) in the hierbox.

up
Entry immediately above the one that currently has the focus.

352 Chapter 11— BLT

down
Entry immediately below the one that currently has the focus.

prev
Entry above the one that currently has the focus. Unlike up, wraps
around to last entry.

next
Entry below the one that currently has the focus. Unlike down, wraps
around to top entry.

parent
Entry that is the parent of the one that currently has the focus.

nextsibling
Next sibling of the entry that currently has the focus.

prevsibling
Previous sibling of the entry that currently has the focus.

view. top
First partially visible entry in the hierbox.

view.bottom
Last partially visible entry in the hierbox.

path
Absolute pathname of the entry.

@x,y
The entry that covers the pixel with window coordinates x and y.

Methods

pathName bind tagName [sequence [command]]
Bind command to all entries with tag tagName so it is invoked when the
given event sequence occurs for the entry. The syntax for this method
is the same as for the standard Tk bind command except that it operates
on entries. TagName may be the pathname of an entry, the special tag
all (bind to all entries), or an arbitrary string. Only keyboard and mouse
events can be bound.

pathName bbox [-screen] entryIndex lentryIndex...]
Return a coordinate list of the form {x1 y1 x2 y2} giving an approxi-
mate bounding box enclosing all the given entries. If the -screen switch is
given, the coordinates are for the screen rather than the widget.

pathName button activate entryIndex
If entry entryIndex has a button, make it the active button. Only one
button in the hierbox may be active at a given time.

pathName button bind tagName [sequence [command]]
Bind command to all buttons with tag tagName so it is invoked when
the given event sequence occurs for the button. The syntax for this
method is the same as for the standard Tk bind command except that it
operates on hierbox buttons. tagName may be the name of a button’s

Alphabetical Summary of Commands — hierbox 353

entry, the special tag all (bind to all buttons), or an arbitrary string.
Only keyboard and mouse events can be bound.

pathName button cget option
Return the current value of the hierbox button option option in the
same manner as the general widget cget method. Supported options are
those available to the button configure method.

pathName button configure [option [value [option value..]]]
Query or modify the configuration options for the hierbox’s buttons in
the same manner as the general widget configure method. Supported
options are as follows:

-activebackground color (activeBackground, Background)
Background color for non-image buttons when active.

-activeforeground color (activeForeground, Foreground)
Foreground color for non-image buttons when active.

-background color (background, Background)
Background color for buttons.

-borderwidth amount (borderWidth, BorderWidth)
Width of 3D border drawn around buttons.

-foreground color (foreground, Foreground)
Foreground color for buttons.

-images imageList (images, Images)
The images to use for closed and open buttons. If imageList con-
tains two images, the first is used as the button for closed entries and
the second for open entries. If imageList contains one image, it is
used for both. If imageList is empty (the default), the default (+/-)
symbols are used.

pathName close [-recurse] entryIndex [entryIndex..]
Close (do not display the subentries) each specified entry. If the -recurse
option is given, then each subentry is recursively closed.

pathName curselection
Return a list containing the entry IDs of all entries in the hierbox cur-
rently selected.

pathName delete entryIndex [first [last]]
Delete the entry at entryIndex and all its subentries. If first and
Jlast are specified, they designate a range of subentries to delete by
position within their parent. If last is the string end, it signifies the last
subentry. If 1ast is omitted, only the subentry at first is deleted. The
root entry cannot be deleted.

pathName entry activate entryIndex
Make the entry at entryIndex the active entry.

354 Chapter 11— BLT

pathName entry cget entryIndex option
Return the current value of the hierbox entry option option in the same
manner as the general widget cget method. Supported options are those
available to the insert method.

pathName entry children entryIndex [first last]
Return the entry IDs of the subentries belonging to the entry at
entryIndex within the given range of positions, inclusive. The posi-
tions first and last are either integers or the string end. An integer
position is the index of the subentry among its siblings. For example, the
range 0 end would identify all the subentries, which is the default if a
range is not specified.

pathName entry configure entryIndex [option [value [option
value..]]]
Query or modify the configuration options for the hierbox’s buttons in
the same manner as the general widget configure method. Supported
options are those available to the insert method.

pathName entry bhidden entryIndex
Return 1 if the entry at entryIndex is not currently displayed, either by
being explicitly hidden or in a closed hierarchy. Return 0 otherwise.

pathName entry open entryIndex
Return 1 if the entry at entryIndex has subentries and is currently
open, 0 otherwise.

pathName entry size [-recurse] entryIndex
Return the number of subentries belonging to the entry at entryIndex.
If the -recurse switch is given, the count will include the number of
subentries at all levels below the entry.

pathName find [switches] [firstIndex [lastIndex]]
Return as a list the entry IDs of entries matching the search specification
provided. The entries searched are restricted to those between the entries
firstIndex and lastIndex, inclusive. If lastIndex is omitted, it
defaults to the last entry in the hierbox. Also, any use of the special index
end specifies the last entry in the hierbox rather than the last displayed
one. If firstIndex is also not given, it defaults to the root entry.

The search specification is defined using the following switches:

option pattern
option must be a valid entry configuration option (see the insert
method). The value of the option for each searched entry is matched
against pattern.

-count max
Specifies maximum matches before search is finished. If max is 0
(the default), there is no limit.

Alphabetical Summary of Commands — hierbox 355

-exact
The search patterns must be matched exactly (i.e., no special inter-
pretation of characters in the pattern). This is the default.

-exec command
The Tcl command command is evaluated for each matching entry.
The same percent sign substitutions as for the -closecommand wid-
get are done.

-full pattern
The full pathname of each entry is matched against pattern.

-glob
Patterns are treated as glob patterns, as for the Tcl glob command.

-name pattern
The tail part of the full pathname is matched against pattern.

-nonmatching
Invert search so that the indices for those entries that do not match
the given patterns are returned.

-regexp
Patterns are treated as regular expressions, as for the Tcl regexp
command.

Marks the end of switches.

pathName focus entryIndex
Make the entry at entryIndex the entry with the keyboard focus.

pathName get [-fulll entryIndex |entryIndex...]
If -full is given, a list of the full pathnames for the given entries is
returned. Otherwise, the list contains only the tail part of the pathnames.

pathName hide [switches] entryIndex lentryIndex..]

Hide the given entries. The entries to hide are specified using switches

to define a search specification, by explicit entry index, or both. Valid

switches for the search specification are as follows:

option value
option must be a valid entry configuration option (see the insert
method). The value of the option for each searched entry is matched
against pattern.

-exact
The search patterns must be matched exactly (i.e., no special inter-
pretation of characters in the pattern). This is the default.

-full pattern

The full pathname of each entry is matched against pattern.
-glob

Patterns are treated as glob patterns, as for the Tcl glob command.

356 Chapter 11— BLT

-name pattern
The tail part of the full pathname is matched against pattern.

-nonmatching
Invert search so it applies to those entries that do not match the
given patterns.

-regexp
Patterns are treated as regular expressions, as for the Tcl regexp
command.

Marks the end of switches.

pathName index [-at focusIndex| entryIndex
Return the ID number of the entry specified by the non-numerical index
entryIndex. If focusIndex is given, it identifies the entry to be con-
sidered the focus entry in the evaluation. Note that, if entryIndex is an
integer, it is treated as an entry name rather than an ID. All other meth-
ods will treat an integer for entryIndex as an entry ID number.

pathName insert [-at parentIndex| position name [name..] [option
value..]
Insert one or more new entries with the given names into the hierbox
just before the subentry at position belonging to parentIndex. The
position argument may be an integer position (e.g., 0 is the first
subentry) or the string end (position after the last subentry).” If parent-
Index is not given, it defaults to root. The following entry configura-
tion options are available:

-bindtags tagList (bindTags, BindTags)
The binding tag list for the entry, which determines the order of
evaluation of the commands for matching event bindings. Implicitly,
the name of the entry itself is always the first tag in the list. The
default value is all.

-closecommand command (entryCloseCommand,

EntryCloseCommand)

Tcl command to evaluate when the entry is closed. Overrides default
widget -closecommand option.

-data string (data, Data)
Arbitrary data string to associate with the entry.

-button mode (button, Button)
Whether an open/close button should be displayed for the entry.
Mode may be a boolean value or auto (the default), which will dis-
play a button for an entry automatically if it has subentries.

* The format of this command may change in the final Version 2.4 to use normal entry indices for posi-
tioning.

Alphabetical Summary of Commands — hierbox 357

-icons imageList (icons, Icons)
The images to use for the entry’s icons. If imageList contains two
images, the first is used as the icon when the entry does not have
the focus and the second when it does. If imageList contains one
image, it is used for both. If imageList is empty (the default), a
simple miniature folder icon is used for both.

-images imageList (images, Images)
ImageList is a list of zero or more images to be drawn in the data
field for the entry. If not empty, this overrides the -fext option.

-label string (label, Label)
Text string for the entry’s label. The default is the tail of the full
pathname of the entry.

-labelcolor color (labelColor, LabelColor)
Foreground color for drawing the entry’s label.

-labelfont font (labelFont, LabelFont)
Font for drawing the entry’s label.

-labelshadow color (labelsShadow, LabelShadow)
Color of shadow for entry’s label. The default is the empty string
(i.e., transparent).

-opencommand command (entryOpenCommand,

EntryOpenCommand)

Tcl command to evaluate when the entry is opened. Overrides
default widget -opencommand option.

-text text (text, Text)
Text string to be drawn in the entry’s data field.

-textcolor color (textColor, TextColor)
Foreground color for text string in data field.

-textfont font (textFont, TextFont)
Font for text string in data field.

-textshadow color (textShadow, Shadow)
Shadow color for text string in data field. The default is the empty
string (i.e., transparent).

pathName move fromIndex where toIndex
Move the entry at fromIndex to a position relative to toIndex accord-
ing to where. Where can be after, before, or into (append to end
of toIndex’s children). It is an error if fromIndex is an ancestor of
toIndex.

pathName nearest X y
Return the entry ID of the entry nearest to screen coordinates x y.

358 Chapter 11— BLT

pathName open [-recurse] entryIndex [entryIndex..]
Open (display the subentries) of each specified entry. If the -recurse
option is given, each subentry is recursively opened.

pathName range [-open] firstIndex [lastIndex]
Return a list of the entry IDs of the entries between entry indices
firstIndex and lastIndex, inclusive. If the switch -open is specified,
only the indices of entries currently displayed (i.e., not closed) are
returned.

pathName scan dragto x y
Scroll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the difference between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

pathName scan mark x y
Record the screen coordinates x y as anchors for a following scan dragto
method call.

pathName see [-anchor anchorPos| entryIndex
Adjust the current view in the hierbox, if necessary, so that entry
entryIndex is visible. If anchorPos is given, it specifies a cardinal
point of the entry that should be made visible at the same cardinal point
of the view. For example, if anchorPos is nw, then the top left corner
of the entry will be visible at the top left corner of the view.

pathName selection anchor entryIndex
Set the anchor for selection dragging to the element at entryIndex.

pathName selection cancel
Cancel temporary selection operation started with a previous call to the
selection dragto method without changing the real selections.

pathName selection clear firstIndex [lastIndex]
Deselect any selected entries between firstIndex and lastIndex,
inclusive.

pathName selection dragto entryIndex action

Perform a temporary selection action on the entries between the selec-
tion anchor and entryIndex, inclusive. Action can be clear, set,
or toggle, corresponding to the identically named selection methods.
The selection changes are temporary in that the hierbox is redrawn to
make it look as if the selection has changed on the affected entries. How-
ever, the internal selection flags of the entries are not changed. This tem-
porary state is canceled by making a call to any other selection method
except selection includes.

pathName selection includes entryIndex
Return 1 if the entry at entryIndex is selected, 0 otherwise.

Alphabetical Summary of Commands — hierbox 359

pathName selection set firstIndex [lastIndex]
Select all entries between firstIndex and lastIndex, inclusive.

pathName selection toggle firstIndex [lastIndex]
Toggle the selection state of all entries between firstIndex and
lastIndex, inclusive.

pathName show [switches] entryIndex |lentryIndex..|
Show the given entries if they are hidden. The entries to show are speci-
fied using switches to define a search specification, by explicit entry
index, or both. Valid switches for the search specification are the same as
for the bide method.

pathName sort [-recurse] [-command command] entryIndex |lentryIn-
dex...]
Sort the subentries of the given entries. If the -recurse switch is specified,
then the sort routine will recursively sort subentries of subentries, and so
on. The sort will be in ascending order unless a sorting command is
passed with -command. Command is a Tcl command, which must take
three arguments: the pathname of the hierbox widget and the tail of the
pathnames of two entries. It should return a integer less than, equal to, or
greater than zero to signify the order of the entries.

pathName toggle entryIndex
Open the entry at entryIndex if it is closed, or close it if it is open.

pathName xview
Return a two-element list describing the currently visible horizontal
region of the hierbox. The elements are real numbers representing the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget.

pathName xview moveto fraction
Adjust the visible region of the hierbox so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the hierbox horizontally by number. If what is
units, then number is in units of the -xscrollincrement option. If what
is pages, then number is in units of nine-tenths the visible region’s
width.

pathName yview
Return a two-element list describing the currently visible vertical region
of the hierbox. The elements are real numbers representing the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget.

pathName yview moveto fraction
Adjust the visible region of the hierbox so that the point indicated by
fraction along the widget's vertical span appears at the region’s top
edge.

360 Chapter 11— BLT

pathName yview scroll number what
Shift the visible region of the hierbox vertically by number. If what is
units, then number is in units of the -yscrollincrement option. If what
is pages, then number is in units of nine-tenths the visible region’s
height.

Example

hierbox .h -separator "/" -trimleft "."
.h entry configure root -label [file tail [pwd]]
catch { exec find . } files
eval .h insert end [lsort [split $files \n]]
.h find -glob -name *.gif -exec {
%W entry configure %n -labelcolor red
}
pack .h

htext

htext pathName [option value..]

Create a hypertext widget window named pathName. Options may be speci-
fied on the command line or in the option database.

The contents of the hypertext widget are defined by a text string or file. Any
text surrounded by two special characters (by default, $%) is interpreted as Tcl

commands.

Standard Options

-background -Cursor -exporiselection
-font -foreground -selectbackground

-selectborderwidth -selectforeground -takefocus
-xscrollcommand — -yscrollcommand

Widget-Specific Options

-file £i1leName (file, File)
Specify the file containing the htext text to be displayed. See “Text For-
mat,” later in this section.

-height amount (height, Height)

Requested height of the htext widget window.

-linespacing pixels (lineSpacing, LineSpacing)
Set the spacing between each line of text. The default is 1 pixel.

-maxheight pixels (maxHeight, MaxHeight)
Maximum height allowed for the htext widget window.

-maxwidth amount (maxWidth, MaxWidth)
Maximum width allowed for the htext widget window.

-specialchar number (specialChar, SpecialChar)
Specify the ASCII code of the character used to delimit embedded Tcl
commands in htext’s text. The default is 0x25 (percent sign).

Alphabetical Summary of Commands — htext 361

-text text (text, Text)
Specify the text to be displayed in the htext widget. See the “Text For-
mat” section later in this chapter.

-tile imageName (tile, Tile)
Image to use as a tiled background for the widget.

-tileoffset boolean (tileOffset, TileOffset)
Whether the background tile should scroll with the widget. The default is
true.

-width amount (width, width)

Requested width of the htext widget window.

-xscrollunits pixels (xScrollUnits, ScrollUnits)
Specify the horizontal scrolling distance. The default is 10 pixels.

-yscrollunits pixels (yScrollUnits, ScrollUnits)
Specify the vertical scrolling distance. The default is 10 pixels.

Text Indices

Several widget operations accept as arguments indices that define a location
of a character (or embedded window) in the text. These can take the follow-
ing forms:

number
Raw position of character in the text, starting at zero.

line.char
Character position char of line I1ine. Both are numbers starting at zero.
The character position can be omitted to indicate the first position.

@xy
The character that covers the pixel with window coordinates x and y.

end
The end of the text.

anchor
The anchor point for the selection.

sel.first
The first character of the selection.

sel.last
The character immediately after the last one of the selection.

Text Format

The text to be displayed in the htext is set either using the value of the -text
option or the contents of the file specified by the -file option. Whichever of
the two options is set last takes precedence and resets the other to an empty
string. If both are set at the same time, -file takes precedence.

The basic format for the text of the htext widget is plain ASCII. However, any
text enclosed by double percent signs (or by another character chosen by the

362 Chapter 11— BLT

-specialchar option) is interpreted and evaluated as Tcl commands. Typically,
these commands create and configure a widget that is finally embedded in the
htext at the current location using the append method of the htext. The com-
mands are evaluated in the global scope.

The following global variables are set when parsing an htext file for use by
the embedded Tcl commands:

htext (widget)
The pathname of the htext widget.

htext (file)
The name of the htext file currently being parsed (empty if the -fext
option is used).

htext (line)
The current line number in the text.

Methods

pathName append window [options..]
Embed child widget window in the htext widget pathName at the cur-
rent text location. The following options configure the appearance of the
child window:

-anchor anchorPos
Specify how the child window will be positioned if there is extra
space in the cavity surrounding the window. The default is center.

-fill style
Specify how the child window should be stretched to occupy the
extra space in the cavity surrounding it. One of x, y, both, or none
(the default).

-cavityheight amount
Requested height for the cavity surrounding the window. Overrides
the -relcavitybeight option. If the value of both this option and
-relcavitybeight is 0, the height of the cavity will be set to the height
of the window plus the border width and any padding.

-cavitywidth amount
Requested width for the cavity surrounding the window. Overrides
the -relcavitywidth option. If the value of both this option and
-relcavitywidth is 0, the width of the cavity will be set to the width
of the window plus the border width and any padding.

-height pixels
Requested height for the window. The default is 0, which will use
the window’s own requested height. Overrides the -relbeight option.

-justify justify
Specify how to justify the window with respect to the line it is on.
Justify must be one of top, bottom, or center (the default).

Alphabetical Summary of Commands — htext 3063

-padx pad
Specify the padding on the left and right sides of the window. Can
be a list of two numbers, specifying the padding for the left and
right sides, or one number, specifying the padding to use for both
sides. The default is 0.

-pady pad
Specify the padding on the top and bottom of the window. Can be a
list of two numbers, specifying the padding for the top and bottom,
or one number, specifying the padding to use for both. The default
is 0.

-relcavitybeight fraction
Specify the height of the cavity containing the child window as a
fraction of the height of the htext widget. If the value of both this
option and -cavitybeight is 0, then the height of the cavity will be set
to the height of the window plus the border width and any padding.

-relcavitywidth fraction
Specify the width of the cavity containing the child window as a
fraction of the width of the htext widget. If the value of both this
option and -cavitywidth is 0, then the width of the cavity will be set
to the width of the window plus the border width and any padding.

-relheight fraction
Specify the height of the window containing the child window as a
fraction of the height of the htext widget. If the value of both this
option and -beight is 0, then the height of the window will be set to
the requested height of the window.

-relwidth fraction
Specify the width of the window containing the child window as a
fraction of the width of the htext widget. If the value of both this
option and -width is 0, then the width of the window will be set to
the requested width of the window.

-width pixels
Requested width for the window. The default is 0, which will use the
window’s own requested width. Overrides the -relwidth option.

pathName configure window [option value..]
Query or modify the configuration options for the embedded child win-
dow window in the same manner as the standard widget configure
method. Available options are those defined for the append method.

Note that when window is omitted, this method is the standard widget
configure method for the htext itself.

pathName gotoline [index]
Set the top line of the text to index. With no index parameter, returns
the current line number.

364 Chapter 11— BLT

pathName index index
Returns the raw character position of the character or window at index.

pathName linepos index
Return the position of the character or window at index in the form
line.char.

pathName range [first [last]]
Return the text of the htext widget covering the range of characters from
first to last, inclusive. If first or last are omitted, they default to
sel.first and sel.last, respectively. If there is no selection, they
default to the beginning and end of the text.

pathName scan dragto @x,y
Scroll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the difference between this command’s x and y argu-
ments and the given x and y arguments to the last scan mark command
for the widget.”

pathName scan mark @x,y
Record the screen coordinates x y as anchors for a following scan
dragto method call.

pathName search pattern [from[to]]
Return the number of the next line matching pattern. Parameter pat-
tern is a string that obeys the matching rules of the Tcl string match
command. Parameters from and to are text indices (inclusive) that
bound the search. If no match for pattern can be found, -1 is returned.

pathName selection adjust index
Locate the end of the selection nearest to index, adjust that end to be at
index, and make the other end of the selection the anchor point. If the
selection isn’t currently owned by the htext, this method behaves the
same as the select to widget method.

pathName selection clear
Clear the selection if it is owned by the htext.

pathName selection from index
Set the selection anchor point to be just before the character given by
index.

pathName selection line index
Select the line containing the character at index.

pathName selection present
Return 1 if the htext currently owns the selection, 0 otherwise.

* The format of the scan commands may change to match the newer syntax, in which x and y are speci-
fied as separate arguments.

Alphabetical Summary of Commands — hbtext 365

pathName selection range first last
Shortcut for doing a selection from first followed by a selection to
last.

pathName selection to index
Set the selection to consist of those characters between the anchor point
and index. If no anchor point has been set, it defaults to index. The
new selection will always include the character given by index; it will
include the character given by the anchor point only if it exists and is less
than or equal to index.

pathName selection word index
Select the word containing the character at index.

pathName windows | pattern]
Return a list of the pathnames of all windows embedded in the htext. If
pattern is specified, only names matching the pattern are returned.

pathName xview
Return a two-element list describing the currently visible horizontal
region of the htext. The elements are real numbers representing the frac-
tional distance that the view’s left and right edges extend into the hori-
zontal span of the widget.

pathName xview moveto fraction
Adjust the visible region of the htext so that the point indicated by
fraction along the widget's horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the htext horizontally by number. If what is
units, then number is in units of the -xscrollunits option. If what is
pages, then number is in units of nine-tenths the visible region’s width.

pathName yview
Return a two-element list describing the currently visible vertical region
of the htext. The elements are real numbers representing the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget.

pathName yview moveto fraction
Adjust the visible region of the htext so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Shift the visible region of the htext vertically by number. If what is
units, then number is in units of the -yscrollunits option. If what is
pages, then number is in units of nine-tenths the visible region’s height.

Example

set text {
This will be displayed as normal text.
But this will become a %%

366 Chapter 11— BLT

button .demo.button -text "button" -fg red

.demo append .demo.button %%

which can invoke a Tcl command.

}

htext .demo -text S$text -foreground blue -background green
pack .demo

spline
spline type xy sx sy

Compute a spline fitted to a set of data points. The type argument is either
natural or quadratic.

Parameters x and y are vectors representing points of data to be fitted to the
spline. Values of x must be monotonically increasing.

Parameter sx is a vector containing the x-coordinates of the new points to be
interpolated by the spline function. These must also be monotonically increas-
ing and lie between the first and last values of x.

The spline command creates a new vector sy, which contains the y-coordi-
nates corresponding to the x-coordinate values stored in sx calculated using
the spline function.

Example

vector x y sx sy

x set {0.1 1.5 3.4 5.6}

y set {0.2 4.5 1.3 9.8}

x populate sx 10

spline natural X y sx sy

graph .graph

.graph element create original -x x -y y -color blue
.graph element create spline -xX sx -y sy -color red
table . .graph

stripchart
stripchart pathName [option value..]

See the graph command.

table
table operation larg arg..]

Arrange widgets in a table. The alignment of widgets is determined by their
row and column positions and the number of rows or columns that they span.
The following operations are defined:

table master [slave index option value ..]
Add the widget slave to the table at index. Parameter index is a posi-
tion in the table in the form row,column, where row and column are
the respective row and column numbers and 0,0 is the upper leftmost
position. If a table doesn’t exist for master, one is created. Parameter

Alphabetical Summary of Commands — table 367

slave is the pathname of the window, which must already exist, to be
arranged inside of master. Parameters option and value are
described later in the “Slave Options” section.

table arrange master

Force the table to compute its layout immediately rather than waiting
until the next idle point.

table cget master [iteml option

Return the current value of the configuration option specific to item
given by option, where item is either a row or column index or the
pathname of a slave window. Parameter item can be in any form
described for the configure method. If no item argument is provided,
the configuration option is for the table itself. Parameter option may be
any of the options described in the appropriate options section for the
item.

table configure master [item..] [option [value [option value..]]]

Query or modify the configuration options specific to item in the same
manner as the standard widget configure method. If the argument item
is omitted, the specified configuration options are for the table itself, as
specified in the “Table Options” section. If options are being modified,
multiple item arguments of the same form are allowed. The item argu-
ments must take one of the following forms:

Ci Specifies the column of the master to be configured, where 1 is the
index of the column. Valid options are specified in the “Column
Options” section.

Ri Specifies the row of the master to be configured, where i is the
index of the row. Valid options are specified in the “Row Options”
section.

slave
Specifies a slave window of the master to be queried, where slave
is the pathname of a slave window packed in master. Valid options
are specified in the “Slave Options” section.

table extents master index

Query the location and dimensions of rows and columns in the table.
Parameter index can be either a row or column index or a table index
in the form described for the configure method. Returns a list of the xy-
coordinates (upper-left corner) and dimensions (width and height) of the
cell, row, or column.

table forget slave [slave..]

Request that sIave no longer have its geometry managed. Parameter
slave is the pathname of the window currently managed by some table.
The window will be unmapped so that it no longer appears on the
screen. If slave is not currently managed by any table, an error message
is returned; otherwise, the empty string is returned.

368

Chapter 11— BLT

table info master [item [item..]]
Return a list of the current configuration options for the given items. The
list returned is in exactly the form that might be specified for the table
command. It can be used to save and reset table configurations. The
1tem parameters must be one of the following:

Ci Specifies the column of master to be queried, where 1 is the index
of the column.

Ri Specifies the row of master to be queried, where 1 is the index of
the row.

slave
Specifies a slave window of the master to be queried, where slave
is the pathname of a slave window packed in master.

No argument
Specifies that the table itself is to be queried.

table locate master x y
Return the table index (row,column) of the cell containing the given
screen coordinates. The x and y arguments specify the coordinates of the
sample point to be tested.

table masters [options]
Return a list of all master windows matching the criteria specified using
the options. If no options are given, the names of all master windows
(only those using the table command) are returned. The following are
valid options (only one may be specified):

-pattern pattern
Return a list of pathnames of all master windows matching pat-
tern.

-slave window
Return the name of the master window of the table managing win-
dow. The window parameter must be the pathname of a slave win-
dow. If window is not managed by any table, the empty string is
returned.

table search master [options..]
Return the names of all the slave windows in master matching the crite-
ria given by options. The master parameter is the name of the master
window associated with the table to be searched. The name of the slave
window is returned if any one option criterion matches. If no option
arguments are given, the names of all slave windows managed by mas-
ter are returned. The following options are available:

-paltern pattern
Return the names of the slave windows matching pattern.

-span index
Return the names of slave windows that span index. A slave win-
dow does not need to start at index to be included. Parameter
index must be in the form row,column.

Alphabetical Summary of Commands — table 369

-start index
Return the names of slave windows that start at index. Parameter
index must be in the form row,column.

Table Options

table configure master [option value..]

To configure the table itself, omit the item argument when invoking the con-
Jfigure operation. The following options are available for the table:

-colummns number
Set the number of columns in the table. By default, the table creates new
columns whenever they are needed. If the number of columns is less
than currently in the master, any slave windows located in those columns
are removed from the table.

-padx pad
Set how much padding to add to the left and right exteriors of the table.
Parameter pad can be a list of one or two numbers. If it has two ele-
ments, the left side of the table is padded by the first value and the right
side by the second value. If it has just one value, both the left and right
sides are padded evenly by the value. The default is 0.

-pady pad
Set how much padding to add to the top and bottom exteriors of the
table. Parameter pad can be a list of one or two numbers. If it has two
elements, the area above the table is padded by the first value and the
area below by the second value. If it is just one number, both the top
and bottom areas are padded by the value. The default is 0.

-propagate boolean
Indicate if the table should override the requested width and height of
the master window. If boolean is false, the master will not be resized,
and will be its requested size. The default is true.

-rows number
Set the number of rows in the table. By default, the table creates new
rows whenever they are needed. If the number of rows is less than cur-
rently in the master, any slave windows located in those rows will be
unmapped.

Slave Options

table configure master slave [option value..]

Slave windows are configured by specifying the name of the slave when
invoking the configure operation. Parameter slave must be the pathname of
a window already packed in the table associated with master. The following
options are available for slave windows:

-anchor anchor
Anchor slave to a particular edge of the cells in which it resides. This
option takes effect only if the space of the spans surrounding the slave is

370 Chapter 11— BLT

larger than the slave. Parameter anchor specifies how the slave will be
positioned in the space. The default is center.

-columnspan number
Set the number of columns the slave will span. The default is 1.

-columnweight weight
Specify how much weight the width slave should have when the table
computes the sizes of the columns it spans. Weight is one of normal
(the default), none, or full.

fill £111
If the space in the span surrounding the slave is larger than the slave,
£i11 indicates if slave should be stretched to occupy the extra space. Fill
is one of none (the default), x, y, or both.

-ipadx pixels
Set how much horizontal padding to add internally on the left and right
sides of the slave. Parameter pixels must be a valid screen distance,
such as 2 or 0.3i. The default is 0.

-ipady pixels
Set how much vertical padding to add internally on the top and bottom
of the slave. Parameter pixels must be a valid screen distance, such as
2 or 0.3i. The default is 0.

-padx pad
Set how much padding to add to the left and right exteriors of the slave.
Parameter pad can be a list of one or two numbers. If it has two ele-
ments, the left side of the slave is padded by the first value and the right
side by the second value. If it has just one value, both the left and right
sides are padded evenly by the value. The default is 0.

-pady pad
Set how much padding to add to the top and bottom exteriors of the
slave. Parameter pad can be a list of one or two numbers. If it has two
elements, the area above the slave is padded by the first value and the
area below by the second value. If it is just one number, both the top
and bottom areas are padded by the value. The default is 0.

-regheight height
Specify the limits of the requested height for the slave. Parameter
height is a list of bounding values. See the “Bounding Sizes” section for
a description of this list. By default, the height of the slave is its
requested height with its internal padding (see the -ipady option). The
bounds specified by height either override the height completely or
bound the height between two sizes. The default is " ".

-requidth width
Specify the limits of the requested width for the slave. Parameter width
is a list of bounding values. See the “Bounding Sizes” section for a
description of this list. By default, the width of the slave is its requested
width with its internal padding (see the -ipadx option). The bounds spec-

Alphabetical Summary of Commands — table 371

ified by width either override the width completely or bound the height
between two sizes. The default is " ".

-rowspan number
Set the number of rows the slave will span. The default is 1.

-rowweight weight
Specify how much weight the height slave should have when the table
computes the sizes of the rows it spans. Weight is one of normal (the
default), none, or full.

Column Options

table configure master Ci [option value..]

To configure a column in the table, specify the column index as Ci, where 1
is the index of the column to be configured. If the index is specified as C*, all
columns of the table will be configured. The following options are available:

-padx pad
Set the padding to the left and right of the column. Parameter pad can
be a list of one or two numbers. If pad has two elements, the left side of
the column is padded by the first value and the right side by the second
value. If pad has just one value, both the left and right sides are padded
evenly by the value. The default is 0.

-resize mode
Indicate that the column can expand or shrink from its normal width
when the table is resized. Parameter mode must be one of the following:
none, expand, shrink, or both. If mode is expand, the width of the
column is expanded if there is extra space in the master window. If
mode is shrink, its width may be reduced beyond its normal width if
there is not enough space in the master. The default is none.

-width width
Specify the limits within which the width of the column may expand or
shrink. Parameter width is a list of bounding values. See the section
“Bounding Sizes” for a description of this list. By default, there are no
constraints.

Row Options
table configure master Ri [option value..]

To configure a row in the table, specify the row index as Ri, where 1 is the
index of the row to be configured. If the index is specified as R*, then all
rows of the table will be configured. The following options are available for
table rows:

-height height
Specifies the limits of the height to which the row may expand or shrink.
Parameter height is a list of bounding values. See the section “Bound-
ing Sizes” for a description of this list. By default, there are no con-
straints.

372 Chapter 11— BLT

-pady pad
Sets the padding above and below the row. Parameter pad can be a list
of one or two numbers. If pad has two elements, the area above the
row is padded by the first value and the area below by the second value.
If pad is just one number, both the top and bottom areas are padded by
the value. The default is 0.

-resize mode
Indicates that the row can expand or shrink from its normal height when
the table is resized. Parameter mode must be one of the following: none,
expand, shrink, or both. If mode is expand, the height of the row is
expanded if there is extra space in the master window. If mode is
shrink, its height may be reduced if there is not enough space in the
master. The default is none.

Bounding Sizes

You can bound the sizes of the master window, a slave window, a row, or a
column. The -width, -beight, -requidth, and -regheight options take a list of
one, two, or three values:

{}

With an empty list, no bounds are set. The default sizing is performed.

{x})
Fixes the size at x. The window or partition cannot grow or shrink.

{ min max}
Set minimum and maximum limits for the size of the window or partition.
The window or partition cannot be reduced less than min nor can it be
stretched beyond max.

{ min max nom }
Specify minimum and maximum size limits, but also specify a nominal
size nom. This overrides the calculated size of the window or partition.

Example

label .title -text "Example Table"

button .ok -text "Ok"

button .cancel -text "Cancel"

table . .title 0,0 -cspan 2 .ok 1,0 .cancel 1,1

tabset
tabset pathName [option value..]
The tabset command creates a new tabset widget named pathName. A tabset
widget displays a a series of overlapping widget layout folders. Only the con-
tents of one folder, selected by using its tab, is displayed at one time. The tab-
set widget is similar to the notebook mega-widget in the Tix extension.

Alphabetical Summary of Commands — tabset 373

Standard Options

-activebackground -activeforeground -background

-borderwidth -cursor -font

-foreground -bighlightbackground -highlightcolor
-highlightthickness -relief -selectbackground
-selectborderwidth -selectforeground -takefocus

Widget-Specific Options

-dashes dashStyle (dashes, Dashes)

Dash style for focus outline around selected tab’s label. Parameter
dashStyle is a list of up to 11 numbers that alternately represent the
lengths of the dashes and gaps. Each number must be between 1 and
255, inclusive. If dashStyle is the empty string, a solid line is drawn.
The default is {5 2}.

-gap size (gap, Gap)
Gap, in pixels, between tabs. The default is 2.

-height height (height, Height)
Desired height, in screen units, for the window. If height is O (the
default), the height is autosized.

-pagebeight height (pageHeight, PageHeight)
Desired height, in screen units, for the area under the tabs for displaying
the page contents. If height is 0 (the default), the height is autosized.

-pagewidth width (pageWidth, PageWidth)
Desired width, in screen units, for the area under the tabs for displaying
the page contents. If width is 0 (the default), the width is autosized.

-rotate theta (rotate, Rotate)
Rotate the text in tab labels by theta degrees.

-samewidth boolean (sameWidth, SamewWidth)
Whether each tab should be the same width. If true, each tab will be as
wide as the widest tab. The default is false.

-scrollcommand cmdPrefix (scrollCommand, ScrollCommand)
Prefix for a command used to communicate with an associated scrollbar
used to scroll through available tabs. Typically scrollbar set, where
scrollbar is the pathname of a scrollbar widget.

-scrollincrement amount (scrollIncrement, ScrollIncrement)
Increment, in pixels, for scrolling by units (see view method).

-selectcommand command (selectCommand, SelectCommand)
Default command to be evaluated when a tab is invoked. See the invoke
method.

-selectpad amount (selectPad, SelectPad)

Padding to be added around the selected tab. The default is 5.

374 Chapter 11— BLT

-shadowcolor color (shadowColor, ShadowColor)
Color of shadow around pages.

-side side (side, Side)
The side of the tabset on which the tabs should be displayed. Side
must be left, right, top (the default), or bottom.

-tabbackground color (tabBackground, Background)
Default background color for tabs.

-tabborderwidth amount (tabBorderWidth, BorderWidth)
Width of 3D border drawn around tabs.

-tabforeground color (tabForeground, Foreground)
Default foreground color for tabs.

-tabrelief relief (tabRelief, TabRelief)
3D effect desired for the border around tabs.

-textside side (textSide, TextSide)
Specify on which side of a tab its text label is placed if both images and
text are displayed in a tab. Side must be left, right, top (the
default), or bottom.

-tiers number (tiers, Tiers)
Maximum number of tiers to use for displaying tabs. Default is 1.

-tile imageName (tile, Tile)
Image to use as a tile for the background of the tabset.

~width amount (width, width)
Desired width, in screen units, for the window. If amount is 0 (the
default), the width is autosized.

Tab Indices

Several tabset widget methods support a tabIndex argument that identifies a
specific tab in the tabset. This index can take one of the following forms:

number
The numberth tab in the tabset.

tabName
The tab named tabName.

ex,y
The tab that covers the pixel whose coordinates within the tabset win-
dow are x and y.

tabSelect
Tab whose page is currently selected and displayed.

tabActive
Tab that is currently active. Typically, the tab with the mouse pointer
over it.

Alphabetical Summary of Commands — tabset 375

tabFocus
Tab that currently has the widget’s focus.

tabDown
Tab immediately below the tab that currently has the focus, if there is
one.

tabLeft
Tab immediately left of the tab that currently has the focus, if there is
one.

tabRight
Tab immediately right of the tab that currently has the focus, if there is
one.

tabUp
Tab immediately above the tab that currently has the focus, if there is
one.

tabEnd
Last tab in the tabset.

Methods

pathName activate tabIndex
Make the tab tabIndex the active tab. If tabIndex is the empty string,
no tab will be active.

pathName bind tagName [sequence [command]]
Bind command to all tabs with tag tagName so it is invoked when the
given event sequence occurs for the tab. The syntax for this method is
the same as for the standard Tk bind command except that it operates on
tabs. TagName may be the name of a tab, the special tag all (bind to
all tabs), or an arbitrary string. Only keyboard and mouse events can be
bound.

pathName delete first [last]
Delete the range of tabs from first to last, inclusive. If Iast is omit-
ted, then only the tab first is deleted.

pathName focus tabIndex
Make tab tabIndex the current focus tab.

pathName gel tabIndex
Return the numeric index of the tab identified by tabIndex.

pathName insert position tabName |option value..] [tabName
[option value..]l..
Create one or more new tabs with names specified by the tabName
arguments and configured with the following options. The tabs are
inserted just before the tab position. If position is the special tag
end, the tab is added to the end of the tab list. TabName should be cho-
sen not to conflict with any of the special index strings. The following tab
configuration options are available:

376 Chapter 11— BLT

-activebackground color (activeBackground,
ActiveBackground)
Background color for tab when it is active.

-activeforeground color (activeForeground,
ActiveForeground)
Foreground color for tab when it is active.

-anchor anchorPos (anchor, Anchor)
Anchor point for placing the tab’s embedded widget inside the tab’s
page. The default is center.

-background color (background, Background)
Background color for the tab. Overrides the -tabbackground option
of the widget.

-bindtags tagList (bindTags, BindTags)
The binding tag list for the tab, which determines the order of evalu-
ation of the commands for matching event bindings. Implicitly, the
name of the tab itself is always the first tag in the list. The default
value is all.

-command command (command, Command)
Command to be evaluated when the tab is invoked. Overrides the
widget’s -selectcommand option.

-data string (data, Data)
Arbitrary data string to associate with the tab.

-fill £111 (fi11, Fill)
How the tab’s embedded widget should be stretched when its
requested size is smaller than the size of tab’s page. Fi11 must be
one of x, y, both, or none (the default).

-font font (font, Font)
Font to use for the tab’s text label.

-foreground color (foreground, Foreground)
Foreground color for the tab. Overrides the widget’s -tabforeground
option.

-image imageName (image, Image)

Image to be drawn in the tab’s label.

-ipadx amount (iPadXx, Padx)
Horizontal padding to the left and right of the tab’s label. If amount
has two elements, the first specifies the padding for the left side and
the second for the right.

-ipady amount (iPady, Pady)
Vertical padding to the top and bottom of the tab’s label. If amount
has two elements, the first specifies the padding for the left side and
the second for the right.

Alphabetical Summary of Commands — tabset 377

-padx amount (padX, PadXx)
Horizontal padding to the left and right of the tab’s embedded wid-
get. If amount has two elements, the first specifies the padding for
the left side and the second for the right.

-pady amount (pady, Pady)
Vertical padding to the top and bottom of the tab’s embedded wid-
get. If amount has two elements, the first specifies the padding for
the left side and the second for the right.

-selectbackground color (selectBackground, Background)
Background color for tab when it is selected. Overrides the widget’s
-selectbackground option.

-shadow color (shadow, Shadow)
Color for the shadow under the tab’s text label. The default is the
empty string (i.e., transparent).

-state state (state, State)
State for the tab. State must be normal or disabled.

-stipple bitmap (stipple, Stipple)
Stipple pattern to use for the background of the page window when
tab’s embedded window is torn off. The default is BLT.

-text string (text, Text)
Text for the tab’s text label.

-window pathName (window, Window)
Name of widget to be embedded into tab’s page. It must be a child
of the tabset. The tabset will “pack” and manage the size and place-
ment of the widget.

-windowheight height (windowHeight, WindowHeight)
Desired height, in screen units, for the tab’s page. If height is 0
(the default), the height is set to the maximum height of all embed-
ded tab widgets.

-windowwidth width (windowWidth, WindowWidth)
Desired width, in screen units, for the tab’s page. If width is 0 (the
default), the width is set to the maximum width of all embedded tab
widgets.

pathName invoke tabIndex
Select the tab tabIndex, map the tab’s embedded widget, and execute
any associated command. The return value will be the return value of
the command if there is one, an empty string otherwise. This command
does nothing if the tab’s state is disabled. The following substitutions
are made to the command before it is evaluated:

%% An actual percent sign

$W Pathname of tabset widget

%i Numeric index of invoked tab
%n Name of invoked tab

378 Chapter 11— BLT

pathName move tabIndex where position
Move the tab tabIndex to a position immediately before or after the tab
position. Where must be either before or after.

pathName nearest x y
Return the name of the tab nearest to screen coordinates x y.

pathName scan dragto x 'y
Scroll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the difference between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

pathName scan mark x y
Record the screen coordinates x y as anchors for a following scan
dragto method call.

pathName see tabIndex
Scroll the tabset so that tab tabIndex is visible.

pathName size
Return the number of tabs in the tabset.

pathName lab cget tabIndex option
Return the current value of configuration option option for tab
tabIndex.

pathName tab configure tabIndex [tabIndex..] loption value..]
Query or modify the configuration options for the tabs identified by the
tabIndex arguments in the same manner as the general widget config-
ure method. Supported options are those available for the insert method.

pathName tab names | pattern]
Return the names of all tabs in the tabset. If pattern is given, only tab
names matching the pattern are returned.

pathName tab tearoff tabIndex [newName]
Reparent the embedded widget belonging to tab tabIndex inside of
newName. If newName is the pathname of the tabset widget itself, the
embedded widget is put back into its page. Otherwise, the widget new-
Name must not already exist. If no newName argument is given, the cur-
rent parent of the embedded widget is returned. An empty string is
returned if there is no embedded widget for tab tabIndex.

pathName view
Return a two-element list describing the currently visible region of the
tabset. The elements are the fractional distances of the view’s left and
right (or bottom and top) edges into the span of the widget’s width (or
height).

pathName view moveto fraction
Adjust the visible region of the tabset so that the point indicated by
fraction along the widget's span appears at the region’s left (or top)
edge.

Alphabetical Summary of Commands — tabset 379

pathName view scroll number what
Shift the visible region of the tabset by number. If what is units, then
number is in units of the -scrollincrement option. If what is pages,
then number is in number of tabs.

Example

image create photo stopImg -file images/stopsign.gif

image create photo rainImg -file images/rain.gif

tabset .t

.t insert end t0 -text Stop -window [label .t.10 -image stopImg]
.t insert end tl -text Rain -window [label .t.l1ll -image rainImg]
pack .t

tile
tilebutton pathName [option value..]
tilecheckbutton pathName [option value..]
tileframe pathName [option value..]
tilelabel pathName [option value..]
tileradiobutton pathName [option value..|]
tilescrollbar pathName [option value...]
tiletoplevel pathName [option value..]

These commands are identical to their Tk counterparts without the “tile” pre-
fix, with the addition of support for textured backgrounds using the following
options:

-activetile imageName (activeTile, Tile)
Image to use as background tile for widget when the widget is active
(i.e., it would normally be drawn with its -activebackground color).

-tile imageName (tile, Tile)
Image to use as background tile for widget.
The tilescrollbar command is not supported under Windows.

Example

image create photo paper -file tan_paper.gif
tileframe .frame -tile paper

vector
vector operation larg arg...]

Create and manipulate vectors, that is, ordered sets of real numbers. BLT’s
vectors are more efficient than standard Tcl lists and arrays for accessing and
manipulating large sets of real numbers. The following operations are defined:

380 Chapter 11— BLT

vector vecSpec [vecSpec..] l[option value..]
Same as vector crecite.

vector create [vecSpec...] l[option value..]
Create one or more new vectors according to vecSpec and the follow-
ing options. The name of the last vector created is returned. The vec-
Spec argument specifies the vector’s name and size according to these
valid forms:

vecName
A vector named vecName with no components.

vecName (size)
A vector named vecName with size components, all initialized to
0.0 and with the index starting from 0.

vecName (first:last)
A vector named vecName with components indexed from first to
last, inclusive, all initialized to 0.0.

The following options are available to the create operation:

-variable varName
Name of a Tcl array to be associated with the vector. By default, the
variable is the same as the vector name (this may change in a future
release of BLT). Any existing array by this name is deleted. If var-
Name is an empty string, then no variable will be mapped. See the
“Accessing Vectors as Arrays” section for how this array variable can
be used.

-command cmdName
Name of a Tcl command to be mapped to the vector. A Tcl com-
mand by that name cannot already exist. If the command name is
the empty string, then no command will be mapped and you will
lose access to the vector’s Tcl command interface. See the “Instance
Operations” section for the syntax of the created command.

-watchunset boolean
Whether vector should automatically destroy itself if the variable
associated with it is unset. The default is false. This should most
likely be set to true for temporary vectors used in procedures.

vector destroy vecName [vecName...]
Destroy the vectors named by the vecName arguments. Any associated
variable is unset and its instance command undefined.

veclor expr expression
Return the result of evaluating expression for each component of the
included vectors in the expression. Usually this is a list of the results of
the expression for each component. However, if the expression includes
specific statistical functions, the result may be a single value. If more than
one vector appears in the expression, they must be of equal length or
have only one component (i.e., a scalar value).

Alphabetical Summary of Commands — vector 381

The syntax of expression is the same as for the general Tcl expr com-
mand. However, the operators and functions supported are slightly differ-
ent. For results of boolean operations, the value 1.0 or 0.0 is returned.
Supported operators in order of precedence are as follows:

Unary minus and logical NOT.

~ Exponentiation.
* / %
Multiply, divide, remainder.
+ —_
Add, subtract.
<< >>
Circularly shift vector values left and right (not implemented yet).
< > <= >=

Boolean comparison for less than, greater than, less than or equal,
greater than or equal.

== 1=
.Boolean test for equality, inequality.

&& Logical AND.

|| Logical OR.

xX?y:z

If-then-else (not implemented yet).

The following functions are supported, which are identical to the Tcl expr
functions of the same name:

abs acos asin atan
ceil cos cosh exp
Sloor bypot log log10
random round sin sinh
sqrt tan tanh

The following statistical functions are supported, which take a vector (or vec-
tor result) as their sole argument. All functions except norm and sort return a
single value:

adev Average deviation

kertosis Degree of peakedness (fourth moment)
length Number of components

max Vector’s maximum value

mean Vector’s mean value

median Vector’s median value

min Vector’s minimum value

norm Scale vector to lie in range [0.0..1.0]

ql First quartile

q3 Third quartile

382 Chapter 11— BLT

prod Product of the components

sdev Standard deviation

skew Skewness (third moment)

sort Sorted components in ascending order
sum Sum of the components

var Variance

vector names | pattern)
Return a list of defined vector names. If pattern is specified, return
only those vectors whose names match the pattern.

Accessing Vectors as Arrays

A Tcl array is normally associated with each vector, having the same name as
the vector unless overridden with the -variable option to the create operation.
The data in the array can be accessed or set using indices that take the fol-
lowing forms:

vecName (index)
The indexth component of vecName.

vecName (expression)
Same as the previous index, except that expression is a simple math
expression that evaluates to an integer index.

vecName(first:last)
The whole range of components from the first to last, inclusive. You
can omit first or last, in which case they default to the first and last
elements, respectively.

The following special indices can be used:
min
The component with the minimum value.

max
The component with the maximum value.

end
The last component.

++end
Extends the vector by 1. Component access for setting value only.

Instance Operations

After a vector is created, a new Tcl command is defined having the same
name unless overridden with the -command option to the create operation.
This command supports the following operations:

vecName append item...
Append one or more items to a vector. Each item can be another vector
or a list of numeric values.

Alphabetical Summary of Commands — vector 383

vecName clear
Clear the index and value strings from the Tcl array associated with the
vector. The components of the vector itself are not affected, and the array
elements will be automatically recreated if accessed.

vecName delete index...
Remove from the vector one or more elements having the specified index
values.

vecName dup destName
Create a duplicate vector destName that is a copy of the original vector.
The new vector is created if necessary.

vecName expr expression
Reset the values of the vector to the results of evaluating expression.
See the vector expr operation for details on vector expressions.

vecName length [newSize]
Change the size of a vector to be newSize elements, which can be
larger or smaller than the original size. If newS1ize is omitted, the current
size is returned.

vecName merge srcName...
Return a list consisting of the merged components of vecName and one
or more srcName vectors.

vecName normalize [destNamel
Normalize the values of the vector to lie between 0.0 and 1.0. If a dest-
Name argument is provided, the resulting vector after normalizing is
stored in the vector named destName. This command is deprecated in
favor of using the norm function in the expr operation.

vecName notify when
Control how clients of the vector are notified of changes. The when
parameter is one of always, never, whenidle, now, cancel, or
pending.

vecName offset [valuel
Shift the indices of the vector by integer number value. With no value
parameter, the current offset is returned.

vecName populate destName density
Create a new vector destName that contains all of the elements of the
original vector as well as density new values, evenly distributed
between each of the original values. Useful for generating abscissas to be
interpolated along a spline.

vecName range firstIndex lastIndex
Return a list of the values of the vector from index firstIndex through
lastIndex.

vecName search value [value]
With one value argument, return a list of the element indices that have
the given value. With two arguments, return a list of elements whose val-
ues range between the two values.

384 Chapter 11— BLT

vecName sef item
Set the vector to the elements specified by item, which can be either a
list of numeric expressions or another vector.

vecName seq start finish[step]
Set the vector to the values generated by stepping from value start to
finish, inclusive, with interval step. The default step is 1.0.

vecName sort [-reverse] largName...]
Sort the elements of the vector. The -reverse option changes the sort
order to decreasing. Optional argName arguments can specify the names
of vectors to be rearranged in the same order when sorting. This is useful
for sorting x- and y-coordinates stored as pairs of vectors.

vecName variable varName
Associate the Tcl variable varName with the vector, creating another
means for accessing the vector. The variable cannot already exist. This
overrides any previous variable mapping the vector may have had.

Example

vector create g(10)

g set {2 3 57 11 13 17 19 23}
set g(++end) 29

q dup x

x expr {2.0 * sqgrt(q) + 3.0}
puts $x(:)

watch
watch operation larg arg...|

Execute Tcl procedures before and after the execution of each Tcl command.
The following operati