
http://www.oreilly.com
http://www.oreillynet.com/pub/au/672
http://www.oreillynet.com/pub/au/450
http://www.oreillynet.com/pub/au/672

http://www.oreilly.com
http://www.oreilly.com

TCL /TK
IN A NUTSHELL

A Desktop Quick Reference

,TITLE.15069 Page 1 Thursday, July 6, 2006 12:05 PM

,TITLE.15069 Page 2 Thursday, July 6, 2006 12:05 PM

TCL/TK
IN A NUTSHELL

A Desktop Quick Reference

Paul Raines & Jeff Tranter

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

,TITLE.15069 Page 3 Thursday, July 6, 2006 12:05 PM

http://www.oreilly.com
http://www.oreillynet.com/pub/au/672
http://www.oreillynet.com/pub/au/450

Tcl/Tk in a Nutshell
by Paul Raines and Jeff Tranter

Copyright © 1999 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Editor: Andy Oram

Production Editor: Madeleine Newell

Printing History:

March 1999: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly Media, Inc. The In a Nutshell series designations, Tcl/Tk in a Nutshell,
the image of an ibis, and related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN: 1-56592-433-9
[M] [3/05]LCP

,COPYRIGHT.25367 Page iv Thursday, June 15, 2006 2:11 PM

http://www.oreilly.com
http://www.oreilly.com
http://www.oreilly.com
htp://www.oreilly.com
http://www.oreilly.com
http://www.oreilly.com

Ta ble of Contents

Preface .. xi

Chapter 1 —Introduction .. 1

What Is Tcl? ... 1
Structur e of This Book ... 2

Chapter 2 —Tcl Core Commands ... 3

Overview ... 3
Basic Language Features .. 4
Command-Line Options ... 5
Envir onment Variables .. 5
Special Variables ... 5
Backslash Substitutions .. 6
Operators and Math Functions .. 7
Regular Expressions .. 9
Patter n Globbing ... 10
Pr edefined I/O Channel Identifiers ... 11
Gr oup Listing of Commands .. 11
Alphabetical Summary of Commands .. 16

Chapter 3 —Tk Core Commands ... 47

Example ... 47
Command-Line Options ... 49
Envir onment Variable ... 50
Special Variables ... 50

vii

11 May 2006 11:02

Gr oup Listing of Tk Commands .. 50
Widget Overview .. 52
Widget Commands ... 56
Utility Commands ... 101

Chapter 4 —The Tcl C Interface ... 137

Constants ... 137
Data Types .. 138
Gr oup Listing of Functions ... 140
Alphabetical Summary of Functions .. 148

Chapter 5 —The Tk C Interface ... 156

Constants ... 156
Data Types .. 157
Gr oup Listing of Functions ... 158
Alphabetical Summary of Functions .. 166

Chapter 6 —Expect ... 174

Overview ... 174
Example ... 175
Command-Line Options ... 175
Envir onment Variables .. 177
Special Variables ... 177
Gr ouped Summary of Commands ... 179
Alphabetical Summary of Commands .. 181

Chapter 7 —[incr Tcl] ... 193

Basic Class Definition ... 193
Special Variables ... 194
Gr oup Listing of Commands .. 194
Example ... 194
Alphabetical Summary of Commands .. 195

Chapter 8 —[incr Tk] .. 201

Basic Structure of a Mega-widget .. 201
Special Variable ... 202
Methods and Variables .. 202
Alphabetical Summary of Commands .. 204

viii

11 May 2006 11:02

Chapter 9 —Tix ... 205

Tix Overview .. 205
Special Variables ... 205
Gr oup Listing of Tix Commands .. 206
Tix Mega-widget Overview .. 208
Tix Mega-widgets .. 208
Tix Standard Widgets Overview .. 248
Tix Standard Widgets .. 251
Tix Cor e Commands ... 267
Tix Extensions to Tk image Command ... 278

Chapter 10 —TclX ... 281

Special Variables ... 281
Gr oup Listing of Commands .. 282
Alphabetical Summary of Commands .. 285

Chapter 11 —BLT ... 314

Envir onment Variable ... 315
Special Variables ... 315
Gr oup Listing of Commands .. 315
Alphabetical Summary of Commands .. 316

Chapter 12 —Oratc l ... 388

Overview ... 388
Example ... 389
Envir onment Variables .. 389
Special Variables ... 389
Gr oup Listing of Commands .. 391
Alphabetical Summary of Commands .. 391

Chapter 13 —Sybtc l .. 396

Overview ... 396
Example ... 397
Envir onment Variables .. 397
Special Variables ... 397
Gr oup Listing of Commands .. 399
Alphabetical Summary of Commands .. 399

ix

11 May 2006 11:02

Chapter 14 —Tclodbc ... 403

Overview ... 403
Gr oup Listing of Commands .. 404
Summary of Commands ... 405

Chapter 15 —Hints and Tips for the Tcl Programmer 411

Think Commands, Not Statements ... 412
Comments Are Treated as Commands ... 414
A Symbolic Gesture .. 416
Lists Are Strings, but Not All Strings Are Lists 416
Indir ect Refer ences ... 418
Executing Other Programs ... 419
When Is a Number Not a Number? .. 420
Quoting and More Quoting .. 421
Write Once, Run Where? .. 422
Common Tk Errors ... 424
Use the Source, Luke! ... 426

Appendix —Tc l Resour ces .. 427

Index ... 429

x

11 May 2006 11:02

Preface

This book is about Tcl, the scripting language developed by John Ousterhout. Tcl
stands for tool command language and was originally designed as a simple script-
ing language interpreter that could be embedded inside applications written in the
C language. With the addition of the Tk graphical toolkit and a host of other lan-
guage extensions supporting such features as graphics, relational databases, and
object-oriented programming, Tcl has become a popular programming language
for developing applications in its own right. The freely available Tcl language
interpr eter runs on many computer platforms, including most Unix-compatible sys-
tems, Microsoft Windows, and Apple Macintosh.

Tcl/Tk in a Nutshell is a quick refer ence for the basic commands of Tcl, Tk, and
several other popular Tcl language extensions. As with other books in O’Reilly’s
“In a Nutshell” series, this book is geared toward users who know what they want
to do but just can’t remember the right command or option. For subtle details, you
will sometimes want to consult the official Tcl refer ence documentation, but for
most tasks you should find the answer you need in this volume. We hope that this
guide will become an invaluable desktop refer ence for the Tcl user.

Conventions
This desktop quick refer ence uses the following typographic conventions:

Italic
Used for commands, methods, functions, programs, and options. All
ter ms shown in italic are typed literally. Italic is also used for filenames
and URLs, and to highlight terms under discussion.

Constant width
Used for code in program listings and for data structures and values to be
enter ed exactly as shown. Also used for special variables, global vari-
ables, options showing resource and class names, and subwidget names.

xi

11 May 2006 10:44

http://www.oreilly.com

Constant width italic
Used to show arguments, options, and variables that should be replaced
with user-supplied values.

[]
Surr ound optional elements in a description of syntax. Note that square
braces are also a commonly used Tcl language construct and appear in
some Tcl program examples, in which case they are part of the Tcl code.

|
Used in syntax descriptions to separate items for which only one alterna-
tive may be chosen at a time.

...
Indicates that the preceding item may be repeated as many times as
desir ed.

The owl symbol is used to designate a note.

The turkey symbol is used to designate a warning.

Contact O’Reilly & Associates
We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing to us at the following address:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on a mailing list or
request a catalog, send email to:

info@or eilly.com

xii Preface

11 May 2006 10:44

http://www.oreilly.com
http://www.oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@or eilly.com

About This Book
When Jeff Tranter first started with Tcl sometime around 1992, he felt the need for
a simple language quick-refer ence card to help jog his memory when program-
ming. He created a simple one-page cheat sheet that listed all of the Tcl language
commands. In the spirit of freely sharing with other users, he uploaded his quick
refer ence to one of the Tcl archive sites.

Some time later, Paul Raines created a nice quick refer ence for the commands pro-
vided by the Tk toolkit. Again, initially this was one double-sized page in length.

Inspir ed by the excellent Perl 5 Pocket Reference by Johan Vromans (published by
O’Reilly & Associates), Paul combined the Tcl and Tk refer ences into a small book-
let of about 40 half-size pages, and made it freely available on the Internet. The
curr ent version is now over 80 pages in length and can also be purchased from
O’Reilly as the Tcl/Tk Pocket Reference.

After finishing O’Reilly’s first book on Tcl/Tk, Tcl/Tk Tools (by Mark Harrison et
al.), O’Reilly editor Andy Oram thought about doing a Tcl refer ence book. So he
appr oached us about expanding our work into a full-blown refer ence on Tcl, Tk,
and all of the popular language extensions. Thus, the one-page Tcl cheat sheet
that Jeff created for his own use has now grown into a 450-page book. We hope
that you are happy with the result and find it a useful refer ence.

Acknowledgments
A motivational speaker once said that the formula for a successful manager was to
give your people the tools they need to do the job and stay out of their way. Our
editor, Andy Oram, did a great job of keeping us on track but generally staying out
of our way. As the first Nutshell book to use SGML text-processing tools devel-
oped in-house, Tcl/Tk in a Nutshell had some teething pains but we were able to
get the job done with help from the O’Reilly tools group.

Special thanks go to the reviewers of the first draft of this book: Allan Brighton,
De Clarke, Robert Gray, Cameron Laird, Don Libes, Michael McLennan, Wayne
Miller, Tom Poindexter, and Mark Roseman. Their many useful comments helped
make this a better book.

One of the reviewers, Tom Poindexter, went beyond the call of duty. He sug-
gested that we add a chapter on Tcl programming hints, and even volunteered to
write it for us.

Paul would like to thank his wife, Deborah, for her understanding and patience
when he disappeared into “computerland.”

Jef f would like to thank his family—Ver onica, Jennifer, and Jason—for bearing
with him while he wrote yet another book, taking more than his share of time on
the computer.

Pr eface xiii

11 May 2006 10:44

http://oreilly.com/catalog/9780596003746/index.html
http://www.oreilly.com
http://www.oreilly.com

11 May 2006 10:44

CHAPTER 1

Introduction

This chapter presents a brief history of and an introduction to the Tcl language
and describes how this book is organized.

What Is Tcl?
In the early 1980s John Ousterhout, then at the University of California at Berke-
ley, was working with a group that developed hardware design tools. They found
that they kept inventing a new scripting language with each new tool they devel-
oped. It was always added as an afterthought and poorly implemented. John
decided to create a general-purpose scripting language that could be reused when
developing new tools. He called the language Tcl, for tool command language,
made it freely available for download, and presented it at the Winter 1990 USENIX
confer ence. It soon became popular, with an estimated 50 Tcl applications written
or in development one year later.

One of the attendees at Ousterhout’s presentation, Don Libes, saw the applicability
of Tcl to a problem he was working on. Within a few weeks he developed the first
version of Expect, which became the first killer application for Tcl, driving many
people to install Tcl who might have otherwise ignored it.

Ousterhout’s philosophy is to embed a scripting language inside applications.
Combining the advantages of a compiled language like C (portability, speed,
access to operating system functions) with those of a scripting language (ease of
lear ning, runtime evaluation, no compilation) gives an overall reduction in devel-
opment time and opportunities for creating small, reliable, and reusable software
components. An application with an embedded Tcl interpreter can be extended
and customized by the end user in countless ways.

The Tcl interpreter has a well-defined interface and is typically built as an object
library, making it easy to extend the basic language with new commands. Tcl can
also be used as a prototyping language. An application can be written entirely in

Introduction

1

11 May 2006 10:44

Tcl, and once the design is proven, critical portions can be rewritten in C for per-
for mance reasons.

A year later, at the Winter USENIX conference, Ousterhout presented Tk, a graphi-
cal toolkit for Tcl that made it easy to write applications for the X11 windowing
system. It also supported the send command, a simple yet powerful way to allow
Tk applications to communicate with each other.

Since then, with dozens of Tcl extensions, many of them designed to solve prob-
lems related to specific domains such as graphics and relational databases, the Tcl
pr ogramming envir onment has become even more power ful. Today, Tcl runs on
Unix, Macintosh, and Windows platforms, and even inside a web browser. It has a
huge installed base of users and applications, both free and commercial. As Tcl
appr oaches its tenth anniversary, it is poised to continue its growth in popularity.

Str ucture of This Book
Following this brief introduction, Chapter 2 covers the core featur es of the Tcl lan-
guage itself. Chapter 3 covers Tk, the graphical user interface (GUI) toolkit that is
pr obably the most popular Tcl extension. Chapter 4 covers the C-language applica-
tion programming interface for Tcl, and Chapter 5 does the same for Tk.

Each language extension chapter follows a similar format: after a brief introduc-
tion, any special global and environment variables are described, followed by a
logically grouped summary of the commands. The heart of each chapter is an
alphabetical summary of each command that lists the options in detail. Short pro-
gramming examples are provided for the more complex commands.

Chapter 6 covers Expect, the first popular application to be built using Tcl. Chapter
7 is on [incr Tcl], which adds object-oriented programming features to Tcl. Chapter
8 covers [incr Tk], a framework for object-oriented graphical widgets built using
[incr Tcl].

Chapter 9 covers Tix, a Tk extension that adds powerful graphical widgets. Chap-
ter 10 is on TclX, also known as Extended Tcl, a number of extensions that make
Tcl mor e suited to general-purpose programming. Chapter 11 is on BLT, which
pr ovides a number of useful new commands for producing graphs, managing data,
and perfor ming other graphics-related functions.

Tcl has good support for relational databases. Chapter 12 and Chapter 13 cover the
Tcl extensions for the popular Oracle and Sybase relational databases, and Chapter
14 describes Tclodbc, which supports the Microsoft Windows ODBC database pro-
tocol.

Chapter 15, Hints and Tips for the Tcl Programmer, by Tom Poindexter, departs
fr om the style of the rest of the book somewhat by presenting a collection of tips
for using Tcl effectively, commonly made errors, and suggestions on programming
style.

The Appendix, Tcl Resour ces, lists further resources on Tcl, both in print and on
the Internet. The index cross-r efer ences the material in the book, including every
Tcl command described in the text.

2 Chapter 1 – Introduction

11 May 2006 10:44

CHAPTER 2

Tc l Core Commands

This chapter summarizes the features and commands of the core Tcl language,
which was developed by John Ousterhout. The chapter is based on Tcl Version
8.0; a few features are not part of Tcl per se, but are included in the Tcl shell and
most Tcl applications, so are included here and noted with (tclsh).

Over view
The Tcl interpreter has a simple syntax, making it suitable as an interactive com-
mand language and allowing it to be reasonably small and fast.

Tcl programs consist of commands. Commands consist of a command name,
optionally followed by arguments separated by whitespace. Commands are sepa-
rated by newline or semicolon characters. All commands retur n a value. The user
can create new commands (usually called pr ocs), which operate just like built-in
commands.

Within commands, the language supports several additional language constructs.
Double quotation marks ar e used to group characters, possibly containing white-
space, into one word. Curly braces gr oup arguments. They can cross lines and be
nested, and no further substitutions are per formed within them. Squar e brackets
per form command substitution. The text within the brackets is evaluated as a Tcl
command and replaced with the result. The dollar sign is used to perfor m variable
substitution and supports both scalar and array variables. C language–style back-
slash escape codes support special characters, such as newline. The pound sign or
hash mark (#) is the null command, acting as a comment.

In Tcl, all data is repr esented as strings. Strings often take one of three forms. Lists
ar e strings consisting of whitespace-separated values. Using curly braces, list ele-
ments can in turn be other lists. Tcl provides several utility commands for manipu-
lating lists. Numeric expr essions support variables and essentially the same
operators and precedence rules as the C language. Strings often repr esent

Tcl Core
Com

m
ands

3

11 May 2006 10:45

commands, the most common use being as arguments to control structure com-
mands such as if and pr oc.

Basic Language Features
; or newline

Statement separator

\
Statement continuation if last character in line

#
Comment (null command)

var
Simple variable

var (index)
Associative array variable

var (i,j,...)
Multidimensional array variable

$var
Variable substitution (also ${var})

[command]
Command substitution

\char
Backslash substitution (see “Backslash Substitutions,” later in this chapter)

"string "
Quoting with variable substitution

{string}
Quoting with no substitution (deferred substitution)

The only data type in Tcl is a string. However, some commands interpret argu-
ments as numbers or boolean values. Here are some examples:

Integer
123 0xff 0377

Floating point
2.1 3. 6e4 7.91e+16

Boolean
true false 0 1 yes no

4 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

Command-Line Options
The standard Tcl shell program tclsh accepts a command line of the form:

tclsh [fileName] [arg . . .]

wher e fileName is an optional file from which to read Tcl commands. With no
fileName argument, tclsh runs interactively using standard input and output.

The filename and any additional arguments are stor ed in the Tcl variables argc,
argv, and argv0 (see the section ‘‘Special Variables”).

Environment Var iables
The following environment variables are used by the Tcl interpreter:

HOME
Used by commands such as cd, filename, and glob to determine the
user’s home directory

PA TH
Used by exec to find executable programs

TCLLIBPATH
A Tcl list of directories to search when autoloading Tcl commands

TCL_LIBRARY
The location of the directory containing Tcl library scripts

Special Var iables
The following global variables have special meaning to the Tcl interpreter:

argc
Number of command-line arguments, not including the name of the
script file (tclsh)

argv
List containing command-line arguments (tclsh)

argv0
Filename being interpreted, or name by which script was invoked (tclsh)

env
Array in which each element name is an environment variable

errorCode
Err or code information from last Tcl error

errorInfo
Describes the stack trace of the last Tcl error

Tcl Core
Com

m
ands

Special Variables 5

11 May 2006 10:45

tcl_interactive
Set to 1 if running interactively, 0 otherwise (tclsh)

tcl_library
Location of standard Tcl libraries

tcl_pkgPath
List of directories where packages are nor mally installed

tcl_patchLevel
Curr ent patch level of Tcl interpreter

tcl_platform
Array with elements byteOrder, machine, osVersion, platform,
and os

tcl_precision
Number of significant digits to retain when converting floating-point
numbers to strings (default 12)

tcl_prompt1
Primary prompt (tclsh)

tcl_prompt2
Secondary prompt for incomplete commands (tclsh)

tcl_rcFileName
The name of a user-specific startup file

tcl_traceCompile
Contr ols tracing of bytecode compilation; 0 for no output, 1 for summary,
and 2 for detailed

tcl_traceExec
Contr ols tracing of bytecode execution; 0 for no output, 1 for summary,
and 2 for detailed

tcl_version
Curr ent version of Tcl interpreter

Backslash Substitutions
The following backslash substitutions are valid in words making up Tcl com-
mands, except inside braces:

\a
Audible alert (0x07)

\b
Backspace (0x08)

\f
For m feed (0x0C)

6 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

\n
Newline (0x0A)

\r
Carriage retur n (0x0D)

\t
Horizontal tab (0x09)

\v
Vertical tab (0x0B)

\space
Space (0x20)

\newline
Newline (0x0A)

\ddd
Octal value (d = 0 –7)

\xd . . .
Hexadecimal value (d = 0 –9, a–f)

\c
Replace \c with character c

\\
A backslash

Operator s and Math Functions
The expr command recognizes the following operators, in decreasing order of
pr ecedence:

+ - ˜ !
Unary plus and minus, bitwise NOT, logical NOT

* / %
Multiply, divide, remainder

+ -
Add, subtract

<< >>
Bitwise shift left, bitwise shift right

< > <= >=
Boolean comparison for less than, greater than, less than or equal,
gr eater than or equal

== !=
Boolean test for equality, inequality

Tcl Core
Com

m
ands

Operators and Math Functions 7

11 May 2006 10:45

&
Bitwise AND

ˆ
Bitwise exclusive OR

|
Bitwise inclusive OR

&&
Logical AND

||
Logical OR

x ?y :z
If x !=0, then y, else z

All operators support integers. All except ˜, %, <<, >>, &, ˆ, and | support float-
ing-point values. Boolean operators can also be used for string operands, in which
case string comparison will be used. This will occur if any of the operands are not
valid numbers. The &&, ||, and ?: operators have lazy evaluation, as in C, in
which evaluation stops if the outcome can be determined.

The expr command also recognizes the following math functions:

abs(arg)
Absolute value of arg

acos(arg)
Arc cosine of arg

asin(arg)
Arc sine of arg

atan(arg)
Arc tangent of arg

atan2(x, y)
Arc tangent of x/y

ceil(arg)
Rounds arg up to the nearest integer

cos(arg)
Cosine of arg

cosh(arg)
Hyperbolic cosine of arg

double(arg)
Floating-point value of arg

exp(arg)
e to the power of arg

8 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

floor(arg)
Round arg down to the nearest integer

fmod(x, y)
Remainder of x/y

hypot(x, y)
sqrt (x *x + y *y)

int(arg)
arg as integer by truncating

log(arg)
Natural logarithm of arg

log10(arg)
Base 10 logarithm of arg

pow(x, y)
x raised to the exponent y

rand()
Random floating-point number ≥ 0 and < 1

round(arg)
arg as integer by rounding

sin(arg)
Sine of arg

sinh(arg)
Hyperbolic sine of arg

sqrt(arg)
Squar e root of arg

srand(arg)
Seeds random number generator using integer value arg

tan(arg)
Tangent of arg

tanh(arg)
Hyperbolic tangent of arg

Regular Expressions
Several Tcl commands, including regexp, support the use of regular expressions:

regex|regex
Match either expression.

regex *
Match zero or mor e of regex.

Tcl Core
Com

m
ands

Regular Expressions 9

11 May 2006 10:45

regex+
Match one or more of regex.

regex ?
Match zero or one of regex.

.
Any single character except newline.

ˆ
Match beginning of string.

$
Match end of string.

\c
Match character c.

c
Match character c.

[abc]
Match any character in set abc.

[ˆabc]
Match characters not in set abc.

[a-z]
Match range of characters a thr ough z.

[ˆa-z]
Match characters not in range a thr ough z.

(regex)
Gr oup expr essions.

Patter n Globbing
Many Tcl commands, most notably glob, support filename globbing using the fol-
lowing forms:

?
Match any single character.

*
Match zero or mor e characters.

[abc]
Match characters in set abc.

[a-z]
Match range of characters a thr ough z.

10 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

\c
Match character c.

{a,b,...}
Match any of strings a, b, etc.

˜
Home directory (for glob command).

˜user
Match home directory of user (for glob command).

For the glob command, a period at the beginning of a file’s
name or just after “/” must be matched explicitly and all “/”
characters must be matched explicitly.

Predefined I/O Channel Identifier s
The following predefined I/O channel names can be used with commands that
per form input or output over channels (e.g., gets):

stdin
Standard input

stdout
Standard output

stderr
Standard error output

Group Listing of Commands
This section briefly lists all Tcl commands, grouped logically by function.

Control Statements

br eak Abort innermost containing loop command.
case Obsolete, see switch.
continue Skip to next iteration of innermost containing loop command.
exit Terminate process.
for Loop based on an expression.
for each Loop over each element of a list.
if Conditional evaluation.
retur n Retur n fr om pr ocedure.
switch Evaluation based on pattern match.
while Loop based on a condition being true.

Tcl Core
Com

m
ands

Gr oup Listing of Commands 11

11 May 2006 10:45

File Manipulation

file atime Retur n file access time.
file mtime Retur n file modification time.
file attributes Set or get platform-dependent file attributes.
file copy Make copy of a file or directory.
file delete Remove file or directory.
file dirname Retur n dir ectory portion of pathname.
file executable Retur n 1 if file is executable, 0 otherwise.
file exists Retur n 1 if file exists, 0 otherwise.
file isdirectory Retur n 1 if file is a directory, 0 otherwise.
file isfile Retur n 1 if file is a regular file, 0 otherwise.
file owned Retur n 1 if file is owned by current user, 0 otherwise.
file readable Retur n 1 if file is readable by current user, 0 otherwise.
file writable Retur n 1 if file is writable by current user, 0 otherwise.
file extension Retur n characters after and including last period.
file join Combine arguments with path separator to form pathname.
file mkdir Cr eate a dir ectory.
file nativename Retur n platfor m-specific filename.
file pathtype Retur n type of path: absolute, relative, or

volumerelative.
file readlink Retur n value of symbolic link.
file rename Rename file, moving if necessary.
file rootname Retur n characters before last period in pathname.
file size Retur n file size in bytes.
file split Split pathname into separate elements.
file stat Stor e file information in an array variable.
file lstat Same as file stat, but retur n infor mation for target of symbolic

links.
file tail Retur n characters in name after last file separator.
file type Retur n type of file: file, directory, characterSpecial,

blockSpecial, fifo, link, or socket.
file volume Retur n list of mounted volumes or drive letters.

Tc l Interpreter Infor mation

info args Retur n infor mation on procedur e arguments.
info body Retur n body of procedur e.
info cmdcount Retur n count of commands invoked by interpreter.
info commands Retur n list of Tcl commands.
info complete Retur n 1 if command is complete.
info default Retur n default procedur e argument.
info exists Retur n 1 if variable exists.
info globals Retur n list of global variables.
info hostname Retur n machine hostname.
info level Retur n pr ocedure stack level or stack arguments.
info library Retur n name of library directory.
info loaded Retur n list of loaded packages.

12 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

info locals Retur n list of local variables.
info nameofexecutable Retur n name of application.
info patchlevel Retur n Tcl patch level.
info procs Retur n list of Tcl procedur es.
info script Retur n name of file being evaluated.
info sharedlibextension Retur n file extension for shared libraries.
info tclversion Retur n Tcl version.
info vars Retur n list of local and global variables.

Lists

concat Concatenate (join) lists into a new list.
join Join lists into a string.
lappend Append elements to list.
lindex Retrieve element from list.
linsert Insert element into list.
list Cr eate a list.
llength Number of elements in list.
lrange Retur n sequential range of elements from list.
lr eplace Replace elements in list.
lsear ch Search list for element.
lsort Sort elements of list.
split Split a string into a list.

Ar rays

array anymore Retur n 1 if mor e array elements left during search.
array donesearch Terminate array search.
array exists Retur n 1 if array exists.
array get Retur n list of array element names and values.
array names Retur n list of array element names.
array nextelement Retur n name of next element during search.
array set Set array values.
array size Retur n number of elements in array.
array startsearch Initialize array search operation.
parray Print array.

Str ings

append Append values to variable.
binary Insert and extract fields from binary strings.
for mat printf() -style string formatting.
regexp Regular expression pattern matching.
regsub Regular expression string substitution.
scan sscanf() -style string parsing.
string compare Lexical string comparison.
string first Search for first occurrence of substring.
string index Retur n character from string.

Tcl Core
Com

m
ands

Gr oup Listing of Commands 13

11 May 2006 10:45

string last Search for last occurrence of substring.
string length Retur n number of characters in string.
string match Compar e strings using shell glob pattern matching.
string range Retur n range of characters from string.
string tolower Convert to lowercase.
string toupper Convert to uppercase.
string trim Remove leading and trailing characters.
string trimleft Remove leading characters.
string trimright Remove trailing characters.
string wordend Retur n end position of word in string.
string wordstart Retur n start position of word in string.
subst Backslash, command, variable substitutions.

Input/Output

close Close channel.
eof Check for end of file.
fblocked Retur n 1 if last operation exhausted available input.
fconfigur e Set or get I/O options.
fcopy Copy from one channel to another.
fileevent Set file event handler.
flush Flush buffer ed output.
gets Read line of input.
open Open channel.
puts Write to channel.
read Read from channel.
seek Set the access position.
socket Open network connection.
tell Get access position.

System Interaction

cd Change working directory.
clock Time functions.
exec Invoke subprocesses.
glob Filename pattern matching.
pid Retur n pr ocess IDs.
pwd Retur n curr ent working directory.

Command History

history Same as history info.
history add Add command to history list.
history change Change command in history list.
history clear Clear history list.
history event Retur n event.
history info Retur n for matted history list.
history keep Get or set size of history list.

14 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

history nextid Retur n next event number.
history redo Execute command from history list.

The tclsh pr ogram also supports the following csh -style history commands:

!! Repeat last command.
!event Repeat command, matching a number or name.
ˆold ˆnew Repeat command, substituting occurrences of regular expression

old with new.

Multiple Interpreter s

interp alias Cr eate, delete, or retur n definition of an interpreter alias.
interp aliases Retur n list of command aliases.
interp create Cr eate slave interpreter.
interp delete Delete slave interpreters.
interp eval Evaluate command using slave interpreter.
interp exists Test if slave interpreter exists.
interp expose Make hidden command visible to slave interpreter.
interp hidden Retur n list of hidden commands.
interp hide Hide exposed command.
interp invokehidden Invoke hidden command.
interp issafe Retur n 1 if interpr eter is safe.
interp marktrusted Mark interpreter as trusted.
interp share Shar e I/O channel between interpreters.
interp slaves Retur n list of slave interpreters.
interp target Retur n list describing target interpreter for an alias.
interp transfer Move I/O channel to another interpreter.

Packages

package forget Remove information about package from interpreter.
package ifneeded Tell interpreter how to load a package.
package names Retur n list of available packages.
package provide Indicate that package is present in interpreter.
package requir e Indicate that package is needed.
package unknown Supply command to load packages when not found.
package vcompare Compar e package version numbers.
package versions Retur n list of package versions available.
package vsatisfies Retur n package version compatibility information.
pkg_mkIndex Build index for automatic loading of packages.

Miscellaneous Commands

after Execute a command after a time delay.
auto_execok Retur n path of executable.
auto_load Autoload Tcl command.
auto_mkindex Generate tclIndex file.
auto_r eset Reset autoloading cache.

Tcl Core
Com

m
ands

Gr oup Listing of Commands 15

11 May 2006 10:45

bgerr or Pr ocess backgr ound err ors.
catch Evaluate script and trap exceptional retur ns.
err or Generate an error.
eval Evaluate a Tcl script.
expr Evaluate an expression.
global Access global variables.
incr Incr ement the value of a variable.
load Load machine code and initialize new commands.
namespace Cr eate and manipulate contexts for commands and variables.
pr oc Cr eate a Tcl procedur e.
rename Rename or delete a command.
set Read and write variables.
sour ce Evaluate a file or resource as a Tcl script.
time Time the execution of a script.
trace Trace variable access.
unknown Handle attempts to use nonexistent commands.
unset Delete variables.
update Pr ocess pending events and idle callbacks.
uplevel Execute a script in a differ ent stack frame.
upvar Cr eate link to variable in a differ ent stack frame.
variable Cr eate and initialize a namespace variable.
vwait Pr ocess events until a variable is written.

Alphabetical Summary of Commands
This section describes all Tcl commands, listed in alphabetical order.

after

after options...

Delay execution of the current program or schedule another command to be
executed sometime in the future.

after ms

Delay execution of current program for ms milliseconds.

after ms script...

Retur n immediately but schedule the given list of command script arguments
to be executed ms milliseconds in the future and retur n an identifier that can
be used for after cancel.

after cancel id

Cancel a previous after command using the identifier id retur ned pr eviously.

after cancel script...

Cancel a previously set after command by specifying the command script
arguments originally used in the command.

16 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

after idle script...

Schedule a command script to be executed when the event loop is idle.

after info [id]

If no id is specified, retur n a list of currently scheduled after commands.
With an id, retur n a list consisting of the command and the time of the speci-
fied idle or timer event.

append

append varName [value...]

Append the specified values to variable varName The variable need not
alr eady exist.

ar ray

array option arrayName [arg...]

Pr ovide functions to manipulate array variables.

array anymore arrayName searchId

Retur n 1 if ther e ar e mor e elements left in an array search, or 0 if all elements
have been retur ned. Accepts an array name and a search ID obtained from a
pr evious call to array startsearch.

array donesearch arrayName searchId

Terminate an array search. Accepts an array name and a search ID obtained
fr om a previous call to array startsearch.

array exists arrayName

Retur n 1 if an array variable with the given name exists; otherwise, retur n 0.

array get arrayName [pattern]

Retur n a list containing pairs of elements consisting of array names and val-
ues. If pattern is specified, only the elements that match the glob pattern
ar e included; otherwise, all are retur ned.

array names arrayName [pattern]

Retur n a list consisting of the names of array elements whose names match
the glob pattern (or all elements if pattern is omitted).

array nextelement arrayName searchId

Given an array name and a search ID from a previous call to array start-
sear ch, retur n the name of the next element. Return an empty string if all ele-
ments have already been retur ned.

array set arrayName list

Set values of array elements. The list should consist of pairs of words specify-
ing element names and values.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — array 17

11 May 2006 10:45

array size arrayName

Retur n the number of elements in the array, or 0 if arrayName is not the
name of an array.

array startsearch arrayName

Starts an array search, retur ning an identifier that can be used for subsequent
array nextelement, donesear ch, and anymor e commands.

auto_execok

auto_execok execFile

If an executable file named execFile is found in the user’s path, retur n the
full pathname; otherwise, retur n 0.

auto_load

auto_load command

Attempt to load a definition for command command by searching
$auto_path and $env(TCLLIBPATH) for a tclIndex file that will inform
the interpreter where it can find command ’s definition.

auto_mkindex

auto_mkindex directory pattern...

Generate a tclIndex file from all files in directory that match the given
glob patterns.

auto_reset

auto_r eset

Discard cached information used by auto_execok and auto_load.

bger ror

bgerr or message

A user-defined procedur e that is called if an error occurs during background
pr ocessing. Passed the error message string as its argument.

binar y

binary options...

Convert data between Tcl string format and machine-dependent binary repr e-
sentation.

18 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

binary format formatString [args...]

Retur n a binary string in a format defined by formatString with data taken
fr om args. The format string consists of zero or mor e field codes, each fol-
lowed by an optional integer count. The field codes are listed here:

a Chars (null padding) A Chars (space padding)
b Binary (low-to-high) B Binary (high-to-low)
h Hex (low-to-high) H Hex (high-to-low)
c 8-bit int s 16-bit int (little-endian)
S 16-bit int (big-endian) i 32-bit int (little-endian)
I 32-bit int (big-endian) f Float
d Double x Nulls
X Backspace @ Absolute position

binary scan string formatString [varName...]

Parse a binary string according to the format defined in formatString and
place the results in the specified variable names. Return the number of vari-
ables that were set. The format string is the same as for binary format except
for the following:

a Chars (no stripping)
A Chars (stripping)
x Skip forward

Example

set i 1234
set j 3.14
set s hello
set str [binary format ida5 $i $j $s]
binary scan $str ida5 i j s

break

br eak

Cause a loop command, such as for, for each, or while, to break out of the
inner most loop and abort execution.

case

Obsolete; see the switch command.

catch

catch script [varName]

Evaluate script using the Tcl interpreter, suspending normal error handling
if errors occur. Retur n a number indicating the Tcl interpreter error code, or 0
if there wer e no errors. If varName is specified, store the retur n value of the
script in the named variable.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — catch 19

11 May 2006 10:45

cd

cd [dirName]

Set the current working directory to dirname. If no dir ectory name is speci-
fied, change to the home directory. Returns an empty string.

clock

clock options...

Per form time-r elated functions.

clock clicks

Retur n system time as a high-resolution, system-dependent number.

clock format clockValue [-for mat string] [-gmt boolean]

For mat time in human-readable format. ClockValue is a time value as
retur ned by clock seconds, clock scan, or the -atime, -mtime, or -ctime options
of the file command. The optional format string indicates how the string
should be formatted, using the symbols described below. The optional -gmt
argument takes a boolean argument: if true, the time is formatted using
Gr eenwich Mean Time; otherwise, the local time zone is used.

%% % %a Weekday (abbr.)
%A Weekday (full) %b Month (abbr.)
%B Month (full) %c Local date and time
%d Day (01–31) %H Hour (00 –23)
%h Hour (00–12) %j Day (001–366)
%m Month (01–12) %M Minute (00–59)
%p A.M./P.M. %S Seconds (00–59)
%U Week (01–52) %w Weekday (0–6)
%x Local date %X Local time
%y Year (00–99) %Y Year (full)
%Z Time zone

clock scan dateString [-base clockVal] [-gmt boolean]

Parse dateString as a date and time, retur ning an integer clock value (the
reverse of clock format). If the optional -base argument is used, clockVal is
used to specify the date to be used for the resulting time value. If the boolean
-gmt argument is true, assume that time is specified in Greenwich Mean Time.

clock seconds

Retur n the current time, in seconds, using a system-dependent format.

close

close channelId

Close a previously opened I/O channel, specified by channel identifier
channelId. Retur ns an empty string.

20 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

concat

concat [arg...]

Tr eating each argument as a list, concatenate all arguments and retur n the
resulting list.

continue

continue

Cause a loop command, such as for, for each, or while, to break out of the
inner most loop and resume execution with the next iteration.

eof

eof channelId

Retur n a boolean value indicating if an end-of-file condition occurred during
the most recent input operation on channelId.

er ror

err or message [info] [code]

Generate a Tcl error. Retur n message as the optional error string to the call-
ing application. Optional string info is stored in global variable errorInfo,
and code is stored in errorCode.

eval

eval arg...

Tr eating each argument as a list, concatenate arguments and evaluate the
resulting list as a Tcl command, retur ning the result of the command.

ex ec

exec [options] arg [tag...]

Execute arguments as one or more shell commands. Return standard output
fr om the last command in the pipeline.

Options

-keepnewline
Keep trailing newline at end of command pipeline’s output.

– –
Marks end of options (useful for commands that may start with a dash).

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — exec 21

11 May 2006 10:45

Command arguments can include these special symbols:

| Separate commands in pipeline.
|& Pipe standard out and standard error.
< fileName Use fileName as standard input for command.
<@ fileId Use fileId (fr om open command) as standard input.
<< value Pass immediate value as standard input.
> fileName Redir ect standard output to file.
2> fileName Redir ect standard error to file.
>& fileName Redir ect standard error and standard output to file.
>> fileName Append standard output to file.
2>> fileName Append standard error to file.
>>& fileName Append standard error and standard output to file.
>@ fileId Redir ect standard output to fileId.
2>@ fileId Redir ect standard error to fileId.
>&@ fileId Redir ect standard error and standard output to fileId.

exit

exit [returnCode]

Terminate the application using the specified retur n code (default is 0).

expr

expr arg...

Concatenate the command arguments, evaluate them as an expression, and
retur n the result.

fblocked

fblocked channelId

Retur n 1 if last input operation on channelId exhausted available input;
otherwise, retur n 0.

fconfigure

fconfigur e options

Per form operations on an I/O channel.

fconfigur e channelId

Retur n curr ent settings for channelId as a list of name-value pairs.

fconfigur e channelId name

Retur n curr ent setting of name for channel channelId.

fconfigur e channelId name value...

Set one or more channel options for channelId.

22 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

Options

The command accepts the following standard options (other options are spe-
cific to certain types of I/O channels):

-blocking boolean
Set blocking or nonblocking I/O.

-buf fering mode
Set I/O buffering mode to full, line, or none.

-buf fersize size
Set size of I/O buffer, in bytes.

-eofchar char
Set character to indicate end of file (disable with empty string).

-eofchar {inChar outChar}
Set input and output end-of-file characters.

-translation mode
Set end-of-line translation to auto, binary, cr, lf, or crlf.

-translation {inMode outMode}
Set input and output line translation mode.

fcop y

fcopy inchan outchan [-size size] [-command callback]

Copy data from I/O channel inchan to channel outchan. Continue copying
until end of file is reached on the input channel or the maximum number of
bytes has been transferred. Return the number of bytes written to outchan.

Options

-size size
Specify maximum number of bytes to transfer (default is to copy until
end of file is reached on the input channel).

-command callback
Change behavior of fcopy to run in the background. When copying is
complete, the command callback will be invoked with an argument
list consisting of the number of bytes written and an optional error string.

file

file option name [arg...]

This command provides operations for reading and writing attributes of files.
Option is one of the options described below. Name is a filename, which
can use tilde (˜) expansion.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — file 23

11 May 2006 10:45

file atime name

Retur n time that file was last accessed, in POSIX format (seconds since the
start of the epoch).

file attributes name
file attributes name [option]
file attributes name [option value...]

Set or get platform-dependent file attributes. The first form retur ns attributes
as a list of name-value pairs. The second form retur ns the value of the named
attribute. The third form sets one or more named attributes.

file copy [-for ce] [– –] source target
file copy [-for ce] [– –] source... targetDir

Make a copy of a file or copy files to a directory.

Options

-for ce
Overwrite existing files.

– –
Marks end of options.

file delete [-for ce] [– –] pathname...

Delete one or more files indicated by pathname.

Options

-for ce
Overwrite existing files.

– –
Marks end of options.

file dirname name

Retur n dir ectory portion of path name.

file executable name

Retur n 1 if file name is executable by current user, 0 otherwise.

file exists name

Retur n 1 if file name exists and current user has search permissions for direc-
tories leading to it, 0 otherwise.

file extension name

Retur n characters after and including last period. If there is no period in
name, retur n empty string.

file isdirectory name

Retur n 1 if file name is a directory, 0 otherwise.

24 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

file isfile name

Retur n 1 if file name is a regular file, 0 otherwise.

file join name...

Combine arguments using path separator to form a file pathname.

file lstat name varName

Same as stat, but retur n infor mation for the target of a symbolic link rather
than the link itself.

file mkdir dir...

Cr eate one or more dir ectories, cr eating full path if necessary.

file mtime name

Retur n time that file was last modified, in POSIX format (seconds since the
start of the epoch).

file nativename name

Retur n platfor m-specific for m of file name.

file owned name

Retur n 1 if file is owned by current user, 0 otherwise.

file pathtype name

Retur n type of file or directory name as one of absolute, relative, or
volumerelative (e.g., C:filename).

file readable name

Retur n 1 if file is readable by the current user, 0 otherwise.

file readlink name

Retur n name of file to which symbolic link points, or an error if name is not a
symbolic link.

file rename [-for ce] [– –] source target
file rename [-for ce] [– –] source [source...] targetDir

Rename one or more files. Target destination can be in a differ ent dir ectory.

file rootname name

Retur n characters before the last period in path name, or name if last compo-
nent does not contain a period.

file size name

Retur n file size in bytes.

file split name

Split path name into a list of separate pathname elements, discarding path
separators.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — file 25

11 May 2006 10:45

file stat name varName

Stor e file information in an array variable. The array element names are as
shown below, with numeric values corresponding to the result from the stat
system call. Returns an empty string.

atime Time of last access
ctime Time of last change
dev Device number
gid Gr oup ID of owner
ino Inode number
mode Pr otection
mtime Time of last modification
nlink Number of hard links
size Total size in bytes
type Device type
uid User ID of owner

file tail name

Retur n characters in name after the last directory separator, or name if it con-
tains no separators.

file type name

Retur n a string indicating the type of file name: file, directory,
characterSpecial, blockSpecial, fifo, link, or socket.

file volume

Retur n a list of the currently mounted volumes or drive letters.

file writable name

Retur n 1 if file is writable by current user, 0 otherwise.

filee vent

fileevent channelId readable [script]
fileevent channelId writable [script]

Set up an event handler to execute script when an I/O channel becomes
readable or writable. ChannelId is an I/O channel identifier from a previous
call to open or socket. If script is omitted, retur ns the current script for the
channelId. If script is specified, retur ns an empty string.

flush

flush channelId

Flush output that has been buffer ed for I/O channel channelId, which must
have been opened for writing. Returns an empty string.

26 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

for

for start test next body

Implement a loop construct, similar to the for loop in C.

start Command string, executed once at beginning
test Expr ession string, for loop test
next Command string, executed at end of each iteration
body Command string, executed in each loop iteration

The interpreter executes start once. Then it evaluates the expression test;
if the result is zero, it retur ns an empty string. If non-zero, it executes body,
then next, and repeats the loop starting with test again.

Example

for {set i 0} {$i < 100} {incr i} {
puts $i

}

foreach

for each varname list body
for each varlist1 list1 [varlist2 list2...] body

Execute a loop that iterates over each element of a list. In the first form, vari-
able varname is repeatedly assigned the value of each element in list list,
and the expression body is evaluated. In the second form, there can be pairs
of lists of loop variables (varlistN) and lists (listN). In each iteration of
the loop the variables in varlistN ar e assigned to the next values of the
corr esponding list.

Example

foreach i {1 2 3 4 5 6 7 8 9 10} {
puts $i

}

format

for mat formatString [arg...]

For mat a string using ANSI sprintf() -style formatString and arguments.
Retur ns the formatted string. The format string placeholders have the form:

%[argpos$][flag][width][.prec][h|l]char

wher e argpos, width, and prec ar e integers and possible values for char
ar e as follows:

d Signed integer u Unsigned integer
i Signed integer (n, 0n, or 0xn) o Unsigned octal
x Unsigned hex X Unsigned HEX
c Int to char s String

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — for mat 27

11 May 2006 10:45

f Float (fixed) e Float (0e0)
E Float (0E0) g Auto float (f or e)
G Auto float (F or E) % Percent sign

Possible values for flag ar e as follows:

- Left justified + Always signed
0 Zer o padding space Space padding
Alter nate output format

Example

set i 12
set j 1.2
puts [format "%4d %5.3f" $i $j]

12 1.200
puts [format "%04X %5.3e" $i $j]
000C 1.200e+00

gets

gets channelId [varName]

Read characters from I/O channel channelId until end-of-line character or
end of file is reached. Assign the resulting string (without end-of-line charac-
ter) to variable varName and retur n the number of characters read. If var-
Name is omitted, retur n the string that was read.

glob

glob [options] pattern...

Retur n a list of files that match the given glob patterns.

Options

-nocomplain
Pr events an error from occurring if there are no matches; an empty string
is retur ned instead.

– –
Marks the end of options.

global

global varname...

Declar e given names as global variables. Meaningful only inside a procedur e.

histor y

history [option] [arg...]

Per form operations using the history list, a list of recently executed com-
mands. Command events can be indicated using a number or a string that
matches the command itself.

28 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

history

The same as history info.

history add command [exec]

Add command to history list, optionally executing it.

history change newValue [event]

Change command in history list to newValue. If event is not specified, use
curr ent event.

history clear

Clear the history list and reset event numbers.

history event [event]

Retur n an event. Default is event –1.

history info [count]

Retur n for matted list of history commands and event numbers. Return the last
count events, or all if count is not specified.

history keep [count]

Change the maximum size of the history list to count. If count is omitted,
retur n the current history size limit.

history nextid

Retur n the next event number.

history redo [event]

Execute a command from the history list. If event not specified, uses event –1.

if

if expr1 [then] body1 [elseif expr2 [then] body2...] [else] [bodyN]

Execute a conditional expression. If boolean expression expr1 is true, evalu-
ate body1. Otherwise, test optional additional expressions and execute the
matching body. The optional else keyword is followed by a command body
that is executed if no previous conditional expressions were true. The key-
words then and else ar e optional.

Example

if {$x < 0} {
set y 1

} elseif {$x == 0} {
set y 2

} else {
set y 3

}

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — if 29

11 May 2006 10:45

incr

incr varName [increment]

Incr ement the variable varName. The optional increment specifies the
value to be added to the variable; it defaults to 1. The new value is retur ned.

info

info option [arg...]

Retur n infor mation about the Tcl interpreter.

info args procname

Retur n a list of the argument names to procedur e procname.

info body procname

Retur n the body of procedur e procname.

info cmdcount

Retur n total count of commands invoked by the interpreter.

info commands [pattern]

Retur n a list of Tcl commands (built-in and procedur es) matching pattern.
Retur n all commands if pattern is omitted.

info complete command

Retur n 1 if command is complete (i.e., no unmatched quotes, braces, etc.).

info default procname arg varname

Retur n 1 if argument arg of procedur e procname has a default argument
value, otherwise 0. If there is a default value, it is placed in variable var-
name.

info exists varName

Retur n 1 if local or global variable varName exists.

info globals [pattern]

Retur n a list of global variables matching pattern. Retur n all variable names
if pattern is omitted.

info hostname

Retur n system hostname.

info level [number]

If number is not specified, retur n a number indicating the current procedur e
stack level, or 0 for global level. With number, retur n a list containing the
name and arguments for the procedur e at the specified stack level.

30 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

info library

Retur n the name of the standard Tcl library directory; the same as global vari-
able tcl_library.

info loaded [interp]

Retur n a list of the currently loaded packages for interpreter interp (default
is for all interpreters; use empty string for current interpreter).

info locals [pattern]

Retur n list of local variables, including procedur e arguments, that match
pattern (default is all).

info nameofexecutable

Retur n full name of file from which application was invoked.

info patchlevel

Retur n Tcl patch level; same as global variable tcl_patchLevel.

info procs [pattern]

Retur n list of Tcl procedur es matching pattern, or all procedur es if
pattern is omitted.

info script

Retur n name of Tcl file being evaluated.

info sharedlibextension

Retur n the platform-dependent file extension used for shared libraries, or an
empty string if shared libraries are not supported.

info tclversion

Retur n Tcl version; same as global variable tcl_version.

info vars [pattern]

Retur n a list of local and global variables matching pattern, or all variables
if pattern is omitted.

interp

interp option [arg...]

Manage Tcl interpreters. A master Tcl interpr eter can create a new interpreter,
called a slave, which coexists with the master. Each interpreter has its own
namespace for commands, procedur es, and global variables. Using aliases, a
command in a slave interpreter can cause a command to be invoked in the
master or another slave interpreter. Safe interpr eters can be created that may
be used for executing untrusted code because all potentially dangerous com-
mands have been disabled by making them hidden.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — interp 31

11 May 2006 10:45

interp alias srcPath srcCmd

Retur n a list containing the target command and arguments for the alias
named srcCmd in interpreter specified by srcPath.

interp alias srcPath srcCmd {}

Delete the alias named srcCmd fr om the interpreter specified by srcPath.

interp alias srcPath srcCmd targetPath targetCmd [arg...]

Cr eate an alias between two slave Tcl interpreters. The source command is
named srcCmd in interpreter srcPath and is placed in interpreter target-
Path as command targetCmd. Additional arguments to be appended to
targetCmd can be specified.

interp aliases [path]

Retur n a list of the command aliases defined in interpreter path.

interp create [-safe] [– –] [path]

Cr eate a slave interpreter using the specified path.

Options

-safe
Cr eates a safe interpreter.

– –
Marks the end of options.

interp delete [path...]

Delete slave interpreters specified using zero or mor e pathnames.

interp eval path arg...

Concatenate arguments and evaluate them as a command using the slave
interpr eter specified by path. Retur n result of command.

interp exists path

Retur n 1 if the slave interpreter with name path exists; otherwise, retur n 0.

interp expose path hiddenName [exposedCmdName]

Make the hidden command hiddenName visible to a slave interpreter path
with name exposedCmdName.

interp hidden path

Retur n a list containing the hidden commands in interpreter path.

interp hide path exposedCmdName [hiddenCmdName]

Make the exposed command exposedCmdName a hidden command in inter-
pr eter path with name hiddenCmdName (default name is same as exposed
name).

32 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

interp invokehidden path [-global hiddenCmdName [arg...]

Invoke the hidden command hiddenCmdName in interpreter path with
specified arguments. With -global, invoke command at global level (default is
curr ent level).

interp issafe [path]

Retur n 1 if the interpreter specified by path is a safe interpreter.

interp marktrusted path

Mark the interpreter path as a trusted interpreter.

interp share srcPath channelId destPath

Shar e the I/O channel channelId between interpreters srcPath and
destPath.

interp slaves [path]

Retur n a list of the slave interpreters associated with interpreter path (default
is the invoking interpreter).

interp target path alias

Retur n a list describing the target interpreter for an alias.

interp transfer srcPath channelId destPath

Move the I/O channel channelId fr om srcPath to interpreter destPath.

Slave interpreter names are commands that also accept these options:

slave aliases
slave alias srcCmd
slave alias srcCmd {}
slave alias srcCmd targetCmd [arg...]
slave eval arg...
slave expose hiddenName
slave hide exposedCmdName
slave hidden
slave invokehidden [-global hiddenName] [arg...]
slave issafe
slave marktrusted

join

join list [joinString]

Concatenate the elements of list list and retur n the resulting string. Option-
ally separate the elements using joinString, which defaults to a single
space.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — join 33

11 May 2006 10:45

lappend

lappend varName [value...]

Append the value arguments to the list contained in variable varName,
interpr eting each value as a list element. Works in place, making it relatively
ef ficient. If varName does not exist, it is created.

lindex

lindex list index

Retur n item number index fr om list list. Index starts at zero, and can be
the string “end” to retur n the last item.

linser t

linsert list index element...

Insert elements into list starting at the specified index. An index of 0
inserts at the beginning, and the string “end” inserts at the end. Returns the
resulting list.

list

list [arg...]

Retur n a list containing the given arguments.

llength

llength list

Retur n the number of elements in list list.

load

load fileName [packageName] [interp]

Loads a binary file containing new Tcl commands. fileName is the filename
to load (i.e., shared library or DLL), and packageName is the name of a
package, used to compute the name of init procedur e. interp is the path-
name of the interpreter into which to load the file (default is invoking inter-
pr eter).

lrange

lrange list first last

Retur n a list consisting of elements from list having indices first thr ough
last. Indices start at zero, and can also be the string “end”.

34 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

lreplace

lr eplace list first last [element...]

Replace elements of list having indices first thr ough last with the
given elements and retur n the resulting list. If no new elements are supplied,
list elements are deleted.

lsearch

lsear ch [mode] list pattern

Search list for an element that matches pattern. If found, retur n the
index of the matching element; otherwise, retur n –1. The type of search is
defined by one of the following mode options:

-exact Use exact matching.
-glob Use glob pattern matching (default).
-r egexp Use regular expression matching.

lsor t

lsort [options] list

Sort the elements of list list and retur n the resulting list.

Options

-ascii
Sort by ASCII collation order (default).

-dictionary
Sort using dictionary order (case insensitive, compare numbers as inte-
gers).

-integer
Compar e elements as integer numbers.

-r eal
Compar e elements as floating-point numbers.

-command command
Compar e using a command that must retur n <0, 0, or >0.

-incr easing
Sort in increasing order (default).

-decr easing
Sort in decreasing order.

-index index
Sort a list of lists based on the values with index index in each sublist.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — lsort 35

11 May 2006 10:45

namespace

namespace [option] [arg...]

Cr eate and manipulate contexts for commands and variables.

namespace children [namespace] [pattern]

Retur n a list of child namespaces that belong to the namespace matching
pattern. If pattern is omitted, retur n all namespaces. If namespace is
omitted, retur n childr en of the current namespace.

namespace code script

Accept a command script and retur n it wrapped such that the resulting
script can be evaluated from any namespace, but will execute in the current
namespace in which the namespace code command was invoked.

namespace current

Retur n the fully qualified name of the current namespace.

namespace delete [namespace...]

Delete the given namespaces and all associated variables, procedur es, and
child namespaces.

namespace eval namespace arg...

Evaluate the arguments in the context of the specified namespace.

namespace export [-clear] [pattern...]

Export commands matching one or more patter ns fr om the current name-
space. With the -clear option, first reset any previous exports. With no option
or patterns, retur n the current export list.

namespace forget [pattern...]

Remove previously exported commands matching one or more patter ns fr om
a namespace.

namespace import [-for ce] [pattern...]

Import commands matching one or more fully qualified patterns. Option
-for ce allows imported commands to replace existing commands.

namespace inscope namespace arg...

Evaluate arguments in the context of namespace.

namespace origin command

Retur n the fully qualified name of the imported command command.

namespace parent [namespace]

Retur n the fully qualified name of the parent for namespace namespace.
Retur n the parent of the current namespace if the argument is omitted.

36 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

namespace qualifiers string

Retur n the leading namespace qualifiers from string, which refers to a
namespace name.

namespace tail string

Retur n the simple name at the end of string, which refers to a namespace
name.

namespace which [-command|-variable] name

Retur n the fully qualified name of name. Option -command looks up name as
a command (default), and option -variable looks up name as a variable.

open

open fileName [access] [permissions]

Open the specified file, device, or command pipeline using an access speci-
fier (described in the following list). Return a channel identifier that can be
used in subsequent I/O commands. FileName can be a string corresponding
to a regular file. If the first character is “|”, open a command pipeline (can be
open for read or write). FileName can also be a device name for a serial
port (platform dependent). When creating a new file, optionally specify the
access permissions to be given to the file in conjunction with the process’s file
cr eation mask (default is read and write access for all).

Access specifiers:

r Open for reading; file must already exist (default).
r+ Open for read and write; file must already exist.
w Open for write; create new file if needed.
w+ Open for read and write; create new file if needed.
a Open existing file for write, appending to end.
a+ Open for read and write, appending to end.

Alter nate (POSIX) form for access (must specify one of the first three):

RDONLY Open for reading.
WRONLY Open for writing.
RDWR Open for read and write.

You can add one or more of the following (as a list):

APPEND Open file for append.
CREAT Cr eate file if it does not exist.
EXCL Report error if file does already exist.
NOCTTY For terminals, do not become controlling terminal for process.
NONBLOCK Open in nonblocking mode.
TRUNC Truncate file to zero length.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — open 37

11 May 2006 10:45

packa ge

package [options]

Manage the loading and version control of Tcl packages.

package forget package

Remove package package fr om the current interpreter.

package ifneeded package version [script]

Indicate that version version of package package will be loaded when
script is executed. If script is omitted, retur n the current script.

package names

Retur n a list of the names of packages that have been indicated using a pack-
age provide or package ifneeded command.

package provide package [version]

Indicate that version version of package package is present in interpreter.
With no version argument, retur n the version of the package.

package requir e [-exact] package [version]

Load a package into the interpreter. Version indicates the version that is
desir ed; any package with the same major number will be loaded. -exact indi-
cates that exactly the specified version should be loaded.

package unknown [command]

Supply a command to be executed if the interpreter is unable to load a pack-
age. With no command argument, retur n the current package unknown com-
mand.

package vcompare version1 version2

Compar e two package version numbers. Return –1 if version1 is earlier
than version2, 0 if equal, or 1 if newer.

package versions package

Retur n a list of the versions of package that have been register ed by package
ifneeded commands.

package vsatisfies version1 version2

Retur n 1 if scripts written for version version2 work with version1.

pid

pid [fileId]

Retur n a list of process IDs for the commands invoked by the command
pipeline associated with fileId. With no fileId, retur n the current pro-
cess’s ID.

38 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

pkg_mkIndex

pkg_mkIndex dir pattern...

Cr eate an index file for autoloading packages. Dir is the directory containing
the files. Supply one or more glob patterns to match the files in the directory
to be indexed for autoloading.

proc

pr oc name arglist body

Cr eate a new Tcl procedur e called name. The commands in body will be
executed when the command is invoked. Arglist is a list describing the for-
mal arguments. Each element can be a variable name, or a list containing a
variable name and its default value. Returns an empty string.

If the last argument has the special variable name args, it is set to a list of
the remaining arguments passed to the procedur e, which can vary in number.

Example

proc myCommand { i j {k 0} } {
puts "This is my command"
return $k

}

puts

puts [-nonewline] [channelId] string

Output a string of characters to the I/O channel specified using channelId.
If channelId is omitted, uses standard output. Option -nonewline sup-
pr esses the newline character normally appended when printing.

pwd

pwd

Retur n the pathname of the current working directory.

read

read [-nonewline] channelId [numBytes]

Read characters from the I/O channel channelId. Read the number of bytes
specified by numBytes, or if omitted, read all characters until end of file.
With option -nonewline, discard the last character in the file if it is a newline.
Retur ns the characters read.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — read 39

11 May 2006 10:45

regexp

regexp [options] exp string [matchVar] [subMatchVar...]

Retur n 1 if regular expression exp matches string string; otherwise, retur n
0. If specified, matchVar will contain the portion of string that matched,
wher eas subMatchVar variables will contain strings matching parenthesized
expr essions in exp.

Options

-nocase
Ignor e case in pattern matching.

-indices
Rather than storing strings in subMatchVar, stor e the indices of the first
and last matching characters as a list.

– –
Marks the end of options.

Example

regexp {ˆ[0-9]+$} 123
1
regexp {ˆ[0-9]+$} abc
0

regsub

regsub [options] exp string subSpec varName

Match regular expression exp against string string, making replacements
defined by subSpec, and store the result in variable varName.

Options

-all
Replace all matching expressions in the string.

-nocase
Ignor e case in pattern matching.

– –
Marks the end of options.

Example

regsub {[0-9]} a1b2c3 {#} result
set result
a#b2c3
regsub -all< {[0-9]} a1b2c3 {#} result
set result
a#b#c#

40 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

rename

rename oldName newName

Rename the command oldName to have the new name newName. Delete
oldName if newName is an empty string.

retur n

retur n [-code code] [-err orinfo info] [-err orcode code] [string]

Retur n fr om a procedur e, top-level command, or source command. Return
string as the retur n value (default is an empty string).

Options

-code
Retur n an error code, one of the strings “ok”, “error”, “retur n”, “br eak”, or
“continue”, or an integer value.

-err orinfo
Retur n an initial stack trace for the err orInfo variable.

-err orcode
Retur n a value for the err orCode variable.

scan

scan string format varName...

Parse fields from the string string according to the ANSI C scanf() -style
for mat format and place results in the specified variables. Return the num-
ber of conversions, or –1 if unable to match any fields. Format placeholders
have the form %[*][width]char, wher e * discards the field, width is an inte-
ger, and possible values of char ar e as follows:

d Decimal o Octal
x Hex c Char to int
e Float f Float
g Float s String (no whitespace)
[chars] Chars in given range [ˆchars] Chars not in given range

seek

seek channelId offset [origin]

Set position for random access to I/O channel channelId. Specify starting
byte position using integer value offset relative to origin, which must be
one of the following:

start Of fset bytes from start of the file (default).
current Of fset bytes from the current position (positive or negative).
end Of fset bytes relative to the end of file (positive or negative).

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — seek 41

11 May 2006 10:45

set

set varName [value]

Set the value of variable varName to value and retur n the value. If value
is omitted, retur n the current value of varName.

socket

socket [options] host port

Cr eate a client-side connection to a socket using the specified host and port
number. Retur n a channel identifier that can be used for subsequent I/O com-
mands.

Options

-myaddr addr
Specify domain name or IP address of client interface.

-myport port
Specify port number to use for client side of connection.

-async
Connect asynchronously.

socket -server command [option] port

Cr eate the server side of a socket using the specified port number. When a
client connects, invoke command.

Option

-myaddr addr
Specify domain name or IP address of server interface.

source

sour ce fileName

Read file fileName and pass it to the current interpreter for evaluation.
Retur n the retur n value of last command executed in file.

sour ce -rsr c resourceName [fileName]
sour ce -rsr cid resourceId [fileName]

On the Macintosh platform only, source the script using the text resource with
the given name or resource identifier.

split

split string [splitChars]

Split a string into a list. Elements are split if separated by any of the characters
in list splitChars (default is whitespace). Returns the resulting list.

42 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

str ing

stringoption arg...

Per form string operations on one or more strings, based on the value of
option. String indices start at 0.

string compare string1 string2

Compar e strings lexicographically. Return –1 if string1 is less than
string2, 0 if equal, or 1 if greater.

string first string1 string2

Retur n the index of the first occurrence of string1 in string2, or –1 if no
match.

string index string charIndex

Retur n the character in string that has index charIndex. Retur n empty
string if charIndex is out of range.

string last string1 string2

Retur n the index of the last occurrence of string1 in string2, or –1 if no
match.

string length string

Retur n the length of string in characters.

string match pattern string

Retur n 1 if string matches glob pattern pattern; otherwise, retur n 0.

string range string first last

Retur n substring of string consisting of characters from index first
thr ough last. Last can be the string “end”.

string tolower string

Retur n string converted to lowercase.

string toupper string

Retur n string converted to uppercase.

string trim string [chars]

Retur n string with leading and trailing characters from the set chars
removed (default is whitespace characters).

string trimleft string [chars]

Retur n string with leading characters from the set chars removed (default
is whitespace characters).

string trimright string [chars]

Retur n string with trailing characters from the set chars removed (default
is whitespace characters).

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — string 43

11 May 2006 10:45

string wordend string index

Retur n index of first character after word in string that occurs at character
position index.

string wordstart string index

Retur n index of first character of word in string that occurs at character
position index.

subst

subst [options] string

Per form variable, command, and backslash substitutions on string and
retur n result.

Options

-nobackslashes
Do not perfor m backslash substitution.

-nocommands
Do not perfor m command substitution.

-novariables
Do not perfor m variable substitution.

switch

switch [options] string pattern body [pattern body...]
switch [options] string {pattern body [pattern body...]}

Match string against each pattern argument. If a match is found, evaluate
the corresponding body and retur n result. Pattern can be “default” to
match anything. Body can be “-” to fall through to the next pattern.

Options

-exact
Use exact matching (default).

-glob
Use glob matching.

-r egexp
Use regular expression matching.

– –
Marks the end of options.

Example

switch $tcl_platform(platform) {
windows {puts "Running on Windows"}
unix {puts "Running on Unix"}
macintosh {puts "Running on Macintosh"}
default {puts "Running on unknown platform"}

}

44 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

tell

tell channelId

Retur n the current access position of I/O channel channelId as a decimal
number, or –1 if the channel does not support random access.

time

time script [count]

Execute the command script and retur n a string indicating the average
elapsed time requir ed. The command is run count times (default is 1) and
the result is averaged.

trace

trace option [arg...]

Trace variable accesses by executing a user-defined command whenever the
variable is read, written, or unset.

trace variable name ops command

Trace operations on variable name. Operations are specified by one or more
of the characters r (r ead), w (write), or u (unset). When the operation occurs,
execute command.

trace vdelete name ops command.

Delete a trace previously set on a variable.

trace vinfo name

Retur n a list describing the traces currently set on variable name.

unknown

unknown cmdName [arg...]

This command is invoked by the Tcl interpreter if a program attempts to per-
for m a nonexistent command. The user can redefine the default implementa-
tion of unknown defined in the Tcl system startup file.

unset

unset name...

Remove one or more variables specified by name.

Tcl Core
Com

m
ands

Alphabetical Summary of Commands — unset 45

11 May 2006 10:45

update

update [idletasks]

Call the event handler loop until all pending events have been processed. The
idletasks option specifies only to update idle callbacks.

uple vel

uplevel [level] arg...

Concatenate arguments and evaluate them in the stack frame context indi-
cated by level, wher e level is either a number indicating the number of
levels up the stack relative to the current level or a number preceded by “#”,
indicating an absolute level. The default level is 1.

upvar

.sp -1p upvar [level] otherVar myVar...

Make local variable myVar become an alias for variable otherVar in the
stack frame indicated by level, wher e level is either a number indicating
the number of levels up the stack relative to the current level or a number
pr eceded by “#”, indicating an absolute level. The default level is 1.

variable

.sp -1p variable [name value...] name [value]

Cr eate one or more variables in the current namespace and assign them the
given values.

vwait

.sp -1p vwait varName

Call the event handler to process events and block until the value of variable
varName changes.

while

.sp -1p while test body

A loop construct that repeatedly evaluates expression test; if it retur ns a true
value, it executes body.

Example

set i 1
while {$i <= 10} {

puts $i
incr i

}

46 Chapter 2 – Tcl Core Commands

11 May 2006 10:45

CHAPTER 3

Tk Core Commands

Tk is the most popular extension to the Tcl language. John Ousterhout, the author
of Tcl itself, wrote the Tk extension soon after releasing Tcl to the public. Tk is
available at http://www.scriptics.com. This chapter covers Version 8.0.

Tk adds many new commands to the Tcl interpreter for writing graphical user
inter face (GUI) applications. Commands are available to create and lay out several
dif ferent types of windows, called widgets, bind Tcl scripts to window system
events, create and manipulate graphical images, and interact with the window
manager and server.

Tk scripting provides an excellent tool for quickly prototyping GUI applications.
Pr ograms that take many hundreds of lines of Xlib or Motif C code can typically be
done in less than a hundred lines of Tk. Also, no compilation is necessary and
almost all aspects can be dynamically reconfigur ed during runtime. Using the pow-
er ful I/O commands of Tcl, it is also easy to add graphical interfaces on top of
existing command-line applications.

The Tk extension can be loaded into a running Tcl interpreter by using the com-
mand:

package require Tk

on systems supporting dynamic loading. Typically, one runs the program wish,
which starts a Tcl interpreter with the Tk extension already loaded.

Example
The following Tcl code demonstrates the use of most of the major widget com-
mands and several of the non-widget commands. The resulting interface is shown
in Figure 3-1.

Tk Core
Com

m
ands

47

11 May 2006 10:47

http://www.scriptics.com

wm withdraw .
set w [toplevel .t]
wm title .t {Tk Code Example}
set m [menu $w.menubar -tearoff 0]
$m add cascade -label File -menu [menu $m.file]
$m.file add command -label Quit -command exit
$m add cascade -label Help -menu [menu $m.help]
$m.help add command -label Index -command {puts Sorry}
$w configure -menu $m

set f [frame $w.f1]
pack [label $f.label -text {A label}] -side left
pack [entry $f.entry] -side left -fill x -expand true
$f.entry insert 0 {This is an entry}
pack $f -fill x -padx 2 -pady 2

set f [frame $w.f2]
pack [frame $f.rg -relief groove -bd 3] -side left -fill x -expand true
pack [label $f.rg.lbl -text Radiobuttons:] -side left
pack [radiobutton $f.rg.b1 -text Tea -variable choice -value 1]

-side left
pack [radiobutton $f.rg.b2 -text Coffee -variable choice -value 0]

-side left
pack [frame $f.cg -relief groove -bd 3] -side left -fill x -expand true
pack [label $f.cg.lbl -text Checkbuttons:] -side left
pack [checkbutton $f.cg.b1 -text Cream] -side left
pack [checkbutton $f.cg.b2 -text Sugar] -side left
pack $f -fill x -padx 2 -pady 2

set f [frame $w.f3]
pack [label $f.lbl -text Scale:] -side left
pack [label $f.val -textvariable scaleval -width 4] -side left
pack [scale $f.scl -variable scaleval -orient horizontal -from 0 \

-to 10 -showvalue false] -side left -fill x -expand true
pack $f -fill x -padx 2 -pady 2

set f [frame $w.f4 -relief groove -bd 3]
pack [frame $f.lf] -side left -fill both -padx 3 -pady 3
pack [listbox $f.lf.lb -yscrollcommand "$f.lf.sb set" -height 4] \

-side left -fill both -expand true
pack [scrollbar $f.lf.sb -command "$f.lf.lb yview"] \

-side left -fill y
$f.lf.lb insert end {Line 1 of listbox} {Line 2 of listbox}
pack [frame $f.tf] -side left -fill both -expand true -padx 3 -pady 3
grid columnconfigure $f.tf 0 -weight 1
grid rowconfigure $f.tf 0 -weight 1
grid [text $f.tf.tx -yscrollcommand "$f.tf.sy set" -height 4 -width 25 \

-xscrollcommand "$f.tf.sx set"] -column 0 -row 0 -sticky nsew
grid [scrollbar $f.tf.sy -command "$f.tf.tx yview"] \

-column 1 -row 0 -sticky ns
grid [scrollbar $f.tf.sx -command "$f.tf.tx xview" -orient horizontal] \

-column 0 -row 1 -sticky ew
$f.tf.tx insert end {This is a text widget}
pack $f -fill both -expand true -padx 2 -pady 2

set f [frame $w.f5]
button $f.b1 -text Apply -default active -command {puts $scaleval}
button $f.b2 -text Reset -default normal -command {set scaleval 0}
button $f.b3 -text Quit -default normal -command exit
pack $f.b1 $f.b2 $f.b3 -padx 10 -side left
pack $f -pady 2

48 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

Figur e 3−1: Resulting inter face fr om sample Tk code

Command-Line Options
The wish pr ogram has the following command-line format:

wish [cmdfile] [options] [– –] [arg arg...]]

Its behavior is identical to the tclsh pr ogram in the handling of the cmdfile and
arg arguments. In addition, the following options are available:

-color map new
Specify that the root window should have a new colormap rather than
the default colormap of the screen.

-display display
For the X Window System, the display (and screen) on which to display
the root window.

-geometry geometry
Geometry to use for the root window in standard X Window System
geometry format. It will be stored in the geometry global variable.

-name name
Specify the title for the root window and the name of the interpreter for
send commands.

-sync
Execute all X Window System commands synchronously. This option
makes sure that all errors are reported immediately, but slows down exe-
cution.

Tk Core
Com

m
ands

Command-Line Options 49

11 May 2006 10:47

-use id
Instead of the root window being a top-level window, it is embedded in
the window whose system identifier is id (as retur ned by winfo id com-
mand).

-visual visual
Visual class to use for the root window. Visual must be direct-
color, grayscale, pseudocolor, staticcolor, staticgray, or
truecolor.

– –
Denote end of wish options. Additional arguments are passed to the
script’s argv global variable. Normally, all arguments are scanned for
matches to the above options.

Environment Var iable
The following environment variable is used by Tk:

TK_LIBRARY Dir ectory containing Tk scripts and other files needed by Tk
at runtime.

Special Var iables
The following global variables are defined by the Tk extension:

tk_library Dir ectory containing the standard Tk script library.
tk_patchLevel Curr ent patch level of Tk extension.
tk_strictMotif When non-zero, Tk tries to adhere to Motif look and feel.
tk_version Curr ent version of Tk extension.

Group Listing of Tk Commands
This section briefly lists all Tk commands, grouped logically by function.

Widgets

button Cr eate a button widget.
canvas Cr eate a canvas widget.
checkbutton Cr eate a checkbutton widget.
entry Cr eate an entry widget.
frame Cr eate a frame widget.
label Cr eate a label widget.
listbox Cr eate a listbox widget.
menu Cr eate a menu widget.
menubutton Cr eate a menubutton widget.
message Cr eate a message widget.
radiobutton Cr eate a radiobutton widget.
scale Cr eate a scale widget.

50 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

scr ollbar Cr eate a scr ollbar widget.
text Cr eate a text widget.
toplevel Cr eate a top-level widget.

Geometr y Management

grid Lay out widgets on a grid.
pack Lay out widgets by packing them along borders.
place Lay out widgets using explicit placement.

Event Handling

bind Bind window events to Tcl scripts.
bindtags Contr ol the precedence order of event bindings.
event Generate window events and define virtual events.

Focus

focus Give a window the keyboard focus.
grab Set focus grabs on windows.
tk_focusNext Get the next window in the focus order.
tk_focusPr ev Get the previous window in the focus order.
tk_focusFollowsMouse Arrange for the focus to follow the mouse pointer.

Dialogs

tk_chooseColor Pop up a dialog for choosing a color.
tk_dialog Pop up a message dialog with arbitrary buttons.
tk_getOpenFile Pop up a dialog for choosing an existing file.
tk_getSaveFile Pop up a dialog for choosing any filename.
tk_messageBox Pop up a message dialog with predefined buttons.

Miscellaneous

bell Ring the window system’s bell.
clipboar d Manipulate the window system’s clipboard.
destr oy Destr oy a widget.
font Cr eate and delete named fonts.
image Cr eate and manipulate images.
lower Lower a window in the stacking order.
option Manipulate the Tk option database.
raise Raise a window in the stacking order.
selection Manipulate selection ownership and handling.
send Evaluate a command in another interpreter.
tk Access Tk’s internal state.
tkwait Pause program until a defined change occurs.
tk_bisque Set default color palette to old bisque scheme.
tk_optionMenu Cr eate an Option menu.

Tk Core
Com

m
ands

Gr oup Listing of Tk Commands 51

11 May 2006 10:47

tk_ pop-up Post a popup menu.
tk_setPalette Change the Tk color scheme.
winfo Get information on various window properties.
wm Communicate with the window manager.

Widget Over view
All Tk widgets are created by a Tcl command of the same name as the widget.
These widget creation commands have the form:

widgetCmd pathName [option value...]

wher e widgetCmd is the name of the widget type desired (e.g., button or listbox)
and pathName is the pathname for the new widget. The retur n value for the com-
mand is pathName.

A widget’s pathname consists of a child name appended to the pathname of its
par ent widget using a ‘‘.’’ character. The child name is an arbitrary string that
excludes the ‘‘.’’ character and is unique among its siblings, the other widget chil-
dr en of its parent. The pathname for the Tk main (or root) window is simply a sin-
gle dot (i.e., ‘‘.’’); its immediate children begin with a dot, and each additional
level of a child widget appears after an additional dot. This scheme is analogous to
file pathnames in the Unix file system, where the ‘‘/’’ character is used as a direc-
tory name separator. For example, the pathname of a frame widget named
frame1 whose parent is the main window would have the pathname .frame1.
A button widget named button1 who is a child of frame1 would have the path-
name .frame1.button1. Almost all Tk commands requir e the full pathname for
arguments that specify a widget.

When a new widget is created with the pathname pathName, a new Tcl com-
mand is also defined with the same name. Invoking this command allows one to
manipulate the widget in various ways depending on the arguments passed. The
first argument to the widget’s command is referr ed to as the widget method and
selects the action to be taken by the widget. Additional arguments to the widget’s
command may be allowed or requir ed, depending on the method. The methods
available to each widget type are described in the “Widget Commands” section,
later in this chapter.

The optional option-value pair arguments to the widget creation command
allow one to set the value of the widget’s supported configuration options. All
widgets support the configur e and cget methods to change and query their config-
uration options after creation.

The configur e method has the form:

pathName configur e [option [value [option value...]]]

If one or more option-value pairs are specified, the given options are set to the
given values. If no option-value pairs are specified, the command retur ns a list
with an element for each supported widget option. Each element itself is a list of
five items describing an option. These items are the option itself, its database
name, its class name, its default value, and its current value. For example, the list

52 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

for -activebackgr ound might look like this: {-activebackground active-
Background Foreground #ececec blue}. If only the first option argument
is specified, just the five-item list describing that option is retur ned.

The cget command has the form:

pathName cget option

and simply retur ns the current setting of the option option.

The configuration options available differ depending on the widget type. Many
options are supported by all or several of the widget types. These standard
options are described in the next section. Which standard options a widget type
supports and the options that are specific to a particular widget type are described
in the “Widget Commands” section .

For distance and coordinate options that take values in screen units, the valid for-
mat is a floating-point number followed by an optional one-character suffix: c for
centimeters, i for inches, m for millimeters, p for printer’s points (1⁄ 72 inch), or no
character for pixels. Commands that retur n values for screen distances and coordi-
nates do so in pixels, unless otherwise stated.

Standard Widget Options

Each of the following entries lists the option or options used in Tk, the name in
the window system’s resource database for the option, the associated class name
in the resource database, and a description of the option.

-activebackgr ound color (activeBackground, Foreground)
Backgr ound color of widget when it is active.

-activebor derwidth width (activeBorderWidth, BorderWidth)
Width, in screen units, of widget’s border when it is active.

-activefor eground color (activeForeground, Background)
For eground color of widget when it is active.

-anchor anchorPos (anchor, Anchor)
How information is positioned inside widget. Valid anchorPos values are n,
ne, e, se, s, sw, w, nw, and center.

-backgr ound color (background, Background)
-bg color

Backgr ound color of widget in normal state.

-bitmap bitmap (bitmap, Bitmap)
A bitmap image to display in the widget in place of a textual label. Valid
bitmap values are the special sequence @filename, specifying a file from
which to read the bitmap data or one of the built-in bitmaps: error,
gray12, gray25, gray50, gray75, hourglass, info, questhead,
question, or warning. On the Macintosh, the following bitmaps are avail-
able: document, stationery, edition, application, accessory,
folder, pfolder, trash, floppy, ramdisk, cdrom, preferences,
querydoc, stop, note, and caution.

Tk Core
Com

m
ands

Widget Overview 53

11 May 2006 10:47

-bor derwidth width (borderWidth, BorderWidth)
-bd width

Width, in screen units, of widget’s border in its normal state.

-cursor cursor (cursor, Cursor)
Cursor to display when mouse pointer is inside the widget’s borders. The
cursor argument may take the following forms:

name [fgColor [bgColor]]
Name is the name of a cursor font as defined in the X Window System
cursor font.h include file (e.g., cross and left_ptr). If fgColor and
bgColor ar e specified, they give the foregr ound and background colors
for the cursor, respectively. If bgColor is omitted, the background will
be transparent. If neither is specified, the defaults will be black and
white, respectively.

@sourceName maskName fgColor bgColor
Sourcename and maskName ar e the names of files describing bitmaps
for the cursor’s source bits and mask. Fgcolor and bgColor indicate
the foregr ound and background colors, respectively, for the cursor. This
for m is invalid on Macintosh and Windows platforms.

@sourceName fgColor
sourceName is the name of a file describing a bitmap for the cursor’s
source bits. fgColor is the foregr ound color for the cursor. This form is
invalid on Macintosh and Windows platforms.

-disabledfor eground color (disabledForeground,
DisabledForeground)

For eground color of widget when it is disabled.

-exportselection boolean (exportSelection, ExportSelection)
Whether a selection in the widget should also be made the X Window System
selection.

-font font (font, Font)
Font to use when drawing text inside the widget.

-for eground color (foreground, Foreground)
-fg color

For eground color of widget in its normal state.

-highlightbackgr ound color (highlightBackground,
HighlightBackground)

Color of the rectangle drawn around the widget when it does not have the
input focus.

-highlightcolor color (highlightColor, HighlightColor)
Color of the rectangle drawn around the widget when it has the input focus.

-highlightthickness width (highlightThickness,
HighlightThickness)

Width, in screen units, of highlighted rectangle drawn around widget when it
has the input focus.

54 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-image imageName (image, Image)
Name of image to display in the widget in place of its textual label (see the
image command).

-insertbackgr ound color (insertBackground, Foreground)
Color to use for the background of the area covered by the insertion cursor.

-insertbor derwidth width (insertBorderWidth, BorderWidth)
Width, in screen units, of the border to draw around the insertion cursor.

-insertof ftime milliseconds (insertOffTime, OffTime)
Time the insertion cursor should remain ‘‘off ’’ in each blink cycle.

-insertontime milliseconds (insertOnTime, OnTime)
Time the insertion cursor should remain ‘‘on’’ in each blink cycle.

-insertwidth width (insertWidth, InsertWidth)
Width, in screen units, of the insertion cursor.

-jump boolean (jump, Jump)
Whether to notify slider controls (e.g., scrollbars) connected to the widget to
delay making updates until mouse button is released.

-justify alignment (justify, Justify)
How multiple lines of text are justified. Valid alignment values are left,
center, or right.

-orient orientation (orient, Orient)
The orientation in which the widget should be laid out. Valid orientation
values are vertical or horizontal.

-padx width (padX, Pad)
Extra space, in screen units, to request for padding the widget’s top and bot-
tom sides.

-pady height (padY, Pad)
Extra space, in screen units, to request for padding the widget’s left and right
sides.

-r elief effect (relief, Relief)
3D effect desired for the widget’s border. Valid effect values are flat,
groove, raised, ridge, or sunken.

-r epeatdelay milliseconds (repeatDelay, RepeatDelay)
Time a button or key must be held down before it begins to autorepeat.

-r epeatinterval milliseconds (repeatInterval,
RepeatInterval)

Time between autorepeats once action has begun.

-selectbackgr ound color (selectBackground, Foreground)
Backgr ound color to use when displaying selected items or text.

Tk Core
Com

m
ands

Widget Overview 55

11 May 2006 10:47

-selectbor derwidth width (selectBorderWidth, BorderWidth)
Width, in screen units, of border to draw around selected items or text.

-selectfor eground color (selectForeground, Background)
For eground color to use when displaying selected items or text.

-setgrid boolean (setGrid, SetGrid)
Whether the widget controls the resizing grid for its top-level window. See the
wm grid command for details.

-takefocus focusType (takeFocus, TakeFocus)
If 0 or 1, signals that the widget should never or always take the focus. If
empty, Tk decides. Otherwise, evaluates argument as script with widget name
appended as argument. Returned value must be 0, 1, or empty.

-text string (text, Text)
Text string to be displayed inside the widget.

-textvariable variable (textVariable, Variable)
Variable whose value is a text string to be displayed inside the widget.

-tr oughcolor color (troughColor, Background)
Color to use for the rectangular trough areas in widget.

-underline index (underline, Underline)
Integer index of a character to underline in the widget.

-wraplength length (wrapLength, WrapLength)
Maximum line length, in screen units, for word wrapping.

-xscr ollcommand cmdPrefix (xScrollCommand, ScrollCommand)
Pr efix for a command used to communicate with an associated horizontal
scr ollbar. Typically scrollbar set, wher e scrollbar is the pathname of
a horizontal scrollbar widget.

-yscr ollcommand cmdPrefix (yScrollCommand, ScrollCommand)
Pr efix for a command used to communicate with an associated vertical scroll-
bar. Typically scrollbar set, wher e scrollbar is the pathname of a ver-
tical scrollbar widget.

Widget Commands
This section describes each Tk widget type and the options and methods the wid-
get supports. Only the names of the standard options supported by the widget are
listed. Refer to the “Standard Widget Options” section earlier in this chapter for
option definitions.

button

button pathName [option value...]

The button command creates a new button widget named pathName.

56 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

Standard Options

-activebackgr ound -activefor eground -anchor
-backgr ound -bitmap -borderwidth
-cursor -disabledforegr ound -font
-for eground -highlightbackground -highlightcolor
-highlightthickness -image -justify
-padx -pady -r elief
-takefocus -text -textvariable
-underline -wraplength

Widget-Specific Options

-command tclCommand (command, Command)
Command to be evaluated when button is invoked.

-default state (default, Default)
State for the default ring, a platform-dependent border drawn around the
button to indicate it is the default button. Must be normal (button is not
the default), active (button is the default), or disabled (no ring is
drawn).

-height height (height, Height)
Desir ed height, in lines for text content or in screen units for images and
bitmaps.

-state state (state, State)
State of the button. State must be normal, active, or disabled.

-width width (width, Width)
Desir ed width, in characters, for text content, or in screen units, for
images and bitmaps.

Methods

pathName flash
Flash button by alternating between active and normal colors.

pathName invoke
Invoke the Tcl command associated with the button and retur n its result.
An empty string is retur ned if there is no command associated with the
button. This command is ignored if the button’s state is disabled.

canvas

canvas pathName [option value...]

The canvas command creates a new canvas widget named pathName. The
canvas widget provides a drawing area for displaying a number of graphic
items, including arcs, bitmaps, images, lines, ovals, polygons, rectangles, text,
and windows (other widgets). Methods exist to draw, manipulate, and bind
events to items.

Tk Core
Com

m
ands

Widget Commands — canvas 57

11 May 2006 10:47

Standard Options

-backgr ound -bor derwidth -cursor
-highlightbackgr ound -highlightcolor -highlightthickness
-insertbackgr ound -insertbor derwidth -insertof ftime
-insertontime -insertwidth -r elief
-selectbackgr ound -selectbor derwidth -selectfor eground
-takefocus -xscrollcommand -yscrollcommand

Widget-Specific Options

-closeenough float (closeEnough, CloseEnough)
How close the mouse cursor must be to an item to be considered inside
it. Default is 1.0.

-confine boolean (confine, Confine)
Whether the view can be set outside the region defined by -scr ollregion.
Default is true.

-height height (height, Height)
Desir ed height, in screen units, that the canvas should request from its
geometry manager.

-scr ollregion region (scrollRegion, ScrollRegion)
Boundary for scrolling in the canvas as a list of four coordinates describ-
ing the left, top, right, and bottom coordinates of a rectangular region in
scr een units.

-width width (width, Width)
Width, in screen units, that the canvas should request from its geometry
manager.

-xscr ollincrement increment (xScrollIncrement,
ScrollIncrement)

Incr ement, in screen units, for horizontal scrolling. If not set or equal to
zer o or less, defaults to one-tenth of the visible width of the canvas.

-yscr ollincrement increment (yScrollIncrement,
ScrollIncrement)

Incr ement, in screen units, for vertical scrolling. If not set or equal to
zer o or less, defaults to one-tenth of the visible height of the canvas.

Item IDs and Tags

An item in a canvas widget is identified either by its unique ID or by an asso-
ciated tag. A unique ID (an integer number) is assigned to each item when it
is created. The ID assigned to an item cannot be changed.

Multiple tags may be associated with an item. A tag is just a string of charac-
ters that can take any form except that of an integer. For instance, ‘‘squares’’
and ‘‘arc32’’ are valid, but ‘‘32’’ is not. The same tag can be associated with
multiple items.

Two special tag names are reserved. The tag all is implicitly associated with
every item in the canvas. The tag current is associated with the topmost

58 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

item whose drawn area is underneath the mouse cursor. If the mouse cursor
is not in the canvas widget or over an item, no item has the current tag.

The canvas appends the ID of each item when created to its display list. This
list defines the stacking order, with items later in the display list obscuring
those that are earlier in the display list. Canvas methods exist to manipulate
the order of items in the display list. However, window items are always
drawn on top of other items. The normal raise and lower Tk commands con-
tr ol the stacking order of overlapping window items.

Unless otherwise stated, the token tagOrId is used in the method descrip-
tions below to indicate that either an item ID or tag is accepted. If a tag speci-
fies multiple items and the method operates only on a single item, the first
(lowest) item in the display list suitable for the operation is used.

Coordinates

Coordinates and distances are specified in screen units as described in the
“Widget Overview” section. Larger y-coordinates refer to points lower on the
scr een; larger x-coordinates refer to points farther to the right.

Te xt Indices

Text items support the notion of an index for identifying particular character
positions within the item. A decimal number indicates the position of the
desir ed character within the item, with 0 referring to the first character. Special
index values are as follows:

end The character just after the last one in the item
insert The character just after the insertion cursor
sel.first The first selected character in the item
sel.last The last selected character in the item
@x,y The character closest to coordinates x,y

Item Event Binding

Binding events to canvas items using the bind method works in a similar
manner to binding events to widgets with the Tk bind command. However,
only events related to the mouse and keyboard or virtual events can be
bound to canvas items. Enter and Leave events for an item are trigger ed when
it becomes the current item or ceases to be the current item. Other
mouse-r elated events are dir ected to the current item, if any. Keyboard-
related events are dir ected to the item that has the keyboard focus as set by
the canvas focus method. If a virtual event is used in a binding, it can be trig-
ger ed only if the underlying ‘‘real’’ event is mouse related or keyboard
related.

When multiple bindings match a particular event, all of the matching bindings
ar e invoked. This can happen when an item is associated with two tags and
both tags have bindings for the same event. A binding associated with the
all tag is invoked first, followed by only one binding for each of the item’s
tags, followed by any binding associated with the item’s ID. If there are multi-
ple matching bindings for a single tag, the most specific binding is invoked. A
continue command in a binding script terminates just that binding. A br eak
command terminates the script for that binding and skips any remaining

Tk Core
Com

m
ands

Widget Commands — canvas 59

11 May 2006 10:47

bindings for the event. Any bindings made to the canvas widget using the
bind command are invoked after any matching item bindings.

Methods

pathName addtag tag searchSpec [arg arg...]
Associate tag with each item in the canvas selected by the contraints of
searchSpec. Searchspec and args may take any of the following
for ms:

above tagOrId
Select the item just after (above) the one identified by tagOrId in
the display list. If tagOrId denotes more than one item, the last
(topmost) item is used.

all
Select all items in the canvas.

below tagOrId
Select the item just before (below) the one identified by tagOrId in
the display list. If tagOrId denotes more than one item, the first
(lowest) item is used.

closest x y [halo [start]]
Select the item closest to coordinates x, y. If mor e than one item is
at the same closest distance, the last one (topmost) in the display list
is selected. If halo is specified, any item closer than halo to the
point is considered to be close enough. The start argument may
be used to cycle through all the closest items. This form will select
the topmost closest item that is below start (a tag or ID) in the
display list; if no such item exists, the selection behaves as if the
start argument were not given.

enclosed x1 y1 x2 y2
Select all the items completely inside the rectangular region given by
x1,y1 on the top left and x2,y2 on the bottom right.

overlapping x1 y1 x2 y2
Select all the items that overlap or are fully enclosed within the rect-
angular region given by x1,y1 on the top-left corner and x2,y2 on
the bottom-right corner.

withtag tagOrId
Select all the items identified by tagOrId.

pathName bbox tagOrId [tagOrId...]
Retur n a coordinate list of the form {x1 y1 x2 y2} giving an approxi-
mate bounding box enclosing all the items named by the tagOrId argu-
ments.

pathName bind tagOrId [sequence [script]]
Associate script with all the items identified by tagOrId such that
whenever the event sequence given by sequence occurs for one of the
items, the script will be evaluated. If the script argument is not given,
the current associated script is retur ned. If the sequence is also not

60 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

given, a list of all the sequences for which bindings have been defined
for tagName is retur ned. See the “Item Event Binding” section for more
details.

pathName canvasx screenx [gridspacing]
Retur n the canvas x-coordinate that is displayed at the location of win-
dow x-coordinate screenx. If gridspacing is specified, the canvas
coordinate is rounded to the nearest multiple of gridspacing units.

pathName canvasy screeny [gridspacing]
Retur n the canvas y-coordinate that is displayed at the location of win-
dow y-coordinate screeny. If gridspacing is specified, the canvas
coordinate is rounded to the nearest multiple of gridspacing units.

pathName coor ds tagOrId [x0 y0...]
If no coordinates are specified, a list of the current coordinates for the
item named by tagOrId is retur ned. If coordinates are specified, the
item is moved to the specified coordinates. If tagOrId refers to multi-
ple items, the first one in the display list is used.

pathName cr eate type x y [x y...] [option value...]
Cr eate a new canvas item of type type and retur n the assigned ID. See
the following subsections on individual item types for the exact syntax of
this method.

pathName dchars tagOrId first [last]
For each item identified by tagOrId that supports text operations,
delete the characters in the range first thr ough last, inclusive.

pathName delete tagOrId [tagOrId...]
Delete each item named by tagOrId.

pathName dtag tagOrId [tagToDelete]
For each item identified by tagOrId, delete the tag tagToDelete fr om
the list of those associated with the item. If tagToDelete is omitted, it
defaults to tagOrId.

pathName find searchSpec [arg arg...]
Retur n a list of IDs for all items selected by the constraint searchSpec.
See the addtag method for possible values for searchSpec.

pathName focus tagOrId
Set the keyboard focus for the canvas widget to the first item in the dis-
play list identified by tagOrId that supports the insertion cursor. If
tagOrId is an empty string, the focus is cleared so that no item has it.
If tagOrId is omitted, the method retur ns the ID for the item that cur-
rently has the focus, or an empty string if no item has the focus.

pathName gettags tagOrId
Retur n a list of tags associated with the first item in the display list identi-
fied by tagOrId.

Tk Core
Com

m
ands

Widget Commands — canvas 61

11 May 2006 10:47

pathName icursor tagOrId index
Set the position of the insertion cursor to just before the character at
index for all items identified by tagOrId that support text operations.

pathName index tagOrId index
Retur n the numerical index position of index within the first item in the
display list identified by tagOrId that supports text operations. This
value is guaranteed to lie between 0 and the number of characters within
the item.

pathName insert tagOrId beforeThis string
Insert string just before the character at index beforeThis in all
items identified by tagOrId that support text operations.

pathName itemcget tagOrId option
Retur n the current value of option for the first item in the display list
identified by tagOrId. Option may have any of the values accepted
by the cr eate method when the item was created.

pathName itemconfigur e tagOrId [option [value [option value...]]]
Query or modify the configuration options for the items identified by
tagOrId in the same manner as the general widget configur e method.
For queries, only results for the first item in the display identified by
tagOrId ar e retur ned. The options and values are the same as those
accepted by the cr eate method when the items were created.

pathName lower tagOrId [belowThis]
Move all of the items identified by tagOrId to a new position in the dis-
play list just before the first item in the display list identified by
belowThis, maintaining relative order.

pathName move tagOrId xAmount yAmount
Move each of the items identified by tagOrId in the canvas by adding
xAmount to the x-coordinate and yAmount to the y-coordinate of each
point associated with the item.

pathName postscript [option value...]
Retur n a PostScript repr esentation for printing all or part of the canvas.
The following options are supported:

-channel channel
The generated PostScript will be written to the channel channel
(alr eady opened), and the method will retur n an empty string.

-color map varName
VarName is an array in which each element maps a color name to
PostScript code that sets a particular color value. If this option is not
specified or no color entry is found, Tk uses the standard X11 RGB
color intensities.

-color mode mode
How to output color information. Mode must be color for full
color, gray for grayscale equivalents, or mono for black and white.

62 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-file fileName
The generated PostScript will be written to file fileName and the
method will retur n an empty string.

-fontmap varName
VarName is an array in which each element maps a Tk font name to
a two-element list consisting of a PostScript font name and point
size. If this option is not specified or no font entry is found, Tk
makes its best guess.

-height size
Height of the area of the canvas to print. Defaults to the height of
the canvas window. This is not the height of the printed page.

-pageanchor anchor
Anchor specifies which cardinal point of the printed area of the
canvas should appear over the positioning point on the page (see
-pagex and -pagey). Must be n, nw, w, sw, s, se, e, ne, or center
(the default).

-pageheight size
Specifies that the PostScript should be scaled equally in both x and y
so that the printed area is size high on the page.

-pagewidth size
Specifies that the PostScript should be scaled equally in both x and y
so that the printed area is size wide on the page. Overrides -page-
height setting.

-pagex position
The x-coordinate of the positioning point on the PostScript page.
Defaults to page center.

-pagey position
The y-coordinate of the positioning point on the PostScript page.
Defaults to page center.

-r otate boolean
Whether the printed area is to be rotated 90 degrees (i.e., land-
scape).

-width size
Width of the area of the canvas to print. Defaults to the full width of
the canvas. This is not the width of the printed page.

-x position
The x-coordinate of the left edge of the area in the canvas that is to
be printed. Defaults to left edge set by the canvas -scr ollregion
option.

-y position
The y-coordinate of the top edge of the area in the canvas that is to
be printed. Defaults to top edge set by the canvas -scr ollregion
option.

Tk Core
Com

m
ands

Widget Commands — canvas 63

11 May 2006 10:47

pathName raise tagOrId [aboveThis]
Move all of the items identified by tagOrId to a new position in the dis-
play list just after the last item in the display list identified by
aboveThis, maintaining relative order.

pathName scale tagOrId xOrigin yOrigin xScale yScale
Rescale all of the items identified by tagOrId in canvas coordinate
space. For each of the points defining each item, the x-coordinate is
adjusted to change the distance from xOrigin by a factor of xScale.
Similarly, each y-coordinate is adjusted to change the distance from
yOrigin by a factor of yScale.

pathName scan dragto x y
Scr oll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the differ ence between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

pathName scan mark x y
Record x and y as anchors for a following scan dragto method call.

pathName select adjust tagOrId index
If the selection is currently owned by an item identified by tagOrId,
locate the end of the selection nearest to index, adjust that end to be at
index, and make the other end of the selection the anchor point. If the
selection is not currently owned by an item identified by tagOrId, this
method behaves the same as the select to widget method.

pathName select clear
Clear the selection if it is owned by any non-window item in the canvas.

pathName select from tagOrId index
Set the selection anchor point to be just before the character given by
index in the first item identified by tagOrId that supports selection.

pathName select item
Retur n the ID of the item, if any, that owns the selection in the canvas.

pathName select to tagOrId index
For the first item identified by tagOrId that supports selection, set the
selection to consist of those characters between the anchor point and
index. If no anchor point has been set, it defaults to index. The new
selection will always include the character given by index; it will
include the character given by the anchor point only if it exists and is less
than or equal to index.

pathName type tagOrId
Retur n the item type of the first item in the display list identified by
tagOrId.

pathName xview
Retur n a two-element list describing the currently visible horizontal
region of the canvas. The elements are real numbers repr esenting the

64 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget as described by the -scr ollregion option.

pathName xview moveto fraction
Adjust the visible region of the canvas so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the canvas horizontally by number. If what is
units, then number is in units of the -xscr ollincrement option. If what
is pages, then number is in units of nine-tenths the visible region’s
width.

pathName yview
Retur n a two-element list describing the currently visible vertical region
of the canvas. The elements are real numbers repr esenting the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget as described by the -scr ollregion option.

pathName yview moveto fraction
Adjust the visible region of the canvas so that the point indicated by
fraction along the canvas’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Shift the visible region of the canvas vertically by number. If what is
units, then number is in units of the -yscr ollincrement option. If what
is pages, then number is in units of nine-tenths the visible region’s
height.

Ar c Items

An arc is a section of an oval delimited by two angles (see -start and -extent)
and can be displayed in one of several ways (see -style). Arcs are created with
a widget method of the following form:

pathName cr eate ar c x1 y1 x2 y2 [option value option value...]

The arguments x1,y1 and x2,y2 define the top-left and bottom-right corners
of a rectangular region enclosing the oval that defines the arc.

-extent degrees
Angle that the arc’s range should extend, measured counterclockwise
fr om the starting angle.

-fill color
Color used for filled region of the arc.

-outline color
Color used to draw the arc’s outline.

Tk Core
Com

m
ands

Widget Commands — canvas 65

11 May 2006 10:47

-outlinestipple bitmap
Stipple pattern used to draw the arc’s outline.

-start degrees
Starting angle of the arc, as measured counterclockwise from the three
o’clock position.

-stipple bitmap
Stipple pattern used for filled region of the arc.

-style type
How to draw the arc. Type may be pieslice (the default), chord, or
arc. A pieslice is a region defined by the arc with two lines connect-
ing the ends to the center of the implied oval. A chord is a region
defined by the arc with the two ends connected by a line. An arc is sim-
ply the curve of the arc alone.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width outlineWidth
Width of the outline to be drawn around the arc’s region.

Bitmap Items

Bitmap items display two-color images on the canvas. They are created with a
widget method of the following form:

pathName cr eate bitmap x y [option value option value...]

The arguments x and y give the coordinates of a point used to position the
bitmap on the canvas (see -anchor).

-anchor anchorPos
Which cardinal point on the bitmap should line up over the positioning
point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or
center (the default).

-backgr ound color
Color to use for each of the bitmap pixels whose value is 0.

-bitmap bitmap
Bitmap to display in the item.

-for eground color
Color to use for each of the bitmap pixels whose value is 1. Default is
black.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

66 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

Image Items

Image items are used to display Tk images in the canvas. They are created
with a widget method of the following form:

pathName cr eate image x y [option value option value...]

The arguments x and y give the coordinates of a point used to position the
image on the canvas (see -anchor).

-anchor anchorPos
Which cardinal point on the image should line up over the positioning
point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or
center (the default).

-image imageName
Name of image to display in the item.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

Line Items

Line items display one or more connected line segments or curves on the can-
vas. They are created with a widget method of the following form:

pathName cr eate line x1 y1... xn yn [option value option value...]

The arguments x1 thr ough yn give the coordinates for a series of two or
mor e points that describe a series of connected line segments.

-arr ow where
Wher e to draw arrowheads. Where may be none (the default), first,
last, or both.

-arr owshape shape
How to draw the arrowheads. Shape is a three-element list indicating
the distance from neck to tip, from tip to trailing points, and from trailing
points to nearest outside edge of the line.

-capstyle style
How caps are drawn at endpoints of line. Style may be butt (the
default), projecting, or round.

-fill color
Color to use for drawing the line.

-joinstyle style
How joints are drawn. Style may be bevel, miter (the default), or
round.

-smooth boolean
Whether the line should be drawn as a curve using parabolic splines.

Tk Core
Com

m
ands

Widget Commands — canvas 67

11 May 2006 10:47

-splinesteps number
Number of line segments with which to approximate each spline when
smoothing.

-stipple bitmap
Stipple pattern to use when drawing the line.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width lineWidth
Width of the line. Defaults to 1.0.

Oval Items

Oval items display circular or oval shapes on the canvas. They are created
with a widget method of the following form:

pathName cr eate oval x1 y1 x2 y2 [option value option value...]

The arguments x1,y1 and x2,y2 define the top-left and bottom-right corners
of a rectangular region enclosing the oval. The oval will include the top and
left edges of the rectangle but not the lower or right edges.

-fill color
Color used for filled region of the oval.

-outline color
Color used for drawing oval’s outline.

-stipple bitmap
Stipple pattern used for filled region of oval.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width outlineWidth
Width of the oval’s outline. Defaults to 1.0.

Polygon Items

Polygon items display multisided or curved regions on the canvas. They are
cr eated with a widget method of the following form:

pathName cr eate polygon x1 y1... xn yn [option value option
value...]

The arguments x1 thr ough yn specify the coordinates for three or more
points that define a closed polygon. If the first and last points are not the
same, a line is drawn between them.

-fill color
Color used to fill the area of the polygon.

-outline color
Color used to draw the polygon’s outline.

68 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-smooth boolean
Whether the polygon should be drawn with a curved perimeter using
parabolic splines.

-splinesteps number
Number of line segments with which to approximate for each spline
when smoothing.

-stipple bitmap
Stipple pattern used to fill the area of the polygon.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width outlineWidth
Width of the polygon’s outline. Defaults to 1.0.

Rectangle Items

Rectangle items display rectangular shapes on the canvas. They are created
with a widget method of the following form:

pathName cr eate rectangle x1 y1 x2 y2 [option value option
value...]

The arguments x1,y1 and x2,y2 define the top-left and bottom-right corners
of the rectangle (the region of the rectangle will include its upper and left
edges but not its lower or right edges).

-fill color
Color used to fill the area of the rectangle.

-outline color
Color used to draw the rectangle’s outline.

-stipple bitmap
Stipple pattern used to fill the area of the rectangle.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width outlineWidth
Width of the rectangle’s outline. Defaults to 1.0.

Te xt Items

Text items display one or more lines of characters on the canvas. They are
cr eated with a widget method of the following form:

pathName cr eate text x y [option value option value...]

The arguments x and y specify the coordinates of a point used to position the
text on the display.

-anchor anchorPos
Which cardinal point of the text bounding region should line up over the
positioning point of the item. AnchorPos must be n, nw, w, sw, s, se,
e, ne, or center (the default).

Tk Core
Com

m
ands

Widget Commands — canvas 69

11 May 2006 10:47

-fill color
Color to use for drawing the text characters.

-font fontName
Font for drawing text characters.

-justify how
How to justify the text within its bounding region. How may be left
(the default), right, or center.

-stipple bitmap
Stipple pattern for drawing text characters.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-text string
Characters to be displayed in the text item.

-width lineLength
Maximum length (using coordinate units) for a line of text. If 0, text is
br oken only on newline characters. Otherwise, lines are broken on any
whitespace.

Window Items

Window items display other windows (i.e., Tk widgets) on the canvas. They
ar e cr eated with a widget method of the following form:

pathName cr eate window x y [option value option value...]

The arguments x and y specify the coordinates of a point used to position the
window on the display. A window item always obscures any graphics that
overlap it, regardless of their order in the display list.

-anchor anchorPos
Which cardinal point of the window should line up over the positioning
point of the item. AnchorPos must be n, nw, w, sw, s, se, e, ne, or
center (the default).

-height pixels
Height to assign to item’s window.

-tags tagList
List of tags to associate with the item. Replaces any existing list.

-width pixels
Width to assign to item’s window.

-window pathName
Window to associate with the item, which must be a descendant of the
canvas widget.

70 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

checkbutton

checkbutton pathName [option value...]

The checkbutton command creates a new checkbutton widget named path-
Name.

Standard Options

-activebackgr ound -activefor eground -anchor
-backgr ound -bitmap -borderwidth
-cursor -disabledforegr ound -font
-for eground -highlightbackground -highlightcolor
-highlightthickness -image -justify
-padx -pady -r elief
-takefocus -text -textvariable
-underline -wraplength

Widget-Specific Options

-command tclCommand (command, Command)
Command to be evaluated when button is invoked.

-height height (height, Height)
Desir ed height, in lines for text content or in screen units for images and
bitmaps.

-indicator on boolean (indicatorOn, IndicatorOn)
Whether the indicator should be drawn. If false, the -r elief option is
ignor ed, and the widget’s relief is sunken if selected and raised if not.

-of fvalue value (offValue, Value)
Value to store in associated variable when button is not selected.

-onvalue value (onValue, Value)
Value to store in associated variable when button is selected.

-selectcolor color (selectColor, Background)
Backgr ound color to use for indicator when button is selected (at all
times for Windows). If -indicator on is false, the color is used for the
backgr ound of the entire widget when it is selected.

-selectimage image (selectImage, SelectImage)
Image to display instead of normal image when button is selected. This
option is ignored if -image option has not been set.

-state state (state, State)
State of the checkbutton. State must be normal, active, or dis-
abled.

-variable varName (variable, Variable)
Name of global variable (defaults to last element of pathName) to set to
indicate whether the checkbutton is selected.

Tk Core
Com

m
ands

Widget Commands — checkbutton 71

11 May 2006 10:47

-width width (width, Width)
Desir ed width, in characters for text content or in screen units for images
and bitmaps.

Methods

pathName deselect
Deselect the checkbutton and set its associated variable to the value of its
-of fvalue option.

pathName flash
Flash the button by alternating between active and normal colors.

pathName invoke
Toggle the selection state, invoke the Tcl command associated with the
button, and retur n its result. An empty string is retur ned if there is no
command associated with the button. This command is ignored if the
button’s state is disabled.

pathName select
Select the checkbutton and set its associated variable to the value of the
-onvalue option.

pathName
Toggle the selection state of the checkbutton and set its associated vari-
able appropriately.

entr y

entry pathName [option value...]

The entry command creates a new entry widget named pathName. An entry
is a widget that displays a one-line text string that can be edited.

Standard Options

-backgr ound -bor derwidth -cursor
-exportselection -font -for eground
-highlightbackgr ound -highlightcolor -highlightthickness
-insertbackgr ound -insertbor derwidth -insertof ftime
-insertontime -insertwidth -justify
-r elief -selectbackgr ound -selectbor derwidth
-selectfor eground -setgrid -takefocus
-xscr ollcommand

Widget-Specific Options

-show char (show, Show)
Character to show instead of actual characters typed. Useful for password
entries.

-state state (state, State)
State for the entry. State must be normal or disabled.

72 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-width width (width, Width)
Desir ed width in characters. If zero or less, the width is made large
enough to hold current text.

Te xt Indices

Several entry widget methods support the notion of an index for identifying
particular positions within the line of text. Valid index values are as follows:

number Character as a numerical index (starting from 0)
anchor Anchor point for the selection
end Character just after the last one in the entry’s string
insert Character just after the insertion cursor
sel.first First character in the selection, if in entry
sel.last Character just after last one in selection, if in entry
@x Character at x-coordinate x in entry

Methods

pathName bbox index
Retur n a list of four numbers giving coordinates of upper-left corner (rel-
ative to the widget) and width and height of character at index.

pathName delete first [last]
Delete range of characters starting at first up to, but not including,
last. If last is omitted, only the character at first is deleted.

pathName get
Retur n the entry’s current string.

pathName icursor index
Place the insertion cursor just before the character at index.

pathName index index
Retur n the numerical index corresponding to position index.

pathName insert index string
Insert string just before the position indicated by index.

pathName scan dragto x
Scr oll the widget’s view horizontally. The distance scrolled is equal to 10
times the differ ence between this command’s x argument and the x argu-
ment to the last scan mark command for the widget.

pathName scan mark x
Record x as the anchor for a following scan dragto method call.

pathName selection adjust index
Locate the end of the selection nearest to index, adjust that end of the
selection to be at index, and make the other end of the selection the
selection anchor point. If no current selection exists, the selection is cre-
ated to encompass the characters between index and the current anchor
point, inclusive.

Tk Core
Com

m
ands

Widget Commands — entry 73

11 May 2006 10:47

pathName selection clear
Clear the selection if it is owned by this widget.

pathName selection from index
Set the selection anchor point to just before the character at index.

pathName selection present
Retur n 1 if any characters in entry are curr ently selected, 0 otherwise.

pathName selection range start end
Set the selection to include characters starting at start up to, but not
including, the character at end.

pathName selection to index
If index is before the anchor point, set the selection to the character
range from index up to just before the anchor point. If index is after
the anchor point, set the selection to the character range from the anchor
point up to just before index.

pathName xview
Retur n a two-element list describing the currently visible horizontal
region of the entry. The elements are real numbers repr esenting the frac-
tional distance that the view’s top and bottom edges extend into the ver-
tical span of the widget.

pathName xview index
Adjust the visible region of the entry so the character at index is at the
left edge of the view.

pathName xview moveto fraction
Adjust the visible region of the entry so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the entry horizontally by number. If what is
units, then number is in units of the characters. If what is pages,
then number is in units of the visible region’s width.

frame

frame pathName [option value...]

The frame command creates a new frame widget named pathName. The
main purpose of a frame widget is to serve as a container for laying out other
widgets using one of Tk’s geometry managers.

Standard Options

-bor derwidth -cursor -highlightbackground
-highlightcolor -highlightthickness -relief
-takefocus

74 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

Widget-Specific Options

-backgr ound color (background, Background)
Same as standard option, but may be the empty string to display no
backgr ound or border.

-class name (class, Class)
Class to use when querying the option database and for bindings. May
not be changed with configur e.

-color map colormap (colormap, Colormap)
Color map to use for window. Colormap may be either new, in which
case a new colormap is created, or the name of another window, in
which case that window’s colormap is used. The default is to use the col-
or map of its parent. May not be changed with configur e.

-container boolean (container, Container)
Whether the window will be used as a container in which to embed
some other application. May not be changed with configur e.

-height height (height, Height)
Desir ed height, in screen units, for the window.

-visual visual (visual, Visual)
Visual class to use for the window. Visual must be directcolor,
grayscale, pseudocolor, staticcolor, staticgray, or true-
color.

-width width (width, Width)
Desir ed width, in screen units, for the window.

la bel

label pathName [option value...]

The label command creates a new label widget named pathName.

Standard Options

-anchor -background -bitmap
-bor derwidth -cursor -font
-for eground -highlightbackground -highlightcolor
-highlightthickness -image -justify
-padx -pady -r elief
-takefocus -text -textvariable
-underline -wraplength

Widget-Specific Options

-height height (height, Height)
Desir ed height, in lines, for text content or in screen units for images or
bitmaps. If not set, widget is autosized.

Tk Core
Com

m
ands

Widget Commands — label 75

11 May 2006 10:47

-width width (width, Width)
Desir ed width, in characters, for text content or in screen units for images
or bitmaps. If not set, widget is autosized.

listbo x

listbox pathName [option value...]

The listbox command creates a new listbox widget named pathName. A list-
box is a widget that displays a list of strings, one per line. When first created,
a new listbox has no elements. Elements can be added, deleted, and selected
using methods described here.

Many listbox methods take index arguments to identify elements. Listbox
indices are number ed starting at 0. Special index values are active,
anchor, end, and @x,y.

Standard Options

-backgr ound -bor derwidth -cursor
-exportselection -font -for eground
-highlightbackgr ound -highlightcolor -highlightthickness
-r elief -selectbackgr ound -selectbor derwidth
-selectfor eground -setgrid -takefocus
-xscr ollcommand -yscr ollcommand

Widget-Specific Options

-height height (height, Height)
Desir ed height of listbox in lines. If zero or less, the height is made just
large enough to hold all lines.

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default listbox bindings
for manipulation of the element selection. Supported styles are single,
browse, multiple, and extended. Any arbitrary string is allowed, but
the programmer must extend the bindings to support it.

-width width (width, Width)
Desir ed width of listbox in characters. If zero or less, the width is made
just large enough to hold the longest element.

Methods

pathName active index
Set the active element to the one at index.

pathName bbox index
Retur n a list of numbers in the format {x y width height} describing
the bounding box around the text of element at index.

pathName curselection
Retur n a list of indices of all elements currently selected.

76 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

pathName delete index1 [index2]
Delete range of elements from index1 to index2. If index2 is not
given, only the element at index1 is deleted.

pathName get index1 [index2]
Retur n as a list the elements from index1 to index2. If index2 is not
given, only the element at index1 is retur ned.

pathName index index
Retur n the numeric index of the element at index.

pathName insert index [string...]
Insert given strings as new elements just before element at index. If
index is specified as end, the new elements are appended at the end of
the list.

pathName near est y
Retur n the index of the element nearest to y-coordinate y.

pathName scan dragto x y
Scr oll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the differ ence between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

pathName scan mark x y
Record x and y as anchors for a following scan dragto method call.

pathName see index
Adjust the view in the listbox so that the element at index is visible.

pathName selection anchor index
Set the anchor for selection dragging to the element at index (or closest
to it).

pathName selection clear first [last]
Deselect any selected elements between first and last, inclusive.

pathName selection includes index
Retur n 1 if the element at index is selected, 0 otherwise.

pathName selection set first [last]
Select all elements between first and last, inclusive.

pathName size
Retur n the total number of elements in the listbox.

pathName xview
Retur n a two-element list describing the currently visible horizontal
region of the listbox. The elements are real numbers repr esenting the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget.

Tk Core
Com

m
ands

Widget Commands — listbox 77

11 May 2006 10:47

pathName xview index
Adjust the visible region of the listbox so that the character position
index is at the left edge of the view.

pathName xview moveto fraction
Adjust the visible region of the listbox so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the listbox horizontally by number. If what is
units, then number is in units of characters. If what is pages, then
number is in units of the visible region’s width.

pathName yview
Retur n a two-element list describing the currently visible vertical region
of the listbox. The elements are real numbers repr esenting the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget.

pathName yview index
Adjust the visible region of the listbox so that the element given by
index is at the top of the view.

pathName yview moveto fraction
Adjust the visible region of the listbox so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Shift the visible region of the listbox vertically by number. If what is
units, then number is in units of text lines. If what is pages, then
number is in units of the visible region’s height.

Selection Modes

The behavior of the default bindings for a listbox is determined by the value
of the -selectmode option. If the selection mode is single or browse, only a
single element in the list may be selected at one time. Clicking button 1 on an
element selects it and deselects any other element. In browse mode, it is
possible to drag the selection.

If the selection mode is multiple or extended, then multiple elements
may be selected at once, including discontiguous ranges. In multiple mode,
clicking button 1 on an element alternately selects and deselects it. In
extended mode, pressing button 1 on an element selects it, makes that ele-
ment the new anchor element, and deselects all other elements. Dragging the
mouse button then extends the selection with respect to the anchor element.

78 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

menu

menu pathName [option value...]

The menu command creates a new menu widget named pathName. A menu
is a top-level window that displays a collection of one-line entries arranged in
one or more columns. Several differ ent types of menu entries exist and can be
combined in a single menu.

Standard Options

-activebackgr ound -activebor derwidth -activefor eground
-backgr ound -bor derwidth -cursor
-disabledfor eground -font -for eground
-r elief -takefocus

Widget-Specific Options

-postcommand command (postCommand, Command)
Command to evaluate each time the menu is posted.

-selectcolor color (selectColor, Background)
Color to display in the indicator when menu entries of type check-
button or radiobutton ar e selected.

-tear off boolean (tearOff, TearOff)
Whether the menu should include a tear-of f entry at the top.

-tear offcommand command (tearOffCommand, TearOffCommand)
Command to evaluate whenever menu is torn off. The menu widget’s
name and the name of the window for the torn-of f menu are appended
as the last two arguments.

-title string (title, Title)
String to use as a title for the window created when the menu is torn off.

-type type (type, Type)
Menu’s type. Type must be menubar, tearoff, or normal. Can only
be set at menu’s creation.

Entr y Indices

Several menu widget methods support the notion of an index for identifying
a particular entry position within the menu. Indices have the following form:

number
The entry numerically, where 0 is the topmost entry.

active
The entry that is currently active.

end
The bottommost entry in the menu.

Tk Core
Com

m
ands

Widget Commands — menu 79

11 May 2006 10:47

last
Same as end.

none
Indicates ‘‘no entry at all.’’ Used mainly with activate method to make no
entry active.

@y
The entry closest to y-coordinate y in the menu’s window.

pattern
The first entry from the top with a label that matches pattern pattern
(see Tcl command string match for rules).

Special Menubar Menus

Any menu can be made into a menubar for a top-level window (see the
toplevel widget). Certain specially named menus that are childr en of a
menubar will be treated in a system-specific manner. For a menubar named
.menubar, on the Macintosh, the special menus would be
.menubar.apple and .menubar.help; on Windows, the special menu
would be .menubar.system; on X Window System, the special menu
would be .menubar.help.

On the Macintosh, items in the .menubar.apple will make up the first
items of the Apple menu, and items in the .menubar.help ar e appended to
the standard Help menu on the right of the menubar whenever the window
containing the menubar is in front. Under Windows, items in the
.menubar.system menu are appended to the system menu for the window
containing the menubar. On X Windows, when the last menu entry in
.menubar is a cascade entry with submenu .menubar.help, it is right-
justified on the menubar.

Methods

pathName activate index
Redisplay the entry at index in its active colors. If index is none, the
menu will end up with no active entry.

pathName add type [option value [option value...]]
Add a new entry of type type to the bottom of the menu, configured
with the given options. The possible values for type ar e cascade,
checkbutton, command, radiobutton, or separator. Possible
options are:

-activebackgr ound color
Backgr ound color for entry when active. Not available for separator
or tear-of f entries.

-activefor eground color
For eground color for entry when active. Not available for separator
or tear-of f entries.

80 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-accelerator string
String to display at right side of menu entry (usually to show acceler-
ator keystroke). Not available for separator or tear-of f entries.

-backgr ound color
Backgr ound color for entry when it is in the normal state. Not avail-
able for separator or tear-of f entries.

-bitmap bitmap
Bitmap to display in menu instead of textual label. Overrides -label.
Not available for separator or tear-of f entries.

-columnbr eak boolean
Whether entry should start a new column in the menu.

-command tclCommand
Command to evaluate when menu entry is invoked. Not available for
separator or tear-of f entries.

-font font
Font to use when drawing label and accelerator for entry. Not avail-
able for separator or tear-of f entries.

-for eground color
For eground color for entry when in the normal state. Not available
for separator or tear-of f entries.

-hidemar gin boolean
Whether standard margins should be drawn for menu entry.

-image imageName
Name of image to display in menu instead of textual label. This
option overrides -label and -bitmap. Not available for separator or
tear-of f entries.

-indicator on boolean
Whether indicator should be displayed. Available only for check-
button and radiobutton entries.

-label string
String to display as identifying label of entry. Not available for sepa-
rator or tear-of f entries.

-menu menuName
Pathname of submenu associated with entry. Available for cascade
entries only.

-of fvalue value
Value to store in entry’s associated variable when it is deselected.
Available only for checkbutton entries.

-onvalue value
Value to store in entry’s associated variable when it is selected.
Available only for checkbutton entries.

Tk Core
Com

m
ands

Widget Commands — menu 81

11 May 2006 10:47

-selectcolor color
Color to display in the indicator when entry is selected. Available
only for checkbutton and radiobutton entries.

-selectimage image
Image to display in entry when it is selected in place of the one
specified with -image. Available only for checkbutton and radiobut-
ton entries.

-state state
State of the menu entry. State must be normal, active, or
disabled.

-underline integer
Integer index of character to underline in entry’s label. Not available
for separator or tear-of f entries.

-value value
Value to store in the entry’s associated variable when selected. Avail-
able only for radiobutton entries.

-variable varName
Global variable to associate with entry. Available only for check-
button and radiobutton entries.

pathName clone newPathName [cloneType]
Make a clone of the menu with name newPathName. The clone will
have type cloneType (one of normal, menubar, or tearoff).
Changes in configuration of the original are automatically reflected in the
clone. Any cascade menus pointed to are also cloned. Clones are
destr oyed when the original is destroyed.

pathName delete index1 [index2]
Delete all menu entries between index1 and index2, inclusive. If
index2 is not given, only entry at index1 is deleted.

pathName entrycget index option
Retur n the current value of configuration option option for entry at
index. See the add method for available options.

pathName entryconfigur e index [option [value [option value...]]]
Query or modify the configuration options for the menu entry at index
in the same manner as the general widget configur e method. See the add
method for available options.

pathName index index
Retur n the numerical index corresponding to index (or none if index
is none).

pathName insert index type [option value [option value...]]
Same as add method except that it inserts the new entry just before the
entry at index. It is not possible to insert new entries before the tear-of f
entry, if the menu has one.

82 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

pathName invoke index
Invoke the action appropriate to the entry type of the menu entry at
index if it is not disabled.

pathName post x y
Arrange for the menu to be displayed at root-window coordinates x and
y (possibly adjusted to make sure the entire menu is visible on the
scr een). If a script has been given to the -postcommand option, it is
evaluated first and the results retur ned. If an error occurs in the script,
the menu is not posted.

pathName postcascade index
If entry at index is a cascade entry, the submenu associated with it is
posted. Any other currently posted submenu is unposted.

pathName type index
Retur n the type of menu entry at index.

pathName unpost
Unmap menu’s window so it is no longer displayed. Does not work on
Windows or Macintosh.

pathName yposition index
Retur n the y-coordinate of the topmost pixel of the entry at index
within the menu window.

menubutton

menubutton pathName [option value...]

The menubutton command creates a new menubutton widget named path-
Name.

Standard Options

-activebackgr ound -activefor eground -anchor
-backgr ound -bitmap -borderwidth
-cursor -disabledforegr ound -font
-for eground -highlightbackground -highlightcolor
-highlightthickness -image -justify
-padx -pady -r elief
-takefocus -text -textvariable
-underline -wraplength

Widget-Specific Options

-dir ection direction (direction, Height)
Wher e menu should pop up in relation to button. Valid direction val-
ues are above, below, right, left, or flush (dir ectly over button).

-height height (height, Height)
Desir ed height, in lines, for text content or in screen units for images and
bitmaps.

Tk Core
Com

m
ands

Widget Commands — menubutton 83

11 May 2006 10:47

-indicator on boolean (indicatorOn, IndicatorOn)
If true, a small indicator is drawn on the button’s right side and the
default bindings will treat the widget as an option menubutton.

-menu pathName (menu, menuName)
Name of menu widget to post when button is invoked.

-state state (state, State)
State of menubutton. State must be normal, active, or disabled.

-width width (width, Width)
Desir ed width, in characters for text content, or in screen units for images
and bitmaps.

messa ge

message pathName [option value...]

The message command creates a new message widget named pathName.

Standard Options

-anchor -background -borderwidth
-cursor -font -for eground
-highlightbackgr ound -highlightcolor -highlightthickness
-justify -padx -pady
-r elief -takefocus -text
-textvariable

Widget-Specific Options

-aspect integer (aspect, Aspect)
Ratio of the text’s width to its height on a scale from 0 to 100. The ratio
is used to choose the line length for word wrapping.

-width width (width, Width)
Desir ed line length in characters. If greater than zero, overrides -aspect
option.

radiobutton

radiobutton pathName [option value...]

The radiobutton command creates a new radiobutton widget named path-
Name.

Standard Options

-activebackgr ound -activefor eground -anchor
-backgr ound -bitmap -borderwidth
-cursor -disabledforegr ound -font
-for eground -highlightbackground -highlightcolor
-highlightthickness -image -justify
-padx -pady -r elief

84 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-takefocus -text -textvariable
-underline -wraplength

Widget-Specific Options

-command tclCommand (command, Command)
Command to be evaluated when button is invoked.

-height height (height, Height)
Desir ed height, in lines for text content or in screen units for images and
bitmaps.

-indicator on boolean (indicatorOn, IndicatorOn)
Whether the indicator should be drawn. If false, the -r elief option is
ignor ed and the widget’s relief is sunken if selected and raised if not.

-selectcolor color (selectColor, Background)
Backgr ound color to use for indicator when button is selected (at all
times for Windows). If indicatorOn is false, the color is used for the
backgr ound of the entire widget when it is selected.

-selectimage imageName (selectImage, SelectImage)
Name of image to display instead of normal image when button is
selected. This option is ignored if the -image option has not been set.

-state state (state, State)
State of the radiobutton. State must be nor mal, active, or disabled.

-value value (value, Value)
Value to store in associated variable when button is selected.

-variable varName (variable, Variable)
Name of global variable (defaults to last element of pathName) to set to
indicate whether the radiobutton is selected.

-width width (width, Width)
Desir ed width in characters for text content or screen units for image and
bitmap.

Methods

pathName deselect
Deselect the radiobutton and set the value of its associated variable to an
empty string.

pathName flash
Flash the button by alternating between active and normal colors.

pathName invoke
Select the button, invoke the Tcl command associated with the button,
and retur n its result. An empty string is retur ned if there is no command
associated with the button. This command is ignored if the button’s state
is disabled.

Tk Core
Com

m
ands

Widget Commands — radiobutton 85

11 May 2006 10:47

pathName select
Select the radiobutton and set its associated variable to the value of the
-value option.

scale

scale pathName [option value...]

The scale command creates a new scale widget named pathName. A scale is
a widget that displays a rectangular trough and a small slider. The position of
the slider selects a particular real value.

Standard Options

-activebackgr ound -backgr ound -bor derwidth
-cursor -font -for eground
-highlightbackgr ound -highlightcolor -highlightthickness
-orient -relief -repeatdelay
-r epeatinterval -takefocus -troughcolor

Widget-Specific Options

-bigincr ement value (bigIncrement, BigIncrement)
Real number for ‘‘large’’ increments of the scale. Default (or if set to 0) is
one-tenth the range of the scale.

-command tclCommand (command, Command)
Command to invoke whenever the scale’s value is changed. The scale’s
new value will be appended as an argument.

-digits integer (digits, Digits)
How many significant digits should be retained when converting scale’s
value to a string. If integer is zero or less, Tk chooses the smallest
value that guarantees each position is unique.

-fr om value (from, From)
Real value limit for the left or top end of the scale.

-label string (label, Label)
Text string to label the scale. Label is displayed just to the right of the top
end of vertical scales and just to the left of horizontal scales.

-length size (length, Length)
Desir ed long dimension, in screen units, for the scale.

-r esolution value (resolution, Resolution)
Real value specifying the resolution of the scale. Defaults to 1 (i.e., the
scale’s value will be integral).

-showvalue boolean (showValue, ShowValue)
Whether the current value of the scale is displayed.

-sliderlength size (sliderLength, SliderLength)
Size of the slider, in scr een units, along the long dimension.

86 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-sliderr elief relief (sliderRelief, SliderRelief)
The relief to use for drawing the slider.

-state state (state, State)
State of the scale. State must be normal, active, or disabled.

-tickinterval value (tickInterval, TickInterval)
Real value specifying spacing between numerical tick marks displayed
below or to the left of the slider. If 0, no tick marks will be displayed.

-to value (to, To)
Real value corresponding to the right or bottom end of the scale.

-variable varName (variable, Variable)
Name of global variable to associate with the scale. Changes to either
the variable or the scale will automatically update the value of the other.

-width size (width, Width)
Desir ed narr ow dimension, in screen units, of the scale’s trough.

Methods

pathName coor ds [value]
Retur n the x- and y-coordinates (as a two-element list) of the point along
the centerline of the trough corresponding to value. If value is not
given, the scale’s current value is used.

pathName get [x y]
Retur n the current value of the scale if x and y ar e not given. Otherwise,
retur n the value corresponding to the point on the scale closest to coor-
dinates x and y within the widget.

pathName identify x y
Retur n the name of the part of the scale that lies under the coordinates
given by x and y. The name will be one of slider, trough1 (above or
to the left of the slider), or trough2 (below or to the right of the slider).
If the point is not within the widget, an empty string is retur ned.

pathName set value
Change the current value of the scale to value and update the slider’s
position.

scrollbar

scr ollbar pathName [option value...]

The scr ollbar command creates a new scrollbar widget named pathName.

Standard Options

-activebackgr ound -backgr ound -bor derwidth
-cursor -highlightbackground -highlightcolor
-highlightthickness -jump -orient
-r elief -r epeatdelay -r epeatinterval
-takefocus -troughcolor

Tk Core
Com

m
ands

Widget Commands — scr ollbar 87

11 May 2006 10:47

Widget-Specific Options

-activer elief relief (activeRelief, ActiveRelief)
Relief type to use when scrollbar is active.

-command string (command, Command)
Pr efix of Tcl command to invoke to change view in widget associated
with the scrollbar. See “Scrolling Methods,” later in this section.

-elementbor derwidth width (elementBorderWidth, BorderWidth)
Width of borders drawn around internal elements of scrollbar.

-width width (width, Width)
Desir ed narr ow dimension, in screen units, for the scrollbar.

Scrollbar Elements

arrow1 Top (or left) arrow
trough1 Region between slider and arrow1
slider Rectangle indicating visible region
trough2 Region between slider and arrow2
arrow2 Bottom (or right) arrow

Methods

pathName activate [element]
Mark element indicated by element as active. If not given, retur n name
of current element, or an empty string if no element is active.

pathName delta deltaX deltaY
Retur n a real number indicating the change in the scrollbar setting that
will result if the slider moves deltaX pixels to the right and deltaY
pixels to the left. The arguments may be zero or negative.

pathName fraction x y
Retur n real number between 0 and 1 indicating the fractional position of
coordinates x y (in pixels relative to the widget) along the scrollbar.

pathName get
Retur n a list containing the most recent arguments to the set method.

pathName identify x y
Retur n the name of the element at point x y (in pixels relative to the
widget) in the scrollbar. Retur n an empty string if the point is not inside
the scrollbar.

pathName set first last
Usually invoked by associated widget to inform the scrollbar about its
curr ent view. Arguments first and last ar e real numbers between 0
and 1 describing the viewable range in the widget within the widget.

Scrolling Methods

When the user interacts with the scrollbar, for example, by dragging the slider,
the scrollbar notifies the associated widget that it must change its view. The
scr ollbar makes the notification by evaluating a Tcl command generated by
appending action-specific arguments to the value of the scrollbar’s -command

88 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

option. The possible forms of the resulting command are described next. In
each case, prefix is the value of the -command option, which usually has a
for m like pathName xview or pathName yview, wher e pathName is the
associated widget pathname.

prefix moveto fraction
Tells associated widget to adjust its view so that the point indicated by
fraction appears at the beginning of the widget’s visible region. A
value of 0.333 means the visible region should begin one-third of the
way through the widget’s span.

prefix scr oll number units
Tell associated widget to adjust its view by number units. The meaning
of units is widget specific.

prefix scr oll number pages
Tell associated widget to adjust its view by number pages. The meaning
of pages is widget specific.

text

text pathName [option value...]

The text command creates a new text widget named pathName. A text wid-
get displays one or more lines of text and allows that text to be edited. Sev-
eral options exist to change the text’s style (fonts, color, justification, etc.).
Tags can be assigned to regions of text to allow differ ent styles to be applied.
The text widget also allows the embedding of images and other windows.
Floating marks can be set to keep track of special points in the text.

Standard Options

-backgr ound -bor derwidth -cursor
-exportselection -font -for eground
-highlightbackgr ound -highlightcolor -highlightthickness
-insertbackgr ound -insertbor derwidth -insertof ftime
-insertontime -insertwidth -padx
-pady -relief -selectbackground
-selectbor derwidth -selectfor eground -setgrid
-takefocus -xscrollcommand -yscrollcommand

Widget-Specific Options

-height (height, Height)
Desir ed height for the window, in characters.

-spacing1 (spacing1, Spacing1)
Space to add above each line of text. If the line wraps, the space is
added above the first displayed line only.

-spacing2 (spacing2, Spacing2)
Space to add between the lines that display a long, wrapped line of text.

Tk Core
Com

m
ands

Widget Commands — text 89

11 May 2006 10:47

-spacing3 (spacing3, Spacing3)
Space to add below each line of text. If the line wraps, the space is
added below the last displayed line only.

-state (state, State)
State of the text widget. State must be normal or disabled. If the
text is disabled, no insertions or deletions are allowed.

-tabs (tabs, Tabs)
List of screen distances giving the positions for tab stops. Each position
may optionally be followed in the next list element by one of left (the
default), right, center, or numeric (align on decimal point), which
specifies how to justify text relative to the tab stop. If a line contains
mor e tabs than defined tab stops, the last tab stop is used for the addi-
tional tabs. Example: {2c left 4c 6c center}

-width (width, Width)
Desir ed width for window, in characters.

-wrap (wrap, Wrap)
How to handle lines of text longer than the window width. Allowed val-
ues are none for no wrapping, char for line breaking on any character,
or word for breaking only on word boundaries.

Te xt Indices

Several text widget methods support the notion of an index for identifying
particular positions within the text. Indices have the syntax:

base [modifier [modifier...]]

wher e the base gives the starting point and the optional modifiers adjust the
index from the starting point. Possible values for base ar e as follows:

line.char
The char th character on line line. Lines are number ed starting at 1,
characters starting at 0. If char is end, it refers to the newline character
that ends the line.

@x,y
The character that covers the pixel whose coordinates within the text’s
window are x and y.

end
The end of the text (the character just after the last newline).

mark
The character just after the mark whose name is mark.

tag.first
The first character in the text range tagged with tag.

tag.last
The character just after the last one in the text range tagged with tag.

90 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

pathName
The position of the embedded window pathName.

imageName
The position of the embedded image imageName.

The modifier arguments may take the following form:

+ count chars
Adjust the index forward by count characters.

- count chars
Adjust the index backward by count characters.

+ count lines
Adjust the index forward by count lines, retaining the same character
position within the line.

- count lines
Adjust the index backward by count lines, retaining the same character
position within the line.

linestart
Adjust the index to refer to the first character on the line.

lineend
Adjust the index to refer to the last character on the line (the newline).

wordstart
Adjust the index to refer to the first character of the word containing the
index. A word consists of any number of adjacent characters that are let-
ters, digits, or underscores, or a single character that is not one of these
and is not whitespace.

wordend
Adjust the index to refer to the character just after the last one of the
word containing the index.

Several widget methods operate on a range of text defined by the arguments
index1 and index2. This range includes all characters from index1 up to,
but not including, the character at index2. If index2 is not given, the range
consists only of the character at index1.

Tags

A tag is a textual string that is associated with one or more ranges of charac-
ters. Tags are used in methods to change the character’s style (fonts, color,
etc.), bind events to the characters, and manage the selection. Since an indi-
vidual character may have any number of tags associated with it, a priority list
of tags is maintained to resolve conflicts in style. When a tag is created, it is
given highest priority. The tag raise and tag lower methods can be used to
change a tag’s priority.

Tk Core
Com

m
ands

Widget Commands — text 91

11 May 2006 10:47

The special tag sel exists when the -exportselection option for the text wid-
get is true. This tag is used to manipulate the current selection. Whenever
characters are tagged with sel, the text widget will claim ownership of the
selection and retur n those characters when the selection is retrieved. When
the selection is claimed by another window or application, the sel tag is
removed from all characters in the text.

Marks

A mark is a textual string associated with a single position (a gap between
characters). If the characters around a mark are deleted, the mark will still
remain; it will just have new neighbors. Each mark has a gravity, either left
or right (the default). The gravity specifies what happens when new text is
inserted at the mark. With left gravity, the mark will end up to the left of the
new text. With right gravity, the mark will end up to the right of new text.

Two marks are defined automatically and cannot be deleted. The insert
mark repr esents the position of the insertion cursor; the insertion cursor will
automatically be drawn at this point whenever the text widget has the input
focus. The current mark is associated with the character closest to the
mouse and is adjusted automatically to track the mouse motion (except dur-
ing dragging).

Tag Event Binding

Binding events to tagged characters using the tag bind method works in a
manner similar to binding events to widgets with the Tk bind command.
However, only events related to the mouse and keyboard or virtual events can
be bound to text tags. If a virtual event is used in a binding, it can be trig-
ger ed only if the underlying ‘‘real’’ event is mouse related or keyboard
related.

When multiple bindings for a character match a particular event, all of the
matching bindings are invoked. This can happen when a character is associ-
ated with two tags and both tags have bindings for the same event. One bind-
ing is invoked for each tag in order from lowest to highest priority. If there
ar e multiple matching bindings for a single tag, only the most specific binding
is invoked. A continue command in a binding script terminates just that bind-
ing. A br eak command terminates the script for that binding and skips any
remaining bindings for the event. Any bindings made to the text widget using
the bind command are invoked after any matching tag bindings.

Methods

pathName bbox index
Retur n a list of four numbers giving the x- and y-coordinates of the
upper-left corner (relative to the widget) and the width and height of the
visible area occupied by the character at index. If the character is not
visible, an empty list is retur ned.

pathName compar e index1 op index2
Compar e the two indices with relational operator op and retur n 1 if the
relationship is satisfied, 0 if it isn’t. Op may be <, <=, ==, >=, >, or !=.

92 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

pathName debug [boolean]
Whether to turn on inter nal consistency checks in the B-tree code for all
text widgets. Return curr ent setting if boolean is not given.

pathName delete index1 index2
Delete all characters (including embedded windows and images) from
the given text range. The final newline in the text cannot be deleted.

pathName dlineinfo index
Retur n a list of five numbers giving the x- and y-coordinates of the
upper-left corner (relative to the widget) and the width and height of the
ar ea occupied by the line at index. The fifth element is the position of
the baseline for the line as measured from the top of the area. If the line
is not visible, an empty list is retur ned.

pathName dump [switches] index1 [index2]
Retur n detailed information on the text widget contents in the given text
range. Information is retur ned in the following format:

key1 value1 index1 key2 value2 index2...

The possible key values are text, mark, tagon, tagoff, and win-
dow. The corresponding value is the text string, mark name, tag name,
or window name. The index infor mation is the index of the start of the
text, the mark, the tag transition, or the window. One or more of the fol-
lowing switches are allowed:

-all Include information for all element types. This is the default.

-command tclCommand
Instead of retur ning infor mation, invoke tclCommand on each ele-
ment, appending the key, value, and index as arguments.

-mark
Include information on marks in the dump.

-tag
Include information on tags in the dump.

-text
Include information on text in the dump. Will not span newlines,
marks, or tag transitions.

-window
Include information on windows in the dump.

pathName get index1 [index2]
Retur n characters from given text range.

pathName image cget index option
Retur n the value of configuration option option for the embedded
image at index.

Tk Core
Com

m
ands

Widget Commands — text 93

11 May 2006 10:47

pathName image configure index [option [value [option value...]]]
Query or modify the configuration options for an embedded image in the
same manner as the general widget configur e method. Supported options
ar e as follows:

-align where
How to align the image on the line in which it is displayed. Where
may be top (align the top of the image with the top of the line),
bottom (bottom with bottom), center (center the image on the
line), or baseline (align the bottom of the image with the baseline
of the line).

-image imageName
Name of image to display.

-name imageName
Name by which image can be refer enced in the text widget (defaults
to name of image set with -image).

-padx pixels
Amount of extra space to leave on each side of the image.

-pady pixels
Amount of extra space to leave on the top and bottom of the image.

pathName image create index [option value...]
Cr eate an embedded image at position index configur ed with the given
options and retur n a unique identifier that may be used as an index to
refer to the image.

pathName image names
Retur n a list of the names of all embedded images in the text widget.

pathName index index
Retur n the position corresponding to index in the form line.char.

pathName insert index chars [tagList [chars [tagList...]]]
Insert the string chars just before the character at index. If tagList is
given, it is a list of tags to be associated with the inserted text. Otherwise,
any tags associated with both of the characters before and after index
ar e associated with the inserted text. If multiple chars-tagList argu-
ment pairs are given, they are inserted in order as if by separate insert
method calls.

pathName mark gravity markName [direction]
Set the gravity for mark markName to direction (either left or
right). If direction is not specified, retur ns curr ent setting for the
mark.

pathName mark names
Retur n a list of the names of all marks currently set in the text widget.

94 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

pathName mark next index
Retur n the name of the next mark at or after index. If index is itself a
mark name, that mark name is skipped as well as those marks at the
same position that come before it in the dump list. Return an empty
string if no marks appear after index.

pathName mark previous index
Retur n the name of the next mark at or before index. If index is itself
a mark name, that mark name is skipped as well as those marks at the
same position that come after it in the dump list. Return an empty string
if no marks appear before index.

pathName mark set markName index
Set a mark named markName just before the character at index.

pathName mark unset markName [markName...]
Remove the marks corresponding to each of the markName arguments.

pathName scan dragto x y
Scr oll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the differ ence between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

pathName scan mark x y
Record x and y as anchors for a following scan dragto method call.

pathName sear ch [switches] pattern index [stopIndex]
Search the text for a range of characters that match pattern starting at
position index. If a match is found, the index of the first character of the
match is retur ned. Otherwise, an empty list is retur ned. If stopIndex is
given, the search will not go past that index. Possible switches are:

-forwar d
Search forward through the text. This is the default.

-backwar d
Search backward through the text, finding matching text closest to
index whose first character is before index.

-exact
The characters in the matching range must be identical to those in
pattern.

-r egexp
Tr eats pattern as a regular expression (see the regexp command).

-nocase
Ignor e case differ ences in matching.

-count varName
Stor e number of characters in matching range in the variable var-
Name.

Tk Core
Com

m
ands

Widget Commands — text 95

11 May 2006 10:47

–– Terminate further processing of switches so that pattern may begin
with a hyphen.

pathName see index
Adjust the view in the window if needed so that the character at index
is completely visible.

pathName tag add tagName index1 [index2 [index1 [index2...]]]
Associate the tag tagName with the characters in each given text range.

pathName tag bind tagName [sequence [script]]
Associate script with tag tagName such that whenever the event
sequence given by sequence occurs for a character tagged with tag-
Name, the script will be evaluated. See “Tag Event Binding,” earlier in this
chapter. If the script argument is not given, the current associated
script is retur ned. If the sequence is also not given, a list of all the
sequences for which bindings have been defined for tagOrId is
retur ned.

pathName tag cget tagName option
Retur n the value of configuration option option for the tag tagName.

pathName tag configure tagName [option [value [option value...]]]
Query or modify the configuration options for tag tagName in the same
manner as the general widget configur e method. Tag options are used to
change the displayed style of characters marked with the tag. Options
that change the line style (margins, spacing, justification) take effect only
if the first character of the line is associated with the tag. The following
options are available:

-backgr ound color
Backgr ound color for drawing characters.

-bgstipple bitmap
Bitmap to use as stipple pattern for character background.

-bor derwidth pixels
Width of a 3D border to draw around background.

-fgstipple bitmap
Bitmap to use as stipple pattern for character foregr ound.

-font fontName
Font to use for drawing characters.

-for eground color
For eground color for drawing characters.

-justify justify
How to align lines in the window when the first character of the line
is associated with the tag. Must be left, right, or center.

-lmar gin1 pixels
How much to indent lines. If the line wraps, this indent applies only
to the first displayed line.

96 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-lmar gin2 pixels
How much to indent lines that follow the first one in a long,
wrapped line.

-of fset pixels
Amount to vertically offset the baseline of characters from the base-
line. Useful for superscripts and subscripts.

-overstrike boolean
Whether to draw a horizontal line through the middle of the charac-
ters.

-r elief relief
3D relief to use for drawing background border.

-r margin pixels
How much to indent all displayed lines of a line of text from the
right edge of the window.

-spacing1 pixels
Space to add above each line of text. If the line wraps, the space is
added above the first displayed line only.

-spacing2 pixels
Space to add between the lines that display a long, wrapped line of
text.

-spacing3 pixels
Space to add below each line of text. If the line wraps, the space is
added below the last displayed line only.

-tabs tabList
Tab stops for a line of text (see the -tabs option in “Widget-Specific
Options,” earlier in this section).

-underline boolean
Whether to draw an underline beneath characters.

-wrap mode
How the line of text should be wrapped. Must be one of none,
char, or word.

pathName tag delete tagName [tagName...]
Delete all tag information for each of the tags identified by the tagName
arguments.

pathName tag lower tagName [belowThis]
Change the priority of tag tagName such that it is lower in priority than
tag belowThis. If belowThis is not given, the tag is changed to have
lowest priority.

pathName tag names [index]
Retur n a list of the names of all tags associated with the character at posi-
tion index. If index is not given, a list of all tags that exist in the text
is retur ned.

Tk Core
Com

m
ands

Widget Commands — text 97

11 May 2006 10:47

pathName tag nextrange tagName index1 [index2]
Retur n starting and ending index of the next range of characters associ-
ated with tag tagName in which the first character of the range is no ear-
lier than position index1 and no later than just before position index2
(or end if not given).

pathName tag prevrange tagName index1 [index2]
Retur n starting and ending index of the next range of characters associ-
ated with tag tagName in which the first character of the range is before
position index1 and no earlier than position index2 (or 1.0 if not
given).

pathName tag raise tagName [aboveThis]
Change the priority of tag tagName such that it is higher in priority than
tag aboveThis. If aboveThis is not given, the tag is changed to have
highest priority.

pathName tag ranges tagName
Retur n a list of all ranges of text that have been tagged with tagName.

pathName tag remove tagName index1 [index2 [index1 [index2...]]]
Remove tag tagName fr om those tags associated with the characters in
the given text ranges.

pathName window cget index option
Retur n the value of configuration option option for the window identi-
fied by index.

pathName window configure index [option [value [option value...]]]
Query or modify the configuration options for the window identified by
index in the same manner as the general widget configur e method. The
following options are available:

-align where
How to align the window on the line in which it is displayed.
Where may be top (align the top of the window with the top of the
line), bottom (bottom with bottom), center (center the window
on the line), or baseline (align the bottom of the window with the
baseline of the line).

-cr eate script
As an alternative to the -window option, specifies a script to evaluate
when a window is first displayed on screen. Script must retur n
the name of the window to display. If the window is ever destroyed,
script will be evaluated again the next time the text widget
requir es the window to be displayed.

-padx pixels
Amount of extra space to leave on each side of the window.

-pady pixels
Amount of extra space to leave on the top and bottom of the win-
dow.

98 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-str etch boolean
Whether window should be stretched vertically to fill the height of
its line.

-window pathName
Pathname of the window to embed in the text widget.

pathName window create index [option value...]
Cr eate an embedded window at position index configur ed with the
given options.

pathName window names
Retur n a list of the names of all windows currently embedded in the text
widget.

pathName xview
Retur n a two-element list describing the currently visible horizontal
region of the widget. The elements are real numbers repr esenting the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget.

pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the widget horizontally by number. If what is
units, then number is in units of characters. If what is pages, then
number is in units of the visible region’s width.

pathName yview
Retur n a two-element list describing the currently visible vertical region
of the widget. The elements are real numbers repr esenting the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget.

pathName yview -pickplace index
Adjust the visible region of the widget so position index is visible at the
top edge of the view. If -pickplace is specified, the widget chooses where
index appears in the view to cause the least possible screen movement
necessary to make the position visible. This method is made obsolete by
the see method.

pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Shift the visible region of the widget vertically by number. If what is
units, then number is in units of text lines. If what is pages, then
number is in units of the visible region’s height.

Tk Core
Com

m
ands

Widget Commands — text 99

11 May 2006 10:47

tople vel

toplevel pathName [option value...]

The toplevel command creates a new top-level widget named pathName. It is
similar to a frame widget, but its actual window system parent is the root win-
dow of the screen rather than the hierarchical parent from its pathname.

Standard Options

-bor derwidth -cursor -highlightbackground
-highlightcolor -highlightthickness -relief
-takefocus

Widget-Specific Options

-backgr ound color (background, Background)
Same as standard option, but may be the empty string to display no
backgr ound or border.

-class name (class, Class)
Class to use when querying the option database and for bindings. May
not be changed with configur e.

-color map colormap (colormap, Colormap)
Color map to use for window. Colormap may be either new, in which
case a new colormap is created, or the name of another window, in
which case that window’s colormap is used. The default is to use the
color map of its screen. May not be changed with configur e.

-container boolean (container, Container)
Whether the window will be used as a container in which to embed
some other application. May not be changed with the configur e method.

-height height (height, Height)
Desir ed height, in screen units, for the window.

-menu pathName (menu, Menu)
Menu widget to be used as a menubar.

-scr een screen
Scr een on which to place the new window. May not be changed with
the configur e method.

-use windowId (use, Use)
Used for embedding. WindowId is the ID of a window to be the parent
of top-level widget instead of the root window. May not be changed
with the configur e method.

-visual visual (visual, Visual)
Visual class to use for the window. Visual must be directcolor,
grayscale, pseudocolor, staticcolor, staticgray, or true-
color.

-width width (width, Width)
Desir ed width, in screen units, for the window.

100 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

Utility Commands
This section describes the commands in the Tk extension that do not create wid-
gets. These commands include those needed to bind to window system events,
contr ol the layout of widgets, interact with the window manager, and several other
miscellaneous GUI-related operations.

bell

bell [-displayof window]

Ring the bell on the display of window. If window is not given, the bell is
rung on the display of the main window.

bind

bind tag [sequence [[+] script]]

Set or query event bindings. If all three arguments are specified, the Tcl script
script will be evaluated whenever the event specified by the pattern
sequence occurs in the windows identified by tag. If script is prefixed
by the character ‘‘+’’, it is appended to any existing script bound to tag for
sequence. Otherwise, any current script is replaced. If script is an empty
string, any current binding to the event is destroyed.

If no script is specified, the script currently bound to tag for sequence is
retur ned. If only tag is given, a list of all the sequences for which there exist
bindings for tag is retur ned.

Binding Tags

The windows to which a binding applies are selected by the tag argument. If
tag begins with the ‘‘.’’ character, it must be a pathname for a window; oth-
erwise, it can be an arbitrary string. Each window has an associated list of
tags that can be manipulated with the bindtags command. The default tags for
a newly created window, in priority order, are as follows:

• The pathname of the window itself (e.g., .main.text). Binding to this
tag will bind the sequence to that window only, unless the window is
top-level.

• The pathname of the top-level window containing the window (e.g.,
‘‘.’’). Binding to this tag will bind the sequence to all windows contained
by the top-level window.

• The widget class of the window (e.g., Text). Binding to this tag will
bind the sequence to all windows of that class. This is how the default
bindings for all widgets are set up in the standard Tk script library.

• The special value all. Binding to this tag will bind the sequence to all
windows in the application.

Tk Core
Com

m
ands

Utility Commands — bind 101

11 May 2006 10:47

Event Patter ns

The sequence argument consists of a sequence of one or more event pat-
ter ns. If multiple patterns are concatenated without whitespace, the binding
requir es the matched events to happen in the order of events given. When
script is given, the sequence argument may also be a list of valid
sequences, in which case each sequence is bound to the same script sepa-
rately.

Event patterns in a sequence take one of three forms. The simplest form is a
single printable ASCII character, such as a or [, with the exclusion of the
space character and the character <. This form of an event pattern matches a
KeyPress event for the given character.

The second form of patter n is used to specify a user-defined, named virtual
event. It has the following syntax:

<<name>>

Name is an arbitrary string surrounded by double angle brackets. See the
event command. Bindings on a virtual event can be created before the virtual
event is defined. If the definition of a virtual event is later changed, all win-
dows bound to that virtual event will respond immediately to the new defini-
tion.

The third form has the following syntax:

<modifier-modifier-type-detail>

Surr ounded by a single pair of angle brackets is a pattern of zer o or more
modifiers, an event type, and an extra piece of information (the detail), which
can identify a particular button or keysym. All the fields are optional, except
that at least one of type and detail must be present. The fields can be sep-
arated by either whitespace or dashes.

Possible values for the modifier elements are as follows:

Control Shift Lock
Button1 or B1 Button2 or B2 Button3 or B3
Button4 or B4 Button5 or B5 Mod1 or M1
Mod2 or M2 Mod3 or M3 Mod4 or M4
Mod5 or M5 Meta or M Alt
Double Triple

Most of these indicate a key or mouse button that must be pressed in addition
to the action specified by type and detail. The Double and Triple
modifiers are a convenience for specifying repeated events with the addition
of a time and space requir ement on the sequence.

For a binding to match a given event, the modifiers in the event must include
all of those specified in the event pattern. An event may also contain addi-
tional modifiers not specified in the binding. For example, if button 1 is
pr essed while the Shift and Control keys are down, the pattern <Control-
Button-1> will match the event, but <Mod1-Button-1> will not. If no
modifiers are specified, any combination of modifiers may be present in the
event.

102 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

The type element may take any of the following values corresponding to the
standard X Window System event types:

ButtonPress or Button ButtonRelease Circulate
Colormap Configure Destroy
Enter Deactivate Expose
FocusIn FocusOut Gravity
KeyPress or Key KeyRelease Leave
Map Motion Property
Reparent Unmap Visibility
Activate

The allowed values for the detail element depend on the preceding type
element. For ButtonPress and ButtonRelease, the possible values are 1
thr ough 5, identifying the number of the mouse button. For KeyPress and
KeyRelease, the possible values are any valid X Window System keysym.
This includes all alphanumeric ASCII characters (e.g., a and 8) and descrip-
tions for other characters (e.g., comma for the comma character). The actual
keysyms available will depend on your operating system and hardware. On
most Unix systems, the keysyms are listed in the include file /usr/include/
X11/keysymdef.h.

As a special shortcut, the type element may be omitted when a detail is
specified. For detail values 1 thr ough 5, the type defaults to Button-
Press. For any other valid keysym value, the type defaults to KeyPress.

Binding Script and Substitutions

Whenever the given event sequence occurs, the script argument to bind
will be evaluated at global scope in the same interpreter in which the bind
was executed. If an error occurs in executing the script for a binding, the
bgerr or mechanism is used to report the error.

The script is passed through a substitution phase before being executed.
Occurr ences of the % character followed by a second character will be
replaced by a value dependent on the second character, when valid. The sub-
stitution will always be properly escaped or surrounded with braces to main-
tain a valid Tcl command. The possible substitutions are as follows:

%% Replaced with a single percent sign.

%# The number of the last client request (the serial field from the event).

%a The above field from the event as a hexadecimal number. Valid only for
Configure events.

%b The number of the button that was pressed or released. Valid only for
ButtonPress and ButtonRelease events.

%c The count field from the event. Valid only for Expose events.

%d The detail field from the event. Valid only for Enter, Leave, FocusIn,
and FocusOut events. Will be one of the following:

Tk Core
Com

m
ands

Utility Commands — bind 103

11 May 2006 10:47

NotifyAncestor NotifyDetailNone
NotifyInferior NotifyNonlinear
NotifyNonlinearVirtual NotifyPointer
NotifyPointerRoot NotifyVirtual

%f The focus field from the event (0 or 1). Valid only for Enter and Leave
events.

%h The height field from the event. Valid only for Configure and Expose
events.

%k The keycode field from the event. Valid only for KeyPress and Key-
Release events.

%m The mode field from the event. Valid only for Enter, Leave, FocusIn,
and FocusOut events. The value will be NotifyNormal, Notify-
Grab, NotifyUngrab, or NotifyWhileGrabbed.

%o The override_r edir ect field from the event. Valid only for Map, Repar-
ent, and Configure events.

%p The place field from the event. Valid only for Circulate events. The
value will be PlaceOnTop or PlaceOnBottom.

%s The state field from the event. For ButtonPress, ButtonRelease,
Enter, Leave, KeyPress, KeyRelease, and Motion events, a deci-
mal string is substituted. For Visibility, the value will be
VisibilityUnobscured, VisibilityPartiallyObscured, or
VisibilityFullyObscured.

%t The time field from the event. Valid only for events that contain a time
field.

%w The width field from the event. Valid only for Configure and Expose
events.

%x The x field from the event. Valid only for events containing a x field.

%y The y field from the event. Valid only for events containing a y field.

%A Substitutes the ASCII character corresponding to the event (or the empty
string if there is none). Valid only for KeyPress and KeyRelease
events.

%B The bor der_width field from the event. Valid only for Configure
events.

%E The send_event field from the event.

%K The keysym corresponding to the event as a textual string. Valid only for
KeyPress and KeyRelease events.

%N The keysym corresponding to the event as a decimal number. Valid only
for KeyPress and KeyRelease events.

104 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

%R The root window identifier from the event. Valid only for events contain-
ing a root field.

%S The subwindow window identifier from the event. Valid only for events
containing a subwindow field.

%T The type field from the event.

%W The pathname of the window for which the event was reported.

%X The x_r oot field from the event. This is the x-coordinate in the root (or
virtual root) window. Valid only for ButtonPress, ButtonRelease,
KeyPress, KeyRelease, and Motion events.

%Y The y_r oot field from the event. This is the y-coordinate in the root (or
virtual root) window. Valid only for ButtonPress, ButtonRelease,
KeyPress, KeyRelease, and Motion events.

Multiple Matches

It is possible for an event to match several bindings. If the bindings are asso-
ciated with differ ent tags, each of them will be executed in the order of the
tags as set by bindtags. The continue and br eak commands can be used
inside a binding to control processing of the matching scripts. The continue
command terminates the current script and continues on to the next tag’s
script. The br eak command terminates the current script and does not invoke
the scripts for the following tags.

If more than one binding matches a particular event and each has the same
tag, the script for the most specific binding is evaluated. The following tests
ar e applied, in order, to deter mine which of several matching sequences is
mor e specific:

1. An event pattern that specifies a specific button or key is more specific
than one that doesn’t.

2. A longer sequence (in terms of number of events matched) is more spe-
cific than a shorter sequence.

3. If the modifiers specified in one pattern are a subset of the modifiers in
another pattern, the pattern with more modifiers is more specific.

4. A virtual event whose physical pattern matches the sequence is less spe-
cific than the same physical pattern that is not associated with a virtual
event.

5. Given a sequence that matches two or more virtual events, one of the vir-
tual events will be chosen, but the order is undefined.

If there are two (or more) virtual events bound to the same tag that are both
trigger ed by the same sequence, only one of the virtual events will be trig-
ger ed. Which one is chosen is undefined.

Multievent Sequences and Ignored Events

If a sequence contains multiple event patterns, its script is executed when-
ever the events leading up to and including the current event match the order

Tk Core
Com

m
ands

Utility Commands — bind 105

11 May 2006 10:47

of events given in the sequence. For example, if button 1 is clicked repeat-
edly, the sequence <Double-ButtonPress-1> will match each button
pr ess but the first. Extraneous events that occur in the middle of an event
sequence will prevent a match only if they are KeyPress or ButtonPress
events not in the sequence. Extraneous modifier key presses are ignor ed,
however. When several Motion events occur in a row, only the last one is
consider ed for matching binding sequences.

bindta gs

bindtags window [tagList]

With no tagList argument, the current list of binding tags associated with
window window is retur ned. Otherwise, the current list is replaced with the
list of tags given by tagList. If tagList is the empty list, the tag list is
reset to the default as described in the “Binding Tags” section of the bind
command.

clipboard

clipboar d operation [arg arg...]

Clear or append to the contents of the Tk clipboard for later retrieval using
the selection command. The following operations are defined:

clipboar d append [-displayof window] [-for mat format] [-type type] [– –]
data
Append data to the clipboard on window’s display. type specifies the
for m in which the selection is to be retur ned as an atom name such as
STRING or FILE_NAME (see the Inter-Client Communication Conven-
tions Manual). The default is STRING.

When compatibility with a non-Tk clipboard requester is needed, the
format argument can be used to specify the repr esentation that should
be used to transmit the selection. Format defaults to STRING, which
transmits the selection as 8-bit ASCII characters.

clipboar d clear [-displayof window]
Claim ownership of the clipboard on window’s display (defaults to ‘‘.’’)
and remove any previous contents.

destroy

destr oy window [window...]

Destr oy the windows given by the window arguments as well as all their
descendants. The windows are destr oyed in the order given. If an error
occurs in destroying a window, the command aborts without destroying the
remaining windows. It is not an error if window does not exist.

106 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

event

event operation [arg arg...]

The event command provides several facilities for dealing with window sys-
tem events, such as defining virtual events and synthesizing events. The fol-
lowing operations are defined:

event add <<virtual>> sequence [sequence...]
Add the given event sequences to those associated with the virtual
event virtual. The virtual event will trigger whenever any one of the
given sequences occurs. See the bind command for allowed sequence
values.

event delete <<virtual>> [sequence [sequence...]]
Delete the given event sequences from those associated with the virtual
event virtual. If no sequence is given, all sequences associated with
the virtual event are removed.

event generate window sequence [option value...]
Generate an event for window window and arrange for it to be pro-
cessed just as if it had come from the window system. Window may be a
window pathname or an identifier (as retur ned by winfo id), as long as it
is in the current application. The sequence argument describes the
event to generate. It may have any of the forms allowed for the
sequence argument to the bind command, except that it must consist of
a single event pattern (e.g., <Shift-Button-2> or <<Paste>>).

The event generated can be further described with the optional option-
value pairs. In the descriptions of these options that follow, the [%char]
at the beginning identifies the corresponding bind command substitution.
The available options are as follows:

-above window
[%a] The above field for the event, either as a window or integer
window ID.

-bor derwidth size
[%B] The bor der_width field for the event as a screen distance.

-button number
[%b] The detail field for a ButtonPress or ButtonRelease
event.

-count integer
[%c] The count field for the event.

-detail detail
[%d] The detail field for the event.

-focus boolean
[%f] The focus field for the event.

Tk Core
Com

m
ands

Utility Commands — event 107

11 May 2006 10:47

-height size
[%h] The height field for the event as a screen distance.

-keycode integer
[%k] The keycode field for the event.

-keysym name
[%K] The keysym field for the event.

-mode notify
[%m] The mode field for the event.

-override boolean
[%o] The override_r edir ect field for the event.

-place where
[%p] The place field for the event.

-r oot window
[%R] The root field for the event as a window pathname or integer
window ID.

-r ootx coord
[%X] The x_r oot field for the event as a screen distance.

-r ooty coord
[%Y] The y_r oot field for the event as a screen distance.

-sendevent boolean
[%E] The send_event field for the event.

-serial integer
[%#] The serial field for the event.

-state state
[%s] The state field for the event.

-subwindow window
[%S] The subwindow field for the event as a window pathname or an
integer window ID.

-time integer
[%t] The time field for the event.

-width size
[%w] The width field for the event as a screen distance.

-when when
Deter mines when the event will be processed. When must have one
of the following values:

now
Pr ocess the event immediately before the event command
retur ns. This is the default.

tail
Place the event at the end of Tcl’s event queue.

108 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

head
Place the event at the front of Tcl’s event queue.

mark
Place the event at the front of Tcl’s event queue but behind any
other events already queued with -when mark.

-x coord
[%x] The x field for the event as a screen distance.

-y coord
[%y] The y field for the event as a screen distance.

event info [<<virtual>>]
If the <<virtual>> argument is omitted, a list of all currently defined
virtual events is retur ned. Otherwise, the retur n value is the list of event
sequences currently associated with virtual event virtual.

focus

focus [[option] window]

tk_focusFollowsMouse
tk_focusNext window
tk_focusPr ev window

Manage the Tk input focus. At any given time, one window on each display is
given the focus so that key press and key release events for the display are
sent to that window. Tk remembers the last window in each top-level win-
dow to receive the focus. When the window manager gives the focus to a
top-level window, Tk automatically redir ects it to the remember ed window.

Focus within a Tk top-level window uses an explicit focus model by default
(i.e., moving the mouse within a top-level window does not change the
focus). The model can be changed to implicit (focus changes to a window
whenever the mouse enters it) by calling the tk_focusFollowsMouse pr ocedure.

The Tcl procedur es tk_focusNext and tk_focusPr ev implement a focus order
among the windows of a top-level window. They retur n the next and previ-
ous windows after window in the focus order that accepts the focus (see the
-takefocus widget configuration option). The focus order is determined by the
structur e of the window hierarchy and by the stacking order of the windows
among siblings.

The focus command can take the following forms:

focus [-displayof window]
Retur n the pathname of the focus window on the display containing
window. If not given, window defaults to the root window.

focus window
If the application currently has the input focus for window’s display, the
focus is given to window. Otherwise, window is made the remember ed
focus window for its top-level window.

Tk Core
Com

m
ands

Utility Commands — focus 109

11 May 2006 10:47

focus -force window
Set the focus of window’s display to window even if the application
doesn’t currently have the input focus for the display.

focus -lastfor window
Retur n the pathname of the window to most recently own the input
focus among all windows in the same top-level window as window (i.e.,
the remember ed window). If no window currently present in that top
level has ever had the input focus, the name of the top-level window is
retur ned.

font

font operation [arg arg...]

The font command provides several facilities for defining named fonts and
inspecting their attributes. If the window system does not have a font that
matches the requested attributes, Tk makes a best guess. The following opera-
tions are supported:

font actual font [-displayof window] [option]
Retur n infor mation on the actual attributes that are obtained when font
is used on window’s display. If option is specified, only the value of
that attribute is retur ned. Otherwise, a list of all attributes and their values
is retur ned.

font configure fontName [option [value [option value...]]]
Query or modify the desired attributes for the named font fontName in
the same manner as the general widget configur e method. The available
attribute options are as follows:

-family name
The case-insensitive font family name. The families Courier,
Times, and Helvetica ar e guaranteed to be supported on all plat-
for ms.

-size size
The desired size for the font in points (or pixels if size is negative).

-weight weight
The thickness of the characters in the font. Weight may be normal
(the default) or bold.

-slant slant
How characters in the font are slanted away from the vertical.
Slant may be roman (the default) or italic.

-underline boolean
Whether characters in font should be underlined. Default is false.

-overstrike boolean
Whether a horizontal line is drawn through the middle of the charac-
ters of the font. Default is false.

110 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

font create [fontName] [option value...]]]
Cr eate a new named font. FontName specifies the name for the font; if it
is omitted, Tk generates a unique name of the form fontx, wher e x is
an integer. Either way, the name of the font is then retur ned. See the font
configur e command for options.

font delete fontName [fontName...]
Delete the specified named fonts. A named font will not actually be
deleted until all widgets using the font release it. If a deleted named font
is later recr eated with another call to font create, the widgets will redis-
play themselves using the new attributes of that font.

font families [-displayof window]
Retur n a list of all font families that exist on window ’s display.

font measure font [-displayof window] text
Retur n total width in pixels that the string text would use in the given
font when displayed in window.

font metrics font [-displayof window] [option]
Retur n infor mation about the metrics for font when it is used on
window ’s display. If option is specified, retur ns only the value of that
metric. Otherwise, retur ns a list of all metrics and their values. The avail-
able metrics are as follows:

-ascent
Amount in pixels that the tallest letter sticks above the baseline, plus
any extra blank space added by the font’s designer.

-descent
Amount in pixels that any letter sticks down below the baseline, plus
any extra blank space added by the font’s designer.

-linespace
How far apart vertically, in pixels, two lines of text using the font
should be placed so there is no overlap.

-fixed
1 if this is a fixed-width font, or 0 if it is a proportionally spaced
font.

font names
Retur n a list of all the named fonts currently defined.

Font Description

The following formats are allowed as a font description anywhere font is
specified as an argument in the previous font commands and for the -font
option to widgets:

fontName
A named font created with the font create command.

Tk Core
Com

m
ands

Utility Commands — font 111

11 May 2006 10:47

systemfont
The platform-specific name of a font as interpreted by the window sys-
tem.

family [size] [style [style...]]
A Tcl list whose first element is the desired font family followed
optionally by the desired size and zero or mor e of the following style
arguments: normal or bold, roman or italic, underline, and
overstrike.

X-font names (XLFD)
An X11-format font name of the form -foundry-family-weight-
slant-setwidth-addstyle-pixel-point-resx-resy-
spacing-width-charset-encoding. The ‘‘*’’ character can be
used to skip individual fields or at the end to skip remaining fields.

option value [option value...]
A Tcl list of option-value pairs as would be given to the font create com-
mand.

gr ab

grab operation [arg arg...]

The grab command implements simple pointer and keyboard grabs. Tk
restricts all pointer events to the grab window and its descendants (which
may include top-level windows). Pointer events outside the grab window’s
tr ee ar e reported as events to the grab window. No window entry or window
exit events are reported to the grab window. A grab applies only to the dis-
play of the grab window.

Two types of grabs are possible: local and global. A local grab, the default,
af fects only the grabbing application, so events are reported normally to other
applications on the display. A global grab blocks events to all other applica-
tions on the display so that only the specified subtree of the grabbing applica-
tion will receive pointer events.

The grab command can take the following forms:

grab [-global] window
Same as grab set.

grab current [window]
Retur n the name of the application’s current grab window on window’s
display, or an empty string if there is no such window. If window is not
given, a list of all windows grabbed by this application for all displays is
retur ned.

grab release window
Release the grab on window if there is one.

112 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

grab set [-global] window
Set a grab on window. If -global is specified, the grab will be global. Any
other grab by the application on window’s display is released.

grab status window
Retur n none, local, or global to describe the grab currently set on
window.

gr id

grid operation [arg arg...]

Communicate with the grid geometry manager that arranges widgets in rows
and columns inside of another window called the master window. The grid
command can take the following forms:

grid slave [slave...] [options]
Same as grid configure.

grid bbox master [column row [column2 row2]]
With no arguments, the bounding box of grid is retur ned consisting of a
list of four integers: the pixel offset within the master window of the top-
left corner of the grid (x and y) and the pixel width and height of the
grid. If just column and row ar e specified, only the bounding box for
that cell is retur ned. If column2 and row2 ar e also specified, the bound-
ing box spanning the rows and columns indicated is retur ned.

grid columnconfigure master index [option value...]
Query or set the column properties of the index column in geometry
master master. If options are provided, index may be a list of column
positions. Valid options are as follows:

-minsize size
Minimum width, in screen units, permitted for column.

-pad amount
Number of screen units in padding to add to the left and right of the
widest window in column.

-weight integer
Relative weight for apportioning any extra space among columns. A
weight of 0 indicates that the column will not deviate from its
requested size. A column whose weight is 2 will grow at twice the
rate as a column of weight 1.

grid configure slave [slave...] [options]
Configur e how given slave windows should be managed by their grid
geometry master. Slave can be a pathname of a window to manage or
one of the special relative-placement characters –, x, or ˆ. Supported
options are as follows:

Tk Core
Com

m
ands

Utility Commands — grid 113

11 May 2006 10:47

-column n
Insert the slave slave in the nth column (starting from 0). If not
specified, the slave is placed in the column just to the right of the
pr eviously placed slave, or column 0 if it is the first slave. For each x
that immediately precedes a slave, a column is skipped.

-columnspan n
Arrange for the slave to span n columns in the grid. The default is 1
unless the slave is followed by a ‘‘–’’ character in the slave list. The
columnspan is incremented by one for each immediately following
‘‘–’’ character.

-in master
Insert the slaves in master window given by master. The master
window must either be the slave’s parent (the default) or a descen-
dant of the slave’s parent.

-ipadx amount
How much horizontal internal padding, in screen units, to add to the
side of the slaves.

-ipady amount
How much vertical internal padding, in screen units, to add to the
top and bottom of the slaves.

-padx amount
How much horizontal external padding, in screen units, to add to
the side of the slaves.

-pady amount
How much vertical external padding, in screen units, to add to the
top and bottom of the slaves.

-r ow n
Insert the slave in the nth row (starting from 0). If not specified, the
slave is placed on the same row as the last placed slave, or the first
unoccupied row for the first slave.

-r owspan n
Arrange for the slave to span n rows in the grid. The default is one
row. If the next grid command contains ‘‘ˆ’’ characters instead of
window pathnames that line up with the columns of this slave, the
rowspan of this slave is extended by one.

-sticky sides
How the slave should be positioned and stretched within its cell.
Sides is a string containing zero or mor e of the characters n, s, e,
or w. Each letter refers to a side to which the slave will stick. If both
n and s (or e and w) are specified, the slave will be stretched to fill
the cell’s height (or width). The default is the empty string, which
causes the slave to be centered within its cell at its requested size.

114 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

grid forget slave [slave...]
Remove each of the slaves from the grid of its master and unmap their
windows. The grid configuration options for each slave ar e forgotten.

grid info slave
Retur n the current configuration state of the slave slave in the same
option-value form given to grid configure. The first two elements will be
-in master.

grid location master x y
Retur n the column and row numbers at locations x and y (in screen
units) inside master’s grid. For locations above or to the left of the grid,
a –1 is retur ned.

grid propagate master [boolean]
Set or query whether propagation has been enabled for master. Propa-
gation is enabled by default. If disabled, the master window will not be
resized to adjust to the size of its slaves.

grid rowconfigur e master index [option value...]
Query or set the row properties of the index row in geometry master
master. If options are provided, index may be a list of row positions.
Valid options are as follows:

-minsize size
Minimum height, in screen units, permitted for row.

-pad amount
Number of screen units in padding to add to the top and bottom of
the tallest window in row.

-weight integer
Relative weight for apportioning any extra space among rows. A
weight of 0 indicates that the row will not deviate from its requested
size. A row whose weight is 2 will grow twice as fast as a row of
weight 1.

grid remove slave [slave...]
Remove each of the slaves from the grid of its master and unmap their
windows. The grid configuration options for each slave ar e remem-
ber ed as defaults for the next time they are managed by the same master.

grid size master
Retur n the size of the grid (in columns, then rows) for master.

grid slaves master [-r ow row] [-column column]
If no options are supplied, a list of all the slaves in master is retur ned.
The options specify that the list should include only the slaves in row
row and/or column column.

Tk Core
Com

m
ands

Utility Commands — grid 115

11 May 2006 10:47

ima ge

image operation [arg arg...]

Cr eate and manipulate image objects. The image command can take the fol-
lowing forms:

image create type [name] [option value...]
Cr eate a new image of type type and retur n its name. The currently sup-
ported image types are bitmap and photo. The option-value pairs valid
for these types are described in the individual sections that follow. The
name retur ned will be name if given; otherwise, Tk picks a unique name
of the form imageN. If an image already exists by the given name, it is
replaced with the new image and any instances of that image will be
redisplayed.

A new Tcl command is created with the image’s name. This command
supports the cget and configur e operation for changing and querying the
image’s configuration options in the same manner as for widgets.

image delete image [image...]
Delete each of the given images. If a widget is using an instance of an
image, it won’t actually be deleted until all of the instances are released.
Existing instances will redisplay as empty areas. If a deleted image is
recr eated, the existing instances will use the new image.

image height image
Retur n the height, in pixels, of the image image.

image names
Retur n a list of all existing images.

image type image
Retur n the type of the image image.

image types
Retur n a list of supported image types.

image width image
Retur n the width, in pixels, of image image.

Bitmap Images

A bitmap image is repr esented by a background color, a for eground color,
and two X11-format bitmaps, called the source and the mask. Each of the
bitmaps specifies a rectangular array of 0’s and 1’s repr esenting a pixel in the
image. The two bitmaps must have the same dimensions. For pixels for which
the mask is 0, the image displays nothing, producing a transparent effect. For
other pixels, the image displays the foregr ound color if the corresponding
source pixel is 1 and the background color if the corresponding source pixel
is 0. Bitmaps support the following options:

116 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-backgr ound color
Backgr ound color for the image. An empty value will make the back-
gr ound pixels transparent.

-data string
Contents of the source bitmap as a string.

-file fileName
Name of a file from which to read source bitmap contents.

-for eground color
For eground color for the image.

-maskdata string
Contents of the mask bitmap as a string.

-maskfile fileName
Name of a file from which to read mask bitmap contents.

Photo Images

A photo image can have pixels of any color. Only GIF and PPM/PGM
(Portable Pixmap/Portable Graymap) formats are supported in standard Tk,
but an interface exists to add additional image file formats easily. Pixels of a
photo image are transpar ent in regions where no image data has been sup-
plied. Photo images support the following options:

-data string
Contents of the image as a string.

-for mat format
The graphic format of the data. In standard Tk, format must be either
GIF or PPM.

-file fileName
Name of a file from which to read the image data.

-gamma value
Specifies that the colors allocated should be corrected for a nonlinear dis-
play with the gamma exponent value.

-height size
Height of the image in pixels. A value of 0 (the default) allows the image
to expand or shrink vertically.

-palette paletteSpec
Specifies number of colors to use from the colormap for the image.
PaletteSpec may be either a single decimal number, specifying the
number of shades of gray to use, or three decimal numbers separated by
slashes, specifying the number of shades of red, green, and blue to use.

-width size
Width of the image in pixels. A value of 0 (the default) allows the image
to expand or shrink horizontally.

Tk Core
Com

m
ands

Utility Commands — image 117

11 May 2006 10:47

In addition to the cget and configur e operation, the command created with
the image’s name supports the following operations:

imageName blank
Set the entire image to have no data so it will be displayed as transpar-
ent.

imageName copy sourceImage [option value...]
Copy a region from the image sourceImage to the image imageName
according to the following options:

-fr om x1 y1 [x2 y2]
The top-left and bottom-right coordinates of rectangular region to
copy from the source image. If this option is not given, the default is
the whole image. If x2 and y2 ar e omitted, they default to the bot-
tom-right corner of the source image.

-shrink
Reduce the size of the destination image, if necessary, so the region
being copied into it is at the bottom-right corner.

-subsample x [y]
Reduce the copied source region in size by using only every x th
pixel in the x direction and every y th pixel in the y direction. If y is
not given, it defaults to the value for x. If negative values are given,
the image is flipped about that axis.

-to x1 y1 [x2 y2]
The top-left and bottom-right coordinates of the rectangular region
in the destination image where the source region should be copied.
If x2 and y2 ar e omitted, the default is (x1,y1) plus the size of the
source region (after subsampling or zooming). If x2 and y2 ar e
specified, the source region will be tiled as necessary to fill the
region. If the -to option is not given, imageName’s data is set to the
source region.

-zoom x [y]
Magnify the copied source region by a factor of x in the x direction
and y in the y direction. If y is not given, it defaults to the value of
x.

imageName get x y
Retur n a list of three integers, ranging from 0 to 255, repr esenting the
RGB color of the pixel at coordinates (x,y).

imageName put data [-to x1 y1 [x2 y2]]
Set the pixels in imageName to the colors specified in data, a 2D array
of colors. Each color may be specified by name (e.g., red) or in RGB
hexadecimal form (e.g., #4576c0). The -to option specifies the region in
imageName af fected. If only x1 and y1 ar e given, the area affected has
its top-left corner at (x1, y1) and is the same size as data. If x2 and y2
ar e given, they define the bottom-right corner of the region affected and
the colors in data ar e tiled as necessary to fill the region.

118 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

imageName read [fileName [option value...]
Read image data from the file fileName into the image according to the
following options:

-for mat format
Graphic format of image data in fileName.

-fr om x1 y1 [x2 y2]
The top-left and bottom-right coordinates of rectangular region in
image file data to be copied into imageName. If x2 and y2 ar e
omitted, they default to the bottom right of the image in the file. If
the -fr om option is not specified, the whole image in the file is
copied.

-shrink
Reduce the size of imageName, if necessary, so the region into
which the image file data is copied is at the bottom-right corner of
imageName.

-to x y
The top-left coordinates of the region of imageName into which the
data from fileName is to be copied. The default is (0,0).

imageName redither
Recalculate the dithered image in each window where imageName is
displayed. Useful when the image data has been supplied in pieces.

imageName write [fileName [option value...]
Write image data from imageName to the file fileName according to
the following options:

-for mat format
Graphic format to use in writing data to fileName.

-fr om x1 y1 [x2 y2]
The top-left and bottom-right coordinates of rectangular region in
imageName to write to fileName. If x2 and y2 ar e omitted, they
default to the bottom right of the image. If the -fr om option is not
specified, the whole image is written to the file.

lower

lower window [belowThis]

Change the window’s position in the stacking order. If belowThis is speci-
fied, it must be a sibling of window or a descendant of a sibling of window.
In this case, window is placed in the stacking order just below belowThis
(or its ancestor that is a sibling of window). If belowThis is not given, win-
dow is placed below all its siblings in the stacking order.

Tk Core
Com

m
ands

Utility Commands — lower 119

11 May 2006 10:47

option

option operation [arg arg...]

Add or retrieve window options to or from the Tk option database. The fol-
lowing forms of the option command are supported:

option add pattern value [priority]
Add a new option specified by pattern to the database with value
value. Pattern consists of names and/or classes separated by aster-
isks or dots, in the usual X resource format. Priority, if given, indi-
cates the priority level for the option (see “Option Priorities”). The default
priority is interactive.

option clear
Clear all options from the database. The default options (from the
RESOURCE_MANAGER pr operty or the .Xdefaults file) will be reloaded
into the database the next time the option database is modified.

option get window name class
Retur n the value of the option specified for window under name and
class with the highest priority. If there are several matching entries at
the same priority level, the most recently entered entry is retur ned. An
empty string is retur ned if no match is found.

option readfile fileName [priority]
Add all the options specified in the file fileName with the proper X
resource format to the Tk option database. If priority is specified, it
indicates the priority level for the options added (see “Option Priorities”).
The default priority is interactive.

Option Prior ities

The priority arguments to the option command can be either an integer
between 0 (lowest priority) and 100 (highest priority), inclusive, or one of the
following strings:

widgetDefault
Same as 20. Used for default values hardcoded into widgets.

startupFile
Same as 40. Used for options specified in application-specific startup
files.

userDefault
Same as 60. Used for options specified in the resource database of the X
server or user-specific startup files.

interactive
Same as 80. Used for options specified interactively after the application
starts running.

120 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

pack

pack operation [arg arg...]

Communicate with the packer, a geometry manager that arranges widgets
ar ound the edges of another window called the master window. The pack
command can take the following forms:

pack slave [slave...] [options]
Same as pack configure.

pack configure slave [slave...] [options]
Pack the given slave windows into their master. Valid options are as
follows:

-after other
Insert slaves into the window other’s master just after other in the
packing order.

-anchor anchorPos
Wher e to position each slave in its parcel. Valid anchorPos values
ar e n, ne, e, se, s, sw, w, nw, and center (the default).

-befor e other
Insert slaves into the window other’s master just before other in
the packing order.

-expand boolean
Whether the slaves should be expanded to consume extra space in
their master.

-fill direction
What direction the slaves should stretch if their parcel is larger than
the slave’s requested dimensions. Direction must be none (do
not stretch slave), x (str etch the slave horizontally to fill parcel’s
width), y (str etch the slave vertically to fill parcel’s height), or both
(str etch the slave both horizontally and vertically).

-in master
Insert the slaves at the end of the packing order for master window
master. A slave’s master must either be the slave’s parent (the
default) or a descendant of the slave’s parent.

-ipadx size
How much horizontal internal padding, in screen units, to leave on
each side of the slaves.

-ipady size
How much vertical internal padding, in screen units, to leave on the
top and bottom of the slaves.

-padx size
How much horizontal external padding, in screen units, to leave on
each side of the slaves.

Tk Core
Com

m
ands

Utility Commands — pack 121

11 May 2006 10:47

-pady size
How much vertical external padding, in screen units, to leave on the
top and bottom of the slaves.

-side side
Which side of the master to pack the slaves against. Must be left,
right, top (the default), or bottom.

If no -in, -after, or -befor e option is specified, each slave is appended to the
end of the packing list for its parent unless already packed in another master.
A previously packed slave retains the previous values for any unspecified
options.

pack forget slave [slave...]
Remove each given slave fr om the packing order for its master and
unmap its window.

pack info slave
Retur n the current configuration state of the slave slave in the same
option-value form given to pack configure. The first two elements will be
-in master.

pack propagate master [boolean]
Set or query whether propagation has been enabled for master. Propa-
gation is enabled by default. If disabled, the master window will not be
resized to adjust to the size of its slaves.

pack slaves master
Retur n a list of all slaves in the packing order for master.

place

place operation [arg arg...]

Communicate with the placer, which provides simple fixed placement geome-
try management of slave windows inside another window called the master.
The place command can take the following forms:

place slave [slave...] [options]
Same as place configure.

place configure slave [slave...] [options]
Place the given slave windows into their master. Valid options are as
follows:

-in master
Pathname of window relative to which slave is to be placed.
Master must be either slave’s parent (the default) or a descendant
of slave’s parent. Also, slave and master must be descendants
of the same top-level window.

122 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

-x location
The x-coordinate within the master of the anchor point for slave in
scr een units.

-r elx location
The x-coordinate within the master of the anchor point for slave as
a relative distance along the master’s width. A value of 0.0 corre-
sponds to the left edge of the master and 1.0 to the right edge.
Location need not be in the range 0.0 –1.0. If both -x and -r elx
ar e specified, their values are summed.

-y location
The y-coordinate within the master of the anchor point for slave in
scr een units.

-r ely location
The y-coordinate within the master of the anchor point for slave as
a relative distance along the master’s height. A value of 0.0 corre-
sponds to the top edge of the master and 1.0 to the bottom edge.
Location need not be in the range 0.0 –1.0. If both -y and -r ely
ar e specified, their values are summed.

-anchor anchorPos
Which point of slave is to be positioned at the location selected by
the -x, -y, -r elx, and -r ely options. Valid anchorPos values are n,
ne, e, se, s, sw, w, nw, and center. The default is nw.

-width size
Width for slave in screen units.

-r elwidth size
Width for slave as a ratio to the width of the master. For instance,
a size of 0.5 means slave will be half as wide as the master. If
both -width and -r elwidth ar e specified, their values are summed.

-height size
Height for slave in screen units.

-r elheight size
Height for slave as a ratio to the height of the master. A size of
0.5 means slave will be half as high as the master. If both -height
and -r elheight ar e specified, their values are summed.

-bor dermode mode
How the master’s borders are treated in placement. A value of
inside (the default) means that only the area inside the master’s
border is considered for placement, a value of outside causes the
placer to include the area of the borders for placement, and a value
of ignore means that only the official X area (includes internal bor-
der but no external border) will be used for placement.

place forget slave
Stop the placer from managing the placement of slave and unmap
slave fr om the display.

Tk Core
Com

m
ands

Utility Commands — place 123

11 May 2006 10:47

place info slave
Retur n the current configuration state of the slave slave in the same
option-value form given to place configure.

place slaves master
Retur n a list of all slave windows placed in master.

raise

raise window [aboveThis]

Change the window’s position in the stacking order. If aboveThis is speci-
fied, it must be a sibling of window or a descendant of a sibling of window.
In this case, window is placed in the stacking order just above aboveThis
(or the ancestor if this is a sibling of window). If aboveThis is not given,
window is placed above all its siblings in the stacking order.

selection

selection operation [arg arg...]

The selection command provides a Tcl interface to the X selection mechanism
as described in the X Inter-Client Communication Conventions Manual
(ICCCM). For the commands that follow, selection specifies the X selection
and should be an atom name such as PRIMARY (the default) or CLIPBOARD.
A selection is display specific. If the display is not specified with the -dis-
playof option, it defaults to the display of the ‘‘.’’ window. The selection com-
mand can take the following forms:

selection clear [-displayof window] [-selection selection]
If selection exists anywhere on the display of window, clear it so that
no window owns the selection.

selection get [-displayof window] [-selection selection] [-type type]
Retrieve the value of selection fr om the display of window and retur n
it in the form specified by type. Type must be a valid atom name as
described in the ICCCM and defaults to STRING.

selection handle [-displayof window] [-type type] [-for mat format] window
command
Arrange for command to be evaluated whenever selection is owned
by window and an attempt is made to retrieve it in the form given by
type (defaults to STRING).

Command will be executed as a Tcl command with two additional num-
bers appended as arguments: offset and maxBytes. The command
should retur n a value consisting of at most maxBytes of the selection
starting at position offset. If exactly maxBytes is retur ned, command
will be invoked again until it eventually retur ns a result shorter than
maxBytes.

124 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

The format argument is for compatibility with non-Tk selection
requesters and specifies the repr esentation that should be used to trans-
mit the selection. The default is STRING.

selection own [-displayof window] [-selection selection]
Retur n the pathname of the window in the application that owns
selection on window’s display.

selection own [-command command] [-selection selection] window
Make window the new owner of selection on window’s display. If
command is specified, it is a Tcl script that will be evaluated when own-
ership of selection is taken away from window.

send

send [options] app command [arg arg...]

Arrange for command (concatenated with any given args) to be evaluated in
the application named by app and retur n the result or error from the evalua-
tion. App may be the name of any application (as retur ned by the tk appname
command) whose main window is on the same display as the sender’s main
window (unless the -displayof option is given). This command is not sup-
ported under Windows or Macintosh platforms. Possible options are:

-async
Forces the send command to complete immediately without waiting for
command to complete in target application. This option is ignored if the
target is in the same process as the sender.

-displayof window
Specifies that the target application’s main window is on window’s dis-
play.

––
Terminates option processing in case app starts with a ‘‘-’’ character.

Secur ity

For security reasons, the send mechanism will work only if the control mecha-
nism being used by the X server has xhost-style access control enabled and
the list of enabled hosts is empty. This means applications cannot connect to
the server unless they use some more secur e for m of authorization, such as
xauth. The send mechanism can be turned off (both sending and receiving)
by removing the send command using rename send {}. Communication can be
reenabled by invoking the tk appname command.

tk

tk operation [arg arg...]

The tk command provides access to miscellaneous elements of Tk’s internal
state. The following operations are defined:

Tk Core
Com

m
ands

Utility Commands — tk 125

11 May 2006 10:47

tk appname newName
Change the name of the application to newName. If the name newName
is already in use, a suffix of the form #2 or #3 is appended to make the
name unique. If newName is not given, the application’s current name is
retur ned. As a general rule, the application name should not begin with a
capital letter, as that form is reserved for class names. If sends have been
disabled by deleting the send command, this command will reenable
them and recr eate the send command.

tk scaling [-displayof window] [number]
Set the scaling factor for conversion between physical units (e.g., points
or inches) and pixels. Number is a floating-point value that specifies the
number of pixels per point (1⁄ 72 inch) on window’s display. If window is
not given, it defaults to the main window. If number is omitted, the cur-
rent scaling factor is retur ned.

tkwait

tkwait operation name

Wait for a variable to change, a window to be destroyed, or a window’s visi-
bility state to change. While waiting, events are processed in the normal fash-
ion. If an event handler invokes tkwait again, the nested call to tkwait must
complete before the outer call can complete. Possible forms of the tkwait
command are as follows:

tkwait variable varName
Wait for the global variable varName to be modified.

tkwait visibility window
Wait for a change in the visibility state of window window.

tkwait window window
Wait for window window to be destroyed.

tk_

tk_bisque

tk_chooseColor [option value...]

tk_dialog topw title text bitmap default string [string...]

tk_focusNext window

tk_focusPr ev window

tk_focusFollowsMouse window

tk_getOpenFile [option value...]

tk_getSaveFile [option value...]

tk_messageBox [option value...]

tk_optionMenu window varName value [value...]

126 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

tk_ popup menu x y [entry]

tk_setPalette color

tk_setPalette name color [name color...]

Each of these commands is a Tcl procedur e defined at runtime in the Tk
script library. The tk_bisque pr ocedure sets the default color scheme to the
light brown (‘‘bisque’’) scheme used by Tk 3.6 and earlier versions. The
tk_setPalette pr ocedure called with a single argument color sets the default
color scheme to a computed one based on color as the default background
color. The tk_setPalette can be called with one or more name -color pairs to
set specific colors for the default color scheme. The possible values for name
ar e:

activeBackground activeForeground
background disabledForeground
foreground highlightBackground
highlightColor insertBackground
selectColor selectBackground
selectForeground troughColor

The tk_getOpenFile pr ocedure posts a modal dialog for choosing an existing
filename. The tk_getSaveFile pr ocedure does the same but does not requir e
the chosen file to exist. In fact, if an existing file is chosen, a separate dialog
box prompts for confirmation. Both procedur es retur n the full pathname of
the chosen file, or the empty string if the user cancels the operation. The
available options for these procedur es ar e as follows:

-defaultextension extension
A string that will be appended to the chosen file if it lacks an extension.
The default is an empty string. This option is ignored on the Macintosh.

-filetypes filePatternList
The possible file types for the File types listbox in the dialog (if it exists).
FilePatternList is a list of file patterns; each pattern is a two- or
thr ee-element list. The first element is a string describing the type (e.g.,
{Text files}), and the second element is a list of extensions that
match this type (e.g., {.txt .log} or the special asterisk character to
match all extensions. The empty string is a valid extension that means
files with no extension. The third element is requir ed only on the Macin-
tosh and is the appropriate Macintosh file type identifier (e.g., TEXT).
This element is ignored on Windows and Unix. Any file patterns with the
same first element are merged in the File types listbox.

-initialdir directory
The files in directory should be displayed when the dialog pops up.
The default is the current working directory.

-initialfile fileName
Filename to be displayed in the dialog as a default choice when it pops
up.

Tk Core
Com

m
ands

Utility Commands — tk_ 127

11 May 2006 10:47

-par ent window
Make window the logical parent of the dialog and position the dialog on
top of it.

-title title
Text to appear in window manager’s titlebar for the dialog.

The tk_messageBox pr ocedure pops up a message dialog window with but-
tons and waits for a user response. The symbolic name of the selected button
is retur ned. The following options are supported:

-default name
Make the button with symbolic name name the default button. See -type
for valid names. If the dialog has only one button, it is made the default
automatically. Otherwise, if this option is not specified, no button is
made the default.

-icon iconImage
Icon to display in the dialog. IconImage must be error, info, ques-
tion, or warning. The default is to display no icon.

-message string
Message to display in this dialog.

-par ent window
Make window the logical parent of the dialog and position the dialog on
top of it.

-title title
Text to appear in window manager’s titlebar for the dialog.

-type type
The set of buttons to be displayed. The following values are possible for
type:

abortretryignore
Display three buttons with names Abort, Retry, and Ignore.

ok Display one button with the name OK.

okcancel
Display two buttons with names OK and Cancel.

retrycancel
Display two buttons with names Retry and Cancel.

yesno
Display two buttons with names Yes and No.

yesnocancel
Display three buttons with names Yes, No, and Cancel.

128 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

The tk_dialog is an older, mor e configurable version of a message box dialog.
A message and a row of buttons are presented to the user. The numerical
index of the button chosen is retur ned. The arguments are as follows:

topw
Name of top-level window for dialog to use. Any existing window by this
name is destroyed.

title
Text to appear in window manager’s titlebar for the dialog.

text
Message to appear in top portion of the dialog.

bitmap
If nonempty, a bitmap to display to the left of message text.

default
Index of button that is to be the default button. The default is 0, which is
the first, leftmost button. If default is less than zero, there will be no
default button.

string
Ther e will be one button for each string argument, where string
specifies the text for the button.

The tk_optionMenu pr ocedure creates an option menubutton whose name is
window, along with an associated menu. Invoking the menubutton will pop
up the associated menu with an entry for each of the value arguments. The
curr ent choice will be stored in the global variable varName and be dis-
played as the label of the menubutton. The procedur e retur ns immediately
with a value of the name of the associated menu.

The tk_ popup pr ocedure posts pop-up menu menu at the root coordinate
position x,y. If entry is omitted, the menu’s upper-left corner is positioned
at the given point. Otherwise, entry gives the index of a menu entry in
menu to position over the given point.

The tk_focusNext, tk_focusPr ev, and tk_focusFollowsMouse pr ocedures are
described in the listing for the focus command earlier in this chapter.

winfo

winfo operation [arg arg...]

The winfo command provides information about the windows managed by
Tk. The following operations are supported:

winfo atom [-displayof window name]
Retur n as a decimal string the identifier for the atom named name on
window ’s display.

Tk Core
Com

m
ands

Utility Commands — winfo 129

11 May 2006 10:47

winfo atomname [-displayof window id]
Retur n the textual name of the atom on window’s display whose integer
identifier is id.

winfo cells window
Retur n the number of cells in the colormap of window.

winfo children window
Retur n a list of the pathnames of all children of window, in stacking
order.

winfo class window
Retur n the class name for window.

winfo colormapfull window
Retur n 1 if the colormap for window is known to be full (the last attempt
to allocate a new color failed and this application has not freed any), 0
otherwise.

winfo containing [-displayof window] rootX rootY
Retur n the pathname of the window containing the point rootX and
rootY in the root window of window’s display. If multiple windows
contain the point, children are given higher priority than parents. Among
siblings, the highest one in the stacking order has priority.

winfo depth window
Retur n the depth of window (number of bits per pixel).

winfo exists window
Retur n 1 if a window named window exists, 0 otherwise.

winfo fpixels window size
Retur n as a floating-point value the number of pixels in window corr e-
sponding to the distance size in screen units.

winfo geometry window
Retur n the geometry for window in the X geometry specification form
widthxheight+x+y, wher e dimensions are in pixels.

winfo height window
Retur n window’s height in pixels. A new window’s height is 1 pixel until
it is actually mapped.

winfo id window
Retur n the hexadecimal, platform-specific identifier for window.

winfo interps [-displayof window]
Retur n a list of the names of all Tk-based applications currently register ed
on window’s display.

winfo ismapped window
Retur n 1 if window is currently mapped, 0 otherwise.

130 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

winfo manager window
Retur n the name of the geometry manager currently responsible for win-
dow (e.g., pack, place, or canvas).

winfo name window
Retur n window ’s name within its parent. The command winfo name will
retur n the name of the application.

winfo parent window
Retur n the pathname of window ’s parent, or an empty string if window
is the main window.

winfo pathname [-displayof window] id
Retur n the pathname of the window whose X identifier on window ’s dis-
play is id.

winfo pixels window size
Retur n the number of pixels (rounded to the nearest integer) in window
corr esponding to the distance size in screen units.

winfo pointerx window
Retur n the pointer’s x-coordinate measured in pixels on the screen’s root
window. If the mouse pointer is not on the same screen as window,
retur n –1.

winfo pointerxy window
Retur n the pointer’s y-coordinate measured in pixels on the screen’s root
window. If the mouse pointer is not on the same screen as window,
retur n –1.

winfo pointery window
Retur n the pointer’s y-coordinate measured in pixels on the screen’s root
window. If the mouse pointer is not on the same screen as window,
retur n –1.

winfo reqheight window
Retur n window ’s requested height in pixels.

winfo reqwidth window
Retur n window ’s requested width in pixels.

winfo rgb window color
Retur n a thr ee-element list of the red, green, and blue intensities corre-
sponding to color in window.

winfo rootx window
Retur n the x-coordinate of the upper-left corner of window (including its
border) in the root window of its screen.

winfo rooty window
Retur n the y-coordinate of the upper-left corner of window (including its
border) in the root window of its screen.

Tk Core
Com

m
ands

Utility Commands — winfo 131

11 May 2006 10:47

winfo screen window
Retur n the name of the screen associated with window in the form dis-
playName.screenIndex.

winfo screencells window
Retur n number of cells in the default colormap for window ’s screen.

winfo screendepth window
Retur n the depth (bits per pixel) of the root window of window ’s screen.

winfo screenheight window
Retur n the height of window ’s screen in pixels.

winfo screenmmheight window
Retur n the height of window ’s screen in millimeters.

winfo screenmmwidth window
Retur n the width of window ’s screen in millimeters.

winfo screenvisual window
Retur n the default visual class for window ’s screen. The result will be
directcolor, grayscale, pseudocolor, staticcolor, static-
gray, or truecolor.

winfo screenwidth window
Retur n the width of window’s screen in pixels.

winfo server window
Retur n infor mation about the server for window’s display. For X servers,
the string has the form XmajorRminor vendor vendorVersion.

winfo toplevel window
Retur n the pathname of the top-level window containing window.

winfo viewable window
Retur n 1 if window and all its ancestors up through the nearest top-level
window are mapped, 0 otherwise.

winfo visual window
Retur n the visual class for window. The result will be directcolor,
grayscale, pseudocolor, staticcolor, staticgray, or true-
color.

winfo visualid window
Retur n the X identifier for the visual of window.

winfo visualsavailable window [includeids]
Retur n the list of visuals available for window’s screen. Each element
consists of a visual class (see winfo visual for possible values) and an
integer depth. If includeids is specified, the X identifier for each visual is
also provided.

winfo vrootheight window
Retur n the height of the virtual root window associated with window. If
ther e is no virtual root, the height of window’s screen is retur ned.

132 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

winfo vrootwidth window
Retur n the width of the virtual root window associated with window. If
ther e is no virtual root, the width of window’s screen is retur ned.

winfo vrootx window
Retur n the x-offset of the virtual root window relative to the root window
of window’s screen.

winfo vrooty window
Retur n the y-offset of the virtual root window relative to the root window
of window’s screen.

winfo width window
Retur n window’s height in pixels. A new window’s width is 1 pixel until
it is actually mapped.

winfo x window
Retur n the x-coordinate of the upper-left corner of window (including
any border) in its parent.

winfo y window
Retur n the y-coordinate of the upper-left corner of window (including
any border) in its parent.

wm

wm operation window [arg arg...]

The wm command communicates with the window manager to control such
things as window titles, geometry, and state. All window managers are dif fer-
ent and may not honor all of Tk’s requests. The possible operations are:

wm aspect window [minNumber minDenom maxNumer maxDenom]
Request that the window manager enforce a range of acceptable aspect
ratios for window. The aspect ratio of window (width/length) must lie
between minNumber/minDenom and maxNumer/maxDenom. If all the
aspect arguments are specified as empty strings, any existing constraint is
removed. If the aspect arguments are omitted, the current values are
retur ned as a Tcl list, which will be empty if there is no constraint.

wm client window [name]
Stor e in window’s WM_CLIENT_MACHINE pr operty the value name,
which should be the name of the host on which the application is run-
ning. If name is not given, the last name set for window is retur ned. If
name is the empty string, the WM_CLIENT_MACHINE pr operty for win-
dow is deleted.

wm colormapwindows window [windowList]
Stor e in window’s WM_COLORMAP_WINDOWS pr operty the value
windowList, which should be a complete list of the internal window
pathnames within window whose colormaps differ from their parents. If
windowList is not given, the current setting is retur ned.

Tk Core
Com

m
ands

Utility Commands — wm 133

11 May 2006 10:47

wm command window [cmdLine]
Stor e in window’s WM_COMMAND pr operty the value cmdLine, which
should be a proper list containing the words of the command used to
invoke the application. If cmdLine is not given, the last value set for
window is retur ned. If cmdLine is the empty string, the WM_COMMAND
pr operty for window is deleted.

wm deiconifiy window
Request that the window manager display window in normal (non-iconi-
fied) form.

wm focusmodel window [model]
Set the focus model for window to model, which must be active or
passive (the default). If model is omitted, the current model is
retur ned. An active focus model means that the window will claim the
input focus for itself or its descendants, even at times when the focus is
curr ently in some other application. A passive model means that win-
dow will never explicitly claim the focus for itself but will let the window
manager give it focus at appropriate times. Tk’s focus command assumes
a passive model.

wm frame window
If window has been repar ented by the window manager into a decora-
tive frame, retur n the platform-specific window identifier for the outer-
most frame that contains window. Otherwise, retur n the identifier for
window.

wm geometry window [newGeometry]
Set the geometry for window to newGeometry, an X geometry specifi-
cation in the form widthxheight+x+y. If window is gridded, units for
width and height ar e in grid units; otherwise, they are specified in
pixels. If newGeometry is the empty string, the window will revert to
the size requested internally by its widgets. If newGeometry is omitted,
window’s current geometry is retur ned.

wm grid window [baseWidth baseHeight widthInc heightInc]
Request that window be managed as a gridded window. BaseWidth
and baseHeight specify the number of grid units that the current
requested size of window repr esents. WidthInc and heightInc spec-
ify the number of pixels in each horizontal and vertical grid unit. Specify-
ing all values as empty strings turns off gridded management for win-
dow. If the arguments are omitted, their current values are retur ned (or
an empty string if window is not gridded).

wm group window [pathName]
Add window to the group of related windows led by window path-
Name. The window manager may use this information to unmap the
entir e gr oup of windows when the leader window is iconified. If path-
Name is the empty string, window is removed from any group with
which it is associated. If it is omitted, window’s group leader is retur ned
(or the empty string if window is not part of a group).

134 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

wm iconbitmap window [bitmap]
Request that the window manager display bitmap in window’s icon. If
bitmap is the empty string, any current bitmap register ed is canceled. If
it is omitted, the current bitmap register ed, if any, is retur ned.

wm iconify window
Arrange for window to be iconified.

wm iconmask window [bitmap]
Request that the window manager use bitmap as a mask in window’s
icon in conjunction with the bitmap set with the iconbitmap operation. If
bitmap is the empty string, any current bitmap mask is canceled. If it is
omitted, the current bitmap mask, if any, is retur ned.

wm iconname window [newName]
Request that the window manger use newName for the title of window’s
icon. If newName is omitted, the current setting, if any, is retur ned.

wm iconposition window [x y]
Request that the window manager use coordinates x y on the root win-
dow as the location to place window’s icon. If the coordinates are speci-
fied as empty strings, any current request is canceled. If they are not
given, the current setting, if any, is retur ned.

wm iconwindow window [pathName]
Request that the window manager use window pathName as window’s
icon. If pathName is the empty string, any current icon window request
is canceled. If it is omitted, the current icon window, if any, is retur ned.
Button press events are disabled for pathName while it is an icon win-
dow so that the window manager can own those events.

wm maxsize window [width height]
Request that the window manager restrict window’s dimensions to be
less than or equal to width and height. If window is gridded, the
dimensions are in grid units; otherwise, they are in pixels. If the width
and height ar e not given, the current setting is retur ned. The default
setting is the dimensions of the screen.

wm minsize window [width height]
Request that the window manager restrict window’s dimensions to be
gr eater than or equal to width and height. If window is gridded, the
dimensions are in grid units; otherwise, they are in pixels. If the width
and height ar e not given, the current setting is retur ned.

wm overrideredir ect window [boolean]
Set the override-redir ect flag for window if boolean is true; unset it
otherwise. Setting the override-redir ect flag causes the window to be
ignor ed by the window manager. If boolean is not given, the current
setting is retur ned.

wm positionfrom window [who]
Set the position source of window to who, either program or user,
which tells the window manager whether window’s position was set by
the program or user, respectively. If who is the empty string, the current

Tk Core
Com

m
ands

Utility Commands — wm 135

11 May 2006 10:47

position source is canceled. If who is not given, the current setting is
retur ned. Tk will automatically set the position source to user when a
wm geometry command is invoked, unless the source has been explicitly
set to program.

wm protocol window [name [command]]
Set or query window manager protocols for window. Name is the name
of an atom for a window manager protocol, such as WM_DELETE_WIN-
DOW or WM_SAVE_YOURSELF. If command is specified, it is made the
handler for the given protocol and will be invoked whenever the win-
dow manager sends a message to the application for that protocol on
window. If command is the empty string, any current handler is can-
celed. If command is not given, the current associated command for
name is retur ned. If name is not given, a list of all protocols for which
handlers are curr ently defined for window is retur ned. Tk always sets up
a default handler for the WM_DELETE_WINDOW pr otocol, which simply
destr oys the window.

wm resizeable window [widthBool heightBool]
Whether window should be resizeable along its width and height accord-
ing to the boolean values widthBool and heightBool. By default,
windows are resizeable in both dimensions. If the boolean arguments are
omitted, the current setting is retur ned.

wm sizefrom window [who]
Set the size source of window to who, either program or user, which
tells the window manager whether window’s size was set by the pro-
gram or user, respectively. If who is the empty string, the current size
source is canceled. If who is not given, the current setting is retur ned.

wm state window
Retur n the current state of window : one of normal, iconic, with-
drawn, or icon. The value icon refers to a window that is being dis-
played as an icon (using the wm iconwindow command).

wm title window [string]
Request that the window manager use string as the title for window if
it has a titlebar. If string is not given, the current setting is retur ned.

wm transient window [master]
Request that the window manager treat window as a transient window
(e.g a pull-down menu) belonging to the window master. If master is
an empty string, window is treated as no longer transient. If it is omitted,
the command retur ns window’s current master, or an empty string if
window is not transient.

wm withdraw window
Withdraw window fr om the screen. The window is unmapped and for-
gotten about by the window manager.

136 Chapter 3 – Tk Cor e Commands

11 May 2006 10:47

CHAPTER 4

The Tcl C Interface

This chapter presents a summary of the Tcl C-language interface. Everything
described here is defined in the header file tcl.h, part of the Tcl distribution. For
clarity, ANSI C function prototypes are shown here, although the actual header file
supports non-ANSI compilers.

To avoid name conflicts, all functions are prefixed with Tcl_ and constants are
pr efixed with TCL_.

See the full Tcl refer ence documentation for the most detailed and up-to-date
infor mation. C inter faces ar e typically found in Section 3 of the Tcl manpages.

Constants
The following constants contain Tcl interpreter version information:

TCL_MAJOR_VERSION
Tcl major version number (e.g., 8)

TCL_MINOR_VERSION
Tcl minor version number (e.g., 0)

TCL_RELEASE_LEVEL
Release level: 0 for alpha, 1 for beta, 2 for final/patch

TCL_RELEASE_SERIAL
Version number that changes with each patch (e.g., 2)

TCL_VERSION
Tcl version as a string (e.g., “8.0”)

Tcl C
Interface

137

11 May 2006 10:47

TCL_PATCH_LEVEL
Tcl version and patch level as a string (e.g., “8.0p2”)

The following constants contain completion codes for Tcl command procedur es:

TCL_OK
Nor mal command completion

TCL_ERROR
Unr ecoverable err or occurr ed

TCL_RETURN
retur n command invoked

TCL_BREAK
br eak command invoked

TCL_CONTINUE
continue command invoked

Data Types
The more commonly used Tcl data structures are listed here:

ClientData
Application-defined data that can be stored by interpreter

Tcl_AsyncHandler
Token used to refer to asynchronous event handlers

Tcl_Channel
A Tcl I/O channel

Tcl_ChannelProc
Function implementing operations on an I/O channel

Tcl_ChannelType
Pointers to functions implementing operations on an I/O channel

Tcl_CloseProc
Type of procedur e used by close and delete handlers

Tcl_CmdDeleteProc
Type of procedur e called when Tcl command is deleted

Tcl_CmdInfo
Structur e containing information about a Tcl command

Tcl_CmdProc
Type of procedur e used to implement a Tcl command

Tcl_Command
Token used to refer to Tcl command procedur es

138 Chapter 4 – The Tcl C Interface

11 May 2006 10:47

Tcl_DString
Structur e used for Tcl dynamic strings

Tcl_Event
Data structure used by Tcl event queue

Tcl_EventCheckProc
Type of procedur e for checking event queue

Tcl_EventDeleteProc
Type of procedur e to invoke for delete events

Tcl_EventSetupProc
Type of procedur e to invoke for prepar e events

Tcl_ExitProc
Type of procedur e to invoke before exiting application

Tcl_FileProc
Type of procedur e to invoke for file handler

Tcl_FreeProc
Type of procedur e for freeing storage

Tcl_HashEntry
Tcl hash table entry

Tcl_HashTable
Structur e for Tcl hash table

Tcl_Interp
Structur e defining a Tcl interpreter

Tcl_InterpDeleteProc
Pr ocedure to call when interpreter is deleted

Tcl_Obj
Dual-ported object type for Tcl values

Tcl_ObjCmdProc
Type of procedur e used to implement a Tcl command

Tcl_ObjType
Structur e for repr esenting type of Tcl object

Tcl_RegExp
Compiled regular expression

Tcl_Time
Data structure to repr esent time intervals

Tcl_Trace
Token for command trace

Tcl_VarTraceProc
Type of procedur e to call for command tracing

Tcl C
Interface

Data Types 139

11 May 2006 10:47

Group Listing of Functions
Note that a few of these routines are implemented as macros for the sake of effi-
ciency, but logically they behave the same as functions.

Tc l Objects

Tcl_Obj *Tcl_NewObj()

Tcl_Obj *Tcl_DuplicateObj(Tcl_Obj *objPtr)

void Tcl_IncrRefCount(Tcl_Obj *objPtr)

void Tcl_DecrRefCount(Tcl_Obj *objPtr)

int Tcl_IsShar ed(Tcl_Obj *objPtr)

void Tcl_InvalidateStringRep(Tcl_Obj *objPtr)

Tcl_Obj *Tcl_NewBooleanObj(int boolValue)

void Tcl_SetBooleanObj(Tcl_Obj *objPtr, int boolValue)

int Tcl_GetBooleanFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *boolPtr)

Tcl_Obj *Tcl_NewDoubleObj(double doubleValue)

void Tcl_SetDoubleObj(Tcl_Obj *objPtr, double doubleValue)

int Tcl_GetDoubleFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *doublePtr)

Tcl_Obj *Tcl_NewIntObj(int intValue)

Tcl_Obj *Tcl_NewLongObj(long longValue)

void Tcl_SetIntObj(Tcl_Obj *objPtr, int intValue)

void Tcl_SetLongObj(Tcl_Obj *objPtr, long longValue)

int Tcl_GetIntFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *intPtr)

int Tcl_GetLongFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *longPtr)

int Tcl_ListObjAppendList(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *elemListPtr)

int Tcl_ListObjAppendElement(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *objPtr)

Tcl_Obj *Tcl_NewListObj(int objc, Tcl_Obj *cont objv[])

void Tcl_SetListObj(Tcl_Obj *objPtr, int objc, Tcl_Obj *const objv[])

int Tcl_ListObjGetElements(Tcl_Interp *interp, Tcl_Obj *listPtr, int *objcPtr,
Tcl_Obj ***objvPtr)

int Tcl_ListObjIndex(Tcl_Interp *interp, Tcl_Obj *listPtr, int index,
Tcl_Obj **objPtrPtr)

int Tcl_ListObjLength(Tcl_Interp *interp, Tcl_Obj *listPtr, int *intPtr)

int Tcl_ListObjReplace(Tcl_Interp *interp, Tcl_Obj *listPtr, int first, int count,
int objc, Tcl_Obj *const objv[])

void Tcl_RegisterObjT ype(Tcl_ObjT ype *typePtr)

Tcl_ObjT ype *Tcl_GetObjT ype(char *typeName)

int Tcl_AppendAllObjT ypes(Tcl_Interp *interp, Tcl_Obj *objPtr)

int Tcl_ConvertToT ype(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_ObjT ype *typePtr)

Tcl_Obj *Tcl_NewStringObj(char *bytes, int length)

void Tcl_SetStringObj(Tcl_Obj *objPtr, char *bytes, int length)

140 Chapter 4 – The Tcl C Interface

11 May 2006 10:47

char *Tcl_GetStringFr omObj(Tcl_Obj *objPtr, int *lengthPtr)

void Tcl_AppendToObj(Tcl_Obj *objPtr, char *bytes, int length)

void Tcl_AppendStringsToObj(Tcl_Obj *interp, ...)

void Tcl_SetObjLength(Tcl_Obj *objPtr, int length)

Tcl_Obj *Tcl_ConcatObj(int objc, Tcl_Obj *const objv[])

Interpreter s and Script Evaluation

Tcl_Interp *Tcl_Cr eateInterp(void)

void Tcl_DeleteInterp(Tcl_Interp *interp)

int Tcl_InterpDeleted(Tcl_Interp *interp)

int Tcl_Eval(Tcl_Interp *interp, char *string)

int Tcl_EvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)

int Tcl_EvalFile(Tcl_Interp *interp, char *fileName)

int Tcl_GlobalEval(Tcl_Interp *interp, char *command)

int Tcl_GlobalEvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)

int Tcl_VarEval(Tcl_Interp *interp, ...)

int Tcl_RecordAndEval(Tcl_Interp *interp, char *cmd, int flags)

int Tcl_RecordAndEvalObj(Tcl_Interp *interp, Tcl_Obj *cmdPtr, int flags)

void Tcl_AllowExceptions(Tcl_Interp *interp)

Tcl_AsyncHandler Tcl_AsyncCr eate(Tcl_AsyncPr oc *pr oc, ClientData clientData)

void Tcl_AsyncMark(Tcl_AsyncHandler async)

int Tcl_AsyncInvoke(Tcl_Interp *interp, int code)

void Tcl_AsyncDelete(Tcl_AsyncHandler async)

int Tcl_AsyncReady(void)

void Tcl_CallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeletePr oc *pr oc,
ClientData clientData)

void Tcl_DontCallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeletePr oc *pr oc,
ClientData clientData)

int Tcl_IsSafe(Tcl_Interp *interp)

int Tcl_MakeSafe(Tcl_Interp *interp)

Tcl_Interp *Tcl_Cr eateSlave(Tcl_Interp *interp, char *slaveName, int isSafe)

Tcl_Interp *Tcl_GetSlave(Tcl_Interp *interp, char *slaveName)

Tcl_Interp *Tcl_GetMaster(Tcl_Interp *interp)

int Tcl_GetInterpPath(Tcl_Interp *askInterp, Tcl_Interp *slaveInterp)

int Tcl_Cr eateAlias(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int argc, char **argv)

int Tcl_Cr eateAliasObj(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int objc, Tcl_Obj *const objv[])

int Tcl_GetAlias(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *argcPtr, char ***argvPtr)

Tcl C
Interface

Gr oup Listing of Functions 141

11 May 2006 10:47

int Tcl_GetAliasObj(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *objcPtr, Tcl_Obj ***objv)

int Tcl_ExposeCommand(Tcl_Interp *interp, char *hiddenCmdToken,
char *cmdName)

int Tcl_HideCommand(Tcl_Interp *interp, char *cmdName,
char *hiddenCmdToken)

int Tcl_DoOneEvent(int flags)

void Tcl_DoWhenIdle(Tcl_IdlePr oc *pr oc, ClientData clientData)

void Tcl_CancelIdleCall(Tcl_IdlePr oc *idlePr oc, ClientData clientData)

void Tcl_Exit(int status)

void Tcl_Finalize(void)

void Tcl_Cr eateExitHandler(Tcl_ExitPr oc *pr oc, ClientData clientData)

void Tcl_DeleteExitHandler(Tcl_ExitPr oc *pr oc, ClientData clientData)

int Tcl_SetRecursionLimit(Tcl_Interp *interp, int depth)

void Tcl_StaticPackage(Tcl_Interp *interp, char *pkgName,
Tcl_PackageInitPr oc *initPr oc, Tcl_PackageInitPr oc *safeInitPr oc)

Creating New Tcl Commands

Tcl_Command Tcl_Cr eateCommand(Tcl_Interp *interp, char *cmdName,
Tcl_CmdPr oc *pr oc, ClientData clientData, Tcl_CmdDeletePr oc *deletePr oc)

Tcl_Command Tcl_Cr eateObjCommand(Tcl_Interp *interp, char *cmdName,
Tcl_ObjCmdPr oc *pr oc, ClientData clientData,
Tcl_CmdDeletePr oc *deletePr oc)

int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)

int Tcl_DeleteCommandFr omToken(Tcl_Interp *interp, Tcl_Command command)

void Tcl_SetResult(Tcl_Interp *interp, char *string, Tcl_Fr eeProc *freePr oc)

void Tcl_AppendResult(Tcl_Interp *interp, ...)

void Tcl_AppendElement(Tcl_Interp *interp, char *string)

void Tcl_ResetResult(Tcl_Interp *interp)

int Tcl_GetCommandInfo(Tcl_Interp *interp, char *cmdName,
Tcl_CmdInfo *infoPtr)

int Tcl_SetCommandInfo(Tcl_Interp *interp, char *cmdName, Tcl_CmdInfo *infoPtr)

char *Tcl_GetCommandName(Tcl_Interp *interp, Tcl_Command command)

void Tcl_SetObjResult(Tcl_Interp *interp, Tcl_Obj *resultObjPtr)

Tcl_Obj *Tcl_GetObjResult(Tcl_Interp *interp)

void Tcl_Fr eeResult(Tcl_Interp *interp)

char *Tcl_GetStringResult(Tcl_Interp *interp)

Initialization and Packages

int Tcl_AppInit(Tcl_Interp *interp)

int Tcl_Init(Tcl_Interp *interp)

142 Chapter 4 – The Tcl C Interface

11 May 2006 10:47

Parsing

int Tcl_GetInt(Tcl_Interp *interp, char *string, int *intPtr)

int Tcl_GetDouble(Tcl_Interp *interp, char *string, double *doublePtr)

int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *boolPtr)

int Tcl_ExprString(Tcl_Interp *interp, char *string)

int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *ptr)

int Tcl_ExprDouble(Tcl_Interp *interp, char *string, double *ptr)

int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int *ptr)

int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr, char ***argvPtr)

char *Tcl_Merge(int argc, char **argv)

char Tcl_Backslash(const char *src, int *readPtr)

void Tcl_Cr eateMathFunc(Tcl_Interp *interp, char *name, int numArgs,
Tcl_ValueT ype *argT ypes, Tcl_MathPr oc *pr oc,
ClientData clientData)

int Tcl_ExprLongObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *ptr)

int Tcl_ExprDoubleObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *ptr)

int Tcl_ExprBooleanObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *ptr)

int Tcl_ExprObj(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_Obj **resultPtrPtr)

int Tcl_GetIndexFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, char **tablePtr,
char *msg, int flags, int *indexPtr)

void Tcl_PrintDouble(Tcl_Interp *interp, double value, char *dst)

int Tcl_ScanCountedElement(const char *string, int length, int *flagPtr)

int Tcl_ScanElement(const char *string, int *flagPtr)

int Tcl_ConvertCountedElement(const char *src, int length, char *dst, int flags)

int Tcl_ConvertElement(const char *src, char *dst, int flags)

Exceptions

void Tcl_AddErr orInfo (Tcl_Interp *interp, char *message)

void Tcl_AddObjErr orInfo(Tcl_Interp *interp, char *message, int length)

void Tcl_SetErr orCode(Tcl_Interp *arg1, ...)

void Tcl_SetObjErr orCode(Tcl_Interp *interp, Tcl_Obj *errorObjPtr)

void Tcl_Backgr oundErr or(Tcl_Interp *interp)

void Tcl_WrongNumArgs(Tcl_Interp *interp, int objc, Tcl_Obj *const objv[],
char *message)

Accessing Tcl Var iables

char *Tcl_SetVar(Tcl_Interp *interp, char *varName, char *newValue, int flags)

char *Tcl_SetVar2(Tcl_Interp *interp, char *part1, char *part2, char *newValue,
int flags)

char *Tcl_GetVar(Tcl_Interp *interp, char *varName, int flags)

Tcl C
Interface

Gr oup Listing of Functions 143

11 May 2006 10:47

char *Tcl_GetVar2(Tcl_Interp *interp, char *part1, char *part2, int flags)

int Tcl_UnsetVar(Tcl_Interp *interp, char *varName, int flags)

int Tcl_UnsetVar2(Tcl_Interp *interp, char *part1, char *part2, int flags)

int Tcl_LinkVar(Tcl_Interp *interp, char *varName, char *addr, int type)

void Tcl_UnlinkVar(Tcl_Interp *interp, char *varName)

void Tcl_UpdateLinkedVar(Tcl_Interp *interp, char *varName)

int Tcl_TraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTracePr oc *pr oc, ClientData clientData)

int Tcl_TraceVar2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTracePr oc *pr oc, ClientData clientData)

void Tcl_UntraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTracePr oc *pr oc, ClientData clientData)

void Tcl_UntraceVar2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTracePr oc *pr oc, ClientData clientData)

ClientData Tcl_VarTraceInfo(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTracePr oc *pr ocPtr, ClientData prevClientData)

ClientData Tcl_VarTraceInfo2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTracePr oc *pr ocPtr, ClientData prevClientData)

Tcl_Obj *Tcl_ObjGetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
int flags)

Tcl_Obj *Tcl_ObjSetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
Tcl_Obj *newValuePtr, int flags)

int Tcl_UpVar(Tcl_Interp *interp, char *frameName, char *varName,
char *localName, int flags)

int Tcl_UpVar2(Tcl_Interp *interp, char *frameName, char *part1, char *part2,
char *localName, int flags)

Hash Tables

void Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)

void Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)

Tcl_HashEntry *Tcl_Cr eateHashEntry(Tcl_hashTable *tablePtr, char *key,
int *newPtr)

Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char *key)

void Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)

ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)

void Tcl_SetHashValue(Tcl_HashEntry *entryPtr, Clientdata value)

char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)

Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)

Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)

char *Tcl_HashStats(Tcl_HashTable *tablePtr)

144 Chapter 4 – The Tcl C Interface

11 May 2006 10:47

ClientData Tcl_GetAssocData(Tcl_Interp *interp, char *name,
Tcl_InterpDeletePr oc **pr ocPtr)

void Tcl_SetAssocData(Tcl_Interp *interp, char *name, Tcl_InterpDeletePr oc *pr oc,
ClientData clientData)

void Tcl_DeleteAssocData(Tcl_Interp *interp, char *name)

Str ing Utilities

void Tcl_DStringInit(Tcl_DString *dsPtr)

char *Tcl_DStringAppend(Tcl_DString *dsPtr, const char *string, int length)

char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, const char *string)

void Tcl_DStringStartSublist(Tcl_DString *dsPtr)

void Tcl_DStringEndSublist(Tcl_DString *dsPtr)

int Tcl_DStringLength(Tcl_DString *dsPtr)

char *Tcl_DStringValue(Tcl_DString *dsPtr)

void Tcl_DStringSetLength(Tcl_DString *dsPtr, int length)

void Tcl_DStringFr ee(Tcl_DString *dsPtr)

void Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)

void Tcl_DStringGetResult(Tcl_Interp *interp, Tcl_DString *dsPtr)

int Tcl_CommandComplete(char *cmd)

int Tcl_StringMatch(char *string, char *pattern)

int Tcl_RegExpMatch(Tcl_Interp *interp, char *string, char *pattern)

Tcl_RegExp Tcl_RegExpCompile(Tcl_Interp *interp, char *string)

int Tcl_RegExpExec(Tcl_Interp *interp, Tcl_RegExp regexp, char *string, char *start)

void Tcl_RegExpRange(Tcl_RegExp regexp, int index, char **startPtr, char **endPtr)

char *Tcl_Concat(int argc, char **argv)

POSIX Utilities

char *Tcl_T ildeSubst(Tcl_Interp *interp, char *name, Tcl_DString *resultPtr)

char *Tcl_PosixErr or(Tcl_Interp *interp)

char *Tcl_Err noId(void)

char *Tcl_SignalId(int sig)

char *Tcl_SignalMsg(int sig)

void Tcl_DetachPids(int numPids, Tcl_Pid *pidPtr)

void Tcl_ReapDetachedPr ocs(void)

void Tcl_SetErr no(int err)

int Tcl_GetErr no(void)

Tcl C
Interface

Gr oup Listing of Functions 145

11 May 2006 10:47

Input/Output

Tcl_Channel Tcl_OpenCommandChannel(Tcl_Interp *interp, int argc, char **argv,
int flags)

Tcl_Channel Tcl_Cr eateChannel(Tcl_ChannelT ype *typePtr, char *chanName,
ClientData instanceData, int mask)

ClientData Tcl_GetChannelInstanceData(Tcl_Channel chan)

Tcl_ChannelT ype *Tcl_GetChannelT ype(Tcl_Channel chan)

char *Tcl_GetChannelName(Tcl_Channel chan)

int Tcl_GetChannelHandle(Tcl_Channel chan, int direction, ClientData *handlePtr)

int Tcl_GetChannelFlags(Tcl_Channel channel)

void Tcl_SetDefaultTranslation(TclChannel channel, Tcl_EolTranslation transMode)

int Tcl_GetChannelBuf ferSize(Tcl_Channel chan)

void Tcl_SetChannelBuf ferSize(Tcl_Channel chan, int sz)

void Tcl_NotifyChannel(Tcl_Channel channel, int mask)

int Tcl_BadChannelOption(Tcl_Interp *interp, char *optionName, char *optionList)

void Tcl_Cr eateChannelHandler(Tcl_Channel chan, int mask,
Tcl_ChannelPr oc *pr oc, ClientData clientData)

void Tcl_DeleteChannelHandler(Tcl_Channel chan, Tcl_ChannelPr oc *pr oc,
ClientData clientData)

void Tcl_Cr eateCloseHandler(Tcl_Channel chan, Tcl_ClosePr oc *pr oc,
ClientData clientData)

void Tcl_DeleteCloseHandler(Tcl_Channel chan, Tcl_ClosePr oc *pr oc,
ClientData clientData)

int Tcl_GetOpenFile(Tcl_Interp *interp, char *string, int write, int checkUsage,
ClientData *filePtr)

Tcl_Channel Tcl_GetStdChannel(int type)

void Tcl_SetStdChannel(Tcl_Channel channel, int type)

Tcl_Channel Tcl_OpenFileChannel(Tcl_Interp *interp, char *fileName,
char *modeString, int permissions)

Tcl_Channel Tcl_MakeFileChannel(ClientData handle, int mode)

Tcl_Channel Tcl_GetChannel(Tcl_Interp *interp, char *chanName, int *modePtr)

void Tcl_RegisterChannel(Tcl_Interp *interp, Tcl_Channel chan)

int Tcl_Unr egisterChannel(Tcl_Interp *interp, Tcl_Channel chan)

int Tcl_Close(Tcl_Interp *interp, Tcl_Channel chan)

int Tcl_Read(Tcl_Channel chan, char *bufPtr, int toRead)

int Tcl_Gets(Tcl_Channel chan, Tcl_DString *dsPtr)

int Tcl_GetsObj(Tcl_Channel chan, Tcl_Obj *objPtr)

int Tcl_Write(Tcl_Channel chan, char *s, int slen)

int Tcl_Flush(Tcl_Channel chan)

int Tcl_Seek(Tcl_Channel chan, int offset, int mode)

int Tcl_Tell(Tcl_Channel chan)

146 Chapter 4 – The Tcl C Interface

11 May 2006 10:47

int Tcl_GetChannelOption(Tcl_Interp *interp, Tcl_Channel chan,
char *optionName, Tcl_DString *dsPtr)

int Tcl_SetChannelOption(Tcl_Interp *interp, Tcl_Channel chan, char *optionName,
char *newValue)

int Tcl_Eof(Tcl_Channel chan)

int Tcl_InputBlocked(Tcl_Channel chan)

int Tcl_InputBuf fered(Tcl_Channel chan)

Tcl_Channel Tcl_OpenTcpClient(Tcl_Interp *interp, int port, char *address,
char *myaddr, int myport, int async)

Tcl_Channel Tcl_MakeTcpClientChannel(ClientData tcpSocket)

Tcl_Channel Tcl_OpenTcpServer(Tcl_Interp *interp, int port, char *host,
Tcl_TcpAcceptPr oc *acceptPr oc, ClientData callbackData)

int Tcl_Ungets(Tcl_Channel chan, char *str, int len, int atHead)

int Tcl_GetChannelMode(Tcl_Channel chan)

Notifier and Events

void Tcl_Cr eateEventSource(Tcl_EventSetupPr oc *setupPr oc,
Tcl_EventCheckPr oc *checkPr oc, ClientData clientData)

void Tcl_DeleteEventSource(Tcl_EventSetupPr oc *setupPr oc,
Tcl_EventCheckPr oc *checkPr oc, ClientData clientData)

void Tcl_SetMaxBlockT ime(Tcl_T ime *timePtr)

void Tcl_QueueEvent(Tcl_Event *evPtr, Tcl_QueuePosition position)

void Tcl_DeleteEvents(Tcl_EventDeletePr oc *pr oc, ClientData clientData)

int Tcl_WaitForEvent(Tcl_T ime *timePtr)

void Tcl_SetT imer(Tcl_T ime *timePtr)

int Tcl_ServiceAll(void)

int Tcl_ServiceEvent(int flags)

int Tcl_GetServiceMode(void)

int Tcl_SetServiceMode(int mode)

Miscellaneous

char *Tcl_Alloc(int size)

void Tcl_Fr ee(char *ptr)

char *Tcl_Realloc(char *ptr, int size)

void Tcl_Cr eateFileHandler(int fd, int mask, Tcl_FilePr oc *pr oc,
ClientData clientData)

void Tcl_DeleteFileHandler(int fd)

Tcl_T imerToken Tcl_Cr eateTimerHandler(int milliseconds, Tcl_T imerProc *proc,
ClientData clientData)

void Tcl_DeleteT imerHandler(Tcl_T imerToken token)

Tcl C
Interface

Gr oup Listing of Functions 147

11 May 2006 10:47

Tcl_Trace Tcl_Cr eateTrace(Tcl_Interp *interp, int level, Tcl_CmdTracePr oc *pr oc,
ClientData clientData)

void Tcl_DeleteTrace(Tcl_Interp *interp, Tcl_Trace trace)

void Tcl_FindExecutable(char *argv0)

int Tcl_PkgPr ovide(Tcl_Interp *interp, char *name, char *version)

char *Tcl_PkgRequir e(Tcl_Interp *interp, char *name, char *version, int exact)

void Tcl_Pr eserve(ClientData data)

void Tcl_Release(ClientData clientData)

void Tcl_EventuallyFr ee(ClientData clientData, Tcl_Fr eeProc *freePr oc)

void Tcl_Sleep(int ms)

void Tcl_SplitPath(char *path, int *argcPtr, char ***argvPtr)

char *Tcl_JoinPath(int argc, char **argv, Tcl_DString *resultPtr)

Tcl_PathT ype Tcl_GetPathT ype(char *path)

void Tcl_Main(int argc, char **argv, Tcl_AppInitPr oc *appInitPr oc

char *Tcl_TranslateFileName(Tcl_Interp *interp, char *name, Tcl_DString *bufferPtr)

Alphabetical Summary of Functions
void Tcl_AddErr orInfo (Tcl_Interp *interp, char *message)

void Tcl_AddObjErr orInfo(Tcl_Interp *interp, char *message, int length)

char *Tcl_Alloc(int size)

void Tcl_AllowExceptions(Tcl_Interp *interp)

int Tcl_AppInit(Tcl_Interp *interp)

int Tcl_AppendAllObjT ypes(Tcl_Interp *interp, Tcl_Obj *objPtr)

void Tcl_AppendElement(Tcl_Interp *interp, char *string)

void Tcl_AppendResult(Tcl_Interp *interp, ...)

void Tcl_AppendStringsToObj(Tcl_Obj *interp, ...)

void Tcl_AppendToObj(Tcl_Obj *objPtr, char *bytes, int length)

Tcl_AsyncHandler Tcl_AsyncCr eate(Tcl_AsyncPr oc *pr oc, ClientData clientData)

void Tcl_AsyncDelete(Tcl_AsyncHandler async)

int Tcl_AsyncInvoke(Tcl_Interp *interp, int code)

void Tcl_AsyncMark(Tcl_AsyncHandler async)

int Tcl_AsyncReady(void)

void Tcl_Backgr oundErr or(Tcl_Interp *interp)

char Tcl_Backslash(const char *src, int *readPtr)

int Tcl_BadChannelOption(Tcl_Interp *interp, char *optionName, char *optionList)

void Tcl_CallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeletePr oc *pr oc,
ClientData clientData)

void Tcl_CancelIdleCall(Tcl_IdlePr oc *idlePr oc, ClientData clientData)

int Tcl_Close(Tcl_Interp *interp, Tcl_Channel chan)

int Tcl_CommandComplete(char *cmd)

148 Chapter 4 – The Tcl C Interface

11 May 2006 10:47

Tcl_Obj *Tcl_ConcatObj(int objc, Tcl_Obj *const objv[])

char *Tcl_Concat(int argc, char **argv)

int Tcl_ConvertCountedElement(const char *src, int length, char *dst, int flags)

int Tcl_ConvertElement(const char *src, char *dst, int flags)

int Tcl_ConvertToT ype(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_ObjT ype *typePtr)

int Tcl_Cr eateAliasObj(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int objc, Tcl_Obj *const objv[])

int Tcl_Cr eateAlias(Tcl_Interp *slave, char *slaveCmd, Tcl_Interp *target,
char *targetCmd, int argc, char **argv)

void Tcl_Cr eateChannelHandler(Tcl_Channel chan, int mask,
Tcl_ChannelPr oc *pr oc, ClientData clientData)

Tcl_Channel Tcl_Cr eateChannel(Tcl_ChannelT ype *typePtr, char *chanName,
ClientData instanceData, int mask)

void Tcl_Cr eateCloseHandler(Tcl_Channel chan, Tcl_ClosePr oc *pr oc,
ClientData clientData)

Tcl_Command Tcl_Cr eateCommand(Tcl_Interp *interp, char *cmdName,
Tcl_CmdPr oc *pr oc, ClientData clientData, Tcl_CmdDeletePr oc *deletePr oc)

void Tcl_Cr eateEventSource(Tcl_EventSetupPr oc *setupPr oc,
Tcl_EventCheckPr oc *checkPr oc, ClientData clientData)

void Tcl_Cr eateExitHandler(Tcl_ExitPr oc *pr oc, ClientData clientData)

void Tcl_Cr eateFileHandler(int fd, int mask, Tcl_FilePr oc *pr oc,
ClientData clientData)

Tcl_HashEntry *Tcl_Cr eateHashEntry(Tcl_hashTable *tablePtr, char *key,
int *newPtr)

Tcl_Interp *Tcl_Cr eateInterp(void)

void Tcl_Cr eateMathFunc(Tcl_Interp *interp, char *name, int numArgs,
Tcl_ValueT ype *argT ypes, Tcl_MathPr oc *pr oc, ClientData clientData)

Tcl_Command Tcl_Cr eateObjCommand(Tcl_Interp *interp, char *cmdName,
Tcl_ObjCmdPr oc *pr oc, ClientData clientData,
Tcl_CmdDeletePr oc *deletePr oc)

Tcl_Interp *Tcl_Cr eateSlave(Tcl_Interp *interp, char *slaveName, int isSafe)

Tcl_T imerToken Tcl_Cr eateTimerHandler(int milliseconds, Tcl_T imerProc *proc,
ClientData clientData)

Tcl_Trace Tcl_Cr eateTrace(Tcl_Interp *interp, int level, Tcl_CmdTracePr oc *pr oc,
ClientData clientData)

char *Tcl_DStringAppendElement(Tcl_DString *dsPtr, const char *string)

char *Tcl_DStringAppend(Tcl_DString *dsPtr, const char *string, int length)

void Tcl_DStringEndSublist(Tcl_DString *dsPtr)

void Tcl_DStringFr ee(Tcl_DString *dsPtr)

void Tcl_DStringGetResult(Tcl_Interp *interp, Tcl_DString *dsPtr)

void Tcl_DStringInit(Tcl_DString *dsPtr)

int Tcl_DStringLength(Tcl_DString *dsPtr)

void Tcl_DStringResult(Tcl_Interp *interp, Tcl_DString *dsPtr)

Tcl C
Interface

Alphabetical Summary of Functions 149

11 May 2006 10:47

void Tcl_DStringSetLength(Tcl_DString *dsPtr, int length)

void Tcl_DStringStartSublist(Tcl_DString *dsPtr)

char *Tcl_DStringValue(Tcl_DString *dsPtr)

void Tcl_DecrRefCount(Tcl_Obj *objPtr)

void Tcl_DeleteAssocData(Tcl_Interp *interp, char *name)

void Tcl_DeleteChannelHandler(Tcl_Channel chan, Tcl_ChannelPr oc *pr oc,
ClientData clientData)

void Tcl_DeleteCloseHandler(Tcl_Channel chan, Tcl_ClosePr oc *pr oc,
ClientData clientData)

int Tcl_DeleteCommandFr omToken(Tcl_Interp *interp, Tcl_Command command)

int Tcl_DeleteCommand(Tcl_Interp *interp, char *cmdName)

void Tcl_DeleteEventSource(Tcl_EventSetupPr oc *setupPr oc,
Tcl_EventCheckPr oc *checkPr oc, ClientData clientData)

void Tcl_DeleteEvents(Tcl_EventDeletePr oc *pr oc, ClientData clientData)

void Tcl_DeleteExitHandler(Tcl_ExitPr oc *pr oc, ClientData clientData)

void Tcl_DeleteFileHandler(int fd)

void Tcl_DeleteHashEntry(Tcl_HashEntry *entryPtr)

void Tcl_DeleteHashTable(Tcl_HashTable *tablePtr)

void Tcl_DeleteInterp(Tcl_Interp *interp)

void Tcl_DeleteT imerHandler(Tcl_T imerToken token)

void Tcl_DeleteTrace(Tcl_Interp *interp, Tcl_Trace trace)

void Tcl_DetachPids(int numPids, Tcl_Pid *pidPtr)

int Tcl_DoOneEvent(int flags)

void Tcl_DoWhenIdle(Tcl_IdlePr oc *pr oc, ClientData clientData)

void Tcl_DontCallWhenDeleted(Tcl_Interp *interp, Tcl_InterpDeletePr oc *pr oc,
ClientData clientData)

Tcl_Obj *Tcl_DuplicateObj(Tcl_Obj *objPtr)

int Tcl_Eof(Tcl_Channel chan)

char *Tcl_Err noId(void)

int Tcl_EvalFile(Tcl_Interp *interp, char *fileName)

int Tcl_EvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)

int Tcl_Eval(Tcl_Interp *interp, char *string)

void Tcl_EventuallyFr ee(ClientData clientData, Tcl_Fr eeProc *freePr oc)

void Tcl_Exit(int status)

int Tcl_ExposeCommand(Tcl_Interp *interp, char *hiddenCmdToken,
char *cmdName)

int Tcl_ExprBooleanObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *ptr)

int Tcl_ExprBoolean(Tcl_Interp *interp, char *string, int *ptr)

int Tcl_ExprDoubleObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *ptr)

int Tcl_ExprDouble(Tcl_Interp *interp, char *string, double *ptr)

int Tcl_ExprLongObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *ptr)

int Tcl_ExprLong(Tcl_Interp *interp, char *string, long *ptr)

150 Chapter 4 – The Tcl C Interface

11 May 2006 10:47

int Tcl_ExprObj(Tcl_Interp *interp, Tcl_Obj *objPtr, Tcl_Obj **resultPtrPtr)

int Tcl_ExprString(Tcl_Interp *interp, char *string)

void Tcl_Finalize(void)

void Tcl_FindExecutable(char *argv0)

Tcl_HashEntry *Tcl_FindHashEntry(Tcl_HashTable *tablePtr, char *key)

Tcl_HashEntry *Tcl_FirstHashEntry(Tcl_HashTable *tablePtr,
Tcl_HashSearch *searchPtr)

int Tcl_Flush(Tcl_Channel chan)

void Tcl_Fr eeResult(Tcl_Interp *interp)

void Tcl_Fr ee(char *ptr)

int Tcl_GetAliasObj(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *objcPtr, Tcl_Obj ***objv)

int Tcl_GetAlias(Tcl_Interp *interp, char *slaveCmd, Tcl_Interp **targetInterpPtr,
char **targetCmdPtr, int *argcPtr, char ***argvPtr)

ClientData Tcl_GetAssocData(Tcl_Interp *interp, char *name,
Tcl_InterpDeletePr oc **pr ocPtr)

int Tcl_GetBooleanFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *boolPtr)

int Tcl_GetBoolean(Tcl_Interp *interp, char *string, int *boolPtr)

int Tcl_GetChannelBuf ferSize(Tcl_Channel chan)

int Tcl_GetChannelFlags(Tcl_Channel channel)

int Tcl_GetChannelHandle(Tcl_Channel chan, int direction, ClientData *handlePtr)

ClientData Tcl_GetChannelInstanceData(Tcl_Channel chan)

int Tcl_GetChannelMode(Tcl_Channel chan)

char *Tcl_GetChannelName(Tcl_Channel chan)

int Tcl_GetChannelOption(Tcl_Interp *interp, Tcl_Channel chan,
char *optionName, Tcl_DString *dsPtr)

Tcl_Channel Tcl_GetChannel(Tcl_Interp *interp, char *chanName, int *modePtr)

Tcl_ChannelT ype *Tcl_GetChannelT ype(Tcl_Channel chan)

int Tcl_GetCommandInfo(Tcl_Interp *interp, char *cmdName,
Tcl_CmdInfo *infoPtr)

char *Tcl_GetCommandName(Tcl_Interp *interp, Tcl_Command command)

int Tcl_GetDoubleFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, double *doublePtr)

int Tcl_GetDouble(Tcl_Interp *interp, char *string, double *doublePtr)

int Tcl_GetErr no(void)

char *Tcl_GetHashKey(Tcl_HashEntry *entryPtr)

ClientData Tcl_GetHashValue(Tcl_HashEntry *entryPtr)

int Tcl_GetIndexFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, char **tablePtr,
char *msg, int flags, int *indexPtr)

int Tcl_GetIntFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, int *intPtr)

int Tcl_GetInt(Tcl_Interp *interp, char *string, int *intPtr)

int Tcl_GetInterpPath(Tcl_Interp *askInterp, Tcl_Interp *slaveInterp)

int Tcl_GetLongFr omObj(Tcl_Interp *interp, Tcl_Obj *objPtr, long *longPtr)

Tcl C
Interface

Alphabetical Summary of Functions 151

11 May 2006 10:47

Tcl_Interp *Tcl_GetMaster(Tcl_Interp *interp)

Tcl_Obj *Tcl_GetObjResult(Tcl_Interp *interp)

Tcl_ObjT ype *Tcl_GetObjT ype(char *typeName)

int Tcl_GetOpenFile(Tcl_Interp *interp, char *string, int write, int checkUsage,
ClientData *filePtr)

Tcl_PathT ype Tcl_GetPathT ype(char *path)

int Tcl_GetServiceMode(void)

Tcl_Interp *Tcl_GetSlave(Tcl_Interp *interp, char *slaveName)

Tcl_Channel Tcl_GetStdChannel(int type)

char *Tcl_GetStringFr omObj(Tcl_Obj *objPtr, int *lengthPtr)

char *Tcl_GetStringResult(Tcl_Interp *interp)

char *Tcl_GetVar2(Tcl_Interp *interp, char *part1, char *part2, int flags)

char *Tcl_GetVar(Tcl_Interp *interp, char *varName, int flags)

int Tcl_GetsObj(Tcl_Channel chan, Tcl_Obj *objPtr)

int Tcl_Gets(Tcl_Channel chan, Tcl_DString *dsPtr)

int Tcl_GlobalEvalObj(Tcl_Interp *interp, Tcl_Obj *objPtr)

int Tcl_GlobalEval(Tcl_Interp *interp, char *command)

char *Tcl_HashStats(Tcl_HashTable *tablePtr)

int Tcl_HideCommand(Tcl_Interp *interp, char *cmdName,
char *hiddenCmdToken)

void Tcl_IncrRefCount(Tcl_Obj *objPtr)

void Tcl_InitHashTable(Tcl_HashTable *tablePtr, int keyType)

int Tcl_Init(Tcl_Interp *interp)

int Tcl_InputBlocked(Tcl_Channel chan)

int Tcl_InputBuf fered(Tcl_Channel chan)

int Tcl_InterpDeleted(Tcl_Interp *interp)

void Tcl_InvalidateStringRep(Tcl_Obj *objPtr)

int Tcl_IsSafe(Tcl_Interp *interp)

int Tcl_IsShar ed(Tcl_Obj *objPtr)

char *Tcl_JoinPath(int argc, char **argv, Tcl_DString *resultPtr)

int Tcl_LinkVar(Tcl_Interp *interp, char *varName, char *addr, int type)

int Tcl_ListObjAppendElement(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *objPtr)

int Tcl_ListObjAppendList(Tcl_Interp *interp, Tcl_Obj *listPtr, Tcl_Obj *elemListPtr)

int Tcl_ListObjGetElements(Tcl_Interp *interp, Tcl_Obj *listPtr, int *objcPtr,
Tcl_Obj ***objvPtr)

int Tcl_ListObjIndex(Tcl_Interp *interp, Tcl_Obj *listPtr, int index,
Tcl_Obj **objPtrPtr)

int Tcl_ListObjLength(Tcl_Interp *interp, Tcl_Obj *listPtr, int *intPtr)

int Tcl_ListObjReplace(Tcl_Interp *interp, Tcl_Obj *listPtr, int first, int count,
int objc, Tcl_Obj *const objv[])

void Tcl_Main(int argc, char **argv, Tcl_AppInitPr oc *appInitPr oc

Tcl_Channel Tcl_MakeFileChannel(ClientData handle, int mode)

152 Chapter 4 – The Tcl C Interface

11 May 2006 10:47

int Tcl_MakeSafe(Tcl_Interp *interp)

Tcl_Channel Tcl_MakeTcpClientChannel(ClientData tcpSocket)

char *Tcl_Merge(int argc, char **argv)

Tcl_Obj *Tcl_NewBooleanObj(int boolValue)

Tcl_Obj *Tcl_NewDoubleObj(double doubleValue)

Tcl_Obj *Tcl_NewIntObj(int intValue)

Tcl_Obj *Tcl_NewListObj(int objc, Tcl_Obj *cont objv[])

Tcl_Obj *Tcl_NewLongObj(long longValue)

Tcl_Obj *Tcl_NewObj()

Tcl_Obj *Tcl_NewStringObj(char *bytes, int length)

Tcl_HashEntry *Tcl_NextHashEntry(Tcl_HashSearch *searchPtr)

void Tcl_NotifyChannel(Tcl_Channel channel, int mask)

Tcl_Obj *Tcl_ObjGetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
int flags)

Tcl_Obj *Tcl_ObjSetVar2(Tcl_Interp *interp, Tcl_Obj *part1Ptr, Tcl_Obj *part2Ptr,
Tcl_Obj *newValuePtr, int flags)

Tcl_Channel Tcl_OpenCommandChannel(Tcl_Interp *interp, int argc, char **argv,
int flags)

Tcl_Channel Tcl_OpenFileChannel(Tcl_Interp *interp, char *fileName,
char *modeString, int permissions)

Tcl_Channel Tcl_OpenTcpClient(Tcl_Interp *interp, int port, char *address,
char *myaddr, int myport, int async)

Tcl_Channel Tcl_OpenTcpServer(Tcl_Interp *interp, int port, char *host,
Tcl_TcpAcceptPr oc *acceptPr oc, ClientData callbackData)

int Tcl_PkgPr ovide(Tcl_Interp *interp, char *name, char *version)

char *Tcl_PkgRequir e(Tcl_Interp *interp, char *name, char *version, int exact)

char *Tcl_PosixErr or(Tcl_Interp *interp)

void Tcl_Pr eserve(ClientData data)

void Tcl_PrintDouble(Tcl_Interp *interp, double value, char *dst)

void Tcl_QueueEvent(Tcl_Event *evPtr, Tcl_QueuePosition position)

int Tcl_Read(Tcl_Channel chan, char *bufPtr, int toRead)

char *Tcl_Realloc(char *ptr, int size)

void Tcl_ReapDetachedPr ocs(void)

int Tcl_RecordAndEvalObj(Tcl_Interp *interp, Tcl_Obj *cmdPtr, int flags)

int Tcl_RecordAndEval(Tcl_Interp *interp, char *cmd, int flags)

Tcl_RegExp Tcl_RegExpCompile(Tcl_Interp *interp, char *string)

int Tcl_RegExpExec(Tcl_Interp *interp, Tcl_RegExp regexp, char *string, char *start)

int Tcl_RegExpMatch(Tcl_Interp *interp, char *string, char *pattern)

void Tcl_RegExpRange(Tcl_RegExp regexp, int index, char **startPtr, char **endPtr)

void Tcl_RegisterChannel(Tcl_Interp *interp, Tcl_Channel chan)

void Tcl_RegisterObjT ype(Tcl_ObjT ype *typePtr)

void Tcl_Release(ClientData clientData)

Tcl C
Interface

Alphabetical Summary of Functions 153

11 May 2006 10:47

void Tcl_ResetResult(Tcl_Interp *interp)

int Tcl_ScanCountedElement(const char *string, int length, int *flagPtr)

int Tcl_ScanElement(const char *string, int *flagPtr)

int Tcl_Seek(Tcl_Channel chan, int offset, int mode)

int Tcl_ServiceAll(void)

int Tcl_ServiceEvent(int flags)

void Tcl_SetAssocData(Tcl_Interp *interp, char *name, Tcl_InterpDeletePr oc *pr oc,
ClientData clientData)

void Tcl_SetBooleanObj(Tcl_Obj *objPtr, int boolValue)

void Tcl_SetChannelBuf ferSize(Tcl_Channel chan, int sz)

int Tcl_SetChannelOption(Tcl_Interp *interp, Tcl_Channel chan, char *optionName,
char *newValue)

int Tcl_SetCommandInfo(Tcl_Interp *interp, char *cmdName, Tcl_CmdInfo *infoPtr)

void Tcl_SetDefaultTranslation(TclChannel channel, Tcl_EolTranslation transMode)

void Tcl_SetDoubleObj(Tcl_Obj *objPtr, double doubleValue)

void Tcl_SetErr no(int err)

void Tcl_SetErr orCode(Tcl_Interp *arg1, ...)

void Tcl_SetHashValue(Tcl_HashEntry *entryPtr, Clientdata value)

void Tcl_SetIntObj(Tcl_Obj *objPtr, int intValue)

void Tcl_SetListObj(Tcl_Obj *objPtr, int objc, Tcl_Obj *const objv[])

void Tcl_SetLongObj(Tcl_Obj *objPtr, long longValue)

void Tcl_SetMaxBlockT ime(Tcl_T ime *timePtr)

void Tcl_SetObjErr orCode(Tcl_Interp *interp, Tcl_Obj *errorObjPtr)

void Tcl_SetObjLength(Tcl_Obj *objPtr, int length)

void Tcl_SetObjResult(Tcl_Interp *interp, Tcl_Obj *resultObjPtr)

int Tcl_SetRecursionLimit(Tcl_Interp *interp, int depth)

void Tcl_SetResult(Tcl_Interp *interp, char *string, Tcl_Fr eeProc *freePr oc)

int Tcl_SetServiceMode(int mode)

void Tcl_SetStdChannel(Tcl_Channel channel, int type)

void Tcl_SetStringObj(Tcl_Obj *objPtr, char *bytes, int length)

void Tcl_SetT imer(Tcl_T ime *timePtr)

char *Tcl_SetVar2(Tcl_Interp *interp, char *part1, char *part2, char *newValue,
int flags)

char *Tcl_SetVar(Tcl_Interp *interp, char *varName, char *newValue, int flags)

char *Tcl_SignalId(int sig)

char *Tcl_SignalMsg(int sig)

void Tcl_Sleep(int ms)

int Tcl_SplitList(Tcl_Interp *interp, char *list, int *argcPtr, char ***argvPtr)

void Tcl_SplitPath(char *path, int *argcPtr, char ***argvPtr)

void Tcl_StaticPackage(Tcl_Interp *interp, char *pkgName,
Tcl_PackageInitPr oc *initPr oc, Tcl_PackageInitPr oc *safeInitPr oc)

int Tcl_StringMatch(char *string, char *pattern)

154 Chapter 4 – The Tcl C Interface

11 May 2006 10:47

int Tcl_Tell(Tcl_Channel chan)

char *Tcl_T ildeSubst(Tcl_Interp *interp, char *name, Tcl_DString *resultPtr)

int Tcl_TraceVar2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTracePr oc *pr oc, ClientData clientData)

int Tcl_TraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTracePr oc *pr oc, ClientData clientData)

char *Tcl_TranslateFileName(Tcl_Interp *interp, char *name, Tcl_DString *bufferPtr)

int Tcl_Ungets(Tcl_Channel chan, char *str, int len, int atHead)

void Tcl_UnlinkVar(Tcl_Interp *interp, char *varName)

int Tcl_Unr egisterChannel(Tcl_Interp *interp, Tcl_Channel chan)

int Tcl_UnsetVar2(Tcl_Interp *interp, char *part1, char *part2, int flags)

int Tcl_UnsetVar(Tcl_Interp *interp, char *varName, int flags)

void Tcl_UntraceVar2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTracePr oc *pr oc, ClientData clientData)

void Tcl_UntraceVar(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTracePr oc *pr oc, ClientData clientData)

int Tcl_UpVar2(Tcl_Interp *interp, char *frameName, char *part1, char *part2,
char *localName, int flags)

int Tcl_UpVar(Tcl_Interp *interp, char *frameName, char *varName,
char *localName, int flags)

void Tcl_UpdateLinkedVar(Tcl_Interp *interp, char *varName)

int Tcl_VarEval(Tcl_Interp *interp, ...)

ClientData Tcl_VarTraceInfo2(Tcl_Interp *interp, char *part1, char *part2, int flags,
Tcl_VarTracePr oc *pr ocPtr, ClientData prevClientData)

ClientData Tcl_VarTraceInfo(Tcl_Interp *interp, char *varName, int flags,
Tcl_VarTracePr oc *pr ocPtr, ClientData prevClientData)

int Tcl_WaitForEvent(Tcl_T ime *timePtr)

int Tcl_Write(Tcl_Channel chan, char *s, int slen)

void Tcl_WrongNumArgs(Tcl_Interp *interp, int objc, Tcl_Obj *const objv[],
char *message)

Tcl C
Interface

Alphabetical Summary of Functions 155

11 May 2006 10:47

CHAPTER 5

The Tk C Interface

This chapter presents a summary of the Tk C-language interface. Everything
described here is defined in the header file tk.h, part of the Tk distribution. For
clarity, ANSI C function prototypes are shown here, although the actual header file
supports non-ANSI compilers.

To avoid name conflicts, all functions are prefixed with Tk_ and constants are pre-
fixed with TK_. See the full Tk refer ence documentation for the most detailed and
up-to-date information. C interfaces are typically found in Section 3 of the Tk man-
pages.

Constants
The following constants contain Tk toolkit version information:

TK_MAJOR_VERSION
Tk major version number (e.g., 8)

TK_MINOR_VERSION
Tk minor version number (e.g., 0)

TK_RELEASE_LEVEL
Release level: 0 for alpha, 1 for beta, 2 for final/patch

TK_RELEASE_SERIAL
Version number that changes with each patch (e.g., 2)

TK_VERSION
Tk version as a string (e.g., “8.0”)

TK_PATCH_LEVEL
Tk version and patch level as a string (e.g., “8.0p2”)

156

11 May 2006 10:47

Data Types
The more commonly used Tk data structures are listed here:

Tk_3DBorder
Token for a three-dimensional window border

Tk_Anchor
Enumerated type describing point by which to anchor an object

Tk_ArgvInfo
Structur e used to specify how to handle argv options

Tk_BindingTable
Token for a binding table

Tk_Canvas
Token for a canvas object

Tk_CanvasTextInfo
Structur e pr oviding infor mation about the selection and insertion cursors

Tk_ConfigSpec
Structur e used to specify information for configuring a widget

Tk_Cursor
Token for a cursor

Tk_ErrorHandler
Token for an X protocol error handler

Tk_ErrorProc
Type of procedur e used to handle X protocol errors

Tk_EventProc
Type of procedur e used to handle events

Tk_Font
Token for a font

Tk_FontMetrics
Data structure describing properties of a font

Tk_GenericProc
Type of procedur e used to handle generic X events

Tk_GeomMgr
Structur e describing a geometry manager

Tk_GetSelProc
Type of procedur e to process the selection

Tk_Image
Token for an image

Tk C
Interface

Data Types 157

11 May 2006 10:47

Tk_ImageChangedProc
Type of procedur e to invoke when an image changes

Tk_ImageMaster
Token for an image master

Tk_ImageType
Token for an image instance

Tk_ItemType
Structur e defining a type of canvas item

Tk_Justify
Enumerated type describing a style of justification

Tk_LostSelProc
Type of procedur e invoked when window loses selection

Tk_PhotoHandle
Token for a photo image

Tk_PhotoImageBlock
Structur e describing a block of pixels in memory

Tk_PhotoImageFormat
Structur e repr esenting a particular file format for storing images

Tk_RestrictProc
Type of procedur e used to filter incoming events

Tk_SelectionProc
Type of procedur e used to retur n selection

Tk_TextLayout
Token for a text layout

Tk_Uid
Type used as unique identifiers for strings

Tk_Window
Token for a window

Group Listing of Functions
Note that a few of these routines are implemented as macros for the sake of effi-
ciency, but logically they behave the same as functions.

Windows

XSetWindowAttributes *Tk_Attributes(Tk_Window tkwin)

void Tk_ChangeWindowAttributes(Tk_Window tkwin, unsigned long valueMask,
XSetWindowAttributes *attsPtr)

XWindowChanges *Tk_Changes(Tk_Window tkwin)

158 Chapter 5 – The Tk C Interface

11 May 2006 10:47

Tk_Uid Tk_Class(Tk_Window tkwin)

void Tk_ConfigureWindow(Tk_Window tkwin, unsigned int valueMask,
XWindowChanges *valuePtr)

Tk_Window Tk_CoordsToWindow(int rootX, int rootY, Tk_Window tkwin)

Tk_Window Tk_CreateWindowFr omPath(Tcl_Interp *interp, Tk_Window tkwin,
char *pathName, char *screenName)

Tk_Window Tk_CreateWindow(Tcl_Interp *interp, Tk_Window parent,
char *name, char *screenName)

int Tk_Depth(Tk_Window tkwin)

void Tk_DestroyWindow(Tk_Window tkwin)

char *Tk_DisplayName(Tk_Window tkwin)

Display Tk_Display(Tk_Window tkwin)

void Tk_DrawFocusHighlight(Tk_Window tkwin, GC gc, int width,
Drawable drawable)

char *Tk_GetAtomName(Tk_Window tkwin, Atom atom)

GC Tk_GetGC(Tk_Window tkwin, unsigned long valueMask, XGCValues *valuePtr)

int Tk_GetNumMainWindows(void)

Tk_Uid Tk_GetOption(Tk_Window tkwin, char *name, char *className)

void Tk_GetRootCoords(Tk_Window tkwin, int *xPtr, int *yPtr)

void Tk_GetVRootGeometry(Tk_Window tkwin, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)

int Tk_Height(Tk_Window tkwin)

Tk_Window Tk_IdToWindow(Display *display, Window window)

Atom Tk_InternAtom(Tk_Window tkwin, char *name)

int Tk_IsContainer(Tk_Window tkwin)

int Tk_IsEmbedded(Tk_Window tkwin)

int Tk_IsMapped(Tk_Window tkwin)

int Tk_IsTopLevel(Tk_Window tkwin)

Tk_Window Tk_MainWindow(Tcl_Interp *interp)

void Tk_MaintainGeometry(Tk_Window slave, Tk_Window master, int x, int y,
int width, int height)

void Tk_MakeWindowExist(Tk_Window tkwin)

void Tk_MoveToplevelWindow(Tk_Window tkwin, int x, int y)

Tk_Uid Tk_Name(Tk_Window tkwin)

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin)

Tk_Window Tk_Parent(Tk_Window tkwin)

char *Tk_PathName(Tk_Window tkwin)

int Tk_RestackWindow(Tk_Window tkwin, int aboveBelow, Tk_Window other)

int Tk_ScreenNumber(Tk_Window tkwin)

Scr een *Tk_Scr een(Tk_Window tkwin)

void Tk_SetClass(Tk_Window tkwin, char *className)

Tk C
Interface

Gr oup Listing of Functions 159

11 May 2006 10:47

void Tk_SetWindowBackgr ound(Tk_Window tkwin, unsigned long pixel)

void Tk_SetWindowBorderPixmap(Tk_Window tkwin, Pixmap pixmap)

void Tk_SetWindowBorder(Tk_Window tkwin, unsigned long pixel)

void Tk_SetWindowBorderWidth(Tk_Window tkwin, int width)

int Tk_StrictMotif(Tk_Window tkwin)

void Tk_Ungrab(Tk_Window tkwin)

void Tk_UnmaintainGeometry(Tk_Window slave, Tk_Window master)

void Tk_UnsetGrid(Tk_Window tkwin)

void Tk_UpdatePointer(Tk_Window tkwin, int x, int y, int state)

Visual *Tk_Visual(Tk_Window tkwin)

int Tk_Width(Tk_Window tkwin)

Window Tk_WindowId(Tk_Window tkwin)

int Tk_X(Tk_Window tkwin)

int Tk_Y(Tk_Window tkwin)

Configur ing Widgets

int Tk_ConfigureInfo(Tcl_Interp *interp, Tk_Window tkwin, Tk_ConfigSpec *specs,
char *widgRec, char *argvName, int flags)

int Tk_ConfigureValue(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char *argvName, int flags)

int Tk_ConfigureWidget(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, int argc, char **argv, char *widgRec, int flags)

void Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec, Display *display,
int needFlags)

int Tk_Offset(type, field)

Bitmaps and Photo Images

void Tk_CreateImageT ype(Tk_ImageT ype *typePtr)

void Tk_CreatePhotoImageFor mat(Tk_PhotoImageFor mat *for matPtr)

int Tk_DefineBitmap(Tcl_Interp *interp, Tk_Uid name, char *source, int width,
int height)

void Tk_DeleteImage(Tcl_Interp *interp, char *name)

Tk_PhotoHandle Tk_FindPhoto(Tcl_Interp *interp, char *imageName)

void Tk_FreeBitmap(Display *display, Pixmap bitmap)

void Tk_FreeImage(Tk_Image image)

void Tk_FreePixmap(Display *display, Pixmap pixmap)

Pixmap Tk_GetBitmapFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, int width, int height)

Pixmap Tk_GetBitmap(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)

ClientData Tk_GetImageMasterData(Tcl_Interp *interp, char *name,
Tk_ImageT ype **typePtrPtr)

160 Chapter 5 – The Tk C Interface

11 May 2006 10:47

Tk_Image Tk_GetImage(Tcl_Interp *interp, Tk_Window tkwin, char *name,
Tk_ImageChangedPr oc *changePr oc, ClientData clientData)

void Tk_ImageChanged(Tk_ImageMaster master, int x, int y, int width, int height,
int imageWidth, int imageHeight)

char *Tk_NameOfBitmap(Display *display, Pixmap bitmap)

char *Tk_NameOfImage(Tk_ImageMaster imageMaster)

void Tk_PhotoBlank(Tk_PhotoHandle handle)

void Tk_PhotoExpand(Tk_PhotoHandle handle, int width, int height)

int Tk_PhotoGetImage(Tk_PhotoHandle handle, Tk_PhotoImageBlock *blockPtr)

void Tk_PhotoGetSize(Tk_PhotoHandle handle, int *widthPtr, int *heightPtr)

void Tk_PhotoPutBlock(Tk_PhotoHandle handle, Tk_PhotoImageBlock *blockPtr,
int x, int y, int width, int height)

void Tk_PhotoPutZoomedBlock(Tk_PhotoHandle handle,
Tk_PhotoImageBlock *blockPtr, int x, int y, int width, int height, int zoomX,
int zoomY, int subsampleX, int subsampleY)

void Tk_PhotoSetSize(Tk_PhotoHandle handle, int width, int height)

void Tk_RedrawImage(Tk_Image image, int imageX, int imageY, int width,
int height, Drawable drawable, int drawableX, int drawableY)

void Tk_SetWindowBackgr oundPixmap(Tk_Window tkwin, Pixmap pixmap)

void Tk_SizeOfBitmap(Display *display, Pixmap bitmap, int *widthPtr,
int *heightPtr)

void Tk_SizeOfImage(Tk_Image image, int *widthPtr, int *heightPtr)

Events

void Tk_BindEvent(Tk_BindingTable bindingTable, XEvent *eventPtr,
Tk_Window tkwin, int numObjects, ClientData *objectPtr)

Tk_BindingTable Tk_CreateBindingTable(Tcl_Interp *interp)

unsigned long Tk_CreateBinding(Tcl_Interp *interp,
Tk_BindingTable bindingTable, ClientData object, *eventString,
char *command, int append)

void Tk_CreateEventHandler(Tk_Window token, unsigned long mask,
Tk_EventPr oc *pr oc, ClientData clientData)

void Tk_CreateGenericHandler(Tk_GenericPr oc *pr oc, ClientData clientData)

void Tk_DeleteAllBindings(Tk_BindingTable bindingTable, ClientData object)

void Tk_DeleteBindingTable(Tk_BindingTable bindingTable)

int Tk_DeleteBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)

void Tk_DeleteEventHandler(Tk_Window token, unsigned long mask,
Tk_EventPr oc *pr oc, ClientData clientData)

void Tk_DeleteGenericHandler(Tk_GenericProc *proc, ClientData clientData)

void Tk_GetAllBindings(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object)

Tk C
Interface

Gr oup Listing of Functions 161

11 May 2006 10:47

char *Tk_GetBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)

void Tk_HandleEvent(XEvent *eventPtr)

void Tk_MainLoop(void)

void Tk_QueueWindowEvent(XEvent *eventPtr, Tcl_QueuePosition position)

Tk_RestrictPr oc *Tk_RestrictEvents(Tk_RestrictPr oc *pr oc, ClientData arg,
ClientData *prevArgPtr)

Displaying Widgets

GC Tk_3DBorderGC(Tk_Window tkwin, Tk_3DBorder border, int which)

void Tk_3DHorizontalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int leftIn, int rightIn,
int topBevel, int relief)

void Tk_3DVerticalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int leftBevel, int relief)

void Tk_Draw3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)

void Tk_Draw3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)

void Tk_Fill3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)

void Tk_Fill3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)

void Tk_Free3DBorder(Tk_3DBorder border)

Tk_3DBorder Tk_Get3DBorder(Tcl_Interp *interp, Tk_Window tkwin,
Tk_Uid colorName)

char *Tk_NameOf3DBorder(Tk_3DBorder border)

void Tk_SetBackgroundFr omBorder(Tk_Window tkwin,
Tk_3DBorder border)

Canvases

void Tk_CanvasDrawableCoords(Tk_Canvas canvas, double x, double y,
short *drawableXPtr, short *drawableYPtr)

void Tk_CanvasEventuallyRedraw(Tk_Canvas canvas, int x1, int y1, int x2, int y2)

int Tk_CanvasGetCoord(Tcl_Interp *interp, Tk_Canvas canvas, char *string,
double *doublePtr)

Tk_CanvasTextInfo *Tk_CanvasGetTextInfo(Tk_Canvas canvas)

162 Chapter 5 – The Tk C Interface

11 May 2006 10:47

int Tk_CanvasPsBitmap(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap,
int x, int y, int width, int height)

int Tk_CanvasPsColor(Tcl_Interp *interp, Tk_Canvas canvas, XColor *colorPtr)

int Tk_CanvasPsFont(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Font font)

void Tk_CanvasPsPath(Tcl_Interp *interp, Tk_Canvas canvas, double *coordPtr,
int numPoints)

int Tk_CanvasPsStipple(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap)

double Tk_CanvasPsY(Tk_Canvas canvas, double y)

void Tk_CanvasSetStippleOrigin(Tk_Canvas canvas, GC gc)

int Tk_CanvasTagsParsePr oc(ClientData clientData, Tcl_Interp *interp,
Tk_Window tkwin, char *value, char *widgRec, int offset)

char *Tk_CanvasTagsPrintPr oc(ClientData clientData, Tk_Window tkwin,
char *widgRec, int offset, Tcl_Fr eeProc **freePr ocPtr)

Tk_Window Tk_CanvasTkwin(Tk_Canvas canvas)

void Tk_CanvasWindowCoords(Tk_Canvas canvas, double x, double y,
short *screenXPtr, short *screenYPtr)

void Tk_CreateItemT ype(Tk_ItemT ype *typePtr)

Pixmap Tk_GetPixmap(Display *display, Drawable d, int width, int height,
int depth)

Te xt

int Tk_CharBbox(Tk_TextLayout layout, int index, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)

Tk_TextLayout Tk_ComputeTextLayout(Tk_Font font, const char *string,
int numChars, int wrapLength, Tk_Justify justify, int flags, int *widthPtr,
int *heightPtr)

int Tk_DistanceToTextLayout(Tk_TextLayout layout, int x, int y)

void Tk_DrawChars(Display *display, Drawable drawable, GC gc, Tk_Font tkfont,
const char *source, int numChars, int x, int y)

void Tk_DrawTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int firstChar, int lastChar)

Font Tk_FontId(Tk_Font font)

void Tk_FreeFont(Tk_Font)

void Tk_FreeTextLayout(Tk_TextLayout textLayout)

Tk_Font Tk_GetFontFromObj(Tcl_Interp *interp, Tk_Window tkwin,
Tcl_Obj *objPtr)

void Tk_GetFontMetrics(Tk_Font font, Tk_FontMetrics *fmPtr)

Tk_Font Tk_GetFont(Tcl_Interp *interp, Tk_Window tkwin, const char *string)

int Tk_GetJustify(Tcl_Interp *interp, char *string, Tk_Justify *justifyPtr)

int Tk_IntersectTextLayout(Tk_TextLayout layout, int x, int y, int width, int height)

int Tk_MeasureChars(Tk_Font tkfont, const char *source, int maxChars,
int maxPixels, int flags, int *lengthPtr)

Tk C
Interface

Gr oup Listing of Functions 163

11 May 2006 10:47

char *Tk_NameOfFont(Tk_Font font)

char *Tk_NameOfJustify(Tk_Justify justify)

int Tk_PointToChar(Tk_TextLayout layout, int x, int y)

int Tk_PostscriptFontName(Tk_Font tkfont, Tcl_DString *dsPtr)

void Tk_TextLayoutToPostscript(Tcl_Interp *interp, Tk_TextLayout layout)

int Tk_TextWidth(Tk_Font font, const char *string, int numChars)

void Tk_UnderlineChars(Display *display, Drawable drawable, GC gc,
Tk_Font tkfont, const char *source, int x, int y, int firstChar, int lastChar)

void Tk_UnderlineTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int underline)

The Selection

void Tk_ClearSelection(Tk_Window tkwin, Atom selection)

int Tk_ClipboardAppend(Tcl_Interp *interp, Tk_Window tkwin, Atom target,
Atom format, char *buffer)

int Tk_ClipboardClear(Tcl_Interp *interp, Tk_Window tkwin)

void Tk_CreateSelHandler(Tk_Window tkwin, Atom selection, Atom target,
Tk_SelectionPr oc *pr oc, ClientData clientData, Atom format)

void Tk_DeleteSelHandler(Tk_Window tkwin, Atom selection, Atom target)

int Tk_GetSelection(Tcl_Interp *interp, Tk_Window tkwin, Atom selection,
Atom target, Tk_GetSelProc *proc, ClientData clientData)

void Tk_OwnSelection(Tk_Window tkwin, Atom selection, Tk_LostSelProc *proc,
ClientData clientData)

Geometr y Management

void Tk_GeometryRequest(Tk_Window tkwin, int reqWidth, int reqHeight)

int Tk_InternalBorderWidth(Tk_Window tkwin)

void Tk_ManageGeometry(Tk_Window tkwin, Tk_GeomMgr *mgrPtr,
ClientData clientData)

void Tk_MapWindow(Tk_Window tkwin)

void Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y, int width, int height)

void Tk_MoveWindow(Tk_Window tkwin, int x, int y)

int Tk_ReqHeight(Tk_Window tkwin)

int Tk_ReqWidth(Tk_Window tkwin)

void Tk_ResizeWindow(Tk_Window tkwin, int width, int height)

void Tk_SetGrid(Tk_Window tkwin, int reqWidth, int reqHeight,
int gridWidth, int gridHeight)

void Tk_SetInternalBorder(Tk_Window tkwin, int width)

void Tk_UnmapWindow(Tk_Window tkwin)

164 Chapter 5 – The Tk C Interface

11 May 2006 10:47

Application Startup and Initialization

int Tk_Init(Tcl_Interp *interp)

void Tk_Main(int argc, char **argv, Tcl_AppInitPr oc *appInitPr oc)

int Tk_ParseArgv(Tcl_Interp *interp, Tk_Window tkwin, int *argcPtr, char **argv,
Tk_ArgvInfo *argTable, int flags)

int Tk_SafeInit(Tcl_Interp *interp)

char *Tk_SetAppName(Tk_Window tkwin, char *name)

Er ror Handling

void Tk_DeleteErrorHandler(Tk_Err orHandler handler)

Tk_Err orHandler Tk_Cr eateErrorHandler(Display *display, int errNum, int request,
int minorCode, Tk_ErrorPr oc *err orPr oc, ClientData clientData)

Color

XColor *Tk_3DBorderColor(Tk_3DBorder border)

Color map Tk_Color map(Tk_Window tkwin)

void Tk_FreeColor(XColor *colorPtr)

void Tk_FreeColor map(Display *display, Colormap colormap)

GC Tk_GCForColor(XColor *colorPtr, Drawable drawable)

XColor *Tk_GetColorByValue(Tk_Window tkwin, XColor *colorPtr)

XColor *Tk_GetColor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid name)

Color map Tk_GetColor map(Tcl_Interp *interp, Tk_Window tkwin, char *string)

char *Tk_NameOfColor(XColor *colorPtr)

void Tk_PreserveColor map(Display *display, Colormap colormap)

void Tk_SetWindowColor map(Tk_Window tkwin, Colormap colormap)

int Tk_SetWindowVisual(Tk_Window tkwin, Visual *visual, int depth,
Color map color map)

Cur sor s

void Tk_DefineCursor(Tk_Window window, Tk_Cursor cursor)

void Tk_FreeCursor(Display *display, Tk_Cursor cursor)

Tk_Cursor Tk_GetCursor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)

Tk_Cursor Tk_GetCursorFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, char *mask, int width, int height, int xHot, int yHot, Tk_Uid fg,
Tk_Uid bg)

char *Tk_NameOfCursor(Display *display, Tk_Cursor cursor)

void Tk_UndefineCursor(Tk_Window window)

Tk C
Interface

Gr oup Listing of Functions 165

11 May 2006 10:47

Miscellaneous

void Tk_FreeGC(Display *display, GC gc)

void Tk_FreeXId(Display *display, XID xid)

int Tk_GetAnchor(Tcl_Interp *interp, char *string, Tk_Anchor *anchorPtr)

int Tk_GetCapStyle(Tcl_Interp *interp, char *string, int *capPtr)

Tk_ItemT ype *Tk_GetItemT ypes(void)

int Tk_GetJoinStyle(Tcl_Interp *interp, char *string, int *joinPtr)

int Tk_GetPixels(Tcl_Interp *interp, Tk_Window tkwin, char *string, int *intPtr)

int Tk_GetRelief(Tcl_Interp *interp, char *name, int *reliefPtr)

int Tk_GetScreenMM(Tcl_Interp *interp, Tk_Window tkwin, char *string,
double *doublePtr)

int Tk_GetScrollInfo(Tcl_Interp *interp, int argc, char **argv, double *dblPtr,
int *intPtr)

Tk_Uid Tk_GetUid(const char *string)

Visual *Tk_GetVisual(Tcl_Interp *interp, Tk_Window tkwin, char *string,
int *depthPtr, Color map *color mapPtr)

int Tk_Grab(Tcl_Interp *interp, Tk_Window tkwin, int grabGlobal)

char *Tk_NameOfAnchor(Tk_Anchor anchor)

char *Tk_NameOfCapStyle(int cap)

char *Tk_NameOfJoinStyle(int join)

char *Tk_NameOfRelief(int relief)

Alphabetical Summary of Functions
XColor *Tk_3DBorderColor(Tk_3DBorder border)

GC Tk_3DBorderGC(Tk_Window tkwin, Tk_3DBorder border, int which)

void Tk_3DHorizontalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int leftIn, int rightIn,
int topBevel, int relief)

void Tk_3DVerticalBevel(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int leftBevel, int relief)

XSetWindowAttributes *Tk_Attributes(Tk_Window tkwin)

void Tk_BindEvent(Tk_BindingTable bindingTable, XEvent *eventPtr,
Tk_Window tkwin, int numObjects, ClientData *objectPtr)

void Tk_CanvasDrawableCoords(Tk_Canvas canvas, double x, double y,
short *drawableXPtr, short *drawableYPtr)

void Tk_CanvasEventuallyRedraw(Tk_Canvas canvas, int x1, int y1, int x2, int y2)

int Tk_CanvasGetCoord(Tcl_Interp *interp, Tk_Canvas canvas, char *string,
double *doublePtr)

Tk_CanvasTextInfo *Tk_CanvasGetTextInfo(Tk_Canvas canvas)

int Tk_CanvasPsBitmap(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap,
int x, int y, int width, int height)

166 Chapter 5 – The Tk C Interface

11 May 2006 10:47

int Tk_CanvasPsColor(Tcl_Interp *interp, Tk_Canvas canvas, XColor *colorPtr)

int Tk_CanvasPsFont(Tcl_Interp *interp, Tk_Canvas canvas, Tk_Font font)

void Tk_CanvasPsPath(Tcl_Interp *interp, Tk_Canvas canvas, double *coordPtr,
int numPoints)

int Tk_CanvasPsStipple(Tcl_Interp *interp, Tk_Canvas canvas, Pixmap bitmap)

double Tk_CanvasPsY(Tk_Canvas canvas, double y)

void Tk_CanvasSetStippleOrigin(Tk_Canvas canvas, GC gc)

int Tk_CanvasTagsParsePr oc(ClientData clientData, Tcl_Interp *interp,
Tk_Window tkwin, char *value, char *widgRec, int offset)

char *Tk_CanvasTagsPrintPr oc(ClientData clientData, Tk_Window tkwin,
char *widgRec, int offset, Tcl_Fr eeProc **freePr ocPtr)

Tk_Window Tk_CanvasTkwin(Tk_Canvas canvas)

void Tk_CanvasWindowCoords(Tk_Canvas canvas, double x, double y,
short *screenXPtr, short *screenYPtr)

void Tk_ChangeWindowAttributes(Tk_Window tkwin, unsigned long valueMask,
XSetWindowAttributes *attsPtr)

XWindowChanges *Tk_Changes(Tk_Window tkwin)

int Tk_CharBbox(Tk_TextLayout layout, int index, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)

Tk_Uid Tk_Class(Tk_Window tkwin)

void Tk_ClearSelection(Tk_Window tkwin, Atom selection)

int Tk_ClipboardAppend(Tcl_Interp *interp, Tk_Window tkwin, Atom target,
Atom format, char *buffer)

int Tk_ClipboardClear(Tcl_Interp *interp, Tk_Window tkwin)

Color map Tk_Color map(Tk_Window tkwin)

Tk_TextLayout Tk_ComputeTextLayout(Tk_Font font, const char *string,
int numChars, int wrapLength, Tk_Justify justify, int flags, int *widthPtr,
int *heightPtr)

int Tk_ConfigureInfo(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char *argvName, int flags)

int Tk_ConfigureValue(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, char *widgRec, char *argvName, int flags)

int Tk_ConfigureWidget(Tcl_Interp *interp, Tk_Window tkwin,
Tk_ConfigSpec *specs, int argc, char **argv, char *widgRec, int flags)

void Tk_ConfigureWindow(Tk_Window tkwin, unsigned int valueMask,
XWindowChanges *valuePtr)

Tk_Window Tk_CoordsToWindow(int rootX, int rootY, Tk_Window tkwin)

unsigned long Tk_CreateBinding(Tcl_Interp *interp,
Tk_BindingTable bindingTable, ClientData object, *eventString,
char *command, int append)

Tk_BindingTable Tk_CreateBindingTable(Tcl_Interp *interp)

Tk_Err orHandler Tk_Cr eateErrorHandler(Display *display, int errNum, int request,
int minorCode, Tk_ErrorPr oc *err orPr oc, ClientData clientData)

Tk C
Interface

Alphabetical Summary of Functions 167

11 May 2006 10:47

void Tk_CreateEventHandler(Tk_Window token, unsigned long mask,
Tk_EventPr oc *pr oc, ClientData clientData)

void Tk_CreateGenericHandler(Tk_GenericPr oc *pr oc, ClientData clientData)

void Tk_CreateImageT ype(Tk_ImageT ype *typePtr)

void Tk_CreateItemT ype(Tk_ItemT ype *typePtr)

void Tk_CreatePhotoImageFor mat(Tk_PhotoImageFor mat *for matPtr)

void Tk_CreateSelHandler(Tk_Window tkwin, Atom selection, Atom target,
Tk_SelectionPr oc *pr oc, ClientData clientData, Atom format)

Tk_Window Tk_CreateWindowFr omPath(Tcl_Interp *interp, Tk_Window tkwin,
char *pathName, char *screenName)

Tk_Window Tk_CreateWindow(Tcl_Interp *interp, Tk_Window parent,
char *name, char *screenName)

int Tk_DefineBitmap(Tcl_Interp *interp, Tk_Uid name, char *source, int width,
int height)

void Tk_DefineCursor(Tk_Window window, Tk_Cursor cursor)

void Tk_DeleteAllBindings(Tk_BindingTable bindingTable, ClientData object)

void Tk_DeleteBindingTable(Tk_BindingTable bindingTable)

int Tk_DeleteBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)

void Tk_DeleteErrorHandler(Tk_Err orHandler handler)

void Tk_DeleteEventHandler(Tk_Window token, unsigned long mask,
Tk_EventPr oc *pr oc, ClientData clientData)

void Tk_DeleteGenericHandler(Tk_GenericProc *proc, ClientData clientData)

void Tk_DeleteImage(Tcl_Interp *interp, char *name)

void Tk_DeleteSelHandler(Tk_Window tkwin, Atom selection, Atom target)

int Tk_Depth(Tk_Window tkwin)

void Tk_DestroyWindow(Tk_Window tkwin)

char *Tk_DisplayName(Tk_Window tkwin)

Display Tk_Display(Tk_Window tkwin)

int Tk_DistanceToTextLayout(Tk_TextLayout layout, int x, int y)

void Tk_Draw3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)

void Tk_Draw3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)

void Tk_DrawChars(Display *display, Drawable drawable, GC gc, Tk_Font tkfont,
const char *source, int numChars, int x, int y)

void Tk_DrawFocusHighlight(Tk_Window tkwin, GC gc, int width,
Drawable drawable)

void Tk_DrawTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int firstChar, int lastChar)

168 Chapter 5 – The Tk C Interface

11 May 2006 10:47

void Tk_Fill3DPolygon(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, XPoint *pointPtr, int numPoints, int borderWidth,
int leftRelief)

void Tk_Fill3DRectangle(Tk_Window tkwin, Drawable drawable,
Tk_3DBorder border, int x, int y, int width, int height, int borderWidth,
int relief)

Tk_PhotoHandle Tk_FindPhoto(Tcl_Interp *interp, char *imageName)

Font Tk_FontId(Tk_Font font)

void Tk_Free3DBorder(Tk_3DBorder border)

void Tk_FreeBitmap(Display *display, Pixmap bitmap)

void Tk_FreeColor(XColor *colorPtr)

void Tk_FreeColor map(Display *display, Colormap colormap)

void Tk_FreeCursor(Display *display, Tk_Cursor cursor)

void Tk_FreeFont(Tk_Font)

void Tk_FreeGC(Display *display, GC gc)

void Tk_FreeImage(Tk_Image image)

void Tk_FreeOptions(Tk_ConfigSpec *specs, char *widgRec, Display *display,
int needFlags)

void Tk_FreePixmap(Display *display, Pixmap pixmap)

void Tk_FreeTextLayout(Tk_TextLayout textLayout)

void Tk_FreeXId(Display *display, XID xid)

GC Tk_GCForColor(XColor *colorPtr, Drawable drawable)

void Tk_GeometryRequest(Tk_Window tkwin, int reqWidth, int reqHeight)

Tk_3DBorder Tk_Get3DBorder(Tcl_Interp *interp, Tk_Window tkwin,
Tk_Uid colorName)

void Tk_GetAllBindings(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object)

int Tk_GetAnchor(Tcl_Interp *interp, char *string, Tk_Anchor *anchorPtr)

char *Tk_GetAtomName(Tk_Window tkwin, Atom atom)

char *Tk_GetBinding(Tcl_Interp *interp, Tk_BindingTable bindingTable,
ClientData object, char *eventString)

Pixmap Tk_GetBitmapFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, int width, int height)

Pixmap Tk_GetBitmap(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)

int Tk_GetCapStyle(Tcl_Interp *interp, char *string, int *capPtr)

XColor *Tk_GetColorByValue(Tk_Window tkwin, XColor *colorPtr)

XColor *Tk_GetColor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid name)

Color map Tk_GetColor map(Tcl_Interp *interp, Tk_Window tkwin, char *string)

Tk_Cursor Tk_GetCursorFromData(Tcl_Interp *interp, Tk_Window tkwin,
char *source, char *mask, int width, int height, int xHot, int yHot, Tk_Uid fg,
Tk_Uid bg)

Tk_Cursor Tk_GetCursor(Tcl_Interp *interp, Tk_Window tkwin, Tk_Uid string)

Tk C
Interface

Alphabetical Summary of Functions 169

11 May 2006 10:47

Tk_Font Tk_GetFontFromObj(Tcl_Interp *interp, Tk_Window tkwin,
Tcl_Obj *objPtr)

void Tk_GetFontMetrics(Tk_Font font, Tk_FontMetrics *fmPtr)

Tk_Font Tk_GetFont(Tcl_Interp *interp, Tk_Window tkwin, const char *string)

GC Tk_GetGC(Tk_Window tkwin, unsigned long valueMask, XGCValues *valuePtr)

ClientData Tk_GetImageMasterData(Tcl_Interp *interp, char *name,
Tk_ImageT ype **typePtrPtr)

Tk_Image Tk_GetImage(Tcl_Interp *interp, Tk_Window tkwin, char *name,
Tk_ImageChangedPr oc *changePr oc, ClientData clientData)

Tk_ItemT ype *Tk_GetItemT ypes(void)

int Tk_GetJoinStyle(Tcl_Interp *interp, char *string, int *joinPtr)

int Tk_GetJustify(Tcl_Interp *interp, char *string, Tk_Justify *justifyPtr)

int Tk_GetNumMainWindows(void)

Tk_Uid Tk_GetOption(Tk_Window tkwin, char *name, char *className)

int Tk_GetPixels(Tcl_Interp *interp, Tk_Window tkwin, char *string, int *intPtr)

Pixmap Tk_GetPixmap(Display *display, Drawable d, int width, int height,
int depth)

int Tk_GetRelief(Tcl_Interp *interp, char *name, int *reliefPtr)

void Tk_GetRootCoords(Tk_Window tkwin, int *xPtr, int *yPtr)

int Tk_GetScreenMM(Tcl_Interp *interp, Tk_Window tkwin, char *string,
double *doublePtr)

int Tk_GetScrollInfo(Tcl_Interp *interp, int argc, char **argv, double *dblPtr,
int *intPtr)

int Tk_GetSelection(Tcl_Interp *interp, Tk_Window tkwin, Atom selection,
Atom target, Tk_GetSelProc *proc, ClientData clientData)

Tk_Uid Tk_GetUid(const char *string)

void Tk_GetVRootGeometry(Tk_Window tkwin, int *xPtr, int *yPtr, int *widthPtr,
int *heightPtr)

Visual *Tk_GetVisual(Tcl_Interp *interp, Tk_Window tkwin, char *string,
int *depthPtr, Color map *color mapPtr)

int Tk_Grab(Tcl_Interp *interp, Tk_Window tkwin, int grabGlobal)

void Tk_HandleEvent(XEvent *eventPtr)

int Tk_Height(Tk_Window tkwin)

Tk_Window Tk_IdToWindow(Display *display, Window window)

void Tk_ImageChanged(Tk_ImageMaster master, int x, int y, int width, int height,
int imageWidth, int imageHeight)

int Tk_Init(Tcl_Interp *interp)

Atom Tk_InternAtom(Tk_Window tkwin, char *name)

int Tk_InternalBorderWidth(Tk_Window tkwin)

int Tk_IntersectTextLayout(Tk_TextLayout layout, int x, int y, int width, int height)

int Tk_IsContainer(Tk_Window tkwin)

int Tk_IsEmbedded(Tk_Window tkwin)

int Tk_IsMapped(Tk_Window tkwin)

170 Chapter 5 – The Tk C Interface

11 May 2006 10:47

int Tk_IsTopLevel(Tk_Window tkwin)

void Tk_MainLoop(void)

Tk_Window Tk_MainWindow(Tcl_Interp *interp)

void Tk_Main(int argc, char **argv, Tcl_AppInitPr oc *appInitPr oc)

void Tk_MaintainGeometry(Tk_Window slave, Tk_Window master, int x, int y,
int width, int height)

void Tk_MakeWindowExist(Tk_Window tkwin)

void Tk_ManageGeometry(Tk_Window tkwin, Tk_GeomMgr *mgrPtr,
ClientData clientData)

void Tk_MapWindow(Tk_Window tkwin)

int Tk_MeasureChars(Tk_Font tkfont, const char *source, int maxChars,
int maxPixels, int flags, int *lengthPtr)

void Tk_MoveResizeWindow(Tk_Window tkwin, int x, int y, int width, int height)

void Tk_MoveToplevelWindow(Tk_Window tkwin, int x, int y)

void Tk_MoveWindow(Tk_Window tkwin, int x, int y)

char *Tk_NameOf3DBorder(Tk_3DBorder border)

char *Tk_NameOfAnchor(Tk_Anchor anchor)

char *Tk_NameOfBitmap(Display *display, Pixmap bitmap)

char *Tk_NameOfCapStyle(int cap)

char *Tk_NameOfColor(XColor *colorPtr)

char *Tk_NameOfCursor(Display *display, Tk_Cursor cursor)

char *Tk_NameOfFont(Tk_Font font)

char *Tk_NameOfImage(Tk_ImageMaster imageMaster)

char *Tk_NameOfJoinStyle(int join)

char *Tk_NameOfJustify(Tk_Justify justify)

char *Tk_NameOfRelief(int relief)

Tk_Uid Tk_Name(Tk_Window tkwin)

Tk_Window Tk_NameToWindow(Tcl_Interp *interp, char *pathName,
Tk_Window tkwin)

int Tk_Offset(type, field)

void Tk_OwnSelection(Tk_Window tkwin, Atom selection, Tk_LostSelProc *proc,
ClientData clientData)

Tk_Window Tk_Parent(Tk_Window tkwin)

int Tk_ParseArgv(Tcl_Interp *interp, Tk_Window tkwin, int *argcPtr, char **argv,
Tk_ArgvInfo *argTable, int flags)

char *Tk_PathName(Tk_Window tkwin)

void Tk_PhotoBlank(Tk_PhotoHandle handle)

void Tk_PhotoExpand(Tk_PhotoHandle handle, int width, int height)

int Tk_PhotoGetImage(Tk_PhotoHandle handle, Tk_PhotoImageBlock *blockPtr)

void Tk_PhotoGetSize(Tk_PhotoHandle handle, int *widthPtr, int *heightPtr)

void Tk_PhotoPutBlock(Tk_PhotoHandle handle, Tk_PhotoImageBlock *blockPtr,
int x, int y, int width, int height)

Tk C
Interface

Alphabetical Summary of Functions 171

11 May 2006 10:47

void Tk_PhotoPutZoomedBlock(Tk_PhotoHandle handle,
Tk_PhotoImageBlock *blockPtr, int x, int y, int width, int height, int zoomX,
int zoomY, int subsampleX, int subsampleY)

void Tk_PhotoSetSize(Tk_PhotoHandle handle, int width, int height)

int Tk_PointToChar(Tk_TextLayout layout, int x, int y)

int Tk_PostscriptFontName(Tk_Font tkfont, Tcl_DString *dsPtr)

void Tk_PreserveColor map(Display *display, Colormap colormap)

void Tk_QueueWindowEvent(XEvent *eventPtr, Tcl_QueuePosition position)

void Tk_RedrawImage(Tk_Image image, int imageX, int imageY, int width,
int height, Drawable drawable, int drawableX, int drawableY)

int Tk_ReqHeight(Tk_Window tkwin)

int Tk_ReqWidth(Tk_Window tkwin)

void Tk_ResizeWindow(Tk_Window tkwin, int width, int height)

int Tk_RestackWindow(Tk_Window tkwin, int aboveBelow, Tk_Window other)

Tk_RestrictPr oc *Tk_RestrictEvents(Tk_RestrictPr oc *pr oc, ClientData arg,
ClientData *prevArgPtr)

int Tk_SafeInit(Tcl_Interp *interp)

int Tk_ScreenNumber(Tk_Window tkwin)

Scr een *Tk_Scr een(Tk_Window tkwin)

char *Tk_SetAppName(Tk_Window tkwin, char *name)

void Tk_SetBackgroundFr omBorder(Tk_Window tkwin, Tk_3DBorder border)

void Tk_SetClass(Tk_Window tkwin, char *className)

void Tk_SetGrid(Tk_Window tkwin, int reqWidth, int reqHeight, int gridWidth,
int gridHeight)

void Tk_SetInternalBorder(Tk_Window tkwin, int width)

void Tk_SetWindowBackgr oundPixmap(Tk_Window tkwin, Pixmap pixmap)

void Tk_SetWindowBackgr ound(Tk_Window tkwin, unsigned long pixel)

void Tk_SetWindowBorderPixmap(Tk_Window tkwin, Pixmap pixmap)

void Tk_SetWindowBorder(Tk_Window tkwin, unsigned long pixel)

void Tk_SetWindowBorderWidth(Tk_Window tkwin, int width)

void Tk_SetWindowColor map(Tk_Window tkwin, Colormap colormap)

int Tk_SetWindowVisual(Tk_Window tkwin, Visual *visual, int depth,
Color map color map)

void Tk_SizeOfBitmap(Display *display, Pixmap bitmap, int *widthPtr,
int *heightPtr)

void Tk_SizeOfImage(Tk_Image image, int *widthPtr, int *heightPtr)

int Tk_StrictMotif(Tk_Window tkwin)

void Tk_TextLayoutToPostscript(Tcl_Interp *interp, Tk_TextLayout layout)

int Tk_TextWidth(Tk_Font font, const char *string, int numChars)

void Tk_UndefineCursor(Tk_Window window)

void Tk_UnderlineChars(Display *display, Drawable drawable, GC gc,
Tk_Font tkfont, const char *source, int x, int y, int firstChar, int lastChar)

172 Chapter 5 – The Tk C Interface

11 May 2006 10:47

void Tk_UnderlineTextLayout(Display *display, Drawable drawable, GC gc,
Tk_TextLayout layout, int x, int y, int underline)

void Tk_Ungrab(Tk_Window tkwin)

void Tk_UnmaintainGeometry(Tk_Window slave, Tk_Window master)

void Tk_UnmapWindow(Tk_Window tkwin)

void Tk_UnsetGrid(Tk_Window tkwin)

void Tk_UpdatePointer(Tk_Window tkwin, int x, int y, int state)

Visual *Tk_Visual(Tk_Window tkwin)

int Tk_Width(Tk_Window tkwin)

Window Tk_WindowId(Tk_Window tkwin)

int Tk_X(Tk_Window tkwin)

int Tk_Y(Tk_Window tkwin)

Tk C
Interface

Alphabetical Summary of Functions 173

11 May 2006 10:47

CHAPTER 6

Expect

Expect, written by Don Libes, is a tool for communicating with interactive pro-
grams. Expect is not part of the core Tcl/Tk package, but can be obtained for free
at http://expect.nist.gov. This chapter covers Version 5.25.0.

Expect can automate tasks that would normally requir e a user to interactively com-
municate with a program. Expect is a Tcl interpreter extended with additional
commands. It can be run as the standalone programs expect and expectk or used
with other Tcl language extensions.

Expect was the first major Tcl-based application. This chapter describes the fea-
tur es that Expect adds to the Tcl language.

Over view
You nor mally run Expect by invoking the program expect (or expectk if you also
want Tk). Expect is a Tcl interpreter with about 40 additional commands. This sec-
tion briefly describes the most common commands.

The spawn command creates a new process that executes a specified program. It
cr eates a connection to that process so that it is accessible by using other Expect
commands.

The send command passes commands to a process started by spawn. It sends
strings, just as a user would type if interactively running the spawned program.

The expect command is the heart of the Expect program. It compares the output
fr om one or more spawned processes, looking for a match against a string or pat-
ter n. If a match is found, it executes Tcl code associated with the pattern. The pat-
ter ns can be simple strings, glob-style patterns, or regular expressions. Multiple
patter ns and actions can be specified.

174

11 May 2006 10:48

http://expect.nist.gov

The interact command passes control of a spawned process back to the user. This
allows the user to connect to the process interactively. For example, an Expect
script could log a user on to a remote system, start a text editor, then pass control
back to the user. Like expect, it per forms pattern matching that allows actions to
be perfor med. In our editor example, the script could watch for a pattern that indi-
cated that the text editor program had exited, then pass control back to the Expect
script to automatically perfor m cleanup and log out the user.

The close command closes the connection to a spawned process. This is not
always needed, as Expect closes all open connections when it exits.

Example
This simple example illustrates logging in to a host using anonymous FTP and
then passing control back to the user:

set host localhost
set name myname@myhost
spawn ftp $host
expect "Name (*):"
send "anonymous\r"
expect "Password:"
send "$name\r"
expect {

"ftp>" {
interact

}
"Login failed." {

exit 1
}
timeout {

exit 1
}

}

Command-Line Options
The expect pr ogram accepts the following command-line options:

expect [-v] [-d] [-D n] [-i] [-n] [-N] [-c cmds] [[-f | -b] cmdfile] [– –] [args]

-v
Display version number and exit.

-d
Enable diagnostic output.

-D n
Enable interactive debugger if numeric argument n is non-zero.

-i
Run in interactive mode.

Expect

Command-Line Options 175

11 May 2006 10:48

-n
Do not read the user’s startup file (˜/.expect.r c).

-N
Do not read the global startup file ($exp_library/expect.r c).

-c cmds
Specify commands to be executed before starting script. The commands
can be separated by semicolons. Multiple -c options can be specified.

-f
Specify the file from which to read commands.

-b
Same as -f, but read the input file one line at a time rather than in its
entir ety.

cmdfile
The file containing Tcl commands to execute. For standard input use “-”.

– –
Denote the end of Expect options.

args
Additional arguments to pass to the Tcl program.

The expectk pr ogram accepts the following command-line options:

expectk [options] [cmdfile] [args]

-version
Display version number and exit.

-Debug n
Enable interactive debugger if numeric argument n is non-zero.

-interactive
Run in interactive mode.

-command cmds
Specify commands to be executed before starting script. The commands
can be separated by semicolons. Multiple -command options can be
specified.

-diag
Enable diagnostic output.

-nor c
Do not read the user’s startup file (˜/.expect.r c).

-NORC
Do not read the global startup file ($exp_library/expect.r c).

-file
Specify the file from which to read commands.

176 Chapter 6 – Expect

11 May 2006 10:48

-buf fer
Same as -file, but read the input file one line at a time rather than in its
entir ety.

cmdfile
The file containing Tcl commands to execute. For standard input use “-”.

– –
Denote the end of Expect options.

args
Additional arguments to pass to the Tcl program.

Expectk also accepts any of the options supported by the wish pr ogram.

Environment Var iables
The following environment variables are used by the Expect program:

DOTDIR
Dir ectory in which to look for the user-specific startup file .expect.r c. The
default is the user’s home directory.

EXPECT_DEBUG_INIT
Initialization command to be executed by the debugger on startup.

EXPECT_PROMPT
By convention, used by some applications to specify a regular expression
that matches the end of the user’s login prompt.

Special Var iables
The following variables have special meaning to the Expect program.

spawn_id
Spawn descriptor for the current spawned process (can be set).

user_spawn_id
Spawn descriptor for user input.

tty_spawn_id
Spawn descriptor for /dev/tty.

any_spawn_id
Used in expect command to match input on any active spawn descriptor.

error_spawn_id
Spawn descriptor for standard error output.

argv
List containing the command-line arguments.

Expect

Special Variables 177

11 May 2006 10:48

argc
The number of elements in argv.

argv0
The name of the script or program being run.

exp_exec_library
Dir ectory containing architectur e-dependent library files.

exp_library
Dir ectory containing architectur e-independent library files.

expect_out
Array containing output strings collected by the expect command (see the
description of expect, later in this chapter).

expect_out(buffer)
Matching any previously unmatched output.

expect_out(n, string)
Substring that matched regular expression n, wher e n is 1 through 9.

expect_out(0,string)
String that matched entire patter n.

expect_out(n ,start)
Starting index in buffer of regular expression n.

expect_out(n ,end)
Ending index in buffer of regular expression n.

expect_out(spawn_id)
Spawn ID associated with matching output.

spawn_out(slave,name)
Name of the pty slave device.

interact_out
Array containing output strings collected by interact command, in the
same format as expect_out.

send_human
Contr ols behavior of send with the -h option. A list of five numeric ele-
ments: (1) interarrival time of characters, (2) interarrival time of word
endings, (3) variability parameter, (4) minimum interarrival time, and (5)
maximum interarrival time. All times are in decimal seconds.

send_slow
Contr ols behavior of send with the -s option. A list of two numeric ele-
ments: (1) number of bytes to send atomically, and (2) number of sec-
onds between sending.

178 Chapter 6 – Expect

11 May 2006 10:48

stty_init
Holds stty command settings to be used when initializing a pty for a
spawned process.

timeout
Time, in seconds, before expect command will time out. A value of -1
specifies no timeout.

Grouped Summary of Commands

Process Interaction

close Close connection to a spawned process.
disconnect Disconnect forked process from terminal.
exp_continue Continue execution during expect command.
expect Match patterns and perfor m actions based on

pr ocess output.
expect_after Match patterns and specify actions to perfor m

after expect command pattern matching.
expect_backgr ound Match patterns and specify actions to perfor m

outside of expect command.
expect_befor e Match patterns and specify actions to perfor m

befor e expect command pattern matching.
expect_tty Similar to expect, but reads from

/dev/tty.
expect_user Similar to expect, but reads from standard input.
inter_r eturn Causes an interact or interpr eter

command to perfor m a retur n in its caller.
interact Transfer control of a process to the user.
interpr eter Connect user to the Tcl interpreter.
overlay Execute a new program in place of Expect.
send Send a string to a spawned process.
send_err or Send a string to standard error output.
send_log Send a string to the log file.
send_tty Send a string to /dev/tty.
send_user Send a string to standard output.
spawn Cr eate a new spawned process.
wait Wait for a spawned process to terminate.

Utility Commands

debug Start, stop, or retur n status of the debugger.
exit Cause Expect to exit.
exp_getpid Retur n curr ent pr ocess ID.
exp_inter nal Enable, disable, or log diagnostic output.
exp_open Convert spawn ID to Tcl file descriptor.
exp_ pid Retur n pr ocess ID for spawned process.
expect_version Retur n, generate an error, or exit based on Expect version.

Expect

Gr ouped Summary of Commands 179

11 May 2006 10:48

fork Cr eate a new process.
log_file Start or stop logging of session to a file.
log_user Start or stop logging of spawned process to standard output.
match_max Set or retur n size of expect buffer.
parity Set or retur n parity generation setting.
remove_nulls Set or retur n null character setting.
sleep Delay execution.
strace Trace statement execution.
stty Change terminal mode.
system Execute shell command.
timestamp Retur n a timestamp.
trap Set or retur n commands to be executed on receipt of a signal.

Synonyms

To reduce the likelihood of name conflicts with other Tcl extensions, most Expect
commands have synonyms that are prefixed with exp_.

exp_close Synonym for close
exp_debug Synonym for debug
exp_disconnect Synonym for disconnect
exp_exit Synonym for exit
exp_fork Synonym for fork
exp_inter_r eturn Synonym for inter_r eturn
exp_interact Synonym for interact
exp_interpr eter Synonym for interpr eter
exp_log_file Synonym for log_file
exp_log_user Synonym for log_user
exp_match_max Synonym for match_max
exp_overlay Synonym for overlay
exp_ parity Synonym for parity
exp_r emove_nulls Synonym for remove_nulls
exp_send Synonym for send
exp_send_err or Synonym for send_err or
exp_send_log Synonym for send_log
exp_send_tty Synonym for send_tty
exp_send_user Synonym for send_user
exp_sleep Synonym for sleep
exp_spawn Synonym for spawn
exp_strace Synonym for strace
exp_stty Synonym for stty
exp_system Synonym for system
exp_timestamp Synonym for timestamp
exp_trap Synonym for trap
exp_version Synonym for expect_version
exp_wait Synonym for wait

180 Chapter 6 – Expect

11 May 2006 10:48

Alphabetical Summary of Commands
In addition to the following commands, a number of synonyms are provided to
pr event name conflicts with other libraries. See the preceding “Synonyms” section.

close

close [-slave] [-onexec 0|1] [-i spawn_id]

Close the connection to a spawned process, by default the current process.

Options

-slave
Close the slave pty associated with the spawn ID.

-onexec 0|1
With a 0 argument, the spawn ID will be left open in any new processes.
If 1, the ID will be closed (the default).

-i spawn_id
Specify the spawn ID of the process to close.

debug

debug [[-now] 0|1]

Contr ol the Tcl debugger. With no arguments, retur n 1 if the debugger is run-
ning; otherwise, retur n 0.

An argument of 1 starts the debugger at execution of the next statement. An
argument of 0 stops the debugger.

The -now option starts the debugger immediately, rather than at the next
statement.

disconnect

disconnect

Disconnect a forked process from the terminal. The process continues run-
ning in the background with its standard input and output redir ected to
/dev/null.

exit

exit [-onexit [handler]] [-noexit] [status]

Cause the Expect program to exit. Return the numeric exit status status
(default is 0).

The -onexit option specifies a command to use as the exit handler. By default
the current exit handler is used.

Expect

Alphabetical Summary of Commands — exit 181

11 May 2006 10:48

The -noexit option causes Expect to prepar e to exit, calling user-defined and
inter nal exit handlers, but not actually retur ning contr ol to the operating sys-
tem.

When the end of a script is reached, an exit command is automatically exe-
cuted.

exp_continue

exp_continue

Within an expect command, continues execution rather than retur ning.

exp_getpid

exp_getpid

Retur n the process ID of the current process.

exp_inter nal

exp_inter nal [-info] [-f file] value

Contr ol output of diagnostic information about data received and pattern
matching. Display to standard output is enabled if the numeric value param-
eter is non-zero, and disabled if it is zero.

Output can be sent to a file using the -f option and a filename argument.

The -info option causes the current status of diagnostic output to be dis-
played.

exp_open

exp_open [-leaveopen] [-i spawn_id]

Retur n a Tcl file identifier corresponding to the process opened with spawn
ID spawn_id (or the current spawn ID, if the -i option is not used).

Nor mally the spawn ID should no longer be used. With the -leaveopen
option, it is left open for access using Expect commands.

exp_pid

exp_ pid [-i spawn_id]

Retur n the process ID corresponding to the given spawn ID (by default the
curr ent spawn ID).

182 Chapter 6 – Expect

11 May 2006 10:48

expect

expect [[options] pat1 body1] ... [options] patn [bodyn]

Compar e output from one or more spawned processes against patterns. If a
match is found, execute the associated code body and retur n.

The exp_continue command inside a body causes the expect statement to
continue execution rather than retur ning.

Patter ns

The pattern can be a string. By default, shell globbing is used, but this can be
changed using options listed in the next section. A pattern can also be one of
the following special names:

eof
Matches end of file.

full_buffer
Matches when maximum number of bytes has been received with no pat-
ter n match.

null
Matches a single ASCII NUL (0) character.

timeout
Matches when timeout occurs with no pattern matched.

default
Matches if timeout or eof occur.

Options

-timeout seconds
Specify amount to wait before timing out.

-i spawn_id_list
Match against the listed spawn IDs; either a literal list or a global variable
name containing the list.

-gl
Use glob-style pattern matching (default).

-r e
Use regular expression pattern matching.

-ex
Use exact string pattern matching.

-nocase
Make matching case-insensitive.

Expect

Alphabetical Summary of Commands — expect 183

11 May 2006 10:48

expect_after

expect_after options

Accept the same options as the expect command, but retur n immediately. Pat-
ter ns and actions are implicitly added to the next expect command having the
same spawn ID. Matching patterns are executed after those in the expect com-
mand, in the same context.

Expect tests expect_befor e patter ns first, expect patter ns next, and expect_after
last. The first successful match gets its action executed. Patterns are tested in
the order listed.

expect_background

expect_backgr ound options

Accept the same options as the expect command, but retur n immediately. Pat-
ter ns and actions are tested whenever input arrives. Must be used outside of
an expect command.

expect_before

expect_befor e options

Accept the same options as the expect command, but retur n immediately. Pat-
ter ns and actions are implicitly added to the next expect command having the
same spawn ID. Matching patterns are executed before those in the expect
command, in the same context.

Expect tests expect_befor e patter ns first, expect patter ns next, and expect_after
last. The first successful match gets its action executed. Patterns are tested in
the order listed.

expect_tty

expect_tty options

Accept the same options as the expect command, but read input from the user
using /dev/tty.

expect_user

expect_user options

Accept the same options as the expect command, but read input from the user
using standard input.

184 Chapter 6 – Expect

11 May 2006 10:48

expect_ver sion

expect_version [[-exit] version]

Test version of Expect for compatibility. With no arguments, retur n the ver-
sion of Expect. With an argument, generate an error if the version of Expect is
dif ferent from the one specified.

The version parameter is a string in the form major-number.minor-
number.patch-level (e.g., 5.24.1). With the -exit option, the command
also exits if the version of Expect is not the same as specified.

fork

fork

Cr eate a new process that is an exact copy of the current one. Returns 0 to
the new process and the new process ID to the parent process. Returns –1 if
the new process could not be created.

inter_retur n

inter_r eturn

Cause a currently active interact or interpr eter command to perfor m a retur n
in its caller. This differs from retur n. For example, if a procedur e called inter-
act which then executed the action inter_r eturn, the procedur e would retur n
to its caller.

interact

interact [[options] string1 body1] ... [[options] stringn [bodyn]]

Pass control of a spawned process to the user. Checks user input against zero
or more strings. If a match occurs, the corresponding body is executed.

Patter ns

The pattern can be a string. By default, exact string matching is used but can
be changed using options listed in the next section. A pattern can also be one
of the following special names:

eof
Matches end of file.

null
Matches a single ASCII NUL (0) character.

timeout seconds
Matches when timeout occurs since the last pattern was matched.

Expect

Alphabetical Summary of Commands — interact 185

11 May 2006 10:48

Options

-r e
Use regular expression pattern matching.

-ex
Use exact string pattern matching (default).

-indices
Used in conjunction with -r e to store indices of matching patterns in the
interact_out array.

-output spawn_id_list
Specify a list of spawn IDs to be used for output.

-input spawn_id_list
Specify a list of spawn IDs to be used for input.

-iwrite
Cause all matches to set the variable interact_out(spawn_id)
befor e per forming their associated action.

-r eset
Reset the terminal mode to the settings it had before interact was exe-
cuted.

-echo
Send the characters that match the following pattern back to the process
that generated them.

-nobuf fer
Send characters that match the pattern to the output process immediately
as they are read.

-o
Apply any following pattern body pairs against the output of the current
pr ocess.

-i
Intr oduce a replacement for the current spawn ID when no other -input
or -output flags are used.

-u spawn_id
Cause the currently spawned process to interact with the named process
rather than the user.

interpreter

interpr eter

Cause the user to be interactively prompted for Tcl commands. The retur n
and inter_r eturn commands can be used to retur n to the Expect script.

186 Chapter 6 – Expect

11 May 2006 10:48

log_file

log_file [options] [[-a] file]

Record a transcript of the session to file file. With no file argument, stop
recording.

Options

-open
The file parameter is an open Tcl file identifier. The identifier should no
longer be used.

-leaveopen
The file parameter is an open Tcl file identifier. The identifier can con-
tinue to be used.

-a
Log all output, including that suppressed by the log_user command.

-noappend
Truncate existing output file (default is to append).

-info
Display the current status of transcript recording.

log_user

log_user -info|0|1

Contr ol the logging of send/expect dialog to standard output. An argument of
1 enables logging, and 0 disables it. With no arguments or the -info option,
displays the current setting.

match_max

match_max [-d] [-i spawn_id] [size]

Set the size of the internal expect buf fer to size bytes. With no size param-
eter, retur ns the current size. The -d option makes the specified size become
the default value (the initial default is 2000). The -i option allows setting the
buf fer size for the given spawn ID rather than the current process.

overlay

overlay [-# spawn_id...] program [args]

Execute program program and optional arguments in place of the current
Expect program. Spawn IDs can be mapped to file identifiers for the new pro-
cess by specifying file number and spawn ID pairs.

Expect

Alphabetical Summary of Commands — overlay 187

11 May 2006 10:48

Example

overlay -0 $spawn_id -1 $spawn_id -2 $spawn_id emacs

par ity

parity [-d] [-i spawn_id] [value]

Contr ol handling of parity bits from the output of the current spawned pro-
cess. A value of 0 causes parity to be stripped; non-zero values retain parity.
With the -d option, makes the specified setting the default parity (the initial
default is 1). With no value parameter, retur ns the current setting. The -i
option allows specifying another spawn ID to be used.

remove_nulls

remove_nulls [-d] [-i spawn_id] [value]

Contr ol handling of nulls from the output of the current spawned process. A
value of 1 causes null characters to be removed; non-zero values retain null
characters. With the -d option, makes the specified setting the default value
(the initial default is 1). With no value parameter, retur ns the current setting.
The -i option lets you specify another spawn ID to be used.

send

send [options] string

Send a string to a spawned process.

Options

– –
Indicate the end of options.

-i spawn_id
Send the string to the specified spawn ID.

-raw
Disable the translation of newline to retur n-newline when sending to the
user terminal.

-null num
Send num null characters (one if num is omitted).

-br eak
Send a break character (applicable only for terminal devices).

-s
Send output slowly using the settings of the send_slow variable.

-h
Send output, like a human typing, using the settings of the send_human
variable.

188 Chapter 6 – Expect

11 May 2006 10:48

Note that send conflicts with the Tk command of the same name. Use
exp_send instead.

send_er ror

send_err or [options] string

Like the send command, except output is sent to standard error.

send_log

send_log [– –] string

Like the send command, except output is sent to the log file opened using the
log_file command.

send_tty

send_tty [options] string

Like the send command, except output is sent to /dev/tty.

send_user

send_user [options] string

Like the send command, except output is sent to standard output.

sleep

sleep seconds

Delay execution of the current program for seconds seconds. The parameter
is a floating-point number.

spawn

spawn [args] program [args]

Cr eate a new process executing program and optional arguments args. Sets
the variable spawn_id to the spawn ID for the new process and makes it the
default spawn ID. Returns the Unix process ID of the new process, or 0 if the
pr ocess could not be spawned.

Options

-noecho
Disable echo of command name and arguments.

-console
Redir ect console output to the spawned process.

Expect

Alphabetical Summary of Commands — spawn 189

11 May 2006 10:48

-nottycopy
Skip initialization of spawned process pty to user’s tty settings.

-nottyinit
Skip initialization of spawned process pty to sane values.

-open fileid
Open an existing Tcl file identifier rather than a process. The identifier
should no longer be used.

-leaveopen fileid
Open an existing Tcl file identifier rather than a process. The identifier
can continue to be used.

-pty
Open a pty but do not spawn a process.

-ignor e signal
Ignor e the named signal in the spawned process. More than one -ignor e
option can be specified.

strace

strace [-info] [level]

Display statements before being executed. Statements are traced as deep as
stack level level. The -info option displays the current trace setting.

stty

stty args

Set terminal settings. The arguments take the same form as the stty shell com-
mand.

system

system args

Execute args as a shell command, with no redir ection and waiting until the
command completes.

timestamp

timestamp [options]

Retur n a timestamp. With no arguments, retur ns the number of seconds since
the start of the epoch.

190 Chapter 6 – Expect

11 May 2006 10:48

Options

-for mat format-string
Retur n time formatted using a format string. The string follows the format
of the POSIX str ftime function, as described below. This command is
depr ecated; use the Tcl clock command instead.

-seconds source
Retur n a timestamp based on the time source, expr essed as a number
of seconds since the start of the epoch.

-gmt
Use Greenwitch Mean Time (UTC) rather than the local time zone.

Format Strings

%a Abbr eviated weekday name
%A Full weekday name
%b Abbr eviated month name
%B Full month name
%c Date and time, as in Wed Oct 6 11:45:56 1993
%d Day of the month (01–31)
%H Hour (00–23)
%I Hour (01–12)
%j Day (001–366)
%m Month (01–12)
%M Minute (00–59)
%p A.M. or P.M.
%S Second (00–61)
%u Day (1–7, Monday is first day of week)
%U Week (00–53, first Sunday is first day of week one)
%V Week (01–53, ISO 8601 style)
%w Day (0–6)
%W Week (00–53, first Monday is first day of week one)
%x Date and time, as in Wed Oct 6 1993
%X Time, as in 23:59:59
%y Year (00–99)
%Y Year, as in 1993
%Z Time zone (or nothing if not determinable)
%% A bar e percent sign

trap

trap [options] [[command] signal-list]

Set exception handling behavior. The command command will be executed
when any of the signals in the list signal-list occurs.

The command can be a Tcl command or the special values SIG_IGN (ignor e)
or SIG_DFL (use default action). The signals can be specified by number or
name.

Expect

Alphabetical Summary of Commands — trap 191

11 May 2006 10:48

Options

-code
Use retur n code of the handler command.

-interp
Evaluate command using the context active at the time of exception.

-name
Retur n signal name of the trap command currently being executed.

-max
Retur n highest available signal number.

Example

trap {send_user "Control-C pressed"} SIGINT

wait

wait [-i spawn_id] [-nowait] [args]

Wait until a spawned process terminates. By default the current process is
waited for; the -i option can specify another spawn ID.

The command retur ns a list of four numbers: (1) the process ID for which to
wait, (2) the spawn ID of the process for which to wait, (3) 0 for success or
–1 if error occurred, and (4) the retur n status or error status of the terminating
pr ocess. Additional optional information may be retur ned, indicating the rea-
son for termination.

The -nowait option causes an immediate retur n. The process can then termi-
nate later without an explicit wait command.

192 Chapter 6 – Expect

11 May 2006 10:48

CHAPTER 7

[incr Tcl]

[incr Tcl], written by Michael McLennan, is a Tcl extension that adds support for
object-oriented programming. Loosely based on the syntax of C++, it provides sup-
port for encapsulating Tcl code into classes that can be instantiated as objects.

[incr Tcl] is not part of the core Tcl/Tk package, but can be obtained for free at
http://www.tcltk.com/itcl. This chapter covers Version 3.0. [incr Tcl] provides the
foundation for [incr Tk], which is discussed in Chapter 8, [incr Tk].

In general, [incr Tcl] is intended to make it easier to develop and maintain large
pr ograms written in Tcl and to support Tcl extensions.

Basic Class Definition
An [incr Tcl] class definition takes the form shown here. Each of the commands
within the class definition are optional and can be listed in any order. The parame-
ters args, init, body, and config ar e Tcl lists.

class className {
inherit baseClass....
constructor args [init] body
destructor body
method name [args] [body]
proc name [args] [body]
variable varName [init] [config]
common varName [init]
public command [arg...]
protected command [arg...]
private command [arg...]
set varName [value]
array option [arg...]

}

[incr Tcl]

193

11 May 2006 10:48

http://www.tcltk.com/itcl

Special Var iables
itcl::library

Name of directory containing library of [incr Tcl] scripts; can be set using
ITCL_LIBRARY envir onment variable

itcl::patchLevel
Curr ent patch level of [incr Tcl]

itcl::purist
When 0, enables backward-compatibility mode for Tk widget access

itcl::version
Curr ent revision level of [incr Tcl]

Group Listing of Commands

Classes

body Change the body of a class method or procedur e.
class Cr eate a class of objects.
configbody Change the configuration code for a public variable.
itcl_class Obsolete; see class.

Objects

className Cr eate an object belonging to class className.
objName Invoke a method to manipulate object objName.
delete Delete an object, class, or namespace.

Miscellaneous

code Captur e the namespace context for a code fragment.
ensemble Cr eate or modify a composite command.
find Search for classes and objects.
itcl_info Obsolete; see find.
local Cr eate an object local to a procedur e.
scope Captur e the namespace context for a variable.

Example
The following example illustrates a small class with several methods and some
code to exercise it:

class Toaster {
private variable toastTime 10
constructor {} {

puts "Toaster created"
}
destructor {

puts "Toaster destroyed"

194 Chapter 7 – [incr Tcl]

11 May 2006 10:48

}
method getToastTime {} {

return $toastTime
}
method setToastTime {newToastTime} {

set toastTime $newToastTime
}
method toast {} {

puts "Toaster is toasting..."
after [expr $toastTime*1000]
puts "\aToast is ready!"

}
method clean {} {

puts "Cleaning toaster..."
after 2000
puts "Toaster is clean"

}
}

puts "Starting test program"
Toaster machine
machine clean
machine setToastTime 5
puts "Toast time set to [machine getToastTime]"
machine toast
delete object machine

Alphabetical Summary of Commands

className

className objName [arg...]

Cr eate an object of class className with name objName. Any arguments
ar e passed to the constructor. The string #auto inside an objName is
replaced with a unique automatically generated name.

objName

objName method [arg...]

Invoke method method on object objName. Any arguments are passed as
the argument list of the method. The method can be constructor, destructor, a
method appearing in the class definition, or one of the built-in methods listed
below.

objName cget -varName

Retur n the current value of public variable varName.

objName configur e [-varname] [value]...

Pr ovide access to public variables. With no arguments, retur n a list describing
all public variables. Each element contains a variable name, its initial value,
and its current value. With a single -varname option, retur n the same infor-
mation for one variable. With one or more -varname -value pairs, set public

[incr Tcl]

Alphabetical Summary of Commands — objName 195

11 May 2006 10:48

variable varname to value value. Any configbody code associated with the
variable is also executed.

objName isa className

Retur n true if className can be found in the object’s heritage; otherwise,
retur n false.

objName info option [args...]

Retur n infor mation about objName or its class definition. Accepts any of the
arguments for the Tcl info command, as well as the following:

objName info class

Retur n the name of the most specific class for object objName.

objName info inherit

Retur n the list of base classes as they were defined in the inherit command,
or an empty string if this class has no base classes.

objName info heritage

Retur n the current class name and the entire list of base classes in the order
that they are traversed for member lookup and object destruction.

objName info function [cmdName] [-pr otection] [-type] [-name] [-ar gs]
[-body]

With no arguments, retur n a list of all class methods and procedur es. If cmd-
Name is specified, retur n infor mation for a specific method or procedur e. If
no flags are specified, retur n a list with the following elements: the protection
level, the type (method/proc), the qualified name, the argument list, and
the body. Flags can be used to request specific elements from this list.

objName info variable [varName] [-pr otection] [-type] [-name] [-init] [-value]
[-config]

With no arguments, retur n a list of all object-specific variables and common
data members. If varName is specified, retur n infor mation for a specific data
member. If no flags are specified, retur n a list with the following elements: the
pr otection level, the type (variable/common), the qualified name, the ini-
tial value, and the current value. If varName is a public variable, the config-
body code is included in this list. Flags can be used to request specific
elements from this list.

body

body className::function args body

Define or redefine a class method or procedur e that was declared in a class
command. The name of the method or procedur e is specified by class-
Name::function; the arguments are specified using the list args, followed
by the Tcl command script body.

196 Chapter 7 – [incr Tcl]

11 May 2006 10:48

class

class className definition

Define a new class named className. The properties of the class are
described by definition, a list containing any of the following Tcl state-
ments:

inherit [baseClass...]

Cause class to inherit characteristics from one or more existing base classes.

constructor args [init] body

Define the argument list and body for the constructor method called when an
object is created. Can optionally specify init statement to pass parameters to
base class constructors. Constructor always retur ns the class name.

destructor body

Define the code body for the destructor method called when an object is
deleted.

method name [args] [body]

Declar e a method named name. Can define the argument list args and code
body body. The body command can define or redefine the method body out-
side of the class definition.

pr oc name [args] [body]

Declar e a procedur e named name. Can define the argument list args and
code body body. The body command can define or redefine the body outside
of the class definition.

variable varName [init] [config]

Define an object-specific variable named varName. Optional string init
supplies an initial value for the variable when the object is created. Optional
script config specifies code to be executed whenever a public variable is
modified using the configur e command.

common varName [init]

Declar e a common variable (shared by all class objects) named varName.
Optional string init supplies a value for the variable to be initialized with
whenever a new object is created.

public command [arg...]

Declar es that the element defined by command is to be publicly accessible
(i.e., accessible from any namespace). The parameter command can be any of
the subcommands method, pr oc, variable, common, or a script containing
several member definitions.

[incr Tcl]

Alphabetical Summary of Commands — class 197

11 May 2006 10:48

pr otected command [arg...]

Declar es that the element defined by command is to have protected access
(i.e., accessible from the same class namespace and any namespaces nested
within it).

private command [arg...]

Declar es that the element defined by command is to have private access (i.e.,
accessible only from the same class namespace).

set varName [value]

Set the initial value of a variable or common variable.

array option [arg...]

A standard Tcl array command can be used within a class definition, typically
to initialize variables.

code

code [-namespace name] command [arg...]

Cr eate a scoped value for a command and its associated arguments. The
scoped value is a list with three elements: the @scope keyword, a namespace
context, and a value string.

configbody

configbody className::varName body

Allows you to change the configuration code associated with a public vari-
able. The name className::varName identifies the public variable being
updated. The configuration code is automatically executed when a variable is
modified using an object’s configur e command.

delete

delete option [arg...]

Used to delete various things in the interpreter. Accepts the following options:

delete class name...

Delete one or more classes, as well as objects in the class and derived classes.

delete object name...

Delete one or more objects. Destructors in the class hierarchy are called, and
the object is removed as a command from the interpreter.

delete namespace name...

Delete one or more namespaces, including commands, variables, and child
namespaces.

198 Chapter 7 – [incr Tcl]

11 May 2006 10:48

ensemble

ensemble name command args...

Cr eate or modify an ensemble command (i.e., a command such as info, which
is a composite of many differ ent functions). If an ensemble command name
alr eady exists, then it is updated; otherwise, a new command is created.

The command accepts zero or mor e command arguments that take one of
two forms. The part command defines a new part for the ensemble, adding
it as a new option to the command. The argument list and body are defined
as for the pr oc command. The command parameter can also be ensemble,
allowing another subensemble to be nested.

Example

ensemble wait {
part variable {name} {

uplevel vwait $name
}
part visibility {name} {

tkwait visibility $name
}
part window {name} {

tkwait window $name
}

}

find

find option [arg...]

Retur n infor mation about classes or objects. The command takes one of two
for ms:

find classes [pattern]

Retur n a list of classes available in the current namespace context matching
glob pattern pattern, or all classes if pattern is omitted.

find objects [pattern] [-class className] [-isa className]

Retur n a list of objects available in the current namespace context matching
glob pattern pattern, or all objects if pattern is omitted. Can use the
-class option to restrict list to objects whose most specific class is class-
Name. Can also restrict list to objects having the given class name anywhere
in their heritage, using the -isa option.

itcl_class

Obsolete; see the class command.

[incr Tcl]

Alphabetical Summary of Commands — itcl_class 199

11 May 2006 10:48

itcl_info

Obsolete; see the find command.

local

local className objName [arg...]

Cr eate an object that is local to the current stack frame. Object is automati-
cally deleted when stack frame goes away.

scope

scope string

Cr eate a scoped value for a string. The scoped value is a list with three ele-
ments: the @scope keyword, a namespace context, and a value string.

200 Chapter 7 – [incr Tcl]

11 May 2006 10:48

CHAPTER 8

[incr Tk]

[incr Tk] is not part of the core Tcl/Tk package, but can be obtained for free at
http://www.tcltk.com/itk. This chapter covers Version 3.0. *

[incr Tk] provides an object-oriented framework for creating new graphical wid-
gets, known as mega-widgets. Mega-widgets are made up of standard Tk widgets,
and one mega-widget can contain nested mega-widgets. The widgets and mega-
widgets that go into a mega-widget are called components.

Using the basic widgets provided by the Tk toolkit and the object-oriented pro-
gramming capabilities of [incr Tcl], [incr Tk] allows the user to write new widgets
in Tcl that look and act just like the ordinary Tk widgets.

The [incr Tk] distribution also comes with more than 30 predefined mega-widgets.

Basic Structure of a Mega-widget
The following code fragment shows the general structure of a mega-widget.

class className {
inherit itk::Widget # or itk::Toplevel

constructor {args} {
itk_option define optName {...}
itk_component add compName {...}
pack $itk_component(compName) ...
eval itk_initialize $args

}
public method methodName ...
protected method methodName ...
private variable varName ...

* This chapter is based on the quick refer ence in Michael McLennan’s Chapter 3 of Tcl/Tk Tools (O’Reilly
& Associates).

[incr Tk]

201

11 May 2006 10:48

http://www.tcltk.com/itk

}

usual className {
...

}

Special Var iable
itcl::library

Name of directory containing library of [incr Tk] scripts; can be set using
ITK_LIBRARY envir onment variable.

Methods and Var iables
New mega-widgets built using [incr Tk] should be derived from either
itk::Widget or itk::Toplevel. Both classes are subclasses of
itk::Archetype.

Public Methods

The following methods are built into all mega-widgets. For a mega-widget having
the Tk name pathName, the following methods are supported:

pathname cget -option
Retur n the current value of option option.

pathname component
Retur n a list of the well-known components.

pathname component name command [arg...]
Invoke the given command command as a method on the component
called name, optionally with additional arguments.

pathname configur e
Retur n a list describing all of the available options.

pathname configur e -option
Retur n the current value of option option.

pathname configur e -option value...
Set the value of option option to value. Multiple option-value pairs
can be supplied.

The cget and configur e commands work just like the corresponding Tk widget
commands.

Protected Methods

These methods are used in the implementation of a mega-widget:

itk_component add
[-protected] [-private] [--]

202 Chapter 8 – [incr Tk]

11 May 2006 10:48

symbolicName {
widget pathName [arg...]

} [{
ignore -option...
keep -option...
rename -option -newName resourceClass resourceClass
usual [tag]

}]

Commands in this format create a widget and register it as a mega-widget compo-
nent. The optional block containing ignor e, keep, rename, and usual commands
contr ols how the configuration options for this component are merged into the
master option list for the mega-widget.

Ignore removes one or more configuration options from the composite list (the
default behavior). Keep integrates one or more configuration options into the
composite list, keeping them the same. Rename integrates the configuration
option into the composite list with a differ ent name. Usual finds the usual option
handling commands for the specified tag name and executes them.

itk_option add optName...
Add an option that was previously ignored back into the master option
list.

itk_option remove name...
Remove an option that was previously merged into the master option list.

itk_option define -option resourceName resourceClass init
[configBody]
Define a new configuration option for a mega-widget class.

itk_initialize [-option value ...]
Called when a mega-widget is constructed to initialize the master option
list.

Protected Var iables

The following variables can be accessed within a mega-widget class:

itk_option(symbolicName)
An array element containing the Tk window pathname for the compo-
nent named symbolicName.

itk_interior
Contains the name of the top-level widget or frame within a mega-widget
that acts as a container for new components.

itk_option(-option)
An array element containing the current value of the configuration option
named option.

[incr Tk]

Methods and Variables 203

11 May 2006 10:48

Alphabetical Summary of Commands

usual

usual tag [commands]

Query or set “usual” option-handling commands for a widget in class tag.

204 Chapter 8 – [incr Tk]

11 May 2006 10:48

CHAPTER 9

Tix

Tix, written by Ioi Lam, is not part of the core Tcl/Tk package, but can be
obtained for free at http://www.neosoft.com/tcl/. This chapter covers Version 4.1.0.*

Tix Overview
Tix, which stands for the Tk interface extension, adds an object-oriented frame-
work for defining new widget types from existing widget types. Instances of these
new widget types are called mega-widgets. Tix includes over 40 predefined mega-
widget classes and several commands for designing new ones. Figure 9-1 shows
some examples of the mega-widgets added by Tix.

Tix also adds a few new standard widgets, commands for communicating with the
Motif window manager, a for m-based geometry manager, and two new image
types: compound and pixmap.

Tix scripts are usually run using the supplied tixwish command interpreter. The
command-line arguments for tixwish ar e the same as for Tk’s wish. Tix can also be
dynamically loaded into a running Tcl interpreter using the command:

package require Tix

if the system is properly configured for dynamic loading.

Special Var iables
The following global variables are defined by Tix:

tix_library Dir ectory containing the Tix script library
tix_patchLevel Curr ent patch level of Tix extension

* At the time of writing, the Tix web site at http://www.xpi.com/tix was down due to lack of funding.

Tix

205

11 May 2006 10:49

http://www.neosoft.com/tcl/
http://www.xpi.com/tix

Figur e 9−1: Examples of some of the Tix mega-widgets

tix_release Release level of the Tix extension
tix_version Curr ent version of Tix extension

Group Listing of Tix Commands
This section briefly lists all Tix commands, grouped logically by function.

Mega-widgets

tixBalloon Cr eate a tixBalloon mega-widget.
tixButtonBox Cr eate a tixButtonBox mega-widget.
tixCheckList Cr eate a tixCheckList mega-widget.
tixComboBox Cr eate a tixComboBox mega-widget.
tixContr ol Cr eate a tixContr ol mega-widget.
tixDialogShell Cr eate a tixDialogShell mega-widget.
tixDirList Cr eate a tixDirList mega-widget.
tixDirSelectBox Cr eate a tixDirSelectBox mega-widget.
tixDirSelectDialog Cr eate a tixDirSelectDialog mega-widget.
tixDirT ree Cr eate a tixDirTree mega-widget.
tixExFileSelectBox Cr eate a tixExFileSelectBox mega-widget.
tixExFileSelectDialog Cr eate a tixExFileSelectDialog mega-widget.
tixFileComboBox Cr eate a tixFileComboBox mega-widget.
tixFileEntry Cr eate a tixFileEntry mega-widget.
tixFileSelectBox Cr eate a tixFileSelectBox mega-widget.
tixFileSelectDialog Cr eate a tixFileSelectDialog mega-widget.
tixLabelEntry Cr eate a tixLabelEntry mega-widget.
tixLabelFrame Cr eate a tixLabelFrame mega-widget.
tixLabelWidget Cr eate a tixLabelWidget mega-widget.
tixListNoteBook Cr eate a tixListNoteBook mega-widget.
tixMeter Cr eate a tixMeter mega-widget.
tixNoteBook Cr eate a tixNoteBook mega-widget.

206 Chapter 9 – Tix

11 May 2006 10:49

tixOptionMenu Cr eate a tixOptionMenu mega-widget.
tixPanedWindow Cr eate a tixPanedWindow mega-widget.
tixPopupMenu Cr eate a tixPopupMenu mega-widget.
tixPrimitive Cr eate a tixPrimitive mega-widget.
tixScr olledGrid Cr eate a tixScr olledGrid mega-widget.
tixScr olledHList Cr eate a tixScr olledHList mega-widget.
tixScr olledListBox Cr eate a tixScr olledListBox mega-widget.
tixScr olledTList Cr eate a tixScr olledTList mega-widget.
tixScr olledText Cr eate a tixScr olledText mega-widget.
tixScr olledWidget Cr eate a tixScr olledWidget mega-widget.
tixScr olledWindow Cr eate a tixScr olledWindow mega-widget.
tixSelect Cr eate a tixSelect mega-widget.
tixShell Cr eate a tixShell mega-widget.
tixStackWindow Cr eate a tixStackWindow mega-widget.
tixStdButtonBox Cr eate a tixStdButtonBox mega-widget.
tixStdDialogShell Cr eate a tixStdDialogShell mega-widget.
tixT ree Cr eate a tixTree mega-widget.
tixVStack Cr eate a tixVStack mega-widget.
tixVT ree Cr eate a tixVTree mega-widget.

Standard Widgets

tixGrid Cr eate a tixGrid widget.
tixHList Cr eate a tixHList widget.
tixInputOnly Cr eate a tixInputOnly widget.
tixNBFrame Cr eate a tixNBFrame widget.
tixTList Cr eate a tixTList widget.

Core Commands

tix Access the Tix application context.
tixCallMethod Call method of derived class.
tixChainMethod Call method of superclass.
tixClass Declar e a new Tix class.
tixDescendants Get descendants of a widget.
tixDestr oy Destr oy a Tix class object.
tixDisableAll Disable a widget and its descendants.
tixDisplayStyle Cr eate a style for display items.
tixEnableAll Enable a widget and its descendants.
tixFor m Communicate with the tixForm geometry manager.
tixGetBoolean Get the boolean value of a string.
tixGetInt Get the integer value of a string.
tixMwm Communicate with the Motif window manager.
tixPushGrab Set a grab on a window and push it on the grab stack.
tixPopGrab Release a grab on a window and pop it off the grab stack.
tixWidgetClass Declar e a new Tix widget class.

Tix

Gr oup Listing of Tix Commands 207

11 May 2006 10:49

Tix Mega-widget Over view
Tix mega-widgets are created and manipulated in the same manner as standard Tk
widgets. Options can be set both at creation or with the widget’s configur e
method. All mega-widgets let you specify option values using the Tk options
database and query option values with the cget method.

The widgets that are used to compose a mega-widget can be standard widgets or
other mega-widgets. Each of these subwidgets is identified by a unique name
defined in the mega-widget’s API. All mega-widgets support the subwidget method
to directly access their subwidgets. This method has the form:

pathName subwidget subwidget [method [args ...]]

wher e subwidget is the unique name given to the subwidget by the mega-wid-
get. When the method argument is omitted, the widget pathname of the subwid-
get is retur ned. Otherwise, the method method of the subwidget is called with
any optional arguments and the results retur ned. For example, to change the back-
gr ound color of the entry widget contained in the tixControl mega-widget .c, one
would use this code:

.c subwidget entry configure -bg white

The subwidget root is present in all mega-widgets and is the equivalent to the
name of the created mega-widget (i.e., the pathName argument to the mega-wid-
get creation command). It is the base container upon which each mega-widget is
built and is almost always either a frame or top-level widget.

The object-oriented framework for defining a mega-widget class supports inheri-
tance from another mega-widget class. The class being inherited from is called the
super class of the class being defined. The mega-widget class tixPrimitive is at
the top of the mega-widget class hierarchy for the classes supplied with Tix. All
other classes are descendants of tixPrimitive. A mega-widget inherits all the
commands, options, and subwidgets of its superclass.

Tix Mega-widgets
This section describes the predefined mega-widget classes that are present in the
Tix extension. For options that are equivalent to the standard Tk widget options,
only the names are listed. Refer to the “Standard Widget Options” section of Chap-
ter 3, Tk Core Commands, for the full definition of these options. Since almost all
mega-widget classes are derived from another mega-widget class, it is important to
refer to the description of the superclass to see the full API of a mega-widget class.
Inherited commands, options, and subwidgets are sometimes listed for a mega-
widget class when they are overridden or are an integral part of the mega-widget’s
function.

208 Chapter 9 – Tix

11 May 2006 10:49

Balloon

tixBalloon pathName [option value...]

The tixBalloon command creates a new tixBalloon mega-widget named
pathName. The tixBalloon class is derived from the tixShell class. A
tixBalloon widget can be bound to one or more widgets so that when the
mouse cursor is inside the target widget, a window pops up with a descriptive
message. In addition, a message can be displayed in a connected status bar.

Widget-Specific Options

-initwait milliseconds (initWait, InitWait)
How long the balloon should wait after the mouse cursor enters an asso-
ciated widget before popping up the balloon message. If the mouse cur-
sor leaves the widget before this time has elapsed, no message is popped
up.

-state state (state, State)
Which help messages should be displayed. Valid values for state ar e
both (balloon and status bar), balloon (balloon only), status (status
bar only), and none (display no message).

-statusbar pathName (statusBar, StatusBar)
Which widget to use as the status bar of the balloon. Any widget that
supports a -text configuration option can be a status bar.

Subwidgets

label
The label widget containing the arrow bitmap in the pop-up window.

message
The message widget that shows the descriptive message in the pop-up
window.

Methods

pathName bind window [option value...]
Arrange for the tixBalloon widget to be invoked when the mouse pointer
enters the widget window. The available options are as follows:

-balloonmsg string
String to show in the pop-up window.

-statusmsg string
String to show on the status bar.

-msg string
String to show in both the pop-up window and status bar. This
option has the lowest precedence.

pathName unbind window
Cancel the tixBalloon widget’s binding to window.

Tix

Tix Mega-widgets — Balloon 209

11 May 2006 10:49

Example

label .status -relief sunken -bd 1 -width 40
button .btn1 -text Exit -command exit
tixBalloon .balloon1 -statusbar .status
.balloon1 bind .btn1 -balloonmsg "Exit Application" \

-statusmsg {Press this button to exit the applications}
pack .btn1 .status

ButtonBo x

tixButtonBox pathName [option value...]

The tixButtonBox command creates a new tixButtonBox mega-widget named
pathName. The tixButtonBox class is derived from the tixPrimitive
class. It serves as a container widget for button widgets, most commonly in
dialogs.

Widget-Specific Options

-orientation orientation (orientation, Orientation)
Orientation of the button subwidgets, either horizontal (the default)
or vertical.

-padx size (padX, Pad)
Horizontal padding between two neighboring button subwidgets.

-pady size (padY, Pad)
Vertical padding between two neighboring button subwidgets.

-state state (state, State)
State of all the button subwidgets, either normal or disabled.

Methods

pathName add buttonName [option value...]
Add a new button subwidget with name buttonName into the box.
Options are those valid for a normal button widget.

pathName invoke buttonName
Invoke the button subwidget buttonName.

CheckList

tixCheckList pathName [option value...]

The tixCheckList command creates a new tixCheckList mega-widget named
pathName. The tixCheckList class is derived from the tixTree class. It
displays a hierarchical list of items that can be selected by the user. The status
of an item can be one of four possible values: on (indicated by a check
bitmap), off (indicated by a cross bitmap), default (indicated by a gray
box bitmap), or none (no bitmap). Items with on, off, and default status
may be selected. The default status for an item is none.

210 Chapter 9 – Tix

11 May 2006 10:49

Widget-Specific Options

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user invokes an entry (usually by a dou-
ble click). The pathname of the entry is appended as an argument.

-radio boolean (radio, Radio)
Whether only one item at a time can be selected.

Subwidgets

hlist
The tixHList mega-widget that displays the tixCheckList. Entries to the tix-
CheckList are added directly to the hlist subwidget. Entries must be dis-
play items of type imagetext. Once an entry is added, the tixCheckList
setstatus command should be called to set the entry’s status:

tixCheckList .c
.c subwidget hlist add choice1 -itemtype imagetext

-text "Choice 1"
.c setstatus choice1 on

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

Methods

pathName getselection [status]
Retur n a list of items whose status is status (default is on).

pathName getstatus entryPath
Retur n the current status of entryPath.

pathName setstatus entryPath status
Set the status of entryPath to be status.

Example

tixCheckList .clist -scrollbar auto
set hlist [.clist subwidget hlist]
foreach attr {Bold Italic Underline} {

$hlist add $attr -itemtype imagetext -text $attr
.clist setstatus $attr off

}
.clist setstatus Bold on
pack .clist

Tix

Tix Mega-widgets — CheckList 211

11 May 2006 10:49

ComboBo x

tixComboBox pathName [option value...]

The tixComboBox command creates a new tixComboBox mega-widget named
pathName. The tixComboBox class is derived from the tixLabelWidget
class. It provides an entry widget whose value is connected to the selected
item of a listbox widget.

The tixComboBox supports two selection modes with the -selectmode option.
When the mode is immediate, the current value is changed immediately
when the user enters a keystroke in the entry subwidgets or clicks (or drags
over) an item in the listbox. When the mode is browse, the current value is
not changed until the user presses the Return key or double-clicks an item in
the listbox. The selected item in the listbox or what the user has typed so far
is made the temporary value (see the -selection option). If the user presses the
Escape key, the string displayed in the entry is changed back to the current
value.

Widget-Specific Options

-anchor anchorPos (anchor, Anchor)
How the string in the entry subwidget should be aligned.

-arr owbitmap bitmap (arrowBitmap, ArrowBitmap)
Bitmap to use for arrow button beside the entry subwidget.

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to be called when the selection mode is browse and the tem-
porary value has changed.

-command tclCommand (command, Command)
Command to be called when tixComboBox is invoked or when its current
value is changed.

-cr ossbitmap bitmap (crossBitmap, CrossBitmap)
Bitmap to use in cross button to the left of the entry subwidget.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (specified by the -command option) are disabled.

-dr opdown boolean (dropDown, DropDown)
Whether the listbox should be in a drop-down window.

-editable boolean (editable, Editable)
Whether user is allowed to type into the entry subwidget.

-fancy boolean (fancy, Fancy)
Whether cross and tick button subwidgets should be shown.

-grab grabPolicy (grab, Grab)
Grab policy for listbox when in a drop-down window. Valid values are
global (default), local, or none.

212 Chapter 9 – Tix

11 May 2006 10:49

-historylimit integer (historyLimit, HistoryLimit)
How many previous user inputs are remember ed in history list.

-history boolean (history, History)
Whether to store previous user inputs in a history list.

-label string (label, Label)
String to use as label for the tixComboBox.

-labelside position (labelSide, LabelSide)
Wher e to position the tixComboBox label. Valid values are top, left,
right, bottom, none, or acrosstop.

-listcmd tclCommand (listCmd, ListCmd)
Command to call whenever the listbox is dropped down.

-listwidth tclCommand (listWidth, ListWidth)
Width for listbox subwidget.

-prunehistory boolean (pruneHistory, PruneHistory)
Whether previous duplicate user inputs should be pruned from history
list.

-selection tclCommand (selection, Selection)
The temporary value of the tixComboBox when the selection mode is
browse.

-selectmode mode (selectMode, SelectMode)
The selection mode of the tixComboBox. Valid values are browse and
immediate.

-state state (state, State)
Curr ent state of the tixComboBox. Valid values are normal and dis-
abled.

-tickbitmap bitmap (tickBitmap, TickBitmap)
Bitmap to display in tick button to the left of the entry subwidget.

-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixComboBox is about to
change. The candidate new value is appended as an argument. The
command should retur n the value it deems valid.

-value string (value, Value)
The current value of the tixComboBox.

-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixComboBox.
Dir ect changes to the variable will also change the value of the tix-
ComboBox.

Tix

Tix Mega-widgets — ComboBox 213

11 May 2006 10:49

Subwidgets

arrow
The down arrow button widget.

cross
The cross button widget (when -fancy is set).

entry
The entry widget that shows the current value.

label
The label widget.

listbox
The listbox widget that holds the list of possible values.

slistbox
The tixScrolledListBox widget.

tick
The tick button widget (when -fancy is set).

Methods

pathName addhistory string
Add string to the beginning of the listbox.

pathName appendhistory
Append string to the end of the listbox.

pathName flash
Flash the tixComboBox by alternating between active and normal colors.

pathName insert index string
Insert string into the listbox at specified index.

pathName pick index
Change the current value to that of the item at index in the listbox.

Example

tixComboBox .cb -label Encoding: -dropdown true -editable false \
-options { listbox.height 4 label.width 10 label.anchor w }

foreach type { Latin1 Latin2 Latin3 Latin4 Cyrillic Arabic Greek } {
.cb insert end $type

}
tixSetSilent .cb Latin1
pack .cb

Control

tixContr ol pathName [option value...]

The tixContr ol command creates a new tixControl mega-widget named
pathName. The tixControl class is derived from the tixPrimitive
class. The tixControl widget, also known as a spinbox, is generally used to

214 Chapter 9 – Tix

11 May 2006 10:49

contr ol a denumerable value. The user can adjust the value by pressing the
two arrow buttons or by entering the value directly into the entry.

The tixControl supports two selection modes with the -selectmode option.
When the mode is immediate, the current value is changed immediately
when the user enters a keystroke. When the mode is normal, the current
value is not changed until the user presses the Return key. If the user presses
the Escape key, the string displayed in the entry is changed back to the cur-
rent value.

Widget-Specific Options

-allowempty boolean (allowEmpty, AllowEmpty)
Whether an empty string is a valid input value.

-autor epeat boolean (autoRepeat, AutoRepeat)
Whether increment and decrement buttons should autorepeat when held
down.

-command tclCommand (command, Command)
Command to call when the current value is changed. The value is
appended as an argument.

-decr cmd tclCommand (decrCmd, DecrCmd)
Command to call when the user presses the decrement button. The cur-
rent value is appended as an argument. The retur n value is made the
new current value.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (specified by the -command option) are disabled.

-disabledfor eground color (disabledForeground,
DisabledForeground)

Color to use for the foregr ound of the entry subwidget when the tixCon-
tr ol widget is disabled.

-incr cmd tclCommand (incrCmd, IncrCmd)
Command to call when the user presses the increment button. The cur-
rent value is appended as an argument. The retur n value is made the
new current value.

-initwait milliseconds (initWait, InitWait)
How long to wait before entering autorepeat mode.

-integer boolean (integer, Integer)
Whether only integer values are allowed.

-label string (label, Label)
String to display as the label of the tixControl widget.

-labelside position (labelSide, LabelSide)
Wher e to position the tixControl label. Valid values are top, left,
right, bottom, none, or acrosstop.

Tix

Tix Mega-widgets — Control 215

11 May 2006 10:49

-max value (max, Max)
Upper-limit value of the tixControl. If set to the empty string, there is no
limit.

-min value (min, Min)
Lower-limit value of the tixControl. If set to the empty string, there is no
limit.

-r epeatrate milliseconds (repeatRate, RepeatRate)
Time between increments or decrements when in autorepeat mode.

-selectmode mode (selectMode, SelectMode)
The selection mode of the tixControl. Valid values are normal and
immediate.

-state state (state, State)
Curr ent state of the tixControl. Valid values are normal and disabled.

-step value (step, Step)
How much the value should be incremented or decremented when the
user presses the increment or decrement buttons.

-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixControl is about to
change. The candidate new value is appended as an argument. The
command should retur n the value it deems valid.

-value value (value, Value)
The current value of the tixControl.

-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixControl.
Dir ect changes to the variable will also change the value of the tix-
Contr ol.

Subwidgets

decr
The decrement button widget.

entry
The entry widget that shows the current value.

incr
The increment button widget.

label
The label widget.

216 Chapter 9 – Tix

11 May 2006 10:49

Methods

pathName decr
Decr ement the current value of the tixControl.

pathName incr
Incr ement the current value of the tixControl.

pathName invoke
Flash the tixControl by alternating between active and normal colors.

pathName update
Update the current value to whatever the user has typed in the entry sub-
widget.

Example

tixControl .ctl -label "Point Size:" -integer true \
-variable fontsize -min 1 -max 30

pack .ctl

DialogShell

tixDialogShell pathName [option value...]

The tixDialogShell command creates a new tixDialogShell mega-widget
named pathName. The tixDialogShell class is derived from the
tixShell class. It is used as a superclass for more functional dialog mega-
widgets.

Widget-Specific Options

-minheight tclCommand (minHeight, MinHeight)
The minimum height of the dialog for resizing.

-minwidth tclCommand (minWidth, MinWidth)
The minimum width of the dialog for resizing.

-transient tclCommand (transient, Transient)
Whether dialog window should be a transient window.

Methods

pathName center [window]
Arrange for the dialog’s position on the screen to be centered over win-
dow (defaults to dialog’s parent). The position is adjusted to make sure
the dialog is fully visible.

pathName popdown
Withdraw the dialog from the screen.

pathName popup [window]
Pop up the dialog on the screen, centered on window (defaults to dia-
log’s parent).

Tix

Tix Mega-widgets — DialogShell 217

11 May 2006 10:49

DirList

tixDirList pathName [option value...]

The tixDirList command creates a new tixDirList mega-widget named path-
Name. The tixDirList class is derived from the tixScrolledHList
class. It displays a list of the subdirectories and parent directory of a target
dir ectory. The user can choose one of the directories or change to another
dir ectory.

Widget-Specific Options

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses on a directory (usually by a
single click). The directory is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user activates a directory (usually by a
double click). The directory is appended as an argument.

-dir cmd tclCommand (dirCmd, DirCmd)
Command to call when a directory listing is needed. Two arguments are
appended: the name of the directory to be listed and a boolean that sig-
nifies whether hidden subdirectories should be listed. The retur n values
should be the list of subdirectories in the given directory. If this option is
not specified, the default is to read the directory as a Unix directory.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-showhidden boolean (showHidden, ShowHidden)
Whether hidden directories should be shown.

-r oot directory (root, Root)
Name of the root directory.

-r ootname string (rootName, RootName)
Text string to display as the root directory. Default is same as -r oot
option.

-value directory (value, Value)
Name of the current directory displayed.

Subwidgets

hlist
The tixHList mega-widget that displays the directory list.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

218 Chapter 9 – Tix

11 May 2006 10:49

Methods

pathName chdir directory
Change the current directory to directory.

DirSelectBo x

tixDirSelectBox pathName [option value...]

The tixDirSelectBox command creates a new tixDirSelectBox mega-widget
named pathName. The tixDirSelectBox class is derived from the tix-
Primitive class. It combines a tixFileComboBox with a tixDirList to provide
a method for a user to select a directory by both keyboard entry and listbox
selection.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the current directory value is changed. The value
is appended as an argument.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-value directory (value, Value)
Name of the current directory displayed.

Subwidgets

dircbx
The tixFileComboBox mega-widget.

dirlist
The tixDirList mega-widget.

DirSelectDialog

tixDirSelectDialog pathName [option value...]

The tixDirSelectDialog command creates a new tixDirSelectDialog mega-
widget named pathName. The tixDirSelectDialog class is derived from
the tixDialogShell class. It presents a tixDirSelectBox in a pop-up dialog
window.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the user chooses a directory in the dialog box.
The complete pathname of the directory is appended as an argument.

Subwidgets

dirbox
The tixDirSelectBox mega-widget.

Tix

Tix Mega-widgets — DirSelectDialog 219

11 May 2006 10:49

cancel
The Cancel button widget. Invoking this button pops down the dialog
with no choice being made.

ok
The OK button widget. Invoking this button pops down the dialog and
makes the current selected directory the user’s choice.

DirTree

tixDirT ree pathName [option value...]

The tixDirT ree command creates a new tixDirTree mega-widget named
pathName. The tixDirTree class is derived from the tixVTree class. It
displays a tree-style list of directories and their subdirectories for the user to
choose from.

Widget-Specific Options

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses on a directory (usually by a
single click). The directory is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user activates a directory (usually by a
double click). The directory is appended as an argument.

-dir cmd tclCommand (dirCmd, DirCmd)
Command to call when a directory listing is needed. Two arguments are
appended: the name of the directory to be listed and a boolean that sig-
nifies whether hidden subdirectories should be listed. The retur n values
should be the list of subdirectories in the given directory. If this option is
not specified, the default is to read the directory as a Unix directory.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-showhidden boolean (showHidden, ShowHidden)
Whether hidden directories should be shown.

-value directory (value, Value)
Name of the current directory displayed.

Subwidgets

hlist
The tixHList mega-widget that displays the directory list.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

220 Chapter 9 – Tix

11 May 2006 10:49

Methods

pathName chdir directory
Change the current directory to directory.

ExFileSelectBo x

tixExFileSelectBox pathName [option value...]

The tixExFileSelectBox command creates a new tixExFileSelectBox mega-
widget named pathName. The tixExFileSelectBox class is derived from
the tixPrimitive class. It provides a method for a user to select a file simi-
lar to the style used in Microsoft Windows.

Widget-Specific Options

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses on a file (usually by a sin-
gle click). The filename is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user activates a file (usually by a double
click). The filename is appended as an argument.

-dialog dialog (dialog, Dialog)
Dialog box that contains this tixExFileSelectBox widget (internal use
only).

-dir cmd tclCommand (dirCmd, DirCmd)
Command to call when a file listing is needed. Three arguments are
appended: the name of the directory to be listed, a list of file patterns,
and a boolean that signifies whether hidden files should be listed. The
retur n value should be a list of files in the given directory. If this option
is not specified, the default is to read the directory as a Unix directory.

-dir ectory directory (directory, Directory)
The current directory whose files and subdirectories are displayed.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-filetypes fileTypes (fileTypes, FileTypes)
List of file types that can be selected from the “List Files of Type” tix-
ComboBox subwidget. Each item is a list of two items: a list of file pat-
ter ns and a description (e.g., {{*.c *.h} {C source files}}).

-showhidden boolean (showHidden, ShowHidden)
Whether hidden files and subdirectories should be shown.

-patter n pattern (pattern, Pattern)
List of file patterns to match with the files in the current directory.

-value fileName (value, Value)
Name of the currently selected file.

Tix

Tix Mega-widgets — ExFileSelectBox 221

11 May 2006 10:49

Subwidgets

cancel
The Cancel button widget.

dir
The tixComboBox mega-widget for the current directory.

dirlist
The tixDirList mega-widget for listing directories.

file
The tixComboBox mega-widget for the current file.

filelist
The tixScrolledListBox mega-widget for listing files.

hidden
The checkbutton widget for toggling display of hidden files.

ok
The OK button widget.

types
The tixComboBox mega-widget for selecting file filter types.

Methods

pathName filter
Force refiltering of listed filenames according to the -patter n option.

pathName invoke
Force the widget to perfor m actions as if the user had pressed the OK
button.

ExFileSelectDialog

tixExFileSelectDialog pathName [option value...]

The tixExFileSelectDialog command creates a new tixExFileSelectDialog mega-
widget named pathName. The tixExFileSelectDialog class is derived
fr om the tixDialogShell class. It simply presents a tixExFileSelectBox
mega-widget in a dialog.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the user chooses a file (clicks the OK button).
The name of the chosen file is appended as an argument.

Subwidgets

fsbox
The tixExFileSelectBox mega-widget.

222 Chapter 9 – Tix

11 May 2006 10:49

FileComboBo x

tixFileComboBox pathName [option value...]

The tixFileComboBox command creates a new tixFileComboBox mega-widget
named pathName. The tixFileComboBox class is derived from the tix-
Primitive class. It provides a combo box for entering file and directory
names.

Widget-Specific Options

-command tclCommand (command, Command)
Command to be called when tixFileComboBox is invoked or when its
curr ent value is changed. A list describing the file is appended as an
argument. The first element of the list is the absolute pathname to the
file, the second element is the directory part file’s pathname, and the
third element is the base filename.

-defaultfile fileName (defaultFile, DefaultFile)
If the value entered into the tixFileComboBox is a directory, fileName
is appended to the value before calling the associated command.

-dir ectory directory (directory, Directory)
Set the current working directory for the tixFileComboBox to direc-
tory.

-text fileName (text, Text)
Change the value of the tixFileComboBox to fileName. The associated
command is not invoked.

Subwidgets

combo
The tixComboBox mega-widget.

Methods

pathName invoke
Invoke the tixFileComboBox.

FileEntr y

tixFileEntry pathName [option value...]

The tixFileEntry command creates a new tixFileEntry mega-widget named
pathName. The tixFileEntry class is derived from the tixLabel-
Widget class. It provides an entry box for a user to enter a filename, along
with a button that will pop up a file selection dialog.

The tixFileEntry supports two selection modes with the -selectmode option.
When the mode is immediate, the current value is changed immediately
when the user enters a keystroke. When the mode is normal, the current
value is not changed until the user presses the Return key.

Tix

Tix Mega-widgets — FileEntry 223

11 May 2006 10:49

Widget-Specific Options

-activatecmd tclCommand (activateCmd, ActivateCmd)
Command to call when user activates the button subwidget. This com-
mand is called before the file dialog is popped up.

-command tclCommand (command, Command)
Command to call when the current value of the tixFileEntry is changed.
The filename is appended as an argument.

-dialogtype dialogClass (dialogType, DialogType)
The type of file selection dialog that should be popped up when the user
invokes the button subwidget. Valid values are tixFileSelectDialog
and tixExFileSelectDialog.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-disabledfor eground color (disabledForeground,
DisabledForeground)

For eground color for entry subwidget when the tixFileEntry is disabled.

-filebitmap bitmap (fileBitmap, FileBitmap)
Bitmap to display in the button subwidget.

-label string (label, Label)
String to display as the label of the tixFileEntry.

-labelside position (labelSide, LabelSide)
Wher e to position the tixFileEntry label. Valid values are top, left,
right, bottom, none, or acrosstop.

-selectmode mode (selectMode, SelectMode)
The selection mode of the tixFileEntry. Valid values are normal and
immediate.

-state state (state, State)
Curr ent state of the tixFileEntry. Valid values are normal and dis-
abled.

-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixFileEntry is about to
change. The candidate new value is appended as an argument. The
command should retur n the value it deems valid.

-value value
The current value of the tixFileEntry.

-variable varName
Global variable that should be set to track the value of the tixFileEntry.
Dir ect changes to the variable will also change the value of the tixFile-
Entry.

224 Chapter 9 – Tix

11 May 2006 10:49

Subwidgets

button
The button widget for popping up a file selection dialog.

entry
The entry widget for entering a filename.

Methods

pathName invoke
Force the tixFileEntry to act as if the user has pressed the Return key
inside the entry subwidget.

pathName filedialog [method [args]]
If no additional arguments are given, the pathname of the file selection
dialog associated with the tixFileEntry is retur ned. When additional argu-
ments are given, they translate to a method call on the file selection dia-
log.

pathName update
Update the current value of the tixFileEntry to the current contents of the
entry subwidget. Useful only in normal selection mode.

FileSelectBo x

tixFileSelectBox pathName [option value...]

The tixFileSelectBox command creates a new tixFileSelectBox mega-widget
named pathName. The tixFileSelectBox class is derived from the tix-
Primitive class. It provides a method for a user to select a file similar to
the style used in Motif.

Widget-Specific Options

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses a file (usually by a single
click). The filename is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user activates a file (usually by a double-
click). The absolute path of the filename is appended as an argument.

-dir ectory directory (directory, Directory)
The current directory whose files and subdirectories are displayed.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-patter n pattern (pattern, Pattern)
List of file patterns to match with the files in the current directory.

-value fileName (value, Value)
Name of the currently selected file.

Tix

Tix Mega-widgets — FileSelectBox 225

11 May 2006 10:49

Subwidgets

dirlist
The tixScrolledListBox mega-widget for listing directories.

filelist
The tixScrolledListBox mega-widget for listing files.

filter
The tixComboBox mega-widget for the filter string.

selection
The tixComboBox mega-widget for the selected file.

Methods

pathName filter
Force refiltering of listed filenames according to the -patter n option.

pathName invoke
Call the command given by -command with the current filename.

FileSelectDialog

tixFileSelectDialog pathName [option value...]

The tixFileSelectDialog command creates a new tixFileSelectDialog mega-
widget named pathName. The tixFileSelectDialog class is derived
fr om the tixStdDialogShell class. It simply presents a tixFileSelectBox
mega-widget in a dialog.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the user chooses a file (clicks the OK button).
The name of the chosen file is appended as an argument.

Subwidgets

btns
The tixStdButtonBox mega-widget containing the OK, Filter, Cancel, and
Help button widgets.

fsbox
The tixFileSelectBox mega-widget.

La belEntry

tixLabelEntry pathName [option value...]

The tixLabelEntry command creates a new tixLabelEntry mega-widget named
pathName. The tixLabelEntry class is derived from the tixLabel-
Widget class. It provides an entry box with an attached label.

226 Chapter 9 – Tix

11 May 2006 10:49

Widget-Specific Options

-disabledfor eground color (disabledForeground,
DisabledForeground)

Color to use for the foregr ound of the entry subwidget when the tix-
LabelEntry widget is disabled.

-label string (label, Label)
String to display as the label of the tixLabelEntry widget.

-labelside position (labelSide, LabelSide)
Wher e to position the tixLabelEntry label. Valid values are top, left,
right, bottom, none, or acrosstop.

-state state (state, State)
Curr ent state of the tixLabelEntry. Valid values are normal and dis-
abled.

Subwidgets

entry
The entry subwidget.

label
The label subwidget.

La belFrame

tixLabelFrame pathName [option value...]

The tixLabelFrame command creates a new tixLabelFrame mega-widget
named pathName. The tixLabelFrame class is derived from the tix-
LabelWidget class. It provides a labeled frame for containing other widgets,
which should be children of the frame subwidget.

Widget-Specific Options

-label string (label, Label)
String to display as the label of the tixLabelFrame widget.

-labelside position (labelSide, LabelSide)
Wher e to position the tixLabelFrame label. Valid values are top, left,
right, bottom, none, or acrosstop.

-padx amount (padX, PadX)
Amount of horizontal padding around the frame subwidget.

-pady amount (padY, PadY)
Amount of vertical padding around the frame subwidget.

Subwidgets

frame
The frame subwidget, which should be the parent of any widget to be
contained.

Tix

Tix Mega-widgets — LabelFrame 227

11 May 2006 10:49

label
The label subwidget.

Methods

pathName frame [method [args]]
Shortcut to subwidget frame.

La belWidget

tixLabelWidget pathName [option value...]

The tixLabelWidget command creates a new tixLabelWidget mega-widget
named pathName. The tixLabelWidget class is derived from the tix-
Primitive class. Its main purpose is to provide a base class for labeled
mega-widgets.

Widget-Specific Options

-label string (label, Label)
String to display as the label of the tixLabelWidget widget.

-labelside position (labelSide, LabelSide)
Wher e to position the tixLabelWidget label. Valid values are top, left,
right, bottom, none, or acrosstop.

-padx amount (padX, PadX)
Amount of horizontal padding around the frame subwidget.

-pady amount (padY, PadY)
Amount of vertical padding around the frame subwidget.

Subwidgets

frame
The frame subwidget upon which derived mega-widget classes should
build.

label
The label subwidget.

ListNoteBook

tixListNoteBook pathName [option value...]

The tixListNoteBook command creates a new tixListNoteBook mega-widget
named pathName. The tixListNoteBook class is derived from the
tixVStack class. Similar to the tixNoteBook, it allows the user to select one
of several pages (windows) to be displayed at one time. The user chooses the
page to display by selecting its name from an hlist subwidget.

228 Chapter 9 – Tix

11 May 2006 10:49

Widget-Specific Options

-dynamicgeometry boolean (dynamicGeometry,
DynamicGeometry)

Whether the tixListNoteBook should dynamically resize to match the size
of the current page. The default is false, in which case the size of the
tixListNoteBook will match the size of the largest page.

-ipadx amount (ipadX, Pad)
Amount of internal horizontal padding around the sides of the page sub-
widgets.

-ipady amount (ipady, Pad)
Amount of internal vertical padding around the sides of page subwidgets.

Subwidgets

hlist
The tixHList mega-widget that displays the names of the pages.

pageName
The frame widget of a notebook page as retur ned by the add method.

Methods

pathName add pageName [option value...]
Add a new page to the tixListNoteBook. The pageName option must be
the name of an existing entry in the hlist subwidget. The pathname of
the page’s master frame widget is retur ned. Available options are:

-cr eatecmd tclCommand
Command to be called the first time a page is to be displayed.

-raisecmd tclCommand
Command to be called whenever the page is raised by the user.

pathName delete pageName
Delete the given page from the tixListNoteBook.

pathName pagecget pageName option
Similar to the cget method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pageconfigur e pageName [option value...]
Similar to the configur e method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pages
Retur n a list of the names of all the pages.

pathName raise pageName
Raise the page pageName.

pathName raised
Retur n the name of the currently raised page.

Tix

Tix Mega-widgets — ListNoteBook 229

11 May 2006 10:49

Meter

.XET N .XE1 meter mega-widgets" ./XET tixMeter pathName [option
value...]"

The tixMeter command creates a new tixMeter mega-widget named path-
Name. The tixMeter class is derived from the tixPrimitive class. It pro-
vides a way to show the progr ess of a time-consuming background job.

Widget-Specific Options

-fillcolor color (fillColor, FillColor)
Color of the progr ess bar.

-text string (text, Text)
Text to place inside the progr ess bar. Defaults to percentage value speci-
fied by the -value option.

-value value (value, Value)
A real value between 0.0 and 1.0 that specifies the amount of progr ess.

NoteBook

tixNoteBook pathName [option value...]

The tixNoteBook command creates a new tixNoteBook mega-widget named
pathName. The tixNoteBook class is derived from the tixVStack class.
It allows the user to select one of several pages (windows) to be displayed at
one time. The user chooses the page to display by selecting a tab at the top
of the tixNoteBook widget.

Widget-Specific Options

-dynamicgeometry boolean (dynamicGeometry,
DynamicGeometry)

Whether the tixNoteBook should dynamically resize to match the size of
the current page. The default is false, in which case the size of the
tixNoteBook will match the size of the largest page.

-ipadx amount (ipadX, Pad)
Amount of internal horizontal padding around the sides of the page sub-
widgets.

-ipady amount (ipadY, Pad)
Amount of internal vertical padding around the sides of the page subwid-
gets.

Subwidgets

nbframe
The tixNoteBookFrame that displays the tabs of the notebook. Most of
the display options of the page tabs are contr olled by this subwidget.

230 Chapter 9 – Tix

11 May 2006 10:49

pageName
The frame widget of a notebook page as retur ned by the add method.

Methods

pathName add pageName [option value...]
Add a new page to the tixNoteBook. The pageName option must be the
name of an existing entry in the hlist subwidget. The pathname of the
page’s master frame widget is retur ned. Available options are as follows:

-anchor anchorPos
Specifies how the information in a page’s tab (e.g., text or bitmap)
should be anchored. Must be one of n, nw, w, sw, s, se, e, ne, or
center.

-bitmap bitmap
Bitmap to display in tab.

-cr eatecmd tclCommand
Command to be called the first time a page is to be displayed.

-image imageName
Name of image to display in tab.

-justify position
How multiple lines of text in a tab should be justified. Must be one
of left, right, or center.

-label string
Text to display in the tab. Overrides -image and -bitmap.

-raisecmd tclCommand
Command to be called whenever the page is raised by the user.

-state state
Whether page can be raised by the user. Must be either normal or
disabled.

-underline index
Integer index (starting from 0) of character in text label to underline
in the tab. Used by default bindings to set up keyboard traversal of
tabs.

-wraplength chars
Maximum line length of text in the tab. If value is 0 or less, no wrap-
ping is done.

pathName delete pageName
Delete the given page from the tixNoteBook.

pathName pagecget pageName option
Similar to the cget method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

Tix

Tix Mega-widgets — NoteBook 231

11 May 2006 10:49

pathName pageconfigur e pageName [option value...]
Similar to the configur e method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pages
Retur n a list of the names of all the pages.

pathName raise pageName
Raise the page pageName.

pathName raised
Retur n the name of the currently raised page.

Example

tixNoteBook .nb -ipadx 6 -ipady 6 -options
{ nbframe.backpagecolor gray }

.nb add fonts -label "Fonts" -underline 0
set f1 [frame [.nb subwidget fonts].f]
pack [listbox $f1.lb]
$f1.lb insert end Courier Helvetica Utopia
.nb add colors -label "Colors" -underline 0
set f2 [frame [.nb subwidget colors].f]
pack [listbox $f2.lb]
$f2.lb insert end Red Green Blue
pack .nb $f1 $f2 -expand true -fill both

OptionMenu

tixOptionMenu pathName [option value...]

The tixOptionMenu command creates a new tixOptionMenu mega-widget
named pathName. The tixOptionMenu class is derived from the tix-
LabelWidget class. It provides a method for the user to select an option
fr om a pop-up menu.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the current value of the tixOptionMenu is
changed. The filename is appended as an argument.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-dynamicgeometry boolean (dynamicGeometry,
DynamicGeometry)

Whether the size of the menubutton subwidget should change dynami-
cally to match the width of the currently selected menu entry. If false,
its width is wide enough to contain the largest entry.

-label string (label, Label)
String to display as the label of the tixOptionMenu.

232 Chapter 9 – Tix

11 May 2006 10:49

-labelside position (labelSide, LabelSide)
Wher e to position the tixOptionMenu label. Valid values are top, left,
right, bottom, none, or acrosstop.

-state state (state, State)
Curr ent state of the tixOptionMenu. Valid values are normal and dis-
abled.

-value value (value, Value)
The current value of the tixOptionMenu, which is the name of the menu
entry currently displayed in the menubutton subwidget.

-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixOption-
Menu. Direct changes to the variable will also change the value of the
tixOptionMenu.

Subwidgets

menu
The menu widget that is popped up when the user presses the menubut-
ton widget.

menubutton
The menubutton widget that displays the current selection.

Methods

pathName add type entryName [option value...]
Add a new entry to the tixOptionMenu named entryName. Type must
be either command or separator. The options are any of the valid
options for a menu entry of the given type, except -command.

pathName delete entryName
Delete the entry entryName fr om the tixOptionMenu.

pathName disable entryName
Disable the entry entryName.

pathName enable entryName
Enable the entry entryName.

pathName entrycget entryName option
Similar to the cget method, but operates on the entry entryName.
Option may have any of the values accepted by the add method.

pathName entryconfigur e entryName [option value...]
Similar to the configur e method, but operates on the entry entryName.
Option may have any of the values accepted by the add method.

pathName entries
Retur n a list of the names of all entries in the tixOptionMenu.

Tix

Tix Mega-widgets — OptionMenu 233

11 May 2006 10:49

PanedWindow

tixPanedWindow pathName [option value...]

The tixPanedWindow command creates a new tixPanedWindow mega-widget
named pathName. The tixPanedWindow class is derived from the tix-
Primitive class.

Widget-Specific Options

-command tclCommand (command, Command)
Command to call when the panes change their sizes. A list of the new
sizes in the order of each pane’s creation is appended as an argument.

-dynamicgeometry boolean (dynamicGeometry,
DynamicGeometry)

Whether the size of the tixPanedWindow will dynamically change if the
size of any of its panes is changed. If false, the size of the tixPaned-
Window will increase but not decrease.

-handleactivebg color (handleActiveBg, HandleActiveBg)
Active background color for the resize handles.

-handlebg color (handleBg, HandleBg)
Backgr ound color for the resize handles.

-height amount (height, Height)
Desir ed height for the tixPanedWindow.

-orientation orientation (orientation, Orientation)
Orientation of the panes. Must be either vertical or horizontal.

-panebor derwidth amount (paneBorderWidth, PaneBorderWidth)
Border width of the panes.

-paner elief relief (paneRelief, PaneRelief)
Border relief of the panes.

-separatoractivebg color (separatorActiveBg,
SeparatorActiveBg)

Active background color of the separators.

-separatorbg color (separatorBg, SeparatorBg)
Backgr ound color of the separators.

-width amount (width, Width)
Desir ed width of the tixPanedWindow.

Subwidgets

paneName
The frame widget of pane paneName as retur ned by the add method.

234 Chapter 9 – Tix

11 May 2006 10:49

Methods

pathName add paneName [option value...]
Add a new pane named paneName. The frame widget to serve as the
master container for the pane is retur ned. Available options are:

-after paneName
Place the pane after the pane named paneName.

-befor e paneName
Place the pane before the pane named paneName.

-expand factor
The weighting factor by which the pane should grow or shrink
when the tixPanedWindow is resized. The default is 0.0. If all panes
have a 0.0 factor, only the last visible pane is resized.

-max amount
The maximum size, in pixels, for the pane.

-min amount
The minimum size, in pixels, for the pane.

-size amount
Desir ed size of the pane along the tixPanedWindow’s orientation. If
not given, the pane’s natural default size is used.

pathName delete paneName
Remove the pane paneName and delete its contents.

pathName for get paneName
Remove the pane paneName but do not delete its contents, so that it
may be added back using the manage method.

pathName manage paneName [option value...]
Add the pane paneName back to those currently managed by the tix-
PanedWindow. Available options are the same as for the add method.

pathName panecget paneName option
Similar to the cget method, but operates on the pane paneName.
Option may have any of the values accepted by the add method.

pathName paneconfigur e paneName [option value...]
Similar to the configur e method, but operates on the pane paneName.
Option may have any of the values accepted by the add method.

pathName panes
Retur n a list of the names of all panes in the tixPanedWindow.

pathName setsize paneName newSize [direction]
Set the size of pane paneName to newSize. Direction may be next
(the default) or prev and directs the pane to grow or shrink by moving
the boundary between itself and the pane to its right or bottom (next)
or by moving the pane to its left or top (prev).

Tix

Tix Mega-widgets — PanedWindow 235

11 May 2006 10:49

PopupMenu

.XET N .XE1 popup menus" ./XET tixPopupMenu pathName [option
value...]"

The tixPopupMenu command creates a new tixPopupMenu mega-widget
named pathName. The tixPopupMenu class is derived from the tixShell
class. It provides a replacement for the tk_ popup command with easier config-
uration and a menu title.

Widget-Specific Options

-buttons buttonList (buttons, Buttons)
A list that specifies the mouse buttons and key modifiers that pop up the
menu. Each item is a list with two elements: the button number and a list
of key modifiers. For example, {{1 {Control Meta}} {3 {Any}}}.
The default is {3 {Any}}.

-postcmd tclCommand (postCmd, PostCmd)
Command to call just before the menu is popped up. The x- and y-coor-
dinates of the button event are appended as the final two arguments. The
command must retur n a boolean value to indicate whether the menu
should be posted.

-spring boolean (spring, Spring)
Whether the menu should automatically pop down when the user
releases the mouse button outside the menu without invoking any menu
commands. The default is true. If false, the user must press the
Escape key to cancel the menu.

-state state (state, State)
Curr ent state of the tixPopupMenu. Valid values are normal and dis-
abled. When disabled, the menu will not pop up.

-title string (title, Title)
Text for the title of the tixPopupMenu.

Subwidgets

menu
The menu widget that pops up.

menubutton
The menubutton widget used for the title.

Methods

pathName bind window [window...]
Arrange for the tixPopupMenu to be bound to the configured button
events over the given windows.

pathName post window x y
Post the tixPopupMenu inside window at the coordinates x, y.

236 Chapter 9 – Tix

11 May 2006 10:49

pathName unbindwindow [window...]
Cancel the tixPopupMenu’s binding to the given windows.

Pr imitive

tixPrimitive pathName [option value...]

The tixPrimitive command creates a new tixPrimitive mega-widget named
pathName. The tixPrimitive is a virtual base class that provides a root
widget that derived mega-widgets use as a base container upon which to
build. In fact, pathName is used as the pathname of the base widget. Unless
overridden by a derived class, this base widget is a frame widget. The only
class in the Tix core mega-widgets that overrides this is the tixShell class,
which uses a top-level widget for its root.

Widget-Specific Options

The tixPrimitive mega-widget supports the following options, which are sim-
ply passed to the underlying root widget. See the frame widget command in
Chapter 3.

-backgr ound -bor derwidth -cursor
-height -highlightbackground -highlightcolor
-highlightthickness -relief -takefocus
-width

The tixPrimitive mega-widget supports the following special option to make it
easy for descendant classes to pass options to subwidgets:

-options optionList (options, Options)
List of resource options and values to apply to mega-widget. Each odd
element is the resource specification relative to the mega-widget. Each
following even element is its value. This option is mainly used to config-
ur e a mega-widget’s subwidgets at creation time. For example:

tixComboBox .cb -label Color: -dropdown true \
-options { listbox.height 4 label.width 10 label.anchor e }

Subwidgets

root
The base frame widget in which derived mega-widgets should be built.
This will equal the pathName argument of the mega-widget creation
command (e.g., tixPrimitive) and therefor e is almost never needed.

ScrolledGr id

tixScr olledGrid pathName [option value...]

The tixScr olledGrid command creates a new tixScrolledGrid mega-widget
named pathName. The tixScrolledGrid class is derived from the
tixScrolledWidget class. It provides a scrollable tixGrid widget.

Tix

Tix Mega-widgets — ScrolledGrid 237

11 May 2006 10:49

Subwidgets

grid
The tixGrid widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledHList

tixScr olledHList pathName [option value...]

The tixScr olledHList command creates a new tixScrolledHList mega-widget
named pathName. The tixScrolledHList class is derived from the
tixScrolledWidget class. It provides a scrollable tixHList mega-widget.

Subwidgets

hlist
The tixHList mega-widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledListBo x

tixScr olledListBox pathName [option value...]

The tixScr olledListBox command creates a new tixScrolledListBox mega-
widget named pathName. The tixScrolledListBox class is derived from
the tixScrolledWidget class. It provides a scrollable listbox widget.

Widget-Specific Options

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a sin-
gle click).

-command tclCommand (command, Command)
Command to call whenever the user activates an entry (usually by a dou-
ble click).

-state state (state, State)
Curr ent state of the listbox subwidget. Valid values are normal and
disabled.

238 Chapter 9 – Tix

11 May 2006 10:49

Subwidgets

listbox
The listbox widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledText

tixScr olledText pathName [option value...]

The tixScr olledText command creates a new tixScrolledText mega-widget
named pathName. The tixScrolledText class is derived from the
tixScrolledWidget class. It provides a scrollable text widget.

Subwidgets

text
The text widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledTList

tixScr olledTList pathName [option value...]

The tixScr olledTList command creates a new tixScrolledTList mega-widget
named pathName. The tixScrolledTList class is derived from the
tixScrolledWidget class. It provides a scrollable tixTList mega-widget.

Subwidgets

tlist
The tixTList mega-widget that will be scrolled.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledWidget

tixScr olledWidget pathName [option value...]

The tixScr olledWidget command creates a new tixScrolledWidget mega-widget
named pathName. The tixScrolledWidget class provides a virtual base

Tix

Tix Mega-widgets — ScrolledWidget 239

11 May 2006 10:49

class for deriving mega-widgets that wrap scrollbars around a contained
widget.

Widget-Specific Options

-scr ollbar policy (scrollbar, Scrollbar)
The display policy for the scrollbars. Valid values for policy ar e:

auto [xPolicy] [yPolicy]
Scr ollbars ar e shown when needed. XPolicy may be +x or -x,
which state that the tixScrolledWidget should always or never show
the horizontal scrollbar, respectively. Similarly, yPolicy may be +y
or -y for the vertical scrollbar.

both
Always show both scrollbars.

none
Never show either scrollbar.

x At all times, show only the horizontal scrollbar.

y At all times, show only the vertical scrollbar.

Subwidgets

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

ScrolledWindow

tixScr olledWindow pathName [option value...]

The tixScr olledWindow command creates a new tixScrolledWindow mega-
widget named pathName. The tixScrolledWindow class is derived from
the tixScrolledWidget class. It provides a scrollable frame widget in
which any arbitrary windows may be placed.

Widget-Specific Options

-expandmode mode (expandMode, ExpandMode)
If mode is expand (the default), the size of the scrolled window will be
expanded to fill its containing frame. The size of the scrolled window
will not be expanded if mode is the empty string.

-shrink mode (shrink, Shrink)
If mode is x, the width of the scrolled window will be reduced to fit its
containing frame. The width of the scrolled window will not be reduced
if mode is the empty string (the default).

240 Chapter 9 – Tix

11 May 2006 10:49

Subwidgets

window
The frame widget that will be scrolled and that will serve as the container
for other widgets.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

Select

tixSelect pathName [option value...]

The tixSelect command creates a new tixSelect mega-widget named path-
Name. The tixSelect class is derived from the tixLabelWidget class. It
pr ovides a set of button subwidgets that provide a radiobox or checkbox style
of selection options for the user.

Widget-Specific Options

-allowzer o boolean (allowZero, AllowZero)
Whether the selection can be empty. When false, at least one button
subwidget must be selected at any time. At creation time, the selection is
alway empty no matter what the value of -allowzer o.

-buttontype type (buttonType, ButtonType)
Type of buttons to be used as subwidgets inside the tixSelect mega-
widget. The default is the standard Tk button widget.

-command tclCommand (command, Command)
Command to call when the current value of the tixSelect mega-widget is
changed. Two arguments will be appended: the name of the button sub-
widget toggled and a boolean value indicating whether that button is
selected.

-disablecallback boolean (disableCallback, DisableCallback)
Whether callbacks (-command) are disabled.

-label string (label, Label)
String to display as the label of the tixSelect mega-widget.

-labelside position (labelside, Labelside)
Wher e to position the label. Valid values are top, left, right, bot-
tom, none, or acrosstop.

-orientation orientation (orientation, Orientation)
Orientation of the button subwidgets. Must be either horizontal or
vertical. This option can only be set at creation.

-padx amount (padX, Pad)
Horizontal padding to add between button subwidgets.

Tix

Tix Mega-widgets — Select 241

11 May 2006 10:49

-pady amount (padY, Pad)
Vertical padding to add between button subwidgets.

-radio boolean (radio, Radio)
Whether only one button subwidget can be selected at any time. This
option can only be set at creation.

-selectedbg color (selectedBg, SelectedBg)
Backgr ound color for all the selected button subwidgets.

-state state (state, State)
Curr ent state of the tixSelect mega-widget. Valid values are normal and
disabled.

-validatecmd tclCommand (validateCmd, ValidateCmd)
Command to call when the current value of the tixSelect mega-widget is
about to change. The candidate new value is appended as an argument.
The command should retur n the value it deems valid.

-value value (value, Value)
The current value of the tixSelect mega-widget, which is a list of names
of the selected button subwidgets.

-variable varName (variable, Variable)
Global variable that should be set to track the value of the tixSelect
mega-widget. Changes directly to the variable will also change the value
of the tixSelect mega-widget.

Subwidgets

label
The label widget.

buttonName
The button widget identified by the name buttonName as created by
the add method.

Methods

pathName add buttonName [option value...]
Add a new button subwidget named buttonName. Available options
ar e those valid for the type of button selected by -buttontype, with the
exclusion of -command and -takefocus.

pathName invoke buttonName
Invoke the button subwidget named buttonName.

Shell

tixShell pathName [option value...]

The tixShell command creates a new tixShell mega-widget named pathName.
The tixShell class is derived from the tixPrimitive class. It provides a
base class for mega-widgets that need a top-level root window.

242 Chapter 9 – Tix

11 May 2006 10:49

Widget-Specific Options

The tixShell mega-widget supports the following options of the top-level
widget. See the toplevel command in Chapter 3.

-backgr ound -bor derwidth -color map
-container -cursor -height
-highlightbackgr ound -highlightcolor -highlightthickness
-r elief -takefocus -use
-scr een -visual -width

The tixShell mega-widget also supports the following option:

-title string (title, Title)
Text to display in the titlebar (if any) of the top-level window.

Subwidgets

root
The top-level widget.

StackWindow

tixStackWindow pathName [option value...]

The tixStackWindow command creates a new tixStackWindow mega-widget
named pathName. The tixStackWindow class is derived from the tix-
VStack class. Similar to the tixNoteBook, it allows the user to select one of
several pages (windows) to be displayed at one time. The user chooses the
page to display by selecting its name from a tixSelect mega-widget.

Widget-Specific Options

-dynamicgeometry boolean (dynamicGeometry,
DynamicGeometry)

Whether the tixStackWindow should dynamically resize to match the size
of the current page. The default is false, in which case the size of the
tixStackWindow will match the size of the largest page.

-ipadx amount (ipadX, Pad)
Amount of internal horizontal padding around the sides of the page sub-
widgets.

-ipady amount (ipadY, Pad)
Amount of internal vertical padding around the sides of the page subwid-
gets.

Subwidgets

tabs
The Stack mega-widget that displays a button for each page.

pageName
The frame widget of a page as retur ned by the add method.

Tix

Tix Mega-widgets — StackWindow 243

11 May 2006 10:49

Methods

pathName add pageName [option value...]
Add a new page to the tixStackWindow and a button to select it in the
Select subwidget. The pageName option will be the name of the page
and the button in the Select subwidget. The pathname of the page’s mas-
ter frame widget is retur ned. Available options are as follows:

-cr eatecmd tclCommand
Command to be called the first time a page is to be displayed.

-label tclCommand
Text label for the button in the Select subwidget.

-raisecmd tclCommand
Command to be called whenever the page is raised by the user.

pathName delete pageName
Delete the given page from the tixStackWindow.

pathName pagecget pageName option
Similar to the cget method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pageconfigur e pageName [option value...]
Similar to the configur e method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pages
Retur n a list of the names of all the pages.

pathName raise pageName
Raise the page pageName.

pathName raised
Retur n the name of the currently raised page.

StdButtonBo x

tixStdButtonBox pathName [option value...]

The tixStdButtonBox command creates a new tixStdButtonBox mega-widget
named pathName. The tixStdButtonBox class is derived from the
tixButtonBox class. It adds four predefined buttons (OK, Apply, Cancel,
Help) for Motif-like dialog boxes.

Widget-Specific Options

-applycmd tclCommand (applyCmd, ApplyCmd)
Command to call when the Apply button is pressed.

-cancelcmd tclCommand (cancelCmd, CancelCmd)
Command to call when the Cancel button is pressed.

244 Chapter 9 – Tix

11 May 2006 10:49

-helpcmd tclCommand (helpCmd, HelpCmd)
Command to call when the Help button is pressed.

-okcmd tclCommand (okCmd, OkCmd)
Command to call when the OK button is pressed.

Subwidgets

apply
The Apply button widget.

cancel
The Cancel button widget.

help
The Help button widget.

ok
The OK button widget.

StdDialogShell

tixStdDialogShell pathName [option value...]

The tixStdDialogShell command creates a new tixStdDialogShell mega-widget
named pathName. The tixStdDialogShell class is derived from the
tixDialogShell class. It provides a base class for dialog mega-widgets that
need a tixStdButtonBox.

Subwidgets

btns
The tixStdButtonBox mega-widget.

Tr ee

tixT ree pathName [option value...]

The tixT ree command creates a new tixTree mega-widget named pathName.
The tixTree class is derived from the tixVTree class. It provides a display
of hierarchical data in a tree form. The user can adjust the view of the tree by
opening (expanding) or closing (collapsing) parts of the tree.

Widget-Specific Options

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-closecmd tclCommand (closeCmd, CloseCmd)
Command to call whenever an expanded entry needs to be closed. The
pathname of the entry is appended as an argument. The default action is
to hide all child entries of the specified entry.

Tix

Tix Mega-widgets — Tree 245

11 May 2006 10:49

-command tclCommand (command, Command)
Command to call whenever the user activates an entry (usually by a dou-
ble click). The pathname of the entry is appended as an argument.

-ignor einvoke boolean (ignoreInvoke, IgnoreInvoke)
If true, an entry is not expanded or collapsed when the entry is acti-
vated. The default is false.

-opencmd tclCommand (openCmd, OpenCmd)
Command to call whenever an expanded entry needs to be opened. The
pathname of the entry is appended as an argument. The default action is
to show all child entries of the specified entry.

Subwidgets

hlist
The tixHList mega-widget that displays the tree. Entries to the tree are
added directly to the hlist subwidget using its add method.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

Methods

pathName autosetmode
Call the setmode method for all entries. If an entry has no children, its
mode is set to none. If an entry has any hidden children, its mode is set
to open. Otherwise, the entry’s mode is set to close.

pathName close entryPath
Close the entry given by entryPath if its mode is close.

pathName getmode entryPath
Retur n the current mode of the entry given by entryPath.

pathName open entryPath
Open the entry given by entryPath if its mode is open.

pathName setmode entryPath mode
Set the mode of the entry given by entryPath to mode. If mode is
open, a (+) indicator is drawn next to the entry. If mode is close, a (-)
indicator is drawn next to the entry. If mode is none (the default), no
indicator is drawn.

Example

tixTree .tree -options { separator "/" }
set hlist [.tree subwidget hlist]
foreach d { Adobe Adobe/Courier Adobe/Helvetica Adobe/Times \

Bitstream Bitstream/Charter Bitstream/Courier } {
$hlist add $d -itemtype imagetext -text [file tail $d] \

-image [tix getimage folder]
}
.tree autosetmode
pack .tree

246 Chapter 9 – Tix

11 May 2006 10:49

VStack

tixVStack pathName [option value...]

The tixVStack command creates a new tixVStack mega-widget named path-
Name. The tixVStack class is derived from the tixPrimitive class. It
serves as a virtual base class for tixNoteBook-style mega-widgets.

Widget-Specific Options

-dynamicgeometry boolean (dynamicGeometry,
DynamicGeometry)

Whether the tixVStack should dynamically resize to match the size of the
curr ent page. The default is false, in which case the size of the tix-
VStack will match the size of the largest page.

-ipadx amount (ipadX, Pad)
Amount of internal horizontal padding around the sides of the page sub-
widgets.

-ipady amount (ipadY, Pad)
Amount of internal vertical padding around the sides of the page subwid-
gets.

Subwidgets

pageName
The frame widget of a notebook page as retur ned by the add method.

Methods

pathName add pageName [option value...]
Add a new page to the tixVStack named pageName. The pathname of
the page’s master frame widget is retur ned. Available options are:

-cr eatecmd tclCommand
Command to be called the first time a page is to be displayed.

-raisecmd tclCommand
Command to be called whenever the page is raised by the user.

pathName delete pageName
Delete the given page from the tixVStack.

pathName pagecget pageName option
Similar to the cget method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pageconfigur e pageName [option value...]
Similar to the configur e method, but operates on the page pageName.
Option may have any of the values accepted by the add method.

pathName pages
Retur n a list of the names of all the pages.

Tix

Tix Mega-widgets — VStack 247

11 May 2006 10:49

pathName raise pageName
Raise the page pageName.

pathName raised
Retur n the name of the currently raised page.

VTree

tixVT ree pathName [option value...]

The tixVT ree command creates a new tixVTree mega-widget named path-
Name. The tixVTree class is derived from the tixScrolledHList class.
It serves as a virtual base class for tree-style mega-widgets.

Widget-Specific Options

-ignor einvoke boolean (ignoreInvoke, IgnoreInvoke)
If true, an entry is not expanded or collapsed when the entry is acti-
vated. The default is false.

Subwidgets

hlist
The tixHList mega-widget that displays the tree.

hsb
The horizontal scrollbar widget.

vsb
The vertical scrollbar widget.

Tix Standard Widgets Over view
Tix adds five new standard widgets to Tk: tixGrid, tixHList, tixInputOnly, tixNote-
BookFrame, and tixTList. These widgets add new features to Tk that could not be
constructed from the standard Tk widgets.

Display Items

Thr ee of the standard widgets added to Tk by Tix are designed to arrange and dis-
play items in a list or grid without regard to how each item is actually drawn. They
simply treat the items as rectangular boxes and leave the drawing part to the item
itself. To this end, all three widgets, called host widgets, support a set of items with
a common interface, called display items.

Tix curr ently has four types of display items: image, text, imagetext, and
window. A C API exists for the programmer to add more item types. The appear-
ance of each item is controlled by option-value pairs specified at creation in a
manner similar to how items of the canvas widget are configur ed. Each host
widget also supports an entryconfigur e method for changing options for existing
items.

248 Chapter 9 – Tix

11 May 2006 10:49

Since several or all items in a host widget will share common display attributes,
Tix supports the concept of display styles. Each display item supports the -style
option, which accepts as a value a display style as retur ned by the tixDisplayStyle
command. The tixDisplayStyle command is described in detail in the “Tix Core
Commands” section, later in this chapter. In short, it defines a style by defining
values for a subset of the style options a display item type supports. Display items
ar e configur ed to use the style using the -style option. Changes to the style at a
later time will be reflected in all display items connected to the style.

Image Items

Display items of the type image ar e used to display Tk images. Image items sup-
port the following options:

-image imageName (image, Image)
Image to display in the item.

-style displayStyle (imageStyle, ImageStyle)
Display style to which to connect the item.

Image items support the following standard widget options as style options:

-activebackgr ound -activefor eground -anchor
-backgr ound -disabledbackgr ound -disabledfor eground
-for eground -padx -pady
-selectbackgr ound -selectfor eground

Imagetext Items

Display items of the type imagetext ar e used to display an image and a text
string together. Imagetext items support the following options:

-bitmap bitmap (bitmap, Bitmap)
Bitmap to display in the item.

-image imageName (image, Image)
Image to display in the item. Overrides the -bitmap option.

-style displayStyle (imageTextStyle, ImageTextStyle)
Display style to which to connect the item.

-showimage boolean (showImage, ShowImage)
Whether image/bitmap should be displayed.

-showtext boolean (showText, ShowText)
Whether text string should be displayed.

-text string (text, Text)
Text string to display in the item.

-underline string (underline, Underline)
Text string to display in the item.

Tix

Tix Standar d Widgets Overview 249

11 May 2006 10:49

Imagetext items support the following standard widget options as style options:

-activebackgr ound -activefor eground -anchor
-backgr ound -disabledbackgr ound -disabledfor eground
-font -foregr ound -justify
-padx -pady -selectbackgr ound
-selectfor eground -wraplength

Imagetext items support the following special style option:

-gap amount (gap, Gap)
Distance in pixels between the bitmap/image and the text string.

Te xt Items

Display items of the type text ar e used to display a simple text string. Text items
support the following options:

-style displayStyle (textStyle, TextStyle)
Display style to which to connect the item.

-text string (text, Text)
Text string to display in the item.

-underline string (underline, Underline)
Text string to display in the item.

Text items support the following standard widget options as style options:

-activebackgr ound -activefor eground -anchor
-backgr ound -disabledbackgr ound -disabledfor eground
-font -foregr ound -justify
-padx -pady -selectbackgr ound
-selectfor eground -wraplength

Window Items

Display items of the type window ar e used to display a subwindow in a host
widget. Window items support the following options:

-style displayStyle (windowStyle, WindowStyle)
Display style to which to connect the item.

-window pathName (window, Window)
Pathname of widget to display as a subwindow in the item.

Window items support the following standard widget options as style options:

-anchor -padx -pady

250 Chapter 9 – Tix

11 May 2006 10:49

Tix Standard Widgets

Gr id

tixGrid pathName [option value...]

The tixGrid command creates a new tixGrid widget named pathName. A tix-
Grid widget presents a 2D grid of cells. Each cell may contain one Tix display
item and can be formatted with a wide range of attributes.

Standard Options

-backgr ound -bor derwidth -cursor
-font -foregr ound -highlightbackgr ound
-highlightcolor -highlightthickness -padx
-pady -relief -selectbackground
-selectbor derwidth -selectfor eground -takefocus
-xscr ollcommand -yscr ollcommand

Widget-Specific Options

-editdonecmd tclCommand (editDoneCmd, EditDoneCmd)
Command to call when the user has edited a grid cell. The column and
row numbers of the cell are appended as arguments.

-editnotifycmd tclCommand (editNotifyCmd, EditNotifyCmd)
Command to call when the user tries to edit a grid cell. The column and
row numbers of the cell are appended as arguments. The command
should retur n a boolean value to indicate whether the cell is editable.

-for matcmd tclCommand (formatCmd, FormatCmd)
Command to call when the grid cells need to be formatted on the screen.
Five arguments are appended: Type x1 y1 x2 y2. type is the logical
type of the region. It may be one of x-region (the horizontal margin),
y-region (the vertical margin), s-region (ar ea wher e margins are
joined), or main (any other region). The last four arguments give the
column and row numbers of the top left cell and bottom right cell of the
af fected region.

-height integer (height, Height)
Number of rows in the grid. The default is 10.

-itemtype tclCommand (itemType, ItemType)
The default item type for a cell when set with the set method. The default
is text.

-leftmar gin integer (leftMargin, LeftMargin)
Number of cell columns, starting at column 0, that make up the vertical
margin. The default is 1. Left margin columns are not scrolled.

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default bindings for
manipulation of the selection. Supported styles are single, browse,

Tix

Tix Standar d Widgets — Grid 251

11 May 2006 10:49

multiple, and extended. Any arbitrary string is allowed, but the pro-
grammer must extend the bindings to support it.

-selectunit tclCommand (selectUnit, SelectUnit)
The unit of selection. Valid values are cell, column, or row.

-sizecmd tclCommand (sizeCmd, SizeCmd)
Command to call whenever the grid is resized or the size of a row or col-
umn is changed with the size method.

-state tclCommand (state, State)
Curr ent state of the grid. Valid values are normal and disabled.

-topmar gin tclCommand (topMargin, TopMargin)
Number of cell rows, starting from row 0, that make up the horizontal
margin. The default is 1. Rows in the top margin are not scrolled.

-width integer (width, Width)
Number of columns in the grid. The default is 4.

Methods

pathName anchor operation [args...]
Manipulate the anchor cell of the grid. Available operations are:

clear
Make no cell the anchor cell.

get
Retur n the column and row of the anchor cell as a two-item list. A
result of {-1 -1} indicates there is no anchor cell.

set x y
Set the anchor cell to the cell at column x and row y.

pathName delete what from [to]
Delete specified rows or columns. What may be row or column. If to
is omitted, only the row (or column) at from is deleted. Otherwise, all
rows (or columns) from position from thr ough to, inclusive, are
deleted.

pathName edit apply
Un-highlight any cell currently being edited and apply the changes.

pathName edit set x y
Highlight the cell at column x, row y for editing.

pathName entrycget x y option
Similar to the cget method, but operates on the cell at x y. Option may
have any of the values accepted by the set method used for that cell.

pathName entryconfigur e x y [option value...]
Similar to the configur e method, but operates on the cell at x y.
Option may have any of the values accepted by the set method for that
cell.

252 Chapter 9 – Tix

11 May 2006 10:49

pathName for mat borderType x1 y1 x2 y2 [option value...]
For mat the grid cells contained in the rectangular region with its top left
cell at x1,y1 and bottom right cell at x2,y2. This command can only be
called from the format command handler set with the -for matcmd option.
The borderType argument may be either border or grid. The fol-
lowing options are supported by both border types:

-backgr ound color (background, Background)
Backgr ound color for 3D borders when border type is border.
When -filled is true, the background of the cell is also drawn in
this color for both types. Otherwise, the tixGrid widget’s background
color is used.

-bor derwidth amount (borderWidth, BorderWidth)
Width of the border.

-filled boolean (filled, Filled)
Whether the -backgr ound and -selectbackgr ound options should
override the tixGrid widget’s options. The default is false.

-selectbackgr ound color (selectBackground, Foreground)
The background color of the cell when it is selected. Used only
when -filled is true.

-xon xon (xon, Xon)
Using the -xon, -xof f, -yon, and -yof f options, borders can be drawn
ar ound gr oups of cells. The given region is divided into subregions,
starting from the top left cell, that are xon+xoff cells wide by
yon+yoff cells high. Within this subregion, the border is drawn
only around the rectangular regions in the top left corner that are
xon cells wide and yon cells high. The default values are 1 for -xon
and -yon and 0 for -xof f and -yof f, which results in borders being
drawn around each individual cell.

-xof f xoff (xoff, Xoff)
See -xon.

-yon yon (yon, Yon)
See -xon.

-yof f yoff (yoff, Yoff)
See -xon.

When borderType is border, cell borders are standard Tk 3D borders.
Available options are as follows:

-r elief relief (relief, Relief)
3D effect for border.

Tix

Tix Standar d Widgets — Grid 253

11 May 2006 10:49

When borderType is grid, cell borders are plain grid lines. Available
options are as follows:

-anchor anchorPos (anchor, Anchor)
For grid lines, only one or two of the border’s sides are actually
drawn. AnchorPos identifies on which sides of the rectangular
region the grid lines are drawn. For example, ne states that grid
lines are drawn on the top and right sides, whereas e states that a
grid line is drawn only on the right side.

-bor dercolor color (borderColor, BorderColor)
Color of the grid lines.

pathName info exists x y
Retur n a 1 if the cell at row x, column y contains a display item. Other-
wise, retur n 0.

pathName move what from to offset
Move the specified rows or columns. What may be row or column.
Move rows (or columns) from position from thr ough to, inclusive, by
the distance offset.

pathName near est x y
Retur n the row and column of the cell nearest to coordinates x y inside
the grid.

pathName set x y [-itemtype type] [option value...]
Cr eate a new display item at row x, column y. If given, type specifies
the type of the display item. Valid options are those allowed for the
selected display item type. If a display item already exists in the cell, it
will be deleted automatically.

pathName size what index [option value...]
Query or set the size of the row or column. What may be row or col-
umn. Index may be the integer position of the row (or column) or the
string default, which sets the default size for all rows (or columns).
Available options are as follows:

-pad0 pixels
Padding to the left of a column or the top of a row.

-pad1 pixels
Padding to the right of a column or the bottom of a row.

-size amount
Width of a column or height of a row. Amount may be a real num-
ber in screen units or one of the following:

auto
Autosize to largest cell in column or row.

default
Use the default size (10 times the average character widths for
columns and 1.2 times the average character height for rows).

254 Chapter 9 – Tix

11 May 2006 10:49

nchar
Set the size to n times the average character width for columns
and n times the average character height for rows.

pathName unset x y
Remove the display item from the cell at row x, column y.

pathName xview
Retur n a two-element list describing the currently visible horizontal
region of the widget. The elements are real numbers repr esenting the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget. Columns in the left margin are not part of the
scr ollable region.

pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Horizontally scroll the visible columns outside the left margin by num-
ber. If what is units, then number is in units of columns. If what is
pages, then number is in units of the visible region’s width.

pathName yview
Retur n a two-element list describing the currently visible vertical region
of the widget. The elements are real numbers repr esenting the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget. Rows in the top margin are not part of the scrollable
region.

pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Vertically scroll the visible rows outside the top margin by number. If
what is units, then number is in units of rows. If what is pages, then
number is in units of the visible region’s height.

Example

proc SimpleFormat {w area x1 y1 x2 y2} {
array set bg {s-margin gray65 x-margin gray65 \

y-margin gray65 main gray20 }
case $area {

main { $w format grid $x1 $y1 $x2 $y2 -anchor se -fill 0 \
-relief raised -bd 1 -bordercolor $bg($area)

}
{x-margin y-margin s-margin} {

$w format border $x1 $y1 $x2 $y2 \
-fill 1 -relief raised -bd 1 -bg $bg($area)

}
}

}

Tix

Tix Standar d Widgets — Grid 255

11 May 2006 10:49

set grid [[tixScrolledGrid .sg -bd 0] subwidget grid]
$grid configure -formatcmd "SimpleFormat $grid"
for {set x 0} {$x < 10} {incr x} {

$grid size col $x -size auto
for {set y 0} {$y < 10} {incr y} {

$grid set $x $y -itemtype text -text ($x,$y)
}

}
$grid size col 0 -size 10char
pack .sg -expand true -fill both

HList

tixHList pathName [option value...]

The tixHList command creates a new tixHList widget named pathName. A
tixHList is used to display any data that has a hierarchical structure (e.g.,
filesystem directory trees).

Standard Options

-backgr ound -bor derwidth -cursor
-font -foregr ound -highlightbackgr ound
-highlightcolor -highlightthickness -padx
-pady -relief -selectbackground
-selectbor derwidth -selectfor eground -takefocus
-xscr ollcommand -yscr ollcommand

Widget-Specific Options

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-columns integer (columns, Columns)
Number of columns in the tixHList. Can be set at creation only. Column
numbering begins at 0. List entries alway appear in column 0. Arbitrary
display items can be placed in the columns to the right of an entry (e.g.,
file sizes and owner’s name).

-command tclCommand (command, Command)
Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-drawbranch boolean (drawBranch, DrawBranch)
Whether branch lines should be drawn to connect list entries to their par-
ents.

-header boolean (header, Header)
Whether headers should be displayed at the top of each column.

-height amount (height, Height)
Height for the window in lines of characters.

256 Chapter 9 – Tix

11 May 2006 10:49

-indent amount (indent, Indent)
Horizontal indentation between a list entry and its children.

-indicator boolean (indicator, Indicator)
Whether indicators should be displayed.

-indicator cmd tclCommand (indicatorCmd, IndicatorCmd)
Command to call when an entry’s indicator is activated. The entryPath
of the entry is appended as an argument.

-itemtype type (itemType, ItemType)
The default item type for a new entry. The default is text.

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default bindings for
manipulation of the selection. Supported styles are single, browse,
multiple, and extended. Any arbitrary string is allowed, but the pro-
grammer must extend the bindings to support it.

-separator char (separator, Separator)
Character that serves as path separator for entry pathnames. The default
is the “.” character.

-sizecmd tclCommand (sizeCmd, SizeCmd)
Command to call whenever the tixHList changes its size.

-wideselection boolean (wideSelection, WideSelection)
Whether selection highlight extends the entire width of the tixHList or
just fits the selected entry. Default is true.

-width amount (width, Width)
Width of the tixHList in characters.

Methods

pathName add entryPath [option value...]
Add a new top-level list entry with pathname entryPath. This path-
name is also the method’s retur n value. Available options are those
appr opriate to the selected display item type, with these additions:

-at index
Insert the new entry at position index, an integer starting from 0.

-after afterWhich
Insert the new entry after the entry afterWhich.

-befor e beforeWhich
Insert the new entry before the entry beforeWhich.

-data string
String to associate with the new entry that will be retur ned by the
info method.

-itemtype type
Display item type for the new entry. Otherwise, the type is taken
fr om the tixHList’s -itemtype option.

Tix

Tix Standar d Widgets — HList 257

11 May 2006 10:49

-state state
Whether entry can be selected and invoked. State must be either
normal or disabled.

pathName addchild parentPath
Add a new child entry underneath entry parentPath. If parentPath
is the empty string, a top-level entry is created. The pathname of the new
entry is retur ned. Available options are the same as for the add method.

pathName anchor set entryPath
Set the selection anchor to the entry entryPath.

pathName anchor clear
Make it so no entry is the selection anchor.

pathName column width col [[-char] width]
Set the width of column col to width, which is in screen units. If -char
is specified, the width is in characters. If width is the empty string, the
column is autosized to the widest element. If the only argument given is
col, the current width of column col is retur ned in pixels.

pathName delete what [entryPath]
Delete one or more entries. What may be one of the following:

all
Delete all of the entries in the tixHList.

entry
Delete the entry entryPath and all of its children.

offsprings
Delete all the children of entry entryPath.

siblings
Delete all entries that share the same parent as the entry entry-
Path (which is not deleted).

pathName entrycget entryPath option
Similar to the cget method, but operates on the entry entryPath.
Option may have any of the values accepted by the entry’s display item
type.

pathName entryconfigur e entryPath [option value...]
Similar to the configur e method, but operates on the entry entryPath.
Option may have any of the values accepted by the entry’s display item
type.

pathName header cget col option
Similar to the cget method, but operates on the header for column col.
Option may have any of the values accepted by the header create
method.

pathName header configure col [option value...]
Similar to the configur e method, but operates on the header for column
col. Option may have any of the values accepted by the header create
method.

258 Chapter 9 – Tix

11 May 2006 10:49

pathName header create col [-itemtype type] [option value...]
Cr eate a new display item to serve as the header for column col. If
type is not given, the default is that of the tixHList’s -itemtype option.
Available options are those appropriate to the selected display item type,
with the following additions:

-bor derwidth amount (borderWidth, BorderWidth)
Border width for header item.

-headerbackgr ound color (headerBackground, Background)
Backgr ound color for header item.

-r elief relief (relief, Relief)
Relief for header item.

pathName header delete col
Delete the header item for column col.

pathName header exists col
Retur n 1 if a header item exists for column col, 0 otherwise.

pathName header size col
Retur n the size of the header in column col as a two-item list of its
width and height, or an empty list if no header item exists.

pathName hide entry entryPath
Hide the list entry entryPath.

pathName indicator cget entryPath option
Similar to the cget method, but operates on the indicator for entry
entryPath. Option may have any of the values valid for the display
item type of the indicator.

pathName indicator configure entryPath [option value...]
Similar to the configur e method, but operates on the indicator for entry
entryPath. Option may have any of the values valid for the display
item type of the indicator.

pathName indicator create entryPath [-itemtype type] [option value...]
Cr eate a new display item to be the indicator for the entry entryPath.
If type is not given, the default is that of the tixHList’s -itemtype option.
Available options are those appropriate to the selected display item type.

pathName indicator delete entryPath
Delete the indicator display item for the entry entryPath.

pathName indicator exists entryPath
Retur n 1 if entry entryPath has an indicator, 0 otherwise.

pathName indicator size entryPath
Retur n the size of the indicator for the entry entryPath as a two-item
list of its width and height (or an empty list if no indicator exists).

Tix

Tix Standar d Widgets — HList 259

11 May 2006 10:49

pathName info anchor
Retur n the pathname of the entry that is the current anchor.

pathName info bbox entryPath
Retur n a coordinate list of the form {x1 y1 x2 y2} giving an approxi-
mate bounding box for the currently visible area of entry entryPath.

pathName info children [entryPath]
If entryPath is given, retur n a list of that entry’s children. Otherwise,
retur n a list of the top-level entries.

pathName info data entryPath
Retur n the associated data string for entry entryPath.

pathName info exists entryPath
Retur n 1 if an entry with pathname entryPath exists, 0 otherwise.

pathName info hidden entryPath
Retur n 1 if the entry entryPath is hidden, 0 otherwise.

pathName info next entryPath
Retur n the pathname of the entry immediately below entry entryPath
in the list. An empty string is retur ned if entryPath is the last entry.

pathName info parent entryPath
Retur n the pathname of the entry that is the parent of entry entryPath.
An empty string is retur ned if entryPath is a top-level entry.

pathName info pref entryPath
Retur n the pathname of the entry immediately above entry entryPath
in the list. An empty string is retur ned if entryPath is the first entry.

pathName info selection
Retur n a list of the selected entries in the tixHList.

pathName item cget entryPath option
Similar to the cget method, but operates on the display item in column
col on the same line as entry entryPath. Option may have any of
the values valid for the display item’s type.

pathName item configure entryPath col [option value...]
Similar to the configur e method, but operates on the display item in col-
umn col on the same line as entry entryPath. Option may have any
of the values valid for the display item’s type.

pathName item create entryPath col [-itemtype type] [option
value...]
Cr eate a new display item in column col on the same line as entry
entryPath. If type is not given, the default is that of the tixHList’s
-itemtype option. Available options are those appropriate to the selected
display item type. If col is 0, the display item of entry entryPath is
replaced with the new item.

260 Chapter 9 – Tix

11 May 2006 10:49

pathName item delete entryPath col
Delete the display item in column col that is on the same line as entry
entryPath. Col must be greater than 0. Use the delete entry method to
delete the entry.

pathName item exists entryPath col
Retur n 1 if a display item in column col exists on the same line as entry
entryPath, 0 otherwise.

pathName near est y
Retur n the pathname of the entry nearest to the y-coordinate y.

pathName see entryPath
Adjust the view in the tixHList so the entry entryPath is visible.

pathName selection clear [from [to]]
With no arguments, all entries are deselected. If only from is given, just
the entry with pathname from is deselected. If to is also given, all
entries from the entry from up to and including the entry to ar e dese-
lected.

pathName selection get
Retur n a list of the selected entries in the tixHList.

pathName selection includes entryPath
Retur n 1 if entry entryPath is selected, 0 otherwise.

pathName selection set from [to]
If only from is given, just the entry with pathname from is selected. If
to is also given, all entries from the entry from up to and including the
entry to ar e selected.

pathName show entry entryPath
If entry entryPath is hidden, unhide it.

pathName xview
Retur n a two-element list describing the currently visible horizontal
region of the widget. The elements are real numbers repr esenting the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget. Columns in the left margin are not part of the
scr ollable region.

pathName xview entryPath
Adjust the view so that the entry entryPath is aligned at the left edge
of the window.

pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Scr oll the view horizontally in the window by number. If what is
units, then number is in units of characters. If what is pages, then
number is in units of the visible region’s width.

Tix

Tix Standar d Widgets — HList 261

11 May 2006 10:49

pathName yview
Retur n a two-element list describing the currently visible vertical region
of the widget. The elements are real numbers repr esenting the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget. Rows in the top margin are not part of the scrollable
region.

pathName yview entryPath
Adjust the view so that the entry entryPath is aligned at the top edge
of the window.

pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Scr oll the view vertically in the window by number. If what is units,
then number is in units of characters. If what is pages, then number is
in units of the visible region’s height.

InputOnly

tixInputOnly pathName [option value...]

The tixInputOnly command creates a new tixInputOnly widget named path-
Name. TixInputOnly widgets are not visible to the user. The only purpose of a
tixInputOnly widget is to accept input from the user. It is useful for intercept-
ing events to other widgets when mapped invisibly on top of them.

Standard Options

-cursor -width -height

NoteBookFrame

tixNoteBookFrame pathName [option value...]

The tixNoteBookFrame command creates a new tixNoteBookFrame widget
named pathName. It provides page tabs for use in tixNoteBook-style mega-
widgets and serves as the container for any page frames to be controlled. It is
up to the programmer to set up event bindings to properly connect page tabs
and frames.

Standard Options

-backgr ound -bor derwidth -cursor
-disabledfor eground -font -for eground
-height -relief -takefocus
-width

262 Chapter 9 – Tix

11 May 2006 10:49

Widget-Specific Options

-backpagecolor color (backPageColor, BackPageColor)
Color for the background behind the page tabs.

-focuscolor color (focusColor, FocusColor)
Color for the tab focus highlight.

-inactivebackgr ound color (inactiveBackground, Background)
Backgr ound color for inactive tabs. The active tab always has the same
backgr ound color as the tixNoteBookFrame.

-slave boolean (slave, Slave)
Whether the tixNoteBookFrame is a slave and therefor e should not make
its own geometry requests.

-tabpadx amount (tabPadX, Pad)
Horizontal padding around the text labels on the page tabs.

-tabpady amount (tabPadY, Pad)
Vertical padding around the text labels on the page tabs.

Methods

pathName activate tabName
Make the page tab tabName the active tab and also give it the tab focus.
Note that this does not raise the page frame associated with the tab. If
tabName is the empty string, no tab will be active or have the tab focus.

pathName add tabName [option value...]
Add a new page tab named tabName to the tixNoteBookFrame. It is up
to the programmer to create a new frame widget to associate with the
page tab. The frame must be a descendant of the tixNoteBookFrame.
Available options are as follows:

-anchor anchorPos
Specifies how the information in a page’s tab (e.g., text or bitmap)
should be anchored. Must be one of n, nw, w, sw, s, se, e, ne, or
center.

-bitmap bitmap
Bitmap to display in tab.

-image imageName
Name of image to display in tab.

-justify position
How multiple lines of text in the tab should be justified. Must be
left, right, or center.

-label string
Text to display in the tab. Overrides -image and -bitmap.

-state state
Whether page tab can be made active. Must be either normal or
disabled.

Tix

Tix Standar d Widgets — NoteBookFrame 263

11 May 2006 10:49

-underline index
Integer index (starting from 0) of character in text label to underline
in the tab. Used by default bindings to set up keyboard traversal of
tabs.

-wraplength chars
Maximum line length of text in the tab. If value is 0 or less, no wrap-
ping is done.

pathName delete tabName
Delete the page tab tabName.

pathName focus tabName
Give the page tab tabName the tab focus. If tabName is the empty
string, no tab will have the focus.

pathName geometryinfo
Retur n a two-item list of the form {width height} describing the size of
the area containing the page tabs.

pathName identify x y
Retur n the name of the page tab that contains the coordinates x y.
Retur ns an empty string if the coordinates are outside the tab area.

pathName info what
Retur n infor mation about what in the tixNoteBookFrame. Valid values
for what ar e as follows:

pages
Retur n a list of the page tab names in the tixNoteBookFrame.

active
Retur n the name of the currently active page tab.

focus
Retur n the name of the page tab that currently has the focus.

focusnext
Retur n the name of the page tab that lies in the focus ring after the
curr ent page tab with the focus.

focusprev
Retur n the name of the page tab that lies in the focus ring before the
curr ent page tab with the focus.

pathName pagecget tabName option
Similar to the cget method, but operates on the page tab tabName.
Option may have any of the values accepted by the add method.

pathName pageconfigur e tabName [option value...]
Similar to the configur e method, but operates on the page tab tabName.
Option may have any of the values accepted by the add method.

264 Chapter 9 – Tix

11 May 2006 10:49

TList

tixTList pathName [option value...]

The tixTList command creates a new tixTList widget named pathName.

Standard Options

-backgr ound -bor derwidth -cursor
-font -foregr ound -highlightcolor
-highlightthickness -padx -pady
-r elief -selectbackgr ound -selectbor derwidth
-selectfor eground -takefocus -xscr ollcommand
-yscr ollcommand

Widget-Specific Options

-br owsecmd tclCommand (browseCmd, BrowseCmd)
Command to call whenever the user browses an entry (usually by a sin-
gle click). The pathname of the entry is appended as an argument.

-command tclCommand (command, Command)
Command to call whenever the user browses an entry (usually by a dou-
ble click). The pathname of the entry is appended as an argument.

-height amount (height, Height)
Height for the window in lines of characters.

-itemtype type (itemType, ItemType)
The default item type for a new entry. The default is text.

-orient orient (orient, Orient)
Order for tabularizing the list entries. Orient may be vertical
(entries are arranged from top to bottom in columns) or horizontal
(entries are arranged from left to right in rows).

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default bindings for
manipulation of the selection. Supported styles are single, browse,
multiple, and extended. Any arbitrary string is allowed, but the pro-
grammer must extend the bindings to support it.

-sizecmd tclCommand (sizeCmd, SizeCmd)
Command to call whenever the tixTList changes its size.

-state state (state, State)
Whether tixTList entries can be selected or activated. State must be
either normal or disabled.

-width amount (width, Width)
Width of the tixTList in characters.

Tix

Tix Standar d Widgets — TList 265

11 May 2006 10:49

Methods

pathName anchor set index
Set the selection anchor to the entry at index.

pathName anchor clear
Make it so no entry is the selection anchor.

pathName delete from [to]
Delete all list entries between the indices from and to, inclusive. If to is
omitted, only the entry at from is deleted.

pathName entrycget index option
Similar to the cget method, but operates on the entry at index. Option
may have any of the values accepted by the insert method used to create
the entry.

pathName entryconfigur e index [option value...]
Similar to the configur e method, but operates on the entry at index.
Option may have any of the values accepted by the insert method used
to create the entry.

pathName insert index [-itemtype type] [option value...]
Cr eate a new entry at position index. If type is not given, the default is
that of the tixTList’s -itemtype option. Available options are those appro-
priate to the selected display item type, with the following addition:

-state state
State of the individual entry. Must be either normal or disabled.

pathName info anchor
Retur n the pathname of the entry that is the current anchor.

pathName info selection
Retur n a list of the selected entries in the tixTList.

pathName near est x y
Retur n the index of the entry nearest to the coordinates x y.

pathName see index
Adjust the view in the tixTList so the entry at index is visible.

pathName selection clear [from [to]]
With no arguments, all entries are deselected. If only from is given, just
the entry at index from is deselected. If to is also given, all entries from
the entry at from up to and including the entry at to ar e deselected.

pathName selection includes index
Retur n 1 if the entry at index is selected, 0 otherwise.

pathName selection set from [to]
If only from is given, just the entry at index from is selected. If to is
also given, all entries from the entry at from up to and including the
entry at to ar e selected.

266 Chapter 9 – Tix

11 May 2006 10:49

pathName xview
Retur n a two-element list describing the currently visible horizontal
region of the widget. The elements are real numbers repr esenting the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget. Columns in the left margin are not part of the
scr ollable region.

pathName xview index
Adjust the view so that the entry at index is aligned at the left edge of
the window.

pathName xview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Scr oll the view horizontally in the window by number. If what is
units, then number is in units of characters. If what is pages, then
number is in units of the visible region’s width.

pathName yview
Retur n a two-element list describing the currently visible vertical region
of the widget. The elements are real numbers repr esenting the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget. Rows in the top margin are not part of the scrollable
region.

pathName yview index
Adjust the view so that the entry at index is aligned at the top edge of
the window.

pathName yview moveto fraction
Adjust the visible region of the widget so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Scr oll the view vertically in the window by number. If what is units,
then number is in units of characters. If what is pages, then number is
in units of the visible region’s height.

Tix Core Commands
This section describes the commands added by the Tix extension that do not cre-
ate widgets or mega-widgets. These commands cover new mega-widget class defi-
nition, method writing, and configuration of the Tix internal state.

Tix

Tix Cor e Commands 267

11 May 2006 10:49

tix

tix operation [arg arg...]

Access aspects of Tix’s internal state and the Tix application context.

Application- Context Options

Several of Tix’s internal settings are manipulated using the cget and configur e
operations, which operate in the same manner as the identically named
widget methods. The settings that can be set this way are as follows:

-debug boolean
Whether Tix widget should run in debug mode.

-fontset fontSet
The font set to use as defaults for Tix widgets. Valid values are TK (stan-
dard Tk fonts), 12Point, and 14Point (the default).

-scheme scheme
Color scheme to use for the Tix widgets. Valid values are TK (standard Tk
colors), Gray, Blue, Bisque, SGIGray, and TixGray (the default).

-schemepriority priority
Priority level of the options set by the Tix schemes. See the Tk option
command for a discussion of priority levels. The default is 79.

Operations

tix addbitmapdir directory
Add directory to the list of directories searched by the getimage and
getbitmap operations for bitmap and image files.

tix filedialog [class]
Retur ns the pathname of a file selection mega-widget that can be shared
among differ ent modules of the application. The mega-widget will be
cr eated when this operation is first called. The class argument may be
used to specify the mega-widget class of the file selection dialog, either
tixFileSelectDialog (the default) or tixExFileSelectDialog.

tix getbitmap name
Search the bitmap directories for a file with the name name.xbm or
name. If found, retur n the full pathname to the file, prefixed with an @
character to make the result suitable for -bitmap options.

tix getimage name
Search the bitmap directories for a file with the name name.xpm,
name.gif, name.ppm, name.xbm, or name. If found, the name of a newly
cr eated Tk image is retur ned, suitable for use with -image options.

tix option get option
Retur n the setting of a Tix scheme option. Available options are:

-active_bg -active_fg -bg
-bold_font -dark1_bg -dark1_fg

268 Chapter 9 – Tix

11 May 2006 10:49

-dark2_bg -dark2_fg -disabled_fg
-fg -fixed_font -font
-inactive_bg -inactive_fg -input1_bg
-input2_bg -italic_font -light1_bg
-light1_fg -light2_bg -light2_fg
-menu_font -output1_bg -output2_bg
-select_bg -select_fg -selector

tix resetoptions newScheme newFontSet [newSchemePriority]
Reset the scheme and font set of the Tix application context to
newScheme and newFontSet. NewSchemePriority can be speci-
fied to change the priority level of the scheme options in the Tk options
database. This command is preferr ed to using tix configure for the
-scheme, -fontset, and -schemepriority settings.

CallMethod

tixCallMethod pathName method [arg arg...]

Invoke method method of the mega-widget pathName with the given argu-
ments. Most commonly used by a base class to call a method that a derived
class may have overridden.

ChainMethod

tixChainMethod pathName method [arg arg...]

Invoke the method method with the given arguments in the context of the
superclass of mega-widget pathName. Most commonly used by a derived
class to call a method of its superclass that it has overridden.

Class

tixClass className { ... }

Define a new class in the Tix Intrinsics named className. TixClass is almost
identical to the tixWidgetClass command, except that it is not associated with
a widget. The new command that is created, named className, ther efor e
lacks widget-related methods, such as subwidget. Also, there are no methods
such as initWidgetRec that must be defined for the class.

Ther e is one syntactical differ ence compar ed with the tixWidgetClass com-
mand. Each item in the -configspec list for tixClass is only a two- or three-
element list: the option, the default value, and an optional verification com-
mand. One example of a nonwidget Tix class is the tix command, which is
defined at runtime using the tixClass command.

Descendants

tixDescendants window

Retur n a list of all the descendants of the widget window.

Tix

Tix Cor e Commands — Descendants 269

11 May 2006 10:49

Destroy

tixDestr oy objectName

Destr oy the Tix object objectName, which must be an instance of class
defined with tixClass or tixWidgetClass. The Destructor method of the object
is called first, if defined.

Disa bleAll

tixDisableAll window

Set the -state option of window and all its descendants that have a -state
option to disabled.

DisplayStyle

tixDisplayStyle itemType [-stylename styleName] [-r efwindow
refWindow] [option value...]

Cr eate a new display item style of type itemType. The name of the new
style will be styleName, if specified. Otherwise, a unique name is generated
and retur ned. Valid options are those defined for the chosen display item
type.

If refWindow is specified, the default values for the style will be taken from
the matching options of the window refWindow. Note that refWindow
need not exist; however, any options specified for it in the Tk resource
database will be used. If refWindow is omitted, the main window is used.

A new Tix object is created with the same name as the style (i.e., style-
Name). This object has the following methods:

styleName cget option
Retur n the current value of the configuration option option for the dis-
play style.

styleName configur e [option [value [option value...]]]
Query or modify the configuration options of the display style in the
same manner as the standard widget configur e method.

styleName delete
Destr oy the display style object.

Ena bleAll

tixEnableAll window

Set the -state option of window and all its descendants that have a -state
option to normal.

270 Chapter 9 – Tix

11 May 2006 10:49

Form

tixFor m operation [arg arg...]

Communicate with the Tix Form geometry manager that arranges widgets
inside their master according to various attachment rules. The tixFor m com-
mand can take the following forms:

tixFor m slave [slave...] [options]
Same as tixFor m configur e.

tixFor m check master
Retur n 1 if ther e is a circular dependency in the attachments for
master s slaves, 0 otherwise.

tixFor m configur e slave [slave...] [options]
Configur e how the slave window slave should be managed by its Form
geometry master. Supported options are as follows:

-bottom attachment
Attachment for bottom edge of the slave. (Abbr eviation: -b)

-bottomspring weight
Weight of the spring at the bottom edge of the slave. (Abbr eviation:
-bs)

-fill fill
Dir ection slave should fill. Fill may be x, y, both, or none.

-in master
Insert the slave in master window master, which must either be the
slave’s parent (the default) or a descendant of the slave’s parent.

-left attachment
Attachment for left edge of the slave. (Abbr eviation: -l)

-leftspring weight
Weight of the spring at the left edge of the slave. (Abbr eviation: -ls)

-padbottom amount
How much external padding to add to the bottom side of the slave.
(Abbr eviation: -bp)

-padleft amount
How much external padding to add to the left side of the slave.
(Abbr eviation: -lp)

-padright amount
How much external padding to add to the right side of the slave.
(Abbr eviation: -rp)

-padtop amount
How much external padding to add to the top side of the slave.
(Abbr eviation: -tp)

Tix

Tix Cor e Commands — Form 271

11 May 2006 10:49

-padx amount
How much external padding to add to both the right and left sides
of the slave.

-pady amount
How much external padding to add to both the top and bottom
sides of the slave.

-right attachment
Attachment for right edge of the slave. (Abbr eviation: -r)

-rightspring weight
Weight of the spring at the right edge of the slave. (Abbr eviation:
-rs)

-top attachment
Attachment for top edge of the slave. (Abbr eviation: -t)

-topspring weight
Weight of the spring at the top edge of the slave. (Abbr eviation: -ts)

tixFor m for get slave [slave...]
Remove each given slave from the list of slaves managed by its master
and unmap its window. The grid configuration options for each slave
ar e forgotten.

tixFor m grid master [xSize ySize]
Set the number of horizontal and vertical grid cells in the master window
master to xSize and ySize, respectively. If the grid sizes are omitted,
the current setting is retur ned as a list of the form {xSize ySize}.

tixFor m info slave
Retur n the current configuration state of the slave slave in the same
option-value form given to tixFor m configur e. The first two elements will
be -in master.

tixFor m slaves master
Retur n a list of all the slaves managed by the master window master.

Attachments

The attachment argument to the -right, -left, -top, and -bottom configuration
options takes the general form {anchorPoint offset}. The second ele-
ment, offset, is given in screen units. If positive, it indicates a shift in posi-
tion to the right of or down from the anchor point. If negative, it indicates a
shift in position to the left of or up from the anchor point.

The first element, anchorPoint, specifies where the slave will be positioned
on the master. It may have the following forms:

%gridline
The slave’s side is attached to an imaginary grid line. By default, the
master window is divided into 100×100 grid cells. An anchor point of %0
specifies the first grid line (the left or top edge of the master), and an
anchor point of %100 specifies the last grid line (the right or bottom edge

272 Chapter 9 – Tix

11 May 2006 10:49

of the master). The number of grid cells can be changed with the tix-
For m grid method.

pathName
The slave’s side is aligned to the opposite side of the window path-
Name, which must also be a slave. For example, a configuration
option-value of -top {.a 0} will align the top side of the slave at the
same vertical position as the bottom side of the slave .a.

&pathName
The slave’s side is aligned with the same side of the window pathName,
which must also be a slave. For example, a configuration option-
value of -top {.a 0} will align the top side of the slave at the same verti-
cal position as the top side of the slave .a.

none
The slave’s side is attached to nothing. When none is the anchor point,
the offset must be 0. The side is unconstrained and its position deter-
mined from the attachments for the other sides and the slave’s natural
size.

The value attachment can be abbreviated as a single element. If the value
can be interpreted as an anchor point, the offset defaults to 0. If it can be
interpr eted as an offset, the anchor point defaults to %0 for positive offsets
and to %100 (or whatever the maximum grid line is) for negative offsets.

GetBoolean

tixGetBoolean [-nocomplain] string

Retur n 0 if the string is a valid Tcl boolean value for false. Retur n 1 if the
string is a valid Tcl boolean value for true. Otherwise, an error is generated
unless -nocomplain is specified, in which case a 0 is retur ned.

GetInt

tixGetInt [-nocomplain] [-trunc] string

Convert string into an integer if it is a valid Tcl numerical value. Otherwise, an
err or is generated unless -nocomplain is specified, in which case a 0 is
retur ned. By default, the value is rounded to the nearest integer. If -trunc is
specified, the value is truncated instead.

Mwm

tixMwm operation [arg arg...]

Communicate with mwm, the Motif window manager. The tixMwm command
can take the following forms:

Tix

Tix Cor e Commands — Mwm 273

11 May 2006 10:49

tixMwm decoration pathName [option [value [option value...]]]
Query or modify the Motif window decoration options for the top-level
window pathName in the same manner as the standard widget configur e
method. Valid options are -bor der, -menu, -maximize, -minimize,
-r esizeh, and -title.

tixMwm ismwmrunning pathName
Retur n 1 if mwm is running on pathName’s screen, 0 otherwise.

tixMwm protocol pathName
Retur n a list of all protocols associated with the top-level window path-
Name.

tixMwm protocol pathName activate protocol
Activate the given mwm pr otocol in mwm’s menu.

tixMwm protocol pathName add protocol menuMsg
Add a new mwm pr otocol named protocol and add an item in mwm’s
menu according to menuMsg that will invoke the protocol. MenuMsg is a
valid X resource for a mwm menu item. The protocol invocation can be
caught using the Tk wm protocol command.

tixMwm protocol pathName deactivate protocol
Deactivate the given protocol in mwm’s menu.

tixMwm protocol pathName delete protocol
Delete the given protocol from mwm’s menu.

PopGrab

tixPopGrab

Release the last grab set with the tixPushGrab command and pop it off the
Tix grab stack.

PushGrab

tixPushGrab [-global] window

Identical to the standard Tk grab set command, with the added feature that
the grab is placed on Tix’s internal grab stack. The tixPopGrab command
must be used to release the grab.

WidgetClass

tixWidgetClass className {option value ... }

Define a new mega-widget class named className. A Tcl command named
className is also defined, which will create new instances of the class.
Available options are as follows:

274 Chapter 9 – Tix

11 May 2006 10:49

-alias aliasList
Aliases for the options defined by -flag. Each element of aliasList is
a two-item list consisting of the alias followed by the full option to which
it maps.

-classname classResName
Resource class name for the mega-widget for use by Tk resource
database. By convention, classResName is the same as the class-
Name argument with the first letter capitalized.

-configspec configList
Configuration of each option that the new mega-widget supports (see
-flag). Each element of configList is a four- or five-item list. The
requir ed four elements are the option name (including the hyphen),
resource name, resource class, and default value. The optional fifth ele-
ment is a Tcl command used to validate a value for the option. This
command is called once the option is initialized at creation and when-
ever its value is set with the configur e method. The candidate value is
appended to the call as an argument. The command should retur n the
value to actually be used or generate an error.

-default resList
List of Tk resource specifications to be applied for each instance of the
mega-widget. These resources are most often used to set up configura-
tion defaults for subwidgets of the mega-widget. Each element of
resList is a two-item list giving the pattern and value, as for an
option add command.

-flag optionList
List of options (also known as public variables) that the mega-widget
class supports.

-for cecall optionList
List of options that should have their private configuration methods called
during initialization of a mega-widget instance. Normally, an option’s
configuration method is called only when the option is set with the con-
figur e method.

-method methodList
List of public methods that the mega-widget class supports.

-r eadonly optionList
List of options that cannot be set or changed by the user.

-static optionList
List of options that can be set only at mega-widget creation (i.e., cannot
be changed with the configur e method).

-super class superClass
Superclass of the class being defined. All the options and methods of the
superclass are inherited. Note that superClass is the command name
of the superclass, not the resource class name from the -classname
option.

Tix

Tix Cor e Commands — WidgetClass 275

11 May 2006 10:49

-virtual boolean
Whether the class is a virtual class. If true, then instances of the class
cannot be created.

Example

Her e is an example class definition for a scrolling banner mega-widget:

tixWidgetClass tixScrollingBanner {
-classname TixScrollingBanner
-superclass tixPrimitive
-method {

start stop
}
-flag {

-orientation -rate -text
}
-static {

-orientation
}
-configspec {

{-orientation orientation Orientation horizontal}
{-rate rate Rate 2}
{-text text Text {}}

}
-alias {

{-orient -orientation}
}
-default {

{*Label.anchor e}
{*Label.relief sunken}

}
}

Wr iting Methods

The methods for a class are defined using the Tcl pr oc command with three
special requir ements. First, the name of the procedur e for a method must
match the format className::method. For the example above, the pro-
grammer will need to define the Tcl procedur es tixScr ollingBanner::start and
tixScr ollingBanner::stop. Second, each procedur e must accept at least one
argument, which must be named w, which will be set to the name of the class
instance (i.e., mega-widget) for which the method was invoked. Additional
arguments can be defined if the method accepts any arguments.

The third requir ement is that the first command executed in the procedur e be:

upvar #0 $w data

which sets up access to the instance’s subwidgets and public and private vari-
ables through the Tcl array data. Public variables are available using the
name of the option (with the leading hyphen) as the element name. The pro-
grammer is free to create other elements in the data array as private vari-
ables, with the exception of the following reserved elements: ClassName,
className, context, and rootCmd. By convention, the names of subwid-
gets should be assigned to array elements with names beginning with the pre-
fix w: followed by the name of the subwidget known to the user. Using this
for mat will give the user access to the subwidget using the mega-widget

276 Chapter 9 – Tix

11 May 2006 10:49

subwidget method inherited from tixPrimitive. Private subwidgets should
use the prefix pw:. For example, the stop method for our tixScrolling-
Banner example may be defined as follows:

proc tixScrollingBanner::stop {w {ms 0}} {
upvar #0 $w data
after cancel $data(afterid)
if {$t > 0} {

set data(afterid) [after $ms
tixScrollingBanner::advance $w]

} else {
$data(w:label) configure -text {}

}
}

This method stops the scrolling of the banner by canceling the timeout set for
the next banner advance. If an optional argument is given, it specifies that the
scr olling will be paused only for the given number of milliseconds (if non-
zer o). Otherwise, the banner is cleared. Note the call to the procedur e
tixScr ollingBanner::advance. This is a private method of the class, since
advance is not in the list given to the -method option of the class definition.

Initialization Methods

When a new instance of a mega-widget is created, the private methods
InitWidgetRec, ConstructWidget, and SetBindings ar e called, in that order. The
purpose of the InitWidgetRec method is to initialize the private variables of
the mega-widget instance. The ConstructWidget method is used to create and
initialize its subwidgets, and the SetBindings method is used to create its ini-
tial event bindings.

The procedur es to define the methods must follow the three rules outlined
pr eviously. When defined, the methods override the respective methods of
their superclass. Therefor e, the programmer should normally use the tix-
ChainMethod command to call the superclass’s version of the method as a
first step. For example, the ConstructWidget method for the scrolling banner
example might be defined as follows:

proc tixScrollingBanner::ContructWidget {w} {
upvar #0 $w data
tixChainMethod $w ConstructWidget
set data(w:label) [label $w.label]
pack $w.label -expand yes -fill x

}

Public Var iables

When the configure mega-widget method is used to set the value of a public
variable, Tix will attempt to call a method with the name config-option with
the name of the mega-widget and the value as arguments. The programmer
should define this method when he or she needs to know immediately when
the value of a public variable changes. For example, the text option for the
scr olling banner example could be handled as follows:

proc tixScrollingBanner::config-text {w value} {
upvar #0 $w data

Tix

Tix Cor e Commands — WidgetClass 277

11 May 2006 10:49

$data(w:label) configure -text $value
}

An option’s configuration method is called after any validation command
specified in the -configspec entry for the option. During the call to the
method, the element for the option in the data array will still be set to the
old value in case it is needed. One may override the value passed by explic-
itly setting the public variable’s element in the data array to the desired
value and also retur ning the value from the method. A public variable’s con-
figuration method is not called when a mega-widget is created unless the
option is listed in the -for cecall option of the class definition.

Tix Extensions to Tk image Command
Tix extends the standard Tk image command by adding support for two additional
image types: compound and pixmap.

ima ge

image create compound imageName [option value...]

The compound image type allows a single image to be composed of multiple
lines, each of which contains one or more text items, bitmaps, or other
images. Available options are as follows:

-backgr ound color
Backgr ound color for the image and for bitmap items in the image.

-bor derwidth amount
Width of 3D border drawn around the image.

-font font
Default font for text items in the image.

-for eground color
For eground color for the bitmap and text items in the image.

-padx amount
Extra space to request for padding on the left and right side of the image.

-pady amount
Extra space to request for padding on the top and bottom side of the
image.

-r elief relief
3D effect for the border around the image.

-showbackgr ound boolean
Whether the background and 3D border should be drawn or the image
should have a transparent background. The default is false.

278 Chapter 9 – Tix

11 May 2006 10:49

-window pathName
Window in which the compound image is to be drawn. When the win-
dow is destroyed, the image is also destroyed. This option must be spec-
ified when a compound image is created and cannot be changed.

When a compound image is created, a Tcl command with the same name as
the image is created. This command supports the following operations:

imageName add line [-anchor anchorPos] [-padx amount]
Cr eate a new line for items at the bottom of the image. If anchorPos is
specified, it specifies how the line should be aligned horizontally. If
amount is specified, it specifies the amount of padding to add to the left
and right of the line in the image.

imageName add itemType [option value...]
Add a new item of the specified type to the end of the last line of the
compound image. ItemType may be bitmap, image, space, or text.
All item types support the following options:

-anchor anchorPos
How the item should be aligned on its line along the vertical axis.

-padx amount
Amount of padding to add to the left and right side of the item.

-pady amount
Amount of padding to add to the top and bottom side of the item.

Bitmap items support the following options:

-backgr ound color
Backgr ound color for the bitmap.

-bitmap bitmap
Bitmap to add to the compound image.

-for eground color
For eground color for the bitmap.

Image items support the following option:

-image imageName
Name of an image to add to the compound image.

Space items reserve empty space in the image. Space items support the fol-
lowing options:

-height amount
Height of space to add to the compound image.

-width amount
Width of space to add to the compound image.

Tix

Tix Extensions to Tk image Command — image 279

11 May 2006 10:49

Text items support the following options:

-backgr ound color
Backgr ound color for the text.

-font font
Font to be used for the text.

-for eground color
For eground color for the text.

-justify justify
How to justify multiple lines of text. Justify may be left,
right, or center.

-text string
Text string to be added to the compound image.

-underline integer
Integer index of a character in the text that should be underlined.

-wraplength chars
Maximum line length in characters. If chars is less than or equal to
0, no wrapping is done.

imageName cget option
Retur n the current value of the configuration option option for the
compound image.

imageName configur e [option [value [option value...]
Query or modify the configuration options of the compound image in the
same manner as the standard widget configur e method.

ima ge

image create pixmap imageName [option value...]

Cr eate a Tk image using XPM format. Supported options are as follows:

-data string
Source for the XPM image is specified in string. Takes precedence
over the -file option.

-file fileName
Source for the XPM image is to be read from the file fileName.

When a pixmap image is created, a Tcl command with the same name as the
image is created. This command supports the cget and configur e operations
for querying and changing the image options.

280 Chapter 9 – Tix

11 May 2006 10:49

CHAPTER 10

Tc lX

TclX, also known as Extended Tcl, was developed by Karl Lehenbauer and Mark
Diekhans. TclX is not part of the core Tcl/Tk package, but can be obtained for free
at http://www.neosoft.com/TclX. This chapter covers TclX Version 8.0.2.

TclX enhances the Tcl language with a number of features designed to make it
mor e suited to general-purpose programming. The TclX software includes a num-
ber of new Tcl commands, a new Tcl shell, a standalone help facility, and a library
of handy Tcl procedur es. Some features of TclX have proven so useful that, over
time, they have been integrated into the core Tcl distribution.

This chapter describes only the commands in TclX that are not in standard Tcl. As
noted in the text, some commands are not supported or have reduced functional-
ity when running on the Windows 95, Windows 98, and Windows NT platforms.
TclX does not support the Macintosh platform.

Special Var iables
The following global variables have special meaning to the Extended Tcl inter-
pr eter (the programs tcl and wishx):

argc
Number of command-line arguments, not including the name of the
script file

argv
List containing command-line arguments

argv0
Filename being interpreted, or name by which script was invoked

TclX

281

11 May 2006 10:50

http://www.neosoft.com/TclX

auto_path
Path to search to locate autoload libraries

tcl_interactive
1 if running interactively, 0 otherwise

tcl_prompt1
Primary prompt

tcl_prompt2
Secondary prompt for incomplete commands

tclx_library
Location of Extended Tcl libraries

tkx_library
Location of Extended Tcl Tk libraries

TCLXENV
Array containing information about Tcl procedur es

Group Listing of Commands
This section briefly lists all Extended Tcl commands, grouped logically by function.

General Commands

commandloop Cr eate an interactive command loop.
dirs List directories in directory stack.
echo Write strings to standard output.
for_array_keys Loop over each key in an array.
for_r ecursive_glob Loop recursively over files matching a pattern.
host_info Retur n infor mation about a network host.
infox Retur n infor mation about Extended Tcl.
loop Loop over a range of values.
mainloop Call event loop handler.
popd Pop top entry from the directory stack.
pushd Push entry onto directory stack.
recursive_glob Retur n list of files recursively matching pattern.
tclx_err orHandler User-defined procedur e to handle errors.
try_eval Evaluate code and trap errors.

Debugg ing and Development Commands

cmdtrace Trace command execution.
edpr ocs Edit source code for procedur es.
pr ofile Collect perfor mance data.
pr ofrep Generate report from perfor mance data.
savepr ocs Save procedur e definitions to file.
showpr oc List definitions of procedur es.

282 Chapter 10 – TclX

11 May 2006 10:50

Unix Access Commands

alar m Send alarm signal.
chr oot Change root directory.
execl Start a new program.
fork Cr eate a child process.
id Set, get, or convert user, group, and process identifiers.
kill Send signal to a process.
link Cr eate a hard or symbolic link.
nice Set or get process priority.
readdir Retur n list of directory entries.
signal Handle Unix signals.
sleep Delay process execution.
sync Flush pending buffer ed output.
system Execute shell command.
times Retur n pr ocess and child execution times.
umask Set or get file creation permission mask.
wait Wait for command to terminate.

File Commands

bsear ch Search lines of file for a string.
chgrp Set group ID of files.
chmod Set file permissions.
chown Set owner of files.
dup Duplicate an open file identifier.
fcntl Set or get attributes of file identifier.
flock Apply lock on an open file.
for_file Loop over contents of a file.
fstat Retur n status information about an open file identifier.
ftruncate Truncate a file to a specified length.
funlock Remove lock from an open file.
lgets Read Tcl list from a file.
pipe Cr eate a pipe.
read_file Read file contents into a string.
select Check file identifiers for change in status.
write_file Write strings to a file.

File Scanning Commands

scancontext Cr eate, delete, or modify file scan contexts.
scanfile Per form file context scanning.
scanmatch Specify commands for file context scanning.

Math Commands

These commands operate in the same fashion as their counterparts that are built
into the expr command. They accept as arguments any expression accepted by the
expr command. The trigonometric functions use values expressed in radians.

TclX

Gr oup Listing of Commands 283

11 May 2006 10:50

abs Absolute value.
acos Arc cosine.
asin Arc sine.
atan Arc tangent.
atan2 Arc tangent (accepts two parameters).
ceil Round up to the nearest integer.
cos Cosine.
cosh Hyperbolic cosine.
double Convert numeric value to double-precision floating-point value.
exp e raised to the power of the argument.
floor Round down to the nearest integer.
fmod Floating-point remainder (accepts two arguments).
hypot Hypotenuse function (accepts two arguments).
int Convert to integer by truncating.
log Natural logarithm.
log10 Base 10 logarithm.
max Maximum value (accepts one or more arguments).
min Minimum value (accepts one or more arguments).
pow Exponentiation (accepts two parameters).
random Retur n random floating-point number.
round Convert to integer by rounding.
sin Sine.
sinh Hyperbolic sine.
sqrt Squar e root.
tan Tangent.
tanh Hyperbolic tangent.

List Manipulation Commands

intersect Retur n list of elements common to two lists.
intersect3 Accept two lists, retur ning items common to, and unique to, each list.
lassign Assign list elements to variables.
lcontain Retur n 1 if element is contained in a list.
lempty Retur n 1 if a list is empty.
lmatch Search list for elements matching a pattern.
lr mdups Remove duplicate list elements.
lvar cat Concatenate lists onto a variable.
lvarpop Delete or replace list element contained in a variable.
lvarpush Insert element into list contained in a variable.
union Retur n logical union of two lists.

Ke yed List Commands

keyldel Delete entry from keyed list.
keylget Retur n value from keyed list.
keylkeys Retur n list of keys from keyed list.
keylset Set value in keyed list.

284 Chapter 10 – TclX

11 May 2006 10:50

Str ing and Character Manipulation Commands

ccollate Retur n collation ordering of two strings.
cconcat Concatenate strings.
cequal Compar e strings for equality.
cindex Retur n one character from a string.
clength Retur n length of a string.
crange Retur n range of characters from a string.
csubstr Retur n substring of a string.
ctoken Parse a token out of a string.
ctype Retur n type of characters in a string.
replicate Replicate a string several times.
translit Transliterate characters in a string.

XPG/3 Message Catalog Commands

catclose Close a message catalog.
catgets Retrieve message from a catalog.
catopen Open a message catalog.

Help Commands

apr opos Locate help information based on a pattern.
help Online help system for Extended Tcl.
helpcd Change current location in tree of help subjects.
helppwd List current help subject location.

Librar y and Package Commands

auto_commands List names of loadable commands.
auto_load_file Source a file using autoload path.
auto_ packages Retur n names of defined packages.
buildpackageindex Build index files for package libraries.
convert_lib Convert Tcl index and source files into a package.
loadlibindex Load a package library index.
sear chpath Search a path of directories for a file.

Alphabetical Summary of Commands
This section describes all Extended Tcl commands, listed in alphabetical order.

abs

abs arg

Retur n the absolute value of expression arg. The argument may be in either
integer or floating-point format and the result is retur ned in the same form.

TclX

Alphabetical Summary of Commands — abs 285

11 May 2006 10:50

acos

acos arg

Retur n the arc cosine of expression arg.

alar m

alar m seconds

Instruct the system to send an alarm signal (SIGALRM) to the command inter-
pr eter seconds seconds in the future. The time is specified as a floating-
point value. A value of 0 cancels any previous alarm request. This command
is not supported under Windows.

apropos

apr opos pattern

Search the online help system for entries that contain the regular expression
pattern in their summaries.

asin

asin arg

Retur n the arc sine of expression arg.

atan

atan arg

Retur n the arc tangent of expression arg.

atan2

atan2 x,y

Retur n the arc tangent of expression x divided by expression y, using the
signs of the arguments to determine the quadrant of the result.

auto_commands

auto_commands [-loaders]

List the names of all known loadable procedur es. If the -loaders option is
specified, the output also lists the commands that will be executed to load
each command.

286 Chapter 10 – TclX

11 May 2006 10:50

auto_load_file

auto_load_file file

Load a file, as with the Tcl sour ce command, but use the search path defined
by auto_ path to locate the file.

auto_packa ges

auto_ packages [-location]

Retur n a list of all defined package names. With the -location option, retur n a
list of pairs of package name and the .tlib pathname, offset, and length of the
package within the library.

bsearch

bsear ch fileId key [retvar] [compare_proc]

Search file opened with fileId for lines of text matching the string key.
Retur n the line that was found, or an empty string if no match exists. If the
variable name is specified with retvar, the matching line is stored in the
variable and the command retur ns 1 if the key matched or 0 if there was no
match. Can optionally specify a procedur e compar e_pr oc that will compare
the key and each line, retur ning a value indicating the collation order (see
ccollate).

buildpacka geindex

buildpackageindex libfilelist

Build index files for package libraries. Argument libfilelist is a list of
package libraries. Each name must end with the suffix .tlib. A corr esponding
.tndx file will be built.

catclose

catclose [-fail|-nofail cathandle

Close a previously opened message catalog.

Options

-fail
Retur n an error if the catalog cannot be closed.

-nofail
Ignor e any errors when closing (default).

TclX

Alphabetical Summary of Commands — catclose 287

11 May 2006 10:50

catgets

catgets catHandle setnum msgnum defaultstr

Retrieve a message from a message catalog. The message catalog handle
retur ned by catopen should be contained in catHandle. The message set
number and message number are specified using setnum and msgnum. If the
message catalog was not opened or the message set or message number can-
not be found, then the default string, defaultstr, is retur ned.

catopen

catopen [-fail|-nofail] catname

Open a message catalog using catname, which can be an absolute or rela-
tive pathname. Return a handle that can be used for subsequent catgets and
catclose commands.

Options

-fail
Retur n an error if the catalog cannot be opened.

-nofail
Ignor e any errors when opening (default).

ccollate

ccollate [-local] string1 string2

Compar e two strings and retur n their collation ordering. Return –1 if
string1 is less than string2, 0 if they are equal, and 1 if string1 is
gr eater than string2. With the option -local, compar es according to current
locale.

cconcat

cconcat [string...]

Concatenate the strings passed as arguments and retur n the resulting string.

ceil

ceil arg

Retur n the value of expression arg, rounded up to the nearest integer.

cequal

cequal string1 string2

Compar e two strings, retur ning 1 if they are identical, 0 if not.

288 Chapter 10 – TclX

11 May 2006 10:50

chgrp

chgrp [-fileId] group filelist

Set the group ID of files in the list filelist to group, which can be either
a group name or a group ID number.

With option -fileId, the file list consists of open file identifiers rather than file-
names. This command is not supported under Windows.

chmod

chmod [-fileId] mode filelist

Set permissions on the files specified in list filelist to mode, which can
be a numeric mode or symbolic permissions as accepted by the Unix chmod
command.

With option -fileId, the file list consists of open file identifiers rather than file-
names. This command is not supported under Windows.

chown

chown [-fileId] owner filelist
chown [-fileId] {owner group} filelist

Set the ownership of each file in list filelist to owner, which can be a
user name or numeric user ID. In the second form, a list consisting of the
owner and group names can be specified.

With option -fileId, the file list consists of open file identifiers rather than file-
names. This command is not supported under Windows.

chroot

chr oot dirname

Set the process root directory to dirname. Can be run only by the superuser.

cindex

cindex string indexExpr

Retur n the character with index indexExpr in string string. Indices start at
0; the words end and len can be used at the beginning of the expression to
indicate the index of the last character and length of the string, respectively.

clength

clength string

Retur n the length of string in characters.

TclX

Alphabetical Summary of Commands — clength 289

11 May 2006 10:50

cmdtrace

cmdtrace level [noeval] [notruncate] [pr ocs] [fileId] [command cmd]

Print a trace statement when commands are executed at depth level (1
being the top level) or at all levels if the level is specified as on.

Options

noeval
Cause arguments to be printed before being evaluated.

notruncate
Turn off truncation of output, which normally occurs when a command
line is longer than 60 characters.

pr ocs
Enable tracing of procedur e calls only.

fileId
Cause output to be written to an open file identifier.

command
Rather than producing normal output, the given command is executed
during tracing.

cmdtrace off

Turn off all tracing.

cmdtrace depth

Retur n the current trace depth level, or 0 if tracing is not enabled.

commandloop

commandloop [-async] [-interactive on|off|tty] [-pr ompt1 cmd] [-pr ompt2
cmd] [-endcommand cmd]

Enter a command loop, reading from standard input and writing to standard
output.

Options

-async
Interpr et commands on standard input.

-interactive
Contr ols interactive command mode (prompting of commands and dis-
play of results). If the argument is on, interactive mode is enabled; if
off, it is disabled; if tty, it is enabled if standard input is associated
with a terminal.

290 Chapter 10 – TclX

11 May 2006 10:50

-pr ompt1
The argument supplies a command that is executed and the result used
as the primary command prompt.

-pr ompt2
The argument supplies a command that is executed and the result used
as the secondary command prompt.

-endcommand
The argument supplies a command that is executed when the command
loop terminates.

convert_lib

convert_lib tclIndex packagelib [ignore]

Convert a Tcl index file tclIndex and its associated source files into an
Extended Tcl package library packagelib. The list ignore can specify files
that should not be included in the library.

cos

cos arg

Retur n the cosine of expression arg.

cosh

cosh arg

Retur n the hyperbolic cosine of expression arg.

crange

crange string firstExpr lastExpr

Retur n a range of characters from string string, from index firstExpr
thr ough lastExpr.

Indices start at 0, and the words end and len can be used at the beginning
of an expression to indicate the index of the last character and length of the
string, respectively.

csubstr

csubstr string firstExpr lengthExpr

Retur n a range of characters from string string fr om index firstExpr for
a range of lengthExpr characters.

Indices start at 0, and the words end and len can be used at the beginning
of an expression to indicate the index of the last character and length of the
string, respectively.

TclX

Alphabetical Summary of Commands — csubstr 291

11 May 2006 10:50

ctoken

ctoken strvar separators

Parse the next token from the string contained in variable strvar. Tokens
ar e separated by the characters specified in the string separators. Retur ns
the next token and removes it from the string.

ctype

ctype [-failindex var] class string

Examine the characters in string and determine if they conform to the spec-
ified class. Retur n 1 if they conform, 0 if they do not or the string is empty.
The class option takes one of the following forms:

alnum
All characters are alphabetic or numeric.

alpha
All characters are alphabetic.

ascii
All characters are ASCII characters.

char
Converts the string, which must be a number from 0 through 255, to an
ASCII character.

cntrl
All characters are contr ol characters

digit
All characters are decimal digits.

graph
All characters are printable and nonspace.

lower
All characters are lowercase.

ord
Converts the first character in the string to its decimal numeric value.

space
All characters are whitespace.

print
All characters are printable (including space).

punct
All characters are punctuation.

292 Chapter 10 – TclX

11 May 2006 10:50

upper
All characters are uppercase.

xdigit
All characters are valid hexadecimal digits.

With the option -failindex, the index of the first character in the string that
did not conform to the class is placed in the variable named var.

dir s

dirs

List the directories in the directory stack.

double

double arg

Evaluate the expression arg, convert the result to floating-point, and retur n
the converted value.

dup

dup fileId [targetFileId]

Cr eate a new file identifier that refers to the same device as the open file
identifier fileId. The new file identifier is retur ned.

Can optionally specify the name of an existing file identifier targetFileId
(nor mally stdin, stdout, or stderr). In this case the targetFileId
device is closed if necessary, and then becomes a duplicate that refers to the
same device as fileId.

On Windows, only stdin, stdout, stderr, or a nonsocket file handle
number may be specified for targetFileId.

echo

echo [string...]

Write zero or mor e strings to standard output, followed by newline character.

edprocs

edpr ocs [proc...]

Write the definitions for the named procedur es (by default, all currently
defined procedur es) to a temporary file, invoke an editor, then reload the def-
initions if they were changed. Uses the editor specified by the EDITOR envi-
ronment variable, or vi if none is specified.

TclX

Alphabetical Summary of Commands — edpr ocs 293

11 May 2006 10:50

ex ecl

execl [-ar gv0 argv0] prog [arglist]

Per form an execl system call, replacing the current process with program
prog and the arguments specified in the list arglist. The command does
not retur n unless the system call fails.

The -ar gv0 option specifies the value to be passed as argv[0] of the new
pr ogram.

Under Windows, the execl command starts a new process and retur ns the pro-
cess ID.

exp

exp arg

Retur n the value of the constant e raised to the power of the expression arg.

fcntl

fcntl fileId attribute [value]

Modifiy or retur n the current value of a file option associated with an open
file identifier. If only attribute is specified, its current value is retur ned. If
a boolean value is specified, the attribute is set. Some values are read only.
The following attributes may be specified:

RDONLY
File is opened for reading (read only).

WRONLY
File is opened for writing (read only).

RDWR
File is opened for reading and writing (read only).

READ
File is readable (read only).

WRITE
File is writable (read only).

APPEND
File is opened for appending.

NONBLOCK
File uses nonblocking I/O.

CLOEXEC
Close the file upon execution of a new process.

294 Chapter 10 – TclX

11 May 2006 10:50

NOBUF
File is not buffer ed.

LINEBUF
File is line buffer ed.

KEEPALIVE
Keep-alive option is enabled for a socket.

The APPEND and CLOEXEC attributes are not available on Windows.

flock

flock options fileId [start] [length] [origin]

Place a lock on all or part of the file open with identifier fileId. The file
data is locked from the beginning of byte offset start for a length of
length bytes. The default start position is the start of file, and the default
length is to the end of file. If the file is currently locked, the command waits
until it is unlocked before retur ning.

The value of origin indicates the offset for the data locked and is one of the
strings start (r elative to start of file, the default), current (r elative to the
curr ent access position), or end (r elative to end of file, extending backward).

This command is not supported on Windows 95/98. Also see funlock.

Options

-r ead
Place a read lock on the file.

-write
Place a write lock on the file.

-nowait
Do not block if lock cannot be obtained. Return 1 if the file could be
locked, or 0 if it could not.

floor

floor arg

Retur n the value of expression arg rounded down to the nearest integer.

fmod

fmod x y

Retur n the remainder after dividing expression x by expression y.

TclX

Alphabetical Summary of Commands — fmod 295

11 May 2006 10:50

for_ar ray_keys

for_array_keys var array_name code

Per form a for each -style loop for each key in the array array_name.

Example

for_array_keys key tcl_platform {
echo $key => $tcl_platform($key)

}

for_file

for_file var filename code

Loop over the file filename, setting var to the line and executing code for
each line in the file.

Example

for_file line /etc/passwd {
echo $line

}

for_recur sive_glob

for_r ecursive_glob var dirlist globlist code

Per form a for each -style loop over files that match patterns. All directories in
the list dirlist ar e recursively searched for files that match the glob pat-
ter ns in list globlist. For each matching file the variable var is set to the
file path and code code is evaluated.

Example

for_recursive_glob file {˜ /tmp} {*.tcl *.c *.h} {
echo $file

}

fork

fork

Call the fork system call to duplicate the current process. Returns 0 to the
child process, and the process number of the child to the parent process. This
command is not supported under Windows.

fstat

fstat fileId [item] | [stat arrayvar]

Retur n status information about the file opened with identifier fileId. If one
of the keys listed below is specified, the data for that item is retur ned. If stat
arrayvar is specified, the information is written into array arrayvar using

296 Chapter 10 – TclX

11 May 2006 10:50

the listed keys. If only a file identifier is specified, the data is retur ned as a
keyed list.

The following keys are used:

atime
Time of last access.

ctime
Time of last file status change.

dev
Device containing a directory for the file.

gid
Gr oup ID of the file’s group.

ino
Inode number.

mode
Mode of the file.

mtime
Time of last file modification.

nlink
Number of links to the file.

size
Size of file in bytes.

tty
1 if the file is associated with a terminal, otherwise 0.

type
Type of the file, which can be file, directory, character-
Special, blockSpecial, fifo, link, or socket.

uid
User ID of the file’s owner.

The following additional keys may be specified, but are not retur ned with the
array or keyed list forms:

remotehost
If fileId is a TCP/IP socket connection, a list is retur ned, with the first
element being the remote host IP address. If the remote hostname can be
found, it is retur ned as the second element of the list. The third element
is the remote host IP port number.

localhost
If fileId is a TCP/IP socket connection, a list is retur ned, with the first
element being the local host IP address. If the local hostname can be
found, it is retur ned as the second element of the list. The third element
is the local host IP port number.

TclX

Alphabetical Summary of Commands — fstat 297

11 May 2006 10:50

ftr uncate

ftruncate [-fileId] file newsize

Truncate a file to a length of at most newsize bytes. With the -fileId option,
the file argument is an open file identifier rather than a filename. The -fileId
option is not available on Windows.

funlock

funlock fileId [start] [length] [origin]

Remove a file lock that was previously set using an flock command on the file
open with identifier fileId. The portion of the file data that is locked is
fr om the beginning of byte offset start for a length of length bytes. The
default start position is the start of file, and the default length is to the end of
file.

The value of origin indicates the offset for the locked data and is one of the
strings start (r elative to start of file, the default), current (r elative to the
curr ent access position), or end (r elative to end of file).

This command is not supported on Windows 95/98. Also see flock.

help

help [options]

Invoke the online Tcl help facility to provide information on all Tcl and
Extended Tcl commands. Information is structured as a hierarchical tree of
subjects with help pages at the leaf nodes. Without arguments, the command
lists all of the help subjects and pages under the current help subject.

help subject
Display all help pages and lower-level subjects (if any) under the subject
subject.

help subject/helppage
Display the specified help page.

help help|?
Display help on using the help facility itself. Valid at any directory level.

helpcd

helpcd [subject]

Change the current subject in the hierarchical tree of help information. With-
out a subject, goes to the top level of the help tree.

298 Chapter 10 – TclX

11 May 2006 10:50

helppwd

helppwd

Display the current subject in the hierarchical documentation tree of online
help information.

host_info

host_info option host

Retur n infor mation about a network host. The command takes one of the fol-
lowing three forms:

host_info addresses host
Retur n a list of the IP addresses for host.

host_info official_name host
Retur n the official name for host.

host_info aliases host
Retur n a list of aliases for host.

hypot

hypot x y

Retur n the hypotenuse function, equivalent to sqrt (x *x + y *y). The argu-
ments are expr essions.

id

id options

Pr ovides various functions related to getting, setting, and converting user,
gr oup, and process identifiers. Some functions can be perfor med only by the
superuser. Under Windows only the host and pr ocess options are imple-
mented.

id user [name]

Without a name option, retur n the current username. With an option, sets the
real and effective user to name.

id userid [uid]

Without a uid option, retur n the current numeric user ID. With an option, set
the real and effective user to uid.

id convert userid uid

Retur n the username corresponding to numeric user ID uid.

id convert user name

Retur n the numeric user ID corresponding to user name.

TclX

Alphabetical Summary of Commands — id 299

11 May 2006 10:50

id group [name]

Without a name option, retur n the current group ID name. With an option,
set the real and effective group ID to name.

id groupid [gid]

Without a gid option, retur n the current numeric group ID. With an option,
set the real and effective group ID to gid.

id groups

Retur n a list of group names for the current process.

id groupids

Retur n a list of numeric group IDs for the current process.

id convert groupid gid

Retur n the group name corresponding to numeric group ID gid.

id convert group name

Retur n the numeric group ID corresponding to group name.

id effective user

Retur n the effective username.

id effective userid

Retur n the effective user ID number.

id effective group

Retur n the effective group name.

id effective groupid

Retur n the effective group ID number.

id host

Retur n the hostname of the system on which the program is running.

id process

Retur n the process ID of the current process.

id process parent

Retur n the process ID of the parent of the current process.

id process group

Retur n the process group ID of the current process.

id process group set

Set the process group ID of the current process to its process ID.

300 Chapter 10 – TclX

11 May 2006 10:50

infox

infox option

Retur n infor mation about the Extended Tcl interpreter or current application.
The command can take the following forms:

infox version

Retur n the Extended Tcl version number.

infox patchlevel

Retur n the Extended Tcl patch level.

infox have_fchown

Retur n 1 if the fchown system call is available otherwise. If available, the
-fileId option on the chown and chgrp commands is supported.

infox have_fchmod

Retur n 1 if the fchmod system call is available otherwise. If available, the
-fileId option on the chmod command is supported.

infox have_flock

Retur n 1 if the flock command is defined, 0 if it is not available.

infox have_fsync

Retur n 1 if the fsync system call is available and the sync command will sync
individual files, 0 if fsync is not available and the sync command will always
sync all file buffers.

infox have_ftruncate

Retur n 1 if the ftruncate or chsize system call is available. If it is, the ftruncate
command -fileId option may be used.

infox have_msgcats

Retur n 1 if XPG message catalogs are available, 0 if they are not. The catgets
command is designed to continue to function without message catalogs,
always retur ning the default string.

infox have_posix_signals

Retur n 1 if POSIX signals (block and unblock options for the signal com-
mand) are available.

infox have_truncate

Retur n 1 if the truncate system call is available. If it is, the ftruncate com-
mand may truncate by file path.

infox have_waitpid

Retur n 1 if the waitpid system call is available and the wait command has full
functionality, 0 if the wait command has limited functionality.

TclX

Alphabetical Summary of Commands — infox 301

11 May 2006 10:50

infox appname

Retur n the symbolic name of the current application linked with the Extended
Tcl library. The C variable tclAppName must be set by the application to
retur n an application-specific value for this variable.

infox applongname

Retur n a natural language name for the current application. The C variable
tclLongAppName must be set by the application to retur n an application-
specific value for this variable.

infox appversion

Retur n the version number for the current application. The C variable tcl-
AppVersion must be set by the application to retur n an application-specific
value for this variable.

infox apppatchlevel

Retur n the patch level for the current application. The C variable tclApp-
Patchlevel must be set by the application to retur n an application-specific
value for this variable.

int

int arg

Evaluate the expression arg, convert the result to an integer, and retur n the
converted value.

inter sect

intersect list1 list2

Retur n the logical intersection of two lists, i.e., a list of all elements contained
in both list1 and list2. The retur ned list is sorted alphabetically.

inter sect3

intersect3 list1 list2

Retur n a list containing three lists. The first consists of all elements of list1
that are not in list2. The second contains the intersection of the two lists.
The third contains all elements of list2 that are not in list1. The retur ned
lists are sorted alphabetically.

ke yldel

keyldel listvar key

Delete the field specified by key fr om the keyed list in variable listvar.
Removes both the key and the value from the keyed list.

302 Chapter 10 – TclX

11 May 2006 10:50

ke ylget

keylget listvar [key] [retvar|{}]

Retur n the value associated with key fr om the keyed list in variable list-
var. If retvar is not specified, the value will be retur ned as the result of the
command. In this case, if key is not found in the list, an error will result.

If retvar is specified and key is in the list, the value is retur ned in the vari-
able retvar and the command retur ns 1 if the key was present within the
list. If key is not in the list, the command will retur n 0, and retvar will be
left unchanged. If {} is specified for retvar, the value is not retur ned, allow-
ing the programmer to determine if a key is present in a keyed list without
setting a variable as a side effect.

If key is omitted, a list of all the keys in the keyed list is retur ned.

ke ylkeys

keylkeys listvar [key]

Retur n a list of the keys in the keyed list contained in variable listvar. If
key is specified, it is used as the name of a key field whose subfield keys are
to be retrieved.

ke ylset

keylset listvar key value...

Set the value associated with key to value in the keyed list contained in
variable listvar. If listvar does not exist, it is created. If key is not cur-
rently in the list, it is added. If it already exists, value replaces the existing
value. Multiple keywords and values may be specified if desired.

kill

kill [-pgr oup] [signal] idlist

Send a signal to each process in the list idlist, if per mitted. Parameter
signal, if present, is the signal number or symbolic name of the signal. The
default is 15 (SIGTERM).

If -pgr oup is specified, the numbers in idlist ar e taken as process group
IDs and the signal is sent to all of the processes in that process group. A pro-
cess group ID of 0 specifies the current process group. This command is not
supported under Windows.

lassign

lassign list var...

Assign successive elements of a list to specified variables. If there are mor e
variable names than fields, the remaining variables are set to the empty string.

TclX

Alphabetical Summary of Commands — lassign 303

11 May 2006 10:50

If there are mor e elements than variables, a list of the unassigned elements is
retur ned.

lcontain

lcontain list element

Retur n 1 if element is an element of list list; otherwise, retur n 0.

lempty

lempty list

Retur n 1 if list is an empty list; otherwise, retur n 0.

lgets

lgets fileId [varName]

Read a Tcl list from the file given by file identifier fileId, discarding the ter-
minating newline. If varName is specified, the command writes the list to the
variable and retur ns the number of characters read; otherwise, it retur ns the
list.

link

link [-sym] srcpath destpath

Cr eate a link from existing pathname srcpath to destpath. With option
-sym, creates a symbolic rather than hard link. This command is not sup-
ported under Windows.

lmatch

lmatch [mode] list pattern

Retur n a new list, consisting of the elements of list that match pattern.
The type of pattern matching is determined by the mode parameter:

-exact
Exact match

-glob
Glob-style matching (default)

-r egexp
Regular expression matching

loadlibindex

loadlibindex libfile.tlib

Load the package library index of the library file libfile.tlib.

304 Chapter 10 – TclX

11 May 2006 10:50

log

log arg

Retur n the natural logarithm of expression arg.

log10

log10 arg

Retur n the base 10 logarithm of expression arg.

loop

loop var first limit [increment] body

Loop construct in which the beginning and ending loop index variables and
incr ement ar e fixed. The loop index is variable var, which is initialized to
first. In each iteration of the loop, if the index is not equal to limit, the
command body is evaluated and the index is increased by the value incre-
ment.

Example

count from ten down to one
loop i 10 0 -1 {

echo $i
}

lr mdups

lr mdups list

Remove duplicate elements from list; retur n the result, sorted alphabeti-
cally.

lvarcat

lvar cat var string...

Concatenate one or more string arguments to the end of the list contained in
variable var, storing the result in var and retur ning the resulting list. String
arguments that are lists are deconstructed into individual elements before
being concatenated into the result list.

lvarpop

lvarpop var [indexExpr] [string]

Remove the element of the list contained in var having index indexExpr
(default 0). If string is given, the deleted element is replaced with the
string. Returns the replaced or deleted item.

TclX

Alphabetical Summary of Commands — lvarpop 305

11 May 2006 10:50

Indices start at 0, and the words end and len can be used at the beginning
of the expression to indicate the index of the last element and length of the
list, respectively.

lvarpush

lvarpush var string [indexExpr]

Insert string as an element of the list stored in var befor e position index-
Expr (default 0).

Indices start at 0, and the words end and len can be used at the beginning
of the expression to indicate the index of the last element and length of the
list, respectively.

mainloop

mainloop

Start a top-level event handler. Process events until there are no mor e active
event sources, then exit.

max

max number...

Retur n the argument having the highest numeric value. The arguments can be
any mixture of integer or floating-point values.

min

min number...

Retur n the argument having the lowest numeric value. The arguments can be
any mixture of integer or floating-point values.

nice

nice [priorityIncr]

Without arguments, retur n the current process priority. With a numeric argu-
ment, add priorityIncr to the current process priority. A negative value
incr eases the process priority (this will work only for the superuser). This
command is not supported under Windows.

pipe

pipe [fileId_var_r fileId_var_w]

Cr eate a pipe. Without options, retur n a list containing the file identifiers for
the read and write ends of the pipe. If passed two variable names, they are
set to the file identifiers for the opened pipe.

306 Chapter 10 – TclX

11 May 2006 10:50

popd

popd

Remove the top entry from the directory stack; make it the current directory.

pow

pow x y

Retur n the value of expression x raised to the power of expression y.

profile

pr ofile [-commands] [-eval] on

Start collection of data for perfor mance pr ofiling of procedur es. With the
-commands option, also profiles commands within a procedur e. With the
-eval option, uses the procedur e call stack rather than the procedur e scope
stack when reporting usage.

pr ofile of f arrayVar

Turn off profiling and store the results in variable arrayVar for later analysis
by the pr ofrep command.

profrep

pr ofrep profDataVar sortKey [outFile] [userTitle]

Generate a report using profile data generated by the pr ofile command. Data
must have been previously stored in variable profDataVar. The parameter
sortKey has one of the values calls, cpu, or real, indicating how to sort
the output. The output can optionally be written to file outFile (default is
standard out) using an optional title userTitle.

pushd

pushd [dir]

Push the current directory onto the directory stack and change to directory
dir. If no dir ectory is specified, the current directory is pushed but remains
unchanged.

random

random limit

Retur n a pseudorandom integer greater than or equal to 0 and less than
limit.

TclX

Alphabetical Summary of Commands — random 307

11 May 2006 10:50

random seed [seedval]

Reset the random number generator using the number seedval, or if omit-
ted, a seed based on the current date and time.

read_file

read_file [-nonewline] fileName [numBytes]

Read the entire contents of file fileName and retur n it as a string. The
-nonewline option discards any final newline character in the file. The num-
Bytes option specifies the number of bytes to read.

readdir

readdir [-hidden] dirPath

Retur n a list of the files contained in directory dirPath. The option -hidden
causes hidden files to be included in the list (Windows platforms only).

recur sive_glob

recursive_glob dirlist globlist

Recursively search the directories in list dirlist for files that match any of
the patterns in globlist. Retur ns a list of matching files.

replicate

replicate string countExpr

Retur n string replicated the number of times indicated by integer expres-
sion countExpr.

round

round arg

Evaluate the expression arg, convert the result to an integer by rounding,
and retur n the converted value.

saveprocs

savepr ocs fileName [proc...]

Save the definitions of the listed Tcl procedur es (by default, all procedur es) to
file fileName.

scancontext

scancontext [option]

Cr eate, delete, or modify file scan contexts.

308 Chapter 10 – TclX

11 May 2006 10:50

scancontext create

Cr eate a new scan context.

scancontext delete contexthandle

Delete the scan context identified by contexthandle.

scancontext copyfile contexthandle

Retur n the file handle to which unmatched lines are copied.

scancontext copyfile contexthandle [filehandle]

Set the file handle to which unmatched lines are copied. A file handle of {}
removes any file copy specification.

scanfile

scanfile [-copyfile copyFileId] contexthandle fileId

Scan the file specified by fileId starting from the current file position.
Check all patterns in the scan context specified by contexthandle, execut-
ing the match commands corresponding to patterns matched.

If the optional -copyfile argument is specified, the next argument is a file ID to
which all lines not matched by any pattern (excluding the default pattern) are
to be written. If the copy file is specified with this flag, instead of using the
scancontext copyfile command, the file is disassociated from the scan context
at the end of the scan.

scanmatch

scanmatch [-nocase] contexthandle [regexp] commands

Specify Tcl commands to be evaluated when regexp is matched by a scanfile
command. The match is added to the scan context specified by context-
handle. Any number of match statements may be specified for a given con-
text. With option -nocase, the pattern matching is case insensitive.

searchpath

sear chpath pathList file

Search the directories in list pathList for file file. Retur n the full path if
found; otherwise, retur n an empty string.

select

select readfileIds [writefileIds] [exceptfileIds] [timeout]

Wait for a change of status in file identifiers. Up to three lists, containing file
identifiers for files to be polled for read, write, or exceptions, can be speci-
fied. An optional parameter timeout indicates the maximum time, in sec-
onds, to wait (it can be 0 for polling). The command retur ns thr ee lists,

TclX

Alphabetical Summary of Commands — select 309

11 May 2006 10:50

corr esponding to the file descriptors in each of the three categories that have
a change in status.

On Windows, only sockets can be used with the select command.

showproc

showpr oc [procname...]

List the definitions of the named Tcl procedur es (by default, all procedur es).

signal

signal action siglist [command]

Set the action to take when a Unix signal is received. The siglist parame-
ter lists one or more signal names or numbers. Parameter action indicates
the action to take, as described in the following:

default
Take system default action.

ignor e
Ignor e the signal.

err or
Generate a catchable Tcl error.

trap
Execute command indicated by command parameter.

get
Retur n curr ent settings for the specified signals as a keyed list.

set
Set signals from a keyed list in the format retur ned by get.

block
Block signals from being received.

unblock
Allow the specified signal to be received.

sin

sin arg

Retur n the sine of expression arg.

sinh

sinh arg

Retur n the hyperbolic sine of expression arg.

310 Chapter 10 – TclX

11 May 2006 10:50

sleep

sleep seconds

Delay execution of the current process for seconds seconds, which must be
an integer value.

sqr t

sqrt arg

Retur n the square root of expression arg.

sync

sync [fileId]

With no options, issue a sync system call to write pending data to disk. With a
file identifier fileId corr esponding to a file open for writing, schedule out-
put for that file to disk. On platforms that do not support the fsync system
call, the fileId parameter is ignored.

system

system cmdstring...

Concatenate one or more command strings with space characters and execute
the command using the system command interpreter (/bin/sh on Unix and
command.com on Windows). Returns the numeric retur n code of the com-
mand.

tan

tan arg

Retur n the tangent of expression arg.

tanh

tanh arg

Retur n the hyperbolic tangent of expression arg.

tclx_er rorHandler

tclx_err orHandler message

A user-written procedur e to handle errors. Called before retur ning to the top-
level command interpreter after an unhandled error.

TclX

Alphabetical Summary of Commands — tclx_err orHandler 311

11 May 2006 10:50

times

times

Retur n a list containing four process CPU usage time values, in the form
utime stime cutime cstime.

translit

translit inrange outrange string

Transliterate characters in string, replacing the characters occurring in
inrange to the corresponding characters in outrange. The ranges may be
lists of characters or a range in the form lower-upper.

Example

translit a-z A-Z "A string"

tr y_eval

try_eval code catch [finally]

Evaluate the command string code. If an err or occurs, evaluate code and
retur n the result. Last, execute the command string finally.

Example

try_eval {
code
puts -nonewline stderr "Enter a number: "
set ans [gets stdin]
could fail, e.g. due to divide by zero
set res [expr 1.0 / $ans]
puts stderr "1 / $ans = $res"

} {
catch
set msg [lindex $errorCode end]
puts stderr "Error: $msg"

} {
finally
puts stderr "End of example"

}

umask

umask [octalmask]

Set the file creation mode mask to octalmask, which must be an octal (base
8) number. With no parameters, retur n the current mask.

312 Chapter 10 – TclX

11 May 2006 10:50

union

union list1 list2

Retur n the logical union of two lists, i.e., a list of all elements contained in
either list1 or list2. The retur ned list is sorted alphabetically and has no
duplicate elements.

wait

wait [-nohang] [-untraced] [-pgr oup] [pid]

Wait for a child process with process ID pid to terminate (or any process if
pid is omitted).

Options

-nohang
Don’t block waiting on the process to terminate.

-untraced
Retur n status of other child processes.

-pgr oup
Wait on any processes in process group.

The command retur ns a list with three elements: the process ID of the process
that terminated, the reason code (EXIT, SIG, SIGSTP, or STOP), and the
numeric exit code.

wr ite_file

write_file fileName string...

Write one or more strings to the file named fileName. Each string is termi-
nated with a newline character.

TclX

Alphabetical Summary of Commands 313

11 May 2006 10:50

CHAPTER 11

BLT

BLT, written by George A. Howlett, is not part of the core Tcl/Tk package, but can
be obtained for free at http://www.tcltk.com/blt. At the time of this writing, the final
2.4 version of BLT had not been released. However, because of the addition of the
tabset and hierbox widgets, it is bound to quickly become a popular version.
Ther efor e, this chapter documents prer elease 2.4f, which should be extremely
close to the final version. Footnotes in the description denote where changes may
be expected.

BLT is an extension to Tcl/Tk designed to simplify a number of tasks that would
nor mally requir e considerable coding. It provides commands for producing graphs
and managing numerical data, a table-based geometry manager, a drag-and-dr op
facility, and several other graphical and utility commands. Several of BLT’s com-
mands have been partially incorporated into the standard Tcl/Tk distribution. It
works with Unix under the X Window System and with Windows.

BLT can be loaded from existing Tcl applications or one can use the supplied
bltwish command interpreter. In the former case, BLT can be loaded using the
command:

package require BLT

on a properly configured system. The BLT commands will be defined in the
blt:: namespace. To make the BLT commands globally accessible, issue the
command:

namespace import blt::*

Figur e 11-1 shows some examples of BLT widgets.

314

11 May 2006 10:51

http://www.tcltk.com/blt

Figur e 11−1: Examples of some of the BLT widgets

Environment Var iable
The following environment variable is used by the BLT toolkit:

BLT_LIBRARY
Dir ectory containing Tcl scripts and other files needed by BLT at runtime

Special Var iables
The following global variables have special meaning to the BLT toolkit:

blt_library
Dir ectory containing Tcl scripts and other files related to BLT. Uses the
BLT_LIBRARY envir onment variable if set; otherwise uses a compiled-in
library.

blt_version
The current version of BLT in the form major-number.minor-
number.

Group Listing of Commands
This section briefly lists all BLT commands, grouped logically by function.

Graphical Commands

bar chart Plot two-dimensional bar chart of data in a window.
bitmap Read and write bitmaps using inline Tcl code.

BLT

Gr oup Listing of Commands 315

11 May 2006 10:51

busy Pr event user interaction when a graphical application is busy.
container Container for a window from another application.
drag&dr op Pr ovide a drag-and-dr op facility for Tk applications.
graph Plot two-dimensional graphics of data in a window.
hierbox Hierarchical listbox for displaying ordered trees.
htext A simple hypertext widget.
stripchart Plot strip charts of data in a window.
table A table-based geometry manager.
tabset A tab notebook or simple tabset.
winop Raise, lower, map, or unmap a window.

Numer ical Data Commands

spline Compute a spline curve fitted to a set of data points.
vector A data structure for manipulating floating-point data values.

Tile Widget Commands

tilebutton Version of Tk button supporting background tiles.
tilecheckbutton Version of Tk checkbutton supporting background tiles.
tileframe Version of Tk frame supporting background tiles.
tilelabel Version of Tk label supporting background tiles.
tileradiobutton Version of Tk radiobutton supporting background tiles.
tilescr ollbar Version of Tk scr ollbar supporting background tiles.
tiletoplevel Version of Tk toplevel supporting background tiles.

Utility Commands

beep Ring the keyboard bell.
bgexec Similar to the Tcl exec command, but allows Tk

to handle events while a process is executing.
bltdebug Simple Tcl command tracing facility.
cutbuf fer Manipulate the eight X Window System cut buffers.
watch Call user-defined procedur es befor e or after execution

of Tcl commands.

Alphabetical Summary of Commands
This section describes all BLT commands, listed in alphabetical order.

barchar t

bar chart pathName [option value...]

See the graph command.

316 Chapter 11 – BLT

11 May 2006 10:51

beep

beep percent

Ring the keyboard bell. Percent is relative to the base volume of the bell
and can range from −100 to 100 inclusive, such that the actual volume will be
between 0 and 100. The default percent is 50.

bgex ec

bgexec varName [options...] command [arg arg...]

Run an external program, like the Tcl exec command, but allow Tk to process
events while the program is running.

Parameter varName is a global variable that will be set to the program’s exit
status when the command is completed. Setting the variable will cause the
pr ogram to be terminated with a signal.

Parameters command and args specify an external command with optional
arguments in the same form as accepted by the Tcl exec command.

Nor mally, bgexec retur ns the results of the program. However, if the last argu-
ment is the ampersand (&), bgexec immediately retur ns a list of the spawned
pr ocess IDs. The variable varName can be used with the tkwait command to
wait for the program to finish.

Options

-err or varName
Cause varName to be set to the contents of standard error when the
command has completed.

-update varName
Cause varName to be set whenever data is written to standard output by
the command.

-keepnewline boolean
Enable or disable truncation of newline from last line of output.

-killsignal signal
Specify (by name or number) the signal to be sent to the command when
ter minating. The default signal is SIGKILL.

-lasterr or varName
Same as the -err or option, except varName is updated as soon as new
data is available.

-lastoutput varName
Same as the -output option, except varName is updated as soon as new
data is available.

BLT

Alphabetical Summary of Commands — bgexec 317

11 May 2006 10:51

-onerr or cmdPrefix
When new data from standard error is available, evaluate the command
cmdPrefix with the new data appended as an argument.

-onoutput cmdPrefix
When new data from standard output is available, evaluate the command
cmdPrefix with the new data appended as an argument.

-output varName
Cause varName to be set to the contents of standard output when the
command has completed.

-update varName
Depr ecated. Same as the -lastoutput option.

– –
Mark the end of options (useful for commands that may start with a
dash).

Example

global myStatus myOutput
set dir /tmp
bgexec myStatus -output myOutput du -s $dir
puts "Disk usage for $dir is $myOutput"

bitmap

bitmap operation bitmapName [arg arg...]

Cr eate or retur n infor mation about a bitmap created using inline Tcl code.
The following operations are defined:

bitmap compose bitmapName text [option value...]
Cr eate a new bitmap from a text string and associate it with the name
bitmapName. The bitmap is defined by the text in the parameter text.
The following options are available:

-font fontName
Specify the font to use when drawing text in the bitmap.

-r otate theta
Rotate the bitmap by theta degr ees.

-scale value
Scale the bitmap by the factor of floating-point number value.

bitmap data bitmapName
Retur n a list of the bitmap data. The first element is a list of the height
and width, the second is a list of the source data.

bitmap define bitmapName data [option value...]
Cr eate a new bitmap and associate it with the name bitmapName. The
bitmap is defined by parameter data, which is a list containing two ele-
ments. The first element is a list defining the height and width. The sec-
ond element is a list of the source data.

318 Chapter 11 – BLT

11 May 2006 10:51

The following options are available:

-r otate theta
Rotate the bitmap by theta degr ees.

-scale value
Scale the bitmap by the factor of floating-point number value.

bitmap exists bitmapName
Retur n 1 if a bitmap named bitmapName exists; otherwise, retur n 0.

bitmap height bitmapName
Retur n the height of a bitmap in pixels.

bitmap source bitmapName
Retur n the source data for a bitmap as a list of hexadecimal values.

bitmap width bitmapName
Retur n the width of a bitmap in pixels.

Example

bitmap define crosshatch {{8 8} {0xaa 0x55 0xaa 0x55 0xaa 0x55 0xaa
0x55}}

toplevel .t
tk_dialog .t title "<- Sample Bitmap" crosshatch 0 Continue

bitmap compose text "Some\nText" -rotate 90 -scale 2
toplevel .t
tk_dialog .t title "<- Sample Bitmap" text 0 Continue

bltdebug

bltdebug [level]

Trace Tcl commands by printing each command before it is executed. The
command is shown both before and after substitutions. The integer value
level indicates the number of stack levels to trace. A level of 0 disables all
tracing. If level is omitted, the current level is retur ned.

busy

busy operation [arg arg...]

Make Tk widgets busy, temporarily blocking user interaction. In many cases,
the busy command provides a more flexible alternative to the Tk grab com-
mand. The following operations are defined:

busy hold window [-cursor cursor]
Make the widget window and all of its descendants busy. The -cursor
option specifies the cursor to be displayed when busy. It accepts any of
the standard Tk cursors; the default is watch. It can also be defined in
the Tk resource database using resource and class names busyCursor
and BusyCursor, respectively.

BLT

Alphabetical Summary of Commands — busy 319

11 May 2006 10:51

busy configure window [option [value [option value...]]]
Query or modify the configuration parameters for a window previously
made busy in the same manner as the general widget configur e method.
Available options are the same as for the hold operation.

busy forget window...
Restor e user interaction to the given windows. The input-only window
used by busy is destroyed.

busy isbusy [pattern]
Retur n the pathnames of all windows that are curr ently busy. With an
optional pattern, retur n the names of busy widgets matching the pattern.

busy release window...
Restor e user interaction to the given windows. The input-only window
used by busy is not destroyed.

busy status window
Retur n the status of a window previously made busy. Return 1 if the win-
dow is busy, 0 otherwise.

busy windows [pattern]
Retur n the pathnames of all windows that have previously been made
busy or are curr ently busy. With an optional pattern, retur n the names of
busy windows matching the pattern.

Example

frame .f
button .f.b -text "BUTTON"
pack .f.b
pack .f
busy hold .f.b
update
after 5000
busy release .f.b

container

container pathName [option value...]

The container command creates a new container widget named pathName.
A container widget is similar to a frame widget but is intended to contain a
window belonging to another application. Although the frame widget can do
this between other Tk applications, container works with non-Tk applica-
tions. This command is not supported under Windows.

Standard Options

-backgr ound -bor derwidth -cursor
-highlightbackgr ound -highlightcolor -highlightthickness
-r elief -takefocus

320 Chapter 11 – BLT

11 May 2006 10:51

Widget-Specific Options

-height amount (height, Height)
Desir ed height, in screen units, for the window.

-width amount (width, Width)
Desir ed width, in screen units, for the window.

-window windowID (window, Window)
The hexadecimal, platform-specific identifier for a window to be con-
tained in the widget.

Example

container .c -window 0x3c00009
pack .c

cutbuf fer

cutbuf fer operation [arg...]

Read or modify the eight X Window System cut buffer properties. This com-
mand is not supported under Windows. The following operations are defined:

cutbuf fer get [number]
Retur n the contents of cut buffer number, a number between 0 (the
default) and 7. Any NULL bytes are converted to the @ character.

cutbuf fer rotate [count]
Rotate the cut buffers by count, a number between −7 and 7. The
default is 1.

cutbuf fer set value [number]
Set the contents of cut buffer number to value. The default is 1.

drag&drop

drag&dr op operation [arg arg...]

Pr ovide a drag-and-dr op facility for Tk applications. Widgets register ed as a
drag-and-dr op source can export data to other widgets register ed as targets.
The following operations are defined:

drag&dr op active
Retur n 1 if a drag-and-dr op operation is in progr ess, 0 otherwise. A drag-
and-dr op operation officially starts after the package command has been
executed successfully, and ends after the send handler has been executed
(successfully or otherwise).

drag&dr op drag window x y
Handle dragging of the token window for source window during a drag-
and-dr op operation. If the token window is unmapped, the -packagecmd
for the source window is executed. If this command is successful and
retur ns a non-null string, the token window is mapped. On subsequent
calls, the token window is moved to the given x y location.

BLT

Alphabetical Summary of Commands — drag&dr op 321

11 May 2006 10:51

drag&dr op dr op window x y
Handle the end of a drag-and-drop operation. If the location x y is over
a compatible target window, the appropriate source handler for the first
compatible data type is invoked. If the data transfer is successful, the
token window is unmapped. Otherwise, a rejection symbol is drawn on
the token window, and the window is unmapped after a small delay.

drag&dr op err ors [proc]
Specify that the Tcl procedur e proc be used to handle errors that occur
during drag-and-drop operations. If proc is not specified, the current
err or handler is retur ned. By default, all errors are sent to the usual
tkerr or command and therefor e appear in a dialog box to the user.

drag&dr op location [x y]
Set the pointer location during a drag-and-drop operation to location x y.
If the coordinates are not given, then the last reported location is
retur ned as a two-element list.

drag&dr op sour ce
Retur n a list of the pathnames of widgets register ed as drag-and-drop
sources.

drag&dr op sour ce window [option [value [option value...]]]
Register window as a drag-and-drop source with the given options, or
modify the options for an existing source. The available options are as
follows:

-button n (buttonBinding, ButtonBinding)
Specify the mouse button (1–5) for invoking the drag-and-drop oper-
ation. The default is button 3. ButtonPress and Motion events
for this button will be bound to the drag operation, and Button-
Release events will be bound to the dr op operation. If n is 0, then
no binding is made.

-packagecmd command (packageCommand, PackageCommand)
Specify a Tcl command used to establish the appearance of the
token window at the start of each drag-and-drop operation.

The following substitutions are made in the command string before
it is executed: %t is replaced with the window pathname for the
token that repr esents the data being dragged; %W is replaced with
the window pathname for the drag-and-drop source.

The retur n value of the command is remember ed by the drag-and-
dr op manager and made available to the appropriate source handler
command through the %v substitution. If no source handler com-
mand is defined, the value is used for the %v substitution for the tar-
get handler.

-r ejectbg color (rejectBackground, Background)
Specify the color used to draw the background of the rejection sym-
bol on the token window. This appears whenever communication
fails.

322 Chapter 11 – BLT

11 May 2006 10:51

-r ejectfg color (rejectForeground, Foreground)
Specify the color used to draw the foregr ound of the rejection sym-
bol on the token window.

-r ejectstipple pattern (rejectStipple, Stipple)
Specify the stipple pattern used to draw the rejection symbol on the
token window.

-selftar get boolean (selfTarget, SelfTarget)
Whether a widget defined as a drag-and-drop source and target will
be permitted to transmit to itself. The default is false.

-send list (send, Send)
Specify a list of the data types enabled for communication. Only data
types defined with the sour ce window handler operation are
allowed. The order of data types in the list defines their priority for
targets that handle multiple types. The default is all, which enables
all data types in the order they were defined.

-sitecmd command (siteCommand, Command)
Specify a Tcl command used to update the appearance of the token
window while being dragged.

The following substitutions are made in the command string before
it is executed: %s is replaced with 1 if the token window is over a
compatible target, and 0 otherwise; %t is replaced with the window
pathname for the token that repr esents the data being dragged.

-tokenactivebackgr ound color (tokenActiveBackground,
ActiveBackground)

Specify the color used to draw the background of the token window
when it is active.

-tokenanchor anchor (tokenAnchor, Anchor)
Specify how the token window is positioned relative to the mouse
pointer coordinates passed to the drag&dr op drag operation. The
default is center.

-tokenbg color (tokenBackground, Background)
Specify the color used to draw the background of the token win-
dow.

-tokenbor derwidth size (tokenBorderWidth, BorderWidth)
Specify the width, in pixels, of the border around the token window.
The default is 3.

-tokencursor cursor (tokenCursor, Cursor)
Specify the cursor used when a token window is active. The default
is center_ptr.

-tokenoutline color (tokenOutline, Outline)
Specify the color for the outline drawn around the token window.

BLT

Alphabetical Summary of Commands — drag&dr op 323

11 May 2006 10:51

drag&dr op sour ce window handler [dataType [command arg arg...]]
Define dataType as a data type for which window is a drag-and-drop
source. If command is given, it is concatenated with any args and eval-
uated whenever a target requests data of type dataType fr om the
source window. If only dataType is given, it is defined if necessary and
any command associated with it is retur ned.

The following substitutions are made in the command string before it is
executed: %i is replaced with the name of the interpreter for the target
application; %v is replaced with the value retur ned fr om the -package-
cmd command, and %w is replaced with the window pathname for the
target window. The retur n value of the command is made available to the
target handler’s command through its %v substitution.

drag&dr op tar get
Retur n a list of pathnames for widgets register ed as drag-and-drop tar-
gets.

drag&dr op tar get window handler [dataType command arg...]
Register window as a drag-and-drop target capable of handling source
data of type dataType. Command is concatenated with any args and
evaluated whenever data of type dataType is dropped on the target.

The following substitutions are made in the command string before it is
executed: %v is replaced with the value retur ned fr om the source’s han-
dler command (or the source’s -packagecmd command if there is no han-
dler); %W is replaced with the window pathname for the target window.

drag&dr op tar get window handle dataType
Search for data type dataType among the handlers register ed for the
target window and invoke the appropriate command. An error is gener-
ated if no handler is found.

drag&dr op token window [option value...]]]
With no options, retur n the pathname of the token window associated
with drag-and-drop source window. The token window is used to repr e-
sent data as it is being dragged from the source to a target. When a
source is first established, its token window must be filled with widgets
to display the source data.

If options are specified, they specify configuration options for the token.
Available options are as follows:

-activebackgr ound color (activeBackground,
ActiveBackground)

Specify the color used to draw the background of the token window
when it is active.

-activebor derwidth size (activeBorderWidth,
ActiveBorderWidth)

Specify the width, in pixels, of the border around the token window
when it is active.

324 Chapter 11 – BLT

11 May 2006 10:51

-activer elief relief (activeBackground, ActiveBackground)
3D effect for border of the token window when it is active.

-anchor anchor (anchor, Anchor)
Specify how the token window is positioned relative to the mouse
pointer coordinates passed to the drag&dr op drag operation. The
default is center.

-backgr ound color (background, Background)
Specify the color used to draw the background of the token win-
dow.

-bor derwidth size (borderWidth, BorderWidth)
Specify the width, in pixels, of the border around the token window.
The default is 3.

-cursor cursor (cursor, Cursor)
Specify the cursor used when a token window is active. The default
is center_ptr.

-outline color (outline, Outline)
Specify the color for the outline drawn around the token window.

-r ejectbg color (rejectBackground, Background)
Specify the color used to draw the background of the rejection sym-
bol on the token window. This appears whenever communication
fails.

-r ejectfg color (rejectForeground, Foreground)
Specify the color used to draw the foregr ound of the rejection sym-
bol on the token window.

-r ejectstipple pattern (rejectStipple, Stipple)
Specify the stipple pattern used to draw the rejection symbol on the
token window.

-r elief relief (relief, Relief)
3D effect for border of the token window.

Example

For a complete example of using this command, see the demo programs
included with the BLT distribution.

gr aph

graph pathName [option value...]

stripchart pathName [option value...]

bar chart pathName [option value...]

BLT supports three types of charts with the graph, stripchart, and bar chart
commands. The methods and options for each of these widgets are nearly
identical; therefor e, all three are described here with the differ ences noted as
appr opriate.

BLT

Alphabetical Summary of Commands — graph 325

11 May 2006 10:51

The graph command creates a new graph widget named pathName for plot-
ting two-dimensional data (x- and y-coordinates) using symbols and/or con-
necting lines. A graph widget is composed of several components: coordinate
axes, data elements, a legend, a grid, crosshairs, pens, a PostScript generator,
and annotation markers. Methods exist for creating (if necessary) and manipu-
lating each of these components.

The stripchart command creates a new strip chart widget named pathName.
A strip chart widget is almost exactly the same as a graph widget except that
the x-axis typically refers to time points and has better support for maintain-
ing a view of recent data. The primary differ ence is support for the
-autorange and -shiftby axis options.

The bar chart command creates a new bar chart widget named pathName. A
bar chart widget is essentially the same as a graph widget except that vertical
bars are used to repr esent the data rather than symbols and lines. Therefor e
the bar chart has very differ ent element and pen configuration options. It also
supports the additions to the axis configuration used by the strip chart to han-
dle dynamic data.

Any number of independent coordinate axes can be created and used to map
data points. Axes consist of the axis line, title, major and minor ticks, and tick
labels. Only four axes can be displayed at one time. They are drawn along
the four borders of the plotting area. Four axes are automatically created for
each graph. These are named x, x2, y, and y2, which are associated with the
bottom, top, left, and right boundaries, respectively. Only x and y ar e shown
by default.

Grid lines can be drawn to extend the major and minor ticks from axes.
Cr osshairs can be displayed to track the position of the mouse on the plotting
ar ea.

A set of data values plotted on the chart is called an element. Each element
can be drawn with connecting lines, symbols, or both. Pens can be defined
for controlling the display attributes of both lines and symbols. Each element
may use multiple pens. A legend can be displayed anywhere on the chart to
identify the plotted elements.

Six types of annotations, called markers, are supported: text, line, image,
bitmap, polygon, and window. A marker is created and manipulated with
the marker methods and can be placed at an arbitrary position on the chart.
Markers are similar in operation to canvas items.

Standard Options

-backgr ound -bor derwidth -cursor
-font -foregr ound -r elief
-takefocus

Widget-Specific Options

-aspect ratio (aspect, Aspect)
The height or width of the plotting area will be shrunk to maintain a ratio
of width to height of ratio.

326 Chapter 11 – BLT

11 May 2006 10:51

-bar mode mode (barMode, BarMode)
[bar chart only] How bars with the same x-coordinate should be dis-
played. Valid values for mode ar e as follows:

normal
No effort is made to keep bars from obscuring each other.

aligned
Bars are reduced in width and drawn side by side in display order
so they do not overlap.

overlap
Bars are slightly offset and reduced in width so all bars are visible
but overlap each other in display order.

stacked
Bars are stacked on top of each other in display order.

-barwidth amount (barWidth, BarWidth)
[bar chart only] Width of bars in chart x-coordinates. The default is 1.0.

-baseline y (baseline, Baseline)
[bar chart only] Baseline along y-axis for bars. Bars for values greater
than y ar e drawn upward, and bars for values less than y ar e drawn
downward. The default is 0.0. For a log scale y-axis, the baseline is
always 1.0.

-bottommar gin amount (bottomMargin, Margin)
Size, in screen units, of the margin from x-coordinate axis to the bottom
of the window. If amount is 0, the margin is autosized.

-bottomvariable varName (bottomVariable, BottomVariable)
Variable that will be automatically updated with the current size of the
bottom margin.

-buf ferelements boolean (bufferElements, BufferElements)
Whether to use a pixmap to cache the display elements. Useful if data
points are frequently redrawn. The default is true.

-halo amount (halo, Halo)
Thr eshold distance when searching for the closest data point.

-height amount (height, Height)
Desir ed height, in screen units, for the window.

-invertxy boolean (invertXY, InvertXY)
Whether placement of the x- and y-axis should be inverted.

-justify justify (justify, Justify)
How the title should be aligned on the chart. Parameter justify may
be left, right, or center (the default).

-leftmar gin amount (leftMargin, Margin)
Size, in screen units, of the margin from the left edge of the window to
the y-coordinate axis. If amount is 0, the margin is autosized.

BLT

Alphabetical Summary of Commands — graph 327

11 May 2006 10:51

-leftvariable varName (leftVariable, LeftVariable)
Variable that will be automatically updated with the current size of the
left margin.

-plotbackgr ound color (plotBackground, Background)
Backgr ound color for the plotting area.

-plotbor derwidth amount (plotBorderWidth, BorderWidth)
Window of 3D border drawn around the plotting area.

-plotpadx amount (plotPadX, PlotPad)
Amount of padding, in screen units, to add to the left and right sides of
the plotting area. Parameter amount may be a list of two screen dis-
tances to set the left and right padding separately.

-plotpady amount (plotPadY, PlotPad)
Amount of padding, in screen units, to add to the top and bottom sides
of the plotting area. Parameter amount may be a list of two screen dis-
tances to set the top and bottom padding separately.

-plotr elief relief (plotRelief, Relief)
3D relief for border drawn around the plotting area.

-rightmar gin amount (rightMargin, Margin)
Size, in screen units, of the margin from the plotting area to the right
edge of the window.

-rightvariable varName (rightVariable, RightVariable)
Variable that will be automatically updated with the current size of the
right margin.

-shadow color (shadow, Shadow)
Color for the shadow drawn beneath the title text. The default is the
empty string (i.e., transparent).

-tile image (tile, Tile)
Image to use for a tiled background for the chart. If image is the empty
string (the default), no tiling is done.

-title string (title, Title)
Title for the chart. If string is the empty string (the default), no title is
displayed.

-topmar gin amount (topMargin, Margin)
Size, in screen units, of the margin from the top edge of the window to
the plotting area.

-topvariable varName (topVariable, TopVariable)
Variable that will be automatically updated with the current size of the
top margin.

-width amount (width, Width)
Desir ed width, in screen units, for the window.

328 Chapter 11 – BLT

11 May 2006 10:51

Methods

pathName axis cget axisName option
Retur n the current value of the option option for the axis axisName in
the same manner as the general widget cget method. Supported options
ar e those available to the axis create method used to create the axis.

pathName axis configure axisName [axisName...] [option value...]
Query or modify the configuration options for the axes axisNames in
the same manner as the general widget configur e method. Supported
options are those available for the axis create method.

pathName axis create axisName [option value...]
Cr eate a new axis in the chart named axisName configur ed with the
given options. Supported options are as follows:

-autorange range (autoRange, AutoRange)
[bar chart and strip chart only] Set the allowed range (differ ence
between the maximum and minimum limit values) for the axis to
range. If range is 0.0 (the default), the range is determined from
the limits of the data. The option is overridden by the -min and
-max options.

-color color (color, Color)
For eground color for the axis and its labels.

-command tclCommand (command, Command)
Command to call when formatting the axis labels. The pathname of
the chart and the numeric value of the axis label are appended as
arguments. The retur n value of the command is used as the final
label.

-descending boolean (descending, Descending)
Whether coordinate values should decrease along the axis. The
default is false.

-hide boolean (hide, Hide)
Whether axis should be hidden (not drawn).

-justify justify (justify, Justify)
How multiple lines in the axis title should be aligned. justify must be
left, right, or center (the default).

-limitcolor color (limitColor, Color)
Color used to draw axis limits.

-limitfont font (limitFont, Font)
Font used to draw axis limits.

-limits formatStr (limits, Limits)
A printf -like format string to format the minimum and maximum
limits. If formatStr is a list with two elements, the two elements
ar e the format strings for the minimum and maximum limits. If
formatStr is the empty string (the default), the limits are not dis-
played.

BLT

Alphabetical Summary of Commands — graph 329

11 May 2006 10:51

-limitshadow color (limitShadow, Shadow)
Color to use to draw the shadow for axis limits.

-linewidth amount (lineWidth, LineWidth)
Line width for the axis and its ticks. The default is 1.

-logscale boolean (logScale, LogScale)
Whether the scale of the axis should be logarithmic. The default is
false.

-loose boolean (loose, Loose)
Whether the axis range, when autoscaling, should fit loosely around
the data points at the outer tick intervals. The default is false.

-majorticks majorList (majorTicks, MajorTicks)
Wher e to display major axis ticks. Parameter majorList is a list of
axis coordinates designating the location of major ticks. No minor
ticks are drawn. If the list is empty, major ticks are automatically
computed.

-max value (max, Max)
The maximum limit of the axis. Data points above this limit are
clipped. If value is the empty string, the maximum value of the
axis is autoscaled.

-min value (min, Min)
The minimum limit of the axis. Data points below this limit are
clipped. If value is the empty string, the minimum value of the
axis is autoscaled.

-minorticks minorList (minorTicks, MinorTicks)
Wher e to display minor axis ticks. Parameter minorList is a list of
real values between 0.0 and 1.0 designating the location of minor
ticks between each pair of major ticks. If the list is empty, minor
ticks are automatically computed.

-r otate theta (rotate, Rotate)
Angle, in degrees, to rotate the axis labels. The default is 0.0.

-shiftby value (shiftBy, ShiftBy)
[bar chart and strip chart only] How much to automatically shift the
range of the axis when new data exceeds the current axis maximum
limit. The limit is increased in increments of value. If value is 0.0
(the default), no automatic shifting is done.

-showticks boolean (showTicks, ShowTicks)
Whether axis ticks should be drawn. The default is true.

-stepsize value (stepSize, StepSize)
The step size between major axis ticks. If the value is not greater
than zero or is greater than the full range of the axis, the step size is
automatically calculated.

330 Chapter 11 – BLT

11 May 2006 10:51

-subdivisions number (subdivisions, Subdivisions)
Number of minor axis tick intervals between major ticks. The default
is 2, corresponding to one minor tick being drawn.

-tickfont fontName (tickFont, Font)
Font to use for drawing the axis tick labels.

-ticklength amount (tickLength, TickLength)
Length of the major ticks. Minor ticks are set to half this length. If
amount is negative, tick will point away from the plotting area.

-tickshadow color (tickShadow, Shadow)
Color to use for drawing the shadow for the axis tick labels.

-title string (title, Title)
Title for the axis.

-titlecolor color (titleColor, Color)
For eground color to use for drawing the axis title.

-titlefont fontName (titleFont, Font)
Font to use for drawing the axis title.

-titleshadow color (titleShadow, Shadow)
For eground color to use for drawing the axis title.

pathName axis delete axisName...
Delete the given axes. An axis is not really deleted until all elements and
markers mapped to it are deleted.

pathName axis invtransform axisName coord
Per form an inverse coordinate transformation, mapping the screen coor-
dinate coord to its corresponding chart coordinate on the axis axis-
Name. The calculated chart coordinate is retur ned.

pathName axis limits axisName
Retur n a list of two coordinates repr esenting the minimum and maximum
limits of the axis.

pathName axis names [pattern...]
Retur n a list of axes with names that match any of the given patterns. If
no pattern is specified, the names of all axes are retur ned.

pathName axis transform axisName coord
Transfor m the chart coordinate coord on the axis axisName to its cor-
responding screen coordinate. The calculated screen coordinate is
retur ned.

pathName bar operation arg...
The bar method is identical to the element method in bar chart widgets.
In a future version of BLT, the bar method will be supported by graph
widgets in order to mix line- and bar-type elements.

BLT

Alphabetical Summary of Commands — graph 331

11 May 2006 10:51

pathName cr osshairs cget option
Retur n the current value of the option option for the crosshairs in the
same manner as the general widget cget method. Supported options are
those available to the cr osshairs configur e method.

pathName cr osshairs configur e [option value...]
Query or modify the configuration options for the chart’s crosshairs in the
same manner as the general widget configur e method. Supported options
ar e as follows:

-color color (color, Color)
Color for the crosshair lines.

-dashes dashStyle (dashes, Dashes)
Dash style for the crosshair lines. Parameter dashStyle is a list of
up to 11 numbers that alternately repr esent the lengths of the dashes
and gaps. Each number must be between 1 and 255, inclusive. If
dashStyle is the empty string (the default), a solid line is drawn.

-hide boolean (hide, Hide)
Whether crosshairs should be hidden (not drawn). The default is
true.

-linewidth amount (lineWidth, LineWidth)
Line width for the crosshairs.

-position @x,y (position, Position)
The chart x- and y- coordinates of the crosshairs.

pathName cr osshairs of f
Turn off the drawing of the crosshairs.

pathName cr osshairs on
Turn on the drawing of the crosshairs.

pathName cr osshairs toggle
Toggle drawing of the crosshairs.

pathName element activate elemName [index...]
Make the data points in element elemName at the given indices active. If
no indices are specified, all data points in the element are made active.

pathName element bind tagName [sequence [command]]
Bind command to all elements with tag tagName so it is invoked when
the given event sequence occurs for the element. The syntax for this
method is the same as for the standard Tk bind command except that it
operates on graph elements. TagName may be the name of a single ele-
ment, the special tag all (bind to all elements), or an arbitrary string.
Only keyboard and mouse events can be bound.

pathName element cget elemName option
Retur n the current value of the option option for the element elem-
Name in the same manner as the general widget cget method. Supported
options are those available to the element create method used to create
the axis.

332 Chapter 11 – BLT

11 May 2006 10:51

pathName element closest winX winY varName [option value...]
[elemName...]
Find the data point closest to window coordinates winX and winY. If
found, a 1 is retur ned and the variable varName is set equal to a list
containing the name of the closest element, the index of the closest
point, and the chart xy-coordinates of the point. If no data point is
found within the threshold distance given by the -halo option, a 0 is
retur ned. The optional elemName arguments restrict the search to the
given elements. The following options can be specified to further modify
the search:

-halo amount
Thr eshold distance outside of which points are ignor ed in search.
Overrides the chart -halo option.

-interpolate boolean
Whether interpolated points should also be considered in the search.
Useful for graph widgets only.

pathName element configure elemName [elemName...] [option value...]
Query or modify the configuration options for the elements elemNames
in the same manner as the general widget configur e method. Supported
options are those available for the element create method.

pathName element create elemName [option value...]
Cr eate a new element in the chart named elemName configur ed with the
given options. Options supported by all three chart widgets are:

-activepen penName (activePen, ActivePen)
Name of pen to use to draw element when it is active.

-bindtags tagList (bindTags, BindTags)
The binding tag list for the element, which determines the order of
evaluation of the commands for matching event bindings. Implicitly,
the name of the element itself is always the first tag in the list. The
default value is all.

-data coordList (data, Data)
Chart coordinates for the data points to be plotted. Parameter
coordList is a list of real numbers repr esenting x- and y-coordi-
nate pairs.

-hide boolean (hide, Hide)
Whether element is hidden (not drawn).

-label string (label, Label)
Label for the element in the legend.

-labelr elief relief (labelRelief, LabelRelief)
3D effect of border around label for the element in the legend.

-mapx xaxis (mapX, MapX)
Name of x-axis onto which to map element’s data. The default is x.

BLT

Alphabetical Summary of Commands — graph 333

11 May 2006 10:51

-mapy yaxis (mapY, MapY)
Name of y-axis onto which to map element’s data. The default is y.

-pen penName (pen, Pen)
Name of pen to use to draw element when it is not active. The pen’s
options override those explicitly set with element configure.

-styles styleList (styles, Styles)
Styles used to draw the data point symbols or bars. Each element of
styleList is a list consisting of a pen name and, optionally, two
numbers defining a minimum and maximum range. Data points
whose weights fall inside this range are drawn with this pen. If no
range is specified, the default range is a single value equal to the
index of the pen in the list.

-weights wVec (weights, Weights)
Weights of the individual data points. Parameter wVec is a BLT vec-
tor or list.

-xdata xvec (xData, XData)
The x-coordinates of the data points for the element. Overrides -data
option. Parameter xvec is a BLT vector or list.

-ydata yvec (yData, YData)
The y-coordinates of the data points for the element. Overrides -data
option. Parameter yvec is a BLT vector or list.

Options supported by only the graph and strip chart widgets are as fol-
lows:

-color color (color, Color)
Color for traces connecting the data points.

-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 num-
bers that alternately repr esent the lengths of the dashes and gaps.
Each number must be between 1 and 255, inclusive. If dashStyle
is the empty string (the default), a solid line is drawn.

-fill color (fill, Fill)
Interior color for the data point symbols. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-linewidth amount (lineWidth, LineWidth)
Width of connecting lines between data points.

-of fdash color (offDash, OffDash)
Color for stripes when traces are dashed. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

334 Chapter 11 – BLT

11 May 2006 10:51

-outline color (outline, Outline)
Color for outline drawn around each symbol. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-outlinewidth amount (outlineWidth, OutlineWidth)
Width of the outline drawn around each symbol. The default is 1.0.

-pixels amount (pixels, Pixels)
Size of the symbols. If amount is zero, no symbol is drawn. The
default is 0.125i.

-scalesymbols boolean (scaleSymbols, ScaleSymbols)
Whether the size of the symbols should change to scale with future
changes to the scale of the axes.

-smooth type (smooth, Smooth)
How connecting lines are drawn between the data points. If type is
linear, a single line segment is drawn. If type is step, first a
horizontal line is drawn to the next x-coordinate and then a vertical
line to the next y-coordinate. If type is natural or quadratic,
multiple segments are drawn between the data points using a cubic
or quadratic spline, respectively. The default is linear.

-symbol symbol (symbol, Symbol)
Type of symbol to use for data points. Parameter symbol may be
square, circle, diamond, plus, cross, splus, scross, tri-
angle, or a bitmap. Bitmaps ar e repr esented as a list specifying the
bitmap and an optional mask. If symbol is the empty string, no
symbol is drawn. The default is circle.

-trace type (trace, Trace)
[graph only] How to draw lines between data. If type is increas-
ing, lines are drawn only between monotonically increasing points.
If type is decreasing, lines are drawn only between monotoni-
cally decreasing points. If type is both, lines between points are
always drawn. The default is both.

Options supported by only the bar chart widget are as follows:

-backgr ound color (background, Background)
Color of border around each bar.

-barwidth amount (barWidth, BarWidth)
Width of the bar in x-coordinate values. Overrides the widget’s
-barwidth option.

-bor derwidth amount (borderWidth, BorderWidth)
Width of 3D border drawn around each bar.

-for eground color (foreground, Foreground)
Color of the interior of each bar.

BLT

Alphabetical Summary of Commands — graph 335

11 May 2006 10:51

-r elief relief (relief, Relief)
3D relief for border drawn around each bar.

-stipple bitmap (stipple, Stipple)
Stipple pattern used to draw each bar. If bitmap is the empty string
(the default), the bar is drawn in solid color.

pathName element deactivate pattern...
Deactivate all elements whose names match any of the given patterns.

pathName element delete elemName...
Delete all the given elements from the chart.

pathName element exists elemName
Retur n 1 if an element named elemName exists, 0 otherwise.

pathName element names [pattern...]
Retur n a list of the names of all the elements that match the given pat-
ter ns. If no patterns are specified, the names of all elements in the chart
ar e retur ned.

pathName element show [nameList]
If nameList is specified, it is a list of elements that should be displayed
on the chart and in what order. Otherwise, the current display list is
retur ned. Elements not in the list are not drawn.

pathName element type elemName
Retur n the type of element elemName, either bar for bar charts or line
for graphs and strip charts.

pathName extents Item
Retur n the size of an item in the chart. Item must be leftmargin,
rightmargin, topmargin, bottommargin, plotwidth, or
plotheight.

pathName grid cget option
Retur n the current value of the option option for the grid in the same
manner as the general widget cget method. Supported options are those
available to the grid configure method.

pathName grid configure [option value...]
Query or modify the configuration options for the chart’s grid in the same
manner as the general widget configur e method. By default, the grid is
hidden for the graph and strip chart widgets, and only horizontal grid
lines are shown for the bar chart widget. Supported options are as fol-
lows:

-color color (color, Color)
Color for the grid lines.

-dashes dashStyle (dashes, Dashes)
Dash style for grid lines. Parameter dashStyle is a list of up to 11
numbers that alternately repr esent the lengths of the dashes and
gaps. Each number must be between 1 and 255, inclusive. If dash-
Style is the empty string (the default), a solid line is drawn.

336 Chapter 11 – BLT

11 May 2006 10:51

-hide boolean (hide, Hide)
Whether the grid lines should be hidden (not drawn). The default is
true.

-linewidth amount (lineWidth, LineWidth)
Line width for the grid lines.

-mapx xaxis (mapX, MapX)
Name of x-axis onto which to map vertical grid lines. If xaxis is
the empty string, no vertical grid lines are drawn. The default is the
empty string for bar charts and x for graphs and strip charts.

-mapy yaxis (mapY, MapY)
Name of y-axis onto which to map horizontal grid lines. If yaxis is
the empty string, no horizontal grid lines are drawn. The default is y.

-minor boolean (minor, Minor)
Whether grid lines should be drawn for minor ticks. The default is
true.

pathName grid off
Turn off the drawing of the grid lines.

pathName grid on
Turn on the drawing of the grid lines.

pathName grid toggle
Toggle drawing of the grid lines.

pathName invtransfor m winX winY
Per form an inverse coordinate transformation, mapping the given win-
dow coordinates to chart coordinates. The calculated x- and y- chart
coordinates are retur ned.

pathName inside x y
Retur n 1 if the given screen coordinates x y ar e inside the plotting area,
0 otherwise.

pathName legend activate pattern...
Activate all legend entries whose names match the given patterns.

pathName legend bind elemName [sequence [command]]
Bind command to the legend entry associated with element elemName
so it is invoked when the given event sequence occurs for the entry.
The syntax for this method is the same as for the standard Tk bind com-
mand except that it operates on legend entries. If elemName is all, the
binding applies to all entries. Only keyboard and mouse events can be
bound.

pathName legend cget option
Retur n the current value of the option option for the legend in the
same manner as the general widget cget method. Supported options are
those available to the legend configure method.

BLT

Alphabetical Summary of Commands — graph 337

11 May 2006 10:51

pathName legend configure [option value...]
Query or modify the configuration options for the chart’s legend in the
same manner as the general widget configur e method. Supported options
ar e as follows:

-activebackgr ound color (activeBackground,
ActiveBackground)

Backgr ound color for active legend entries.

-activebor derwidth amount (activeBorderWidth,
ActiveBorderWidth)

Width of 3D border around active legend entries.

-activefor eground color (activeForeground,
ActiveForeground)

For eground color for active legend entries.

-activer elief relief (activeRelief, ActiveRelief)
Relief of border around active legend entries.

-anchor anchorPos (anchor, Anchor)
How legend should be positioned relative to its positioning point.
The default is center. How anchorPos is interpreted depends on
the value of the positioning point (see the -position option).

-backgr ound color (background, Background)
Backgr ound color for the legend. The default is an empty string
(transpar ent).

-bor derwidth amount (borderWidth, BorderWidth)
Width of the 3D border around the legend.

-font fontName (font, Font)
Font to use for the labels of legend entries.

-for eground color (foreground, Foreground)
For eground color for the legend.

-hide boolean (hide, Hide)
Whether the legend should be hidden (not drawn).

-ipadx amount (iPadX, Pad)
Inter nal horizontal padding between the legend border and entries.
If amount has two elements, it specifies the padding for the left and
right sides, in that order.

-ipady amount (iPadY, Pad)
Inter nal vertical padding between the legend border and entries. If
amount has two elements, it specifies the padding for the top and
bottom, in that order.

-padx amount (padX, Pad)
Extra padding on the left and right side of the legend. If amount
has two elements, it specifies the padding for the left and right sides,
in that order.

338 Chapter 11 – BLT

11 May 2006 10:51

-pady amount (padY, Pad)
Extra padding on the top and bottom side of the legend. If amount
has two elements, it specifies the padding for the top and bottom, in
that order.

-position position (position, Position)
Positioning point for the legend in window coordinates. Valid values
for position (the default is right) are as follows:

@x,y
Legend is placed so its anchor point is at the given window
coordinates.

left or right
Legend is drawn in left or right margin. The anchor point affects
only the vertical position.

top or bottom
Legend is drawn in the top or bottom margin. The anchor point
af fects only the horizontal position.

plotarea
Legend is placed inside the plotting area. The anchor point of
the legend is placed at the same cardinal point of the plotting
ar ea. For example, if the anchor is ne, the legend will occupy
the upper-right corner of the plotting area.

-raised boolean (raised, Raised)
Whether legend should be drawn above data elements when in the
plotting area. The default is false.

-r elief relief (relief, Relief)
Relief of the border around the legend.

-shadow color (shadow, Shadow)
Color for the shadow drawn beneath the entry labels. The default is
the empty string (i.e., transparent).

pathName legend deactivate pattern...
Deactivate the legend entries whose names match the given patterns.

pathName legend get @x,y
Retur n the name of the element with a legend entry at window coordi-
nates x,y in the legend.

pathName line operation arg...
The line method is identical to the element method in graph and strip
chart widgets. In a future version of BLT, the line method will be sup-
ported by bar chart widgets in order to mix line- and bar-type elements.

pathName marker after markerId [markerId]
Reorder the marker display list, placing the first specified marker after the
second. If the second markerId is omitted, the marker is placed at the
end of the list. Markers are drawn in order from this list.

BLT

Alphabetical Summary of Commands — graph 339

11 May 2006 10:51

pathName marker before markerId [markerId]
Reorder the marker display list, placing the first specified marker before
the second. If the second markerId is omitted, the marker is placed at
the beginning of the list. Markers are drawn in order from this list.

pathName marker bind tagName [sequence [command]]
Bind command to all markers with tag tagName so it is invoked when
the given event sequence occurs for the marker. The syntax for this
method is the same as for the standard Tk bind command except that it
operates on graph markers. TagName may be the name of a single
marker, a capitalized marker type (e.g., Line, for all line markers), the
special tag all (bind to all markers), or an arbitrary string. Only key-
board and mouse events can be bound.

pathName marker cget markerId option
Retur n the current value of the option option for the marker markerId
in the same manner as the general widget cget method. Supported
options are those available to the marker create method used to create
the marker.

pathName marker configure markerId [option value...]
Query or modify the configuration options for the marker markerId in
the same manner as the general widget configur e method. Supported
options are those available to the marker create method used to create
the marker.

pathName marker create type [option value...]
Cr eate a new marker in the chart of the selected type configured with the
given options. Type may be text, bitmap, image, line, polygon,
or window. A unique marker identifier for the newly created marker is
retur ned (see the -name option). Options that are specific to each marker
type are described in the following sections. Options that are supported
by all marker types are as follows:

-bindtags tagList (bindtags, bindTags)
The binding tag list for the marker, which determines the order of
evaluation of the commands for matching event bindings. Implicitly,
the name of the marker itself is always the the first tag in the list.
The default value is all.

-coor ds coordList (coords, Coords)
A list of real numbers that repr esent the appropriate x- and y-coordi-
nate pairs for the marker. For text and window markers, only two
coordinates are needed, which give the position point of the marker.
Bitmap and image markers can take two or four coordinates. Line
markers requir e at least four coordinates (two pairs), and polygon
markers requir e at least six (three pairs).

-element elemName (element, Element)
Indicates that the marker should be drawn only if element
elemName is currently displayed.

340 Chapter 11 – BLT

11 May 2006 10:51

-hide boolean (hide, Hide)
Whether markers should be hidden (not drawn).

-mapx xaxis (mapX, MapX)
The x-axis onto which to map the marker’s x-coordinates. Parameter
xaxis must be the name of an axis. The default is x.

-mapy xaxis (mapY, MapY)
The y-axis onto which to map the marker’s y-coordinates. Parameter
xaxis must be the name of an axis. The default is y.

-name markerId
ID to use to identify the marker. Parameter markerId must not be
used by another marker. If this option is not specified at creation, a
unique ID is generated.

-under boolean (under, Under)
Whether marker is drawn below the data elements so as not to
obscur e them.

-xof fset amount (xOffset, XOffset)
Scr een distance by which to offset the marker horizontally.

-yof fset amount (yOffset, YOffset)
Scr een distance by which to offset the marker vertically.

pathName marker delete markerId...
Delete all markers from the chart with the given IDs.

pathName marker exists markerId
Retur n 1 if a marker with ID markerId exists, 0 otherwise.

pathName marker names [pattern]
Retur n a list of marker IDs defined in the chart. If pattern is given,
only those IDs that match it are retur ned.

pathName marker type markerId
Retur n the type of the marker markerId.

pathName pen cget penName option
Retur n the current value of the option option for the pen penName in
the same manner as the general widget cget method. Supported options
ar e those available to the pen create method used to create the axis.

pathName pen configure penName [penName...] [option value...]
Query or modify the configuration options for the pens penNames in the
same manner as the general widget configur e method. Supported options
ar e those available for the pen create method.

pathName pen create penName [-type type] [option value...]
Cr eate a new pen of the specified type in the chart named penName
configur ed with the given options. Type may be line or bar. If type
is not given, it defaults to line for graph and strip chart widgets and to
bar for bar chart widgets.

BLT

Alphabetical Summary of Commands — graph 341

11 May 2006 10:51

Supported options for pens of type line ar e as follows:

-color color (color, Color)
Color of the traces connecting the data points.

-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 num-
bers that alternately repr esent the lengths of the dashes and gaps.
Each number must be between 1 and 255, inclusive. If dashStyle
is the empty string (the default), a solid line is drawn.

-fill color (fill, Fill)
Interior color for the data point symbols. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-linewidth amount (lineWidth, LineWidth)
Width of connecting lines between data points. The default is 0.

-of fdash color (offDash, OffDash)
Color for stripes when traces are dashed. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-outline color (outline, Outline)
Color for outline drawn around each symbol. If color is the empty
string, the color is transparent. If color is defcolor (the default),
the color is the same as the value for the -color option.

-outlinewidth amount (outlineWidth, OutlineWidth)
Width of the outline drawn around each symbol. The default is 1.0.

-pixels amount (pixels, Pixels)
Size of the symbols. If amount is 0, no symbol is drawn. The default
is 0.125i.

-symbol symbol (symbol, Symbol)
Type of symbol to use for data points. Parameter symbol may be
square, circle, diamond, plus, cross, splus, scross, tri-
angle, or a bitmap. Bitmaps ar e repr esented as a list specifying the
bitmap and an optional mask. If symbol is the empty string, no
symbol is drawn. The default is circle.

Supported options for pens of type bar ar e as follows:

-backgr ound color (background, Background)
Color of border around each bar.

-bor derwidth amount (borderWidth, BorderWidth)
Width of 3D border drawn around each bar.

-for eground color (foreground, Foreground)
Color of the interior of each bar.

342 Chapter 11 – BLT

11 May 2006 10:51

-r elief relief (relief, Relief)
3D relief for border drawn around each bar.

-stipple bitmap (stipple, Stipple)
Stipple pattern used to draw each bar. If bitmap is the empty string
(the default), the bar is drawn in solid color.

pathName pen delete penName...
Delete the given pens. A pen is not really deleted until all elements using
it are deleted.

pathName pen names [pattern...]
Retur n a list of the names of all pens that match the given patterns. If no
patter ns ar e specified, the names of all pens in the chart are retur ned.

pathName postscript cget option
Retur n the current value of the PostScript option option in the same
manner as the general widget cget method. Supported options are those
available to the postscript configure method used to create the axis.

pathName postscript configure [option value...]
Query or modify the configuration options for PostScript generation in
the same manner as the general widget configur e method. Supported
options are as follows:

-center boolean (psCenter, PsCenter)
Whether plot should be centered on the PostScript page. The default
is true.

-color map varName (psColorMap, PsColorMap)
A global array variable that specifies the color mapping from the X
color to PostScript code to set that color. If no element of the array is
found for a color, default code is generated using RGB intensities.

-color mode mode (psColorMode, PsColorMode)
How to output color information. Parameter mode may be color,
gray, or mono. The default is color.

-decorations boolean (psDecorations, PsDecorations)
Whether PostScript commands generate color backgrounds and 3D
borders in the output. The default is true.

-fontmap varName (psFontMap, PsFontMap)
A global array variable that specifies the font mapping from X font
name to a two-element list specifying a PostScript font and point
size. If no mapping exits, BLT makes a best guess for Adobe X fonts
and uses Helvetica Bold for others.

-height amount (psHeight, PsHeight)
Height of the plot. If amount is 0, then the height is the same as the
widget height.

BLT

Alphabetical Summary of Commands — graph 343

11 May 2006 10:51

-landscape boolean (psLandscape, PsLandscape)
Whether the printed area is to be rotated 90 degrees.

-maxpect boolean (psMaxpect, PsMaxpect)
Scale the plot so it fills the PostScript page. The aspect ratio is
retained. The default is false.

-padx amount (psPadX, PsPadX)
Padding on the left and right page borders. If amount has two ele-
ments, it specifies the padding for the left and right sides, in that
order. The default is 1i.

-pady amount (psPadY, PsPadY)
Padding on the top and bottom page borders. If amount has two
elements, it specifies the padding for the top and bottom, in that
order. The default is 1i.

-paper height amount (psPaperHeight, PsPaperHeight)
Set the height of the PostScript page. The default is 11.0i.

-paperwidth amount (psPaperWidth, PsPaperWidth)
Set the width of the PostScript page. The default is 8.5i.

-pr eview boolean (psPreview, PsPreview)
Whether an EPSI thumbnail preview image should be inserted into
the generated PostScript.

-width amount (psWidth, PsWidth)
Width of the plot. If amount is 0, the the width is the same as the
widget width.

pathName postscript output [filename] [option value...]
Output the chart as encapsulated PostScript. The output is written to the
file filename, if specified. Otherwise, the output is retur ned as the
method’s results.

pathName print
Pr ompt for a printer and print the image to the printer selected. This is
supported on Windows only.*

pathName snap photoName
Take a snapshot of the chart and store it in the contents of Tk photo
image photoName (which must already exist).

pathName transfor m x y
Transfor m the chart coordinates x and y into window coordinates. The x
and y window coordinates are retur ned. Results for chart coordinates out-
side the axes’ region are not guaranteed to be accurate.

pathName xaxis cget option
Same as the axis cget method for whichever axis is used along the bot-
tom boundary.

* The format of this command may change for the final Version 2.4 to requir e a specific printer ID.

344 Chapter 11 – BLT

11 May 2006 10:51

pathName xaxis configure [option value...]
Same as the axis configure method for whichever axis is used along the
bottom boundary.

pathName xaxis invtransform coord
Same as the axis invtransform method for whichever axis is used along
the bottom boundary.

pathName xaxis limits
Same as the axis limits method for whichever axis is used along the bot-
tom boundary.

pathName xaxis transform coord
Same as the axis transform method for whichever axis is used along the
bottom boundary.

pathName xaxis use [axisName]
Designate that axis axisName is to be used as the bottom boundary
axis. Parameter axisName cannot be already in use at another location.
If axisName is omitted, the name of the axis currently used for the bot-
tom axis is retur ned.

pathName x2axis cget option
Same as the axis cget method for whichever axis is used along the top
boundary.

pathName x2axis configure [option value...]
Same as the axis configure method for whichever axis is used along the
top boundary.

pathName x2axis invtransform coord
Same as the axis invtransform method for whichever axis is used along
the top boundary.

pathName x2axis limits
Same as the axis limits method for whichever axis is used along the top
boundary.

pathName x2axis transform coord
Same as the axis transform method for whichever axis is used along the
top boundary.

pathName x2axis use [axisName]
Designate that axis axisName is to be used as the top boundary axis.
Parameter axisName cannot be already in use at another location. If
axisName is omitted, the name of the axis currently used for the top
axis is retur ned.

pathName yaxis cget option
Same as the axis cget method for whichever axis is used along the left
boundary.

BLT

Alphabetical Summary of Commands — graph 345

11 May 2006 10:51

pathName yaxis configure [option value...]
Same as the axis configure method for whichever axis is used along the
left boundary.

pathName yaxis invtransform coord
Same as the axis invtransform method for whichever axis is used along
the left boundary.

pathName yaxis limits
Same as the axis limits method for whichever axis is used along the left
boundary.

pathName yaxis transform coord
Same as the axis transform method for whichever axis is used along the
left boundary.

pathName yaxis use [axisName]
Designate that axis axisName is to be used as the left boundary axis.
Parameter axisName cannot be already in use at another location. If
axisName is omitted, the name of the axis currently used for the left
axis is retur ned.

pathName y2axis cget option
Same as the axis cget method for whichever axis is used along the right
boundary.

pathName y2axis configure [option value...]
Same as the axis configure method for whichever axis is used along the
right boundary.

pathName y2axis invtransform coord
Same as the axis invtransform method for whichever axis is used along
the right boundary.

pathName y2axis limits
Same as the axis limits method for whichever axis is used along the right
boundary.

pathName y2axis transform coord
Same as the axis transform method for whichever axis is used along the
right boundary.

pathName y2axis use [axisName]
Designate that axis axisName is to be used as the right boundary axis.
Parameter axisName cannot be already in use at another location. If
axisName is omitted, the name of the axis currently used for the right
axis is retur ned.

Bitmap Markers

A bitmap marker displays a bitmap image. If two coordinates are specified for
the -coor ds option, they specify the position of the top-left corner of the
bitmap and the bitmap retains its normal width and height. If four coordinates
ar e specified, the last pair of coordinates repr esents the bottom-right corner

346 Chapter 11 – BLT

11 May 2006 10:51

for the bitmap. The bitmap will be stretched or reduced as necessary to fit
into the bounding rectangle. Options specific to bitmap markers are:

-anchor anchorPos (anchor, Anchor)
How to position the bitmap relative to the position point for the bitmap.
The default is center.

-backgr ound color (background, Background)
Same as the -fill option.

-bitmap bitmap (bitmap, Bitmap)
The bitmap to display.

-fill color (fill, Fill)
Backgr ound color for the bitmap. The default is the empty string (i.e.,
transpar ent).

-for eground color (foreground, Foreground)
Same as the -outline option.

-outline color (outline, Outline)
For eground color for the bitmap. The default is black.

-r otate theta (rotate, Rotate)
Angle in degrees to rotate the bitmap.

Image Markers

An image marker displays a Tk named image. Options specific to image mark-
ers are as follows:

-anchor anchorPos (anchor, Anchor)
How to position the image relative to the position point for the image.
The default is center.

-image imageName (image, Image)
Name of the Tk image to display.

Line Markers

A line marker displays one or more connected line segments on the chart.
Options specific to line markers are as follows:

-cap style (cap, Cap)
How caps are drawn at endpoints of lines. Style may be butt (the
default), projecting, or round.

-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 numbers
that alternately repr esent the lengths of the dashes and gaps. Each num-
ber must be between 1 and 255, inclusive. If dashStyle is the empty
string (the default), a solid line is drawn.

BLT

Alphabetical Summary of Commands — graph 347

11 May 2006 10:51

-fill color (fill, Fill)
Backgr ound color for the line when dashed or stippled. The default is the
empty string (i.e., transparent).

-join style (join, Join)
How line joints are drawn. Style may be bevel, miter (the default),
or round.

-linewidth amount (lineWidth, LineWidth)
Width of the line. The default is 0.

-outline color (outline, Outline)
For eground color for the line. The default is black.

-stipple bitmap (stipple, Stipple)
Stipple pattern used to draw the line.

-xor boolean (xor, Xor)
Whether outline and fill color should be determined from a logical XOR
of the colors on the plot underneath the marker. Overrides the -fill and
-outline options.

Polygon Markers

A polygon marker displays a closed region of two or more connected line
segments on the chart. Options specific to polygon markers are as follows:

-cap style (cap, Cap)
How caps are drawn at endpoints of lines. Style may be butt (the
default), projecting, or round.

-dashes dashStyle (dashes, Dashes)
Dash style for lines. Parameter dashStyle is a list of up to 11 numbers
that alternately repr esent the lengths of the dashes and gaps. Each num-
ber must be between 1 and 255, inclusive. If dashStyle is the empty
string (the default), a solid line is drawn.

-fill color (fill, Fill)
Fill color for the polygon. If color is the empty string, the interior of the
polygon is transparent.

-join style (join, Join)
How line joints are drawn. Style may be bevel, miter (the default),
or round.

-linewidth amount (lineWidth, LineWidth)
Width of the outline. The default is 0.

-outline color (outline, Outline)
Color for the outline of the polygon.

-stipple bitmap (stipple, Stipple)
Bitmap to use as a stipple pattern for drawing the fill color.

348 Chapter 11 – BLT

11 May 2006 10:51

-xor boolean (xor, Xor)
Whether outline and fill color should be determined from a logical XOR
of the colors on the plot underneath the marker. Overrides the -fill and
-outline options.

Te xt Markers

A text marker displays a string of characters at an arbitrary position inside the
chart. Embedded newlines cause line breaks. Options specific to text markers
ar e as follows:

-anchor anchorPos (anchor, Anchor)
How to position the text relative to the position point for the marker.
The default is center.

-backgr ound color (background, Background)
Same as the -fill option.

-fill color (fill, Fill)
Backgr ound color for the text. The default is the empty string (i.e., trans-
par ent).

-font font (font, Font)
Font to use for the text.

-for eground color (foreground, Foreground)
Same as the -outline option.

-justify justify (justify, Justify)
How multiple lines of text should be justified. Parameter justify may
be left, right, or center (the default).

-outline color (outline, Outline)
For eground color for the text. The default is black.

-padx amount (padX, PadX)
Amount of padding to add to the left and right sides of the text. Parame-
ter amount may be a list of two screen distances to set the left and right
padding separately.

-pady amount (padY, PadY)
Amount of padding to add to the top and bottom sides of the text.
Parameter amount may be a list of two screen distances to set the top
and bottom padding separately.

-r otate theta (rotate, Rotate)
Angle, in degrees, to rotate the text.

-shadow color (shadow, Shadow)
Color for the shadow drawn beneath the text. The default is the empty
string (i.e., transparent).

-text string (text, Text)
The text string to display.

BLT

Alphabetical Summary of Commands — graph 349

11 May 2006 10:51

Window Markers

A window marker displays the window of a Tk widget at an arbitrary position
inside the chart. Options specific to window markers are as follows:

-anchor anchorPos (anchor, Anchor)
How to position the window relative to the position point for the marker.
The default is center.

-height amount (height, Height)
Height to assign to the window. If not specified, the height will be what-
ever the window requests.

-width amount (width, Width)
Width to assign to the window. If not specified, the width will be what-
ever the window requests.

-window pathName (window, Window)
Pathname of window to use for the marker. The window must be a
descendant of the chart widget.

Example

set x {0.0 1.0 2.0 3.0 4.0 5.0 6.0}
set y {0.0 0.1 2.3 4.5 1.2 5.4 9.6}
graph .g -title "Example Graph"
.g element create x -label "Data Points" -xdata $x -ydata $y
pack .g

hierbo x

hierbox pathName [option value...]

The hierbox command creates a new hierbox widget named pathName. A
hierbox widget displays a hierarchy tree of entries for navigation and selec-
tion. Each entry consists of an icon image, a text label, and an optional text or
image data field. Also, an entry can contain a list of subentries, which in turn
can have their own subentries. Entries with subentries can be expanded or
collapsed using an optional open/close button drawn to the entry’s left side.

Standard Options

-activebackgr ound -activefor eground -background
-bor derwidth -cursor -exportselection
-font -foregr ound -highlightbackgr ound
-highlightcolor -highlightthickness -r elief
-selectbackgr ound -selectbor derwidth -selectfor eground
-takefocus -xscrollcommand -yscrollcommand

Widget-Specific Options

-activer elief relief (activeRelief, Relief)
3D effect for the active entry.

350 Chapter 11 – BLT

11 May 2006 10:51

-allowduplicates boolean (allowDuplicates, AllowDuplicates)
Whether entries with identical names are allowed. The default is true.

-autocr eate boolean (autoCreate, AutoCreate)
Whether an entry’s ancestors should automatically be created and
inserted if they do not exist when the entry is inserted. The default is
false.

-closecommand command (closeCommand, CloseCommand)
Tcl command to evaluate when an entry is closed. The following percent
sign substitutions are done on command :

%% Replaced with a single percent sign
%n Entry ID number of affected entry
%P Full pathname of affected entry
%p Tail part of the pathname of affected entry
%W Pathname of hierbox widget

-closer elief relief (closeRelief, Relief)
3D effect for buttons of closed entries.

-dashes number (dashes, Dashes)
Dash style for lines connecting entries. Parameter dashStyle is a list of
up to 11 numbers that alternately repr esent the lengths of the dashes and
gaps. Each number must be between 1 and 255, inclusive. If dashStyle
is the empty string (the default), a solid line is drawn.

-height amount (height, Height)
Requested height of the hierbox widget window.

-hider oot boolean (hideRoot, HideRoot)
Whether root entry should be hidden. The default is false.

-linecolor color (lineColor, LineColor)
Color of the lines connecting entries.

-linespacing pixels (lineSpacing, LineSpacing)
Set the vertical spacing between entries. The default is 0.

-linewidth pixels (lineWidth, LineWidth)
Width of the lines connecting entries. The default is 1.

-opencommand command (openCommand, OpenCommand)
Tcl command to be evaluated when an entry is opened. The same per-
cent sign substitutions are made as for the widget -closecommand.

-openr elief relief (openRelief, Relief)
3D effect for buttons of open entries.

-scr ollmode mode (scrollMode, ScrollMode)
Whether scrolling should follow the model of the Tk listbox widget or
the Tk canvas widget. Mode must be either listbox (the default) or
canvas.

BLT

Alphabetical Summary of Commands — hierbox 351

11 May 2006 10:51

-scr olltile boolean (scrollTile, ScrollTile)
Whether tile should appear to scroll when the widget is scrolled.

-selectmode mode (selectMode, SelectMode)
Specifies one of several styles understood by the default hierbox bindings
for manipulation of the entry selection. Supported styles are single,
active, and multiple. Any arbitrary string is allowed, but the pro-
grammer must extend the bindings to support it. Default is multiple.

-separator string (separator, Separator)
Path separator string of components of entries. The default is the empty
string, which implies no sublevels.

-tile imageName (tile, Tile)
Image to use as a tiled background for the widget.

-trimleft string (trimLeft, Trim)
Leading characters to trim from entry pathnames.

-width amount (width, Width)
Requested width of the hierbox widget window.

-xscr ollincrement amount (xScrollIncrement, ScrollIncrement)
Incr ement, in pixels, for horizontal scrolling by units (see view method).

-yscr ollincrement amount (yScrollIncrement, ScrollIncrement)
Incr ement, in pixels, for vertical scrolling by units (see view method).

Entr y Indices

The following special indices can be used to identify entries in the hierbox:

number
Integer ID number of the entry. This number does not indicate the loca-
tion of the entry in the hierbox. However, the root entry will always be
number 0.

current
Entry that is currently active, usually the one under the mouse pointer.

anchor
Entry that is the anchor point for selection.

focus
Entry that currently has the focus.

root
The root entry of the hierarchy.

end
Last entry currently displayed (i.e., not hidden by closing) in the hierbox.

up
Entry immediately above the one that currently has the focus.

352 Chapter 11 – BLT

11 May 2006 10:51

down
Entry immediately below the one that currently has the focus.

prev
Entry above the one that currently has the focus. Unlike up, wraps
ar ound to last entry.

next
Entry below the one that currently has the focus. Unlike down, wraps
ar ound to top entry.

parent
Entry that is the parent of the one that currently has the focus.

nextsibling
Next sibling of the entry that currently has the focus.

prevsibling
Pr evious sibling of the entry that currently has the focus.

view.top
First partially visible entry in the hierbox.

view.bottom
Last partially visible entry in the hierbox.

path
Absolute pathname of the entry.

@x,y
The entry that covers the pixel with window coordinates x and y.

Methods

pathName bind tagName [sequence [command]]
Bind command to all entries with tag tagName so it is invoked when the
given event sequence occurs for the entry. The syntax for this method
is the same as for the standard Tk bind command except that it operates
on entries. TagName may be the pathname of an entry, the special tag
all (bind to all entries), or an arbitrary string. Only keyboard and mouse
events can be bound.

pathName bbox [-scr een] entryIndex [entryIndex...]
Retur n a coordinate list of the form {x1 y1 x2 y2} giving an approxi-
mate bounding box enclosing all the given entries. If the -scr een switch is
given, the coordinates are for the screen rather than the widget.

pathName button activate entryIndex
If entry entryIndex has a button, make it the active button. Only one
button in the hierbox may be active at a given time.

pathName button bind tagName [sequence [command]]
Bind command to all buttons with tag tagName so it is invoked when
the given event sequence occurs for the button. The syntax for this
method is the same as for the standard Tk bind command except that it
operates on hierbox buttons. tagName may be the name of a button’s

BLT

Alphabetical Summary of Commands — hierbox 353

11 May 2006 10:51

entry, the special tag all (bind to all buttons), or an arbitrary string.
Only keyboard and mouse events can be bound.

pathName button cget option
Retur n the current value of the hierbox button option option in the
same manner as the general widget cget method. Supported options are
those available to the button configure method.

pathName button configure [option [value [option value...]]]
Query or modify the configuration options for the hierbox’s buttons in
the same manner as the general widget configur e method. Supported
options are as follows:

-activebackgr ound color (activeBackground, Background)
Backgr ound color for non-image buttons when active.

-activefor eground color (activeForeground, Foreground)
For eground color for non-image buttons when active.

-backgr ound color (background, Background)
Backgr ound color for buttons.

-bor derwidth amount (borderWidth, BorderWidth)
Width of 3D border drawn around buttons.

-for eground color (foreground, Foreground)
For eground color for buttons.

-images imageList (images, Images)
The images to use for closed and open buttons. If imageList con-
tains two images, the first is used as the button for closed entries and
the second for open entries. If imageList contains one image, it is
used for both. If imageList is empty (the default), the default (+/-)
symbols are used.

pathName close [-r ecurse] entryIndex [entryIndex...]
Close (do not display the subentries) each specified entry. If the -r ecurse
option is given, then each subentry is recursively closed.

pathName curselection
Retur n a list containing the entry IDs of all entries in the hierbox cur-
rently selected.

pathName delete entryIndex [first [last]]
Delete the entry at entryIndex and all its subentries. If first and
last ar e specified, they designate a range of subentries to delete by
position within their parent. If last is the string end, it signifies the last
subentry. If last is omitted, only the subentry at first is deleted. The
root entry cannot be deleted.

pathName entry activate entryIndex
Make the entry at entryIndex the active entry.

354 Chapter 11 – BLT

11 May 2006 10:51

pathName entry cget entryIndex option
Retur n the current value of the hierbox entry option option in the same
manner as the general widget cget method. Supported options are those
available to the insert method.

pathName entry children entryIndex [first last]
Retur n the entry IDs of the subentries belonging to the entry at
entryIndex within the given range of positions, inclusive. The posi-
tions first and last ar e either integers or the string end. An integer
position is the index of the subentry among its siblings. For example, the
range 0 end would identify all the subentries, which is the default if a
range is not specified.

pathName entry configure entryIndex [option [value [option
value...]]]
Query or modify the configuration options for the hierbox’s buttons in
the same manner as the general widget configur e method. Supported
options are those available to the insert method.

pathName entry hidden entryIndex
Retur n 1 if the entry at entryIndex is not currently displayed, either by
being explicitly hidden or in a closed hierarchy. Return 0 otherwise.

pathName entry open entryIndex
Retur n 1 if the entry at entryIndex has subentries and is currently
open, 0 otherwise.

pathName entry size [-r ecurse] entryIndex
Retur n the number of subentries belonging to the entry at entryIndex.
If the -r ecurse switch is given, the count will include the number of
subentries at all levels below the entry.

pathName find [switches] [firstIndex [lastIndex]]
Retur n as a list the entry IDs of entries matching the search specification
pr ovided. The entries searched are restricted to those between the entries
firstIndex and lastIndex, inclusive. If lastIndex is omitted, it
defaults to the last entry in the hierbox. Also, any use of the special index
end specifies the last entry in the hierbox rather than the last displayed
one. If firstIndex is also not given, it defaults to the root entry.

The search specification is defined using the following switches:

option pattern
option must be a valid entry configuration option (see the insert
method). The value of the option for each searched entry is matched
against pattern.

-count max
Specifies maximum matches before search is finished. If max is 0
(the default), there is no limit.

BLT

Alphabetical Summary of Commands — hierbox 355

11 May 2006 10:51

-exact
The search patterns must be matched exactly (i.e., no special inter-
pr etation of characters in the pattern). This is the default.

-exec command
The Tcl command command is evaluated for each matching entry.
The same percent sign substitutions as for the -closecommand wid-
get are done.

-full pattern
The full pathname of each entry is matched against pattern.

-glob
Patter ns ar e tr eated as glob patterns, as for the Tcl glob command.

-name pattern
The tail part of the full pathname is matched against pattern.

-nonmatching
Invert search so that the indices for those entries that do not match
the given patterns are retur ned.

-r egexp
Patter ns ar e tr eated as regular expressions, as for the Tcl regexp
command.

– –
Marks the end of switches.

pathName focus entryIndex
Make the entry at entryIndex the entry with the keyboard focus.

pathName get [-full] entryIndex [entryIndex...]
If -full is given, a list of the full pathnames for the given entries is
retur ned. Otherwise, the list contains only the tail part of the pathnames.

pathName hide [switches] entryIndex [entryIndex...]
Hide the given entries. The entries to hide are specified using switches
to define a search specification, by explicit entry index, or both. Valid
switches for the search specification are as follows:

option value
option must be a valid entry configuration option (see the insert
method). The value of the option for each searched entry is matched
against pattern.

-exact
The search patterns must be matched exactly (i.e., no special inter-
pr etation of characters in the pattern). This is the default.

-full pattern
The full pathname of each entry is matched against pattern.

-glob
Patter ns ar e tr eated as glob patterns, as for the Tcl glob command.

356 Chapter 11 – BLT

11 May 2006 10:51

-name pattern
The tail part of the full pathname is matched against pattern.

-nonmatching
Invert search so it applies to those entries that do not match the
given patterns.

-r egexp
Patter ns ar e tr eated as regular expressions, as for the Tcl regexp
command.

– –
Marks the end of switches.

pathName index [-at focusIndex] entryIndex
Retur n the ID number of the entry specified by the non-numerical index
entryIndex. If focusIndex is given, it identifies the entry to be con-
sider ed the focus entry in the evaluation. Note that, if entryIndex is an
integer, it is treated as an entry name rather than an ID. All other meth-
ods will treat an integer for entryIndex as an entry ID number.

pathName insert [-at parentIndex] position name [name...] [option
value...]
Insert one or more new entries with the given names into the hierbox
just before the subentry at position belonging to parentIndex. The
position argument may be an integer position (e.g., 0 is the first
subentry) or the string end (position after the last subentry).* If parent-
Index is not given, it defaults to root. The following entry configura-
tion options are available:

-bindtags tagList (bindTags, BindTags)
The binding tag list for the entry, which determines the order of
evaluation of the commands for matching event bindings. Implicitly,
the name of the entry itself is always the first tag in the list. The
default value is all.

-closecommand command (entryCloseCommand,
EntryCloseCommand)

Tcl command to evaluate when the entry is closed. Overrides default
widget -closecommand option.

-data string (data, Data)
Arbitrary data string to associate with the entry.

-button mode (button, Button)
Whether an open/close button should be displayed for the entry.
Mode may be a boolean value or auto (the default), which will dis-
play a button for an entry automatically if it has subentries.

* The format of this command may change in the final Version 2.4 to use normal entry indices for posi-
tioning.

BLT

Alphabetical Summary of Commands — hierbox 357

11 May 2006 10:51

-icons imageList (icons, Icons)
The images to use for the entry’s icons. If imageList contains two
images, the first is used as the icon when the entry does not have
the focus and the second when it does. If imageList contains one
image, it is used for both. If imageList is empty (the default), a
simple miniature folder icon is used for both.

-images imageList (images, Images)
ImageList is a list of zero or mor e images to be drawn in the data
field for the entry. If not empty, this overrides the -text option.

-label string (label, Label)
Text string for the entry’s label. The default is the tail of the full
pathname of the entry.

-labelcolor color (labelColor, LabelColor)
For eground color for drawing the entry’s label.

-labelfont font (labelFont, LabelFont)
Font for drawing the entry’s label.

-labelshadow color (labelShadow, LabelShadow)
Color of shadow for entry’s label. The default is the empty string
(i.e., transparent).

-opencommand command (entryOpenCommand,
EntryOpenCommand)

Tcl command to evaluate when the entry is opened. Overrides
default widget -opencommand option.

-text text (text, Text)
Text string to be drawn in the entry’s data field.

-textcolor color (textColor, TextColor)
For eground color for text string in data field.

-textfont font (textFont, TextFont)
Font for text string in data field.

-textshadow color (textShadow, Shadow)
Shadow color for text string in data field. The default is the empty
string (i.e., transparent).

pathName move fromIndex where toIndex
Move the entry at fromIndex to a position relative to toIndex accord-
ing to where. Where can be after, before, or into (append to end
of toIndex’s children). It is an error if fromIndex is an ancestor of
toIndex.

pathName near est x y
Retur n the entry ID of the entry nearest to screen coordinates x y.

358 Chapter 11 – BLT

11 May 2006 10:51

pathName open [-r ecurse] entryIndex [entryIndex...]
Open (display the subentries) of each specified entry. If the -r ecurse
option is given, each subentry is recursively opened.

pathName range [-open] firstIndex [lastIndex]
Retur n a list of the entry IDs of the entries between entry indices
firstIndex and lastIndex, inclusive. If the switch -open is specified,
only the indices of entries currently displayed (i.e., not closed) are
retur ned.

pathName scan dragto x y
Scr oll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the differ ence between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

pathName scan mark x y
Record the screen coordinates x y as anchors for a following scan dragto
method call.

pathName see [-anchor anchorPos] entryIndex
Adjust the current view in the hierbox, if necessary, so that entry
entryIndex is visible. If anchorPos is given, it specifies a cardinal
point of the entry that should be made visible at the same cardinal point
of the view. For example, if anchorPos is nw, then the top left corner
of the entry will be visible at the top left corner of the view.

pathName selection anchor entryIndex
Set the anchor for selection dragging to the element at entryIndex.

pathName selection cancel
Cancel temporary selection operation started with a previous call to the
selection dragto method without changing the real selections.

pathName selection clear firstIndex [lastIndex]
Deselect any selected entries between firstIndex and lastIndex,
inclusive.

pathName selection dragto entryIndex action
Per form a temporary selection action on the entries between the selec-
tion anchor and entryIndex, inclusive. Action can be clear, set,
or toggle, corr esponding to the identically named selection methods.
The selection changes are temporary in that the hierbox is redrawn to
make it look as if the selection has changed on the affected entries. How-
ever, the internal selection flags of the entries are not changed. This tem-
porary state is canceled by making a call to any other selection method
except selection includes.

pathName selection includes entryIndex
Retur n 1 if the entry at entryIndex is selected, 0 otherwise.

BLT

Alphabetical Summary of Commands — hierbox 359

11 May 2006 10:51

pathName selection set firstIndex [lastIndex]
Select all entries between firstIndex and lastIndex, inclusive.

pathName selection toggle firstIndex [lastIndex]
Toggle the selection state of all entries between firstIndex and
lastIndex, inclusive.

pathName show [switches] entryIndex [entryIndex...]
Show the given entries if they are hidden. The entries to show are speci-
fied using switches to define a search specification, by explicit entry
index, or both. Valid switches for the search specification are the same as
for the hide method.

pathName sort [-r ecurse] [-command command] entryIndex [entryIn-
dex...]
Sort the subentries of the given entries. If the -r ecurse switch is specified,
then the sort routine will recursively sort subentries of subentries, and so
on. The sort will be in ascending order unless a sorting command is
passed with -command. Command is a Tcl command, which must take
thr ee arguments: the pathname of the hierbox widget and the tail of the
pathnames of two entries. It should retur n a integer less than, equal to, or
gr eater than zero to signify the order of the entries.

pathName toggle entryIndex
Open the entry at entryIndex if it is closed, or close it if it is open.

pathName xview
Retur n a two-element list describing the currently visible horizontal
region of the hierbox. The elements are real numbers repr esenting the
fractional distance that the view’s left and right edges extend into the hor-
izontal span of the widget.

pathName xview moveto fraction
Adjust the visible region of the hierbox so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the hierbox horizontally by number. If what is
units, then number is in units of the -xscr ollincrement option. If what
is pages, then number is in units of nine-tenths the visible region’s
width.

pathName yview
Retur n a two-element list describing the currently visible vertical region
of the hierbox. The elements are real numbers repr esenting the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget.

pathName yview moveto fraction
Adjust the visible region of the hierbox so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

360 Chapter 11 – BLT

11 May 2006 10:51

pathName yview scroll number what
Shift the visible region of the hierbox vertically by number. If what is
units, then number is in units of the -yscr ollincrement option. If what
is pages, then number is in units of nine-tenths the visible region’s
height.

Example

hierbox .h -separator "/" -trimleft "."
.h entry configure root -label [file tail [pwd]]
catch { exec find . } files
eval .h insert end [lsort [split $files \n]]
.h find -glob -name *.gif -exec {

%W entry configure %n -labelcolor red
}
pack .h

htext

htext pathName [option value...]

Cr eate a hypertext widget window named pathName. Options may be speci-
fied on the command line or in the option database.

The contents of the hypertext widget are defined by a text string or file. Any
text surrounded by two special characters (by default, %%) is interpr eted as Tcl
commands.

Standard Options

-backgr ound -cursor -exportselection
-font -foregr ound -selectbackgr ound
-selectbor derwidth -selectfor eground -takefocus
-xscr ollcommand -yscr ollcommand

Widget-Specific Options

-file fileName (file, File)
Specify the file containing the htext text to be displayed. See “Text For-
mat,” later in this section.

-height amount (height, Height)
Requested height of the htext widget window.

-linespacing pixels (lineSpacing, LineSpacing)
Set the spacing between each line of text. The default is 1 pixel.

-maxheight pixels (maxHeight, MaxHeight)
Maximum height allowed for the htext widget window.

-maxwidth amount (maxWidth, MaxWidth)
Maximum width allowed for the htext widget window.

-specialchar number (specialChar, SpecialChar)
Specify the ASCII code of the character used to delimit embedded Tcl
commands in htext’s text. The default is 0×25 (percent sign).

BLT

Alphabetical Summary of Commands — htext 361

11 May 2006 10:51

-text text (text, Text)
Specify the text to be displayed in the htext widget. See the “Text For-
mat” section later in this chapter.

-tile imageName (tile, Tile)
Image to use as a tiled background for the widget.

-tileof fset boolean (tileOffset, TileOffset)
Whether the background tile should scroll with the widget. The default is
true.

-width amount (width, Width)
Requested width of the htext widget window.

-xscr ollunits pixels (xScrollUnits, ScrollUnits)
Specify the horizontal scrolling distance. The default is 10 pixels.

-yscr ollunits pixels (yScrollUnits, ScrollUnits)
Specify the vertical scrolling distance. The default is 10 pixels.

Te xt Indices

Several widget operations accept as arguments indices that define a location
of a character (or embedded window) in the text. These can take the follow-
ing forms:

number
Raw position of character in the text, starting at zero.

line.char
Character position char of line line. Both are numbers starting at zero.
The character position can be omitted to indicate the first position.

@x,y
The character that covers the pixel with window coordinates x and y.

end
The end of the text.

anchor
The anchor point for the selection.

sel.first
The first character of the selection.

sel.last
The character immediately after the last one of the selection.

Te xt For mat

The text to be displayed in the htext is set either using the value of the -text
option or the contents of the file specified by the -file option. Whichever of
the two options is set last takes precedence and resets the other to an empty
string. If both are set at the same time, -file takes precedence.

The basic format for the text of the htext widget is plain ASCII. However, any
text enclosed by double percent signs (or by another character chosen by the

362 Chapter 11 – BLT

11 May 2006 10:51

-specialchar option) is interpreted and evaluated as Tcl commands. Typically,
these commands create and configure a widget that is finally embedded in the
htext at the current location using the append method of the htext. The com-
mands are evaluated in the global scope.

The following global variables are set when parsing an htext file for use by
the embedded Tcl commands:

htext(widget)
The pathname of the htext widget.

htext(file)
The name of the htext file currently being parsed (empty if the -text
option is used).

htext(line)
The current line number in the text.

Methods

pathName append window [options...]
Embed child widget window in the htext widget pathName at the cur-
rent text location. The following options configure the appearance of the
child window:

-anchor anchorPos
Specify how the child window will be positioned if there is extra
space in the cavity surrounding the window. The default is center.

-fill style
Specify how the child window should be stretched to occupy the
extra space in the cavity surrounding it. One of x, y, both, or none
(the default).

-cavityheight amount
Requested height for the cavity surrounding the window. Overrides
the -r elcavityheight option. If the value of both this option and
-r elcavityheight is 0, the height of the cavity will be set to the height
of the window plus the border width and any padding.

-cavitywidth amount
Requested width for the cavity surrounding the window. Overrides
the -r elcavitywidth option. If the value of both this option and
-r elcavitywidth is 0, the width of the cavity will be set to the width
of the window plus the border width and any padding.

-height pixels
Requested height for the window. The default is 0, which will use
the window’s own requested height. Overrides the -r elheight option.

-justify justify
Specify how to justify the window with respect to the line it is on.
Justify must be one of top, bottom, or center (the default).

BLT

Alphabetical Summary of Commands — htext 363

11 May 2006 10:51

-padx pad
Specify the padding on the left and right sides of the window. Can
be a list of two numbers, specifying the padding for the left and
right sides, or one number, specifying the padding to use for both
sides. The default is 0.

-pady pad
Specify the padding on the top and bottom of the window. Can be a
list of two numbers, specifying the padding for the top and bottom,
or one number, specifying the padding to use for both. The default
is 0.

-r elcavityheight fraction
Specify the height of the cavity containing the child window as a
fraction of the height of the htext widget. If the value of both this
option and -cavityheight is 0, then the height of the cavity will be set
to the height of the window plus the border width and any padding.

-r elcavitywidth fraction
Specify the width of the cavity containing the child window as a
fraction of the width of the htext widget. If the value of both this
option and -cavitywidth is 0, then the width of the cavity will be set
to the width of the window plus the border width and any padding.

-r elheight fraction
Specify the height of the window containing the child window as a
fraction of the height of the htext widget. If the value of both this
option and -height is 0, then the height of the window will be set to
the requested height of the window.

-r elwidth fraction
Specify the width of the window containing the child window as a
fraction of the width of the htext widget. If the value of both this
option and -width is 0, then the width of the window will be set to
the requested width of the window.

-width pixels
Requested width for the window. The default is 0, which will use the
window’s own requested width. Overrides the -r elwidth option.

pathName configur e window [option value...]
Query or modify the configuration options for the embedded child win-
dow window in the same manner as the standard widget configur e
method. Available options are those defined for the append method.

Note that when window is omitted, this method is the standard widget
configur e method for the htext itself.

pathName gotoline [index]
Set the top line of the text to index. With no index parameter, retur ns
the current line number.

364 Chapter 11 – BLT

11 May 2006 10:51

pathName index index
Retur ns the raw character position of the character or window at index.

pathName linepos index
Retur n the position of the character or window at index in the form
line.char.

pathName range [first [last]]
Retur n the text of the htext widget covering the range of characters from
first to last, inclusive. If first or last ar e omitted, they default to
sel.first and sel.last, respectively. If there is no selection, they
default to the beginning and end of the text.

pathName scan dragto @x,y
Scr oll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the differ ence between this command’s x and y argu-
ments and the given x and y arguments to the last scan mark command
for the widget.*

pathName scan mark @x,y
Record the screen coordinates x y as anchors for a following scan
dragto method call.

pathName sear ch pattern [from [to]]
Retur n the number of the next line matching pattern. Parameter pat-
tern is a string that obeys the matching rules of the Tcl string match
command. Parameters from and to ar e text indices (inclusive) that
bound the search. If no match for pattern can be found, −1 is retur ned.

pathName selection adjust index
Locate the end of the selection nearest to index, adjust that end to be at
index, and make the other end of the selection the anchor point. If the
selection isn’t currently owned by the htext, this method behaves the
same as the select to widget method.

pathName selection clear
Clear the selection if it is owned by the htext.

pathName selection from index
Set the selection anchor point to be just before the character given by
index.

pathName selection line index
Select the line containing the character at index.

pathName selection present
Retur n 1 if the htext currently owns the selection, 0 otherwise.

* The format of the scan commands may change to match the newer syntax, in which x and y ar e speci-
fied as separate arguments.

BLT

Alphabetical Summary of Commands — htext 365

11 May 2006 10:51

pathName selection range first last
Shortcut for doing a selection from first followed by a selection to
last.

pathName selection to index
Set the selection to consist of those characters between the anchor point
and index. If no anchor point has been set, it defaults to index. The
new selection will always include the character given by index ; it will
include the character given by the anchor point only if it exists and is less
than or equal to index.

pathName selection word index
Select the word containing the character at index.

pathName windows [pattern]
Retur n a list of the pathnames of all windows embedded in the htext. If
pattern is specified, only names matching the pattern are retur ned.

pathName xview
Retur n a two-element list describing the currently visible horizontal
region of the htext. The elements are real numbers repr esenting the frac-
tional distance that the view’s left and right edges extend into the hori-
zontal span of the widget.

pathName xview moveto fraction
Adjust the visible region of the htext so that the point indicated by
fraction along the widget’s horizontal span appears at the region’s left
edge.

pathName xview scroll number what
Shift the visible region of the htext horizontally by number. If what is
units, then number is in units of the -xscr ollunits option. If what is
pages, then number is in units of nine-tenths the visible region’s width.

pathName yview
Retur n a two-element list describing the currently visible vertical region
of the htext. The elements are real numbers repr esenting the fractional
distance that the view’s top and bottom edges extend into the vertical
span of the widget.

pathName yview moveto fraction
Adjust the visible region of the htext so that the point indicated by
fraction along the widget’s vertical span appears at the region’s top
edge.

pathName yview scroll number what
Shift the visible region of the htext vertically by number. If what is
units, then number is in units of the -yscr ollunits option. If what is
pages, then number is in units of nine-tenths the visible region’s height.

Example

set text {
This will be displayed as normal text.
But this will become a %%

366 Chapter 11 – BLT

11 May 2006 10:51

button .demo.button -text "button" -fg red
.demo append .demo.button %%
which can invoke a Tcl command.
}
htext .demo -text $text -foreground blue -background green
pack .demo

spline

spline type x y sx sy

Compute a spline fitted to a set of data points. The type argument is either
natural or quadratic.

Parameters x and y ar e vectors repr esenting points of data to be fitted to the
spline. Values of x must be monotonically increasing.

Parameter sx is a vector containing the x-coordinates of the new points to be
interpolated by the spline function. These must also be monotonically increas-
ing and lie between the first and last values of x.

The spline command creates a new vector sy, which contains the y-coordi-
nates corresponding to the x-coordinate values stored in sx calculated using
the spline function.

Example

vector x y sx sy
x set {0.1 1.5 3.4 5.6}
y set {0.2 4.5 1.3 9.8}
x populate sx 10
spline natural x y sx sy
graph .graph
.graph element create original -x x -y y -color blue
.graph element create spline -x sx -y sy -color red
table . .graph

str ipchar t

stripchart pathName [option value...]

See the graph command.

ta ble

table operation [arg arg...]

Arrange widgets in a table. The alignment of widgets is determined by their
row and column positions and the number of rows or columns that they span.
The following operations are defined:

table master [slave index option value ...]
Add the widget slave to the table at index. Parameter index is a posi-
tion in the table in the form row,column, wher e row and column ar e
the respective row and column numbers and 0,0 is the upper leftmost
position. If a table doesn’t exist for master, one is created. Parameter

BLT

Alphabetical Summary of Commands — table 367

11 May 2006 10:51

slave is the pathname of the window, which must already exist, to be
arranged inside of master. Parameters option and value ar e
described later in the “Slave Options” section.

table arrange master
Force the table to compute its layout immediately rather than waiting
until the next idle point.

table cget master [item] option
Retur n the current value of the configuration option specific to item
given by option, wher e item is either a row or column index or the
pathname of a slave window. Parameter item can be in any form
described for the configur e method. If no item argument is provided,
the configuration option is for the table itself. Parameter option may be
any of the options described in the appropriate options section for the
item.

table configure master [item...] [option [value [option value...]]]
Query or modify the configuration options specific to item in the same
manner as the standard widget configur e method. If the argument item
is omitted, the specified configuration options are for the table itself, as
specified in the “Table Options” section. If options are being modified,
multiple item arguments of the same form are allowed. The item argu-
ments must take one of the following forms:

Ci Specifies the column of the master to be configured, where i is the
index of the column. Valid options are specified in the “Column
Options” section.

Ri Specifies the row of the master to be configured, where i is the
index of the row. Valid options are specified in the “Row Options”
section.

slave
Specifies a slave window of the master to be queried, where slave
is the pathname of a slave window packed in master. Valid options
ar e specified in the “Slave Options” section.

table extents master index
Query the location and dimensions of rows and columns in the table.
Parameter index can be either a row or column index or a table index
in the form described for the configure method. Returns a list of the xy-
coordinates (upper-left corner) and dimensions (width and height) of the
cell, row, or column.

table forget slave [slave...]
Request that slave no longer have its geometry managed. Parameter
slave is the pathname of the window currently managed by some table.
The window will be unmapped so that it no longer appears on the
scr een. If slave is not currently managed by any table, an error message
is retur ned; otherwise, the empty string is retur ned.

368 Chapter 11 – BLT

11 May 2006 10:51

table info master [item [item...]]
Retur n a list of the current configuration options for the given items. The
list retur ned is in exactly the form that might be specified for the table
command. It can be used to save and reset table configurations. The
item parameters must be one of the following:

Ci Specifies the column of master to be queried, where i is the index
of the column.

Ri Specifies the row of master to be queried, where i is the index of
the row.

slave
Specifies a slave window of the master to be queried, where slave
is the pathname of a slave window packed in master.

No argument
Specifies that the table itself is to be queried.

table locate master x y
Retur n the table index (row,column) of the cell containing the given
scr een coordinates. The x and y arguments specify the coordinates of the
sample point to be tested.

table masters [options]
Retur n a list of all master windows matching the criteria specified using
the options. If no options are given, the names of all master windows
(only those using the table command) are retur ned. The following are
valid options (only one may be specified):

-patter n pattern
Retur n a list of pathnames of all master windows matching pat-
tern.

-slave window
Retur n the name of the master window of the table managing win-
dow. The window parameter must be the pathname of a slave win-
dow. If window is not managed by any table, the empty string is
retur ned.

table search master [options...]
Retur n the names of all the slave windows in master matching the crite-
ria given by options. The master parameter is the name of the master
window associated with the table to be searched. The name of the slave
window is retur ned if any one option criterion matches. If no option
arguments are given, the names of all slave windows managed by mas-
ter ar e retur ned. The following options are available:

-patter n pattern
Retur n the names of the slave windows matching pattern.

-span index
Retur n the names of slave windows that span index. A slave win-
dow does not need to start at index to be included. Parameter
index must be in the form row,column.

BLT

Alphabetical Summary of Commands — table 369

11 May 2006 10:51

-start index
Retur n the names of slave windows that start at index. Parameter
index must be in the form row,column.

Ta ble Options

table configure master [option value...]

To configur e the table itself, omit the item argument when invoking the con-
figur e operation. The following options are available for the table:

-columns number
Set the number of columns in the table. By default, the table creates new
columns whenever they are needed. If the number of columns is less
than currently in the master, any slave windows located in those columns
ar e removed from the table.

-padx pad
Set how much padding to add to the left and right exteriors of the table.
Parameter pad can be a list of one or two numbers. If it has two ele-
ments, the left side of the table is padded by the first value and the right
side by the second value. If it has just one value, both the left and right
sides are padded evenly by the value. The default is 0.

-pady pad
Set how much padding to add to the top and bottom exteriors of the
table. Parameter pad can be a list of one or two numbers. If it has two
elements, the area above the table is padded by the first value and the
ar ea below by the second value. If it is just one number, both the top
and bottom areas are padded by the value. The default is 0.

-pr opagate boolean
Indicate if the table should override the requested width and height of
the master window. If boolean is false, the master will not be resized,
and will be its requested size. The default is true.

-r ows number
Set the number of rows in the table. By default, the table creates new
rows whenever they are needed. If the number of rows is less than cur-
rently in the master, any slave windows located in those rows will be
unmapped.

Slave Options

table configure master slave [option value...]

Slave windows are configur ed by specifying the name of the slave when
invoking the configur e operation. Parameter slave must be the pathname of
a window already packed in the table associated with master. The following
options are available for slave windows:

-anchor anchor
Anchor slave to a particular edge of the cells in which it resides. This
option takes effect only if the space of the spans surrounding the slave is

370 Chapter 11 – BLT

11 May 2006 10:51

larger than the slave. Parameter anchor specifies how the slave will be
positioned in the space. The default is center.

-columnspan number
Set the number of columns the slave will span. The default is 1.

-columnweight weight
Specify how much weight the width slave should have when the table
computes the sizes of the columns it spans. Weight is one of normal
(the default), none, or full.

-fill fill
If the space in the span surrounding the slave is larger than the slave,
fill indicates if slave should be stretched to occupy the extra space. Fill
is one of none (the default), x, y, or both.

-ipadx pixels
Set how much horizontal padding to add internally on the left and right
sides of the slave. Parameter pixels must be a valid screen distance,
such as 2 or 0.3i. The default is 0.

-ipady pixels
Set how much vertical padding to add internally on the top and bottom
of the slave. Parameter pixels must be a valid screen distance, such as
2 or 0.3i. The default is 0.

-padx pad
Set how much padding to add to the left and right exteriors of the slave.
Parameter pad can be a list of one or two numbers. If it has two ele-
ments, the left side of the slave is padded by the first value and the right
side by the second value. If it has just one value, both the left and right
sides are padded evenly by the value. The default is 0.

-pady pad
Set how much padding to add to the top and bottom exteriors of the
slave. Parameter pad can be a list of one or two numbers. If it has two
elements, the area above the slave is padded by the first value and the
ar ea below by the second value. If it is just one number, both the top
and bottom areas are padded by the value. The default is 0.

-r eqheight height
Specify the limits of the requested height for the slave. Parameter
height is a list of bounding values. See the “Bounding Sizes” section for
a description of this list. By default, the height of the slave is its
requested height with its internal padding (see the -ipady option). The
bounds specified by height either override the height completely or
bound the height between two sizes. The default is "".

-r eqwidth width
Specify the limits of the requested width for the slave. Parameter width
is a list of bounding values. See the “Bounding Sizes” section for a
description of this list. By default, the width of the slave is its requested
width with its internal padding (see the -ipadx option). The bounds spec-

BLT

Alphabetical Summary of Commands — table 371

11 May 2006 10:51

ified by width either override the width completely or bound the height
between two sizes. The default is "".

-r owspan number
Set the number of rows the slave will span. The default is 1.

-r owweight weight
Specify how much weight the height slave should have when the table
computes the sizes of the rows it spans. Weight is one of normal (the
default), none, or full.

Column Options

table configure master Ci [option value...]

To configur e a column in the table, specify the column index as Ci, wher e i
is the index of the column to be configured. If the index is specified as C*, all
columns of the table will be configured. The following options are available:

-padx pad
Set the padding to the left and right of the column. Parameter pad can
be a list of one or two numbers. If pad has two elements, the left side of
the column is padded by the first value and the right side by the second
value. If pad has just one value, both the left and right sides are padded
evenly by the value. The default is 0.

-r esize mode
Indicate that the column can expand or shrink from its normal width
when the table is resized. Parameter mode must be one of the following:
none, expand, shrink, or both. If mode is expand, the width of the
column is expanded if there is extra space in the master window. If
mode is shrink, its width may be reduced beyond its normal width if
ther e is not enough space in the master. The default is none.

-width width
Specify the limits within which the width of the column may expand or
shrink. Parameter width is a list of bounding values. See the section
“Bounding Sizes” for a description of this list. By default, there are no
constraints.

Row Options

table configure master Ri [option value...]

To configur e a row in the table, specify the row index as Ri, wher e i is the
index of the row to be configured. If the index is specified as R*, then all
rows of the table will be configured. The following options are available for
table rows:

-height height
Specifies the limits of the height to which the row may expand or shrink.
Parameter height is a list of bounding values. See the section “Bound-
ing Sizes” for a description of this list. By default, there are no con-
straints.

372 Chapter 11 – BLT

11 May 2006 10:51

-pady pad
Sets the padding above and below the row. Parameter pad can be a list
of one or two numbers. If pad has two elements, the area above the
row is padded by the first value and the area below by the second value.
If pad is just one number, both the top and bottom areas are padded by
the value. The default is 0.

-r esize mode
Indicates that the row can expand or shrink from its normal height when
the table is resized. Parameter mode must be one of the following: none,
expand, shrink, or both. If mode is expand, the height of the row is
expanded if there is extra space in the master window. If mode is
shrink, its height may be reduced if there is not enough space in the
master. The default is none.

Bounding Sizes

You can bound the sizes of the master window, a slave window, a row, or a
column. The -width, -height, -r eqwidth, and -r eqheight options take a list of
one, two, or three values:

{}
With an empty list, no bounds are set. The default sizing is perfor med.

{ x }
Fixes the size at x. The window or partition cannot grow or shrink.

{ min max }
Set minimum and maximum limits for the size of the window or partition.
The window or partition cannot be reduced less than min nor can it be
str etched beyond max.

{ min max nom }
Specify minimum and maximum size limits, but also specify a nominal
size nom. This overrides the calculated size of the window or partition.

Example

label .title -text "Example Table"
button .ok -text "Ok"
button .cancel -text "Cancel"
table . .title 0,0 -cspan 2 .ok 1,0 .cancel 1,1

ta bset

tabset pathName [option value...]

The tabset command creates a new tabset widget named pathName. A tabset
widget displays a a series of overlapping widget layout folders. Only the con-
tents of one folder, selected by using its tab, is displayed at one time. The tab-
set widget is similar to the notebook mega-widget in the Tix extension.

BLT

Alphabetical Summary of Commands — tabset 373

11 May 2006 10:51

Standard Options

-activebackgr ound -activefor eground -background
-bor derwidth -cursor -font
-for eground -highlightbackground -highlightcolor
-highlightthickness -relief -selectbackground
-selectbor derwidth -selectfor eground -takefocus

Widget-Specific Options

-dashes dashStyle (dashes, Dashes)
Dash style for focus outline around selected tab’s label. Parameter
dashStyle is a list of up to 11 numbers that alternately repr esent the
lengths of the dashes and gaps. Each number must be between 1 and
255, inclusive. If dashStyle is the empty string, a solid line is drawn.
The default is {5 2}.

-gap size (gap, Gap)
Gap, in pixels, between tabs. The default is 2.

-height height (height, Height)
Desir ed height, in screen units, for the window. If height is 0 (the
default), the height is autosized.

-pageheight height (pageHeight, PageHeight)
Desir ed height, in screen units, for the area under the tabs for displaying
the page contents. If height is 0 (the default), the height is autosized.

-pagewidth width (pageWidth, PageWidth)
Desir ed width, in screen units, for the area under the tabs for displaying
the page contents. If width is 0 (the default), the width is autosized.

-r otate theta (rotate, Rotate)
Rotate the text in tab labels by theta degr ees.

-samewidth boolean (sameWidth, SameWidth)
Whether each tab should be the same width. If true, each tab will be as
wide as the widest tab. The default is false.

-scr ollcommand cmdPrefix (scrollCommand, ScrollCommand)
Pr efix for a command used to communicate with an associated scrollbar
used to scroll through available tabs. Typically scrollbar set, wher e
scrollbar is the pathname of a scrollbar widget.

-scr ollincrement amount (scrollIncrement, ScrollIncrement)
Incr ement, in pixels, for scrolling by units (see view method).

-selectcommand command (selectCommand, SelectCommand)
Default command to be evaluated when a tab is invoked. See the invoke
method.

-selectpad amount (selectPad, SelectPad)
Padding to be added around the selected tab. The default is 5.

374 Chapter 11 – BLT

11 May 2006 10:51

-shadowcolor color (shadowColor, ShadowColor)
Color of shadow around pages.

-side side (side, Side)
The side of the tabset on which the tabs should be displayed. Side
must be left, right, top (the default), or bottom.

-tabbackgr ound color (tabBackground, Background)
Default background color for tabs.

-tabbor derwidth amount (tabBorderWidth, BorderWidth)
Width of 3D border drawn around tabs.

-tabfor eground color (tabForeground, Foreground)
Default foregr ound color for tabs.

-tabr elief relief (tabRelief, TabRelief)
3D effect desired for the border around tabs.

-textside side (textSide, TextSide)
Specify on which side of a tab its text label is placed if both images and
text are displayed in a tab. Side must be left, right, top (the
default), or bottom.

-tiers number (tiers, Tiers)
Maximum number of tiers to use for displaying tabs. Default is 1.

-tile imageName (tile, Tile)
Image to use as a tile for the background of the tabset.

-width amount (width, Width)
Desir ed width, in screen units, for the window. If amount is 0 (the
default), the width is autosized.

Ta b Indices

Several tabset widget methods support a tabIndex argument that identifies a
specific tab in the tabset. This index can take one of the following forms:

number
The number th tab in the tabset.

tabName
The tab named tabName.

@x,y
The tab that covers the pixel whose coordinates within the tabset win-
dow are x and y.

tabSelect
Tab whose page is currently selected and displayed.

tabActive
Tab that is currently active. Typically, the tab with the mouse pointer
over it.

BLT

Alphabetical Summary of Commands — tabset 375

11 May 2006 10:51

tabFocus
Tab that currently has the widget’s focus.

tabDown
Tab immediately below the tab that currently has the focus, if there is
one.

tabLeft
Tab immediately left of the tab that currently has the focus, if there is
one.

tabRight
Tab immediately right of the tab that currently has the focus, if there is
one.

tabUp
Tab immediately above the tab that currently has the focus, if there is
one.

tabEnd
Last tab in the tabset.

Methods

pathName activate tabIndex
Make the tab tabIndex the active tab. If tabIndex is the empty string,
no tab will be active.

pathName bind tagName [sequence [command]]
Bind command to all tabs with tag tagName so it is invoked when the
given event sequence occurs for the tab. The syntax for this method is
the same as for the standard Tk bind command except that it operates on
tabs. TagName may be the name of a tab, the special tag all (bind to
all tabs), or an arbitrary string. Only keyboard and mouse events can be
bound.

pathName delete first [last]
Delete the range of tabs from first to last, inclusive. If last is omit-
ted, then only the tab first is deleted.

pathName focus tabIndex
Make tab tabIndex the current focus tab.

pathName get tabIndex
Retur n the numeric index of the tab identified by tabIndex.

pathName insert position tabName [option value...] [tabName
[option value...]]...
Cr eate one or more new tabs with names specified by the tabName
arguments and configured with the following options. The tabs are
inserted just before the tab position. If position is the special tag
end, the tab is added to the end of the tab list. TabName should be cho-
sen not to conflict with any of the special index strings. The following tab
configuration options are available:

376 Chapter 11 – BLT

11 May 2006 10:51

-activebackgr ound color (activeBackground,
ActiveBackground)

Backgr ound color for tab when it is active.

-activefor eground color (activeForeground,
ActiveForeground)

For eground color for tab when it is active.

-anchor anchorPos (anchor, Anchor)
Anchor point for placing the tab’s embedded widget inside the tab’s
page. The default is center.

-backgr ound color (background, Background)
Backgr ound color for the tab. Overrides the -tabbackgr ound option
of the widget.

-bindtags tagList (bindTags, BindTags)
The binding tag list for the tab, which determines the order of evalu-
ation of the commands for matching event bindings. Implicitly, the
name of the tab itself is always the first tag in the list. The default
value is all.

-command command (command, Command)
Command to be evaluated when the tab is invoked. Overrides the
widget’s -selectcommand option.

-data string (data, Data)
Arbitrary data string to associate with the tab.

-fill fill (fill, Fill)
How the tab’s embedded widget should be stretched when its
requested size is smaller than the size of tab’s page. Fill must be
one of x, y, both, or none (the default).

-font font (font, Font)
Font to use for the tab’s text label.

-for eground color (foreground, Foreground)
For eground color for the tab. Overrides the widget’s -tabfor eground
option.

-image imageName (image, Image)
Image to be drawn in the tab’s label.

-ipadx amount (iPadX, PadX)
Horizontal padding to the left and right of the tab’s label. If amount
has two elements, the first specifies the padding for the left side and
the second for the right.

-ipady amount (iPadY, PadY)
Vertical padding to the top and bottom of the tab’s label. If amount
has two elements, the first specifies the padding for the left side and
the second for the right.

BLT

Alphabetical Summary of Commands — tabset 377

11 May 2006 10:51

-padx amount (padX, PadX)
Horizontal padding to the left and right of the tab’s embedded wid-
get. If amount has two elements, the first specifies the padding for
the left side and the second for the right.

-pady amount (padY, PadY)
Vertical padding to the top and bottom of the tab’s embedded wid-
get. If amount has two elements, the first specifies the padding for
the left side and the second for the right.

-selectbackgr ound color (selectBackground, Background)
Backgr ound color for tab when it is selected. Overrides the widget’s
-selectbackgr ound option.

-shadow color (shadow, Shadow)
Color for the shadow under the tab’s text label. The default is the
empty string (i.e., transparent).

-state state (state, State)
State for the tab. State must be normal or disabled.

-stipple bitmap (stipple, Stipple)
Stipple pattern to use for the background of the page window when
tab’s embedded window is torn off. The default is BLT.

-text string (text, Text)
Text for the tab’s text label.

-window pathName (window, Window)
Name of widget to be embedded into tab’s page. It must be a child
of the tabset. The tabset will “pack” and manage the size and place-
ment of the widget.

-windowheight height (windowHeight, WindowHeight)
Desir ed height, in screen units, for the tab’s page. If height is 0
(the default), the height is set to the maximum height of all embed-
ded tab widgets.

-windowwidth width (windowWidth, WindowWidth)
Desir ed width, in screen units, for the tab’s page. If width is 0 (the
default), the width is set to the maximum width of all embedded tab
widgets.

pathName invoke tabIndex
Select the tab tabIndex, map the tab’s embedded widget, and execute
any associated command. The retur n value will be the retur n value of
the command if there is one, an empty string otherwise. This command
does nothing if the tab’s state is disabled. The following substitutions
ar e made to the command before it is evaluated:

%% An actual percent sign
%W Pathname of tabset widget
%i Numeric index of invoked tab
%n Name of invoked tab

378 Chapter 11 – BLT

11 May 2006 10:51

pathName move tabIndex where position
Move the tab tabIndex to a position immediately before or after the tab
position. Where must be either before or after.

pathName near est x y
Retur n the name of the tab nearest to screen coordinates x y.

pathName scan dragto x y
Scr oll the widget’s view horizontally and vertically. The distance scrolled
is equal to 10 times the differ ence between this command’s x and y argu-
ments and the x and y arguments to the last scan mark command for the
widget.

pathName scan mark x y
Record the screen coordinates x y as anchors for a following scan
dragto method call.

pathName see tabIndex
Scr oll the tabset so that tab tabIndex is visible.

pathName size
Retur n the number of tabs in the tabset.

pathName tab cget tabIndex option
Retur n the current value of configuration option option for tab
tabIndex.

pathName tab configure tabIndex [tabIndex...] [option value...]
Query or modify the configuration options for the tabs identified by the
tabIndex arguments in the same manner as the general widget config-
ur e method. Supported options are those available for the insert method.

pathName tab names [pattern]
Retur n the names of all tabs in the tabset. If pattern is given, only tab
names matching the pattern are retur ned.

pathName tab tearof f tabIndex [newName]
Repar ent the embedded widget belonging to tab tabIndex inside of
newName. If newName is the pathname of the tabset widget itself, the
embedded widget is put back into its page. Otherwise, the widget new-
Name must not already exist. If no newName argument is given, the cur-
rent parent of the embedded widget is retur ned. An empty string is
retur ned if there is no embedded widget for tab tabIndex.

pathName view
Retur n a two-element list describing the currently visible region of the
tabset. The elements are the fractional distances of the view’s left and
right (or bottom and top) edges into the span of the widget’s width (or
height).

pathName view moveto fraction
Adjust the visible region of the tabset so that the point indicated by
fraction along the widget’s span appears at the region’s left (or top)
edge.

BLT

Alphabetical Summary of Commands — tabset 379

11 May 2006 10:51

pathName view scroll number what
Shift the visible region of the tabset by number. If what is units, then
number is in units of the -scr ollincrement option. If what is pages,
then number is in number of tabs.

Example

image create photo stopImg -file images/stopsign.gif
image create photo rainImg -file images/rain.gif
tabset .t
.t insert end t0 -text Stop -window [label .t.l0 -image stopImg]
.t insert end t1 -text Rain -window [label .t.l1 -image rainImg]
pack .t

tile

tilebutton pathName [option value...]

tilecheckbutton pathName [option value...]

tileframe pathName [option value...]

tilelabel pathName [option value...]

tileradiobutton pathName [option value...]

tilescr ollbar pathName [option value...]

tiletoplevel pathName [option value...]

These commands are identical to their Tk counterparts without the “tile” pre-
fix, with the addition of support for textured backgrounds using the following
options:

-activetile imageName (activeTile, Tile)
Image to use as background tile for widget when the widget is active
(i.e., it would normally be drawn with its -activebackgr ound color).

-tile imageName (tile, Tile)
Image to use as background tile for widget.

The tilescr ollbar command is not supported under Windows.

Example

image create photo paper -file tan_paper.gif
tileframe .frame -tile paper

vector

vector operation [arg arg...]

Cr eate and manipulate vectors, that is, ordered sets of real numbers. BLT’s
vectors are mor e ef ficient than standard Tcl lists and arrays for accessing and
manipulating large sets of real numbers. The following operations are defined:

380 Chapter 11 – BLT

11 May 2006 10:51

vector vecSpec [vecSpec...] [option value...]
Same as vector create.

vector create [vecSpec...] [option value...]
Cr eate one or more new vectors according to vecSpec and the follow-
ing options. The name of the last vector created is retur ned. The vec-
Spec argument specifies the vector’s name and size according to these
valid forms:

vecName
A vector named vecName with no components.

vecName (size)
A vector named vecName with size components, all initialized to
0.0 and with the index starting from 0.

vecName (first:last)
A vector named vecName with components indexed from first to
last, inclusive, all initialized to 0.0.

The following options are available to the cr eate operation:

-variable varName
Name of a Tcl array to be associated with the vector. By default, the
variable is the same as the vector name (this may change in a future
release of BLT). Any existing array by this name is deleted. If var-
Name is an empty string, then no variable will be mapped. See the
“Accessing Vectors as Arrays” section for how this array variable can
be used.

-command cmdName
Name of a Tcl command to be mapped to the vector. A Tcl com-
mand by that name cannot already exist. If the command name is
the empty string, then no command will be mapped and you will
lose access to the vector’s Tcl command interface. See the “Instance
Operations” section for the syntax of the created command.

-watchunset boolean
Whether vector should automatically destroy itself if the variable
associated with it is unset. The default is false. This should most
likely be set to true for temporary vectors used in procedur es.

vector destroy vecName [vecName...]
Destr oy the vectors named by the vecName arguments. Any associated
variable is unset and its instance command undefined.

vector expr expression
Retur n the result of evaluating expression for each component of the
included vectors in the expression. Usually this is a list of the results of
the expression for each component. However, if the expression includes
specific statistical functions, the result may be a single value. If more than
one vector appears in the expression, they must be of equal length or
have only one component (i.e., a scalar value).

BLT

Alphabetical Summary of Commands — vector 381

11 May 2006 10:51

The syntax of expression is the same as for the general Tcl expr com-
mand. However, the operators and functions supported are slightly differ-
ent. For results of boolean operations, the value 1.0 or 0.0 is retur ned.
Supported operators in order of precedence are as follows:

- !
Unary minus and logical NOT.

ˆ Exponentiation.

* / %
Multiply, divide, remainder.

+ -
Add, subtract.

<< >>
Circularly shift vector values left and right (not implemented yet).

< > <= >=
Boolean comparison for less than, greater than, less than or equal,
gr eater than or equal.

== !=
Boolean test for equality, inequality.

&& Logical AND.

|| Logical OR.

x?y:z
If-then-else (not implemented yet).

The following functions are supported, which are identical to the Tcl expr
functions of the same name:

abs acos asin atan
ceil cos cosh exp
floor hypot log log10
random round sin sinh
sqrt tan tanh

The following statistical functions are supported, which take a vector (or vec-
tor result) as their sole argument. All functions except nor m and sort retur n a
single value:

adev Average deviation
kertosis Degr ee of peakedness (fourth moment)
length Number of components
max Vector’s maximum value
mean Vector’s mean value
median Vector’s median value
min Vector’s minimum value
nor m Scale vector to lie in range [0.0..1.0]
q1 First quartile
q3 Third quartile

382 Chapter 11 – BLT

11 May 2006 10:51

pr od Pr oduct of the components
sdev Standard deviation
skew Skewness (third moment)
sort Sorted components in ascending order
sum Sum of the components
var Variance

vector names [pattern]
Retur n a list of defined vector names. If pattern is specified, retur n
only those vectors whose names match the pattern.

Accessing Vector s as Arra ys

A Tcl array is normally associated with each vector, having the same name as
the vector unless overridden with the -variable option to the cr eate operation.
The data in the array can be accessed or set using indices that take the fol-
lowing forms:

vecName (index)
The index th component of vecName.

vecName (expression)
Same as the previous index, except that expression is a simple math
expr ession that evaluates to an integer index.

vecName (first:last)
The whole range of components from the first to last, inclusive. You
can omit first or last, in which case they default to the first and last
elements, respectively.

The following special indices can be used:

min
The component with the minimum value.

max
The component with the maximum value.

end
The last component.

++end
Extends the vector by 1. Component access for setting value only.

Instance Operations

After a vector is created, a new Tcl command is defined having the same
name unless overridden with the -command option to the cr eate operation.
This command supports the following operations:

vecName append item...
Append one or more items to a vector. Each item can be another vector
or a list of numeric values.

BLT

Alphabetical Summary of Commands — vector 383

11 May 2006 10:51

vecName clear
Clear the index and value strings from the Tcl array associated with the
vector. The components of the vector itself are not affected, and the array
elements will be automatically recr eated if accessed.

vecName delete index...
Remove from the vector one or more elements having the specified index
values.

vecName dup destName
Cr eate a duplicate vector destName that is a copy of the original vector.
The new vector is created if necessary.

vecName expr expression
Reset the values of the vector to the results of evaluating expression.
See the vector expr operation for details on vector expressions.

vecName length [newSize]
Change the size of a vector to be newSize elements, which can be
larger or smaller than the original size. If newSize is omitted, the current
size is retur ned.

vecName mer ge srcName...
Retur n a list consisting of the merged components of vecName and one
or more srcName vectors.

vecName nor malize [destName]
Nor malize the values of the vector to lie between 0.0 and 1.0. If a dest-
Name argument is provided, the resulting vector after normalizing is
stor ed in the vector named destName. This command is deprecated in
favor of using the nor m function in the expr operation.

vecName notify when
Contr ol how clients of the vector are notified of changes. The when
parameter is one of always, never, whenidle, now, cancel, or
pending.

vecName of fset [value]
Shift the indices of the vector by integer number value. With no value
parameter, the current offset is retur ned.

vecName populate destName density
Cr eate a new vector destName that contains all of the elements of the
original vector as well as density new values, evenly distributed
between each of the original values. Useful for generating abscissas to be
interpolated along a spline.

vecName range firstIndex lastIndex
Retur n a list of the values of the vector from index firstIndex thr ough
lastIndex.

vecName sear ch value [value]
With one value argument, retur n a list of the element indices that have
the given value. With two arguments, retur n a list of elements whose val-
ues range between the two values.

384 Chapter 11 – BLT

11 May 2006 10:51

vecName set item
Set the vector to the elements specified by item, which can be either a
list of numeric expressions or another vector.

vecName seq start finish [step]
Set the vector to the values generated by stepping from value start to
finish, inclusive, with interval step. The default step is 1.0.

vecName sort [-r everse] [argName...]
Sort the elements of the vector. The -r everse option changes the sort
order to decreasing. Optional argName arguments can specify the names
of vectors to be rearranged in the same order when sorting. This is useful
for sorting x- and y-coordinates stored as pairs of vectors.

vecName variable varName
Associate the Tcl variable varName with the vector, creating another
means for accessing the vector. The variable cannot already exist. This
overrides any previous variable mapping the vector may have had.

Example

vector create q(10)
q set {2 3 5 7 11 13 17 19 23}
set q(++end) 29
q dup x
x expr {2.0 * sqrt(q) + 3.0}
puts $x(:)

watch

watch operation [arg arg...]

Execute Tcl procedur es befor e and after the execution of each Tcl command.
The following operations are defined:

watch activate watchName
Activate a previously created watch.

watch create watchName [option value...]
Cr eate a new watch. Options are the same as those for the configur e
operation.

watch configure watchName [option value...]
Query or modify the configuration options for the watch watchName in
the same manner as the standard widget configur e method. The avail-
able options are as follows:

-active boolean
Specify if the watch should be made active. By default, watches are
active when created.

-postcmd string
Specify the Tcl procedur e and additional arguments to be called after
executing each Tcl command. When the procedur e is invoked, it is
passed the specified arguments with the following appended: (1) the
curr ent level, (2) the current command line, (3) a list containing the

BLT

Alphabetical Summary of Commands — watch 385

11 May 2006 10:51

command after substitutions and split into words, (4) the retur n code
of the command, and (5) the results of the command.

-pr ecmd string
Specify the Tcl procedur e and additional arguments to be called
befor e executing each Tcl command. When the procedur e is
invoked, it is passed the specified arguments with the following
appended: (1) the current level, (2) the current command line, and
(3) a list containing the command after substitutions and split into
words.

-maxlevel number
The maximum evaluation depth to watch Tcl commands. The default
is 10000.

watch deactivate watchName
Deactivate a watch, causing its pre- and postcommand procedur es to no
longer be invoked. It can be reactivated.

watch delete watchName
Delete a watch. Its pre- and postcommand procedur es will no longer be
invoked.

watch info watchName
Retur n configuration information about a previously created watch.

watch names [state]
Retur n a list of watches defined for a given state, where state can be
one of active, idle, or ignore. If state is omitted, all watches are
listed.

Example

proc preCmd { level command argv } {
set name [lindex $argv 0]
puts stderr "$level $name => $command"

}
proc postCmd { level command argv retcode results } {

set name [lindex $argv 0]
puts stderr "$level $name => $argv ($retcode) $results"

}
watch create trace -postcmd postCmd -precmd preCmd

winop

winop operation [[window] [arg arg...]]

Per form assorted window operations on Tk windows using Xlib functions.
Also, some miscellaneous image operations are defined in preparation for a
new image type in a later BLT release. The following operations are defined:

winop convolve srcPhoto destPhoto filter
Set the photo image destPhoto to the result of the convolution of
photo image srcPhoto with the given filter. Filter is a list of N×N
real numbers repr esenting the square matrix for the mean filter.

386 Chapter 11 – BLT

11 May 2006 10:51

winop lower [window...]
Lower given windows to the bottom of window stack.

winop map [window...]
Map given windows to scr een (ignor ed if already mapped).

winop move window x y
Move the window to the screen coordinates specified by x and y.

winop raise [window...]
Raise given window s to top of window stack.

winop readjpeg filename photoName
Read the JPEG image data from the file filename into the photo image
photoName, which must already exist. Only available if BLT was com-
piled with JPEG image support.

winop resample srcPhoto destPhoto [horzFilter [vertFilter]]
Set the photo image destPhoto to the result of resampling the photo
image srcPhoto with the given filters. Valid values for horzFilter
and vertFilter ar e bell, box, bessel, bspline, catrom,
default, dummy, gaussian, lanczos3, mitchell, none, sinc,
and triangle.

winop snap window photoName [width height]
Take a snapshot of the window and store the contents in photo image
photoName. The window must be totally visible and photoName must
alr eady exist. If width and height ar e specified, they constrain the
size of the snapshot.

winop subsample srcPhoto destPhoto x y width height [horzFilter
[vertFilter]]
Set the photo image destPhoto to the result of subsampling the photo
image srcPhoto with the given filters. The region of the source image
to subsample is given by x y width height. Valid values for
horzFilter and vertFilter ar e the same as for the resample opera-
tion.

winop unmap [window...]
Unmap given window s from the screen.

winop warpto [window]
Move the mouse pointer to window. Window can also be specified in
the form @x,y to indicate @x,y to indicate specific coordinates. If win-
dow is omitted, retur ns the current x- and y-coordinates of the mouse
pointer as a two-element list.

Example

set img [image create photo]
winop snap .h $img
winop warpto @100,100

BLT

Alphabetical Summary of Commands 387

11 May 2006 10:51

CHAPTER 12

Oratc l

The Oratcl extension is not part of the core Tcl/Tk package, but can be obtained
for free at http://www.nyx.net/˜tpoindex. This chapter discusses Oratcl Version 2.5.

Oratcl provides access to Oracle, a commercial relational database from Oracle
Corporation. Oratcl makes connecting to databases and manipulating relational
data easy and convenient using the Tcl language.

Oratcl comes with sample applications and works with standard Tcl, Tk, and com-
mon extensions, including Extended Tcl.

Over view
You connect to a database using the oralogon command, which retur ns a logon
handle. To per form queries and retrieve database rows you use the oraopen com-
mand, which retur ns a cursor. Multiple cursors can be open over a single login
connection.

The orasql command sends an SQL query to the database server for execution. To
retrieve data rows, the orafetch command is used.

When finished, use oraclose to close each cursor handle, and oralogof f to close a
logon handle.

The global array variable oramsg stor es infor mation related to the current
database operations.

These are the most basic commands used for Oratcl operations. Other commands
support more advanced functions.

388

11 May 2006 10:51

http://www.nyx.net/%CB%9Ctpoindex

Example
tclsh> oralogon scott/tiger
oratcl0
tclsh> oraopen oratcl0
oratcl0.0
tclsh> orasql oratcl0.0 "select empno, ename from emp"
0
tclsh> orafetch oratcl0.0
7379 Smith
tclsh> orafetch oratcl0.0
7499 Allen
tclsh> oralogoff oratcl0

Environment Var iables
Oratcl optionally uses two environment variables to determine the default Oracle
server name and directory:

ORACLE_HOME
Base directory for Oracle files

ORACLE_SID
Default Oracle server system ID

Special Var iables
Oratcl stores information related to its operation in the global variable oramsg.
The variable is an array and contains the keys described in the following list:

collengths
A list of the column lengths retur ned by oracols.

colprecs
A list of the precision of the numeric columns retur ned by oracols.

colscales
A list of the scales of the numeric columns retur ned by oracols.

coltypes
A list of the types of the columns retur ned by oracols.

errortxt
The error message text associated with the last SQL command.

handle
The handle of the last Oratcl command.

maxlong
Set to limit the amount of data retur ned by an orafetch or orar eadlong
command; default is 32,768 bytes.

Oratcl

Special Variables 389

11 May 2006 10:51

nullvalue
String value to retur n for null results. The default value default will
retur n 0 for numeric types and a null string for others.

ocifunc
The numeric Oracle Call Interface (OCI) status code of the last OCI func-
tion perfor med.

ociinfo
List of features present in Oracle library when Oratcl was compiled.

peo
Parse error offset; index into SQL string that failed due to error.

rc
Numeric Oracle error number associated with the last SQL command (see
the following list).

rowid
Row ID of the row affected by SQL insert, update, or delete command.

rows
The number of rows affected by an SQL insert, update, or delete com-
mand or number of rows fetched by orafetch.

sqlfunc
The numeric OCI status code of the last SQL function perfor med.

version
Version of Oratcl.

The following are typical error status values retur ned in the $oramsg(rc) vari-
able. Refer to the Oracle documentation for an exhaustive set of codes and mes-
sages.

0
Nor mal command completion; no error.

900 –999
Invalid SQL statements, keywords, column names, etc.

1000 –1099
Pr ogram inter face err or.

1400 –1499
Execution errors or feedback.

1403
End of data reached on orafetch command.

1406
Column fetched by orafetch command was truncated.

3123
Asynchr onous execution is pending completion (not an error).

390 Chapter 12 – Oratcl

11 May 2006 10:51

One or more of the following features can be retur ned in the $oramsg(oci-
info) variable:

version_6
Compiled under Oracle version 6

version_7
Compiled under Oracle version 7

non_blocking
Supports nonblocking SQL execution

cursor_variables
Supports PL/SQL cursor variables

Group Listing of Commands

Database Server Setup Commands

oralogon Log on to Oracle server.
oraopen Open an SQL cursor to a server.
oraclose Close an SQL cursor to a server.
oralogof f Log off from Oracle server.

Data Manipulation Commands

oraautocom Enable/disable autocommit of SQL statements.
orabindexec Execute a previously parsed SQL statement, optionally

binding to variables.
orabr eak Interrupt an executing SQL statement.
oracancel Cancel pending SQL commands.
oracols Retur n column names from last orasql or oraplexec

command.
oracommit Commit pending transactions.
orafetch Retur n next row from last SQL statement executed.
oraplexec Execute an anonymous PL/SQL block.
orapoll Poll for data during asynchronous execution.
orar oll Roll back pending transactions.
orasql Send SQL statements to server.
orar eadlong Retur n LONG or LONG RAW column data and

write to file.
orawritelong Write file contents to a LONG or LONG RAW

column.

Alphabetical Summary of Commands
In the following command descriptions, arguments that are logon and cursor han-
dles are shown as logon and cursor, respectively. Commands will raise a Tcl
err or if the arguments do not refer to valid handles.

Oratcl

Alphabetical Summary of Commands 391

11 May 2006 10:51

oraautocom

oraautocom logon on|off

Turn on or off automatic commit of SQL commands sent to the server opened
using logon. By default autocommit is turned off. Affects all cursors opened
with the logon handle.

orabindexec

orabindexec cursor [-async] [:varname value...]

Execute a statement previously parsed using orasql -parseonly.

Option -async specifies that the command should run asynchronously, i.e.,
retur n immediately without waiting for the statement to complete.

Optional name-value pairs allow substitution on SQL bind variables before
execution. Variable names must begin with a colon.

Retur ns a numeric retur n code, which is 0 for successful execution, 3123
when -async is specified, and non-zero for errors. Updates the oramsg array
variable element rowid.

orabreak

orabr eak cursor

Cause the currently executing SQL statement to be interrupted.

oracancel

oracancel cursor

Cancel any pending results from a prior orasql command sent using cursor.

oraclose

oraclose cursor

Close the SQL cursor associated with cursor.

oracols

oracols cursor

Retur n the names of the columns from the last orasql, orafetch, or oraplexec
command as a list.

Updates the oramsg array variable elements collengths, coltypes,
colprecs, and colscales.

392 Chapter 12 – Oratcl

11 May 2006 10:51

oracommit

oracommit logon

Commit pending transactions from prior orasql commands sent using logon.
Af fects all cursors opened with the logon handle.

orafetch

orafetch cursor [commands] [substitution-character] [tclvarname
colnum...]

Retur n the next row of data from the SQL statements executed by the last
orasql command. Returns a list with all columns converted to strings.

The optional commands parameter can specify a command string to repeat-
edly execute for each row until no more data is available. Command substitu-
tion is perfor med, wher e the strings @1, @2, @3, etc., are replaced with the
results from the appropriate columns. The string @0 is replaced with the
entir e row, as a list.

An optional parameter substitution-character can specify a differ ent
substitution character to be used instead of @. A null string may be specified,
in which case column substitutions are not perfor med.

Tcl variables may also be set for each row that is processed. One or more
matching pairs of variable names and column numbers can be specified.

The command updates many of the elements of the oramsg array variable.

oralogof f

oralogof f logon

Log off from the Oracle server connection associated with logon.

oralogon

oralogon connect-str

Connect to an Oracle server. The connect string connect-str should be in
one of the following forms:

name
name/password
name@dbname
name/password@dbname
name/password@(SQL*Net V2 string)

Retur ns a logon handle that can be used in subsequent Oratcl commands.
Raises an error if the connection cannot be made. The environment variable
ORACLE_SID is used as the server if the connect string does not specify a
database.

Oratcl

Alphabetical Summary of Commands — oralogon 393

11 May 2006 10:51

oraopen

oraopen logon

Open an SQL cursor to the server and retur n a cursor handle that can be used
for subsequent Oratcl commands. Multiple cursors can be opened against the
same logon handle.

oraplexec

oraplexec cursor pl-block [:varname value...]

Execute an anonymous PL block. Parameter pl-block can be a complete
PL/SQL procedur e or a call to a stored procedur e coded as an anonymous
PL/SQL block.

Optional name-value pairs may be specified that match the substitution bind
names in the procedur e. Variable names must begin with a colon.

The command retur ns the contents of each variable name, after execution, as
a list.

orapoll

orapoll cursor [-all]

Retur n a list of cursor handles that have results available, or a null string if no
results are available. The cursor parameter must be a valid open cursor
handle.

The optional parameter -all indicates to retur n a list of all cursor handles that
have asynchronous requests pending.

orareadlong

orar eadlong cursor rowid table column filename

Read the contents of a LONG or LONG RAW column and write the results to a
file. The row ID, table name, column name, and file to be written to must be
specified. Returns the number of bytes written as a decimal number.

Raises an error if rowid, table, or column ar e invalid or the row does not
exist.

oraroll

orar oll logon

Roll back any pending transactions from prior orasql commands sent using
logon. Affects all cursors opened with the logon handle.

394 Chapter 12 – Oratcl

11 May 2006 10:51

orasql

orasql cursor sql-statement [-parseonly] [-async]

Send an SQL statement to the server using cursor handle cursor. Retur ns a
numeric retur n code, which is 0 for successful execution, 3123 when -async is
specified, and non-zero for errors. Updates the oramsg array variable ele-
ments rc, rows, and rowid.

Options

-parseonly
Parse, but do not execute, SQL statement (used with orabindexec).

-async
Execute asynchronously, i.e., without waiting for command to complete.

Raises an error if there is a syntax error in the SQL statement.

orawritelong

orawritelong cursor rowid table column filename

Write the contents of a file to a LONG or LONG RAW column. The row ID, table
name, column name, and file containing the data must be specified. Returns
the number of bytes written as a decimal number.

Raises an error if rowid, table, or column ar e invalid or the row does not
exist.

Oratcl

Alphabetical Summary of Commands 395

11 May 2006 10:51

CHAPTER 13

Sybtc l

Sybtcl, a Tcl extension developed by Tom Poindexter, is not part of the core
Tcl/Tk package, but can be obtained for free at http://www.nyx.net/˜tpoindex. This
chapter covers Version 2.5.

Sybtcl provides access to Sybase, a commercial relational database from Sybase,
Inc. Sybtcl makes connecting to databases and manipulating relational data easy
and convenient, using the Tcl language. The Sybtcl extension comes with sample
applications and works with standard Tcl, Tk, and common extensions, including
Extended Tcl.

Over view
You connect to a Sybase server using the sybconnect command, which retur ns a
connection handle. To select which database on the server to access, you use the
sybuse command.

The sybsql command sends an SQL query to the database server for execution. To
retrieve data rows, the sybnext command is used.

When finished, use sybclose to close the connection handle to the database server.

The global array variable sybmsg stor es infor mation related to the current
database operations.

These are the most basic commands used for Sybtcl operations. Other commands
support more advanced functions.

396

11 May 2006 10:52

http://www.nyx.net/%CB%9Ctpoindex

Example
tclsh> sybconnect mysybaseuserid mypassword MYSERVER
sybtcl0
tclsh> sybuse sybtcl0 pubs2
tclsh> sybsql sybtcl0 "select au_fname, au_lname from authors"
REG_ROW
tclsh> sybnext sybtcl0
Abraham Bennet
tclsh> sybnext sybtcl0
Reginald Blotchet-Halls
tclsh> sybclose sybtcl0

Environment Var iables
Sybtcl optionally uses two environment variables to control the default Sybase
server name and directory:

DSQUERY
Default Sybase server name

SYBASE
Base directory for Sybase files

Special Var iables
The global variable sybmsg is used by Sybtcl to store infor mation related to its
operation. The variable is an array and contains the keys described in the follow-
ing list:

collengths
A list of the column lengths of the columns retur ned by sybcols.

coltypes
A list of the types of the columns retur ned by sybcols.

dateformat
Contr ols for matting of dates. Can be set to a string containing substitution
strings, described at the end of this section.

dberr
Err or number generated by the last DB-Library routine.

dberrstr
Err or text associated with dberr.

fixedchar
Nor mally, trailing spaces are trimmed from character data. If set to yes,
trailing spaces are retained.

floatprec
Number of decimal places to use for floating-point values. Default is 17.

Sybtcl

Special Variables 397

11 May 2006 10:52

handle
The handle of the last Sybtcl command.

line
Line number of the SQL command or stored procedur e that generated the
last message.

maxtext
Sets maximum amount of data retur ned by sybnext and sybr eadtext com-
mands. Default is 32,768 bytes.

msgno
Message number from the last Sybase server message.

msgtext
Message text associated with msgno.

nextrow
Indicates result of last SQL command. Possible values are described in
the next list.

nullvalue
String value to retur n for null results. The default value default will
retur n 0 for numeric types and a null string for others.

oserr
Operating system error number associated with the last DB-Library error.

oserrstr
Err or text associated with oserr.

procname
Name of stored procedur e that generated the last message.

retstatus
Retur n code of the last stored procedur e that was executed.

severity
Severity level of the last Sybase server message.

svrname
Name of the Sybase server that generated the last message.

The element $sybmsg(nextrow) can take the following values (which are also
retur ned by the sybsql command):

FAIL
A server error has occurred.

NO_MORE_RESULTS
The final set of results has been processed.

NO_MORE_ROWS
All rows from the current result set have been processed, or the SQL
command executed successfully but no rows are available.

398 Chapter 13 – Sybtcl

11 May 2006 10:52

PENDING
Asynchr onous execution of command is still in progr ess.

REG_ROW
At least one row is available.

num
The last row retrieved was a compute row having compute ID number
num.

The $sybmsg(dateformat) variable, described earlier, can contain the follow-
ing format strings:

YYYY Four-digit year (e.g., 1900)
YY Two-digit year (00–99)
MM Two-digit month (1–12)
MONTH Name of month (January–December)
MON Abbr eviated name of month (Jan–Dec)
DD Two-digit day (1–31)
hh Two-digit hour (0 –23)
mm Two-digit minute (0 –59)
ss Two-digit second (0 –59)
ms Thr ee-digit millisecond (0 –999)
dy Thr ee-digit day of year (0 –365)
dw One-digit day of week (1–7, for Monday–Sunday)

Group Listing of Commands

Database Server Setup Commands

sybconnect Connect to a Sybase server.
sybuse Set or get active database.
sybclose Close connection to a server.

Data Manipulation Commands

sybsql Execute SQL statements on server.
sybpoll Poll for data during asynchronous execution.
sybnext Retrieve data rows.
sybcols Retur n column names.
sybcancel Cancel pending SQL commands.
sybr etval Retrieve output variables from a stored procedur e.
sybwritetext Write file data to database.
sybr eadtext Stor e database data in file.

Alphabetical Summary of Commands
In the following command descriptions, an argument that refers to a database han-
dle is shown as handle. Commands will raise a Tcl error if the argument does not
refer to a valid handle.

Sybtcl

Alphabetical Summary of Commands 399

11 May 2006 10:52

sybcancel

sybcancel handle

Cancel pending results from last Sybtcl command. May be used before all
results are obtained using sybnext.

sybclose

sybclose handle

Close a server connection.

sybcols

sybcols handle

Retur n a list of names of the columns associated with the last sybnext or
sybr etval command.

sybconnect

sybconnect loginName password [server] [appName] [iFile]

Connect to a Sybase server using loginName and password.

A server can be specified. If omitted, will use value of environment variable
DSQUERY, and failing that, a server named SYBASE.

The command can optionally specify an application name appName.

A file iFile can be specified to resolve server addresses. Otherwise, the
command uses the file $SYBASE /interfaces.

Retur ns a Sybase handle that can be used as a parameter to other Sybtcl com-
mands to identify the database connection.

sybnext

sybnext handle [commands] [substitutionCharacter] [tclvarname
colnum...]

Retur n the next row of data from the SQL statements executed by the last syb-
sql command. Returns a list with all columns converted to strings.

The optional commands parameter can specify a command string to repeat-
edly execute for each row until no more data is available. Command substitu-
tion is perfor med, wher e the strings @1, @2, @3, etc., are replaced with the
results from the appropriate columns. The string @0 is replaced with the
entir e row, as a list.

An optional parameter substitutionCharacter can specify a differ ent
substitution character to be used instead of @. A null string may be specified,
in which case column substitutions are not perfor med.

400 Chapter 13 – Sybtcl

11 May 2006 10:52

Tcl variables may also be set for each row that is processed. One or more
matching pairs of variable names and column numbers can be specified.

sybpoll

sybpoll handle [timeout] [-all]

Retur n a list of handles that have results available, or a null string if no results
ar e available. The handle parameter must be a valid Sybtcl handle.

An optional timeout parameter indicates how long to wait, in milliseconds,
befor e retur ning. The timeout value can be 0 for polling (the default) or –1 to
wait indefinitely until results are available.

The optional parameter -all indicates to check all Sybtcl handles that have
asynchr onous requests pending.

sybreadtext

sybr eadtext handle filename

Read the contents of a text or image column and write the results to a file.
The parameter handle must be an open Sybtcl handle and filename a
writable file.

A single text or image column should have been previously selected using a
sybsql command. Returns number of bytes read from the database column.

sybretval

sybr etval handle

Retur n a list of the retur n values from a stored procedur e.

sybsql

sybsql handle sqlCommand [-async]

Send one or more SQL statements to the Sybase server associated with handle
handle.

Nor mally retur ns when a response is available. With the -async option, the
command retur ns immediately. Returns one of the values described in the
pr evious section under values for the variable $sybmsg(nextrow).

sybuse

sybuse handle [dbName]

Retur n the name of the database currently in use. Attempts to use the
database named dbName, if specified.

Raises an error if dbName is not a valid database name.

Sybtcl

Alphabetical Summary of Commands — sybuse 401

11 May 2006 10:52

sybwr itetext

sybwritetext handle object columnNumber filename [-nolog]

Write the contents of a file to a text or image column. The table and column
name are specified using object in the format table.column. The relative
position in the column is columnNumber. The name of the file containing
text or image data is filename.

The option -nolog disables the logging of text and image writes that normally
occurs.

402 Chapter 13 – Sybtcl

11 May 2006 10:52

CHAPTER 14

Tc lodbc

The Tclodbc extension, created by Roy Nurmi, is not part of the core Tcl/Tk pack-
age, but can be obtained for free at http://www.megalos.fi/˜r nur mi. This chapter
covers Version 2.0.

Tclodbc is a Tcl interface to ODBC, the database protocol used by Microsoft Win-
dows. It works with any database that has an ODBC driver. The distribution
includes precompiled DLLs for Tcl versions 7.6, 8.0, and 8.1. Once installed using
the supplied Tcl install program, the package can be loaded using the command
package requir e tclodbc. The package adds one new command to the Tcl inter-
pr eter: database.

Over view
Tclodbc uses an object-based design. You first create a database connection with
the database connect command. This retur ns a database object ID that is also a
new Tcl command. SQL statements can then be passed to the database object ID
command.

The database ID statement command creates a compiled SQL query, which can
then be efficiently executed many times. The command retur ns a statement ID and
cr eates a new Tcl command that accepts statement ID commands.

Multiple database IDs and statement IDs can be created and active at the same
time.

Tclodbc

403

11 May 2006 10:52

http://www.megalos.fi/%CB%9Cr

Group Listing of Commands

Connection and Configuration Commands

database connect Connect to an ODBC database.
database configure Configur e ODBC datasources.
database datasources Retur n a list of ODBC datasources.
database drivers Retur n a list of ODBC drivers.

Data Manipulation Commands

In the following commands, database-id is the database identifier for a
database connection created using the database connect command:

database-id SQL-clause Execute an SQL statement.
database-id disconnect Disconnect from the database.
database-id set Set connection-specific attributes.
database-id get Get connection-specific attributes.
database-id commit Commit current transaction.
database-id rollback Cancel current transaction.
database-id tables Retur n a list of database tables.
database-id columns Retur n a list of database columns.
database-id indexes Retur n a list of database indexes.
database-id statement Cr eate a statement object.

Statement Commands

In the following commands, statement-id is a statement identifier created
using the database-id statement command:

statement-id run
Execute the statement and retur n results.

statement-id execute [args]
Execute the statement without retur ning results.

statement-id fetch [arrayName] [columnNames]
With no parameters, read one row, retur ning the results or an empty
string when there are no mor e results to be read. With an array name,
read the results into an array. Column names can optionally be specified.

statement-id columns
Retur n a list of statement column attributes.

statement-id set
Set statement-specific attributes.

statement-id get
Get statement-specific attributes.

statement-id dr op
Destr oy the statement command.

404 Chapter 14 – Tclodbc

11 May 2006 10:52

Summar y of Commands
This section describes the database command, followed by a list of commands
that can be issued to a database (identified by database-id) and to a statement
(identified by statement-id).

data base

database options

This command is used to connect to a database and to query and change
infor mation related to database sources.

database [connect] id datasource [userid] [password]

Open a connection to a database, creating a database object named id (a
new Tcl command) used to access the database. Accepts the datasource name
(DSN) and optionally a user ID and password, retur ning the database ID. The
connect keyword is optional.

Example

database db employeebase sysadm xxxxxx

database [connect] id connectionstring

An alternate form of the connect command that accepts a string of attribute-
value pairs in the form Attribute1=Value1 Attribute2=Value2.

Example

database db "DRIVER=Microsoft Paradox Driver (*.db);DBQ=C:\\db"

database configure operation driver attributes

Configur e an ODBC datasource. The operation parameter is one of the val-
ues in the following list. The driver parameter is the name of the ODBC
driver to be used. The attributes argument is a driver-specific list of name
and value pairs. Does not open a connection to the database.

Operations

add_dsn
Add a datasource for the current user.

config_dsn
Configur e a datasource.

remove_dsn
Remove the datasource.

add_sys_dsn
Add a system datasource, visible to all users.

Tclodbc

Summary of Commands — database 405

11 May 2006 10:52

config_sys_dsn
Configur e a system datasource.

remove_sys_dsn
Remove a system datasource.

database datasources

Retur n a list of configured ODBC datasources. Each element is a list consisting
of the datasource name and the driver name.

database drivers

Retur n a list of configured ODBC drivers. Each element is a list consisting of
the driver name and a list of driver attributes.

Example

set driver "Microsoft Access Driver (*.mdb)"
set attributes [list "DSN=mydsn" "DBQ=c:\mydb.mdb" "FIL=MS Access"]
database configure add_dsn $driver $attributes

database-id

database-id options

This command perfor ms operations on the database associated with the
database-id cr eated using a previous database connect command.

database-id SQL-clause [argtypedefs] [args]

Execute the SQL statement SQL-clause, retur ning the result as a list. If the
statement retur ns a single-column result set, the retur ned string is a simple
list, or an empty string if nothing is found. If the command retur ns a multiple-
column result set, a list is retur ned in which each element is a list repr esent-
ing a single row of the result. If the statement does not retur n a result set, the
command retur ns OK.

SQL arguments may be given after SQL-clause, wher e the argument posi-
tions are marked with ? in the clause. This is usually used with precompiled
statements; see the description in the statement-id command.

Example

db "select firstname, surname from employees, where id = $id"

database-id disconnect

Disconnect the database object from the datasource, removing the command
fr om the interpreter.

database-id set option value

Set a connection-specific option to a value. The supported options and values
ar e listed here:

406 Chapter 14 – Tclodbc

11 May 2006 10:52

autocommit boolean
Turns autocommit on or off.

concurr ency mode
Set concurrency mode to one of readonly, lock, values, or rowver.

maxr ows number
Set the maximum number of rows.

timeout number
Set timeout in seconds.

maxlength number
Set the maximum length of data retur ned.

rowsetsize number
Set the row set size.

cursortype type
Set the cursor type to type, which must be one of static, dynamic,
forwardonly, or keysetdriven.

Example

db set autocommit off

database-id get option

Retur n the value of a connection-specific option. The supported options are
the same as those listed previously for the get command.

database-id commit

When autocommit mode is enabled, causes the current transaction to be com-
mitted.

database-id rollback

When autocommit mode is enabled, cancels the current transaction.

database-id tables

Retur n a list of all tables in the database. Each element is a list containing val-
ues for TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, TABLE_TYPE,
and REMARKS.

database-id columns [tablename]

Retur n a list of the columns in the database, or the columns in the specified
table, if tablename is specified. Each element is a list containing values for
TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME, COLUMN_NAME,
DATA_TYPE, TYPE_NAME, PRECISION, LENGTH, SCALE, RADIX, NUL-
LABLE, and REMARKS.

Tclodbc

Summary of Commands — database-id 407

11 May 2006 10:52

database-id indexes tablename

Retur n a list of the indexes of table tablename. Each element is a list con-
taining values for TABLE_QUALIFIER, TABLE_OWNER, TABLE_NAME,
NON_UNIQUE, INDEX_QUALIFIER, INDEX_NAME, TYPE, SEQ_IN_INDEX,
COLUMN_NAME, COLLATION, CARDINALITY, PAGES, and FILTER_CONDI-
TION.

database-id statement id SQL-clause|tables|columns [argtypedefs]

Cr eate a new statement-id object of one of the following types: SQL
query, table query, or column query. The statement ID id, which is retur ned,
becomes a new Tcl command which accepts any of the options described for
a statement-id. The SQL-clause argument is an SQL statement which is
compiled for later execution when the statement-id command is invoked.

Tclodbc tries to automatically determine the argument types for each argu-
ment. For drivers that do not support this function, the types can be explicitly
defined using argtypedefs, which takes the form [type] [scale] [preci-
sion]. The supported types are the standard SQL types CHAR, NUMERIC,
DECIMAL, INTEGER, SMALLINT, FLOAT, REAL, DOUBLE, VARCHAR, and the
extended types DATE, TIME, TIMESTAMP, LONGVARCHAR, BINARY,
VARBINARY, LONGVARBINARY, BIGINT, TINYINT, and BIT.

database-id eval proc SQL-clause [argtypedefs] [args]

First execute the given SQL clause and then evaluate the given Tcl procedur e
proc for each row in the result set. The argument count of the procedur e
must match the column count in the query. Only a single row is read into
memory at one time, so very large tables can be accommodated.

database-id read arrayspec SQL-clause [argtypedefs] [args]

Read data from the database into one or more Tcl arrays. The first data col-
umn is used as the index for the array, and the remainder are stor ed into the
array. The arrays may be specified as a list of names, which are used for the
array names for each data column. Alternatively, one can specify only a single
array name, which is used as a two-dimensional array. This command is not
suitable for very large tables because the entire table is read into memory at
one time.

Example

db statement s1 "select fullname from article where id=132"
db statement s2 "select fullname from article where id1=?" INTEGER

statement-id

statement-id options

This command perfor ms operations on a precompiled SQL statement associ-
ated with the statement-id cr eated using a previous database-id state-
ment command.

408 Chapter 14 – Tclodbc

11 May 2006 10:52

statement-id [run] [args]

Execute the precompiled statement and retur n the result set immediately. If
the command was defined with arguments, they should be specified using
args, in the form of a list. The keyword [run] is optional.

Example

db statement s1 "select fullname from article where id=132"
s1
db statement s2 "select fullname from article where id1=?" INTEGER
s2 132

statement-id execute

Execute the precompiled statement but do not retur n the result set immedi-
ately. The results can be read one row at a time using the fetch command.

statement-id fetch [arrayName] [columnNames]

Retur n the next row of a result set from a statement previously executed using
the execute command.

statement-id columns [attribute...]

Retur n a list of ODBC statement column attributes. The attribute parame-
ter is a list specifying which attributes to retur n. The attributes are listed
below. The default is label.

label
Column label.

name
Column name in the original table, if available.

displaysize
The maximum string length of the column data.

type
Standard numeric SQL type.

typename
Database-specific type name string.

precision
The precision of the column, if applicable.

scale
The scale of the column, if applicable.

nullable
1 if the column is nullable.

updatable
1 if the column is updatable.

Tclodbc

Summary of Commands — statement-id 409

11 May 2006 10:52

tablename
Source table of the column, if available.

qualifiername
Qualifier name of the table, if available.

owner
Owner name of the table, if available.

statement-id set option value

Set a statement-specific option to a value. The supported options and values
ar e listed here:

concurr ency mode
Set concurrency mode to one of readonly, lock, values, or rowver.

maxr ows number
Set the maximum number of rows.

timeout number
Set timeout in seconds.

maxlength number
Set the maximum length of data retur ned.

statement-id get option

Retur n the value of a statement-specific option. The supported options are the
same as those listed previously for the get command.

statement-id dr op

Clear the statement ID from memory and remove the command from the Tcl
interpr eter.

statement-id eval proc [args]

See the database-id eval command.

statement-id read arrayspec [args]

See the database-id read command.

410 Chapter 14 – Tclodbc

11 May 2006 10:52

CHAPTER 15

Hints and Tips for the Tcl Programmer
by Tom Poindexter

Tcl is simple compared with other computer languages. The Tcl(n) manual page,
in just two pages, describes the syntax and semantics of the language with 11 con-
cise rules. It’s useful to review this document.

Pr ogrammers familiar with other languages, especially shell languages and C, usu-
ally feel comfortable with Tcl quickly. Browsing programs written in Tcl helps new
pr ogrammers understand the language. What may not be obvious in reviewing Tcl
pr ograms is the best way to get your programming tasks accomplished within the
bounds of those 11 rules.

This chapter is designed to help new Tcl programmers better understand the Tcl
language, especially when written code does not perfor m as expected or produces
err ors. Much of the material in this chapter was selected from postings to the
Usenet newsgroup comp.lang.tcl. Beginning programmers often seek help with
coding problems, and suggested answers are given. These postings, along with the
author’s personal experiences, are presented here.

Web addr esses change over time. Use web search engines
such as Yahoo!, AltaVista, Infoseek, and HotBot to help
locate the Tcl FAQs if the links noted are out of date.

Other excellent sources of “how to” material available on the Web include these:

The Tcl Frequently Asked Questions (FAQ), by Larry Virden
This is an up-to-date, comprehensive list of frequently asked questions
and answers—well worth reading. See http://www.terafor m.com/˜lvirden/
tcl-faq/.

Hints and
Tips

411

11 May 2006 10:52

http://www.terafor

Tcl Usage FAQ, by Joe Moss
This covers specific Tcl language usage questions and answers. See
http://www.psg.com/˜joem/tcl/faq.html.

Tk Usage FAQ, by Jeffery Hobbs
This document compiles questions and answers specific to the Tk toolkit.
See http://www.cs.uor egon.edu/r esearch/tcl/faqs/tk/.

Tcl Refer ence Pages, by Cameron Laird
This is a collection of Tcl issues and explanations on a wide variety of
topics. See http://starbase.neosoft.com/˜clair d/comp.lang.tcl/tcl.html.

Tcl Frequently Made Mistakes
Camer on Laird has also compiled this list of frequent mistakes in Tcl. See
http://starbase.neosoft.com/˜clair d/comp.lang.tcl/fmm.html.

Tcl WWW Information Pages, by Mike Hopkirk
This is a comprehensive index to many Tcl resources, information, and
source code. See http://www.sco.com/T echnology/tcl/Tcl.html.

Scriptics Corporation Tcl Resource Center
This is the home of Tcl’s creator, John Ousterhout, and a focal point for
Tcl development. Current and alpha/beta releases of new versions are
available, as well as a comprehensive resource center. See
http://www.scriptics.com.

The Tcl Consortium
This is the home page of a nonprofit consortium to promote Tcl and con-
tains links to many Tcl resources. See http://www.tclconsortium.or g.

Neosoft, Inc. Archive
This is a large archive of Tcl contributed software, including most exten-
sions, applications, and utilities. See http://www.neosoft.com/tcl.

Usenet newsgroup comp.lang.tcl
Usenet has ongoing discussion forums about Tcl issues, announcements,
and online support. The comp.lang.tcl newsgr oup is unmoderated and
friendly; everyone is welcome to participate. Depending on your news
feed and location, you may have access to other Tcl newsgroups.

Think Commands, Not Statements
Tcl is a syntactically simple language. The first word is the name of the command
to be executed, and the remaining words are arguments to that command. Words
of a command are sequences of characters separated by whitespace, but quoting
can cause whitespace to be included in a word. Each of the lines in the following
example are complete words:

abc
941.32
Long's\ Peak
$result
"the quick brown fox jumped over the lazy dog"
"checking if $somevar exists: [info exists $somevar]"

412 Chapter 15 – Hints and Tips for the Tcl Programmer

11 May 2006 10:52

http://www.psg.com/%CB%9Cjoem/tcl/faq.html
http://www.cs.uor
http://starbase.neosoft.com/%CB%9Cclair
http://starbase.neosoft.com/%CB%9Cclair
http://www.sco.com/T
http://www.scriptics.com
http://www.tclconsortium.or
http://www.neosoft.com/tcl

[llength $list]
{set area [expr {$pi * pow($r,2)}]; puts "area = $area"}

Pr oblems occur when programmers do not pay enough attention to the differ ences
between Tcl and other languages with which they may be familiar. It is sometimes
a trap to try using idioms from other languages. Languages such as C have compil-
ers that understand syntax and generate machine code that provides execution
and instruction branching. Tcl has only commands and arguments; commands
enable program flow control.

A good example of this differ ence is the if command. If is a command whose
arguments are a conditional expression and blocks of Tcl code to be executed
depending on the result of the expression. Tcl sees this if command as if it were a
single list of three words:

{if} {$salary < 0} {puts "oops, salary is negative"}

It is quite common to write if commands as one would in C, breaking up the com-
mand over several lines, as in this example:

if {$salary < 0} {
puts "oops, salary is negative"

}

Some programmers prefer a differ ent for matting style, aligning the braces of the
true condition block as follows:

if {$salary < 0}
{

puts "oops, salary is negative"
}

When this code is run, Tcl reports an error with the if command, saying that no
script follows the expression. The reason is that the if command was terminated
by the newline character. The opening brace on the second line is treated as the
start of a new command list.

The use of braces in Tcl to quote strings includes all characters up to the matching
ending brace, including newline characters. The first if code fragment fully satis-
fies Tcl, since the opening brace to the true condition code block begins on the
same line; the last one fails because the true condition code block begins on a
new line, and newlines are used as command terminators in Tcl. The same opera-
tion applies to other commands typically written across multiple lines—for,
for each, while, switch, pr oc, and so forth. Don’t forget that if commands with else
clauses also need to be coded on the same logical line, as in this example:

set salary 60000.0
if {$salary < 0} {

puts "oops, salary is negative"
} else {

set monthlySalary [expr $salary / 12]
puts "Monthly salary: $monthlySalary"

}

Hints and
Tips

Think Commands, Not Statements 413

11 May 2006 10:52

This code produces the following output:

Monthly salary: 5000.0

Whitespace is also requir ed ar ound the words of a command list. The code frag-
ment in the following example fails because whitespace is missing between the
expr ession and the true condition code block:

if {$salary < 0}{
puts "oops, salary is negative"

}

Some readers will note that the earlier example can be fixed by quoting the new-
line character of the first line with a backslash, causing the logical command line
to be continued on the second line:

if {$salary < 0} \
{

puts "oops, salary is negative"
}

Although this is perfectly acceptable in Tcl, it adds noise characters to the code
without much benefit. The best solution is to adopt the conventional Tcl coding
style. In other cases, however, breaking up a long command with escaped newline
characters (i.e., end of line quoted with “\”) is useful to maintain readability in
your code. This is especially true if you use a text editor that wraps lines instead
of scrolling horizontally:

puts "At the sound of the tone, the time will be [clock format \
[clock seconds] -format %H:%M]"

This code produces the following output:

At the sound of the tone, the time will be 12:43

Comments Are Treated as Commands
Comments in Tcl can be another source of frustration if the Tcl syntax rules are
misinterpr eted. Comments look like those in shell-type languages, a line that
begins with a “#”. However, Tcl fully parses lines before deciding that they should
be executed (in the case of a command) or ignored (in the case of a comment).
You should think of a comment as a “do nothing” command, rather than as a com-
ment as in other languages. Comments may appear where Tcl expects a command
to appear.

Two common problems arise when comments are included in the arguments of a
command or are used to temporarily remove sections of code during testing or
development. The switch command illustrates the first problem. Switch arguments
include a test string followed by one of more pairs of patterns and Tcl code
blocks. The problem in the following example occurs when comments are
inserted among the pattern-code pairs:

switch $code {
decode red, green, blue color codes
r {set color red}

414 Chapter 15 – Hints and Tips for the Tcl Programmer

11 May 2006 10:52

g {set color green}
b {set color blue}
default {puts "oops, unknown color code"}

}

Since the switch command expects pairs of patterns and code blocks, the begin-
ning “#” of the comment line is interpreted to be a pattern, followed by a code
block (literally “decode”), another pattern (“r ed”) with the code block “green,” and
so on. Tcl will announce “extra switch pattern with no body” if there is an odd
number of words in the comment line, or perhaps yield an “invalid command
name” if there is an even number of words in the comment line and a pattern was
matched.

The solution is to either move comments out of the pattern-code pairs or include
comments in the code blocks, where command lines are expected:

decode red, green, blue color codes
switch $code {

r {
the color is red
set color red

}
g {set color green}
b {set color blue}
default {puts "oops, unknown color code"}

}

Again, note that Tcl does not have much structure. Braces serve to quote a com-
mand’s arguments, and nothing more. In the previous example, the comment for
the pattern “r” is acceptable because the comment is actually part of code to be
evaluated for the pattern and the comment character is found where a command is
expected.

The second common problem with comments occurs when they are used to com-
ment out parts of code. It is common during development to add extra code that is
alter nately commented and uncommented as development progr esses. This exam-
ple shows an extra if command that was used during testing but is now com-
mented out:

proc scaleByTen {x y} {
if {$x > 9 && $y > 0} {

if {$x > 9} {
set x [expr $x * 10]

}
return $x

}

puts [scaleByTen 4 1]
puts [scaleByTen 15 1]

The Tcl parser finds comments only after an entire command line is assembled.
The ending open brace at the end of the comment line causes every character to
be included until the matching close brace, consuming the entire body of the pro-
cedur e. Running this code fragment as part of a program will cause a “missing
close-brace” error. If you type this code into an interactive Tcl interpreter, Tcl will
keep prompting you to finish the command with a closing brace.

Hints and
Tips

Comments Are Treated as Commands 415

11 May 2006 10:52

The best way to avoid this problem is to ensure that comments look like full com-
mands themselves, accounting for all braces that are contained in the comment.

Sometimes a small comment on the same line as your Tcl code is desirable. Tcl
lets you add comments in this fashion; just terminate the preceding command with
a semicolon and add a comment. Semicolons are another way to separate com-
mands, in addition to newline characters:

set n {[0-9]} ;# regular expression to match a digit

Without the semicolon before the comment character, the set command will fail
because it would receive too many arguments. Tcl treats “#” as an ordinary charac-
ter if it is not at the beginning of a command.

A Symbolic Gesture
Much of Tcl’s strength as a programming languages lies in the manipulation of
strings and lists. Compare the following two methods for printing each element of
a list:

set cpu_types [list pentium sparc powerpc m88000 alpha mips hppa]

"C-like" method of iterative processing
for {set i 0} {$i < [llength $cpu_types]} {incr i} {

puts [lindex $cpu_types $i]
}

"The Tcl Way" - using string symbols
foreach cpu $cpu_types {

puts $cpu
}

The loop coded with for is similar to how a C program might be coded, iterating
over the list by the use of an integer index value. The second loop, coded with
for each, is mor e natural for Tcl. The loop coded with for each contains over 50%
less characters, contributing to greater readability and less code to maintain. In
addition, the second loop executes much more quickly.

As a general rule, if you find that your code contains many for commands and
integer indexing, check whether you may be able to reimplement your algorithms
with lists and for each.

Lists Are Str ings, but Not All Strings Are Lists
Tcl’s only data type is the string, and each command can interpret strings in spe-
cial ways.* A list is a special interpretation of a string—a list of words separated by
whitespace. Lists are a very powerful feature of Tcl: they are easy to visualize and

* Beginning with Tcl 8.0, data types also have an internal repr esentation as string, integer, float, and list,
but to the programmer all data types are still strings.

416 Chapter 15 – Hints and Tips for the Tcl Programmer

11 May 2006 10:52

can be formed from simple strings. This example creates the variable name from a
string and then causes the string to be interpreted as a list with lindex :

set names "bob carol ted alice"
puts [lindex $names 2]

This code produces the following output:

ted

Tr ouble begins when lists are assembled from arbitrary strings that may contain
special Tcl characters. For example, suppose you are writing a program to count
the number of words in each line of a file. You notice that Tcl has an llength com-
mand, which retur ns the number of words in a list, and decide to use it:

set fd [open $somefile]
gets $fd aLine
while {! [eof $fd]} {

puts "line has [llength $aLine] words"
gets $fd aLine

}
close $fd

You start running your program, and all is well until you read a file that contains:

Tcl has several quoting characters, which
include { to mark the beginning of a fully
quoted string, up to a matching }.

Your program then fails with “unmatched open brace in list.” The opening brace
in the second line is interpreted as the beginning of a quoted string, possibly a list
itself.

The key is to not use list commands on arbitrary strings, and use only list com-
mands to build lists. Tcl even includes a list command that builds properly quoted
lists from various strings. The first example in this section can be built as follows:

set names [list bob carol ted alice]

The list command is also very useful for building Tcl commands to be executed at
a later time, helping to ensure that a command contains the expected number of
arguments (see “Common Tk Errors,” later in this chapter, for an example).

To add to an existing list, use lappend. Like list, lappend ensur es that strings are
made into proper list elements as they are appended:

lappend names arnold beth
set newList [lreplace $names 2 3 george susan]
puts [lsort $newList]

This code produces the following output:

arnold beth bob carol george susan

Lists can be nested. Any list element that is itself a list is properly handled as one
element during list processing on the outermost level. Extended Tcl (see Chapter
10, TclX) adds a data structure known as a keyed list, which mimics structures in
C. A keyed list is a list made up of pairs of key identifiers followed by data. Ordi-

Hints and
Tips

Lists Are Strings, but Not All Strings Are Lists 417

11 May 2006 10:52

nary Tcl list commands can pick apart keyed lists, but the keyed list commands in
TclX make the job much easier and more efficient.

Strings are best manipulated with the Tcl commands string, regexp, regsub, scan,
for mat, append, and subst. The split command can be used to make a string into a
list while properly quoting any troublesome list elements.

Indirect References
A power ful pr ogramming construct is the use of common procedur es that operate
on a data structure of a particular type. In C, you might have a set of procedur es
to manipulate a struct; procedur es ar e coded to accept pointers to the actual
struct, so you pass a pointer to any number of structures to the procedur es.

Tcl doesn’t have a struct data type, but arrays indexed by elements are a close
appr oximation. For example, you might have data on states of the United States
and a procedur e to calculate population density:

set mo(name) Missouri
set mo(pop) 5402058.0
set mo(area) 68945.0

set co(name) Colorado
set co(pop) 3892644.0
set co(area) 103598.0

How then to refer ence a specific state array based on the name of one of the
arrays? The first instinct is to try to use two $ characters to deference the variable:

foreach aState [list mo co] {
puts "State Name: $$aState(name)"

}

Tcl’s parsing rules state that variable substitution is perfor med exactly once for
each command, so the command fails, leaving an invalid variable name
$mo(name), rather than mo(name).

The first way to deal with this situation is using a nested set command. Set without
a third argument retur ns the current value of the variable. The variable $aState
is first expanded by Tcl, leaving the correct variable name mo(name) for set to
retur n its value:

set aState mo
puts "State Name: [set ${aState}(name)]"

This code produces the following output:

State Name: Missouri

Note that we must also use braces around aState; otherwise, the Tcl parser will
think we are trying to refer ence an array element aState(name), which doesn’t
exist.

Tcl’s upvar command is another answer to coding indirect variable refer ences.
Upvar allows one to refer ence a variable or array by some other name. Using a
first argument of 0 allows variables in the current scope to be accessed.

418 Chapter 15 – Hints and Tips for the Tcl Programmer

11 May 2006 10:52

foreach state_array_name [list mo co] {
upvar 0 $state_array_name aState
set p [expr $aState(pop) / $aState(area)]
puts "$aState(name) has a population density of $p"

}

This code produces the following output:

Missouri has a population density of 78.3531510624
Colorado has a population density of 37.5745091604

Upvar is also used when passing arrays to procedur es, in which the default proce-
dur e scope frame (1) is used:

proc calc_pop_density {state_array_name} {
upvar $state_array_name aState
set p [expr $aState(pop) / $aState(area)]
puts "$aState(name) has a population density of $p"

}
calc_pop_density mo

This code produces the following output:

Missouri has a population density of 78.3531510624

Sometimes the solution is to rethink your particular implementation. Lists can be
used in many places where arrays can be used, and Extended Tcl’s keyed list com-
mands also provide struct-like data types. Multidimensional arrays can also be
simulated in Tcl.

Executing Other Prog rams
A common complaint from beginners trying to execute other programs from Tcl is
“It works in the shell but not in Tcl.” Let’s suppose you write a small Bourne shell
script to strip the first word of each line and retur n a count of unique words:

$ awk '{print $1}' somefile | sort -u | wc -l

This works fine when you execute it on your terminal. You then cut and paste the
line into your Tcl program, setting a variable to the number of unique words:

set numWords [exec awk '{print $1}' somefile | sort -u | wc -l]

Tcl will report an error “can’t read ’1’: no such variable.” You might try to fix that
err or by quoting $1 as \$1, but that causes another error message, “awk: syntax
err or near line 1.” You ask, “What gives? It worked as a shell command but fails
under Tcl!”

Tcl’s exec command executes other programs directly without the use of the shell.
Tcl’s exec goes about collecting arguments, building pipelines, and invoking
another program, all according to Tcl syntax rules. A single quote character (') has
no special significance, unlike in most user shells. Tcl applies its parsing rules and
br eaks up the command pipeline into Tcl words. Thus, the awk pr ogram in awk’s
first argument is passed as:

'{print

Hints and
Tips

Executing Other Programs 419

11 May 2006 10:52

and not as the desired string:

{print $1}

as it is passed with a command-line user shell (Bourne shell, C shell, Korn shell,
Bash, etc.).

The simple fix is to use Tcl quoting instead of shell quoting! Replace the single
quotes (') with Tcl braces:

set numWords [exec awk {{print $1}} somefile | sort -u | wc -l]

Since Tcl strips off one layer of braces during parsing, the first argument to awk is
now a Tcl quoted string whose value is the correct awk pr ogram.

Another differ ence between Tcl’s exec and typical shell processing is dealing with
filename expansion. Most shells expand the wildcard characters * , ?, and [],
matching filenames. Each matched filename becomes a separate argument to the
pr ogram being executed. Tcl’s exec does not perfor m filename matching directly,
but you can use the glob command to match filenames. The only trick to this
method is that most programs still need to have each filename as a separate argu-
ment. Glob command expansion retur ns a single wor d, the list of filenames
matched, as if the resulting value had been enclosed in quotes.

For example, trying to print all C source files might be attempted as:

set printRequest [exec lp [glob *.c]]

but this fails, complaining “file not found.” The solution is to use the eval com-
mand, which adds one more round of Tcl command-line expansion. This effec-
tively “unrolls” the filename list into separate word arguments:

set printRequest [eval exec lp [glob *.c]]

When Is a Number Not a Number?
Tcl’s primary data type is the string, but commands are free to interpr et numeric
strings as integers and floating-point values. Expr and incr ar e such commands;
the evaluation mechanism in expr is also used for conditional testing in if, while,
and for commands.

Tcl has a few rules for interpreting numbers, some of which are obvious. A string
of digits is a decimal integer; with a decimal point or scientific notation, it’s a float-
ing-point value. The two often overlooked number specifications are octal (base 8)
and hexadecimal (base 16).

Tcl interpr ets a sequence of digits as an octal integer if it begins with a leading “0”.
Numbers that begin with a leading “0x” are interpr eted as base 16. Thus, “012” is
decimal 10 and “0x100” is decimal 256. Sometimes hexadecimal values are easy to
spot, since they contain a non-numeric character. Octal numbers are harder to rec-
ognize, since the string is composed of all numeric characters.

Unexpected results often arise when octal numbers are used inadvertently in
expr essions. To illustrate, assume you are writing a procedur e to calculate a future
date. Tcl’s clock command can retur n a date string in the same format as the Unix

420 Chapter 15 – Hints and Tips for the Tcl Programmer

11 May 2006 10:52

date pr ogram, and you begin by parsing out the day number of the month (we
will ignore month and year rollover issues, as well as better possible implementa-
tions, for now), as in the following code:

set currentTime [clock seconds]
puts [clock format $currentTime]

pr oduces the following output:

Mon Aug 03 10:05:50 1998

followed by:

set timedate [clock format $currentTime]
set day [lindex [split $timedate] 2]
puts $day

which outputs:

03

and finally:

proc one_week {timedate} {
return [expr [lindex [split $timedate] 2] + 7]

}

This procedur e runs fine, but breaks a few days later with the message “syntax
err or in expression ‘08 + 7’” while executing the one_week pr ocedure. Of course,
“08” is an invalid octal repr esentation (decimal 8 is 10 octal). Two solutions to this
pr oblem ar e to strip off the leading zero using string trimleft or scan commands:

set day [lindex [split "Sat Aug 08 10:05:50 1998"] 2]
set dec_day1 [string trimleft $day 0]
scan $day %d dec_day2
puts "$day $dec_day1 $dec_day2"

This code produces the following output:

08 8 8

Quoting and More Quoting
Tcl’s quoting characters allow special interpretation of the characters they quote.
Ther e ar e also quoting characters for regular expressions used in the regexp and
regsub commands. Most troublesome are the quoting characters that are special to
both Tcl and regular expressions.

Regular expression processing with regexp and regsub
makes short work of parsing strings. However, regular
expr essions can be daunting to read and construct. Master-
ing Regular Expressions, by Jef frey E.F. Friedl (O’Reilly &
Associates) explains regular expressions in detail, including
one chapter devoted to Tcl regular expressions.

Hints and
Tips

Quoting and More Quoting 421

11 May 2006 10:52

http://www.oreilly.com
http://oreilly.com/catalog/9780596528126/index.html
http://oreilly.com/catalog/9780596528126/index.html

Car e must be taken when constructing regular expressions, keeping in mind that
unquoted regular expression strings also make their normal trip through Tcl’s
parser. Since the backslash (“\”) character quotes both Tcl and regular expression
characters, it must be doubled for use in regular expressions. In order to match a
single backslash character in a regular expression, four backslash characters are
requir ed.

The following table lists examples of matching certain characters, the regular
expr ession, and the Tcl coding of regexp.

Character to
Match

Regular
Expression

Tcl with Unquoted
Ar gument

Tcl with Quoted
Ar gument

Single character \ \\ regexp \\\\ $s regexp {\\} $s
Single character [\[regexp \\\[$s regexp {\[} $s
Single character $ \$ regexp \\\$ $s regexp {\$} $s

Additional quoting gymnastics occur when a Tcl variable is included in the regular
expr ession. It’s often useful to build up regular expressions in Tcl variables, then
use the final variable as part of the regexp or regsub command:

find phone numbers 888-555-1212, 888.555.1212, (888) 555-1212
set n {[0-9]} ;# re to match a single digit
set n3 nn$n ;# a group of three digits
set n4 nnnn ;# and four digits
set phone1 "$n3-$n3-$n4"
set phone2 "$n3\\.$n3\\.$n4"
set phone3 "\\($n3\\) ?$n3-$n4"
set allPhones "$phone1|$phone2|$phone3"
regexp $allPhones $teststring

The key to remember is that each command makes one trip through Tcl’s variable
and command expansion prior to the command’s execution. In the case of regexp
and regsub, another round of command-specific string interpretation is perfor med.

Wr ite Once, Run Where?
Tcl is a multiplatfor m language, running on various Unix systems, Microsoft Win-
dows NT/95/98, and Apple Macintosh. Tcl provides a great deal of machine and
operating system independence. If writing portable software is your goal, there are
a few areas that still need special attention.

Filenames and Pathnames

Filenames and pathnames differ among Unix, Windows, and Macintosh. Fortu-
nately, Tcl is happy to work with Unix-style filenames internally. The file com-
mand provides help for dealing with filenames when you need to convert
between the canonical form and forms requir ed by specific operating systems. You
will likely need a native filename if you exec pr ograms that requir e filenames.

422 Chapter 15 – Hints and Tips for the Tcl Programmer

11 May 2006 10:52

On Unix, the file command takes two or more file pathname components and
joins them with the Tcl canonical path delimiter “/”:

file join /home tpoindex src tcl style.tcl

This code produces the following output:

/home/tpoindex/src/tcl/style.tcl

On Windows, the file command takes a pathname in canonical network form and
retur ns the native pathname:

file nativename "/program files/tcl/bin/wish80.exe"

This code produces the following output:

\program files\tcl\bin\wish.exe

The file command has many other subcommands to delete, copy, and rename files
in an operating system–independent fashion.

End of Line Conventions

Unix, Windows, and Macintosh each have differ ent end of line conventions for
text files. In the default state, Tcl is very forgiving in reading files created on a dif-
fer ent platfor m. When writing files to be used on a differ ent system, you should
configur e the output channel by using the fconfigur e command.

For example, if you are creating a file on Unix to be used primarily on a Windows
system, use the following code:

set fd [open outfile w]
fconfigure $fd -translation crlf
puts $fd "hello windows!"

Deter mining Platfor m Specifics

Tcl includes a preset array of platform-specific information named
$tcl_platform. Elements are shown in the following table.

$tcl_platform(machine) Name of the cpu of the machine
$tcl_platform(byteOrder) Machine word ordering, “bigEndian” or

“littleEndian”
$tcl_platform(os) Name of the operating system
$tcl_platform(osVersion) Version of the operating system
$tcl_platform(platform) Platfor m name: “unix”, “windows”, or

“macintosh”

This information can be useful in deciding at runtime how to print a file, execute
another program, and so forth.

Hints and
Tips

Write Once, Run Where? 423

11 May 2006 10:52

Scanning and For matting Binar y Data

Reading and writing binary data is always system dependent, especially native
integer and floating-point values. The binary command provides character specifi-
cations to scan and format big- and little-endian 16- and 32-bit integers, machine-
native single- and double-precision floating-point values, and other formats. The
binary command uses format specifiers to determine what format data will be
packed into, such as S to denote a 16-bit integer in big-endian* order. The format
s denotes a 16-bit integer in little-endian order. See the documentation for a com-
plete list of specifiers. Here is a sample use of binary :

set binaryMsg [binary format SI 3 129] ;# 16 & 32-bit big endian
ints

If you are scanning or formatting binary data for use by other programs on the
same machine type, consult the endian order information in tcl_platform to
choose the correct binary specification:

switch $tcl_platform(byteOrder) {
littleEndian { set int32 i ; set int16 s }
bigEndian { set int32 I ; set int16 S }

}
binary scan $binaryMsg $int16$int32 messageNum messageCode

Note that the binary command does not have a specification character to scan
unsigned integers. Signed integers can be converted to unsigned quantities with a
simple expression. Consult the binary command manpages for more infor mation.

convert to 16 bit unsigned value
set messageNum [expr ($messageCode + 0x10000) % 0x10000]

Common Tk Errors
The following problems are frequently reported by users writing Tcl/Tk programs
and are easy to correct with a little guidance. This section is not meant to be a
complete guide to writing Tcl/Tk, but serves to address a few common situations.

Global Scope for -var iable and -textvar iable

Many Tk widgets allow you to tie a widget to a Tcl variable so that changes to
either the widget or variable are mirr ored in the other. This handy feature makes
widget data instantly available in Tcl code, without the need to access the widget
command:

label .tot_rev -text 0 -textvariable totalRevenue
set totalRevenue 263124 ;# updates widget also

The most common problem when using -variable and -textvariable options is for-
getting that the variables the options name are refer enced as global variables. If

* Endian refers to how a particular CPU actually stores integer values in memory. Big-endian processors
stor e integers with the most significant bytes first; little-endian processors store integers with the least sig-
nificant bytes first.

424 Chapter 15 – Hints and Tips for the Tcl Programmer

11 May 2006 10:52

you create widgets inside of a procedur e and then access the widget’s variable, be
sur e to define the variable as global.

proc mk_totRev {} {
label .tot_rev -text 0 -textvariable totalRevenue
pack .tot_rev
global totalRevenue
set totalRevenue 23128

}

The -command String Must Be a Tcl List

Tk widgets (particularly buttons) often let you specify code to be run when the
widget is selected. This code is known as a callback. You should put the code in
braces, not quotes, to prevent variables from being interpreted until the user
selects the widget. This is illustrated in the following example:

set count 0
button .b -text "Increment" -command {puts $count; incr count}
pack .b

Callback scripts can be of any length, but long scripts tend to get unwieldy when
included in the -command argument. It is often easier to define your callback
script as a procedur e and call that procedur e in the callback:

proc CallBack {} {
global count
puts "Current value is: $count"
incr count

}

set count 0
button .b -text "Increment" -command CallBack
pack .b

Use update to Refresh Widgets and for Event
Processing

A Tk application runs as an event-driven program. When your program starts, your
code builds widgets and defines callbacks until Tcl reaches the “end” of your
code. At this point, Tcl has entered an event loop in which user events are pro-
cessed, calling the callback scripts that you defined as -command options for wid-
gets and bind commands. The interface is active during event processing, and
updates screen widgets accordingly.

If any of your callback scripts perfor m a significant amount of processing, the
inter face will appear to be frozen while scripts are executing. One way to prevent
a frozen interface is to periodically execute the update command, which allows
events to be processed. If your intent is to allow widgets to be updated without
accepting new user events, use the idletasks option. In the following example, the
update command allows the label widget to update the screen. Without update,
the program will appear frozen.

Hints and
Tips

Common Tk Errors 425

11 May 2006 10:52

label .l -text ""
proc count {} {

for {set c 1; .l configure -text 0} {$c <= 5} {incr c} {
update
after 1000
.l configure -text $c

}
}
button .b -text "count to five" -command count
pack .l .b

If your program reads and writes to sockets, or via pipes to another program, con-
sider using file events to keep your interface active. Reading from any channel will
cause the Tcl interpreter to wait until data is ready before retur ning. Tcl’s fileevent
command provides callback processing for files and sockets.

Use the Source, Luke!
It has been said many times before—don’t reinvent the wheel. This is also true for
Tcl. While Tcl was once called “A surprisingly well-kept secret,”* it has always had
a large group of enthusiasts writing and contributing software in the open source
spirit. Many high-quality, freely available extensions and Tcl programs are avail-
able through the Internet Tcl Archive, currently located at Neosoft, Inc.

BLT, Tix, and [incr Widgets] provide many additional Tk widgets, including those
to support charts, panned frames, tabbed notebook frames, and combo
entry/selections. Sybtcl, Oratcl, and Tclodbc support commercial relational
databases. Extended Tcl (TclX) provides access to many Unix system programming
inter faces and supports additional commands to manipulate lists, perfor m file scan-
ning, and provide a Tcl help facility. Expect automates interactions with other pro-
grams, and [incr Tcl] adds object-oriented programming features to Tcl.

Many applications written in Tcl/Tk are also available: mail user agents, HTML
br owsers and editors, calendar programs, and a selection of games are all available
in source code for your use and review. Other sources for Tcl software include the
Tcl/Tk CD-ROM available from the Tcl Consortium.

* Attributed to Brian Kernighan, 1997 Tcl Conference, Boston, MA.

426 Chapter 15 – Hints and Tips for the Tcl Programmer

11 May 2006 10:52

APPENDIX

Tc l Resour ces

You will find Tcl-r elated infor mation at literally hundreds of sites on the Internet.
This section lists a few of the major resources as well as some of the currently
available Tcl books.

Web Sites
Her e ar e some of the major Tcl-r elated web sites on the Internet. At these sites
you’ll find the Tcl/Tk software distribution, language extensions, applications, and
documentation (including several excellent FAQs). Many of these sites also provide
FTP access to their software archives.

General

http://www.scriptics.com
Scriptics site (John Ousterhout’s company)

http://www.sunscript.com
The Tcl Project at Sun Microsystems Laboratories

http://www.tclconsortium.or g
The Tcl/Tk Consortium

http://www.neosoft.com/tcl
The Neosoft Archive of Tcl/Tk Contributed Software

http://www.tcltk.com
WebNet Technologies Tcl/Tk site

427

11 May 2006 11:01

http://www.scriptics.com
http://www.sunscript.com
http://www.tclconsortium.or
http://www.neosoft.com/tcl
http://www.tcltk.com

Tc l/Tk Extensions

http://www.tcltk.com/blt BLT home page
http://expect.nist.gov Expect home page
http://www.tcltk.com/itcl [incr Tcl] home page
http://www.tcltk.com/itk [incr Tk] home page
http://www.nyx.net/˜tpoindex Oratcl home page
http://www.nyx.net/˜tpoindex Sybtcl home page
http://www.megalos.fi/˜r nur mi Tclodbc home page
http://www.neosoft.com/TclX TclX home page
http://www.xpi.com/tix Tix home page

Usenet Newsg roups
Usenet is a good resource for keeping informed of Tcl-r elated announcements and
for finding solutions to your problems from other Tcl users.

comp.lang.tcl.announce
Tcl-r elated announcements

comp.lang.tcl
General Tcl discussions

Books
Listed here are some published books on Tcl:

Ef fective Tcl/Tk Programming, by Michael McLennan and Mark Harrison (Addison-
Wesley, 1997).

Exploring Expect, by Don Libes (O’Reilly & Associates, 1994).

Graphical Applications with Tcl and Tk, by Eric Foster Johnson (M&T Books,
1997).

Practical Programming in Tcl and Tk, by Brent Welch (Prentice Hall, 1997).

Tcl and the Tk Toolkit, by John Ousterhout (Addison-Wesley, 1994).

Tcl/Tk for Dummies, by Tim Webster and Alex Francis (IDG Books, 1997).

Tcl/Tk Tools, edited by Mark Harrison (O’Reilly & Associates, 1997).

Mailing Lists
Most of the popular Tcl extensions have electronic mailing lists set up, which are
used to send out announcements of new software releases and to allow users and
developers to share infor mation. The specific details of how to join the lists are
usually spelled out on the home page for the language extension.

428 Appendix – Tcl Resources

11 May 2006 11:01

http://www.tcltk.com/blt
http://expect.nist.gov
http://www.tcltk.com/itcl
http://www.tcltk.com/itk
http://www.nyx.net/%CB%9Ctpoindex
http://www.nyx.net/%CB%9Ctpoindex
http://www.megalos.fi/%CB%9Cr
http://www.neosoft.com/TclX
http://www.xpi.com/tix
http://oreilly.com/catalog/9781565920903/index.html
http://www.oreilly.com
http://www.oreilly.com

Index

Symbols
\ (backslash), 3-4, 422
{ } (curly braces), 3, 413, 417
$ (dollar sign), 3
(pound sign), 3-4, 414
" (quotation marks), 3
; (semicolon), 4, 416
[] (squar e brackets), xii, 3

A
abs command (TclX), 285
absolute values, 285
acos command (TclX), 286
after command (core Tcl), 16
alar m command (TclX), 286
aliases for variables, 46
anchor position, 53
append command (core Tcl), 17
apr opos command (TclX), 286
arc canvas items, 65-66
arc sines, 286
arc tangents, 286
arccosines, 286
arguments, 21-22, 46, 306
array command (core Tcl), 17
array variables, 17
arrays, 13, 418

accessing vectors as, 383
asin command (TclX), 286
atan command (TclX), 286

atan2 command (TclX), 286
auto_commands command (TclX), 286
auto_execok command (core Tcl), 18
auto_load command (core Tcl), 18
auto_load_file command (TclX), 287
auto_mkindex command (core Tcl), 18
auto_package command (TclX), 287
auto_r eset command (core Tcl), 18
automatic commit of SQL queries, 392

B
backgr ound pr ocessing

err ors during, 18
backslash (\), 3-4, 422

substitutions, 6-7, 44
balloon messages, 209
barchart command (BLT), 316, 325-350
base 10 logarithm, 305
base containers, 237
beep command (BLT), 317
bell command (Tk), 101
bgerr or command (core Tcl), 18
bgexec command (BLT), 317
binary command (core Tcl), 18, 424
binary data, 424
bind command (Tk), 101-106
bindtags command (Tk), 101, 105-106
bitmap canvas items, 66
bitmap command (BLT), 318

429

11 May 2006 10:58

bitmaps, 53, 116
bitmap markers, 347
functions related to, 160

BLT
commands, 315-387
Toolkit, 314
variables, 315, 363

bltdebug command (BLT), 319
bltwish program, 314
body command ([incr Tcl]), 196
Boolean operators, 8
bounding sizes, 373
braces, curly ({ }), 3
brackets, square ([]), xii, 3
br eak command (core Tcl), 19
bsearch command (TclX), 287
buf fers, 321

setting size of, 187
buildpackageindex command (TclX),

287
busy command (BLT), 319
button command (Tk), 56-57
button widgets, 50, 210, 241, 244, 425

C
C language interface, 137, 156
cache, discarding, 18
callbacks, 425
canvas command (Tk), 57-71
canvas items, 58-59, 61

configuring, 62
functions related to, 162

canvas methods, 59
canvas widgets, 50, 59-71
case command (core Tcl), 19
catch command (core Tcl), 19
catclose command (TclX), 287
catgets command (TclX), 288
catopen command (TclX), 288
ccollate command (TclX), 288
cconcat command (TclX), 288
cd command (core Tcl), 20
ceil command (TclX), 288
cequal command (TclX), 288
cget method (Tk), 53
channel identifiers, 11
chart widgets, 325, 367
checkboxes, 241
checkbutton command (Tk), 71-72

checkbutton widgets, 50
checklist widgets, 210
chgrp command (TclX), 289
child processes, 313
chmod command (TclX), 289
chown command (TclX), 289
chr oot command (TclX), 289
cindex command (TclX), 289
class command ([incr Tcl]), 197-198
classes, 193-194, 197, 199, 269,

274-278
types of, 292

className command ([incr Tcl]), 195
clength command (TclX), 289
clipboard command (Tk), 106
clock command (core Tcl), 20
close command

Expect, 181
Tcl, 20

cmdtrace command (TclX), 290
code command ([incr Tcl]), 198
color, 53-54, 56

functions related to, 165
column options, 372
combo box widgets, 212-214
command history, 14, 28
command strings, 312
command-line options

Expect, 175
expectk, 176
tclsh, 5
Tk, 49-50

commandloop command (TclX), 290
commands

BLT, 315-387
command history, 14, 28
contexts for, 36
definitions of, loading, 18
ensemble commands, 199
Expect, 179-192
[incr Tcl], 194-200
[incr Tk], 204
loop commands, 19, 21
Oratcl, 391-395
renaming, 41
scheduling execution of, 16
substitution, 44
Sybtcl, 399-402
Tclodbc, 404-410
TclX, 282-313

430 Index

11 May 2006 10:58

commands (continued)
Tix, 206-207, 209-248, 251-280
Tk, 50-52, 56-136

comments, 414-416
commit, automatic, of SQL queries,

392
compar e strings, 288
compound image type, 278
concat command (core Tcl), 21
concatenate strings, 288
conditional expressions, 29
configbody command ([incr Tcl]), 198
configuration

codes, changing, 198
options for menu widgets, 82

configur e method (Tk), 52
constants

Tcl, 137
Tk, 156

container command (BLT), 320
containers, base, 237
continue command (core Tcl), 21
contr ol statements, Tcl commands for,

11
contr ol widgets, 214-217
convert_lib command (TclX), 291
cos command (TclX), 291
cosh command (TclX), 291
cosines, 291
CPU usage, 312
crange command (TclX), 291
csubstr command (TclX), 291
ctoken command (TclX), 292
ctype command (TclX), 292
curly braces ({ }), 3, 413, 417
cursors, 54, 58, 92

functions related to, 165
SQL, 392, 394

cutbuf fer command (BLT), 321

D
data

binary, 424
hierarchical, displaying, 245, 256
manipulating with Tclodbc, 404

data types
Tcl, 4, 138
Tk, 157-158

database command (Tclodbc), 405

database-id command (Tclodbc), 406
databases, 388

connecting to and configuring with
Tclodbc, 404

ODBC, 403
Oracle, 388
setting up servers with Sybtcl, 399
Sybase, 396

debug command (Expect), 181
debugging, TclX commands for, 282
delete command ([incr Tcl]), 198
descendants, 269
destr oy command (Tk), 106
destr oying objects, 270
dialog widgets, 217, 219, 245
dialogs, Tk commands for, 51
Diekhans, Mark, 281
dir ectory listings, 218-221, 293

searching, 308-309
dir ectory names, 20, 223
dir ectory stacks, 307
dirs command (TclX), 293
disable all, Tix command for, 270
disconnect command (Expect), 181
display items, 248-250, 270
dollar sign ($), 3
double command (TclX), 293
drag&dr op command (BLT), 321-325
dup command (TclX), 293

E
echo command (TclX), 293
edpr ocs command (TclX), 293
ellipses (. . .), xii
enable all, Tix command for, 270
end-of-file conditions, 21
end-of-line conventions, 423
ensemble command ([incr Tcl]), 199
entry boxes, 226
entry command (Tk), 72-74
envir onment variables

BLT, 315
Expect, 177
Oratcl, 389
Sybtcl, 397
Tcl, 5
Tk, 50

eof command (core Tcl), 21
err or command (core Tcl), 21

Index 431

11 May 2006 10:58

err ors, 189
during background processing, 18
functions related to, 165
handling, 311
Oratcl, 390
Tcl, 21
Tk, 424-426

eval command (core Tcl), 21, 420
event command (Tk), 107-109
events, 425

bind command (Tk), 101-106
canvas widgets, 59-60
event handlers, 26, 45-46, 306
functions related to, 161
text widgets, 92, 96
Tk commands for, 51, 107-109

exec command (core Tcl), 21, 419
execl command (TclX), 294
exit command

Expect, 181
Tcl, 22

exp_ commands (Expect), 182
exp command (TclX), 294
Expect, 174-192

command-line options, 175
commands, 179-192
variables, 177-179

expect_ commands, 184
expect command (Expect), 183
expectk, 174-192
expr command (core Tcl), 7-9, 22
expr command (TclX), 283
expr essions, 46, 307

evaluating, 293, 302, 308
Extended Tcl, 396

F
FAQ, 411, 427
fblocked command (core Tcl), 22
fcntl command (TclX), 294
fconfigur e command (core Tcl), 22,

423
fcopy command (core Tcl), 23
file command (core Tcl), 23-26, 423
file scan contexts, 308-309

fileevent command (core Tcl), 26, 425
filenames, 423

filename expansion, 420
selecting, 223

files, 42
descriptors, 309
file creation mode mask, 312
file identifiers, 293
listings of, 28, 221-222, 308
loading, 287
locking/unlocking, 295, 298
manipulating, Tcl commands for,

12
reading, 308
searching, 287
status of, retur ning, 296
truncating, 298
writing strings to, 313

find command ([incr Tcl]), 199
floating-point values, 8
flock command (TclX), 295
floor command (TclX), 295
flush command (core Tcl), 26
fmod command (TclX), 295
focus, 51, 56, 109-110

keyboard, 61
focus command (Tk), 51, 109-110
font command (Tk), 110-112
fonts, 54
for command (core Tcl), 27, 416
for_array_keys command (TclX), 296
for command (core Tcl), 19, 21
for_file command (TclX), 296
for_r ecursive_glob command (TclX),

296
for each command (core Tcl), 19, 21,

27, 416
fork command

Expect, 185
TclX, 296

for mat command (core Tcl), 27
frame command (Tk), 74-75
frame widgets, 50, 227, 237, 240
fr equently asked questions, 411
fr equently made mistakes, 412
fstat command (TclX), 296
ftruncate command (TclX), 298

432 Index

11 May 2006 10:58

functions
Tcl, 140-155
Tk, 158-173

funlock command (TclX), 298

G
geometry management, 113, 271

functions related to, 164
Tk commands for, 51

get Boolean, Tix command for, 273
get integer, Tix command for, 273
gets command (core Tcl), 28
glob command (core Tcl), 11, 28, 420
global command (core Tcl), 28
globbing, 10-11
grab command (Tk), 112
grab stack, 274
graph command (BLT), 325-350
graphics, BLT commands for, 315
grid command (Tk), 113-115
grid widgets, 237, 251
gr oup ID, setting, 289

H
hash mark (#), 3
hash tables, 144
help command (TclX), 298
help system, 286, 298
helpcd command (TclX), 298
helppwd command (TclX), 299
hierbox command (BLT), 350-361
hierbox widget, 352
hints for the Tcl programmer, 411-426
history command (core Tcl), 28
history, Tcl commands for, 14, 28
hlist widgets, 211, 218, 229, 238, 256
host_info command (TclX), 299
hosts, network, 299
Howlett, George A., 314
htext command (BLT), 361-367
hyperbolic

cosines, 291
sines, 310
tangents, 311

hypertext widget windows, 361

hypot command (TclX), 299
hypotenuse functions, 299

I
id command (TclX), 299
idletasks option, 425
if command (core Tcl), 29, 413
image canvas items, 67
image command

Tix, 278-280
Tk, 116-119

image embedding, 94
image items (Tix), 249
image markers, 347
imagetext items (Tix), 249
incr command (core Tcl), 30
[incr Tcl], 193

commands, 194-200
variables, 194

[incr Tk], 201, 203
methods, 202
variables, 202-203

index files, converting to package
libraries, 291

indices, 59, 73, 90, 94, 289
entry, 352
tab, 375
text, 362

info command (core Tcl), 30
infox command (TclX), 301
initialization, functions related to, 165
input widgets, 262
input/output, 22-23, 26, 39, 41, 45,

146, 182
channel identifiers, 11, 20
Tcl commands for, 14

int command (TclX), 302
inter_r eturn command (Expect), 185
interact command (Expect), 185-186
interp command (core Tcl), 31-33
interpr eter command (Expect), 186
interpr eters, 49, 137, 141, 198

infor mation about, 30
managing, 31
Tcl commands for, 15

intersect command (TclX), 302

Index 433

11 May 2006 10:58

intersect3 command (TclX), 302
I/O, 22-23, 26, 39, 41, 45, 146, 182

channel identifiers, 11, 20
Tcl commands for, 14

itcl_class command ([incr Tcl]), 199
itcl_info command ([incr Tcl]), 200

J
join command (core Tcl), 33

K
keyboard focus, 61
keyed lists, 302-303, 417

TclX commands for, 284, 418
keyldel command (TclX), 302
keylget command (TclX), 303
keylkeys command (TclX), 303
keylset command (TclX), 303
kill command (TclX), 303

L
label command (Tk), 75
labeled mega-widgets, 228
Lam, Ioi, 205
lappend command (core Tcl), 34, 417
lassign command (TclX), 303
lcontain command (TclX), 304
Lehenbauer, Karl, 281
lempty command (TclX), 304
lgets command (TclX), 304
Libes, Don, 1, 174
libraries, 6, 285, 304

package libraries, 287
lindex command (core Tcl), 34
line breaks, 90
line canvas items, 67
line markers, 347
link command (TclX), 304
links, 304
linsert command (core Tcl), 34
list command (core Tcl), 34, 417
listbox command (Tk), 76-78
listbox widgets, 51, 238

selection modes, 76, 78
lists, 4, 33-35, 302, 304-306, 416-418

assigning elements of to variables,
303

scr ollable, 238-239

Tcl commands for, 13
TclX commands for, 284

llength command (core Tcl), 34
lmatch command (TclX), 304
load command (core Tcl), 34
loading definitions for commands, 18
loadlibindex command (TclX), 304
local command ([incr Tcl]), 200
locking/unlocking files, 295, 298
log command (TclX), 305
log_file command (Expect), 187
log_user command (Expect), 187
log10 command (TclX), 305
loop command (TclX), 305
loops, 27, 46

command loops, 290
loop commands, 19, 21, 305

lower command (Tk), 119
lrange command (core Tcl), 34
lr eplace command (core Tcl), 35
lr mdups command (TclX), 305
lsearch command (core Tcl), 35
lsort command (core Tcl), 35
lvarcat command (TclX), 305
lvarpop command (TclX), 305
lvarpush command (TclX), 306

M
mainloop command (TclX), 306
marks, 92
match_max command (Expect), 187
matches, 105
math

math functions, 8-9
TclX commands for, 283

max command (TclX), 306
McLennan, Michael, 193, 201
mega-widgets, 201, 206, 208

labeled, 228
menu command (Tk), 79-83
menu widgets, 50, 100

platfor m-specific menus, 80
menubutton command (Tk), 83
menubutton widgets, 51, 129
message catalog, 287-288

TclX commands for, 285
message command (Tk), 84
meter mega-widgets, 230

434 Index

11 May 2006 10:58

methods, 88, 91, 195-196, 269
canvas methods, 59
[incr Tk], 202-203
widget methods, 52, 73, 91

min command (TclX), 306
Motif window manager, 273
mouse cursors, 54, 58

N
named procedur es, 293
namespace command (core Tcl), 36
network hosts, 299
nice command (TclX), 306
notebook widgets, 230, 262
numbers, 420
numeric expressions, 4
numerical data, BLT commands for,

316
Nur mi, Roy, 403

O
object-oriented programming, 193
objects, 193-194, 199-200, 270

cr eating, 195
objName command ([incr Tcl]),

195-196
octal numbers, 420
ODBC databases, 403-410
online help system, 286
open command (core Tcl), 37
operators, 7-8
option command (Tk), 120
option database, 75, 100, 120
options, 370, 372

selecting, 232
tclsh, 5
Tk, 49-50

oraautocom command (Oratcl), 392
orabindexec command (Oratcl), 392
orabr eak command (Oratcl), 392
oracancel command (Oratcl), 392
Oracle databases, accessing with

Oratcl, 388
oraclose command (Oratcl), 392
oracols command (Oratcl), 392
oracommit command (Oratcl), 393
orafetch command (Oratcl), 393
oralogof f command (Oratcl), 393
oralogon command (Oratcl), 393

oraopen command (Oratcl), 394
oraplexec command (Oratcl), 394
orapoll command (Oratcl), 394
orar eadlong command (Oratcl), 394
orar oll command (Oratcl), 394
orasql command (Oratcl), 395
Oratcl, 388

commands, 391-395
variables, 389-391

orawritelong command (Oratcl), 395
Ousterhout, John, 1-2, 47
oval canvas items, 68
overlay command (Expect), 187
ownership, setting, 289

P
pack command (Tk), 121
package command (core Tcl), 38
package libraries, 287
packages, 6, 15, 142, 287

autoloading, 39
TclX commands for, 285

pages, 228, 230, 243
paned windows, 234-235
parity command (Expect), 188
patches, 6
pathnames, 39, 423
patter n globbing, 10-11
per missions, setting, 289
photo images, 117

functions related to, 160
pid command (core Tcl), 38
pipe command (TclX), 306
pixmap image type, 280
pkg_mkIndex command (core Tcl), 39
place command (Tk), 122-124
platfor ms, 2, 281

issues concerning, 422-424
platfor m-specific menus, 80
Poindexter, Tom, 388, 396, 411
polygon canvas items, 68
polygon markers, 348
popd command (TclX), 307
popup menus, 236
POSIX utilities, 145
PostScript generation, 62
pound sign (#), 3-4, 414
pow command (TclX), 307
pr oc command (core Tcl), 39

Index 435

11 May 2006 10:58

pr ocedures, 39, 196, 293, 385
definitions of, 308, 310
per formance profiling of, 307

pr ocesses, 182-183, 188-189
child, 313
closing connections to, 181
cr eating, 185
delaying execution of, 311
IDs, 38, 182

pr ocs, 3
pr ofile command (TclX), 307
pr ofrep command (TclX), 307
pseudorandom integers, 307
pushd command (TclX), 307
puts command (core Tcl), 39
pwd command (core Tcl), 39

Q
quotation marks ("), 3
quoting, 412, 417, 420-422

R
radioboxes, 241
radiobutton command (Tk), 84-86
raise command (Tk), 124
random command (TclX), 307
ranges of characters, 291
read command (core Tcl), 39
read_file command (TclX), 308
readdir command (TclX), 308
rectangle canvas items, 69
recursive_glob command (TclX), 308
regexp command (core Tcl), 40
regsub command (core Tcl), 40
regular expressions, 9-10, 40, 422
remove_nulls command (Expect), 188
rename command (core Tcl), 41
replicate command (TclX), 308
reports, generating, 307
resources about Tcl/Tk, 412, 427-428
retur n command (core Tcl), 41
root directory, setting, 289
root window, 49-50
round command (TclX), 308
row options, 372

S
savepr ocs command (TclX), 308
scale command (Tk), 86-87
scan command (core Tcl), 41
scancontext command (TclX), 308
scanfile command (TclX), 309
scanmatch command (TclX), 309
scheduling execution of commands,

16
scope command ([incr Tcl]), 200
scoped values, 198, 200
scr een units, 53
scr ollable lists, 238-239
scr ollbar command (Tk), 87-89
scr ollbar widgets, 51, 55-56, 88
scr ollbars, 239
scr olling methods, 88
searching, 287

lists, 35
searchpath command (TclX), 309
security, 125
seek command (core Tcl), 41
select command (TclX), 309
selecting, 223-226

filenames, 221-226
functions related to, 164
options, 232
windows, 228, 243

selection command (Tk), 124
semicolon (;), 4, 416
send command

Expect, 188
Tk, 49, 125

send_ commands (Expect), 189
sequences, 101-102

multi-event, 105
set command (core Tcl), 42, 418
shell commands, 419
shell windows, 242
showpr oc command (TclX), 310
signal command (TclX), 310
sin command (TclX), 310
sines, 310
sinh command (TclX), 310
slave options, 370

436 Index

11 May 2006 10:58

sleep command
Expect, 189
TclX, 311

socket command (core Tcl), 42
sorting lists, 35
source command (core Tcl), 42
spawn command (Expect), 189
spinboxes, 214-217
spline command (BLT), 367
split command (core Tcl), 42
SQL, 392, 395, 400, 403, 406

automatic commit of queries, 392
queries, 388, 396

sqrt command (TclX), 311
squar e brackets ([]), xii, 3
squar e roots, 311
startup, functions related to, 165
statement separator (;), 4
statement-id command (Tclodbc), 408
statements, displaying, 190
status of files, 296
strace command (Expect), 190
string command (core Tcl), 43
string utilities, 145
strings, 4, 13-14, 41, 43-44, 306,

416-418
comparing, 288
concatenating, 288
for matting, 27
length of, retur ning, 289
scoped values for, 200
sending to spawned processes, 188
splitting into lists, 42
writing to files, 313

stripchart command (BLT), 325-350,
367

stty command (Expect), 190
subst command (core Tcl), 44
substitutions, 4, 44

backslash, 6-7
command, 44
script, 103
variable, 418

switch command (core Tcl), 44, 414
Sybase databases, accessing with

Sybtcl, 396
sybcancel command (Sybtcl), 400

sybclose command (Sybtcl), 400
sybcols command (Sybtcl), 400
sybconnect command (Sybtcl), 400
sybmsg variable, 397
sybnext command (Sybtcl), 400
sybpoll command (Sybtcl), 401
sybr eadtext command (Sybtcl), 401
sybr etval command (Sybtcl), 401
sybsql command (Sybtcl), 401
Sybtcl, 396

commands, 399-402
variables, 397-399

sybuse command (Sybtcl), 401
sybwritetext command (Sybtcl), 402
sync command (TclX), 311
synonyms (Expect), 180
syntax, 412-414
system command

Expect, 190
TclX, 311

system interaction, 14

T
table command (BLT), 367-373
table options, 370
tabs, 90, 97
tabset command (BLT), 373-380
tags, 58, 89, 91, 101
tan command (TclX), 311
tangents, 311
tanh command (TclX), 311
Tcl, 1, 3

C language interface, 137
commands, 11-46, 142
comments, 414-416
constants, 137
data types, 138
functions, 140-155
interpr eter, 12-13
language features, 4
patches, 6
platfor ms supported, xi, 2
resources about, 412, 427-428
syntax, 412-414
variables, 5, 143

tcl program, 281

Index 437

11 May 2006 10:58

tcl.h, 137
Tclodbc commands, 404-410
tclsh program, command-line options,

5, 49
Tcl/Tk Consortium, 427
TclX, 281

commands, 282-313
tclx_err or_handler command (TclX),

311
tell command (core Tcl), 45
ter minal settings, 190
text canvas items, 69
text command (Tk), 89-99
text format, 362
text indices, 59, 73, 90-91, 94
text items, 250

functions related to, 163
text markers, 349
text widgets, 51, 94-95, 239
tile commands (BLT), 380
tile widgets, BLT commands for, 316,

380
time command (core Tcl), 45
times command (TclX), 312
timestamp command (Expect),

190-191
tips for the Tcl programmer, 411-426
Tix, 205-206

commands, 206-207, 209-248,
251-280

variables, 205
tix command (Tix), 268
tixBalloon command (Tix), 209
tixButtonBox command (Tix), 210
tixCallMethod command (Tix), 269
tixChainMethod command (Tix), 269
tixCheckList command (Tix), 210
tixClass command (Tix), 269
tixComboBox command (Tix), 212-214
tixContr ol command (Tix), 214-217
tixDescendants command (Tix), 269
tixDestr oy command (Tix), 270
tixDialogShell command (Tix), 217
tixDirList command (Tix), 218
tixDirSelectBox command (Tix), 219
tixDirSelectDialog command (Tix), 219
tixDirTree command (Tix), 220
tixDisableAll command (Tix), 270

tixDisplayStyle command (Tix), 270
tixEnableAll command (Tix), 270
tixExFileSelectBox command (Tix),

221
tixExFileSelectDialog command (Tix),

222
tixFileComboBox command (Tix), 223
tixFileEntry command (Tix), 223-225
tixFileSelectBox command (Tix), 225
tixFileSelectDialog command (Tix),

226
tixFor m command (Tix), 271-273
tixGetBoolean command (Tix), 273
tixGetInt command (Tix), 273
tixGrid command (Tix), 251-256
tixHList command (Tix), 256-262
tixInputOnly command (Tix), 262
tixLabelEntry command (Tix), 226
tixLabelFrame command (Tix), 227
tixLabelWidget command (Tix), 228
tixListNoteBook command (Tix), 228
tixMeter command (Tix), 230
tixMwm command (Tix), 273
tixNoteBook command (Tix), 230
tixNoteBookFrame command (Tix),

262-264
tixOptionMenu command (Tix), 232
tixPanedWindow command (Tix),

234-235
tixPopGrab command (Tix), 274
tixPopupMenu command (Tix), 236
tixPrimitive command (Tix), 237
tixPushGrab command (Tix), 274
tixScr olledGrid command (Tix), 237
tixScr olledHList command (Tix), 238
tixScr olledListBox command (Tix), 238
tixScr olledText command (Tix), 239
tixScr olledTList command (Tix), 239
tixScr olledWidget command (Tix), 239
tixScr olledWindow command (Tix),

240
tixSelect command (Tix), 241
tixShell command (Tix), 242
tixStackWindow command (Tix), 243
tixStdButtonBox command (Tix), 244
tixStdDialogShell command (Tix), 245
tixTList command (Tix), 265-267
tixTree command (Tix), 245
tixVStack command (Tix), 247
tixVTree command (Tix), 248

438 Index

11 May 2006 10:58

tixWidgetClass command (Tix),
274-278

tixwish program, 205
Tk, 2, 47

C language interface, 156
commands, 50-52, 56-136
constants, 156
data types, 157-158
err ors, 424-426
variables, 50

tk command (Tk), 125
tk_ commands (Tk), 126-129
tk.h, 156
tlist widgets, 265
tokens, 292
toplevel command (Tk), 100
trace command (core Tcl), 45
trace statements, 290
translit command (TclX), 312
transliterating characters, 312
trap command (Expect), 191
tr ees, displaying data as, 245
tr ee-style mega-widgets, 248
trigonometric operations, 286
truncating files, 298
try_eval command (TclX), 312

U
umask command (TclX), 312
union command (TclX), 313
Unix

accessing, TclX commands for, 283
signals, 310

unknown command (core Tcl), 45
unset command (core Tcl), 45
update command (core Tcl), 46, 425
update command (Tk), 425
uplevel command (core Tcl), 46
upvar command (core Tcl), 46, 418
user interaction, blocking, 319
usual command ([incr Tk]), 204

V
variable command (core Tcl), 46
variables, 28

aliases for, 46
appending values to, 17
array variables, 17
assigning to list elements, 303

BLT, 315, 363
configuration code, changing, 198
contexts for, 36
Expect, 177-179
global scope, 424
[incr Tcl], 194
[incr Tk], 202-203
incr ementing, 30
Oratcl, 389-391
substitution, 44, 418
Sybtcl, 397-399
Tcl, 5-6, 143
TclX, 281
Tix, 205
Tk, 50
values of, setting, 42

vector command (BLT), 380-385
vectors, 383-385
vertical bar (|), xii
virtual events, 102, 107-109
vwait command (core Tcl), 46

W
wait command

Expect, 192
TclX, 313

watch command (BLT), 385
while command (core Tcl), 19, 21, 46
whitespace, 414
widgets, 52-56, 248-250

configuring, 160
displaying, 162
hierbox widget, 352
mega-widgets, 201, 206, 208
refr eshing, 425
tile widgets, 316
Tix commands for, 207
Tk commands for, 47-51, 56-100

window canvas items, 70
window items, 250
window manager, 133
window markers, 350
windows, 230, 240

descendants of, 269
embedding, 98
functions related to, 158-160
hypertext widget windows, 361
operations on, 386
paned, 234-235

Index 439

11 May 2006 10:58

windows (continued)
selecting, 228, 243
sizes, 373

winfo command (Tk), 129-133
winop command (BLT), 386
wish program, 47

command-line options, 49-50
wishx program, 281
wm command (Tk), 133-136
write_file command (TclX), 313

X
X Window System, 49, 54, 321
XPG/3, 285

440 Index

11 May 2006 10:58

About the Authors
Paul Raines is a physicist and scientific programmer at Stanford University’s Stan-
ford Linear Accelerator Center. He is part of a large collaboration studying CP
violation (why charge times parity is not conserved in some particle decays, an
arcane research topic that bears on the more understandable question of why
there is an excess of matter over antimatter in the universe). He is a huge advo-
cate of scripting languages and has been using Tcl on various projects since 1992.
He maintains a freely distributable quick-reference guide for Tcl/Tk, now
published as O’Reilly & Associates’ Tcl/Tk Pocket Reference. When he can get away
from the lab, Paul enjoys hiking, bridge, and soccer. He lives in San Mateo, Cali-
fornia, with his wife Deborah and her horse and three cats.

Jeff Tranter works as a software designer for a Canadian telecommunications
company and has been using Tcl since 1992 on a number of programming projects
related to software tools and testing. He is an active user of Linux, a contributor to
the Linux Documentation Project, and author of the O’Reilly book Linux Multi-
media Guide. His hobbies include ham radio, playing guitar, and mountain biking.

Colophon
The bird featured on the cover of Tck/Tk in a Nutshell is an ibis. There are over 30
species of these wading birds distributed throughout the world, primarily in the
warmer and tropical regions. All ibises have long, narrow, sharply turned-down
bills that they use to probe for insects, mollusks, and small crustaceans in mud or
dirt. They are strong fliers and swimmers, and most prefer living in the wetlands
near fresh or salt water, marshes, and swamps. They are very sociable and gregar-
ious birds who nest in large colonies and travel in flocks. When flying, all
members of the flock alternate wing beats with gliding at approximately the same
rate.

Fossils indicate that ibises have existed for about 60 million years, and records of
human interaction with ibises dates back 5,000 years. In ancient Egypt, the ibis
was revered as the embodiment of Thoth, god of wisdom and scribe of the gods.
They are frequently depicted in Egyptian hieroglyphics, and cemeteries of mummi-
fied ibises have been discovered.

Today, the most widely distributed of all ibis species is the glossy ibis. The glossy
ibis is the last species of ibis known to exist in Europe and has spread to Africa,
parts of Asia, and the Americas. The most common species in the Americas is the
white ibis, which has gradually spread northward and is now found as far north as
Maine.

,AUTHOR.COLO.27237 Page 3 Monday, August 30, 1999 1:05 PM

http://www.oreilly.com
http://www.oreilly.com

Edie Freedman designed the cover of this book using a 19th-century engraving
from the Dover Pictorial Archive. Kathleen Wilson produced the cover layout with
QuarkXPress 3.3 using the ITC Garamond font. Whenever possible, our books use
RepKover™, a durable and flexible lay-flat binding. If the page count exceeds
RepKover's limit, perfect binding is used.

Madeleine Newell was the production editor for this book, and Sheryl Avruch was
the production manager. Cindy Kogut of Editorial Ink did the copyedit. Nancy
Crumpton wrote the index, and Seth Maislin produced the final version of the
index. Nicole Arigo and Nancy Wolfe Kotary provided quality assurance, and
Sebastian Banker and Betty Hugh provided production assistance.

The inside layout was designed by Nancy Priest and implemented in gtroff by
Lenny Muellner. The text and heading fonts are ITC Garamond Light and Gara-
mond Book. The screen shots that appear in the book were created in Adobe
Photoshop 4.0 by Robert Romano. This colophon was written by Clairemarie
Fisher O’Leary.

,AUTHOR.COLO.27237 Page 4 Monday, August 30, 1999 1:05 PM

	Table of Contents
	Preface
	Conventions
	Contact O’Reilly & Associates
	About This Book
	Acknowledgments

	Chapter 1. Introduction
	What Is Tcl?
	Structure of This Book

	Chapter 2. Tcl Core Commands
	Overview
	Basic Language Features
	Command-Line Options
	Environment Variables
	Special Variables
	Backslash Substitutions
	Operators and Math Functions
	Regular Expressions
	Pattern Globbing
	Predefined I/O Channel Identifiers
	Group Listing of Commands
	Alphabetical Summary of Commands

	Chapter 3. Tk Core Commands
	Example
	Command-Line Options
	Environment Variable
	Special Variables
	Group Listing of Tk Commands
	Widget Overview
	Standard Widget Options

	Widget Commands
	Utility Commands

	Chapter 4. The Tcl C Interface
	Constants
	Data Types
	Group Listing of Functions
	Alphabetical Summary of Functions

	Chapter 5. The Tk C Interface
	Constants
	Data Types
	Group Listing of Functions
	Alphabetical Summary of Functions

	Chapter 6. Expect
	Overview
	Example
	Command-Line Options
	Environment Variables
	Special Variables
	Grouped Summary of Commands
	Alphabetical Summary of Commands

	Chapter 7. [incr Tcl]
	Basic Class Definition
	Special Variables
	Group Listing of Commands
	Example
	Alphabetical Summary of Commands

	Chapter 8. [incr Tk]
	Basic Structure of a Mega-widget
	Special Variable
	Methods and Variables
	Public Methods
	Protected Methods
	Protected Variables

	Alphabetical Summary of Commands

	Chapter 9. Tix
	Tix Overview
	Group Listing of Tix Commands
	Tix Mega-widget Overview
	Tix Mega-widgets
	Tix Standard Widgets Overview
	Display Items
	Image Items
	Imagetext Items
	Text Items
	Window Items

	Tix Standard Widgets
	Tix Core Commands
	Tix Extensions to Tk image Command

	Chapter 10. TclX
	Special Variables
	Group Listing of Commands
	Alphabetical Summary of Commands

	Chapter 11. BLT
	Environment Variable
	Group Listing of Commands
	Alphabetical Summary of Commands

	Chapter 12. Oratcl
	Overview
	Example
	Environment Variables
	Special Variables
	Group Listing of Commands
	Alphabetical Summary of Commands

	Chapter 13. Sybtcl
	Overview
	Example
	Environment Variables
	Special Variables
	Group Listing of Commands
	Alphabetical Summary of Commands

	Chapter 14. Tclodbc
	Overview
	Group Listing of Commands
	Summary of Commands

	Chapter 15. Hints and Tips for the Tcl Programmer
	Think Commands, Not Statements
	Comments Are Treated as Commands
	A Symbolic Gesture
	Lists Are Strings, but Not All Strings Are Lists
	Indirect References
	Executing Other Programs
	When Is a Number Not a Number?
	Quoting and More Quoting
	Write Once, Run Where?
	Filenames and Pathnames
	End of Line Conventions
	Determining Platform Specifics
	Scanning and Formatting Binary Data

	Common Tk Errors
	Global Scope for -variable and -textvariable
	The -command String Must Be a Tcl List
	Use update to Refresh Widgets and for Event Processing

	Use the Source, Luke!

	Appendix. Tcl Resources
	Web Sites
	General
	Tcl/Tk Extensions

	Usenet Newsgroups
	Books
	Mailing Lists

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

