

Asynchronous Programming
in Rust

Learn asynchronous programming by building working
examples of futures, green threads, and runtimes

Carl Fredrik Samson

Asynchronous Programming in Rust
Copyright © 2024 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case
of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot
guarantee the accuracy of this information.

Publishing Product Manager: Samriddhi Murarka
Group Product Manager: Kunal Sawant
Senior Editor: Kinnari Chohan
Technical Editor: Rajdeep Chakraborty
Copy Editor: Safis Editing
Project Coordinator: Manisha Singh
Indexer: Rekha Nair
Production Designer: Joshua Misquitta
Marketing DevRel Coordinator: Sonia Chauhan

First published: February 2024
Production reference: 1120124

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80512-813-7
www.packtpub.com

http://www.packtpub.com

To my family—my brother, my parents, and especially my beloved wife and fantastic children that
make every day an absolute joy.

– Carl Fredrik Samson

Contributors

About the author
Carl Fredrik Samson is a popular technology writer and has been active in the Rust community since
2018. He has an MSc in Business Administration where he specialized in strategy and finance. When
not writing, he’s a father of two children and a CEO of a company with 300 employees. He’s been
interested in different kinds of technologies his whole life and his programming experience ranges
from programming against old IBM mainframes to modern cloud computing, using everything from
assembly to Visual Basic for Applications. He has contributed to several open source projects including
the official documentation for asynchronous Rust.

I want to thank the Rust community for being so constructive, positive and welcoming. This book would
not have happened had it not been for all the positive and insightful interaction with the community.
A special thanks goes to the implementors of all the libraries that underpins the async ecosystem today
like mio, Tokio, and async-std.

I also want to thank my editor, Kinnari, who has been extraordinarily patient and helpful and during
the process of writing this book.

About the reviewer
Evgeni Pirianov is an experienced Senior Software Engineer with a deep expertise in Backend
Technologies, Web3 an Blockchain. Evgeni has graduated with a degree in Engineering from Imperial
College, London and has worked for a few years developing non-linear solvers in C++ . Ever since, he
has been at the forefront of architecturing, designing, and implementing decentralized applications
in the fields of Defi and Metaverse. Evgeni’s passion for Rust is unsurpassed and he is a true believer
of its bright future and wide range of applications.

Yage Hu is a software engineer specializing in systems programming and computer architecture. He
has cut code in companies such as Uber, Amazon, and Meta and is currently conducting systems
research with WebAssembly and Rust. Yage and his wife have just welcomed their first child, Maxine.

Preface� xiii

Part 1: Asynchronous Programming
Fundamentals�

1
Concurrency and Asynchronous Programming:
a Detailed Overview� 3

Technical requirements� 4
An evolutionary journey of
multitasking� 4
Non-preemptive multitasking� 4
Preemptive multitasking� 5
Hyper-threading� 5
Multicore processors� 6
Do you really write synchronous code?� 6

Concurrency versus parallelism� 7
The mental model I use� 8
Let’s draw some parallels to process
economics� 9
Concurrency and its relation to I/O� 11
What about threads provided by the
operating system?� 12
Choosing the right reference frame� 12
Asynchronous versus concurrent� 12

The role of the operating system� 13
Concurrency from the operating system’s
perspective� 13
Teaming up with the operating system� 14
Communicating with the operating system� 14

The CPU and the operating system� 15
Down the rabbit hole� 16
How does the CPU prevent us from accessing
memory we’re not supposed to access?� 17
But can’t we just change the page table in
the CPU?� 18

Interrupts, firmware, and I/O� 19
A simplified overview� 19
Interrupts� 22
Firmware� 22

Summary� 23

Table of Contents

Table of Contentsviii

2
How Programming Languages Model Asynchronous Program
Flow� 25

Definitions� 26
Threads� 27

Threads provided by the operating
system� 29
Creating new threads takes time� 29
Each thread has its own stack� 29
Context switching� 30
Scheduling� 30
The advantage of decoupling asynchronous
operations from OS threads� 31
Example� 31

Fibers and green threads� 33
Each stack has a fixed space� 34
Context switching� 35
Scheduling� 35
FFI� 36

Callback based approaches� 37
Coroutines: promises and futures� 38
Coroutines and async/await� 39

Summary� 41

3
Understanding OS-Backed Event Queues, System Calls, and
Cross-Platform Abstractions� 43

Technical requirements� 44
Running the Linux examples� 45

Why use an OS-backed event queue?� 45
Blocking I/O� 46
Non-blocking I/O� 46
Event queuing via epoll/kqueue and IOCP� 47

Readiness-based event queues� 47
Completion-based event queues� 48

epoll, kqueue, and IOCP� 49
Cross-platform event queues� 50
System calls, FFI, and cross-platform
abstractions� 51
The lowest level of abstraction� 51
The next level of abstraction� 55
The highest level of abstraction� 61

Summary� 61

Table of Contents ix

Part 2: Event Queues and Green Threads�

4
Create Your Own Event Queue� 65

Technical requirements� 65
Design and introduction to epoll� 66
Is all I/O blocking?� 72

The ffi module� 73
Bitflags and bitmasks� 76

Level-triggered versus edge-triggered
events� 78

The Poll module� 81
The main program� 84
Summary� 93

5
Creating Our Own Fibers� 95

Technical requirements� 96
How to use the repository alongside
the book� 96
Background information� 97
Instruction sets, hardware architectures, and
ABIs� 97
The System V ABI for x86-64� 99
A quick introduction to Assembly language� 102

An example we can build upon� 103
Setting up our project� 103
An introduction to Rust inline assembly
macro� 105

Running our example� 107

The stack� 109
What does the stack look like?� 109
Stack sizes� 111

Implementing our own fibers� 112
Implementing the runtime� 115
Guard, skip, and switch functions� 121

Finishing thoughts� 125
Summary� 126

Part 3: Futures and async/await in Rust�

6
Futures in Rust� 129

What is a future?� 130
Leaf futures� 130

Non-leaf futures� 130
A mental model of an async
runtime� 131

Table of Contentsx

What the Rust language and standard
library take care of� 133

I/O vs CPU-intensive tasks� 134
Summary� 135

7
Coroutines and async/await� 137

Technical requirements� 137
Introduction to stackless
coroutines� 138
An example of hand-written
coroutines� 139
Futures module� 141
HTTP module� 142
Do all futures have to be lazy?� 146
Creating coroutines� 147

async/await� 154
coroutine/wait� 155
corofy—the coroutine preprocessor� 155
b-async-await—an example of a coroutine/
wait transformation� 156

c-async-await—concurrent
futures� 160
Final thoughts� 165
Summary� 166

8
Runtimes, Wakers, and the Reactor-Executor Pattern� 167

Technical requirements� 168
Introduction to runtimes and
why we need them� 169
Reactors and executors� 170

Improving our base example� 171
Design� 173
Changing the current implementation� 177

Creating a proper runtime� 184
Step 1 – Improving our runtime
design by adding a Reactor and a
Waker� 187
Creating a Waker� 188

Changing the Future definition� 191

Step 2 – Implementing a proper
Executor� 192
Step 3 – Implementing a proper
Reactor� 199
Experimenting with our new
runtime� 208
An example using concurrency� 208
Running multiple futures concurrently and in
parallel� 209

Summary� 211

Table of Contents xi

9
Coroutines, Self-Referential Structs, and Pinning� 213

Technical requirements� 214
Improving our example
1 – variables� 214
Setting up the base example� 215
Improving our base example� 217

Improving our example
2 – references� 222
Improving our example 3 – this
is… not… good…� 227
Discovering self-referential
structs� 229
What is a move?� 231

Pinning in Rust� 233

Pinning in theory� 234
Definitions� 234
Pinning to the heap� 235
Pinning to the stack� 237
Pin projections and structural
pinning� 240

Improving our example
4 – pinning to the rescue� 241
future.rs� 242
http.rs� 242
Main.rs� 244
executor.rs� 246

Summary� 248

10
Creating Your Own Runtime� 251

Technical requirements� 251
Setting up our example� 253
main.rs� 253
future.rs� 254
http.rs� 254
executor.rs� 256
reactor.rs� 259

Experimenting with our runtime� 261
Challenges with asynchronous
Rust� 265

Explicit versus implicit reactor
instantiation� 265
Ergonomics versus efficiency and
flexibility� 266
Common traits that everyone agrees
about� 267
Async drop� 268

The future of asynchronous Rust� 269
Summary� 269
Epilogue� 272

Index� 275

Other Books You May Enjoy� 282

Preface

The content in this book was initially written as a series of shorter books for programmers wanting
to learn asynchronous programming from the ground up using Rust. I found the existing material
I came upon at the time to be in equal parts frustrating, enlightening, and confusing, so I wanted to
do something about that.

Those shorter books became popular, so when I got the chance to write everything a second time,
improve the parts that I was happy with, and completely rewrite everything else and put it in a single,
coherent book, I just had to do it. The result is right in front of you.

People start programming for a variety of different reasons. Scientists start programming to model
problems and perform calculations. Business experts create programs that solve specific problems that
help their businesses. Some people start programming as a hobby or in their spare time. Common to
these programmers is that they learn programming from the top down.

Most of the time, this is perfectly fine, but on the topic of asynchronous programming in general, and
Rust in particular, there is a clear advantage to learning about the topic from first principles, and this
book aims to provide a means to do just that.

Asynchronous programming is a way to write programs where you divide your program into tasks
that can be stopped and resumed at specific points. This, in turn, allows a language runtime, or a
library, to drive and schedule these tasks so their progress interleaves.

Asynchronous programming will, by its very nature, affect the entire program flow, and it’s very
invasive. It rewrites, reorders, and schedules the program you write in a way that’s not always obvious
to you as a programmer.

Most programming languages try to make asynchronous programming so easy that you don’t really
have to understand how it works just to be productive in it.

You can get quite productive writing asynchronous Rust without really knowing how it works as
well, but Rust is more explicit and surfaces more complexity to the programmer than most other
languages. You will have a much easier time handling this complexity if you get a deep understanding
of asynchronous programming in general and what really happens when you write asynchronous Rust.

Another huge upside is that learning from first principles results in knowledge that is applicable
way beyond Rust, and it will, in turn, make it easier to pick up asynchronous programming in other
languages as well. I would even go so far as to say that most of this knowledge will be useful even in
your day-to-day programming. At least, that’s how it’s been for me.

Prefacexiv

I want this book to feel like you’re joining me on a journey, where we build our knowledge topic by
topic and learn by creating examples and experiments along the way. I don’t want this book to feel
like a lecturer simply telling you how everything works.

This book is created for people who are curious by nature, the kind of programmers who want to
understand the systems they use, and who like creating small and big experiments as a way to explore
and learn.

Who this book is for
This book is for developers with some prior programming experience who want to learn
asynchronous programming from the ground up so they can be proficient in async Rust and
be able to participate in technical discussions on the subject. The book is perfect for those
who like writing working examples they can pick apart, expand, and experiment with.

There are two kinds of personas that I feel this book is especially relevant to:

•	 Developers coming from higher-level languages with a garbage collector, interpreter, or runtime,
such as C#, Java, JavaScript, Python, Ruby, Swift, or Go. Programmers who have extensive
experience with asynchronous programming in any of these languages but want to learn it
from the ground up and programmers with no experience with asynchronous programming
should both find this book equally useful.

•	 Developers with experience in languages such as C or C++ that have limited experience with
asynchronous programming.

What this book covers
Chapter 1, Concurrency and Asynchronous Programming: A Detailed Overview, provides a short history
leading up to the type of asynchronous programming we use today. We give several important definitions
and provide a mental model that explains what kind of problems asynchronous programming really
solves, and how concurrency differs from parallelism. We also cover the importance of choosing the
correct reference frame when discussing asynchronous program flow, and we go through several
important and fundamental concepts about CPUs, operating systems, hardware, interrupts, and I/O.

Chapter 2, How Programming Languages Model Asynchronous Program Flow, narrows the scope from
the previous chapter and focuses on the different ways programming languages deal with asynchronous
programming. It starts by giving several important definitions before explaining stackful and stackless
coroutines, OS threads, green threads, fibers, callbacks, promises, futures, and async/await.

Chapter 3, Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions,
explains what epoll, kqueue, and IOCP are and how they differ. It prepares us for the next chapters
by giving an introduction to syscalls, FFI, and cross-platform abstractions.

Preface xv

Chapter 4, Create Your Own Event Queue, is the chapter where you create your own event queue that
mimics the API of mio (the popular Rust library that underpins much of the current async ecosystem).
The example will center around epoll and go into quite a bit of detail on how it works.

Chapter 5, Creating Our Own Fibers, walks through an example where we create our own kind of
stackful coroutines called fibers. They’re the same kind of green threads that Go uses and show one
of the most widespread and popular alternatives to the type of abstraction Rust uses with futures and
async/await today. Rust used this kind of abstraction in its early days before it reached 1.0, so it’s also
a part of Rust’s history. This chapter will also cover quite a few general programming concepts, such
as stacks, assembly, Application Binary Interfaces (ABIs), and instruction set architecture (ISAs),
that are useful beyond the context of asynchronous programming as well.

Chapter 6, Futures in Rust, gives a short introduction and overview of futures, runtimes, and
asynchronous programming in Rust.

Chapter 7, Coroutines and async/await, is a chapter where you write your own coroutines that are
simplified versions of the ones created by async/await in Rust today. We’ll write a few of them by
hand and introduce a new syntax that allows us to programmatically rewrite what look like regular
functions into the coroutines we wrote by hand.

Chapter 8, Runtimes, Wakers, and the Reactor-Executor Pattern, introduces runtimes and runtime
design. By iterating on the example we created in Chapter 7, we’ll create a runtime for our coroutines
that we’ll gradually improve. We’ll also do some experiments with our runtime once it’s done to better
understand how it works.

Chapter 9, Coroutines, Self-Referential Structs, and Pinning, is the chapter where we introduce self-
referential structs and pinning in Rust. By improving our coroutines further, we’ll experience first-hand
why we need something such as Pin, and how it helps us solve the problems we encounter.

Chapter 10, Create Your Own Runtime, is the chapter where we finally put all the pieces together. We’ll
improve the same example from the previous chapters further so we can run Rust futures, which will
allow us to use the full power of async/await and asynchronous Rust. We’ll also do a few experiments
that show some of the difficulties with asynchronous Rust and how we can best solve them.

To get the most out of this book
You should have some prior programming experience and, preferably, some knowledge about Rust.
Reading the free, and excellent, introductory book The Rust Programming Language (https://
doc.rust-lang.org/book/) should give you more than enough knowledge about Rust to
follow along since any advanced topics will be explained step by step.

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/

Prefacexvi

The ideal way to read this book is to have the book and a code editor open side by side. You should
also have the accompanying repository available so you can refer to that if you encounter any issues.

Software/hardware covered in the book Operating system requirements
Rust (version 1.51 or later) Windows, macOS, or Linux

You need Rust installed. If you haven’t already, follow the instructions here: https://www.rust-
lang.org/tools/install.

Some examples will require you to use Windows Subsystem for Linux (WSL) on Windows. If you’re
following along on a Windows machine, I recommend that you enable WSL (https://learn.
microsoft.com/en-us/windows/wsl/install) now and install Rust by following the
instructions for installing Rust on WSL here: https://www.rust-lang.org/tools/install.

If you are using the digital version of this book, we advise you to type the code yourself or access
the code from the book’s GitHub repository (a link is available in the next section). Doing so will
help you avoid any potential errors related to the copying and pasting of code.

The accompanying repository is organized in the following fashion:

•	 Code that belongs to a specific chapter is in that chapter’s folder (e.g., ch01).

•	 Each example is organized as a separate crate.

•	 The letters in front of the example names indicate in what order the different examples are
presented in the book. For example, the a-runtime example comes before the b-reactor-
executor example. This way, they will be ordered chronologically (at least by default on
most systems).

•	 Some examples have a version postfixed with -bonus. These versions will be mentioned in
the book text and often contain a specific variant of the example that might be interesting to
check out but is not important to the topic at hand.

Download the example code files
You can download the example code files for this book from GitHub at https://github.com/
PacktPublishing/Asynchronous-Programming-in-Rust. If there’s an update to the
code, it will be updated in the GitHub repository.

We also have other code bundles from our rich catalog of books and videos available at https://
github.com/PacktPublishing/. Check them out!

https://www.rust-lang.org/tools/install
https://www.rust-lang.org/tools/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://www.rust-lang.org/tools/install
https://github.com/PacktPublishing/Asynchronous-Programming-in-Rust
https://github.com/PacktPublishing/Asynchronous-Programming-in-Rust
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface xvii

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an example: “So, now
we have created our own async runtime that uses Rust’s Futures, Waker, Context, and async/
await.”

A block of code is set as follows:

pub trait Future {
    type Output;
    fn poll(&mut self) -> PollState<Self::Output>;
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or items
are set in bold:

struct Coroutine0 {
    stack: Stack0,
    state: State0,
}

Any command-line input or output is written as follows:

$ cargo run

Tips or important notes
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at customercare@
packtpub.com and mention the book title in the subject of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you have found a mistake in this book, we would be grateful if you would report this to us. Please
visit www.packtpub.com/support/errata and fill in the form.

mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata

Prefacexviii

Piracy: If you come across any illegal copies of our works in any form on the internet, we would
be grateful if you would provide us with the location address or website name. Please contact us at
copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you
are interested in either writing or contributing to a book, please visit authors.packtpub.com.

Share your thoughts
Once you’ve read Asynchronous Programming in Rust, we’d love to hear your thoughts! Please click
here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

mailto:copyright@packt.com
http://authors.packtpub.com
https://packt.link/r/1805128132
https://packt.link/r/1805128132

Preface xix

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805128137

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805128137

Part 1:
Asynchronous

Programming Fundamentals

In this part, you’ll receive a thorough introduction to concurrency and asynchronous programming.
We’ll also explore various techniques that programming languages employ to model asynchrony,
examining the most popular ones and covering some of the pros and cons associated with each. Finally,
we’ll explain the concept of OS-backed event queues, such as epoll, kqueue, and IOCP, detailing how
system calls are used to interact with the operating system and addressing the challenges encountered
in creating cross-platform abstractions like mio. This section comprises the following chapters:

•	 Chapter 1, Concurrency and Asynchronous Programming: A Detailed Overview

•	 Chapter 2, How Programming Languages Model Asynchronous Program Flow

•	 Chapter 3, Understanding OS-Backed Event Queues, System Calls and Cross Platform Abstractions

1
Concurrency and

Asynchronous Programming: a
Detailed Overview

Asynchronous programming is one of those topics many programmers find confusing. You come to
the point when you think you’ve got it, only to later realize that the rabbit hole is much deeper than
you thought. If you participate in discussions, listen to enough talks, and read about the topic on the
internet, you’ll probably also come across statements that seem to contradict each other. At least, this
describes how I felt when I first was introduced to the subject.

The cause of this confusion is often a lack of context, or authors assuming a specific context without
explicitly stating so, combined with terms surrounding concurrency and asynchronous programming
that are rather poorly defined.

In this chapter, we’ll be covering a lot of ground, and we’ll divide the content into the following
main topics:

•	 Async history

•	 Concurrency and parallelism

•	 The operating system and the CPU

•	 Interrupts, firmware, and I/O

This chapter is general in nature. It doesn’t specifically focus on Rust, or any specific programming
language for that matter, but it’s the kind of background information we need to go through so we
know that everyone is on the same page going forward. The upside is that this will be useful no matter
what programming language you use. In my eyes, that fact also makes this one of the most interesting
chapters in this book.

Concurrency and Asynchronous Programming: a Detailed Overview4

There’s not a lot of code in this chapter, so we’re off to a soft start. It’s a good time to make a cup of
tea, relax, and get comfortable, as we’re about start this journey together.

Technical requirements
All examples will be written in Rust, and you have two alternatives for running the examples:

•	 Write and run the examples we’ll write on the Rust playground

•	 Install Rust on your machine and run the examples locally (recommended)

The ideal way to read this chapter is to clone the accompanying repository (https://github.
com/PacktPublishing/Asynchronous-Programming-in-Rust/tree/main/
ch01/a-assembly-dereference) and open the ch01 folder and keep it open while you read
the book. There, you’ll find all the examples we write in this chapter and even some extra information
that you might find interesting as well. You can of course also go back to the repository later if you
don’t have that accessible right now.

An evolutionary journey of multitasking
In the beginning, computers had one CPU that executed a set of instructions written by a programmer
one by one. No operating system (OS), no scheduling, no threads, no multitasking. This was how
computers worked for a long time. We’re talking back when a program was assembled in a deck of
punched cards, and you got in big trouble if you were so unfortunate that you dropped the deck onto
the floor.

There were operating systems being researched very early and when personal computing started to
grow in the 80s, operating systems such as DOS were the standard on most consumer PCs.

These operating systems usually yielded control of the entire CPU to the program currently executing,
and it was up to the programmer to make things work and implement any kind of multitasking for
their program. This worked fine, but as interactive UIs using a mouse and windowed operating systems
became the norm, this model simply couldn’t work anymore.

Non-preemptive multitasking

Non-preemptive multitasking was the first method used to be able to keep a UI interactive (and
running background processes).

This kind of multitasking put the responsibility of letting the OS run other tasks, such as responding
to input from the mouse or running a background task, in the hands of the programmer.

Typically, the programmer yielded control to the OS.

https://github.com/PacktPublishing/Asynchronous-Programming-in-Rust/tree/main/ch01/a-assembly-dereference
https://github.com/PacktPublishing/Asynchronous-Programming-in-Rust/tree/main/ch01/a-assembly-dereference
https://github.com/PacktPublishing/Asynchronous-Programming-in-Rust/tree/main/ch01/a-assembly-dereference

An evolutionary journey of multitasking 5

Besides offloading a huge responsibility to every programmer writing a program for your platform,
this method was naturally error-prone. A small mistake in a program’s code could halt or crash the
entire system.

Note
Another popular term for what we call non-preemptive multitasking is cooperative multitasking.
Windows 3.1 used cooperative multitasking and required programmers to yield control to
the OS by using specific system calls. One badly-behaving application could thereby halt the
entire system.

Preemptive multitasking

While non-preemptive multitasking sounded like a good idea, it turned out to create serious problems
as well. Letting every program and programmer out there be responsible for having a responsive UI
in an operating system can ultimately lead to a bad user experience, since every bug out there could
halt the entire system.

The solution was to place the responsibility of scheduling the CPU resources between the programs
that requested it (including the OS itself) in the hands of the OS. The OS can stop the execution of a
process, do something else, and switch back.

On such a system, if you write and run a program with a graphical user interface on a single-core
machine, the OS will stop your program to update the mouse position before it switches back to your
program to continue. This happens so frequently that we don’t usually observe any difference whether
the CPU has a lot of work or is idle.

The OS is responsible for scheduling tasks and does this by switching contexts on the CPU. This process
can happen many times each second, not only to keep the UI responsive but also to give some time
to other background tasks and IO events.

This is now the prevailing way to design an operating system.

Note
Later in this book, we’ll write our own green threads and cover a lot of basic knowledge about
context switching, threads, stacks, and scheduling that will give you more insight into this
topic, so stay tuned.

Hyper-threading

As CPUs evolved and added more functionality such as several arithmetic logic units (ALUs) and
additional logic units, the CPU manufacturers realized that the entire CPU wasn't fully utilized. For

Concurrency and Asynchronous Programming: a Detailed Overview6

example, when an operation only required some parts of the CPU, an instruction could be run on the
ALU simultaneously. This became the start of hyper-threading.

Your computer today, for example, may have 6 cores and 12 logical cores.. This is exactly where hyper-
threading comes in. It “simulates” two cores on the same core by using unused parts of the CPU to
drive progress on thread 2 and simultaneously running the code on thread 1. It does this by using a
number of smart tricks (such as the one with the ALU).

Now, using hyper-threading, we could actually offload some work on one thread while keeping the
UI interactive by responding to events in the second thread even though we only had one CPU core,
thereby utilizing our hardware better.

You might wonder about the performance of hyper-threading
It turns out that hyper-threading has been continuously improved since the 90s. Since you’re
not actually running two CPUs, there will be some operations that need to wait for each other
to finish. The performance gain of hyper-threading compared to multitasking in a single core
seems to be somewhere close to 30% but it largely depends on the workload.

Multicore processors

As most know, the clock frequency of processors has been flat for a long time. Processors get faster by
improving caches, branch prediction, and speculative execution, and by working on the processing
pipelines of the processors, but the gains seem to be diminishing.

On the other hand, new processors are so small that they allow us to have many on the same chip. Now,
most CPUs have many cores and most often, each core will also have the ability to perform hyper-threading.

Do you really write synchronous code?

Like many things, this depends on your perspective. From the perspective of your process and the
code you write, everything will normally happen in the order you write it.

From the operating system’s perspective, it might or might not interrupt your code, pause it, and run
some other code in the meantime before resuming your process.

From the perspective of the CPU, it will mostly execute instructions one at a time.* It doesn’t care
who wrote the code, though, so when a hardware interrupt happens, it will immediately stop and
give control to an interrupt handler. This is how the CPU handles concurrency.

Concurrency versus parallelism 7

Note
*However, modern CPUs can also do a lot of things in parallel. Most CPUs are pipelined,
meaning that the next instruction is loaded while the current one is executing. It might have
a branch predictor that tries to figure out what instructions to load next.

The processor can also reorder instructions by using out-of-order execution if it believes it
makes things faster this way without ‘asking’ or ‘telling’ the programmer or the OS, so you
might not have any guarantee that A happens before B.

The CPU offloads some work to separate ‘coprocessors’ such as the FPU for floating-point
calculations, leaving the main CPU ready to do other tasks et cetera.

As a high-level overview, it’s OK to model the CPU as operating in a synchronous manner,
but for now, let’s just make a mental note that this is a model with some caveats that become
especially important when talking about parallelism, synchronization primitives (such as
mutexes and atomics), and the security of computers and operating systems.

Concurrency versus parallelism
Right off the bat, we’ll dive into this subject by defining what concurrency is. Since it is quite easy to
confuse concurrent with parallel, we will try to make a clear distinction between the two from the get-go.

Important
Concurrency is about dealing with a lot of things at the same time.

Parallelism is about doing a lot of things at the same time.

We call the concept of progressing multiple tasks at the same time multitasking. There are two ways to
multitask. One is by progressing tasks concurrently, but not at the same time. Another is to progress
tasks at the exact same time in parallel. Figure 1.1 depicts the difference between the two scenarios:

Concurrency and Asynchronous Programming: a Detailed Overview8

Figure 1.1 – Multitasking two tasks

First, we need to agree on some definitions:

•	 Resource: This is something we need to be able to progress a task. Our resources are limited.
This could be CPU time or memory.

•	 Task: This is a set of operations that requires some kind of resource to progress. A task must
consist of several sub-operations.

•	 Parallel: This is something happening independently at the exact same time.

•	 Concurrent: These are tasks that are in progress at the same time, but not necessarily
progressing simultaneously.

This is an important distinction. If two tasks are running concurrently, but are not running in parallel,
they must be able to stop and resume their progress. We say that a task is interruptible if it allows for
this kind of concurrency.

The mental model I use

I firmly believe the main reason we find parallel and concurrent programming hard to differentiate
stems from how we model events in our everyday life. We tend to define these terms loosely, so our
intuition is often wrong.

Concurrency versus parallelism 9

Note
It doesn’t help that concurrent is defined in the dictionary as operating or occurring at the same
time, which doesn’t really help us much when trying to describe how it differs from parallel.

For me, this first clicked when I started to understand why we want to make a distinction between
parallel and concurrent in the first place!

The why has everything to do with resource utilization and efficiency.

Efficiency is the (often measurable) ability to avoid wasting materials, energy, effort, money, and time
in doing something or in producing a desired result.

Parallelism is increasing the resources we use to solve a task. It has nothing to do with efficiency.

Concurrency has everything to do with efficiency and resource utilization. Concurrency can never
make one single task go faster. It can only help us utilize our resources better and thereby finish a set
of tasks faster.

Let’s draw some parallels to process economics

In businesses that manufacture goods, we often talk about LEAN processes. This is pretty easy to compare
with why programmers care so much about what we can achieve if we handle tasks concurrently.

Let’s pretend we’re running a bar. We only serve Guinness beer and nothing else, but we serve our
Guinness to perfection. Yes, I know, it’s a little niche, but bear with me.

You are the manager of this bar, and your goal is to run it as efficiently as possible. Now, you can think
of each bartender as a CPU core, and each order as a task. To manage this bar, you need to know the
steps to serve a perfect Guinness:

•	 Pour the Guinness draught into a glass tilted at 45 degrees until it’s 3-quarters full (15 seconds).

•	 Allow the surge to settle for 100 seconds.

•	 Fill the glass completely to the top (5 seconds).

•	 Serve.

Since there is only one thing to order in the bar, customers only need to signal using their fingers how
many they want to order, so we assume taking new orders is instantaneous. To keep things simple, the
same goes for payment. In choosing how to run this bar, you have a few alternatives.

Alternative 1 – Fully synchronous task execution with one bartender

You start out with only one bartender (CPU). The bartender takes one order, finishes it, and progresses
to the next. The line is out the door and going two blocks down the street – great! One month later,
you’re almost out of business and you wonder why.

Concurrency and Asynchronous Programming: a Detailed Overview10

Well, even though your bartender is very fast at taking new orders, they can only serve 30 customers
an hour. Remember, they’re waiting for 100 seconds while the beer settles and they’re practically just
standing there, and they only use 20 seconds to actually fill the glass. Only after one order is completely
finished can they progress to the next customer and take their order.

The result is bad revenue, angry customers, and high costs. That’s not going to work.

Alternative 2 – Parallel and synchronous task execution

So, you hire 12 bartenders, and you calculate that you can serve about 360 customers an hour. The
line is barely going out the door now, and revenue is looking great.

One month goes by and again, you’re almost out of business. How can that be?

It turns out that having 12 bartenders is pretty expensive. Even though revenue is high, the costs
are even higher. Throwing more resources at the problem doesn’t really make the bar more efficient.

Alternative 3 – Asynchronous task execution with one bartender

So, we’re back to square one. Let’s think this through and find a smarter way of working instead of
throwing more resources at the problem.

You ask your bartender whether they can start taking new orders while the beer settles so that they’re
never just standing and waiting while there are customers to serve. The opening night comes and...

Wow! On a busy night where the bartender works non-stop for a few hours, you calculate that they now
only use just over 20 seconds on an order. You’ve basically eliminated all the waiting. Your theoretical
throughput is now 240 beers per hour. If you add one more bartender, you’ll have higher throughput
than you did while having 12 bartenders.

However, you realize that you didn’t actually accomplish 240 beers an hour, since orders come
somewhat erratically and not evenly spaced over time. Sometimes, the bartender is busy with a new
order, preventing them from topping up and serving beers that are finished almost immediately. In
real life, the throughput is only 180 beers an hour.

Still, two bartenders could serve 360 beers an hour this way, the same amount that you served while
employing 12 bartenders.

This is good, but you ask yourself whether you can do even better.

Alternative 4 – Parallel and asynchronous task execution with two bartenders

What if you hire two bartenders, and ask them to do just what we described in Alternative 3, but with
one change: you allow them to steal each other’s tasks, so bartender 1 can start pouring and set the
beer down to settle, and bartender 2 can top it up and serve it if bartender 1 is busy pouring a new
order at that time? This way, it is only rarely that both bartenders are busy at the same time as one of
the beers-in-progress becomes ready to get topped up and served. Almost all orders are finished and

Concurrency versus parallelism 11

served in the shortest amount of time possible, letting customers leave the bar with their beer faster
and giving space to customers who want to make a new order.

Now, this way, you can increase throughput even further. You still won’t reach the theoretical maximum,
but you’ll get very close. On the opening night, you realize that the bartenders now process 230 orders
an hour each, giving a total throughput of 460 beers an hour.

Revenue looks good, customers are happy, costs are kept at a minimum, and you’re one happy manager
of the weirdest bar on earth (an extremely efficient bar, though).

The key takeaway
Concurrency is about working smarter. Parallelism is a way of throwing more resources at
the problem.

Concurrency and its relation to I/O

As you might understand from what I’ve written so far, writing async code mostly makes sense when
you need to be smart to make optimal use of your resources.

Now, if you write a program that is working hard to solve a problem, there is often no help in concurrency.
This is where parallelism comes into play, since it gives you a way to throw more resources at the
problem if you can split it into parts that you can work on in parallel.

Consider the following two different use cases for concurrency:

•	 When performing I/O and you need to wait for some external event to occur

•	 When you need to divide your attention and prevent one task from waiting too long

The first is the classic I/O example: you have to wait for a network call, a database query, or something
else to happen before you can progress a task. However, you have many tasks to do so instead of
waiting, you continue to work elsewhere and either check in regularly to see whether the task is ready
to progress, or make sure you are notified when that task is ready to progress.

The second is an example that is often the case when having a UI. Let’s pretend you only have one
core. How do you prevent the whole UI from becoming unresponsive while performing other
CPU-intensive tasks?

Well, you can stop whatever task you’re doing every 16 ms, run the update UI task, and then resume
whatever you were doing afterward. This way, you will have to stop/resume your task 60 times a second,
but you will also have a fully responsive UI that has a roughly 60 Hz refresh rate.

Concurrency and Asynchronous Programming: a Detailed Overview12

What about threads provided by the operating system?

We’ll cover threads a bit more when we talk about strategies for handling I/O later in this book, but
I’ll mention them here as well. One challenge when using OS threads to understand concurrency is
that they appear to be mapped to cores. That’s not necessarily a correct mental model to use, even
though most operating systems will try to map one thread to one core up to the number of threads
equal to the number of cores.

Once we create more threads than there are cores, the OS will switch between our threads and progress
each of them concurrently using its scheduler to give each thread some time to run. You also must
consider the fact that your program is not the only one running on the system. Other programs might
spawn several threads as well, which means there will be many more threads than there are cores on
the CPU.

Therefore, threads can be a means to perform tasks in parallel, but they can also be a means to
achieve concurrency.

This brings me to the last part about concurrency. It needs to be defined in some sort of reference frame.

Choosing the right reference frame

When you write code that is perfectly synchronous from your perspective, stop for a second and
consider how that looks from the operating system perspective.

The operating system might not run your code from start to end at all. It might stop and resume your
process many times. The CPU might get interrupted and handle some inputs while you think it’s only
focused on your task.

So, synchronous execution is only an illusion. But from the perspective of you as a programmer, it’s
not, and that is the important takeaway:

When we talk about concurrency without providing any other context, we are using you as a programmer
and your code (your process) as the reference frame. If you start pondering concurrency without keeping
this in the back of your head, it will get confusing very fast.

The reason I’m spending so much time on this is that once you realize the importance of having the
same definitions and the same reference frame, you’ll start to see that some of the things you hear and
learn that might seem contradictory really are not. You’ll just have to consider the reference frame first.

Asynchronous versus concurrent

So, you might wonder why we’re spending all this time talking about multitasking, concurrency, and
parallelism, when the book is about asynchronous programming.

The main reason for this is that all these concepts are closely related to each other, and can even have
the same (or overlapping) meanings, depending on the context they’re used in.

The role of the operating system 13

In an effort to make the definitions as distinct as possible, we’ll define these terms more narrowly
than you’d normally see. However, just be aware that we can’t please everyone and we do this for our
own sake of making the subject easier to understand. On the other hand, if you fancy heated internet
debates, this is a good place to start. Just claim someone else’s definition of concurrent is 100 % wrong
or that yours is 100 % correct, and off you go.

For the sake of this book, we’ll stick to this definition: asynchronous programming is the way a programming
language or library abstracts over concurrent operations, and how we as users of a language or library
use that abstraction to execute tasks concurrently.

The operating system already has an existing abstraction that covers this, called threads. Using OS
threads to handle asynchrony is often referred to as multithreaded programming. To avoid confusion,
we’ll not refer to using OS threads directly as asynchronous programming, even though it solves the
same problem.

Given that asynchronous programming is now scoped to be about abstractions over concurrent or
parallel operations in a language or library, it’s also easier to understand that it’s just as relevant on
embedded systems without an operating system as it is for programs that target a complex system
with an advanced operating system. The definition itself does not imply any specific implementation
even though we’ll look at a few popular ones throughout this book.

If this still sounds complicated, I understand. Just sitting and reflecting on concurrency is difficult,
but if we try to keep these thoughts in the back of our heads when we work with async code I promise
it will get less and less confusing.

The role of the operating system
The operating system (OS) stands in the center of everything we do as programmers (well, unless you’re
writing an operating system or working in the embedded realm), so there is no way for us to discuss
any kind of fundamentals in programming without talking about operating systems in a bit of detail.

Concurrency from the operating system’s perspective

This ties into what I talked about earlier when I said that concurrency needs to be talked about within
a reference frame, and I explained that the OS might stop and start your process at any time.

What we call synchronous code is, in most cases, code that appears synchronous to us as programmers.
Neither the OS nor the CPU lives in a fully synchronous world.

Operating systems use preemptive multitasking and as long as the operating system you’re running
is preemptively scheduling processes, you won’t have a guarantee that your code runs instruction by
instruction without interruption.

The operating system will make sure that all important processes get some time from the CPU to
make progress.

Concurrency and Asynchronous Programming: a Detailed Overview14

Note
This is not as simple when we’re talking about modern machines with 4, 6, 8, or 12 physical
cores, since you might actually execute code on one of the CPUs uninterrupted if the system
is under very little load. The important part here is that you can’t know for sure and there is
no guarantee that your code will be left to run uninterrupted.

Teaming up with the operating system

When you make a web request, you’re not asking the CPU or the network card to do something for
you – you’re asking the operating system to talk to the network card for you.

There is no way for you as a programmer to make your system optimally efficient without playing to
the strengths of the operating system. You basically don’t have access to the hardware directly. You
must remember that the operating system is an abstraction over the hardware.

However, this also means that to understand everything from the ground up, you’ll also need to know
how your operating system handles these tasks.

To be able to work with the operating system, you’ll need to know how you can communicate with
it, and that’s exactly what we’re going to go through next.

Communicating with the operating system

Communication with an operating system happens through what we call a system call (syscall). We
need to know how to make system calls and understand why it’s so important for us when we want
to cooperate and communicate with the operating system. We also need to understand how the basic
abstractions we use every day use system calls behind the scenes. We’ll have a detailed walkthrough
in Chapter 3, so we’ll keep this brief for now.

A system call uses a public API that the operating system provides so that programs we write in
‘userland’ can communicate with the OS.

Most of the time, these calls are abstracted away for us as programmers by the language or the runtime
we use.

Now, a syscall is an example of something that is unique to the kernel you’re communicating with, but
the UNIX family of kernels has many similarities. UNIX systems expose this through libc.

Windows, on the other hand, uses its own API, often referred to as WinAPI, and it can operate
radically differently from how the UNIX-based systems operate.

Most often, though, there is a way to achieve the same things. In terms of functionality, you might
not notice a big difference but as we’ll see later, and especially when we dig into how epoll, kqueue,
and IOCP work, they can differ a lot in how this functionality is implemented.

The CPU and the operating system 15

However, a syscall is not the only way we interact with our operating system, as we’ll see in the
following section.

The CPU and the operating system
Does the CPU cooperate with the operating system?

If you had asked me this question when I first thought I understood how programs work, I would
most likely have answered no. We run programs on the CPU and we can do whatever we want if we
know how to do it. Now, first of all, I wouldn’t have thought this through, but unless you learn how
CPUs and operating systems work together, it’s not easy to know for sure.

What started to make me think I was very wrong was a segment of code that looked like what you’re
about to see. If you think inline assembly in Rust looks foreign and confusing, don’t worry just yet.
We’ll go through a proper introduction to inline assembly a little later in this book. I’ll make sure to
go through each of the following lines until you get more comfortable with the syntax:

Repository reference: ch01/ac-assembly-dereference/src/main.rs

fn main() {
    let t = 100;
    let t_ptr: *const usize = &t;
    let x = dereference(t_ptr);
    println!("{}", x);
}

fn dereference(ptr: *const usize) -> usize {
    let mut res: usize;
    unsafe {
        asm!("mov {0}, [{1}]", out(reg) res, in(reg) ptr)
    };
    res
}

What you’ve just looked at is a dereference function written in assembly.

The mov {0}, [{1}] line needs some explanation. {0} and {1} are templates that tell the compiler
that we’re referring to the registers that out(reg) and in(reg) represent. The number is just an
index, so if we had more inputs or outputs they would be numbered {2}, {3}, and so on. Since we
only specify reg and not a specific register, we let the compiler choose what registers it wants to use.

The mov instruction instructs the CPU to take the first 8 bytes (if we’re on a 64-bit machine) it gets
when reading the memory location that {1} points to and place that in the register represented by
{0}. The [] brackets will instruct the CPU to treat the data in that register as a memory address,

Concurrency and Asynchronous Programming: a Detailed Overview16

and instead of simply copying the memory address itself to {0}, it will fetch what’s at that memory
location and move it over.

Anyway, we’re just writing instructions to the CPU here. No standard library, no syscall; just raw
instructions. There is no way the OS is involved in that dereference function, right?

If you run this program, you get what you’d expect:

100

Now, if you keep the dereference function but replace the main function with a function that
creates a pointer to the 99999999999999 address, which we know is invalid, we get this function:

fn main() {
    let t_ptr = 99999999999999 as *const usize;
    let x = dereference(t_ptr);
    println!("{}", x);
}

Now, if we run that we get the following results.

This is the result on Linux:

Segmentation fault (core dumped)

This is the result on Windows:

error: process didn't exit successfully: `target\debug\ac-assembly-
dereference.exe` (exit code: 0xc0000005, STATUS_ACCESS_VIOLATION)

We get a segmentation fault. Not surprising, really, but as you also might notice, the error we get is
different on different platforms. Surely, the OS is involved somehow. Let’s take a look at what’s really
happening here.

Down the rabbit hole

It turns out that there is a great deal of cooperation between the OS and the CPU, but maybe not in
the way you would naively think.

Many modern CPUs provide some basic infrastructure that operating systems use. This infrastructure
gives us the security and stability we expect. Actually, most advanced CPUs provide a lot more options
than operating systems such as Linux, BSD, and Windows actually use.

There are two in particular that I want to address here:

•	 How the CPU prevents us from accessing memory we’re not supposed to access

•	 How the CPU handles asynchronous events such as I/O

The CPU and the operating system 17

We’ll cover the first one here and the second in the next section.

How does the CPU prevent us from accessing memory we’re not
supposed to access?

As I mentioned, modern CPU architectures define some basic concepts by design. Some examples
of this are as follows:

•	 Virtual memory

•	 Page table

•	 Page fault

•	 Exceptions

•	 Privilege level

Exactly how this works will differ depending on the specific CPU, so we’ll treat them in general
terms here.

Most modern CPUs have a memory management unit (MMU). This part of the CPU is often etched
on the same dye, even. The MMU’s job is to translate the virtual address we use in our programs to
a physical address.

When the OS starts a process (such as our program), it sets up a page table for our process and makes
sure a special register on the CPU points to this page table.

Now, when we try to dereference t_ptr in the preceding code, the address is at some point sent for
translation to the MMU, which looks it up in the page table to translate it to a physical address in the
memory where it can fetch the data.

In the first case, it will point to a memory address on our stack that holds the value 100.

When we pass in 99999999999999 and ask it to fetch what’s stored at that address (which is what
dereferencing does), it looks for the translation in the page table but can’t find it.

The CPU then treats this as a page fault.

At boot, the OS provided the CPU with an interrupt descriptor table. This table has a predefined
format where the OS provides handlers for the predefined conditions the CPU can encounter.

Since the OS provided a pointer to a function that handles page fault, the CPU jumps to that function
when we try to dereference 99999999999999 and thereby hands over control to the operating system.

The OS then prints a nice message for us, letting us know that we encountered what it calls a segmentation
fault. This message will therefore vary depending on the OS you run the code on.

Concurrency and Asynchronous Programming: a Detailed Overview18

But can’t we just change the page table in the CPU?

Now, this is where the privilege level comes in. Most modern operating systems operate with two ring
levels: ring 0, the kernel space, and ring 3, the user space.

Figure 1.2 – Privilege rings

Most CPUs have a concept of more rings than what most modern operating systems use. This has
historical reasons, which is also why ring 0 and ring 3 are used (and not 1 and 2).

Every entry in the page table has additional information about it. Amongst that information is the
information about which ring it belongs to. This information is set up when your OS boots up.

Code executed in ring 0 has almost unrestricted access to external devices and memory, and is free
to change registers that provide security at the hardware level.

The code you write in ring 3 will typically have extremely restricted access to I/O and certain CPU
registers (and instructions). Trying to issue an instruction or setting a register from ring 3 to change
the page table will be prevented by the CPU. The CPU will then treat this as an exception and jump
to the handler for that exception provided by the OS.

This is also the reason why you have no other choice than to cooperate with the OS and handle I/O
tasks through syscalls. The system wouldn’t be very secure if this wasn’t the case.

So, to sum it up: yes, the CPU and the OS cooperate a great deal. Most modern desktop CPUs are
built with an OS in mind, so they provide the hooks and infrastructure that the OS latches onto
upon bootup. When the OS spawns a process, it also sets its privilege level, making sure that normal
processes stay within the borders it defines to maintain stability and security.

Interrupts, firmware, and I/O 19

Interrupts, firmware, and I/O
We’re nearing the end of the general CS subjects in this book, and we’ll start to dig our way out of
the rabbit hole soon.

This part tries to tie things together and look at how the whole computer works as a system to handle
I/O and concurrency.

Let’s get to it!

A simplified overview

Let’s look at some of the steps where we imagine that we read from a network card:

Remember that we’re simplifying a lot here. This is a rather complex operation but we’ll focus on the
parts that are of most interest to us and skip a few steps along the way.

Step 1 – Our code

We register a socket. This happens by issuing a syscall to the OS. Depending on the OS, we either get
a file descriptor (macOS/Linux) or a socket (Windows).

The next step is that we register our interest in Read events on that socket.

Concurrency and Asynchronous Programming: a Detailed Overview20

Step 2 – Registering events with the OS

This is handled in one of three ways:

1.	 We tell the operating system that we’re interested in Read events but we want to wait for it to
happen by yielding control over our thread to the OS. The OS then suspends our thread
by storing the register state and switches to some other thread

From our perspective, this will be blocking our thread until we have data to read.

2.	 We tell the operating system that we’re interested in Read events but we just want a handle to
a task that we can poll to check whether the event is ready or not.

The OS will not suspend our thread, so this will not block our code.

3.	 We tell the operating system that we are probably going to be interested in many events, but
we want to subscribe to one event queue. When we poll this queue, it will block our thread
until one or more events occur.

This will block our thread while we wait for events to occur.

Chapters 3 and 4 will go into detail about the third method, as it’s the most used method for modern
async frameworks to handle concurrency.

Step 3 – The network card

We’re skipping some steps here, but I don’t think they’re vital to our understanding.

On the network card, there is a small microcontroller running specialized firmware. We can imagine
that this microcontroller is polling in a busy loop, checking whether any data is incoming.

The exact way the network card handles its internals is a little different from what I suggest here, and
will most likely vary from vendor to vendor. The important part is that there is a very simple but
specialized CPU running on the network card doing work to check whether there are incoming events.

Once the firmware registers incoming data, it issues a hardware interrupt.

Step 4 – Hardware interrupt

A modern CPU has a set of interrupt request line (IRQs) for it to handle events that occur from
external devices. A CPU has a fixed set of interrupt lines.

A hardware interrupt is an electrical signal that can occur at any time. The CPU immediately interrupts
its normal workflow to handle the interrupt by saving the state of its registers and looking up the
interrupt handler. The interrupt handlers are defined in the interrupt descriptor table (IDT).

Interrupts, firmware, and I/O 21

Step 5 – Interrupt handler

The IDT is a table where the OS (or a driver) registers handlers for different interrupts that may occur.
Each entry points to a handler function for a specific interrupt. The handler function for a network
card would typically be registered and handled by a driver for that card.

Note
The IDT is not stored on the CPU as it might seem in Figure 1.3. It’s located in a fixed and known
location in the main memory. The CPU only holds a pointer to the table in one of its registers.

Step 6 – Writing the data

This is a step that might vary a lot depending on the CPU and the firmware on the network card. If
the network card and the CPU support direct memory access (DMA), which should be the standard
on all modern systems today, the network card will write data directly to a set of buffers that the OS
already has set up in the main memory.

In such a system, the firmware on the network card might issue an interrupt when the data is written to
memory. DMA is very efficient, since the CPU is only notified when the data is already in memory. On
older systems, the CPU needed to devote resources to handle the data transfer from the network card.

The direct memory access controller (DMAC) is added to the diagram since in such a system, it
would control the access to memory. It’s not part of the CPU as indicated in the previous diagram. We’re
deep enough in the rabbit hole now, and exactly where the different parts of a system are is not really
important to us right now, so let’s move on.

Step 7 – The driver

The driver would normally handle the communication between the OS and the network card. At
some point, the buffers are filled and the network card issues an interrupt. The CPU then jumps to
the handler of that interrupt. The interrupt handler for this exact type of interrupt is registered by
the driver, so it’s actually the driver that handles this event and, in turn, informs the kernel that the
data is ready to be read.

Step 8 – Reading the data

Depending on whether we chose method 1, 2, or 3, the OS will do as follows:

•	 Wake our thread

•	 Return Ready on the next poll

•	 Wake the thread and return a Read event for the handler we registered

Concurrency and Asynchronous Programming: a Detailed Overview22

Interrupts

As you know by now, there are two kinds of interrupts:

•	 Hardware interrupts

•	 Software interrupts

They are very different in nature.

Hardware interrupts

Hardware interrupts are created by sending an electrical signal through an IRQ. These hardware lines
signal the CPU directly.

Software interrupts

These are interrupts issued from software instead of hardware. As in the case of a hardware interrupt,
the CPU jumps to the IDT and runs the handler for the specified interrupt.

Firmware

Firmware doesn’t get much attention from most of us; however, it’s a crucial part of the world we
live in. It runs on all kinds of hardware and has all kinds of strange and peculiar ways to make the
computers we program on work.

Now, the firmware needs a microcontroller to be able to work. Even the CPU has firmware that makes it
work. That means there are many more small ‘CPUs’ on our system than the cores we program against.

Why is this important? Well, you remember that concurrency is all about efficiency, right? Since we
have many CPUs/microcontrollers already doing work for us on our system, one of our concerns is
to not replicate or duplicate that work when we write code.

If a network card has firmware that continually checks whether new data has arrived, it’s pretty wasteful
if we duplicate that by letting our CPU continually check whether new data arrives as well. It’s much
better if we either check once in a while, or even better, get notified when data has arrived.

Summary 23

Summary
This chapter covered a lot of ground, so good job on doing all that legwork. We learned a little bit about
how CPUs and operating systems have evolved from a historical perspective and the difference between
non-preemptive and preemptive multitasking. We discussed the difference between concurrency
and parallelism, talked about the role of the operating system, and learned that system calls are the
primary way for us to interact with the host operating system. You’ve also seen how the CPU and the
operating system cooperate through an infrastructure designed as part of the CPU.

Lastly, we went through a diagram on what happens when you issue a network call. You know there
are at least three different ways for us to deal with the fact that the I/O call takes some time to execute,
and we have to decide which way we want to handle that waiting time.

This covers most of the general background information we need so that we have the same definitions
and overview before we go on. We’ll go into more detail as we progress through the book, and the
first topic that we’ll cover in the next chapter is how programming languages model asynchronous
program flow by looking into threads, coroutines and futures.

2
How Programming

Languages Model
Asynchronous Program Flow

In the previous chapter, we covered asynchronous program flow, concurrency, and parallelism in
general terms. In this chapter, we’ll narrow our scope. Specifically, we’ll look into different ways to
model and deal with concurrency in programming languages and libraries.

It’s important to keep in mind that threads, futures, fibers, goroutines, promises, etc. are abstractions
that give us a way to model an asynchronous program flow. They have different strengths and
weaknesses, but they share a goal of giving programmers an easy-to-use (and importantly, hard to
misuse), efficient, and expressive way of creating a program that handles tasks in a non-sequential,
and often unpredictable, order.

The lack of precise definitions is prevalent here as well; many terms have a name that stems from a
concrete implementation at some point in time but has later taken on a more general meaning that
encompasses different implementations and varieties of the same thing.

We’ll first go through a way of grouping different abstractions together based on their similarities before
we go on to discuss the pros and cons of each of them. We’ll also go through important definitions
that we’ll use throughout the book and discuss OS threads in quite some detail.

The topics we discuss here are quite abstract and complicated so don’t feel bad if you don’t understand
everything immediately. As we progress through the book and you get used to the different terms and
techniques by working through some examples, more and more pieces will fall into place.

Specifically, the following topics will be covered:

•	 Definitions

•	 Threads provided by the operating system

•	 Green threads/stackfull coroutines/fibers

How Programming Languages Model Asynchronous Program Flow26

•	 Callback based approaches

•	 Promises, futures, and async/await

Definitions
We can broadly categorize abstractions over concurrent operations into two groups:

1.	 Cooperative: These are tasks that yield voluntarily either by explicitly yielding or by calling
a function that suspends the task when it can’t progress further before another operation has
finished (such as making a network call). Most often, these tasks yield to a scheduler of some
sort. Examples of this are tasks generated by async/await in Rust and JavaScript.

2.	 Non-cooperative: Tasks that don’t necessarily yield voluntarily. In such a system, the scheduler
must be able to pre-empt a running task, meaning that the scheduler can stop the task and
take control over the CPU even though the task would have been able to do work and progress.
Examples of this are OS threads and Goroutines (after GO version 1.14).

Figure 2.1 – Non-cooperative vs. cooperative multitasking

Definitions 27

Note
In a system where the scheduler can pre-empt running tasks, tasks can also yield voluntarily
as they do in a cooperative system, and it’s rare with a system that only relies on pre-emption.

We can further divide these abstractions into two broad categories based on the characteristics of
their implementation:

1.	 Stackful: Each task has its own call stack. This is often implemented as a stack that’s similar to
the stack used by the operating system for its threads. Stackful tasks can suspend execution at
any point in the program as the whole stack is preserved.

2.	 Stackless: There is not a separate stack for each task; they all run sharing the same call stack. A
task can’t be suspended in the middle of a stack frame, limiting the runtime’s ability to pre-empt
the task. However, they need to store/restore less information when switching between tasks
so they can be more efficient.

There are more nuances to these two categories that you’ll get a deep understanding of when we
implement an example of both a stackful coroutine (fiber) and a stackless coroutine (Rust futures
generated by async/await) later in the book. For now, we keep the details to a minimum to just
provide an overview.

Threads

We keep referring to threads all throughout this book, so before we get too far in, let’s stop and give
“thread” a good definition since it’s one of those fundamental terms that causes a lot of confusion.

In the most general sense, a thread refers to a thread of execution, meaning a set of instructions that
need to be executed sequentially. If we tie this back to the first chapter of this book, where we provided
several definitions under the Concurrency vs. Parallelism subsection, a thread of execution is similar
to what we defined as a task with multiple steps that need resources to progress.

The generality of this definition can be a cause of some confusion. A thread to one person can obviously
refer to an OS thread, and to another person, it can simply refer to any abstraction that represents a
thread of execution on a system.

Threads are often divided into two broad categories:

•	 OS threads: These threads are created by the OS and managed by the OS scheduler. On Linux,
this is known as a kernel thread.

•	 User-level threads: These threads are created and managed by us as programmers without the
OS knowing about them.

Now, this is where things get a bit tricky: OS threads on most modern operating systems have a lot
of similarities. Some of these similarities are dictated by the design of modern CPUs. One example

How Programming Languages Model Asynchronous Program Flow28

of this is that most CPUs assume that there is a stack it can perform operations on and that it has a
register for the stack pointer and instructions for stack manipulation.

User-level threads can, in their broadest sense, refer to any implementation of a system (runtime) that
creates and schedules tasks, and you can’t make the same assumptions as you do with OS threads.
They can closely resemble OS threads by using separate stacks for each task, as we’ll see in Chapter 5
when we go through our fiber/green threads example, or they can be radically different in nature, as
we’ll see when we go through how Rust models concurrent operations later on in Part 3 of this book.

No matter the definition, a set of tasks needs something that manages them and decides who gets
what resources to progress. The most obvious resource on a computer system that all tasks need to
progress is CPU time. We call the “something” that decides who gets CPU time to progress a scheduler.

Most likely, when someone refers to a “thread” without adding extra context, they refer to an OS
thread/kernel thread, so that’s what we’ll do going forward.

I’ll also keep referring to a thread of execution as simply a task. I find the topic of asynchronous
programming easier to reason about when we limit the use of terms that have different assumptions
associated with them depending on the context as much as possible.

With that out of the way, let’s go through some defining characteristics of OS threads while we also
highlight their limitations.

Important!
Definitions will vary depending on what book or article you read. For example, if you read about
how a specific operating system works, you might see that processes or threads are abstractions
that represent “tasks”, which will seem to contradict the definitions we use here. As I mentioned
earlier, the choice of reference frame is important, and it’s why we take so much care to define
the terms we use thoroughly as we encounter them throughout the book.

The definition of a thread can also vary by operating system, even though most popular systems
share a similar definition today. Most notably, Solaris (pre-Solaris 9, which was released in
2002) used to have a two-level thread system that differentiated between application threads,
lightweight processes, and kernel threads. This was an implementation of what we call M:N
threading, which we’ll get to know more about later in this book. Just beware that if you read
older material, the definition of a thread in such a system might differ significantly from the
one that’s commonly used today.

Now that we’ve gone through the most important definitions for this chapter, it’s time to talk more
about the most popular ways of handling concurrency when programming.

Threads provided by the operating system 29

Threads provided by the operating system

Note!
We call this 1:1 threading. Each task is assigned one OS thread.

Since this book will not focus specifically on OS threads as a way to handle concurrency going
forward, we treat them more thoroughly here.

Let’s start with the obvious. To use threads provided by the operating system, you need, well, an
operating system. Before we discuss the use of threads as a means to handle concurrency, we need to
be clear about what kind of operating systems we’re talking about since they come in different flavors.

Embedded systems are more widespread now than ever before. This kind of hardware might not
have the resources for an operating system, and if they do, you might use a radically different kind
of operating system tailored to your needs, as the systems tend to be less general purpose and more
specialized in nature.

Their support for threads, and the characteristics of how they schedule them, might be different from
what you’re used to in operating systems such as Windows or Linux.

Since covering all the different designs is a book on its own, we’ll limit the scope to talk about treads,
as they’re used in Windows and Linux-based systems running on popular desktop and server CPUs.

OS threads are simple to implement and simple to use. We simply let the OS take care of everything
for us. We do this by spawning a new OS thread for each task we want to accomplish and write code
as we normally would.

The runtime we use to handle concurrency for us is the operating system itself. In addition to these
advantages, you get parallelism for free. However, there are also some drawbacks and complexities
resulting from directly managing parallelism and shared resources.

Creating new threads takes time

Creating a new OS thread involves some bookkeeping and initialization overhead, so while switching
between two existing threads in the same process is pretty fast, creating new ones and discarding ones
you don’t use anymore involves work that takes time. All the extra work will limit throughput if a
system needs to create and discard a lot of them. This can be a problem if you have huge amounts of
small tasks that need to be handled concurrently, which often is the case when dealing with a lot of I/O.

Each thread has its own stack

We’ll cover stacks in detail later in this book, but for now, it’s enough to know that they occupy a fixed
size of memory. Each OS thread comes with its own stack, and even though many systems allow this size

How Programming Languages Model Asynchronous Program Flow30

to be configured, they’re still fixed in size and can’t grow or shrink. They are, after all, the cause of stack
overflows, which will be a problem if you configure them to be too small for the tasks you’re running.

If we have many small tasks that only require a little stack space but we reserve much more than we
need, we will occupy large amounts of memory and possibly run out of it.

Context switching

As you now know, threads and schedulers are tightly connected. Context switching happens when the
CPU stops executing one thread and proceeds with another one. Even though this process is highly
optimized, it still involves storing and restoring the register state, which takes time. Every time that
you yield to the OS scheduler, it can choose to schedule a thread from a different process on that CPU.

You see, threads created by these systems belong to a process. When you start a program, it starts a
process, and the process creates at least one initial thread where it executes the program you’ve written.
Each process can spawn multiple threads that share the same address space.

That means that threads within the same process can access shared memory and can access the same
resources, such as files and file handles. One consequence of this is that when the OS switches contexts
by stopping one thread and resuming another within the same process, it doesn’t have to save and
restore all the state associated with that process, just the state that’s specific to that thread.

On the other hand, when the OS switches from a thread associated with one process to a thread
associated with another, the new process will use a different address space, and the OS needs to take
measures to make sure that process “A” doesn’t access data or resources that belong to process “B”. If
it didn’t, the system wouldn’t be secure.

The consequence is that caches might need to be flushed and more state might need to be saved and
restored. In a highly concurrent system under load, these context switches can take extra time and
thereby limit the throughput in a somewhat unpredictable manner if they happen frequently enough.

Scheduling

The OS can schedule tasks differently than you might expect, and every time you yield to the OS, you’re
put in the same queue as all other threads and processes on the system.

Moreover, since there is no guarantee that the thread will resume execution on the same CPU core as it
left off or that two tasks won’t run in parallel and try to access the same data, you need to synchronize
data access to prevent data races and other pitfalls associated with multicore programming.

Rust as a language will help you prevent many of these pitfalls, but synchronizing data access will
require extra work and add to the complexity of such programs. We often say that using OS threads
to handle concurrency gives us parallelism for free, but it isn’t free in terms of added complexity and
the need for proper data access synchronization.

Threads provided by the operating system 31

The advantage of decoupling asynchronous operations from OS
threads

Decoupling asynchronous operations from the concept of threads has a lot of benefits.

First of all, using OS threads as a means to handle concurrency requires us to use what essentially is
an OS abstraction to represent our tasks.

Having a separate layer of abstraction to represent concurrent tasks gives us the freedom to choose how
we want to handle concurrent operations. If we create an abstraction over concurrent operations such
as a future in Rust, a promise in JavaScript, or a goroutine in GO, it is up to the runtime implementor
to decide how these concurrent tasks are handled.

A runtime could simply map each concurrent operation to an OS thread, they could use fibers/green
threads or state machines to represent the tasks. The programmer that writes the asynchronous
code will not necessarily have to change anything in their code if the underlying implementation
changes. In theory, the same asynchronous code could be used to handle concurrent operations on a
microcontroller without an OS if there’s just a runtime for it.

To sum it up, using threads provided by the operating system to handle concurrency has the
following advantages:

•	 Simple to understand

•	 Easy to use

•	 Switching between tasks is reasonably fast

•	 You get parallelism for free

However, they also have a few drawbacks:

•	 OS-level threads come with a rather large stack. If you have many tasks waiting simultaneously
(as you would in a web server under heavy load), you’ll run out of memory pretty fast.

•	 Context switching can be costly and you might get an unpredictable performance since you
let the OS do all the scheduling.

•	 The OS has many things it needs to handle. It might not switch back to your thread as fast as
you’d wish.

•	 It is tightly coupled to an OS abstraction. This might not be an option on some systems.

Example

Since we’ll not spend more time talking about OS threads in this book, we’ll go through a short example
so you can see how they’re used:

How Programming Languages Model Asynchronous Program Flow32

ch02/aa-os-threads

use std::thread::{self, sleep};

fn main() {
    println!("So, we start the program here!");
    let t1 = thread::spawn(move || {
        sleep(std::time::Duration::from_millis(200));
        println!("The long running tasks finish last!");
    });

    let t2 = thread::spawn(move || {
        sleep(std::time::Duration::from_millis(100));
        println!("We can chain callbacks...");
        let t3 = thread::spawn(move || {
            sleep(std::time::Duration::from_millis(50));
            println!("...like this!");
        });
        t3.join().unwrap();
    });
    println!("The tasks run concurrently!");

    t1.join().unwrap();
    t2.join().unwrap();
}

In this example, we simply spawn several OS threads and put them to sleep. Sleeping is essentially the
same as yielding to the OS scheduler with a request to be re-scheduled to run after a certain time has
passed. To make sure our main thread doesn’t finish and exit (which will exit the process) before our
children thread has had time to run we join them at the end of our main function.

If we run the example, we’ll see how the operations occur in a different order based on how long we
yielded each thread to the scheduler:

So, we start the program here!
The tasks run concurrently!
We can chain callbacks...
...like this!
The long-running tasks finish last!

So, while using OS threads is great for a number of tasks, we also outlined a number of good reasons
to look at alternatives by discussing their limitations and downsides. The first alternatives we’ll look
at are what we call fibers and green threads.

Fibers and green threads 33

Fibers and green threads

Note!
This is an example of M:N threading. Many tasks can run concurrently on one OS thread.
Fibers and green threads are often referred to as stackful coroutines.

The name “green threads” originally stems from an early implementation of an M:N threading model
used in Java and has since been associated with different implementations of M:N threading. You
will encounter different variations of this term, such as “green processes” (used in Erlang), which are
different from the ones we discuss here. You’ll also see some that define green threads more broadly
than we do here.

The way we define green threads in this book makes them synonymous with fibers, so both terms
refer to the same thing going forward.

The implementation of fibers and green threads implies that there is a runtime with a scheduler that’s
responsible for scheduling what task (M) gets time to run on the OS thread (N). There are many more
tasks than there are OS threads, and such a system can run perfectly fine using only one OS thread.
The latter case is often referred to as M:1 threading.

Goroutines is an example of a specific implementation of stackfull coroutines, but it comes with slight
nuances. The term “coroutine” usually implies that they’re cooperative in nature, but Goroutines can
be pre-empted by the scheduler (at least since version 1.14), thereby landing them in somewhat of a
grey area using the categories we present here.

Green threads and fibers use the same mechanisms as an OS, setting up a stack for each task, saving
the CPU’s state, and jumping from one task(thread) to another by doing a context switch.

We yield control to the scheduler (which is a central part of the runtime in such a system), which then
continues running a different task.

The state of execution is stored in each stack, so in such a solution, there would be no need for async,
await, Future, or Pin. In many ways, green threads mimic how an operating system facilitates
concurrency, and implementing them is a great learning experience.

A runtime using fibers/green threads for concurrent tasks can have a high degree of flexibility. Tasks
can, for example, be pre-empted and context switched at any time and at any point in their execution,
so a long-running task that hogs the CPU could in theory be pre-empted by the runtime, acting
as a safeguard from having tasks that end up blocking the whole system due to an edge-case or a
programmer error.

This gives the runtime scheduler almost the same capabilities as the OS scheduler, which is one of the
biggest advantages of systems using fibers/green threads.

How Programming Languages Model Asynchronous Program Flow34

The typical flow goes as follows:

•	 You run some non-blocking code

•	 You make a blocking call to some external resource

•	 The CPU jumps to the main thread, which schedules a different thread to run and jumps to
that stack

•	 You run some non-blocking code on the new thread until a new blocking call or the task is finished

•	 The CPU jumps back to the main thread, schedules a new thread that is ready to make progress,
and jumps to that thread

Figure 2.2 – Program flow using fibers/green threads

Each stack has a fixed space

As fibers and green threads are similar to OS threads, they do have some of the same drawbacks as
well. Each task is set up with a stack of a fixed size, so you still have to reserve more space than you
actually use. However, these stacks can be growable, meaning that once the stack is full, the runtime
can grow the stack. While this sounds easy, it’s a rather complicated problem to solve.

We can’t simply grow a stack as we grow a tree. What actually needs to happen is one of two things:

1.	 You allocate a new piece of continuous memory and handle the fact that your stack is spread
over two disjointed memory segments

2.	 You allocate a new larger stack (for example, twice the size of the previous stack), move all your
data over to the new stack, and continue from there

Fibers and green threads 35

The first solution sounds pretty simple, as you can leave the original stack as it is, and you can basically
context switch over to the new stack when needed and continue from there. However, modern CPUs
can work extremely fast if they can work on a contiguous piece of memory due to caching and their
ability to predict what data your next instructions are going to work on. Spreading the stack over two
disjointed pieces of memory will hinder performance. This is especially noticeable when you have a
loop that happens to be just at the stack boundary, so you end up making up to two context switches
for each iteration of the loop.

The second solution solves the problems with the first solution by having the stack as a contiguous
piece of memory, but it comes with some problems as well.

First, you need to allocate a new stack and move all the data over to the new stack. But what happens
with all pointers and references that point to something located on the stack when everything moves
to a new location? You guessed it: every pointer and reference to anything located on the stack needs
to be updated so they point to the new location. This is complex and time-consuming, but if your
runtime already includes a garbage collector, you already have the overhead of keeping track of all
your pointers and references anyway, so it might be less of a problem than it would for a non-garbage
collected program. However, it does require a great deal of integration between the garbage collector
and the runtime to do this every time the stack grows, so implementing this kind of runtime can get
very complicated.

Secondly, you have to consider what happens if you have a lot of long-running tasks that only require
a lot of stack space for a brief period of time (for example, if it involves a lot of recursion at the start
of the task) but are mostly I/O bound the rest of the time. You end up growing your stack many times
over only for one specific part of that task, and you have to make a decision whether you will accept
that the task occupies more space than it needs or at some point move it back to a smaller stack. The
impact this will have on your program will of course vary greatly based on the type of work you do,
but it’s still something to be aware of.

Context switching

Even though these fibers/green threads are lightweight compared to OS threads, you still have to save
and restore registers at every context switch. This likely won’t be a problem most of the time, but when
compared to alternatives that don’t require context switching, it can be less efficient.

Context switching can also be pretty complex to get right, especially if you intend to support many
different platforms.

Scheduling

When a fiber/green thread yields to the runtime scheduler, the scheduler can simply resume execution
on a new task that’s ready to run. This means that you avoid the problem of being put in the same run
queue as every other task in the system every time you yield to the scheduler. From the OS perspective,
your threads are busy doing work all the time, so it will try to avoid pre-empting them if it can.

How Programming Languages Model Asynchronous Program Flow36

One unexpected downside of this is that most OS schedulers make sure all threads get some time to
run by giving each OS thread a time slice where it can run before the OS pre-empties the thread and
schedules a new thread on that CPU. A program using many OS threads might be allotted more time
slices than a program with fewer OS threads. A program using M:N threading will most likely only
use a few OS threads (one thread per CPU core seems to be the starting point on most systems). So,
depending on whatever else is running on the system, your program might be allotted fewer time
slices in total than it would be using many OS threads. However, with the number of cores available
on most modern CPUs and the typical workload on concurrent systems, the impact from this should
be minimal.

FFI

Since you create your own stacks that are supposed to grow/shrink under certain conditions and might
have a scheduler that assumes it can pre-empt running tasks at any point, you will have to take extra
measures when you use FFI. Most FFI functions will assume a normal OS-provided C-stack, so it
will most likely be problematic to call an FFI function from a fiber/green thread. You need to notify
the runtime scheduler, context switch to a different OS thread, and have some way of notifying the
scheduler that you’re done and the fiber/green thread can continue. This naturally creates overhead
and added complexity both for the runtime implementor and the user making the FFI call.

Advantages

•	 It is simple to use for the user. The code will look like it does when using OS threads.

•	 Context switching is reasonably fast.

•	 Abundant memory usage is less of a problem when compared to OS threads.

•	 You are in full control over how tasks are scheduled and if you want you can prioritize them
as you see fit.

•	 It’s easy to incorporate pre-emption, which can be a powerful feature.

Drawbacks

•	 Stacks need a way to grow when they run out of space creating additional work and complexity

•	 You still need to save the CPU state on every context switch

•	 It’s complicated to implement correctly if you intend to support many platforms and/or
CPU architectures

•	 FFI can have a lot of overhead and add unexpected complexity

Callback based approaches 37

Callback based approaches

Note!
This is another example of M:N threading. Many tasks can run concurrently on one OS thread.
Each task consists of a chain of callbacks.

You probably already know what we’re going to talk about in the next paragraphs from JavaScript,
which I assume most know.

The whole idea behind a callback-based approach is to save a pointer to a set of instructions we want
to run later together with whatever state is needed. In Rust, this would be a closure.

Implementing callbacks is relatively easy in most languages. They don’t require any context switching
or pre-allocated memory for each task.

However, representing concurrent operations using callbacks requires you to write the program in a
radically different way from the start. Re-writing a program that uses a normal sequential program
flow to one using callbacks represents a substantial rewrite, and the same goes the other way.

Callback-based concurrency can be hard to reason about and can become very complicated to
understand. It’s no coincidence that the term “callback hell” is something most JavaScript developers
are familiar with.

Since each sub-task must save all the state it needs for later, the memory usage will grow linearly with
the number of callbacks in a task.

Advantages

•	 Easy to implement in most languages

•	 No context switching

•	 Relatively low memory overhead (in most cases)

Drawbacks

•	 Memory usage grows linearly with the number of callbacks.

•	 Programs and code can be hard to reason about.

•	 It’s a very different way of writing programs and it will affect almost all aspects of the program
since all yielding operations require one callback.

•	 Ownership can be hard to reason about. The consequence is that writing callback-based
programs without a garbage collector can become very difficult.

How Programming Languages Model Asynchronous Program Flow38

•	 Sharing state between tasks is difficult due to the complexity of ownership rules.

•	 Debugging callbacks can be difficult.

Coroutines: promises and futures

Note!
This is another example of M:N threading. Many tasks can run concurrently on one OS thread.
Each task is represented as a state machine.

Promises in JavaScript and futures in Rust are two different implementations that are based on the
same idea.

There are differences between different implementations, but we’ll not focus on those here. It’s worth
explaining promises a bit since they’re widely known due to their use in JavaScript. Promises also
have a lot in common with Rust’s futures.

First of all, many languages have a concept of promises, but I’ll use the one from JavaScript in the
following examples.

Promises are one way to deal with the complexity that comes with a callback-based approach.

Instead of:

setTimer(200, () => {
  setTimer(100, () => {
    setTimer(50, () => {
      console.log("I'm the last one");
    });
  });
});

We can do:

function timer(ms) {
    return new Promise((resolve) => setTimeout(resolve, ms));
}

timer(200)
.then(() => timer(100))
.then(() => timer(50))
.then(() => console.log("I'm the last one"));

Coroutines: promises and futures 39

The latter approach is also referred to as the continuation-passing style. Each subtask calls a new
one once it’s finished.

The difference between callbacks and promises is even more substantial under the hood. You see, promises
return a state machine that can be in one of three states: pending, fulfilled, or rejected.

When we call timer(200) in the previous example, we get back a promise in the pending state.

Now, the continuation-passing style does fix some of the issues related to callbacks, but it still retains
a lot of them when it comes to complexity and the different ways of writing programs. However,
they enable us to leverage the compiler to solve a lot of these problems, which we’ll discuss in the
next paragraph.

Coroutines and async/await

Coroutines come in two flavors: asymmetric and symmetric. Asymmetric coroutines yields to a
scheduler, and they’re the ones we’ll focus on. Symmetric coroutines yield a specific destination; for
example, a different coroutine.

While coroutines are a pretty broad concept in general, the introduction of coroutines as objects
in programming languages is what really makes this way of handling concurrency rival the ease of
use that OS threads and fibers/green threads are known for.

You see when you write async in Rust or JavaScript, the compiler re-writes what looks like a normal
function call into a future (in the case of Rust) or a promise (in the case of JavaScript). Await, on
the other hand, yields control to the runtime scheduler, and the task is suspended until the future/
promise you’re awaiting has finished.

This way, we can write programs that handle concurrent operations in almost the same way we write
our normal sequential programs.

Our JavaScript program can now be written as follows:

async function run() {
    await timer(200);
    await timer(100);
    await timer(50);
    console.log("I'm the last one");
}

You can consider the run function as a pausable task consisting of several sub-tasks. On each “await”
point, it yields control to the scheduler (in this case, it’s the well-known JavaScript event loop).

Once one of the sub-tasks changes state to either fulfilled or rejected, the task is scheduled
to continue to the next step.

How Programming Languages Model Asynchronous Program Flow40

When using Rust, you can see the same transformation happening with the function signature when
you write something such as this:

async fn run() -> () { … }

The function wraps the return object, and instead of returning the type (), it returns a Future with
an output type of ():

Fn run() -> impl Future<Output = ()>

Syntactically, Rust’s futures 0.1 was a lot like the promise example we just showed, and the Rust futures
we use today have a lot in common with how async/await works in JavaScript..

This way of rewriting what look like normal functions and code into something else has a lot of
benefits, but it’s not without its drawbacks.

As with any stackless coroutine implementation, full pre-emption can be hard, or impossible, to
implement. These functions have to yield at specific points, and there is no way to suspend execution
in the middle of a stack frame in contrast to fibers/green threads. Some level of pre-emption is possible
by having the runtime or compiler insert pre-emption points at every function call, for example, but
it’s not the same as being able to pre-empt a task at any point during its execution.

Pre-emption points
Pre-emption points can be thought of as inserting code that calls into the scheduler and asks
it if it wishes to pre-empt the task. These points can be inserted by the compiler or the library
you use before every new function call for example.

Furthermore, you need compiler support to make the most out of it. Languages that have metaprogramming
abilities (such as macros) can emulate much of the same, but this will still not be as seamless as it will
when the compiler is aware of these special async tasks.

Debugging is another area where care must be taken when implementing futures/promises. Since the
code is re-written as state machines (or generators), you won’t have the same stack traces as you do
with normal functions. Usually, you can assume that the caller of a function is what precedes it both
in the stack and in the program flow. For futures and promises, it might be the runtime that calls the
function that progresses the state machine, so there might not be a good backtrace you can use to see
what happened before calling the function that failed. There are ways to work around this, but most
of them will incur some overhead.

Advantages

•	 You can write code and model programs the same way you normally would

•	 No context switching

Summary 41

•	 It can be implemented in a very memory-efficient way

•	 It’s easy to implement for various platforms

Drawbacks

•	 Pre-emption can be hard, or impossible, to fully implement, as the tasks can’t be stopped in
the middle of a stack frame

•	 It needs compiler support to leverage its full advantages

•	 Debugging can be difficult both due to the non-sequential program flow and the limitations
on the information you get from the backtraces.

Summary
You’re still here? That’s excellent! Good job on getting through all that background information. I
know going through text that describes abstractions and code can be pretty daunting, but I hope you
see why it’s so valuable for us to go through these higher-level topics now at the start of the book.
We’ll get to the examples soon. I promise!

In this chapter, we went through a lot of information on how we can model and handle asynchronous
operations in programming languages by using both OS-provided threads and abstractions provided
by a programming language or a library. While it’s not an extensive list, we covered some of the most
popular and widely used technologies while discussing their advantages and drawbacks.

We spent quite some time going in-depth on threads, coroutines, fibers, green threads, and callbacks,
so you should have a pretty good idea of what they are and how they’re different from each other.

The next chapter will go into detail about how we do system calls and create cross-platform abstractions
and what OS-backed event queues such as Epoll, Kqueue, and IOCP really are and why they’re
fundamental to most async runtimes you’ll encounter out in the wild.

3
Understanding OS-Backed

Event Queues, System
Calls, and Cross-Platform

Abstractions

In this chapter, we’ll take a look at how an OS-backed event queue works and how three different
operating systems handle this task in different ways. The reason for going through this is that most
async runtimes I know of use OS-backed event queues such as this as a fundamental part of achieving
high-performance I/O. You’ll most likely hear references to these frequently when reading about how
async code really works.

Event queues based on the technology we discuss in this chapter is used in many popular libraries like:

•	 mio (https://github.com/tokio-rs/mio), a key part of popular runtimes like Tokio

•	 polling (https://github.com/smol-rs/polling), the event queue used in Smol
and async-std

•	 libuv (https://libuv.org/), the library used to create the event queue used in Node.js
(a JavaScript runtime) and the Julia programming language

•	 C# for its asynchronous network calls

•	 Boost.Asio, a library for asynchronous network I/O for C++

All our interactions with the host operating system are done through system calls (syscalls). To make
a system call using Rust, we need to know how to use Rust’s foreign function interface (FFI).

In addition to knowing how to use FFI and make syscalls, we need to cover cross-platform abstractions.
When creating an event queue, whether you create it yourself or use a library, you’ll notice that the

https://github.com/tokio-rs/mio
https://github.com/smol-rs/polling
https://libuv.org/

Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions44

abstractions might seem a bit unintuitive if you only have a high-level overview of how, for example,
IOCP works on Windows. The reason for this is that these abstractions need to provide one API that
covers the fact that different operating systems handle the same task differently. This process often
involves identifying a common denominator between the platforms and building a new abstraction
on top of that.

Instead of using a rather complex and lengthy example to explain FFI, syscalls, and cross-platform
abstractions, we’ll ease into the topic using a simple example. When we encounter these concepts later
on, we’ll already know these subjects well enough, so we’re well prepared for the more interesting
examples in the following chapters.

In this chapter, we’ll go through the following main topics:

•	 Why use an OS-backed event queue?

•	 Readiness-based event queues

•	 Completion-based event queues

•	 epoll

•	 kqueue

•	 IOCP

•	 Syscalls, FFI, and cross-platform abstractions

Note
There are popular, although lesser-used, alternatives you should know about even though we
don’t cover them here:

wepoll: This uses specific APIs on Windows and wraps IOCP so it closely resembles how epoll
works on Linux in contrast to regular IOCP. This makes it easier to create an abstraction layer
with the same API on top of the two different technologies. It’s used by both libuv and mio .

io_uring: This is a relatively new API on Linux with many similarities to IOCP on Windows.

I’m pretty confident that after you’ve gone through the next two chapters, you will have an easy
time reading up on these if you want to learn more about them.

Technical requirements
This chapter doesn’t require you to set up anything new, but since we’re writing some low-level code
for three different platforms, you need access to these platforms if you want to run all the examples.

The best way to follow along is to open the accompanying repository on your computer and navigate
to the ch03 folder.

Why use an OS-backed event queue? 45

This chapter is a little special since we build some basic understanding from the ground up, which
means some of it is quite low-level and requires a specific operating system and CPU family to run.
Don’t worry; I’ve chosen the most used and popular CPU, so this shouldn’t be a problem, but it is
something you need to be aware of.

The machine must use a CPU using the x86-64 instruction set on Windows and Linux. Intel and
AMD desktop CPUs use this architecture, but if you run Linux (or WSL) on a machine using an ARM
processor you might encounter issues with some of the examples using inline assembly. On macOS,
the example in the book targets the newer M-family of chips, but the repository also contains examples
targeting the older Intel-based Macs.

Unfortunately, some examples targeting specific platforms require that specific operating system to run.
However, this will be the only chapter where you need access to three different platforms to run all the
examples. Going forward, we’ll create examples that will run on all platforms either natively or using
Windows Subsystem for Linux (WSL), but to understand the basics of cross-platform abstractions,
we need to actually create examples that target these different platforms.

Running the Linux examples

If you don’t have a Linux machine set up, you can run the Linux example on the Rust Playground, or
if you’re on a Windows system, my suggestion is to set up WSL and run the code there. You can find
the instructions on how to do that at https://learn.microsoft.com/en-us/windows/
wsl/install. Remember, you have to install Rust in the WSL environment as well, so follow the
instructions in the Preface section of this book on how to install Rust on Linux.

If you use VS Code as your editor, there is a very simple way of switching your environment to WSL.
Press Ctrl+Shift+P and write Reopen folder in WSL. This way, you can easily open the example
folder in WSL and run the code examples using Linux there.

Why use an OS-backed event queue?
You already know by now that we need to cooperate closely with the OS to make I/O operations as
efficient as possible. Operating systems such as Linux, macOS, and Windows provide several ways of
performing I/O, both blocking and non-blocking.

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install

Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions46

I/O operations need to go through the operating system since they are dependent on resources that
our operating system abstracts over. This can be the disk drive, the network card, or other peripherals.
Especially in the case of network calls, we’re not only dependent on our own hardware, but we also
depend on resources that might reside far away from our own, causing a significant delay.

In the previous chapter, we covered different ways to handle asynchronous operations when programming,
and while they’re all different, they all have one thing in common: they need control over when and
if they should yield to the OS scheduler when making a syscall.

In practice, this means that syscalls that normally would yield to the OS scheduler (blocking calls)
needs to be avoided and we need to use non-blocking calls instead. We also need an efficient way to
know the status of each call so we know when the task that made the otherwise blocking call is ready
to progress. This is the main reason for using an OS-backed event queue in an asynchronous runtime.

We’ll look at three different ways of handling an I/O operation as an example.

Blocking I/O

When we ask the operating system to perform a blocking operation, it will suspend the OS thread that
makes the call. It will then store the CPU state it had at the point where we made the call and go on
to do other things. When data arrives for us through the network, it will wake up our thread again,
restore the CPU state, and let us resume as if nothing has happened.

Blocking operations are the least flexible to use for us as programmers since we yield control to the
OS at every call. The big advantage is that our thread gets woken up once the event we’re waiting for
is ready so we can continue. If we take the whole system running on the OS into account, it’s a pretty
efficient solution since the OS will give threads that have work to do time on the CPU to progress.
However, if we narrow the scope to look at our process in isolation, we find that every time we make a
blocking call, we put a thread to sleep, even if we still have work that our process could do. This leaves
us with the choice of spawning new threads to do work on or just accepting that we have to wait for
the blocking call to return. We’ll go a little more into detail about this later.

Non-blocking I/O

Unlike a blocking I/O operation, the OS will not suspend the thread that made an I/O request, but
instead give it a handle that the thread can use to ask the operating system if the event is ready or not.

We call the process of querying for status polling.

Non-blocking I/O operations give us as programmers more freedom, but, as usual, that comes with
a responsibility. If we poll too often, such as in a loop, we will occupy a lot of CPU time just to ask
for an updated status, which is very wasteful. If we poll too infrequently, there will be a significant
delay between an event being ready and us doing something about it, thus limiting our throughput.

Readiness-based event queues 47

Event queuing via epoll/kqueue and IOCP

This is a sort of hybrid of the previous approaches. In the case of a network call, the call itself will be
non-blocking. However, instead of polling the handle regularly, we can add that handle to an event
queue, and we can do that with thousands of handles with very little overhead.

As programmers, we now have a new choice. We can either query the queue with regular intervals to
check if any of the events we added have changed status or we can make a blocking call to the queue,
telling the OS that we want to be woken up when at least one event in our queue has changed status
so that the task that was waiting for that specific event can continue.

This allows us to only yield control to the OS when there is no more work to do and all tasks are
waiting for an event to occur before they can progress. We can decide exactly when we want to issue
such a blocking call ourselves.

Note
We will not cover methods such as poll and select. Most operating systems have methods
that are older and not widely used in modern async runtimes today. Just know that there are
other calls we can make that essentially seek to give the same flexibility as the event queues
we just discussed.

Readiness-based event queues
epoll and kqueue are known as readiness-based event queues, which means they let you know
when an action is ready to be performed. An example of this is a socket that is ready to be read from.

To give an idea about how this works in practice, we can take a look at what happens when we read
data from a socket using epoll/kqueue:

1.	 We create an event queue by calling the syscall epoll_create or kqueue.

2.	 We ask the OS for a file descriptor representing a network socket.

3.	 Through another syscall, we register an interest in Read events on this socket. It’s important
that we also inform the OS that we’ll be expecting to receive a notification when the event is
ready in the event queue we created in step 1.

4.	 Next, we call epoll_wait or kevent to wait for an event. This will block (suspend) the
thread it’s called on.

5.	 When the event is ready, our thread is unblocked (resumed) and we return from our wait
call with data about the event that occurred.

Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions48

6.	 We call read on the socket we created in step 2.

Figure 3.1 – A simplified view of the epoll and kqueue flow

Completion-based event queues
IOCP stands for input/output completion port. This is a completion-based event queue. This type
of queue notifies you when events are completed. An example of this is when data has been read into
a buffer.

The following is a basic breakdown of what happens in this type of event queue:

1.	 We create an event queue by calling the syscall CreateIoCompletionPort.

2.	 We create a buffer and ask the OS to give us a handle to a socket.

3.	 We register an interest in Read events on this socket with another syscall, but this time we
also pass in the buffer we created in (step 2) , which the data will be read to.

4.	 Next, we call GetQueuedCompletionStatusEx, which will block until an event has
been completed.

epoll, kqueue, and IOCP 49

5.	 Our thread is unblocked and our buffer is now filled with the data we’re interested in.

Figure 3.2 – A simplified view of the IOCP flow

epoll, kqueue, and IOCP
epoll is the Linux way of implementing an event queue. In terms of functionality, it has a lot in common
with kqueue. The advantage of using epoll over other similar methods on Linux, such as select or poll,
is that epoll was designed to work very efficiently with a large number of events.

kqueue is the macOS way of implementing an event queue (which originated from BSD) in operating
systems such as FreeBSD and OpenBSD. In terms of high-level functionality, it’s similar to epoll in
concept but different in actual use.

IOCP is the way Windows handle this type of event queue. In Windows, a completion port will let
you know when an event has been completed. Now, this might sound like a minor difference, but it’s
not. This is especially apparent when you want to write a library since abstracting over both means
you’ll either have to model IOCP as readiness-based or model epoll/kqueue as completion-based.

Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions50

Lending out a buffer to the OS also provides some challenges since it’s very important that this buffer
stays untouched while waiting for an operation to return.

Windows Linux macOS
IOCP epoll kqueue
Completion based Readiness based Readiness based

Table 3.1 – Different platforms and event queues

Cross-platform event queues
When creating a cross-platform event queue, you have to deal with the fact that you have to create one
unified API that’s the same whether it’s used on Windows (IOCP), macOS (kqueue), or Linux (epoll). The
most obvious difference is that IOCP is completion-based while kqueue and epoll are readiness-based.

This fundamental difference means that you have to make a choice:

•	 You can create an abstraction that treats kqueue and epoll as completion-based queues, or

•	 You can create an abstraction that treats IOCP as a readiness-based queue

From my personal experience, it’s a lot easier to create an abstraction that mimics a completion-based
queue and handle the fact that kqueue and epoll are readiness-based behind the scenes than the other
way around. The use of wepoll, as I alluded to earlier, is one way of creating a readiness-based queue
on Windows. It will simplify creating such an API greatly, but we’ll leave that out for now because it’s
less well known and not an approach that’s officially documented by Microsoft.

Since IOCP is completion-based, it needs a buffer to read data into since it returns when data is read
into that buffer. Kqueue and epoll, on the other hand, don’t require that. They’ll only return when you
can read data into a buffer without blocking.

By requiring the user to supply a buffer of their preferred size to our API, we let the user control how
they want to manage their memory. The user defines the size of the buffers, and the re-usages and
controls all the aspects of the memory that will be passed to the OS when using IOCP.

In the case of epoll and kqueue in such an API, you can simply call read for the user and fill the same
buffers, making it appear to the user that the API is completion-based.

System calls, FFI, and cross-platform abstractions 51

If you wanted to present a readiness-based API instead, you have to create an illusion of having two
separate operations when doing I/O on Windows. First, request a notification when the data is ready
to be read on a socket, and then actually read the data. While possible to do, you’ll most likely find
yourself having to create a very complex API or accept some inefficiencies on Windows platforms due
to having intermediate buffers to keep the illusion of having a readiness-based API.

We’ll leave the topic of event queues for when we go on to create a simple example showing how exactly
they work. Before we do that, we need to become really comfortable with FFI and syscalls, and we’ll
do that by writing an example of a syscall on three different platforms.

We’ll also use this opportunity to talk about abstraction levels and how we can create a unified API
that works on the three different platforms.

System calls, FFI, and cross-platform abstractions
We’ll implement a very basic syscall for the three architectures: BSD/macOS, Linux, and Windows.
We’ll also see how this is implemented in three levels of abstraction.

The syscall we’ll implement is the one used when we write something to the standard output (stdout)
since that is such a common operation and it’s interesting to see how it really works.

We’ll start off by looking at the lowest level of abstraction we can use to make system calls and build
our understanding of them from the ground up.

The lowest level of abstraction

The lowest level of abstraction is to write what is often referred to as a “raw” syscall. A raw syscall is one
that bypasses the OS-provided library for making syscalls and instead relies on the OS having a stable
syscall ABI. A stable syscall ABI means it guarantees that if you put the right data in certain registers
and call a specific CPU instruction that passes control to the OS, it will always do the same thing.

To make a raw syscall, we need to write a little inline assembly, but don’t worry. Even though we
introduce it abruptly here, we’ll go through it line by line, and in Chapter 5, we’ll introduce inline
assembly in more detail so you become familiar with it.

At this level of abstraction, we need to write different code for BSD/macOS, Linux, and Windows. We
also need to write different code if the OS is running on different CPU architectures.

Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions52

Raw syscall on Linux

On Linux and macOS, the syscall we want to invoke is called write. Both systems operate based on
the concept of file descriptors, and stdout is already present when you start a process.

If you don’t run Linux on your machine, you have some options to run this example. You can copy
and paste the code into the Rust Playground or you can run it using WSL in Windows.

As mentioned in the introduction, I’ll list what example you need to go to at the start of each example
and you can run the example there by writing cargo run. The source code itself is always located
in the example folder at src/main.rs.

The first thing we do is to pull in the standard library module that gives us access to the asm! macro.

Repository reference: ch03/a-raw-syscall

use std::arch::asm;

The next step is to write our syscall function:

#[inline(never)]
fn syscall(message: String) {
    let msg_ptr = message.as_ptr();
    let len = message.len();

    unsafe {
        asm!(
            "mov rax, 1",
            "mov rdi, 1",
            "syscall",
            in("rsi") msg_ptr,
            in("rdx") len,
            out("rax") _,
            out("rdi") _,
            lateout("rsi") _,
            lateout("rdx") _
        );
    }
}

We’ll go through this first one line by line. The next ones will be pretty similar, so we only need to
cover this in great detail once.

System calls, FFI, and cross-platform abstractions 53

First, we have an attribute named #[inline(never)] that tells the compiler that we never want
this function to be inlined during optimization. Inlining is when the compiler omits the function
call and simply copies the body of the function instead of calling it. In this case, we don’t want that
to ever happen.

Next, we have our function call. The first two lines in the function simply get the raw pointer to the
memory location where our text is stored and the length of the text buffer.

The next line is an unsafe block since there is no way to call assembly such as this safely in Rust.

The first line of assembly puts the value 1 in the rax register. When the CPU traps our call later on
and passes control to the OS, the kernel knows that a value of one in rax means that we want to
make a write.

The second line puts the value 1 in the rdi register. This tells the kernel where we want to write to,
and a value of one means that we want to write to stdout.

The third line calls the syscall instruction. This instruction issues a software interrupt, and the
CPU passes on control to the OS.

Rust’s inline assembly syntax will look a little intimidating at first, but bear with me. We’ll cover this
in detail a little later in this book so that you get comfortable with it. For now, I’ll just briefly explain
what it does.

The fourth line writes the address to the buffer where our text is stored in the rsi register.

The fifth line writes the length (in bytes) of our text buffer to the rdx register.

The next four lines are not instructions to the CPU; they’re meant to tell the compiler that it can’t
store anything in these registers and assume the data is untouched when we exit the inline assembly
block. We do that by telling the compiler that there will be some unspecified data (indicated by the
underscore) written to these registers.

Finally, it’s time to call our raw syscall:

fn main() {
    let message = "Hello world from raw syscall!\n";
    let message = String::from(message);
    syscall(message);
}

This function simply creates a String and calls our syscall function, passing it in as an argument.

Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions54

If you run this on Linux, you should now see the following message in your console:

Hello world from raw syscall!

Raw syscall on macOS

Now, since we use instructions that are specific to the CPU architecture, we’ll need different functions
depending on if you run an older Mac with an intel CPU or if you run a newer Mac with an Arm
64-based CPU. We only present the one working for the new M series of chips using an ARM 64
architecture, but don’t worry, if you’ve cloned the Github repository, you’ll find code that works on
both versions of Mac there.

Since there are only minor changes, I’ll present the whole example here and just go through the differences.

Remember, you need to run this code on a machine with macOS and an M-series chip. You can’t try
this in the Rust playground.

ch03/a-raw-syscall

use std::arch::asm;
fn main() {
    let message = "Hello world from raw syscall!\n"
    let message = String::from(message);
    syscall(message);
}

#[inline(never)]
fn syscall(message: String) {
    let ptr = message.as_ptr();
    let len = message.len();

    unsafe {
        asm!(
            "mov x16, 4",
            "mov x0, 1",
            "svc 0",
            in("x1") ptr,
            in("x2") len,
            out("x16") _,
            out("x0") _,
            lateout("x1") _,
            lateout("x2") _
        );
    }
}

System calls, FFI, and cross-platform abstractions 55

Aside from different register naming, there is not that much difference from the one we wrote for Linux,
with the exception of the fact that a write operation has the code 4 on macOS instead of 1 as it did
on Linux. Also, the CPU instruction that issues a software interrupt is svc 0 instead of syscall.

Again, if you run this on macOS, you’ll get the following printed to your console:

Hello world from raw syscall!

What about raw syscalls on Windows?

This is a good opportunity to explain why writing raw syscalls, as we just did, is a bad idea if you want
your program or library to work across platforms.

You see, if you want your code to work far into the future, you have to worry about what guarantees the
OS gives. Linux guarantees that, for example, the value 1 written to the rax register will always refer
to write, but Linux works on many platforms, and not everyone uses the same CPU architecture.
We have the same problem with macOS that just recently changed from using an Intel-based x86_64
architecture to an ARM 64-based architecture.

Windows gives absolutely zero guarantees when it comes to low-level internals such as this. Windows
has changed its internals numerous times and provides no official documentation on this matter. The
only things we have are reverse-engineered tables that you can find on the internet, but these are not a
robust solution since what was a write syscall can be changed to a delete syscall the next time you
run Windows update. Even if that’s unlikely, you have no guarantee, which in turn makes it impossible
for you to guarantee to users of your program that it’s going to work in the future.

So, while raw syscalls in theory do work and are good to be familiar with, they mostly serve as an
example of why we’d rather link to the libraries that the different operating systems supply for us when
making syscalls. The next segment will show how we do just that.

The next level of abstraction

The next level of abstraction is to use the API, which all three operating systems provide for us.

We’ll soon see that this abstraction helps us remove some code. In this specific example, the syscall
is the same on Linux and on macOS, so we only need to worry if we’re on Windows. We can
differentiate between the platforms by using the #[cfg(target_family = "windows")]
and #[cfg(target_family = "unix")] conditional compilation flags. You’ll see these used
in the example in the repository.

Our main function will look the same as it did before:

ch03/b-normal-syscall

use std::io;
fn main() {

Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions56

    let message = "Hello world from syscall!\n";
    let message = String::from(message);
    syscall(message).unwrap();
}

The only difference is that instead of pulling in the asm module, we pull in the io module.

Using the OS-provided API in Linux and macOS

You can run this code directly in the Rust playground since it runs on Linux, or you can run it locally
on a Linux machine using WSL or on macOS:

ch03/b-normal-syscall

#[cfg(target_family = "unix")]
#[link(name = "c")]
extern "C" {
    fn write(fd: u32, buf: *const u8, count: usize) -> i32;
}

fn syscall(message: String) -> io::Result<()> {
    let msg_ptr = message.as_ptr();
    let len = message.len();
    let res = unsafe { write(1, msg_ptr, len) };

    if res == -1 {
        return Err(io::Error::last_os_error());
    }
    Ok(())
}

Let’s go through the different steps one by one. Knowing how to do a proper syscall will be very useful
for us later on in this book.

#[link(name = "c")]

Every Linux (and macOS) installation comes with a version of libc, which is a C library for
communicating with the operating system. Having libc, with a consistent API, allows us to program
the same way without worrying about the underlying platform architecture. Kernel developers can
also make changes to the underlying ABI without breaking everyone’s program. This flag tells the
compiler to link to the "c" library on the system.

Next up is the definition of what functions in the linked library we want to call:

extern "C" {
 fn write(fd: u32, buf: *const u8, count: usize);
}

System calls, FFI, and cross-platform abstractions 57

extern "C" (sometimes written without the "C", since "C" is assumed if nothing is specified)
means we want to use the "C" calling convention when calling the function write in the "C" library
we’re linking to. This function needs to have the exact same name as the function in the library we’re
linking to. The parameters don’t have to have the same name, but they must be in the same order. It’s
good practice to name them the same as in the library you’re linking to.

Here, we use Rusts FFI, so when you read about using FFI to call external functions, it’s exactly what
we’re doing here.

The write function takes a file descriptor, fd, which in this case is a handle to stdout. In addition,
it expects us to provide a pointer to an array of u8, buf values and the length of that buffer, count.

Calling convention
This is the first time we’ve encountered this term, so I’ll go over a brief explanation, even though
we dive deeper into this topic later in the book.

A calling convention defines how function calls are performed and will, amongst other
things, specify:

- How arguments are passed into the function

- What registers the function is expected to store at the start and restore before returning

- How the function returns its result

- How the stack is set up (we’ll get back to this one later)

So, before you call a foreign function you need to specify what calling convention to use since
there is no way for the compiler to know if we don’t tell it. The C calling convention is by far
the most common one to encounter.

Next, we wrap the call to our linked function in a normal Rust function.

ch03/b-normal-syscall

#[cfg(target_family = "unix")]
fn syscall(message: String) -> io::Result<()> {
    let msg_ptr = message.as_ptr();
    let len = message.len();
    let res = unsafe { write(1, msg_ptr, len) };

    if res == -1 {
        return Err(io::Error::last_os_error());
    }
    Ok(())
}

Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions58

You’ll probably be familiar with the first two lines now, as they’re the same as we wrote for our raw
syscall example. We get the pointer to the buffer where our text is stored and the length of that buffer.

Next is our call to the write function in libc, which needs to be wrapped in an unsafe block
since Rust can’t guarantee safety when calling external functions.

You might wonder how we know that the value 1 refers to the file handle of stdout.

You’ll meet this situation a lot when writing syscalls from Rust. Usually, constants are defined in the
C header files, so we need to manually search them up and look for these definitions. 1 is always the
file handle to stdout on UNIX systems, so it’s easy to remember.

Note
Wrapping the libc functions and providing these constants is exactly what the create libc
(https://github.com/rust-lang/libc) provides for us. Most of the time, you can
use that instead of doing all the manual work of linking to and defining functions as we do here.

Lastly, we have the error handling, and you’ll see this all the time when using FFI. C functions often
use a specific integer to indicate if the function call was successful or not. In the case of this write
call, the function will either return the number of bytes written or, if there is an error, it will return
the value –1. You’ll find this information easily by reading the man-pages (https://man7.org/
linux/man-pages/index.html) for Linux.

If there is an error, we use the built-in function in Rust’s standard library to query the OS for the last
error it reported for this process and convert that to a rust io::Error type.

If you run this function using cargo run, you will see this output:

Hello world from syscall!

Using Windows API

On Windows, things work a bit differently. While UNIX models almost everything as “files” you
interact with, Windows uses other abstractions. On Windows, you get a handle that represents some
object you can interact with in specific ways depending on exactly what kind of handle you have.

We will use the same main function as before, but we need to link to different functions in the
Windows API and make changes to our syscall function.

ch03/b-normal-syscall

#[link(name = "kernel32")]
extern "system" {
    fn GetStdHandle(nStdHandle: i32) -> i32;
    fn WriteConsoleW(

https://github.com/rust-lang/libc
https://man7.org/linux/man-pages/index.html
https://man7.org/linux/man-pages/index.html

System calls, FFI, and cross-platform abstractions 59

        hConsoleOutput: i32,
        lpBuffer: *const u16,
        numberOfCharsToWrite: u32,
        lpNumberOfCharsWritten: *mut u32,
        lpReserved: *const std::ffi::c_void,
    ) -> i32;
}

The first thing you notice is that we no longer link to the "C" library. Instead, we link to the kernel32
library. The next change is the use of the system calling convention. This calling convention is a bit
peculiar. You see, Windows uses different calling conventions depending on whether you write for a
32-bit x86 Windows version or a 64-bit x86_64 Windows version. Newer Windows versions running
on x86_64 use the "C" calling convention, so if you have a newer system you can try changing that
out and see that it still works. “Specifying system” lets the compiler figure out the right one to use
based on the system.

We link to two different syscalls in Windows:

•	 GetStdHandle: This retrieves a reference to a standard device like stdout

•	 WriteConsoleW: WriteConsole comes in two types. WriteConsoleW takes Unicode text
and WriteConsoleA takes ANSI-encoded text. We’re using the one that takes Unicode text
in our program.

Now, ANSI-encoded text works fine if you only write English text, but as soon as you write text in
other languages, you might need to use special characters that are not possible to represent in ANSI
but possible in Unicode. If you mix them up, your program will not work as you expect.

Next is our new syscall function:

ch03/b-normal-syscall

fn syscall(message: String) -> io::Result<()> {
    let msg: Vec<u16> = message.encode_utf16().collect();
    let msg_ptr = msg.as_ptr();
    let len = msg.len() as u32;

    let mut output: u32 = 0;
        let handle = unsafe { GetStdHandle(-11) };
        if handle  == -1 {
            return Err(io::Error::last_os_error())
        }
        let res = unsafe {
            WriteConsoleW(
                handle,

Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions60

                msg_ptr,
                len,
                &mut output,
                std::ptr::null()
            )};

        if res  == 0 {
            return Err(io::Error::last_os_error());
        }
    Ok(())
}

The first thing we do is convert the text to utf-16-encoded text, which Windows uses. Fortunately,
Rust has a built-in function to convert our utf-8-encoded text to utf-16 code points. encode_
utf16 returns an iterator over u16 code points that we can collect to a Vec.

The next two lines should be familiar by now. We get the pointer to where the text is stored and the
length of the text in bytes.

The next thing we do is call GetStdHandle and pass in the value –11. The values we need to pass
in for the different standard devices are described together with the GetStdHandle documentation at
https://learn.microsoft.com/en-us/windows/console/getstdhandle. This
is convenient, as we don’t have to dig through C header files to find all the constant values we need.

The return code to expect is also documented thoroughly for all functions, so we handle potential
errors here in the same way as we did for the Linux/macOS syscalls.

Finally, we have the call to the WriteConsoleW function. There is nothing too fancy about this,
and you’ll notice similarities with the write syscall we used for Linux. One difference is that the
output is not returned from the function but written to an address location we pass in in the form of
a pointer to our output variable.

Note
Now that you’ve seen how we create cross-platform syscalls, you will probably also understand
why we’re not including the code to make every example in this book cross-platform. It’s simply
the case that the book would be extremely long if we did, and it’s not apparent that all that extra
information will actually benefit our understanding of the key concepts.

https://learn.microsoft.com/en-us/windows/console/getstdhandle

Summary 61

The highest level of abstraction

This is simple, but I wanted to add this just for completeness. Rust standard library wraps the calls to
the underlying OS APIs for us, so we don’t have to care about what syscalls to invoke.

fn main() {
 println!("Hello world from the standard library");
}

Congratulations! You’ve now written the same syscall using three levels of abstraction. You now know
what FFI looks like, you’ve seen some inline assembly (which we’ll cover in greater detail later), and
you’ve made a proper syscall to print something to the console. You’ve also seen one of the things
our standard library tries to solve by wrapping these calls for different platforms so we don’t have to
know these syscalls to print something to the console.

Summary
In this chapter, we went through what OS-backed event queues are and gave a high-level overview
of how they work. We also went through the defining characteristics of epoll, kqueue, and IOCP and
focused on how they differ from each other.

In the last half of this chapter, we introduced some examples of syscalls. We discussed raw syscalls,
and “normal” syscalls so that you know what they are and have seen examples of both. We also took
the opportunity to talk about abstraction levels and the advantages of relying on good abstractions
when they’re available to us.

As a part of making system calls, you also got an introduction to Rusts FFI.

Finally, we created a cross-platform abstraction. You also saw some of the challenges that come with
creating a unifying API that works across several operating systems.

The next chapter will walk you through an example using epoll to create a simple event queue, so you
get to see exactly how this works in practice. In the repository, you’ll also find the same example for
both Windows and macOS, so you have that available if you ever want to implement an event queue
for either of those platforms.

Part 2:
Event Queues

and Green Threads

In this part, we’ll present two examples. The first example demonstrates the creation of an event queue
using epoll. We will design the API to closely resemble the one used by mio, allowing us to grasp the
fundamentals of both mio and epoll. The second example illustrates the use of fibers/green threads,
similar to the approach employed by Go. This method is one of the popular alternatives to Rust’s
asynchronous programming using futures and async/await. Rust also utilized green threads before
reaching version 1.0, making it a part of Rust’s asynchronous history. Throughout the exploration, we
will delve into fundamental programming concepts such as ISAs, ABIs, calling conventions, stacks,
and touch on assembly programming. This section comprises the following chapters:

•	 Chapter 4, Create Your Own Event Queue

•	 Chapter 5, Creating Our Own Fibers

4
Create Your Own Event Queue

In this chapter, we’ll create a simple version of an event queue using epoll. We’ll take inspiration from
mio (https://github.com/tokio-rs/mio), a low-level I/O library written in Rust that
underpins much of the Rust async ecosystem. Taking inspiration from mio has the added benefit
of making it easier to dive into their code base if you wish to explore how a real production-ready
library works.

By the end of this chapter, you should be able to understand the following:

•	 The difference between blocking and non-blocking I/O

•	 How to use epoll to make your own event queue

•	 The source code of cross-platform event queue libraries such as mio

•	 Why we need an abstraction layer on top of epoll, kqueue, and IOCP if we want a program or
library to work across different platforms

We’ve divided the chapter into the following sections:

•	 Design and introduction to epoll

•	 The ffi module

•	 The Poll module

•	 The main program

Technical requirements
This chapter focuses on epoll, which is specific to Linux. Unfortunately, epoll is not part of the Portable
Operating System Interface (POSIX) standard, so this example will require you to run Linux and
won’t work with macOS, BSD, or Windows operating systems.

If you’re on a machine running Linux, you’re already set and can run the examples without any
further steps.

https://github.com/tokio-rs/mio

Create Your Own Event Queue66

If you’re on Windows, my recommendation is to set up WSL (https://learn.microsoft.
com/en-us/windows/wsl/install), if you haven’t already, and install Rust on the Linux
operating system running on WSL.

If you’re using Mac, you can create a virtual machine (VM) running Linux, for example, by using
the QEMU-based UTM application (https://mac.getutm.app/) or any other solution for
managing VMs on a Mac.

A last option is to rent a Linux server (there are even some providers with a free layer), install Rust,
and either use an editor such as Vim or Emacs in the console or develop on the remote machine
using VS Code through SSH (https://code.visualstudio.com/docs/remote/ssh).
I personally have good experience with Linode’s offering (https://www.linode.com/), but
there are many, many other options out there.

It’s theoretically possible to run the examples on the Rust playground, but since we need a delay server,
we would have to use a remote delay server service that accepts plain HTTP requests (not HTTPS)
and modify the code so that the modules are all in one file instead. It’s possible in a clinch but not
really recommended.

The delay server
This example relies on calls made to a server that delays the response for a configurable duration.
In the repository, there is a project named delayserver in the root folder.

You can set up the server by simply entering the folder in a separate console window and
writing cargo run. Just leave the server running in a separate, open terminal window as
we’ll use it in our example.

The delayserver program is cross-platform, so it works without any modification on all
platforms that Rust supports. If you’re running WSL on Windows, I recommend running the
delayserver program in WSL as well. Depending on your setup, you might get away with
running the server in a Windows console and still be able to reach it when running the example
in WSL. Just be aware that it might not work out of the box.

The server will listen to port 8080 by default and the examples there assume this is the port
used. You can change the listening port in the delayserver code before you start the server,
but just remember to make the same corrections in the example code.

The actual code for delayserver is less than 30 lines, so going through the code should
only take a few minutes if you want to see what the server does.

Design and introduction to epoll
Okay, so this chapter will be centered around one main example you can find in the repository under
ch04/a-epoll. We’ll start by taking a look at how we design our example.

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install
https://mac.getutm.app/
https://code.visualstudio.com/docs/remote/ssh
https://www.linode.com/

Design and introduction to epoll 67

As I mentioned at the start of this chapter, we’ll take our inspiration from mio. This has one big upside
and one downside. The upside is that we get a gentle introduction to how mio is designed, making it
much easier to dive into that code base if you want to learn more than what we cover in this example.
The downside is that we introduce an overly thick abstraction layer over epoll, including some design
decisions that are very specific to mio.

I think the upsides outweigh the downsides for the simple reason that if you ever want to implement a
production-quality event loop, you’ll probably want to look into the implementations that are already
out there, and the same goes for if you want to dig deeper into the building blocks of asynchronous
programming in Rust. In Rust, mio is one of the important libraries underpinning much of the async
ecosystem, so gaining a little familiarity with it is an added bonus.

It’s important to note that mio is a cross-platform library that creates an abstraction over epoll,
kqueue, and IOCP (through Wepoll, as we described in Chapter 3). Not only that, mio supports iOS
and Android, and in the future, it will likely support other platforms as well. So, leaving the door open
to unify an API over so many different systems is bound to also come with some compromises if you
compare it to what you can achieve if you only plan to support one platform.

mio
mio describes itself as a “fast, low-level I/O library for Rust focusing on non-blocking APIs and
event notification for building performance I/O apps with as little overhead as possible over the
OS abstractions.”

mio drives the event queue in Tokio, which is one of the most popular and widely used
asynchronous runtimes in Rust. This means that mio is driving I/O for popular frameworks such
as Actix Web (https://actix.rs/), Warp (https://github.com/seanmonstar/
warp), and Rocket (https://rocket.rs/).

The version of mio we’ll use as design inspiration in this example is version 0.8.8. The API
has changed in the past and may change in the future, but the parts of the API we cover here
have been stable since 2019, so it’s a good bet that there will not be significant changes to it in
the near future.

As is the case with all cross-platform abstractions, it’s often necessary to go the route of choosing
the least common denominator. Some choices will limit flexibility and efficiency on one or more
platforms in the pursuit of having a unified API that works with all of them. We’ll discuss some of
those choices in this chapter.

Before we go further, let’s create a blank project and give it a name. We’ll refer to it as a-epoll going
forward, but you will of course need to replace that with the name you choose.

Enter the folder and type the cargo init command.

https://actix.rs/
https://github.com/seanmonstar/warp
https://github.com/seanmonstar/warp
https://rocket.rs/

Create Your Own Event Queue68

In this example, we’ll divide the project into a few modules, and we’ll split the code up into the
following files:

src

 |-- ffi.rs

 |-- main.rs

 |-- poll.rs

Their descriptions are as follows:

•	 ffi.rs: This module will contain the code related to the syscalls we need to communicate
with the host operating system

•	 main.rs: This is the example program itself

•	 poll.rs: This module contains the main abstraction, which is a thin layer over epoll

Next, create the four files, mentioned in the preceding list, in the src folder.

In main.rs, we need to declare the modules as well:

a-epoll/src/main.rs
mod ffi;

mod poll;

Now that we have our project set up, we can start by going through how we’ll design the API we’ll
use. The main abstraction is in poll.rs, so go ahead and open that file.

Let’s start by stubbing out the structures and functions we need. It’s easier to discuss them when we
have them in front of us:

a-epoll/src/poll.rs
use std::{io::{self, Result}, net::TcpStream, os::fd::AsRawFd};

use crate::ffi;

type Events = Vec<ffi::Event>;

pub struct Poll {

  registry: Registry,

}

impl Poll {

  pub fn new() -> Result<Self> {

    todo!()

Design and introduction to epoll 69

  }

  pub fn registry(&self) -> &Registry {

    &self.registry

  }

  pub fn poll(&mut self, events: &mut Events, timeout: Option<i32>) -> Result<()> {

    todo!()

  }

}

pub struct Registry {

  raw_fd: i32,

}

impl Registry {

  pub fn register(&self, source: &TcpStream, token: usize, interests: i32) -> Result<()>
{

    todo!()

  }

}

impl Drop for Registry {

  fn drop(&mut self) {

    todo!()

  }

}

We’ve replaced all the implementations with todo!() for now. This macro will let us compile
the program even though we’ve yet to implement the function body. If our execution ever reaches
todo!(), it will panic.

The first thing you’ll notice is that we’ll pull the ffi module in scope in addition to some types from
the standard library.

We’ll also use the std::io::Result type as our own Result type. It’s convenient since most
errors will stem from one of our calls into the operating system, and an operating system error can
be mapped to an io::Error type.

There are two main abstractions over epoll. One is a structure called Poll and the other is called
Registry. The name and functionality of these functions are the same as they are in mio. Naming
abstractions such as these is surprisingly difficult, and both constructs could very well have had a
different name, but let’s lean on the fact that someone else has spent time on this before us and decided
to go with these in our example.

Create Your Own Event Queue70

Poll is a struct that represents the event queue itself. It has a few methods:

•	 new: Creates a new event queue

•	 registry: Returns a reference to the registry that we can use to register interest to be notified
about new events

•	 poll: Blocks the thread it’s called on until an event is ready or it times out, whichever occurs first

Registry is the other half of the equation. While Poll represents the event queue, Registry is
a handle that allows us to register interest in new events.

Registry will only have one method: register. Again, we mimic the API mio uses (https://
docs.rs/mio/0.8.8/mio/struct.Registry.html), and instead of accepting a predefined
list of methods for registering different interests, we accept an interests argument, which will
indicate what kind of events we want our event queue to keep track of.

One more thing to note is that we won’t use a generic type for all sources. We’ll only implement this
for TcpStream, even though there are many things we could potentially track with an event queue.

This is especially true when we want to make this cross-platform since, depending on the platforms
you want to support, there are many types of event sources we might want to track.

mio solves this by having Registry::register accept an object implementing the Source
trait that mio defines. As long as you implement this trait for the source, you can use the event queue
to track events on it.

In the following pseudo-code, you’ll get an idea of how we plan to use this API:

let queue = Poll::new().unwrap();

let id = 1;

// register interest in events on a TcpStream

queue.registry().register(&stream, id, ...).unwrap();

let mut events = Vec::with_capacity(1);

// This will block the curren thread

queue.poll(&mut events, None).unwrap();

//...data is ready on one of the tracked streams

You might wonder why we need the Registry struct at all.

To answer that question, we need to remember that mio abstracts over epoll, kqueue, and IOCP.
It does this by making Registry wrap around a Selector object. The Selector object is
conditionally compiled so that every platform has its own Selector implementation corresponding
to the relevant syscalls to make IOCP, kqueue, and epoll do the same thing.

https://docs.rs/mio/0.8.8/mio/struct.Registry.html
https://docs.rs/mio/0.8.8/mio/struct.Registry.html

Design and introduction to epoll 71

Registry implements one important method we won’t implement in our example, called try_clone.
The reason we won’t implement this is that we don’t need it to understand how an event loop like
this works and we want to keep the example simple and easy to understand. However, this method is
important for understanding why the responsibility of registering events and the queue itself is divided.

Important note
By moving the concern of registering interests to a separate struct like this, users can call
Registry::try_clone to get an owned Registry instance. This instance can be passed
to, or shared through Arc<Registry> with, other threads, allowing multiple threads to
register interest to the same Poll instance even when Poll is blocking another thread while
waiting for new events to happen in Poll::poll.

Poll::poll requires exclusive access since it takes a &mut self, so when we’re waiting for events
in Poll::poll, there is no way to register interest from a different thread at the same time if we
rely on using Poll to register interest, since that will be prevented by Rust’s type system.

It also makes it effectively impossible to have multiple threads waiting for events by calling Poll::poll
on the same instance in any meaningful way since it would require synchronization that essentially
would make each call sequential anyway.

The design lets users interact with the queue from potentially many threads by registering interest,
while one thread makes the blocking call and handles the notifications from the operating system.

Note
The fact that mio doesn’t enable you to have multiple threads that are blocked on the same call
to Poll::poll isn’t a limitation due to epoll, kqueue, or IOCP. They all allow for the scenario
that many threads will call Poll::poll on the same instance and get notifications on events
in the queue. epoll even allows specific flags to dictate whether the operating system should wake
up only one or all threads that wait for notification (specifically the EPOLLEXCLUSIVE flag).

The problem is partly about how the different platforms decide which threads to wake when
there are many of them waiting for events on the same queue, and partly about the fact that
there doesn’t seem to be a huge interest in that functionality. For example, epoll will, by default,
wake all threads that block on Poll, while Windows, by default, will only wake up one thread.
You can modify this behavior to some extent, and there have been ideas on implementing a
try_clone method on Poll as well in the future. For now, the design is like we outlined,
and we will stick to that in our example as well.

This brings us to another topic we should cover before we start implementing our example.

Create Your Own Event Queue72

Is all I/O blocking?

Finally, a question that’s easy to answer. The answer is a big, resounding… maybe. The thing is that
not all I/O operations will block in the sense that the operating system will park the calling thread and
it will be more efficient to switch to another task. The reason for this is that the operating system is
smart and will cache a lot of information in memory. If information is in the cache, a syscall requesting
that information would simply return immediately with the data, so forcing a context switch or any
rescheduling of the current task might be less efficient than just handling the data synchronously.
The problem is that there is no way to know for sure whether I/O is blocking and it depends on what
you’re doing.

Let me give you two examples.

DNS lookup

When creating a TCP connection, one of the first things that happens is that you need to convert
a typical address such as www.google.com to an IP address such as 216.58.207.228. The
operating system maintains a mapping of local addresses and addresses it’s previously looked up in
a cache and will be able to resolve them almost immediately. However, the first time you look up an
unknown address, it might have to make a call to a DNS server, which takes a lot of time, and the OS
will park the calling thread while waiting for the response if it’s not handled in a non-blocking manner.

File I/O

Files on the local filesystem are another area where the operating system performs quite a bit of
caching. Smaller files that are frequently read are often cached in memory, so requesting that file
might not block at all. If you have a web server that serves static files, there is most likely a rather
limited set of small files you’ll be serving. The chances are that these are cached in memory. However,
there is no way to know for sure – if an operating system is running low on memory, it might have
to map memory pages to the hard drive, which makes what would normally be a very fast memory
lookup excruciatingly slow. The same is true if there is a huge number of small files that are accessed
randomly, or if you serve very large files since the operating system will only cache a limited amount of
information. You’ll also encounter this kind of unpredictability if you have many unrelated processes
running on the same operating system as it might not cache the information that’s important to you.

A popular way of handling these cases is to forget about non-blocking I/O, and actually make a
blocking call instead. You don’t want to do these calls in the same thread that runs a Poll instance
(since every small delay will block all tasks), but you would probably relegate that task to a thread
pool. In the thread pool, you have a limited number of threads that are tasked with making regular
blocking calls for things such as DNS lookups or file I/O.

An example of a runtime that does exactly this is libuv (http://docs.libuv.org/en/
v1.x/threadpool.html#threadpool). libuv is the asynchronous I/O library that Node.
js is built upon.

https://www.google.com
http://docs.libuv.org/en/v1.x/threadpool.html#threadpool
http://docs.libuv.org/en/v1.x/threadpool.html#threadpool

The ffi module 73

While its scope is larger than mio (which only cares about non-blocking I/O), libuv is to Node in
JavaScript what mio is to Tokio in Rust.

Note
The reason for doing file I/O in a thread pool is that there have historically been poor cross-
platform APIs for non-blocking file I/O. While it’s true that many runtimes choose to relegate
this task to a thread pool making blocking calls to the OS, it might not be true in the future as
the OS APIs evolve over time.

Creating a thread pool to handle these cases is outside the scope of this example (even mio considers
this outside its scope, just to be clear). We’ll focus on showing how epoll works and mention these
topics in the text, even though we won’t actually implement a solution for them in this example.

Now that we’ve covered a lot of basic information about epoll, mio, and the design of our example,
it’s time to write some code and see for ourselves how this all works in practice.

The ffi module
Let’s start with the modules that don’t depend on any others and work our way from there. The ffi
module contains mappings to the syscalls and data structures we need to communicate with the
operating system. We’ll also explain how epoll works in detail once we have presented the syscalls.

It’s only a few lines of code, so I’ll place the first part here so it’s easier to keep track of where we are in
the file since there’s quite a bit to explain. Open the ffi.rs file and write the following lines of code:

ch04/a-epoll/src/ffi.rs
pub const EPOLL_CTL_ADD: i32 = 1;

pub const EPOLLIN: i32 = 0x1;

pub const EPOLLET: i32 = 1 << 31;

#[link(name = "c")]

extern "C" {

  pub fn epoll_create(size: i32) -> i32;

  pub fn close(fd: i32) -> i32;

  pub fn epoll_ctl(epfd: i32, op: i32, fd: i32, event: *mut Event) -> i32;

  pub fn epoll_wait(epfd: i32, events: *mut Event, maxevents: i32, timeout: i32) -> i32;

}

The first thing you’ll notice is that we declare a few constants called EPOLL_CTL_ADD, EPOLLIN,
and EPOLLET.

Create Your Own Event Queue74

I’ll get back to explaining what these constants are in a moment. Let’s first take a look at the syscalls
we need to make. Fortunately, we’ve already covered syscalls in detail, so you already know the basics
of ffi and why we link to C in the preceding code:

•	 epoll_create is the syscall we make to create an epoll queue. You can find the documentation
for it at https://man7.org/linux/man-pages/man2/epoll_create.2.html.
This method accepts one argument called size, but size is there only for historical reasons.
The argument will be ignored but must have a value larger than 0.

•	 close is the syscall we need to close the file descriptor we get when we create our epoll
instance, so we release our resources properly. You can read the documentation for the syscall
at https://man7.org/linux/man-pages/man2/close.2.html.

•	 epoll_ctl is the control interface we use to perform operations on our epoll instance. This
is the call we use to register interest in events on a source. It supports three main operations:
add, modify, or delete. The first argument, epfd, is the epoll file descriptor we want to perform
operations on. The second argument, op, is the argument where we specify whether we want
to perform an add, modify, or delete operation

•	 In our case, we’re only interested in adding interest for events, so we’ll only pass in EPOLL_
CTL_ADD, which is the value to indicate that we want to perform an add operation. epoll_
event is a little more complicated, so we’ll discuss it in more detail. It does two important
things for us: first, the events field indicates what kind of events we want to be notified of
and it can also modify the behavior of how and when we get notified. Second, the data field
passes on a piece of data to the kernel that it will return to us when an event occurs. The latter
is important since we need this data to identify exactly what event occurred since that’s the
only information we’ll receive in return that can identify what source we got the notification
for. You can find the documentation for this syscall here: https://man7.org/linux/
man-pages/man2/epoll_ctl.2.html.

•	 epoll_wait is the call that will block the current thread and wait until one of two things
happens: we receive a notification that an event has occurred or it times out. epfd is the epoll
file descriptor identifying the queue we made with epoll_create. events is an array of
the same Event structure we used in epoll_ctl. The difference is that the events field
now gives us information about what event did occur, and importantly the data field contains
the same data that we passed in when we registered interest

•	 For example, the data field lets us identify which file descriptor has data that’s ready to be
read. The maxevents arguments tell the kernel how many events we have reserved space
for in our array. Lastly, the timeout argument tells the kernel how long we will wait for
events before it will wake us up again so we don’t potentially block forever. You can read the
documentation for epoll_wait at https://man7.org/linux/man-pages/man2/
epoll_wait.2.html.

https://man7.org/linux/man-pages/man2/epoll_create.2.html
https://man7.org/linux/man-pages/man2/close.2.html
https://man7.org/linux/man-pages/man2/epoll_ctl.2.html
https://man7.org/linux/man-pages/man2/epoll_ctl.2.html
https://man7.org/linux/man-pages/man2/epoll_wait.2.html
https://man7.org/linux/man-pages/man2/epoll_wait.2.html

The ffi module 75

The last part of the code in this file is the Event struct:

ch04/a-epoll/src/ffi.rs
#[derive(Debug)]

#[repr(C, packed)]

pub struct Event {

    pub(crate) events: u32,

    // Token to identify event

    pub(crate) epoll_data: usize,

}

impl Event {

    pub fn token(&self) -> usize {

        self.epoll_data

    }

}

This structure is used to communicate to the operating system in epoll_ctl, and the operating
system uses the same structure to communicate with us in epoll_wait.

Events are defined as a u32, but it’s more than just a number. This field is what we call a bitmask.
I’ll take the time to explain bitmasks in a later section since it’s common in most syscalls and not
something everyone has encountered before. In simple terms, it’s a way to use the bit representation
as a set of yes/no flags to indicate whether an option has been chosen or not.

The different options are described in the link I provided for the epoll_ctl syscall. I won’t explain
all of them in detail here, but just cover the ones we’ll use:

•	 EPOLLIN represents a bitflag indicating we’re interested in read operations on the file handle

•	 EPOLLET represents a bitflag indicating that we’re interested in getting events notified with
epoll set to an edge-triggered mode

We’ll get back to explaining bitflags, bitmasks, and what edge-triggered mode really means in a
moment, but let’s just finish with the code first.

The last field on the Event struct is epoll_data. This field is defined as a union in the documentation.
A union is much like an enum, but in contrast to Rust’s enums, it doesn’t carry any information on
what type it is, so it’s up to us to make sure we know what type of data it holds.

We use this field to simply hold a usize so we can pass in an integer identifying each event when
we register interest using epoll_ctl. It would be perfectly fine to pass in a pointer instead – just
as long as we make sure that the pointer is still valid when it’s returned to us in epoll_wait.

We can think of this field as a token, which is exactly what mio does, and to keep the API as similar
as possible, we copy mio and provide a token method on the struct to get this value.

Create Your Own Event Queue76

What does #[repr(packed)] do?
The #[repr(packed)] annotation is new to us. Usually, a struct will have padding either
between fields or at the end of the struct. This happens even when we’ve specified #[repr(C)].

The reason has to do with efficient access to the data stored in the struct by not having to make
multiple fetches to get the data stored in a struct field. In the case of the Event struct, the
usual padding would be adding 4 bytes of padding at the end of the events field. When the
operating system expects a packed struct for Event, and we give it a padded one, it will write
parts of event_data to the padding between the fields. When you try to read event_data
later on, you’ll end up only reading the last part of event_data, which happened to overlap
and get the wrong data

The fact that the operating systemexpects a packed Event struct isn’t obvious by reading the
manpages for Linux, so you have to read the appropriate C header files to know for sure. You
could of course simply rely on the libc crate (https://github.com/rust-lang/
libc), which we would do too if we weren’t here to learn things like this for ourselves.

So, now that we’ve finished walking through the code, there are a few topics that we promised to get
back to.

Bitflags and bitmasks

You’ll encounter this all the time when making syscalls (in fact, the concept of bitmasks is pretty
common in low-level programming). A bitmask is a way to treat each bit as a switch, or a flag, to
indicate that an option is either enabled or disabled.

https://github.com/rust-lang/libc
https://github.com/rust-lang/libc

The ffi module 77

An integer, such as i32, can be expressed as 32 bits. EPOLLIN has the hex value of 0x1 (which is
simply 1 in decimal). Represented in bits, this would look like 000000000000000000000000
00000001.

EPOLLET, on the other hand, has a value of 1 << 31. This simply means the bit representation
of the decimal number 1, shifted 31 bits to the left. The decimal number 1 is incidentally the same
as EPOLLIN, so by looking at that representation and shifting the bits 31 times to the left, we get a
number with the bit representation of 10000000000000000000000000000000.

The way we use bitflags is that we use the OR operator, |, and by OR’ing the values together, we get
a bitmask with each flag we OR’ed set to 1. In our example, the bitmask would look like 10000000
000000000000000000000001.

The receiver of the bitmask (in this case, the operating system) can then do an opposite operation,
check which flags are set, and act accordingly.

We can create a very simple example in code to show how this works in practice (you can simply run
this in the Rust playground or create a new empty project for throwaway experiments such as this):

fn main() {

  let bitflag_a: i32 = 1 << 31;

  let bitflag_b: i32 = 0x1;

  let bitmask: i32 = bitflag_a | bitflag_b;

  println!("{bitflag_a:032b}");

  println!("{bitflag_b:032b}");

  println!("{bitmask:032b}");

  check(bitmask);

}

fn check(bitmask: i32) {

  const EPOLLIN: i32 = 0x1;

  const EPOLLET: i32 = 1 << 31;

  const EPOLLONESHOT: i32 = 0x40000000;

  let read = bitmask & EPOLLIN != 0;

  let et = bitmask & EPOLLET != 0;

  let oneshot = bitmask & EPOLLONESHOT != 0;

  println!("read_event? {read}, edge_triggered: {et}, oneshot?: {oneshot}")

}

This code will output the following:

10000000000000000000000000000000

00000000000000000000000000000001

Create Your Own Event Queue78

10000000000000000000000000000001

read_event? true, edge_triggered: true, oneshot?: false

The next topic we will introduce in this chapter is the concept of edge-triggered events, which probably
need some explanation.

Level-triggered versus edge-triggered events

In a perfect world, we wouldn’t need to discuss this, but when working with epoll, it’s almost impossible
to avoid having to know about the difference. It’s not obvious by reading the documentation, especially
not if you haven’t had previous experience with these terms before. The interesting part of this is that
it allows us to create a parallel between how events are handled in epoll and how events are handled
at the hardware level.

epoll can notify events in a level-triggered or edge-triggered mode. If your main experience is
programming in high-level languages, this must sound very obscure (it did to me when I first learned
about it), but bear with me. In the events bitmask on the Event struct, we set the EPOLLET flag
to get notified in edge-triggered mode (the default if you specify nothing is level-triggered).

This way of modeling event notification and event handling has a lot of similarities to how computers
handle interrupts.

Level-triggered means that the answer to the question “Has an event happened” is true as long as the
electrical signal on an interrupt line is reported as high. If we translate this to our example, a read
event has occurred as long as there is data in the buffer associated with the file handle.

When handling interrupts, you would clear the interrupt by servicing whatever hardware caused
it, or you could mask the interrupt, which simply disables interrupts on that line until it’s explicitly
unmasked later on.

In our example, we clear the interrupt by draining all the data in the buffer by reading it. When the
buffer is drained, the answer to our question changes to false.

When using epoll in its default mode, which is level-triggered, we can encounter a case where we get
multiple notifications on the same event since we haven’t had time to drain the buffer yet (remember,
as long as there is data in the buffer, epoll will notify you over and over again). This is especially
apparent when we have one thread that reports events and then delegates the task of handling the
event (reading from the stream) to other worker threads since epoll will happily report that an event
is ready even though we’re in the process of handling it.

To remedy this, epoll has a flag named EPOLLONESHOT.

The ffi module 79

EPOLLONESHOT tells epoll that once we receive an event on this file descriptor, it should disable the
file descriptor in the interest list. It won’t remove it, but we won’t get any more notifications on that
file descriptor unless we explicitly reactivate it by calling epoll_ctl with the EPOLL_CTL_MOD
argument and a new bitmask.

If we didn’t add this flag, the following could happen: if thread 1 is the thread where we call epoll_
wait, then once it receives a notification about a read event, it starts a task in thread 2 to read from
that file descriptor, and then calls epoll_wait again to get notifications on new events. In this case,
the call to epoll_wait would return again and tell us that data is ready on the same file descriptor
since we haven’t had the time to drain the buffer on that file descriptor yet. We know that the task is
taken care of by thread 2, but we still get a notification. Without additional synchronization and
logic, we could end up giving the task of reading from the same file descriptor to thread 3, which
could cause problems that are quite hard to debug.

Using EPOLLONESHOT solves this problem since thread 2 will have to reactivate the file descriptor in
the event queue once it’s done handling its task, thereby telling our epoll queue that it’s finished with
it and that we are interested in getting notifications on that file descriptor again.

To go back to our original analogy of hardware interrupts, EPOLLONESHOT could be thought of
as masking an interrupt. You haven’t actually cleared the source of the event notification yet, but
you don’t want further notifications until you’ve done that and explicitly unmask it. In epoll, the
EPOLLONESHOT flag will disable notifications on the file descriptor until you explicitly enable it by
calling epoll_ctl with the op argument set to EPOLL_CTL_MOD.

Edge-triggered means that the answer to the question “Has an event happened” is true only if the
electrical signal has changed from low to high. If we translate this to our example: a read event has
occurred when the buffer has changed from having no data to having data. As long as there is data in
the buffer, no new events will be reported. You still handle the event by draining all the data from the
socket, but you won’t get a new notification until the buffer is fully drained and then filled with new data.

Edge-triggered mode also comes with some pitfalls. The biggest one is that if you don’t drain the buffer
properly, you will never receive a notification on that file handle again.

Create Your Own Event Queue80

Figure 4.1 – Edge-triggered versus level-triggered events

mio doesn’t, at the time of writing, support EPOLLONESHOT and uses epoll in an edge-triggered
mode, which we will do as well in our example.

What about waiting on epoll_wait in multiple threads?
As long as we only have one Poll instance, we avoid the problems and subtleties of having
multiple threads calling epoll_wait on the same epoll instance. Using level-triggered events
will wake up all threads that are waiting in the epoll_wait call, causing all of them to try
to handle the event (this is often referred to as the problem of the thundering heard). epoll
has another flag you can set, called EPOLLEXCLUSIVE, that solves this issue. Events that are
set to be edge-triggered will only wake up one of the threads blocking in epoll_wait by
default and avoid this issue.

Since we only use one Poll instance from a single thread, this will not be an issue for us.

I know and understand that this sounds very complex. The general concept of event queues is rather
simple, but the details can get a bit complex. That said, epoll is one of the most complex APIs in my
experience since the API has clearly been evolving over time to adapt the original design to suit
modern requirements, and there is really no easy way to actually use and understand it correctly
without covering at least the topics we covered here.

One word of comfort here is that both kqueue and IOCP have APIs that are easier to understand.
There is also the fact that Unix has a new asynchronous I/O interface called io_uring that will be
more and more and more common in the future.

The Poll module 81

Now that we’ve covered the hard part of this chapter and gotten a high-level overview of how epoll
works, it’s time to implement our mio-inspired API in poll.rs.

The Poll module
If you haven’t written or copied the code we presented in the Design and introduction to epoll section,
it’s time to do it now. We’ll implement all the functions where we just had todo!() earlier.

We start by implementing the methods on our Poll struct. First up is opening the impl Poll
block and implementing the new function:

ch04/a-epoll/src/poll.rs
impl Poll {

    pub fn new() -> Result<Self> {

        let res = unsafe { ffi::epoll_create(1) };

        if res < 0 {

            return Err(io::Error::last_os_error());

        }

        Ok(Self {

            registry: Registry { raw_fd: res },

        })

    }

Given the thorough introduction to epoll in the The ffi module section, this should be pretty straightforward.
We call ffi::epoll_create with an argument of 1 (remember, the argument is ignored but must
have a non-zero value). If we get any errors, we ask the operating system to report the last error for
our process and return that. If the call succeeds, we return a new Poll instance that simply wraps
around our registry that holds the epoll file descriptor.

Next up is our registry method, which simply hands out a reference to the inner Registry struct:

ch04/a-epoll/src/poll.rs
    pub fn registry(&self) -> &Registry {

        &self.registry

    }

Create Your Own Event Queue82

The last method on Poll is the most interesting one. It’s the poll function, which will park the
current thread and tell the operating system to wake it up when an event has happened on a source we’re
tracking, or the timeout has elapsed, whichever comes first. We also close the impl Poll block here:

ch04/a-epoll/src/poll.rs
  pub fn poll(&mut self, events: &mut Events, timeout: Option<i32>) -> Result<()> {

    let fd = self.registry.raw_fd;

    let timeout = timeout.unwrap_or(-1);

    let max_events = events.capacity() as i32;

    let res = unsafe { ffi::epoll_wait(fd, events.as_mut_ptr(), max_events, timeout)
};

    if res < 0 {

      return Err(io::Error::last_os_error());

    };

    unsafe { events.set_len(res as usize) };

    Ok(())

  }

}

The first thing we do is to get the raw file descriptor for the event queue and store it in the fd variable.

Next is our timeout. If it’s Some, we unwrap that value, and if it’s None, we set it to –1, which is
the value that tells the operating system that we want to block until an event occurs even though that
might never happen.

At the top of the file, we defined Events as a type alias for Vec<ffi::Event>, so the next thing
we do is to get the capacity of that Vec. It’s important that we don’t rely on Vec::len since that
reports how many items we have in the Vec. Vec::capacity reports the space we’ve allocated
and that’s what we’re after.

Next up is the call to ffi::epoll_wait. This call will return successfully if it has a value of 0 or
larger, telling us how many events have occurred.

Note
We would get a value of 0 if a timeout elapses before an event has happened.

The last thing we do is to make an unsafe call to events.set_len(res as usize). This
function is unsafe since we could potentially set the length so that we would access memory that’s not
been initialized yet in safe Rust. We know from the guarantee the operating system gives us that the
number of events it returns is pointing to valid data in our Vec, so this is safe in our case.

The Poll module 83

Next up is our Registry struct. We will only implement one method, called register, and lastly,
we’ll implement the Drop trait for it, closing the epoll instance:

ch04/a-epoll/src/poll.rs
impl Registry {

    pub fn register(&self, source: &TcpStream, token: usize, interests: i32) -> Result<()>
{

        let mut event = ffi::Event {

            events: interests as u32,

            epoll_data: token,

        };

        let op = ffi::EPOLL_CTL_ADD;

        let res = unsafe {

            ffi::epoll_ctl(self.raw_fd, op, source.as_raw_fd(), &mut event)

        };

        if res < 0 {

            return Err(io::Error::last_os_error());

        }

        Ok(())

    }

}

The register function takes a &TcpStream as a source, a token of type usize, and a bitmask named
interests, which is of type i32.

Note
This is where mio does things differently. The source argument is specific to each platform.
Instead of having the implementation of register on Registry, it’s handled in a platform-
specific way in the source argument it receives.

The first thing we do is to create an ffi::Event object. The events field is simply set to the
bitmask we received and named interests, and epoll_data is set to the value we passed in
the token argument.

Create Your Own Event Queue84

The operation we want to perform on the epoll queue is adding interest in events on a new file descriptor.
Therefore, we set the op argument to the ffi::EPOLL_CTL_ADD constant value.

Next up is the call to ffi::epoll_ctl. We pass in the file descriptor to the epoll instance first,
then we pass in the op argument to indicate what kind of operation we want to perform. The last
two arguments are the file descriptor we want the queue to track and the Event object we created
to indicate what kind of events we’re interested in getting notifications for.

The last part of the function body is simply the error handling, which should be familiar by now.

The last part of poll.rs is the Drop implementation for Registry:

ch04/a-epoll/src/poll.rs
impl Drop for Registry {

    fn drop(&mut self) {

        let res = unsafe { ffi::close(self.raw_fd) };

        if res < 0 {

            let err = io::Error::last_os_error();

            eprintln!("ERROR: {err:?}");

        }

    }

}

The Drop implementation simply calls ffi::close on the epoll file descriptor. Adding a panic
to drop is rarely a good idea since drop can be called within a panic already, which will cause the
process to simply abort. mio logs errors if they occur in its Drop implementation but doesn’t handle
them in any other way. For our simple example, we’ll just print the error so we can see if anything
goes wrong since we don’t implement any kind of logging here.

The last part is the code for running our example, and that leads us to main.rs.

The main program
Let’s see how it all works in practice. Make sure that delayserver is up and running, because we’ll
need it for these examples to work.

The goal is to send a set of requests to delayserver with varying delays and then use epoll to wait
for the responses. Therefore, we’ll only use epoll to track read events in this example. The program
doesn’t do much more than that for now.

The main program 85

The first thing we do is to make sure our main.rs file is set up correctly:

ch04/a-epoll/src/main.rs
use std::{io::{self, Read, Result, Write}, net::TcpStream};

use ffi::Event;

use poll::Poll;

mod ffi;

mod poll;

We import a few types from our own crate and from the standard library, which we’ll need going
forward, as well as declaring our two modules.

We’ll be working directly with TcpStreams in this example, and that means that we’ll have to format
the HTTP requests we make to our delayserver ourselves.

The server will accept GET requests, so we create a small helper function to format a valid HTTP
GET request for us:

ch04/a-epoll/src/main.rs
fn get_req(path &str) -> Vec<u8> {

    format!(

        "GET {path} HTTP/1.1\r\n\

             Host: localhost\r\n\

             Connection: close\r\n\

             \r\n"

    )

}

The preceding code simply takes a path as an input argument and formats a valid GET request with it.
The path is the part of the URL after the scheme and host. In our case, the path would be everything
in bold in the following URL: http://localhost:8080/2000/hello-world.

Next up is our main function. It’s divided into two parts:

•	 Setup and sending requests

•	 Wait and handle incoming events

Create Your Own Event Queue86

The first part of the main function looks like this:

fn main() -> Result<()> {

    let mut poll = Poll::new()?;

    let n_events = 5;

    let mut streams = vec![];

    let addr = "localhost:8080";

    for i in 0..n_events {

        let delay = (n_events - i) * 1000;

        let url_path = format!("/{delay}/request-{i}");

        let request = get_req(&url_path);

        let mut stream = std::net::TcpStream::connect(addr)?;

        stream.set_nonblocking(true)?;

        stream.write_all(request.as_bytes())?;

        poll.registry()

            .register(&stream, i, ffi::EPOLLIN | ffi::EPOLLET)?;

        streams.push(stream);

    }

The first thing we do is to create a new Poll instance. We also specify what number of events we
want to create and handle in our example.

The next step is creating a variable to hold a collection of Vec<TcpStream> objects.

We also store the address to our local delayserver in a variable called addr.

The next part is where we create a set of requests that we issue to our delayserver, which will
eventually respond to us. For each request, we expect a read event to happen sometime later on in
the TcpStream we sent the request on.

The first thing we do in the loop is set the delay time in milliseconds. Setting the delay to (n_events
- i) * 1000 simply sets the first request we make to have the longest timeout, so we should expect
the responses to arrive in the reverse order from which they were sent.

The main program 87

Note
For simplicity, we use the index the event will have in the streams collection as its ID. This
ID will be the same as the i variable in our loop. For example, in the first loop, i will be 0; it
will also be the first stream to be pushed to our streams collection, so the index will be 0 as
well. We therefore use 0 as the identification for this stream/event throughout since retrieving
the TcpStream associated with this event will be as simple as indexing to that location in
the streams collection.

The next line, format!("/{delay}/request-{i}"), formats the path for our GET request.
We set the timeout as described previously, and we also set a message where we store the identifier
for this event, i, so we can track this event on the server side as well.

Next up is creating a TcpStream. You’ve probably noticed that the TcpStream in Rust doesn’t
accept &str but an argument that implements the ToSocketAddrs trait. This trait is implemented
for &str already, so that’s why we can simply write it like we do in this example.

Before Tcpstream::connect actually opens a socket, it will try to parse the address we pass in
as an IP address. If it fails, it will parse it as a domain address and a port number, and then ask the
operating system to do a DNS lookup for that address, which it then can use to actually connect to
our server. So, you see, there is potentially quite a bit going on when we do a simple connection.

You probably remember that we discussed some of the nuances of the DNS lookup earlier and the fact
that such a call could either be very fast since the operating system already has the information stored
in memory or block while waiting for a response from the DNS server. This is a potential downside
if you use TcpStream from the standard library if you want full control over the entire process.

TcpStream in Rust and Nagle’s algorithm
Here is a little fact for you (I originally intended to call it a “fun fact,” but realized that’s stretching
the concept of “fun” just a little too far!). In Rust’s TcpStream, and, more importantly, most
APIs that aim to mimic the standard library’s TcpStream such as mio or Tokio, the stream
is created with the TCP_NODELAY flag set to false. In practice, this means that Nagle’s
algorithm is used, which can cause some issues with latency outliers and possibly reduced
throughput on some workloads.

Nagle’s algorithm is an algorithm that aims to reduce network congestion by pooling small network
packages together. If you look at non-blocking I/O implementations in other languages, many,
if not most, disable this algorithm by default. This is not the case in most Rust implementations
and is worth being aware of. You can disable it by simply calling TcpStream::set_
nodelay(true). If you try to create your own async library or rely on Tokio/mio, and
observe lower throughput than expected or latency problems, it’s worth checking whether this
flag is set to true or not.

Create Your Own Event Queue88

To continue with the code, the next step is setting TcpStream to non-blocking by calling Tcp
Stream::set_nonblocking(true).

After that, we write our request to the server before we register interest in read events by setting the
EPOLLIN flag bit in the interests bitmask.

For each iteration, we push the stream to the end of our streams collection.

The next part of the main function is handling incoming events.

Let’s take a look at the last part of our main function:

let mut handled_events = 0;

    while handled_events < n_events {

        let mut events = Vec::with_capacity(10);

        poll.poll(&mut events, None)?;

        if events.is_empty() {

            println!("TIMEOUT (OR SPURIOUS EVENT NOTIFICATION)");

            continue;

        }

        handled_events += handle_events(&events, &mut streams)?;

    }

    println!("FINISHED");

    Ok(())

}

The first thing we do is create a variable called handled_events to track how many events we
have handled.

Next is our event loop. We loop as long as the handled events are less than the number of events we
expect. Once all events are handled, we exit the loop.

Inside the loop, we create a Vec<Event> with the capacity to store 10 events. It’s important that
we create this using Vec::with_capacity since the operating system will assume that we pass
it memory that we’ve allocated. We could choose any number of events here and it would work just
fine, but setting too low a number would limit how many events the operating system could notify
us about on each wakeup.

Next is our blocking call to Poll::poll. As you know, this will actually tell the operating system
to park our thread and wake us up when an event has occurred.

If we’re woken up, but there are no events in the list, it’s either a timeout or a spurious event (which
could happen, so we need a way to check whether a timeout has actually elapsed if that’s important
to us). If that’s the case, we simply call Poll::poll once more.

The main program 89

If there are events to be handled, we pass these on to the handle_events function together with
a mutable reference to our streams collection.

The last part of main is simply to write FINISHED to the console to let us know we exited main
at that point.

The last bit of code in this chapter is the handle_events function. This function takes two
arguments, a slice of Event structs and a mutable slice of TcpStream objects.

Let’s take a look at the code before we explain it:

fn handle_events(events: &[Event], streams: &mut [TcpStream]) -> Result<usize> {

    let mut handled_events = 0;

    for event in events {

        let index = event.token();

        let mut data = vec![0u8; 4096];

        loop {

            match streams[index].read(&mut data) {

                Ok(n) if n == 0 => {

                    handled_events += 1;

                    break;

                }

                Ok(n) => {

                    let txt = String::from_utf8_lossy(&data[..n]);

                    println!("RECEIVED: {:?}", event);

                    println!("{txt}\n------\n");

                }

                // Not ready to read in a non-blocking manner. This could

                // happen even if the event was reported as ready

                Err(e) if e.kind() == io::ErrorKind::WouldBlock => break,

                Err(e) => return Err(e),

            }

        }

    }

    Ok(handled_events)

}

The first thing we do is to create a variable, handled_events, to track how many events we consider
handled on each wakeup. The next step is looping through the events we received.

Create Your Own Event Queue90

In the loop, we retrieve the token that identifies which TcpStream we received an event for. As we
explained earlier in this example, this token is the same as the index for that particular stream in the
streams collection, so we can simply use it to index into our streams collection and retrieve the
right TcpStream.

Before we start reading data, we create a buffer with a size of 4,096 bytes (you can, of course, allocate
a larger or smaller buffer for this if you want to).

We create a loop since we might need to call read multiple times to be sure that we’ve actually drained
the buffer. Remember how important it is to fully drain the buffer when using epoll in edge-triggered mode.

We match on the result of calling TcpStream::read since we want to take different actions based
on the result:

•	 If we get Ok(n) and the value is 0, we’ve drained the buffer; we consider the event as handled
and break out of the loop.

•	 If we get Ok(n) with a value larger than 0, we read the data to a String and print it out
with some formatting. We do not break out of the loop yet since we have to call read until 0
is returned (or an error) to be sure that we’ve drained the buffers fully.

•	 If we get Err and the error is of the io::ErrorKind::WouldBlock type, we simply
break out of the loop. We don’t consider the event handled yet since WouldBlock indicates
that the data transfer is not complete, but there is no data ready right now.

•	 If we get any other error, we simply return that error and consider it a failure.

Note
There is one more error condition you’d normally want to cover, and that is
io::ErrorKind::Interrupted. Reading from a stream could be interrupted by
a signal from the operating system. This should be expected and probably not considered
a failure. The way to handle this is the same as what we do when we get an error of the
WouldBlock type.

If the read operation is successful, we return the number of events handled.

Be careful with using TcpStream::read_to_end
You should be careful with using TcpStream::read_to_end or any other function that
fully drains the buffer for you when using non-blocking buffers. If you get an error of the
io::WouldBlock type, it will report that as an error even though you had several successful
reads before you got that error. You have no way of knowing how much data you read successfully
other than observing any changes to the &mut Vec you passed in.

The main program 91

Now, if we run our program, we should get the following output:

RECEIVED: Event { events: 1, epoll_data: 4 }

HTTP/1.1 200 OK

content-length: 9

connection: close

content-type: text/plain; charset=utf-8

date: Wed, 04 Oct 2023 15:29:09 GMT

request-4

RECEIVED: Event { events: 1, epoll_data: 3 }

HTTP/1.1 200 OK

content-length: 9

connection: close

content-type: text/plain; charset=utf-8

date: Wed, 04 Oct 2023 15:29:10 GMT

request-3

RECEIVED: Event { events: 1, epoll_data: 2 }

HTTP/1.1 200 OK

content-length: 9

connection: close

content-type: text/plain; charset=utf-8

date: Wed, 04 Oct 2023 15:29:11 GMT

request-2

RECEIVED: Event { events: 1, epoll_data: 1 }

HTTP/1.1 200 OK

content-length: 9

connection: close

content-type: text/plain; charset=utf-8

date: Wed, 04 Oct 2023 15:29:12 GMT

request-1

RECEIVED: Event { events: 1, epoll_data: 0 }

HTTP/1.1 200 OK

Create Your Own Event Queue92

content-length: 9

connection: close

content-type: text/plain; charset=utf-8

date: Wed, 04 Oct 2023 15:29:13 GMT

request-0

FINISHED

As you see, the responses are sent in reverse order. You can easily confirm this by looking at the output
on the terminal on running the delayserver instance. The output should look like this:

#1 - 5000ms: request-0

#2 - 4000ms: request-1

#3 - 3000ms: request-2

#4 - 2000ms: request-3

#5 - 1000ms: request-4

The ordering might be different sometimes as the server receives them almost simultaneously, and
can choose to handle them in a slightly different order.

Say we track events on the stream with ID 4:

1.	 In send_requests, we assigned the ID 4 to the last stream we created.

2.	 Socket 4 sends a request to delayserver, setting a delay of 1,000 ms and a message of
request-4 so we can identify it on the server side.

3.	 We register socket 4 with the event queue, making sure to set the epoll_data field to 4 so
we can identify on what stream the event occurred.

4.	 delayserver receives that request and delays the response for 1,000 ms before it sends an
HTTP/1.1 200 OK response back, together with the message we originally sent.

5.	 epoll_wait wakes up, notifying us that an event is ready. In the epoll_data field of the
Event struct, we get back the same data that we passed in when registering the event. This
tells us that it was an event on stream 4 that occurred.

6.	 We then read data from stream 4 and print it out.

In this example, we’ve kept things at a very low level even though we used the standard library to
handle the intricacies of establishing a connection. Even though you’ve actually made a raw HTTP
request to your own local server, you’ve set up an epoll instance to track events on a TcpStream
and you’ve used epoll and syscalls to handle incoming events.

That’s no small feat – congratulations!

Summary 93

Before we leave this example, I wanted to point out how few changes we need to make to have our
example use mio as the event loop instead of the one we created.

In the repository under ch04/b-epoll-mio, you’ll see an example where we do the exact same
thing using mio instead. It only requires importing a few types from mio instead of our own modules
and making only five minor changes to our code!

Not only have you replicated what mio does, but you pretty much know how to use mio to create an
event loop as well!

Summary
The concept of epoll, kqueue, and IOCP is pretty simple at a high level, but the devil is in the details.
It’s just not that easy to understand and get it working correctly. Even programmers who work on
these things will often specialize in one platform (epoll/kqueue or Windows). It’s rare that one person
will know all the intricacies of all platforms, and you could probably write a whole book about this
subject alone.

If we summarize what you’ve learned and got firsthand experience with in this chapter, the list is
quite impressive:

•	 You learned a lot about how mio is designed, enabling you to go to that repository and know
what to look for and how to get started on that code base much easier than before reading
this chapter

•	 You learned a lot about making syscalls on Linux

•	 You created an epoll instance, registered events with it, and handled those events

•	 You learned quite a bit about how epoll is designed and its API

•	 You learned about edge-triggering and level-triggering, which are extremely low-level, but
useful, concepts to have an understanding of outside the context of epoll as well

•	 You made a raw HTTP request

•	 You saw how non-blocking sockets behave and how error codes reported by the operating
system can be a way of communicating certain conditions that you’re expected to handle

•	 You learned that not all I/O is equally “blocking” by looking at DNS resolution and file I/O

That’s pretty good for a single chapter, I think!

If you dive deeper into the topics we covered here, you’ll soon realize that there are gotchas and rabbit
holes everywhere – especially if you expand this example to abstract over epoll, kqueue, and IOCP.
You’ll probably end up reading Linus Torvald’s emails on how edge-triggered mode was supposed to
work on pipes before you know it.

Create Your Own Event Queue94

At least you now have a good foundation for further exploration. You can expand on our simple
example and create a proper event loop that handles connecting, writing, timeouts, and scheduling;
you can dive deeper into kqueue and IOCP by looking at how mio solves that problem; or you can
be happy that you don’t have to directly deal with it again and appreciate the effort that went into
libraries such as mio, polling, and libuv.

By this point, we’ve gained a lot of knowledge about the basic building blocks of asynchronous
programming, so it’s time to start exploring how different programming languages create abstractions
over asynchronous operations and use these building blocks to give us as programmers efficient,
expressive, and productive ways to write our asynchronous programs.

First off is one of my favorite examples, where we’ll look into how fibers (or green threads) work by
implementing them ourselves.

You’ve earned a break now. Yeah, go on, the next chapter can wait. Get a cup of tea or coffee and reset
so you can start the next chapter with a fresh mind. I promise it will be both fun and interesting.

5
Creating Our Own Fibers

In this chapter, we take a deep dive into a very popular way of handling concurrency. There is no
better way of getting a fundamental understanding of the subject than doing it yourself. Fortunately,
even though the topic is a little complex, we only need around 200 lines of code to get a fully working
example in the end.

What makes the topic complex is that it requires quite a bit of fundamental understanding of how CPUs,
operating systems, and assembly work. This complexity is also what makes this topic so interesting.
If you explore and work through this example in detail, you will be rewarded with an eye-opening
understanding of topics you might only have heard about or only have a rudimentary understanding
of. You will also get the chance to get to know a few aspects of the Rust language that you haven’t seen
before, expanding your knowledge of both Rust and programming in general.

We start off by introducing a little background knowledge that we need before we start writing code.
Once we have that in place, we’ll start with some small examples that will allow us to show and discuss
the most technical and difficult parts of our example in detail so we can introduce the topics gradually.
Lastly, we’ll build on the knowledge we’ve gained and create our main example, which is a working
example of fibers implemented in Rust.

As a bonus, you’ll get two expanded versions of the example in the repository to inspire you to go on
and change, adapt, and build upon what we’ve created to make it your own.

I’ll list the main topics here so you can refer to them later on:

•	 How to use the repository alongside the book

•	 Background information

•	 An example we can build upon

•	 The stack

•	 Implementing our own fibers

•	 Final thoughts

Creating Our Own Fibers96

Note
In this chapter, we’ll use the terms “fibers” and “green threads” to refer to this exact implementation
of stackful coroutines. The term “threads” in this chapter, which is used in the code we write,
will refer to the green threads/fibers we implement in our example and not OS threads.

Technical requirements
To run the examples, you will need a computer running on a CPU using the x86-64 instruction set.
Most popular desktop, server, and laptop CPUs out there today use this instruction set, as do most
modern CPUs from Intel and AMD (which are most CPU models from these manufacturers produced
in the last 10–15 years).

One caveat is that the modern M-series Macs use the ARM ISA (instruction set), which won’t be
compatible with the examples we write here. However, older Intel-based Macs do, so you should be
able to use a Mac to follow along if you don’t have the latest version.

If you don’t have a computer using this instruction set available, you have a few options to install Rust
and run the examples:

•	 Mac users on M-series chips can use Rosetta (which ships with newer MacOS versions) and get
the examples working with just four simple steps. You’ll find the instructions in the repository
under ch05/How-to-MacOS-M.md.

•	 https://mac.getutm.app/Rent (some even have a free layer) a remote server running
Linux on x86-64. I have experience with Linode’s offering (https://www.linode.com/),
but there are many more options out there.

To follow along with the examples in the book, you also need a Unix-based operating system. The
example code will work natively on any Linux and BSD operating system (such as Ubuntu or macOS)
as long as it’s running on an x86-64 CPU.

If you’re on Windows, there is a version of the example in the repository that works natively with
Windows too, but to follow along with the book, my clear recommendation is to set up Windows
Subsystem for Linux (WSL) (https://learn.microsoft.com/en-us/windows/wsl/
install), install Rust, and follow along using Rust on WSL.

I personally use VS Code as my editor, as it makes it very easy to switch between using a Linux version
on WSL and Windows—simply press Ctrl + Shift + P and search for the Reopen folder in WSL.

How to use the repository alongside the book
The recommended way to read this chapter is to have the repository open alongside the book. In
the repository, you’ll find three different folders that correspond to the examples we go through in
this chapter:

•	 ch05/a-stack swap

https://mac.getutm.app/
https://mac.getutm.app/Rent
https://www.linode.com
https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install

Background information 97

•	 ch05/b-show-stack

•	 ch05/c-fibers

In addition, you will get two more examples that I refer to in the book but that should be explored
in the repository:

•	 ch05/d-fibers-closure: This is an extended version of the first example that might
inspire you to do more complex things yourself. The example tries to mimic the API used in
the Rust standard library using std::thread::spawn.

•	 ch05/e-fibers-windows: This is a version of the example that we go through in this book
that works on both Unix-based systems and Windows. There is a quite detailed explanation
in the README of the changes we make for the example work on Windows. I consider this
recommended reading if you want to dive deeper into the topic, but it’s not important to
understand the main concepts we go through in this chapter.

Background information
We are going to interfere with and control the CPU directly. This is not very portable since there are
many kinds of CPUs out there. While the overall implementation will be the same, there is a small
but important part of the implementation that will be very specific to the CPU architecture we’re
programming for. Another aspect that limits the portability of our code is that operating systems have
different ABIs that we need to adhere to, and those same pieces of code will have to change based on
the different ABIs. Let’s explain exactly what we mean here before we go further so we know we’re
on the same page.

Instruction sets, hardware architectures, and ABIs

Okay, before we start, we need to know the differences between an application binary interface (ABI),
a CPU architecture, and an instruction set architecture (ISA). We need this to write our own stack
and make the CPU jump over to it. Fortunately, while this might sound complex, we only need to
know a few specific things for our example to run. The information presented here is useful in many
more circumstances than just our example, so it’s worthwhile to cover it in some detail.

An ISA describes an abstract model of a CPU that defines how the CPU is controlled by the software
it runs. We often simply refer to this as the instruction set, and it defines what instructions the CPU
can execute, what registers programmers can use, how the hardware manages memory, etc. Examples
of ISAs are x86-64, x86, and the ARM ISA (used in Mac M-series chips).

ISAs are broadly classified into two subgroups, complex instruction set computers (CISC) and
reduced instruction set computers (RISC), based on their complexity. CISC architectures offer a lot
of different instructions that the hardware must know how to execute, resulting in some instructions
that are very specialized and rarely used by programs. RISC architectures accept fewer instructions

Creating Our Own Fibers98

but require some operations to be handled by software that could be directly handled by the hardware
in a CISC architecture. The x86-64 instruction set we’ll focus on is an example of a CISC architecture.

To add a little complexity (you know, it’s not fun if it’s too easy), there are different names that refer
to the same ISA. For example, the x86-64 instruction set is also referred to as the AMD64 instruction
set and the Intel 64 instruction set, so no matter which one you encounter, just know that they refer
to the same thing. In our book, we’ll simply call it the x86-64 instruction set.

Tip
To find the architecture on your current system, run one of the following commands in
your terminal:

On Linux and MacOS: arch or uname -m

On Windows PowerShell: $env:PROCESSOR_ARCHITECTURE

On Windows Command Prompt: echo %PROCESSOR_ARCHITECTURE%

The instruction set just defines how a program can interface with the CPU. The concrete implementation
of an ISA can vary between different manufacturers, and a specific implementation is referred to as
a CPU architecture, such as Intel Core processors. However, in practice, these terms are often used
interchangeably since they all perform the same functions from a programmer’s perspective and there
is seldom a need to target a specific implementation of an ISA.

The ISA specifies the minimum set of instructions the CPU must be able to execute. Over time, there
have been extensions to this instruction set, such as Streaming SIMD Extensions (SSE), that add
more instructions and registers that programmers can take advantage of.

For the examples in this chapter, we will target the x86-64 ISA, a popular architecture used in most
desktop computers and servers today.

So, we know that a processor architecture presents an interface that programmers can use. Operating
system implementors use this infrastructure to create operating systems.

Operating systems such as Windows and Linux define an ABI that specifies a set of rules that the
programmer has to adhere to for their programs to work correctly on that platform. Examples of
operating system ABI’s are System V ABI (Linux) and Win64 (Windows). The ABI specifies how the
operating system expects a stack to be set up, how you should call a function, how you create a file
that will load and run as a program, the name of the function that will be called once the program
has loaded, etc.

A very important part of the ABI that operating systems must specify is its calling convention. The
calling convention defines how the stack is used and how functions are called.

Let’s illustrate this with an example of how Linux and Windows handle arguments to a function on
x86-64; for example, a function with a signature such as fn foo(a: i64, b: i64).

Background information 99

The x86-64 ISA defines 16 general-purpose registers. These are registers the CPU provides for
programmers to use for whatever they see fit. Note that programmers here include the ones that write
the operating system, and they can lay additional restrictions on what registers you can use for what
when you create a program to run on their operating system. In our specific example, Windows and
Unix-based systems have different requirements for where to place the arguments for a function:

•	 Linux specifies that a function that takes two arguments should place the first argument to the
function in the rdi register and the second one in the rsi register

•	 Windows requires that the first two arguments be passed in the registers rcx and rdx

This is just one of many ways in which a program that is written for one platform won’t work on
another. Usually, these details are the concern of compiler developers, and the compiler will handle
the different calling conventions when you compile for a specific platform.

So to sum it up, CPUs implement an instruction set. The instruction set defines what instructions
the CPU can execute and the infrastructure it should provide to programmers (such as registers).
An operating system uses this infrastructure in different ways, and it provides additional rules that
a programmer must obey to run their program correctly on their platform. Most of the time, the
only programmers that need to care about these details are the ones who write operating systems or
compilers. However, when we write low-level code ourselves, we need to know about the ISA and the
OS ABI to have our code work correctly.

Since we need to write this kind of code to implement our own fibers/green threads, we must potentially
write different code for each OS ABI/ISA combination that exists. That means one for Windows/
x86-64, one for Windows/ARM, one for MacOS/x86-64, one for Macos/M, etc.

As you understand, this is also one major contributor to the complexity of using fibers/green threads
for handling concurrency. It has a lot of advantages once it’s correctly implemented for an ISA/OS
ABI combination, but it requires a lot of work to get it right.

For the purpose of the examples in this book, we will only focus on one such combination: the System
V ABI for x86-64.

Note!
In the accompanying repository, you will find a version of the main example for this chapter
for Windows x86-64. The changes we have to make to make it work on Windows are explained
in the README.

The System V ABI for x86-64

As mentioned earlier, this architecture of the CPU features a set of 16 general-purpose 64-bit registers,
16 SSE registers with 128-bit width, and 8 floating point registers with 80-bit width:

Creating Our Own Fibers100

Figure 5.1 – x86-64 CPU registers

There are architectures that build upon this base and extend it, such as the Intel Advanced Vector
Extensions (AVX), which provide an additional 16 registers of 256 bits in width. Let’s take a look at
a page from the System V ABI specification:

Background information 101

Figure 5.2 – Register usage

Figure 5.1 shows an overview of the general-purpose registers in the x86-64 architecture. Out of special
interest for us right now are the registers marked as callee saved. These are the registers we need to keep
track of our context across function calls. It includes the next instructions to run, the base pointer,
the stack pointer, and so on. While the registers themselves are defined by the ISA, the rules on what
is considered callee saved are defined by the System V ABI. We’ll get to know this more in detail later.

Note
Windows has a slightly different convention. On Windows, the register XMM6:XMM15 is also
calle-saved and must be saved and restored if our functions use them. The code we write in
this first example runs fine on Windows since we don’t really adhere to any ABI yet and just
focus on how we’ll instruct the CPU to do what we want.

Creating Our Own Fibers102

If we want to issue a very specific set of commands to the CPU directly, we need to write small pieces
of code in assembly. Fortunately, we only need to know some very basic assembly instructions for our
first mission. Specifically, we need to know how to move values to and from registers:

mov rax, rsp

A quick introduction to Assembly language

First and foremost, Assembly language isn’t particularly portable since it’s the lowest level of human-
readable instructions we can write to the CPU, and the instructions we write in assembly will vary
from architecture to architecture. Since we will only write assembly targeting the x86-64 architecture
going forward, we only need to learn a few instructions for this particular architecture.

Before we go too deep into the specifics, you need to know that there are two popular dialects used
in assembly: the AT&T dialect and the Intel dialect.

The Intel dialect is the standard when writing inline assembly in Rust, but in Rust, we can specify
that we want to use the AT&T dialect instead if we want to. Rust has its own take on how to do inline
assembly that at first glance looks foreign to anyone used to inline assembly in C. It’s well thought
through though, and I’ll spend a bit of time explaining it in more detail as we go through the code, so
both readers with experience with the C-type inline assembly and readers who have no experience
should be able to follow along.

Note
We will use the Intel dialect in our examples.

Assembly has strong backward compatibility guarantees. That’s why you will see that the same registers
are addressed in different ways. Let’s look at the rax register we used as an example as an explanation:

rax    # 64 bit register (8 bytes)

eax    # 32 low bits of the "rax" register

ax     # 16 low bits of the "rax" register

ah     # 8 high bits of the "ax" part of the "rax" register

al     # 8 low bits of the "ax" part of the "rax" register

As you can see, this is basically like watching the history of CPUs evolve in front of us. Since most
CPUs today are 64 bits, we will use the 64-bit versions in our code.

The word size in the assembly also has historical reasons. It stems from the time when the CPU had
16-bit data buses, so a word is 16 bits. This is relevant because you will see many instructions suffixed
with q (quad word) or l (long word). So, a movq would mean a move of 4 * 16 bits, which is 64 bits.

A plain mov will use the size of the register you target on most modern assemblers. This is the one
you will see most used in both AT&T and the Intel dialect when writing inline assembly, and it’s the
one we will use in our code.

An example we can build upon 103

One more thing to note is that the stack alignment on x86-64 is 16 bytes. Just remember this for later.

An example we can build upon
This is a short example where we will create our own stack and make our CPU return out of its
current execution context and over to the stack we just created. We will build on these concepts in
the following chapters.

Setting up our project

First, let’s start a new project by creating a folder named a-stack-swap. Enter the new folder and
run the following:

cargo init

Tip
You can also navigate to the folder called ch05/a-stack-swap in the accompanying
repository and see the whole example there.

In our main.rs, we start by importing the asm! macro:

ch05/a-stack-swap/src/main.rs
use core::arch::asm;

Let’s set a small stack size of only 48 bytes here so that we can print the stack and look at it before we
switch contexts after we get the first example to work:

const SSIZE: isize = 48;

Note
There seems to be an issue in macOS using such a small stack. The minimum for this code to
run is a stack size of 624 bytes. The code works on the Rust Playground, at https://play.
rust-lang.org, if you want to follow this exact example (however, you’ll need to wait
roughly 30 seconds for it to time out due to our loop in the end).

Then let’s add a struct that represents our CPU state. We’ll only focus on the register that stores the
stack pointer for now since that is all we need:

#[derive(Debug, Default)]

#[repr(C)]

struct ThreadContext {

    rsp: u64,

}

https://play.rust-lang.org
https://play.rust-lang.org

Creating Our Own Fibers104

In later examples, we will use all the registers marked as callee saved in the specification document
I linked to. These are the registers described in the System V x86-64 ABI that we’ll need to save our
context, but right now, we only need one register to make the CPU jump over to our stack.

Note that this needs to be #[repr(C)] because of how we access the data in our assembly. Rust
doesn’t have a stable language ABI, so there is no way for us to be sure that this will be represented in
memory with rsp as the first 8 bytes. C has a stable language ABI and that’s exactly what this attribute
tells the compiler to use. Granted, our struct only has one field right now, but we will add more later.

For this very simple example, we will define a function that just prints out a message and then
loops forever:

fn hello() -> ! {

    println!("I LOVE WAKING UP ON A NEW STACK!");

    loop {}

}

Next up is our inline assembly, where we switch over to our own stack:

unsafe fn gt_switch(new: *const ThreadContext) {

    asm!(

        "mov rsp, [{0} + 0x00]",

        "ret",

        in(reg) new,

    );

}

At first glance, you might think that there is nothing special about this piece of code, but let’s stop and
consider what happens here for a moment.

If we refer back to Figure 5.1, we’ll see that rsp is the register that stores the stack pointer that the
CPU uses to figure out the current location on the stack.

Now, what we actually want to do if we want the CPU to swap to a different stack is to set the register
for the stack pointer (rsp) to the top of our new stack and set the instruction pointer (rip) on the
CPU to point to the address hello.

The instruction pointer, or program counter as it’s sometimes called on different architectures, points
to the next instruction to run. If we can manipulate it directly, the CPU would fetch the instruction
pointed to by the rip register and execute the first instruction we wrote in our hello function. The
CPU will then push/pop data on the new stack using the address pointed to by the stack pointer and
simply leave our old stack as it was.

Now, this is where it gets a little difficult. On the x86-64 instruction set, there is no way for us to
manipulate rip directly, so we have to use a little trick.

An example we can build upon 105

The first thing we do is set up the new stack and write the address to the function we want to run at
a 16-byte offset from the top of the stack (the ABI dictates a 16-byte stack alignment, so the top of
our stack frame must start at a 16-byte offset). We’ll see how to create a continuous piece of memory
a little later, but it’s a rather straightforward process.

Next, we pass the address of the first byte in which we stored this address on our newly created stack
to the rsp register (the address we set to new.rsp will point to an address located on our own stack,
which in turn is an address that leads to the hello function). Got it?

The ret keyword transfers program control to what would normally be the return address located
on top of the stack frame it’s currently in. Since we placed the address to hello on our new stack
and set the rsp register to point to our new stack, the CPU will think rsp now points to the return
address of the function it’s currently running, but instead, it’s pointing to a location on our new stack.

When the CPU executes the ret instruction it will pop the first value of the stack (which is conveniently
the address to our hello function) and place that address in the rip register for us. On the next
cycle, the CPU will fetch the instructions located at that function pointer and start executing those
instructions. Since rsp now points to our new stack, it will use that stack going forward.

Note
If you feel a little confused right now, that’s very understandable. These details are hard to
understand and get right, and it takes time to get comfortable with how it works. As we’ll see
later in this chapter, there is a little more data that we need to save and restore (right now, we
don’t have a way to resume the stack we just swapped from), but the technical details on how
the stack swap happens are the same as described previously.

Before we explain how we set up the new stack, we’ll use this opportunity to go line by line and explain
how the inline assembly macro works.

An introduction to Rust inline assembly macro

We’ll use the body of our gt_switch function as a starting point by going through everything step
by step.

If you haven’t used inline assembly before, this might look foreign, but we’ll use an extended version
of the example later to switch contexts, so we need to understand what’s going on.

unsafe is a keyword that indicates that Rust cannot enforce the safety guarantees in the function
we write. Since we are manipulating the CPU directly, this is most definitely unsafe. The function will
also take a pointer to an instance of our ThreadContext from which we will only read one field:

unsafe gt_switch(new: *const ThreadContext)

Creating Our Own Fibers106

The next line is the asm! macro in the Rust standard library. It will check our syntax and provide an
error message if it encounters something that doesn’t look like valid Intel (by default) assembly syntax.

asm!(

The first thing the macro takes as input is the assembly template:

"mov rsp, [{0} + 0x00]",

This is a simple instruction that moves the value stored at 0x00 offset (that means no offset at all in
hex) from the memory location at {0} to the rsp register. Since the rsp register usually stores a
pointer to the most recently pushed value on the stack, we effectively push the address to hello on
top of the current stack so that the CPU will return to that address instead of resuming where it left
off in the previous stack frame.

Note
Note that we don’t need to write [{0} + 0x00] when we don’t want an offset from the
memory location. Writing mov rsp, [{0}] would be perfectly fine. However, I chose to
introduce how we do an offset here as we’ll need it later on when we want to access more fields
in our ThreadContext struct.

Note that the Intel syntax is a little backward. You might be tempted to think mov a, b means
“move what’s at a to b”, but the Intel dialect usually dictates that the destination register is first and
the source is second.

To make this confusing, this is the opposite of what’s typically the case with the AT&T syntax, where
reading it as “move a to b” is the correct thing to do. This is one of the fundamental differences
between the two dialects, and it’s useful to be aware of.

You will not see {0} used like this in normal assembly. This is part of the assembly template and is
a placeholder for the value passed as the first parameter to the macro. You’ll notice that this closely
matches how string templates are formatted in Rust using println! or the like. The parameters
are numbered in ascending order starting from 0. We only have one input parameter here, which
corresponds to {0}.

You don’t really have to index your parameters like this; writing {} in the correct order would suffice
(as you would do using the println! macro). However, using an index improves readability and I
would strongly recommend doing it that way.

The [] basically means “get what’s at this memory location”, you can think of it as the same as
dereferencing a pointer.

An example we can build upon 107

Let’s try to sum up what we do here with words:

Move what’s at the + 0x00 offset from the memory location that {compiler_chosen_general_
purpose_register} points to to the rsp register.

The next line is the ret keyword, which instructs the CPU to pop a memory location off the stack
and then makes an unconditional jump to that location. In effect, we have hijacked our CPU and
made it return to our stack.

Next up is the first non-assembly argument to the asm! macro is our input parameter:

in(reg) new,

When we write in(reg), we let the compiler decide on a general-purpose register to store the value
of new. out(reg) means that the register is an output, so if we write out(reg) new, we need new
to be mut so we can write a value to it. You’ll also find other versions such as inout and lateout.

Options

The last thing we need to introduce to get a minimal understanding of Rust’s inline assembly for
now is the options keyword. After the input and output parameters, you’ll often see something
like options(att_syntax), which specifies that the assembly is written with the AT&T syntax
instead of the Intel syntax. Other options include pure, nostack, and several others.

I’ll refer you to the documentation for you to read about them since they’re explained in detail there:

https://doc.rust-lang.org/nightly/reference/inline-assembly.
html#options

Inline assembly is quite complex, so we’ll take this step by step and introduce more details on how it
works along the way through our examples.

Running our example

The last bit we need is the main function to run our example. I’ll present the whole function and we’ll
walk through it step by step:

fn main() {

    let mut ctx = ThreadContext::default();

    let mut stack = vec![0_u8; SSIZE as usize];

    unsafe {

        let stack_bottom = stack.as_mut_ptr().offset(SSIZE);

        let sb_aligned = (stack_bottom as usize & !15) as *mut u8;

        std::ptr::write(sb_aligned.offset(-16) as *mut u64, hello as u64);

        ctx.rsp = sb_aligned.offset(-16) as u64;

        gt_switch(&mut ctx);

https://doc.rust-lang.org/nightly/reference/inline-assembly.html#options
https://doc.rust-lang.org/nightly/reference/inline-assembly.html#options

Creating Our Own Fibers108

    }

}

So, in this function, we’re actually creating our new stack. hello is a pointer already (a function
pointer), so we can cast it directly as an u64 since all pointers on 64-bit systems will be, well, 64-bit.
Then, we write this pointer to our new stack.

Note
We’ll talk more about the stack in the next segment, but one thing we need to know now is that
the stack grows downwards. If our 48-byte stack starts at index 0 and ends on index 47, index
32 will be the first index of a 16-byte offset from the start/base of our stack.

Make note that we write the pointer to an offset of 16 bytes from the base of our stack.

What does the line let sb_aligned = (stack_bottom as usize &! 15) as *mut u8; do?
When we ask for memory like we do when creating a Vec<u8>, there is no guarantee that
the memory we get is 16-byte-aligned when we get it. This line of code essentially rounds our
memory address down to the nearest 16-byte-aligned address. If it’s already 16 byte-aligned,
it does nothing. This way, we know that we end up at a 16-byte-aligned address if we simply
subtract 16 from the base of our stack.

We cast the address to hello as a pointer to a u64 instead of a pointer to a u8. We want to write to
position “32, 33, 34, 35, 36, 37, 38, 39”, which is the 8-byte space we need to store our u64. If we don’t
do this cast, we try to write a u64 only to position 32, which is not what we want.

When we run the example by writing cargo run in our terminal, we get:

Finished dev [unoptimized + debuginfo] target(s) in 0.58s

Running `target\debug\a-stack-swap`

I LOVE WAKING UP ON A NEW STACK!

Tip
As we end the program in an endless loop, you’ll have to exit by pressing Ctrl + C.

OK, so what happened? We didn’t call the function hello at any point, but it still executed.

What happened is that we actually made the CPU jump over to our own stack, and since it thinks
it returns from a function, it will read the address to hello and start executing the instructions it
points to. We have taken the first step toward implementing a context switch.

The stack 109

In the next sections, we will talk about the stack in a bit more detail before we implement our fibers.
It will be easier now that we have covered so much of the basics.

The stack
A stack is nothing more than a piece of contiguous memory.

This is important to know. A computer only has memory, it doesn’t have a special stack memory and
a heap memory; it’s all part of the same memory.

The difference is how this memory is accessed and used. The stack supports simple push/pop instructions
on a contiguous part of memory, that’s what makes it fast to use. The heap memory is allocated by a
memory allocator on demand and can be scattered around in different locations.

We’ll not go through the differences between the stack and the heap here since there are numerous
articles explaining them in detail, including a chapter in The Rust Programming Language at https://
doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html#the-
stack-and-the-heap.

What does the stack look like?

Let’s start with a simplified view of the stack. A 64-bit CPU will read 8 bytes at a time. Even though
the natural way for us to see a stack is a long line of u8 as shown in Figure 5.2, the CPU will treat it
more like a long line of u64 instead since it won’t be able to read less than 8 bytes when it makes a
load or a store.

Figure 5.3 – The stack

https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html#the-stack-and-the-heap
https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html#the-stack-and-the-heap
https://doc.rust-lang.org/stable/book/ch04-01-what-is-ownership.html#the-stack-and-the-heap

Creating Our Own Fibers110

When we pass a pointer, we need to make sure we pass in a pointer to either address 0016, 0008,
or 0000 in the example.

The stack grows downwards, so we start at the top and work our way down.

When we set the stack pointer in a 16-byte aligned stack, we need to make sure to put our stack pointer
to an address that is a multiple of 16. In the example, the only address that satisfies this requirement
is 0008 (remember the stack starts on the top).

If we add the following lines of code to our example in the last chapter just before we do the switch
in our main function, we can effectively print out our stack and have a look at it:

ch05/b-show-stack
for i in 0..SSIZE {

    println!("mem: {}, val: {}",

    sb_aligned.offset(-i as isize) as usize,

    *sb_aligned.offset(-i as isize))

}

The output we get is as follows:

mem: 2643866716720, val: 0

mem: 2643866716719, val: 0

mem: 2643866716718, val: 0

mem: 2643866716717, val: 0

mem: 2643866716716, val: 0

mem: 2643866716715, val: 0

mem: 2643866716714, val: 0

mem: 2643866716713, val: 0

mem: 2643866716712, val: 0

mem: 2643866716711, val: 0

mem: 2643866716710, val: 0

mem: 2643866716709, val: 127

mem: 2643866716708, val: 247

mem: 2643866716707, val: 172

mem: 2643866716706, val: 15

mem: 2643866716705, val: 29

mem: 2643866716704, val: 240

mem: 2643866716703, val: 0

mem: 2643866716702, val: 0

mem: 2643866716701, val: 0

mem: 2643866716700, val: 0

mem: 2643866716699, val: 0

...

The stack 111

mem: 2643866716675, val: 0

mem: 2643866716674, val: 0

mem: 2643866716673, val: 0

I LOVE WAKING UP ON A NEW STACK!

I’ve printed out the memory addresses as u64 here, so it’s easier to parse if you’re not very familiar
with hex.

The first thing to note is that this is just a contiguous piece of memory, starting at address
2643866716673 and ending at 2643866716720.

The addresses 2643866716704 to 2643866716712 are of special interest to us. The first address
is the address of our stack pointer, the value we write to the rsp register of the CPU. The range
represents the values we wrote to the stack before we made the switch.

Note
The actual addresses you get will be different every time you run the program.

In other words, the values 240, 205, 252, 56, 67, 86, 0, 0 represent the pointer to our
hello() function written as u8 values.

Endianness
An interesting side note here is that the order the CPU writes an u64 as a set of 8 u8 bytes is
dependent on its endianness. In other words, a CPU can write our pointer address as 240,
205, 252, 56, 67, 86, 0, 0 if it’s little-endian or 0, 0, 86, 67, 56, 252,
205, 240 if it’s big-endian. Think of it like how Hebrew, Arabic, and Persian languages read
and write from right to left, while Latin, Greek, and Indic languages read and write from left to
right. It doesn’t really matter as long as you know it in advance, and the results will be the same.

The x86-64 architecture uses a little-endian format, so if you try to parse the data manually,
you’ll have to bear this in mind.

As we write more complex functions, our extremely small 48-byte stack will soon run out of space.
You see, as we run the functions we write in Rust, the CPU will now push and pop values on our new
stack to execute our program and it’s left to the programmer to make sure they don’t overflow the
stack. This brings us to our next topic: stack sizes.

Stack sizes

We touched upon this topic earlier in Chapter 2, but now that we’ve created our own stack and made
our CPU jump over to it, you might get a better sense of the issue. One of the advantages of creating
our own green threads is that we can freely choose how much space we reserve for each stack.

Creating Our Own Fibers112

When you start a process in most modern operating systems, the standard stack size is normally 8 MB,
but it can be configured differently. This is enough for most programs, but it’s up to the programmer
to make sure we don’t use more than we have. This is the cause of the dreaded stack overflow that
most of us have experienced.

However, when we can control the stacks ourselves, we can choose the size we want. 8 MB for each
task is way more than we need when running simple functions in a web server, for example, so by
reducing the stack size, we can have millions of fibers/green threads running on a machine. We run
out of memory a lot sooner using stacks provided by the operating system.

Anyway, we need to consider how to handle the stack size, and most production systems such as
Boost.Coroutine or the one you find in Go will use either segmented stacks or growable stacks. We
will make this simple for ourselves and use a fixed stack size going forward.

Implementing our own fibers
Before we start, I want to make sure you understand that the code we write is quite unsafe and is not
a “best practice” when writing Rust. I want to try to make this as safe as possible without introducing
a lot of unnecessary complexity, but there is no way to avoid the fact that there will be a lot of unsafe
code in this example. We will also prioritize focusing on how this works and explain it as simply as
possible, which will be enough of a challenge in and of itself, so the focus on best practices and safety
will have to take the back seat on this one.

Let’s start off by creating a whole new project called c-fibers and removing the code in main.
rs so we start with a blank sheet.

Note
You will also find this example in the repository under the ch05/c-fibers folder. This
example, as well as ch05/d-fibers-closure and ch05/e-fibers-windows,
needs to be compiled using the nightly compiler since we use an unstable feature. You can do
this in one of two ways:

• Override the default toolchain for the entire directory you’re in by writing rustup override
set nightly (I personally prefer this option).

• Tell cargo to use the nightly toolchain every time you compile or run the program using
cargo +nightly run.

We’ll create a simple runtime with a very simple scheduler. Our fibers will save/restore their state
so they can be stopped and resumed at any point during execution. Each fiber will represent
a task that we want to progress concurrently, and we simply create a new fiber for each task
we want to run.

Implementing our own fibers 113

We start off the example by enabling a specific feature we need, importing the asm macro, and defining
a few constants:

ch05/c-fibers/main.rs
#![feature(naked_functions)]

use std::arch::asm;

const DEFAULT_STACK_SIZE: usize = 1024 * 1024 * 2;

const MAX_THREADS: usize = 4;

static mut RUNTIME: usize = 0;

The feature we want to enable is called the naked_functions feature. Let’s explain what a naked
function is right away.

Naked functions
If you remember when we talked about the operating system ABI and calling conventions
earlier, you probably remember that each architecture and OS have different requirements.
This is especially important when creating new stack frames, which is what happens when you
call a function. So, the compiler knows about what each architecture/OS requires and adjusts
layout, and parameter placement on the stack and saves/restores certain registers to make
sure we satisfy the ABI on the platform we’re on. This happens both when we enter and exit a
function and is often called a function prologue and epilogue.

In Rust, we can enable this feature and mark a function as #[naked]. A naked function tells
the compiler that we don’t want it to create a function prologue and epilogue and that we want
to take care of this ourselves. Since we do the trick where we return over to a new stack and
want to resume the old one at a later point we don’t want the compiler to think it manages the
stack layout at these points. It worked in our first example since we never switched back to the
original stack, but it won’t work going forward.

Our DEFAULT_STACK_SIZE is set to 2 MB, which is more than enough for our use. We also set
MAX_THREADS to 4 since we don’t need more for our example.

The last static constant, RUNTIME, is a pointer to our runtime (yeah, I know, it’s not pretty with a
mutable global variable, but it’s making it easier for us to focus on the important parts of the example
later on).

The next thing we do is set up some data structures to represent the data we’ll be working with:

pub struct Runtime {

    threads: Vec<Thread>,

    current: usize,

}

Creating Our Own Fibers114

#[derive(PartialEq, Eq, Debug)]

enum State {

    Available,

    Running,

    Ready,

}

struct Thread {

    stack: Vec<u8>,

    ctx: ThreadContext,

    state: State,

}

#[derive(Debug, Default)]

#[repr(C)]

struct ThreadContext {

    rsp: u64,

    r15: u64,

    r14: u64,

    r13: u64,

    r12: u64,

    rbx: u64,

    rbp: u64,

}

Runtime is going to be our main entry point. We are basically going to create a very small runtime
with a very simple scheduler and switch between our threads. The runtime holds an array of Thread
structs and a current field to indicate which thread we are currently running.

Thread holds data for a thread. The stack is similar to what we saw in our first example in earlier
chapters. The ctx field is a context representing the data our CPU needs to resume where it left off
on a stack and a state field that holds our thread state.

State is an enum representing the states our threads can be in:

•	 Available means the thread is available and ready to be assigned a task if needed

•	 Running means the thread is running

•	 Ready means the thread is ready to move forward and resume execution

ThreadContext holds data for the registers that the CPU needs to resume execution on a stack.

Implementing our own fibers 115

Note
The registers we save in our ThreadContext struct are the registers that are marked as
callee saved in Figure 5.1. We need to save these since the ABI states that the callee (which will
be our switch function from the perspective of the OS) needs to restore them before the
caller is resumed.

Next up is how we initialize the data to a newly created thread:

impl Thread {

    fn new() -> Self {

        Thread {

            stack: vec![0_u8; DEFAULT_STACK_SIZE],

            ctx: ThreadContext::default(),

            state: State::Available,

        }

    }

}

This is pretty easy. A new thread starts in the Available state, indicating it is ready to be assigned
a task.

One thing I want to point out here is that we allocate our stack here. That is not needed and is not an
optimal use of our resources since we allocate memory for threads we might need instead of allocating
on first use. However, this lowers the complexity in the parts of our code that have a more important
focus than allocating memory for our stack.

Note
Once a stack is allocated it must not move! No push() on the vector or any other methods
that might trigger a reallocation. If the stack is reallocated, any pointers that we hold to it
are invalidated.

It’s worth mentioning that Vec<T> has a method called into_boxed_slice(), which
returns a reference to an allocated slice Box<[T]>. Slices can’t grow, so if we store that instead,
we can avoid the reallocation problem. There are several other ways to make this safer, but we’ll
not focus on those in this example.

Implementing the runtime

The first thing we need to do is to initialize a new runtime to a base state. The next code segments all
belong to the impl Runtime block, and I’ll make sure to let you know when the block ends since
it can be hard to spot the closing bracket when we divide it up as much as we do here.

Creating Our Own Fibers116

The first thing we do is to implement a new function on our Runtime struct:

impl Runtime {

  pub fn new() -> Self {

    let base_thread = Thread {

      stack: vec![0_u8; DEFAULT_STACK_SIZE],

      ctx: ThreadContext::default(),

      state: State::Running,

    };

    let mut threads = vec![base_thread];

    let mut available_threads: Vec<Thread> = (1..MAX_THREADS).map(|_| Thread::new()).
collect();

    threads.append(&mut available_threads);

    Runtime {

      threads,

      current: 0,

    }

  }

When we instantiate our Runtime, we set up a base thread. This thread will be set to the Running
state and will make sure we keep the runtime running until all tasks are finished.

Then, we instantiate the rest of the threads and set the current thread (the base thread) to 0.

The next thing we do is admittedly a little bit hacky since we do something that’s usually a no-go in
Rust. As I mentioned when we went through the constants, we want to access our runtime struct
from anywhere in our code so that we can call yield on it at any point in our code. There are ways
to do this safely, but the topic at hand is already complex, so even though we’re juggling with knives
here, I will do everything I can to keep everything that’s not the main focal point of this example as
simple as it can be.

After we call initialize on the Runtime, we have to make sure we don’t do anything that can invalidate
the pointer we take to self once it’s initialized.

    pub fn init(&self) {

        unsafe {

            let r_ptr: *const Runtime = self;

            RUNTIME = r_ptr as usize;

        }

    }

Implementing our own fibers 117

This is where we start running our runtime. It will continually call t_yield() until it returns
false, which means that there is no more work to do and we can exit the process:

    pub fn run(&mut self) -> ! {

        while self.t_yield() {}

        std::process::exit(0);

    }

Note
yield is a reserved word in Rust, so we can’t name our function that. If that was not the case,
it would be my preferred name for it over the slightly more cryptic t_yield.

This is the return function that we call when a thread is finished. return is another reserved keyword
in Rust, so we name this t_return(). Make a note that the user of our threads does not call this;
we set up our stack so this is called when the task is done:

    fn t_return(&mut self) {

        if self.current != 0 {

            self.threads[self.current].state = State::Available;

            self.t_yield();

        }

    }

If the calling thread is the base_thread, we won’t do anything. Our runtime will call t_yield
for us on the base thread. If it’s called from a spawned thread, we know it’s finished since all threads
will have a guard function on top of their stack (which we’ll show further down), and the only place
where this function is called is on our guard function.

We set its state to Available, letting the runtime know it’s ready to be assigned a new task, and
then immediately call t_yield, which will schedule a new thread to be run.

So, finally, we get to the heart of our runtime: the t_yield function.

The first part of this function is our scheduler. We simply go through all the threads and see if any
are in the Ready state, which indicates that it has a task it is ready to make progress. This could be a
database call that has returned in a real-world application.

If no thread is Ready, we’re all done. This is an extremely simple scheduler using only a round-robin
algorithm. A real scheduler might have a much more sophisticated way of deciding what task to run next.

If we find a thread that’s ready to be run, we change the state of the current thread from Running
to Ready.

Creating Our Own Fibers118

Let’s present the function before we go on to explain the last part of it:

    #[inline(never)]

    fn t_yield(&mut self) -> bool {

        let mut pos = self.current;

        while self.threads[pos].state != State::Ready {

            pos += 1;

            if pos == self.threads.len() {

                pos = 0;

            }

            if pos == self.current {

                return false;

            }

        }

        if self.threads[self.current].state != State::Available {

            self.threads[self.current].state = State::Ready;

        }

        self.threads[pos].state = State::Running;

        let old_pos = self.current;

        self.current = pos;

        unsafe {

            let old: *mut ThreadContext = &mut self.threads[old_pos].ctx;

            let new: *const ThreadContext = &self.threads[pos].ctx;

            asm!("call switch", in("rdi") old, in("rsi") new, clobber_abi("C"));

        }

        self.threads.len() > 0

    }

The next thing we do is to call the function switch, which will save the current context (the old
context) and load the new context into the CPU. The new context is either a new task or all the
information the CPU needs to resume work on an existing task.

Our switch function, which we will cover a little further down, takes two arguments and is marked
as #[naked]. Naked functions are not like normal functions. They don’t accept formal arguments,
for example, so we can’t simply call it in Rust as a normal function like switch(old, new).

You see, usually, when we call a function with two arguments, the compiler will place each argument
in a register described by the calling convention for the platform. However, when we call a #[naked]
function, we need to take care of this ourselves. Therefore, we pass in the address to our old and new
ThreadContext using assembly. rdi is the register for the first argument in the System V ABI
calling convention and rsi is the register used for the second argument.

The #[inline(never)] attribute prevents the compiler from simply substituting a call to our
function with a copy of the function content wherever it’s called (this is what inlining means). This is

Implementing our own fibers 119

almost never a problem on debug builds, but in this case, our program will fail if the compiler inlines
this function in a release build. The issue manifests itself by the runtime exiting before all the tasks are
finished. Since we store Runtime as a static usize that we then cast as a *mut pointer (which is
almost guaranteed to cause UB), it’s most likely caused by the compiler making the wrong assumptions
when this function is inlined and called by casting and dereferencing RUNTIME in one of the helper
methods that will be outlined. Just make a note that this is probably avoidable if we change our design;
it’s not something worth dwelling on for too long in this specific case.

More inline assembly
We need to explain the new concepts we introduced here. The assembly calls the function switch
(the function is tagged with #[no_mangle] so we can call it by name). The in("rdi")
old and in("rsi") new arguments place the value of old and new to the rdi and rsi
registers, respectively. The System V ABI for x86-64 states that the rdi register holds the first
argument to a function and rsi holds the second argument.

The clobber_abi("C") argument tells the compiler that it may not assume any that any
general-purpose registers are preserved across the asm! block. The compiler will emit instructions
to push the registers it uses to the stack and restore them when resuming after the asm! block.

If you take one more look at the list in Figure 5.1, we already know that we need to take special
care with registers that are marked as callee saved. When calling a normal function, the compiler
will insert code* to save/restore all the non-callee-saved, or caller saved, registers before calling
a function so it can resume with the correct state when the function returns. Since we marked
the function we’re calling as #[naked], we explicitly told the compiler to not insert this code,
so the safest thing is to make sure the compiler doesn’t assume that it can rely on any register
being untouched when it resumes after the call we make in our asm! block.

*In some instances, the compiler will know that a register is untouched by the function call since
it controls the register usage in both the caller and the callee and it will not emit any special
instructions to save/restore registers they know will be untouched when the function returns

The self.threads.len() > 0 line at the end is just a way for us to prevent the compiler from
optimizing our code away. This happens to me on Windows but not on Linux, and it is a common
problem when running benchmarks, for example. There are other ways of preventing the compiler
from optimizing this code, but I chose the simplest way I could find. As long as it’s commented, it
should be OK to do. The code never reaches this point anyway.

Next up is our spawn function. I’ll present the function first and guide you through it after:

pub fn spawn(&mut self, f: fn()) {

    let available = self

        .threads

        .iter_mut()

        .find(|t| t.state == State::Available)

        .expect("no available thread.");

Creating Our Own Fibers120

    let size = available.stack.len();

    unsafe {

        let s_ptr = available.stack.as_mut_ptr().offset(size as isize);

        let s_ptr = (s_ptr as usize & !15) as *mut u8;

        std::ptr::write(s_ptr.offset(-16) as *mut u64, guard as u64);

        std::ptr::write(s_ptr.offset(-24) as *mut u64, skip as u64);

        std::ptr::write(s_ptr.offset(-32) as *mut u64, f as u64);

        available.ctx.rsp = s_ptr.offset(-32) as u64;

    }

    available.state = State::Ready;

}

} // We close the `impl Runtime` block here

Note
I promised to point out where we close the impl Runtime block, and we do that after the
spawn function. The upcoming functions are “free” functions that don’t belong to a struct.

While I think t_yield is the logically interesting function in this example, I think spawn is the
most interesting one technically.

The first thing to note is that the function takes one argument: f: fn(). This is simply a function
pointer to the function we take as an argument. This function is the task we want to run concurrently
with other tasks. If this was a library, this is the function that users actually pass to us and want our
runtime to handle concurrently.

In this example, we take a simple function as an argument, but if we modify the code slightly we can
also accept a closure.

Tip
In example ch05/d-fibers-closure, you can see a slightly modified example that accepts
a closure instead, making it more flexible than the one we walk through here. I would really
encourage you to check that one out once you’ve finished this example.

The rest of the function is where we set up our stack as we discussed in the previous chapter and make
sure our stack looks like the one specified in the System V ABI stack layout.

Implementing our own fibers 121

When we spawn a new fiber (or userland thread), we first check if there are any available userland
threads (threads in Available state). If we run out of threads, we panic in this scenario, but there
are several (better) ways to handle that. We’ll keep things simple for now.

When we find an available thread, we get the stack length and a pointer to our u8 byte array.

In the next segment, we have to use some unsafe functions. We’ll explain the functions we refer to
here later, but this is where we set them up in our new stack so that they’re called in the right order
for our runtime to work.

First, we make sure that the memory segment we’ll use is 16-byte-aligned. Then, we write the address
to our guard function that will be called when the task we provide finishes and the function returns.

Second, we’ll write the address to a skip function, which is there just to handle the gap when we
return from f, so that guard will get called on a 16-byte boundary. The next value we write to the
stack is the address to f.

Why do we need the skip function?
Remember how we explained how the stack works? We want the f function to be the first to
run, so we set the base pointer to f and make sure it’s 16-byte aligned. We then push the address
to the skip function and lastly the guard function. Since, skip is simply one instruction,
ret, doing this makes sure that our call to guard is 16-byte aligned so that we adhere to the
ABI requirements.

After we’ve written our function pointers to the stack, we set the value of rsp, which is the stack pointer
to the address of our provided function, so we start executing that first when we are scheduled to run.

Lastly, we set the state to Ready, which means we have work to do and that we are ready to do it.
Remember, it’s up to our scheduler to actually start up this thread.

We’re now finished implementing our Runtime, if you got all this, you basically understand how
fibers/green threads work. However, there are still a few details needed to make it all work.

Guard, skip, and switch functions

There are a few functions we’ve referred to that are really important for our Runtime to actually work.
Fortunately, all but one of them are extremely simple to understand. We’ll start with the guard function:

fn guard() {

    unsafe {

        let rt_ptr = RUNTIME as *mut Runtime;

        (*rt_ptr).t_return();

    };

}

Creating Our Own Fibers122

The guard function is called when the function that we passed in, f, has returned. When f returns,
it means our task is finished, so we de-reference our Runtime and call t_return(). We could
have made a function that does some additional work when a thread is finished, but right now, our
t_return() function does all we need. It marks our thread as Available (if it’s not our base
thread) and yields so we can resume work on a different thread.

Next is our skip function:

#[naked]

unsafe extern "C" fn skip() {

    asm!("ret", options(noreturn))

}

There is not much happening in the skip function. We use the #[naked] attribute so that this
function essentially compiles down to just ret instruction. ret will just pop off the next value from the
stack and jump to whatever instructions that address points to. In our case, this is the guard function.

Next up is a small helper function named yield_thread:

pub fn yield_thread() {

    unsafe {

        let rt_ptr = RUNTIME as *mut Runtime;

        (*rt_ptr).t_yield();

    };

}

This helper function lets us call t_yield on our Runtime from an arbitrary place in our code
without needing any references to it. This function is very unsafe, and it’s one of the places where we
make big shortcuts to make our example slightly simpler to understand. If we call this and our Runtime
is not initialized yet or the runtime is dropped, it will result in undefined behavior. However, making
this safer is not a priority for us just to get our example up and running.

We are very close to the finish line; just one more function to go. The last bit we need is our switch
function, and you already know the most important parts of it already. Let’s see how it looks and
explain how it differs from our first stack swap function:

#[naked]

#[no_mangle]

unsafe extern "C" fn switch() {

    asm!(

        "mov [rdi + 0x00], rsp",

        "mov [rdi + 0x08], r15",

        "mov [rdi + 0x10], r14",

        "mov [rdi + 0x18], r13",

        "mov [rdi + 0x20], r12",

        "mov [rdi + 0x28], rbx",

        "mov [rdi + 0x30], rbp",

Implementing our own fibers 123

        "mov rsp, [rsi + 0x00]",

        "mov r15, [rsi + 0x08]",

        "mov r14, [rsi + 0x10]",

        "mov r13, [rsi + 0x18]",

        "mov r12, [rsi + 0x20]",

        "mov rbx, [rsi + 0x28]",

        "mov rbp, [rsi + 0x30]",

        "ret", options(noreturn)

    );

}

So, this is our full stack switch function. You probably remember from our first example that this
is just a bit more elaborate. We first read out the values of all the registers we need and then set all
the register values to the register values we saved when we suspended execution on the new thread.

This is essentially all we need to do to save and resume the execution.

Here we see the #[naked] attribute used again. Usually, every function has a prologue and an epilogue
and we don’t want that here since this is all assembly and we want to handle everything ourselves. If
we don’t include this, we will fail to switch back to our stack the second time.

You can also see us using the offset we introduced earlier in practice:

0x00[rdi] # 0

0x08[rdi] # 8

0x10[rdi] # 16

0x18[rdi] # 24

These are hex numbers indicating the offset from the memory pointer to which we want to read/write.
I wrote down the base 10 numbers as comments, so as you can see, we only offset the pointer in 8-byte
steps, which is the same size as the u64 fields on our ThreadContext struct.

This is also why it’s important to annotate ThreadContext with #[repr(C)]; it tells us that
the data will be represented in memory in this exact way so we write to the right field. The Rust ABI
makes no guarantee that they are represented in the same order in memory; however, the C-ABI does.

Finally, there is one new option added to the asm! block. option(noreturn) is a requirement
when writing naked functions and we will receive a compile error if we don’t add it. Usually, the
compiler will assume that a function call will return, but naked functions are not anything like the
functions we’re used to. They’re more like labeled containers of assembly that we can call, so we don’t
want the compiler to emit ret instructions at the end of the function or make any assumptions that
we return to the previous stack frame. By using this option, we tell the compiler to treat the assembly
block as if it never returns, and we make sure that we never fall through the assembly block by adding
a ret instruction ourselves.

Next up is our main function, which is pretty straightforward, so I’ll simply present the code here:

Creating Our Own Fibers124

fn main() {

    let mut runtime = Runtime::new();

    runtime.init();

    runtime.spawn(|| {

        println!("THREAD 1 STARTING");

        let id = 1;

        for i in 0..10 {

            println!("thread: {} counter: {}", id, i);

            yield_thread();

        }

        println!("THREAD 1 FINISHED");

    });

    runtime.spawn(|| {

        println!("THREAD 2 STARTING");

        let id = 2;

        for i in 0..15 {

            println!("thread: {} counter: {}", id, i);

            yield_thread();

        }

        println!("THREAD 2 FINISHED");

    });

    runtime.run();

}

As you see here, we initialize our runtime and spawn two threads: one that counts to 10 and yields
between each count and one that counts to 15. When we cargo run our project, we should get
the following output:

Finished dev [unoptimized + debuginfo] target(s) in 2.17s

Running `target/debug/green_threads`

THREAD 1 STARTING

thread: 1 counter: 0

THREAD 2 STARTING

thread: 2 counter: 0

thread: 1 counter: 1

thread: 2 counter: 1

thread: 1 counter: 2

thread: 2 counter: 2

thread: 1 counter: 3

thread: 2 counter: 3

thread: 1 counter: 4

thread: 2 counter: 4

thread: 1 counter: 5

thread: 2 counter: 5

thread: 1 counter: 6

thread: 2 counter: 6

thread: 1 counter: 7

Finishing thoughts 125

thread: 2 counter: 7

thread: 1 counter: 8

thread: 2 counter: 8

thread: 1 counter: 9

thread: 2 counter: 9

THREAD 1 FINISHED.

thread: 2 counter: 10

thread: 2 counter: 11

thread: 2 counter: 12

thread: 2 counter: 13

thread: 2 counter: 14

THREAD 2 FINISHED.

Beautiful! Our threads alternate since they yield control on each count until THREAD 1 finishes and
THREAD 2 counts the last numbers before it finishes its task.

Finishing thoughts
I want to round off this chapter by pointing out some of the advantages and disadvantages of this
approach, which we went through in Chapter 2, since we now have first-hand experience with this topic.

First of all, the example we implemented here is an example of what we called a stackful coroutine.
Each coroutine (or thread, as we call it in the example implementation) has its own stack. This also
means that we can interrupt and resume execution at any point in time. It doesn’t matter if we’re in
the middle of a stack frame (in the middle of executing a function); we can simply tell the CPU to
save the state we need to the stack, return to a different stack and restore the state it needs there, and
resume as if nothing has happened.

You can also see that we have to manage our stacks in some way. In our example, we just create a static
stack (much like the OS does when we ask it for a thread, but smaller), but for this to be more efficient
than using OS threads, we need to select a strategy to solve that potential problem.

If you look at our slightly expanded example in ch05/d-fibers-closure, you’ll notice that
we can make the API pretty easy to use, much like the API used for std::thread::spawn in
the standard library. The flipside is of course the complexity of implementing this correctly on all
combinations of ISA/ABIs that we want to support, and while specific to Rust, it’s challenging to create
a great and safe API over these kinds of stackful coroutines without any native language support for it.

To tie this into Chapter 3, where we discuss event queues and non-blocking calls, I want to point out
that if you use fibers to handle concurrency, you would call yield after you’ve made a read interest in
your non-blocking call. Typically, a runtime would supply these non-blocking calls, and the fact that
we yield would be opaque to the user, but the fiber is suspended at that point. We would probably add
one more state to our State enum called Pending or something else that signifies that the thread
is waiting for some external event.

Creating Our Own Fibers126

When the OS signals that the data is ready, we would mark the thread as State::Ready to resume
and the scheduler would resume execution just like in this example.

While it requires a more sophisticated scheduler and infrastructure, I hope that you have gotten a
good idea of how such a system would work in practice.

Summary
First of all, congratulations! You have now implemented a super simple but working example of fibers.
You’ve set up your own stack and learned about ISAs, ABIs, calling conventions, and inline assembly
in Rust.

It was quite the ride we had to take, but if you came this far and read through everything, you should
give yourself a big pat on the back. This is not for the faint of heart, but you pulled through.

This example (and chapter) might take a little time to fully digest, but there is no rush for that. You can
always go back to this example and read the code again to fully understand it. I really do recommend
that you play around with the code yourself and get to know it. Change the scheduling algorithm
around, add more context to the threads you create, and use your imagination.

You will probably experience that debugging problems in low-level code like this can be pretty hard,
but that’s part of the learning process and you can always revert back to a working version.

Now that we have covered one of the largest and most difficult examples in this book, we’ll go on to
learn about another popular way of handling concurrency by looking into how futures and async/await
works in Rust. The rest of this book is in fact dedicated solely to learning about futures and async/
await in Rust, and since we've gained so much fundamental knowledge at this point, it will be much
easier for us to get a good and deep understanding of how they work. You've done a great job so far!

Part 3:
Futures and

async/await in Rust

This part will explain Futures and async/await in Rust from the ground up. Building upon the knowledge
acquired thus far, we will construct a central example that will serve as a recurring theme in the
subsequent chapters, eventually leading to the creation of a runtime capable of executing futures in
Rust. Throughout this exploration, we will delve into concepts such as coroutines, runtimes, reactors,
executors, wakers, and much more.

This part comprises the following chapters:

•	 Chapter 6, Futures in Rust

•	 Chapter 7, Coroutines and async/await

•	 Chapter 8, Runtimes, Wakers, and the Reactor-Executor Pattern

•	 Chapter 9, Coroutines, Self-referential Structs, and Pinning

•	 Chapter 10, Create Your Own Runtime

6
Futures in Rust

In Chapter 5, we covered one of the most popular ways of modeling concurrency in a programming
language: fibers/green threads. Fibers/green threads are an example of stackful coroutines. The other
popular way of modeling asynchronous program flow is by using what we call stackless coroutines,
and combining Rust’s futures with async/await is an example of that. We will cover this in detail
in the next chapters.

This first chapter will introduce Rust’s futures to you, and the main goals of this chapter are to do
the following:

•	 Give you a high-level introduction to concurrency in Rust

•	 Explain what Rust provides and not in the language and standard library when working with
async code

•	 Get to know why we need a runtime library in Rust

•	 Understand the difference between a leaf future and a non-leaf future

•	 Get insight into how to handle CPU-intensive tasks

To accomplish this, we’ll divide this chapter into the following sections:

•	 What is a future?

•	 Leaf futures

•	 Non-leaf futures

•	 Runtimes

•	 A mental model of an async runtime

•	 What the Rust language and standard library take care of

•	 I/O vs CPU-intensive tasks

•	 Advantages and disadvantages of Rust’s async model

Futures in Rust130

What is a future?
A future is a representation of some operation that will be completed in the future.

Async in Rust uses a poll-based approach in which an asynchronous task will have three phases:

1.	 The poll phase: A future is polled, which results in the task progressing until a point where it
can no longer make progress. We often refer to the part of the runtime that polls a future as
an executor.

2.	 The wait phase: An event source, most often referred to as a reactor, registers that a future is
waiting for an event to happen and makes sure that it will wake the future when that event is ready.

3.	 The wake phase: The event happens and the future is woken up. It’s now up to the executor
that polled the future in step 1 to schedule the future to be polled again and make further
progress until it completes or reaches a new point where it can’t make further progress and
the cycle repeats.

Now, when we talk about futures, I find it useful to make a distinction between non-leaf futures and
leaf futures early on because, in practice, they’re pretty different from one another.

Leaf futures
Runtimes create leaf futures, which represent a resource such as a socket.

This is an example of a leaf future:

let mut stream = tokio::net::TcpStream::connect("127.0.0.1:3000");

Operations on these resources, such as a reading from a socket, will be non-blocking and return a
future, which we call a leaf future since it’s the future that we’re actually waiting on.

It’s unlikely that you’ll implement a leaf future yourself unless you’re writing a runtime, but we’ll go
through how they’re constructed in this book as well.

It’s also unlikely that you’ll pass a leaf future to a runtime and run it to completion alone, as you’ll
understand by reading the next paragraph.

Non-leaf futures
Non-leaf futures are the kind of futures we as users of a runtime write ourselves using the async
keyword to create a task that can be run on the executor.

The bulk of an async program will consist of non-leaf futures, which are a kind of pause-able computation.
This is an important distinction since these futures represent a set of operations. Often, such a task
will await a leaf future as one of many operations to complete the task.

A mental model of an async runtime 131

This is an example of a non-leaf future:

let non_leaf = async {

    let mut stream = TcpStream::connect("127.0.0.1:3000").await.unwrap();
    println!("connected!");

    let result = stream.write(b"hello world\n").await;
    println!("message sent!");

    ...

};

The two highlighted lines indicate points where we pause the execution, yield control to a runtime, and
eventually resume. In contrast to leaf futures, these kinds of futures do not themselves represent an
I/O resource. When we poll them, they will run until they get to a leaf future that returns Pending
and then yields control to the scheduler (which is a part of what we call the runtime).

Runtimes
Languages such as C#, JavaScript, Java, Go, and many others come with a runtime for handling
concurrency. So, if you’re used to one of those languages, this will seem a bit strange to you.
Rust is different from these languages in the sense that Rust doesn’t come with a runtime for
handling concurrency, so you need to use a library that provides this for you.

Quite a bit of complexity attributed to futures is actually complexity rooted in runtimes; creating
an efficient runtime is hard.

Learning how to use one correctly requires quite a bit of effort as well, but you’ll see that there
are several similarities between this kind of runtime, so learning one makes learning the next
much easier.

The difference between Rust and other languages is that you have to make an active choice
when it comes to picking a runtime. Most often, in other languages, you’ll just use the one
provided for you.

A mental model of an async runtime
I find it easier to reason about how futures work by creating a high-level mental model we can use.
To do that, I have to introduce the concept of a runtime that will drive our futures to completion.

Note
The mental model I create here is not the only way to drive futures to completion, and Rust’s
futures do not impose any restrictions on how you actually accomplish this task.

Futures in Rust132

A fully working async system in Rust can be divided into three parts:

•	 Reactor (responsible for notifying about I/O events)

•	 Executor (scheduler)

•	 Future (a task that can stop and resume at specific points)

So, how do these three parts work together?

Let’s take a look at a diagram that shows a simplified overview of an async runtime:

Figure 6.1 – Reactor, executor, and waker

In step 1 of the figure, an executor holds a list of futures. It will try to run the future by polling it (the
poll phase), and when it does, it hands it a Waker. The future either returns Poll:Ready (which
means it’s finished) or Poll::Pending (which means it’s not done but can’t get further at the
moment). When the executor receives one of these results, it knows it can start polling a different
future. We call these points where control is shifted back to the executor yield points.

In step 2, the reactor stores a copy of the Waker that the executor passed to the future when it polled
it. The reactor tracks events on that I/O source, usually through the same type of event queue that we
learned about in Chapter 4.

What the Rust language and standard library take care of 133

In step 3, when the reactor gets a notification that an event has happened on one of the tracked sources,
it locates the Waker associated with that source and calls Waker::wake on it. This will in turn
inform the executor that the future is ready to make progress so it can poll it once more.

If we write a short async program using pseudocode, it will look like this:

async fn foo() {

    println!("Start!");

    let txt = io::read_to_string().await.unwrap();

    println!("{txt}");

}

The line where we write await is the one that will return control back to the scheduler. This is often
called a yield point since it will return either Poll::Pending or Poll::Ready (most likely it
will return Poll::Pending the first time the future is polled).

Since the Waker is the same across all executors, reactors can, in theory, be completely oblivious
to the type of executor, and vice-versa. Executors and reactors never need to communicate with one
another directly.

This design is what gives the futures framework its power and flexibility and allows the Rust standard
library to provide an ergonomic, zero-cost abstraction for us to use.

Note
I introduced the concept of reactors and executors here like it’s something everyone knows about.
I know that’s not the case, and don’t worry, we’ll go through this in detail in the next chapter.

What the Rust language and standard library take care of
Rust only provides what’s necessary to model asynchronous operations in the language. Basically, it
provides the following:

•	 A common interface that represents an operation, which will be completed in the future
through the Future trait

•	 An ergonomic way of creating tasks (stackless coroutines to be precise) that can be suspended
and resumed through the async and await keywords

•	 A defined interface to wake up a suspended task through the Waker type

That’s really what Rust’s standard library does. As you see there is no definition of non-blocking I/O,
how these tasks are created, or how they’re run. There is no non-blocking version of the standard library,
so to actually run an asynchronous program, you have to either create or decide on a runtime to use.

Futures in Rust134

I/O vs CPU-intensive tasks
As you know now, what you normally write are called non-leaf futures. Let’s take a look at this async
block using pseudo-Rust as an example:

let non_leaf = async {

    let mut stream = TcpStream::connect("127.0.0.1:3000").await.unwrap();

    // request a large dataset

    let result = stream.write(get_dataset_request).await.unwrap();

    // wait for the dataset

    let mut response = vec![];

    stream.read(&mut response).await.unwrap();

    // do some CPU-intensive analysis on the dataset

    let report = analyzer::analyze_data(response).unwrap();

    // send the results back

    stream.write(report).await.unwrap();
};

I’ve highlighted the points where we yield control to the runtime executor. It’s important to be aware
that the code we write between the yield points runs on the same thread as our executor.

That means that while our analyzer is working on the dataset, the executor is busy doing calculations
instead of handling new requests.

Fortunately, there are a few ways to handle this, and it’s not difficult, but it’s something you must be
aware of:

1.	 We could create a new leaf future, which sends our task to another thread and resolves when
the task is finished. We could await this leaf-future like any other future.

2.	 The runtime could have some kind of supervisor that monitors how much time different tasks
take and moves the executor itself to a different thread so it can continue to run even though
our analyzer task is blocking the original executor thread.

3.	 You can create a reactor yourself that is compatible with the runtime, which does the analysis
any way you see fit and returns a future that can be awaited.

Now, the first way is the usual way of handling this, but some executors implement the second method
as well. The problem with #2 is that if you switch runtime, you need to make sure that it supports this
kind of supervision as well or else you will end up blocking the executor.

Summary 135

The third method is more of theoretical importance; normally, you’d be happy to send the task to the
thread pool that most runtimes provide.

Most executors have a way to accomplish #1 using methods such as spawn_blocking.

These methods send the task to a thread pool created by the runtime where you can either perform
CPU-intensive tasks or blocking tasks that are not supported by the runtime.

Summary
So, in this short chapter, we introduced Rust’s futures to you. You should now have a basic idea of
what Rust’s async design looks like, what the language provides for you, and what you need to get
elsewhere. You should also have an idea of what a leaf future and a non-leaf future are.

These aspects are important as they’re design decisions built into the language. You know by now
that Rust uses stackless coroutines to model asynchronous operations, but since a coroutine doesn’t
do anything in and of itself, it’s important to know that the choice of how to schedule and run these
coroutines is left up to you.

We’ll get a much better understanding as we start to explain how this all works in detail as we
move forward.

Now that we’ve seen a high-level overview of Rust’s futures, we’ll start explaining how they work from
the ground up. The next chapter will cover the concept of futures and how they’re connected with
coroutines and the async/await keywords in Rust. We’ll see for ourselves how they represent
tasks that can pause and resume their execution, which is a prerequisite to having multiple tasks be
in progress concurrently, and how they differ from the pausable/resumable tasks we implemented as
fibers/green threads in Chapter 5.

7
Coroutines and async/await

Now that you’ve gotten a brief introduction to Rust’s async model, it’s time to take a look at how this
fits in the context of everything else we’ve covered in this book so far.

Rust’s futures are an example of an asynchronous model based on stackless coroutines, and in
this chapter, we’ll take a look at what that really means and how it differs from stackful coroutines
(fibers/green threads).

We’ll center everything around an example based on a simplified model of futures and async/
await and see how we can use that to create suspendable and resumable tasks just like we did when
creating our own fibers.

The good news is that this is a lot easier than implementing our own fibers/green threads since we can
stay in Rust, which is safer. The flip side is that it’s a little more abstract and ties into programming
language theory as much as it does computer science.

In this chapter, we’ll cover the following:

•	 Introduction to stackless coroutines

•	 An example of hand-written coroutines

•	 async/await

Technical requirements
The examples in this chapter will all be cross-platform, so the only thing you need is Rust installed
and the repository that belongs to the book downloaded locally. All the code in this chapter will be
found in the ch07 folder.

We’ll use delayserver in this example as well, so you need to open a terminal, enter the delayserver
folder at the root of the repository, and write cargo run so it’s ready and available for the examples
going forward.

Coroutines and async/await138

Remember to change the ports in the code if you for some reason have to change what port delayserver
listens on.

Introduction to stackless coroutines
So, we’ve finally arrived at the point where we introduce the last method of modeling asynchronous
operations in this book. You probably remember that we gave a high-level overview of stackful and
stackless coroutines in Chapter 2. In Chapter 5, we implemented an example of stackful coroutines
when writing our own fibers/green threads, so now it’s time to take a closer look at how stackless
coroutines are implemented and used.

A stackless coroutine is a way of representing a task that can be interrupted and resumed. If you
remember all the way back in Chapter 1, we mentioned that if we want tasks to run concurrently (be
in progress at the same time) but not necessarily in parallel, we need to be able to pause and resume
the task.

In its simplest form, a coroutine is just a task that can stop and resume by yielding control to either
its caller, another coroutine, or a scheduler.

Many languages will have a coroutine implementation that also provides a runtime that handles
scheduling and non-blocking I/O for you, but it’s helpful to make a distinction between what a coroutine
is and the rest of the machinery involved in creating an asynchronous system.

This is especially true in Rust, since Rust doesn’t come with a runtime and only provides the infrastructure
you need to create coroutines that have native support in the language. Rust makes sure that everyone
programming in Rust uses the same abstraction for tasks that can be paused and resumed, but it leaves
all the other details of getting an asynchronous system up and running for the programmer.

Stackless coroutines or just coroutines?
Most often you’ll see stackless coroutines simply referred to as coroutines. To try to keep some
consistency (you remember I don’t like to introduce terms that mean different things based
on the context), I’ve consistently referred to coroutines as either stackless or stackful, but going
forward, I’ll simply refer to stackless coroutines as coroutines. This is also what you’ll have to
expect when reading about them in other sources.

Fibers/green threads represent this kind of resumable task in a very similar way to how an operating
system does. A task has a stack where it stores/restores its current execution state, making it possible
to pause and resume the task.

A state machine in its simplest form is a data structure that has a predetermined set of states it can
be in. In the case of coroutines, each state represents a possible pause/resume point. We don’t store
the state needed to pause/resume the task in a separate stack. We save it in a data structure instead.

An example of hand-written coroutines 139

This has some advantages, which I’ve covered before, but the most prominent ones are that they’re
very efficient and flexible. The downside is that you’d never want to write these state machines by
hand (you’ll see why in this chapter), so you need some kind of support from the compiler or another
mechanism for rewriting your code to state machines instead of normal function calls.

The result is that you get something that looks very simple. It looks like a function/subroutine that
you can easily map to something that you can run using a simple call instruction in assembly, but
what you actually get is something pretty complex and different from this, and it doesn’t look anything
like what you’d expect.

Generators vs coroutines
Generators are state machines as well, exactly the kind we’ll cover in this chapter. They’re usually
implemented in a language to create state machines that yield values to the calling function.

Theoretically, you could make a distinction between coroutines and generators based on what
they yield to. Generators are usually limited to yielding to the calling function. Coroutines
can yield to another coroutine, a scheduler, or simply the caller, in which case they’re just
like generators.

In my eyes, there is really no point in making a distinction between them. They represent the
same underlying mechanism for creating tasks that can pause and resume their executions, so
in this book, we’ll treat them as basically the same thing.

Now that we’ve covered what coroutines are in text, we can start looking at what they look like in code.

An example of hand-written coroutines
The example we’ll use going forward is a simplified version of Rust’s asynchronous model. We’ll create
and implement the following:

•	 Our own simplified Future trait

•	 A simple HTTP client that can only make GET requests

•	 A task we can pause and resume implemented as a state machine

•	 Our own simplified async/await syntax called coroutine/wait

•	 A homemade preprocessor to transform our coroutine/wait functions into state machines
the same way async/await is transformed

So, to actually demystify coroutines, futures, and async/await, we will have to make some
compromises. If we didn’t, we’d end up re-implementing everything that is async/await and futures
in Rust today, which is too much for just understanding the underlying techniques and concepts.

Coroutines and async/await140

Therefore, our example will do the following:

•	 Avoid error handling. If anything fails, we panic.

•	 Be specific and not generic. Creating generic solutions introduces a lot of complexity and
makes the underlying concepts harder to reason about since we consequently have to create
extra abstraction levels. Our solution will have some generic aspects where needed, though.

•	 Be limited in what it can do. You are of course free to expand, change, and play with all the
examples (I encourage you to do so), but in the example, we only cover what we need and not
anything more.

•	 Avoid macros.

So, with that out of the way, let’s get started on our example.

The first thing you need to do is to create a new folder. This first example can be found in ch07/a-
coroutine in the repository, so I suggest you name the folder a-coroutine as well.

Then, initialize a new crate by entering the folder and write cargo init.

Now that we have a new project up and running, we can create the modules and folders we need:

First, in main.rs, declare two modules as follows:

ch07/a-coroutine/src/main.rs
mod http;

mod future;

Next, create two new files in the src folder:

•	 future.rs, which will hold our future-related code

•	 http.rs, which will be the code related to our HTTP client

One last thing we need to do is to add a dependency on mio. We’ll be using TcpStream from mio,
as we’ll build on this example in the following chapters and use mio as our non-blocking I/O library
since we’re already familiar with it:

ch07/a-coroutine/Cargo.toml
[dependencies]

mio = { version = "0.8", features = ["net", "os-poll"] }

Let’s start in future.rs and implement our future-related code first.

An example of hand-written coroutines 141

Futures module

In futures.rs, the first thing we’ll do is define a Future trait. It looks as follows:

ch07/a-coroutine/src/future.rs
pub trait Future {

    type Output;

    fn poll(&mut self) -> PollState<Self::Output>;

}

If we contrast this with the Future trait in Rust’s standard library, you’ll see it’s very similar, except
that we don’t take cx: &mut Context<'_> as an argument and we return an enum with a slightly
different name just to differentiate it so we don’t mix them up:

pub trait Future {

    type Output;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output>;

}

The next thing we do is to define a PollState<T> enum:

ch07/a-coroutine/src/future.rs
pub enum PollState<T> {

    Ready(T),

    NotReady,

}

Again, if we compare this to the Poll enum in Rust’s standard library, we see that they’re practically
the same:

pub enum Poll<T> {

    Ready(T),

    Pending,

}

For now, this is all we need to get the first iteration of our example up and running. Let’s move on to
the next file: http.rs.

Coroutines and async/await142

HTTP module

In this module, we’ll implement a very simple HTTP client. This client can only make GET requests
to our delayserver since we just use this as a representation of a typical I/O operation and don’t
care specifically about being able to do more than we need.

The first thing we’ll do is import some types and traits from the standard library as well as our
Futures module:

ch07/a-coroutine/src/http.rs
use crate::future::{Future, PollState};

use std::io::{ErrorKind, Read, Write};

Next, we create a small helper function to write our HTTP requests. We’ve used this exact bit of code
before in this book, so I’ll not spend time explaining it again here:

ch07/a-coroutine/src/http.rs
fn get_req(path: &str) -> String {

    format!(

        "GET {path} HTTP/1.1\r\n\

             Host: localhost\r\n\

             Connection: close\r\n\

             \r\n"

    )

}

So, now we can start writing our HTTP client. The implementation is very short and simple:

pub struct Http;

impl Http {

    pub fn get(path: &str) -> impl Future<Output = String> {

        HttpGetFuture::new(path)

    }

}

We don’t really need a struct here, but we add one since we might want to add some state at a later
point. It’s also a good way to group functions belonging to the HTTP client together.

Our HTTP client only has one function, get, which, eventually, will send a GET request to our
delayserver with the path we specify (remember that the path is everything in bold in this example
URL: http://127.0.0.1:8080/1000/HelloWorld),

An example of hand-written coroutines 143

The first thing you’ll notice in the function body is that there is not much happening here. We only
return HttpGetFuture and that’s it.

In the function signature, you see that it returns an object implementing the Future trait that
outputs a String when it’s resolved. The string we return from this function will be the response
we get from the server.

Now, we could have implemented the future trait directly on the Http struct, but I think it’s a better
design to allow one Http instance to give out multiple Futures instead of making the Http
implement Future itself.

Let’s take a closer look at HttpGetFuture since there is much more happening there.

Just to point this out so that there is no doubt going forward, HttpGetFuture is an example of a
leaf future, and it will be the only leaf future we’ll use in this example.

Let’s add the struct declaration to the file:

ch07/a-coroutine/src/http.rs
struct HttpGetFuture {

    stream: Option<mio::net::TcpStream>,

    buffer: Vec<u8>,

    path: String,

}

This data structure will hold onto some data for us:

•	 stream: This holds an Option<mio::net::TcpStream>. This will be an Option since
we won’t connect to the stream at the same point as we create this structure.

•	 buffer: We’ll read the data from the TcpStream and put it all in this buffer until we’ve read
all the data returned from the server.

•	 path: This simply stores the path for our GET request so we can use it later.

The next thing we’ll take a look at is the impl block for our HttpGetFuture:

ch07/a-coroutine/src/http.rs
impl HttpGetFuture {

    fn new(path: &'static str) -> Self {

        Self {

            stream: None,

            buffer: vec![],

            Path: path.to_string(),

        }

    }

Coroutines and async/await144

    fn write_request(&mut self) {

        let stream = std::net::TcpStream::connect("127.0.0.1:8080").unwrap();

        stream.set_nonblocking(true).unwrap();

        let mut stream = mio::net::TcpStream::from_std(stream);

        stream.write_all(get_req(&self.path).as_bytes()).unwrap();

        self.stream = Some(stream);

    }

}

The impl block defines two functions. The first is new, which simply sets the initial state.

The next function is write_requst, which sends the GET request to the server. You’ve seen this
code before in the example in Chapter 4, so this should look familiar.

Note
When creating HttpGetFuture, we don’t actually do anything related to the GET request,
which means that the call to Http::get returns immediately with just a simple data structure.

In contrast to earlier examples, we pass in the IP address for localhost instead of the DNS name. We
take the same shortcut as before and let connect be blocking and everything else be non-blocking.

The next step is to write the GET request to the server. This will be non-blocking, and we don’t have
to wait for it to finish since we’ll be waiting for the response anyway.

The last part of this file is the most important one—the implementation of the Future trait we defined:

ch07/a-coroutine/src/http.rs
impl Future for HttpGetFuture {

    type Output = String;

    fn poll(&mut self) -> PollState<Self::Output> {

        if self.stream.is_none() {

            println!("FIRST POLL - START OPERATION");

            self.write_request();

            return PollState::NotReady;

        }

        let mut buff = vec![0u8; 4096];

        loop {

            match self.stream.as_mut().unwrap().read(&mut buff) {

                Ok(0) => {

An example of hand-written coroutines 145

                    let s = String::from_utf8_lossy(&self.buffer);

                    break PollState::Ready(s.to_string());

                }

                Ok(n) => {

                    self.buffer.extend(&buff[0..n]);

                    continue;

                }

                Err(e) if e.kind() == ErrorKind::WouldBlock => {

                    break PollState::NotReady;

                }

                Err(e) if e.kind() == ErrorKind::Interrupted => {

                    continue;

                }

                Err(e) => panic!("{e:?}"),

            }

        }

    }

}

Okay, so this is where everything happens. The first thing we do is set the associated type called
Output to String.

The next thing we do is to check whether this is the first time poll was called or not. We do this by
checking if self.stream is None.

If it’s the first time we call poll, we print a message (just so we can see the first time this future was
polled), and then we write the GET request to the server.

On the first poll, we return PollState::NotReady, so HttpGetFuture will have to be polled
at least once more to actually return any results.

The next part of the function is trying to read data from our TcpStream.

We’ve covered this before, so I’ll make this brief, but there are basically five things that can happen:

1.	 The call successfully returns with 0 bytes read. We’ve read all the data from the stream and have
received the entire GET response. We create a String from the data we’ve read and wrap it
in PollState::Ready before we return.

2.	 The call successfully returns with n > 0 bytes read. If that’s the case, we read the data into
our buffer, append the data into self.buffer, and immediately try to read more data from
the stream.

Coroutines and async/await146

3.	 We get an error of kind WouldBlock. If that’s the case, we know that since we set the stream
to non-blocking, the data isn’t ready yet or there is more data but we haven’t received it yet. In
that case, we return PollState::NotReady to communicate that more calls to the poll
are needed to finish the operation.

4.	 We get an error of kind Interrupted. This is a bit of a special case since reads can be
interrupted by a signal. If it does, the usual way to handle the error is to simply try reading
once more.

5.	 We get an error that we can’t handle, and since our example does no error handling, we
simply panic!

There is one subtle thing I want to point out. We can view this as a very simple state machine with
three states:

•	 Not started, indicated by self.stream being None

•	 Pending, indicated by self.stream being Some and a read to stream.read
returning WouldBlock

•	 Resolved, indicated by self.stream being Some and a call to stream.read returning
0 bytes

As you see, this model maps nicely to the states reported by the OS when trying to read our TcpStream.

Most leaf futures such as this will be quite simple, and although we didn’t make the states explicit here,
it still fits in the state machine model that we’re basing our coroutines around.

Do all futures have to be lazy?

A lazy future is one where no work happens before it’s polled the first time.

This will come up a lot if you read about futures in Rust, and since our own Future trait is based on
that exact same model, the same question will arise here. The simple answer to this question is no!

There is nothing that forces leaf futures, such as the one we wrote here, to be lazy. We could have sent
the HTTP request when we called the Http::get function if we wanted to. If you think about it,
if we did just that, it would have caused a potentially big change that would impact how we achieve
concurrency in our program.

The way it works now is that someone has to call poll at least one time to actually send the request.
The consequence is that whoever calls poll on this future will have to call poll on many futures
to kick off the operation if they want them to run concurrently.

If we kicked off the operation immediately when the future was created, you could create many futures
and they would all run concurrently even though you polled them to completion one by one. If you

An example of hand-written coroutines 147

poll them to completion one by one in the current design, the futures would not progress concurrently.
Let that sink in for a moment.

Languages such as JavaScript start the operation when the coroutine is created, so there is no “one
way” to do this. Every time you encounter a coroutine implementation, you should find out whether
they’re lazy or eager since this impacts how you program with them.

Even though we could make our future eager in this case, we really shouldn’t. Since programmers
in Rust expect futures to be lazy, they might depend on nothing happening before you call poll on
them, and there may be unexpected side effects if the futures you write behave differently.

Now, when you read that Rust’s futures are always lazy, a claim that I see very often, it refers to the
compiler-generated state machines resulting from using async/await. As we’ll see later, when your
async functions are rewritten by the compiler, they’re constructed in a way so that nothing you write
in the body of an async function will execute before the first call to Future::poll.

Okay, so we’ve covered the Future trait and the leaf future we named HttpGetFuture. The next
step is to create a task that we can stop and resume at predefined points.

Creating coroutines

We’ll continue to build our knowledge and understanding from the ground up. The first thing we’ll
do is create a task that we can stop and resume by modeling it as a state machine by hand.

Once we’ve done that, we’ll take a look at how this way of modeling pausable tasks enables us to write
a syntax much like async/await and rely on code transformations to create these state machines
instead of writing them by hand.

We’ll create a simple program that does the following:

1.	 Prints a message when our pausable task is starting.

2.	 Makes a GET request to our delayserver.

3.	 Waits for the GET request.

4.	 Prints the response from the server.

5.	 Makes a second GET request to our delayserver.

6.	 Waits for the second response from the server.

7.	 Prints the response from the server.

8.	 Exits the program.

In addition, we’ll execute our program by calling Future::poll on our hand-crafted coroutine
as many times as required to run it to completion. There’s no runtime, reactor, or executor yet since
we’ll cover those in the next chapter.

Coroutines and async/await148

If we wrote our program as an async function, it would look as follows:

async fn async_main() {

    println!("Program starting")

    let txt = Http::get("/1000/HelloWorld").await;

    println!("{txt}");

    let txt2 = Http::("500/HelloWorld2").await;

    println!("{txt2}");

}

In main.rs, start by making the necessary imports and module declarations:

ch07/a-coroutine/src/main.rs
use std::time::Instant;

mod future;

mod http;

use crate::http::Http;

use future::{Future, PollState};

The next thing we write is our stoppable/resumable task called Coroutine:

ch07/a-coroutine/src/main.rs
struct Coroutine {

    state: State,

}

Once that’s done, we write the different states this task could be in:

ch07/a-coroutine/src/main.rs
enum State {

    Start,

    Wait1(Box<dyn Future<Output = String>>),

    Wait2(Box<dyn Future<Output = String>>),

    Resolved,

}

This specific coroutine can be in four states:

•	 Start: The Coroutine has been created but it hasn’t been polled yet

An example of hand-written coroutines 149

•	 Wait1: When we call Http::get, we get a HttpGetFuture returned that we store in
the State enum. At this point, we return control back to the calling function so it can do
other things if needed. We chose to make this generic over all Future functions that output
a String, but since we only have one kind of future right now, we could have made it simply
hold a HttpGetFuture and it would work the same way.

•	 Wait2: The second call to Http::get is the second place where we’ll pass control back to
the calling function.

•	 Resolved: The future is resolved and there is no more work to do.

Note
We could have simply defined Coroutine as an enum since the only state it holds is an enum
indicating its state. But, we’ll set up this example so we can add some state to Coroutine
later on in this book.

Next is the implementation of Coroutine:

ch07/a-coroutine/src/main.rs
impl Coroutine {

    fn new() -> Self {

        Self {

            state: State::Start,

        }

    }

}

So far, this is pretty simple. When creating a new Coroutine, we simply set it to State::Start
and that’s it.

Now we come to the part where the work is actually done in the Future implementation for
Coroutine. I’ll walk you through the code:

ch07/a-coroutine/src/main.rs
impl Future for Coroutine {

    type Output = ();

    fn poll(&mut self) -> PollState<Self::Output> {

        loop {

            match self.state {

                State::Start => {

                    println!("Program starting");

                    let fut = Box::new(Http::get("/600/HelloWorld1"));

Coroutines and async/await150

                    self.state = State::Wait1(fut);

                }

                State::Wait1(ref mut fut) => match fut.poll() {

                    PollState::Ready(txt) => {

                        println!("{txt}");

                        let fut2 = Box::new(Http::get("/400/HelloWorld2"));

                        self.state = State::Wait2(fut2);

                    }

                    PollState::NotReady => break PollState::NotReady,

                },

                State::Wait2(ref mut fut2) => match fut2.poll() {

                    PollState::Ready(txt2) => {

                        println!("{txt2}");

                        self.state = State::Resolved;

                        break PollState::Ready(());

                    }

                    PollState::NotReady => break PollState::NotReady,

                },

                State::Resolved => panic!("Polled a resolved future"),

            }

        }

    }

}

Let’s start from the top:

1.	 The first thing we do is set the Output type to (). Since we won’t be returning anything, it
just makes our example simpler.

2.	 Next up is the implementation of the poll method. The first thing you notice is that we
write a loop instance that matches self.state. We do this so we can drive the state
machine forward until we reach a point where we can’t progress any further without getting
PollState::NotReady from one of our child futures.

3.	 If the state is State::Start, we know that this is the first time it was polled, so we run
whatever instructions we need until we reach the point where we get a new future that we
need to resolve.

4.	 When we call Http::get, we receive a future in return that we need to poll to completion
before we progress any further.

An example of hand-written coroutines 151

5.	 At this point, we change the state to State::Wait1 and we store the future we want to
resolve so we can access it in the next state.

6.	 Our state machine has now changed its state from Start to Wait1. Since we’re looping on
the match statement, we immediately progress to the next state and will reach the match arm
in State::Wait1 on the next iteration.

7.	 The first thing we do in Wait1 to call poll on the Future instance we’re waiting on.

8.	 If the future returns PollState::NotReady, we simply bubble that up to the caller by
breaking out of the loop and returning NotReady.

9.	 If the future returns PollState::Ready together with our data, we know that we can
execute the instructions that rely on the data from the first future and advance to the next state.
In our case, we only print out the returned data, so that’s only one line of code.

10.	 Next, we get to the point where we get a new future by calling Http::get. We set the state
to Wait2, just like we did when going from State::Start to State::Wait1.

11.	 Like we did the first time we got a future that we needed to resolve before we continue, we save
it so we can access it in State::Wait2.

12.	 Since we’re in a loop, the next thing that happens is that we reach the matching arm for Wait2,
and here, we repeat the same steps as we did for State::Wait1 but on a different future.

13.	 If it returns Ready with our data, we act on it and we set the final state of our Coroutine to
State::Resolved. There is one more important change: this time, we want to communicate to
the caller that this future is done, so we break out of the loop and return PollState::Ready.

If anyone tries to call poll on our Coroutine again, we will panic, so the caller must make sure
to keep track of when the future returns PollState::Ready and make sure to not call poll on
it ever again. The last thing we do before we get to our main function is create a new Coroutine
in a function we call async_main. This way, we can keep the changes to a minimum when we start
talking about async/await in the last part of this chapter:

ch07/a-coroutine/src/main.rs
fn async_main() -> impl Future<Output = ()> {

    Coroutine::new()

}

So, at this point, we’re finished writing our coroutine and the only thing left is to write some logic to
drive our state machine through its different stages of the main function.

Coroutines and async/await152

One thing to note here is that our main function is just a regular main function. The loop in our main
function is what drives the asynchronous operations to completion:

ch07/a-coroutine/src/main.rs
fn main() {

    let mut future = async_main();

    loop {

        match future.poll() {

            PollState::NotReady => {

                println!("Schedule other tasks");

            },

            PollState::Ready(_) => break,

        }

        thread::sleep(Duration::from_millis(100));

    }

}

This function is very simple. We first get the future returned from async_main and then we call
poll on it in a loop until it returns PollState::Ready.

Every time we receive a PollState::NotReady in return, the control is yielded back to us. we
could do other work here, such as scheduling another task, if we want to, but in our case, we just print
Schedule other tasks.

We also limit how often the loop is run by sleeping for 100 milliseconds on every call. This way we
won’t be overwhelmed with printouts and we can assume that there are roughly 100 milliseconds
between every time we see "Schedule other tasks" printed to the console.

If we run the example, we get this output:

Program starting

FIRST POLL - START OPERATION

Schedule other tasks

Schedule other tasks

Schedule other tasks

Schedule other tasks

Schedule other tasks

Schedule other tasks

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, 24 Oct 2023 20:39:13 GMT

HelloWorld1

FIRST POLL - START OPERATION

An example of hand-written coroutines 153

Schedule other tasks

Schedule other tasks

Schedule other tasks

Schedule other tasks

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, 24 Oct 2023 20:39:13 GMT

HelloWorld2

By looking at the printouts, you can get an idea of the program flow.

1.	 First, we see Program starting, which executes at the start of our coroutine.

2.	 We then see that we immediately move on to the FIRST POLL – START OPERATION
message that we only print when the future returned from our HTTP client is polled the first time.

3.	 Next, we can see that we’re back in our main function, and at this point, we could theoretically
go ahead and run other tasks if we had any

4.	 Every 100 ms, we check if the task is finished and get the same message telling us that we can
schedule other tasks

5.	 Then, after roughly 600 milliseconds, we receive a response that’s printed out

6.	 We repeat the process once more until we receive and print out the second response from
the server

Congratulations, you’ve now created a task that can be paused and resumed at different points, allowing
it to be in progress.

Who on earth wants to write code like this to accomplish a simple task?

The answer is no one!

Yes, it’s a bit bombastic, but I dare guess that very few programmers prefer writing a 55-line state
machine when you compare it to the 7 lines of normal sequential code you’d have to write to accomplish
the same thing.

If we recall the goals of most userland abstractions over concurrent operations, we’ll see that this way
of doing it only checks one of the three boxes that we’re aiming for:

•	 Efficient

•	 Expressive

•	 Easy to use and hard to misuse

Coroutines and async/await154

Our state machine will be efficient, but that’s pretty much it.

However, you might also notice that there is a system to the craziness. This might not come as a
surprise, but the code we wrote could be much simpler if we tagged the start of each function and each
point we wanted to yield control back to the caller with a few keywords and had our state machine
generated for us. And that’s the basic idea behind async/await.

Let’s go and see how this would work in our example.

async/await
The previous example could simply be written as the following using async/await keywords:

async fn async_main() {

    println!("Program starting")

    let txt = Http::get("/1000/HelloWorld").await;

    println!("{txt}");

    let txt2 = Http::("500/HelloWorld2").await;

    println!("{txt2}");

}

That’s seven lines of code, and it looks very familiar to code you’d write in a normal subroutine/function.

It turns out that we can let the compiler write these state machines for us instead of writing them
ourselves. Not only that, we could get very far just using simple macros to help us, which is exactly
how the current async/await syntax was prototyped before it became a part of the language. You
can see an example of that at https://github.com/alexcrichton/futures-await.

The downside is of course that these functions look like normal subroutines but are in fact very different
in nature. With a strongly typed language such as Rust, which borrow semantics instead of using a
garbage collector, it’s impossible to hide the fact that these functions are different. This can cause a bit
of confusion for programmers, who expect everything to behave the same way.

Coroutine bonus example
To show how close our example is to the behavior we get using the std::future:::Future
trait and async/await in Rust, I created the exact same example as we just did in
a-coroutines using “proper” futures and the async/await syntax instead. The first
thing you’ll notice is that it only required very minor changes to the code. Secondly, you can
see for yourself that the output shows the exact same program flow as it did in the example
where we hand-wrote the state machine ourselves. You will find this example in the ch07/a-
coroutines-bonus folder in the repository.

https://github.com/alexcrichton/futures-await

async/await 155

So, let’s take this a step further. To avoid confusion, and since our coroutines only yield to the calling
function right now (there is no scheduler, event loop, or anything like that yet), we use a slightly different
syntax called coroutine/wait and create a way to have these state machines generated for us.

coroutine/wait

The coroutine/wait syntax will have clear similarities to the async/await syntax, although
it’s a lot more limited.

The basic rules are as follows:

•	 Every function prefixed with coroutine will be rewritten to a state machine like the one
we wrote.

•	 The return type of functions marked with coroutine will be rewritten so they return ->
impl Future<Output = String> (yes, our syntax will only deal with futures that
output a String).

•	 Only objects implementing the Future trait can be postfixed with .wait. These points will
be represented as separate stages in our state machine.

•	 Functions prefixed with coroutine can call normal functions, but normal functions can’t
call coroutine functions and expect anything to happen unless they call poll on them
repeatedly until they return PollState::Ready.

Our implementation will make sure that if we write the following code, it will compile to the same state
machine we wrote at the start of this chapter(with the exception that all coroutines will return a String):

coroutine fn async_main() {

    println!("Program starting")

    let txt = Http::get("/1000/HelloWorld").wait;

    println!("{txt}");

    let txt2 = Http::("500/HelloWorld2").wait;

    println!("{txt2}");

}

But wait. coroutine/wait aren’t valid keywords in Rust. I would get a compilation error if I
wrote that!

You’re right. So, I created a small program called corofy that rewrites the coroutine/wait
functions into these state machines for us. Let’s explain that quickly.

corofy—the coroutine preprocessor

The best way of rewriting code in Rust is using the macro system. The downside is that it’s not clear
exactly what it compiles down to, and expanding the macros is not optimal for our use case since one

Coroutines and async/await156

of the main goals is to take a look at the differences between the code we write and what it transforms
into. In addition to that, macros can get quite complex to read and understand unless you work a lot
with them on a regular basis.

Instead, corofy is a normal Rust program you can find in the repository under ch07/corofy.

If you enter that folder, you can install the tool globally by writing the following:

cargo install --path .

Now you can use the tool from anywhere. It works by providing it with an input file containing the
coroutine/wait syntax, such as corofy ./src/main.rs [optional output file].
If you don’t specify an output file, it will create a file in the same folder postfixed with _corofied.

Note
The tool is extremely limited. The honest reason why is that I want to finish this example before
we reach the year 2300, and I finished rewriting the entire Rust compiler from scratch just to
give a robust experience using the coroutine/wait keywords.

It turns out that writing transformations like this without access to Rust’s type system is very
difficult. The main use case for this tool will be to transform the examples we write here, but it
would probably work for slight variations of the same examples as well (like adding more wait
points or doing more interesting tasks in between each wait point). Take a look at the README
for corofy for more information about its limitations.

One more thing: I assume that you specified no explicit output file going forward so the output
file will have the same name as the input file postfixed with _corofied.

The program reads the file you give it and searches for usages of the coroutine keyword. It takes
these functions, comments them out (so they’re still in the file), puts them last in the file, and writes
out the state machine implementation directly below, indicating what parts of the state machine are
the code you actually wrote between the wait points.

Now that I’ve introduced our new tool, it’s time to put it to use.

b-async-await—an example of a coroutine/wait transformation

Let’s start by expanding our example slightly. Now that we have a program that writes out our state
machines, it’s easier for us to create some examples and cover some more complex parts of our
coroutine implementation.

async/await 157

We’ll base the following examples on the exact same code as we did in the first one. In the repository,
you’ll find this example under ch07/b-async-await.

If you write every example from the book and don’t rely on the existing code in the repository, you
can do one of two things:

•	 Keep changing the code in the first example

•	 Create a new cargo project called b-async-await and copy everything in the src folder
and the dependencies section from Cargo.toml from the previous example over to
the new one.

No matter what you choose, you should have the same code in front of you.

Let’s simply change the code in main.rs to this:

ch07/b-async-await/src/main.rs
use std::time::Instant;

mod http;

mod future;

use future::*;

use crate::http::Http;

fn get_path(i: usize) -> String {

    format!("/{}/HelloWorld{i}", i * 1000)

}

coroutine fn async_main() {

    println!("Program starting");

    let txt = Http::get(&get_path(0)).wait;

    println!("{txt}");

    let txt = Http::get(&get_path(1)).wait;

    println!("{txt}");

    let txt = Http::get(&get_path(2)).wait;

    println!("{txt}");

    let txt = Http::get(&get_path(3)).wait;

    println!("{txt}");

    let txt = Http::get(&get_path(4)).wait;

    println!("{txt}");

}

Coroutines and async/await158

fn main() {

    let start = Instant::now();

    let mut future = async_main();

    loop {

        match future.poll() {

            PollState::NotReady => (),

            PollState::Ready(_) => break,

        }

    }

    println!("\nELAPSED TIME: {}", start.elapsed().as_secs_f32());

}

This code contains a few changes. First, we add a convenience function for creating new paths for
our GET request called get_path to create a path we can use in our GET request with a delay and
a message based on the integer we pass in.

Next, in our async_main function, we create five requests with delays varying from 0 to 4 seconds.

The last change we’ve made is in our main function. We no longer print out a message on every call to
poll, and therefore, we don’t use thread::sleep to limit the number of calls. Instead, we measure
the time from when we enter the main function to when we exit it because we can use that as a way
to prove whether our code runs concurrently or not.

Now that our main.rs looks like the preceding example, we can use corofy to rewrite it into a state
machine, so assuming we’re in the root folder of ch07/b-async-await, we can write the following:

corofy ./src/main.rs

That should output a file called main_corofied.rs in the src folder that you can open and inspect.

Now, you can copy all the contents of main_corofied.rs in this file and paste it into main.rs.

Note
For convenience, there is a file called original_main.rs in the root of the project that
contains the code for main.rs that we presented, so you don’t need to save the original
content of main.rs. If you write out every example yourself by copying it from the book in
your own project, it would be smart to store the original contents of main.rs somewhere
before you overwrite it.

I won’t show the entire state machine here since the 39 lines of code using coroutine/wait end
up being 170 lines of code when written as a state machine, but our State enum now looks like this:

enum State0 {

    Start,

    Wait1(Box<dyn Future<Output = String>>),

async/await 159

    Wait2(Box<dyn Future<Output = String>>),

    Wait3(Box<dyn Future<Output = String>>),

    Wait4(Box<dyn Future<Output = String>>),

    Wait5(Box<dyn Future<Output = String>>),

    Resolved,

}

If you run the program using cargo run, you now get the following output:

Program starting

FIRST POLL - START OPERATION

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, xx xxx xxxx 21:05:55 GMT

HelloWorld0

FIRST POLL - START OPERATION

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, xx xxx xxxx 21:05:56 GMT

HelloWorld1

FIRST POLL - START OPERATION

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, xx xxx xxxx 21:05:58 GMT

HelloWorld2

FIRST POLL - START OPERATION

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, xx xxx xxxx 21:06:01 GMT

HelloWorld3

FIRST POLL - START OPERATION

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

Coroutines and async/await160

date: Tue, xx xxx xxxx 21:06:05 GMT

HelloWorld4

ELAPSED TIME: 10.043025

So, you see that our code runs as expected.

Since we called wait on every call to Http::get, the code ran sequentially, which is evident when
we look at the elapsed time of 10 seconds.

That makes sense since the delays we asked for were 0 + 1 + 2 + 3 + 4, which equals 10 seconds.

What if we want our futures to run concurrently?

Do you remember we talked about these futures being lazy? Good. So, you know that we won’t get
concurrency just by creating a future. We need to poll them to start the operation.

To solve this, we take some inspiration from Tokio and create a function that does just that called
join_all. It takes a collection of futures and drives them all to completion concurrently.

Let’s create the last example for this chapter where we do just this.

c-async-await—concurrent futures
Okay, so we’ll build on the last example and do just the same thing. Create a new project called
c-async-await and copy Cargo.toml and everything in the src folder over.

The first thing we’ll do is go to future.rs and add a join_all function below our existing code:

ch07/c-async-await/src/future.rs
pub fn join_all<F: Future>(futures: Vec<F>) -> JoinAll<F> {

    let futures = futures.into_iter().map(|f| (false, f)).collect();

    JoinAll {

        futures,

        finished_count: 0,

    }

}

c-async-await—concurrent futures 161

This function takes a collection of futures as an argument and returns a JoinAll<F> future.

The function simply creates a new collection. In this collection, we will have tuples consisting of the
original futures we received and a bool value indicating whether the future is resolved or not.

Next, we have the definition of our JoinAll struct:

ch07/c-async-await/src/future.rs
pub struct JoinAll<F: Future> {

    futures: Vec<(bool, F)>,

    finished_count: usize,

}

This struct will simply store the collection we created and a finished_count. The last field will
make it a little bit easier to keep track of how many futures have been resolved.

As we’re getting used to by now, most of the interesting parts happen in the Future implementation
for JoinAll:

impl<F: Future> Future for JoinAll<F> {

    type Output = String;

    fn poll(&mut self) -> PollState<Self::Output> {

        for (finished, fut) in self.futures.iter_mut() {

            if *finished {

                continue;

            }

            match fut.poll() {

                PollState::Ready(_) => {

                    *finished = true;

                    self.finished_count += 1;

                }

                PollState::NotReady => continue,

            }

        }

        if self.finished_count == self.futures.len() {

            PollState::Ready(String::new())

        } else {

            PollState::NotReady

        }

    }

}

Coroutines and async/await162

We set Output to String. This might strike you as strange since we don’t actually return anything
from this implementation. The reason is that corofy will only work with futures that return a
String (it’s one of its many, many shortcomings), so we just accept that and return an empty string
on completion.

Next up is our poll implementation. The first thing we do is to loop over each (flag, future) tuple:

for (finished, fut) in self.futures.iter_mut()

Inside the loop, we first check if the flag for this future is set to finished. If it is, we simply go to
the next item in the collection.

If it’s not finished, we poll the future.

If we get PollState::Ready back, we set the flag for this future to true so that we won’t poll it
again and we increase the finished count.

Note
It’s worth noting that the join_all implementation we create here will not work in any
meaningful way with futures that return a value. In our case, we simply throw the value away,
but remember, we’re trying to keep this as simple as possible for now and the only thing we
want to show is the concurrency aspect of calling join_all.

Tokio’s join_all implementation puts all the returned values in a Vec<T> and returns
them when the JoinAll future resolves.

If we get PollState::NotReady, we simply continue to the next future in the collection.

After iterating through the entire collection, we check if we’ve resolved all the futures we originally
received in if self.finished_count == self.futures.len().

If all our futures have been resolved, we return PollState::Ready with an empty string (to
make corofy happy). If there are still unresolved futures, we return PollState::NotReady.

Important
There is one subtle point to make a note of here. The first time JoinAll::poll is called,
it will call poll on each future in the collection. Polling each future will kick off whatever
operation they represent and allow them to progress concurrently. This is one way to achieve
concurrency with lazy coroutines, such as the ones we’re dealing with here.

Next up are the changes we’ll make in main.rs.

c-async-await—concurrent futures 163

The main function will be the same, as well as the imports and declarations at the start of the file, so
I’ll only present the coroutine/await functions that we’ve changed:

coroutine fn request(i: usize) {

    let path = format!("/{}/HelloWorld{i}", i * 1000);

    let txt = Http::get(&path).wait;

    println!("{txt}");

}

coroutine fn async_main() {

    println!("Program starting");

    let mut futures = vec![];

    for i in 0..5 {

        futures.push(request(i));

    }

    future::join_all(futures).wait;

}

Note
In the repository, you’ll find the correct code to put in main.rs in ch07/c-async-await/
original_main.rs if you ever lose track of it with all the copy/pasting we’re doing.

Now we have two coroutine/wait functions. async_main stores a set of coroutines created
by read_request in a Vec<T: Future>.

Then it creates a JoinAll future and calls wait on it.

The next coroutine/wait function is read_requests, which takes an integer as input and
uses that to create GET requests. This coroutine will in turn wait for the response and print out the
result once it arrives.

Since we create the requests with delays of 0, 1, 2, 3, 4 seconds, we should expect the entire
program to finish in just over four seconds because all the tasks will be in progress concurrently. The
ones with short delays will be finished by the time the task with a four-second delay finishes.

We can now transform our coroutine/await functions into state machines by making sure we’re
in the folder ch07/c-async-await and writing corofy ./src/main.rs.

You should now see a file called main_corofied.rs in the src folder. Copy its contents and
replace what’s in main.rs with it.

Coroutines and async/await164

If you run the program by writing cargo run, you should get the following output:

Program starting

FIRST POLL - START OPERATION

FIRST POLL - START OPERATION

FIRST POLL - START OPERATION

FIRST POLL - START OPERATION

FIRST POLL - START OPERATION

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, xx xxx xxxx 21:11:36 GMT

HelloWorld0

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, xx xxx xxxx 21:11:37 GMT

HelloWorld1

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, xx xxx xxxx 21:11:38 GMT

HelloWorld2

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, xx xxx xxxx 21:11:39 GMT

HelloWorld3

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Tue, xx xxx xxxx 21:11:40 GMT

HelloWorld4

ELAPSED TIME: 4.0084987

Final thoughts 165

The thing to make a note of here is the elapsed time. It’s now just over four seconds, just like we
expected it would be when our futures run concurrently.

If we take a look at how coroutine/await changed the experience of writing coroutines from a
programmer’s perspective, we’ll see that we’re much closer to our goal now:

•	 Efficient: State machines require no context switches and only save/restore the data associated
with that specific task. We have no growing vs segmented stack issues, as they all use the same
OS-provided stack.

•	 Expressive: We can write code the same way as we do in “normal” Rust, and with compiler
support, we can get the same error messages and use the same tooling

•	 Easy to use and hard to misuse: This is a point where we probably fall slightly short of a typical
fiber/green threads implementation due to the fact that our programs are heavily transformed
“behind our backs” by the compiler, which can result in some rough edges. Specifically, you
can’t call an async function from a normal function and expect anything meaningful to
happen; you have to actively poll it to completion somehow, which gets more complex as we
start adding runtimes into the mix. However, for the most part, we can write programs just
the way we’re used to.

Final thoughts
Before we round off this chapter, I want to point out that it should now be clear to us why coroutines
aren’t really pre-emptable. If you remember back in Chapter 2, we said that a stackful coroutine (such
as our fibers/green threads example) could be pre-empted and its execution could be paused at any
point. That’s because they have a stack, and pausing a task is as simple as storing the current execution
state to the stack and jumping to another task.

That’s not possible here. The only places we can stop and resume execution are at the pre-defined
suspension points that we manually tagged with wait.

In theory, if you have a tightly integrated system where you control the compiler, the coroutine
definition, the scheduler, and the I/O primitives, you could add additional states to the state machine
and create additional points where the task could be suspended/resumed. These suspension points
could be opaque to the user and treated differently than normal wait/suspension points.

For example, every time you encounter a normal function call, you could add a suspension point (a
new state to our state machine) where you check in with the scheduler if the current task has used up
its time budget or something like that. If it has, you could schedule another task to run and resume
the task at a later point even though this didn’t happen in a cooperative manner.

However, even though this would be invisible to the user, it’s not the same as being able to stop/resume
execution from any point in your code. It would also go against the usually implied cooperative nature
of coroutines.

Coroutines and async/await166

Summary
Good job! In this chapter, we introduced quite a bit of code and set up an example that we’ll continue
using in the following chapters.

So far, we’ve focused on futures and async/await to model and create tasks that can be paused and
resumed at specific points. We know this is a prerequisite to having tasks that are in progress at the
same time. We did this by introducing our own simplified Future trait and our own coroutine/
wait syntax that’s way more limited than Rust’s futures and async/await syntax, but it’s easier
to understand and get a mental idea of how this works in contrast to fibers/green threads (at least I
hope so).

We have also discussed the difference between eager and lazy coroutines and how they impact how
you achieve concurrency. We took inspiration from Tokio’s join_all function and implemented
our own version of it.

In this chapter, we simply created tasks that could be paused and resumed. There are no event loops,
scheduling, or anything like that yet, but don’t worry. They’re exactly what we’ll go through in the
next chapter. The good news is that getting a clear idea of coroutines, like we did in this chapter, is
one of the most difficult things to do.

8
Runtimes, Wakers, and the

Reactor-Executor Pattern

In the previous chapter, we created our own pausable tasks (coroutines) by writing them as state
machines. We created a common API for these tasks by requiring them to implement the Future
trait. We also showed how we can create these coroutines using some keywords and programmatically
rewrite them so that we don’t have to implement these state machines by hand, and instead write our
programs pretty much the same way we normally would.

If we stop for a moment and take a bird’s eye view over what we got so far, it’s conceptually pretty
simple: we have an interface for pausable tasks (the Future trait), and we have two keywords
(coroutine/wait) to indicate code segments we want rewritten as a state machine that divides
our code into segments we can pause between.

However, we have no event loop, and we have no scheduler yet. In this chapter, we’ll expand on our
example and add a runtime that allows us to run our program efficiently and opens up the possibility
to schedule tasks concurrently much more efficiently than what we do now.

This chapter will take you on a journey where we implement our runtime in two stages, gradually
making it more useful, efficient, and capable. We’ll start with a brief overview of what runtimes are
and why we want to understand some of their characteristics. We’ll build on what we just learned
in Chapter 7, and show how we can make it much more efficient and avoid continuously polling the
future to make it progress by leveraging the knowledge we gained in Chapter 4.

Next, we’ll show how we can get a more flexible and loosely coupled design by dividing the runtime
into two parts: an executor and a reactor.

In this chapter, you will learn about basic runtime design, reactors, executors, wakers, and spawning,
and we’ll build on a lot of the knowledge we’ve gained throughout the book.

This will be one of the big chapters in this book, not because the topic is too complex or difficult, but
because we have quite a bit of code to write. In addition to that, I try to give you a good mental model
of what’s happening by providing quite a few diagrams and explaining everything very thoroughly. It’s

Runtimes, Wakers, and the Reactor-Executor Pattern168

not one of those chapters you typically blaze through before going to bed, though, but I do promise
it’s absolutely worth it in the end.

The chapter will be divided into the following segments:

•	 Introduction to runtimes and why we need them

•	 Improving our base example

•	 Creating a proper runtime

•	 Step 1 – Improving our runtime design by adding a Reactor and a Waker

•	 Step 2 – Implementing a proper Executor

•	 Step 3 – Implementing a proper Reactor

•	 Experimenting with our new runtime

So, let’s dive right in!

Technical requirements
The examples in this chapter will build on the code from our last chapter, so the requirements are the
same. The examples will all be cross-platform and work on all platforms that Rust (https://doc.
rust-lang.org/beta/rustc/platform-support.html#tier-1-with-host-
tools) and mio (https://github.com/tokio-rs/mio#platforms) supports. The only
thing you need is Rust installed and the repository that belongs to the book downloaded locally. All
the code in this chapter will be found in the ch08 folder.

To follow the examples step by step, you’ll also need corofy installed on your machine. If you didn’t
install it in Chapter 7, install it now by going into the ch08/corofy folder in the repository and
running this command:

cargo install --force --path .

Alternatively, you can just copy the relevant files in the repository when we come to the points where
we use corofy to rewrite our coroutine/wait syntax. Both versions will be available to you
there as well.

We’ll also use delayserver in this example, so you need to open a separate terminal, enter the
delayserver folder at the root of the repository, and write cargo run so that it’s ready and
available for the examples going forward.

Remember to change the ports in the code if you for some reason have to change the port delayserver
listens on.

https://doc.rust-lang.org/beta/rustc/platform-support.html#tier-1-with-host-tools
https://doc.rust-lang.org/beta/rustc/platform-support.html#tier-1-with-host-tools
https://doc.rust-lang.org/beta/rustc/platform-support.html#tier-1-with-host-tools
https://github.com/tokio-rs/mio#platforms

Introduction to runtimes and why we need them 169

Introduction to runtimes and why we need them
As you know by now, you need to bring your own runtime for driving and scheduling asynchronous
tasks in Rust.

Runtimes come in many flavors, from the popular Embassy embedded runtime (https://github.
com/embassy-rs/embassy), which centers more on general multitasking and can replace the
need for a real-time operating system (RTOS) on many platforms, to Tokio (https://github.
com/tokio-rs/tokio), which centers on non-blocking I/O on popular server and desktop
operating systems.

All runtimes in Rust need to do at least two things: schedule and drive objects implementing Rust’s
Future trait to completion. Going forward in this chapter, we’ll mostly focus on runtimes for doing
non-blocking I/O on popular desktop and server operating systems such as Windows, Linux, and
macOS. This is also by far the most common type of runtime most programmers will encounter in Rust.

Taking control over how tasks are scheduled is very invasive, and it’s pretty much a one-way street. If
you rely on a userland scheduler to run your tasks, you cannot, at the same time, use the OS scheduler
(without jumping through several hoops), since mixing them in your code will wreak havoc and might
end up defeating the whole purpose of writing an asynchronous program.

The following diagram illustrates the different schedulers:

Figure 8.1 – Task scheduling in a single-threaded asynchronous system

https://github.com/embassy-rs/embassy
https://github.com/embassy-rs/embassy
https://github.com/tokio-rs/tokio
https://github.com/tokio-rs/tokio

Runtimes, Wakers, and the Reactor-Executor Pattern170

An example of yielding to the OS scheduler is making a blocking call using the default std::net
::TcpStream or std::thread::sleep methods. Even potentially blocking calls using
primitives such as Mutex provided by the standard library might yield to the OS scheduler.

That’s why you’ll often find that asynchronous programming tends to color everything it touches, and
it’s tough to only run a part of your program using async/await.

The consequence is that runtimes must use a non-blocking version of the standard library. In theory,
you could make one non-blocking version of the standard library that all runtimes use, and that was
one of the goals of the async_std initiative (https://book.async.rs/introduction).
However, having the community agree upon one way to solve this task was a tall order and one that
hasn’t really come to fruition yet.

Before we start implementing our examples, we’ll discuss the overall design of a typical async runtime
in Rust. Most runtimes such as Tokio, Smol, or async-std will divide their runtime into two parts.

The part that tracks events we’re waiting on and makes sure to wait on notifications from the OS in
an efficient manner is often called the reactor or driver.

The part that schedules tasks and polls them to completion is called the executor.

Let’s take a high-level look at this design so that we know what we’ll be implementing in our example.

Reactors and executors

Dividing the runtime into two distinct parts makes a lot of sense when we take a look at how Rust
models asynchronous tasks. If you read the documentation for Future (https://doc.rust-
lang.org/std/future/trait.Future.html) and Waker (https://doc.rust-lang.
org/std/task/struct.Waker.html), you’ll see that Rust doesn’t only define a Future trait
and a Waker type but also comes with important information on how they’re supposed to be used.

One example of this is that Future traits are inert, as we covered in Chapter 6. Another example is that
a call to Waker::wake will guarantee at least one call to Future::poll on the corresponding task.

So, already by reading the documentation, you will see that there is at least some thought put into
how runtimes should behave.

The reason for learning this pattern is that it’s almost a glove-to-hand fit for Rust’s asynchronous model.

Since many readers, including me, will not have English as a first language, I’ll explain the names here
at the start since, well, they seem to be easy to misunderstand.

If the name reactor gives you associations with nuclear reactors, and you start thinking of reactors as
something that powers, or drives, a runtime, drop that thought right now. A reactor is simply something
that reacts to a whole set of incoming events and dispatches them one by one to a handler. It’s an event
loop, and in our case, it dispatches events to an executor. Events that are handled by a reactor could

https://book.async.rs/introduction
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/future/trait.Future.html
https://doc.rust-lang.org/std/task/struct.Waker.html
https://doc.rust-lang.org/std/task/struct.Waker.html

Improving our base example 171

be anything from a timer that expires, an interrupt if you write programs for embedded systems, or
an I/O event such as a READABLE event on TcpStream.

You could have several kinds of reactors running in the same runtime.

If the name executor gives you associations to executioners (the medieval times kind) or executables, drop
that thought as well. If you look up what an executor is, it’s a person, often a lawyer, who administers
a person’s will. Most often, since that person is dead. Which is also the point where whatever mental
model the naming suggests to you falls apart since nothing, and no one, needs to come in harm’s way
for the executor to have work to do in an asynchronous runtime, but I digress.

The important point is that an executor simply decides who gets time on the CPU to progress and
when they get it. The executor must also call Future::poll and advance the state machines to
their next state. It’s a type of scheduler.

It can be frustrating to get the wrong idea from the start since the subject matter is already complex
enough without thinking about how on earth nuclear reactors and executioners fit in the whole picture.

Since reactors will respond to events, they need some integration with the source of the event. If we
continue using TcpStream as an example, something will call read or write on it, and at that point,
the reactor needs to know that it should track certain events on that source.

For this reason, non-blocking I/O primitives and reactors need tight integration, and depending on
how you look at it, the I/O primitives will either have to bring their own reactor or you’ll have a reactor
that provides I/O primitives such as sockets, ports, and streams.

Now that we’ve covered some of the overarching design, we can start writing some code.

Runtimes tend to get complex pretty quickly, so to keep this as simple as possible, we’ll avoid any error
handling in our code and use unwrap or expect for everything. We’ll also choose simplicity over
cleverness and readability over efficiency to the best of our abilities.

Our first task will be to take the first example we wrote in Chapter 7 and improve it by avoiding having
to actively poll it to make progress. Instead, we lean on what we learned about non-blocking I/O and
epoll in the earlier chapters.

Improving our base example
We’ll create a version of the first example in Chapter 7 since it’s the simplest one to start with. Our
only focus is showing how to schedule and drive the runtimes more efficiently.

We start with the following steps:

1.	 Create a new project and name it a-runtime (alternatively, navigate to ch08/a-runtime
in the book’s repository).

Runtimes, Wakers, and the Reactor-Executor Pattern172

2.	 Copy the future.rs and http.rs files in the src folder from the first project we created
in Chapter 7, named a-coroutine (alternatively, copy the files from ch07/a-coroutine
in the book’s repository) to the src folder in our new project.

3.	 Make sure to add mio as a dependency by adding the following to Cargo.toml:

[dependencies]

mio = { version = "0.8", features = ["net", "os-poll"] }

4.	 Create a new file in the src folder called runtime.rs.

We’ll use corofy to change the following coroutine/wait program into its state machine
representation that we can run.

In src/main.rs, add the following code:

ch08/a-runtime/src/main.rs
mod future;

mod http;

mod runtime;

use future::{Future, PollState};

use runtime::Runtime;

fn main() {

    let future = async_main();

    let mut runtime = Runtime::new();

    runtime.block_on(future);

}

coroutine fn async_main() {

    println!("Program starting");

    let txt = http::Http::get("/600/HelloAsyncAwait").wait;

    println!("{txt}");

    let txt = http::Http::get("/400/HelloAsyncAwait").wait;

    println!("{txt}");

}

Improving our base example 173

This program is basically the same one we created in Chapter 7, only this time, we create it from our
coroutine/wait syntax instead of writing the state machine by hand. Next, we need to transform this
into code by using corofy since the compiler doesn’t recognize our own coroutine/wait syntax.

1.	 If you’re in the root folder of a-runtime, run corofy ./src/main.rs.

2.	 You should now have a file that’s called main_corofied.rs.

3.	 Delete the code in main.rs and copy the contents of main_corofied.rs into main.rs.

4.	 You can now delete main_corofied.rs since we won’t need it going forward.

If everything is done right, the project structure should now look like this:

src

 |-- future.rs

 |-- http.rs

 |-- main.rs

 |-- runtime.rs

Tip
You can always refer to the book’s repository to make sure everything is correct. The correct
example is located in the ch08/a-runtime folder. In the repository, you’ll also find a file
called main_orig.rs in the root folder that contains the coroutine/wait program if
you want to rerun it or have problems getting everything working correctly.

Design

Before we go any further, let’s visualize how our system is currently working if we consider it with
two futures created by coroutine/wait and two calls to Http::get. The loop that polls our
Future trait to completion in the main function takes the role of the executor in our visualization,
and as you see, we have a chain of futures consisting of:

1.	 Non-leaf futures created by async/await (or coroutine/wait in our example) that
simply call poll on the next future until it reaches a leaf future

2.	 Leaf futures that poll an actual source that’s either Ready or NotReady

Runtimes, Wakers, and the Reactor-Executor Pattern174

The following diagram shows a simplified overview of our current design:

Figure 8.2 – Executor and Future chain: current design

If we take a closer look at the future chain, we can see that when a future is polled, it polls all its child
futures until it reaches a leaf future that represents something we’re actually waiting on. If that future
returns NotReady, it will propagate that up the chain immediately. However, if it returns Ready, the
state machine will advance all the way until the next time a future returns NotReady. The top-level
future will not resolve until all child futures have returned Ready.

Improving our base example 175

The next diagram takes a closer look at the future chain and gives a simplified overview of how it works:

Figure 8.3 – Future chain: a detailed view

The first improvement we’ll make is to avoid the need for continuous polling of our top-level future
to drive it forward.

Runtimes, Wakers, and the Reactor-Executor Pattern176

We’ll change our design so that it looks more like this:

Figure 8.4 – Executor and Future chain: design 2

In this design, we use the knowledge we gained in Chapter 4, but instead of simply relying on epoll,
we’ll use mio’s cross-platform abstraction instead. The way it works should be well known to us by
now since we already implemented a simplified version of it earlier.

Instead of continuously looping and polling our top-level future, we’ll register interest with the Poll
instance, and when we get a NotReady result returned, we wait on Poll. This will put the thread
to sleep, and no work will be done until the OS wakes us up again to notify us that an event we’re
waiting on is ready.

This design will be much more efficient and scalable.

Improving our base example 177

Changing the current implementation

Now that we have an overview of our design and know what to do, we can go on and make the necessary
changes to our program, so let’s go through each file we need to change. We’ll start with main.rs.

main.rs

We already made some changes to main.rs when we ran corofy on our updated coroutine/
wait example. I’ll just point out the change here so that you don’t miss it since there is really nothing
more we need to change here.

Instead of polling the future in the main function, we created a new Runtime struct and passed the
future as an argument to the Runtime::block_on method. There are no more changes that we
need to in this file. Our main function changed to this:

ch08/a-runtime/src/main.rs
 fn main() {

    let future = async_main();
    let mut runtime = Runtime::new();
    runtime.block_on(future);
}

The logic we had in the main function has now moved into the runtime module, and that’s also
where we need to change the code that polls the future to completion from what we had earlier.

The next step will, therefore, be to open runtime.rs.

runtime.rs

The first thing we do in runtime.rs is pull in the dependencies we need:

ch08/a-runtime/src/runtime.rs
use crate::future::{Future, PollState};

use mio::{Events, Poll, Registry};

use std::sync::OnceLock;

Runtimes, Wakers, and the Reactor-Executor Pattern178

The next step is to create a static variable called REGISTRY. If you remember, Registry is the
way we register interest in events with our Poll instance. We want to register interest in events on
our TcpStream when making the actual HTTP GET request. We could have Http::get accept
a Registry struct that it stored for later use, but we want to keep the API clean, and instead, we
want to access Registry inside HttpGetFuture without having to pass it around as a reference:

ch08/a-runtime/src/runtime.rs
static REGISTRY: OnceLock<Registry> = OnceLock::new();

pub fn registry() -> &'static Registry {

    REGISTRY.get().expect("Called outside a runtime context")

}

We use std::sync::OnceLock so that we can initialize REGISTRY when the runtime starts,
thereby preventing anyone (including ourselves) from calling Http::get without having a
Runtime instance running. If we did call Http::get without having our runtime initialized, it
would panic since the only public way to access it outside the runtime module is through the pub
fn registry(){…} function, and that call would fail.

Note
We might as well have used a thread-local static variable using the thread_local! macro
from the standard library, but we’ll need to access this from multiple threads when we expand
the example later in this chapter, so we start the design with this in mind.

The next thing we add is a Runtime struct:

ch08/a-runtime/src/runtime.rs
pub struct Runtime {

    poll: Poll,

}

For now, our runtime will only store a Poll instance. The interesting part is in the implementation
of Runtime. Since it’s not too long, I’ll present the whole implementation here and explain it next:

ch08/a-runtime/src/runtime.rs
impl Runtime {

    pub fn new() -> Self {

        let poll = Poll::new().unwrap();

        let registry = poll.registry().try_clone().unwrap();

        REGISTRY.set(registry).unwrap();

Improving our base example 179

        Self { poll }

    }

    pub fn block_on<F>(&mut self, future: F)

    where

        F: Future<Output = String>,

    {

        let mut future = future;

        loop {

            match future.poll() {

                PollState::NotReady => {

                    println!("Schedule other tasks\n");

                    let mut events = Events::with_capacity(100);

                    self.poll.poll(&mut events, None).unwrap();

                }

                PollState::Ready(_) => break,

            }

        }

    }

}

The first thing we do is create a new function. This will initialize our runtime and set everything we
need up. We create a new Poll instance, and from the Poll instance, we get an owned version of
Registry. If you remember from Chapter 4, this is one of the methods we mentioned but didn’t
implement in our example. However, here, we take advantage of the ability to split the two pieces up.

We store Registry in the REGISTRY global variable so that we can access it from the http module
later on without having a reference to the runtime itself.

The next function is the block_on function. I’ll go through it step by step:

1.	 First of all, this function takes a generic argument and will block on anything that implements
our Future trait with an Output type of String (remember that this is currently the only
kind of Future trait we support, so we’ll just return an empty string if there is no data to return).

2.	 Instead of having to take mut future as an argument, we define a variable that we declare
as mut in the function body. It’s just to keep the API slightly cleaner and avoid us having to
make minor changes later on.

3.	 Next, we create a loop. We’ll loop until the top-level future we received returns Ready.

If the future returns NotReady, we write out a message letting us know that at this point we
could do other things, such as processing something unrelated to the future or, more likely,
polling another top-level future if our runtime supported multiple top-level futures (don’t
worry – it will be explained later on).

Runtimes, Wakers, and the Reactor-Executor Pattern180

Note that we need to pass in an Events collection to mio’s Poll::poll method, but since
there is only one top-level future to run, we don’t really care which event happened; we only
care that something happened and that it most likely means that data is ready (remember – we
always have to account for false wakeups anyway).

That’s all the changes we need to make to the runtime module for now.

The last thing we need to do is register interest for read events after we’ve written the request to the
server in our http module.

Let’s open http.rs and make some changes.

http.rs

First of all, let’s adjust our dependencies so that we pull in everything we need:

ch08/a-runtime/src/http.rs
use crate::{future::PollState, runtime, Future};
use mio::{Interest, Token};
use std::io::{ErrorKind, Read, Write};

We need to add a dependency on our runtime module as well as a few types from mio.

We only need to make one more change in this file, and that’s in our Future::poll implementation,
so let’s go ahead and locate that:

We made one important change here that I’ve highlighted for you. The implementation is exactly the
same, with one important difference:

ch08/a-runtime/src/http.rs
impl Future for HttpGetFuture {

  type Output = String;

  fn poll(&mut self) -> PollState<Self::Output> {

    if self.stream.is_none() {

      println!("FIRST POLL - START OPERATION");

      self.write_request();

      runtime::registry()
        .register(self.stream.as_mut().unwrap(), Token(0), Interest::READABLE)

Improving our base example 181

                .unwrap();
        }

        let mut buff = vec![0u8; 4096];

        loop {

            match self.stream.as_mut().unwrap().read(&mut buff) {

                Ok(0) => {

                    let s = String::from_utf8_lossy(&self.buffer);

                    break PollState::Ready(s.to_string());

                }

                Ok(n) => {

                    self.buffer.extend(&buff[0..n]);

                    continue;

                }

                Err(e) if e.kind() == ErrorKind::WouldBlock => {

                    break PollState::NotReady;

                }

                Err(e) => panic!("{e:?}"),

            }

        }

    }

}

On the first poll, after we’ve written the request, we register interest in READABLE events on this
TcpStream. We also removed the line:

return PollState::NotReady;

By removing his line, we’ll poll TcpStream immediately, which makes sense since we don’t really
want to return control to our scheduler if we get the response immediately. You wouldn’t go wrong
either way here since we registered our TcpStream as an event source with our reactor and would
get a wakeup in any case. These changes were the last piece we needed to get our example back up
and running.

If you remember the version from Chapter 7, we got the following output:

Program starting

FIRST POLL - START OPERATION

Schedule other tasks

Schedule other tasks

Schedule other tasks

Schedule other tasks

Schedule other tasks

Schedule other tasks

Runtimes, Wakers, and the Reactor-Executor Pattern182

Schedule other tasks

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Thu, 16 Nov xxxx xx:xx:xx GMT

HelloWorld1

FIRST POLL - START OPERATION

Schedule other tasks

Schedule other tasks

Schedule other tasks

Schedule other tasks

Schedule other tasks

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Thu, 16 Nov xxxx xx:xx:xx GMT

HelloWorld2

In our new and improved version, we get the following output if we run it with cargo run:

Program starting

FIRST POLL - START OPERATION

Schedule other tasks

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Thu, 16 Nov xxxx xx:xx:xx GMT

HelloAsyncAwait

FIRST POLL - START OPERATION

Schedule other tasks

HTTP/1.1 200 OK

content-length: 11

connection: close

content-type: text/plain; charset=utf-8

date: Thu, 16 Nov xxxx xx:xx:xx GMT

Improving our base example 183

HelloAsyncAwait

Note
If you run the example on Windows, you’ll see that you get two Schedule other tasks
messages after each other. The reason for that is that Windows emits an extra event when the
TcpStream is dropped on the server end. This doesn’t happen on Linux. Filtering out these
events is quite simple, but we won’t focus on doing that in our example since it’s more of an
optimization that we don’t really need for our example to work.

The thing to make a note of here is how many times we printed Schedule other tasks. We
print this message every time we poll and get NotReady. In the first version, we printed this every
100 ms, but that’s just because we had to delay on each sleep to not get overwhelmed with printouts.
Without it, our CPU would work 100% on polling the future.

If we add a delay, we also add latency even if we make the delay much shorter than 100 ms since we
won’t be able to respond to events immediately.

Our new design makes sure that we respond to events as soon as they’re ready, and we do no
unnecessary work.

So, by making these minor changes, we have already created a much better and more scalable version
than we had before.

This version is fully single-threaded, which keeps things simple and avoids the complexity and overhead
synchronization. When you use Tokio’s current-thread scheduler, you get a scheduler that is
based on the same idea as we showed here.

However, there are also some drawbacks to our current implementation, and the most noticeable
one is that it requires a very tight integration between the reactor part and the executor part of the
runtime centered on Poll.

We want to yield to the OS scheduler when there is no work to do and have the OS wake us up when
an event has happened so that we can progress. In our current design, this is done through blocking
on Poll::poll.

Consequently, both the executor (scheduler) and the reactor must know about Poll. The downside
is, then, that if you’ve created an executor that suits a specific use case perfectly and want to allow
users to use a different reactor that doesn’t rely on Poll, you can’t.

More importantly, you might want to run multiple different reactors that wake up the executor for
different reasons. You might find that there is something that mio doesn’t support, so you create a
different reactor for those tasks. How are they supposed to wake up the executor when it’s blocking
on mio::Poll::poll(...)?

Runtimes, Wakers, and the Reactor-Executor Pattern184

To give you a few examples, you could use a separate reactor for handling timers (for example, when
you want a task to sleep for a given time), or you might want to implement a thread pool for handling
CPU-intensive or blocking tasks as a reactor that wakes up the corresponding future when the task
is ready.

To solve these problems, we need a loose coupling between the reactor and executor part of the runtime
by having a way to wake up the executor that’s not tightly coupled to a single reactor implementation.

Let’s look at how we can solve this problem by creating a better runtime design.

Creating a proper runtime
So, if we visualize the degree of dependency between the different parts of our runtime, our current
design could be described this way:

Figure 8.5 – Tight coupling between reactor and executor

If we want a loose coupling between the reactor and executor, we need an interface provided to signal
the executor that it should wake up when an event that allows a future to progress has occurred. It’s no
coincidence that this type is called Waker (https://doc.rust-lang.org/stable/std/
task/struct.Waker.html) in Rust’s standard library. If we change our visualization to reflect
this, it will look something like this:

https://doc.rust-lang.org/stable/std/task/struct.Waker.html
https://doc.rust-lang.org/stable/std/task/struct.Waker.html

Creating a proper runtime 185

Figure 8.6 – A loosely coupled reactor and executor

It’s no coincidence that we land on the same design as what we have in Rust today. It’s a minimal
design from Rust’s point of view, but it allows for a wide variety of runtime designs without laying
too many restrictions for the future.

Note
Even though the design is pretty minimal today from a language perspective, there are plans
to stabilize more async-related traits and interfaces in the future.

Rust has a working group tasked with including widely used traits and interfaces in the standard
library, which you can find more information about here: https://rust-lang.github.
io/wg-async/welcome.html. You can also get an overview of items they work on and
track their progress here: https://github.com/orgs/rust-lang/projects/28/
views/1.

Maybe you even want to get involved (https://rust-lang.github.io/wg-async/
welcome.html#-getting-involved) in making async Rust better for everyone after
reading this book?

If we change our system diagram to reflect the changes we need to make to our runtime going forward,
it will look like this:

https://rust-lang.github.io/wg-async/welcome.html
https://rust-lang.github.io/wg-async/welcome.html
https://github.com/orgs/rust-lang/projects/28/views/1
https://github.com/orgs/rust-lang/projects/28/views/1
https://rust-lang.github.io/wg-async/welcome.html#-getting-involved
https://rust-lang.github.io/wg-async/welcome.html#-getting-involved

Runtimes, Wakers, and the Reactor-Executor Pattern186

Figure 8.7 – Executor and reactor: final design

We have two parts that have no direct dependency on each other. We have an Executor that schedules
tasks and passes on a Waker when polling a future that eventually will be caught and stored by the
Reactor. When the Reactor receives a notification that an event is ready, it locates the Waker
associated with that task and calls Wake::wake on it.

This enables us to:

•	 Run several OS threads that each have their own executor, but share the same reactor

•	 Have multiple reactors that handle different kinds of leaf futures and make sure to wake up the
correct executor when it can progress

So, now that we have an idea of what to do, it’s time to start writing it in code.

Step 1 – Improving our runtime design by adding a Reactor and a Waker 187

Step 1 – Improving our runtime design by adding a
Reactor and a Waker
In this step, we’ll make the following changes:

1.	 Change the project structure so that it reflects our new design.

2.	 Find a way for the executor to sleep and wake up that does not rely directly on Poll and
create a Waker based on this that allows us to wake up the executor and identify which task
is ready to progress.

3.	 Change the trait definition for Future so that poll takes a &Waker as an argument.

Tip
You’ll find this example in the ch08/b-reactor-executor folder. If you follow along by
writing the examples from the book, I suggest that you create a new project called b-reactor-
executor for this example by following these steps:

 1. Create a new folder called b-reactor-executor.

 2. Enter the newly created folder and write cargo init.

 3. Copy everything in the src folder in the previous example, a-runtime, into the src
folder of a new project.

 4. Copy the dependencies section of the Cargo.toml file into the Cargo.toml
file in the new project.

Let’s start by making some changes to our project structure to set it up so that we can build on it
going forward. The first thing we do is divide our runtime module into two submodules, reactor
and executor:

1.	 Create a new subfolder in the src folder called runtime.

2.	 Create two new files in the runtime folder called reactor.rs and executor.rs.

3.	 Just below the imports in runtime.rs, declare the two new modules by adding these lines:

mod executor;

mod reactor;

You should now have a folder structure that looks like this:

src

 |-- runtime

        |-- executor.rs

        |-- reactor.rs

 |-- future.rs

Runtimes, Wakers, and the Reactor-Executor Pattern188

 |-- http.rs

 |-- main.rs

 |-- runtime.rs

To set everything up, we start by deleting everything in runtime.rs and replacing it with the
following lines of code:

ch08/b-reactor-executor/src/runtime.rs
pub use executor::{spawn, Executor, Waker};

pub use reactor::reactor;

mod executor;

mod reactor;

pub fn init() -> Executor {

    reactor::start();

    Executor::new()

}

The new content of runtime.rs first declares two submodules called executor and reactor.
We then declare one function called init that starts our Reactor and creates a new Executor
that it returns to the caller.

The next point on our list is to find a way for our Executor to sleep and wake up when needed
without relying on Poll.

Creating a Waker

So, we need to find a different way for our executor to sleep and get woken up that doesn’t rely directly
on Poll.

It turns out that this is quite easy. The standard library gives us what we need to get something working.
By calling std::thread::current(), we can get a Thread object. This object is a handle to
the current thread, and it gives us access to a few methods, one of which is unpark.

The standard library also gives us a method called std::thread::park(), which simply asks
the OS scheduler to park our thread until we ask for it to get unparked later on.

It turns out that if we combine these, we have a way to both park and unpark the executor, which is
exactly what we need.

Let’s create a Waker type based on this. In our example, we’ll define the Waker inside the executor
module since that’s where we create this exact type of Waker, but you could argue that it belongs to
the future module since it’s a part of the Future trait.

Step 1 – Improving our runtime design by adding a Reactor and a Waker 189

Important note
Our Waker relies on calling park/unpark on the Thread type from the standard
library. This is OK for our example since it’s easy to understand, but given that any part of
the code (including any libraries you use) can get a handle to the same thread by calling
std::thread::current() and call park/unpark on it, it’s not a robust solution. If
unrelated parts of the code call park/unpark on the same thread, we can miss wakeups
or end up in deadlocks. Most production libraries create their own Parker type or rely on
something such as crossbeam::sync::Parker (https://docs.rs/crossbeam/
latest/crossbeam/sync/struct.Parker.html) instead.

We won’t implement Waker as a trait since passing trait objects around will significantly increase
the complexity of our example, and it’s not in line with the current design of Future and Waker
in Rust either.

Open the executor.rs file located inside the runtime folder, and let’s add all the imports we’re
going to need right from the start:

ch08/b-reactor-executor/src/runtime/executor.rs
use crate::future::{Future, PollState};

use std::{

    cell::{Cell, RefCell},

    collections::HashMap,

    sync::{Arc, Mutex},

    thread::{self, Thread},

};

The next thing we add is our Waker:

ch08/b-reactor-executor/src/runtime/executor.rs
#[derive(Clone)]

pub struct Waker {

    thread: Thread,

    id: usize,

    ready_queue: Arc<Mutex<Vec<usize>>>,

}

The Waker will hold three things for us:

•	 thread – A handle to the Thread object we mentioned earlier.

•	 id – An usize that identifies which task this Waker is associated with.

https://docs.rs/crossbeam/latest/crossbeam/sync/struct.Parker.html
https://docs.rs/crossbeam/latest/crossbeam/sync/struct.Parker.html

Runtimes, Wakers, and the Reactor-Executor Pattern190

•	 ready_queue – This is a reference that can be shared between threads to a Vec<usize>,
where usize represents the ID of a task that’s in the ready queue. We share this object with
the executor so that we can push the task ID associated with the Waker onto that queue when
it’s ready.

The implementation of our Waker will be quite simple:

ch08/b-reactor-executor/src/runtime/executor.rs
impl Waker {

    pub fn wake(&self) {

        self.ready_queue

            .lock()

            .map(|mut q| q.push(self.id))

            .unwrap();

        self.thread.unpark();

    }

}

When Waker::wake is called, we first take a lock on the Mutex that protects the ready queue
we share with the executor. We then push the id value that identifies the task that this Waker is
associated with onto the ready queue.

After that’s done, we call unpark on the executor thread and wake it up. It will now find the task
associated with this Waker in the ready queue and call poll on it.

It’s worth mentioning that many designs take a shared reference (for example, an Arc<…>) to the future/
task itself, and push that onto the queue. By doing so, they skip a level of indirection that we get here
by representing the task as a usize instead of passing in a reference to it.

However, I personally think this way of doing it is easier to understand and reason about, and the
end result will be the same.

How does this Waker compare to the one in the standard library?
The Waker we create here will take the same role as the Waker type from the standard library.
The biggest difference is that the std::task::Waker method is wrapped in a Context struct
and requires us to jump through a few hoops when we create it ourselves. Don’t worry – we’ll do
all this at the end of this book, but neither of these differences is important for understanding the
role it plays, so that’s why we stick to our own simplified version of asynchronous Rust for now.

The last thing we need to do is to change the definition of the Future trait so that it takes &Waker
as an argument.

Step 1 – Improving our runtime design by adding a Reactor and a Waker 191

Changing the Future definition

Since our Future definition is in the future.rs file, we start by opening that file.

The first thing we need to change is to pull in the Waker so that we can use it. At the top of the file,
add the following code:

ch08/b-reactor-executor/src/future.rs
use crate::runtime::Waker;

The next thing we do is to change our Future trait so that it takes &Waker as an argument:

ch08/b-reactor-executor/src/future.rs
pub trait Future {

    type Output;

    fn poll(&mut self, waker: &Waker) -> PollState<Self::Output>;
}

At this point, you have a choice. We won’t be using the join_all function or the JoinAll<F:
Future> struct going forward.

If you don’t want to keep them, you can just delete everything related to join_all, and that’s all
you need to do in future.rs.

If you want to keep them for further experimentation, you need to change the Future implementation
for JoinAll so that it accepts a waker: &Waker argument, and remember to pass the Waker
when polling the joined futures in match fut.poll(waker).

The remaining things to do in step 1 are to make some minor changes where we implement the
Future trait.

Let’s start in http.rs. The first thing we do is adjust our dependencies a little to reflect the changes
we made to our runtime module, and we add a dependency on our new Waker. Replace the
dependencies section at the top of the file with this:

ch08/b-reactor-executor/src/http.rs
use crate::{future::PollState, runtime::{self, reactor, Waker}, Future};

use mio::Interest;

use std::io::{ErrorKind, Read, Write};

Runtimes, Wakers, and the Reactor-Executor Pattern192

The compiler will complain about not finding the reactor yet, but we’ll get to that shortly.

Next, we have to navigate to the impl Future for HttpGetFuture block, where we need to
change the poll method so that it accepts a &Waker argument:

ch08/b-reactor-executor/src/http.rs
impl Future for HttpGetFuture {

    type Output = String;

    fn poll(&mut self, waker: &Waker) -> PollState<Self::Output> {
…

The last file we need to change is main.rs. Since corofy doesn’t know about Waker types, we
need to change a few lines in the coroutines it generated for us in main.rs.

First of all, we have to add a dependency on our new Waker, so add this at the start of the file:

ch08/b-reactor-executor/src/main.rs
use runtime::Waker;

In the impl Future for Coroutineblock, change the following three lines of code that
I’ve highlighted:

ch08/b-reactor-executor/src/main.rs
fn poll(&mut self, waker: &Waker)
match f1.poll(waker)
match f2.poll(waker)

And that’s all we need to do in step 1. We’ll get back to fixing the errors in this file as the last step we
do; for now, we just focus on everything concerning the Waker.

The next step will be to create a proper Executor.

Step 2 – Implementing a proper Executor
In this step, we’ll create an executor that will:

•	 Hold many top-level futures and switch between them

•	 Enable us to spawn new top-level futures from anywhere in our asynchronous program

Step 2 – Implementing a proper Executor 193

•	 Hand out Waker types so that they can sleep when there is nothing to do and wake up when
one of the top-level futures can progress

•	 Enable us to run several executors by having each run on its dedicated OS thread

Note
It’s worth mentioning that our executor won’t be fully multithreaded in the sense that tasks/
futures can’t be sent from one thread to another, and the different Executor instances will not
know of each other. Therefore, executors can’t steal work from each other (no work-stealing),
and we can’t rely on executors picking tasks from a global task queue.

The reason is that the Executor design will be much more complex if we go down that
route, not only because of the added logic but also because we have to add constraints, such as
requiring everything to be Send + Sync.

Some of the complexity in asynchronous Rust today can be attributed to the fact that many
runtimes in Rust are multithreaded by default, which makes asynchronous Rust deviate more
from “normal” Rust than it actually needs to.

It’s worth mentioning that since most production runtimes in Rust are multithreaded by default,
most of them also have a work-stealing executor. This will be similar to the last version of our
bartender example in Chapter 1, where we achieved a slightly increased efficiency by letting
the bartenders “steal” tasks that are in progress from each other.

However, this example should still give you an idea of how we can leverage all the cores on a
machine to run asynchronous tasks, giving us both concurrency and parallelism, even though
it will have limited capabilities.

Let’s start by opening up executor.rs located in the runtime subfolder.

This file should already contain our Waker and the dependencies we need, so let’s start by adding
the following lines of code just below our dependencies:

ch08/b-reactor-executor/src/runtime/executor.rs
type Task = Box<dyn Future<Output = String>>;

thread_local! {

    static CURRENT_EXEC: ExecutorCore = ExecutorCore::default();

}

The first line is a type alias; it simply lets us create an alias called Task that refers to the type: Box<dyn
Future<Output = String>>. This will help keep our code a little bit cleaner.

The next line might be new to some readers. We define a thread-local static variable by using the
thread_local! macro.

Runtimes, Wakers, and the Reactor-Executor Pattern194

The thread_local! macro lets us define a static variable that’s unique to the thread it’s first called
from. This means that all threads we create will have their own instance, and it’s impossible for one
thread to access another thread’s CURRENT_EXEC variable.

We call the variable CURRENT_EXEC since it holds the Executor that’s currently running on
this thread.

The next lines we add to this file is the definition of ExecutorCore:

ch08/b-reactor-executor/src/runtime/executor.rs
#[derive(Default)]

struct ExecutorCore {

    tasks: RefCell<HashMap<usize, Task>>,

    ready_queue: Arc<Mutex<Vec<usize>>>,

    next_id: Cell<usize>,

}

ExecutorCore holds all the state for our Executor:

•	 tasks – This is a HashMap with a usize as the key and a Task (remember the alias we
created previously) as data. This will hold all the top-level futures associated with the executor
on this thread and allow us to give each an id property to identify them. We can’t simply mutate
a static variable, so we need internal mutability here. Since this will only be callable from one
thread, a RefCell will do so since there is no need for synchronization.

•	 ready_queue – This is a simple Vec<usize> that stores the IDs of tasks that should be
polled by the executor. If we refer back to Figure 8.7, you’ll see how this fits into the design
we outlined there. As mentioned earlier, we could store something such as an Arc<dyn
Future<…>> here instead, but that adds quite a bit of complexity to our example. The only
downside with the current design is that instead of getting a reference to the task directly, we
have to look it up in our tasks collection, which takes time. An Arc<…> (shared reference)
to this collection will be given to each Waker that this executor creates. Since the Waker can
(and will) be sent to a different thread and signal that a specific task is ready by adding the
task’s ID to ready_queue, we need to wrap it in an Arc<Mutex<…>>.

•	 next_id – This is a counter that gives out the next available I, which means that it should
never hand out the same ID twice for this executor instance. We’ll use this to give each top-level
future a unique ID. Since the executor instance will only be accessible on the same thread it
was created, a simple Cell will suffice in giving us the internal mutability we need.

ExecutorCore derives the Default trait since there is no special initial state we need here, and
it keeps the code short and concise.

Step 2 – Implementing a proper Executor 195

The next function is an important one. The spawn function allows us to register new top-level futures
with our executor from anywhere in our program:

ch08/b-reactor-executor/src/runtime/executor.rs
pub fn spawn<F>(future: F)

where

    F: Future<Output = String> + 'static,

{

    CURRENT_EXEC.with(|e| {

        let id = e.next_id.get();

        e.tasks.borrow_mut().insert(id, Box::new(future));

        e.ready_queue.lock().map(|mut q| q.push(id)).unwrap();

        e.next_id.set(id + 1);

    });

}

The spawn function does a few things:

•	 It gets the next available ID.

•	 It assigns the ID to the future it receives and stores it in a HashMap.

•	 It adds the ID that represents this task to ready_queue so that it’s polled at least once
(remember that Future traits in Rust don’t do anything unless they’re polled at least once).

•	 It increases the ID counter by one.

The unfamiliar syntax accessing CURRENT_EXEC by calling with and passing in a closure is just a
consequence of how thread local statics is implemented in Rust. You’ll also notice that we must use
a few special methods because we use RefCell and Cell for internal mutability for tasks and
next_id, but there is really nothing inherently complex about this except being a bit unfamiliar.

A quick note about static lifetimes
When a 'static lifetime is used as a trait bound as we do here, it doesn’t actually mean that
the lifetime of the Future trait we pass in must be static (meaning it will have to live until
the end of the program). It means that it must be able to last until the end of the program, or,
put another way, the lifetime can’t be constrained in any way.

Most often, when you encounter something that requires a 'static bound, it simply means
that you’ll have to give ownership over the thing you pass in. If you pass in any references, they
need to have a 'static lifetime. It’s less difficult to satisfy this constraint than you might expect.

The final part of step 2 will be to define and implement the Executor struct itself.

Runtimes, Wakers, and the Reactor-Executor Pattern196

The Executor struct is very simple, and there is only one line of code to add:

ch08/b-reactor-executor/src/runtime/executor.rs
pub struct Executor;

Since all the state we need for our example is held in ExecutorCore, which is a static thread-local
variable, our Executor struct doesn’t need any state. This also means that we don’t strictly need a
struct at all, but to keep the API somewhat familiar, we do it anyway.

Most of the executor implementation is a handful of simple helper methods that end up in a block_on
function, which is where the interesting parts really happen.

Since these helper methods are short and easy to understand, I’ll present them all here and just briefly
go over what they do:

Note
We open the impl Executor block here but will not close it until we’ve finished implementing
the block_on function.

ch08/b-reactor-executor/src/runtime/executor.rs
impl Executor {

    pub fn new() -> Self {

        Self {}

    }

    fn pop_ready(&self) -> Option<usize> {

        CURRENT_EXEC.with(|q| q.ready_queue.lock().map(|mut q| q.pop()).unwrap())

    }

    fn get_future(&self, id: usize) -> Option<Task> {

        CURRENT_EXEC.with(|q| q.tasks.borrow_mut().remove(&id))

    }

    fn get_waker(&self, id: usize) -> Waker {

        Waker {

            id,

            thread: thread::current(),

            ready_queue: CURRENT_EXEC.with(|q| q.ready_queue.clone()),

        }

    }

Step 2 – Implementing a proper Executor 197

    fn insert_task(&self, id: usize, task: Task) {

        CURRENT_EXEC.with(|q| q.tasks.borrow_mut().insert(id, task));

    }

    fn task_count(&self) -> usize {

        CURRENT_EXEC.with(|q| q.tasks.borrow().len())

    }

So, we have six methods here:

•	 new – Creates a new Executor instance. For simplicity, we have no initialization here, and
everything is done lazily by design in the thread_local! macro.

•	 pop_ready – This function takes a lock on read_queue and pops off an ID that’s ready
from the back of Vec. Calling pop here means that we also remove the item from the collection.
As a side note, since Waker pushes its ID to the back of ready_queue and we pop off from
the back as well, we essentially get a Last In First Out (LIFO) queue. Using something such as
VecDeque from the standard library would easily allow us to choose the order in which we
remove items from the queue if we wish to change that behavior.

•	 get_future – This function takes the ID of a top-level future as an argument, removes the
future from the tasks collection, and returns it (if the task is found). This means that if the
task returns NotReady (signaling that we’re not done with it), we need to remember to add
it back to the collection again.

•	 get_waker – This function creates a new Waker instance.

•	 insert_task – This function takes an id property and a Task property and inserts them
into our tasks collection.

•	 task_count – This function simply returns a count of how many tasks we have in the queue.

The final and last part of the Executor implementation is the block_on function. This is also
where we close the impl Executor block:

ch08/b-reactor-executor/src/runtime/executor.rs
pub fn block_on<F>(&mut self, future: F)

  where

      F: Future<Output = String> + 'static,

  {

      spawn(future);

      loop {

          while let Some(id) = self.pop_ready() {

Runtimes, Wakers, and the Reactor-Executor Pattern198

        let mut future = match self.get_future(id) {

          Some(f) => f,

          // guard against false wakeups

          None => continue,

        };

        let waker = self.get_waker(id);

        match future.poll(&waker) {

          PollState::NotReady => self.insert_task(id, future),

          PollState::Ready(_) => continue,

        }

      }

      let task_count = self.task_count();

      let name = thread::current().name().unwrap_or_default().to_string();

      if task_count > 0 {

        println!("{name}: {task_count} pending tasks. Sleep until notified.");

        thread::park();

      } else {

        println!("{name}: All tasks are finished");

        break;

      }

    }

  }

}

block_on will be the entry point to our Executor. Often, you will pass in one top-level future
first, and when the top-level future progresses, it will spawn new top-level futures onto our executor.
Each new future can, of course, spawn new futures onto the Executor too, and that’s how an
asynchronous program basically works.

In many ways, you can view this first top-level future in the same way you view the main function in a
normal Rust program. spawn is similar to thread::spawn, with the exception that the tasks stay
on the same OS thread in this example. This means the tasks won’t be able to run in parallel, which in
turn allows us to avoid any need for synchronization between tasks to avoid data races.

Let’s go through the function step by step:

1.	 The first thing we do is spawn the future we received onto ourselves. There are many ways this
could be implemented, but this is the easiest way to do it.

2.	 Then, we have a loop that will run as long as our asynchronous program is running.

Step 3 – Implementing a proper Reactor 199

3.	 Every time we loop, we create an inner while let Some(…) loop that runs as long as
there are tasks in ready_queue.

4.	 If there is a task in ready_queue, we take ownership of the Future object by removing
it from the collection. We guard against false wakeups by just continuing if there is no future
there anymore (meaning that we’re done with it but still get a wakeup). This will, for example,
happen on Windows since we get a READABLE event when the connection closes, but even
though we could filter those events out, mio doesn’t guarantee that false wakeups won’t happen,
so we have to handle that possibility anyway.

5.	 Next, we create a new Waker instance that we can pass into Future::poll(). Remember
that this Waker instance now holds the id property that identifies this specific Future trait
and a handle to the thread we’re currently running on.

6.	 The next step is to call Future::poll.

7.	 If we get NotReady in return, we insert the task back into our tasks collection. I want to
emphasize that when a Future trait returns NotReady, we know it will arrange it so that
Waker::wake is called at a later point in time. It’s not the executor’s responsibility to track
the readiness of this future.

8.	 If the Future trait returns Ready, we simply continue to the next item in the ready queue.
Since we took ownership over the Future trait, this will drop the object before we enter the
next iteration of the while let loop.

9.	 Now that we’ve polled all the tasks in our ready queue, the first thing we do is get a task count
to see how many tasks we have left.

10.	 We also get the name of the current thread for future logging purposes (it has nothing to do
with how our executor works).

11.	 If the task count is larger than 0, we print a message to the terminal and call thread::park().
Parking the thread will yield control to the OS scheduler, and our Executor does nothing
until it’s woken up again.

12.	 If the task count is 0, we’re done with our asynchronous program and exit the main loop.

That’s pretty much all there is to it. By this point, we’ve covered all our goals for step 2, so we can
continue to the last and final step and implement a Reactor for our runtime that will wake up our
executor when something happens.

Step 3 – Implementing a proper Reactor
The final part of our example is the Reactor. Our Reactor will:

•	 Efficiently wait and handle events that our runtime is interested in

•	 Store a collection of Waker types and make sure to wake the correct Waker when it gets a
notification on a source it’s tracking

Runtimes, Wakers, and the Reactor-Executor Pattern200

•	 Provide the necessary mechanisms for leaf futures such as HttpGetFuture, to register and
deregister interests in events

•	 Provide a way for leaf futures to store the last received Waker

When we’re done with this step, we should have everything we need for our runtime, so let’s get to it.

Start by opening the reactor.rs file.

The first thing we do is add the dependencies we need:

ch08/b-reactor-executor/src/runtime/reactor.rs
use crate::runtime::Waker;

use mio::{net::TcpStream, Events, Interest, Poll, Registry, Token};

use std::{

    collections::HashMap,

    sync::{

        atomic::{AtomicUsize, Ordering},

        Arc, Mutex, OnceLock,

    },

    thread,

};

After we’ve added our dependencies, we create a type alias called Wakers that aliases the type for
our wakers collection:

ch08/b-reactor-executor/src/runtime/reactor.rs
type Wakers = Arc<Mutex<HashMap<usize, Waker>>>;

The next line will declare a static variable called REACTOR:

ch08/b-reactor-executor/src/runtime/reactor.rs
static REACTOR: OnceLock<Reactor> = OnceLock::new();

This variable will hold a OnceLock<Reactor>. In contrast to our CURRENT_EXEC static variable,
this will be possible to access from different threads. OnceLock allows us to define a static variable
that we can write to once so that we can initialize it when we start our Reactor. By doing so, we
also make sure that there can only be a single instance of this specific reactor running in our program.

The variable will be private to this module, so we create a public function allowing other parts of our
program to access it:

Step 3 – Implementing a proper Reactor 201

ch08/b-reactor-executor/src/runtime/reactor.rs
pub fn reactor() -> &'static Reactor {

    REACTOR.get().expect("Called outside an runtime context")

}

The next thing we do is define our Reactor struct:

ch08/b-reactor-executor/src/runtime/reactor.rs
pub struct Reactor {

    wakers: Wakers,

    registry: Registry,

    next_id: AtomicUsize,

}

This will be all the state our Reactor struct needs to hold:

•	 wakers – A HashMap of Waker objects, each identified by an integer

•	 registry – Holds a Registry instance so that we can interact with the event queue in mio

•	 next_id – Stores the next available ID so that we can track which event occurred and which
Waker should be woken

The implementation of Reactor is actually quite simple. It’s only four short methods for interacting
with the Reactor instance, so I’ll present them all here and give a brief explanation next:

ch08/b-reactor-executor/src/runtime/reactor.rs
impl Reactor {

    pub fn register(&self, stream: &mut TcpStream, interest: Interest, id:
usize) {

        self.registry.register(stream, Token(id), interest).unwrap();

    }

    pub fn set_waker(&self, waker: &Waker, id: usize) {

        let _ = self

            .wakers

            .lock()

            .map(|mut w| w.insert(id, waker.clone()).is_none())

            .unwrap();

    }

    pub fn deregister(&self, stream: &mut TcpStream, id: usize) {

        self.wakers.lock().map(|mut w| w.remove(&id)).unwrap();

Runtimes, Wakers, and the Reactor-Executor Pattern202

        self.registry.deregister(stream).unwrap();

    }

    pub fn next_id(&self) -> usize {

        self.next_id.fetch_add(1, Ordering::Relaxed)

    }

}

Let’s briefly explain what these four methods do:

•	 register – This method is a thin wrapper around Registry::register, which we
know from Chapter 4. The one thing to make a note of here is that we pass in an id property
so that we can identify which event has occurred when we receive a notification later on.

•	 set_waker – This method adds a Waker to our HashMap using the provided id property
as a key to identify it. If there is a Waker there already, we replace it and drop the old one. An
important point to remember is that we should always store the most recent Waker so that
this function can be called multiple times, even though there is already a Waker associated
with the TcpStream.

•	 deregister – This function does two things. First, it removes the Waker from our wakers
collection. Then, it deregisters the TcpStream from our Poll instance.

•	 I want to remind you at this point that while we only work with TcpStream in our examples,
this could, in theory, be done with anything that implements mio’s Source trait, so the same
thought process is valid in a much broader context than what we deal with here.

•	 next_id – This simply gets the current next_id value and increments the counter atomically.
We don’t care about any happens before/after relationships happening here; we only care about
not handing out the same value twice, so Ordering::Relaxed will suffice here. Memory
ordering in atomic operations is a complex topic that we won’t be able to dive into in this book,
but if you want to know more about the different memory orderings in Rust and what they
mean, the official documentation is the right place to start: https://doc.rust-lang.
org/stable/std/sync/atomic/enum.Ordering.html.

Now that our Reactor is set up, we only have two short functions left. The first one is event_loop,
which will hold the logic for our event loop that waits and reacts to new events:

ch08/b-reactor-executor/src/runtime/reactor.rs
fn event_loop(mut poll: Poll, wakers: Wakers) {

    let mut events = Events::with_capacity(100);

    loop {

        poll.poll(&mut events, None).unwrap();

        for e in events.iter() {

https://doc.rust-lang.org/stable/std/sync/atomic/enum.Ordering.html
https://doc.rust-lang.org/stable/std/sync/atomic/enum.Ordering.html

Step 3 – Implementing a proper Reactor 203

            let Token(id) = e.token();

            let wakers = wakers.lock().unwrap();

            if let Some(waker) = wakers.get(&id) {

                waker.wake();

            }

        }

    }

}

This function takes a Poll instance and a Wakers collection as arguments. Let’s go through it step
by step:

•	 The first thing we do is create an events collection. This should be familiar since we did the
exact same thing in Chapter 4.

•	 The next thing we do is create a loop that in our case will continue to loop for eternity. This
makes our example short and simple, but it has the downside that we have no way of shutting
our event loop down once it’s started. Fixing that is not especially difficult, but since it won’t
be necessary for our example, we don’t cover this here.

•	 Inside the loop, we call Poll::poll with a timeout of None, which means it will never time
out and block until it receives an event notification.

•	 When the call returns, we loop through every event we receive.

•	 If we receive an event, it means that something we registered interest in happened, so we get
the id we passed in when we first registered an interest in events on this TcpStream.

•	 Lastly, we try to get the associated Waker and call Waker::wake on it. We guard ourselves
from the fact that the Waker may have been removed from our collection already, in which
case we do nothing.

It’s worth noting that we can filter events if we want to here. Tokio provides some methods on the
Event object to check several things about the event it reported. For our use in this example, we
don’t need to filter events.

Finally, the last function is the second public function in this module and the one that initializes and
starts the runtime:

ch08/b-reactor-executor/src/runtime/runtime.rs
pub fn start() {

    use thread::spawn;

    let wakers = Arc::new(Mutex::new(HashMap::new()));

Runtimes, Wakers, and the Reactor-Executor Pattern204

    let poll = Poll::new().unwrap();

    let registry = poll.registry().try_clone().unwrap();

    let next_id = AtomicUsize::new(1);

    let reactor = Reactor {

        wakers: wakers.clone(),

        registry,

        next_id,

    };

    REACTOR.set(reactor).ok().expect("Reactor already running");

    spawn(move || event_loop(poll, wakers));

}

The start method should be fairly easy to understand. The first thing we do is create our Wakers
collection and our Poll instance. From the Poll instance, we get an owned version of Registry.
We initialize next_id to 1 (for debugging purposes, I wanted to initialize it to a different start value
than our Executor) and create our Reactor object.

Then, we set the static variable we named REACTOR by giving it our Reactor instance.

The last thing is probably the most important one to pay attention to. We spawn a new OS thread and
start our event_loop function on that one. This also means that we pass on our Poll instance to
the event loop thread for good.

Now, the best practice would be to store the JoinHandle returned from spawn so that we can join
the thread later on, but our thread has no way to shut down the event loop anyway, so joining it later
makes little sense, and we simply discard the handle.

I don’t know if you agree with me, but the logic here is not that complex when we break it down into
smaller pieces. Since we know how epoll and mio work already, the rest is pretty easy to understand.

Now, we’re not done yet. We still have some small changes to make to our HttpGetFuture leaf
future since it doesn’t register with the reactor at the moment. Let’s fix that.

Start by opening the http.rs file.

Since we already added the correct imports when we opened the file to adapt everything to the new
Future interface, there are only a few places we need to change that so this leaf future integrates
nicely with our reactor.

The first thing we do is give HttpGetFuture an identity. It’s the source of events we want to track
with our Reactor, so we want it to have the same ID until we’re done with it:

ch08/b-reactor-executor/src/http.rs
struct HttpGetFuture {

    stream: Option<mio::net::TcpStream>,

Step 3 – Implementing a proper Reactor 205

    buffer: Vec<u8>,

    path: String,

    id: usize,
}

We also need to retrieve a new ID from the reactor when the future is created:

ch08/b-reactor-executor/src/http.rs
impl HttpGetFuture {

    fn new(path: String) -> Self {

        let id = reactor().next_id();
        Self {

            stream: None,

            buffer: vec![],

            path,

            id,
        }

    }

Next, we have to locate the poll implementation for HttpGetFuture.

The first thing we need to do is make sure that we register interest with our Poll instance and register
the Waker we receive with the Reactor the first time the future gets polled. Since we don’t register
directly with Registry anymore, we remove that line of code and add these new lines instead:

ch08/b-reactor-executor/src/http.rs
if self.stream.is_none() {

            println!("FIRST POLL - START OPERATION");

            self.write_request();

            let stream = self.stream.as_mut().unwrap();
            runtime::reactor().register(stream, Interest::READABLE, self.id);
            runtime::reactor().set_waker(waker, self.id);
        }

Lastly, we need to make some minor changes to how we handle the different conditions when reading
from TcpStream:

ch08/b-reactor-executor/src/http.rs
match self.stream.as_mut().unwrap().read(&mut buff) {

                Ok(0) => {

Runtimes, Wakers, and the Reactor-Executor Pattern206

                    let s = String::from_utf8_lossy(&self.buffer);

                    runtime::reactor().deregister(self.stream.as_mut().
unwrap(), self.id);
                    break PollState::Ready(s.to_string());

                }

                Ok(n) => {

                    self.buffer.extend(&buff[0..n]);

                    continue;

                }

                Err(e) if e.kind() == ErrorKind::WouldBlock => {

                    runtime::reactor().set_waker(waker, self.id);
                    break PollState::NotReady;

                }

                Err(e) => panic!("{e:?}"),

            }

The first change is to deregister the stream from our Poll instance when we’re done.

The second change is a little more subtle. If you read the documentation for Future::poll
in Rust (https://doc.rust-lang.org/stable/std/future/trait.Future.
html#tymethod.poll) carefully, you’ll see that it’s expected that the Waker from the most recent
call should be scheduled to wake up. That means that every time we get a WouldBlock error, we
need to make sure we store the most recent Waker.

The reason is that the future could have moved to a different executor in between calls, and we need
to wake up the correct one (it won’t be possible to move futures like those in our example, but let’s
play by the same rules).

And that’s it!

Congratulations! You’ve now created a fully working runtime based on the reactor-executor pattern.
Well done!

Now, it’s time to test it and run a few experiments with it.

Let’s go back to main.rs and change the main function so that we get our program running correctly
with our new runtime.

First of all, let’s remove the dependency on the Runtime struct and make sure our imports look like this:

ch08/b-reactor-executor/src/main.rs
mod future;

mod http;

mod runtime;

https://doc.rust-lang.org/stable/std/future/trait.Future.html#tymethod.poll
https://doc.rust-lang.org/stable/std/future/trait.Future.html#tymethod.poll

Step 3 – Implementing a proper Reactor 207

use future::{Future, PollState};

use runtime::Waker;

Next, we need to make sure that we initialize our runtime and pass in our future to executor.
block_on. Our main function should look like this:

ch08/b-reactor-executor/src/main.rs
fn main() {

    let mut executor = runtime::init();

    executor.block_on(async_main());

}

And finally, let’s try it out by running it:

cargo run.

You should get the following output:

Program starting

FIRST POLL - START OPERATION

main: 1 pending tasks. Sleep until notified.

HTTP/1.1 200 OK

content-length: 15

connection: close

content-type: text/plain; charset=utf-8

date: Thu, xx xxx xxxx 15:38:08 GMT

HelloAsyncAwait

FIRST POLL - START OPERATION

main: 1 pending tasks. Sleep until notified.

HTTP/1.1 200 OK

content-length: 15

connection: close

content-type: text/plain; charset=utf-8

date: Thu, xx xxx xxxx 15:38:08 GMT

HelloAsyncAwait

main: All tasks are finished

Great – it’s working just as expected!!!

However, we’re not really using any of the new capabilities of our runtime yet so before we leave this
chapter, let’s have some fun and see what it can do.

Runtimes, Wakers, and the Reactor-Executor Pattern208

Experimenting with our new runtime
If you remember from Chapter 7, we implemented a join_all method to get our futures running
concurrently. In libraries such as Tokio, you’ll find a join_all function too, and the slightly more
versatile FuturesUnordered API that allows you to join a set of predefined futures and run
them concurrently.

These are convenient methods to have, but it does force you to know which futures you want to run
concurrently in advance. If the futures you run using join_all want to spawn new futures that run
concurrently with their “parent” future, there is no way to do that using only these methods.

However, our newly created spawn functionality does exactly this. Let’s put it to the test!

An example using concurrency

Note
The exact same version of this program can be found in the ch08/c-runtime-executor folder.

Let’s try a new program that looks like this:

fn main() {

    let mut executor = runtime::init();

    executor.block_on(async_main());

}

coro fn request(i: usize) {

    let path = format!("/{}/HelloWorld{i}", i * 1000);

    let txt = Http::get(&path).wait;

    println!("{txt}");

}

coro fn async_main() {

    println!("Program starting");

    for i in 0..5 {

        let future = request(i);

        runtime::spawn(future);

    }

}

This is pretty much the same example we used to show how join_all works in Chapter 7, only this
time, we spawn them as top-level futures instead.

Experimenting with our new runtime 209

To run this example, follow these steps:

1.	 Replace everything below the imports in main.rs with the preceding code.

2.	 Run corofy ./src/main.rs.

3.	 Copy everything from main_corofied.rs to main.rs and delete main_corofied.rs.

4.	 Fix the fact that corofy doesn’t know we changed our futures to take waker: &Waker as
an argument. The easiest way is to simply run cargo check and let the compiler guide you
to the places we need to change.

Now, you can run the example and see that the tasks run concurrently, just as they did using join_all
in Chapter 7. If you measured the time it takes to run the tasks, you’d find that it all takes around 4
seconds, which makes sense if you consider that you just spawned 5 futures, and ran them concurrently.
The longest wait time for a single future was 4 seconds.

Now, let’s finish off this chapter with another interesting example.

Running multiple futures concurrently and in parallel

This time, we spawn multiple threads and give each thread its own Executor so that we can run the
previous example simultaneously in parallel using the same Reactor for all Executor instances.

We’ll also make a small adjustment to the printout so that we don’t get overwhelmed with data.

Our new program will look like this:

mod future;

mod http;

mod runtime;

use crate::http::Http;

use future::{Future, PollState};

use runtime::{Executor, Waker};

use std::thread::Builder;

fn main() {

    let mut executor = runtime::init();

    let mut handles = vec![];

    for i in 1..12 {

        let name = format!("exec-{i}");

        let h = Builder::new().name(name).spawn(move || {

            let mut executor = Executor::new();

            executor.block_on(async_main());

        }).unwrap();

        handles.push(h);

Runtimes, Wakers, and the Reactor-Executor Pattern210

    }

    executor.block_on(async_main());

    handles.into_iter().for_each(|h| h.join().unwrap());

}

coroutine fn request(i: usize) {

    let path = format!("/{}/HelloWorld{i}", i * 1000);

    let txt = Http::get(&path).wait;

    let txt = txt.lines().last().unwrap_or_default();

    println!(«{txt}»);

}

coroutine fn async_main() {

    println!("Program starting");

    for i in 0..5 {

        let future = request(i);

        runtime::spawn(future);

    }

}

The machine I’m currently running has 12 cores, so when I create 11 new threads to run the same
asynchronous tasks, I’ll use all the cores on my machine. As you’ll notice, we also give each thread a
unique name that we’ll use when logging so that it’s easier to track what happens behind the scenes.

Note
While I use 12 cores, you should use the number of cores on your machine. If we increase this
number too much, our OS will not be able to give us more cores to run our program in parallel
on and instead start pausing/resuming the threads we create, which adds no value to us since
we handle the concurrency aspect ourselves in an a^tsync runtime.

You’ll have to do the same steps as we did in the last example:

1.	 Replace the code that’s currently in main.rs with the preceding code.

2.	 Run corofy ./src/main.rs.

3.	 Copy everything from main_corofied.rs to main.rs and delete main_corofied.rs.

4.	 Fix the fact that corofy doesn’t know we changed our futures to take waker: &Waker as
an argument. The easiest way is to simply run cargo check and let the compiler guide you
to the places we need to change.

Summary 211

Now, if you run the program, you’ll see that it still only takes around 4 seconds to run, but this time we
made 60 GET requests instead of 5. This time, we ran our futures both concurrently and in parallel.

At this point, you can continue experimenting with shorter delays or more requests and see how many
concurrent tasks you can have before the system breaks down.

Pretty quickly, printouts to stdout will be a bottleneck, but you can disable those. Create a blocking
version using OS threads and see how many threads you can run concurrently before the system
breaks down compared to this version.

Only imagination sets the limit, but do take the time to have some fun with what you’ve created before
we continue with the next chapter.

The only thing to be careful about is testing the concurrency limit of your system by sending these
kinds of requests to a random server you don’t control yourself since you can potentially overwhelm
it and cause problems for others.

Summary
So, what a ride! As I said in the introduction for this chapter, this is one of the biggest ones in this
book, but even though you might not realize it, you’ve already got a better grasp of how asynchronous
Rust works than most people do. Great work!

In this chapter, you learned a lot about runtimes and why Rust designed the Future trait and the
Waker the way it did. You also learned about reactors and executors, Waker types, Futures traits,
and different ways of achieving concurrency through the join_all function and spawning new
top-level futures on the executor.

By now, you also have an idea of how we can achieve both concurrency and parallelism by combining
our own runtime with OS threads.

Now, we’ve created our own async universe consisting of coro/wait, our own Future trait, our
own Waker definition, and our own runtime. I’ve made sure that we don’t stray away from the core
ideas behind asynchronous programming in Rust so that everything is directly applicable to async/
await, Future traits, Waker types, and runtimes in day-to-day programming.

By now, we’re in the final stretch of this book. The last chapter will finally convert our example to use
the real Future trait, Waker, async/await, and so on instead of our own versions of it. In that
chapter, we’ll also reserve some space to talk about the state of asynchronous Rust today, including
some of the most popular runtimes, but before we get that far, there is one more topic I want to
cover: pinning.

One of the topics that seems hardest to understand and most different from all other languages is the
concept of pinning. When writing asynchronous Rust, you will at some point have to deal with the
fact that Future traits in Rust must be pinned before they’re polled.

Runtimes, Wakers, and the Reactor-Executor Pattern212

So, the next chapter will explain pinning in Rust in a practical way so that you understand why we
need it, what it does, and how to do it.

However, you absolutely deserve a break after this chapter, so take some fresh air, sleep, clear your
mind, and grab some coffee before we enter the last parts of this book.

9
Coroutines, Self-Referential

Structs, and Pinning

In this chapter, we’ll start by improving our coroutines by adding the ability to store variables across
state changes. We’ll see how this leads to our coroutines needing to take references to themselves and
the issues that arise as a result of that. The reason for dedicating a whole chapter to this topic is that
it’s an integral part of getting async/await to work in Rust, and also a topic that is somewhat difficult
to get a good understanding of.

The reason for this is that the whole concept of pinning is foreign to many developers and just like the
Rust ownership system, it takes some time to get a good and working mental model of it.

Fortunately, the concept of pinning is not that difficult to understand, but how it’s implemented in the
language and how it interacts with Rust’s type system is abstract and hard to grasp.

While we won’t cover absolutely everything about pinning in this chapter, we’ll try to get a good and
sound understanding of it. The major goal here is to feel confident with the topic and understand
why we need it and how to use it.

As mentioned previously, this chapter is not only about pinning in Rust, so the first thing we’ll do is
make some important improvements where we left off by improving the final example in Chapter 8.

Then, we’ll explain what self-referential structs are and how they’re connected to futures before we
explain how pinning can solve our problems.

This chapter will cover the following main topics

•	 Improving our example 1 – variables

•	 Improving our example 2 – references

•	 Improving our example 3 – this is… not… good…

•	 Discovering self-referential structs

Coroutines, Self-Referential Structs, and Pinning214

•	 Pinning in Rust

•	 Improving our example 4 – pinning to the rescue

Technical requirements
The examples in this chapter will build on the code from the previous chapter, so the requirements are
the same. The examples will all be cross-platform and work on all platforms that Rust (https://
doc.rust-lang.org/stable/rustc/platform-support.html) and mio (https://
github.com/tokio-rs/mio#platforms) support. The only thing you need is Rust installed
and this book’s GitHub repository downloaded locally. All the code in this chapter can be found in
the ch09 folder.

To follow the examples step by step, you’ll also need corofy installed on your machine. If you didn’t
install it in Chapter 7, install it now by going into the ch07/corofy folder in the repository and
running the following:

cargo install --force --path .

We’ll also use delayserver in this example, so you need to open a separate terminal, enter the
delayserver folder at the root of the repository, and write cargo run so that it’s ready and
available for the examples going forward.

Remember to change the port number in the code if you have to change what port delayserver
listens on.

Improving our example 1 – variables
So, let’s recap what we have at this point by continuing where we left off in the previous chapter. We
have the following:

•	 A Future trait

•	 A coroutine implementation using coroutine/await syntax and a preprocessor

•	 A reactor based on mio::Poll

•	 An executor that allows us to spawn as many top-level tasks as we want and schedules the ones
that are ready to run

•	 An HTTP client that only makes HTTP GET requests to our local delayserver instance

It’s not that bad – we might argue that our HTTP client is a little bit limited, but that’s not the focus of
this book, so we can live with that. Our coroutine implementation, however, is severely limited. Let’s
take a look at how we can make our coroutines slightly more useful.

The biggest downside with our current implementation is that nothing – and I mean nothing – can
live across wait points. It makes sense to tackle this problem first.

https://doc.rust-lang.org/stable/rustc/platform-support.html
https://doc.rust-lang.org/stable/rustc/platform-support.html
https://github.com/tokio-rs/mio#platforms
https://github.com/tokio-rs/mio#platforms

Improving our example 1 – variables 215

Let’s start by setting up our example.

We’ll use the “library” code from d-multiple-threads example in Chapter 8 (our last version
of the example), but we’ll change the main.rs file by adding a shorter and simpler example.

Let’s set up the base example that we’ll iterate on and improve in this chapter.

Setting up the base example

Note
You can find this example in this book’s GitHub repository under ch09/a-coroutines-
variables.

Perform the following steps:

1.	 Create a folder called a-coroutines-variables.

2.	 Enter the folder and run cargo init.

3.	 Delete the default main.rs file and copy everything from the ch08/d-multiple-
threads/src folder into the ch10/a-coroutines-variables/src folder.

4.	 Open Cargo.toml and add the dependency on mio to the dependencies section:

mio = {version = "0.8", features = ["net", "os-poll"]}

You should now have a folder structure that looks like this:

src
  |-- runtime
       |-- executor.rs
       |-- reactor.rs
  |-- future.rs
  |-- http.rs
  |-- main.rs
  |-- runtime.rs

We’ll use corofy one last time to generate our boilerplate state machine for us. Copy the following
into main.rs:

ch09/a-coroutines-variables/src/main.rs

mod future;
mod http;
mod runtime;
use crate::http::Http;

Coroutines, Self-Referential Structs, and Pinning216

use future::{Future, PollState};
use runtime::Waker;

fn main() {
    let mut executor = runtime::init();
    executor.block_on(async_main());
}

coroutine fn async_main() {
    println!("Program starting");
    let txt = Http::get("/600/HelloAsyncAwait").wait;
    println!("{txt}");
    let txt = Http::get("/400/HelloAsyncAwait").wait;
    println!("{txt}");
}

This time, let’s take a shortcut and write our corofied file directly back to main.rs since we’ve compared
the files side by side enough times at this point. Assuming you’re in the base folder, a-coroutine-
variables, write the following:

corofy ./src/main.rs ./src/main.rs

The last step is to fix the fact that corofy doesn’t know about Waker. You can let the compiler guide
you to where you need to make changes by writing cargo check, but to help you along the way,
there are three minor changes to make (note that the line number is the one reported by re-writing
the same code that we wrote previously):

64: fn poll(&mut self, waker: &Waker)
82: match f1.poll(waker)
102: match f2.poll(waker)

Now, check that everything is working as expected by writing cargo run.

You should see the following output (the output has been abbreviated to save a little bit of space):

Program starting
FIRST POLL - START OPERATION
main: 1 pending tasks. Sleep until notified.
HTTP/1.1 200 OK

[==== ABBREVIATED ====]

HelloAsyncAwait
main: All tasks are finished

Improving our example 1 – variables 217

Note
Remember that we need delayserver running in a terminal window so that we get a response
to our HTTP GET requests. See the Technical requirements section for more information.

Now that we’ve got the boilerplate out of the way, it’s time to start making the improvements we
talked about.

Improving our base example

We want to see how we can improve our state machine so that it allows us to hold variables across
wait points. To do that, we need to store them somewhere and restore the variables that are needed
when we enter each state in our state machine.

Tip
Pretend that these rewrites are done by corofy (or the compiler). Even though corofy can’t
do these rewrites, it’s possible to automate this process as well.

Or coroutine/wait program looks like this:

coroutine fn async_main() {
    println!("Program starting");
    let txt = Http::get("/600/HelloAsyncAwait").wait;
    println!("{txt}");
    let txt = Http::get("/400/HelloAsyncAwait").wait;
    println!("{txt}");
}

We want to change it so that it looks like this:

coroutine fn async_main() {
    let mut counter = 0;
    println!("Program starting");
    let txt = http::Http::get("/600/HelloAsyncAwait").wait;
    println!("{txt}");
    counter += 1;
    let txt = http::Http::get("/400/HelloAsyncAwait").wait;
    println!("{txt}");
    counter += 1;

    println!("Received {} responses.", counter);
}

Coroutines, Self-Referential Structs, and Pinning218

In this version, we simply create a counter variable at the top of our async_main function and
increase the counter for each response we receive from the server. At the end, we print out how many
responses we received.

Note
For brevity, I won’t present the entire code base going forward; instead, I will only present the
relevant additions and changes. Remember that you can always refer to the same example in
this book’s GitHub repository.

The way we implement this is to add a new field called stack to our Coroutine0 struct:

ch09/a-coroutines-variables/src/main.rs

struct Coroutine0 {
    stack: Stack0,
    state: State0,
}

The stack fields hold a Stack0 struct that we also need to define:

ch09/a-coroutines-variables/src/main.rs

#[derive(Default)]
struct Stack0 {
    counter: Option<usize>,
}

This struct will only hold one field since we only have one variable. The field will be of the
Option<usize> type. We also derive the Default trait for this struct so that we can initialize
it easily.

Improving our example 1 – variables 219

Note
Futures created by async/await in Rust store this data in a slightly more efficient manner. In
our example, we store every variable in a separate struct since I think it’s easier to reason about,
but it also means that the more variables we need to store, the more space our coroutine will
need. It will grow linearly with the number of different variables that need to be stored/restored
between state changes. This could be a lot of data. For example, if we have 100 state changes
that each need one distinct i64-sized variable to be stored to the next state, that would require
a struct that takes up 100 * 8b = 800 bytes in memory.

Rust optimizes this by implementing coroutines as enums, where each state only holds the
data it needs to restore in the next state. This way, the size of a coroutine is not dependent on
the total number of variables; it’s only dependent on the size of the largest state that needs to be
saved/restored. In the preceding example, the size would be reduced to 8 bytes since the largest
space any single state change needed is enough to hold one i64-sized variable. The same space
will be reused over and over.

The fact that this design allows for this optimization is significant and it’s an advantage that
stackless coroutines have over stackful coroutines when it comes to memory efficiency.

The next thing we need to change is the new method on Coroutine0:

ch09/a-coroutines-variables/src/main.rs

impl Coroutine0 {
    fn new() -> Self {
        Self {
            state: State0::Start,
            stack: Stack0::default(),
        }
    }
}

The default value for stack is not relevant to us since we’ll overwrite it anyway.

The next few steps are the ones of most interest to us. In the Future implementation for Coroutine0,
we’ll pretend that corofy added the following code to initialize, store, and restore the stack variables
for us. Let’s take a look at what happens on the first call to poll now:

ch09/a-coroutines-variables/src/main.rs

State0::Start => {
                    // initialize stack (hoist variables)
                    self.stack.counter = Some(0);
                    // ---- Code you actually wrote ----
                    println!("Program starting");

Coroutines, Self-Referential Structs, and Pinning220

                    // ---------------------------------
                    let fut1 = Box::new(http::Http::get("/600/
HelloAsyncAwait"));
                    self.state = State0::Wait1(fut1);

                    // save stack

                }

Okay, so there are some important changes here that I’ve highlighted. Let’s go through them:

•	 The first thing we do when we’re in the Start state is add a segment at the top where we
initialize our stack. One of the things we do is hoist all variable declarations for the relevant
code section (in this case, before the first wait point) to the top of the function.

•	 In our example, we also initialize the variables to their initial value, which in this case is 0.

•	 We also added a comment stating that we should save the stack, but since all that happens before
the first wait point is the initialization of counter, there is nothing to store here.

Let’s take a look at what happens after the first wait point:

ch09/a-coroutines-variables/src/main.rs

State0::Wait1(ref mut f1) => {
                    match f1.poll(waker) {
                        PollState::Ready(txt) => {
                            // Restore stack
                            let mut counter = self.stack.counter.
take().unwrap();

                            // ---- Code you actually wrote ----
                            println!("{txt}");
                            counter += 1;
                            // ---------------------------------
                            let fut2 = Box::new(
http::Http::get("/400/HelloAsyncAwait"));
                            self.state = State0::Wait2(fut2);

                            // save stack
                            self.stack.counter = Some(counter);
                        }
                        PollState::NotReady => break
PollState::NotReady,
                    }
                }

Improving our example 1 – variables 221

Hmm, this is interesting. I’ve highlighted the changes we need to make.

 The first thing we do is to restore the stack by taking ownership over the counter (take()replaces
the value currently stored in self.stack.counter with None in this case) and writing it to a
variable with the same name that we used in the code segment (counter). Taking ownership and
placing the value back in later is not an issue in this case and it mimics the code we wrote in our
coroutine/wait example.

The next change is simply the segment that takes all the code after the first wait point and pastes it in.
In this case, the only change is that the counter variable is increased by 1.

Lastly, we save the stack state back so that we hold onto its updated state between the wait points.

Note
In Chapter 5, we saw how we needed to store/restore the register state in our fibers. Since
Chapter 5 showed an example of a stackful coroutine implementation, we didn’t have to care
about stack state at all since all the needed state was stored in the stacks we created.

Since our coroutines are stackless, we don’t store the entire call stack for each coroutine, but
we do need to store/restore the parts of the stack that will be used across wait points. Stackless
coroutines still need to save some information from the stack, as we’ve done here.

When we enter the State0::Wait2 state, we start the same way:

ch09/a-coroutines-variables/src/main.rs

State0::Wait2(ref mut f2) => {
                    match f2.poll(waker) {
                        PollState::Ready(txt) => {
                            // Restore stack
                            let mut counter = self.stack.counter.
take().unwrap();

                            // ---- Code you actually wrote ----
                            println!("{txt}");
                            counter += 1;

                            println!(«Received {} responses.»,
counter);
                            // ---------------------------------
                            self.state = State0::Resolved;

                            // Save stack (all variables set to None
already)

                            break PollState::Ready(String::new());

Coroutines, Self-Referential Structs, and Pinning222

                        }
                        PollState::NotReady => break
PollState::NotReady,
                    }
                }

Since there are no more wait points in our program, the rest of the code goes into this segment and
since we’re done with counter at this point, we can simply drop it by letting it go out of scope. If
our variable held onto any resources, they would be released here as well.

With that, we’ve given our coroutines the power of saving variables across wait points. Let’s try to run
it by writing cargo run.

You should see the following output (I’ve removed the parts of the output that remain unchanged):

…
HelloAsyncAwait
Received 2 responses.

main: All tasks are finished

Okay, so our program works and does what’s expected. Great!

Now, let’s take a look at an example that needs to store references across wait points since that’s an
important aspect of having our coroutine/wait functions behave like “normal” functions.

Improving our example 2 – references
Let’s set everything up for our next version of this example:

•	 Create a new folder called b-coroutines-references and copy everything from
a-coroutines-variables over to it

•	 You can change the name of the project so that it corresponds with the folder by changing the
name attribute in the package section in Cargo.toml, but it’s not something you need
to do for the example to work

Note
You can find this example in this book’s GitHub repository in the ch10/b-coroutines-
references folder.

This time, we’ll learn how to store references to variables in our coroutines by using the following
coroutine/wait example program:

use std::fmt::Write;
coroutine fn async_main() {

Improving our example 2 – references 223

    let mut buffer = String::from("\nBUFFER:\n----\n");
    let writer = &mut buffer;
    println!("Program starting");
    let txt = http::Http::get("/600/HelloAsyncAwait").wait;
    writeln!(writer, "{txt}").unwrap();
    let txt = http::Http::get("/400/HelloAsyncAwait").wait;
    writeln!(writer, "{txt}").unwrap();

    println!("{}", buffer);
}

So, in this example, we create a buffer variable of the String type that we initialize with some
text, and we take a &mut reference to that and store it in a writer variable.

Every time we receive a response, we write the response to the buffer through the &mut reference we
hold in writer before we print the buffer to the terminal at the end of the program.

Let’s take a look at what we need to do to get this working.

The first thing we do is pull in the fmt::Write trait so that we can write to our buffer using the
writeln! macro.

Add this to the top of main.rs:

ch09/b-coroutines-references/src/main.rs

use std::fmt::Write;

Next, we need to change our Stack0 struct so that it represents what we must store across wait
points in our updated example:

 ch09/b-coroutines-references/src/main.rs

#[derive(Default)]
struct Stack0 {
    buffer: Option<String>,
    writer: Option<*mut String>,
}

An important thing to note here is that writer can’t be Option<&mut String> since we know
it will be referencing the buffer field in the same struct. A struct where a field takes a reference on
&self is called a self-referential struct and there is no way to represent that in Rust since the lifetime
of the self-reference is impossible to express.

The solution is to cast the &mut self-reference to a pointer instead and ensure that we manage the
lifetimes correctly ourselves.

Coroutines, Self-Referential Structs, and Pinning224

The only other thing we need to change is the Future::poll implementation:

ch09/b-coroutines-references/src/main.rs

State0::Start => {
                    // initialize stack (hoist variables)
                    self.stack.buffer = Some(String::from("\nBUFFER:\
n----\n"));
                    self.stack.writer = Some(self.stack.buffer.as_
mut().unwrap());
                    // ---- Code you actually wrote ----
                    println!("Program starting");

                    // ---------------------------------
                    let fut1 = Box::new(http::Http::get("/600/
HelloAsyncAwait"));
                    self.state = State0::Wait1(fut1);

                    // save stack
                }

Okay, so this looks a bit odd. The first line we change is pretty straightforward. We initialize our
buffer variable to a new String type, just like we did at the top of our coroutine/wait program.

The next line, however, looks a bit dangerous.

We cast the &mut reference to our buffer to a *mut pointer.

Important
Yes, I know we could have chosen another way of doing this since we can take a reference to
buffer everywhere we need to instead of storing it in its variable, but that’s only because our
example is very simple. Imagine that we use a library that needs to borrow data that’s local to
the async function and we somehow have to manage the lifetimes manually like we do here
but in a much more complex scenario.

The self.stack.buffer.as_mut().unwrap() line returns a &mut reference to the buffer
field. Since self.stack.writer is of the Option<*mut String> type, the reference will
be coerced to a pointer (meaning that Rust does this cast implicitly by inferring it from the context).

Note
We take *mut String here since we deliberately don’t want a string slice (&str), which is
often what we get (and want) when using a reference to a String type in Rust.

Improving our example 2 – references 225

Let’s take a look at what happens after the first wait point:

ch09/b-coroutines-references/src/main.rs

State0::Wait1(ref mut f1) => {
                    match f1.poll(waker) {
                        PollState::Ready(txt) => {
                            // Restore stack
                            let writer = unsafe { &mut *self.stack.
writer.take().unwrap() };

                            // ---- Code you actually wrote ----
                            writeln!(writer, «{txt}»).unwrap();
                            // ---------------------------------
                            let fut2 = Box::new(http::Http::get("/400/
HelloAsyncAwait"));
                            self.state = State0::Wait2(fut2);

                            // save stack
                            self.stack.writer = Some(writer);
                        }
                        PollState::NotReady => break
PollState::NotReady,
                    }
                }

The first change we make is regarding how we restore our stack. We need to restore our writer
variable so that it holds a &mut String type that points to our buffer. To do this, we have to write
some unsafe code that dereferences our pointer and lets us take a &mut reference to our buffer.

Note
Casting a reference to a pointer is safe. The unsafe part is dereferencing the pointer.

Next, we add the line of code that writes the response. We can keep this the same as how we wrote it
in our coroutine/wait function.

Lastly, we save the stack state back since we need both variables to live across the wait point.

Note
We don’t have to take ownership over the pointer stored in the writer field to use it since
we can simply copy it, but to be somewhat consistent, we take ownership over it, just like we
did in the first example. It also makes sense since if there is no need to store the pointer for the
next await point, we can simply let it go out of scope by not storing it back.

Coroutines, Self-Referential Structs, and Pinning226

The last part is when we’ve reached Wait2 and our future returns PollState::Ready:

State0::Wait2(ref mut f2) => {
                    match f2.poll(waker) {
                        PollState::Ready(txt) => {
                            // Restore stack
                            let buffer = self.stack.buffer.as_ref().
take().unwrap();
                            let writer = unsafe { &mut *self.stack.
writer.take().unwrap() };

                            // ---- Code you actually wrote ----
                            writeln!(writer, «{txt}»).unwrap();

                            println!("{}", buffer);
                            // ---------------------------------
                            self.state = State0::Resolved;

                  // Save stack / free resources
                  let _ = self.stack.buffer.take();

                            break PollState::Ready(String::new());
                        }
                        PollState::NotReady => break
PollState::NotReady,
                    }

                }

In this segment, we restore both variables since we write the last response through our writer variable,
and then print everything that’s stored in our buffer to the terminal.

I want to point out that the println!("{}", buffer); line takes a reference in the original
coroutine/wait example, even though it might look like we pass in an owned String. Therefore, it
makes sense that we restore the buffer to a &String type, and not the owned version. Transferring
ownership would also invalidate the pointer in our writer variable.

The last thing we do is drop the data we don’t need anymore. Our self.stack.writer field is
already set to None since we took ownership over it when we restored the stack at the start, but we
need to take ownership over the String type that self.stack.buffer holds as well so that it
gets dropped at the end of this scope too. If we didn’t do that, we would hold on to the memory that’s
been allocated to our String until the entire coroutine is dropped (which could be much later).

Now, we’ve made all our changes. If the rewrites we did previously were implemented in corofy,
our coroutine/wait implementation could, in theory, support much more complex use cases.

Improving our example 3 – this is… not… good… 227

Let’s take a look at what happens when we run our program by writing cargo run:

Program starting
FIRST POLL - START OPERATION
main: 1 pending tasks. Sleep until notified.
FIRST POLL - START OPERATION
main: 1 pending tasks. Sleep until notified.

BUFFER:

HTTP/1.1 200 OK
content-length: 15
connection: close
content-type: text/plain; charset=utf-8
date: Thu, 30 Nov 2023 22:48:11 GMT

HelloAsyncAwait
HTTP/1.1 200 OK
content-length: 15
connection: close
content-type: text/plain; charset=utf-8
date: Thu, 30 Nov 2023 22:48:11 GMT

HelloAsyncAwait

main: All tasks are finished

Puh, great. All that dangerous unsafe turned out to work just fine, didn’t it? Good job. Let’s make
one small improvement before we finish.

Improving our example 3 – this is… not… good…
Pretend you haven’t read this section title and enjoy the fact that our previous example compiled and
showed the correct result.

I think our coroutine implementation is so good now that we can look at some optimizations instead.
There is one optimization in our executor in particular that I want to do immediately.

Before we get ahead of ourselves, let’s set everything up:

•	 Create a new folder called c-coroutines-problem and copy everything from
b-coroutines-references over to it

•	 You can change the name of the project so that it corresponds with the folder by changing the
name attribute in the package section in Cargo.toml, but it’s not something you need
to do for the example to work

Coroutines, Self-Referential Structs, and Pinning228

Tip
This example is located in this book’s GitHub repository in the ch09/c-coroutines-
problem folder.

With that, everything has been set up.

Back to the optimization. You see, new insights into the workload our runtime will handle in real life
indicate that most futures will return Ready on the first poll. So, in theory, we can just poll the future
we receive in block_on once and it will resolve immediately most of the time.

Let’s navigate to src/runtime/executor.rs and take a look at how we can take advantage of
this by adding a few lines of code.

If you navigate to our Executor::block_on function, you’ll see that the first thing we do is
spawn the future before we poll it. Spawning the future means that we allocate space for it in the
heap and store the pointer to its location in a HashMap variable.

Since the future will most likely return Ready on the first poll, this is unnecessary work that could
be avoided. Let’s add this little optimization at the start of the block_on function to take advantage
of this:

pub fn block_on<F>(&mut self, future: F)
    where
        F: Future<Output = String> + 'static,
    {
        // ===== OPTIMIZATION, ASSUME READY
        let waker = self.get_waker(usize::MAX);
        let mut future = future;
        match future.poll(&waker) {
            PollState::NotReady => (),
            PollState::Ready(_) => return,
        }
        // ===== END

        spawn(future);

        loop {
            …

Now, we simply poll the future immediately, and if the future resolves on the first poll, we return since
we’re all done. This way, we only spawn the future if it’s something we need to wait on.

Yes, this assumes we never reach usize::MAX for our IDs, but let’s pretend this is only a proof of
concept. Our Waker will be discarded and replaced by a new one if the future is spawned and polled
again anyway, so that shouldn’t be a problem.

Discovering self-referential structs 229

Let’s try to run our program and see what we get:

Program starting
FIRST POLL - START OPERATION
main: 1 pending tasks. Sleep until notified.
FIRST POLL - START OPERATION
main: 1 pending tasks. Sleep until notified.
/400/HelloAsyn
free(): double free detected in tcache 2
Aborted

Wait, what?!?

That doesn’t sound good! Okay, that’s probably a kernel bug in Linux, so let’s try it on Windows instead:

…
error: process didn't exit successfully: `target\release\c-coroutines-
problem.exe` (exit code: 0xc0000374, STATUS_HEAP_CORRUPTION)

That sounds even worse!! What happened here?

Let’s take a closer look at exactly what happened with our async system when we made our
small optimization.

Discovering self-referential structs
What happened is that we created a self-referential struct, initialized it so that it took a pointer to
itself, and then moved it. Let’s take a closer look:

1.	 First, we received a future object as an argument to block_on. This is not a problem since the
future isn’t self-referential yet, so we can move it around wherever we want to without issues
(this is also why moving futures before they’re polled is perfectly fine using proper async/await).

2.	 Then, we polled the future once. The optimization we did made one essential change. The
future was located on the stack (inside the stack frame of our block_on function) when we
polled it the first time.

3.	 When we polled the future the first time, we initialized the variables to their initial state. Our
writer variable took a pointer to our buffer variable (stored as a part of our coroutine)
and made it self-referential at this point.

4.	 The first time we polled the future, it returned NotReady

5.	 Since it returned NotReady, we spawned the future, which moves it into the tasks collection
with the HashMap<usize, Box<dyn Future<Output = String>>> type in our
Executor. The future is now placed in Box, which moves it to the heap.

Coroutines, Self-Referential Structs, and Pinning230

6.	 The next time we poll the future, we restore the stack by dereferencing the pointer we hold for
our writer variable. However, there’s a big problem: the pointer is now pointing to the old
location on the stack where the future was located at the first poll.

7.	 That can’t end well, and it doesn’t in our case.

You’ve now seen firsthand the problem with self-referential structs, how this applies to futures, and
why we need something that prevents this from happening.

A self-referential struct is a struct that takes a reference to self and stores it in a field. Now, the term
reference here is a little bit unprecise since there is no way to take a reference to self in Rust and store
that reference in self. To do this in safe Rust, you have to cast the reference to a pointer (remember
that references are just pointers with a special meaning in the programming language).

Note
When we create visualizations in this chapter, we’ll disregard padding, even though we know
structs will likely have some padding between fields, as we discussed in Chapter 4.

When this value is moved to another location in memory, the pointer is not updated and points to
the “old” location.

If we take a look at a move from one location on the stack to another one, it looks something like this:

Figure 9.1 – Moving a self-referential struct

In the preceding figure, we can see the memory addresses to the left with a representation of the stack
next to it. Since the pointer was not updated when the value was moved, it now points to the old
location, which can cause serious problems.

Discovering self-referential structs 231

Note
It can be very hard to detect these issues, and creating simple examples where a move like this
causes serious issues is surprisingly difficult. The reason for this is that even though we move
everything, the old values are not zeroed or overwritten immediately. Often, they’re still there,
so dereferencing the preceding pointer would probably produce the correct value. The problem
only arises when you change the value of x in the new location, and expect y to point to it.
Dereferencing y still produces a valid value in this case, but it’s the wrong value.

Optimized builds often optimize away needless moves, which can make bugs even harder to detect
since most of the program will seem to work just fine, even though it contains a serious bug.

What is a move?

A move in Rust is one of those concepts that’s unfamiliar to many programmers coming from C#,
Javascript, and similar garbage-collected languages, and different from what you’re used to for C and
C++ programmers. The definition of move in Rust is closely related to its ownership system.

Moving means transferring ownership. In Rust, a move is the default way of passing values around
and it happens every time you change ownership over an object. If the object you move only consists
of copy types (types that implement the Copy trait), this is as simple as copying the data over to a
new location on the stack.

For non-copy types, a move will copy all copy types that it contains over just like in the first example,
but now, it will also copy pointers to resources such as heap allocations. The moved-from object is
left inaccessible to us (for example, if you try to use the moved-from object, the compilation will fail
and let you know that the object has moved), so there is only one owner over the allocation at any
point in time.

In contrast to cloning, it does not recreate any resources and make a clone of them.

One more important thing is that the compiler makes sure that drop is never called on the moved-
from object so that the only thing that can free the resources is the new object that took ownership
over everything.

Figure 9.2 provides a simplified visual overview of the difference between move, clone, and copy (we’ve
excluded any internal padding of the struct in this visualization). Here, we assume that we have a
struct that holds two fields – a copy type, a, which is an i64 type, and a non-copy type, b, which is
a Vec<u8> type:

Coroutines, Self-Referential Structs, and Pinning232

Figure 9.2 – Move, clone, and copy

A move will in many ways be like a deep copy of everything in our struct that’s located on the stack.
This is problematic when you have a pointer that points to self, like we have with self-referential
structs, since self will start at a new memory address after the move but the pointer to self won’t
be adjusted to reflect that change.

Most of the time, when programming Rust, you probably won’t think a lot about moves since it’s part
of the language you never explicitly use, but it’s important to know what it is and what it does.

Now that we’ve got a good understanding of what the problem is, let’s take a closer look at how Rust
solves this by using its type system to prevent us from moving structs that rely on a stable place in
memory to function correctly.

Pinning in Rust 233

Pinning in Rust
The following diagram shows a slightly more complex self-referential struct so that we have something
visual to help us understand:

Figure 9.3 – Moving a self-referential struct with three fields

At a very high level, pinning makes it possible to rely on data that has a stable memory address by
disallowing any operation that might move it:

Figure 9.4 – Moving a pinned struct

The concept of pinning is pretty simple. The complex part is how it’s implemented in the language
and how it’s used.

Coroutines, Self-Referential Structs, and Pinning234

Pinning in theory

Pinning is a part of Rust’s standard library and consists of two parts: the type, Pin, and the marker-
trait, Unpin. Pinning is only a language construct. There is no special kind of location or memory
that you move values to so they get pinned. There is no syscall to ask the operating system to ensure
a value stays the same place in memory. It’s only a part of the type system that’s designed to prevent
us from being able to move a value.

Pin does not remove the need for unsafe – it just gives the user of unsafe a guarantee that the
value has a stable location in memory, so long as the user that pinned the value only uses safe Rust.
This allows us to write self-referential types that are safe. It makes sure that all operations that can
lead to problems must use unsafe.

Back to our coroutine example, if we were to move the struct, we’d have to write unsafe Rust. That
is how Rust upholds its safety guarantee. If you somehow know that the future you created never
takes a self-reference, you could choose to move it using unsafe, but the blame now falls on you if
you get it wrong.

Before we dive a bit deeper into pinning, we need to define several terms that we’ll need going forward.

Definitions

Here are the definitions we must understand:

•	 Pin<T> is the type it’s all about. You’ll find this as a part of Rust’s standard library under the
std::pin module. Pin wrap types that implement the Deref trait, which in practical terms
means that it wraps references and smart pointers.

•	 Unpin is a marker trait. If a type implements Unpin, pinning will have no effect on that type.
You read that right – no effect. The type will still be wrapped in Pin but you can simply take
it out again.

The impressive thing is that almost everything implements Unpin by default, and if you manually
want to mark a type as !Unpin, you have to add a marker trait called PhantomPinned
to your type. Having a type, T, implement !Unpin is the only way for something such as
Pin<&mut T> to have any effect.

•	 Pinning a type that’s !Unpin will guarantee that the value remains at the same location in
memory until it gets dropped, so long as you stay in safe Rust.

•	 Pin projections are helper methods on a type that’s pinned. The syntax often gets a little weird
since they’re only valid on pinned instances of self. For example, they often look like fn
foo(self: Pin<&mut self>).

Pinning in Rust 235

•	 Structural pinning is connected to pin projections in the sense that, if you have Pin<&mut
T> where T has one field, a, that can be moved freely and one that can’t be moved, b, you can
do the following:

	� Write a pin projection for a with the fn a(self: Pin<&mut self>) -> &A signature.
In this case, we say that pinning is not structural.

	� Write a projection for b that looks like fn b(self: Pin<&mut self>) -> Pin<&mut
B>, in which case we say that pinning is structural for b since it’s pinned when the struct,
T, is pinned.

With the most important definitions out of the way, let’s look at the two ways we can pin a value.

Pinning to the heap

Note
The small code snippets we’ll present here can be found in this book’s GitHub repository in
the ch09/d-pin folder. The different examples are implemented as different methods that
you comment/uncomment in the main function.

Let’s write a small example to illustrate the different ways of pinning a value:

ch09/d-pin/src/main.rs

use std::{marker::PhantomPinned, pin::Pin};

#[derive(Default)]
struct MaybeSelfRef {
    a: usize,
    b: Option<*const usize>,
    _pin: PhantomPinned,
}

So, we want to be able to create an instance using MaybeSelfRef::default() that we can move
around as we wish, but then at some point initialize it to a state where it references itself; moving it
would cause problems.

Coroutines, Self-Referential Structs, and Pinning236

This is very much like futures that are not self-referential until they’re polled, as we saw in our previous
example. Let's write the impl block for MaybeSelfRef and take a look at the code::

ch09/d-pin/src/main.rs

impl MaybeSelfRef {
    fn init(self: Pin<&mut Self>) {
        unsafe {
            let Self { a, b, .. } = self.get_unchecked_mut();
            *b = Some(a);
        }
    }

    fn b(self: Pin<&mut Self>) -> Option<&mut usize> {
        unsafe { self.get_unchecked_mut().b.map(|b| &mut *b) }
    }
}

As you can see, MaybeStelfRef will only be self-referential after we call init on it.

We also define one more method that casts the pointer stored in b to Option<&mut usize>,
which is a mutable reference to a.

One thing to note is that both our functions require unsafe. Without Pin, the only method requiring
unsafe would be b since we dereference a pointer there. Acquiring a mutable reference to a pinned
value always require unsafe, since there is nothing preventing us from moving the pinned value
at that point.

Pinning to the heap is usually done by pinning a Box. There is even a convenient method on Box
that allows us to get Pin<Box<...>>. Let’s look at a short example:

ch09/d-pin/src/main.rs

fn main() {
    let mut x = Box::pin(MaybeSelfRef::default());
    x.as_mut().init();
    println!("{}", x.as_ref().a);
    *x.as_mut().b().unwrap() = 2;
    println!("{}", x.as_ref().a);
}

Pinning in Rust 237

Here, we pin MaybeSelfRef to the heap and initialize it. We print out the value of a and then
mutate the data through the self-reference in b, and set its value to 2. If we look at the output, we’ll
see that everything looks as expected:

    Finished dev [unoptimized + debuginfo] target(s) in 0.56s
     Running `target\debug\x-pin-experiments.exe`
0
2

The pinned value can never move and as users of MaybeSelfRef, we didn’t have to write any unsafe
code. Rust can guarantee that we never (in safe Rust) get a mutable reference to MaybeSelfRef
since Box took ownership of it.

Heap pinning being safe is not so surprising since, in contrast to the stack, a heap allocation will be
stable throughout the program, regardless of where we create it.

Important
This is the preferred way to pin values in Rust. Stack pinning is for those cases where you don’t
have a heap to work with or can’t accept the cost of that extra allocation.

Let’s take a look at stack pinning while we’re at it.

Pinning to the stack

Pinning to the stack can be somewhat difficult. In Chapter 5, we saw how the stack worked and we
know that it grows and shrinks as values are popped and pushed to the stack.

So, if we’re going to pin to the stack, we have to pin it somewhere “high” on the stack. This means that
if we pin a value to the stack inside a function call, we can’t return from that function, and expect the
value to still be pinned there. That would be impossible.

Pinning to the stack is hard since we pin by taking &mut T, and we have to guarantee that we won’t
move T until it’s dropped. If we’re not careful, this is easy to get wrong. Rust can’t help us here, so it’s
up to us to uphold that guarantee. This is why stack pinning is unsafe.

Let’s look at the same example using stack pinning:

ch09/d-pin/src/main.rs

fn stack_pinning_manual() {
    let mut x = MaybeSelfRef::default();
    let mut x = unsafe { Pin::new_unchecked(&mut x) };
    x.as_mut().init();
    println!("{}", x.as_ref().a);

Coroutines, Self-Referential Structs, and Pinning238

    *x.as_mut().b().unwrap() = 2;
    println!("{}", x.as_ref().a);
}

The noticeable difference here is that it’s unsafe to pin to the stack, so now, we need unsafe both
as users of MaybeSelfRef and as implementors.

If we run the example with cargo run, the output will be the same as in our first example:

    Finished dev [unoptimized + debuginfo] target(s) in 0.58s
     Running `target\debug\x-pin-experiments.exe`
0
2

The reason stack pinning requires unsafe is that it’s rather easy to accidentally break the guarantees
that Pin is supposed to provide. Let’s take a look at this example:

ch09/d-pin/src/main.rs

use std::mem::swap;
fn stack_pinning_manual_problem() {
    let mut x = MaybeSelfRef::default();
    let mut y = MaybeSelfRef::default();

    {
        let mut x = unsafe { Pin::new_unchecked(&mut x) };
        x.as_mut().init();
        *x.as_mut().b().unwrap() = 2;
    }
    swap(&mut x, &mut y);
    println!("
     x: {{
  +----->a: {:p},
  |      b: {:?},
  |  }}
  |
  |  y: {{
  |      a: {:p},
  +-----|b: {:?},
     }}",
        &x.a,
        x.b,
        &y.a,
        y.b,

Pinning in Rust 239

    );
}

In this example, we create two instances of MaybeSelfRef called x and y. Then, we create a
scope where we pin x and set the value of x.a to 2 by dereferencing the self-reference in b, as we
did previously.

Now, when we exit the scope, x isn’t pinned anymore, which means we can take a mutable reference
to it without needing unsafe.

Since this is safe Rust and we should be able to do what we want, we swap x and y.

The output prints out the pointer address of the a field of both structs and the value of the pointer
stored in b.

When we look at the output, we should see the problem immediately:

Finished dev [unoptimized + debuginfo] target(s) in 0.58s
     Running `target\debug\x-pin-experiments.exe`

     x: {
  +----->a: 0xe45fcff558,
  |      b: None,
  |  }
  |
  |  y: {
  |      a: 0xe45fcff570,
  +-----|b: Some(0xe45fcff558),
     }

Although the pointer values will differ from run to run, it’s pretty evident that y doesn’t hold a pointer
to self anymore.

Right now, it points somewhere in x. This is very bad and will cause the exact memory safety issues
Rust is supposed to prevent.

Note
For this reason, the standard library has a pin! macro that helps us with safe stack pinning.
The macro uses unsafe under the hood but makes it impossible for us to reach the pinned
value again.

Now that we’ve seen all the pitfalls of stack pinning, my clear recommendation is to avoid it unless
you need to use it. If you have to use it, then use the pin! macro so that you avoid the issues we’ve
described here.

Coroutines, Self-Referential Structs, and Pinning240

Tip
In this book’s GitHub repository, you’ll find a function called stack_pinning_macro()
in the ch09/d-pin/src/main.rs file. This function shows the preceding example but
using Rust’s pin! macro.

Pin projections and structural pinning

Before we leave the topic of pinning, we’ll quickly explain what pin projections and structural pinning
are. Both sound complex, but they are very simple in practice. The following diagram shows how
these terms are connected:

Figure 9.5 – Pin projection and structural pinning

Structural pinning means that if a struct is pinned, so is the field. We expose this through pin projections,
as we’ll see in the following code example.

If we continue with our example and create a struct called Foo that holds both MaybeSelfRef
(field a) and a String type (field b), we could write two projections that return a pinned version of
a and a regular mutable reference to b:

ch09/d-pin/src/main.rs

    #[derive(Default)]
    struct Foo {
        a: MaybeSelfRef,
        b: String,

Improving our example 4 – pinning to the rescue 241

    }

    impl Foo {
        fn a(self: Pin<&mut Self>) -> Pin<&mut MaybeSelfRef> {
            unsafe {
                self.map_unchecked_mut(|s| &mut s.a)
            }
        }

        fn b(self: Pin<&mut Self>) -> &mut String {
            unsafe {
                &mut self.get_unchecked_mut().b
            }
        }
    }

Note that these methods will only be callable when Foo is pinned. You won’t be able to call either of
these methods on a regular instance of Foo.

Pin projections do have a few subtleties that you should be aware of, but they’re explained in quite
some detail in the official documentation (https://doc.rust-lang.org/stable/std/
pin/index.html), so I’ll refer you there for more information about the precautions you must
take when writing projections.

Note
Since pin projections can be a bit error-prone to create yourself, there is a popular create for
making pin projections called pin_project (https://docs.rs/pin-project/latest/
pin_project/). If you ever end up having to make pin projections, it’s worth checking out.

With that, we’ve pretty much covered all the advanced topics in async Rust. However, before we go
on to our last chapter, let’s see how pinning will prevent us from making the big mistake we made in
the last iteration of our coroutine example.

Improving our example 4 – pinning to the rescue
Fortunately, the changes we need to make are small, but before we continue and make the changes,
let’s create a new folder and copy everything we had in our previous example over to that folder:

•	 Copy the entire c-coroutines-problem folder and name the new copy e-coroutines-
pin

•	 Open Cargo.toml and rename the name of the package e-coroutines-pin

Coroutines, Self-Referential Structs, and Pinning242

Tip
You’ll find the example code we’ll go through here in this book’s GitHub repository under the
ch09/e-coroutines-pin folder.

Now that we have a new folder set up, let’s start making the necessary changes. The logical place to
start is our Future definition in future.rs.

future.rs

The first thing we’ll do is pull in Pin from the standard library at the very top:

ch09/e-coroutines-pin/src/future.rs

use std::pin::Pin;

The only other change we need to make is in the definition of poll in our Future trait:

fn poll(self: Pin<&mut Self>, waker: &Waker) ->
PollState<Self::Output>;

That’s pretty much it.

However, the implications of this change are noticeable pretty much everywhere poll is called, so we
need to fix that as well.

Let’s start with http.rs.

http.rs

The first thing we need to do is pull in Pin from the standard library. The start of the file should
look like this:

ch09/e-coroutines-pin/src/http.rs

use crate::{future::PollState, runtime::{self, reactor, Waker},
Future};
use mio::Interest;
use std::{io::{ErrorKind, Read, Write}, pin::Pin};

The only other place we need to make some changes is in the Future implementation for
HttpGetFuture, so let’s locate that. We’ll start by changing the arguments in poll:

ch09/e-coroutines-pin/src/http.rs

fn poll(mut self: Pin<&mut Self>, waker: &Waker) ->
PollState<Self::Output>

Improving our example 4 – pinning to the rescue 243

Since self is now Pin<&mut Self>, there are several small changes we need to make so that the
borrow checker stays happy. Let’s start from the top:

ch09/e-coroutines-pin/src/http.rs

let id = self.id;
        if self.stream.is_none() {
            println!("FIRST POLL - START OPERATION");
            self.write_request();
            let stream = (&mut self).stream.as_mut().unwrap();
            runtime::reactor().register(stream, Interest::READABLE,
id);
            runtime::reactor().set_waker(waker, self.id);
        }

The reason for assigning id to a variable at the top is that the borrow checker gives us some minor
trouble when trying to pass in both &mut self and &self as arguments to the register/deregister
functions, so we just assign id to a variable at the top and everyone is happy.

There are only two more lines to change, and that is where we create a String type from our internal
buffer and deregister interest with the reactor:

ch09/e-coroutines-pin/src/http.rs

let s = String::from_utf8_lossy(&self.buffer).to_string();
runtime::reactor().deregister(self.stream.as_mut().unwrap(), id);
break PollState::Ready(s);

Important
Notice that this future is Unpin. There is nothing that makes it unsafe to move
HttpGetFuture around, and this is indeed the case for most futures like this. Only the
ones created by async/await are self-referential by design. That means there is no need for any
unsafe here.

Next, let’s move on to main.rs since there are some important changes we need to make there.

Coroutines, Self-Referential Structs, and Pinning244

Main.rs

Let’s start from the top and make sure we have the correct imports:

ch09/e-coroutines-pin/src/main.rs

mod future;
mod http;
mod runtime;
use future::{Future, PollState};
use runtime::Waker;
use std::{fmt::Write, marker::PhantomPinned, pin::Pin};

This time, we need both the PhantomPinned marker and Pin.

The next thing we need to change is in our State0 enum. The futures we hold between states are
now pinned:

ch09/e-coroutines-pin/src/main.rs

 Wait1(Pin<Box<dyn Future<Output = String>>>),
 Wait2(Pin<Box<dyn Future<Output = String>>>),

Next up is an important change. We need to make our coroutines !Unpin so that they can’t be moved
once they have been pinned. We can do this by adding a marker trait to our Coroutine0 struct:

ch09/e-coroutines-pin/src/main.rs

struct Coroutine0 {
    stack: Stack0,
    state: State0,
    _pin: PhantomPinned,
}

We also need to add the PhantomPinned marker to our new function:

ch09/e-coroutines-pin/src/main.rs

impl Coroutine0 {
    fn new() -> Self {
        Self {
            state: State0::Start,
            stack: Stack0::default(),
            _pin: PhantomPinned,

Improving our example 4 – pinning to the rescue 245

        }
    }
}

The last thing we need to change is the poll method. Let’s start with the function signature:

ch09/e-coroutines-pin/src/main.rs

fn poll(self: Pin<&mut Self>, waker: &Waker) ->
PollState<Self::Output>

The easiest way I found to change our code was to simply define a new variable at the very top of the
function called this, which replaces self everywhere in the function body.

I won’t go through every line since the change is so trivial, but after the first line, it’s a simple search
and replace everywhere self was used earlier, and change it to this:

ch09/e-coroutines-pin/src/main.rs

let this = unsafe { self.get_unchecked_mut() };
        loop {
            match this.state {
                State0::Start => {
                    // initialize stack (hoist declarations - no stack
yet)
                    this.stack.buffer = Some(String::from("\nBUFFER:\
n----\n"));
                    this.stack.writer = Some(this.stack.buffer.as_
mut().unwrap());
                    // ---- Code you actually wrote ----
                    println!("Program starting");
...

The important line here was let this = unsafe { self.get_unchecked_mut() };.
Here, we had to use unsafe since the pinned value is !Unpin because of the marker trait we added.

Getting to the pinned value is unsafe since there is no way for Rust to guarantee that we won’t
move the pinned value.

The nice thing about this is that if we encounter any such problems later, we know we can search for
the places where we used unsafe and that the problem must be there.

Coroutines, Self-Referential Structs, and Pinning246

The next thing we need to change is to have the futures we store in our wait states pinned. We can do
this by calling Box::pin instead of Box::new:

ch09/e-coroutines-pin/src/main.rs

let fut1 = Box::pin(http::Http::get("/600/HelloAsyncAwait"));
let fut2 = Box::pin(http::Http::get("/400/HelloAsyncAwait"));

The last place in main.rs where we need to make changes is in the locations where we poll our child
futures since we now have to go through the Pin type to get a mutable reference:

ch09/e-coroutines-pin/src/main.rs

match f1.as_mut().poll(waker)
match f2.as_mut().poll(waker)

Note that we don’t need unsafe here since these futures are !Unpin.

The last place we need to change a few lines of code is in executor.rs, so let’s head over there as
our last stop.

executor.rs

The first thing we must do is make sure our dependencies are correct. The only change we’re making
here is adding Pin from the standard library:

ch09/e-coroutines-pin/src/runtime/executor.rs

...
    thread::{self, Thread}, pin::Pin,
};

 The next line we’ll change is our Task type alias so that it now refers to Pin<Box<…>>:

type Task = Pin<Box<dyn Future<Output = String>>>;

The last line we’ll change for now is in our spawn function. We have to pin the futures to the heap:

e.tasks.borrow_mut().insert(id, Box::pin(future));

If we try to run our example now, it won’t even compile and give us the following error:

error[E0599]: no method named `poll` found for struct `Pin<Box<dyn
future::Future<Output = String>>>` in the current scope
  --> src\runtime\executor.rs:89:30

Improving our example 4 – pinning to the rescue 247

It won’t even let us poll the future anymore without us pinning it first since poll is only callable for
Pin<&mut Self> types and not &mut self anymore.

So, we have to decide whether we pin the value to the stack or the heap before we even try to poll it.
In our case, our whole executor works by heap allocating futures, so that’s the only thing that makes
sense to do.

Let’s remove our optimization entirely and change one line of code to make our executor work again:

ch09/e-coroutines-pin/src/runtime/executor.rs

match future.as_mut().poll(&waker) {

If you try to run the program again by writing cargo run, you should get the expected output back
and not have to worry about the coroutine/wait generated futures being moved again (the output has
been abbreviated slightly):

Finished dev [unoptimized + debuginfo] target(s) in 0.02s
     Running `target\debug\e-coroutines-pin.exe`
Program starting
FIRST POLL - START OPERATION
main: 1 pending tasks. Sleep until notified.
FIRST POLL - START OPERATION
main: 1 pending tasks. Sleep until notified.

BUFFER:

HTTP/1.1 200 OK
content-length: 15
[=== ABBREVIATED ===]
date: Sun, 03 Dec 2023 23:18:12 GMT

HelloAsyncAwait

main: All tasks are finished

You now have self-referential coroutines that can safely store both data and references across wait
points. Congratulations!

Even though making these changes took up quite a few pages, the changes themselves were part pretty
trivial for the most part. Most of the changes were due to Pin having a different API than what we
had when using references before.

The good thing is that this sets us up nicely for migrating our whole runtime over to futures created
by async/await instead of our own futures created by coroutine/wait with very few changes.

Coroutines, Self-Referential Structs, and Pinning248

Summary
What a ride, huh? If you’ve got to the end of this chapter, you’ve done a fantastic job, and I have good
news for you: you pretty much know everything about how Rust’s futures work and what makes them
special already. All the complicated topics are covered.

In the next, and last, chapter, we’ll switch over from our hand-made coroutines to proper async/await.
This will seem like a breeze compared to what you’ve gone through so far.

Before we continue, let’s stop for a moment and take a look at what we’ve learned in this chapter.

First, we expanded our coroutine implementation so that we could store variables across wait points.
This is pretty important if our coroutine/wait syntax is going to rival regular synchronous code in
readability and ergonomics.

After that, we learned how we could store and restore variables that held references, which is just as
important as being able to store data.

Next, we saw firsthand something that we’ll never see in Rust unless we implement an asynchronous
system, as we did in this chapter (which is quite the task just to prove a single point). We saw how
moving coroutines that hold self-references caused serious memory safety issues, and exactly why
we need something to prevent them.

That brought us to pinning and self-referential structs, and if you didn’t know about these things
already, you do now. In addition to that, you should at least know what a pin projection is and what
we mean by structural pinning.

Then, we looked at the differences between pinning a value to the stack and pinning a value to the
heap. You even saw how easy it was to break the Pin guarantee when pinning something to the stack
and why you should be very careful when doing just that.

You also know about some tools that are widely used to tackle both pin projections and stack pinning
and make both much safer and easier to use.

Next, we got firsthand experience with how we could use pinning to prevent the issues we had with
our coroutine implementation.

If we take a look at what we’ve built so far, that’s pretty impressive as well. We have the following:

•	 A coroutine implementation we’ve created ourselves

•	 Coroutine/wait syntax and a preprocessor that helps us with the boilerplate for our coroutines

•	 Coroutines that can safely store both data and references across wait points

•	 An efficient runtime that stores, schedules, and polls the tasks to completion

Summary 249

•	 The ability to spawn new tasks onto the runtime so that one task can spawn hundreds of new
tasks that will run concurrently

•	 A reactor that uses epoll/kqueue/IOCP under the hood to efficiently wait for and respond
to new events reported by the operating system

I think this is pretty cool.

We’re not quite done with this book yet. In the next chapter, you’ll see how we can have our runtime run
futures created by async/await instead of our own coroutine implementation with just a few changes.
This enables us to leverage all the advantages of async Rust. We’ll also take some time to discuss the state
of async Rust today, the different runtimes you’ll encounter, and what we might expect in the future.

All the heavy lifting is done now. Well done!

10
Creating Your Own Runtime

In the last few chapters, we covered a lot of aspects that are relevant to asynchronous programming
in Rust, but we did that by implementing alternative and simpler abstractions than what we have in
Rust today.

This last chapter will focus on bridging that gap by changing our runtime so that it works with Rust
futures and async/await instead of our own futures and coroutine/wait. Since we’ve pretty much
covered everything there is to know about coroutines, state machines, futures, wakers, runtimes, and
pinning, adapting what we have now will be a relatively easy task.

When we get everything working, we’ll do some experiments with our runtime to showcase and
discuss some of the aspects that make asynchronous Rust somewhat difficult for newcomers today.

We’ll also take some time to discuss what we might expect in the future with asynchronous Rust before
we summarize what we’ve done and learned in this book.

We’ll cover the following main topics:

•	 Creating our own runtime with futures and async/await

•	 Experimenting with our runtime

•	 Challenges with asynchronous Rust

•	 The future of asynchronous Rust

Technical requirements
The examples in this chapter will build on the code from the last chapter, so the requirements are the
same. The example is cross-platform and will work on all platforms that Rust (https://doc.rust-
lang.org/beta/rustc/platform-support.html#tier-1-with-host-tools) and
mio (https://github.com/tokio-rs/mio#platforms) support.

https://doc.rust-lang.org/beta/rustc/platform-support.html#tier-1-with-host-tools
https://doc.rust-lang.org/beta/rustc/platform-support.html#tier-1-with-host-tools

Creating Your Own Runtime252

The only thing you need is Rust installed and the book’s repository downloaded locally. All the code
in this chapter can be found in the ch10 folder.

We’ll use delayserver in this example as well, so you need to open a separate terminal, enter the
delayserver folder at the root of the repository, and type cargo run so it’s ready and available
for the examples going forward.

Remember to change the ports in the code if for some reason you have to change what port delayserver
listens on.

Creating our own runtime with futures and async/await

Okay, so we’re in the home stretch; the last thing we’ll do is change our runtime so it uses the Rust
Future trait, Waker, and async/await. This will be a relatively easy task for us now that we’ve
pretty much covered the most complex aspects of asynchronous programming in Rust by building
everything up ourselves. We have even gone into quite some detail on the design decisions that Rust
had to make along the way.

The asynchronous programming model Rust has today is the result of an evolutionary process. Rust
started in its early stages with green threads, but this was before it reached version 1.0. At the point of
reaching version 1.0, Rust didn’t have the notion of futures or asynchronous operations in its standard
library at all. This space was explored on the side in the futures-rs crate (https://github.com/
rust-lang/futures-rs), which still serves as a nursery for async abstractions today. However,
it didn’t take long before Rust settled around a version of the Future trait similar to what we have
today, often referred to as futures 0.1. Supporting coroutines created by async/await was something
that was in the works already at that point but it took a few years before the design reached its final
stage and entered the stable version of the standard library.

So, many of the choices we had to make with our async implementation are real choices that Rust had
to make along the way. However, it all brings us to this point, so let’s get to it and start adapting our
runtime so it works with Rust futures.

Before we get to the example, let’s cover the things that are different from our current implementation:

•	 The Future trait Rust uses is slightly different from what we have now. The biggest difference
is that it takes something called Context instead of Waker. The other difference is that it
returns an enum called Poll instead of PollState.

•	 Context is a wrapper around Rust’s Waker type. Its only purpose is to future-proof the API
so it can hold additional data in the future without having to change anything related to Waker.

•	 The Poll enum returns one of two states, Ready(T) or Pending. This is slightly different
from what we have now with our PollState enum, but the two states mean the same as
Ready(T)/NotReady in our current implementation.

•	 Wakers in Rust is slightly more complex to create than what we’re used to with our current
Waker. We’ll go through how and why later in the chapter.

https://github.com/rust-lang/futures-rs
https://github.com/rust-lang/futures-rs

Technical requirements 253

Other than the differences outlined above, everything else can stay pretty much as is. For the most
part, we’re renaming and refactoring this time.

Now that we’ve got an idea of what we need to do, it’s time to set everything up so we can get our new
example up and running.

Note
Even though we create a runtime to run futures properly in Rust, we still try to keep this simple
by avoiding error handling and not focusing on making our runtime more flexible. Improving
our runtime is certainly possible, and while it can be a bit tricky at times to use the type system
correctly and please the borrow checker, it has relatively little to do with async Rust and more
to do with Rust being Rust.

Setting up our example

Tip
You’ll find this example in the book’s repository in the ch10/a-rust-futures folder.

We’ll continue where we left off in the last chapter, so let’s copy everything we had over to a new project:

1.	 Create a new folder called a-rust-futures.

2.	 Copy everything from the example in the previous chapter. If you followed the naming I
suggested, it would be stored in the e-coroutines-pin folder.

3.	 You should now have a folder containing a copy of our previous example, so the last thing to
do is to change the project name in Cargo.toml to a-rust-futures.

Okay, so let’s start with the program we want to run. Open main.rs.

main.rs

We’ll go back to the simplest version of our program and get it running before we try anything more
complex. Open main.rs and replace all the code in that file with this:

ch10/a-rust-futures/src/main.rs

mod http;
mod runtime;
use crate::http::Http;

Creating Your Own Runtime254

fn main() {
    let mut executor = runtime::init();
    executor.block_on(async_main());
}

async fn async_main() {
    println!("Program starting");
    let txt = Http::get("/600/HelloAsyncAwait").await;
    println!("{txt}");
    let txt = Http::get("/400/HelloAsyncAwait").await;
    println!("{txt}");
}

No need for corofy or anything special this time. The compiler will rewrite this for us.

Note
Notice that we’ve removed the declaration of the future module. That’s because we simply
don’t need it anymore. The only exception is if you want to retain and use the join_all
function we created to join multiple futures together. You can either try to rewrite that yourself
or take a look in the repository and locate the ch10/a-rust-futures-bonus/src/
future.rs file, where you’ll find the same version of our example, only this version retains
the future module with a join_all function that works with Rust futures.

future.rs

You can delete this file altogether as we don’t need our own Future trait anymore.

Let’s move right along to http.rs and see what we need to change there.

http.rs

The first thing we need to change is our dependencies. We’ll no longer rely on our own Future,
Waker, and PollState; instead, we’ll depend on Future, Context, and Poll from the standard
library. Our dependencies should look like this now:

ch10/a-rust-futures/src/http.rs

use crate::runtime::{self, reactor};
use mio::Interest;
use std::{
    future::Future,
    io::{ErrorKind, Read, Write},

Technical requirements 255

    pin::Pin,
    task::{Context, Poll},
};

We have to do some minor refactoring in the poll implementation for HttpGetFuture.

First, we need to change the signature of the poll function so it complies with the new Future trait:

ch10/a-rust-futures/src/http.rs

fn poll(mut self: Pin<&mut Self>, cx: &mut Context) ->
Poll<Self::Output>

Since we named the new argument cx, we have to change what we pass in to set_waker with
the following:

ch10/a-rust-futures/src/http.rs

runtime::reactor().set_waker(cx, self.id);

Next, we need to change our future implementation so it returns Poll instead of PollState. To
do that, locate the poll method and start by changing the signature so it matches the Future trait
from the standard library:

ch10/a-rust-futures/src/http.rs

fn poll(mut self: Pin<&mut Self>, cx: &mut Context) ->
Poll<Self::Output>

Next, we need to change our return types wherever we return from the function (I’ve only presented
the relevant part of the function body here):

ch10/a-rust-futures/src/http.rs

loop {
            match self.stream.as_mut().unwrap().read(&mut buff) {
                Ok(0) => {
                    let s = String::from_utf8_lossy(&self.buffer).
to_string();
                    runtime::reactor().deregister(self.stream.as_
mut().unwrap(), id);
                    break Poll::Ready(s.to_string());
                }
                Ok(n) => {
                    self.buffer.extend(&buff[0..n]);

Creating Your Own Runtime256

                    continue;
                }
                Err(e) if e.kind() == ErrorKind::WouldBlock => {
                    // always store the last given Waker
                    runtime::reactor().set_waker(cx, self.id);
                    break Poll::Pending;
                }

                Err(e) => panic!("{e:?}"),
            }
        }

That’s it for this file. Not bad, huh? Let’s take a look at what we need to change in our executor and
open executor.rs.

executor.rs

The first thing we need to change in executor.rs is our dependencies. This time, we only rely on
types from the standard library, and our dependencies section should now look like this:

ch10/a-rust-futures/src/runtime/executor.rs

use std::{
    cell::{Cell, RefCell},
    collections::HashMap,
    future::Future,
    pin::Pin,
    sync::{Arc, Mutex},
    task::{Poll, Context, Wake, Waker},
    thread::{self, Thread},
};

Our coroutines will no longer be limited to only output String, so we can safely use a more sensible
Output type for our top-level futures:

ch10/a-rust-futures/src/runtime/executor.rs

type Task = Pin<Box<dyn Future<Output = ()>>>;

The next thing we’ll dive straight into is Waker since the changes we make here will result in several
other changes to this file.

Technical requirements 257

Creating a waker in Rust can be quite a complex task since Rust wants to give us maximum flexibility
on how we choose to implement wakers. The reason for this is twofold:

•	 Wakers must work just as well on a server as it does on a microcontroller

•	 A waker must be a zero-cost abstraction

Realizing that most programmers never need to create their own wakers, the cost that the lack of
ergonomics has was deemed acceptable.

Until quite recently, the only way to construct a waker in Rust was to create something very similar
to a trait object without being a trait object. To do so, you had to go through quite a complex process
of constructing a v-table (a set of function pointers), combining that with a pointer to the data that
the waker stored, and creating RawWaker.

Fortunately, we don’t actually have to go through this process anymore as Rust now has the Wake
trait. The Wake trait works if the Waker type we create is placed in Arc.

Wrapping Waker in an Arc results in a heap allocation, but for most Waker implementations on
the kind of systems we’re talking about in this book, that’s perfectly fine and what most production
runtimes do. This simplifies things for us quite a bit.

Info
This is an example of Rust adopting what turns out to be best practices from the ecosystem. For
a long time, a popular way to construct wakers was by implementing a trait called ArcWake
provided by the futures crate (https://github.com/rust-lang/futures-rs).
The futures crate is not a part of the language but it’s in the rust-lang repository and can
be viewed much like a toolbox and nursery for abstractions that might end up in the language
at some point in the future.

To avoid confusion by having multiple things with the same name, let’s rename our concrete Waker
type to MyWaker:

ch10/a-rust-futures/src/runtime/executor.rs

#[derive(Clone)]
pub struct MyWaker {
    thread: Thread,
    id: usize,
    ready_queue: Arc<Mutex<Vec<usize>>>,
}

https://github.com/rust-lang/futures-rs

Creating Your Own Runtime258

We can keep the implementation of wake pretty much the same, but we put it in the implementation
of the Wake trait instead of just having a wake function on MyWaker:

ch10/a-rust-futures/src/runtime/executor.rs

impl Wake for MyWaker {
    fn wake(self: Arc<Self>) {
        self.ready_queue
            .lock()
            .map(|mut q| q.push(self.id))
            .unwrap();
        self.thread.unpark();
    }
}

You’ll notice that the wake function takes a self: Arc<Self> argument, much like we saw when
working with the Pin type. Writing the function signature this way means that wake is only callable
on MyWaker instances that are wrapped in Arc.

Since our waker has changed slightly, there are a few places we need to make some minor corrections.
The first is in the get_waker function:

ch10/a-rust-futures/src/runtime/executor.rs

fn get_waker(&self, id: usize) -> Arc<MyWaker> {
    Arc::new(MyWaker {
        id,
        thread: thread::current(),
        ready_queue: CURRENT_EXEC.with(|q| q.ready_queue.clone()),
    })
}

So, not a big change here. The only difference is that we heap-allocate the waker by placing it in Arc.

The next place we need to make a change is in the block_on function.

First, we need to change its signature so that it matches our new definition of a top-level future:

ch10/a-rust-futures/src/runtime/executor.rs

pub fn block_on<F>(&mut self, future: F)
    where
        F: Future<Output = ()> + 'static,
    {

Technical requirements 259

The next step is to change how we create a waker and wrap it in a Context struct in the block_
on function:

ch10/a-rust-futures/src/runtime/executor.rs

...
                // guard against false wakeups
                    None => continue,
                };

                let waker: Waker = self.get_waker(id).into();
                let mut cx = Context::from_waker(&waker);

                match future.as_mut().poll(&mut cx) {
...

This change is a little bit complex, so we’ll go through it step by step:

1.	 First, we get Arc<MyWaker> by calling the get_waker function just like we did before.

2.	 We convert MyWaker into a simple Waker by specifying the type we expect with let
waker: Waker and calling into() on MyWaker. Since every instance of MyWaker is
also a kind of Waker, this will convert it into the Waker type that’s defined in the standard
library, which is just what we need.

3.	 Since Future::poll expects Context and not Waker, we create a new Context struct
with a reference to the waker we just created.

The last place we need to make changes is to the signature of our spawn function so that it takes the
new definition of top-level futures as well:

ch10/a-rust-futures/src/runtime/executor.rs

pub fn spawn<F>(future: F)
where
    F: Future<Output = ()> + 'static,

That was the last thing we needed to change in our executor, and we’re almost done. The last change
we need to make to our runtime is in the reactor, so let’s go ahead and open reactor.rs.

reactor.rs

The first thing we do is to make sure our dependencies are correct. We have to remove the dependency
on our old Waker implementation and instead pull in these types from the standard library. The
dependencies section should look like this:

Creating Your Own Runtime260

ch10/a-rust-futures/src/runtime/reactor.rs

use mio::{net::TcpStream, Events, Interest, Poll, Registry, Token};
use std::{
    collections::HashMap,
    sync::{
        atomic::{AtomicUsize, Ordering},
        Arc, Mutex, OnceLock,
    },
    thread, task::{Context, Waker},
};

There are two minor changes we need to make. The first one is that our set_waker function now
accepts Context from which it needs to get a Waker object:

ch10/a-rust-futures/src/runtime/reactor.rs

pub fn set_waker(&self, cx: &Context, id: usize) {
        let _ = self
            .wakers
            .lock()
            .map(|mut w| w.insert(id, cx.waker().clone()).is_none())
            .unwrap();
    }

The last change is that we need to call a slightly different method when calling wake in the event_
loop function:

ch10/a-rust-futures/src/runtime/reactor.rs

if let Some(waker) = wakers.get(&id) {
    waker.wake_by_ref();
}

Since calling wake now consumes self, we call the version that takes &self instead since we want
to hold on to that waker for later.

That’s it. Our runtime can now run and take advantage of the full power of asynchronous Rust. Let’s
try it out by typing cargo run in the terminal.

Experimenting with our runtime 261

We should get the same output as we’ve seen before:

Program starting
FIRST POLL - START OPERATION
main: 1 pending tasks. Sleep until notified.
HTTP/1.1 200 OK
content-length: 15
[==== ABBREVIATED ====]
HelloAsyncAwait
main: All tasks are finished

That’s pretty neat, isn’t it?

So, now we have created our own async runtime that uses Rust’s Future, Waker, Context,
and async/await.

Now that we can pride ourselves on being runtime implementors, it’s time to do some experiments.
I’ll choose a few that will also teach us a few things about runtimes and futures in Rust. We’re not
done learning just yet.

Experimenting with our runtime

Note
You’ll find this example in the book’s repository in the ch10/b-rust-futures-
experiments folder. The different experiments will be implemented as different versions of
the async_main function numbered chronologically. I’ll indicate which function corresponds
with which function in the repository example in the heading of the code snippet.

Before we start experimenting, let’s copy everything we have now to a new folder:

1.	 Create a new folder called b-rust-futures-experiments.

2.	 Copy everything from the a-rust-futures folder to the new folder.

3.	 Open Cargo.toml and change the name attribute to b-rust-futures-experiments.

The first experiment will be to exchange our very limited HTTP client with a proper one.

The easiest way to do that is to simply pick another production-quality HTTP client library that
supports async Rust and use that instead.

So, when trying to find a suitable replacement for our HTTP client, we check the list of the most
popular high-level HTTP client libraries and find reqwest at the top. That might work for our
purposes, so let’s try that first.

Creating Your Own Runtime262

The first thing we do is add reqwest as a dependency in Cargo.toml by typing the following:

cargo add reqwest@0.11

Next, let’s change our async_main function so we use reqwest instead of our own HTTP client:

ch10/b-rust-futures-examples/src/main.rs (async_main2)

async fn async_main() {
    println!("Program starting");
    let url = "http://127.0.0.1:8080/600/HelloAsyncAwait1";
    let res = reqwest::get(url).await.unwrap();
    let txt = res.text().await.unwrap();
    println!("{txt}");
    let url = "http://127.0.0.1:8080/400/HelloAsyncAwait2";
    let res = reqwest::get(url).await.unwrap();
    let txt = res.text().await.unwrap();
    println!("{txt}");
}

Besides using the reqwest API, I also changed the message we send. Most HTTP clients don’t
return the raw HTTP response to us and usually only provide a convenient way to get the body of the
response, which up until now was similar for both our requests.

That should be all we need to change, so let’s try to run our program by writing cargo run:

     Running `target\debug\a-rust-futures.exe`
Program starting
thread 'main' panicked at C:\Users\cf\.cargo\registry\src\index.
crates.io-6f17d22bba15001f\tokio-1.35.0\src\net\tcp\stream.rs:160:18:
there is no reactor running, must be called from the context of a
Tokio 1.x runtime

Okay, so the error tells us that there is no reactor running and that it must be called from the context
of a Tokio 1.x runtime. Well, we know there is a reactor running, just not the one reqwest expects,
so let’s see how we can fix this.

We obviously need to add Tokio to our program, and since Tokio is heavily feature-gated (meaning
that it has very few features enabled by default), we’ll make it easy on ourselves and enable all of them:

cargo add tokio@1 --features full

According to the documentation, we need to start a Tokio runtime and explicitly enter it to enable
the reactor. The enter function will return EnterGuard to us that we can hold on to it as long as
we need the reactor up and running.

Experimenting with our runtime 263

Adding this to the top of our async_main function should work:

ch10/b-rust-futures-examples/src/main.rs (async_main2)

use tokio::runtime::Runtime;
async fn async_main
    let rt = Runtime::new().unwrap();
    let _guard = rt.enter();
    println!("Program starting");
    let url = "http://127.0.0.1:8080/600/HelloAsyncAwait1";
    ...

Note
Calling Runtime::new creates a multithreaded Tokio runtime, but Tokio also has a single-
threaded runtime that you can create by using the runtime builder like this: Builder::new_
current_thread().enable_all().build().unwrap(). If you do that, you end
up with a peculiar problem: a deadlock. The reason for that is interesting and one that you
should know about.

Tokio’s single-threaded runtime uses only the thread it’s called on for both the executor and
the reactor. This is very similar to what we did in the first version of our runtime in Chapter 8.
We used the Poll instance to park our executor directly. When both our reactor and executor
execute on the same thread, they must have the same mechanism to park themselves and wait
for new events, which means there will be a tight coupling between them.

When handling an event, the reactor has to wake up first to call Waker::wake, but the executor
is the last one to park the thread. If the executor parked itself by calling thread::park
(like we do), the reactor is parked as well and will never wake up since they’re running on the
same thread. The only way for this to work is that the executor parks on something shared
with the reactor (like we did with Poll). Since we’re not tightly integrated with Tokio, all we
get is a deadlock.

Now, if we try to run our program once more, we get the following output:

Program starting
main: 1 pending tasks. Sleep until notified.
main: 1 pending tasks. Sleep until notified.
main: 1 pending tasks. Sleep until notified.
HelloAsyncAwait1
main: 1 pending tasks. Sleep until notified.
main: 1 pending tasks. Sleep until notified.
main: 1 pending tasks. Sleep until notified.
HelloAsyncAwait2
main: All tasks are finished

Creating Your Own Runtime264

Okay, so now everything works as expected. The only difference is that we get woken up a few extra
times, but the program finishes and produces the expected result.

Before we discuss what we just witnessed, let’s do one more experiment.

Isahc is an HTTP client library that promises to be executor agnostic, meaning that it doesn’t rely on
any specific executor. Let’s put that to the test.

First, we add a dependency on isahc by typing the following:

cargo add isahc@1.7

Then, we rewrite our main function so it looks like this:

ch10/b-rust-futures-examples/src/main.rs (async_main3)

use isahc::prelude::*;
async fn async_main() {
    println!("Program starting");
    let url = "http://127.0.0.1:8080/600/HelloAsyncAwait1";
    let mut res = isahc::get_async(url).await.unwrap();
    let txt = res.text().await.unwrap();
    println!("{txt}");
    let url = "http://127.0.0.1:8080/400/HelloAsyncAwait2";
    let mut res = isahc::get_async(url).await.unwrap();
    let txt = res.text().await.unwrap();
    println!("{txt}");
}

Now, if we run our program by writing cargo run, we get the following output:

Program starting
main: 1 pending tasks. Sleep until notified.
main: 1 pending tasks. Sleep until notified.
main: 1 pending tasks. Sleep until notified.
HelloAsyncAwait1
main: 1 pending tasks. Sleep until notified.
main: 1 pending tasks. Sleep until notified.
main: 1 pending tasks. Sleep until notified.
HelloAsyncAwait2
main: All tasks are finished

So, we get the expected output without having to jump through any hoops.

Challenges with asynchronous Rust 265

Why does all this have to be so unintuitive?

The answer to that brings us to the topic of common challenges that we all face when programming
with async Rust, so let’s cover some of the most noticeable ones and explain the reason they exist so
we can figure out how to best deal with them.

Challenges with asynchronous Rust
So, while we’ve seen with our own eyes that the executor and reactor could be loosely coupled, which
in turn means that you could in theory mix and match reactors and executors, the question is why
do we encounter so much friction when trying to do just that?

Most programmers that have used async Rust have experienced problems caused by incompatible
async libraries, and we saw an example of the kind of error message you would get previously.

To understand this, we have to dive a little bit deeper into the existing async runtimes in Rust, specifically
those we typically use for desktop and server applications.

Explicit versus implicit reactor instantiation

Info
The type of future we’ll talk about going forward is leaf futures, the kind that actually represents
an I/O operation (for example, HttpGetFuture).

When you create a runtime in Rust, you also need to create non-blocking primitives of the Rust standard
library. Mutexes, channels, timers, TcpStreams, and so on are all things that need an async equivalent.

Most of these can be implemented as different kinds of reactors, but the question that then comes up
is: how is that reactor started?

In both our own runtime and in Tokio, the reactor is started as part of the runtime initialization.
We have a runtime::init() function that calls reactor::start(), and Tokio has a
Runtime::new() and Runtime::enter() function.

If we try to create a leaf future (the only one we created ourselves is HttpGetFuture) without the
reactor started, both our runtime and Tokio will panic. The reactor has to be instantiated explicitly.

Isahc, on the other hand, brings its own kind of reactor. Isahc is built on libcurl, a highly portable
C library for multiprotocol file transfer. The thing that’s relevant for us, however, is that libcurl
accepts a callback that is called when an operation is ready. So, Isahc passes the waker it receives to
this callback and makes sure that Waker::wake is called when the callback is executed. This is a
bit oversimplified, but it’s essentially what happens.

Creating Your Own Runtime266

In practice, that means that Isahc brings its own reactor since it comes with the machinery to store
wakers and call wake on them when an operation is ready. The reactor is started implicitly.

Incidentally, this is also one of the major differences between async_std and Tokio. Tokio requires
explicit instantiation, and async_std relies on implicit instantiation.

I’m not going into so much detail on this just for fun; while this seems like a minor difference, it has
a rather big impact on how intuitive asynchronous programming in Rust is.

This problem mostly arises when you start programming using a different runtime than Tokio and
then have to use a library that internally relies on a Tokio reactor being present.

Since you can’t have two Tokio instances running on the same thread, the library can’t implicitly start
a Tokio reactor. Instead, what often happens is that you try to use that library and get an error like
we did in the preceding example.

Now, you have to solve this by starting a Tokio reactor yourself, use some kind of compatibility wrapper
created by someone else, or seeing whether the runtime you use has a built-in mechanism for running
futures that rely on a Tokio reactor being present.

For most people who don’t know about reactors, executors, and different kinds of leaf futures, this
can be quite unintuitive and cause quite a bit of frustration.

Note
The problem we describe here is quite common, and it’s not helped by the fact that async libraries
rarely explain this well or even try to be explicit about what kind of runtime they use. Some
libraries might only mention that they’re built on top of Tokio somewhere in the README file,
and some might simply state that they’re built on top of Hyper, for example, assuming that you
know that Hyper is built on top of Tokio (at least by default).

But now, you know that you should check this to avoid any surprises, and if you encounter this
issue, you know exactly what the problem is.

Ergonomics versus efficiency and flexibility

Rust is good at being ergonomic and efficient, and that almost makes it difficult to remember that
when Rust is faced with the choice between being efficient or ergonomic, it will choose to be efficient.
Many of the most popular crates in the ecosystem echo these values, and that includes async runtimes.

Some tasks can be more efficient if they’re tightly integrated with the executor, and therefore, if you
use them in your library, you will be dependent on that specific runtime.

Let’s take timers as an example, but task notifications where Task A notifies Task B that it can continue
is another example with some of the same trade-offs.

Challenges with asynchronous Rust 267

Tasks
We’ve used the terms tasks and futures without making the difference explicitly clear, so let’s
clear that up here. We first covered tasks in Chapter 1, and they still retain the same general
meaning, but when talking about runtimes in Rust, they have a more specific definition. A task
is a top-level future, the one that we spawn onto our executor. The executor schedules between
different tasks. Tasks in a runtime in many ways represent the same abstraction that threads
do in an OS. Every task is a future in Rust, but every future is not a task by this definition.

You can think of thread::sleep as a timer, and we often need something like this in an asynchronous
context, so our asynchronous runtime will therefore need to have a sleep equivalent that tells the
executor to park this task for a specified duration.

We could implement this as a reactor and have separate OS-thread sleep for a specified duration
and then wake the correct Waker. That would be simple and executor agnostic since the executor
is oblivious to what happens and only concern itself with scheduling the task when Waker::wake
is called. However, it’s also not optimally efficient for all workloads (even if we used the same thread
for all timers).

Another, and more common, way to solve this is to delegate this task to the executor. In our runtime,
this could be done by having the executor store an ordered list of instants and a corresponding Waker,
which is used to determine whether any timers have expired before it calls thread::park. If none
have expired, we can calculate the duration until the next timer expires and use something such as
thread::park_timeout to make sure that we at least wake up to handle that timer.

The algorithms used to store the timers can be heavily optimized and you avoid the need for one extra
thread just for timers with the additional overhead of synchronization between these threads just to
signal that a timer has expired. In a multithreaded runtime, there might even be contention when
multiple executors frequently add timers to the same reactor.

Some timers are implemented reactor-style as separate libraries, and for many tasks, that will suffice.
The important point here is that by using the defaults, you end up being tied to one specific runtime,
and you have to make careful considerations if you want to avoid your library being tightly coupled
to a specific runtime.

Common traits that everyone agrees about

The last topic that causes friction in async Rust is the lack of universally agreed-upon traits and
interfaces for typical async operations.

I want to preface this segment by pointing out that this is one area that’s improving day by day, and
there is a nursery for the traits and abstractions for asynchronous Rust in the futures-rs crate
(https://github.com/rust-lang/futures-rs). However, since it’s still early days for
async Rust, it’s something worth mentioning in a book like this.

https://github.com/rust-lang/futures-rs

Creating Your Own Runtime268

Let’s take spawning as an example. When you write a high-level async library in Rust, such as a web
server, you’ll likely want to be able to spawn new tasks (top-level futures). For example, each connection
to the server will most likely be a new task that you want to spawn onto the executor.

Now, spawning is specific to each executor, and Rust doesn’t have a trait that defines how to spawn a
task. There is a trait suggested for spawning in the future-rs crate, but creating a spawn trait that
is both zero-cost and flexible enough to support all kinds of runtimes turns out to be very difficult.

There are ways around this. The popular HTTP library Hyper (https://hyper.rs/), for
example, uses a trait to represent the executor and internally uses that to spawn new tasks. This
makes it possible for users to implement this trait for a different executor and hand it back to Hyper.
By implementing this trait for a different executor, Hyper will use a different spawner than its default
option (which is the one in Tokio’s executor). Here is an example of how this is used for async_std
with Hyper: https://github.com/async-rs/async-std-hyper.

However, since there is no universal way of making this work, most libraries that rely on executor-
specific functionality do one of two things:

1.	 Choose a runtime and stick with it.

2.	 Implement two versions of the library supporting different popular runtimes that users choose
by enabling the correct features.

Async drop

Async drop, or async destructors, is an aspect of async Rust that’s somewhat unresolved at the time
of writing this book. Rust uses a pattern called RAII, which means that when a type is created, so are
its resources, and when a type is dropped, the resources are freed as well. The compiler automatically
inserts a call to drop on objects when they go out of scope.

If we take our runtime as an example, when resources are dropped, they do so in a blocking manner.
This is normally not a big problem since a drop likely won’t block the executor for too long, but it
isn’t always so.

If we have a drop implementation that takes a long time to finish (for example, if the drop needs to
manage I/O, or makes a blocking call to the OS kernel, which is perfectly legal and sometimes even
unavoidable in Rust), it can potentially block the executor. So, an async drop would somehow be able
to yield to the scheduler in such cases, and this is not possible at the moment.

Now, this isn’t a rough edge of async Rust you’re likely to encounter as a user of async libraries, but
it’s worth knowing about since right now, the only way to make sure this doesn’t cause issues is to be
careful what you put in the drop implementation for types that are used in an async context.

So, while this is not an extensive list of everything that causes friction in async Rust, it’s some of the
points I find most noticeable and worth knowing about.

https://hyper.rs/
https://github.com/async-rs/async-std-hyper

The future of asynchronous Rust 269

Before we round off this chapter, let’s spend a little time talking about what we should expect in the
future when it comes to asynchronous programming in Rust.

The future of asynchronous Rust
Some of the things that make async Rust different from other languages are unavoidable. Asynchronous
Rust is very efficient, has low latency, and is backed by a very strong type system due to how the
language is designed and its core values.

However, much of the perceived complexity today has more to do with the ecosystem and the kind of
issues that result from a lot of programmers having to agree on the best way to solve different problems
without any formal structure. The ecosystem gets fragmented for a while, and together with the fact
that asynchronous programming is a topic that’s difficult for a lot of programmers, it ends up adding
to the cognitive load associated with asynchronous Rust.

All the issues and pain points I’ve mentioned in this chapter are constantly getting better. Some points
that would have been on this list a few years ago are not even worth mentioning today.

More and more common traits and abstractions will end up in the standard library, making async
Rust more ergonomic since everything that uses them will “just work.”

As different experiments and designs gain more traction than others, they become the de facto standard,
and even though you will still have a lot of choices when programming asynchronous Rust, there will
be certain paths to choose that cause a minimal amount of friction for those that want something
that “just works.”

With enough knowledge about asynchronous Rust and asynchronous programming in general, the
issues I’ve mentioned here are, after all, relatively minor, and since you know more about asynchronous
Rust than most programmers, I have a hard time imagining that any of these issues will cause you a
lot of trouble.

That doesn’t mean it’s not something worth knowing about since chances are your fellow programmers
will struggle with some of these issues at some point.

Summary
So, in this chapter, we did two things. First, we made some rather minor changes to our runtime so it
works as an actual runtime for Rust futures. We tested the runtime using two external HTTP client
libraries to learn a thing or two about reactors, runtimes, and async libraries in Rust.

The next thing we did was to discuss some of the things that make asynchronous Rust difficult for
many programmers coming from other languages. In the end, we also talked about what to expect
going forward.

Creating Your Own Runtime270

Depending on how you’ve followed along and how much you’ve experimented with the examples
we created along the way, it’s up to you what project to take on yourself if you want to learn more.

There is an important aspect of learning that only happens when you experiment on your own. Pick
everything apart, see what breaks, and how to fix it. Improve the simple runtime we created to learn
new stuff.

There are enough interesting projects to pick from, but here are some suggestions:

•	 Change out the parker implementation where we used thread::park with a proper parker.
You can choose one from a library or create a parker yourself (I added a small bonus at the end
of the ch10 folder called parker-bonus where you get a simple parker implementation).

•	 Implement a simple delayserver using the runtime you’ve created yourself. To do this,
you have to be able to write some raw HTTP responses and create a simple server. If you went
through the free introductory book called The Rust Programming Language, you created a simple
server in one of the last chapters (https://doc.rust-lang.org/book/ch20-02-
multithreaded.html), which gives you the basics you need. You also need to create a
timer as we discussed above or use an existing crate for async timers.

•	 You can create a “proper” multithreaded runtime and explore the possibilities that come with
having a global task queue, or as an alternative, implement a work-stealing scheduler that can
steal tasks from other executors’ local queues when they’re done with their own.

Only your imagination sets the limits on what you can do. The important thing to note is that there is
a certain joy in doing something just because you can and just for fun, and I hope that you get some
of the same enjoyment from this as I do.

I’ll end this chapter with a few words on how to make your life as an asynchronous programmer as
easy as possible.

The first thing is to realize that an async runtime is not just another library that you use. It’s extremely
invasive and impacts almost everything in your program. It’s a layer that rewrites, schedules tasks,
and reorders the program flow from what you’re used to.

My clear recommendation if you’re not specifically into learning about runtimes, or have very specific
needs, is to pick one runtime and stick to it for a while. Learn everything about it – not necessarily
everything from the start, but as you need more and more functionality from it, you will learn everything
eventually. This is almost like getting comfortable with everything in Rust’s standard library.

https://doc.rust-lang.org/book/ch20-02-multithreaded.html
https://doc.rust-lang.org/book/ch20-02-multithreaded.html

Summary 271

What runtime you start with depends a bit on what crates you’re using the most. Smol and async-
std share a lot of implementation details and will behave similarly. Their big selling point is that
their API strives to stay as close as possible to the standard library. Combined with the fact that the
reactors are instantiated implicitly, this can result in a slightly more intuitive experience and a more
gentle learning curve. Both are production-quality runtimes and see a lot of use. Smol was originally
created with the goal of having a code base that’s easy for programmers to understand and learn from,
which I think is true today as well.

With that said, the most popular alternative for users looking for a general-purpose runtime at the
time of writing is Tokio (https://tokio.rs/). Tokio is one of the oldest async runtimes in Rust.
It is actively developed and has a welcoming and active community. The documentation is excellent.
Being one of the most popular runtimes also means there is a good chance that you’ll find a library
that does exactly what you need with support for Tokio out of the box. Personally, I tend to reach for
Tokio for the reasons mentioned, but you can’t really go wrong with either of these runtimes unless
you have very specific requirements.

Finally, let’s not forget to mention the futures-rs crate (https://github.com/rust-
lang/futures-rs). I mentioned this crate earlier, but it’s really useful to know about as it contains
several traits, abstractions, and executors (https://docs.rs/futures/latest/futures/
executor/index.html) for async Rust. It serves the purpose of an async toolbox that comes in
handy in many situations.

https://tokio.rs/
https://github.com/rust-lang/futures-rs
https://github.com/rust-lang/futures-rs
https://docs.rs/futures/latest/futures/executor/index.html
https://docs.rs/futures/latest/futures/executor/index.html

Creating Your Own Runtime272

Epilogue
So, you have reached the end. First of all, congratulations! You’ve come to the end of quite a journey!

We started by talking about concurrency and parallelism in Chapter 1. We even covered a bit about
the history, CPUs and OSs, hardware, and interrupts. In Chapter 2, we discussed how programming
languages modeled asynchronous program flow. We introduced coroutines and how stackful and
stackless coroutines differ. We discussed OS threads, fibers/green threads, and callbacks and their
pros and cons.

Then, in Chapter 3, we took a look at OS-backed event queues such as epoll, kqueue, and IOCP.
We even took quite a deep dive into syscalls and cross-platform abstractions.

In Chapter 4, we hit some quite difficult terrain when implementing our own mio-like event queue using
epoll. We even had to learn about the difference between edge-triggered and level-triggered events.

If Chapter 4 was somewhat rough terrain, Chapter 5 was more like climbing Mount Everest. No one
expects you to remember everything covered there, but you read through it and have a working
example you can use to experiment with. We implemented our own fibers/green threads, and while
doing so, we learned a little bit about processor architectures, ISAs, ABIs, and calling conventions.
We even learned quite a bit about inline assembly in Rust. If you ever felt insecure about the stack
versus heap difference, you surely understand it now that you’ve created stacks that we made our
CPU jump to ourselves.

In Chapter 6, we got a high-level introduction to asynchronous Rust, before we took a deep dive from
Chapter 7 and onward, starting with creating our own coroutines and our own coroutine/wait
syntax. In Chapter 8, we created the first versions of our own runtime while discussing basic runtime
design. We also deep-dived into reactors, executors, and wakers.

In Chapter 9, we improved our runtime and discovered the dangers of self-referential structs in Rust.
We then took a thorough look at pinning in Rust and how that helped us solve the problems we got into.

Finally, in Chapter 10, we saw that by making some rather minor changes, our runtime became a fully
functioning runtime for Rust futures. We rounded everything off by discussing some well-known
challenges with asynchronous Rust and some expectations for the future.

The Rust community is very inclusive and welcoming, and we’d happily welcome you to engage and
contribute if you find this topic interesting and want to learn more. One of the ways asynchronous Rust
gets better is through contributions by people with all levels of experience. If you want to get involved,
then the async work group (https://rust-lang.github.io/wg-async/welcome.html)
is a good place to start. There is also a very active community centered around the Tokio project
(https://github.com/tokio-rs/tokio/blob/master/CONTRIBUTING.md), and
many, many more depending on what specific area you want to dive deeper into. Don’t be afraid to
join the different channels and ask questions.

https://rust-lang.github.io/wg-async/welcome.html
https://github.com/tokio-rs/tokio/blob/master/CONTRIBUTING.md

Epilogue 273

Now that we’re at the end I want to thank you for reading all the way to the end. I wanted this book
to feel like a journey we took together, not like a lecture. I wanted you to be the focus, not me.

I hope I succeeded with that, and I genuinely hope that you learned something that you find useful
and can take with you going forward. If you did, then I’m sincerely happy that my work was of value
to you. I wish you the best of luck with your asynchronous programming going forward.

Until the next time!

Carl Fredrik

Index

Symbols
1:1 threading 29

A
address space 30
application binary interface (ABI) 97
arithmetic logic units (ALUs) 5
Assembly language 102
asymmetric coroutines 39, 40
async/await keywords 154, 155
asynchronous programming

versus concurrency 13
asynchronous Rust

challenges 265
future 269

async runtime
mental model 131-133

AT&T dialect 102
Await 39

B
base example

current implementation, changing 177
design 173-176

http.rs, modifying 180-183
improving 171, 173
main.rs, modifying 177
runtime.rs, modifying 177-179

b-async-await 156-160
bitflags 76, 78
bitmasks 75-78
Boost.Coroutine 112
BSD/macOS 51

C
callback based approaches 37

advantages and drawbacks 37
callee saved 101
calling convention , 57
c-async-await 160-165
challenges, asynchronous Rust 267

async drop 268
ergonomics, versus efficiency

and flexibility 266
explicit, versus implicit reactor

instantiation 265, 266
traits 267

completion-based event queues 48, 49
completion port 49

Index276

complex instruction set
computers (CISC) 97

concurrency 9
relation, to I/O 11
right reference frame, selecting 12
use cases 11
versus asynchronous programming 12
versus parallelism 7, 8, 9, 10

concurrent 8
continuation-passing style 39
cooperative multitasking 5, 26
corofy 155, 156
coroutine implementation 227-229
coroutine preprocessor 155, 156
coroutines 39

advantages 40
creating 147-153
drawbacks 41
implementation 149
states 148

coroutine/wait syntax 155
CPU architecture 97
cross-platform abstractions 51
cross-platform event queues 50, 51
custom fibers

implementing 112-115
runtime, implementing 115-121

D
direct memory access controller

(DMAC) 21
direct memory access (DMA) 21
DNS lookup 72
driver 21

E
edge-triggered event

versus level-triggered event 78-81
Embassy 169
epoll 47, 49

designing to 66-71
epoll/kqueue

OS-backed event, queuing via 47
example project

running 107, 108
setting up 103-105

executor 170, 171
executor.rs 256- 259

F
ffi module 73-76

bitflags 76, 78
bitmasks 76, 78
level-triggered event, versus

edge-triggered event 78-81
fibers and green threads 33

context switching 35
FFI functions 36
scheduling 35
task, setting up with stack of fixed size 34, 35

file descriptors 52
file I/O 72, 73
Firmware 22
foreign function interface (FFI) 36, 43, 51

advantages and drawbacks 36
future 38, 39, 130

definition, changing 191, 192
poll phase 130
wait phase 130
wake phase 130

Index 277

future.rs 254
futures 38, 39

G
generators

versus, coroutines 139
Go 112
green threads 33
guard function 121-125

H
hand-written coroutines

code, writing 153, 154
example 139, 140
futures module 141
HTTP module 142-146
lazy future 146, 147

hardware interrupts 6, 20, 22
highest level of abstraction 61
http.rs 254-256
hyper-threading 6

performance 6

I
inline assembly 51
input/output completion port (ICOP) 48, 49

OS-backed event, queuing via 47
instruction set architecture (ISA) 97

ARM ISA 97
x86 97
x86-64 97

Intel Advanced Vector Extensions
(AVX) 100

Intel dialect 102
interrupt descriptor table (IDT) 17, 20

interrupt handler 21
interrupt request line (IRQs) 20
interrupts 22

hardware interrupts 22
software interrupts 22

I/O intensive tasks
versus CPU-intensive tasks 134

I/O operations
blocking 72
DNS lookup 72
file I/O 72, 73

io_uring 44
Isahc 264

K
kernel thread 27
kqueue 47, 49

L
Last In First Out (LIFO) 197
leaf futures

example 130
LEAN processes 9
level-triggered event

versus edge-triggered event 78-81
libc 14
Linux 51

examples, running 45
OS-provided API, using in 56-58
raw syscall on 52-54

lowest level, of abstraction 51
raw syscall, on Linux 52-54
raw syscall, on macOS 54, 55
raw syscall, on Windows 55

Index278

M
M:1 threading 33
macOS

OS-provided API, using in 56-58
raw syscall on 54, 55

main.rs file 84-93, 253, 254
memory management unit (MMU) 17
mental model, of async runtime 131-133
M*N threading 28, 33
move 231, 232
multicore processors 6
multiprotocol file transfer 265
multitasking 4

hyper-threading 5
multicore processors 6
non-preemptive multitasking 4
preemptive multitasking 5
synchronous code, writing 6

multithreaded programming 13

N
network call 19

code 19
events, registering with OS 20

network card 20
data, reading and writing 21

next level of abstraction 55, 56
OS-provided API, using in Linux

and macOS 56-58
Windows API, using 58-60

non-cooperative multitasking 26
non-leaf futures 130

example 131
non-preemptive multitasking 4, 5

O
operating system

and CPU 15-18
communicating with 14
concurrency 13
role 13
teaming up with 14
threads 12

OS-backed event
blocking I/O and non-blocking I/O 46
queuing, need for 45
queuing, via epoll/kqueue 47
queuing, via IOCP 47

OS-provided API
using, in Linux and macOS 56-58

OS threads 27-29
asynchronous operations, decoupling 31
drawbacks and complexities 29-31
example 31, 32

out-of-order execution 7

P
parallel 8
parallelism 7

versus concurrency 7-10
pinning 233, 234, 241

executor.rs 246, 247
future.rs 242
http.rs 242, 243
main.rs 244-246
to heap 235, 236, 237
to stack 237, 238, 239
UnPin 234

pin_project
reference link 241

Index 279

pointers 231
polling 46
Poll module 81- 84
preemptive multitasking 5
pre-empt running tasks 26
privilege level 18
process 30
promises 38, 39
proper Executor

implementing 192-199
proper Reactor

implementing 199-207
proper runtime

creating 184-186

R
raw syscall

on Linux 52-54
on macOS 54, 55

reactor 170
reactor.rs 259, 260
readiness-based event queues 47, 48
real-time operating system (RTOS) 169
reduced instruction set

computers (RISC) 97
references 222-227
repository

using 96
resource 8
runtime design

improvement, by adding Reactor
and Walker 187, 188

runtimes 169
example, using concurrency 208, 209
experimenting with 208, 261-265

multiple futures, running concurrently
and in parallel 209, 210

Rust
language 133
Pin<T> 234
pinning 233, 234
pinning, to heap 235-237
pinning, to stack 237-239
pin projections 234-41
standard library 133
structural pinning 235- 241
Unpin 234

Rust inline assembly macro 105, 106
AT&T syntax 106
Intel syntax 106
options 107

S
scheduler 28
segmentation fault 17
self-referential structs 223

discovering 229- 231
move 231, 232

single-threaded asynchronous system
task scheduling 170

skip function 121-125
software interrupts 22
stack 109-111

sizes 111
stack alignment 10
stackful tasks 27
stackless coroutines 138
stackless tasks 27
stack pointer 110
standard output (stdout) 51
static lifetimes 195
Streaming SIMD Extensions (SSE) 98

Index280

switch function 121-125
symmetric coroutines 39, 40
synchronous code

writing 7
syscall ABI 51
system calls (syscalls) 14, 43, 51
System V ABI 98

for x86-64 99-102

T
task 8, 27, 28
thread of execution 27
thread pool 72
threads 13, 27

definition 28
OS threads 27
user-level threads 27
versus concurrency 13

timers 266
Tokio 160

U
UNIX family 14
user-level threads 28

V
variables 214

base examples, improving 217-222
base examples, setting up 215-217

W
Waker 190

creating 188-190
wepoll 44
Win64 98
WinAPI 14
Windows 51

raw syscall on 55
Windows API

using 58-60
Windows Subsystem for Linux (WSL) 45

Packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as
industry leading tools to help you plan your personal development and advance your career. For more
information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos from over

4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at packtpub.com and as a print book customer, you
are entitled to a discount on the eBook copy. Get in touch with us at customercare@packtpub.
com for more details.

At www.packtpub.com, you can also read a collection of free technical articles, sign up for a range
of free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

http://Packtpub.com
http://packtpub.com
mailto:customercare@packtpub.com
mailto:customercare@packtpub.com
http://www.packtpub.com

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Hands-On Concurrency with Rust

Brian L. Troutwine

ISBN: 9781788399975

•	 Probe your programs for performance and accuracy issues

•	 Create your own threading and multi-processing environment in Rust

•	 Use coarse locks from Rust’s Standard library

•	 Solve common synchronization problems or avoid synchronization using
atomic programming

•	 Build lock-free/wait-free structures in Rust and understand their implementations in the
crates ecosystem

•	 Leverage Rust’s memory model and type system to build safety properties into your
parallel programs

•	 Understand the new features of the Rust programming language to ease the writing of
parallel programs

https://www.packtpub.com/product/hands-on-concurrency-with-rust/9781788399975

283Other Books You May Enjoy

Hands-On Microservices with Rust

Denis Kolodin

ISBN: 9781789342758

•	 Get acquainted with leveraging Rust web programming

•	 Get to grips with various Rust crates, such as hyper, Tokio, and Actix

•	 Explore RESTful microservices with Rust

•	 Understand how to pack Rust code to a container using Docker

•	 Familiarize yourself with Reactive microservices

•	 Deploy your microservices to modern cloud platforms such as AWS

https://www.packtpub.com/product/hands-on-microservices-with-rust/9781789342758

284

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just like you, to
help them share their insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Asynchronous Programming in Rust, we’d love to hear your thoughts! If you
purchased the book from Amazon, please click here to go straight to the Amazon review page for this
book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re delivering
excellent quality content.

http://authors.packtpub.com
https://packt.link/r/1805128132

285

Download a free PDF copy of this book
Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere?

Is your eBook purchase not compatible with the device of your choice?

Don’t worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical
books directly into your application.

The perks don’t stop there, you can get exclusive access to discounts, newsletters, and great free content
in your inbox daily

Follow these simple steps to get the benefits:

1.	 Scan the QR code or visit the link below

https://packt.link/free-ebook/9781805128137

2.	 Submit your proof of purchase

3.	 That’s it! We’ll send your free PDF and other benefits to your email directly

https://packt.link/free-ebook/9781805128137

	Cover
	Title Page
	Copyright
	Dedication
	Contributors
	Table of Contents
	Preface
	Part 1:
Asynchronous
Programming Fundamentals
	Chapter 1: Concurrency and Asynchronous Programming: a Detailed Overview
	Technical requirements
	An evolutionary journey of multitasking
	Non-preemptive multitasking
	Preemptive multitasking
	Hyper-threading
	Multicore processors
	Do you really write synchronous code?

	Concurrency versus parallelism
	The mental model I use
	Let’s draw some parallels to process economics
	Concurrency and its relation to I/O
	What about threads provided by the operating system?
	Choosing the right reference frame
	Asynchronous versus concurrent

	The role of the operating system
	Concurrency from the operating system’s perspective
	Teaming up with the operating system
	Communicating with the operating system

	The CPU and the operating system
	Down the rabbit hole
	How does the CPU prevent us from accessing memory we’re not supposed to access?
	But can’t we just change the page table in the CPU?

	Interrupts, firmware, and I/O
	A simplified overview
	Interrupts
	Firmware

	Summary

	Chapter 2: Concurrency and Asynchronous Programming: a Detailed OverviewHow Programming
Languages Model Asynchronous Program Flow
	Definitions
	Threads

	Threads provided by the operating system
	Creating new threads takes time
	Each thread has its own stack
	Context switching
	Scheduling
	The advantage of decoupling asynchronous operations from OS threads
	Example

	Fibers and green threads
	Each stack has a fixed space
	Context switching
	Scheduling
	FFI

	Callback based approaches
	Coroutines: promises and futures
	Coroutines and async/await

	Summary

	Chapter 3: Understanding OS-Backed Event Queues, System Calls, and Cross-Platform Abstractions
	Technical requirements
	Running the Linux examples

	Why use an OS-backed event queue?
	Blocking I/O
	Non-blocking I/O
	Event queuing via epoll/kqueue and IOCP

	Readiness-based event queues
	Completion-based event queues
	epoll, kqueue, and IOCP
	Cross-platform event queues
	System calls, FFI, and cross-platform abstractions
	The lowest level of abstraction
	The next level of abstraction
	The highest level of abstraction

	Summary

	Part 2:
Event Queues
and Green Threads
	Chapter 4: Create Your Own Event Queue
	Technical requirements
	Design and introduction to epoll
	Is all I/O blocking?

	The ffi module
	Bitflags and bitmasks
	Level-triggered versus edge-triggered events

	The Poll module
	The main program
	Summary

	Chapter 5: Creating Our Own Fibers
	Technical requirements
	How to use the repository alongside the book
	Background information
	Instruction sets, hardware architectures, and ABIs
	The System V ABI for x86-64
	A quick introduction to Assembly language

	An example we can build upon
	Setting up our project
	An introduction to Rust inline assembly macro
	Running our example

	The stack
	What does the stack look like?
	Stack sizes

	Implementing our own fibers
	Implementing the runtime
	Guard, skip, and switch functions

	Finishing thoughts
	Summary

	Part 3:
Futures and
async/await in Rust
	Chapter 6: Futures in Rust
	What is a future?
	Leaf futures
	Non-leaf futures
	A mental model of an async runtime
	What the Rust language and standard library take care of
	I/O vs CPU-intensive tasks
	Summary

	Chapter 7: Coroutines and async/await
	Technical requirements
	Introduction to stackless coroutines
	An example of hand-written coroutines
	Futures module
	HTTP module
	Do all futures have to be lazy?
	Creating coroutines

	async/await
	coroutine/wait
	corofy—the coroutine preprocessor
	b-async-await—an example of a coroutine/wait transformation

	c-async-await—concurrent futures
	Final thoughts
	Summary

	Chapter 8: Runtimes, Wakers, and the Reactor-Executor Pattern
	Technical requirements
	Introduction to runtimes and why we need them
	Reactors and executors

	Improving our base example
	Design
	Changing the current implementation

	Creating a proper runtime
	Step 1 – Improving our runtime design by adding a Reactor and a Waker
	Creating a Waker
	Changing the Future definition

	Step 2 – Implementing a proper Executor
	Step 3 – Implementing a proper Reactor
	Experimenting with our new runtime
	An example using concurrency
	Running multiple futures concurrently and in parallel

	Summary

	Chapter 9: Coroutines, Self-Referential Structs, and Pinning
	Technical requirements
	Improving our example 1 – variables
	Setting up the base example
	Improving our base example

	Improving our example 2 – references
	Improving our example 3 – this is… not… good…
	Discovering self-referential structs
	What is a move?

	Pinning in Rust
	Pinning in theory
	Definitions
	Pinning to the heap
	Pinning to the stack
	Pin projections and structural pinning

	Improving our example 4 – pinning to the rescue
	future.rs
	http.rs
	Main.rs
	executor.rs

	Summary

	Chapter 10: Creating Your Own Runtime
	Technical requirements
	Setting up our example
	main.rs
	future.rs
	http.rs
	executor.rs
	reactor.rs

	Experimenting with our runtime
	Challenges with asynchronous Rust
	Explicit versus implicit reactor instantiation
	Ergonomics versus efficiency and flexibility
	Common traits that everyone agrees about
	Async drop

	The future of asynchronous Rust
	Summary
	Epilogue

	Index
	About PACKT
	Other Books You May Enjoy

