

Sau Sheong Chang

Exploring Everyday Things
with R and Ruby

ISBN: 978-1-449-31515-3

[LSI]

Exploring Everyday Things with R and Ruby
by Sau Sheong Chang

Copyright © 2012 Sau Sheong Chang. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our cor­
porate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Andy Oram and Mike Hendrickson
Production Editor: Kristen Borg
Copyeditor: Rachel Monaghan

Proofreader: Kiel Van Horn
Indexer: Angela Howard
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

July 2012: First Edition

Revision History for the First Edition:

2012-06-26 First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449315153 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Exploring Everyday Things with R and Ruby, the image of a hooded seal, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con­
tained herein.

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449315153

Table of Contents

Preface. vii

1. The Hat and the Whip. 1
Ruby 1

Why Ruby 2
Installing Ruby 3
Running Ruby 4
Requiring External Libraries 5
Basic Ruby 7
Everything Is an Object 13

Shoes 19
What Is Shoes? 19
A Rainbow of Shoes 20
Installing Shoes 20
Programming Shoes 21

Wrap-up 25

2. Into the Matrix. 27
Introducing R 27
Using R 28

The R Console 29
Sourcing Files and the Command Line 31
Packages 33

Programming R 35
Variables and Functions 36
Conditionals and Loops 37
Data Structures 39
Importing Data 46

Charting 51
Basic Graphs 51

iii

Introducing ggplot2 53
Wrap-up 61

3. Offices and Restrooms. 63
The Simple Scenario 64
Representing Restrooms and Such 66
The First Simulation 69
Interpreting the Data 73
The Second Simulation 79
The Third Simulation 83
The Final Simulation 88
Wrap-up 91

4. How to Be an Armchair Economist. 95
The Invisible Hand 96
A Simple Market Economy 96

The Producer 97
The Consumer 99
Some Convenience Methods 100
The Simulation 100
Analyzing the Simulation 103

Resource Allocation by Price 107
The Producer 107
The Consumer 108
Market 109
The Simulation 110
Analyzing the Second Simulation 112
Price Controls 116

Wrap-up 119

5. Discover Yourself Through Email. 121
The Idea 121
Grab and Parse 122

The Emailing Habits of Enron Executives 126
Discover Yourself 130

Number of Messages by Day of the Month 130
MailMiner 134
Number of Messages by Day of Week 137
Number of Messages by Month 138
Number of Messages by Hour of the Day 139
Interactions 142
Comparative Interactions 144

iv | Table of Contents

Text Mining 147
Wrap-up 154

6. In a Heartbeat. 157
My Beating Heart 157
Auscultation 158

Homemade Digital Stethoscope 158
Extracting Data from Sound 159
Generating the Heart Sounds Waveform 164
Finding the Heart Rate 166

Oximetry 168
Homemade Pulse Oximeter 168
Extracting Data from Video 169
Generating the Heartbeat Waveform and Calculating the Heart Rate 172

Wrap-up 174

7. Schooling Fish and Flocking Birds. 177
The Origin of Boids 178
Simulation 179
Roids 181
The Boid Flocking Rules 187
Supporting Rules 190
A Variation on the Rules 191
Going Round and Round 193
Putting in Obstacles 194
Wrap-up 195

8. Money, Sex, and Evolution. 197
It’s a Good Life 198
Money 198
Sex 211

Birth and Death 211
The Changes 211

Evolution 218
What We Will Be Changing 219
Implementation 220

Wrap-up 224

Index. 227

Table of Contents | v

Preface

Explorers Ahoy!
It’s hard to compare intrepid explorers like Ferdinand Magellan, James Cook, and
Roald Amundsen with someone, well, like me. While these adventurers braved the
elements, wild nature, and unknown dangers to discover new worlds (at least for their
civilization), my biggest physical achievement to date would probably be completing
a 10-kilometer charity quarter-marathon—walking.

The explorers of old had it good, of course, when it came to choices of unexplored
places to stake their claim on. Christopher Columbus only had to sail due west from
Europe, and he discovered two entire continents. For us, there are far fewer choices.
There isn’t much landmass on Earth that is yet unexplored; even the Mariana Trench,
the deepest part of the world’s oceans, has been conquered.

But explorer I am, and explorer you will be in this book. While much of the known
physical world has been conquered (see Figure P-1), the unknown still looms over
most of us.

We are all born with a sense of wonder and amazement at the world around us. Many
of us just learn to turn it off as we grow older and jaded. I believe this is partly because
we don’t understand what goes on in the world around us well enough, and thus we
don’t care either. Click the remote and the TV turns on—why and how does that
work? The first time we tried to ask, we were probably given a blank stare or waved
away—who cares as long as you can watch the next season of American Idol? That
soon grows to be our reaction as well.

vii

Figure P-1. The Scott expedition to the South Pole (photo from the Public Domain Review;
http://publicdomainreview.org/2012/03/29/remembering-scott)

Well, in this book, I’ll take you along winding paths to bring back the original, wide-
eyed person you were. We’ll find the magic again, and hopefully at the end of the
book, you’ll continue where we leave off and make your own way in that journey of
exploration and discovery.

Data, Data, Everywhere
We are swamped with data every minute and second of our lives. I don’t mean this
metaphorically, and I am not simply waxing lyrical about big data either.

In fact, we’re so swamped that our eyes have evolved and adapted to this fact by
shutting off our environment for a very short while every millisecond. In a phenom­
enon called saccadic masking, the brain shuts down during a fast eye movement (a
saccade) to remove blurred images that come to our retina. Blurred images are not
very useful, so the brain discards them, rendering us effectively blind (without us
realizing it) during a saccade.

viii | Preface

http://publicdomainreview.org/2012/03/29/remembering-scott

There is much similarity between saccadic masking and the way we process data
today. The data comes so fast, so frequently that we often mask it away. There is a lot
of data around us that we can extract and analyze to find answers, but the problem
has always been how to do this.

In the (distant) past, it was always geniuses who had that knack of unlocking secrets
with data and insight, along with the serendipitous few who simply stumbled on the
answers. Not so anymore. Although intelligence is still a prerequisite, the arrival of
computers and programming has elevated us from the more mundane, repetitive,
and mind-numbing tasks of processing data to extract nuggets of information.

Only, it hasn’t.

At least not for most people, anyway. The exceptions are scientists and mathemati­
cians, who long ago pounced on the tools that enable them to do their work much
more efficiently. If you’re someone from these two camps, you are likely already taking
full advantage of the power of computers.

However, for programmers and many other people, writing computer programs
started with providing tools for businesses and for improving business processes. It’s
all about using computers to reduce cost, increase revenue, and improve efficiency.
For many professional programmers, coding is a job. It’s drudgery, low-level menial
work that brings food to the table. We have forgotten the promise of computers and
the power of programming for discovery.

Bringing the World to Us
This book is an attempt to bring back that wonder and sense of discovery. I want this
book to uncover things that you didn’t know, or didn’t understand. I want it to help
you discover new worlds within the existing world we see every day. Finally, I want
it to enable you to explore the mundane and learn new things through programming
and analyzing data.

While sometimes the world we explore in this book is the real world, more often it’s
not. It’s hard to explore the whole wide world with just bits and bytes. So if we can’t
explore the world we live in, we’ll create our own worlds and explore those—in other
words, we’ll use simulations.

Simulations are an excellent way of exploring things that we cannot control. We do
this all the time. When we were young, we often created make-believe worlds and
lived in them. Doing this enabled us to understand the real world better. We still do
this today, through the magic of television (especially serials and soap operas) and
movies—where we live through the characters we see on the screen. And for better
or worse, simulations like television affect our real lives and even our dreams. For

Preface | ix

1. Okada, Hitoshi, Kazuo Matsuoka, and Takao Hatakeyama. “Life Span Differences in Color Dreaming.”
Dreaming 21, no. 3 (2011), 213–220.

example, a survey by the American Psychological Association found that only 20%
of people in their 60s (who grew up before color television was popular) recalled
having bright and vivid dreams. However, 80% of people under the age of 30 con­
firmed that their dreams were in full color.1

In this book, we will use simulations to create experiments, isolate factors, and pro­
pose hypotheses to explain the results of the experiments. You might or might not
agree with the experiments I describe or the hypotheses I suggest, but that doesn’t
really matter. What I would like you to get out of our journey together is the realization
that there is more than business as usual to programming business solutions and
processes. What I hope to achieve is for you eventually to design your own experi­
ments, run through them, and discover your own worlds.

Packing Your Bags
So what do you need on this journey of discovery, this grand adventure through
programming and analyzing data? Tools, of course. They will be the subject of the
next two chapters. These are not the only tools available to you, but they are the ones
we will be using in this book.

The two tools we will use are Ruby and R. I’ve chosen them for specific purposes.
Ruby is easy to learn and to read, perfectly suited to explain concepts in human-
readable code. I will be using Ruby to write simulations and to do preprocessing to
get data. R, on the other hand, is great for analyzing data and for generating charts
for visualization.

Although you don’t need to be a Ruby or R programmer to be able to appreciate this
book, I have assumed a basic understanding of programming. Specifically, I assume
you have completed a computer science or related course or have done some simple
programming in any programming language.

For the rest of the book, every chapter is more or less self-sufficient. Each chapter
explores an idea, starting from the realization that a question exists and then at­
tempting to answer it in either a simulation or some processing that brings out the
data. We then analyze this data and make certain conclusions based on our analysis.

The ideas are drawn from diverse fields, ranging from economics to evolution, from
healthcare to workplace design (in this case, figuring out the correct number of rest­
rooms in an office). Some ideas are grander than others, and some ideas can be quite
personal. The reason for this diversity is to show that the possibilities for exploration
are limited only by our creativity.

x | Preface

Each chapter usually starts off small, and we gradually add on layers of complexity to
flesh out its central idea. The hypotheses, conclusions, and results from the experi­
ments surrounding the base idea are incidental. You might, for example, agree or
disagree with my conclusions and interpretation of the results. For this book at least,
the journey is more important than the results.

With that, we’re off! Have fun with the next two chapters, and enjoy the rest of the
explorations, intrepid explorer!

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele­
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user; also used
for emphasis within program listings.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter­
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
All examples and related files in this book may be downloaded from GitHub.

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require

Preface | xi

https://github.com/sausheong/everyday

permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Exploring Everyday Things with R
and Ruby by Sau Sheong Chang (O’Reilly). Copyright 2012 Sau Sheong Chang,
978-1-449-31515-3.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand
digital library that delivers expert content in both book and video
form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre­
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for
organizations, government agencies, and individuals. Subscribers have access to
thousands of books, training videos, and prepublication manuscripts in one fully
searchable database from publishers like O’Reilly Media, Prentice Hall Professional,
Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks,
Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones &
Bartlett, Course Technology, and dozens more. For more information about Safari
Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

xii | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreil.ly/everyday-things-r-ruby

To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web­
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This is the part where I finally get to thank the people who helped me create the book
you now hold in your hands. Writing a book is never the sole effort of a lonely author,
as I have learned over the years, but the collective work of the author, a professional
team, and a community of reviewers and supporters. In no particular order, I would
like to thank:

• Mike Hendrickson for agreeing to this rather different type of programming
book. It was a wild shot sending in the book proposal and I didn't really expect
it to be picked up, except that it was.

• Andy Oram for being patient to a first time O’Reilly author, and arranging really
long distance Skype calls halfway around the world, and waking up really early
to speak to me every Tuesday evening.

• Kristen Borg, Rachel Monaghan, and the whole production editing team for do­
ing such an awesome and professional job with the book.

• Jeremy Leipzig, Ivan Tan, Patrick Haller, and Judith Myerson for their help in
doing the technical reviews and giving great advice. In particular, Patrick Haller,
whom I badgered with emails about his comments on my R scripts. Thanks,
Patrick!

• Rully Santosa, Chen Way Yen, Ng Tze Yang, Kelvin Teh, George Goh, and the
rest of the HP Labs Singapore Applied Research team, to whom I have bounced
off countless ideas and have given me innumerable remarks. Special thanks to
Rully, Way Yen, and George for their feedback in Chapter 6.

Preface | xiii

http://oreil.ly/everyday-things-r-ruby
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

• The Ruby community, especially the Singapore Ruby Brigade, where I made and
continue to make good friends with common interests in exploring the world
through Ruby. It's a great community to be in, and I relish the (now) annual
RedDotRubyConf organized by the ever efficient Andy Croll.

Finally, I would like to dedicate this book to my family, who is my inspiration and
my motivation in everything I do. To my lovely wife Wooi Ying, who has been patient
yet again (for the third time), thanks for understanding why I simply have to under­
stand everything and how it works. To my soon-to-be teenage son Kai Wen, I hope
this book will also be an inspiration to you in being the wide-eyed explorer that I have
been all my life.

xiv | Preface

CHAPTER 1

The Hat and the Whip

Indiana Jones is one of my favorite movie trilogies of all time, and Harrison Ford was
a hero to me when I was growing up. Something I always loved about Indy was how
he cracked his whip. In fact, I first learned what a bullwhip was watching Raiders of
the Lost Ark.

The first two movies—Raiders of the Lost Ark, and Indiana Jones and the Temple of
Doom—dealt with Indiana Jones the adult, already fully hardened and cranky. As I
watched one movie after another, I wondered about his trademark hat and whip—
why the fedora and why on earth a whip?

Finally, all was answered in the third movie of the trilogy, Indiana Jones and the Last
Crusade. It was one of those satisfying aha moments that—although not at all that
important in the overall scheme of things—gave Indy an origin, explaining the hat
and the whip and why he did what he did.

So what does this have to do with a programming book? Just as the hat and the whip
were indispensable tools for Indy, Ruby and R will be our two main tools in the rest
of this book. And just as the hat and whip were not conventional tools for archaeology
professors doing field work, neither are Ruby and R conventional tools for exploring
the world around us. They just make things a whole lot more fun.

Ruby
Each of these tools will need its own chapter. We’ll start off first with Ruby and then
discuss R in the next chapter. Obviously, there is no way I can explain the entire Ruby
programming language in a single chapter of a book, so I will give enough information
to whet your appetite and hopefully entice you to proceed to the juicier books that
discuss Ruby in more depth.

1

Why Ruby
One of the first questions you might ask (unless you’re a Ruby enthusiast and you
already know, in which case you can just nod along) is why did I choose Ruby as one
of the two tools used in this book? There are a number of very good reasons. However,
there are a couple that I want to focus on, specific to the goals of this book.

First, Ruby is a programming language for human beings. Yukihiro “Matz” Matsu­
moto, the creator of Ruby, often said that he tried to make Ruby natural, not simple,
in a way that mirrors life. Ruby programming is a lot like talking to your good friend,
the computer. Ruby was designed to make programming fun and to put the human
back into the equation for programming. For example, to print “I love Ruby” 10 times
on the screen, simply tell the computer to do exactly that:

10.times do
 puts "I love Ruby"
end

If you’re familiar with C programming and its ilk, like Java, you’ll already know that
to check whether the variable a_statement is true, you need to do something like this
(note that in C you will need to use the integer 1 instead of true, since C doesn’t have
a Boolean type):

a_statement = true;
if (a_statement == true) {
 do_something();
}

While you can certainly do the same in Ruby, it also allows you to do something like
this:

do_something if a_statement

This results in code that is very easy to read and therefore to maintain. While Ruby
can have its esoteric moments, it’s generally a programming language that can allow
someone else to read and understand it easily. As you can imagine, this is a feature
that is very useful for this book.

Secondly, Ruby is a dynamic language, and what that means for you as a reader of
this book is that you can copy the code from this book, plop it in a file (or the Inter­
active Ruby shell, as you will see later), and run it directly. There is no messy setting
up of makefiles or getting the correct paths for libraries or compiling the compiler
before running the examples. Cut, paste, and run—that’s all there is to it.

While these are the two primary reasons I used Ruby in this book, if you’re keen to
understand why many other programmers have turned to Ruby, you can take a look
at the Ruby website (http://www.ruby-lang.org) or search around the Internet, and
you’ll find plenty of people gushing over it.

2 | Chapter 1: The Hat and the Whip

http://www.ruby-lang.org

Installing Ruby
Of course, before we can even start using Ruby, we need to get it into our machines.
This is generally a simple exercise. There are three main ways of getting Ruby in your
platform of choice, depending on how gung-ho you are.

Installing Ruby from source

If you’re feeling pretty ambitious, you can try compiling Ruby. This mostly means
that you need to have the tools to compile Ruby in your platform, so unless you really
want to get serious with Ruby, I suggest that you install it from a precompiled binary,
either through a third-party tool or your platform’s usual package management tool.

To compile Ruby from source, go to http://www.ruby-lang.org/en/downloads and
download the source, then compile it using your platform compiler. You can get more
information from the same site.

Installing Ruby using third-party tools

Alternatively, you can use one of these popular third-party tools. The recommended
approach is to go with the first, which is Ruby Version Manager if you’re running on
OS X or Linux, and RubyInstaller if you’re on Windows.

Ruby Version Manager (RVM). RVM is probably the most popular third-party tool
around for non-Windows platforms. A distinct advantage of using RVM is that you
will be able to install multiple versions of Ruby and switch to any of them easily.
Installing RVM, while not very difficult, is not a single-liner. As of today at least, this
is the way to install RVM.

First, you need to have Git and curl installed. Then, issue this command in your
console:

$ curl -L get.rvm.io | bash -s stable

Then, reload your shell by issuing this (or a similar command, depending on your
shell):

$ source ~/.profile

This will allow you to run rvm. The next thing you should do is to check whether you
have all you need to install Ruby:

$ rvm requirements

Once you have that, use rvm to install the version of Ruby you want. In our case, we’ll
be using Ruby 1.9.3:

$ rvm install 1.9.3

Ruby | 3

http://www.ruby-lang.org/en/downloads

After this, check whether the Ruby version you wanted is correctly installed:
$ rvm list

You should see a list (or at least one) of RVM Rubies installed. If this is your first time
installing, there will not be any default Ruby, so you will need to set one by issuing
the following command:

$ rvm alias create default ruby_version

Replace ruby_version with the version you’ve just installed (such as ruby

1.9.3p125), and you’re done! Check out the RVM website at https://rvm.io/ for more
installation instructions in case you’re stuck at any point in time.

RubyInstaller. If you’re using Windows, you can’t install RVM. In that case, you can
either create a virtual machine, install your favorite GNU/Linux distro, and then
proceed; or just use RubyInstaller, which is frankly a lot easier. Simply go to http://
rubyinstaller.org/downloads, download the correct version, and then install it. Ru­
byInstaller includes many native C-based extensions, so that’s a bonus. It is a graphical
installer, so it’s pretty simple to get a fresh installation set up quickly.

Installing Ruby using your platform’s package management tool

If none of the approaches listed so far suits you, then you can opt to use your system’s
package management tool. For Debian systems (and this includes Ubuntu), you can
use this command:

$ sudo apt-get install ruby1.9.1

This will install Ruby 1.9.2. Yes, it’s weird.

For Macs, while Ruby comes with OS X, it’s usually an older version (Lion comes with
Ruby 1.8.7, and the previous versions come with even older versions of Ruby).
There is a popular package management tool in OS X named Homebrew, which helps
you to replace this with the latest version of Ruby. As you would guess, you’ll need
to install Homebrew first. Run this command on your console:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.github.com/gist/323731)"

Then install Ruby with this simple command:
$ brew install ruby

Homebrew is actually just a set of Ruby scripts.

Running Ruby
Once you have installed Ruby with any of the preceding methods, it’s time to start
using it! Unlike compiled languages such as C, C++, or Java, you don’t need to have
an intermediate step to generate executable files before running Ruby.

4 | Chapter 1: The Hat and the Whip

https://rvm.io/
http://rubyinstaller.org/downloads
http://rubyinstaller.org/downloads

There are a few ways of running Ruby code, but the easiest way to get started is
probably using the interactive Ruby tool that’s built into your Ruby installation. irb
is a Ruby REPL (read-eval-print loop) application, an interactive programming en­
vironment that allows you to type in Ruby commands and have them evaluated in
real time:

$ irb
ruby-1.9.3-p125 :001 > puts "hello world!"
hello world!
 => nil
ruby-1.9.3-p125 :002 >

Note that once you have typed in a Ruby statement (in this case, we are placing the
string “hello world!” to the standard output), the statement is evaluated immediately,
resulting in “hello world!” being printed on the screen. After that, irb tells you the
statement evaluates to nil, because the Ruby puts statement returns a nil. If you have
put in a statement like this:

$ irb
ruby-1.9.3-p125 :001 > 1 + 1
 => 2
ruby-1.9.3-p125 :002 >

This statement returns 2, which is the result of the evaluation. irb is a tool you will
quickly get used to and will be using whenever you’re not sure what the result is going
to be.

Another common method of running Ruby is to save your code in a file and then run
your file through the Ruby interpreter. For example, you could save puts "hello
world!" to a file named hello_world.rb. After that, you can try this command at the
console:

$ ruby hello_world.rb
hello world!

Most of the examples in this book will be run this way.

Requiring External Libraries
While you can probably get away with writing simpler Ruby programs without any
other libraries than the ones built into Ruby itself, most of the time you’ll need some
external libraries to make life easier. Two sets of Ruby libraries come preinstalled with
Ruby.
Core

This is the default set of classes and modules that comes with Ruby, including
String, Array, and so on.

Ruby | 5

Standard
These libraries, found in the /lib folder of the Ruby source code, are distributed
with Ruby but are not included by default when you run it. These include libraries
such as Base64, Open URI, and the Net packages (HTTP, IMAP, SMTP, and so
on).

To use the standard libraries and any other libraries other than the Ruby core, you
will need to require them in your program:

require 'base64'

In addition to the standard libraries, you will often need to use external libraries
developed by the Ruby community or yourself. The most common way to distribute
Ruby libraries is through RubyGems, the package manager for Ruby. It’s distributed
as part of Ruby in the standard library, so you can use it out of the box once Ruby is
installed.

Just as apt-get and yum manage packages on a Linux distribution, RubyGems allows
you to easily install or remove libraries and Ruby applications. To be distributed
through RubyGems, the library or application needs to be packaged in something
called a gem, which is a package of files to install as well as self-describing metadata
about the package.

Gems can be distributed locally (passed around in a .gem file) or remotely through a
gem server. A few public gem servers provided gem hosting in the past, including
RubyForge, GitHub, and GemCutter, but recently they have been more or less re­
placed by RubyGems. In RubyGems lingo, gem servers are also known as sources. You
can also deploy a private gem server where you publish private gems that you pre-
package for internal use.

To add sources to your RubyGems installation, you can do this:
$ gem sources -add http://your.gemserver.org

To install a local gem, you can do the following at the console:
$ gem install some.gem -local

You can do away with the -local option, but doing so will add a bit of time because
the command will search the remote sources. Setting the local option tells RubyGems
to skip that. To add a gem from a remote source, you can generally do this:

$ gem install some_gem

You can also install specific versions of a gem like so:
$ gem install some_gem -version 1.23

To list the gems that you have installed locally, you can do this:
$ gem list -local

6 | Chapter 1: The Hat and the Whip

Basic Ruby
With the setup complete, let’s get started with Ruby!

Strings

Manipulating strings is one of the most basic things you normally do in a program.
Any programming language worth its salt has a number of ways to manipulate strings,
and Ruby is no exception. In fact, Ruby has an embarrassment of riches in terms of
its capability to manipulate strings.

Ruby strings are simply sequences of characters. There are a few ways of defining
strings. The most common ways are probably through the single(') and double(")
quotes. If you define a string with double quotes, you can use escape sequences in the
string and also perform substitution of Ruby code into the string using the expression
#{}. You can’t do this inside single-quoted strings:

"There are #{24 * 60 * 60} seconds in a day"
=> "There are 86400 seconds in a day"

'This is also a string'
=> "This is also a string"

Strings can also be defined using %q and %Q. %q is the same as single-quoted strings,
and %Q is the same as double-quoted strings, except that in these cases the delimiters
can be anything that follows %q or %Q:

%q/This is a string/
=> "This is a string"

%q{This is another string}
=> "This is another string"

%Q!#{'Ho! ' * 3} Merry Christmas\!!
=>"Ho! Ho! Ho! Merry Christmas!"

Finally, you can also define a string using a here-document. A here-document is a way
of specifying a string in command-line shells (sh, csh, ksh, bash, and so on) and in
programming or scripting languages such as Perl, PHP, Python, and, of course, Ruby.
A here-document preserves the line breaks and other whitespace (including inden­
tation) in the text:

string = <<END_OF_STRING
 The quick brown fox jumps
 over the lazy dog.
END_OF_STRING
=> " The quick brown fox jumps\n over the lazy dog.\n"

Take note that the delimiter is the string after the << characters—in this case,
END_OF_STRING.

Ruby | 7

Although I can’t list everything that Ruby provides for string manipulation in this
section, here are a few things it can do:

a = "hello "
b = "world"

a + b
=> "hello world" # string concatenation (this adds b to a
 # to create a new string)

a << b
=> "hello world" # append to string (this modifies a)

a * 3
=> "hello hello hello" # you can repeat strings by simply
 # multiplying them

c = "This is a string" # splitting a string according to a delimiter,
 # any space being the default delimiter
c.split
=> ["This", "is", "a", "string"]

Arrays and hashes

Just as important as strings, and perhaps sometimes even more so, is being able to
manipulate data structures. The two most important data structures, which you’ll
meet very often in this book (and also in Ruby programming), are arrays and hashes.

Arrays are indexed containers that hold a sequence of objects. You can create arrays
using square brackets ([]) or using the Array class. Arrays are indexed through a
running integer starting with 0, using the [] operator:

a = [1, 2, 'this', 'is', 3.45]
a[0] # 1
a[1] # 2
a[2] # "this"

There are other ways of indexing arrays, including the use of ranges:
a[1..3] # [2. 'this', 'is']

You can also set items in the array using the same operator:
a[4] = 'an'
a # [1, 2, 'this', 'is', 'an']

Arrays can contain anything, including other arrays:
a[5] = ['another', 'array']
a # [1, 2, 'this', 'is', 'an', ['another', 'array']]

8 | Chapter 1: The Hat and the Whip

If you’re used to manipulating data structures, you might be wondering why I’m
discussing only arrays and hashes in this section. What about the other common data
structures, like stacks, queues, sets, and so on? Well, arrays can be used for them as
well:

stack = []
stack.push 1
stack.push 2
stack.push 'hello'
stack # [1, 2, 'hello']

stack.pop # 'hello'
stack # [1, 2]

Tons of other methods can be used on arrays; you can find them through the reference
documentation on the Ruby website, or even better, by firing up irb and playing
around with it a bit. A common way of iterating through arrays is using the each
method:

a = ['This', 'is', 'an', 'array']

a.each do |item|
 puts item
end

This will result in each item in the array being printed out at the standard output (i.e.,
the console). In the preceding code, the loop starts with do and ends with end. It runs
for each of the four items in the array; here, we chose the variable item to represent
the item within the loop. We use vertical bars to surround the variable name item.
Sometimes, for brevity, we can replace the do … end with a pair of curly braces {}.
This code produces the following results:

This
is
an
array

Notice that the items in the array are printed in the same sequence in which they are
defined.

While arrays have a lot of methods, you should also be aware that Array inherits from
the Enumerable module, so it also implements those methods. We’ll get to Enumerable
shortly.

Hashes are dictionaries or maps, data structures that index groups of objects. The
main difference is that instead of having an integer index, hash indices can be any
object. Hashes are defined using curly braces {} or the Hash class, and indexed using
square brackets:

Ruby | 9

h = { 'a' => 'this', 'b' => 'is', 'c' => 'hash'}

h['a'] # "this"
h['b'] # "is"
h['c'] # "hash"

Setting an item in a hash also uses the square brackets:
h['some'] = 'value'
h # { 'a' => 'this', 'b' => 'is', 'c' => 'hash', 'some' => 'value'}

The hash rocket style of assigning values to keys in hashes was changed in Ruby 1.9.
While that still works, the new syntax is simpler and more crisp. The following lines
of code do exactly the same thing:

h = { canon: 'camera', nikon: 'camera', iphone: 'phone'}
is the same as
h = { :canon => 'camera', :nikon => 'camera', :iphone => 'phone'}

There are many ways of iterating through hashes, but here’s a common way of doing
it:

h = { canon: 'camera', nikon: 'camera', iphone: 'phone'}

h.each do |key, value|
 puts "#{key} is a #{value}"
end

Just as we used vertical bars earlier to name item as the variable to represent items
from an array, here we use vertical bars to name two variables. The first represents
each key in the hash, and the second represents its associated value. This code pro­
duces the following results:

canon is a camera
nikon is a camera
iphone is a phone

Both Array and Hash inherit from—that is, are subclasses of—Enumerable. Enumera
ble is a module that provides collection classes with a number of capabilities, includ­
ing several traversal and searching methods, and the ability to sort. A very useful
method (we’ll get to methods in a bit) in Enumerable is the map method, which runs
through each item in the collection, performs the action given by the block, and then
returns a new array with the new values. The input to map in the following example
is a range of digits (1, 2, 3, and 4), and its output is the square of each input:

(1..4).map do |i|
 i*i
end #[1, 4, 9, 16]

The max_by and min_by methods are also useful. These, as you might have guessed,
return the maximum or minimum item in the array:

10 | Chapter 1: The Hat and the Whip

a = ["cat", "horse", "monkey"]
a.min_by {|i| i.length} # "cat"
a.max_by {|i| i.length} # "monkey"

As before, read up on the available methods in Enumerable and try them out in irb.

Symbols

Ruby includes the concept of symbols, which are constant names. Symbols start with
a colon, followed by some kind of name. For example, :north and :counter are sym­
bols. Symbols are often useful in situations where you need some kind of identifier.
Using strings would be overkill since each string you create is a new object. Symbols,
once defined, always refer to the same object that was originally created.

Conditionals and loops

If you have done any sort of programming, conditionals and loops in Ruby should
look very familiar to you. Ruby has direct and indirect ancestry of C, so its conditional
syntax is very similar to C’s syntax.

if and unless. The if expression in Ruby is pretty similar to that of other languages:
if pet.is_a? Dog then
 wag :tail
elsif pet.is_a? Cat then
 meow
else
 do_nothing
end

The keyword then is optional if every statement is on a new line. The negated and
opposite of if is unless:

unless visitor.friend?
 bark :loudly
else
 wag :tail
end

Sometimes, when you don’t have an else statement, you can use if and unless as
statement modifiers. Statement modifiers are just that—they modify the statements
given that the conditional is satisfied.

wag(:tail) if pet.is_a? Dog

bark(:loudly) unless visitor.friend?

In the preceding code, the method wag will be called if the pet object is of the class
Dog. The method bark will be called unless the visitor is a friend.

Ruby | 11

Finally, just as in C, Ruby recognizes the ternary conditional expression:
visitor.friend? ? wag(:tail) : bark(:loudly)

This is equivalent to:
if visitor.friend? then
 wag(:tail)
else
 bark(:loudly)
end

case expression. In Ruby, there are two ways to use a case expression. The first is sim­
ilar to a series of if and elsif statements:

case
when visitor.friend?
 wag :tail
when visitor.postman?
 chase
when visitor.carries :big_juicy_bone
 jump_on visitor
else
 bark :loudly
end

The second way is more common, though. Specify a target along with the case, and
each when clause does a comparison with the target:

case visitor.name
 when "Harry" then greet("Hello and welcome!")
 when "Sally" then greet("Welcome my dear!")
 when "Joseph" then greet("They are not here yet")
 else do_not_open_door
end

Loops. The two main looping mechanisms in Ruby are while and its negated form,
until. while loops through the block zero or more times as long as its condition is
true, and until does the opposite—it loops through the block until the condition
becomes true:

while visitor.hungry?
 offer food
end
is the same as
until visitor.full?
 offer food
end

12 | Chapter 1: The Hat and the Whip

As you can see, both forms do exactly the same thing. So why would you have both
ways and not just one? Remember that Ruby can be expressive and often tries to make
programs more intelligible. Although both forms are the same, sometimes it’s just
more natural to do it one way or the other.

Like if and unless, both while and until can be used as statement modifiers:
offer(food) while visitor.hungry?
is the same as
offer(food) until visitor.full?

Everything Is an Object
Something you will often hear about Ruby is that everything in Ruby is an object.
That sounds a bit extreme and is not technically true. Certainly keywords, such as the
if-else conditional syntax, are not objects. However, everything that you manipulate
within Ruby is an object. Even classes are objects, and so are methods. And everything
actually evaluates to an object. Let’s see how this works.

Classes and objects

The classic way of creating objects is to instantiate one from a class:
class Dog
 attr :breed, :color, :name

 def initialize(name, color, breed)
 @name, @color, @breed = name, color, breed
 end

 def bark(volume=:softly)
 make_a_ruckus(volume)
 end
end

If you have done any form of object-oriented programming in other languages, this
should be familiar to you. If you haven’t done this before, this seems like a bit of a
puzzle, but it’s easily explainable. The previous code defines a class, which is somewhat
like a template from which you create instances or objects. In this example, I defined
a Dog class, which has attributes like breed and color, as well as a name for each
instance of the class. The keyword attr is a method call that helps me create three
instance variables (breed, color, and name) along with some standard methods that
access these variables. Instance variables in Ruby start with @.

The lines that start with def define methods. Methods are functions that belong to
objects and are called on that object. The example has two methods: initialize and
bark.

Ruby | 13

initialize is a convenience method. Whenever Ruby creates a new object, it will
always look for a method named initialize and call it. In our initialize method,
we set up each of the instance variables with a value from the parameter.

The bark method, well, simply makes a ruckus. Its definition shows how to assign a
default value (softly) to an argument if the argument is not passed by the calling
method.

So how do we create an object from this Dog class?
my_dog = Dog.new('Rover', :brown, 'Cocker Spaniel')

my_dog is a variable that contains an object that has just been instantiated from the
Dog class, with values sent to the initialize method to give the name, color, and
breed.

Methods

As mentioned, you can define methods using the def keyword, followed by the meth­
od name. Method definitions can take in zero or more parameters. If you don’t need
parameters for your method, you can do away with the brackets altogether:

def growl
 make_a_ruckus(:very_softly)
end

As you might have noticed from the Dog class, you can also set default values to method
parameters:

def bark(volume=:softly)
 make_a_ruckus(volume)
end

In the preceding code, the default value for the volume, which is a parameter, is the
symbol :softly. If you include a default value in the parameter, when you call the
method you can either include the parameter or omit it:

my_dog.bark # in this case dog barks softly
my_dog.bark(:loudly)

For methods with multiple parameters, it’s common practice to place the parameters
with defaults after the ones that do not have defaults. If the parameters without de­
faults came after the ones with defaults, setting the default would become meaningless
because each time the method is called, the parameter must always be given.

Methods always return a value, which can be an array in order to incorporate multiple
values. To return a value, you can either specify it directly with the return keyword,
or simply let the method end, in which case it will return the last evaluated value.

14 | Chapter 1: The Hat and the Whip

Class methods and variables

So far we’ve been talking about instances of a class. An earlier example instantiated
the my_dog object from the Dog class. Variables and methods really belong to the
my_dog object and are called on the my_dog object only. For example, given the previous
definition of the Dog class, you can’t really do this:

Dog.bark

Logically speaking, since Dog is the template by which dogs are created, calling the
bark method on Dog means asking all dogs to bark! However, in many cases (and if
you’ve done object-oriented programming before, you’ll understand what I’m refer­
ring to), you will need to call upon methods and even variables that belong to the class
instead of the object. How can we do this?

Earlier I said that even classes are objects. What we’re doing next is really nothing
more than treating a class as an object. To define a class method, simply prefix the
name of the method with self:

class Dog
 attr :breed, :color, :name

 def self.total_count
 # return the total number of dogs in the system
 end

 # other methods
end

self is a keyword that represents the current object (like this in C++ or Java). While
we’re defining a class, the current object is the class that’s being defined. By defining
a method with self in the class definition, we’re saying we want to add this method
to the class itself, not to an instance of the class. In this case, we’re adding a method
to the Class object that’s an instance of the Class class. You’ll see a lot of this when
we need to define methods that will work on the class itself.

Defining class variables is quite straightforward. Simply prefix the name of variable
with @@:

class Dog
 @@count = 0
 attr :breed, :color, :name

 def self.total_count
 @@count
 end

 def initialize
 @@count += 1
 # other initialization
 end

Ruby | 15

1. From Stephen Hawking’s book, A Brief History of Time (Bantam):

A well-known scientist (some say it was Bertrand Russell) once gave a public lecture on astronomy. He
described how the earth orbits around the sun and how the sun, in turn, orbits around the center of a vast
collection of stars called our galaxy. At the end of the lecture, a little old lady at the back of the room got
up and said: “What you have told us is rubbish. The world is really a flat plate supported on the back of a
giant tortoise.” The scientist gave a superior smile before replying, “What is the tortoise standing on?”
“You’re very clever, young man, very clever,” said the old lady. “But it’s turtles all the way down!”

 # other methods
end

Notice that the @@count class variable is initialized to zero during the class definition.
This is done once only. It would normally be a mistake to initialize a class variable in
the initialize method, because the initialize method is called every time a new object
is instantiated. This means that the class variable is reset every time a new object is
created!

Inheritance

Inheritance is one of the cornerstones of object-oriented programming. Inheritance
in Ruby is pretty conventional. To subclass from another class, do this at the class
definition:

class Spaniel < Dog
 # other definitions
end

This creates a subclass named Spaniel that inherits everything from the Dog class,
including methods and variables. This begs the question: if Spaniel is the subclass of
Dog, Dog is the subclass of what? You can find out by calling the superclass method
on the Dog class itself. Remember that Dog is actually an object, so you can call methods
directly on it:

Spaniel.superclass # Dog
Dog.superclass # Object
Object.superclass # BasicObject
BasicObject.superclass # nil

As you can see, Dog is a subclass of the Object class (which is an object—does your
head hurt yet?) and Object is the subclass of BasicObject. As it turns out, that’s the
end of the line—and it’s not turtles all the way down.1

Now that we have defined the Spaniel class, what happens if we call the bark method?
Since bark is not defined in Spaniel, it will reach out to its superclass—in this case,
Dog—and call the same method on Dog. Of course, if Ruby can’t find bark in the Dog
class, it will continue bubbling up the object hierarchy until it hits BasicObject, and
then finally throw a NoMethodError.

16 | Chapter 1: The Hat and the Whip

You cannot subclass from more than one superclass. While some languages allow
multiple inheritance, Ruby supports single inheritance only. However, Ruby has a
mechanism you can use to mimic multiple inheritance: the mixin mechanism, using
modules.

Modules are simply a way to group methods, classes, and constants to provide a
namespace and prevent name clashes. In addition, Ruby enables mixins if you include
modules in the class. Because we can include more than one module in a class, we
can simulate the effects of multiple inheritance.

Let’s take the example of the Dog class further by defining a superclass for Dog called
Canine:

class Canine
 # some definitions
end

class Wolf < Canine
 # some definitions
end

class Dog < Canine
 # some definitions
end

Now, dogs are pets too, so if we want to bunch together some methods and variables
for a Pet class, how do we make Dog inherit methods or variables from Pet? We can’t
do this in Ruby because it is single inheritance. Instead, we can convert Pet into a
module:

module Pet
 def scratch_stomach
 # there's a good boy!
 end
end

class Dog < Canine
 include Pet
 # some definitions
end

This way, Dog can inherit the methods in Pet and Canine without violating single
inheritance.

An example of a mixin, which you may remember from “Arrays and hashes” (page
8), is that both Array and Hash classes include the Enumerable module.

Ruby | 17

Code like a duck

Ruby and languages like Python, PHP, and Smalltalk, are well known to be dynami­
cally typed, versus languages like C and Java that are statically typed. Essentially, a
language is statically typed if the programmer needs to specify the data type in the
code, and the compiler will check and complain if the types don’t match. Dynamically
typed languages, on the other hand, don’t need to specify the data type in the code,
and leave type checking to the runtime.

For example, in Java, you need to first declare a variable, then assign it to a value:
int count = 100;

However, in Ruby, you only need to do this:
count = 100

You are expected to use the variable properly—that is, if you placed an integer into
the variable, you’re expected to use it as an integer in your code. When you use
count, Ruby knows that it’s an integer and you’re expected to use it as such. However,
if you don’t, Ruby will automatically cast it to whatever you’re trying to use it for.
This process is known as duck typing.

The idea behind duck typing comes from the duck test: “if it walks like a duck, and
quacks like a duck, then it is a duck.” What this means is that the type of the object
is not determined by the class of the object. Instead, the type depends on what the
object can do.

A simple example goes like this. Let’s say we define a method named op:
def op(a,b)
 a << b
end

The method takes two parameters and returns a single value. Nowhere in this defi­
nition are the parameter types specified. The returned value’s type is not specified
either. A potential infestation of bugs? Let’s see how we use this method. If x and y
are both strings, the return result is also a string. No problem here:

x = 'hello '
y = 'world'

op(x,y)
=> 'hello world'

If x is an array and y is a string, the method appends y into the x, returning an array:
x = ['hello']
y = 'world'

op(x,y)
=> ["hello", "world"]

18 | Chapter 1: The Hat and the Whip

If x and y are integers, the method will perform a left-shift bitwise operation, moving
binary 1 two positions to the left, resulting in 4:

x = 1
y = 2

op(x,y)
=> 4

So what does this mean? There are both benefits and drawbacks to duck typing. The
most obvious drawback is that we have a method that is inconsistent: if we put dif­
ferent values into the method, we can get wildly different results, and this is not
checked anytime before the actual running of the program.

However, the major benefit of this approach is that it results in much simpler code.
If you know what you’re doing, it can lead to code that is easier to read and to maintain.

Ultimately, duck typing is more of a philosophy than a fixed way of coding in Ruby.
If you want to ensure that the op method you defined can be used only for strings, for
example, you can always do this:

def op(a,b)
 throw "Input parameters to op must be string"
 unless a.is_a? String and b.is_a? String
 a << b
end

This will throw an exception if either a or b is not a string.

Shoes
The second part of this chapter will introduce Shoes, a Ruby-based user interface
toolkit. Shoes is not commonly used as a UI toolkit, and Ruby itself doesn’t have
significant strength for building desktop graphical user interfaces. Among the other
more popular Ruby UI toolkits (in case you want to get serious later on) are FXRuby,
WxRuby, qtRuby, and Tk. If you’re looking for something totally cross-platform,
JRuby with Swing is a good option, although there are other alternatives to Swing,
like SWT and Limelight. For Macs, a good alternative is MacRuby.

However, in this book, we’ll be using Shoes.

What Is Shoes?
Shoes is a cross-platform toolkit for writing graphical applications with Ruby. It’s
entirely and purely Ruby, quite unlike most other toolkits, which are usually Ruby
bindings of existing UI toolkits. It’s also dead easy, and that’s a primary motivation
for using Shoes in this book.

Shoes | 19

Shoes was originally created by why the lucky stiff (yes, that’s his name), a rather
famous if mysterious Ruby programmer who also draws cartoons and plays music.
He is probably most famous for writing Why’s (poignant) Guide to Ruby, a totally
un-programming-book-like book that teaches Ruby programming.

For unknown reasons, _why (as he is also known) removed his Twitter and GitHub
accounts suddenly in August 2009 and shut down his personal sites, many of which
were popular haunts for Ruby programmers. However, many of his projects, includ­
ing Shoes, were collected and continued by the Ruby community.

A Rainbow of Shoes
Ruby is red and so is Shoes. Red Shoes is based on C and is the original version of
Shoes written by _why. When the community took over after _why left, there were
experiments to try out different types of Shoes, and each was “colored” differently.
Red Shoes

This is the original written by _why, based on C.

White Shoes
This is called the meta-Shoes, the most generic of all Shoes. It’s basically a set of
RSpec tests to make sure that all other Shoes are compliant to a standard.

Blue Shoes
This is built on top of the Qt framework, which is written in C++ and is the
original UI framework for Ruby.

Green Shoes
This is the closest in spirit to Red Shoes because it uses GTK and Cairo’s Ruby
bindings. It’s also one of the most advanced (as of this writing).

Brown Shoes
This is the version of Shoes written in JRuby and is based on Swing.

In this book, when I refer to Shoes, I am referring to Red Shoes, which in fact is the
only version of Shoes that I’ve run my code against. The standard disclaimer is that
the code might not necessarily run properly in any other color Shoes. You’re more
than welcome to try them out, though!

Installing Shoes
Installing Shoes is usually really easy. If you’re using a Mac or Windows, just download
it from the Shoes website (http://shoesrb.com/downloads) and install it on your plat­
form of choice. Using Shoes, however, is not conventional. Unlike most Ruby pro­
grams, which can be run through a console, you need to open the Shoes application,
then use it to open and run your Shoes program. Alternatively, you can do the fol­
lowing on a Mac, or the equivalent on Windows:

20 | Chapter 1: The Hat and the Whip

http://shoesrb.com/downloads

$ /Applications/Shoes.app/Contents/MacOS/shoes test_shoes.rb

If you’re using a variant of Linux, installing Shoes can be a bit more involved. As of
this writing, the best way of getting Shoes on the Linux variant of your choice is to
build it entirely from source. It’s not as difficult as it seems. You do, however, need
to install some other libraries it depends on. Here are the steps that are common to
all Linux variants:

$ git clone git://github.com/shoes/shoes.git
$ cd shoes
$ gem install bundler
$ bundle install
$ rake

For more detailed information, you can refer to https://github.com/shoes/shoes/wiki/
Building-Shoes-on-Linux.

Programming Shoes
One of the main reasons I picked Shoes as the UI toolkit for this book is that it’s really
simple to create reasonably good graphical interfaces. Because it’s Ruby (as opposed
to a Ruby binding for another toolkit), the code is typically very readable and easy to
understand.

A simple Shoes program looks like this:
Shoes.app do
 button("Click me!") do
 alert("Ruby rocks!")
 end
end

This produces a simple window with a single button labeled “Click me!” When the
button is clicked, an alert dialog box pops up (Figure 1-1).

While Shoes is a simple UI toolkit, there’s still lots of stuff in there that is impossible
to describe completely in a few sections of a chapter. I’ll just go through a couple of
basic examples. Let’s start by building a simple stopwatch application.

Shoes stopwatch

In this example, I’ll show how Shoes can be used to build the very simple stopwatch
in Example 1-1.

Example 1-1. Shoes stopwatch
Shoes.app height: 200, width: 200 do
 background lightblue
 stack margin: 10 do
 caption strong "Shoes StopWatch"
 flow do

Shoes | 21

https://github.com/shoes/shoes/wiki/Building-Shoes-on-Linux
https://github.com/shoes/shoes/wiki/Building-Shoes-on-Linux

Figure 1-1. Simple Shoes program

 button "start" do
 @time = Time.now
 @label.replace "Started at #{@time.strftime '%l:%M:%S %p'}"
 end
 button "stop" do
 @label.replace "Stopped, ", strong("#{Time.now - @time}"),
 " seconds elapsed."
 end
 end
 @label = para "Press ", strong("start"), " to begin timing."
 end
end

All Shoes apps must be wrapped by a call to Shoes.app. You can optionally set a
configuration for the window that starts up. In this example, we set the height and
width of the window. The first line in the example sets a background color for the
window. This is not always necessary, but notice that the color lightblue is predefined
in Shoes. There is a list of default colors from the X11 and HTML palette that Shoes
predefines with intuitively simple names. If you are inclined to build your own custom
colors, you can use the rgb method to create them.

Elements in Shoes applications are laid out using slots, which are simply containers
for elements and other slots. Slots can be also be nested, so you can build quite a
complicated layout by nesting slots and elements. There are two common types of
slots: stacks and flows.
Stack

A stack is a collection of elements that are laid out one on top of another in a
column. The stopwatch in Example 1-1 places three items in the stack: a caption
text block, a flow slot, and a para text block.

22 | Chapter 1: The Hat and the Whip

Flow
A flow slot lays out its elements in a horizontal sequence, one after another,
packed tightly. The stopwatch in Example 1-1 places two buttons in a flow, one
labeled “start” and the other labeled “stop.”

You can also set configuration parameters in the slots. The stack in the stopwatch
example uses a margin of 10 pixels.

The button element creates a button for the application. If you send in a block of code
as shown in the example, the code will be executed when the button is clicked. Al­
ternatively, you can also set the button’s click behavior using the click method shown
later.

Run the previous code, and you’ll see the stopwatch in Figure 1-2.

Figure 1-2. Shoes stopwatch

That was quite a conventional user interface application. Let’s do something more
arty.

Shoes doodler

Let’s write a simple doodling application. Example 1-2 is a standard demo application
type and not very useful, but it illustrates some basic concepts in Shoes.

Example 1-2. Shoes doodler
Shoes.app do
 fill red
 orig_left, orig_top = nil, nil
 animate 24 do
 button, left, top = self.mouse
 line(orig_left, orig_top, left, top) if button == 1
 star(orig_left, orig_top, 5, 15, 5) if button == 3
 orig_left, orig_top = left, top
 end
 end

If anything, this application looks even simpler than the stopwatch!

Shoes | 23

Let’s start by describing the animate method. This method starts an animation timer
that runs in parallel with the rest of the application. We specify the number of frames
per second the loop will be called, so the application will loop endlessly. As you might
have guessed, this is an excellent method that can be used in running simulations.

The self.mouse method returns an array of three numbers. The first is the number
of the mouse button that is clicked. If the mouse button is not clicked, this will be 0.
The second and third numbers indicate the left and top positions of the cursor. We
take these numbers and assign them according to the variables button, left, and top.

Now when the left button (or button 1) is clicked, we draw a line from where the
cursor was positioned originally to where it is now. Because we’re looping in an
animate loop, if we move the mouse around, this will produce the effect of drawing
something on the screen.

Similarly, if we click button 3 (usually the wheel button), we will draw a star. And
because we specified that all shapes that we draw will be filled with red, we’ll be
drawing red stars at the position of the cursor. See Figure 1-3 for a sample run.

Figure 1-3. Shoes doodler

24 | Chapter 1: The Hat and the Whip

Wrap-up
It’s impossible to stuff everything about Ruby into a single book, much less a single
chapter. What I hope I’ve done here is introduce you to the language and provide you
with a glimpse of what Ruby is able to do. I’ve skipped many of its more exciting
features, including the much-talked-about metaprogramming capabilities. That topic
could be and is a whole book on its own. I’ve also given you a quick introduction to
Shoes, a simple but powerful UI toolkit for Ruby, and provided a couple of examples
of how to program graphical user interface applications with it. What I’ve described
in this chapter is a good start, and should provide you with enough foundation to
explore the rest of the code in this book.

Onward!

Wrap-up | 25

CHAPTER 2

Into the Matrix

In the 1999 movie The Matrix, Neo and a bunch of other hackers/freedom fighters
rebelled against their machine overlords, who imprisoned humans in vats all their
lives to use them as batteries. The Matrix itself was a simulated reality that depicted
the world as it was in 1999.

The R environment is just like the Matrix (except for the 1999 part). In the R envi­
ronment, you—like Neo—are the One. You literally control everything in the work­
space, and can recall history and see the code. You can manipulate objects in the
environment and also source the code. Most importantly, R is built for and has a
comprehensive suite of matrix operations that allows you to perform matrix pro­
gramming with ease.

In this chapter, you will be learning about all of these topics. By the end of this chapter,
although you might not be the One, you will certainly be able to fly on to the rest of
the book.

Introducing R
Programmers are trained in logic, and our daily work mostly involves controlling and
moving bits and bytes around. So when we’re faced with a chunk of data and asked
to do something with it, our reactions usually involve either bolting for the nearest
exit or stuffing the data into a relational database and running SQL SELECT statements
on it.

I’m exaggerating, of course. Most, if not all, data scientists are also programmers, and
you can hardly get away with data analysis without doing some programming work.

27

However, not all programming platforms and languages are suitable for data analysis
and manipulation. There are a number of languages built for this rather specialized
purpose, including MATLAB and S, as well as packages like SAS and SPSS. One par­
ticular programming language we’re going to use extensively in this book is R.

R is a free software programming language and environment for statistical computing
and graphics. It was originally created by Ross Ihaka and Robert Gentleman at the
University of Auckland, New Zealand, though it is now maintained by the R Devel­
opment Core Team. R is named partly after the first names of its creators and partly
as a play on the name of S. In fact, R is often considered the GNU version of S.

According to Rexer’s Annual Data Miner Survey in 2010, R has become the
data mining tool used by more data miners (43%) than any other tool.

R offers a powerful and appealing interactive environment for exploring data, and us‐
ing that interactive environment is part of its appeal. The other reason why R is getting
increasingly popular is that it is free. The existing batch of tools for data analysis—S,
MATLAB, SPSS, and SAS—can be quite expensive, and R is a cost-effective way to
achieve the same goals. Also, R has a very vibrant and active community of domain
experts and developers, including statisticians and data scientists who contribute
many very useful packages that enhance its overall capabilities.

R is available in most major platforms, and installing it is quite straightforward. Just
visit the R website (http://www.r-project.org/), download the necessary binaries or
installer for your platform, and then install it accordingly. If you’re using Linux, you
can use the platform’s package management system to install R or download a pre­
compiled binary. Alternatively, you can compile R for your platform, though it’s not
advisable or necessary because R has binaries for most platforms already.

In this book, we will be using R version 2.14.2.

Using R
R comes with a bunch of stuff, including a nice graphical user interface. Now, if you
were expecting something visual and drag-and-drop (or seeing some digital rain),
you will be sorely disappointed because the GUI is the R environment and is a console.
Yes, that’s right—you have to type stuff in.

The user interface for Windows and Mac OS X is quite similar and is the actual
application that you start up. Alternatively, for Mac OS X and Linux, you can start R
from the terminal:

$ R

28 | Chapter 2: Into the Matrix

http://www.r-project.org/

1. Taken from the American Society of Actuaries’ Build and Blood Pressure Study.

This will give you the R console on your normal command line. Notice that it’s a
capital R. To start up the same user interface on Linux, you can do this:

$ R -g Tk &

This starts up R running in its own window in the background. The Tk refers to a
graphic library used for the GUI.

There are also plenty of other unofficial R user interfaces, such as R Commander and
RStudio. RStudio has a very nice R environment that runs on the server but is acces­
sible through the browser. Another alternative is to integrate the R interpreter with
your favorite text editor. There are plenty of choices; just choose one that you’re most
comfortable with and let’s move on to the next section.

The R Console
Whichever way you choose to eventually use R, you will inevitably end up with the
console. The console is likely the tool that you will be using most often when exploring
R. When you get into the user interface, you will see something like Figure 2-1. For
the rest of the chapter, you should cut and paste (whenever you can) or type the code
into the console to try it out for yourself. You’ll find that it makes a lot more sense
than simply reading it.

Let’s run through a simple example of interacting with the console. For this example,
we will use the height and weight of a sample group of women.1

At the very bottom of the console is a small > sign. This is the command prompt for
the R console. Let’s type in something:

> height <- c(58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)

The c() function creates a vector (an ordered collection of numbers) of heights (in
inches), whereas the <- assigns the vector to a variable named height. Next, we do
the same with the weight (in pounds):

> weight <- c(115, 117, 120, 123, 126, 129, 132, 135, 139, 142, 146, 150,
 154, 159, 164)

Now that we have data, let’s do something with it. Let’s say we want to find the average
height of this group of women:

> mean(height)
[1] 65

The answer is 65, but notice the number 1 in square brackets just before the answer.
This means the index of the first item displayed on the returned row is 1. If there are
more items and the returned value needs to wrap the line, the new row will begin with
another number in square brackets, indicating the index of that item.

Using R | 29

Figure 2-1. R console from the user interface

Let’s get back to our example. If we want to get the standard deviation of the weight,
we can use the sd() function:

> sd(weight)
[1] 15.49869

Let’s say now we want to find whether the weight of the women is related to their
height. To do this, we use the cor() function, which finds the linear correlation be­
tween the women’s weight and height:

> cor(weight, height)
[1] 0.9954948

We find that there is very strong linear correlation; in fact, it is almost 1 to 1. Finally,
to visualize this correlation, we can run a plot on these two vectors:

> plot(weight, height)

This draws a scatterplot that shows how the two vectors are related (Figure 2-2).

30 | Chapter 2: Into the Matrix

Figure 2-2. Scatterplot of weight versus height

Sourcing Files and the Command Line
Everything in the previous section was typed into the console and executed line by
line. If you already have all the code written down, you’re probably not too interested
in cutting and pasting to the console. There are a couple of alternatives that run the
code from a file.

The first is to use the R console and the source() function. Let’s say you have a file
named weight_n_height.R with the code in Example 2-1.

Example 2-1. Weight and height source file
height <- c(58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)
weight <- c(115, 117, 120, 123, 126, 129, 132, 135, 139, 142, 146, 150, 154,
 159, 164)
print(mean(height))
print(sd(weight))
print(cor(weight, height))
plot(weight, height)

Notice that we need to explicitly print the output to the console now. The output
looks like Figure 2-3.

An alternative to sourcing the file from the R console is to run it in batch mode from
the command line:

$ R CMD BATCH weights_n_heights.R

Using R | 31

Figure 2-3. Output from sourcing the R file

The command creates a file named weight_n_height.Rout containing the complete
output from running the batch command, including the header from starting up R,
as shown in Example 2-2.

Example 2-2. Output from running R in batch mode
R version 2.14.2 (2012-02-29)
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

 Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

32 | Chapter 2: Into the Matrix

[Previously saved workspace restored]

> height <- c(58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)
> weight <- c(115, 117, 120, 123, 126, 129, 132, 135, 139, 142, 146, 150, 154,
 159, 164)
> print(mean(height))
[1] 65
> print(sd(weight))
[1] 15.49869
> print(cor(weight, height))
[1] 0.9954948
> plot(weight, height)
>
> proc.time()
 user system elapsed
 0.261 0.043 0.331

How about the scatterplot? A separate PDF file named Rplots.pdf is created, containing
the same scatterplot as before.

Packages
An R package is a set of related functions and help files, bundled together. It is very
similar to a gem in Ruby or libraries in C or C++. Normally, all functions within a
single package are related: for example, the stats package contains functions for
statistical analysis. As with Ruby, there are a few public repositories of packages. The
largest is CRAN (Comprehensive R Archive Network; http://cran.r-project.org).
CRAN is hosted by the R Foundation (the same organization that is developing R)
and contains 3,646 packages as of this writing. CRAN is also mirrored in many sites
worldwide.

Another public repository is Bioconductor (http://www.bioconductor.org), an open
source project that provides tools for bioinformatics and is primarily R-based. While
the packages in Bioconductor are focused on bioinformatics, it doesn’t mean that they
can’t be used for other domains. As of this writing, there are 516 packages in
Bioconductor.

Finally, there is R-Forge (http://r-forge.r-project.org), a collaborative software devel­
opment application for R. It is based on FusionForge, a fork from GForge (on which
RubyForge was based), which in turn was forked from the original software that was
used to build SourceForge. R-Forge has 1,244 hosted projects as of this writing. It
differs from CRAN and Bioconductor in that anyone can start up a project in R-Forge,
and it doesn’t necessarily need to end up with an R package.

Using R | 33

http://cran.r-project.org
http://www.bioconductor.org
http://r-forge.r-project.org

Installing packages

To use a package, you first need to install it into R. This process is very similar to
installing a gem in Ruby. There are a number of ways to do it, just as many as there
are ways of using R.

If you’re using the R console user interface, you can always use the package installer
from the menu. The exact menu path to the item varies, but you should always get
some sort of window that helps you to explore and search for packages on CRAN
(Figure 2-4).

Figure 2-4. Package installer window in Mac OS X

Alternatively, you can install R packages directly through the R console. The following
example installs the tree package:

34 | Chapter 2: Into the Matrix

> install.packages('tree')
Installing package(s) into '/Users/sausheong/Library/R/2.14/library'
(as 'lib' is unspecified)
trying URL 'http://cran.cnr.Berkeley.edu/bin/macosx/leopard/contrib/2.14/
 tree_1.0-29.tgz'
Content type 'application/x-gzip' length 158835 bytes (155 Kb)
opened URL
==
downloaded 155 Kb

The downloaded packages are in
 /var/folders/0W/0WaBiTP9GcGX4vyLiy95Yk+++TI/-Tmp-//RtmpUbNCUX/
 downloaded_packages

If you want to find out what the available installed packages are, you can also use the
command:

> installed.packages()

This will tell you all about the packages that have been installed, including where they
were placed, which license they are under, and which version you have installed.

Using packages

Once you have installed the package you want, using it is quite simple. To load the
package into R, just enter the following line of code before you start using any func­
tions from that package:

library(tree)

Note that when you first install the package, the name of the package is a string, but
once it is installed, you can use the package name directly.

Programming R
R code is essentially a series of expressions (in Ruby, they would be called statements).
Expressions consist of objects and functions and are separated by a new line or a semi-
colon. R is an object-oriented language, meaning that everything in R that you interact
with is an object, has a type, and belongs to a class. Even functions are objects of the
class function:

> height <- c(58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)
> class(height)
[1] "numeric"
> mean(height)
[1] 65
> class(mean)
[1] "function"

Programming R | 35

Variables and Functions
Variable assignment in R is interesting because the language offers a few different
assignment operators. The <- is the most common assignment operator, and can be
used anywhere. The -> operator is exactly the same as <-, but with the variable and
the value reversed:

x <- 1
is the same as
1 -> x

The = assignment operator can be used only at the top level (directly from the console).
Using it within a function scopes the variable within that function only. For example:

> mean(x = 1:10)
[1] 5.5
> x
Error: object 'x' not found

The variable x is scoped within the mean() function only. However, if we use <-
instead, x will be defined at the user workspace and is available outside of the function:

> mean(x <- 1:10)
[1] 5.5
> x
 [1] 1 2 3 4 5 6 7 8 9 10

Functions in R are objects that accept input and return output. All work in R is done
by functions, even setting variables, looping, conditionals, and so on. Just to prove a
point, let’s consider this very simple expression:

> a <- 1
> a + 1
[1] 2

The addition operator + is actually a function. This means we can call it like a function:
> `+`(a,1)
[1] 2

In the preceding example, we surrounded the + with backticks in order to evaluate it
as what it really is—a function. Of course, we would normally not need to invoke an
operator as a function, but it’s useful to know that R treats operators that way. Defin­
ing a function is simple and follows a familiar format:

my_function <- function(x,y) {
 x + y
}

The body of the function doesn’t really need to be in separate lines, and the curly
braces aren’t even necessary if the body is just a single expression. Once my_func
tion has been defined, you can use it:

36 | Chapter 2: Into the Matrix

> my_function(1,2)
[1] 3

You can set default values in the function when creating it:
my_function <- function(x,y=5) {
 x + y
}

If you have default values, you don’t need to specify all the arguments. This syntax is
quite similar to Ruby’s:

> my_function(1,2)
[1] 3
> my_function(1)
[1] 6

To return a value from a function, you can use the return keyword. If you don’t
execute an expression with return, R will return the last evaluated expression, just as
in Ruby.

Note that because functions are also objects, you can always pass a function into
another function as the argument. An example of this is how you use the sapply()
function. The sapply() function accepts a list and a function, then applies the function
to every element of that list and returns the result (if you are familiar with Ruby, this
is the same as the map method in the Enumerable module):

> l <- c(1,2,3,4,5)
> sapply(l, my_function)
[1] 6 7 8 9 10

Conditionals and Loops
Conditionals in R are similar to those of Ruby (and most other languages):

x <- 10
if (x > 20) {
 print("x is greater than 20")
}
else {
 print("x is less than 20")
}

That’s all there is to it.

R has three forms of loops. The first is repeat, which, as the name implies, repeats a
particular expression or series of expressions. repeat doesn’t stop until it hits a break
keyword, which means if you forget to insert a break somewhere, it’ll loop forever:

> x <- 0
> repeat { if (x > 10) break else {print(x); x <- x + 1}}
[1] 0
[1] 1

Programming R | 37

[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
>

We need to break down the long repeat expression from the outside in to understand
it. Within the outermost braces is an if-else expression: if (x > 10) break else
{print(x); x <- x + 1}. You now may be able to see that the inner set of braces is
part of the else clause: print(x); x <- x + 1. The semicolon separates the clause
into two parts. The first is a print statement, and the second increments x so that the
condition that terminates the loop, x > 10, is eventually satisfied.

R has a while loop as well:
> x <- 0
> while (x < 10) {print(x); x <- x + 1}
[1] 0
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
>

Finally, R has for loops, which iterate through each item in a vector or a list:
> x <- 0
> for (x in 1:10) print(x)
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10
>

The colon creates a vector, passing each integer from 1 to 10 to the loop.

38 | Chapter 2: Into the Matrix

Data Structures
As you might have guessed, data structures are a critical part of R, and there are lots
of them. This section goes through a few key ones. Let’s start with the most basic data
structure, a vector.

Vectors

A vector is a one-dimensional array that holds numeric, character, or logical data. It’s
the most basic data structure and the one that is most frequently used. The easiest
way to create a vector is through the combine function, c():

> height <- c(58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72)

Here, height is a numeric vector. Note that there can be only one type in a vector:
numeric, character, or logical. Unlike in Ruby arrays, you cannot mix the types in a
vector.

As we saw in the previous section, you can also create vectors using the : operator:
> 1:10
 [1] 1 2 3 4 5 6 7 8 9 10

Another way of creating a vector is through the seq() function, which lets you specify
the step increment of the sequence:

> seq(0,100,by=10)
 [1] 0 10 20 30 40 50 60 70 80 90 100

To get the length of the vector, you can use the length() function:
> v <- 1:10
> length(v)
[1] 10

You can reference elements of vectors using square brackets, []:
> v <- seq(0,100,by=25)
> v
[1] 0 25 50 75 100
> v[2]
[1] 25
> v[3]
[1] 50
> v[2:4]
[1] 25 50 75
> v[c(2,4)]
[1] 25 75

Programming R | 39

Note that the index of the vector starts with 1 instead of 0, unlike most programming
languages, including Ruby. You can also specify a range of returned values. In the
previous example, we requested the second through fourth items in the vector, which
returns another vector. You can also pick and choose which items to return in the
vector if you provide another vector as the index.

Another way to reference vectors is through double square brackets, [[]]. While a
single bracket can return multiple values, double brackets will always return only a
single value:

> v[[3]]
[1] 50
> v[[3:4]]
Error in v[[3:4]] : attempt to select more than one element

Lists

A list is a vector with names for each item. While you can refer to each item by the
index, as we just did with vectors, you can also refer to the item by its name. In
addition, the items don’t need to be of a single type, and each item can be a different
object. This means you can also create an arbitrary data structure using a list:

> peter <- list(name='Peter', age=30, glasses=TRUE)
> peter
$name
[1] "Peter"

$age
[1] 30

$glasses
[1] TRUE

You can see that the name of each item is preceded by a $. You can then reference
each item in the list by its position or its name:

> peter[1]
$name
[1] "Peter"
> peter$name
[1] "Peter"
> peter[['name']]
[1] "Peter"
> peter[['na']]
NULL
> peter[['na',exact=FALSE]]
[1] "Peter"

You can also reference the item using the double square brackets notation. If you set
the exact parameter to FALSE, you can even use part of the item name.

40 | Chapter 2: Into the Matrix

Matrices

A matrix is a two-dimensional array. Just like vectors, matrices can hold elements
only of the same type. Create a matrix using the matrix() function:

> m <- matrix(1:20, nrow=5, ncol=4)
> m
 [,1] [,2] [,3] [,4]
[1,] 1 6 11 16
[2,] 2 7 12 17
[3,] 3 8 13 18
[4,] 4 9 14 19
[5,] 5 10 15 20

This example shows how to create a 5×4 matrix. By default, the matrix is populated
by column, which is why the running numbers go from top to bottom. If you want
to populate by row, you need to specify that with the byrow parameter:

> m <- matrix(1:20, nrow=5, ncol=4, byrow=TRUE)
> m
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8
[3,] 9 10 11 12
[4,] 13 14 15 16
[5,] 17 18 19 20

To access a matrix, use square brackets again. The following example extracts ele­
ments from the matrix we just defined:

> m[10]
[1] 18
> m[3,4]
[1] 12
> m[3:5]
[1] 9 13 17
> m[3:5,2:3]
 [,1] [,2]
[1,] 10 11
[2,] 14 15
[3,] 18 19

If you provide only one number within the brackets, R will count by row and column
to return the item with the specified number. In the previous example, therefore,
m[10] indicates the 10th item in the matrix, in a running sequence column-wise. It
doesn’t matter whether you created the matrix by row. If you specify both numbers, the
item returned is based on matrix[row, column]. So, in the previous example, m[3,4]
returns the item at row 3 and column 4. If you provide a single vector, as before, it
will return a vector according to the range. You can also provide two vectors, in which
case the returned result is a matrix. In the previous example, m[3:5,2:3] returns the
matrix from the third through fifth rows and the second through third columns.

Programming R | 41

In addition, you can give names to each row and each column using the dimnames()
function. You can set them when you create the matrix or afterward:

> dimnames(m) <- list(c('a','b','c','d','e'), c('p','q','r','s'))
> m
 p q r s
a 1 2 3 4
b 5 6 7 8
c 9 10 11 12
d 13 14 15 16
e 17 18 19 20

The first parameter passed to the list() function is a vector of the row names. The
second is a vector of the column names.

Arrays

An array is an extension of the vector to more than two dimensions. Just as the matrix
is created with the matrix() function, the array is created with the array() function:

> a <- array(1:24,c(2,3,4))
> a
, , 1

 [,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

, , 2

 [,1] [,2] [,3]
[1,] 7 9 11
[2,] 8 10 12

, , 3

 [,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18

, , 4

 [,1] [,2] [,3]
[1,] 19 21 23
[2,] 20 22 24

This example creates an array with the dimensions of four sets of two rows by three
columns. Accessing items in the array follows the same patterns as before. The first
dimension within square brackets refers to the row, the second to the column, and
the third to the set:

> a[10]
[1] 10

42 | Chapter 2: Into the Matrix

> a[2,3,]
[1] 6 12 18 24
> a[1,2,3]
[1] 15
> a[,2,3]
[1] 15 16
> a[,,3]
 [,1] [,2] [,3]
[1,] 13 15 17
[2,] 14 16 18
> a[,2,]
 [,1] [,2] [,3] [,4]
[1,] 3 9 15 21
[2,] 4 10 16 22

Note that if you have a single number in the square brackets, it means that you’re
specifying the nth item in the array. If you have more than one number within the
square brackets, you are providing the dimensions, and this means you need to pro­
vide all the dimensions (leaving it blank returns all the values within that dimension).
For example, to extract all the numbers in column 2, use a[,2,]. Also, as in the matrix,
you can set the names of each dimension in an array.

Factors

Values can be nominal, ordinal, or continuous. Nominal values are labels that describe
a category. For example, nominal values can be the colors “green,” “blue,” and “red.”
There is no particular order to these values.

Ordinal values are also labels and describe a category, but they are ordered sequen­
tially. For example, “poor,” “average,” and “good” are three ordinal values. While they
are not quantifiable, their order implies that “average” is better than “poor,” and
“good” is better than “average.”

Lastly, continuous values are simply sequences of values that also represent a quantity.
For example, 1, 2, and 3 are continuous values.

In Ruby, we represent nominal values with symbols, continuous values are simply
numbers, and ordinal values are objects that implement the Comparable module. In
R, nominal and ordinal values are represented by factors. We create factors using the
factor() function:

> colors <- c('green', 'red', 'blue')
> factor(colors)
[1] green red blue
Levels: blue green red
> results <- c('poor', 'average', 'good')
> factor(results)
[1] poor average good
Levels: average good poor

Programming R | 43

By default, factor levels for character data are created in alphabetical order. However,
we can set the order of the levels when creating the factors:

> factor(results, order=TRUE, levels=results)
[1] poor average good
Levels: poor < average < good

Data frames

The data frame is the data structure we will be using most often in this book, and in
fact it is one of the most frequently used data structures in R. A data frame is a list
that contains multiple named vectors of the same length. It’s a lot like a spreadsheet
or a database table, but don’t be fooled into thinking that it’s the same thing. While
most of us use spreadsheets by row, and certainly database tables have records by row,
data frames are constructed by columns.

To create data frames, use the data.frame() function. Let’s see how we create a data
frame to represent the league table for the top eight teams in the English Premier
League (EPL) as of March 4, 2012:

> team <- c('Man City', 'Man Utd', 'Totenham', 'Arsenal', 'Chelsea',
 'Newcastle', 'Liverpool', 'Stoke')
> home_wins <- c(14, 10, 10, 9, 8, 7, 4, 6)
> home_draws <- c(0, 1, 2, 2, 2, 4, 8, 4)
> home_losses <- c(0, 2, 1, 2, 3, 2, 1, 4)
> away_wins <- c(7, 9, 6, 6, 5, 5, 6, 4)
> away_draws <- c(3, 3, 3, 2, 5, 3, 1, 2)
> away_losses <- c(3, 1, 4, 6, 4, 5, 6, 7)
> league_table <- data.frame(team, home_wins, home_draws, home_losses,
 away_wins, away_draws, away_losses)
> league_table
 team home_wins home_draws home_losses away_wins away_draws away_losses
1 Man City 14 0 0 7 3 3
2 Man Utd 10 1 2 9 3 1
3 Totenham 10 2 1 6 3 4
4 Arsenal 9 2 2 6 2 6
5 Chelsea 8 2 3 5 5 4
6 Newcastle 7 4 2 5 3 5
7 Liverpool 4 8 1 6 1 6
8 Stoke 6 4 4 4 2 7

To get a subset of the data frame, use the square brackets notation:
> league_table[c('team','home_wins')]
 team home_wins
1 Man City 14
2 Man Utd 10
3 Totenham 10
4 Arsenal 9

44 | Chapter 2: Into the Matrix

5 Chelsea 8
6 Newcastle 7
7 Liverpool 4
8 Stoke 6

To refer to a specific column, specify it by name:
> league_table$team
[1] Man City Man Utd Totenham Arsenal Chelsea Newcastle Liverpool Stoke
Levels: Arsenal Chelsea Liverpool Man City Man Utd Newcastle Stoke Totenham

To find specific values based on criteria from other columns, you can use the square
brackets notation again. In the following example, we find out which teams have
scored more than eight away goals:

> league_table$team[league_table$home_wins > 8]
[1] Man City Man Utd Totenham Arsenal
Levels: Arsenal Chelsea Liverpool Man City Man Utd Newcastle Stoke Totenham

You can also use more than one column. In this next example, we find out which
team has more away wins than home wins:

> league_table$team[league_table$away_wins > league_table$home_wins]
[1] Liverpool
Levels: Arsenal Chelsea Liverpool Man City Man Utd Newcastle Stoke Totenham

That seems pretty long, and frankly, a bit difficult to read. We can simplify the code
a bit using the with() function, which takes in a data frame (or a list or some envi­
ronment), and use that as a basis for evaluating the rest of the expressions:

> with(league_table, team[away_wins > home_wins])
[1] Liverpool
Levels: Arsenal Chelsea Liverpool Man City Man Utd Newcastle Stoke Totenham

Sometimes we get our data from multiple sources and end up with multiple data
frames. If you want to merge the data frames horizontally (i.e., add new columns),
use the merge()function. Let’s say we now have the points for each team in the table
in a separate vector. First, we need to create a data frame with the name of the team
and the corresponding points in the table:

> pts <- c(66, 61, 53, 49, 46, 43, 39, 36)
> points <- data.frame(team, pts)
> points
 team pts
1 Man City 66
2 Man Utd 61
3 Totenham 53
4 Arsenal 49
5 Chelsea 46
6 Newcastle 43
7 Liverpool 39
8 Stoke 36

Programming R | 45

To merge the two data frames, use the merge() function specifying that they are linked
by the team name:

> league <- merge(league_table, points, by='team')
> with(league, league[order(-pts),])
 team home_wins home_draws home_losses away_wins ... pts
4 Man City 14 0 0 7 ... 66
5 Man Utd 10 1 2 9 ... 61
8 Totenham 10 2 1 6 ... 53
1 Arsenal 9 2 2 6 ... 49
2 Chelsea 8 2 3 5 ... 46
6 Newcastle 7 4 2 5 ... 43
3 Liverpool 4 8 1 6 ... 39
7 Stoke 6 4 4 4 ... 36

In our with() function, using the order() function, we reorder the data frame in our
output, sorting it by the points in decreasing order. By default, the sorting order is
ascending. If we prepend the sorting variable (pts here) with a minus sign, it will sort
by descending order.

If now we want to add in another row, we can use the rbind() function. Let’s say we
have another data frame with the next two EPL teams:

> another_table
 team home_wins home_draws home_losses away_wins ... pts
1 West Brom 6 2 8 6 ... 35
2 Norwich 5 4 4 4 ... 35

To add this data frame vertically, use the rbind() function:
> rbind(with(league, league[order(-pts),]), another_table)
 team home_wins home_draws home_losses away_wins ... pts
4 Man City 14 0 0 7 ... 66
5 Man Utd 10 1 2 9 ... 61
8 Totenham 10 2 1 6 ... 53
1 Arsenal 9 2 2 6 ... 49
2 Chelsea 8 2 3 5 ... 46
6 Newcastle 7 4 2 5 ... 43
3 Liverpool 4 8 1 6 ... 39
7 Stoke 6 4 4 4 ... 36
9 West Brom 6 2 8 6 ... 35
10 Norwich 5 4 4 4 ... 35

Importing Data
Typing in all that data can be pretty tedious. R packages often come with data, so if
you want to explore and play around with data, the best thing to do is probably to
load up an R package using the library() function. For example, the ggplot2 package
has a dataset of fuel economy data from 1999 and 2008 for 38 popular car models:

46 | Chapter 2: Into the Matrix

2. For the EPL data, I took the CSV from http://www.football-data.co.uk/data.php.

> library(ggplot2)
> mpg
 manufacturer model displ year cyl trans drv cty hwy ...
1 audi a4 1.8 1999 4 auto(l5) f 18 29 ...
2 audi a4 1.8 1999 4 manual(m5) f 21 29 ...
3 audi a4 2.0 2008 4 manual(m6) f 20 31 ...
4 audi a4 2.0 2008 4 auto(av) f 21 30 ...
5 audi a4 2.8 1999 6 auto(l5) f 16 26 ...
6 audi a4 2.8 1999 6 manual(m5) f 18 26 ...
7 audi a4 3.1 2008 6 auto(av) f 18 27 ...
8 audi a4 quattro 1.8 1999 4 manual(m5) 4 18 26 ...
9 audi a4 quattro 1.8 1999 4 auto(l5) 4 16 25 ...
10 audi a4 quattro 2.0 2008 4 manual(m6) 4 20 28 ...
11 audi a4 quattro 2.0 2008 4 auto(s6) 4 19 27 ...
12 audi a4 quattro 2.8 1999 6 auto(l5) 4 15 25 ...
13 audi a4 quattro 2.8 1999 6 manual(m5) 4 17 25 ...
14 audi a4 quattro 3.1 2008 6 auto(s6) 4 17 25 ...
15 audi a4 quattro 3.1 2008 6 manual(m6) 4 15 25 ...
16 audi a6 quattro 2.8 1999 6 auto(l5) 4 15 24 ...
17 audi a6 quattro 3.1 2008 6 auto(s6) 4 17 25 ...
18 audi a6 quattro 4.2 2008 8 auto(s6) 4 16 23 ...
19 chevrolet c1500 suburban 2wd 5.3 2008 8 auto(l4) r 14 20 ...
20 chevrolet c1500 suburban 2wd 5.3 2008 8 auto(l4) r 11 15 ...
21 chevrolet c1500 suburban 2wd 5.3 2008 8 auto(l4) r 14 20 ...
22 chevrolet c1500 suburban 2wd 5.7 1999 8 auto(l4) r 13 17 ...
23 chevrolet c1500 suburban 2wd 6.0 2008 8 auto(l4) r 12 17 ...
24 chevrolet corvette 5.7 1999 8 manual(m6) r 16 26 ...

...other data truncated

Importing data from text files

To work with your own data, you have a couple of choices. The easiest is probably to
get the data into a delimited text file—for example, CSV—and use the read() function
to read the file into a data frame. Here’s how you can import a CSV file into a data
frame:2

> epl <- read.csv('english_premier_league_data.csv')
> epl
 Div Date HomeTeam AwayTeam FTHG FTAG FTR HTHG HTAG HTR ...
1 E0 13/08/11 Blackburn Wolves 1 2 A 1 1 D ...
2 E0 13/08/11 Fulham Aston Villa 0 0 D 0 0 D ...
3 E0 13/08/11 Liverpool Sunderland 1 1 D 1 0 H ...
4 E0 13/08/11 Newcastle Arsenal 0 0 D 0 0 D ...
5 E0 13/08/11 QPR Bolton 0 4 A 0 1 A ...
6 E0 13/08/11 Wigan Norwich 1 1 D 1 1 D ...
7 E0 14/08/11 Stoke Chelsea 0 0 D 0 0 D ...
8 E0 14/08/11 West Brom Man United 1 2 A 1 1 D ...
9 E0 15/08/11 Man City Swansea 4 0 H 0 0 D ...

Programming R | 47

http://www.football-data.co.uk/data.php

3. Basically, I created a MySQL database and imported the data from the CSV I mentioned earlier into the
table.

10 E0 20/08/11 Arsenal Liverpool 0 2 A 0 0 D ...
11 E0 20/08/11 Aston Villa Blackburn 3 1 H 2 0 H ...
12 E0 20/08/11 Chelsea West Brom 2 1 H 0 1 A ...
13 E0 20/08/11 Everton QPR 0 1 A 0 1 A ...
14 E0 20/08/11 Sunderland Newcastle 0 1 A 0 0 D ...
15 E0 20/08/11 Swansea Wigan 0 0 D 0 0 D ...
16 E0 21/08/11 Bolton Man City 2 3 A 1 2 A ...
17 E0 21/08/11 Norwich Stoke 1 1 D 1 0 H ...
18 E0 21/08/11 Wolves Fulham 2 0 H 2 0 H ...
19 E0 22/08/11 Man United Tottenham 3 0 H 0 0 D ...
20 E0 27/08/11 Aston Villa Wolves 0 0 D 0 0 D ...
21 E0 27/08/11 Blackburn Everton 0 1 A 0 0 D ...
22 E0 27/08/11 Chelsea Norwich 3 1 H 1 0 H ...

...other data truncated

Importing data from a database

If your data is in a relational database, you can use the DBI set of packages to extract
it. Let’s say you have a MySQL database with a database named epl and a table named
league.3 This contains the EPL data as before. To connect to the database, we need
to install the packages:

> install.packages(c('DBI', 'RMySQL'))
Installing package(s) into ‘/Users/sausheong/Library/R/2.14/library’
(as ‘lib’ is unspecified)
trying URL 'http://cran.cnr.Berkeley.edu/bin/macosx/leopard/contrib/2.14/ \
 DBI_0.2-5.tgz'
Content type 'application/x-gzip' length 390206 bytes (381 Kb)
opened URL
==
downloaded 381 Kb

trying URL 'http://cran.cnr.Berkeley.edu/bin/macosx/leopard/contrib/2.14/ \
 RMySQL_0.9-3.tgz'
Content type 'application/x-gzip' length 5857481 bytes (5.6 Mb)
opened URL
==
downloaded 5.6 Mb

The downloaded packages are in
 /var/folders/0W/0WaBiTP9GcGX4vyLiy95Yk+++TI/-Tmp-//RtmpIb2HF7/ \
 downloaded_packages

Once we have the packages, we can start to connect to the database:
> con <- dbConnect(MySQL(), host='localhost', dbname='epl', user='root',
 password='root')

48 | Chapter 2: Into the Matrix

This is a good one-shot operation, but if you have a few databases and tables to con­
nect, it can become a chore. Instead of specifying the username and password as well
as the database each time you connect, you can add a $HOME/.my.cnf file, which
contains information on how to connect (see Example 2-3). Note the initial dot on
the filename.

Example 2-3. .my.cnf file
[epl]
user = root
password = root
database = epl
host = localhost

Then you can issue a shorter expression to connect:
> con <- dbConnect(MySQL(), groups='epl')

The groups parameter connects you to the epl section in the configuration file (the
section within the square brackets in the .my.cnf file). You can include multiple sec­
tions in the file to let you connect to multiple databases.

Once you have connected, you can start issuing SQL queries. In our case, we want to
grab all the data from the epl data and massage it ourselves to find the information
we want:

> league <- dbGetQuery(con, 'select * from league')
> dbDisconnect(con)
[1] TRUE

This creates a data frame named league that has all the rows and columns in the
database. You would probably not want to do this if you have a lot of data in the
database. Instead, you would likely extract a sample and process the data bit by bit.
In our case, though, there’s not a whole lot of data, so we simply take everything (our
results show up as shown in Figure 2-5 in the console). Note that we should play nice
and disconnect from the database after we get our data. Otherwise, R will keep that
connection live, and you’ll soon run out of connections.

What we want to do next is use our newfound data frame powers and find out how
many wins each team in the league has scored. If we were doing this in SQL, it would
not be as easy as it sounds. However, with R it is a piece of cake:

> wins <- with(league, {
+ home_wins <- HomeTeam[FTHG > FTAG]
+ away_wins <- AwayTeam[FTAG > FTHG]
+ sort(table(home_wins) + table(away_wins), decreasing=T)
+ })
>
> print(data.frame(wins))
 wins
Man City 20
Man United 19

Programming R | 49

Figure 2-5. English Premier League table

Tottenham 16
Arsenal 14
Chelsea 13
Newcastle 12
Liverpool 10
Everton 9
Norwich 9
Stoke 9
Sunderland 9
West Brom 9
Fulham 8
Swansea 7
Aston Villa 6
Bolton 6
Blackburn 5
QPR 5
Wolves 5
Wigan 4

We use the with() function to reduce typing. First, we find all the home wins, which
is essentially a vector of team names, where the full-time home goal (FTHG) is greater
than the full-time away goals (FTAG). Next, we do the same with the away wins, but
since the team is away we have to reverse FTHG and FTAG to find them. After that, we

50 | Chapter 2: Into the Matrix

get the table of counts for both the home and away wins and add them together.
Finally, we sort the answer and return it as an object of class table, which is an array
of integer values, with the names of each item in the array corresponding to the team
name.

To print it out nicely in two columns, we convert it into a data frame before printing
it to the screen.

Charting
Part of R’s great power is its ability to generate beautiful charts easily. In this section,
we’ll first take a look at the default built-in features for creating charts in R, then
quickly move on to a powerful R package for generating charts, called ggplot2.

Basic Graphs
Out of the box, R provides very comprehensive charting and graphics capabilities
through its graphics package. Before we jump into this package, we need to set up
the output. Normally, graphics output from R goes to the default graphics device. If
you create any graphics (and this includes, of course, charts) without invoking the
graphics device first, the default graphics device will be automatically opened. But
you can also open the device manually on Windows by calling the windows() function.
On Linux and other Unix-like systems, the device can be opened with X11(), and on
Mac OS X it can be opened with quartz(). To close the device, use the dev.off()
function.

Alternatively, if you want to output the chart to a file, you can use pdf(), png(), jpeg(),
bmp(), win.metafile(), and other functions to set the output file format. The main
parameter to these functions is the name of the file to write to.

In this book, we will be creating PDF files. This is how we will create charts:
pdf('some_file_name.pdf')
do some chart plotting
dev.off()

Plotting charts

The workhorse of the graphics package is the plot() function. Calling plot() actually
redirects it to the correct function according to the input parameters. Most of the
time, however, if you call plot() with a set of numbers, it will create a scatterplot.

Let’s take the data we got earlier from the EPL. If we plot against this, we will get a
scatterplot (shown in Figure 2-6):

> wins <- league_table$home_wins + league_table$away_wins
> plot(wins)

Charting | 51

Figure 2-6. Plotting the wins

This, of course, is not very useful or pretty. Charting in R works by layers. After you
create the plot (by calling the plot() function), you can add a new layer with new
information on it. For example, the next expression adds the names of the various
teams next to the points:

> text(wins, team, pos=4)

This is a little better, but it still doesn’t give us very good information (Figure 2-7).

Let’s try something else:
> wins <- league_table[c('home_wins','away_wins')]
> data <- t(as.matrix(wins))
> barplot(data, names.arg=league_table$team, legend=c('home', 'away'))

Instead of adding the home and away wins, we subset the data frame and keep only
the home and away wins. Then we convert this data frame into a matrix. We want to
stack the home wins and the away wins, so we need to transpose the matrix using the
t() function. Finally, we use the barplot() function to plot a stacked bar chart. In
the barplot() function, we set the names of the axis to be the team names, and also
create the legend to represent the home and away goals scored (Figure 2-8).

52 | Chapter 2: Into the Matrix

Figure 2-7. Labeling the teams

Because of the way the charts are drawn in layers, we can specify certain parameters
before we even start plotting, although nothing will show up until plot() (or an
equivalent) is called. To do this, we use the par() function. For example, to set the
background of the chart to a specific color (in this case, gray), we can do this:

> par(bg="gray")

The functions are quite easy to use, but are also quite rich in features. However, the
basic concepts remain the same. There is a whole book on R graphics if you need
more depth, but for this book, we won’t go any deeper than this. Instead, we’ll be
using ggplot2, a powerful and comprehensive graphics library for R.

Introducing ggplot2
The ggplot2 package was created by Hadley Wickham to implement the ideas from
Leland Wilkinson’s book The Grammar of Graphics (Springer). The package provides
an alternative and powerful way of creating charts and plots with R. ggplot2 is based
on the idea of composing plots using multiple layers that can be stacked on top of one
another. It has a relatively small set of primitive components that can be combined
in various ways to generate many types of charts.

Charting | 53

Figure 2-8. Plotting home versus away goals

The Grammar of Graphics
The Grammar of Graphics is a book written by Leland Wilkinson, a statistician and
computer scientist who created SYSTAT, the statistics and statistical graphics software
package. In his book, Wilkinson explained that statistical graphics are mappings from
data to aesthetic attributes of geometric objects, which can be statistically transformed
and drawn on a coordinate system. To generate the same plot for different subsets of
data, faceting is used. Aesthetic attributes include properties such as color, shape, and
size, whereas geometric objects can be points, lines, bars, and so on.

In this section, I’ll be introducing ggplot2 as an alternative graphics package to draw
plots. In fact, most of the R scripts in this book will use ggplot2.

54 | Chapter 2: Into the Matrix

qplot

A quick way to start using ggplot2 is with qplot, which is short for “quick plot.” qplot
essentially provides a convenient way to assemble basic plots with a single line, but is
really not representative of the power of ggplot2. It is designed to be similar to plot()
to provide a level of comfort and familiarity to people who are more used to that
function.

Let’s look at how qplot works. In the next example, we will be using the fuel economy
dataset mpg (miles per gallon), which is included as part of the ggplot2 package. We
looked at the dataset briefly in “Importing Data” (page 46).

This dataset records the make, model, class, engine size, transmission, and miles per
gallon on the highway and in the city for a number of cars from 1999 to 2008. We
want to find out whether the engine size affects the fuel economy of the car, so we use
qplot to chart the engine size (displ) against the mileage on the highway:

> qplot(displ, hwy, data=mpg)

With this single line, we can get a good indication of the answer (Figure 2-9), which,
as we’ve expected, is that the mileage (on the y-axis) goes down as the engine size (on
the x-axis) increases. However, you might notice that this isn’t always the same. Some
cars with large engines in fact have pretty decent fuel economy. Which ones? Let’s
answer that:

> qplot(displ, hwy, data=mpg, shape=factor(year))

We take the factor for the year (otherwise, it will be considered as a continuous value)
and map it as a third variable (Figure 2-10).

As you can clearly see, the fuel economy of the cars in 2008 has improved over those
in 1999.

Using the grammar

While qplot is a quick way of using ggplot2, the strength in ggplot2 lies in its gram­
mar and in creating the plots by adding up layers. When we use qplot, it does a lot
of things for us, including creating the plot object and adding up the layers we want
on that plot. If we do this ourselves, we have more flexibility and control with each
layer.

Plot

To create the plot manually, we initialize a plot using the ggplot() function:
> p <- ggplot()

There is nothing to see until we add layers, but we’ll get to that in a minute. The
ggplot() function takes in two parameters, the first being the data to be used and the
second being the aesthetic mapping.

Charting | 55

Figure 2-9. Using qplot to chart the engine size versus the mileage on the highway

The data that you send into ggplot() must be a data frame. If you set the data and
the aesthetic mapping, this will be used throughout the rest of the plot. However, you
can also optionally leave any of these out, and set them at each layer. The aesthetic
mapping is created using the aes() function, which again we will get to momentarily.

We can add each layer on top of the initial plot using the + operator, which in object-
oriented fashion is overloaded for the plot object that is created:

> p <- p + layer(geom='point')

This adds a new scatterplot layer on top of our initial plot. A layer consists of five
components:
Data

The data to be used in this plot

56 | Chapter 2: Into the Matrix

Figure 2-10. Adding a third dimension to the plot

Aesthetic mapping
A mapping of the data to what we want to see on the plot

Statistical transformation (stat)
Transforms the data—for example, getting the count and the mean

Geometric object (geom)
Controls the type of plot to be created—for example, scatterplots and histograms

Position adjustment
Applies minor tweaks to the positions of the elements within a layer—for exam­
ple, setting the fill, jittering to avoid overplotting, and stacking bars in bar charts

Charting | 57

The layer() function takes in a number of parameters that correspond to the com­
ponents in the grammar:

layer(geom, geom_params, stat, stat_params, data, mapping, position)

However, most of the time, for convenience, we use shortcuts that start with either
geom or stat. We can do this because every geometric object has a default statistical
transformation, and every statistical transformation has a default geometric object:

> p <- p + geom_point()

The parameters for these functions are optional and include the mapping, data, po­
sition, and parameters for the geom or stat. For example, if we were to redo the earlier
plot, this is how it would look. We specify two of the five parameters: data and the
aes() function mentioned earlier:

> p <- ggplot()
> p + geom_point(data=mpg, aes(displ, hwy, shape=(factor(year))))

We’ll focus on the aes() function next.

Aesthetics

Aesthetics map the way data is displayed. For example, in the preceding plot, we
specified the following aesthetics:

aes(x = displ, y = hwy, shape = (factor(year))

This maps the x-axis to the engine size and the y-axis to the mileage on the highway,
and also indicates that we want to use shapes to differentiate between the years. As
shown earlier, x and y don’t need names, and we no longer need to refer explicitly to
the dataset we’re using either, which makes typing and reading a bit easier.

Statistical transformation

Statistical transformations, or stats, transform the data and produce another dataset
that can be used for plotting. For example, stat_bin (used to create histograms) pro­
duces a dataset that includes the count and the density of the observations in each
bin. This output can be used in the plot as well.

To show how stat_bin can be used, we’ll take another dataset that has more data
points. We’ll use the movies dataset, which comprises movie information and user
ratings from IMDB, the Internet Movie Database. This dataset includes information
like the title, year of release, budget, length in minutes, and average user rating in
IMDB. We’ll chart the number of movies made over a period of 90 years or so:

> p <- ggplot(movies)
> p + stat_bin(aes(year, ..count..))
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

58 | Chapter 2: Into the Matrix

4. When you make a histogram, you’re actually making a bar chart that shows how many data points fit
within a certain range. That range is the bin width. In this case, we’re looking at the year where the movie
was first screened, and the range of years is from 1893 to 2005. The default bin width is then (2005–1893)/
30, which is around four years. This means the range is 1893–1897, followed by 1898–1902, and so on.

When we run this, ggplot2 reminds us that it has assigned a default bin width4 and
tells us that if we want to change the default, we can set it with binwidth. The output
of the previous command is shown in Figure 2-11.

Figure 2-11. Movies produced per year

We can see that there is an explosion in the number of movies made in the past few
years. Notice that we have used the year in the aesthetic mapping, but we have also
used a funny-looking variable that looks like ..count... The variable between the two
instances of .. is one of the outputs of the stat that was run.

Charting | 59

Note also that we didn’t specify any geometric object for this chart. We don’t need
to, because stat_bin uses the histogram geometric object by default.

Geometric object

The geometric object, or geom, performs the actual rendering of the layer and defines
the type of plot that is created. For example, using geom_point creates scatterplots,
whereas geom_histogram creates histograms.

Each geom has a set of aesthetics that it understands and requires. For example,
geom_point requires x and y and understands color, size, and shape aesthetics. As in
the stats, each geom has a default stat. Here’s how we create the same chart that we
did in the previous section:

> p <- ggplot(movies)
> p + geom_histogram(aes(year))
stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.

Adjustments

Position adjustments apply tweaks to the elements in a layer. For an example, let’s get
back to the fuel economy dataset and create a scatterplot of the mileage of cars in the
city and on the highways. As you would expect, the relationship should be more or
less linear:

> p <- ggplot(mpg)
> p + geom_point(aes(cty, hwy))

That’s simple enough, and Figure 2-12 is what we get.

Looks good, but if you take a closer look at it, the number of points doesn’t seem
correct. In fact, the points are overlapping, so we don’t get an accurate picture of the
actual relationship. ggplot2 provides a function to add jitter to the plot—that is, if a
point is already occupied by another data point, it will tweak its position by a bit to
prevent plotting over the same place:

> p <- ggplot(mpg)
> p + geom_point(aes(cty, hwy), position='jitter')

Jittering the position gives a more accurate representation of the data (Figure 2-13).
However, there’s a danger of overplotting—having too much data on the chart. If we
had a dataset like the movies dataset we used in the previous section, we probably
wouldn’t be able to make much sense of the plot (pun intended)!

60 | Chapter 2: Into the Matrix

Figure 2-12. Relationship between mileage in the city and mileage on highways

Wrap-up
This chapter was a whirlwind tour of the R language and environment. I did not cover
large parts of what R can do, especially its statistical capabilities, but I described
enough to take us through the rest of the book. R is a very powerful language, and if
you’re into data and statistical analysis, it should be an important part of your toolbox.
In this chapter, I’ve talked only briefly about using R, the basics of R programming,
and charting with the base R graphics package and the ggplot2 package.

To learn more about R programming, I recommend one or both of these books:

• R in a Nutshell, by Joseph Adler (O’Reilly)
• R in Action, by Robert Kabacoff (Manning)

Wrap-up | 61

http://shop.oreilly.com/product/9780596801717.do

Figure 2-13. Jitter plot

To learn more about creating charts in R or graphics in R, check out these books:

• ggplot2: Elegant Graphics for Data Analysis, by Hadley Wickham (Springer)
• R Graphics, by Paul Murrell (Chapman & Hall/CRC)

Now that you’re finally ready and equipped with the tools, the rest of the book is all
fun and games in exploring the world around us!

62 | Chapter 2: Into the Matrix

CHAPTER 3

Offices and Restrooms

It started with a lunch conversation that slowly turned into a coffee break mini-debate.
You see, I had just moved into a new job and my first task was to hire engineers to
staff my team. Although the final numbers were not absolute, 70 was bandied around
for the population of the office. We had half a floor, plenty of space really, but the
bone of contention was focused on more delicate facilities (i.e., the restrooms).

The problem was that the whole floor shared a single pair of restrooms (one for the
men and another for women) with the gents having two toilets and three urinals. I
was totally convinced that with 70 people in the office, we would reach bladder or
bowel apocalypse, an absolute disaster in the waiting. My other colleagues were less
worried—they noted that the other floors seemed to be doing fine. It wasn’t as if we
could do anything about it: no one was about to magically add new restrooms for us,
no matter how long the queue was or how loudly we shouted. But I was curious in a
general sense: what algorithm determines the number of restrooms per square meter
of occupancy?

The first thing any respectable research engineer would do, of course, is to search for
the answers online. I did enthusiastic searches on building regulations in Singapore
for information on the ratio of people to the number of restrooms but found none.
However, the United Kingdom has some interesting regulations covered by the
Health and Safety Executive (HSE). HSE is the UK’s national independent watchdog
for work-related health, safety, and illness and has published a number of regulations
regarding health and safety in the workplace. One of its regulations gave exactly the
recommendation I was looking for (as shown in Table 3-1).

63

1. Culley C. Carson III and Tracy Irons-Georges, eds., Magill’s Medical Guide, vol. 3 (Englewood Cliffs, NJ:
Salem, 1998).

2. “Water: How much should you drink every day?”, Mayo Clinic (http://www.mayoclinic.com/health/water/
NU00283).

Table 3-1. UK Health and Safety Executive recommended restroom facilities (adapted
from http://www.legislation.gov.uk/uksi/1992/3004/schedule/1/made)

Number of employees Number of toilets Number of urinals

1–15 1 1

16–30 2 1

31–45 2 2

46–60 3 2

61–75 3 3

76–90 4 3

91–100 4 4

Well, the numbers that I anticipated having seemed to fit those of the UK regulations,
but these were just regulations. I had no idea how realistic they were or how the HSE
came up with those numbers. Still, that gave me a base reference point. Time to whip
out the tools.

The Simple Scenario
To determine the correct people-to-restrooms ratio, we have to devise a model of how
restrooms are used by people in the office.

At any point in time, anyone in the office can enter the restroom. The choice of each
person entering the restroom normally doesn’t cause anyone else to enter or not enter
the same restroom. So, at a simple level, the usage of restrooms in an office can be
modeled as a Poisson process. A Poisson process, named after famous mathematician
Siméon-Denis Poisson, is a random process in which events occur continuously and
independently of each other. This fits nicely into a simple model of restroom usage
where the events are the acts of people entering and using the restroom, then leaving.

We also need to find out how many times the average person needs to urinate in a
day. It turns out that our bladder will signal us to make a trip to the restroom when
it fills up to about 200 milliliters.1 Combined with the information that the average
urine output of an adult is 1.5 liters a day,2 this means that we need to go about eight
times a day (24 hours), or once every three hours on average. The normal working
hours in my company are 8:30 a.m. to 5:30 p.m., which is nine hours, so this means
that on average employees go to the restroom three times during the course of the
workday.

64 | Chapter 3: Offices and Restrooms

http://www.mayoclinic.com/health/water/NU00283
http://www.mayoclinic.com/health/water/NU00283
http://www.legislation.gov.uk/uksi/1992/3004/schedule/1/made

Naturally, this is not realistic because it is only a model. In real life, more people will
use the restrooms during and after lunchtime, but let’s ignore that for the moment.
We’ll revisit it later in a more complex model.

To keep the model simple, we set the lowest time unit to one minute. This means
someone in the office decides whether to go to the restroom every minute within the
9 hours in the office, or 540 minutes. Coupled with an average of 3 times in 540
minutes, it also means the probability that a person will go to the restroom every
count of the minute is 3/540. In the case of urinating, my estimate is that a person
will be able to complete the necessary job within one minute on average and vacate
the restroom.

Our simple model accounts for only the usage of the men’s restroom. Being an en­
gineering research outfit, we have a pretty bad ratio of male to female engineers, so
there aren’t going to be problems in the women’s restroom anytime soon. Bladder
apocalypse is strictly for men. Following on with this assumption, we consider only
the urinals and take it that the toilets are off-limits in this exercise.

Something else we ignore in this model is human physiology. Under most circum­
stances, the need to urinate after going to the restroom drops to zero immediately
and slowly increases until the next time we need to go again. To keep things simple,
we will ignore this as well.

Armed with this model, we can now try to simulate restroom usage in a computer
program using a technique called the Monte Carlo simulation method. This is a very
fast and effective way of finding out answers when it is difficult or impossible to derive
algorithms to describe systems. In a way, it’s a very pragmatic technique to getting to
answers. The steps are rather straightforward and mechanical:

1. First we model the process or system.
2. Then we randomly create inputs and pass them into the model. The model is

normally written as a computer program because otherwise the volume of input
makes processing unfeasible.

3. The model generates the output, given the inputs.
4. Finally, we analyze the output to find the answers we want.

The Monte Carlo simulation method is named after the famous casino in Monaco.
The name was coined by scientists working in the Manhattan Project in the 1940s.
Monte Carlo methods are often used in simulating physical and mathematical systems
by repeatedly using random samplings. Effectively, this means randomly generating
numbers and using the uncertainty and randomness to model the systems we want
to investigate.

The Simple Scenario | 65

The simulation can often be iterative, as we refine the model to better represent the
system. This means tweaking the model until we get good answers. How do you know
when an answer is good? This really depends on what you want to achieve. In this
chapter, this means first finding out whether having 70 people in the office creates a
high risk of bladder apocalypse.

Remember that all models are wrong; the practical question is how wrong do they have
to be to not be useful.

—George Edward Pelham Box

Let’s look at how we can use Monte Carlo simulation with our model.

Representing Restrooms and Such
As the necessary underlying code for the simulations, I wrote a few base classes that
represented the restrooms, the facilities (putting it more delicately) in the restrooms,
and the people in the office who will be visiting the restrooms.

I started off with the Restroom class, as shown in Example 3-1.

Example 3-1. Restroom class
class Restroom
 attr_reader :queue
 attr_reader :facilities

 def initialize(facilities_per_restroom=3)
 @queue = []
 @facilities = [] # the facilties in this restroom
 facilities_per_restroom.times { @facilities << Facility.new }
 end

 def enter(person)
 unoccupied_facility = @facilities.find { |facility| not facility.occupied?}
 if unoccupied_facility
 unoccupied_facility.occupy person
 else
 @queue << person
 end
 end

 def tick
 @facilities.each { |f| f.tick }
 end
end

66 | Chapter 3: Offices and Restrooms

All code examples may be downloaded from GitHub.

The Restroom class represents the restroom and has two readable attributes—a queue
of people waiting to enter the restroom, and a list of facilities (read: urinals) in the
restroom. During its creation, we initialize the Restroom object with an empty queue
as well as create a given number of facilities, defaulting to three.

The Restroom object has two methods that can be called on it. The first is enter, which
looks for the next available facility and lets the person (passed in as a parameter)
occupy it. If there are no unoccupied facilities, the person is placed on the queue.

The second method, tick, simply goes through each facility and calls on the tick
method in that facility. This is how we count down the time. The tick method in the
Facility class is described shortly.

The Facility class, shown in Example 3-2, represents a single facility in the restroom.

Example 3-2. Facility class
class Facility
 def initialize
 @occupier = nil
 @duration = 0
 end

 def occupy(person)
 unless occupied?
 @occupier = person
 @duration = 1
 Person.population.delete person
 true
 else
 false
 end
 end

 def occupied?
 not @occupier.nil?
 end

 def vacate
 Person.population << @occupier
 @occupier = nil
 end

Representing Restrooms and Such | 67

https://github.com/sausheong/everyday

 def tick
 if occupied? and @duration > @occupier.use_duration
 vacate
 @duration = 0
 elsif occupied?
 @duration += 1
 end
 end
end

This is a slightly more complex class and has two attributes, both of which are acces­
sible only to the internal methods. The occupier attribute holds the person currently
using the facility. If the facility is unused, the occupier attribute is assigned nil. The
second attribute is duration, which indicates how long the facility has been used by
the current occupier. I’ll clarify the use of this attribute momentarily.

There are four methods in this object. The first, occupy, which was called in our
Restroom class, checks whether the facility is occupied and assigns someone to the
facility if it isn’t. The duration is then increased by one count, and the person occu­
pying the facility is removed from the restroom queue. A true or false is returned
according to whether the facility is successfully occupied or not.

The second method, occupied?, simply checks whether the facility is occupied.

Just as the occupy method allows a person to occupy a facility, the vacate method
removes him from the facility and adds him back into the overall population.

The last method in the Facility class is tick, as mentioned previously. This method
keeps track of the passing of each discrete period of time. In our simulation, each tick
is equivalent to a minute in the real world. The tick method performs two tasks. If
the current occupant of the facility has been in it for too long, he will be vacated. If
not, the duration attribute is incremented.

The last class in our trio of base classes is the Person class, demonstrated in
Example 3-3.

Example 3-3. Person class
class Person
 @@population = []
 attr_reader :use_duration
 attr_accessor :frequency

 def initialize(frequency=4,use_duration=1)
 @frequency = frequency
 @use_duration = use_duration
 end

 def self.population
 @@population
 end

68 | Chapter 3: Offices and Restrooms

 def need_to_go?
 rand(DURATION) + 1 <= @frequency
 end
end

This is a simple class like Restroom, but with three attributes. The first is the popula
tion attribute, a class variable that stores the entire population of the simulation. The
second is use_duration, a read-only attribute that describes how long the person takes
to use the facility. The third is frequency, an attribute that describes how many times
the person will use the facility over the duration of the simulation. This, as explained
before, is 9 hours or 540 minutes, which is stored as a constant named DURATION. For
example, if someone’s frequency is 3, then our model says that he will visit the rest­
room 3 times within a period of 540 minutes.

There is only one interesting method here: need_to_go?. This method will return true
if the person needs to use the restroom. We take a random number from 1 to 540 and
check if it is less than or the same as the frequency. If it is, the method returns true.

What this method really asks is “what is the probability of the person needing to go
at this point in time?” In our simulation, the answer is 3/540. For the probability-
minded among you, this is equivalent to drawing from a bag of marbles labeled 1 to
540 and finding a marble numbered 1, 2, or 3.

We place all three classes into a file named restroom.rb to be used in our simulation,
and we’re ready to roll.

The First Simulation
We start off with the simple model, the one where we assumed the rate of people
visiting the restroom to be constant throughout the period. The simulation code has
two separate parts:

1. Run through the simulation and store the gathered data temporarily.
2. Write this data into a comma-separated value (CSV) file.

Comma-Separated Value files
The comma-separated value (CSV) format is a file format in which tabular data (num­
bers and text) is stored in a plain-text form that can be easily written and read in a text
editor. CSV is widely supported and is popularly used to move tabular data between
programs. Most spreadsheet programs, such as Excel and Numbers, support CSV.
Consequently, many programming languages come with libraries that easily produce
and consume the data in CSV files.

The First Simulation | 69

Many of the scripts in this book generate raw observation data in CSV format. Once
generated, we can quickly review it for correctness in a text editor or a spreadsheet
program before we load it up in our R scripts for further analysis.

In the simulation in Example 3-4, we will take the queue size as the only data point.
Let’s step through the code line by line.

Example 3-4. Simulation script 1 (varying population size)
require 'csv'
require './restroom'

frequency = 3
facilities_per_restroom = 3
use_duration = 1
population_range = 10..600

data = {}
population_range.step(10).each do |population_size|
 Person.population.clear
 population_size.times { Person.population << Person.new(frequency, use_duration) }
 data[population_size] = []
 restroom = Restroom.new facilities_per_restroom
 DURATION.times do |t|
 data[population_size] << restroom.queue.size
 queue = restroom.queue.clone
 restroom.queue.clear
 unless queue.empty?
 restroom.enter queue.shift
 end
 Person.population.each do |person|
 if person.need_to_go?
 restroom.enter person
 end
 end
 restroom.tick
 end
end

CSV.open('simulation1.csv', 'w') do |csv|
 lbl = []
 population_range.step(10).each {|population_size| lbl << population_size }
 csv << lbl

 DURATION.times do |t|
 row = []
 population_range.step(10).each do |population_size|
 row << data[population_size][t]

70 | Chapter 3: Offices and Restrooms

 end
 csv << row
 end
end

We use the csv standard library to create the CSV files, so the first line includes this
library, followed by the restroom.rb file we created earlier. Next, we create some vari­
ables we’ll be using in the simulation:
frequency

How many times a person visits the restroom during the simulation. As men­
tioned earlier in this chapter, we use three as the average number of visits per
person.

facilities_per_restroom

How many facilities the restroom has. In this simulation, we have three facilities
per restroom and because we only have one restroom, this means there are three
facilities altogether.

use_duration

How long each person will use the facility during every visit. In this simulation,
we assume that each person takes one tick to complete what he needs to do in the
restroom.

population_range

The range of populations we want to run simulations over. In this simulation, we
use a range from 10 people up to 600 people in the office.

data

A hash where we store the data generated temporarily.

The first part of the simulation focuses on generating the raw data. We do this by
iterating through a list of populations we want to simulate, starting from 10 up to 600
people in the office. For each population, we loop tick by tick (representing minute
by minute) through the 540 ticks that represent the 540 minutes (9 hours) of time
spent in the office. Before we start the loop, however, we need to set up some of the
objects we need:

1. First, we create the population by defining a Person object to represent each per­
son in the population.

2. Next, we initialize the temporary data storage hash, data.
3. Finally, we create the Restroom object for population to use.

While we’re in the loop, the only piece of information we really collect is just the
restroom queue size. Once we have this, we look at the restroom queue and try to
move the first person in line into the restroom. You might notice in the code that we

The First Simulation | 71

have to clone the restroom queue first and work on the cloned queue instead of the
original one. This is because we will move the people back into the restroom queue
if the restroom is fully occupied. If we use the restroom queue itself, we’ll end up in
an infinite loop!

Once the queue is cleared (or at least everyone in the queue is requeued), we move
on to the whole population. We check each person in the population and ask if he
needs to use the restroom (using the calculation explained earlier) and if so, we move
him to the restroom. We wrap up the loop by calling tick on the restroom and moving
the whole simulation on in time.

The second part of the simulation is purely mechanical. We create a file named
simulation1.csv, iterate through the temporary store, and copy all the data to the CSV
file.

Simply run this simulation to generate the data. If you open up the file in any spread­
sheet software, you should see something like Figure 3-1.

Figure 3-1. Simulation CSV raw data

That’s it! We have successfully run a Monte Carlo simulation and gotten our raw
observation data for the first simulation. But what does it say? That’s where things
become more interesting.

72 | Chapter 3: Offices and Restrooms

Interpreting the Data
We ran through a simple simulation of different populations of people in an office
over a period of nine hours and captured the restroom queue size at various points
in time. Armed with this data, we want to answer our first question: at what population
does the queue size become unbearable with a restroom of three facilities?

One possible interpretation of this data is to look at the maximum queue size for each
population. The maximum queue size is the longest queue that is formed for a given
population. This also happens to be the longest time someone would have to wait for
that particular population. For example, if the maximum queue size for a population
of 100 people is 3, then the longest someone has to wait during that simulation is 3
ticks (3 minutes) before taking his turn at the restroom.

Another piece of information that can be extracted from the data is the average queue
size, which we can describe using two statistical values: the mean and the median.

The mean is what we normally think of as the average. We add up all the queue sizes
at every point in time, then divide the total by time (in this case, it’s 540 ticks). We
can do this because the use duration of the restroom is one tick, so the queue size is
also one tick. However, this value normally ends up in decimal points, which produces
the silly situation where we have an average queue size of 1.3 people. The median is
a more sensible measurement and is the middle value of the list of all queue sizes.

To get the maximum queue size as well as the average queue size, we’ll turn to an R
script (Example 3-5) that crunches through our CSV file data and displays it in a nice
maximum-queue-to-population line chart.

Example 3-5. Median, mean, and max queue sizes versus population
library(ggplot2)

data <- read.table("simulation1.csv", header=TRUE, sep=",")
mean <- mean(data)
median <- apply(data,2,median)
max <- apply(data,2,max)
df <- data.frame(population=seq(from=10,to=600,by=10),mean=mean,
 median=median,max=max)

ggplot(data = df) + scale_shape_manual(name="Type", value=c(2,3,4)) +
 geom_smooth(aes(x = population, y = mean)) +
 geom_point(aes(x = population, y = mean, shape = "mean")) +
 geom_smooth(aes(x = population, y = median)) +
 geom_point(aes(x = population, y = median, shape = "median")) +
 geom_smooth(aes(x = population, y = max)) +
 geom_point(aes(x = population, y = max, shape = "max")) +
 scale_y_continuous("queue size", breaks=0:35) +
 scale_x_continuous("population", breaks=seq(from=10,to=600,by=30))

Interpreting the Data | 73

Like the simulation, there are two parts to this script. First, we import the data and
process it. Then we draw the chart using the processed data and try to make a con­
clusion based on that chart.

We will be using the ggplot2 library in this script. For more information on the
ggplot2 library, please refer to Chapter 2. Although ggplot2 code can be more concise,
I chose to use relatively verbose code to help explain how the chart is created.

We start off by reading the data from the CSV file into an R data frame named data
using the read.table() function. This is a very common function that we will be using
often in this book, because we are going to load a lot of CSV fields into data frames.

Then, in rapid succession, we extract the mean, the median, and the max values from
data. You might be puzzled as to why we can use the mean() function directly, but we
have to get median() and max() indirectly through the apply method. This is because
of the way these three functions have been defined. The mean() function is the only
one that can take in a data frame directly; the median() and max() functions cannot.
To get the data from the frame into the latter functions, we use the apply() function,
which converts the data frame into an R matrix and then applies the given function
accordingly. Here’s a detailed look at how we’re using the apply() function:

median <- apply(data,2,median)

The first parameter is the data, while the second indicates whether to apply the func­
tion by rows (1) or by columns (2). In our case, we are applying it by columns, so we
use the parameter 2. The last parameter is the name of the function to call. We use
the apply function for both the median and max. Once we have the mean, median,
and max, we create a data frame with columns made up of the mean, median, max,
and population. This is the data frame we’ll use to generate the chart, shown in
Figure 3-2.

First, we create the plot with the new data frame as the input data. We add to that a
manual shape scale with the following function:

scale_shape_manual(name="Type", value=c(2,3,4))

The name parameter will provide us with the name of the legend later. The value is a
collection of numbers that determine the shape of the scatterplot markers we will be
drawing. So why the numbers 2, 3, and 4? Figure 3-3 is the key to the answer.

The numbers represent plot characters, which are symbols used to represent values in
R plot charts. The numbers 2, 3, and 4 refer to rows from the leftmost column of
Figure 3-3, and they give us an unfilled triangle, a plus sign, and a multiplication sign,
respectively. I chose this set of markers because they provided the cleanest differen­
tiation, but you can play around with different types of markers.

74 | Chapter 3: Offices and Restrooms

Figure 3-2. Max, median, and mean queue sizes for simulation 1

Next, we add on a scatterplot and a smoother for each set of values:
geom_smooth(aes(x = population, y = mean)) +
geom_point(aes(x = population, y = mean, shape = "mean")) +

In each of the geom function calls, the only parameter is an aesthetic mapping that
provides the necessary attributes and data. As discussed in Chapter 2, aesthetic map­
pings describe how variables in the data are mapped to visual properties. In this script,
the aesthetic mappings simply tell the geom_smooth() function that there are two
variables named x and y, and that they are assigned to the population and mean,
respectively. In geom_point(), we add in the shape parameter to indicate which sym­
bol we want. We do not actually specify which shape the point should take. Instead,
we give it a label (in the preceding example, it’s mean). This will then be mapped in

Interpreting the Data | 75

Figure 3-3. Plot characters in R

consecutive sequence with the shape scale we defined earlier for the entire chart. In
the example code, we drew the points for the mean queue sizes first, so this is mapped
to the first shape that was defined—the unfilled triangle. The median queue sizes will
take the second shape (the plus sign) because it was drawn next, and the maximum
queue sizes take the last shape, the multiplication sign.

While the points show discrete values that are widely scattered, as random samples
tend to be, the smoother geom creates either a line or a shaded area that evens out
the variations in each set of points (mean, median, and max) and helps us visualize
the patterns in the data.

Finally, we wrap up with two continuous scales:
scale_y_continuous("queue size", breaks=0:35) +
scale_x_continuous("population", breaks=seq(from=10,to=600,by=30))

Scales control the mapping between variables and aesthetic properties, and we need
one scale for each aesthetic property used. In our case, we have only two aesthetic
properties, x and y, so we just need to add in the scales.

Let’s zoom in further on the population with 70 people in the queue and see how often
a queue forms. Again, we run another short R script to process the data and generate
a chart, as shown in Example 3-6.

76 | Chapter 3: Offices and Restrooms

Example 3-6. Frequency of restroom queues
library(ggplot2)

data <- read.table("simulation1.csv", header=TRUE, sep=",")
df <- data.frame(table(data$X70))
colnames(df) <- c("queue_size", "frequency")
percent_labels <- paste(df$frequency, '(', round(df$frequency*100/540, 2), '%)')

ggplot(data=df) + opts(legend.position = "none") +
 scale_fill_grey(start = 0.6, end = 0.8) +
 geom_bar(aes(x = queue_size, y = frequency, fill = factor(queue_size))) +
 geom_text(aes(x = queue_size, y = frequency, label = percent_labels, size=1)) +
 scale_y_continuous("frequency") +
 scale_x_discrete("queue size")

Running this script creates the chart shown in Figure 3-4.

Figure 3-4. Frequency of restroom queues for a population size of 70 people

Interpreting the Data | 77

The code is similar to that of the previous script that created the chart in Figure 3-2.
Instead of viewing all the data, however, I focused on using the data with the popu­
lation of 70 people in the office (that is, the column named X70). The table() function
counts the number of times a particular queue size appears, and the program converts
the resulting table into a data frame. This method creates rather cryptic column
names, so to make it more understandable, we convert the two column names into
queue_size and frequency. At this point in time, the data frame looks something like
this:

 queue_size frequency
1 0 535
2 1 5

This tells us that the restroom queue was empty 535 out of 540 times, while there was
a queue of 1 person only 5 times. The rest of the script continues to generate the chart
with the ggplot2 library.

The code is straightforward. First, I created a plot with the data frame without the
legend. To draw the chart in grayscale, I set the fill to grey, which runs from 0 (white)
to 1.0 (black). My starting color is 0.6 and my final color is 0.8. If I had left the colors
at the defaults, I would have had a pretty dark first bar.

Next, I attached a bar lot to the chart. In its aesthetic mapping, the x-axis attribute is
mapped to the queue size, and the y-axis attribute is mapped to the frequency. I also
threw in a fill attribute, and differentiated it by finding the different scales of the queue
size (it happens that there are only two queue sizes).

To make the information more obvious, I also attached the percentage text labels on
each bar in the chart and rounded them out with some cosmetic alterations and
cleanup. Something to note here is that for the queue size attribute, I used a discrete
scale instead of a continuous scale because there are only two queue sizes, either 1 or
0. The continuous scale is, as you’d guess, for a continuous set of values.

The chart answers our concerns over restroom congestion. The restroom queue is
empty 99% of the time, while 1% of the time there is one person in the queue. So there
you have it: a restroom of 3 facilities for 70 people in the office is absolutely OK. In
fact, from the simulation, we learn that having 200 people in the office would still be
acceptable, with the restroom queue being empty around 80% of the time.

78 | Chapter 3: Offices and Restrooms

The Second Simulation
The simulation we just ran fixed the number of facilities for a restroom while changing
the population of the office over a nine-hour duration. It answered the question of
how many people a restroom of three facilities can serve. However, if we’re the ones
planning the office, we’ll know roughly how many people we want to serve. So let’s
turn the question around and ask: how many restrooms should we build to support
the number of people in the office?

To answer this question, we will turn the previous simulation on its head, using a
fixed population size while changing the number of facilities per restroom, as shown
in Example 3-7.

Example 3-7. Simulation script 2 (varying number of facilities per restroom)
require 'csv'
require './restroom'

frequency = 3
use_duration = 1
population_size = 1000
facilities_per_restroom_range = 1..30
data = {}
facilities_per_restroom_range.each do |facilities_per_restroom|
 Person.population.clear
 population_size.times { Person.population << Person.new(frequency, use_duration) }
 data[facilities_per_restroom] = []
 restroom = Restroom.new facilities_per_restroom

DURATION.times do |t|
 queue = restroom.queue.clone
 restroom.queue.clear
 data[facilities_per_restroom] << queue.size

 unless queue.empty?
 restroom.enter queue.shift
 end

 Person.population.each do |person|
 if person.need_to_go?
 restroom.enter person
 end
 end
 restroom.tick
 end
end

The Second Simulation | 79

CSV.open('simulation2.csv', 'w') do |csv|
 lbl = []
 facilities_per_restroom_range.each {|facilities_per_restroom|
 lbl << facilities_per_restroom }
 csv << lbl

 DURATION.times do |t|
 row = []
 facilities_per_restroom_range.each do |facilities_per_restroom|
 row << data[facilities_per_restroom][t]
 end
 csv << row
 end
end

The code is almost the same as Example 3-4. The main difference is that we’re no
longer looping through a range of population sizes. Instead, we fixed the population
size at 1,000 people and looped through the number of facilities per restroom. The
reason why we’re using a much larger population size is because if we used a smaller
one, there might not be much data to process!

The data collected is also different. While we’re still measuring the queue size, it’s the
queue size assuming different number of facilities per restroom instead of different
population sizes.

As before, we’re going to run the analysis through an R script (Example 3-8). This is
very similar to the one we used in Example 3-5.

Example 3-8. Median, mean, and max queue sizes versus number of facilities in a restroom
library(ggplot2)

data <- read.table("simulation2.csv", header=TRUE, sep=",")
mean <- mean(data)
median <- apply(data,2,median)
max <- apply(data,2,max)
df <- data.frame(population=seq(from=1,to=30),mean=mean, median=median,max=max)

ggplot(data = df) + scale_color_discrete(name="Type") +
 geom_smooth(aes(x=population,y=mean,color="mean")) +
 geom_point(aes(x=population,y=mean,color="mean")) +
 geom_smooth(aes(x=population,y=median,color="median")) +
 geom_point(aes(x=population,y=median,color="median")) +
 geom_smooth(aes(x=population,y=max,color="max")) +
 geom_point(aes(x=population,y=max,color="max")) +
 scale_y_continuous("queue size") +
 scale_x_continuous("number of facilities in a restroom")

The chart generated from this simulation is shown in Figure 3-5.

80 | Chapter 3: Offices and Restrooms

Figure 3-5. Median, mean, and max queue sizes for simulation 2

From the chart, we can easily tell that if we want to have 1,000 people in an office,
we’d need restrooms with about 20 facilities. Now let’s run the queue size frequency
script again, but this time changing the data we want to chart. Instead of charting
for a population size of 70 people, let’s chart for 19 facilities per restroom
(Example 3-9).

Example 3-9. Frequency of restroom queues
library(ggplot2)

data <- read.table("simulation2.csv", header=TRUE, sep=",")
df <- data.frame(table(data$X19))
colnames(df) <- c("queue_size", "frequency")
percent_labels <- paste(df$frequency, '(', round(df$frequency*100/540,2), '%)')

The Second Simulation | 81

ggplot(data=df) + opts(legend.position = "none") +
 scale_fill_grey(start = 0.6, end = 0.8) +
 geom_bar(aes(x = queue_size, y = frequency, fill = factor(queue_size))) +
 geom_text(aes(x = queue_size, y = frequency, label = percent_labels, size=1)) +
 scale_y_continuous("frequency") +
 scale_x_discrete("queue size")

Figure 3-6 shows the chart that is generated when we run the script. As before, the
restroom queue is empty almost 99% of the time.

Figure 3-6. Frequency of restroom queues for a restroom with 19 facilities

82 | Chapter 3: Offices and Restrooms

You might notice a glaring lack of realism in both this simulation and the previous
one (besides the people being blobs of software running around in a loop): we have
only one restroom, which we scale from a tiny one with a single facility to a mega-
restroom with 30 facilities. We’ll look into injecting realism in the third simulation
covered next.

The Third Simulation
Both of the previous simulations made a few assumptions:

• The probability of going to the restroom is the same for every person (three times
within a period of nine hours).

• The probability of any person going to the restroom is the same throughout the
whole nine hours of simulation.

• Everyone uses the restroom for exactly one tick (simulating one minute of real
time).

• There is only one restroom in the whole office, with all the facilities we need.

This is obviously not realistic. In this third simulation, we are going to tweak our first
simulation script to make it more realistic. The changes are:

• The probability of a person going to the restroom is randomly set to one to six
times within a period of nine hours.

• The probability of any person going to the restroom during the half-hour before
lunch until the half-hour after lunch (two hours in total) is higher than any other
time over the period of nine hours.

• A person can use the restroom for a duration of either one or two ticks (any more
than that wouldn’t be realistic!).

• There are a few restrooms, each with a number of facilities (three in this simu­
lation) and its own queue.

Let’s look at the new script in Example 3-10.

Example 3-10. Simulation script 3 (tweaking simulation 1 for realism)
require 'rubygems'
require 'csv'
require 'restroom'

max_frequency = 5
max_num_of_restrooms = 1..4
facilities_per_restroom = 3
max_use_duration = 1
population_range = 10..600

The Third Simulation | 83

max_num_of_restrooms.each do |num_of_restrooms|
 data = {}
 population_range.step(10).each do |population_size|
 Person.population.clear
 population_size.times { Person.population << Person.new(rand(max_frequency)+1,
 rand(max_use_duration)+1) }
 data[population_size] = []
 restrooms = []
 num_of_restrooms.times {restrooms << Restroom.new(facilities_per_restroom)}

 DURATION.times do |t|
 data[population_size] << restrooms.inject(0) {|n,m| n + m.queue.size }
 restrooms.each {|restroom|
 queue = restroom.queue.clone
 restroom.queue.clear

 unless queue.empty?
 restroom.enter queue.shift
 end
 }

 Person.population.each do |person|
 person.frequency = (t > 270 and t < 390) ? 12 : rand(max_frequency)+1
 if person.need_to_go?
 restroom = restrooms.min {|a,b| a.queue.size <=> b.queue.size}
 restroom.enter person
 end
 end
 restrooms.each {|restroom| restroom.tick }
 end

 end

 CSV.open("simulation3-#{num_of_restrooms}.csv", 'w') do |csv|
 lbl = []
 population_range.step(10).each {|population_size| lbl << population_size }
 csv << lbl

 DURATION.times do |t|
 row = []
 population_range.step(10).each do |population_size|
 row << data[population_size][t]
 end
 csv << row
 end
 end
end

Instead of a single frequency, we now have a max_frequency; and instead of
use_duration, we now have max_use_duration. We also have a new variable,
max_num_of_restrooms, which, of course, describes the maximum number of
restrooms.

84 | Chapter 3: Offices and Restrooms

The simulation runs through four scenarios, each with one, two, three, or four rest­
rooms. Each restroom will have three facilities each. The first change is the way we
create Person objects to populate the population. Instead of having every Person
object have the same frequency and use_duration, we create a population of Person
objects that have a random frequency from 1 to 6 and a random use_duration of
either 1 or 2.

Next, we have a list of restrooms instead of a single restroom. This means the data
collection will also change. Instead of using the queue size of the single restroom, we
will look at all the restrooms, find the one with the shortest queue, and use that as the
data point. (This is the purpose of the restrooms.min call.) Also, instead of clearing
a single restroom queue, now we go through all the restrooms and clear each and
every queue.

Another change is that the frequency of the Person objects will change between the
270th and the 390th ticks. For a period of 120 ticks (2 hours), we increase the frequency
of the Person object to 12. Also, instead of automatically entering a person into the
restroom, we look for the restroom with the shortest queue and move him into that
queue.

Finally, since we have four scenarios, we’ll be generating four CSV files labeled
simulation3-1.csv through simulation3-4.csv.

After running the simulation, we turn to analyzing the data. Running the simulation
script will produce four CSV files. We can’t use the same set of R scripts as before
because they are for one restroom only. What we want to do is to compare the queue
size changes between the scenarios with different numbers of restrooms. However, if
we did so, we’d end up with too many variables (the 3 median, mean, and max values ×
4 scenarios would produce a chart with 12 lines). Instead, we’ll just use the maximum
queue size for all four scenarios, as shown in Example 3-11.

Example 3-11. Maximum queue size script for four scenarios
library(ggplot2)

df <- function(sim) {
 data <- read.table(paste(sim,".csv",sep=""), header=TRUE, sep=",")
 max <- apply(data,2,max)
 return(data.frame(population=seq(from=10,to=600,by=10),max=max))
}

ggplot() + scale_shape_manual(name="Type", value=c(2,3,4,22)) +
 geom_smooth(data = df("simulation3-1"), aes(x=population,y=max)) +
 geom_point(data = df("simulation3-1"), aes(x=population,y=max,shape="max1")) +
 geom_smooth(data = df("simulation3-2"), aes(x=population,y=max)) +
 geom_point(data = df("simulation3-2"), aes(x=population,y=max,shape="max2")) +
 geom_smooth(data = df("simulation3-3"), aes(x=population,y=max)) +
 geom_point(data = df("simulation3-3"), aes(x=population,y=max,shape="max3")) +

The Third Simulation | 85

 geom_smooth(data = df("simulation3-4"), aes(x=population,y=max)) +
 geom_point(data = df("simulation3-4"), aes(x=population,y=max,shape="max4")) +
 scale_y_continuous("queue size", breaks=0:35) +
 scale_x_continuous("population", breaks=seq(from=10,to=600,by=30))

The script is not much different from the ones we used earlier, except that this time,
instead of reading the data from a single file and producing a single data frame, we
read from four files and produce four different data frames. We also define a function
called df() to read in a file and return a data frame with the max and population
attributes.

Now that we have four data frames and not just one, we can’t put our data points into
the ggplot() function anymore. Instead, we place them in the geometry functions.
Running the script in Example 3-11 will produce Figure 3-7.

Figure 3-7. Maximum queue sizes for four scenarios in simulation 3

86 | Chapter 3: Offices and Restrooms

Let’s look at the max1 line. This line represents one restroom and three facilities,
which is the same as the first simulation but more realistic. So how does injecting
more realism into the simulation affect the queue sizes? To find out, we need to com­
pare this with the analysis of the first simulation, specifically Figure 3-2. We run the
same script in Example 3-6 but change the filename from simulation1.csv to
simulation4-1.csv to generate the chart in Figure 3-8.

Figure 3-8. Realistic frequency of restroom queues for a population size of 70 people

The Third Simulation | 87

If we compare Figures 3-8 and 3-4, we can immediately tell that the first simulation
was too optimistic. We can see that with more realism in the simulation, the restroom
will be empty 92% of the time instead of 99% of the time. We can also see that the
maximum queue size is 4 instead of 1. What we can take comfort in, however, is that
92% is still pretty good, and we’re in no real danger of bladder apocalypse.

From Figure 3-7, we can also tell that if we have more restrooms, we will have shorter
maximum queue sizes given the same population. This is, of course, to be expected
because the number of facilities also increases (remember that adding one restroom
actually adds three facilities). More subtly, though, we can see that the difference
between one restroom and two restrooms is larger than the difference between three
restrooms and four restrooms. This tells us that the law of diminishing returns is
operating here as well.

The Final Simulation
The previous simulation tells us how the queue sizes look with more realistic as­
sumptions, and we uncovered some interesting facts when we increased the number
of restrooms. We found out that, as expected, the queue sizes drop but the returns
diminish as the number of restrooms increases.

However, because the number of facilities also increases, it’s normal for the maximum
queue sizes to drop. This means we can’t tell for sure whether the drop in maximum
queue size is because of an increase in restrooms or an increase in facilities. In other
words, are we better off with, say, 1 restroom with 12 facilities, or 4 restrooms with 3
facilities each?

Intuitively, we’d assume the latter case should result in shorter queues, but let’s crunch
the numbers and do the charts. We’ll take the data from simulation 3 and compare
it with Example 3-12.

Example 3-12. Maximum queue size for 1 restroom with 12 facilities versus 4 restrooms
with 3 facilities each
library(ggplot2)

df <- function(sim) {
 data <- read.table(paste(sim,".csv",sep=""), header=TRUE, sep=",")
 max <- apply(data,2,max)
 return(data.frame(population=seq(from=10,to=600,by=10),max=max))
}

ggplot() + scale_shape_manual(name="Type", value=c(2,3,4,22)) +
 geom_smooth(data = df("simulation3"), aes(x=population,y=max)) +
 geom_point(data = df("simulation3"), aes(x=population,y=max,shape="max-1x12")) +

88 | Chapter 3: Offices and Restrooms

 geom_smooth(data = df("simulation4-4"), aes(x=population,y=max)) +
 geom_point(data = df("simulation4-4"), aes(x=population,y=max,shape="max-4x3")) +
 scale_y_continuous("queue size", breaks=0:35) +
 scale_x_continuous("population", breaks=seq(from=10,to=600,by=30))

If we plot the maximum queue size chart again with these two scenarios side by side,
we get Figure 3-9.

Figure 3-9. Frequency of restroom queues with the two scenarios side by side

You will notice that the maximum queue sizes increase gradually in the scenario with
four restrooms, as compared with the scenario with one restroom. Our intuition
seems validated, but wait—this is only the maximum queue size. We need one last
check.

The Final Simulation | 89

Let’s take a look at the frequency of queue sizes by running Example 3-6 again. We
need to run this for a population of 400 people, because smaller populations will not
show many differences.

Example 3-13. Frequency of restroom queues for a population of 400 people
library(ggplot2)

data <- read.table("simulation3-4.csv", header=TRUE, sep=",")
df <- data.frame(table(data$X400))
colnames(df) <- c("queue_size", "frequency")
percent_labels <- paste(df$frequency, '\n', round(df$frequency*100/540, 2), '%')

ggplot(data=df) + opts(legend.position = "none") +
 geom_bar(aes(x = queue_size, y = frequency, fill = factor(queue_size))) +
 geom_text(aes(x = queue_size, y = frequency, label = percent_labels, size=1)) +
 scale_y_continuous("frequency") +
 scale_x_discrete("queue size")

For the scenario of four restrooms with three facilities each, the chart is shown in
Figure 3-10.

Now compare this with the scenario of a single restroom with 12 facilities
(Figure 3-11).

So what can we conclude by analyzing these two charts? If we’re looking for the per­
centage of time that no restroom queues are formed, it doesn’t matter whether we
provide 1 restroom with 12 facilities or 4 restrooms with 3 facilities. However, with
one restroom, if queues are actually formed, there is a high probability that the queues
can get pretty long. With four restrooms, we can avoid long queues.

Having said that, though, it might be surprising to you that the last analysis doesn’t
really matter. Let’s say there are 12 people waiting in the queues. For the first scenario,
where there is a single restroom with 12 facilities, the wait time is 12 people divided
by 12 facilities, which is 1 tick (or 1 minute). For the second scenario, given that the
12 people are distributed evenly among the 4 restrooms, this means each restroom
would have a queue size of 3. The wait time is then three people divided by three
facilities, which unsurprisingly turns out to be one tick also. In both scenarios, despite
the length of the queue, the wait time remains the same!

The moral of the story here is that sometimes we tend to go overboard when we try
too hard to analyze our data. It’s always good to take a wider view or look at the data
from a different perspective, and check whether the analysis is realistic.

90 | Chapter 3: Offices and Restrooms

Figure 3-10. Frequency of restroom queues for the scenario of four restrooms with three
facilities each

Wrap-up
Needless to say, it’s a great relief to be proven wrong! The building people knew what
they were doing and so did the HSE. An office of 70 male engineers can indeed be
supported by a single restroom with 3 urinals.

We started with a simple simulation to make sure our models made sense. We built
models that represented the restroom, the facilities, and the people using them, and
then ran a simulated, simplified sequence of events. The end result was reasonable.

Wrap-up | 91

Figure 3-11. Frequency of restroom queues for the scenario of 1 restroom with 12 facilities

Next, we turned the simulation on its head and asked how many facilities a restroom
should have to support 1,000 people in the office. With some tweaking of our simu­
lation script, we managed to get a reasonable result again.

The third simulation attempted to inject more realism into the first simulation by
changing a number of variables and including randomness in those variables. We also
increased the number of restrooms in the simulations from one to four. This simu­
lation made a lot more sense than the first one, as it mirrored reasonable behavior of
people in the office. The results from this simulation were also more realistic.

92 | Chapter 3: Offices and Restrooms

Finally, we compared whether it was better to have a single restroom with 12 facilities,
or 4 restrooms with 3 facilities each. The answer was surprisingly not as straightfor­
ward as expected. It turns out that the probability of having no restroom queues at
all is the same for both scenarios, while the difference is that the maximum queue size
for the former is much longer than that of the latter. However, we ended with a
cautionary note not to overanalyze data, because taking a different perspective of the
data sometimes reveals the foolishness of going overboard with our analysis.

This chapter described basic techniques that you can use in simulating everyday ac­
tivities. You might want to do this for more serious work (the second simulation in
this chapter, for example, would be useful if you want to determine the number of
restrooms and facilities you need when you set up a large office), but it can also be
used to simply explore the world around you. The techniques and the technologies
are just tools to unlock your imagination.

Wrap-up | 93

CHAPTER 4

How to Be an Armchair Economist

I love reading popular science, a hobby that stems from a happy childhood encounter
with Isaac Asimov’s “science fact” books after I’d consumed all of his science fiction
ones in the local library. I was a voracious reader, and soon my interests spilled over
to other types of books, such as Martin Gardner’s mathematics books and Stephen
Jay Gould’s biology books. While I didn’t necessarily fully understand the science
behind them all, the material was fascinating enough for me to develop a lifelong
passion for such writing.

Nestled among my science books is a particular genre of popular writing that equally
and frequently brought me wonder and amazement—popular economics books. No
doubt the first book that probably flashed through your mind is the immensely pop­
ular and widely read Freakonomics (William Morrow). While that’s a great book, the
one book on popular economics that always tops my list (and I readily admit it might
be entirely due to the mental image I get when I think of the title) is the Armchair
Economist by Stephen E. Landsburg (Free Press).

Something from the Armchair Economist that stuck in my mind for a long time, even­
tually blossoming into this book, is how Landsburg described economics:

Economics is…about observing the world with genuine curiosity and admitting that
it is full of mysteries....Sometimes the mysteries themselves…are hard to solve, so we
practice by trying to solve similar mysteries in fictional worlds that we invent and call
models.

In this chapter, we explore how to model some very basic economic theories and then
investigate how they work.

95

1. This question originated in economist Charles Wheelan’s 2002 book Naked Economics (W. W. Norton &
Company).

The Invisible Hand
Economists sometimes ask a rhetorical and seemingly silly question: “Who feeds
Paris?”1 The Parisians themselves, of course; who else? However, neither the question
nor the answer is straightforward. There is a lot more to it than meets the eye.

During the days of the Soviet Union and the Cold War, the story goes, a Soviet official
visited the United States and went into a supermarket. The brightly lit aisles were
filled with all kinds of products from peanut butter to gardening tools. “Very im­
pressive,” said the official. “But how can you make sure that all the supermarkets have
all these items?”

While we might laugh at the official’s lack of understanding of market economy, you
can probably find a parallel in the question of who feeds Paris. You’ve probably never
heard of the Parisian sidewalk cafes running out of coffee, so how do they know what
kind of coffee, and how much, to stock? How do the fashion boutiques know which
clothes to stock and how much to sell them for? How does Darty (a French electronics
chain) know which are the best mobile phones to sell?

These questions are answered succinctly by 18th-century Scottish economist and so­
cial philosopher Adam Smith. His book An Inquiry into the Nature and Causes of the
Wealth of Nations (excerpted here) is considered the first modern work of economics,
while he himself is often regarded as the father of economics:

It is not from the benevolence of the butcher, the brewer or the baker, that we expect
our dinner, but from their regard to their own interest. We address ourselves, not to
their humanity but to their self-love, and never talk to them of our own necessities but
of their advantages.

Smith coined the metaphor of the “invisible hand” to label this natural inclination,
effectively describing what we know today as the market economy. In this chapter,
we will simulate a market economy to see if we can observe the invisible hand in
action.

A Simple Market Economy
First, let’s take stock of the different roles and features of an ideal market economy
(which are what we want to simulate).
Producers

The people who produce the goods. Producers create the goods and sell them to
the consumers at a price.

96 | Chapter 4: How to Be an Armchair Economist

Consumers
The people who consume the goods created by the producers. Consumers buy
goods from producers at a price.

Price
This is the value at which producers agree to exchange goods with consumers.
The price is set by each producer.

Supply
The amount of goods generated by the producers.

Demand
The amount of goods that the consumers want to buy.

Market
The overall ecosystem of buying and selling goods from and to producers and
consumers.

In this idealized market economy, we will have the producers creating goods and
selling them to consumers for a price. Each producer sets his own price.

The consumers, in turn, buy goods from the producer. However, this happens only
if the consumer thinks the price is reasonable. Consumers have a certain amount of
demand and will buy to fulfill that demand. In addition, consumers can buy from any
producer, and will buy from the producer who sells at the cheapest price first.

The Producer
We start off our exercise with the producer. The Producer class is a rather simple one,
as shown in Example 4-1.

Example 4-1. Producer class
class Producer
 attr_accessor :supply, :price
 def initialize
 @supply, @price = 0, 0
 end

 def generate_goods
 @supply += SUPPLY_INCREMENT if @price > COST
 end

 def produce
 if @supply > 0
 @price *= PRICE_DECREMENT unless @price < COST

A Simple Market Economy | 97

 else
 @price *= PRICE_INCREMENT
 generate_goods
 end
 end
end

Producer has two variables: supply, which is the amount of unsold goods that the
producer has at that moment, and price, which is the price she wants to sell the goods
for. Both are initialized to 0 when the Producer class is first instantiated.

The Producer class also has a produce method that, well, produces the goods and sets
the price:

def produce
 if @supply > 0
 @price *= PRICE_DECREMENT unless @price < COST
 else
 @price *= PRICE_INCREMENT
 generate_goods
 end
end

While the price is presumably set immediately after instantiation, we want to change
the price accordingly to be more competitive with the other producers in the same
market. To do this, we multiply the current price with either a PRICE_DECREMENT or
PRICE_INCREMENT multiplier. Whether to increase or reduce the price depends on how
well the goods have sold in the past.

If all the goods have been sold, this means they were well received, so the producer
will want to make more—by calling the generate_goods method—and also increase
the price slightly, to generate more profit.

If that’s not the case, and there are still unsold goods, the producer will want to make
them more attractive by dropping the price a little. Naturally, she will not decrease
the price if it’s below the cost of generating the goods, indicated by the constant COST.

The Producer class also has an instance method, generate_goods, which will create
the goods. As mentioned earlier, this is called only if the producer’s supply runs out:

def generate_goods
 @supply += SUPPLY_INCREMENT if Market.average_price > COST
end

The generate_goods method increases the amount of goods by adding on to its cur­
rent supply a SUPPLY_INCREMENT amount. Of course, this happens only if the price is
more than the cost of generating the goods.

98 | Chapter 4: How to Be an Armchair Economist

The Consumer
Next is the consumer. The Consumer class, shown in Example 4-2, is an even simpler
beast. It has only one purpose: to consume the goods up to the level of its demand.

Example 4-2. Consumer class
class Consumer
 attr_accessor :demands

 def initialize
 @demands = 0
 end

 def buy
 until @demands <= 0 or Market.supply <= 0
 cheapest_producer = Market.cheapest_producer
 if cheapest_producer
 @demands *= 0.5 if cheapest_producer.price > MAX_ACCEPTABLE_PRICE
 cheapest_supply = cheapest_producer.supply
 if @demands > cheapest_supply
 @demands -= cheapest_supply
 cheapest_producer.supply = 0
 else
 cheapest_producer.supply -= @demands
 @demands = 0
 end
 end
 end
 end
end

The Consumer class has a single variable, demands, which indicates the amount of goods
it requires to fulfill its needs. The main method for the Consumer class is buy. When
the buy method is called, the consumer will continue to buy goods until his demand
is met or the supply in the whole market runs out.

Each consumer first looks for the cheapest producer and buys as much as it can from
her. When the consumer buys from the producer, the producer’s supply decreases
and the demand also decreases accordingly. If the supplies run out first, the consumer
buys from the next producer until his demand is satiated.

However, the consumer is not a buying machine. If the cheapest price is higher than
the maximum acceptable price set by the constant MAX_ACCEPTABLE_PRICE, the con­
sumer’s demand is reduced by half.

A Simple Market Economy | 99

Some Convenience Methods
Before we get into the simulation script, we’re going to create some convenience
methods. We’ll define all of these convenience methods as static methods in a
Market class, as shown in Example 4-3.

Example 4-3. Market class
class Market
 def self.average_price
 ($producers.inject(0.0) { |memo, producer| memo + producer.price}/
 $producers.size).round(2)
 end

 def self.supply
 $producers.inject(0) { |memo, producer| memo + producer.supply }
 end

 def self.demand
 $consumers.inject(0) { |memo, consumer| memo + consumer.demands }
 end

 def self.cheapest_producer
 producers = $producers.find_all {|f| f.supply > 0}
 producers.min_by{|f| f.price}
 end
end

The first of these convenience methods is average_price. We will be using this meth­
od to get the average price of the goods based on the prices from all the producers.
Next are the supply and demand methods, which return the collective amounts of
goods and demands of all the producers and all the consumers, respectively. Finally,
we have a cheapest_producer method, which returns the cheapest producer. We de­
termine this by finding all the producers who still have goods, comparing them by
price, and returning the one with the cheapest price.

The Simulation
Now that we have all the pieces in place, let’s get to the simulation. To prepare for it,
we need to first create the population of producers and consumers, as shown in
Example 4-4.

Example 4-4. Populating the simulation
$producers = []
NUM_OF_PRODUCERS.times do
 producer = Producer.new
 producer.price = COST + rand(MAX_STARTING_PROFIT)
 producer.supply = rand(MAX_STARTING_SUPPLY)
 $producers << producer
end

100 | Chapter 4: How to Be an Armchair Economist

$consumers = []
NUM_OF_CONSUMERS.times do
 $consumers << Consumer.new
end

$generated_demand = []
SIMULATION_DURATION.times {|n| $generated_demand << ((Math.sin(n)+2)*20).round }

We store the producers in the global array $producers and the consumers in the global
array $consumers. Each producer is created with a randomly generated price that is
higher than the cost of producing the goods (COST), as well as a randomly generated
amount of goods. We don’t do anything to the consumers that are created at this
point; we’ll get to them in the simulation loop later.

We’ll also create a fluctuating generated demand and store that in the $generated_de
mand variable. This will be used during the simulation to represent the fluctuation of
demand over a period of time. This generated demand roughly follows a sine wave.

The simulation loop is shown in Example 4-5. Before we actually go into the loop, we
prepare two empty arrays: demand_supply and price_demand. These are used to store
the values generated from the simulation. The names of each array indicate what it
contains; the demand_supply array stores the changes of demand versus supply of
goods over the simulation period, while the price_demand array stores the changes of
price versus demand over the same period.

Example 4-5. Simulation loop
SIMULATION_DURATION.times do |t|
 $consumers.each do |consumer|
 consumer.demands = $generated_demand[t]
 end
 demand_supply << [t, Market.demand, Market.supply]

 $producers.each do |producer|
 producer.produce
 end

 price_demand << [t, Market.average_price, Market.demand]

 until Market.demand == 0 or Market.supply == 0 do
 $consumers.each do |consumer|
 consumer.buy
 end
 end
end

write("demand_supply", demand_supply)
write("price_demand", price_demand)

A Simple Market Economy | 101

The simulation is a loop that runs SIMULATION_DURATION times and executes a series
of producer and consumer actions.

At the start of the loop, we set every consumer’s demand to be a point in the demand
curve in $generated_demand. Before we start with the producer, we populate the
demand_supply array with the current market demand and supply. Then we loop
through each producer and get her to create and set the price of goods by calling the
produce method. This randomly generates the price of goods for each producer.

After that and before looping through each consumer, we populate the price_demand
array with the average price of goods and the market demand. Finally, we loop
through each consumer and get him to buy. We add in an extra loop to make sure all
the demands are met unless the supply of goods runs out first. With this, we end a
single simulation loop.

At the end of SIMULATION_DURATION loops, we use the write method to write the data
to a CSV file, which we will use to analyze our simulation next (see Example 4-6).

Example 4-6. The write method
def write(name,data)
 CSV.open("#{name}.csv", 'w') do |csv|
 data.each do |row|
 csv << row
 end
 end
end

The write method simply uses the CSV library built into Ruby 1.9 and creates a file
for writing, then loops through the given data array, writing each item of the array as
a line in the CSV file.

Last, before we run the simulation to generate the files, let’s look at the constants that
we referred to in the simulation but whose values we never really examined
(Example 4-7). This is not exactly exciting new stuff, but it will help us understand
the values of the analysis later on.

Example 4-7. Constants used in the simulation
SIMULATION_DURATION = 150
NUM_OF_PRODUCERS = 10
NUM_OF_CONSUMERS = 10

MAX_STARTING_SUPPLY = 20
SUPPLY_INCREMENT = 80

COST = 5
MAX_ACCEPTABLE_PRICE = COST * 10
MAX_STARTING_PROFIT = 5
PRICE_INCREMENT = 1.1
PRICE_DECREMENT = 0.9

102 | Chapter 4: How to Be an Armchair Economist

In Example 4-7, you can see that we will be running the simulation for 150 ticks with
10 producers and 10 consumers. The starting supply for the producers is somewhere
between 0 and 20, while at each tick, depending on whether the supply runs out in
the previous tick or not, each producer creates 80 units of goods at a cost of $5 each.

For the consumer, the maximum acceptable price of the goods is a multiple of the
cost of the goods; for the producer, the starting profits are not more than $5 above
the cost. Finally, the price of the goods increases or decreases by 10% each tick.

Now we can finally run the simulation, which should finish quite quickly. You should
end up with two files, demand_supply.csv and price_demand.csv. We’ll be using these
two files in the next section when we inspect the results of our simulation.

Analyzing the Simulation
As in Chapter 3, we’ll be using R scripts to chart and analyze the patterns of the data
we’ve just generated from our simulation. However, our approaches will differ slight­
ly. In Chapter 3, we were investigating the results of a simulation, while here we are
trying to simulate and re-enact an existing effect. In other words, we didn’t know the
actual answers to the questions we were asking when we ran the Monte Carlo simu­
lations in Chapter 3, but we do know what the results should be here.

Let’s take a look at the first data file we generated, demand_supply.csv. It has three
columns; the first is a point in time, the second is the demand of the goods at that
point in time, and the third is the supply of the goods at that time. We’ll grab this file,
parse it, and generate two line charts—one superimposed on the other (see
Example 4-8).

Example 4-8. Analyzing the demand and supply
library(ggplot2)
data <- read.table("demand_supply.csv", header=F, sep=",")

pdf("demand_supply.pdf")
ggplot(data = data) + scale_color_grey(name="Legend") +
 geom_line(aes(x = V1, y = V2, color = "demand")) +
 geom_line(aes(x = V1, y = V3, color = "supply")) +
 scale_y_continuous("amount") +
 scale_x_continuous("time")

dev.off()

As in Chapter 3, we use the ggplot2 library first, then read in the data from the CSV
file. The three columns—time, demand, and supply—are automatically labeled V1,
V2, and V3. We use ggplot to create the base data plot, then set the scale color to
grayscale. Next, we attach two geom_lines that set the necessary x- and y-axes with
the correct data column. Finally, we add in the x- and y-axis labels.

A Simple Market Economy | 103

We predetermined the demand pattern, which should be almost a sine wave, though
sharper since we rounded off the numbers (see Figure 4-1). What interests us is the
supply pattern. If the basic theories of economics are right and we’ve coded the sim­
ulation correctly, then the supply of the goods should fall when the demand increases,
and vice versa. If you look at Figure 4-1, you will see this same pattern, so it’s relief
all around.

Figure 4-1. Demand and supply

104 | Chapter 4: How to Be an Armchair Economist

This might seem obvious, but if you take a second look at the Producer and Consumer
classes, you’ll see that neither the produce nor the buy logic hinge on each other. The
produce logic generates more goods only if the supplies are all sold out. The producer
doesn’t produce to meet the demands of the consumer; she produces when her own
supplies run out.

Similarly, the buy logic chooses the cheapest goods and consumes until the demand
is satiated (we added in the mechanism to stop when the supply in the market runs
out, to prevent an infinite loop). The consumer doesn’t care about the supply of the
goods; he cares only about the price of the goods and will consume until his demands
are satisfied or the goods become too expensive.

Let’s take a look at the second data file, price_demand.csv. It has three columns again—
the first is a point in time, the second is the average price of goods from all producers,
and the third is the overall market demand. In Example 4-9, we do pretty much the
same thing as in Example 4-8.

Example 4-9. Analyzing the price and demand
library(ggplot2)
data <- read.table("price_demand.csv", header=F, sep=",")

pdf("price_demand.pdf")
ggplot(data = data) + scale_color_grey(name="Legend") +
 geom_line(aes(x = V1, y = V2, color = "price")) +
 geom_line(aes(x = V1, y = log2(V3)-3, color = "demand")) +
 scale_y_continuous("amount") +
 scale_x_continuous("time")

dev.off()

There is a difference in charting the price, though. We take the logarithm of the
demand to base 2 and chart that instead of the actual demand. Why do we do that?
It’s because if we charted the actual demand value, we would not be able to see how
the price relates to the demand, and vice versa, as the scale of the demand is much
higher than that of the price.

We can make a couple of quick observations from the chart in Figure 4-2. First, we
can see that the peak price of goods follows after the peak demand. Similarly, the price
is lowest after the demand has fallen to its lowest.

Second, while the price fluctuates with the demand, it actually decreases over time
until it stabilizes at a price between $5 and $5.50. Notice this corresponds with the
cost of creating goods, which we set at $5 at the beginning of the simulation. The logic
in the Producer class’s produce method prevents the price from ever dropping below
the cost. This is the reason why the price stabilizes at around $5. But why does the
price drop at all?

A Simple Market Economy | 105

Figure 4-2. Price and demand

This is due to the market economy again. Remember that the consumer always buys
the cheapest goods first. This means the producer with the higher prices will have
unsold goods, which in turn forces the prices to go down. The end results are that the
average price goes down until it nears the cost of producing the goods. Finally, we see
the invisible hand! The invisible hand of Adam Smith has weighed in on our simu­
lation and pushed the prices down.

Now that we have witnessed the invisible hand and charted its effects, let’s get slightly
more complicated.

106 | Chapter 4: How to Be an Armchair Economist

Resource Allocation by Price
In the previous simulation, every producer creates only one type of goods, which we
imaginatively called goods. This, of course, is not realistic (nothing modeled in eco­
nomics is realistic, but that’s a different point). In our next simulation, we will have
producers creating two types of goods. These producers are farmers who can rear
chickens or ducks on their farms. These farmers will rear either animal depending on
the profits they can get in return for it. There is no cost to switching animals, and the
farmers will remorselessly switch at a slightest hint of a profit to be earned.

What we want to investigate is the relationship between the prices of ducks and
chickens, as well as the relationship between the supply of ducks and chickens over
time. Let’s look at changes we’ll need to make to our simulation.

The Producer
We start off with the Producer class, which as you might have guessed, has the most
changes, as shown in Example 4-10.

Example 4-10. Producer class for second simulation
class Producer
 attr_accessor :supply, :price
 def initialize
 @supply, @supply[:chickens], @supply[:ducks] = {}, 0, 0
 @price, @price[:chickens], @price[:ducks] = {}, 0, 0
 end

 def change_pricing
 @price.each do |type, price|
 if @supply[type] > 0
 @price[type] *= PRICE_DECREMENT unless @price[type] < COST[type]
 else
 @price[type] *= PRICE_INCREMENT
 end
 end
 end

 def generate_goods
 to_produce = Market.average_price(:chickens) > Market.average_price(:ducks) ?
 :chickens : :ducks
 @supply[to_produce] += (SUPPLY_INCREMENT) if @price[to_produce] > COST[to_produce]
 end

 def produce
 change_pricing
 generate_goods
 end
end

Resource Allocation by Price | 107

The first change you’ll observe is that while we still have the supply and price vari­
ables, they are no longer integers but are in fact hashes, with the key being either
chickens or ducks. Next, the generate_goods method is slightly different. The farmer
will only produce either chickens or ducks depending on the prices. If the average
market price of duck is higher, she’ll produce more ducks, and if the average market
price of chicken is higher, she’ll produce more chickens.

Notice that in Example 4-1 in the previous simulation, the produce method changes
the pricing, then calls the generate_goods method to generate the goods. In this sim­
ulation, the Producer class has a separate method named changed_pricing that will
iterate through the prices of both chickens and ducks and check if there is any unsold
poultry left. If there is, the farmer will lower the price in the hope that it can get sold
more easily.

Finally, the produce method in this simulation is a simple one that just calls
change_pricing and then generates the goods.

The Consumer
The changes to the Consumer class, as shown in Example 4-11, are done in the same
way as the Producer class.

Example 4-11. Consumer class for the second simulation
class Consumer
 attr_accessor :demands

 def initialize
 @demands = 0
 end

 def buy(type)
 until @demands <= 0 or Market.supply(type) <= 0
 cheapest_producer = Market.cheapest_producer(type)
 if cheapest_producer
 @demands *= 0.5 if cheapest_producer.price[type] > MAX_ACCEPTABLE_PRICE[type]
 cheapest_supply = cheapest_producer.supply[type]
 if @demands > cheapest_supply then
 @demands -= cheapest_supply
 cheapest_producer.supply[type] = 0
 else
 cheapest_producer.supply[type] -= @demands
 @demands = 0
 end
 end
 end
 end
end

108 | Chapter 4: How to Be an Armchair Economist

The main difference is in the buy method, which now takes in a parameter. This
parameter is the type of poultry the consumer wants to buy—either chickens or ducks.
Notice that the demands variable is not a hash, unlike in the Producer class. This is
because the demands of the consumer can be met by either chickens or ducks. In fact,
as you will see in a while, the consumer will choose the cheaper of the two to buy since
either one of them can satisfy his needs.

Market
As in Example 4-3 in the previous simulation, we have a number of convenience
methods that we place as static methods in the Market class in Example 4-12.

Example 4-12. Market class for the second simulation
class Market
 def self.average_price(type)
 ($producers.inject(0.0) { |memo, producer| memo + producer.price[type]}/
 $producers.size).round(2)
 end

 def self.supply(type)
 $producers.inject(0) { |memo, producer| memo + producer.supply[type] }
 end

 def self.demands
 $consumers.inject(0) { |memo, consumer| memo + consumer.demands }
 end

 def self.cheaper(a,b)
 cheapest_a_price = $producers.min_by {|f| f.price[a]}.price[a]
 cheapest_b_price = $producers.min_by {|f| f.price[b]}.price[b]
 cheapest_a_price < cheapest_b_price ? a : b
 end

 def self.cheapest_producer(type)
 producers = $producers.find_all {|producer| producer.supply[type] > 0}
 producers.min_by{|producer| producer.price[type]}
 end
end

Except for the cheaper method, other methods are simply variants of the previous
simulation that take in the type of poultry as the input parameter. The cheaper method
performs a simple comparison by taking the cheapest chicken from the producer with
the lowest price and comparing it with the cheapest duck, after which it returns either
chickens or ducks.

Resource Allocation by Price | 109

The Simulation
This second simulation is only slighly more complex than the previous one. As in
Example 4-4 in the previous simulation, we need to set up the population of producers
and consumers before we start the simulation (Example 4-13).

Example 4-13. Populating the second simulation
$producers = []
NUM_OF_PRODUCERS.times do
 producer = Producer.new
 producer.price[:chickens] = COST[:chickens] + rand(MAX_STARTING_PROFIT[:chickens])
 producer.price[:ducks] = COST[:ducks] + rand(MAX_STARTING_PROFIT[:ducks])
 producer.supply[:chickens] = rand(MAX_STARTING_SUPPLY[:chickens])
 producer.supply[:ducks] = rand(MAX_STARTING_SUPPLY[:ducks])
 $producers << producer
end

$consumers = []
NUM_OF_CONSUMERS.times do
 $consumers << Consumer.new
end

$generated_demand = []
SIMULATION_DURATION.times {|n| $generated_demand << ((Math.sin(n)+2)*20).round }

This is not much different from the previous setup, except now we need to set the
price and initial starting supply of both chickens and ducks for every producer. When
that’s done, we’re ready to start the simulation, as shown in Example 4-14.

Example 4-14. The second simulation loop
price_data, supply_data = [], []
SIMULATION_DURATION.times do |t|
 $consumers.each do |consumer|
 consumer.demands = $generated_demand[t]
 end
 supply_data << [t, Market.supply(:chickens), Market.supply(:ducks)]
 $producers.each do |producer|
 producer.produce
 end
 cheaper_type = Market.cheaper(:chickens, :ducks)
 until Market.demands == 0 or Market.supply(cheaper_type) == 0 do
 $consumers.each do |consumer|
 consumer.buy cheaper_type
 end
 end
 price_data << [t, Market.average_price(:chickens), Market.average_price(:ducks)]
end

write("price_data", price_data)
write("supply_data", supply_data)

110 | Chapter 4: How to Be an Armchair Economist

As in Example 4-5, we start off the loop by setting the demands of the consumers
according to the generated demand curve we created during the setup. Then we iterate
through each producer to get her to produce.

Here’s where this simulation differs from the previous one. While Example 4-5 simply
iterates through each consumer and calls on the buy method, in Example 4-14 we
need to first find out which is cheaper — chickens or ducks. Then, we iterate through
each consumer and get the consumer to buy the cheaper goods.

Before we run the second simulation, let’s look at the parameters we will be running
it with (Example 4-15).

Example 4-15. Parameters for the second simulation
SIMULATION_DURATION = 150
NUM_OF_PRODUCERS = 10
NUM_OF_CONSUMERS = 10

MAX_STARTING_SUPPLY = Hash.new
MAX_STARTING_SUPPLY[:ducks] = 20
MAX_STARTING_SUPPLY[:chickens] = 20
SUPPLY_INCREMENT = 60

COST = Hash.new
COST[:ducks] = 12
COST[:chickens] = 12

MAX_ACCEPTABLE_PRICE = Hash.new
MAX_ACCEPTABLE_PRICE[:ducks] = COST[:ducks] * 10
MAX_ACCEPTABLE_PRICE[:chickens] = COST[:chickens] * 10

MAX_STARTING_PROFIT = Hash.new
MAX_STARTING_PROFIT[:ducks] = 15
MAX_STARTING_PROFIT[:chickens] = 15
PRICE_INCREMENT = 1.1
PRICE_DECREMENT = 0.9

Most of these parameters should be familiar to you by now, except that instead of
using integers, we have a hash of values with the poultry type being the key. We will
run the simulation with the values of cost, maximum acceptable price, and starting
profit the same for both chickens and ducks.

Finally, as before, we write the data collected during the simulation loop to CSV files.
In this simulation, we collect both the prices as well as the market supply of chickens
and ducks. At the end of the simulation, we should have two files: price_data.csv and
supply_data.csv.

Resource Allocation by Price | 111

Analyzing the Second Simulation
We want to investigate the relationship between chickens and ducks in terms of the
price and the amount of goods in this analysis. Let’s start with the amount first. Log­
ically speaking, since the two types of poultry are in competition with each other, the
two amounts of goods should be at opposite ends of the spectrum. In other words,
when the supply of chickens is increasing, the supply of ducks should be decreasing.
This is because as more consumers buy chickens, more duck farmers switch to chicken
farming since it’s more lucrative. As the consumer demand we specified in the model
fluctuates, there is a corresponding supply fluctuation in our simulation—that is,
when the supply of chickens is high, the supply of ducks will be low.

Let’s look at the R script that we will run to analyze the data, shown in Example 4-16.

Example 4-16. Comparing the supply of chickens against the supply of ducks
library(ggplot2)
data <- read.table("supply_data.csv", header=F, sep=",")

ggplot(data = data) + scale_color_grey(name="Supply") +
 geom_line(aes(x = V1, y = V2, color = "chickens")) +
 geom_line(aes(x = V1, y = V3, color = "ducks")) +
 scale_y_continuous("amount") +
 scale_x_continuous("time")

This should be familiar now since it’s almost exactly the same as the previous scripts.
See the chart in Figure 4-3 for a closer look.

No surprises here. We can see that the supply of chickens and ducks alternates in
highs and lows, confirming our earlier analysis. Next, we look at the comparison
between the price of chickens and ducks. Just as with supply, we can guess that the
prices will also alternate between chickens and ducks. This is because when the price
of chickens goes up, more consumers will start buying ducks instead of chickens in
the next turn. This will cause the duck supply to run low and the producers to increase
their prices to maximize profit. In that same turn, though, because consumers are
now buying ducks, the producers have no choice but to decrease the price of chickens.

Let’s look at the R script in Example 4-17.

Example 4-17. Comparing the prices of chickens and ducks
library(ggplot2)
data <- read.table("price_data.csv", header=F, sep=",")

ggplot(data = data) + scale_color_grey(name="Average price") +
 geom_line(aes(x = V1, y = V2, color = "chickens")) +
 geom_line(aes(x = V1, y = V3, color = "ducks")) +
 scale_y_continuous("price") +
 scale_x_continuous("time")

112 | Chapter 4: How to Be an Armchair Economist

Figure 4-3. Comparing supply for chickens and ducks

Again, this is very familiar territory, so we’ll just jump right ahead to the chart in
Figure 4-4.

Again, we see the pattern of fluctuating prices for chickens and ducks. All pretty
boring stuff by now. But wait—notice that the starting price of both chickens and
ducks is quite high, but not long into the simulation, the prices competed with each
other and dropped drastically until they both hit their costs, which is $12. This looks
a lot like Figure 4-2. That’s still not very interesting, though; in fact, this seems very
much like Example 4-9 in our first simulation where the price dropped to around
cost.

Resource Allocation by Price | 113

Figure 4-4. Comparing price for chickens and ducks

You’re missing a very important point if you think that the results are boring. The
fact that prices tend to drop to near cost shows that producers cannot set their prices
arbitrarily. Very often, producers and merchants are accused of profiteering and ar­
bitrarily setting up high prices in order to get as much profit as possible. While pro­
ducers’ main motivation is primarily profit, in a free market economy it is usually
difficult for them to set arbitrary prices that are overly high.

Of course, there are circumstances that do cause this—for example, if all the producers
collude (a cartel), if a single producer has a monopoly, or if the market is a large
geographically isolated location—which really only means that it’s not a free market
economy. Given that the only difference between the two goods is the price, there is
no choice but for the producers to drop their prices to stay competitive.

114 | Chapter 4: How to Be an Armchair Economist

Having said that, remember that in our simulation the cost of producing chickens
and ducks is the same. What if we increase the cost of producing ducks, meaning the
difference is now not only the price?

COST[:ducks] = 24
COST[:chickens] = 12

Let’s see how doubling the cost of producing ducks affects the prices (Figure 4-5).

Figure 4-5. Effect of doubling the cost of producing ducks

The basic patterns remain the same: the prices of chickens and ducks still alternate
in highs and lows. However, notice that the stable price is now between $22 and $26—
that is, centering the cost of ducks. This means that while ducks are being sold with

Resource Allocation by Price | 115

marginal profit, chickens are sold with high profits! In that case, why don’t the farmers
all sell chickens only? That doesn’t work, of course, since if everyone produces and
sells chickens only, the stable price will be back at the level of our first simulation,
which hovers around the cost of producing the chickens.

Price Controls
Price controls are not a new phenomenon. The idea that there is a “fair” price for
certain goods, which can be determined by governments or rulers, has been around
since early recorded history. As early as 2800 B.C., the ancient Egyptians strived to
maintain grain prices. In Babylon, the famous Code of Hammurabi, the first ever
written law code, imposed a rigid system of controls over wages and prices. In ancient
China, the Rites of Zhou, a description of the organization of the government during
the Western Zhou period (1046–256 B.C) laid down detailed regulations of commer­
cial life and prices. In ancient Greece, an army of grain inspectors called Sitophylakes
was appointed to set the price of grain to what the government thought just.

None of these structures was eventually successful, of course. In modern times, such
price controls are often the promises made by politicians during their election cam­
paigns, and just as often implemented to the short-lived joy of their electorate. A
proven way to win the hearts of voters is to promise lower prices for goods. However,
as we have seen earlier, changes in prices cannot be isolated and necessarily affect
supply of the goods.

Let’s look at how price controls in our simulation affect our tiny market economy.
We will be modifying our last simulation only slightly. First, we will add in the price
control parameters:

PRICE_CONTROL = Hash.new
PRICE_CONTROL[:ducks] = 28
PRICE_CONTROL[:chickens] = 16

Notice that price control doesn’t really mean forcing the producers to produce below
their cost. If that’s the case, even the dumbest politician will realize that no producer
will produce and the whole economy will fail. In our example, the price control gives
a bit of leeway for the producers to profit; for both the chickens and the ducks, the
maximum profit that the producer will be able to get is $4. For most people, that
would seem reasonable.

Now let’s modify a line in the Producer class change_pricing method, as shown in
Example 4-18.

Example 4-18. Adding the price control logic
def change_pricing
 @price.each do |type, price|
 if @supply[type] > 0
 @price[type] *= PRICE_DECREMENT unless @price[type] < COST[type]

116 | Chapter 4: How to Be an Armchair Economist

 else
 @price[type] *= PRICE_INCREMENT unless @price[type] > PRICE_CONTROL[type]
 end
 end
end

In this code, we’re disallowing price increments if the price is above the price control
level. That’s the only change there is. Now let’s run the code and see what happens.

After running the code, we’ll run the same analysis as in our previous simulation on
price_data.csv and supply_data.csv. We don’t need to change the script, so let’s look
at the chart for the price data (Figure 4-6).

Figure 4-6. Price control effect on prices

Resource Allocation by Price | 117

Drastic change! As you can see, the price of chickens stabilizes and doesn’t go beyond
$20, and the price of ducks stabilizes and doesn’t go beyond $23. This is well and
good, since that’s the intention of the price control. Now let’s look at the chart for the
supply data (Figure 4-7).

Figure 4-7. Price control effect on supply of goods

The devastation is obvious. After a turn or so, no farmers produce any chickens. Ducks
can sell for more, so all farmers produce ducks. However, no consumer wants to buy
ducks because chickens are cheaper, so the supply of ducks grows until it hits a ceiling,
at which point both supplies stagnate until the end of the simulation. Our tiny chick­
ens and ducks economy is broken.

118 | Chapter 4: How to Be an Armchair Economist

Of course, our simulations are idealized, and as mentioned at the beginning of this
chapter, simply models. However, they do give an indication of how price controls
are fundamentally flawed. There are ways to get around the problems of our simu­
lation (and in real life, no one is going to continually produce ducks if no one wants
them, and neither will anyone give up eating because they can’t get the cheapest food),
but they involve increasingly complex solutions that necessarily take from one side
of the equation to give to the other side. While they might work under certain spe­
cialized circumstances, in a larger context and in the longer term, price controls al­
most never work.

Wrap-up
This chapter provided only a brief glimpse into the world of economics modeling
using software. We started with the most basic of economic theories and simulated a
free market economy comprising a group of producers producing a single type of
goods for a group of consumers.

The producers produce goods based on how well they sell. If the producers’ supply
runs out, they will start producing. The producers also change their pricing based on
how well their goods sell. If their goods are sold out, they will try to maximize their
profits by increasing the price of their goods. If there are unsold goods, the producers
will try to sell them off more aggressively by reducing their price. Of course, the
producers will not reduce the price below the cost of producing the goods. The con­
sumers consume based on their own demand, which fluctuates over time. They will
consume from the producers with the cheapest goods until their demands are met.

We analyzed this simple simulation, and discovered as expected, that the supply for
goods goes up when the demand goes down, and vice versa. We also showed that the
price of goods stabilizes near the cost of producing the goods over time.

Our second simulation took our first and modified it for an economy of two types of
goods—chickens and ducks. The basic rules set down in our first simulation were
applied, and we analyzed the results. As it turned out, when the supply of chickens
increased, the supply of ducks went down, and vice versa, as expected. Also, the price
of goods stabilizes again over time.

However, we made the interesting discovery that if the cost of producing one type of
goods is different from the other (in our case, the cost of producing ducks is higher
than the cost of producing chickens), the prices will stabilize near the higher cost.

Finally, we ended this brief investigation and simulation by analyzing how price con­
trol affects our tiny economy. We learned that controlling and fixing the prices for

Wrap-up | 119

ducks and chickens, while allowing some profit for the producers, is disastrous for
the economy. One type of goods simply vanishes from the market because no pro­
ducer wants to produce it anymore, while the other type goes unsold even though the
prices are more reasonable than when a free market economy existed.

Economics modeling is a huge field, and what we’ve gone through in this chapter is
less than even a scratch on the surface. I invite you to apply the tools and techniques
you’ve learned here to dive deeper into this fascinating subject.

120 | Chapter 4: How to Be an Armchair Economist

CHAPTER 5

Discover Yourself Through Email

The Idea
Data mining is the current hot topic in high-tech industries, and you can hardly enter
a tech conference or join a serious conversation about software without hearing that
term—or its partner, data analytics—all around you. The ability to discover new and
meaningful information from data seems to have taken over the enterprise mindset,
as companies stumble over each other in their rush to offer their customers data
analytics and mining.

One of the most common uses of enterprise-related data mining is for retail compa­
nies to find out more about you, the consumer. Companies want to learn as much as
they can about you to sell more things to you. They want to find out what you like,
what you are most likely to buy, who else is like you, when you buy things, and what
payment methods you use to buy things. It’s pretty scary stuff at times.

But why let the retail companies have all the fun and advantage? Wouldn’t you want
to know the same things about yourself? If you’re like me and have been using email
for a number of years, you have probably accumulated thousands to tens of thousands
of messages. That’s quite a treasure trove of information about yourself, which, as
you might have guessed by now (if you hadn’t already done so just by reading the title
of the chapter) we’re going to mine for precious, precious information about you and
your emailing habits (Figure 5-1).

121

Figure 5-1. Gold miners (from http://www.flickr.com/photos/pingnews/424786913)

So how do we do it? Here’s the plan, and it’s quite straightforward:

1. We grab mails from your email account using Ruby.
2. We parse and store data in CSV files.
3. Using a set of R scripts, we try to discover patterns in the data that you didn’t

recognize before.
4. Profit (OK, maybe not this one).

Grab and Parse
Before we start with anything else, we need the data, of course. I’m assuming you have
an email account with sufficient data to be mined and analyzed, and that you have it
in Gmail. Other IMAP servers would work too with some minor tweaks.

122 | Chapter 5: Discover Yourself Through Email

http://www.flickr.com/photos/pingnews/424786913

The Ruby code is straightforward, and no fancy acrobatics are involved. The main
effort really comes from determining what to discover and therefore what data to
capture to enable the discovery. In this chapter, we will concentrate mostly on count­
ing the number of email messages. Sound too easy?

As in the previous chapters, this code should be only the beginning of exploration for
you. You should tweak it, extend it, and figure out what you want to find out about
yourself from your email. For now, though, we’ll be looking at only a few fields cap­
tured from the messages:

• Sender (from)
• Recipient (to)
• Date the message was sent

Example 5-1 demonstrates the code for the message-retrieving Ruby program, placed
in a file unambiguously named get_mails_gmail.rb.

Example 5-1. Creating data source files with messages from Gmail
require 'csv'
require 'mail'

def write_row(mail, csv)
 data = []
 data << (mail.from ? mail.from.first : "")
 data << (mail.to ? mail.to.first : "")
 data << mail.date
 csv << data
end

EMAILS_TO_RETRIEVE = 10
USER = '<YOUR USERNAME>'
PASS = '<YOUR PASSWORD>'

Mail.defaults do
 retriever_method :imap, :address => "imap.gmail.com",
 :port => 993,
 :user_name => USER,
 :password => PASS,
 :enable_ssl => true
end

{:inbox => 'INBOX', :sent => '[Gmail]/Sent Mail'}.each do |name, mailbox|
 emails = Mail.find(:mailbox => mailbox,
 :what => :last,
 :count => EMAILS_TO_RETRIEVE,
 :order => :dsc)

Grab and Parse | 123

 CSV.open("#{name}_data.csv", 'w') do |csv|
 csv << %w(from to date)
 emails.each do |mail|
 begin
 write_row mail, csv
 rescue
 puts "Cannot write this mail -> #{mail.from} to #{mail.to} with subject: \
 #{mail.subject}"
 puts $!
 end
 end
 end
end

All code examples may be downloaded from GitHub.

We use two gem libraries in this email extraction script: csv and mail. The csv library
is part of the Ruby standard library, which we have already encountered in Chap­
ter 3. Just to recap, this is a library that comes bundled with Ruby 1.9. It’s rather
important that Ruby 1.9 is being used here, because the implementation in Ruby 1.8
and earlier is quite different. In fact, the current csv library used to exist as an optional
library called FasterCSV outside the standard library. Version 1.9 absorbed FasterCSV
as the main CSV package and delivered it as part of the standard library.

The mail gem is probably the most comprehensive email library in Ruby. Most email
gems in Ruby are focused on sending messages. Only a few actually allow you to
receive messages, and the mail library is one of them. We also set a constant,
EMAILS_TO_RETRIEVE, that sets the number of email messages to grab from the
account.

First, we need to set up the library with the correct credentials and parameters
(Example 5-2).

Example 5-2. Email configuration
USER = '<YOUR USERNAME>'
PASS = '<YOUR PASSWORD>'
Mail.defaults do
 retriever_method :imap, :address => "imap.gmail.com",
 :port => 993,
 :user_name => USER,
 :password => PASS,
 :enable_ssl => true
end

124 | Chapter 5: Discover Yourself Through Email

https://github.com/sausheong/everyday

The Mail.defaults method takes in a block that sets up how we want to retrieve
messages from the server. In this case, we’re using IMAP to retrieve messages from
the Gmail IMAP server. The default port for IMAP is 143, but Gmail uses IMAP over
SSL, which uses port 993.

IMAP
The Internet Message Access Protocol (IMAP) is an Internet protocol that allows an
email client to access messages on a remote mail server. The current version, IMAP
version 4, is defined by RFC 3501. An IMAP server listens on the well-known port 143.
Gmail uses IMAP over SSL, which uses the well-known port 993 instead. The other
popular protocol for accessing messages on a remote mail server is POP, but POP re­
moves email messages from the server by default once it reads them, and we don’t want
that to happen.

Now that we have connected to the IMAP server, we want to retrieve email messages
from it. IMAP organizes messages in mailboxes, and it’s important to know which
mailboxes we want to retrieve. For this chapter, we are going to retrieve messages
from your Gmail inbox as well as your sent mail folder. The name of the inbox in
Gmail is INBOX (all caps), and the sent mail folder is [Gmail]/Sent Mail. Make sure
you use this exact spelling and capitalization; it’s important to get this part right
because if it’s not exactly the same, Gmail will simply say it can’t find your mailboxes.

{:inbox => 'INBOX', :sent => '[Gmail]/Sent Mail'}.each do |name, mailbox|
 emails = Mail.find(:mailbox => mailbox,
 :what => :last,
 :count => EMAILS_TO_RETRIEVE,
 :order => :dsc)
...
end

This code goes through the two mailboxes and uses the mail library to retrieve a
number of messages. The Mail.find method shown here retrieves the last
EMAILS_TO_RETRIEVE number of messages, sorted in descending order. Once we have
the messages, we will invoke the csv library to write them into a CSV file, as shown
in Example 5-3.

Example 5-3. Creating the data CSVs
 CSV.open("#{name}_data_g.csv", 'w') do |csv|
 csv << %w(from to date)
 emails.each do |mail|
 begin
 write_row mail, csv
 rescue

Grab and Parse | 125

 puts "Cannot write this mail -> #{mail.from} to #{mail.to} with subject: \
 #{mail.subject}"
 puts $!
 end
 end
 end

We start off by opening a new file for writing and passing it into the block. We then
write the column headers to the file by appending an array that corresponds to the
three fields we want to extract (from, to, and date). To extract these fields and write
them into csv, we create a separate method named write_row, as shown in
Example 5-4.

Example 5-4. write_row method
def write_row(mail, csv)
 data = []
 data << (mail.from ? mail.from.first : "")
 data << (mail.to ? mail.to.first : "")
 data << mail.date
 csv << data
end

In this method, we try to extract the first sender’s email address as well as the first
recipient’s email address. You might notice that we are careful to make sure that the
sender or the recipient exist; if not, we mark it with an empty string.

This gives us two files to start our discovery journey, inbox_data.csv and sent_data.csv,
which both look like Example 5-5.

Example 5-5. Data CSV file contents
from,to,date
noreply@youtube.com,sausheong@gmail.com,2011-09-17T02:45:24-07:00
store-news@amazon.com,sausheong@gmail.com,2011-09-17T09:33:27+00:00
noreply@foursquare.com,sausheong@gmail.com,2011-09-17T04:17:28-05:00
noreply@quora.com,sausheong@gmail.com,2011-09-17T03:41:43-05:00

The Emailing Habits of Enron Executives
My assumption is that you’re going to use these techniques on your own mailbox to
find out more about your own emailing habits. For this chapter, though, it’s obviously
not a great idea for me to use my personal mailbox to explain how you can do this.

An alternative is to use a widely available email dataset and run through it for the
examples in this chapter. In this case, there is no better choice (or any other choice,
really, since publicly available, non-privacy-infringing email datasets are unsurpris­
ingly rare) than the Enron email dataset (see the sidebar “The Enron Scandal”).

126 | Chapter 5: Discover Yourself Through Email

The Enron Scandal
Enron Corporation was an American energy company, one of the largest in the world,
with claimed revenues of nearly $101 billion in 2000. Fortune named Enron “America’s
Most Innovative Company” for six consecutive years. In October 2001, it was revealed
that Enron’s reported financial condition was fraudulent, cooked up by its executives.
Shareholders lost nearly $11 billion when Enron’s stock price, which hit a high of
$90USD per share in mid-2000, plummeted to less than $1 by the end of November
2001. This eventually led to its bankruptcy in December 2001, which in turned dragged
along to its grave the audit and accountancy firm Arthur Andersen (one of the top five
in the world then). Enron’s $63.4 billion in assets made it the largest corporate bank­
ruptcy in US history until WorldCom’s bankruptcy the following year. Besides being
the largest corporate bankruptcy, Enron was also marked as the biggest audit failure.

The Enron email dataset contains 517,431 messages from 151 Enron executives and
senior managers sent between 1998 and 2002. The original archive was made public
and posted to the Web by the Federal Energy Regulatory Commission (FERC) in May
2002 during its investigations, and consisted of a bunch of Outlook PST files, each
belonging to an Enron executive.

However, we’re not using the PST files directly, but rather a dataset derived from
these original archives. This dataset was collected and prepared by the CALO Project
(a Cognitive Assistant that Learns and Organizes; see the sidebar “The CALO
Project”). This dataset contains data from the original PST files, organized into fold­
ers. The corpus contains a total of about 500,000 messages.

The CALO Project
CALO was an artificial intelligence project funded by the Defense Advanced Research
Projects Agency (DARPA) from 2003 to 2008. It brought together more than 300 re­
searchers from 25 of the top university and commercial research institutions, with the
aim of integrating numerous AI technologies into a cognitive assistant that could be
told what to do and respond accordingly. (CALO’s name was inspired by the Latin word
calonis, which means “soldier’s servant.”) SRI International was the lead integrator
responsible for coordinating the effort to produce an assistant that could live with and
learn from its users. The most popularly known product spun out of SRI International
is Siri, originally an independent piece of software running on iOS but later acquired
by Apple. Siri is now an integrated and prominent part of iOS 5.

Grab and Parse | 127

The email dataset was cleaned up and does not contain attachments. In addition, some
messages have been deleted in response to requests from affected Enron employees.
Invalid email addresses were converted to something of the form user@enron.com and
to no_address@enron.com when no recipient was specified.

You can download the files from http://www.cs.cmu.edu/~enron/ if you want to use
this dataset to try out this chapter’s code. After you unzip the file, you will see a
directory structure that looks something like this:

enron_mail_20110402
|
- maildir
 |
 - allen-p
 |
 - arnold-k
 |
 - arora-h
 |
 - all_documents
 - deleted_items
 - ...
 - inbox
 - ...
 - sent
 - sent_items
 |
 - 1.
 - 2.
 - 3.
 - ...

Each original Outlook PST file has been converted into a directory. Within that di­
rectory, each mailbox is a subdirectory where each message is an individual text file,
named sequentially with numbers. These files contain the email messages that comply
with the Internet Message Format (described in RFC 2822; http://www.rfc-editor.org/
info/rfc2822).

I will be using the mailbox of one of the Enron executives in this dataset and analyze
his emailing habits. But wait. In the previous section, we used a Ruby script to extract
messages from a Gmail account using SMTP. How do we extract email messages from
a bunch of text files?

The answer is that email messages are really just a bunch of text files. In the case of
the Gmail account, when we get a message from the mail server, what we’re really
getting is a text document (with communication protocol wrappers) that follows the

128 | Chapter 5: Discover Yourself Through Email

mailto:user@enron.com
mailto:no_address@enron.com
http://www.cs.cmu.edu/~enron/
http://www.rfc-editor.org/info/rfc2822
http://www.rfc-editor.org/info/rfc2822

Internet Message Format in RFC 2822. The mail library we used before was used to
communicate with the server and to parse the email document. To parse the Enron
messages, we’ll be using the same library to extract the data accordingly. Let’s look at
the script now in Example 5-6, which we store in a file named get_mails_enron.rb.

Example 5-6. Creating data source files from email files
require 'csv'
require 'mail'

def write_row(mail, csv)
 data = []
 data << (mail.from ? mail.from.first : "")
 data << (mail.to ? mail.to.first : "")
 data << mail.date
 csv << data
end

DIR_PATH = "/Users/sausheong/Downloads/enron_mail_20110402/maildir/kean-s"
EXCLUDED_DIRS = %w(. .. deleted_items all_documents)
SENT_DIRS = %w(sent sent_items)

sent = CSV.open("sent_data.csv", 'w')
sent << %w(from to date)
inbox = CSV.open("inbox_data.csv", 'w')
inbox << %w(from to date)

Dir.foreach(DIR_PATH) do |file_name|
 file = File.absolute_path(file_name, DIR_PATH)
 if File.directory?(file) and !EXCLUDED_DIRS.include?(file_name)
 Dir.foreach(file) do |mail_file|
 eml = File.absolute_path(mail_file, file)
 if File.file?(eml)
 mail = Mail.read eml
 begin
 if SENT_DIRS.include?(file_name)
 write_row mail, sent
 else
 write_row mail, inbox
 end
 rescue
 puts "Cannot write this mail -> #{mail.from} to #{mail.to} with subject: \
 #{mail.subject}"
 puts $!
 end
 end
 end
 end
end

Grab and Parse | 129

inbox.close
sent.close

exit

This script looks a lot like the one in Example 5-1. The parsing of the messages in
write_row is actually almost exactly the same. We start off by determining which
mailbox we want to investigate and set a constant DIR_PATH to specify that. Next, we
set up the EXCLUDED_DIRS array with a list of directories—including the deleted items
in the mailbox—that we don’t want to check.

Next, we set up both CSV files and open them up for writing, then insert the column
headings as the first line in the CSV files. Once we have the files, we iterate through
each item in the given directory DIR_PATH. Note that the maildir directory contains
only a list of directories, each of them representing a mailbox. So if the item we’ve
retrieved is a directory and it’s not in the EXCLUDED_DIRS array, we will treat it as a
mailbox, go into it, and iterate through each item in that subdirectory.

At this level, we should have a list of messages, each a numbered file. Here we use
the mail library, read each mail file, and then parse the files accordingly using
write_row, the same way we did in Example 5-1. The difference here is that if the
mailboxes are named sent or sent_items, we will save the data to the sent_data.csv
file, while all other messages are parsed and stored in inbox_data.csv.

With all that preparation work, we finally have the data in the format that we want,
so it’s time to take the next step: uncovering the patterns in the email data.

Discover Yourself
In this chapter, I will introduce a number of R scripts that will ferret out things about
you that you didn’t know before. Although I will mostly talk about the Enron email
dataset here, in particular the messages of Steve Kean (who was the executive vice
president and chief of staff at Enron), you can use the same scripts on your own email
data.

Let’s start with a simple script first—one that maps the number of email messages
received by the day of the month.

Number of Messages by Day of the Month
Here’s the plan of attack. We want to count the number of messages according to the
day of the month. An obvious method is to use the table() function. In this case, we
will need to pass in to table() a vector that looks something like this:

"01" "01" "01" "02" "02" "03" "03" "03" "03" "04" "04" "05" "05" ...

130 | Chapter 5: Discover Yourself Through Email

This means that there are three messages on the 1st of the month (01), two messages
on the 2nd of the month (02), four messages on the 3rd of the month (03), and so on
until the 31st of the month. We already have this structure in our data file, where each
line represents an email message and has a date when it was received. The data we
need is in the date column only, so we’re really looking at only one of the three col­
umns in the data file. Let’s see how we can access it. First, we need to load the data:

inbox_data <- read.table("inbox_data.csv", header=TRUE, sep=",")
sent_data <- read.table("sent_data.csv", header=TRUE, sep=",")

This gives us two data frames, all loaded up with our data. To select only the date
column, we will use inbox_data['date'] or sent_data['date'].

However, these are still data frames with a single column containing a string in each
row. The string shows the message date, but nonetheless it’s still a string. We want a
vector of dates in order to extract just the day of the month, and it will take some
effort to tease that out.

So, to retrieve the day of the month, first we need a vector of dates. The date column
contains the dates we want, so we use $ on both the inbox and the sender data to
reference this column. While the values in the column look like dates, they are actually
characters, so we need to convert them into actual date objects, using the as.Date
function:

dates <- as.Date(inbox_date$date,"%Y-%m-%dT%H:%M:%S")

Note that when we’re converting from characters to a date, we need to provide the
desired format (or the conversion specification) for the date. Of course, we don’t really
want the whole date, just the day of the month, %d, so we use the format function on
our vector of dates:

elements <- format(dates, '%d')

This gives us a vector of day of the month, each item representing a message in a day
of the month. We pass elements into the table() function to get a table (of course),
which looks something like this:

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 ...
390 340 413 351 396 421 340 393 309 343 295 331 330 369 306 ...

This is the count of the messages in the inbox by day of the month. We need to generate
this for the sent mail folder as well.

Using the aforementioned method, we create two variables, inbox_count and
sent_count, which represent the frequency of messages by day of the month. What
we want to do next is plot these two sets of data in a chart. For convenience, we create
a third data frame that wraps around inbox_count and sent_count, and also the x-axis
scale we want to use for the chart.

Discover Yourself | 131

The x-axis in the chart is the day of the month and is a discrete scale, as compared to
the y-axis, which is a continuous scale. To create this discrete x-axis scale, we create
a vector of characters, not too subtly named days_of_month, representing the days of
the month. Then, we use the factors of days_of_month as x-axis input in the chart
plotting functions later. We set the optional levels parameter to be days_of_month
in order to set our preferred order of elements.

Let’s look at the whole script now in Example 5-7.

Example 5-7. Number of messages by day of the month
library(ggplot2)

inbox_data <- read.table("inbox_data.csv", header=TRUE, sep=",")
sent_data <- read.table("sent_data.csv", header=TRUE, sep=",")

dates <- as.Date(inbox_data$date,"%Y-%m-%dT%H:%M:%S")
elements <- format(dates, '%d')
inbox_count <- data.frame(table(elements))$Freq

dates <- as.Date(sent_data$date,"%Y-%m-%dT%H:%M:%S")
elements <- format(dates, '%d')
sent_count <- data.frame(table(elements))$Freq

days_of_month <- c("01","02","03","04","05","06","07","08","09","10",
 "11","12","13","14","15","16","17","18","19","20",
 "21","22","23","24","25","26","27","28","29","30","31")
df <- data.frame(days=factor(days_of_month, levels=days_of_month),
 inbox=inbox_count,sent=sent_count)

ggplot(data=df) + scale_shape_manual(name="Mailbox", values=c(2,3)) +
 geom_point(aes(x=days,y=inbox, shape='inbox')) +
 geom_smooth(aes(x=days,y=inbox, shape='inbox', group=1)) +
 geom_point(aes(x=days,y=sent, shape='sent')) +
 geom_smooth(aes(x=days,y=sent, shape='sent', group=2)) +
 scale_y_continuous('number of emails') +
 scale_x_discrete('day of month')

A data frame with a single column; the frequency count of messages by day of the month
for the inbox
Another data frame, this time for the sent mails
The data frame used in plotting the chart, consisting of the frequency count columns of the
inbox and the sent mail folder as well as the days of the month

Running this script will create the chart in Figure 5-2.

132 | Chapter 5: Discover Yourself Through Email

Figure 5-2. Message count by day of the month

Now we’re talking! A few immediate observations:

• The sent mail folder has fewer messages than the inbox. This is quite normal in
most cases. We often get more messages than we send, because we get messages
from a lot of sources—people we know, people we don’t, and machines (as in
alerts and mailing lists we subscribe to).

• There is an interesting climb to the peak around the 8th to 13th days of each
month, topping 350 messages received, at which point it goes into steady decline
until the end of the month.

• The amount of messages sent out, however, is pretty consistent throughout the
month.

Discover Yourself | 133

In this chapter, I won’t be doing any analysis deeper than making observational notes
on the patterns. Further analysis should probably be done with the whole dataset in
view, as well as deeper research into the whole Enron saga. In other words, we will
just observe the patterns here, not try to interpret them.

Before we jump headlong into the next script, let’s step back a bit and take a second
look at Example 5-7. It certainly includes variables and functions that will be repeated
in the other scripts, so like any good programmer would do, we’ll single them out and
make a common library out of them. In the next section, we will look at how we can
abstract common elements and variables into an R package, and then we’ll refactor
Example 5-7 to use it.

MailMiner
The package we will be creating is called MailMiner. Creating R packages is not very
difficult, despite sounding quite daunting. Admittedly, it’s not as easy as defining
Ruby libraries. It’s actually somewhat like creating a Ruby gem. In this section, we
will go through the basic steps of creating a simple R package that rounds up common
functions we will be using.

Before creating the package, though, let’s figure out what common elements we want
to extract and place into this package. From Example 5-7, it’s obvious that we can
substitute a function for the three lines of code that extract the date column from the
data and produce a single data frame containing the mailbox count. In other words,
we can replace:

dates <- as.Date(inbox_data$date,"%Y-%m-%dT%H:%M:%S")
elements <- format(dates, '%d')
inbox_count <- data.frame(table(elements))$Freq

with this:
inbox_count <- dates_count(dates=inbox_data$date, element='%d')

by creating a function called dates_count():
dates_count <- function(dates,element) {
 dates <- as.Date(dates,"%Y-%m-%dT%H:%M:%S")
 elements <- format(dates, element)
 data.frame(table(elements))$Freq
}

As you can see, the dates_count() function essentially repackages the three lines of
code into a single, reusable function. To reuse code (and often also data) in R, we
need to bundle this function into an R package, which is what will we do next.

Let’s go through the steps of creating a basic R package:

1. Use the package.skeleton() function to create the file structure and stubs needed
for the package.

134 | Chapter 5: Discover Yourself Through Email

2. Modify various files in the stub, mostly providing information on the package
you’re writing.

3. Build the package using the build command.
4. Check the package using the check command, to make sure that the package can

be installed.

Let’s start with creating the skeleton file structure. First, we need to create the library
file that we want to include in the package. We create a file named mailminer.r that
contains the code in Example 5-8.

Example 5-8. The mailminer.r file
dates_count <- function(dates,element) {
 dates <- as.Date(dates,"%Y-%m-%dT%H:%M:%S")
 elements <- format(dates, element)
 data.frame(table(elements))$Freq
}

Then we run this command in the R environment:
> package.skeleton(name = "mailminer", code_files = "mailminer.r")

The code_files parameter should point to the mailminer.r file we just created. This
will generate a bunch of files with the following structure:

mailminer
|
- DESCRIPTION
- man
 |
 - mailminer-package.Rd
- R
 |
 - mailminer.r
- Read-and-delete-me

Besides the mailminer.r file, which was copied from the file we pointed to, all other
files need to be populated with the correct information. Edit the DESCRIPTION file
and change the values for the various fields accordingly. The version number in this
file will be used later in generating the filename of the R package. There is also one
(or possibly more) .Rd file in the man directory. These are the manual files, described
in a TeX-like format. We should also modify these accordingly. The Read-and-delete-
me file can be removed after you’ve read it (it doesn’t really say much more than what
you’ll read here).

Next we’ll need to build the package. We need to do this outside of the R environment
and at the console terminal, at the same level as the mailminer directory:

$ R CMD build mailminer

Discover Yourself | 135

This will create a package named mailminer_1.0.tar.gz (if the version number is 1.0).
After building the package, you should test it and check whether there are any errors:

$ R CMD check mailminer_1.0.tar.gz

This should give us a long output listing that ideally ends in everything being OK.
Sometimes we might end up with errors involving creating the manuals or generating
the PDF versions of the manual. In such cases, we can try to avoid generating the
manual by using the --no-manual option:

$ R CMD check --no-manual mailminer_1.0.tar.gz

Finally, once it’s tested, we can install the package:
$ R CMD install mailminer_1.0.tar.gz

To check whether we’ve successfully installed the package, just go into the R envi­
ronment again and type:

> library(mailminer)

You’ll get an error if the package wasn’t installed properly. Otherwise, we’re all set!
Next stop is to modify our existing script to use this brand-new package, as shown in
Example 5-9.

Example 5-9. Modified script to use a common library package
library(ggplot2)
library(mailminer)

inbox_data <- read.table("inbox_data.csv", header=TRUE, sep=",")
sent_data <- read.table("sent_data.csv", header=TRUE, sep=",")

inbox_count <- dates_count(dates=inbox_data$date, element='%d')
sent_count <- dates_count(dates=sent_data$date, element='%d')

days_of_month <- c("01","02","03","04","05","06","07","08","09","10",
 "11","12","13","14","15","16","17","18","19","20",
 "21","22","23","24","25","26","27","28","29","30","31")
df <- data.frame(days=factor(days_of_month, levels=days_of_month),
 inbox=inbox_count,sent=sent_count)

ggplot(data=df) + scale_shape_manual(name="Mailbox", values=c(2,3)) +
 geom_point(aes(x=days,y=inbox, shape='inbox')) +
 geom_smooth(aes(x=days,y=inbox, group=1)) +
 geom_point(aes(x=days,y=sent, shape='sent')) +
 geom_smooth(aes(x=days,y=sent, group=2)) +
 scale_y_continuous('number of emails') +
 scale_x_discrete('day of month')

We need to include the mailminer package in the library before we start using the
dates_count() function. We use it twice for the inbox as well as the sent mailbox.
There are no other changes to the code.

136 | Chapter 5: Discover Yourself Through Email

Now that we have the MailMiner package, let’s get back to our scripts.

Number of Messages by Day of Week
Before being sidetracked to create the MailMiner package, we were investigating Steve
Kean’s email frequency patterns by day of the month. Moving on, we can extend this
to investigate his email frequency pattern by day of the week. Intuitively, the count
of messages received and sent would be different on different days of the week, as
shown in Example 5-10. For example, I should expect the volume of messages to drop
over the weekend since this is a business email account. Let’s see whether this is true.

Example 5-10. Number of messages by day of the week
library(ggplot2)
library(mailminer)

inbox_data <- read.table("inbox_data.csv", header=TRUE, sep=",")
sent_data <- read.table("sent_data.csv", header=TRUE, sep=",")

inbox_count <- dates_count(dates=inbox_data$date, element='%a')
sent_count <- dates_count(dates=sent_data$date, element='%a')

days_of_week <- c("Mon","Tue","Wed","Thu","Fri","Sat","Sun")
df <- data.frame(days=factor(days_of_week, levels=days_of_week),inbox=inbox_count,
 sent=sent_count)

ggplot(data=df) + scale_shape_manual(name="Mailbox", values=c(2,3)) +
 geom_point(aes(x=days,y=inbox, shape='inbox')) +
 geom_smooth(aes(x=days,y=inbox, group=1)) +
 geom_point(aes(x=days,y=sent, shape='sent')) +
 geom_smooth(aes(x=days,y=sent, group=2)) +
 scale_y_continuous('number of emails') +
 scale_x_discrete('day of week')

The script is mostly similar to the one in Example 5-7, except that we use the days of
the week instead of days of the month. To do this, we need to extract the count of
messages by the day of the month. In this case, we use the datetime conversion spec­
ification of %a instead of %d to create inbox_count and sent_count. The %a specification
extracts the short form of the day name (for example, Mon instead of Monday, and
Tue instead of Tuesday). Next, we create a vector of the short day names, then use
the factor() function to convert it into a factor just as we did before. With these
changes, we run the script, which will generate the chart in Figure 5-3.

Interestingly, the volume of messages is the highest during the weekends—the op­
posite of our expectations! Also, there is a big dip to minimal emailing activity mid­
week, which is surprising. It almost seems that the workweek started on Friday and
ended on Tuesday, and that Wednesdays and Thursdays are the “weekends.”

Discover Yourself | 137

Figure 5-3. Message count by day of week

Number of Messages by Month
Let’s move on to a larger scale now and investigate the email frequency pattern for
each month (Example 5-11). The exercise remains the same, and the code similar to
that in the previous section.

Example 5-11. Number of messages by month
library(ggplot2)
library(mailminer)

inbox_data <- read.table("inbox_data.csv", header=TRUE, sep=",")
inbox_data['date']
sent_data <- read.table("sent_data.csv", header=TRUE, sep=",")

138 | Chapter 5: Discover Yourself Through Email

inbox_count <- dates_count(dates=inbox_data$date, element='%b')
sent_count <- dates_count(dates=sent_data$date, element='%b')

month_names <- c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov",
 "Dec")
df <- data.frame(mths=factor(month_names, levels=month_names),inbox=inbox_count,
 sent=sent_count)

ggplot(data=df) + scale_shape_manual(name="Mailbox", values=c(2,3)) +
 geom_point(aes(x=mths,y=inbox, shape='inbox')) +
 geom_smooth(aes(x=mths,y=inbox, group=1)) +
 geom_point(aes(x=mths,y=sent, shape='sent')) +
 geom_smooth(aes(x=mths,y=sent, group=2)) +
 scale_y_continuous('number of emails') +
 scale_x_discrete('month')

This almost looks familiar now. Instead of %d or %a, we use %b to get the months as
abbreviated names. Running through this script creates the chart in Figure 5-4.

From the chart, we can observe that Steve received more messages in the earlier parts
of the year and that there is a dip in the middle of the year, around the month of July.
The volume of messages received also drops at the end of the year. In contrast, the
number of messages Steve sent was constant throughout the year, rising slowly toward
the end of the year.

Number of Messages by Hour of the Day
Having investigated the larger scale of message count by month, let’s look at the other
end of the spectrum by investigating the number of messages received and sent by
the hour of the day. The analysis should be a no-brainer here, since the message count
should be low during the early hours of the morning, progressively increase during
the day, then taper off during the night.

Example 5-12. Number of messages by hour of the day
library(ggplot2)
library(mailminer)

inbox_data <- read.table("inbox_data.csv", header=TRUE, sep=",")
sent_data <- read.table("sent_data.csv", header=TRUE, sep=",")

inbox_count <- times_count(times=inbox_data$date, element="%H")
sent_count <- times_count(times=sent_data$date, element='%H')

hours_of_day <- c("00","01","02","03","04","05","06","07","08","09",
 "10","11","12","13","14","15","16","17","18","19",
 "20","21","22","23")
df <- data.frame(hours=factor(hours_of_day, levels=hours_of_day),
 inbox=inbox_count,sent=sent_count)

Discover Yourself | 139

Figure 5-4. Message count by month

ggplot(data=df) + scale_shape_manual(name="Mailbox", values=c(2,3)) +
 geom_point(aes(x=hours,y=inbox, shape='inbox')) +
 geom_smooth(aes(x=hours,y=inbox, group=1)) +
 geom_point(aes(x=hours,y=sent, shape='sent')) +
 geom_smooth(aes(x=hours,y=sent, group=2)) +
 scale_y_continuous('number of emails') +
 scale_x_discrete('hour of day')

You might notice something different this time around. Instead of dates_count(),
there’s a new function called times_count(). Where did this come from? As it turns
out, to extract the hour of the day, we cannot use the same mechanism as we did with
dates_count(). Here’s times_count():

140 | Chapter 5: Discover Yourself Through Email

times_count <- function(times,element) {
 elements <- strftime(strptime(times, format="%Y-%m-%dT%H:%M:%S"), element)
 data.frame(table(elements))$Freq
}

As before, we need to convert the datetime string into a vector. However, instead of
using as.Date, we use strptime to convert it into a time format, then use strftime
to extract just that single element (in this case, using the conversion specification
%H). To use this function, we add it to the mailminer.r file in the MailMiner package
and repackage it.

Let’s get back to the script. Running Example 5-12 will create the chart in Figure 5-5.

Figure 5-5. Message count by hour of day

Discover Yourself | 141

From the chart, it’s obvious that Steve follows a different email activity cycle, because
the volume of messages received peaks at around 4 or 5 a.m.! At the height of activity,
the number of messages topped 800. This is followed by a rapid decline throughout
the day, and the messages received declined drastically such that by early afternoon,
it dropped below 200. The number of messages sent is also correspondingly higher
in the early hours of the morning as compared to the afternoon and evening.

Interactions
We’ve investigated the anonymous count of messages for long enough. It’s time to
dive deeper and look at the patterns that are formed from the list of people Steve
received messages from and sent messages to. To start off simply, we take the list of
all people (uniquely identified by their email addresses) that Steve sent to, and the list
of people who sent messages to him, and combine them. In other words, we’re looking
at the from column in inbox_data and the to column in sent_data. We want to com­
bine these two columns, then do a simple count of the number of times they appear.
The more times they appear, the more interaction Steve had with that person. Let’s
look at the script now in Example 5-13.

Example 5-13. Number of email interactions
inbox_data <- read.table("inbox_data.csv", header=TRUE, sep=",")
sent_data <- read.table("sent_data.csv", header=TRUE, sep=",")

from <- inbox_data['from']
colnames(from)[1] <- 'mail'

to <- sent_data['to']
colnames(to)[1] <- 'mail'

all <- rbind(from,to)
counted <- data.frame(table(all))
sorted <- counted[order(counted['Freq'],decreasing=TRUE),]

print(sorted[0:20,])

You probably noticed that this script is a whole lot simpler than the earlier ones. Also,
it doesn’t seem to plot any charts. Not all data analysis needs to be charted if the
information is clear enough, as are the results from running this script.

The first two lines are familiar enough. The next two lines extract the from column
from inbox_data into a variable named from, then change the name of the column to
mail. The subsequent two lines do exactly the same with the to column in sent_data.
We change the names of the columns because we want to use the rbind function to
combine these two columns together, and they need to have the same name.

142 | Chapter 5: Discover Yourself Through Email

The combined data is placed into an all variable, on which we run the table()
function and then convert it into a data frame. Using table() on all will give us a
count of the number of times each row appears. Unfortunately, the result, stored in
the counted variable, is unsorted. This makes it difficult for us to extract any infor­
mation, so we have to sort the data next.

Sorting the data is not difficult, but it requires some explanation. We want to sort the
data by the number of messages that Steve sent to or received from a particular email
address, in descending order. This will tell us who Steve interacted with the most.

To sort the data, first we use the order() function on the Freq column in counted,
also setting decreasing to be TRUE:

order(counted['Freq'],decreasing=TRUE)

This will give us a vector of row numbers, sorted by Freq in descending order:
 [1] 1512 1424 23 1555 1320 1900 708 580 889 1511 606 207 909 103
 [15] 1708 1131 205 577 1378 965 1086 718 1574 1697 1591 983 832 819
 [29] 750 1386 157 1085 553 1668 842 986 821 1222 252 1543 415 1432
 [43] 696 1323 340 826 914 1151 161 95 605 735 1351 905 466 ...

Unfortunately, this tells us almost nothing. What we need is the email address and
the corresponding count for the number of messages. To get this, we use the square
brackets notation list['value'] on counted. This notation is much more powerful
than the similar-looking method in Ruby. Besides referencing a single element or a
range of elements, we can use the same notation to search for a list of elements to
return. If we pass the preceding code into counted with the bracket notation, we will
get the list of corresponding elements that we want:

counted[order(counted['Freq'],decreasing=TRUE),]

Notice that there aren’t any expressions after the comma. This is not a typo. If we
leave the expression, it will return all the elements. In the previous code, what we’re
telling R to do is to return all rows that match the values in the first expression, and
all columns in those rows.

Finally, say we’re interested only in the top 20 people we interacted with, so we simply
print out the data, and filter off just the top 20 rows:

print(sorted[0:20,])

This is the result of running the script:
 all Freq
610 steven.kean@enron.com 1422
268 jeff.dasovich@enron.com 691
419 maureen.mcvicker@enron.com 421
528 richard.shapiro@enron.com 330
250 james.steffes@enron.com 261
614 susan.mara@enron.com 201
407 mark.schroeder@enron.com 198

Discover Yourself | 143

101 christi.nicolay@enron.com 187
448 miyung.buster@enron.com 166
313 karen.denne@enron.com 162
576 sgovenar@govadv.com 158
560 sarah.novosel@enron.com 153
208 ginger.dernehl@enron.com 132
117 cynthia.sandherr@enron.com 124
40 ann.schmidt@enron.com 118
589 sherri.sera@enron.com 113
366 linda.robertson@enron.com 103
405 mark.palmer@enron.com 103
271 jeffrey.keeler@enron.com 91
197 gavin.dillingham@enron.com 89

The first column contains the row numbers. If we ignore the first line (the fact that
Steve cc’d himself on a lot of messages tells us a bit about his emailing habits), we find
that the person Steve interacted with the most was Jeff Dasovich, followed by Maureen
McVicker and Richard Shapiro.

Comparative Interactions
In the previous section, we assumed that the more messages either being sent to or
received from a person, the higher the level of interaction between the sender and
recipient. This is a simplistic assumption because there are always cases where we
keep getting messages from someone but we never respond to him or her. This is
generally the case with mailing lists, newsletters, or notification messages from au­
tomated services. There are also cases where we send messages to someone and he or
she seldom replies. An example of this scenario is when someone sends regular reports
or updates to his management or instructions to a group of subordinates.

In this section, we use a different view of email interactions. We calculate the amount
of interaction someone has as the ratio between the number of messages he sends to
a person over the number of messages he receives from that person. In this chapter,
we’re referring, of course, to Steve. So a high value means Steve sends more messages
to that person than he receives from him or her, while a low value means Steve receives
more messages from that person than he sends to him or her.

Let’s look at some code. First, we want to get a list of email addresses and their count.
To do this, we apply the table() function on the from column in inbox_data and the
to column in sent_data, and create a data frame for each of them:

from <- data.frame(table(inbox_data['from']))
to <- data.frame(table(sent_data['to']))

The resulting data frames both look like this:
 Var1 Freq
...
12 alan.comnes@enron.com 43
13 alberto.gude@enron.com 3

144 | Chapter 5: Discover Yourself Through Email

14 aleck.dadson@enron.com 3
15 alejandro.hernandez@enron.com 3
16 alex.goldberg@williams.com 2
...

The first column (Var1) is the email address, and the second column (Freq) is the
number of times this address appeared. However, what we want is a single list of
addresses, not two lists, so we combine these two data frames with the union() func­
tion. Also, because we just want a list of email addresses, we combine the email ad­
dresses only, not the count of the messages:

mails <- union(from$Var1, to$Var1)

Next, we will iterate through this list of email addresses. For each, we will find the
count of messages sent to it and the count of messages received from it, then find the
ratio between them. In the end, of course, we want a data frame that has a column of
email addresses and a corresponding column of ratios. To get this data frame, we first
create an empty one, then populate it by iterating through the list of addresses:

df <- data.frame(email=NA,ratio=0)
for (mail in mails) {
 to_count <- to[to$Var1 == mail,]$Freq
 from_count <- from[from$Var1 == mail,]$Freq
 ratio <- to_count/from_count
 if (length(ratio) == 0) {ratio <- 0}
 row <- c(mail, ratio)
 df <- rbind(df, row)
}

To get the to_count value, we take the to variable and use the square brackets notation
discussed earlier, with the first parameter being an expression that filters the rows we
want. This returns a row with both email as well as Freq, but we just want the count,
so we extract the value of Freq only. After repeating this with from_count, we calculate
the ratio. If either the to_count or from_count is 0, the ratio is numeric(0) or a zero-
length vector of floating-point numbers. We can’t have numeric(0) as the ratio, so we
need to take care of this by testing its length (it will return 0 if it’s numeric(0) since
it is zero length) and set ratio to be 0 accordingly.

Finally, we create a vector with the address as the first element and the ratio as the
second, then add this row to the empty data frame we created earlier.

Are we done yet? Wait, what we are left with is a data frame with a column consisting
of email addresses and another column with the corresponding count of messages.
Unfortunately, it’s not sorted, and the floating-point division really makes some
numbers quite unwieldy to display, so let’s clean things up a bit.

First, we shorten the number of digits to show in the ratio column to three. To do
this, we use the transform function df() and apply the round() function on the ratio:

df <- transform(df, ratio = round(as.numeric(ratio),digits=3))

Discover Yourself | 145

Then we sort the data frame according to the ratio column:
df[order(df['ratio'],decreasing=TRUE),]

This is similar to what we did earlier in Example 5-13. With this done, let’s look at
the entire script in Example 5-14.

Example 5-14. Comparative interactions
in_data <- read.table("inbox_data.csv", header=TRUE, sep=",")
sent_data <- read.table("sent_data.csv", header=TRUE, sep=",")

from <- data.frame(table(in_data['from']))
to <- data.frame(table(sent_data['to']))

mails <- union(from$Var1, to$Var1)
df <- data.frame(email=NA,ratio=0)
for (mail in mails) {
 to_count <- to[to$Var1 == mail,]$Freq
 from_count <- from[from$Var1 == mail,]$Freq
 ratio <- to_count/from_count
 if (length(ratio) == 0) {ratio <- 0}
 row <- c(mail, ratio)
 df <- rbind(df, row)
}
df <- transform(df, ratio = round(as.numeric(ratio),digits=3))
df <- df[df$ratio!=0,]
data <- df[order(df['ratio'],decreasing=TRUE),]
print(data)

Running this script on our data will provide the following output:
 email ratio
332 kenneth.lay@enron.com 16.500
631 terrie.james@enron.com 5.500
291 john.brindle@enron.com 3.500
296 john.sherriff@enron.com 3.000
372 liz.taylor@enron.com 3.000
555 sandra.lighthill@enron.com 3.000
219 grwhit@rice.edu 2.500
489 paula.rieker@enron.com 2.500
108 cindy.olson@enron.com 2.250
59 bernadette.hawkins@enron.com 2.062
6 a..hughes@enron.com 2.000
117 cynthia.barrow@enron.com 2.000
199 gay.mayeux@enron.com 2.000
273 jeffrey.mcmahon@enron.com 2.000
597 slipin@brunswickgroup.com 2.000
128 david.delainey@enron.com 1.667
171 elizabeth.tilney@enron.com 1.667
167 elaine.overturf@enron.com 1.500
407 mark.pickering@enron.com 1.500
417 mary.joyce@enron.com 1.500
436 michelle.cash@enron.com 1.500

146 | Chapter 5: Discover Yourself Through Email

604 stanley.horton@enron.com 1.333
7 aaron.brown@enron.com 1.000
...
420 maureen.mcvicker@enron.com 0.862
...
529 richard.shapiro@enron.com 0.182
...

269 jeff.dasovich@enron.com 0.082

As you can see, the output is quite different from the previous section! Right at the
top of the list is Ken Lay, the CEO of Enron at that point in time. This means Steve
sent Ken a lot more messages than Ken sent Steve. Maureen McVicker’s ratio is close
to 1, which means Steve and Maureen corresponded equally with each other. Richard
Shapiro and Jeff Dasovich’s ratios are pretty low. This means that both Richard and
Jeff sent Steve lots of messages, but he rarely replied.

Text Mining
We’ve done quite a bit of email message counting in this chapter so far. It would be
nice if we could go a bit further and get into the text of the message itself to explore
it. There are a large number of ways this can be done, but for this chapter we’ll go for
a relatively simple technique (which unfortunately involves counting again, but not
in a way you’d expect).

For this section, we’ll need to get the text of the messages, so we’ll jump back to the
Ruby code once more and create a script that extracts the text body from the messages.
The code (shown in Example 5-15) is very similar, except that instead of picking up
the From and To email addresses, it pulls out only the date and the text body of the
message.

Example 5-15. Creating a data source for text mining with messages from Gmail
require 'csv'
require 'mail'
require 'nokogiri'

def write_row(mail, csv)
 data = []
 data << mail.date
 text = ""
 if mail.text_part
 text = mail.text_part.to_s.force_encoding("utf-8")
 else
 html = Nokogiri::Slop(mail.body.to_s)
 text = html.text.force_encoding("utf-8")
 end
 data << cleanup(text)
 csv << data
end

Text Mining | 147

def cleanup(text)
 text = text.gsub("/", " ")
 text = text.gsub(/[^a-zA-Z@\s]/u,'')
 text.gsub(/\b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}\b/,'')
end

EMAILS_TO_RETRIEVE = 2000

USER = '<YOUR USERNAME>'
PASS = '<YOUR PASSWORD>'
Mail.defaults do
 retriever_method :imap, :address => "imap.gmail.com",
 :port => 993,
 :user_name => USER,
 :password => PASS,
 :enable_ssl => true
end

{:inbox => 'INBOX', :sent => '[Gmail]/Sent Mail'}.each do |name, mailbox|
 emails = Mail.find(:mailbox => mailbox,
 :what => :last,
 :count => EMAILS_TO_RETRIEVE,
 :order => :dsc)

 CSV.open("#{name}_txt_data_gmail.csv", 'w') do |csv|
 csv << %w(date body)
 emails.each do |mail|
 begin
 write_row mail, csv
 rescue
 puts "Cannot write this mail -> #{mail.from} to #{mail.to} with subject: \
 #{mail.subject}"
 puts $!
 end
 end
 end
end

The big difference here is in the implementation of write_row. Instead of the From
and To email addresses, we get the body of the message as a string. We force the string
to be encoded in UTF-8 in case it’s not (this is required by Ruby 1.9), then clean it up
with the cleanup method. We also use Nokogiri, the XML parsing library, to parse
through the HTML part of the message if it exists.

The cleanup method runs through three sets of changes. The first removes the forward
slash (/) and replaces it with an empty space. The second removes all other characters
except the letters in the alphabet, both lower and uppercase, as well as the at sign (@).
This will remove all dates and numbers but retain the email addresses. Finally, we
remove the email addresses.

148 | Chapter 5: Discover Yourself Through Email

Running the Ruby script for the Gmail messages creates two files: inbox_txt_da
ta_gmail.csv and sent_txt_data_gmail.csv. These files can be pretty big, depending on how
many messages we take.

Getting the body of the Enron messages for text mining is very similar, as shown in
Example 5-16.

Example 5-16. Creating a data source for text mining from Enron email files
require 'csv'
require 'mail'

def write_row(mail, csv)
 data = []
 data << mail.date
 text = mail.body ? mail.body.to_s.force_encoding("utf-8") : ""
 data << cleanup(text)
 csv << data
end

def cleanup(text)
 text = text.gsub("/", " ")
 text = text.gsub(/[^a-zA-Z@\s]/u,'')
 text.gsub(/\b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-_]+\b/,'')
end

DIR_PATH = "/Users/sausheong/Downloads/enron_mail_20110402/maildir/kean-s"
EXCLUDED_DIRS = \
 %w(. .. deleted_items all_documents archiving calendar discussion_threads)
SENT_DIRS = %w(sent sent_items)

sent = CSV.open("sent_txt_data_enron.csv", 'w')
sent << %w(date body)
inbox = CSV.open("inbox_txt_data_enron.csv", 'w')
inbox << %w(date body)

Dir.foreach(DIR_PATH) do |file_name|
 file = File.absolute_path(file_name, DIR_PATH)
 if File.directory?(file) and !EXCLUDED_DIRS.include?(file_name)
 Dir.foreach(file) do |mail_file|
 eml = File.absolute_path(mail_file, file)
 if File.file?(eml)
 mail = Mail.read eml
 begin
 if SENT_DIRS.include?(file_name)
 write_row mail, sent
 else
 write_row mail, inbox
 end

Text Mining | 149

 rescue
 puts "Cannot write this mail -> #{mail.from} to #{mail.to} with subject: \
 #{mail.subject}"
 puts $!
 end
 end
 end
 end
end

inbox.close
sent.close

exit

The code here is more or less a mix of the previous example and the code in
Example 5-6. The implementation of write_row is different again, although with the
same purpose. As before, instead of getting the From and To email address fields, we
just extract the body of the message as text and clean up the data to prepare it for
mining. Notice that this time around we didn’t use the full set of regular expressions
to remove email addresses. This is because the message format in the Enron email
dataset is based on Outlook and thus is different from the standard format.

Running the Ruby script for the Enron messages creates two files: inbox_txt_data_en
ron.csv and sent_txt_data_enron.csv. These files are big. The inbox_txt_data_enron.csv file
is about 40 MB, while the sent_txt_data_enron.csv is smaller, at around 5 MB.

Now that we have the data, we’ll turn to the actual text mining in R. This script is
different from the earlier ones. In the previous scripts, we used mainly the core pack­
ages and functions that R provides out of the box. We did most of the processing
work.

In this script, we’ll be taking out the big guns and using one of the more popular text
mining packages around, aptly named tm (did you guess it stands for “text mining”?
If so, you’re right). What we want to do in this analysis is find out, for each month in
the available data, the most frequently used words in the messages that were sent out
or received.

Before we begin, there are a few terms you’ll need to be familiar with. First, we’ll be
dealing with the message body as a text document. The tm library adds some metadata
to this, but we can safely ignore it for the purpose of this analysis. Next, a corpus is a
collection of text documents. Finally, a term-document matrix is a matrix (a table-like
structure) that describes the frequency of terms that occur in a corpus.

150 | Chapter 5: Discover Yourself Through Email

In this script, we’ll create, for each month in the dataset, a corpus out of the messages
sent or received in that month. Then, using that corpus, we will create a term-
document matrix, and find the terms most frequently used for that month. It sounds
a bit complicated, but it’s really quite straightforward, and it can literally be done in
a few lines of code.

Let’s look at it now, starting with the sent data (Example 5-17).

Example 5-17. Frequently used terms in every month
library(tm)

sent_data <- read.csv("sent_txt_data.csv", header=TRUE, sep=",")

alldates <- format(as.Date(sent_data$date), '%Y-%m')
for (date in levels(factor(alldates))) {
 data <- sent_data[format(as.Date(sent_data$date), "%Y-%m") == date,]
 source <- VectorSource(data$body)
 corpus <- Corpus(source)
 matrix <- TermDocumentMatrix(corpus, control = list(stopwords = TRUE,
 removeNumbers = TRUE, removePunctuation = TRUE))
 frequent_terms <- findFreqTerms(matrix, 100)
 print(date)
 print(nrow(data))
 print(frequent_terms)
}

As before, the first thing we need to do is to read the generated data into a data frame.
Then we convert the column with the date from characters to an actual date, but only
taking into account the year and the month:

alldates <- format(as.Date(sent_data$date), '%Y-%m')

This gives us a list of year-months, but we need a unique list because we want to iterate
through each month. To get this, we use the factor() function on alldates before
iterating through it with the for loop:

for (date in levels(factor(alldates))) {
...
}

Now that we have date (which is really a string with a format like '2001-03'), we
want to select all the rows for a given month. We use the square brackets notation
here to filter out the rows we want:

data <- sent_data[format(as.Date(sent_data$date), "%Y-%m") == date,]

With this, we have the data, so it’s time to break out the tm library and create the
corpus. To create a corpus, we need to give it a source. The easiest way to do this is
probably to create a VectorSource() function from the data frame we’ve just created:

source <- VectorSource(data$body)

Text Mining | 151

Next, we create a corpus with the source:
corpus <- Corpus(source)

After creating the corpus, we can use it to create the term-document matrix, like so:
matrix <- TermDocumentMatrix(corpus, control = list(stopwords = TRUE,
 removeNumbers = TRUE,
 removePunctuation = TRUE))

This looks a bit long, but it’s relatively simple to understand. We’ve just created a
term-document matrix from the corpus, applying certain processing before creating
it. First, we remove all stopwords (words so common they’re not worth counting,
such as a and the) using the tm library’s standard set of English stopwords. (tm works
with other languages too, but the default is English.) Next, we remove all numbers
from the corpus. For this exercise we just want words, and numbers aren’t so relevant
here. Finally, we remove all punctuation characters.

With the term-document matrix, we want to find out the frequently used words in
the dataset. To do this, we use the findFreqTerms() function:

frequent_terms <- findFreqTerms(matrix, 100)

This function has two parameters. The first is the term-document matrix. The second
parameter tells the function not to bother returning any words that appear fewer than
a certain number of times in the corpus. In our case, we used 100, but this number
can be tweaked for the best fit.

Finally, of course, we print out our findings. These are select results from running the
script. From the sent data, we find the following frequently used words from February
2001 to October 2001:

[1] "2001-02"
[1] 123
 [1] "california" "corp" "davis" "electricity" "energy"
 [6] "enron" "forwarded" "hou" "kean" "plants"
[11] "power" "steven" "subject" "transmission" "utilities"
[1] "2001-03"
[1] 113
 [1] "california" "company" "corp" "davis" "dow"
 [6] "energy" "enron" "forwarded" "gas" "hou"
[11] "jones" "kean" "power" "steven" "subject"
[1] "2001-04"
[1] 88
 [1] "california" "corp" "energy" "enron" "gas"
 [6] "hou" "kean" "power" "steven" "subject"
[1] "2001-05"
[1] 122
[1] "corp" "enron" "hou" "kean" "steven" "subject"
[1] "2001-06"
[1] 52
character(0)

152 | Chapter 5: Discover Yourself Through Email

[1] "2001-07"
[1] 146
[1] "email" "energy" "enron" "hou" "kean" "please" "power"
[8] "steven" "subject"
[1] "2001-08"
[1] 99
[1] "august" "enron" "kean" "message" "original" "sent" "steven"
[8] "subject"
[1] "2001-09"
[1] 62
[1] "enron"
[1] "2001-10"
[1] 118
[1] "enron" "kean" "message" "october" "original" "security" "sent"
[8] "steven" "subject"

For the inbox data for the same period, but with 300 words as the cut-off point
(otherwise, there are too many words), we get another set of frequently used words:

[1] "2001-02"
[1] 422
 [1] "attached" "california" "corp" "email" "energy"
 [6] "enron" "generation" "hou" "power" "subject"
[11] "utilities"
[1] "2001-03"
[1] 382
 [1] "california" "davis" "electricity" "email" "energy"
 [6] "enron" "gas" "hou" "market" "plants"
[11] "power" "prices" "subject" "utilities"
[1] "2001-04"
[1] 340
 [1] "april" "bankruptcy" "bill" "billion" "california"
 [6] "californias" "commission" "companies" "company" "corp"
[11] "crisis" "customers" "davis" "edison" "electric"
[16] "electricity" "email" "energy" "enron" "federal"
[21] "ferc" "gas" "generators" "governor" "market"
[26] "million" "pay" "percent" "pge" "plan"
[31] "plants" "power" "price" "prices" "public"
[36] "rate" "rates" "san" "summer" "time"
[41] "transmission" "utilities" "utility" "week"
[1] "2001-05"
[1] 381
 [1] "billion" "business" "california" "company" "corp"
 [6] "davis" "electricity" "email" "energy" "enron"
[11] "gas" "government" "market" "meeting" "plan"
[16] "power" "price"
[1] "2001-06"
[1] 250
 [1] "california" "companies" "company" "electricity" "email"
 [6] "energy" "enron" "gas" "market" "power"
[11] "price" "prices"
[1] "2001-07"
[1] 283

Text Mining | 153

[1] "california" "davis" "electricity" "energy" "enron"
[6] "power"
[1] "2001-08"
[1] 100
[1] "enron" "power"
[1] "2001-09"
[1] 93
character(0)
[1] "2001-10"
[1] 175
[1] "company" "credit" "enron" "enrons"

The first line shows the month and year, the second line shows the number of mes­
sages in that month, and the third line shows the list of frequently used words in that
month.

You might notice that in April 2001, some more prominent words are bankruptcy,
PG&E, crisis, and Edison. The California electricity crisis happened in April 2001,
causing the bankruptcy of Pacific Gas and Electric Company (PG&E) and the near-
bankruptcy of Southern California Edison. Enron Corporation was one of the energy
wholesalers that became notorious for “gaming the market” and reaping huge spec­
ulative profits.

Wrap-up
There you have it! We have just completed a simple exercise to help you mine your
own email account to understand your emailing habits. Along the way, we looked at
the publicly available Enron email dataset and focused on one of the executives in
that dataset. The code we have written might be simple, but the insights could be
significant. I have ventured a bit into the territory of text mining, but overall we’ve
barely scraped the surface of what could be done. The tm library, for example, is
extremely powerful for text mining, and various other text mining packages have been
built on it as well.

A few things you should take note of (especially for text mining) before you wend
your way to mining your mailbox:

• The Enron dataset was cleaned up before it was published, so it was a lot easier
to mine. Your own mailbox, on the other hand, could be wild and unruly, so your
mileage will definitely vary.

• The Enron dataset comprises office email accounts derived from Exchange and
Outlook files. For the text mining section, you will definitely want to tweak the
write_row method to give you better results. The message format in the Enron
dataset follows that of Exchange (in the actual text). For example, Steve’s email
ID is “Steven J Kean/HOU/EES@EES” in the mailbox.

154 | Chapter 5: Discover Yourself Through Email

• Your Gmail mailbox would have a lot more HTML messages than the Enron
dataset. We used a very simple method (with Nokogiri) to extract the text content
from the message, but this might not work on all possible types of HTML formats.

• If you have a lot of spam in your mailbox, it will skew the results. Correspondingly,
if you see weird results in your mailbox, this is probably an indication that you
have a lot of spam there.

My final word of advice for this chapter, as with the other chapters, is to play around
with the code and try out different combinations. For example, you might want to
know how often you get attachments and at what time of day. If you get messages in
different languages, you might want to find out how many messages you get for each
language. You can investigate the length of the messages you get over a period of time.
You can also limit your dataset to specific people or groups of people you send or
receive from, and try to get similar information on the messages you send to or receive
from them.

Happy spelunking!

Wrap-up | 155

CHAPTER 6

In a Heartbeat

Growing old sucks. True, you gain experience and knowledge, but in exchange you
must give up a fully functional and effectively working body. Different parts of your
body start to show signs of wear and tear. The most telling is the upward-creeping
(or rocketing, depending on your lifestyle) numbers that show your blood pressure
and cholesterol. Then goes the vision, as presbyopia sets in and you need reading
glasses to make out those pesky words. And soon, the all-day, all-night hackathons
you so eagerly jump into at every opportunity become a disaster of epic proportions,
involving massive backaches and a creaky neck. Eventually the realization sets in that
taking care of your own health is important, after all.

So what does taking care of yourself have to do with programming? There is no med­
icine for old age (at least not yet), and spending time programming is hardly the means
to improve your health. Today’s healthcare technologies, however, have vastly im­
proved our chances of growing old with fewer health problems. Research into genet­
ics, stem cell transplants, advanced drugs, and information technology has enabled
us to live longer and healthier. Naturally, in this book the main thing we’re interested
in is the information technology bit.

We can’t explore many of these advances in information technology (there are just
too many), but we’ll take a simple example and do some poking around.

My Beating Heart
What we’ll be exploring in this chapter is your heart, including your heart rate and
your heartbeat. The heart rate, or the rate at which your heart beats, is one of the
measurements you’ve probably heard most about in relation to exercise. It’s also often
a good indication of your health, because a heart rate that is too high or low could

157

indicate an underlying health issue. The heart rate is usually measured in beats per
minute (bpm) and varies from 40 to 220 bpm. An average healthy person at rest has
a heart rate of 60–90 bpm, while conditioned athletes have a resting heart rate of 40–
60 bpm.

The maximum heart rate is the highest heart rate anyone can safely achieve through
exercise, and this depends on the age of the individual. A common formula for cal­
culating maximum heart rate is to subtract the person’s age from 220. For example,
if you’re 30 years old, your maximum heart rate would be 190 bpm.

The heartbeat, or heart sounds, refers to the noises generated by the beating heart and
the resultant flow of blood through it. In healthy adults, there are two normal heart
sounds, often described as a lub (the first heart sound, S1) and a dub (the second heart
sound, S2), which occur one after the other with each heartbeat. Heart sounds can
also help diagnose certain types of problems, including heart murmurs.

We’ll start with the heart sounds, which incidentally also give us the heart rate.

Auscultation
Auscultation (based on the Latin verb auscultare, “to listen”) is the practice of listening
to the internal sounds of the body, usually using a stethoscope. Auscultation is a skill
that takes a lot of clinical experience and a good stethoscope and can include listening
to the heart, lungs, and the gastrointestinal system. In this chapter, we’ll attempt only
heart auscultation using a stethoscope. Not to worry, though, I have no intention of
asking you to get an actual stethoscope!

Homemade Digital Stethoscope
The stethoscope we’ll use in this chapter is very simple and homemade. Just use any
paper or plastic disposable cup, poke a small hole in the bottom, and then stick a
microphone through it. You can use any kind of microphone (or even an earphone
instead) because the cup will act as an amplifier, very much like a proper stethoscope
or hearing tube.

For this chapter, I used my old iPhone earphones, which have an attached micro­
phone. To prevent your microphone from dangling about, tape it to the inner sides
of the cup. Finally, using a small piece of plastic (I just cut one out from a plastic bag),
cover the mouth of the cup and secure it with a rubber band (Figure 6-1). Our digital
stethoscope is done!

158 | Chapter 6: In a Heartbeat

Figure 6-1. Homemade stethoscope

Make sure the plastic (which acts as a membrane or drumhead that vibrates and
resonates the sounds to the cup) is pulled taut, then place your stethoscope against
the left side of your chest, near your heart. Insert the other end of the microphone
into your computer or any device that can record sound. In my case I ran Audacity,
an open source audio editor, on my computer, then recorded my heartbeat through
my homemade digital stethoscope. Once I had recorded enough, I exported the sound
into a WAV file. You could use any other means to record your own heart sounds
and export them into a WAV file. Have a bit of fun and be inventive!

Extracting Data from Sound
Now let’s take a deeper look at the WAV file of your heartbeat, which we’ll name
heartbeat.wav. What we’ll be doing is taking apart the WAV file and extracting the
data out into a CSV data file. However, before we do that, we need to understand the
WAV format a bit more; see the sidebar “WAV File Format” (page 160) for an in-depth
explanation.

Auscultation | 159

WAV File Format
WAV is an audio file format, originating from IBM and Microsoft, used to store audio
bitstreams. It is an extended RIFF format, a little-endian version of the older AIFF
format (which is big-endian). WAV is the main format used on Windows systems for
raw and typically uncompressed audio. The usual bitstream encoding is the linear pulse-
code modulation (linear PCM) format. In RIFF, data is stored in “chunks,” and for
WAV, there are basically two types of chunks: format and sound data. The format chunk
contains the parameters describing the waveform—for example, its sample rate—and
the data chunk contains the actual waveform data.

Figure 6-2 shows the format of a WAV file as a series of fields, listed from the top down.
Some are little-endian and some are big-endian, as the leftmost column in the figure
shows. A few contain fixed, invariable text values, as shown in the rightmost column.

There are other chunks, such as the cue chunk and playlist chunk, but for our purposes
in this chapter, we need only the format and sound data chunks, so I’ll skip the details
about the rest.

The data chunk has a chunk ID, which is always “data,” and a chunk size that is a long
integer. Data in the data chunk is stored in sample points. A sample point is a value that
represents a sample of a sound at a given moment in time. Each sample point is stored
as a linear 2’s-complement value from 9 to 32 bits wide, the exact number of bits being
specified in the BitsPerSample field in the format chunk.

Sounds in a WAV file can also come in multiple channels (for instance, a stereo sound
will come in two channels). For such multichannel sounds, the sample points are in­
terleaved, one from each channel (Figure 6-3). A grouping of sample points for a single
moment in time for all the channels is called a sample frame.

Our goal is clear: we want to extract the data out of the channels. Let’s inspect our
WAV file now using a hex editor. A hex editor, or binary file editor, allows us to view
the actual bits and bytes of the file. There are quite a few such editors around, both
open source and commercial. For this chapter, I used a hex editor named Hex Fiend.

160 | Chapter 6: In a Heartbeat

Figure 6-2. WAV file format

Figure 6-3. Sample frames

Opening up the heartbeat.wav file shows us the actual bits and bytes that form it
(Figure 6-4). This gives us visual confirmation of what we will do next in the Ruby
code.

Auscultation | 161

1. For this example I have not used any libraries, other than csv to help us save the data into a CSV file, in
order to show that it is possible to manipulate WAV files directly. If you’re doing something more complex
or actually reproducing WAV format files, you would want to use BinData (http://bindata.rubyforge.org),
a Ruby library to parse and write binary data, or something equivalent.

Figure 6-4. Opening the WAV file with a hex editor

Now let’s jump into the code (Example 6-1).1

Example 6-1. Extracting data from the WAV file
require 'csv'

CSV.open('heartbeat.csv', 'w') do |csv|
 csv << %w(time ch1 ch2 combined)
 File.open('heartbeat.wav') do |file|
 file.seek(8)
 if file.read(4) == "WAVE"
 file.seek(36)
 if file.read(4) == 'data'
 file.seek(4, IO::SEEK_CUR)
 n = 1
 while !file.eof?
 ch1, ch2 = file.read(4).unpack('ss')
 csv << [n, ch1, ch2, ch1.to_i+ch2.to_i]
 n += 1

162 | Chapter 6: In a Heartbeat

http://bindata.rubyforge.org

 end
 end
 end
 end
end

Before we actually get into the WAV file, we open a fresh heartbeat.csv data file to
hold the data, then place a three-column header in it. One column represents the first
channel, another the second channel, and the last a combination of the first and sec­
ond channels. Note that we’re assuming that this file is stereo and therefore has two
channels and is running at 44,100 Hz.

Once we open the file, we skip the first 8 bytes and read bytes 9 through 12 to make
sure that they are the string "WAVE". If they’re not, the file is not a WAV file and the
rest is, of course, meaningless.

When we’ve confirmed the file format, we jump right in to read the data chunk. Our
script ignores the format chunk, since we already know our file well enough.

Skipping to the 36th position, we grab the 4 bytes that make up the subchunk ID for
the data chunk. Once we’ve confirmed that it is the data chunk, we move 4 bytes ahead
and start reading data 4 bytes at a time. We skipped reading the size of the chunk
because we’re assuming that there aren’t any other chunks in the file and we’re simply
reading the file until we run out of bytes to read.

To read the data to produce something meaningful, we use the unpack method in the
String class. The unpack method is probably something most programmers never use
unless they deal with binary data. To use unpack, we need to know the format of the
data we’re extracting, and that’s where the WAV specifications come in handy. Return
to Figure 6-2 and take a look at the endian, file offset, and field sizes. We also know
that the WAV format stores its 16-bit data as signed, so we specify 's' when we want
to extract each value as a short integer (2 bytes) and 'l' when we want to extract it
as a long integer (4 bytes).

Each sample has two channels and each sample point has 16 bits, so we need to retrieve
32 bits, or 4 bytes. Since each sample point has 16 bits, forming a short integer, we
unpack the 4 bytes that are read into two short integers; this will give us the two sample
points recording the two channels of that sample frame. After that, it’s a simple matter
of stuffing the sample points into a CSV file. When we’re done, we’ll have a file with
three columns populated with data that we can now use to generate the heart sounds
waveform.

Auscultation | 163

Generating the Heart Sounds Waveform
As Example 6-2 demonstrates, it’s quite simple to generate a waveform from the data
we’ve extracted from the WAV file.

Example 6-2. Generating the heart sounds waveform
library(ggplot2)
png("heart_sounds.png")
data <- read.csv(file='heartbeat.csv', header=TRUE)
ggplot(data=data) + geom_point(aes(x=time, y=ch1), size = 0.8)
dev.off()

As in the previous chapters, we use the ggplot2 library. We read in the CSV file into
a data frame as usual, then create the waveform using the point geom, setting the size
of each point to 0.8. For the amplitude, we can choose the left channel, the right
channel, or the combined stereo channels. In this example, I chose the left (first)
channel. My results are shown in Figure 6-5.

Figure 6-5. The heart sounds waveform

If you inspect the waveform, you’ll notice a regular pattern: two spikes happening in
rather close proximity at a regular interval. These are the two heart sounds, lub and
dub, described further in the sidebar “Heart Sounds” (page 165).

164 | Chapter 6: In a Heartbeat

Heart Sounds
S1 and S2 refer to sounds caused by the heart valves shutting when the heart contracts
(ventricular systole). S1 (lub) is caused by the sudden blockage of reverse blood when
the triscuspid and mitral valves shut at the beginning of the contraction. S2 (dub) is
caused by the sudden blockage of reverse blood when the aortic and pulmonary valves
shut at the end of the contraction. See Figure 6-6 for a picture of the human heart.

Figure 6-6. The human heart (adapted from Wikimedia Commons, licensed under the
Creative Commons Attribution-Share Alike 3.0 Unported license)

The heart sounds waveform looks pretty good; I seem quite healthy. But what’s my
heart rate? How can we get the heart rate from the heart sounds?

Auscultation | 165

Finding the Heart Rate
Finding the heart rate from the heart sounds turns out to be a bit trickier than we
initially thought. Getting the heart rate seems obvious—each heartbeat is essentially
the time taken from either one S1 to the next S1, or one S2 to the next S2. If we count
the number of cycles or data points between these consecutive S1s or S2s, we’ll be able
to calculate the heart rate. Unfortunately, there is no good way to get the S1 or S2
because the sound that we recorded is inherently noisy. What we can do is simply to
visually gauge the amplitude of the data and determine at which points we should
consider S1 or S2 to have occurred.

A quick eyeballing of the waveform chart we created earlier in Figure 6-5 tells us that
the amplitude 100 is a good level to start our calculations. Let’s get down to an R script
to calculate the heart rate (Example 6-3).

Example 6-3. Calculating the heart rate
data <- read.csv(file='heartbeat.csv', header=TRUE)
filtered_data <- data[data$ch1 > 95 & data$ch1 < 105,]
cycle <- as.numeric(rownames(filtered_data))

beats <- unique(round(cycle/1000))
intervals <- c()
count <- 1
while (count < length(beats)) {
 intervals <- append(intervals, beats[count+1] - beats[count])
 count <- count + 1
}

intervals <- intervals[!intervals<5]

steps = seq(from=1, to=length(intervals), by=2)
frequency <- c()
count <- 1
for (step in steps) {
 frequency <- append(frequency, intervals[step] + intervals[step+1])
 count <- count + 1
}

average_frequency <- mean(frequency, na.rm=T)
heart_rate <- round(60/(average_frequency/44.1))

print(paste("Interval between successive S1 + S2 sounds is",
 round(average_frequency*1000), "cycles"))
print(paste("Heart rate is ", heart_rate, "bpm"))

This script contains straightforward arithmetic. As usual, we read the CSV file into a
data frame. As mentioned, we filter off all data that is not within the amplitude range

166 | Chapter 6: In a Heartbeat

of 100, give or take 5. This means any data value of less than 95 or more than 105 will
be filtered away. This will give us the amplitude reading, but what we really want is
the cycle the heart sounds are in, so we extract the rownames value (which is returned
as a string) and convert row names into numeric values.

The values are large (44,100 Hz means there are 44,100 cycles in a second), and we’re
really not that interested in whether the cycle is at 8,010 or 8,500 or 8,324—we just
need to know that it’s approximately 8,000 (i.e., rounded to the nearest thousand).
So we simply truncate each number at the thousand by dividing it by 1,000, then
rounding it off. However, this can result in multiple identical values (for instance,
8,010, 8,500, and 8,324 all resolve to 8), so we use the unique function to remove
duplicates. I call what is left beats, which is a vector of cycles in which a sound exists.
Here’s an example of two vectors:

 [1] 8 9 10 20 21 41 42 43 54 76 87 108 109 119 120 140 141 152 153
[20] 174 186 187 209 221 244 245 256

Although identifying a beat is a good indication that it represents a heart sound, there
is still a chance that it’s simply noise. For example, if we have levels 8,723, 8,954, and
9,045, they will resolve to two beats, 8 and 9. Obviously, there is only one heart sound,
so we need to remove the beats that are close to each other.

To do this, we find the distance between consecutive elements in the beats vector by
iterating through the vector and subtracting the current element from the next. The
result is a vector of distances between consecutive beats, stored in another vector
named interval:

[1] 1 1 10 1 20 1 1 11 22 11 21 1 10 1 20 1 11 1 21 12 1 22 12 23 1
[26] 11

Notice that many elements in the vector are 1, meaning the distance between the beats
is just 1,000 or so cycles. They are simply too close to each other to be really different
heart sounds, so we need to eliminate the 1s. We do this by filtering off any elements
in the vector that are 5,000 or fewer cycles apart:

intervals <- intervals[!intervals<5]

This gives us a vector of actual heart sounds, and the intervals between them:
[1] 10 20 11 22 11 21 10 20 11 21 12 22 12 23 11

Notice that this produces a nice pattern of alternating 10,000–11,000 cycles between
S1 and S2 and 20,000–22,000 cycles between S2 and the next S1. Since the heart rate
is the cycle between consecutive S1s, we can guess that the heart rate is between 30,000
and 33,000 cycles. The bit rate is 44,100 Hz, so there are 44,100 cycles in a second,
and therefore my heart rate is about three-quarters of a second per beat.

Auscultation | 167

Let’s go on, though—we want to calculate the heart rate in terms of beats per minute.
To do this, we add up consecutive elements in the interval vector to come up with yet
another vector, this time called frequency. The elements in this vector represent the
number of cycles between consecutive S1s or S2s:

[1] 30 33 32 30 32 34 35 NA

We take the average of the elements in this vector to derive the average frequency.
Note that we have to remove the NA (not available) element in this vector when cal­
culating the average. We do this through a parameter in the mean() function. This is
a common pattern you will see in many R scripts (NA is pretty common in raw data
analysis):

average_frequency <- mean(frequency, na.rm=TRUE)
heart_rate <- round(60/(average_frequency/44.1))

Finally, to get the heart rate, we know that each beat takes about 32,300 cycles, which
turns out to be around 0.73 seconds. To get the beats per minute, we divide 60 seconds
by 0.73 seconds to get approximately 82 beats per minute.

Oximetry
Auscultation is, of course, not the only way to take the heart rate. A popular and fast
way to effectively get the heart rate is pulse oximetry. A pulse oximeter is a device
placed on a thin part of a person’s body, often a fingertip or earlobe. Light of different
wavelengths (usually red and infrared) is then passed through that part of the body
to a photodetector. The oximeter works by measuring the amounts of red and infrared
light absorbed by the hemoglobin and oxyhemoglobin in the blood to determine how
oxygenated the blood is. Because this absorption happens in pulses as the heart pumps
oxygenated blood throughout the body, the heart rate can also be determined.

We are not going to build an oximeter, but in this section we’ll use the same concepts
used in oximetry to determine the heart rate. We will record a video as we pass light
through our finger for a short duration of time. With each beat of the heart, more or
less blood flows through our body, including our finger. The blood flowing through
our finger will block different amounts of the light accordingly. If we calculate the
light intensity of each frame of the video we captured, we can chart the amount of
blood flowing through our finger at different points in time, therefore getting the
heart rate.

Homemade Pulse Oximeter
This process is really simple. You can use any of the following techniques, or even try
your own methods. It doesn’t really matter, as long as you can capture the video.
Record for about 30 seconds. (Recording for a longer time can be more accurate, but
not significantly so.)

168 | Chapter 6: In a Heartbeat

Finger on a webcam
Place your finger directly on your computer’s webcam (I used the iSight on my
Mac). Shine a small light (penlight or table lamp; it doesn’t matter much) through
your finger. Then use any video recording software to record what’s on the web­
cam (I used QuickTime video recording).

Finger on the phone camera
Place your finger directly on your phone camera. Turn on the flash or use a small
light and shine it through your finger. Then use your phone’s video recording
software to record what’s on the phone camera.

Finger on a digital video camera
This is slightly harder because the camera lens is normally larger than your finger.
The parts that aren’t covered don’t really matter, but you need to position your
finger so that the image captured is consistent throughout your recording. A trick
is to use a lamp as the background, so you can have the light shining through
your finger and maintain a consistent background at the same time.

In the following example, I used the phone camera method with my iPhone. That’s
the easiest for me, because the flash on the phone is very effective. If you did things
right, you’ll end up with a video filled with a red blotch that’s your finger.

Extracting Data from Video
Assuming that you have a nice video file now (it doesn’t really matter what format it
is in; you’ll see why soon), let’s dig in a bit deeper to see how we can extract infor­
mation from it. For the sake of convenience, I’ll assume the file is called heart
beat.mov. Next we’ll be using FFmpeg, a popular free video library and utility, to
convert the video into a series of individual image files.

Let’s take a look at the Ruby code in Example 6-4.

Example 6-4. Extracting data from video
require 'csv'
require 'rmagick'
require 'active_support/all'
require 'rvideo'

vid = RVideo::Inspector.new(:file => "heartbeat.mov")
width, height = vid.width, vid.height
fps = vid.fps.to_i
duration = vid.duration/1000

if system("/opt/local/bin/ffmpeg -i heartbeat.mov -f image2 'frames/frame%03d.png'")
 CSV.open("data.csv","w") do |file|
 file << %w(frame intensity)
 (fps*duration).times do |n|
 img = Magick::ImageList.new("frames/frame#{sprintf("%03d",n+1)}.png")

Oximetry | 169

 ch = img.channel(Magick::RedChannel)
 i = 0
 ch.each_pixel {|pix| i += pix.intensity}
 file << [n+1, i/(height*width)]
 end
 end
end

It doesn’t look complicated, does it? The most complex part you’ll probably have to
tackle is installing the necessary Ruby libraries. In the case of both RMagick and
RVideo, described next, you need native developer tools support in order to compile
the native components of the gem for your platform.

RMagick is a popular library for manipulating still images with Ruby. It’s an interface
between Ruby and the ImageMagick and GraphicsMagick image processing libraries,
so you have to install at least ImageMagick as well (see “ImageMagick” for more
details). There is lots of information on installing all the necessary libraries for your
platform (Linux, Windows, OS X, etc.) on both the RMagick website (http://
rmagick.rubyforge.org) and around the Internet. The code in this chapter uses
RMagick 2.

ImageMagick
ImageMagick is an open source, Apache 2–licensed software project used to manipulate
bitmap images. It supports a multitude of image formats and is available on several
platforms, including Linux, Windows, and OS X. Although it has a command-line tool,
ImageMagick’s functions are often used through bindings created for many program­
ming languages, including Ruby, Python, PHP, Java, .NET, and even Ada and Lisp. As
we’re using Ruby in this book, we’ll be using the Ruby bindings—RMagick.

RVideo (http://rvideo.rubyforge.org) is a relatively new library for inspecting and ma­
nipulating video files. It is an interface between Ruby and FFmpeg, a popular video
processing software project (described in more detail in the sidebar “FFmpeg” (page
171)). To install RVideo, you will need to install FFmpeg first, then a number of asso­
ciated audio and video libraries.

In terms of importance, while it’s necessary to install RMagick and ImageMagick, it’s
not entirely necessary to install RVideo (you will still need FFmpeg, though). This is
because the extraction of still frames from the video is actually just a single command
line issued to FFmpeg.

170 | Chapter 6: In a Heartbeat

http://rmagick.rubyforge.org
http://rmagick.rubyforge.org
http://rvideo.rubyforge.org

FFmpeg
FFmpeg is a free, GPL-based software project with a number of audio- and video-related
libraries and programs. Among these are libavcodec, a popular audio/video codec; li­
bacformat, an audio/video container library; ffserver, an HTTP and RTSP multimedia
streaming server; and a command-line tool called ffmpeg. Although FFmpeg might not
be as well known to actual end users as ImageMagick, it has been used by many other
projects, including VLC, HandBrake, and MPlayer.

We start off the code by inspecting the video and getting some attributes from it.
These will be useful later on in the code. Specifically, we will need the number of
frames per second, the duration of the video, and the height and width of the video.
You can obtain these through RVideo, but if you didn’t succeed in getting it installed,
you can still find the information by simply opening up the video with any player and
viewing its properties.

Next, we use the system method to issue a command to the underlying shell, and
return either true or false depending on whether it succeeds or not:

system("/opt/local/bin/ffmpeg -i heartbeat.mov -f image2 'frames/frame%03d.png'")

This runs ffmpeg, taking in the input file heartbeat.mov and converting it frame by
frame into a set of images ordered by number. This is the reason why the video format
is unimportant. As long as FFmpeg has the correct library to support the codecs, it
will convert the video file to a series of PNG image files, numbered sequentially.

In this example, we specify that there are three digits to this series of numbers. How
do we know this? In my case, I have a 30-second video with a frame rate of 30 frames
per second, so the number of still frames that will be created by FFmpeg is 30×30, or
900 frames. Slightly more frames could be created—some video players round off the
duration—but the total would not be more than 999 frames. If the command runs
successfully, we will get a set of frames in the frames folder, each named framennn.png,
where nnn runs from 001 to 900 or so.

Next, we create a CSV file to store the data and enter the column names, which are
the frame number and the average frame intensity:

file << %w(frame intensity)

Then, for every frame image, we create the RMagick Image object that represents that
frame and extract the red channel (the file uses the RGB colorspace):

i = 0
ch.each_pixel {|pix| i += pix.intensity}
file << [n+1, i/(height*width)]

Oximetry | 171

We iterate through each pixel in the red channel and add up their intensities, then
divide the sum of pixel intensities by the total number of pixels:

i = 0
ch.each_pixel {|pix| i += pix.intensity}
file << [n+1, i/(height*width)]

This is the value we consider to be the average frame intensity. Finally, we store the
frame number and intensity in the CSV file.

Once we have done this, we will end up with a data file with two columns. The first
is the frame number, and the second is the corresponding frame’s average intensity.

Generating the Heartbeat Waveform and Calculating the Heart Rate
Generating the heartbeat waveform is trivial, so we’ll combine both creating the
waveform and calculating the heart rate into a single R script, shown in Example 6-5.

Example 6-5. Generating the heartbeat waveform and calculating the heart rate
library(PROcess)
library(ggplot2)

data <- read.csv(file='data.csv', header=T)

png("heartbeat.png")
qplot(data=data, frame, intensity, geom="line")
dev.off()

peaks <- peaks(data$intensity,span=10)
peak_times <- which(peaks==T, arr.in=T)
intervals <- c()
i <- 1
while (i < length(peak_times)) {
 intervals <- append(intervals, peak_times[i+1] - peak_times[i])
 i <- i + 1
}

average <- round(mean(intervals))
print(paste("Average interval between peak intensities is", average))
heartbeat_rate <- round(60 * (30/average))
print(paste("Heartbeat rate is",heartbeat_rate))

All it takes to generate the waveform (Figure 6-7) is a single line that calls qplot with
the frame and the intensity and uses the line geom.

172 | Chapter 6: In a Heartbeat

Figure 6-7. Heartbeat waveform

As you can see from the chart in Figure 6-7, the light intensity changes over time.
Each pulse corresponds with a heartbeat. To find the heart rate, we need to find the
number of frames between two peaks of the wave. We know that there are 30 frames
in one second. Once we know the number of frames between the two peaks, we’ll
know how much time it takes to go from peak to peak, and therefore can calculate
the number of beats per minute.

To calculate the distance from peak to peak, we need to first determine where the
peaks are in the chart. For this, we will be using an R package that was originally
designed to process protein mass spectrometry data, found in the Bioconductor li­
brary. The Bioconductor library is a free/open source project that provides tools for
analyzing genomic data. It’s based primarily on R, and most of the Bioconductor
components are R packages. The package we will be using is called PROcess. Once
we include the library in our script, we can start using the peaks() function, which,
true to its name, determines which values are peaks in data.

The input parameter to the peaks() function is the intensity data and a span value.
This span value determines how many of its neighboring values it must exceed before
it can be considered a peak. This is useful to filter off noise, though not perfectly.

Oximetry | 173

The returned result is a logical vector that is the same length as the data. This means
we have a vector of TRUEs and FALSEs, where the TRUEs indicate a peak:

 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [25] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

While this vector is informative, it’s not really the answer we want, so we pass it
through the which() function, and it returns a vector of the indices where the element
is TRUE:

 [1] 28 50 73 96 119 142 167 190 213 236 259 282 306 330 353 374 397 420 445
[20] 469 494 517 540 563 586 610 632 656 678 701 723 746 769 791 812 836 859 882

As before, we want to find the distance between the two peaks, so we take two con­
secutive elements and subtract the first from the second. This gives us a new vector
that contains the differences:

 [1] 22 23 23 23 23 25 23 23 23 23 23 24 24 23 21 23 23 25 24 25 23 23 23 23 24
[26] 22 24 22 23 22 23 23 22 21 24 23 23

The final two steps are the same as in the previous section. First, we find the average
distance using the mean() function. Then, from that, we know that there are 23 frames
between two peaks, meaning each heartbeat takes 23 frames or 23/30 seconds (since
each second has 30 frames). From that, we calculate that the heart rate is 78 bpm.

If you’re concerned about why the heart rate found with this pulse oximetry differs
from the one we found with heart auscultation, you shouldn’t be. I captured the data
at different points in time, and in order to make the heartbeat stronger so it could be
heard better in auscultation, I exerted myself a bit more before using the homemade
stethoscope.

Wrap-up
Although it seems like we’ve covered quite a bit of ground, this is only the tip of the
iceberg that is healthcare technology. In fact, we’ve talked only briefly about the heart,
specifically the heart sounds and the heart rate. Healthcare technology is still a vast,
uncharted territory and has plenty of potential to be explored yet.

For this chapter at least, we’ve gone through two specific techniques: heart ausculta­
tion with a homemade digital stethoscope, and pulse oximetry with a camera. With
our homemade stethoscope, we first captured the sounds made by our heart and
stored them as a WAV file. Then we extracted the raw data from this file and converted
it into a CSV file. Using R scripts, we built a waveform chart and determined the first
and second heart sounds, S1 and S2. Finally, we calculated the distance between con­
secutive S1 sounds and came up with the heart rate.

174 | Chapter 6: In a Heartbeat

To build our makeshift pulse oximeter, we first captured a video of our finger on a
digital camera, with light shining through it. Then, using this FFmpeg, we converted
this video into a series of frames. We derived numeric data based on the average light
intensity of each frame, and stored the data once again into a CSV file. Using this file,
we first charted the heartbeat waveform, then determined the distance between con­
secutive peaks. Finally, we used this distance to calculate our heart rate.

Wrap-up | 175

CHAPTER 7

Schooling Fish and Flocking Birds

Part and parcel of using public transportation is walking home from the train station
in the evening. It is also the most nerve-racking part of my weekday ritual, as the walk
goes through a path lined gently with trees that occasionally bear purple berries. But
neither the trees nor the berries are the problem—rather, it’s the swarms of Javan
mynahs that roost in them as the sun gradually sets. While I’m not describing
Hitchcockian-level terror here, it is quite a gauntlet to run through, because Javan
mynahs have some “restroom problems” that would make it quite complex to carry
out for them the kind of analysis I presented in Chapter 3. As the swarm settles when
the sky darkens, the birds generally let loose their daily intake indiscriminately over
the pathway, and any unlucky souls who happen to be under them run the risk of
zoonosis.

This naturally encourages me to walk hurriedly by before the sun sets, often in time
to see the dramatic aerial acrobatics the mynahs perform before settling on their
communal roosts in the trees. It can be startling to watch as the birds rise, twist, and
turn as one, beautifully maneuvering in seeming exuberance. What is even more
amazing is that the birds often number in the hundreds, so it can be both an aston­
ishing and scary sight. While not as spectacular as the starling swarms in Europe,
which often number in the hundreds of thousands and are sometimes referred to as
the “Black Sun,” the mynah swarms are interesting enough to start a train of thought
that has eventually led me to this basic question: how and why do these birds flock
the way they do?

As usual, I started off my quest with some searches on trusty old Google, which
brought up a number of intriguing results. As it turns out, there is a whole bunch of
existing research on flocking birds and swarming insects, dating back to more than
30 years ago. One popular and well-known product of this research is the Boids al­
gorithm created by Craig Reynolds in 1986.

177

Figure 7-1. Flocking birds, adapted from a photo taken by Eugene Zemlyanskiy (http://
www.flickr.com/photos/pictureperfectpose/81938785/)

The Origin of Boids
Boids is an artificial life program developed by Craig Reynolds to simulate the be­
havior of flocking birds. The name refers to the birdlike objects that populate the
simulation. Instead of programming complex behavior for the boids, Reynolds pro­
vided three simple rules:
Separation

Each boid should stay away from its flockmates to avoid overcrowding.

Alignment
Each boid should move toward the average direction and with the average speed
of its flockmates.

Cohesion
Each boid should move toward the average position of its flockmates.

Much to Reynolds’s astonishment, these three rules produced a surprisingly lifelike
simulation of bird flocking behavior. His research made its way into a paper in ACM
SIGGRAPH 1987, an annual conference on computer graphics, and has since been
one of the most cited examples of the principles of artificial life.

Reynolds’s work on Boids also made a lot of headway into, unsurprisingly, a number
of Hollywood movies. One of the first movies that made use of his research was

178 | Chapter 7: Schooling Fish and Flocking Birds

http://www.flickr.com/photos/pictureperfectpose/81938785/
http://www.flickr.com/photos/pictureperfectpose/81938785/

Batman Returns, in which swarms of bats were created as computer simulations. Other
famous movies that used similar technologies to create lifelike simulations include
The Lion King, Avatar, and the Lord of the Rings trilogy. In the Lord of the Rings, Massive
Software used these simulations to enact the colossal battles between hordes of orcs
and the forces of good. Massive Software even received an Academy Award for Sci­
entific and Engineering Achievement for its work on the trilogy.

The Boids program demonstrates what is now commonly called emergent behavior—
that is, complex and global behavior arising from simple and local rules. By following
a simple set of rules (three, in this case) that relate only to its immediate environment,
a flock of boids can behave in unpredictable and unanticipated ways. For example,
when an obstacle is placed in front of a flock, the boids swerve around it and regroup
after passing it, even though this behavior is not programmed.

In this chapter, we’ll use Reynolds’s Boids technology to attempt to simulate the be­
havior of the flock of Javan mynahs. The Boids simulation has been recreated in many
programming languages, and here we’ll step through simulating a flock of boids
with Ruby.

Simulation
Our simulation is quite a straightforward implementation of the Boids algorithm in
Ruby. We’ll be implementing the simulation with the Shoes GUI toolkit. Shoes was
described in detail in Chapter 1, but this is our first chance to use this minimalist GUI
toolkit.

I called the objects in this simulation roids, which is short for “Ruby boids.” The
whole simulation is written in a single file named roids.rb. Let’s look at each step of
the simulation. Before we start on the simulation proper, we need to set up some
constants to configure the simulation:

FPS = 24
ROID_SIZE = 10
WORLD = {:xmax => ROID_SIZE * 100, :ymax => ROID_SIZE * 100}
POPULATION_SIZE = 50

FPS (frames per second) is the frame rate, or the speed at which the animation runs.
ROID_SIZE is the size of the individual roid, while POPULATION_SIZE is the number of
roids created for the simulation. The WORLD constant is a hash with two keys, where
the first is xmax, the maximum width of the animation window, and the second is
ymax, the maximum height of the animation window.

All code examples may be downloaded from GitHub.

Simulation | 179

https://github.com/sausheong/everyday

With that, let’s get into the main Shoes application, as shown in Example 7-1.

Example 7-1. Main simulation loop
Shoes.app(:title => 'Roids', :width => WORLD[:xmax], :height => WORLD[:ymax]) do
 stroke slategray
 fill gainsboro
 $roids = []
 POPULATION_SIZE.times do
 random_location = Vector[rand(WORLD[:xmax]),rand(WORLD[:ymax])]
 random_velocity = Vector[rand(11)-5,rand(11)-5]
 $roids << Roid.new(self, random_location, random_velocity)
 end

 animate(FPS) do
 clear do
 background ghostwhite
 $roids.each do |roid| roid.move; end
 end
 end
end

You might notice that the entire simulation is wrapped within the app class method,
which happens to be the main application window. The first line creates the Shoes
application window with the appropriate width and height.

Next, we set up the line color and the fill colors for all subsequent shapes created in
this application. Shoes uses the standard W3C-defined CSS level 3 color names, all
predefined and ready to be used. We set the colors here because every roid will have
the same line color and fill, and we don’t want to set them individually.

The $roids global variable is an array that contains all the roids in the simulation.
We will be accessing this variable from a number of places, and in order to avoid
passing it around as an argument to many methods, we set it up as a global variable.
The next few lines populate $roids with a population of roids, randomly scattered all
over the simulation window, with randomly set velocities.

Now that we’ve prepared the simulation, the rest of the code goes through an ani­
mation loop. The animate method is a method in the Shoes app that loops continu­
ously at a given frame rate. The animation loop in our case is the actual simulation,
which goes through every roid in the population at each frame and moves it. Note
that we clear the screen at the start of each iteration of the animation loop. This is
because we are actually redrawing the roids at every frame instead of moving them.
Shoes provides the facility to move the sprites we draw on the application window,
so why are we going the heavyweight route of completely redrawing the elements?
Because redrawing gives us a capability that moving the sprite doesn’t: it allows us to
draw a “tail” on each roid that indicates its velocity and direction of movement. If we
move the roid sprite instead of redrawing it, we would need a more complicated
algorithm to display the “tail.”

180 | Chapter 7: Schooling Fish and Flocking Birds

The preceding code shows how we can add a background color to the application
window. Shoes allows you to paint the background with a color, add a gradient, or
simply use an image as the background. This is mainly cosmetic.

Roids
Now that we have the simulation loop, let’s step back a bit and look at the Roid class
itself, shown in Example 7-2.

Example 7-2. Roid class
class Roid
 attr_reader :velocity, :position

 def initialize(slot, p, v)
 @velocity = v
 @position = p
 @slot = slot
 end

 def distance_from(roid)
 distance_from_point(roid.position)
 end

 def distance_from_point(vector)
 x = self.position[0] - vector[0]
 y = self.position[1] - vector[1]
 Math.sqrt(x*x + y*y)
 end

 def nearby?(threshold, roid)
 return false if roid === self
 distance_from(roid) < threshold and within_fov?(roid)
 end

 def within_fov?(roid)
 v1 = self.velocity - self.position
 v2 = roid.position - self.position
 cos_angle = v1.inner_product(v2)/(v1.r*v2.r)
 Math.acos(cos_angle) < 0.75 * Math::PI
 End

 def draw
 @slot.oval :left => @position[0], :top => @position[1], :radius => ROID_SIZE,
 :center => true
 @slot.line @position[0], @position[1], @position[0] - @velocity[0],
 @position[1] - @velocity[1]
 end

Roids | 181

 def move
 @delta = Vector[0,0]
 %w(separate align cohere muffle avoid).each do |action|
 self.send action
 end
 @velocity += @delta
 @position += @velocity
 allow_fallthrough and draw
 end
end

Each roid has two attributes, velocity and position. The velocity of the roid de­
scribes the speed and direction it’s moving, while the position of the roid tells us
where it is at that moment. The main application window has a coordinate system
that starts with 0 for x and y at the top-left corner of the window. The position of the
roid (and anything else on the window, for that matter) is described within this co­
ordinate system (Figure 7-2).

Figure 7-2. Shoes coordinate system

The attributes represent different things, but we can use the same class to describe
them: the Vector class, which is part of the matrix library from the standard Ruby
distribution. Although it’s probably easy to understand that the position vector is
represented by (x,y), the velocity vector is slightly different from the standard def­
inition of velocity in physics that you are used to. In physics, velocity represents speed
and direction. Our application runs along the same lines, but the numbers can be
thought of as (dx,dy) and describe how far the roid has moved within the span of a
frame in our simulation. For example, if the current position is (120,80) and the
velocity is (25,35), the position of the vector in the next unit of time will be calculated
using vector graphics:

182 | Chapter 7: Schooling Fish and Flocking Birds

As you might have guessed, the addition (+) operator for vectors is not the same
operator you’re used to, and we need to include the matrix library, which is a part of
the Ruby standard library. The standard library in Ruby, unlike the core library, is
not automatically included every time you run Ruby. In other words, although you
don’t need to install any gems or download any additional scripts, you will have to
manually require the library that you want—in this case, matrix.

However, Shoes is designed in such a way that it bundles its own set of Ruby gems
and its own distribution of the Ruby standard library. Normally this is OK, but under
certain circumstances, especially when you need a specific version of the standard
library, it can create pretty thorny issues. In our case, the Vector implementation in
Ruby 1.9.1 does not include vector division (the reason is a mystery to me, since it
has every other operation), while Ruby 1.9.2 does. Unfortunately, as Murphy’s Law
goes, the most current version of Shoes as of this writing, Shoes 3 “Policeman,” is
bundled with Ruby 1.9.1.

To evade the entire issue, I used a fairly standard Ruby technique, which some
call monkey-patching and others call, much more diplomatically, open classes
(Example 7-3).

Example 7-3. Adding vector division to the Vector class
class Vector
 def /(x)
 if (x != 0)
 Vector[self[0]/x.to_f,self[1]/x.to_f]
 else
 self
 end
 end
end

I’ve just added the division operator to the Vector class. If you’re new to Ruby but
have experience in some other languages like Java, you might be surprised to read
about this trick, because in the other languages you would need to subclass a parent
class in order to add new methods. In contrast, the open classes technique, which
allows you to simply open up a class and add in your own method, is quite commonly
used in Ruby. In this case, I opened up the Vector class and defined an additional
method that allows a Vector to be divided by a scalar number. We’ll see how this is
used in a while.

Let’s get back to the Roid class in Example 7-2. If you take a closer look at the con­
structor (the initialize method), you will see that we pass an argument called slot
when we create an instance of Roid. This is the Shoes::Slot class. A slot is like a canvas
upon which we can lay out images, text, and other things. The Shoes main application
window is a kind of slot too. We pass the main application window into the Roid
instance because we want to draw the roid on this window.

Roids | 183

The next few methods in the listing are all about finding out how far a given roid is
from this particular one. We use a simple two-dimensional model, so we can deter­
mine the distance between the two roids (known as the Euclidean distance or the
Pythagorean distance) using Pythagoras’s theorem (Figure 7-3).

Figure 7-3. Pythagoras’s theorem

As illustrated in Figure 7-3, in order to find the distance c between two points, we
find the square root of a2 and b2. Thus, the distance between two points, (x1, y1) and
(x2,y2), is shown by:

The formula is translated into code as follows:
def distance_from_point(vector)
 x = self.position[0] - vector[0]
 y = self.position[1] - vector[1]
 Math.sqrt(x*x + y*y)
end

We also defined a nearby? method that will return true only if a roid is within a specific
threshold away from the current roid. This lays the foundation for the three rules later
that need to find roids that are near a specific roid. In addition to lying within a certain
radius of another point to be considered nearby, the roid also needs to fulfill a method
called within_fov?:

def nearby?(threshold, roid)
 return false if roid === self
 distance_from(roid) < threshold and within_fov?(roid)
end

184 | Chapter 7: Schooling Fish and Flocking Birds

The within_fov? method is an interesting one. The acronym FOV stands for field of
vision, which is the roid’s observable world at any given moment. In other words, this
is what the roid can “see” around itself. In our implementation, we assume that the
roid has an FOV of 270 degrees or 1.5π radians. If we imagine that the roid is a triangle
with the direction of the arrow being the direction the roid is moving, the FOV is as
shown in Figure 7-4.

Figure 7-4. Roid’s field of vision (FOV)

To find out if a roid is within its FOV, we find the angle θ between the velocity vector
(v1) of our roid and the position vector (v2) of the roid we are checking. If this angle
θ is less than half of its FOV—that is, if θ is less than 135 deg or 0.75π—the roid is
within its FOV. We divide the angle in half because half of the FOV extends on each
side of the position vector.

Figure 7-5. Angle between velocity vector v1 and position vector v2

To find the angle θ, we use the formula for finding the angle between two vectors in
a Euclidean plane, using the inner product:

Roids | 185

Because we’re looking for the angle, we convert this equation to:

The ∙ is the inner product between two vectors, while the two vertical bars refer to the
scalar length of the vector (just the length of the line drawn between the start and
end). To state the above equation in words, the cosine of the angle between the two
vectors can be derived from the inner product of the vectors, divided by the product
of the lengths of the two vectors.

Fortunately for us, the Vector class in the matrix package provides us with two meth­
ods that ease this calculation. The first is the inner_product method, which obviously
does the inner product operation for the two vectors. The second is the r method,
which returns the Pythagorean distance of the vector (this is the scalar value we need).

The result of the calculation provides us with the cosine of the angle we want (in
radians, not degrees). We use the Math.acos method to convert the cosine of the angle
into the actual angle in radians, and if it is less than 0.75π radians, it is within the
roid’s FOV. Note that cos_angle can be a negative number: this just means that v2 is
on the other side of v1. The final angle is always positive, of course:

def within_fov?(roid)
 v1 = self.velocity - self.position
 v2 = roid.position - self.position
 cos_angle = v1.inner_product(v2)/(v1.r*v2.r)
 Math.acos(cos_angle) < 0.75 * Math::PI
end

Let’s move on to the move method, which is the core method of the Roid class because
it determines where and how the roid moves. This is the brains behind the entire logic
of moving the roids, so let’s look at it carefully:

def move
 @delta = Vector[0,0]
 %w(separate align cohere muffle avoid).each do |action|
 self.send action
 end
 @velocity += @delta
 @position += @velocity
 allow_fallthrough and draw
end

First, we set up a delta instance variable that accumulates information about the
roid’s velocity (which, as we’ve seen, includes the direction).

186 | Chapter 7: Schooling Fish and Flocking Birds

Then, in succession, we call the three rules defined by Reynolds: separate, align, and
cohere, each implemented as a method in the Roid class. Each method will change
the delta variable. Following that, we call two more methods that adjust the move­
ment of the roids to fit within the window, muffle and avoid, and these adjustments
also change the delta variable.

The roid’s velocity is then modified by delta, and the position is in turn modified
by velocity. This leaves the roid’s new velocity and position in place at the end of
the method. After we have the new position of the roid, we check whether the roid
is beyond the boundaries of the application window, and if it is, we allow it to fall
through to the other side of the window.

Finally, of course, we draw the roid.

The draw method is simple: it just draws the roid on the application window. In this
simulation, for simplicity’s sake, we made the roid look a bit like a tadpole. It consists
of a circular head and a line drawn from the center of the head to the coordinates of
its previous location (which is the velocity vector). In the simulation, this will result
in a rather lifelike, tadpole-esque creature (Figure 7-6):

def draw
 @slot.oval :left => @position[0], :top => @position[1], :radius => ROID_SIZE,
 :center => true
 @slot.line @position[0], @position[1], @position[0] - @velocity[0],
 @position[1] - @velocity[1]
end

Now that we’ve gotten an overview of how roids move, let’s dive deeper into each of
the methods we mentioned earlier. Let’s start with Reynolds’s three boid rules.

The Boid Flocking Rules
To recap, the separate rule tells each roid to keep its distance from other roids. Let’s
see how this is implemented in our Roids simulation (Example 7-4).

Example 7-4. Separate rule
def separate
 distance = Vector[0,0]
 $roids.each do |roid|
 if nearby?(SEPARATION_RADIUS, roid)
 distance += self.position - roid.position
 end
 end
 @delta += distance/SEPARATION_ADJUSTMENT
end

For each roid in the system (this is where we use the $roid global variable where we
kept all the roids in the system), we check whether it’s within the SEPARATION_RADIUS
of our roid, and if it is, we move it away. The amount of distance to move is the current

The Boid Flocking Rules | 187

Figure 7-6. Roids in action

distance between our roid and that roid. We start with a Vector that is (0,0) and
accumulate the difference in position for each of the nearby roids. After going through
all the nearby roids, we modify the delta accordingly. What does this mean? It means
that if the roid is close to our roid, it will move away slowly; and if it is relatively farther
away, it will move away more quickly. You might notice that we divide the distance
with a SEPARATION_ADJUSTMENT constant. This is to reduce jerky movements when this
rule modifies the velocity of the roid.

Next is the align rule, which tells the roids to move in the same general direction as
the roids that are near it (Example 7-5).

Example 7-5. The align rule
def align
 nearby, average_velocity = 0, Vector[0,0]
 $roids.each do |roid|

188 | Chapter 7: Schooling Fish and Flocking Birds

 if nearby?(ALIGNMENT_RADIUS, roid)
 average_velocity += roid.velocity
 nearby += 1
 end
 end
 average_velocity /= nearby
 @delta += (average_velocity – self.velocity)/ALIGNMENT_ADJUSTMENT
end

Just as with separate, we check for nearby roids, but here we use a much larger radius
to check more distant roids. We add up their velocity values and divide the result
by the number of nearby roids found to get the average velocity. We subtract our
roid’s velocity from this average velocity and, as with the separate rule, adjust the
result by dividing it with an ALIGNMENT_ADJUSTMENT constant in order to make the
velocity changes more gradual.

The last boid-related rule is cohere. This tells our roid to move toward the center of
mass of the nearby roids (Example 7-6).

Example 7-6. The cohere rule
def cohere
 nearby, average_position = 0, Vector[0,0]
 $roids.each do |roid|
 if nearby?(COHESION_RADIUS, roid)
 average_position += roid.position
 nearby += 1
 end
 end
 average_position /= nearby
 @delta += (average_position – self.position)/COHESION_ADJUSTMENT
end

The implementation is quite similar to that of the align rule. Instead of getting the
average velocity, we add up the positions of the nearby roids and divide that total by
the number of nearby roids to get the average position. As before, we subtract the
roid’s position from the average position and adjust it to make the positional changes
more gradual, using the COHESION_ADJUSTMENT constant.

Each of the three rules refers to specific parameterized values that allow us to tweak
what constitutes being nearby. For example, in the separate rule we have the SEPA
RATION_RADIUS, in the align rule we have the ALIGNMENT_RADIUS, and in the cohere
rule we have the COHESION_RADIUS. Let’s look at these values here:

SEPARATION_RADIUS = ROID_SIZE * 2
ALIGNMENT_RADIUS = ROID_SIZE * 15
COHESION_RADIUS = ROID_SIZE * 15

In this implementation, we have used the comparative size of the roid as the base
multiplier to determine how far away a roid would have to be in order to influence

The Boid Flocking Rules | 189

another roid. The radius used for the separate rule is much smaller than the other
two rules because we don’t want roids that are far away to be repelled even further.
The radii for the align and cohere rules are relatively larger, as we want the roids to
collect in a single group rather than many small groups.

There you have it—these three rules make up the original Boids flocking algorithm
created by Craig Reynolds.

Supporting Rules
While Reynolds’s three rules suffice to make a rather compelling simulation, we need
a couple more rules to make the simulation run smoothly:

• Muffle the speed of the roid. We don’t want roids to randomly speed up as a result
of flocking. Real birds can’t speed up too much, so we must slow down the roids
if they move too fast as a result of our flocking rules.

• Allow the roid to fall through from one side of the application window into the
other. The alternative is to make the roids bounce around the application window.
I personally dislike that—it makes the roid look like it’s a bouncing ball, and birds
don’t bounce.

Let’s look at the muffle rule first, shown in Example 7-7.

Example 7-7. The muffle rule
def muffle
 if @velocity.r > MAX_ROID_SPEED
 @velocity /= @velocity.r
 @velocity *= MAX_ROID_SPEED
 end
end

This rule is simple enough. If the Pythagorean distance of the velocity is more than a
maximum that we set, MAX_ROID_SPEED, we cap the speed of the roid, then set it to
MAX_ROID_SPEED. This ensures that the roid will never go faster than this speed.

The allow_fallthrough rule is also quite straightforward, though a bit verbose, as
shown in Example 7-8.

Example 7-8. The allow_fallthrough rule
def allow_fallthrough
 x = case
 when @position[0] < 0 then WORLD[:xmax] + @position[0]
 when @position[0] > WORLD[:xmax] then WORLD[:xmax] - @position[0]
 else @position[0]
 end
 y = case
 when @position[1] < 0 then WORLD[:ymax] + @position[1]
 when @position[1] > WORLD[:ymax] then WORLD[:ymax] - @position[1]

190 | Chapter 7: Schooling Fish and Flocking Birds

1. M. Ballerini et al., “Interaction ruling animal collective behavior depends on topological rather than metric
distance: Evidence from a field study,” Proceedings of the National Academy of Sciences of the United States
of America 105, no. 4 (2008): 1232–1237.

 else @position[1]
 end
 @position = Vector[x,y]
end

If the roid’s position falls outside the boundary of the application window, we make
it appear on the other side of the window. This rule has a rather interesting side effect.
If the roids cohere loosely, the tail end of the flock might be attracted to the head of
the flock appearing on the other side of the window!

With this, we’ve wrapped up our simple bird flocking simulation, following Rey­
nolds’s classic Boids algorithm. I strongly encourage you to try this out on your own
and change the various parameters to see how they affect the simulation. The differ­
ences can be quite startling. Changing the various radii for the three rules might make
the roids run amok on the screen, darting everywhere; or, at the other extreme, make
them lounge lethargically, unwilling to move. They might even crash into each other
in mad races around the application window.

A Variation on the Rules
While the Boids algorithm implemented three rules that made its motion surprisingly
realistic, only recently was there any solid research to verify that real birds follow these
rules when they are flocking. The next iteration of our simulation will take a look at
some of that recent research and implement the new rules it produced.

Over a period of three years, 2004–2007, during the Starlings in Flight (or STAR­
FLAG) project, researchers from various institutes in Italy, France, Germany, Hun­
gary, and the Netherlands gathered empirical data about starlings in flight to develop
insights into the flocking behavior of birds. Their research produced some interesting
results. A 2008 paper,1 based on a study conducted by European researchers in the
STARFLAG project on starlings, suggested that the interaction between flocking birds
is not between one bird and all birds within a specific distance (as suggested by the
Boids algorithm and subsequent simulations), but rather only six to seven nearby
birds. This means that for our simulation, instead of getting all roids within a certain
radius, we would want to get only the six or seven nearest roids.

How does this change our simulation code? Nothing too drastic—the only change is
really in modifying the three flocking rules to reflect this behavior. As before, let’s
look at the separate rule first (Example 7-9).

A Variation on the Rules | 191

Example 7-9. Alternate separate rule
def separate
 distance = Vector[0,0]
 r = $roids.sort {|a,b| self.distance_from(a) <=> self.distance_from(b)}
 roids = r.first(MAGIC_NUMBER)
 roids.each do |roid|
 if nearby?(SEPARATION_RADIUS, roid)
 distance += self.position - roid.position
 end
 end
 @delta += distance/SEPARATION_ADJUSTMENT
end

Instead of just getting all the nearby roids, we first sort the roids by their distance
from our roid. Then we get the first MAGIC_NUMBER of roids, the MAGIC_NUMBER constant
being 6 or 7 as in the research mentioned earlier. The rest of the code remains the
same.

The next rule, align, has similar changes, as shown in Example 7-10. Note that in
each place where we used to refer to the number of nearby roids, we now simply use
MAGIC_NUMBER.

Example 7-10. Alternate align rule
def align
 alignment = Vector[0,0]
 r = $roids.sort {|a,b| self.distance_from(a) <=> self.distance_from(b)}
 roids = r.first(MAGIC_NUMBER)
 roids.each do |roid|
 alignment += roid.velocity
 end
 alignment /= MAGIC_NUMBER
 @delta += alignment/ALIGNMENT_ADJUSTMENT
end

The cohere rule, shown in Example 7-11, changes in similar ways to the align rule.
As before, the changes are minimal.

Example 7-11. Alternate cohere rule
def cohere
 average_position = Vector[0,0]
 r = $roids.sort {|a,b| self.distance_from(a) <=> self.distance_from(b)}
 roids = r.first(MAGIC_NUMBER)
 roids.each do |roid|
 average_position += roid.position
 end
 average_position /= MAGIC_NUMBER
 @delta += (average_position - @position)/COHESION_ADJUSTMENT
end

192 | Chapter 7: Schooling Fish and Flocking Birds

2. In case you’re not clued in, this is the fictional setting for Portal.

So how does this minor change affect the behavior of the flock? An immediate effect
is that the whole simulation runs a lot slower. This is because the calculations are
more intensive now, especially when each call to a rule requires a sort of all the roids
in the system. However, the observer perceives no differences between the old and
new simulations. Both appear to be a realistic representation of flocking birds.

Going Round and Round
One effect of our implementation is that the roids seem to be in an infinite loop,
entering one side of the window and going out the other like the Portal puzzle platform
game created by Valve Corporation. Unless flocks of birds exist in the Enrichment
Center for Aperture Laboratories,2 this doesn’t seem very realistic. One way to prevent
this effect is to bounce the roids off the walls, but we already rejected that as also being
unrealistic. Another solution, shown in Example 7-12, is to create an additional rule—
center—that in essence tells the roids to circle the center of the application window.

Example 7-12. The center rule
def center
 @delta -= (@position - Vector[WORLD[:xmax]/2, WORLD[:ymax]/2]) / CENTER_RADIUS
end

We take the roid’s position and subtract from it a Vector representing the center of
the application window. Then we divide this value by CENTER_RADIUS, which will limit
the radius of the circle that the roids follow around the center of the application
window. The result is then subtracted from the delta that modifies the velocity of
the roid.

To include center, we add it to the list of rules to be followed by each roid. The effect
will be to make the group of roids circle the center of the application window, with
the radius of orbit being CENTER_RADIUS.

Ideally, CENTER_RADIUS should not be too large; otherwise, some roids will again fall
through the boundary of the application window and appear on the other side. When
a good CENTER_RADIUS is chosen, the resultant simulation can look startlingly like a
school of fish going around in an endless loop or a flock of birds circling in the air
before roosting for the evening.

Going Round and Round | 193

Putting in Obstacles
Having the roids fly around and even go in infinite loops is great fun to watch, but so
far we’ve not done anything that can affect the roids directly. We’ve only been ob­
servers until now, so it’s time to do something more interactive. In this section, we’ll
put in some obstacles and see how the roids react to them.

First let’s add the obstacles, as shown in Example 7-13.

Example 7-13. Obstacles
Shoes.app(:title => 'Roids', :width => WORLD[:xmax], :height => WORLD[:ymax]) do
 stroke blue
 fill lightblue
 $roids = []
 $obstacles = []
 POPULATION_SIZE.times do
 random_location = Vector[rand(WORLD[:xmax]),rand(WORLD[:ymax])]
 random_velocity = Vector[rand(11)-5,rand(11)-5]
 $roids << Roid.new(self, random_location, random_velocity)
 end

 animate(FPS) do
 click do |button, left, top|
 $obstacles << Vector[left,top]
 end

 clear do
 $obstacles.each do |obstacle|
 oval(:left => obstacle[0], :top => obstacle[1],
 :radius => OBSTACLE_SIZE, :center => true,
 :stroke => red, :fill => pink)
 end
 $roids.each do |roid| roid.move; end
 end
 end
end

We add an $obstacles global variable, just as we did with the roids. This gives us
access to a global list of obstacles on the screen. Then we add a callback to any mouse
click so that clicking on the application window will create an obstacle. The click
creates a new Vector, with the coordinates of the click’s position serving as the center
of the obstacle.

In the animation loop, just as with the roids, we loop through each obstacle and draw
a filled circle with the radius of OBSTACLE_SIZE.

Now that we have the obstacles, we need to get the roids to take them seriously and
avoid smashing into them. To do this, we add an avoid rule, as shown in
Example 7-14, that tells all roids to avoid obstacles.

194 | Chapter 7: Schooling Fish and Flocking Birds

Example 7-14. Avoid rule
def avoid
 $obstacles.each do |obstacle|
 if distance_from_point(obstacle) < OBSTACLE_SIZE + ROID_SIZE*2
 @delta += (self.position - obstacle)/1.5
 end
 end
end

If the roid is near the obstacle (remember that the obstacle has a radius of OBSTACLE_SIZE
and the roid has a radius of ROID_SIZE), we subtract the position of the obstacle from
the roid’s position, apply a small adjustment to make the change less abrupt, and
then apply it to the delta. This will result in the roid avoiding the obstacle and moving
away from it (Figure 7-7).

Figure 7-7. Avoidance distance between the roid and the obstacle

Wrap-up
That’s it!

The simulation we’ve gone through in this chapter is a lifelike representation of co­
ordinated animal movement, usually called flocking (in birds) or schooling (in fish).
Flocking or schooling is an emergent behavior, meaning that complex behavorial
patterns can arise from the interaction of many components following simple rules.

We built a model consisting of agents, called roids, that coordinate their movement
through a number of simple rules. We started off with the implementation of the
classic rules from the Boids flocking algorithm created by Craig Reynolds: separation,
alignment, and cohesion. We also added some supporting rules to show a smoother
simulation. Then we tweaked the rules a bit to incorporate some recent research
findings from the STARFLAG project, mainly that the birds (or roids, in our case)
interact with a fixed number of neighboring birds instead of taking into account all
birds within a specific radius, as suggested by the Boids algorithm.

Wrap-up | 195

Next, instead of having the roids fall through from one side of the application window
to the other, we made them circle the center of the application window. This creates
a startlingly lifelike simulation of birds flocking before roosting in the evening. The
final tweak to our simulation in this chapter allowed us to click on the application
window to create obstacles that the roids need to avoid.

The simulation in this chapter is meant for you to play around with, so change the
parameters and rerun it to see the differences. Increase the number of roids, change
the radius of influence for the three rules, change the magic number. A word of
warning, though—it can get quite addictive!

196 | Chapter 7: Schooling Fish and Flocking Birds

CHAPTER 8

Money, Sex, and Evolution

When I was young I used to drive my father up the wall by bombarding him with
exasperating questions like “Why am I here?”, “Why is the sky blue?”, “Why am I
Chinese?”, and the classic “Are we there yet?” It was frustrating for him to come up
with an answer that was simple enough for me to understand yet informative enough
to be marginally educational.

Of course, the great wheel of karma turns, and inevitably it was my turn to try to
answer my son’s similar questions.

What struck me as I deftly fielded my son’s constant barrage was the same question
that I always asked and to which I never really got a good answer (except in The
Hitchhiker’s Guide to the Galaxy, but that’s another story): “What makes the world go
round?”

Many attempted to answer this question. Charles Dickens said it’s love. According to
Michael Jackson, it’s people. The 1960s musical Cabaret claimed it’s money. Plenty
of songs say it’s music. The answer I like best, though, is from the 1963 Disney ani­
mated film, The Sword and the Stone:

You see, my boy, it’s nature’s way. Upon the weak the strong ones prey. The human
life, it’s also true. The strong will try to conquer you. And that is what you must expect.
Unless you use your intellect. Brains and brawn, weak and strong. That’s what makes
the world go round.

As you might have guessed, this is the chapter where we will make our own attempt
at answering it. When we left Chapter 7, we had a functioning simulation of a Boids
clone, called Roids. In this chapter, we’re going to expand upon that simulation and
build an entire artificial world populated by roids.

197

1. The term utopia originally comes from Greek, meaning literally “no place.” The idea of an ideal society
was satirized in Thomas More’s book Utopia, which brought the word into mainstream usage. More’s book
described a fictional island state in the Atlantic Ocean that had an unusual (at that point in time) society.
As you will see later, this name is rather apt for our simulation.

It’s a Good Life
Some of what I describe in this chapter is inspired by original research conducted by
Joshua Epstein and Robert Axtell from the 2050 Project, a joint venture of the Santa
Fe Institute, the World Resources Institute, and the Brookings Institution. The re­
search is covered in detail in Epstein and Axtell’s excellent book Growing Artificial
Societies: Social Science from the Bottom Up (Brookings Institution Press/MIT Press).
What I’ve done here is to reimplement and elaborate on some of Epstein and Axtell’s
ideas using the Roids simulation.

The roids we built in Chapter 7 have the good life. First, they are immortal and free
to roam their world with any cares or worries. Sure, occasionally you’ll drop nasty
obstacles around them, but that’s about it. They don’t need to eat or sleep, and since
they are immortal, they don’t need to procreate to continue their species either. All
they do is to wander around in flocks in an infinitely wide space. It’s a veritable Garden
of Eden.

That’s not much of a world, though, and as a simulation, quite uninteresting after a
while. What we’ll do is, starting from this basic simulation, increasingly add behavior
to the roids and the world they live in. As we run the simulation, we’ll gather different
types of data and run some analysis on it, asking certain questions along the way, and
hopefully, finding the correct answers.

Let’s start simple in our Garden of Eden by doing what the serpent did—offer food
to the roids.

Money
Starting with the basic Roids simulation in Chapter 7, we will add on some interesting
features to create our new simulation, which I will call Utopia.1 In this new simulation,
each roid has an energy level that is randomly assigned at its creation. At every tick,
each roid loses some energy; if the roid loses all his energy, it will die. To survive, each
roid continuously seeks out food, which it eats to replenish its energy. That’s quite a
fall from absolute immortality, but the roids are still potentially immortal—if they can
find enough food at all times, they will live forever.

Naturally, we will also need to add food in Utopia. To do so, we will create a random
amount of food and scatter it throughout the world. More food will be constantly and
miraculously created at another random location at random intervals.

198 | Chapter 8: Money, Sex, and Evolution

To create this simulation and also to ease simulations down the road in this chapter,
we will streamline the base code from Chapter 7. What this really means is that we’ll
break down roids.rb from Chapter 7 into a number of smaller files. The main file will
be called utopia.rb, while the rest will be broken down into logical pieces.

First, let’s look at utopia.rb, which is the main file we’re going to run for the simulation
(Example 8-1).

Example 8-1. The main Utopia simulation code
Shoes.app(:title => 'Utopia', :width => WORLD[:xmax], :height => WORLD[:ymax]) do
 background ghostwhite
 stroke slategray

 $roids = []
 $food = []
 data = []
 populate
 scatter_food

 time = END_OF_THE_WORLD

 animate(FPS) do
 randomly_scatter_food FOOD_PROBABILITY
 clear do
 d = Array.new(POPULATION_SIZE, 0)
 para time
 fill yellowgreen
 $food.each do |food| food.tick; end
 fill gainsboro
 $roids.each do |roid|
 roid.tick
 d[roid.uid] = roid.energy
 end
 data << d
 end

 time -= 1
 close & write(data) if time < 0
 end
end

All code examples may be downloaded from GitHub.

Money | 199

https://github.com/sausheong/everyday

If you’ve gone through Chapter 7, this should be familiar to you. There are some
subtle differences, though. First, we have a time variable, which is initially set to a
constant called END_OF_THE_WORLD. The simulation essentially loops indefinitely until
the end of the world is reached, which is 2,000 ticks.

Besides the $roids global variable, we also have a $food global variable, which is an
array of all the food objects in Utopia. When we fire up the simulation, we populate
the world with roids and also scatter food randomly all over Utopia by calling the
scatter_food method, as shown in Example 8-2.

Example 8-2. Scattering food initially
def scatter_food
 FOOD_COUNT.times do
 $food << Food.new(self, random_location)
 end
end

We scatter a number of food objects, fixed by the constant FOOD_COUNT. However,
FOOD_COUNT is only the seed number of food objects. As we pass each tick in the
animation loop, we randomly add new food objects into Utopia by calling the
randomly_scatter_food method, as shown in Example 8-3.

Example 8-3. Scattering food randomly
def randomly_scatter_food(probability)
 if (0..probability).include?(rand(100))
 $food << Food.new(self, random_location)
 end
end

The scattering of new food objects at each tick is determined by a probability that is
set by the constant FOOD_PROBABILITY. Also at each tick, all the food in Utopia is drawn
on the screen, and is filled with the color yellow-green. Each food object is drawn as
a circle, with the radius of the circle indicating the amount of food it contains. In
other words, the larger a food object appears, the more food it has. When a roid “eats”
at the food object, it will reduce the food object’s size, which, of course, makes plenty
of sense.

Finally, we want to gather data from this simulation for analysis. What we want to
find out in this first simulation is how many roids survive and how much energy the
surviving roids have over the period of 2,000 ticks. To determine this, we need to
record, at each tick, how much energy each roid has.

At the start of the simulation, we create an array the size of the entire population and
set it to 0. At the first tick, this will be replaced by the initial randomly set energy
levels of all the roids. As each tick passes, we record the energy level of each roid (even
if it’s dead) in an array and accumulate that information in the overall data variable.
Finally, we write this data into a CSV file named money.csv, as shown in Example 8-4.

200 | Chapter 8: Money, Sex, and Evolution

Example 8-4. Writing data to a CSV file
def write(data)
 CSV.open('money.csv', 'w') do |csv|
 data.each do |row|
 csv << row
 end
 end
end

That’s it for utopia.rb. Now let’s look at the Roid class in the roid.rb file. Most of the
code is the same, except for a few additions. First, instead of calling move every tick,
the main Shoes application calls the tick method. This method is quite simple—it
moves the roid, lets the roid lose energy, and if the roid runs out of energy, makes the
roid remove itself from $roids (Example 8-5).

Example 8-5. Actions at every tick
def tick
 move
 lose_energy
 if @energy <= 0
 $roids.delete self
 end
end

The move method, shown in Example 8-6, is almost exactly the same, with the excep­
tion that in addition to the other various rules, we now add in a hungry method, which
is quite self-explanatory.

Example 8-6. Moving the roid
def move
 @delta = Vector[0,0]
 %w(separate align cohere muffle hungry).each do |action|
 self.send action
 end
 @velocity += @delta
 @position += @velocity
 fallthrough and draw
end

The hungry method, defined in Example 8-7, allows the roid to get attracted to food.
When it is near enough to a food object (in this case, 5 pixels away), the roid will eat
some of the food.

Example 8-7. Getting attracted to food
def hungry
 $food.each do |food|
 if distance_from_point(food.position) < (food.quantity + ROID_SIZE*5)
 @delta -= self.position - food.position
 end

Money | 201

 if distance_from_point(food.position) <= food.quantity + 5
 eat food
 end
 end
end

Eating food, as shown in Example 8-8, will reduce the amount of food in the food
object, and increase the roid’s energy level by a fixed amount determined by the con­
stant METABOLISM.

Example 8-8. Eating the food
def eat(food)
 food.eat 1
 @energy += METABOLISM
end

Next, losing energy really means reducing the energy level by 1 at every tick
(Example 8-9).

Example 8-9. Losing energy
def lose_energy
 @energy -= 1
end

We’re almost done with the Roids class, but there’s one last change. The size of each
roid now grows with the amount of energy it has, and correspondingly shrinks when
it loses energy. We don’t want the roids to end up monstrously sized, so we cap the
size at 10 pixels in radius, as shown in Example 8-10.

Example 8-10. Changing the roid size according to the energy level
def draw
 size = ROID_SIZE * @energy.to_f/50.0
 size = 10 if size > 10
 o = @slot.oval :left => @position[0], :top => @position[1], :radius => size,
 :center => true
 @slot.line @position[0], @position[1], @position[0] - @velocity[0],
 @position[1] - @velocity[1]
end

Next is the Food class (Example 8-11), which is new in this chapter. If you remember
Chapter 7, this is really a stripped-down version of the Obstacle class.

Example 8-11. The Food class
class Food
 attr_reader :quantity, :position

 def initialize(slot, p)
 @position = p
 @slot = slot
 @quantity = rand(20) + 10
 end

202 | Chapter 8: Money, Sex, and Evolution

 def eat(much)
 @quantity -= much
 end

 def draw
 @slot.oval :left => @position[0], :top => @position[1], :radius => quantity,
 :center => true
 end

 def tick
 if @quantity <= 0
 $food.delete self
 end
 draw
 end
end

Each food object has a quantity and a position, both randomly created initially.
Eating the food reduces the quantity of the food pile, and at each tick we will check
if the quantity has dropped to nothing. If it has, we will remove it from $food.

We’re done with the code. Unlike Chapter 7, where the code is given in full, I have
provided only snippets here. You should download the code from GitHub and try it
out yourself! A typical session looks like Figure 8-1.

Now that we have data for the simulation, let’s analyze it.

First, let’s look at the CSV data that was generated (Figure 8-2). It consists of 50
columns, one for each roid, and 2,000 rows, one for each tick.

Scrolling down, you will notice that as time passes, more and more of the roids “die,”
and only a few roids remain by the end of the simulation. Surprisingly, the surviving
roids have a large amount of energy left. Let’s run this through an R script and in­
vestigate closer (Example 8-12).

Example 8-12. Plotting histogram of roid energy levels over time
library(ggplot2)
data <- read.table("money.csv", header=F, sep=",")
samples <- data.frame(roid=1:51)
points = c(1,5,15,30,50,75,100,125,150,200,300,500)

pdf("money.pdf")
grid.newpage()
pushViewport(viewport(layout=grid.layout(4,3)))
vp_layout <- function(x,y) {viewport(layout.pos.row=x, layout.pos.col=y)}

row <- 1; col <- 1
for (i in points) {
 point <- data.frame(t(data[i,]))
 colnames(point) <- 'energy'

Money | 203

https://github.com/sausheong/everyday

Figure 8-1. First simulation

 p <- qplot(energy, data=point, geom="histogram", binwidth=5,
 main=paste("time=",i,sep=""))
 print(p, vp=vp_layout(row,col))
 if (col == 3) {row <- row + 1}
 col <- (col %% 3) + 1
}
dev.off()

The first two lines of the script should be familiar by now. However, we cannot pos­
sibly use the entire population of data we’ve collected, so we will take just a sample.
We create a samples data frame to contain these samples, which are collected from
different points in time. To visualize energy level changes of all roids over time, we
take snapshot histograms of the energy levels of all roids at different points in time.
In the script, we do this at tick 1, 5, 15, 30, and so on. Notice that we don’t go all the
way to the 2,000th tick—you’ll see why in a short while.

204 | Chapter 8: Money, Sex, and Evolution

Figure 8-2. Data collected from simulation

To display all the histograms at once, we will use grid, the underlying graphics system
used by ggplot2. Because it is part of the R distribution, we don’t need to include grid
as a library. What we will need to use from grid is the viewport: a rectangular subregion
of the display. The default viewport takes up the entire display, but with a bit of
tweaking we can lay out plots the way we want by specifying multiple viewports and
their positions in the display.

Viewports are created with the viewport() function. To create a plot in a rectangular
grid, we use grid.layout(), which sets up a regular grid of viewports. grid.lay
out() creates a grid with four rows, each with three columns. The viewport() call
that follows fills those rows and columns. After being created, a viewport must be
pushed into a viewport tree before it can be displayed. To do this, we use the push
Viewport() function. In Example 8-12, we first create a viewport with a grid of four
rows and three columns and push it to the viewport tree. Next, we create a simple
function that will be reused in a later loop. This function, vp_layout(), simply creates
a viewport at the given row and column.

With this, we’re ready to go through each point in time that we want to sample. First,
we create a data frame by transposing the data at a given time using the t() function,

Money | 205

and assign the data frame to a variable point. We need to transpose the data first
because our data is written by row, but data frames need the data by column. We
change the name of the column to energy to make it more obvious that we’re dealing
with the energy levels of the roids.

After that, we plot a histogram with the binwidth of 5 and slap a title on it, telling us
which tick we are plotting. This plot is then printed on a viewport of the correct row
and column. The last two lines help us to loop over all 12 sample points. As I noted
earlier, we do not go all the way to the 2,000th tick; we stop at the 500th. This is because
going any further doesn’t give us much more information, as you can see from the
plot in Figure 8-3.

Figure 8-3. Energy levels of roids over time

206 | Chapter 8: Money, Sex, and Evolution

A quick glance of the histograms tell us a clear story. At the beginning, the distribution
is normal since it’s random. For more on this topic, see the next sidebar, “Checking
for Normal Distribution”.

Checking for Normal Distribution
Let’s check if the distribution of the initial population is really normal. R has a number
of normal-distribution testing functions. For our purposes, we’ll be using one of the
more popular tests, the Shapiro-Wilk test. Without going in depth into the mathematics
of this test (which would probably fill up a whole section, if not an entire chapter, on
its own), let’s examine the initial population by assuming that the population is nor­
mally distributed and running the Shapiro-Wilk test on it:

> data <- read.table("money.csv", header=F, sep=",")
> row <- as.vector(as.matrix(data[1,]))
> row
 [1] 56 79 66 74 96 54 91 59 70 95 65 82 64 80 63 68 69 69 72 89 64 53 87 49
[47] 68 66 80 89 57 73 72 82 76 58 57 78 94 73 83 52 75 71 52 57 76 59 63 ...
> shapiro.test(row)

 Shapiro-Wilk normality test

data: row
W = 0.9755, p-value = 0.3806

>

As you can see, the p-value is 0.3806, which (on a a scale of 0.0 to 1.0) is not small, and
therefore the null hypothesis is not rejected. The null hypothesis is that of no change
(i.e., the assumption that the distribution is normal). Strictly speaking, this doesn’t
really prove that the distribution is normal, but a visual inspection of the first histogram
chart in Figure 8-3 tells us that the likelihood of a normal distribution is high.

The initial histogram chart roughly follows a nice bell curve. As time goes by, though,
the histogram starts to skew toward the left as more and more roids lose energy. Over
time, we end up with a lot of dead roids or roids with very little energy, while only a
few roids survive. The surviving roids, however, have one very surprising attribute—
all of them are clustered on the left side with very high energy levels!

So what does this tell us? It definitely couldn’t be that some roids are simply better
than others (e.g., smarter, braver, or better looking) because all roids are exactly the
same.

Money | 207

Could the results be totally random? A few lucky roids survived simply because they
were at the right place at the right time? Intuitively, it sounds correct, but it’s actually
not. If it’s truly random, the histogram should remain the same—that is, totally ran­
dom behavior should have a normal distribution as well, but you can see clearly in
the final histogram that it does not.

So how can we explain this?

One plausible explanation is that the Utopia simulation shows an emergent behavior
(complex behavior arising from simple entities), much like the base simulation’s
movement, which created the illusion of flocking by just following a few simple rules.
Given that all roids are the same, our Utopia simulation simply shows that over time,
the rich get richer and the poor get poorer (in this case, the poor die), and the gap of
inequality widens.

Isn’t this simply guessing? Let’s do a second analysis. Inequality is frequently meas­
ured using the Gini coefficient, so we’ll analyze the distribution of energy levels with
the Gini coefficient and Lorenz curves (for more information, see the sidebar “Gini
Coefficient and Lorenz Curve”).

Gini Coefficient and Lorenz Curve
The Gini coefficient is a measure of statistical dispersion developed by the Italian sta­
tistician and sociologist Corrado Gini and published in his 1912 paper “Variability and
Mutability.” It is a measure of the inequality of a distribution, a value of 0 expressing
perfect equality and a value of 1 expressing perfect inequality. Although commonly
used as a measure of inequality of income or wealth, the Gini coefficient has also been
applied in many other fields, including ecology, health science, and chemistry.

Associated with the Gini coefficient is the Lorenz curve, a graphical representation of
the cumulative distribution function of a probability distribution. It was developed by
Max O. Lorenz in 1905 to represent inequality of the wealth distribution. If there is
perfect equality, the curve will be a line y = x. If there is perfect inequality, it will be a
line y = 0 (i.e., a horizontal line). The Gini coefficient is the area between the line of
perfect equality and the Lorenz curve, as a percentage of the area between the line of
perfect equality and the line of perfect inequality.

For this analysis, we’ll use the ineq library, which conveniently provides all the nec­
essary functions for us to do this analysis. Let’s apply the same data points we used
for graphing to some new R code that calculates the coefficience of inequality
(Example 8-13).

208 | Chapter 8: Money, Sex, and Evolution

Example 8-13. Analyzing inequality over time
library(ineq)
data <- read.table("money.csv", header=F, sep=",")

points = c(1,5,15,30,50,75,100,125,150,200,300,500)

pdf("inequality.pdf")
par(mfcol=c(4,3))
for (i in 1:12) {
 p <- Lc(as.vector(as.matrix(data[points[i],])))
 ie <- ineq(data[points[i],])
 plot(p, main=paste("t =", points[i], "/ Gini = ", round(ie, 3)), font.main=1)
}
dev.off()

Although we use the same data as before (of course) and the same sample points,
instead of generating histograms, this time we generate Lorenz curves and print out
the Gini coefficient in the title of the chart as well (Figure 8-4).

As expected, inequality increases over time—that is, the rich get richer and the poor
get poorer. This is a simple simulation, so how does it reflect the real world?

One of the major catchphrases in the “Occupy Wall Street” protest movement that
started in 2011 is “We are the 99%,” which refers to the unequal distribution of wealth
in America. The protesters have also accused Wall Street and corporations of risky
lending practices that eventually caused the economic crisis of 2008, and have pro­
tested against corporate money in politics.

These claims are not without merit. A report from the Congressional Budget Office
(CBO) pointed out that income inequality in America has risen dramatically over the
past 20 years. Between 1979 and 2007, the incomes of the top 1% of Americans grew
by an average of 275%. During the same time period, the 60% of Americans in the
middle of the income scale saw their income rise by 40%. By 2007, the top 20% of
Americans owned 85% of the country’s wealth, and the bottom 80% of the population
owned 15%. However, after 2007, the share of total wealth owned by the top 1% of
the population grew from 34.6% to 37.1%, and wealth owned by the top 20% of
Americans grew from 85% to 87.7%.

However, the culprits might not be the fat cats on Wall Street alone, nor the stereo­
typical dirty-money politicians. In fact, the phenomenon of wealth inequality has
been around for a while in America. In 1922, the top 1% owned 36.7% of the wealth,
and this number jumped to 44.2% by the time the stock market crashed in 1929.

From our Utopia simulation, it seems that this phenomenon might be a natural one.
This argues for an alternative to a pure free-market solution—for example, regula­
tions to prevent a concentrated accumulation of wealth in a small portion of the

Money | 209

Figure 8-4. Lorenz curves showing inequality over time

population. Of course, the reality is much more complicated than a simple simulation
such as the one that we’ve done here. However, it’s interesting to realize that there’s
no totally black and white answer to the question of why the rich get richer and the
poor get poorer.

210 | Chapter 8: Money, Sex, and Evolution

Sex
Next, let’s spice things up a bit with a little sex. By that, I mean now allowing the roids
to procreate (what else did you think I meant?). The reason for doing this is because
we want to observe changes in the roid population and find patterns in procreation.
In this section, we’ll investigate the pattern of changes in the roid population over a
period of time.

Birth and Death
First of all, we will have male and female roids. Both male and female roids are almost
the same except for three aspects. First, only the females of the species can and will
initiate procreation and can give birth. Second, we’re introducing the concept of
metabolism, which determines how much of the food the roid consumes is turned
into energy. Female roids have a slightly higher metabolism than the male roids.
Finally, males are blue and females remain gray.

In addition, as a result of increased population, we can’t afford to allow roids to be
immortal anymore and need to introduce the Grim Reaper into the population. Much
like the mythological Fates controlling the thread of life for every living person, once
the roid is born, its lifespan is predetermined; once that lifespan is up, Atropos comes
in to cut its thread and the roid dies.

In other words, we will introduce the idea of a maximum lifespan. Each roid will age
at every tick and when its maximum lifespan is reached, it will die. Of course, as before,
if the roid loses all its energy, it will also die.

In this simulation, instead of collecting data on energy level, we’ll be collecting data
on the population size over a period of time. What we want to do is to observe the
pattern of population size—is it constant or does it fluctuate? It is entirely possible,
of course, that the population dies out altogether as well.

The Changes
Most of the changes for this enhancement, as you can imagine, happen in the Roid
class, although the Roid class itself actually changes very little (Example 8-14). First
of all, we change the constructor method of the Roid class such that when a roid is
created, it will have a randomly assigned sex. We’ll change Utopia to include both
male and female roids. Again, there isn’t much difference between male and female
roids except for their color, their metabolism, and their reproductive abilities.

Sex | 211

Example 8-14. Changes in the Roid class to introduce sex, lifespan, and age
class Roid
 attr_reader :velocity, :position, :energy, :sex, :lifespan, :age

 def initialize(slot, p, v)
 @velocity = v
 @position = p
 @slot = slot
 @energy = rand(MAX_ENERGY)
 @sex = rand(2) == 1 ? :male : :female
 @lifespan = rand(MAX_LIFESPAN)
 @age = 0
 end

 def male?
 @sex == :male
 end

 def female?
 @sex == :female
 end

We added three new attributes to the Roid class here:
sex

Either male or female, obviously.

lifespan

The maximum lifespan of the roid. Each roid is randomly assigned a lifespan up
to a MAX_LIFESPAN.

age

The current age of the roid.

We also have two convenience methods to help us check whether the roid is male or
female. Notice that for this simulation, we no longer need the unique ID, so we simply
dropped it from the code.

As mentioned earlier, the female roid has a higher metabolism than the male roid, so
we need to modify the eat method to cater to this difference (Example 8-15).

Example 8-15. Sex-aware eat function
def eat(food)
 amt_consumed = (male? ? MALE_METABOLISM : FEMALE_METABOLISM)
 food.eat amt_consumed
 @energy += amt_consumed
end

Next, we add the procreate method into the Roid class to allow the roids to procreate
and have babies (Example 8-16).

212 | Chapter 8: Money, Sex, and Evolution

Example 8-16. How roids procreate
def procreate
 if attractive and female?
 r = $roids.sort {|a,b| self.distance_from(a) <=> self.distance_from(b)}
 roids = r.first(MAGIC_NUMBER)
 roid = roids.delete_if{|r| female? and not attractive}.first
 if roid
 baby = Roid.new(@slot, @position, @velocity)
 $roids << baby
 reduce_energy_from_childbirth
 roid.reduce_energy_from_childbirth
 end
 end
end

The procreate method is the main focus of this current simulation. Let’s get into the
details a bit. First, only the female roids actively seek out mates for procreation. If the
female roid is attractive enough (which we’ll define shortly), she will look nearby for
attractive male roids. Once she selects the nearest attractive male roid, they will mate
and create a baby roid. The baby officially enters Utopia by inserting itself into the
$roids global array, and once “born” this way, is randomly assigned a sex and life
span. After the act of procreation, both the male and female roids lose some energy.

Let’s look at what it means to be an attractive roid (Example 8-17).

Example 8-17. What constitutes an attractive roid
def attractive
 CHILDBEARING_AGE.include? @age and @energy > CHILDBEARING_ENERGY_LEVEL
end

Unromantically, the attractiveness of a roid depends on its age (whether it is of child­
bearing age) and if it has enough energy to actually procreate. If you feel that this
smacks of age discrimination, consider that the definition of attractiveness in our
simulation is based on ability to reproduce and not any aesthetic property (since there
is no aesthetic difference between roids of the same sex).

Reducing the female roid’s energy after she gives birth is a simple formula that takes
a small amount of her energy, as shown in Example 8-18.

Example 8-18. Reducing energy due to childbirth
def reduce_energy_from_childbirth
 @energy -= CHILDBEARING_ENERGY_SAP
end

At every tick, a few actions are taken, as shown in Example 8-19.

Sex | 213

Example 8-19. Actions at every tick
def tick
 move
 lose_energy
 grow_older
 procreate
 if @energy <= 0 or @age > @lifespan
 $roids.delete self
 end
end

Moving should be familiar to us after Chapter 7, and losing energy every tick is
straightforward. Growing older is simply increasing the age at every tick. We covered
procreation earlier, so all that is left is to check if the roid has enough energy or if it
has lived beyond its lifespan. If either is the case, it’s the end of the line for the roid,
and it is removed from the $roids global array.

That’s really about it for the changes in the Roid class. Now let’s look at utopia.rb. The
main change is in the animate loop, as shown in Example 8-20.

Example 8-20. Changes in the animate loop to get population data
animate(FPS) do
 randomly_scatter_food 40
 clear do
 males = 0
 females = 0
 fill yellowgreen
 $food.each do |food| food.tick; end
 fill gainsboro
 $roids.each do |roid|
 males =+ 1 if roid.male?
 females =+ 1 if roid.female?
 roid.tick
 end
 data << [$roids.size, males, females]
 para "countdown: #{time}"
 para "population: #{$roids.size}"
 para "male: #{males}"
 para "female: #{females}"
 end

 time -= 1
 close & write(data) if time < 0 or $roids.size <= 0
end

The differences here are just in the way data is being collected. Instead of getting the
energy levels of each roid, we now do a count of the number of roids in Utopia as well
as the number of male and female roids.

214 | Chapter 8: Money, Sex, and Evolution

It might come as a surprise to you that running this simulation is not straightforward.
This is because the emergent behavior of the population can cause it to take sudden
dives from which it cannot recover, and the whole population can be wiped out.
Therefore, choosing the correct set of parameters (as configured in Example 8-21) is
very important in maintaining a stable population throughout the duration of the
simulation.

Example 8-21. Parameterized constants used in the simulation
END_OF_THE_WORLD = 10000
MAX_LIFESPAN = 100
MAX_ENERGY = 100
CHILDBEARING_AGE = 15..55
CHILDBEARING_ENERGY_LEVEL = 12
MALE_METABOLISM = 6
FEMALE_METABOLISM = 10
CHILDBEARING_ENERGY_SAP = 3

To analyze the simulation, we’ll turn once again to an R script to generate the nec­
essary data (Example 8-22).

Example 8-22. Analysis of population changes over time
library(ggplot2)
library(mgcv)

data <- read.table("sex.csv", header=F, sep=",")
pdf("sex.pdf")
colnames(data) <- c('population','male','female')
time = 1:nrow(data)
ggplot(data=data) +
 geom_smooth(aes(time,population),color='gray',method='gam',formula=y~s(x)) +
 geom_smooth(aes(time,male),color='blue',method='gam',formula=y~s(x)) +
 geom_smooth(aes(time,female),color='pink',method='gam',formula=y~s(x))
dev.off()

The general syntax should be quite familiar now. Because we have a lot of data points
in the chart, it makes more sense to show just the smoothed line instead of every data
point. The default method for a smooth geom in ggplot2 is the LOESS algorithm,
which is suitable for a small number of data points. LOESS is not suitable for a large
number of data points, however, because it scales on an O(n2) basis in memory, so
instead we use the mgcv library and its gam method. We also send in the formula
y~s(x), where s is the smoother function for GAM. GAM stands for generalized ad
dictive model, which is a statistical model used to describe how items of data relate to
each other. In our case, we use GAM as an algorithm in the smoother to provide us
with a reasonably good estimation of how a large number of data points can be vi­
sualized.

In Figure 8-5, you can see that the population of roids fluctuates over time between
two extremes caused by the oversupply and exhaustion of food, respectively.

Sex | 215

Figure 8-5. Population fluctuation over time

As the population matures, roids start to produce offspring. This causes a population
explosion at regular intervals, and Utopia pretty soon runs out of food because the
amount of food our program generates cannot keep up. This results in a mini-famine
in which the weaker roids (the ones with less energy) die off. Very soon, the population
numbers drop to a level where food can appear faster than the roids can consume it.
This in turn causes a revival of the population numbers until the next famine. And
so the wheel turns.

216 | Chapter 8: Money, Sex, and Evolution

If you happen to hit upon the right combination of parameters, a sort of stable state
can be achieved for a long time (in Figure 8-5 we ran the simulation for more than
5,000 ticks). However, more often than not, a fluctuation can swing so wildly that the
bottom drops out and the whole population dies off, as shown in Figure 8-6. This
happens even if we start off with the same parameters! Why does this happen? We have
discussed emergent behavior, where small local rules result in complex, macro-level,
group behavior. The pattern we have observed here, rather than emergent behavior,
can be classified as a kind of “butterfly effect”; see the sidebar “Butterfly Effect” (page
218).

Figure 8-6. Population fluctuation swings, resulting in extinction of the roids

Sex | 217

Butterfly Effect
In chaos theory, the butterfly effect is the sensitive dependence on initial conditions,
where a small change somewhere in a nonlinear system can result in large differences
at a later stage. This name was coined by Edward Lorenz, one of the pioneers of chaos
theory (and no relation to Max Lorenz of the Lorenz curve fame).

In 1961, Lorenz was using a computer model to rerun a weather prediction when he
entered the shortened decimal value .506 instead of entering the full .506127. The result
was completely different from his original prediction. Lorenz later published his find­
ings in a 1963 paper, saying that “one meteorologist remarked that if the theory were
correct, one flap of a seagull’s wings could change the course of weather forever.” This
reference was later changed from a seagull to a butterfly.

What does this tell us? In many systems—including our global ecosystem, and some
manmade constructs like the American financial system that we briefly touched upon
earlier—internal stability is not a given. Small and unassuming changes can often
have dramatic effects.

Evolution
Evolution is a scientific theory that most scientists have come to accept as the only
possible explanation for the enormous biodiversity on Earth. It basically describes a
process of change in living things over a period of time. While the idea of evolution
has been around in some form or another since the time of the ancient Greeks, it’s
really Charles Darwin (and independently, Alfred Russell Wallace) who came up with
a scientific argument for evolution through natural selection, the familiar theory we
know today.

Evolution by natural selection is one of the cornerstones of modern biology. Varia­
tions occur naturally among individuals in any population of living organism, and
such differences affect those individuals’ chances of survival. A famous example is
the peppered moth, which is found in both light and dark colors in the United King­
dom. Originally, because the light-colored moths were better at hiding from predators
on the light-colored lichens and trees of the region, dark-colored peppered moths
were rare.

During the Industrial Revolution, however, many of the trees that the moths rest upon
were blackened by soot generated by the coal-burning factories. This reversed the
fortunes of the dark-colored moths, giving them a better chance to survive and

218 | Chapter 8: Money, Sex, and Evolution

produce dark-colored offspring. About 50 years from the time the first dark peppered
moth was reported, nearly all moths in Manchester, an industrial city, were dark.
However, due to current laws that have reduced the amount of pollution, the number
of light-colored peppered moths has risen again.

Our last simulation will demonstrate natural selection, but instead of the light and
dark peppered moths, we’ll be using roids. Originally, the concept of natural selection
was developed without knowledge of genetics. In our simulation, however, we’ll in­
troduce a simple genetic inheritance mechanism and investigate whether natural se­
lection really works.

What We Will Be Changing
In the two previous simulations, all the roids had the same attributes, except for their
maximum lifespan and starting energy level. Every roid aged the same way and had
equal opportunity to procreate and produce offspring. In this simulation, we’ll add
two more attributes that introduce some unfairness into the equation:
metabolism

A measurement of how well the roid converts food into energy

vision_range

A measurement of how far the roid can see when it is looking for food

While the concept of metabolism was introduced in the previous section, it was a
fixed value—that is, all male roids had the same metabolism, and all the female roids
had the same metabolism. In this simulation, I’ll call both metabolism and vision
range “traits” because each roid can have a different metabolism and vision range.

Every roid baby born from the second generation onward will inherit these genetic
traits from its parents. To simulate heredity, we will use a mechanism adapted from
a simplified form of Mendelian inheritance.

If we consider the male roid to have a metabolism and vision range of values (M,V)
and the female roid to have the values (m,v), we assume that the newborn baby will
have one of four possible values, as shown in Table 8-1.

Table 8-1. Possible values inherited by the child roid
 metabolism m metabolism M

Vision range v (m,v) (M,v)

Vision range V (m,V) (M,V)

To simplify the whole mechanism, we’ll randomly pick one of the four values. In other
words, no trait is dominant or recessive.

Evolution | 219

Why are these traits important? As you will see in a short while, these traits affect the
roid’s survivability. The roid’s metabolism—that is, how efficiently it can convert food
to energy—affects its odds of surviving to old age. The roid’s vision range determines
its chances of noticing, and therefore moving toward and consuming, food. If natural
selection works, we should observe that the roids will, over time, have better metab­
olism and vision range.

Implementation
Now let’s look at how the roid code is changed to implement our simple evolutionary
traits. As before, let’s look at the changes in the constructor for the Roid class first, as
shown in Example 8-23.

Example 8-23. Changes to Roid class for evolution simulation
class Roid
 attr_reader :velocity, :position, :energy, :sex, :lifespan, :age, :metabolism,
 :vision_range

 def initialize(slot, p, v)
 @velocity = v
 @position = p
 @slot = slot
 @energy = rand(MAX_ENERGY)
 @sex = rand(2) == 1 ? :male : :female
 @lifespan = rand(MAX_LIFESPAN)
 @age = 0
 @metabolism = (male? ? rand(MAX_MALE_METABOLISM*10)/10.0 : \
 rand(MAX_FEMALE_METABOLISM*10)/10.0)
 @vision_range = rand(MAX_VISION_RANGE*10.0)/10.0
 end

These changes reflect the addition of the metabolism and vision_range attributes to
the Roid class. These are initialized randomly.

Next let’s look at the procreate method in the Roid class (Example 8-24).

Example 8-24. How roids procreate and pass on their traits
def procreate
 if attractive and female?
 r = $roids.sort {|a,b| self.distance_from(a) <=> self.distance_from(b)}
 roids = r.first(MAGIC_NUMBER)
 roid = roids.delete_if{|r| female? and not attractive}.first
 if roid
 baby = Roid.new(@slot, @position, @velocity)
 crossovers = [[@metabolism, @vision_range],
 [@metabolism, roid.vision_range],
 [roid.metabolism, @vision_range],
 [roid.metabolism, roid.vision_range]]
 baby.inherit crossovers[rand(4)]

220 | Chapter 8: Money, Sex, and Evolution

 $roids << baby
 reduce_energy_from_childbirth
 roid.reduce_energy_from_childbirth

 end
end

The only change here is to create a crossover array from the male and female roids’
traits, then allow the newborn baby to randomly inherit one of the four possible
choices. The inherit method is simply copying the parents’ traits to the child’s traits,
as shown in Example 8-25.

Example 8-25. Inheriting traits from the parents
def inherit(crossover)
 @metabolism = crossover[0]
 @vision_range = crossover[1]
end

Metabolism and vision range affect the survivability of the roid because they increase
or decrease the chances of the roid finding food and turning it into energy. To add
these traits into each roid’s daily life, we modify the hungry and eat methods, as shown
in Example 8-26.

Example 8-26. Modifying the hungry and eat methods
def hungry
 $food.each do |food|
 if distance_from_point(food.position) < (food.quantity + @vision_range)
 @delta -= self.position - food.position
 end
 if distance_from_point(food.position) <= food.quantity + 15
 eat food
 end
 end
end

def eat(food)
 food.eat 1
 @energy += @metabolism
end

As you can see, the vision_range variable modifies how far away the roid can see
food. The metabolism variable, on the other hand, modifies how well the roid digests
and converts food to energy.

Let’s move on to see how we collect data. Remember that we want to find out whether
natural selection really works, so we need to determine the average metabolism and
average vision range at every tick and plot those values over a period of time. To do
this, we need to modify the main file, utopia.rb, and change the animate loop
(Example 8-27).

Evolution | 221

You may ask why we don’t compare the roids’ metabolism and vision range
to their life expectancy (i.e., the roids with better metabolism and vision range
survive better). It’s not our goal here to prove that better metabolism and vision
range improve life expectancy (although we can guess that the correlation
would hold true on average). Instead, we’re looking at evolution—at whether
roids’ metabolism and vision improve over the generations.

Example 8-27. Collecting data in the animate loop
animate(FPS) do
 randomly_scatter_food 30
 clear do
 fill yellowgreen
 $food.each do |food| food.tick; end
 fill gainsboro
 $roids.each do |roid|
 roid.tick
 end
 mean_metabolism = $roids.inject(0.0){ |sum, el| sum + el.metabolism}.to_f /
 $roids.size
 mean_vision_range = $roids.inject(0.0){ |sum, el| sum + el.vision_range}.to_f /
 $roids.size
 data << [$roids.size, mean_metabolism.round(2), mean_vision_range.round(2)]
 para "countdown: #{time}"
 para "population: #{$roids.size}"
 para "metabolism: #{mean_metabolism.round(2)}"
 para "vision range: #{mean_vision_range.round(2)}"
 end

 time -= 1
 close & write(data) if time < 0 or $roids.size <= 0
end

The average metabolism is simply the sum of the metabolism of all the roids, divided
by the total number of roids. The average vision range is calculated the same way.
The data that we end up with is three columns of numbers and a number of rows
equal to the number of ticks the simulation has run. The first column shows the
current roid population; the second column shows the average metabolism, rounded
to two decimal places; and the last column shows the average vision range, also roun­
ded to two decimal places.

Armed with this data, let’s look at how the average metabolism and average vision
range change over time, using R (Example 8-28).

222 | Chapter 8: Money, Sex, and Evolution

Example 8-28. Plotting changes in average metabolism and vision range over time
library(ggplot2)

data <- read.table("evolution.csv", header=F, sep=",")
colnames(data) <- c('population','metabolism','vision_range')
pdf("evolution.pdf")
time = 1:nrow(data)

grid.newpage()
pushViewport(viewport(layout=grid.layout(1,2)))
vplayout <- function(x,y) {viewport(layout.pos.row=x, layout.pos.col=y)}

p <- qplot(time, metabolism, data=data, geom=c("point", "smooth"),
 main="Evolution in metabolism")
print(p, vp=vplayout(1,1))
p <- qplot(time, vision_range, data=data, geom=c("point", "smooth"),
 main="Evolution in vision range")
print(p, vp=vplayout(1,2))

dev.off()

This script is quite similar to the one in Example 8-12. Both scripts use a grid and
create viewports to lay out multiple plots on the same chart. We create two plots on
the chart: the first shows the average metabolism over a period of time, and the second
shows the average vision range over a period of time. Results are shown in Figure 8-7.

You will notice straightaway that both the average metabolism and the average vision
range increase over time and reach a stable maximum after a while. This shows that,
thanks to natural selection, roids with better metabolism and vision range survive
longer and therefore are more able to pass on their traits to the next generations. This
is evolution in action.

Why do both the average metabolism and vision range values reach a maximum? This
is because the simulation does not include random mutations. Therefore, the maxi­
mum possible metabolism and vision range are predetermined randomly at the be­
ginning of the simulation, and no amount of evolution can cause any roids to exceed
that.

You might notice that for the evolution of both traits, but especially in vision range,
the journey wasn’t all that smooth. In real life, as in this simulation, evolution is not
always a smooth, orderly progression. Regression sometimes occurs, but in the larger
scheme of things, natural selection moved the roids toward traits that enable them to
survive longer.

Evolution | 223

Figure 8-7. Evolution in action

Wrap-up
This chapter was a continuation of Chapter 7, where we implemented a bird flocking
simulation, called Roids, with Ruby and Shoes. In this chapter, we took our Roids
simulation further by building an entire artificial society called Utopia.

We ran through three different scenarios in simulating an artificial society populated
by roids. In the first simulation, we introduced the idea that roids need to continually
consume food in order to gain energy and avoid dying due to a lack of energy. From
our basic observation of the energy levels over time, we reached the interesting con­
clusion that “the rich get richer and the poor get poorer”—a reflection of how our
artificial society shows emergent behavior.

224 | Chapter 8: Money, Sex, and Evolution

In my commentary, I associated energy levels with wealth and drew comparisons to
the sorry but common state of affairs in the real world. Even our simple simulation
revealed much complexity and emergent behavior, and therefore we concluded that
the real world, being much more complex, cannot be easily explained.

The next scenario introduced sex and death into our artificial world. We created male
and female roids, and had them procreate. We prevented total overcrowding by as­
signing random maximum lifespans to each roid. Our focus in this simulation was
on population patterns over a period of time. We observed that it is difficult to reach
a state where a population is stable enough to survive for a long time. Very often,
population fluctuations involve crazy swings that eventually end with the extinction
of the society, even with identical starting parameters. We observed that a small effect
can ripple down, causing unexpected changes—a phenomenon known as the butterfly
effect.

The final scenario dealt with evolution. We simulated natural selection by getting the
offspring of the roids to inherit traits of their parents. These traits were specially
designed to influence the survivability of the roids over a period of time. We antici­
pated that, if natural selection occurred, the traits of the roid population would move
toward those that allow it to best survive. That was our exact observation, and we
ended the final simulation by concluding that evolution through natural selection is
valid.

So have we found out the answer to what makes the world go round?

Wrap-up | 225

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
@@ (at sign, double), preceding Ruby class vari­

ables, 15
` ` (backticks), enclosing R operators as func­

tions, 36
: (colon)

creating R vectors, 39
preceding Ruby symbols, 11

$ (dollar sign), preceding R list item names, 40
" " (double quotes), enclosing Ruby strings, 7
= (equal sign), assignment operator, R, 36
#{ } (hash mark, curly brackets), enclosing Ruby

string escape sequences, 7
- (hyphen)

-> assignment operator, R, 36
<- assignment operator, R, 36

< (left angle bracket)
<- assignment operator, R, 36
<< preceding Ruby string here-document

delimiter, 7
? (question mark), following Ruby if conditions,

11
? : (question mark, colon), in Ruby ternary con­

ditional expression, 12
> (right angle bracket)

-> assignment operator, R, 36
> R console prompt, 29

' ' (single quotes), enclosing Ruby strings, 7

[] (square brackets)
accessing subset of R data frame, 44
enclosing R matrix indexes, 41
enclosing R vector indexes, 39

[[]] (square brackets, double), enclosing single
R vector index, 40

A
aes() function, R, 58
An Inquiry into the Nature and Causes of the

Wealth of Nations (University of Chicago
Press), 96

apply() function, R, 74
Armchair Economist (Free Press), 95
array() function, R, 42
arrays, R, 42–43
arrays, Ruby, 8–9, 10
artificial society (see Utopia example)
as.Date() function, R, 131
ascultation, 158
assignment operators, R, 36
at sign, double (@@), preceding Ruby class vari­

ables, 15
attr keyword, Ruby, 13
Audacity audio editor, 159
average (see mean() function, R)

227

Axtell, Robert (researcher)
Growing Artificial Societies: Social Science

from the Bottom Up (Brookings Institu­
tion Press/MIT Press), 198

B
backticks (` `), enclosing R operators as func­

tions, 36
bar charts, 52, 76–78, 81–83, 87–88, 90–90
barplot() function, R, 52
batch mode, R, 31
Bioconductor repository, 33
birds flocking (see flocking example)
bmp() function, R, 51
Boids algorithm, 177–179
Box, George Edward Pelham (statistician), re­

garding usefulness of models, 66
break keyword, R, 37
brew command, 4
butterfly effect, 218

C
c() function, R, 39
CALO Project, 127
camera, pulse oximeter using, 169
case expression, Ruby, 12
chaos theory, 218
charts, 51–60

bar charts, 52, 76–78, 81–83, 87–88, 90–90
histograms, 58, 60, 204–208
line charts, 73–74, 103–106, 112–116
Lorenz curves, 208–210
scatterplots, 74–76, 80, 85–86, 88–89, 131–

142, 223
waveforms, 164–165, 172–174

class methods, Ruby, 15
class variables, Ruby, 15–16
classes, R, 35
classes, Ruby, 13–14
code examples (see example applications)
colon (:)

creating R vectors, 39
preceding Ruby symbols, 11

comma-separated value (CSV) files (see CSV
files)

Comprehensive R Archive Network (CRAN), 33
conditionals, R, 37
conditionals, Ruby, 11–12

contact information for this book, 12
conventions used in this book, 11
cor() function, R, 30
Core library, Ruby, 5
corpus, 150
correlation, R, 30
CRAN (Comprehensive R Archive Network), 33
CSV (comma-separated value) files, 47, 69

extracting video data to, 171
extracting WAV data to, 159–163
reading data from, 74
writing data to, 69–71, 102

csv library, Ruby, 71, 102, 124
curl utility, 3

D
data

analyzing
charts for (see charts)
obstacles to, 8–9
simulations for (see simulations)

audio, from stethoscope, 158–163
CSV files for, 47, 69–71, 74, 102, 159–163,

171
from Enron, 126–130
from Gmail, 122–126
importing, R, 46–51
video, from pulse oximeter, 168–172

data frames, R, 44–46
data mining, 121
data.frame() function, R, 44
database, importing data from, 48–51
dbConnect() function, R, 48
dbGet() function, R, 49
DBI packages, R, 48–51
Debian system, installing Ruby on, 4
def keyword, Ruby, 13
dimnames() function, R, 42
distribution, normal, 207
dollar sign ($), preceding R list item names, 40
doodling example, 23–24
double quotes (" "), enclosing Ruby strings, 7
duck typing, Ruby, 18–19
dynamic typing, Ruby, 18–19

E
economics example

charts for, 103–106, 112–116

228 | Index

Consumer class for, 99–99, 108–109
Market class for, 100–100, 109–109
modeling, 96–97
price controls analysis, 116–119
Producer class for, 97–98, 107–108
simulations for, 100–103, 110–111

email example
charts for, 131–142
content of messages, analyzing, 147–154
data for, 122–126
Enron data for, 126–130
interactions in email, analyzing, 142–147
number of messages, analyzing, 130–134,

137–142
R package for, creating, 134–137

emergent behavior, 179
(see also flocking example)

Enron Corporation scandal, 127
Epstein, Joshua (researcher)

Growing Artificial Societies: Social Science
from the Bottom Up (Brookings Institu­
tion Press/MIT Press), 198

equal sign (=), assignment operator, R, 36
Euclidean distance, 184
evolution, 218
example applications

artificial utopian society (see Utopia exam­
ple)

birds flocking (see flocking example)
doodling, 23–24
economics (see economics example)
email (see email example)
fuel economy, 55–55, 60–60
heartbeat (see heartbeat example)
height and weight, 29–33
league table, 44–54
movie database, 58–60
permission to use, 11
restrooms (see restrooms example)
stopwatch, 21–23

expressions, R, 35
external libraries, Ruby, 5–6

F
factor() function, R, 43, 151
factors, R, 43–44
FFmpeg library, 169, 171
field of vision (FOV), 185
fish, schools of (see flocking example)

flocking example
Boids algorithm for, 177–179
centering path for, 193–193
obstacles in path for, 194–195
research regarding, 191–193
Roid class for, 181–187
rules for, 178, 187–190
simulations for, 179–181, 187–195

flows, Shoes, 23
fonts used in this book, 11–11
for loop, R, 38
format() function, R, 131
FOV (field of vision), 185
fuel economy example, 55–55, 60–60
function class, R, 35
functions, R, 36–37

G
GAM (generalized addictive model), 215
gem command, Ruby, 6
.gem file extension, 6
generalized addictive model (GAM), 215
Gentleman, Robert (creator of R), 28
geom_bar() function, R, 76, 81, 90
geom_histogram() function, R, 60
geom_line() function, R, 103
geom_point() function, R, 58, 75, 164
geom_smooth() function, R, 75
ggplot() function, R, 55
ggplot2 package, R, 53–60
Gini coefficient, 208
Git utility, 3
Gmail, retrieving message data from, 122–126
graphics device, opening, 51
graphics package, R, 51
graphs (see charts)
Growing Artificial Societies: Social Science from

the Bottom Up (Brookings Institution Press/
MIT Press), 198

H
hash mark, curly brackets (#{ }), enclosing Ruby

string escape sequences, 7
hashes, Ruby, 9–11
heart, diagram of, 165
heartbeat example

charts for, 164–165, 172–174

Index | 229

data for
audio from stethoscope, 158–163
video from pulse oximeter, 168–172

heart rate
finding from video file, 172–174
finding from WAV file, 166–168
health parameters for, 157

heart sounds
health parameters for, 158
recording, 158
types of, 158, 165

homemade pulse oximeter for, 168–169
homemade stethoscope for, 158

height and weight example, 29–33
here-documents, Ruby, 7
hex editor, 160
histograms, 58, 60, 204–208
Homebrew tool, 4
hyphen (-)

-> assignment operator, R, 36
<- assignment operator, R, 36

I
icons used in this book, 11
if expression, R, 37
if expression, Ruby, 11–12
Ihaka, Ross (creator of R), 28
ImageMagick library, 170
IMAP (Internet Message Access Protocol), 125
importing data, R, 46–51
inheritance, Ruby, 16–17
initialize method, Ruby, 14
inner product, 185–186
installation

R, 28
R packages, 34–35
Ruby, 3–4
Shoes, 20–21

Internet Message Access Protocol (IMAP), 125
Internet Message Format, 128
invisible hand metaphor, 96
irb application, 5–5

J
jittering, 60
jpeg() function, R, 51

L
Landsburg, Stephen E. (author)

Armchair Economist (Free Press), 95
layer() function, R, 56
league table example, 44–54
left angle bracket (<)

<- assignment operator, R, 36
<< preceding Ruby string here-document

delimiter, 7
length() function, R, 39
libraries, 5

(see also specific libraries)
for Ruby, 71
for Ruby, 5–6

library() function, R, 46
line charts, 73–74, 103–106, 112–116
linear PCM (pulse-code modulation) format,

160
Linux

installing R on, 28
installing Ruby on, 3
installing Shoes on, 21
opening graphics device, 51
R user interface for, 28

list() function, R, 40
lists, R, 40–40
Loess algorithm, 215
loops, R, 37–38
loops, Ruby, 12
Lorenz curve, 208, 208–210
Lorenz, Edward (coined "butterfly effect"), 218

M
Mac

installing Ruby on, 3, 4
installing Shoes on, 20
opening graphics device, 51
R user interface for, 28

mail library, Ruby, 124
Manhattan Project, 65
matrices, R, 41–42
matrix library, Ruby, 182
matrix() function, R, 41
Matsumoto, Yukihiro (creator of Ruby), 2
max() function, R, 74
mean() function, R, 29, 73–74
median() function, R, 73–74
merge() function, R, 45

230 | Index

methods, Ruby, 14
mgcv library, 215
mixin mechanism, Ruby, 17
modules, Ruby, 17
Monte Carlo simulation method, 65–72
movie database example, 58–60

N
natural selection, 218
normal distribution, 207

O
objects, R, 35
objects, Ruby, 13–14
"Occupy Wall Street" movement, 209
open classes, Ruby, 183
order() function, R, 46
output formats, R, 51
overplotting, 60
oximetry, 168–169

P
package management tool, 4
packages, R, 33–35, 134–137
par() function, R, 53
pdf() function, R, 51
peppered moth, natural selection of, 218
plot characters, 74
plot() function, R, 30, 51–53
png() function, R, 51
Poisson process, 64
pulse oximeter, 168–169
puts statement, Ruby, 5
Pythagoras's theorem, 184

Q
%q, preceding Ruby strings, 7
%Q, preceding Ruby strings, 7
qplot() function, R, 55–55
quartz() function, R, 51
question mark (?), following Ruby if conditions,

11
question mark, colon (? :), in Ruby ternary con­

ditional expression, 12

R
R Development Core Team, 28
R language, 10, 27–28

arrays, 42–43
assignment operators, 36
batch mode, 31
charting, 51–60
conditionals, 37
console for, 29–30
data frames, 44–46
expressions, 35
factors, 43–44
functions, 36–37
importing data, 46–51
installing, 28
lists, 40–40
loops, 37–38
matrices, 41–42
output formats, 51
packages for, 33–35
packages for, creating, 134–137
running, 28–29
running code from a file, 31–33
statistical functions, 29
variables, 36–37
vectors, 29, 39–40
version of, 28

R-Forge repository, 33
.rb file extension, 5
rbind() function, R, 46
read() function, R, 47
read.table() function, R, 74, 131
repeat loop, R, 37
require statement, Ruby, 6
restrooms example, 63–90

charts for, 74–78, 80, 81–83, 85–88, 88–90
data results, interpreting, 73–78
Facility class for, 67
HSE (Health and Safety Executive) data re­

garding, 63
modeling, 64–66
Person class for, 68
Restroom class for, 66
simulations for, 65–72, 79–90

return keyword, R, 37
return keyword, Ruby, 14
Reynolds, Craig (creator of Boids algorithm),

177
RIFF format, 160

Index | 231

right angle bracket (>)
-> assignment operator, R, 36
> R console prompt, 29

RMagick library, 170, 170
Ruby language, 10, 1–2

arrays, 8–9, 10
class methods, 15
class variables, 15–16
classes, 13–14
compiling from source code, 3
conditionals, 11–12
duck typing, 18–19
dynamic typing, 18–19
external libraries for, 5–6
hashes, 9–11
here-documents, 7
inheritance, 16–17
installing, 3–4
interactive tool for, 5
interpreter for, 5
loops, 12
methods, 14
mixin mechanism, 17
modules, 17
objects, 13–14
open classes, 183
running, 4–5
Shoes toolkit for, 19–24
strings, 7–8
subclassing, 16–17
symbols, 11
website for, 2

Ruby Version Manager (RVM), 3
RubyGems package manager, 6
RubyInstaller, 4
RVideo library, 170
RVM (Ruby Version Manager), 3

S
saccadic masking, 8
sample frame, 160
sample points, 160
sapply() function, R, 37
scale_shape_manual() function, 74
scale_x_continuous() function, 76
scale_y_continuous() function, 76
scatterplot, R, 30, 33
scatterplots, 74–76, 80, 85–86, 88–89, 131–142,

223

schools of fish (see flocking example)
sd() function, R, 30
self keyword, Ruby, 15
seq() function, R, 39
Shapiro-Wilk test, 207
Shoes toolkit, 19–24, 179–181, 182–183

flows, 23
installing, 20–21
programming in, 21–24
slots, 22
stacks, 22
versions (colors) of, 20

simulations, 9
economics example, 100–103, 110–111
flocking example, 179–181, 187–195
Monte Carlo method, 65–72
restrooms example, 65–72, 79–90

single quotes (' '), enclosing Ruby strings, 7
slots, Shoes, 22
Smith, Adam (author)

An Inquiry into the Nature and Causes of the
Wealth of Nations (University of Chicago
Press), 96

source() function, R, 31
square brackets ([])

accessing subset of R data frame, 44
enclosing R matrix indexes, 41
enclosing R vector indexes, 39

square brackets, double ([[]]), enclosing single
R vector index, 40

stacks, Shoes, 22
standard deviation, R, 30
Standard library, Ruby, 6
Starlings in Flight (STARFLAG) project, 191
statistical functions, R, 29, 33, 73–74
stats package, R, 33
stat_bin() function, R, 58, 58
stethoscope, homemade, 158
stopwatch example, 21–23
String class, 163
strings, Ruby, 7–8
subclassing, Ruby, 16–17
sudo command, 4
symbols, Ruby, 11

T
table() function, R, 78, 130
term-document matrix, 150
ternary conditional expression, Ruby, 12

232 | Index

text document, 150
text files, 47

(see also CSV files)
email message data in, 128
importing data from, R, 47

text mining, 147–154
The Grammar of Graphics (Springer), 53
tm library, 150

U
Ubuntu system, installing Ruby on, 4
UI toolkits, Shoes toolkit, 19–24
unless expression, Ruby, 11
unpack method, String class, 163
until loop, Ruby, 12
Utopia example

charts for, 204–208, 223
data, analyzing, 203–210, 215–218, 223
evolution added to simulation, 218–223
flocking roids, as basis for simulation, 198
food added to simulation, 198–210
mortality added to simulation, 211
procreation added to simulation, 211–218
research regarding, 198

V
variables, R, 36–37
Vector class, Ruby, 182
vectors, R, 29, 39–40
video file, extracting data from, 169–172

W
WAV files

extracting to CSV file, 159–163

format of, 160
recording audio to, 159

waveforms, 164–165, 172–174
webcam, pulse oximeter using, 169
website resources

Enron email data, 128
for this book, 13
Internet Message Format, 128
R language, 28
R packages, 33
Ruby language, 2
Ruby source code, 3
RubyInstaller, 4
RVM (Ruby Version Manager), 4

weight example (see height and weight example)
while loop, R, 38
while loop, Ruby, 12
Wickham, Hadley (creator of ggplot2 package),

53
Wilkinson, Leland (author)

The Grammar of Graphics (Springer), 53
win.metafile() function, R, 51
Windows

installing Ruby on, 4
installing Shoes on, 20
opening graphics device, 51
R user interface for, 28

windows() function, R, 51
with() function, R, 46, 50
write() method, Ruby, 102

X
X11() function, R, 51

Index | 233

About the Author
Sau Sheong Chang has been in software development—mostly web applications and
recently cloud- and data-related systems—for more than 17 years, and is still a keen
and enthusiastic programmer. He has been active in Ruby programming for more
than six years, and has worked with R for more than a year. He is active in the local
developer communities, and is an active speaker at various technology conferences,
especially Ruby conferences.

He has published two books, Ruby on Rails Mashup Projects in 2008 and Cloning In
ternet Applications with Ruby in 2010 (both Packt Publishing). Sau Sheong Chang is
currently the Director of Applied Research for HP Labs Singapore, with research
focusing on cloud computing, big data, and urbanization. His previous roles include
stints as the CTO of a popular online gaming company and as the director of engi­
neering for Yahoo! Southeast Asia. More detailed information can be found at http://
www.saush.com/profile.

Colophon
The animal on the cover of Exploring Everyday Things with R and Ruby is the hooded
seal (Cystophora cristata), a finned mammal native to the North Atlantic Ocean. Its
scientific name is Greek for “bladder-bearer,” so named for the large inflatable hood
that develops on the head of the males when they are around four years old. This hood
is used for courtship, as well as to intimidate rivals and enemies—hooded seals are
one of the most aggressive seal species. When deflated, the bladder hangs down the
forehead and between the eyes. Males also have a red secondary sac inside one nostril,
which they can inflate by closing their other nostril valve.

Females are not as distinctive (or as large): they are around 7 feet long and 440 pounds,
while males average 8 feet long and 660 pounds. However, both sexes have silvery fur
with dark irregular spots. As with other semi-aquatic mammals, they have sleek
clawed flippers that efficiently move them through water, but are clumsier on land.

Hooded seals are highly migratory, and will travel long distances throughout the year
for food (generally by themselves), only to regroup at breeding grounds in late winter
to mate and in summer to molt. They hunt in the water, able to dive almost 2,000 feet
and stay underwater nearly an hour. Their diet changes depending on their location,
but generally consists of fish, squid, shrimp, octopus, and mussels.

In their first 14 months, hooded seal pups have a blue-grey coat and pale bellies, giving
them the nickname “bluebacks.” They nurse for an average of 4 days, the shortest
period of any mammal. However, the pup will nearly double in weight during this
time, gaining around 10–15 pounds a day—their mother’s milk is 60%–70% fat.

http://www.saush.com/profile
http://www.saush.com/profile

The cover image is from Riverside Natural History. The cover font is Adobe ITC Ga­
ramond. The text font is Minion Pro by Robert Slimbach; the heading font is Myriad
Pro by Robert Slimbach and Carol Twombly; and the code font is UbuntuMono by
Dalton Maag.

	Copyright
	Table of Contents
	Preface
	Explorers Ahoy!
	Data, Data, Everywhere
	Bringing the World to Us
	Packing Your Bags
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	The Hat and the Whip
	Ruby
	Why Ruby
	Installing Ruby
	Running Ruby
	Requiring External Libraries
	Basic Ruby
	Everything Is an Object

	Shoes
	What Is Shoes?
	A Rainbow of Shoes
	Installing Shoes
	Programming Shoes

	Wrap-up

	Into the Matrix
	Introducing R
	Using R
	The R Console
	Sourcing Files and the Command Line
	Packages

	Programming R
	Variables and Functions
	Conditionals and Loops
	Data Structures
	Importing Data

	Charting
	Basic Graphs
	Introducing ggplot2

	Wrap-up

	Offices and Restrooms
	The Simple Scenario
	Representing Restrooms and Such
	The First Simulation
	Interpreting the Data
	The Second Simulation
	The Third Simulation
	The Final Simulation
	Wrap-up

	How to Be an Armchair Economist
	The Invisible Hand
	A Simple Market Economy
	The Producer
	The Consumer
	Some Convenience Methods
	The Simulation
	Analyzing the Simulation

	Resource Allocation by Price
	The Producer
	The Consumer
	Market
	The Simulation
	Analyzing the Second Simulation
	Price Controls

	Wrap-up

	Discover Yourself Through Email
	The Idea
	Grab and Parse
	The Emailing Habits of Enron Executives

	Discover Yourself
	Number of Messages by Day of the Month
	MailMiner
	Number of Messages by Day of Week
	Number of Messages by Month
	Number of Messages by Hour of the Day
	Interactions
	Comparative Interactions

	Text Mining
	Wrap-up

	In a Heartbeat
	My Beating Heart
	Auscultation
	Homemade Digital Stethoscope
	Extracting Data from Sound
	Generating the Heart Sounds Waveform
	Finding the Heart Rate

	Oximetry
	Homemade Pulse Oximeter
	Extracting Data from Video
	Generating the Heartbeat Waveform and Calculating the Heart Rate

	Wrap-up

	Schooling Fish and Flocking Birds
	The Origin of Boids
	Simulation
	Roids
	The Boid Flocking Rules
	Supporting Rules
	A Variation on the Rules
	Going Round and Round
	Putting in Obstacles
	Wrap-up

	Money, Sex, and Evolution
	It’s a Good Life
	Money
	Sex
	Birth and Death
	The Changes

	Evolution
	What We Will Be Changing
	Implementation

	Wrap-up

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

