
Beginning
Ruby 3

From Beginner to Pro
—
Fourth Edition
—
Carleton DiLeo
Peter Cooper

Beginning Ruby 3
From Beginner to Pro

Fourth Edition

Carleton DiLeo
Peter Cooper

Beginning Ruby 3: From Beginner to Pro

ISBN-13 (pbk): 978-1-4842-6323-5			 ISBN-13 (electronic): 978-1-4842- 6324-2
https://doi.org/10.1007/978-1-4842-6324-2

Copyright © 2021 by Carleton DiLeo, Peter Cooper

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar

Cover image by Jason D on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484263235. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Carleton DiLeo
Boulder, CO, USA

Peter Cooper
Louth, UK

https://doi.org/10.1007/978-1-4842-6324-2

For Laura, Penny and Imogen
—Peter

For Jennifer and my parents
—Carleton

v

Table of Contents

Part I: Foundations and Scaffolding�� 1

Chapter 1: �Let’s Get It Started: Installing Ruby�� 3

Installing Ruby��� 4

Windows��� 4

Mac OS X/macOS��� 6

Linux��� 7

Other Platforms�� 10

Summary��� 11

Chapter 2: Programming == Joy: A Whistle-Stop Tour of Ruby and
Object Orientation�� 13

Baby Steps��� 14

irb: Interactive Ruby��� 14

Ruby Is “English for Computers”�� 15

Why Ruby Makes a Great Programming Language�� 16

Trails for the Mind��� 17

Turning Ideas into Ruby Code�� 19

How Ruby Understands Concepts with Objects and Classes��� 20

The Making of a Person�� 20

About the Authors��xix

About the Technical Reviewer���xxi

Foreword���xxiii

Acknowledgments��xxvii

Introduction���xxix

vi

Basic Variables��� 23

From People to Pets��� 23

Everything Is an Object�� 28

Kernel Methods�� 29

Passing Data to Methods�� 30

Using the Methods of the String Class��� 32

Using Ruby in a Non-object-Oriented Style�� 34

Summary��� 35

Chapter 3: �Ruby’s Building Blocks: Data, Expressions, and Flow Control��������������� 37

Numbers and Expressions��� 37

Basic Expressions��� 38

Variables��� 38

Comparison Operators and Expressions��� 41

Looping Through Numbers with Blocks and Iterators�� 43

Floating Point Numbers�� 45

Constants�� 47

Text and Strings��� 47

String Literals��� 47

String Expressions�� 49

Interpolation��� 51

String Methods��� 53

Regular Expressions and String Manipulation�� 54

Arrays and Lists��� 61

Basic Arrays�� 61

Splitting Strings into Arrays�� 64

Array Iteration��� 65

Other Array Methods��� 66

Hashes��� 69

Basic Hash Methods��� 70

Hashes Within Hashes�� 72

Table of Contents

vii

Flow Control��� 73

if and unless��� 73

?, the Ternary Operator��� 75

elsif and case��� 76

case pattern matching��� 78

while and until�� 79

Code Blocks�� 80

Other Useful Building Blocks�� 83

Dates and Times��� 83

Ranges�� 87

Symbols�� 88

Converting Objects to Other Classes�� 90

Summary��� 91

Chapter 4: �Developing Your First Ruby Application��� 95

Working with Source Code Files�� 95

Creating a Test File��� 96

A Simple Source Code File��� 97

Running Your Source Code��� 98

Our Application: A Text Analyzer��� 100

Required Basic Features�� 101

Building the Basic Application�� 102

Obtaining Some Dummy Text��� 102

Loading Text Files and Counting Lines��� 103

Counting Characters��� 105

Counting Words�� 106

Counting Sentences and Paragraphs��� 108

Calculating Averages�� 110

The Source Code So Far��� 111

Table of Contents

viii

Adding Extra Features�� 112

Percentage of “Useful” Words�� 112

Summarizing by Finding “Interesting” Sentences�� 115

Analyzing Files Other Than text.txt��� 118

The Completed Program�� 119

Summary��� 122

Chapter 5: �The Ruby Ecosystem�� 123

Ruby’s History�� 124

The Land of the Rising Sun��� 124

Ruby’s Influences��� 125

Go West��� 126

Alternative Ruby Implementations��� 129

Ruby on Rails��� 129

Why Rails Came into Existence�� 130

How the Web (2.0) Was Won��� 131

The Open Source Culture��� 132

What Is Open Source?�� 132

Where and How to Get Help��� 133

Mailing Lists��� 133

Chat�� 134

Documentation��� 134

Forums��� 135

Joining the Community�� 135

Give Help to Others��� 135

Contribute Code�� 136

News Sites and Sources��� 137

Summary��� 137

Table of Contents

ix

Part II: The Core of Ruby�� 139

Chapter 6: �Classes, Objects, and Modules��� 141

Why Use Object Orientation?��� 141

Object Orientation Basics��� 145

Local, Global, Object, and Class Variables�� 146

Class Methods vs. Instance Methods��� 151

Inheritance��� 153

Overriding Existing Methods��� 157

Reflection and Discovering an Object’s Methods��� 159

Encapsulation��� 161

Polymorphism��� 166

Nested Classes��� 168

The Scope of Constants�� 169

Modules, Namespaces, and Mix-Ins�� 170

Namespaces��� 171

Mix-Ins�� 174

Building a Dungeon Text Adventure with Objects�� 184

Dungeon Concepts��� 184

Creating the Initial Classes��� 185

Structs: Quick and Easy Data Classes�� 186

Creating Rooms�� 189

Making the Dungeon Work��� 190

Summary��� 195

Chapter 7: �Projects and Libraries�� 197

Projects and Using Code from Other Files��� 197

Basic File Inclusion��� 197

Inclusions from Other Directories��� 200

Logic and Including Code��� 201

Nested Inclusions��� 202

Libraries��� 202

Table of Contents

x

The Standard Libraries��� 203

RubyGems�� 206

Bundler��� 210

Summary��� 213

Chapter 8: �Documentation, Error Handling, Debugging, and Testing��������������������� 215

Documentation��� 215

Generating Documentation with RDoc�� 216

RDoc Techniques�� 218

Producing Documentation for an Entire Project��� 218

Modifiers and Options�� 220

Debugging and Errors�� 222

Exceptions and Error Handling��� 223

Catch and Throw��� 227

The Ruby Debugger�� 228

Testing��� 232

The Philosophy of Test-Driven Development�� 233

Unit Testing��� 236

More Minitest Assertions�� 238

Benchmarking and Profiling��� 239

Simple Benchmarking�� 239

Profiling�� 242

Summary��� 244

Chapter 9: �Files and Databases��� 247

Input and Output�� 247

Keyboard Input��� 248

File I/O�� 249

Basic Databases�� 269

Text File Databases�� 269

Storing Objects and Data Structures�� 272

Table of Contents

xi

Relational Databases and SQL��� 277

Relational Database Concepts�� 277

MySQL, PostgreSQL, and SQLite��� 278

Installing SQLite��� 279

A Crash Course in Basic Database Operations and SQL��� 280

Using SQLite with Ruby�� 285

Connecting to Other Database Systems��� 291

ActiveRecord: A Sneak Peek��� 293

Summary��� 294

Chapter 10: �Distributing Ruby Code and Libraries�� 297

Distributing Basic Ruby Programs��� 297

The Shebang Line��� 299

Associated File Types in Windows�� 300

Detecting Ruby’s Runtime Environment��� 301

Easy OS Detection with RUBY_PLATFORM��� 301

Environment Variables�� 302

Accessing Command-Line Arguments�� 304

Distributing Ruby Libraries As Gems�� 305

Creating a Gem��� 305

Installing Your Gem��� 311

RubyGems.org�� 312

Deploying Ruby Applications As Remote Services��� 312

CGI Scripts�� 313

Generic HTTP Servers��� 316

Summary��� 320

Chapter 11: �Advanced Ruby Features�� 321

Dynamic Code Execution��� 321

Bindings�� 322

Other Forms of eval�� 324

Creating Your Own Version of attr_accessor�� 326

Table of Contents

xii

Running Other Programs from Ruby�� 328

Getting Results from Other Programs��� 328

Transferring Execution to Another Program��� 329

Running Two Programs at the Same Time�� 329

Interacting with Another Program�� 330

Threads�� 332

Basic Ruby Threads in Action��� 332

Advanced Thread Operations�� 334

Fibers��� 335

A Fiber in Action��� 336

Passing Data to a Fiber�� 337

Non-blocking Fiber��� 338

Why Fibers?�� 339

Unicode, Character Encodings, and UTF-8 Support��� 339

Ruby 1.9 and Beyond’s Character Encoding Support��� 340

Summary��� 342

Chapter 12: �Tying It Together: Developing a Larger Ruby Application������������������� 343

Let’s Build a Bot��� 343

What Is a Bot?�� 343

Why a Bot?��� 345

How?�� 345

Creating a Simple Text Processing Library�� 346

Building the WordPlay Library�� 346

Testing the Library�� 354

WordPlay’s Source Code��� 357

Building the Bot’s Core��� 360

The Program’s Lifecycle and Parts��� 361

Bot Data�� 362

Constructing the Bot Class and Data Loader�� 367

The response_to Method�� 369

Playing with the Bot��� 375

Table of Contents

xiii

Main Bot Code Listing�� 379

bot.rb�� 379

basic_client.rb�� 383

Extending the Bot��� 383

Using Text Files As a Source of Conversation��� 384

Connecting the Bot to the Web��� 384

Bot-to-Bot Conversations��� 388

Summary��� 389

Part III: Ruby Online��� 391

Chapter 13: �Two Web Application Approaches: Rails and Sinatra������������������������� 393

Background�� 393

The Limitations and Benefits of Our Approach��� 394

Pros and Cons of the Frameworks Covered��� 394

Rails: Ruby’s Killer App�� 395

What Is Rails and Why Use It?�� 395

Installing Rails�� 398

Building a Basic Rails Application�� 400

Controllers and Views��� 413

Models and Relationships�� 420

Sessions and Filters��� 422

Other Features�� 424

Where to Go Next: References, Books, and Example Apps��� 426

Sinatra: Lightweight, Simple Web Applications�� 428

The Extreme Simplicity of Sinatra�� 428

General URL Routing and Parameter Matching�� 429

Views, Templates, and Static Files��� 431

Request Flow Control��� 436

Summary��� 440

Table of Contents

xiv

Chapter 14: �Ruby and the Internet�� 443

HTTP and the Web�� 443

Downloading Web Pages�� 444

Processing Web Content��� 454

Email�� 458

Receiving Mail with POP3��� 458

Sending Mail with SMTP�� 460

File Transfers with FTP��� 462

Connection and Basic FTP Actions��� 462

Downloading Files�� 465

Uploading Files��� 467

Summary��� 468

Chapter 15: �Networking and Sockets�� 471

Networking Concepts��� 471

TCP and UDP��� 471

IP Addresses and DNS�� 472

Basic Network Operations��� 473

Checking Machine and Service Availability�� 473

Performing DNS Queries��� 474

Servers and Clients�� 477

UDP Client and Server�� 477

Building a Simple TCP Server��� 480

Multi-client TCP Servers��� 482

GServer��� 483

A GServer-Based Chat Server��� 486

Web/HTTP Servers�� 490

Summary��� 490

Table of Contents

xv

Chapter 16: �Useful Ruby Libraries��� 493

abbrev�� 494

Installation�� 494

Examples�� 494

Further Information�� 495

Base64��� 496

Installation�� 496

Examples�� 496

Further Information�� 499

Benchmark��� 499

Installation�� 499

Examples�� 499

Further Information�� 500

chronic��� 501

Installation�� 501

Examples�� 501

Further Information�� 502

Digest��� 502

Installation�� 503

Examples�� 503

Further Information�� 505

English��� 506

Installation�� 506

Examples�� 506

Further Information�� 508

ERB�� 508

Installation�� 508

Examples�� 508

Further Information�� 510

Table of Contents

xvi

json�� 511

Installation�� 511

Examples�� 511

Further Information�� 512

logger��� 512

Installation�� 512

Examples�� 513

Further Information�� 515

Nokogiri�� 515

Installation�� 516

Examples�� 516

Further Information�� 517

pp��� 517

Installation�� 517

Examples�� 517

Further Information�� 519

RedCarpet�� 519

Installation�� 519

Examples�� 520

Further Information�� 521

StringScanner�� 522

Installation�� 522

Examples�� 522

Further Information�� 525

tempfile�� 525

Installation�� 525

Examples�� 526

Further Information�� 528

Table of Contents

xvii

uri��� 528

Installation�� 528

Examples�� 529

Further Information�� 533

zlib��� 533

Installation�� 533

Examples�� 533

Further Information�� 535

�Appendix A: Ruby Primer and Review for Developers��� 537

�The Basics�� 537

Definition and Concepts��� 537

The Ruby Interpreter and Running Ruby Code�� 540

Interactive Ruby�� 541

�Expressions and Flow Control�� 541

Basic Expressions��� 541

Class Mismatches�� 542

Comparison Expressions�� 544

Flow�� 545

�Object Orientation�� 549

Objects��� 550

Classes and Methods��� 550

Reflection��� 553

Reopening Classes��� 556

Method Visibility��� 556

�Data�� 558

Strings�� 558

�Regular Expressions��� 558

�Numbers��� 560

Arrays��� 562

Hashes (Associative Arrays)��� 563

Complex Structures�� 564

Table of Contents

xviii

�Input/Output��� 565

�Files�� 565

�Databases��� 566

�Web Access�� 566

�Libraries��� 567

File Organization��� 568

Packaging��� 568

�Appendix B: Useful Resources��� 571

�Tutorials and Guides��� 571

General Ruby Tutorials and Information��� 571

Ruby on Rails�� 572

Other��� 572

�References��� 572

Ruby��� 573

Ruby on Rails�� 573

�Ruby-Related Content�� 574

Aggregators and News��� 574

Forums��� 575

�Mailing Lists��� 575

�Chat�� 576

�Index�� 577

Table of Contents

xix

About the Authors

Carleton DiLeo is a founder, author, and developer who

brings nearly two decades of experience working with

technology. His expertise includes building high-traffic

websites, big data systems, and video games. This wide base

of knowledge provides Carleton with a unique perspective

when working with Ruby. 

Peter Cooper is an experienced Ruby developer and trainer

and editor of Ruby Weekly (www.rubyweekly.com/) and

JavaScript Weekly (https://javascriptweekly.com/).

Since 2004, Peter has developed many commercial

websites using Ruby on Rails, the Ruby-based web

framework.

In addition to development work, Peter has written

professionally about various development techniques and

tools since 1998.

He lives in Lincolnshire, England, with his wife, Laura, and children, Penny and

Imogen.

http://www.rubyweekly.com/
https://javascriptweekly.com/

xxi

About the Technical Reviewer

Ronald Petty, M.B.A., M.S., is founder of Minimum

Distance LLC, a management consulting firm based in San

Francisco. He spends his time helping technology-based

startups do the right thing. He is also an instructor at UC

Berkeley Extension. 

xxiii

Foreword

xxiv

Foreword

xxv

why the lucky stiff

Foreword

xxvii

Acknowledgments

I want to thank my parents, Ken and Margaret DiLeo, for supporting me when I started

my journey to become a software engineer long ago. Thank you to my close friends

Jennifer Reyes, Joseph Guetierrez, and their daughter Madison Guetierrez for being my

sounding board and encouraging me to keep going when times were tough. Thank you

to Peter Cooper, my coauthor to this book, and to Apress, our publisher.

Finally, thank you to those reading this book. I hope you find the same enjoyment

and satisfaction I have found digging into the vast world of software development.

—Carleton DiLeo

It is often said that writing is a lonely task, but it’s not until you write a book that you

realize the process has to be anything but lonely. Without the help and reassurance of

the large team of people backing this book, and backing me personally, this book could

not have been written.

My first thanks go to Keir Thomas, who approached me with the idea of writing a

Ruby book back in 2005. He gave me great freedom over the scope and specification of

the book, and was the most essential piece of the puzzle in getting the book approved

and everything sorted out in the early stages.

Beth Christmas and Mark Powers of Apress deserve special thanks for their project

management and reassurance during the writing of this book across the three editions

of this book so far. Without their schedules and assurance that everything was on track, I

would have been a nervous wreck.

Jonathan Gennick, Tim Fletcher, Peter Marklund, Alan Bradburne, Ronald Petty,

and Peter Szinek deserve much praise for their seemingly unending reading and

rereading of this book’s chapters throughout the various stages of development. I’d

also like to praise Susannah Davidson Pfalzer for her diligent approach to copy editing

the first edition of this book by fixing my pronouns, removing my overuse of words like

however and therefore, and generally making it possible to read the book without going

insane. As the first edition of this book was my first book for Apress, I depended on

xxviii

Susannah’s deep knowledge of Apress customs a great deal. For the second edition of

the book, I thank Damon Larson for performing the same role admirably, and for this

third edition, thanks to Kezia Endsley.

Naturally, thanks go to all of the other people I directly worked with on the book,

whether they’re from Apress or independent—in no particular order, Michelle Lowman,

Laura Esterman, Candace English, Nancy Bell, Jason Gilmore, Lori Bring, Nancy

Sixsmith, and “why the lucky stiff.”

Separately from the book itself, I have to give thanks to many in the Ruby community

for working alongside me, producing tools I’ve used, or just making the Ruby language

more appealing in general—in no particular order, “why the lucky stiff” (for an

unforgettable foreword), Yukihiro “Matz” Matsumoto, Zach Inglis, Satish Talim,

Amy Hoy, Evan Weaver, Geoffrey Grosenbach, Obie Fernandez, Gregg Pollack, Jason

Seifer, Damien Tanner, Chris Roos, Martin Sadler, Pat Eyler, Ian Ozsvald, Caius Durling,

Jeremy Jarvis, Nic Williams, Shane Vitarana, Josh Catone, Ryan Tomayko, Karel Minarik,

Jonathan Conway, Alex MacCaw, Benjamin Curtis, David Heinemeier Hansson, and

the late James Golick and Jim Weirich. I am anxious I’ve missed some names, especially

with the exploding population of the Ruby community between the three editions of this

book, so if you’re missing from this list, I humbly apologize.

Those in my personal life have also supported me a great deal by putting up with

my weird work hours and annoying habits, and by asking questions about the book,

feeding me, or just being there to talk to. In this regard, I’d like to thank—again in no

particular order—Laura Cooper, Clive Cooper, Ann Cooper, David Sculley, Michael

Wong, Dave Hunt, Chris Ueland, Ben Neumann, Rob Willie, Kristian Roebuck, Graham

Craggs, Lorraine Craggs, and Robert Smith. Laura Cooper deserves a special mention for

having had to put up with me nearly 24 hours a day during the writing of this book; she is

awesome.

Last, it’s necessary to thank you, the reader, for choosing to buy this book, for if no

one bought it, these acknowledgments and the efforts of many people during the writing

would have been wasted. Thank you! If at all possible, both I and all of the fine folks at

Apress would be delighted if you’d be able to post a small review of this book on Amazon.

com, Amazon.co.uk, or whichever online bookstore is popular in your part of the world.

Reading the reviews makes our day!

—Peter Cooper

Acknowledgments

xxix

Introduction

I wanted to minimize my frustration during programming, so I want to
minimize my effort in programming. That was my primary goal in designing
Ruby. I want to have fun in programming myself.

—Yukihiro Matsumoto (Matz), creator of Ruby

Ruby is a “best of breed” language that has been assembled from the best
and most powerful programming features found in its predecessors.

—Jim White

Ruby makes me smile.

—Amy Hoy (slash7.com)

Ruby is a fun toy. It’s also a serious programming language. Ruby is the jolly uncle who

puts in solid 12-hour days at the construction site during the week but keeps the kids

entertained come rain or shine. To hundreds of thousands of programmers, Ruby has

become a good friend and a trusted servant, and has revealed a new way of thinking

about programming and software development. It’s fun and it works.

Like the guitar, it’s claimed that Ruby is an easy language to learn and a hard one to

master. I agree, with some provisions. If you don’t know any programming languages

already, Ruby will be surprisingly easy to learn. If you already know some languages such

as PHP, Python, C#, or Golang, some of the concepts in Ruby will already be familiar to

you, but the different perspective Ruby takes could throw you at first. Like the differences

between spoken languages, Ruby differs from most other programming languages not

only by syntax but by culture, grammar, and customs. In fact, Ruby has more in common

with more esoteric languages like LISP and Smalltalk than with better-known languages

such as PHP and C#.

xxx

While Ruby’s roots might be different from other languages, it’s heavily used and

respected in many industries. Companies that use or support Ruby in one way or

another include such prestigious names as Intel, Microsoft, Apple, and Amazon.com.

The Ruby on Rails web framework is a system for developing web applications that

uses Ruby as its base language, and it powers hundreds of large websites. Ruby is also

used as a generic language from the command prompt. Grammarians, biochemists,

database administrators, and thousands of other professionals and hobbyists use Ruby

to make their work easier. Ruby is a truly international language with almost unlimited

application.

This book is designed to cater both to people new to programming and to those with

programming experience in other languages. Ruby’s culture is different enough from

other languages that most of this book will be of use to both groups. Any large sections

that can be skipped by already proficient programmers are noted in the text. In any

case, I’d suggest that all programmers at least speed-read the sections that might seem

obvious to them, as there are some surprising ways in which Ruby is different from what

you’ve done before.

When reading this book, be prepared for a little informality, some quirky examples,

and a heavy dose of pragmatism. Ruby is an extremely pragmatic language, less

concerned with formalities and more concerned with ease of development and valid

results. From time to time, I’ll show you how you can do things the “wrong” way in Ruby,

merely for illustrative purposes, but mostly you’ll be working with code that does things

“the Ruby way.” When I started to learn Ruby, I learned primarily by example, and with

a language as original and idiomatic as Ruby, it’s the easiest way to pick up good habits

for the future. However, there’s always more than one way to do it, so if you think some

code in this book could be rewritten in a different way that fits in more with your way of

thinking, try it out!

As you start this book, be prepared to think in new ways and to feel motivated to

start coding for both fun and profit. Ruby has helped a lot of jaded developers become

productive once again, and whether you’re a beginner to programming or one of those

jaded programmers, it’s almost inevitable that you’ll see how Ruby can be both fun and

productive for you.

Last, if you’re coming from other modern scripting languages such as JavaScript,

PHP, or Python, you might want to jump to Appendix A before reading Chapter 1. It

covers the key differences between Ruby and other scripting languages, which might

help you move through the initial chapters of this book more easily.

Good luck, and I hope you enjoy this book. I’ll see you in Chapter 1.

Introduction

Foundations and
Scaffolding
This part of the book is where you build the foundations of your Ruby knowledge. By the

end of this part, you’ll be able to develop a complete, though basic, Ruby program. You’ll

learn how to get Ruby working, what object orientation is, how to develop some basic

programs, and about the data types and control structures Ruby uses and can operate

on. Finally, I’ll walk you through creating a small program from start to finish.

PART I

3
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_1

CHAPTER 1

Let’s Get It Started:
Installing Ruby
Ruby is a popular programming language, but not all computers have it installed by

default. This chapter takes you through the steps necessary to get Ruby working on your

computer.

As an open source language, Ruby has been adapted to run on many different

computer platforms and architectures. This means that if you develop a Ruby program

on one machine, it’s likely you’ll be able to run it without any changes on a different

machine. You can use Ruby, in one form or another, on all the following operating

systems and platforms:

•	 Microsoft Vista, 7, 8, and 10

•	 Mac OS X

•	 Linux (most distributions)

•	 BSDs (including FreeBSD and OpenBSD)

•	 Any platform for which a full Java Virtual Machine exists (using

JRuby)

Caution  Some specifics of Ruby vary between platforms, but most of the code in
this book (particularly in the earlier chapters) runs on all varieties. When we begin
to look at more complex code, such as external libraries and interfacing between
Ruby and other systems, you should be prepared to make changes in your code
or accept that you won’t have access to every feature. However, if you’re using
Windows, Linux, or OS X, almost everything will work as described in this book
without changes.

https://doi.org/10.1007/978-1-4842-6324-2_1#DOI

4

Before you can start playing with Ruby, you need to get your computer to understand

the Ruby language by installing an implementation of Ruby on your system, which I’ll

cover first. In some cases, Ruby may already be present on your computer, and we will

cover these situations also since you may not need to do anything to get started.

�Installing Ruby
Typically, when you install Ruby onto your computer, you’ll get the Ruby interpreter, the

program that understands other programs written in the Ruby language, along with a

collection of extensions and libraries to make your Ruby more fully featured.

To satisfy the majority of readers without referring to external documentation, I’m

providing full instructions for using Ruby on Windows, Mac OS X, and Linux, along with

links to Ruby implementations for other platforms. In each case, I provide instructions to

check that the installation is successful before sending you on to the programming fun in

Chapter 2.

Note  Ruby comes in multiple versions. The code in this book is primarily aimed
at versions 3.0 and above, but nearly all of it will work in older versions as well.
There are major differences between Ruby versions that can become important
when you reach more advanced topics, but at this stage, you can choose
whichever is easiest to install on your platform. Or, if Ruby is already installed on
your machine, simply use that as is.

�Windows
Ruby was initially designed for use under UNIX and UNIX-related operating systems

such as Linux, but Windows users have access to an excellent Windows-specific

installer that installs Ruby, a horde of extensions, a source code editor, and various

documentation. Ruby on Windows is as reliable and useful as it is on other operating

systems, and Windows is a reasonable environment for developing Ruby programs.

To get up and running as quickly as possible, follow these steps:

	 1.	 Open a web browser and go to https://rubyinstaller.org/.

Chapter 1 Let’s Get It Started: Installing Ruby

https://rubyinstaller.org/

5

	 2.	 Click the big Download button and then choose the latest version
to download. There are two sections of downloads: “with devkit”
and “without devkit”. It’s recommended to download the installer
under the “with devkit” section. Make sure you select the “x64”
download. There are further details about the installer on the
sidebar of the download page if you’re interested.

	 3.	 Run the downloaded file to launch the installer.

	 4.	 If Windows gives you a Security Error box, click the Run button to
give your approval.

	 5.	 A typical installation program appears with some instructions. On
the initial screen, click to accept the license and then click Next.

	 6.	 Work your way through the installation screens. Unless you have a
specific reason not to, let the installation program install Ruby in
its default location and its default program group. Check the box
for “Add Ruby Executables to Your PATH” if possible, as well as the
“Associate .rb and .rbw Files with this Ruby Installation” option.

	 7.	 If given the option, install the “MSYS2 development toolchain.”
It provides a much richer command-line interface than what is
provided by Windows. We won’t be using it in this book, but I
recommend looking into what MSYS2 has to offer.

	 8.	 Installation is complete when the installation program gives you a
Finish button to exit it.

If Ruby installed correctly, congratulations! To test that your Ruby installation works
correctly for Chapter 2, you need to load Interactive Ruby prompt or irb. If you are using
Windows 7 or higher, use the search bar to find the irb by searching for “irb”. You should
see “Interactive Ruby” in the results. Click the “Interactive Ruby” icon to launch the tool.

If the program loads successfully, you’ll see a screen that looks somewhat like Figure 1-1.

Figure 1-1.  The Interactive Ruby (irb) prompt running on Windows 10

Chapter 1 Let’s Get It Started: Installing Ruby

6

If irb started properly, Ruby is installed correctly. Congratulations! Lastly, you need

to be familiar with running Ruby and its associated utilities from the command prompt

and use the search toolbar to search for “Start Command Prompt with Ruby.” You should

see “Start Command Prompt with Ruby” in your results. Click the icon to start the

command prompt.

Throughout this book, commands that can be used at the command prompt will be

given. This is because using a command prompt such as this is a standard technique

in operating systems such as Linux and OS X. For example, in Chapter 7, we’ll look at

installing extra features (libraries) for Ruby, and the command prompt will be used for

this. Therefore, it’s necessary for you to know how to access it and run programs.

If you type irb at this prompt and press Enter, you should see something like the

following:

irb(main):001:0>

If you see the preceding line, everything is set up correctly, and you can type exit

and press Enter to be returned to the command prompt.

Now you can move on to Chapter 2 and start to play with the Ruby language itself.

�Mac OS X/macOS
Unlike Windows, most modern Apple machines running OS X come with a version

of Ruby already installed. OS X Catalina (10.15.4) comes with Ruby 2.6 out of the box.

It’s not recommended to use this version of Ruby since there are limitations that will

make development difficult. Instead, we will use a Homebrew to install ruby. Once you

become more advanced, I recommend looking into tools like rbenv (https://github.

com/rbenv/rbenv) and rvm (https://rvm.io/) which help manage multiple versions of

Ruby on the same computer.

�Installing Ruby on OS X with Homebrew

Since we are not using the system-provided version of Ruby, we will install it using a

packaging system called Homebrew (https://brew.sh/). Installing Homebrew is easy.

Open up a Terminal and type the following command:

Chapter 1 Let’s Get It Started: Installing Ruby

https://github.com/rbenv/rbenv
https://github.com/rbenv/rbenv
https://rvm.io/
https://brew.sh/

7

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/

install/master/install.sh)"

Once Homebrew has installed, you can run brew install ruby to install the latest

version of Ruby. You can then test that Ruby installed correctly using the command

ruby -v. If this command does not work, restart the terminal and try again.

Note  If you are running OS X Catalina or higher, you may need to link your
terminal to the Ruby installation. This can be done by running the following
command:

echo 'export PATH="/usr/local/opt/ruby/bin:$PATH"'
>> ~/.bash_profile

If the Homebrew install command doesn’t work, visit the Homebrew site https://

brew.sh/ for details on installing Homebrew.

�Linux
As an open source programming language, Ruby is already installed with many Linux

distributions. It’s not universal, though, but you can check if Ruby is installed by

following the instructions in the next section. If this fails, there are further instructions to

help you install it.

�Checking If Ruby Is Installed on Linux

Try to run the Ruby interpreter from the command prompt (or terminal window), as

follows:

ruby –v

If Ruby is installed, the current Ruby version will be printed on the screen. This book

requires 2.7.1 as a bare minimum (with 3.0+ being preferred), so if the version is earlier

than 2.7.1, you’ll need to continue onward in this chapter and install a more recent

version of Ruby. However, if Ruby appears to be installed and up to date, try to run the

irb interactive Ruby interpreter, as follows:

Chapter 1 Let’s Get It Started: Installing Ruby

https://brew.sh/
https://brew.sh/

8

irb

Once you’ve run irb, you should get the following output:

irb(main):001:0>

If running irb results in a similar output, you can move on to Chapter 2. (You might
wish to type exit and press Enter to get back to the command line!) Otherwise, read on
to install a fresh version of Ruby.

�Installing Ruby with a Package Manager
The installation procedure for Ruby on Linux varies between different Linux
distributions. Some distributions, such as Debian, Arch Linux, and Red Hat, provide
“package managers” to make installation of programs easy. Others require that you
install directly from source or install a package manager beforehand.

If you’re comfortable with using emerge, rpm, or apt-get, you can install Ruby
quickly with the following methods:

•	 Yum (on Red Hat, CentOS, and Fedora): Install as follows: sudo yum
install -y ruby

•	 Pacman (on Arch Linux): Install as follows: sudo pacman -S ruby

•	 Debian: Use apt-get, as such: sudo apt-get install ruby-full

•	 Ubuntu-based distributions: Use snap, as such: sudo snap install
ruby --classic

If one of these methods works for you, try to run Ruby and irb as shown in the
preceding section, and progress to Chapter 2 if you’re ready. Alternatively, you can
search your distribution’s package repository for Ruby, as the name of the Ruby package
in your distribution might be nonstandard or changing over time. However, if all else
fails, you can install Ruby directly from its source code in the next section.

Chapter 1 Let’s Get It Started: Installing Ruby

9

�Installing Ruby from Source Code
Installing Ruby from its source code is a great option if you don’t mind getting your
hands dirty. The process is similar on all forms of UNIX (not just Linux—this will work
on OS X too). Here are the basic steps:

	 1.	 Make sure that your Linux distribution can build applications
from source by searching for the “make” and “gcc” tools (on OS
X, Xcode allows you to install these). From the terminal, you can
use which gcc and which make to see if the development tools are
installed. If not, you need to install these development tools (on
Ubuntu, try apt-get install build-essential; on Red Hat or

CentOS, try sudo yum groupinstall "Development Tools").

	 2.	 Open a web browser and go to www.ruby-lang.org/.

	 3.	 Click the Downloads link at the top of the page.

	 4.	 On the download page, scroll down to Compiling Ruby – Source

Code and download the archive file containing the latest version.

This downloads a tar.gz file containing the source code for the

latest stable version of Ruby.

	 5.	 Uncompress the tar.gz file. If you’re at a command prompt

or terminal window, go to the same directory as the ruby-

3.x.x.tar.gz file and run tar xzvf ruby-3.x.x.tar.gz (where

ruby-3.x.x.tar.gz is the name of the file you just downloaded).

	 7.	 Go into the Ruby folder that was created during decompression. If

you’re not using a command prompt at this stage, open a terminal

window and go to the directory.

	 8.	 Run ./configure to generate the makefile and config.h files. If

you receive numerous errors, particularly about no C compiler

being available, you have not installed the development tools

properly on your operating system and should search for further

help online on how to achieve this.

	 9.	 Run make to compile Ruby from source. This might take a while.

Chapter 1 Let’s Get It Started: Installing Ruby

http://www.ruby-lang.org/

10

	 10.	 Run make install to install Ruby to its correct location on the

system. You need to do this as a superuser (such as root), so you

might need to run it as sudo make install and type in your

password if you are not logged in as a superuser already.

	 11.	 If there are errors by this stage, read the README file that

accompanies the source code files for pointers. Otherwise, try to

see what version of Ruby is now installed with ruby -v.

If the expected version of Ruby appears at this point, you’re ready to move to

Chapter 2 and begin programming. If you get an error complaining that Ruby can’t be

found or the wrong version of Ruby is installed, the place where Ruby was installed

might not be in your path (the place your operating system looks for files to run). To fix

this, scroll up and find out exactly where Ruby was installed (often in /usr/local/bin or

/usr/bin) and add the relevant directory to your path. The process to do this varies by

distribution and shell type, so refer to your Linux documentation on changing your path.

Once you can check which version of Ruby is running and you can run irb and get

a Ruby interpreter prompt, your Ruby installation is complete (for now!) and you can

move on to Chapter 2.

�Other Platforms
If you’re not using Windows, OS X, or Linux, it is possible you may be able to use a

variant or port of Ruby. Up until version 2.0, the official Ruby interpreter supported a

variety of other platforms (including BeOS, MS-DOS, and even the Atari ST), but it is now

primarily focused on mainstream operating systems, so in this edition, we will not be

providing any pointers, as they are now out of date.

In many cases, the versions of Ruby for some operating systems might be out of date

or unsupported. If this is the case and you’re confident about being able to compile your

own version of Ruby directly from the Ruby source code, the source code is available to

download from www.ruby-lang.org/.

To test that Ruby is installed sufficiently to continue with this book, you want to

check which version of Ruby is installed by asking Ruby for its version, as follows:

ruby -v

Chapter 1 Let’s Get It Started: Installing Ruby

http://www.ruby-lang.org/

11

You also need access to Ruby’s interactive prompt, irb. You access this simply by

running irb (if it’s in your path) as follows:

irb

If Ruby and irb do not work without complaint, you need to seek assistance for your

specific platform. Appendix B provides a list of useful resources. If irb does load, you can

type exit and press Enter to close it again.

�Summary
In this chapter, we’ve focused on making sure Ruby is properly installed and that you can

run the irb tool, which you’ll be using over the next several chapters.

Although Ruby is an easy language to learn and develop with, it’s easy to become

overwhelmed with the administration of Ruby itself, its installation, and its upgrades. As

Ruby is a language constantly in development, it’s possible that points covered in this

chapter will go out of date and other ways to install Ruby will come along.

An important part of being a proficient Ruby developer is being able to use the

resources the Ruby community makes available, and being able to find the latest sources

of help over time. The Ruby community, including your humble author, can provide help

in most cases, and a variety of resources to try are covered in Chapter 5 and Appendix B.

Chapter 1 Let’s Get It Started: Installing Ruby

13
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_2

CHAPTER 2

Programming == Joy: A
Whistle-Stop Tour of Ruby
and Object Orientation
Depending on who you ask, programming is both a science and an art. Telling

computers what to do with computer programs requires being able to think analytically,

like a scientist, and conceptually, like an artist. Being an artist is essential for coming up

with big ideas and being flexible enough to take unique approaches. Being a scientist is

essential to understanding how and why certain methodologies need to be taken into

account, and to approach testing and debugging from a logical perspective, rather than

an emotional one.

Luckily, you don’t need to be an artist or a scientist already. As with training the

body, programming exercises and thinking about how to solve problems train the

mind to make you a better programmer. Anyone can learn to program. The biggest

impediments are a lack of motivation and commitment or an unnecessary level of

complexity early on. Ruby is one of the easiest programming languages to learn, so that

leaves motivation and commitment. You’ve probably bought this book with a view to

creating a certain program, web app, or to solve a certain task, hence your motivation,

leaving only commitment. To help cover the commitment angle, we’re going to try to

keep things smooth and uncomplicated.

By the time you reach the end of this chapter, I hope you can get a taste of the fun

that lies ahead with the knowledge of a powerful yet deceptively simple programming

language, and you will begin to feel excited about building your own things!

https://doi.org/10.1007/978-1-4842-6324-2_2#DOI

14

Note  This chapter does not follow an instructional format as subsequent
chapters do. Instead, I’ll be moving quickly from concept to concept to give you a
feel for Ruby as a language before we circle around to the details later.

�Baby Steps
In Chapter 1, you focused on installing Ruby so that your computer can understand the

language. At the end of the chapter, you loaded a program called irb.

�irb: Interactive Ruby
irb stands for “Interactive Ruby.” “Interactive” means that as soon as you type something

and press Enter, your computer will immediately attempt to process it. Sometimes this

sort of environment is called an immediate or interactive environment.

Note  If you cannot remember how to load irb, refer to the section of Chapter 1
dedicated to your computer’s operating system.

Start irb and make sure a prompt appears, like so:

irb(main):001:0>

This prompt is not as complex as it looks. All it means is that you’re in the irb

program, you’re typing your first line (001), and you’re at a depth of 0. You don’t need to

place any importance on the depth element at this time.

Type this after the preceding prompt and press Enter:

1 + 1

The result should come back quickly: 2. The entire process looks like this:

irb(main):001:0> 1 + 1

=> 2

irb(main):002:0>

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

15

Ruby is now ready to accept another command or expression from you.

As a new Ruby programmer, you’ll spend a lot of time in irb testing concepts and

building up insights into Ruby. It provides the perfect environment for tweaking and

testing the language.

irb’s interactive environment gives you the benefit of immediate feedback—an

essential tool when learning. Rather than writing a program in a text editor, saving it,

getting the computer to run it, and then looking through the errors to see where you

went wrong, you can just type in small snippets of code, press Enter, and immediately

see what happens.

If you want to experiment further, try other arithmetic such as 100 * 5, 57 + 99, 10 –

50, or 100 / 10 (if the last one seems alien to you, in Ruby, the forward slash character, /,

is the operator for division).

�Ruby Is “English for Computers”
At the lowest level, computer processors are made out of transistors that respond to

and act on electronic signals, but thinking about performing operations at this level

is time-consuming and complicated, so we tend to use higher-level “languages” to

communicate our intentions, much as we do with natural languages like English.

Computers can understand languages, though in a rather different fashion than how

most people do. Being logical devices that cannot understand subtlety or ambiguity,

languages such as English and French aren’t appealing to computers. Computers require

languages with logical structures and a well-defined syntax so that there’s a logical clarity

in what you’re telling the computer to do.

Clarity is required because almost everything you relay to the computer while

programming is an instruction (or command). Instructions are the basic building

blocks of all programs, and for the computer to perform (or execute) them properly, the

programmer’s intentions must be clear and precise. Many hundreds of these instructions

are tied together into programs that perform certain tasks, which means there’s little

room for error.

You also need to consider that other programmers might need to maintain computer

programs you’ve written. This won’t be the case if you’re just programming for fun, but

it’s important that your programs are easy to understand, so you can understand them

when you come back to them later on.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

16

�Why Ruby Makes a Great Programming Language
Although English would make a bad programming language, due to its ambiguity and

complexity, Ruby can feel surprisingly English-like at times. Ruby is just one of hundreds

of programming languages, but it’s special because it feels a lot like a natural language

to many programmers while having the clarity required by computers. Consider this

example code:

10.times do print "Hello, world!" end

Read through this code aloud (it helps, really!). It doesn’t flow quite as well as

English, but the meaning should be immediately clear. It asks the computer to “10

times” “print” “Hello, world!” to the screen. It works. If you’ve got irb running, type in the

preceding code and press Enter to see the results:

Hello, world!Hello, world!Hello, world!Hello, world!Hello, world!Hello,

world!Hello, world!Hello, world!Hello, world!Hello, world! => 10

If you read the code aloud, the resulting output (“Hello, world!” printed ten times)

should not be a surprise. The => 10 on the end might seem more confusing, however,

but we’ll be covering the meaning of that later.

Note E xperienced programmers might wonder why there’s no semicolon at the
end of the previous code example. Unlike many other languages, such as C#, PHP,
C, and C++, a semicolon is not needed at the end of lines in Ruby (although it
won’t hurt if you do use one). This can take a little while to get used to at first, but
for new programmers it makes Ruby even easier to learn.

Here’s a much more complex example that might occur in a real-world web app:

user = User.find_by_email('me@privacy.net')

user.country = 'Belgium'

Note D on’t copy and paste this code. It won’t work outside the context of a
particular application.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

17

This code is nowhere near as obvious as the “Hello, world!” example, but you should

still be able to take a good guess at what it does. First, it tells the computer you want

to work with a concept called User. Next, it tries to find a user with a specified email

address. Last, it changes the user’s country data to Belgium. Don’t worry about how the

data is stored for users at this point; that comes later.

This is a reasonably advanced and abstract example, but demonstrates a single

concept from a potentially complex application where you can deal with different

concepts such as “users.” By the end of this chapter, you’ll see how you can create your

own real-life concepts in Ruby and operate on them in a similar way to this example.

Your code can be almost as easy to read as English too.

�Trails for the Mind
Learning can be a fun activity in its own right, but merely reading about something won’t

make you an expert at it. I’ve read a few cookbooks, but this doesn’t seem to improve my

cooking when I attempt it from time to time. The missing ingredient is experimentation

and testing, as without these, your efforts are academic, at best.

With this in mind, it’s essential to get into the mood of experimenting and testing

from day one of using Ruby. Throughout the book, I’ll ask you to try out different blocks

of code and to play with them to see if you get the results you want. You’ll occasionally

surprise yourself and sometimes chase your code into dead ends; this is all part of the

fun. Whatever happens, all good programmers learn from experimentation, and you can

only master a language and programming concepts by experimenting as you go along.

This book will lead you through a forest of code and concepts, but without testing

and proving the code is correct to yourself, you can quickly become lost. Use irb and the

other tools I’ll cover frequently, and experiment with the code as much as possible so

that the knowledge will stick.

Type in the following code at your irb prompt and press Enter:

print "test"

The result is simply

test => nil

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

18

Logically, print "test" results in test being printed to the screen. However, the =>

nil suffix is the result of your code as an expression (more about these in Chapter 3). This

appears because all lines of code in Ruby are made up of expressions that return values.

However, print displays data to the screen rather than return any value as an expression,

so you get nil. More about this in Chapter 3. It is perfectly okay to be semi-confused

about this at this stage.

Let’s try something else:

print "2+3 is equal to " + 2 + 3

This command seems logical on the surface. If 2 + 3 is equal to 5 and you’re adding

that to the end of "2+3 is equal to ", you should get "2+3 is equal to 5", right?

Unfortunately, you get this error instead:

Traceback (most recent call last):

 5: from bin/irb:23:in `<main>'

 4: from bin/irb:23:in `load'

 3: �from exe/irb:11:in `<top (required)>'TypeError (no implicit

conversion of Integer into String)

 2: from (irb):2

 1: from (irb):2:in `+'

 TypeError (no implicit conversion of Integer into String)

Ruby complains when you make an error, and here it’s complaining that you can’t

convert a number into a string (where a “string” is a collection of text, such as this very

sentence). Numbers and strings can’t be mixed in this way. Deciphering the reason

isn’t important yet, but experiments such as this along the way will help you learn and

remember more about Ruby than reading this book alone. When an error like this

occurs, you can use the error message as a clue to the solution, whether you find it in this

book, on the Internet, or by asking another developer.

As a quick side activity, copy and paste the "no implicit conversion of

Integer into String" error into Google and see what comes up. If you are like most

programmers, you will do this a lot over your programming career. Not every article you

find will be useful, but sometimes you can get out of tricky situations by seeing what

other people suggest online.

An interim solution to the preceding problem would be to do this:

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

19

print "2+3 is equal to "

print 2 + 3

Or this:

print "2+3 is equal to " + (2 + 3).to_s

Try them both.

Let’s try one more example. What about 10 divided by 3?

irb(main):002:0> 10 / 3

=> 3

Computers are supposed to be precise, but anyone with basic arithmetic skills will

know that 10 divided by 3 is 3.33 recurring, rather than 3!

The reason for the curious result is that, by default, Ruby assumes a number such as

10 or 3 to be an integer—a whole number. Arithmetic with integers in Ruby gives integer

results, so it’s necessary to provide Ruby with a floating point number (a number with

decimal places) to get a floating point answer such as 3.33. Here’s an example of how to

do that:

Irb(main):001:0> 10.0 / 3

=> 3.333333333333

Outcomes such as these make testing and experimentation not only a good learning

tool but essential tactics when developing larger programs.

That’s enough of the errors for now. Let’s make something useful!

�Turning Ideas into Ruby Code
Part of the artistry of programming is in being able to turn your ideas into computer

programs. Once you become proficient with a programming language, you can turn

your ideas directly into code. However, before you can do this, you need to see how Ruby

understands real-world concepts, and how you can relay your ideas into a form that

Ruby appreciates.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

20

�How Ruby Understands Concepts with Objects
and Classes
Ruby is an object-oriented programming language. In the simplest sense, this means

that your Ruby programs can define and operate on concepts in a fashion that mimics

how we might deal with concepts in the real world. Your program can contain concepts

such as “people,” “boxes,” “tickets,” “maps,” or any other concept you want to work with.

Object-oriented languages make it easy to implement these concepts in a way that you

can create objects based on them. As an object-oriented language, Ruby can then act on

and understand the relationships between these concepts in any way you can define.

For example, you might want to create an application that can manage the booking

of tickets for sports events. The concepts involved include “events,” “people,” “tickets,”

“venues,” and so forth. Ruby lets you put these concepts directly into your programs,

create object instances of them (instances of an “event” might be the Super Bowl or the

final of the World Cup), and perform operations on and define relationships between

them. With all these concepts in your program, you can quickly relate “events” to

“venues” and “tickets” to “people,” meaning that your code forms a logical system from

the outset.

If you haven’t programmed much before, the idea of taking real-life concepts and

using them directly in a computer program might seem like an obvious way to make

software development easier. However, object orientation is a reasonably new idea in

software development (the concept was developed in the 1960s, but it only became

popular in mainstream programming in the 1990s). With non-object-oriented languages,

the programmer has to take a more manual approach for handling concepts and the

relationships between them, and while this adds more control, it also introduces extra

complexity.

�The Making of a Person
Let’s jump directly into some source code demonstrating a simple concept, a person:

class Person

 attr_accessor :name, :age, :gender

end

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

21

Ruby seemed a lot like English before, but it doesn’t seem much like English when

defining concepts. Let’s go through it step by step:

class Person

This line is where you start to define the concept of a “person.” When we define

concepts in Ruby (or in most other object-oriented languages, for that matter), we call

them classes. A class is the definition of a single type of object. Class names in Ruby

always start with a capital letter, so your programs will end up with classes with names

like User, Person, Place, Topic, Message, and so forth:

attr_accessor :name, :age, :gender

The preceding line provides three attributes for the Person class. An individual

person has a name, an age, and a gender, and this line creates those attributes. attr

stands for “attribute,” and accessor roughly means “make these attributes accessible to

be set and changed at will.” This means that when you’re working with a Person object in

your code, you can change that person’s name, age, and gender (or, more accurately, the

object’s name, age, and gender attributes):

end

The end line should be of obvious utility. It matches up with the class definition on

the first line and tells Ruby that you’re no longer defining the Person class.

To recap, a class defines a concept (such as a Person), and an object is a single thing

based on class (such as a “Chris” or a “Mrs. Smith”).

So let’s experiment with our Person class. Go to your irb prompt and type in the

Person class found earlier. Your efforts should look like this:

irb(main):001:0> class Person

irb(main):002:?> attr_accessor :name, :age, :gender

irb(main):003:?> end

=> nil

irb(main):004:0>

You’ll notice that irb recognizes when you were “inside” a class definition because it

automatically indents your code.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

22

Once you’ve finished your class definition and Ruby has processed it, nil is returned,

because defining a class results in no return value, and nil is Ruby’s way of representing

“nothing.” As there were no errors, your Person class now exists within Ruby, so let’s do

something with it:

person_instance = Person.new

person_instance.inspect

=> #<Person:0x007fbb0c625f88>

What the first line does is create a “new” instance of the Person class, so you’re

creating a “new person” and assigning it to person_instance—a placeholder

representing the new person, known as a variable. The second line is Ruby’s response to

creating a new person and isn’t important at this stage. The 0x007fbb0c625f88 bit will

be different from computer to computer and only represents an internal reference that

Ruby has assigned to the new person. You don’t have to take it into account at all.

Let’s immediately do something with person_instance:

person_instance.name = "Christine"

In this basic example, you refer to person_instance’s name attribute and give it a

value of "Christine". You’ve just given your person a name. The Person class has two

other attributes: age and gender. Let’s set those:

person_instance.age = 52

person_instance.gender = "female"

Simple. You’ve given person_instance a basic identity. What about printing the

person’s name back to the screen?

puts person_instance.name

Christine appears when you press Enter. Try the same with the age and the gender.

Note  In previous examples, you’ve used print to put things on the screen. In
the preceding example, you used puts. The difference between print and puts
is that puts automatically moves the output cursor to the next line (i.e., it adds a
newline character to start a new line), whereas print continues printing text onto
the same line as the previous time. Generally, you’ll want to use puts, but I used
print to make the earlier examples more intuitive when reading them out loud.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

23

�Basic Variables
In the previous section, you created a person and assigned that person to a variable

(computer terminology for a “placeholder”) called person_instance.

Variables are an important part of programming, and they’re easy to understand,

especially if you have the barest of knowledge of algebra. Consider this:

x = 10

This code assigns the value 10 to the variable x. Since x now equals 10, you can do

things like this:

x * 2

20

Note S ome new programmers can be confused by the definition of = as an
assignor of value, rather than an indicator of equality. When we say x = 10, we do
not mean that x and 10 are equal, but that x should now be considered to refer to
the value 10.

Variables in Ruby can refer to any value-related concept that Ruby understands,

such as numbers, text, and other data structures I’ll cover throughout this book. In the

previous section, person_instance was a variable that referred to an object instance

of the Person class, much like x is a variable containing the number 10. More simply,

consider person_instance as a name that refers to a particular, unique Person object.

When you want to store something and use it over multiple lines within a program,

you’ll use variables as temporary storage places for the data you’re working with.

�From People to Pets
Previously, you created a simple class (Person), created an object of that class, assigned it

as the person_instance variable, and gave it an identity (we called it Christine) that you

queried. If these concepts seem simple to you, well done—you understand the bare basics

of object orientation! If not, reread the previous section and make sure you follow along on

your computer, but also read this section, as I’m going to go into a little more depth.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

24

You started out with a Person class, but now you need something a bit more

complex, so let’s create some “pets” to live inside Ruby. You’ll create some cats, dogs,

and snakes. The first step is to define the classes. You could do something like this:

class Cat

 attr_accessor :name, :age, :gender, :color

end

class Dog

 attr_accessor :name, :age, :gender, :color

end

class Snake

 attr_accessor :name, :age, :gender, :color

end

It’s just like creating the Person class, but multiplied for the three different animals.

You could continue by creating animals with code such as lassie = Dog.new or sammy =

Snake.new and setting the attributes for the pets with code such as lassie.age = 12 or

sammy.color = "Green". Type in the preceding code and give it a try if you like.

However, creating the classes in this way would miss out on one of the more

interesting features of object-oriented programming: inheritance.

Inheritance allows different classes to relate to one another and group concepts by

their similarities. In this case, cats, dogs, and snakes are all pets. Inheritance allows you to

create a “parent” Pet class, and then let your Cat, Dog, and Snake classes inherit (“is-a”) the

features that all pets have.

Almost everything in real life exists in a similar structure to your classes. Cats can

be pets, which are, in turn, animals; which are, in turn, living things; which are, in turn,

objects that exist in the universe. A hierarchy of classes exists everywhere, and object-

oriented languages let you define those relationships in code.

Note  Chapter 6 features a helpful diagram showing the concept of inheritance
between different forms of life such as mammals, plants, and so forth.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

25

�Structuring Your Pets Logically

Now that we’ve come up with some ideas to improve our code, let’s retype it from

scratch. To totally cleanse out and reset what you’re working on, you can restart irb. irb

doesn’t remember information between the different times you use it. So restart irb (to

exit irb, type exit and press Enter) and rewrite the class definitions like so:

class Pet

 attr_accessor :name, :age, :gender, :color

end

class Cat < Pet

end

class Dog < Pet

end

class Snake < Pet

end

Note  In the code listings in this chapter, any code that’s within classes is
indented, as with the attr_accessor line in the preceding Pet class. This is only
a matter of style, and it makes the code easier to read. When you type it into irb,
it’s not necessary to replicate the effect, as it will do some indentation for you. You
can simply type what you see. Once you start using a text editor to write longer
programs, you’ll want to indent your code to make it easier to read too, but it’s not
important yet.

First, you create the Pet class and define the name, age, gender, and color attributes

available to Pet objects. Next, you define the Cat, Dog, and Snake classes that inherit

from the Pet class (the < operator, in this case, denotes which class is inherited from).

This means that cat, dog, and snake objects will all have the name, age, gender, and color

attributes, but because the functionality of these attributes is inherited from the Pet

class, the functionality doesn’t have to be created specifically in each class. This makes

the code easier to maintain and update if you wanted to store more information about

the pets or if you wanted to add another type of animal.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

26

What about attributes that aren’t relevant to every animal? What if you wanted to
store the length of snakes, but didn’t want to store the length of dogs or cats? Luckily,
inheritance gives you lots of benefits with no downside. You can still add class-specific
code wherever you want. Reenter the Snake class like so:

class Snake < Pet
 attr_accessor :length
end

The Snake class now has a length attribute. However, this is added to the attributes
Snake has inherited from Pet, so Snake has name, age, gender, color, and length
attributes, whereas Cat and Dog only have the first four attributes. You can test this like so
(some output lines have been removed for clarity):

irb(main):001:0> snake = Snake.new
irb(main):002:0> snake.name = "Sammy"
irb(main):003:0> snake.length = 500
irb(main):004:0> lassie = Dog.new
irb(main):005:0> lassie.name = "Lassie"
irb(main):006:0> lassie.age = 20
irb(main):007:0> lassie.length = 10

NoMethodError (undefined method 'length=' for #<Dog:0x32fddc @age=20,
@name=“Lassie">)

Here you created a dog and a snake. You gave the snake a length of 500, before trying
to give the dog a length of 10 (the units aren’t important). Trying to give the dog a length
results in an error of undefined method 'length=', because you only gave the Snake
class the length attribute.

Try playing with the other attributes and creating other pets. Try using attributes that
don’t exist and see what the error messages are.

Note Y ou might be wondering why we’re using such artificial examples as cats,
dogs, and snakes here. They have been chosen to provide a simple to understand
and easily mentally visualized model of how classes work. In your eventual apps,
you’ll work with things like different types of users, events, products, photos, and
so forth, and they will work in a somewhat similar way. Feel free to create your
own classes using concepts relevant to your planned programs and follow along
using those instead, substituting the names of the classes where appropriate.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

27

�Controlling Your Pets

So far, you’ve been creating classes and objects with various changeable attributes.

Attributes are data related to individual objects. A snake can have a length, a dog can have

a name, and a cat can be of a certain color. What about the instructions I spoke of earlier?

How do you give your objects instructions to perform? You define methods for each class.

Methods are important in Ruby. They enable you to tell objects to perform actions.

For example, you might want to add a bark method to your Dog class, which, if called on

a Dog object, prints Woof! to the screen. You could write it like so:

class Dog < Pet

 def bark

 puts "Woof!"

 end

end

After entering this code, any dogs you create can now bark. Let’s try it out:

irb(main):0> a_dog = Dog.new

irb(main):0> a_dog.bark

Woof!

Eureka! You’ll notice that the way you make the dog bark is simply by referring to the

dog (a_dog, in this case) and including a period (.) followed by the bark method’s name,

whereby your dog “barks.” Let’s dissect exactly what happened.

First, you added a bark method to your Dog class. The way you did this was by

defining the method. To define a method, you use the word def followed by the name

of the method you wish to define. This is what the def bark line means. It means “I’m

defining the bark method within this class until I say end.” The following line then simply

puts the word “Woof!” on the screen, and the last line of the method ends the definition

of that method. The last end ends the class definition (this is why indentation is useful,

so you can see which end lines up with which definition). The Dog class then contains a

new method called bark, as you used earlier.

Think about how you would create methods for the other Pet classes or for the Pet

class itself. Are there any methods that are generic to all pets? If so, they’d go in the Pet

class. Are there methods specific to cats? They’d go in the Cat class.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

28

�Everything Is an Object
In this chapter, we’ve looked at how Ruby can understand concepts in the form of classes

and objects. We created virtual cats and dogs, gave them names, and triggered their

methods (e.g., the bark method). These basic concepts form the core of object-oriented

programming, and you’ll use them constantly throughout this book. Dogs and cats are

merely an example of the flexibility object orientation offers, but the concepts we’ve

used so far could apply to most concepts, whether we’re giving a “ticket” a command to

change its price or a “user” a command to change his or her password. Begin to think of

the programs you want to develop in terms of their general concepts and how you can

turn them into classes you can manipulate with Ruby.

Among even object-oriented programming languages, Ruby is reasonably unique

in that almost everything in the language is an object, even the concepts relating to the

language itself. Consider the following line of code:

puts 1 + 10

If you typed this into irb and pressed Enter, you’d see the number 11 in response.

You’ve asked Ruby to print the result of 1 + 10 to the screen. It seems simple enough,

but believe it or not, this simple line uses two objects. 1 is an object, as is 10. They’re

objects of class Integer, and this built-in class has methods already defined to perform

operations on numbers, such as addition and subtraction.

We’ve considered how concepts can be related to different classes. Our pets make

a good example. However, even defining the concepts that programmers use to write

computer programs as classes and objects makes sense. When you write a simple sum

such as 2 + 2, you expect the computer to add two numbers together to make 4. In its

object-oriented way, Ruby considers the two numbers (2 and 2) to be number objects.

2 + 2 is then merely shorthand for asking the first number object to add the second

number object to itself. In fact, the + sign is actually an addition method! (It’s true;

2.+(2) will work just fine!)

You can prove that everything in Ruby is an object by asking the things of which class

they’re a member. In the pet example earlier, you could have made a_dog tell you what

class it’s a member of with the following code:

puts a_dog.class

Dog

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

29

class isn’t a method you created yourself, such as the bark method, but one that
Ruby supplies by default to all objects. This means that you can ask any object which
class it’s a member of by using its class method. So a_dog.class equals Dog.

What about if you ask a number what its class is? Try it out:

puts 2.class

Integer

The number 2 is an object of the Integer class. This means that all Ruby has to do is
implement the logic and code for adding numbers together in the Integer class, much
like you created the bark method for your Dog class, and then Ruby will know how to add
any two numbers together! Better than that, though, is that you can then add your own
methods to the Integer class and process numbers in any way you see fit.

�Kernel Methods
Kernel is a special class (actually, a module—but don’t worry about that until Chapter 6!)
 whose methods are made available in every class and scope throughout Ruby (if
this sounds complicated, consider the Kernel methods to be those available in every
situation without fail). You’ve used a key method provided by Kernel already.

Consider the puts method. You’ve been using the puts method to print data to the
screen, like so:

puts "Hello, world!"

However, unlike the methods on your own classes, puts isn’t prefixed by the name
of a class or object on which to complete the method. It would seem logical that the full
command should be something like Screen.puts or Display.puts, as puts places text
on the screen. However, in reality, puts is a method made available from the Kernel
module—a special type of class packed full of standard, commonly used methods,
making your code easier to read and write.

Note  The Kernel module in Ruby has no relationship to kernels in operating
systems or the Linux kernel. As with a kernel and its operating system, the Kernel
module is part of Ruby’s “core,” but there is no connection beyond that. The word
“kernel” is used merely in a traditional sense.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

30

When you type puts "Hello, world!", Ruby can tell that there’s no class or object
involved, so it looks through its default, predefined classes and modules for a method
called puts, finds it in the Kernel module, and does its thing. When you see lines of
code where there’s no obvious class or object involved, take time to consider where the
method call is going.

To guarantee that you’re using the Kernel puts method, you can refer to it explicitly,
although this is rarely done with puts:

Kernel.puts "Hello, world!"

�Passing Data to Methods
Asking a dog to bark or asking an object its class is simple with Ruby. You simply refer
to a class or object and follow it with a period (.) and the name of the method, such as
a_dog.bark, 2.class, or Dog.new. However, there are situations where you don’t want to
issue a simple command, but you want to associate some data with it too.

Let’s create a very simple class that represents a dog:

class Dog
 def bark
 puts "Woof!"
 end
end

Now we can simply make a dog bark by calling the relevant method:

my_dog = Dog.new
my_dog.bark

Woof!

That’s simple, but what about if we have an action where some user input would be
useful? We can write methods to accept data when they are called, for example:

class Dog
 def bark(i)
 i.times do
 puts "Woof!"
 end
 end

end

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

31

This time we can make the dog bark a certain number of times by passing a value to

the bark method:

my_dog = Dog.new

my_dog.bark(3)

Woof!

Woof!

Woof!

When we specify the argument of 3 in my_dog.bark(3), it is passed to the bark

method and is placed into the defined parameter i. We can then use i as a source value

for running the puts command three times (or, more accurately, i times) using a times

block.

There are a couple of other things to be aware of at this early stage. First, you can

specify many different parameters that can be accepted by a method, for example:

class Dog

 def say(a, b, c)

 puts a

 puts b

 puts c

 end

end

Now we can pass three arguments:

my_dog = Dog.new

my_dog.say("Dogs", "can't", "talk!")

Dogs

can't

talk!

You should also be aware that parentheses around the arguments on the end of the

method call are optional when there’s only a single argument and the method call is not

joined to any others. For example, you’ve previously seen code like this:

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

32

puts "Hello"

But you could just as easily write

puts("Hello")

You will continue to see many examples of calling methods and passing arguments

to them throughout this book. Keep your eyes peeled for the various ways this occurs,

with and without arguments and with and without parentheses.

�Using the Methods of the String Class
You’ve played with dogs and numbers, but lines of text (strings) can be interesting to play

with too:

puts "This is a test".length

14

You’ve asked the string "This is a test", which is an object of the String class

(confirm this with "This is a test".class), to print its length onto the screen using

the length method. The length method is available on all strings, so you can replace

"This is a test" with any text you want and you’ll get a valid answer.

Asking a string for its length isn’t the only thing you can do. Consider this:

puts "This is a test".upcase

THIS IS A TEST

The String class has many methods, which I’ll cover in the next chapter, but

experiment with some of the following: capitalize, downcase, chop, next, reverse, sum,

and swapcase. Table 2-1 demonstrates some of the methods available to strings.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

33

Some of the examples in Table 2-1 are obvious, such as changing the case of the

text or reversing it, but the last two examples are of particular interest. Rather than

processing one method against the text, you process two or three in succession. The

reason you can do this is that methods will return the original object after it’s been

adjusted by the method, so you have a fresh String object upon which to process

another method. "Test".upcase results in the string TEST being returned, upon which

the reverse method is called, resulting in TSET, upon which the next method is called,

which “increments” the last character, resulting in TSEU.

In the next chapter, we’ll be looking at strings more deeply, but the concept of

chaining methods together to get quick results is an important one in Ruby. You can

read the preceding examples aloud and they make sense. Not many other programming

languages can give you that level of instant familiarity!

Table 2-1.  The Results of Using Different

Methods on the String “Test” or “test”

Expression Output

"Test" + "Test" TestTest

"test".capitalize Test

"Test".downcase test

"Test".chop Tes

"Test".next Tesu

"Test".reverse tseT

"Test".sum 416

"Test".swapcase tEST

"Test".upcase TEST

"Test".upcase.reverse TSET

"Test".upcase.reverse.

next

TSEU

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

34

�Using Ruby in a Non-object-Oriented Style
So far in this chapter, we’ve looked at several reasonably complex concepts. With some

programming languages, object orientation is almost an afterthought, and beginners’

books for these languages don’t cover object orientation until readers understand the

basics of the language (particularly with Perl and PHP, other popular web development

languages). However, this doesn’t work for Ruby because Ruby is a pure object-oriented

language, and you can gain significant advantages over users of other languages by

understanding these concepts right away.

Ruby has its roots in other languages, though. Ruby has been heavily influenced

by languages such as Perl and C, both usually considered procedural non-object-

oriented languages (although Perl has some object-oriented features). As such, even

though almost everything in Ruby is an object, you can use Ruby in a similar way as a

non-object-oriented language if you like, even if it’s less than ideal. Essentially, you’d

be “ignoring” Ruby’s object-oriented features, even though they’d still be in operation

under the hood.

A common demonstration program for a language such as Perl or C involves creating

a subroutine (essentially a sort of method that has no associated object or class) and

calling it, much like you called the bark method on your Dog objects. Here’s a similar

program, written in Ruby:

def dog_barking

 puts "Woof!"

end

dog_barking

This looks a lot different from your previous experiments. Rather than appearing

to define a method within a class, it looks as if you’re defining it on its own, totally

independently. The method is a general one and doesn’t appear to be tied to any

particular class or object. In a language such as Perl or C, this method would be called

a procedure, function, or subfunction, as method is a word generally used to refer to an

action that can take place on an object. In Ruby, this method is still being defined on a

class (the Object class), but we can ignore that within this context.

After the method is defined—it’s still called a method, even though other languages

would consider it to be a subroutine or function—it becomes available to use

immediately without using a class or object name, like how puts is available without

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

35

referring directly to the Kernel module. You call the method simply by using its name on

its own, as on the last line of the preceding example. Typing the preceding code into irb

results in the dog_barking method being called, giving the following result:

Woof!

In Ruby, almost everything’s an object, and that includes the magical space where

classless methods end up! Understanding exactly where isn’t important at this stage, but

it’s always useful to bear Ruby’s object-oriented ways in mind even when you’re trying

not to use object-oriented techniques!

Note  If you want to experiment, you’ll find dog_barking at Object.dog_
barking.

�Summary
In this chapter, you learned about several important concepts not only for programming

in Ruby but for programming in general. If these concepts seem logical to you already,

you’re well on the way to being a solid Ruby developer. Let’s recap the main concepts

before moving on:

•	 Class: A class is a definition of a concept in an object-oriented

language such as Ruby. We created classes called Pet, Dog, Cat,

Snake, and Person. Classes can inherit features from other classes,

but still have unique features of their own.

•	 Object: An object is a single instance of a class (or, as can be the case,

an instance of a class itself). An object of class Person is a single

person. An object of class Dog is a single dog. Think of objects as

real-life objects. A class is the classification, whereas an object is the

actual object or “thing” itself.

•	 Object orientation: Object orientation is the approach of using

classes and objects to model real-world concepts in a programming

language, such as Ruby.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

36

•	 Variable: In Ruby, a variable is a placeholder for a single object,
which may be a number, string, list (of other objects), or instance of a
class that you defined, such as, in this chapter, a Pet.

•	 Method: A method represents a set of code (containing multiple
commands and statements) within a class and/or an object. For
example, our Dog class objects had a bark method that printed
“Woof!” to the screen. Methods can also be directly linked to classes,
as with fred = Person.new, where new is a method that creates a new
object based on the Person class. Methods can also accept data—
known as arguments or parameters—included in parentheses after
the method name, as with puts("Test").

•	 Arguments/parameters: These are the data passed to methods in
parentheses (or, as in some cases, following the method name
without parentheses, as in puts "Test"). Technically, you pass
arguments to methods, and methods receive parameters, but for
pragmatic purposes, the terms are interchangeable.

•	 Kernel: Some methods don’t require a class or module name to be
usable, such as puts. These are usually built-in, common methods
that don’t have an obvious connection to any classes or modules.
Many of these methods are included in Ruby’s Kernel module, a
module that provides functions that work from anywhere within
Ruby code without being explicitly referred to (a global “grab bag” of
useful methods, if you will).

•	 Experimentation: One of the most fulfilling things about
programming is that you can turn your dreams into reality. The
amount of skill you need varies with your dreams, but generally if
you want to develop a certain type of application or service, you
can give it a try. Most software comes from necessity or a dream,
so keeping your eyes and ears open for things you might want to
develop is important. It’s even more important when you first get
practical knowledge of a new language, as you are while reading this
book. If an idea crosses your mind, break it down into the smallest
components that you can represent as Ruby classes and see if you can
put together the building blocks with the Ruby you’ve learned so far.
Your programming skills can only improve with practice.

In the next few chapters, we’re going to look at the topics briefly passed over in this
chapter in more detail.

Chapter 2 Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation

37
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_3

CHAPTER 3

Ruby’s Building Blocks:
Data, Expressions,
and Flow Control
Computer programs spend nearly all their time manipulating data or waiting for data

to arrive from elsewhere. We type in words, phrases, and numbers; listen to music; and

watch videos, while the computer performs calculations, makes decisions, and relays

information to us. To write computer programs, it’s essential to understand the basics of

data and its manipulation.

This chapter looks at some of the basic forms of data that Ruby supports, along with

how to work with and manipulate them. The topics covered in this chapter will provide

the majority of the foundation of knowledge on which your future Ruby programs will be

developed.

�Numbers and Expressions
At the lowest level, computers are entirely number-based, with everything represented

by streams of numbers. A language such as Ruby tries to insulate you from the internal

workings of the computer, and numbers in Ruby are used for mostly the same things

that you use numbers for in real life, such as counting, logical comparisons, arithmetic,

and so on. Let’s look at how you can use numbers in these ways in Ruby and how to do

something with them.

https://doi.org/10.1007/978-1-4842-6324-2_3#DOI

38

�Basic Expressions
When programming, an expression is a combination of data (such as numbers or strings

of text), operators (such as + or -), and variables that, when understood by the computer,

result in an answer of some form. For example, these are all expressions:

5

1 + 2

"a" + "b" + "c"

100 - 5 * (2 - 1)

x + y

The top four expressions all work right away with irb (try them out now!) and get

the answers you’d expect from such basic operations (1 + 2 results in 3, "a" + "b" +

"c" results in abc, and so on). The final expression would fail, but try it out anyway and

consider the error returned and how you could resolve the situation. (Tip: Set the x and y

variables to something!)

Brackets (parentheses) work the same way as with regular arithmetic. Anything

inside brackets is calculated first (or, more technically, given higher precedence).

Note  You can work through all the topics in this chapter using irb, the interactive
Ruby interpreter. If you get stuck, simply leave irb by typing exit or pressing
Ctrl+D at any time, and start irb again as demonstrated in Chapter 1. If this fails,
press Ctrl+C and then the Enter key and then type exit.

Expressions are used regularly throughout all computer programs and not just with

numbers. However, an understanding of how expressions and operations work with

numbers immediately translates into a basic knowledge of how they work with text, lists,

and other items too.

�Variables
In Chapter 2, we ran through a multitude of concepts, including variables. Variables are

placeholders or references to objects, including numbers, text, or any types of objects

you’ve chosen to create, for example:

x = 10

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

39

puts x

10

Here you assign the numeric value of 10 to a variable called x. Be aware that you

always need to initialize variables (i.e., assign a value to them) before using them;

otherwise, you will end up with an error.

Note  Ruby 3 adds a new way to assign values to variables. This new feature is
called “right assignment.” This feature uses a hash rocket operator, =>, instead
of an equal operator. We write the value first, then a hash rocket, and finally the
variable name:

"Jane Doe" => name  puts name

This new syntax introduces more natural flow to variable assignment, but it's not
considered a replacement. Use this syntax where it makes sense and improves
code readability.

You can name variables however you like, with only a few limitations. Variable

names must be a single unit (no spaces!); must start with either a letter or an underscore;

must contain only letters, numbers, or underscores; and are case-sensitive. Table 3-1

demonstrates variable names that are valid and invalid.

Table 3-1.  Valid and Invalid Variable Names

Variable Name Valid or Invalid?

x Valid

y2 Valid

_x Valid

7x Invalid (starts with a digit)

this_is_a_test Valid

this is a test Invalid (not a single word)

this'is@a'test! Invalid (contains invalid characters: ', @, and !)

this-is-a-test Invalid (looks like subtraction)

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

40

Variables are important because they allow you to write and use programs that

perform operations on varying data. For example, consider a small program that has the

sole job of subtracting two numbers:

x = 100

y = 10

puts x - y

90

If the code was written simply as puts 100 - 10, you’d get the same result, but it’s

not as flexible. Using variables, you can get the values for x and y from the user, a file, or

some other source. The only logic is the subtraction.

As variables are placeholders for values and data, they can also be assigned the

results of an expression (such as x = 2 - 1) and be used in expressions themselves

(such as x - y + 2). Here’s a more complex example:

x = 50

y = x * 100

x += y

puts x

5050

Step through the example line by line. First, you set x to equal 50. You then set y to

the value of x * 100 (50 * 100 or 5000). Next, you add y to x before printing the result,

5050, to the screen. It makes sense, but the third line isn’t obvious at first. Adding y

to x looks more logical if you say x = x + y rather than x += y. This is another Ruby

shortcut. Because the act of a variable performing an operation upon itself is so common

in programming, you can shorten x = x + y to x += y. The same works for other

operations too, such as multiplication and division, with x *= y and x /= y being valid

too. A common way to increase a variable’s value by 1 is x += 1, which is shorthand for x

= x + 1.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

41

�Comparison Operators and Expressions
A program without logic is merely a calculator. Computers don’t just perform single

operations on data. They also use logic to determine different courses of action. A basic

form of logic is to use comparison operators within expressions to make decisions.

Consider a system that demands the user be over a certain age:

age = 10

puts "You're too young to use this system" if age < 18

If you try this code, you’ll see “You’re too young to use this system” because the code

prints the text to the screen only when the value of age is under 18 (note the “less than”

symbol). Let’s make something more complex:

age = 24

puts "You're a teenager" if age > 12 && age < 20

This code results in no response because someone aged 24 is not a teenager.

However, if age were to be between 13 and 19 inclusive, the message would appear. This

is a case where two small expressions (age > 12 and age < 20) are joined together with

&&, meaning “and.” Reading expressions such as this aloud is the best way to understand

them: “Print the text if age is larger than 12 and age is smaller than 20.”

To get the opposite effect, you can use the word unless:

age = 24

puts "You're NOT a teenager" unless age > 12 && age < 20

This time you’d get the message that you’re not a teenager with your age of 24. This

is because unless means the opposite of if. You display the message unless the age is in

the teenage range.

Note A nother cute technique offered by Ruby is the between? method that
returns true or false if the object is between or equal to two supplied values.
For example, when dealing with integers, at least, age.between?(13, 19) is
equivalent to age >= 13 && age <= 19.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

42

You can also test for equality:

age = 24

puts "You're 24!" if age == 24

Notice that the “equals” concept is represented in two different ways, due to the two

different meanings. On the first line, you’re saying that age is to equal 24, meaning you

want age to refer to the number 24. However, on the second line, you’re asking if age “is

equal to” 24. In the first case, you’re demanding, and in the second case, you’re asking.

This difference results in different operators. Therefore, the equality operator is == and

the assignment operator is just =. A list of comparison operators for numbers is shown in

Table 3-2.

Table 3-2.  A Full List of Number Comparison Operators in Ruby

Comparison Meaning

x > y Greater than

x < y Less than

x == y Equal to

x >= y Greater than or equal to

x <= y Less than or equal to

x <=> y Comparison; returns 0 if x and y are equal, 1 if x is higher, and -1 if x is lower

x != y Not equal to

As you saw earlier, it’s possible to group multiple expressions into a single

expression, as with the following:

puts "You're a teenager" if age > 12 && age < 20

&& is used to enforce that both age > 12 and age < 20 are true. However, you can also

check whether one or the other is true by using ||, as so:

puts "You're either very young or very old" if age > 80 || age < 10

Note T he | symbol used in || is the pipe symbol, not the letter l nor the number 1.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

43

Grouping together multiple comparisons is also possible with a clever use of

parentheses:

gender ="male"

age = 6

puts "A very young or old man" if gender == "male" && (age < 18 || age > 85)

This example checks if gender is equal to "male” and if age is under 18 or over 85.

If we did not use the parentheses, the line would be printed even if the gender were

“female” and the age were over 85, because the Ruby interpreter would consider the

comparisons on an individual basis, rather than making the initial && depend on

satisfaction of the age < 18 || age > 85 comparison.

�Looping Through Numbers with Blocks and Iterators
Nearly all programs require certain operations to be repeated over and over again to

accomplish a result. It would be extremely inefficient (and inflexible!) to write a program

to count through numbers like this:

x = 1

puts x

x += 1

puts x

x += 1

puts x

...

...

What you want to do in these situations is implement a loop—a mechanism that makes

the program use the same code over and over. Here’s a basic way to implement a loop:

5.times do puts "Test" end

Test

Test

Test

Test

Test

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

44

First, you take the number 5. Next, you call the times method, common to all

numbers in Ruby. Rather than pass data to this method, you pass it more code: the code

between do and end. The times method then uses the code five times in succession,

producing the preceding five lines of output.

Another way to write this is with curly brackets instead of do and end. Although do

and end are encouraged for multiple-line code blocks, curly brackets make the code

easier to read on a single line. Therefore, this code works in exactly the same way:

5.times { puts "Test" }

You’ll be using this style for single lines of code from here on, but will be using do

and end for longer blocks of code. This is a good habit to pick up, as it’s the style nearly all

professional Ruby developers follow (although there are always exceptions to the rule).

In Ruby, one mechanism to create a loop is called an iterator. An iterator is

something that progresses through a list of items one by one. In this case, it loops, or

iterates, through five steps, resulting in five lines of Test. Other iterators are available for

numbers, such as the following:

1.upto(5) { ...code to loop here... }

10.downto(5) { ...code to loop here... }

0.step(50, 5) { ...code to loop here... }

The first example counts from 1 up to 5. The second example counts from 10 down

to 5. The last example counts up from 0 to 50 in steps of 5, because you’re using the step

method on the number 0.

What isn’t obvious is how to get hold of the number being iterated upon at each step

of the way so that you can do something with it in the looped code. What if you wanted

to print out the current iteration number? How could you develop a counting program

with these iterators? Thankfully, all of the iterators just explained automatically pass the

state of the iteration to the looped code as a parameter, which you can then retrieve into

a variable and use, like so:

1.upto(5) { |number| puts number }

1

2

3

4

5

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

45

The easiest way to understand this is that the code between { and } (or, potentially,

do and end, remember?) is the code being looped upon. At the start of that code, the

number from the “1 up to 5” count is sent down a “chute” into a variable called number.

You can visualize the chute with the bars surrounding number. This is how parameters

are passed into blocks of code that don’t have specific names (unlike methods on classes

and objects, which have names). In the preceding line of code, you ask Ruby to count

from 1 to 5. It starts with 1, which is passed into the code block and displayed with puts.

This is repeated for the numbers 2 through 5, resulting in the output shown.

Note that Ruby (and irb) doesn’t care whether you spread your code over multiple

lines or not (usually—there are exceptions!). For example, this code works in exactly the

same way as the previous example:

1.upto(5) do |number|

 puts number

end

The key point to realize here is that some methods will execute code blocks and pass

along data that you can then capture into variables. In the previous example, the upto

method available on integers passes the value of each iteration into the code block, and

we “captured” it into the variable number.

�Floating Point Numbers
In Chapter 2, you ran a test where you divided 10 by 3, like so:

puts 10 / 3

3

The result is 3, although the actual answer should be 3.33 recurring. The reason for

this is that, by default, Ruby considers any numbers without a floating point (also known

as a decimal point) to be an integer—a whole number. When you say 10 / 3, you’re

asking Ruby to divide two integers, and Ruby gives you an integer as a result. Let’s refine

the code slightly:

puts 10.0 / 3.0

3.33333333333

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

46

Now you get the desired result. Ruby is now working with number objects of the

Float class, and returns a Float, giving you the level of precision you’d expect.

There might be situations where you don’t have control over the incoming numbers,

but you still want to have them treated as floats. Consider a situation where a user enters

two numbers to be divided, and the numbers require a precise answer:

x = 10

y = 3

puts x / y

3

Both input numbers are integers, so the result is an integer, as before. Luckily,

integers have a special method that converts them to floats on the fly. You’d simply

rewrite the code like this:

x = 10

y = 3

puts x.to_f / y.to_f

3.333333333335

In this situation, when you reach the division, both x and y are converted to their

floating point number equivalents using the Integer class’s to_f method. Similarly,

floating point numbers can be converted back in the other direction, to integers, using

to_i:

puts 5.7.to_i

5

We’ll look at this technique used in other ways in the section “Converting Objects to

Other Classes” later in this chapter.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

47

�Constants
Earlier you looked at separating data and logic with variables, concluding that there’s

rarely a need for data to be a direct part of a computer program. This is true in most

cases, but consider some values that never change—the value of pi, for example. These

unchanging values are called constants and can also be represented in Ruby by a variable

name beginning with a capital letter:

Pi = 3.141592

If you enter the preceding line into irb and then try to change the value of Pi, it will

let you do it, but you’ll get a warning:

Pi = 3.141592

Pi = 500

(irb): warning: already initialized constant Pi

Ruby gives you full control over the value of constants, but the warning gives out

a clear message. In the future, Ruby might enforce tighter control over constants, so

respect this style of usage and try not to reassign constants mid-program.

The eagle-eyed reader might recall that in Chapter 2 you referred to classes by

names such as Dog and Cat, beginning with capital letters. This is because once a class is

defined, it’s a constant part of the program and therefore acts as a constant too.

�Text and Strings
If numbers are the most basic type of data that a computer can process, text is our next

rung up the data ladder. Text is used everywhere, especially when communicating with

users (directly in email, over the Web, or otherwise). In this section, you’ll find out how

to manipulate text to your heart’s content.

�String Literals
We’ve used strings already in some of our earlier code examples, like so:

puts "Hello, world!"

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

48

A string is a collection of textual characters (including digits, letters, whitespace, and

symbols) of any length. All strings in Ruby are objects of the String class, as you can

discover by calling a string’s class method and printing the result:

puts "Hello, world!".class

String

When a string is embedded directly into code, using quotation marks as earlier, the

construction is called a string literal. This differs from a string whose data comes from

a remote source, such as a user typing in text, a file, or the Internet. Any text that’s pre-

embedded within a program is a string literal.

Like numbers, strings can be included in operations, added to, and compared

against. You can also assign strings to variables:

x = "Test"

y = "String"

puts "Success!" if x + y == "TestString"

Success!

There are several other ways of including a string literal within a program. For

example, you might want to include multiple lines of text. Using quotation marks is only

viable for a single line, but if you want to span multiple lines, try this:

x = %q{This is a test

of the multi

line capabilities}

In this example, the quotation marks have been replaced with %q{ and }. You don’t

have to use curly brackets, though. You can use < and >, (and), or simply two other

delimiters of your choice, such as ! and !. This code works in exactly the same way:

x = %q!This is a test

of the multi

line capabilities!

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

49

However, the important thing to remember is that if you use exclamation marks

as your delimiter, then any exclamation marks in the text you’re quoting will cause

this technique to go awry. If delimiter characters are present in your string, your string

literal will end early and Ruby will consider your remaining text erroneous. Choose your

delimiters wisely!

Another way to build up a long string literal is by using a here document or heredoc,

a concept found in many other programming languages. It works in a similar way to

the previous example, except that the delimiter can be many characters long. Here’s an

example:

x = <<END_MY_STRING_PLEASE

This is the string

And a second line

END_MY_STRING_PLEASE

In this case, << marks the start of the string literal and is followed by a delimiter of

your choice (END_MY_STRING_PLEASE in this case). The string literal then starts from the

next new line and finishes when the delimiter is repeated again on a line on its own.

Using this method means that you’re unlikely to run into any problems with choosing a

bad delimiter, as long as you’re creative! Do note that you can’t include spaces in your

delimiter; it has to be a single group of displayed characters.

�String Expressions
Using the + symbol concatenates (joins together) the two strings "Test” and "String" to

produce "TestString", meaning that the following comparison is true, which results in

"Success!" being written to the screen:

puts "Success!" if "Test" + "String" == "TestString"

Likewise, you can multiply strings. For example, let’s say you want to replicate a

string five times, like so:

puts "abc" * 5

abcabcabcabcabc

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

50

You can also perform “greater than” and “less than” comparisons:

puts "x" > "y"

false

puts "y" > "x"

 true

Note  "x" > "y" and "y" > "x" are expressions that, by using a comparison
operator, result in true or false outcomes.

In this situation, Ruby compares the numbers that represent the characters in

the string. As mentioned previously, characters are stored as numbers inside your

computer’s memory. Every letter and symbol has a value, called an ASCII value. These

values aren’t particularly important, but they do mean you can do comparisons between

letters, and even longer strings, in this way. If you’re interested to learn what value a

particular character has, find out like so:

puts "x".ord

120

puts "A".ord

65

The String class’s ord method returns an integer matching the position of that

character in the ASCII table, an international standard for representing characters as

values.

You can achieve the inverse by using the String class’s chr method, for example:

puts 120.chr

x

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

51

Note  Explaining more about the ASCII character set here is beyond the scope of
this book, but there are many resources on the Web if you wish to learn more. One
excellent resource is https://en.wikipedia.org/wiki/ASCII.

�Interpolation
In previous examples, you’ve printed the results of your code to the screen with the puts

method. However, your results have had little explanation. If a random user came along

and used your code, it wouldn’t be obvious what’s going on, as they won’t be interested

in reading your source code. Therefore, it’s essential to provide user-friendly output from

your programs. You’ll go back to using numbers for this example:

x = 10

y = 20

puts "#{x} + #{y} = #{x + y}"

10 + 20 = 30

It’s kindergarten-level math, but the result highlights an interesting capability. You

can embed expressions (and even logic) directly into strings. This process is called

interpolation.

In this situation, interpolation refers to the process of inserting the result of an

expression into a string literal. The way to interpolate within a string is to place the

expression within #{ and } symbols. An even more basic example demonstrates

puts "100 * 5 = #{100 * 5}"

100 * 5 = 500

The #{100 * 5} section interpolates the result of 100 * 5 (500) into the string at

that position, resulting in the output shown. Examine this code:

puts "#{x} + #{y} = #{x + y}"

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

https://en.wikipedia.org/wiki/ASCII

52

You first interpolate the value of x, then the value of y, and then the value of x added

to y. You surround each section with the relevant mathematical symbols, and hey presto,

you get a complete mathematical equation:

10 + 20 = 30

You can interpolate other strings too:

x = "cat"

puts "The #{x} in the hat"

The cat in the hat

Or if you want to get clever:

puts "It's a #{"bad " * 5}world"

It's a bad bad bad bad bad world

In this instance, you interpolate a repetition of a string, "bad ", five times. It’s

certainly a lot quicker than typing it!

Interpolation also works within strings used in assignments:

my_string = "It's a #{"bad " * 5}world"

puts my_string

It's a bad bad bad bad bad world

It’s worth noting that you could achieve the same results as the preceding by placing

the expressions outside the strings, without using interpolation, for example:

x = 10

y = 20

puts x.to_s + " + " + y.to_s + " = " + (x + y).to_s

puts "#{x} + #{y} = #{x + y}"

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

53

The two puts lines result in the same output. The first uses string concatenation (+)

to join several different strings together. The numbers in x and y are converted to strings

with their to_s method. However, the second puts line uses interpolation, which doesn’t

require the numbers to be converted to strings explicitly.

�String Methods
We’ve looked at using strings in expressions, but you can do a lot more with strings

than add them together or multiply them. As you experimented in Chapter 2, you can

use a number of different methods on a string. Table 3-3 provides a recap of the string

methods you looked at in Chapter 2.

Table 3-3.  The Results of Using Different Methods on the String “Test”

Expression Output

"Test" + "Test" TestTest

"test".capitalize Test

"Test".downcase test

"Test".chop Tes

"Test".next Tesu

"Test".reverse tseT

"Test".sum 416

"Test".swapcase tEST

"Test".upcase TEST

"Test".upcase.reverse TSET

"Test".upcase.reverse.next TSEU

In each example in Table 3-3, you’re using a method that the string offers, whether it’s

concatenation, conversion to uppercase, reversal, or merely incrementing the last letter.

You can chain methods together, as in the final example of the table. First, you create the

"Test" string literal; then you convert it to uppercase, returning TEST; then you reverse

that, returning TSET; and then you increment the last letter of that, returning TSEU.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

54

Another method you used in Chapter 2 was length, like so:

puts "This is a test".length

14

These methods are useful, but they don’t let you do anything particularly impressive

with your strings. Let’s move on to playing directly with the text itself.

�Regular Expressions and String Manipulation
When working with strings at an advanced level, it becomes necessary to learn about

regular expressions. A regular expression is, essentially, a search query, and not to

be confused with the expressions we’ve discussed already in this chapter. If you type

ruby into your favorite search engine, you’d expect information about Ruby to appear.

Likewise, if your regular expression is ruby and you run that query against, say, a long

string, you’d expect any matches to be returned. A regular expression, therefore, is a

string that describes a pattern for matching elements in other strings.

Note T his section provides only a brief introduction to regular expressions.
Regular expressions are a major branch of computer science, and many books and
websites are dedicated to their use. Ruby supports the majority of standard regular
expression syntax, so non-Ruby-specific knowledge about regular expressions
obtained from elsewhere can still prove useful in Ruby.

�Substitutions

One thing you’ll often want to do is substitute something within a string for something

else. Take this example:

puts "foobar".sub('bar', 'foo')

foofoo

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

55

In this example, you use a method on the string called sub, which substitutes the

first instance of the first parameter 'bar' with the second parameter 'foo', resulting

in foofoo. sub only does one substitution at a time, on the first instance of the text to

match, whereas gsub does multiple substitutions at once, as this example demonstrates:

puts "this is a test".gsub('i', '')

ths s a test

Here you’ve substituted all occurrences of the letter 'i' with an empty string. What

about more complex patterns? Simply matching the letter 'i' is not a true example of a

regular expression. For example, let’s say you want to replace the first two characters of a

string with 'Hello':

x = "This is a test"

puts x.sub(/^../, 'Hello')

Hellois is a test

In this case, you make a single substitution with sub. The first parameter given to

sub isn’t a string but a regular expression—forward slashes are used to start and end

a regular expression. Within the regular expression is ^... The ^ is an anchor, meaning

the regular expression will match from the beginning of any lines within the string.

The two periods each represent “any character.” In all, /^../ means “any two characters

immediately after the start of a line.” Therefore, Th of "This is a test" gets replaced

with Hello.

Likewise, if you want to change the last two letters, you can use a different anchor:

x = "This is a test"

puts x.sub(/..$/, 'Hello')

This is a teHello

This time the regular expression matches the two characters that are anchored to the

end of any lines within the string.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

56

Note  If you want to anchor to the absolute start or end of a string, you can use
\A and \z, respectively, whereas ^ and $ anchor to the starts and ends of lines
within a string.

�Iteration with a Regular Expression

Previously, you used iterators to move through sets of numbers, counting from 1 to 10,

for example. What if you want to iterate through a string and have access to each section

of it separately? scan is the iterator method you require:

"xyz".scan(/./) { |letter| puts letter }

x

y

z

scan lives up to its name. It scans through the string looking for anything that

matches the regular expression passed to it. In this case, you’ve supplied a regular

expression that looks for a single character at a time. That’s why you get x, y, and z

separately in the output. Each letter is fed to the block, assigned to letter, and printed

to the screen. Try this more elaborate example:

"This is a test".scan(/../) { |x| puts x }

Th

is

i

s

a

te

st

This time you’re scanning for two characters at a time. Easy! Scanning for all

characters results in some weird output, though, with all the spaces mixed in. Let’s adjust

our regular expression to match only letters and digits, like so:

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

57

"This is a test".scan(/\w\w/) { |x| puts x }

Th

is

is

te

st

Within regular expressions, there are special characters that are denoted with a

backslash, and they have special meanings. \w means “any alphanumeric character or an

underscore.” There are many others, as illustrated in Table 3-4.

Table 3-4.  Basic Special Characters and Symbols Within Regular Expressions

Character Meaning

^ Anchor for the beginning of a line

$ Anchor for the end of a line

\A Anchor for the start of a string

\z Anchor for the end of a string

. Any character

\w Any letter, digit, or underscore

\W Anything that \w doesn’t match

\d Any digit

\D Anything that \d doesn’t match (non-digits)

\s Whitespace (spaces, tabs, newlines, and so on)

\S Non-whitespace (any visible character)

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

58

Using the knowledge from Table 3-4, you can easily extract numbers from a string:

"The car costs $1000 and the cat costs $10".scan(/\d+/) do |x|

 puts x

end

1000

10

You’ve just gotten Ruby to extract meaning from some arbitrary English text! The

scan method was used as before, but you’ve given it a regular expression that uses \d

to match any digit, and the + that follows \d makes \d match as many digits in a row

as possible. This means it matches both 1000 and 10, rather than just each individual

digit at a time. To prove it, try this:

"The car costs $1000 and the cat costs $10".scan(/\d/) do |x|

 puts x

end

1

0

0

0

1

0

So, + after a character in a regular expression means match one or more of that type

of character. There are other types of modifiers, and these are shown in Table 3-5.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

59

The last important aspect of regular expressions you need to understand at this stage

is character classes. These allow you to match against a specific set of characters. For

example, you can scan through all the vowels in a string:

"This is a test".scan(/[aeiou]/) { |x| puts x }

i

i

a

e

[aeiou] means “match any of a, e, i, o, or u.” You can also specify ranges of

characters inside the square brackets, like so:

"This is a test".scan(/[a-m]/) { |x| puts x }

h

i

i

a

e

Table 3-5.  Regular Expression Character and Sub-expression Modifiers

Modifier Description

* Match zero or more occurrences of the preceding character, and match as many as

possible.

+ Match one or more occurrences of the preceding character, and match as many as

possible.

*? Match zero or more occurrences of the preceding character, and match as few as

possible.

+? Match one or more occurrences of the preceding character, and match as few as

possible.

? Match either one or none of the preceding character.

{x} Match x occurrences of the preceding character.

{x,y} Match at least x occurrences and at most y occurrences.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

60

This scan matches all lowercase letters between a and m.

Regular expressions can be complex and confusing, and entire books larger than this

one have been dedicated to them. Most coders only need to understand the basics, as

the more advanced techniques will become apparent with time—but they’re a powerful

tool when you experiment with and master them.

You’ll be using and expanding on all the techniques covered in this section in code

examples throughout the rest of the book.

�Matching

Making substitutions and extracting certain text from strings is useful, but sometimes

you merely want to check whether a certain string matches against the pattern of your

choice. You might want to establish quickly if a string contains any vowels:

puts "String has vowels" if "This is a test" =~ /[aeiou]/

In this example, =~ is another form of operator: a matching operator. If the string has

a match with the regular expression following the operator, then the expression returns

the position of the first match (2 in this case—which logically is non-false, so the if

condition is satisfied). You can, of course, do the opposite:

puts "String contains no digits" unless "This is a test" =~ /[0-9]/

This time you’re saying that unless the range of digits from 0 to 9 matches against the

test string, tell the user that there are no digits in the string.

It’s also possible to use a method called match, provided by the String class.

Whereas =~ returns the position of the first match or nil depending on whether the

regular expression matches the string, match provides a lot more power. Here’s a basic

example:

puts "String has vowels" if "This is a test".match(/[aeiou]/)

In regular expressions, if you surround a section of the expression with

parentheses—(and)—the data matched by that section of the regular expression is

made available separately from the rest. match lets you access this data:

x = "This is a test".match(/(\w+) (\w+)/)

puts x[0]

puts x[1]

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

61

puts x[2]

This is

This

is

match returns a MatchData object that can be accessed like an array. The first

element (x[0]) contains the data matched by the entire regular expression. However,

each successive element contains that which was matched by each match group of the

regular expression. In this example, the first (\w+) matched This and the second (\w+)

matched is.

Note  Matching can get far more complex than this, but I’ll be covering more
advanced uses in the next chapter when you put together your first complete Ruby
program.

�Arrays and Lists
So far in this chapter, you’ve created single instances of number and string objects and

manipulated them. After a while, it becomes necessary to create collections of these

objects and to work with them as a list. In Ruby, you can represent ordered collections of

objects using arrays.

�Basic Arrays
Here’s a basic array:

x = [1, 2, 3, 4]

This array has four elements. Each element is an integer, and is separated by commas

from its neighboring elements. Square brackets are used to denote an array literal.

Elements can be accessed by their index (their position within the array). To access

a particular element, an array (or a variable containing an array) is followed by the index

contained within square brackets. This is called an element reference, for example:

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

62

x = [1, 2, 3, 4]

puts x[2]

3

As with most programming languages, the indexing for Ruby’s arrays starts from

0, so the first element of the array is element 0, and the second element of the array is

element 1, and so on. In our example, this means x[2] is addressing what we’d call the

third element of the array, which in this case is an object representing the number 3.

To change an element, you can simply assign it a new value or manipulate it as you’ve

manipulated numbers and strings earlier in this chapter:

x[2] += 1

puts x[2]

4

Or

x[2] = "Fish" * 3

puts x[2]

FishFishFish

Arrays don’t need to be set up with predefined entries or have elements allocated

manually. You can create an empty array like so:

x = []

The array is empty, and trying to address, say, x[5] results in nil being returned. You

can add things to the end of the array by pushing data into it, like so:

x = []

x << "Word"

After this, the array contains a single element: a string saying "Word". With arrays, <<

is the operator for pushing an item onto the end of an array. You can also use the push

method, which is equivalent:

x.push("Word")

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

63

You can also remove entries from an array one by one. Arrays can act as a stack, “last

in, first out,” where items are pushed onto the end of the array and also popped from the

end (popping is the process of retrieving and removing items from the end of the array):

x = []

x << "Word"

x << "Play"

x << "Fun"

puts x.pop

puts x.pop

puts x.length

Fun

Play

1

You push "Word", "Play", and "Fun" into the array held in x and then display the

first “popped” element on the screen. Elements are popped from the end of the array,

so "Fun" comes out first. Next comes "Play". For good measure, you then print out the

length of the array at that point, using the aptly named length method (size works too,

and gives exactly the same result), which is 1 because only "Word" is still present in the

array.

Another useful feature is that if an array is full of strings, you can join all the elements

together into one big string by calling the join method on the array:

x = ["Word", "Play", "Fun"]

puts x.join

WordPlayFun

The join method can take an optional parameter that’s placed between each

element in the resulting string:

x = ["Word", "Play", "Fun"]

puts x.join(', ')

Word, Play, Fun

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

64

This time you join the array elements together, but between each set of elements you

place a comma and a space. This results in cleaner output.

�Splitting Strings into Arrays
In the section relating to strings, you used scan to iterate through the contents of the

string looking for characters that matched patterns you expressed as regular expressions.

With scan, you used a block of code that accepted each set of characters and displayed

them on the screen. However, if you use scan without a block of code, it returns an array

of all the matching parts of the string, like so:

puts "This is a test".scan(/\w/).join(',')

T,h,i,s,i,s,a,t,e,s,t

First, you define a string literal, then you scan over it for alphanumeric characters

(using /\w/), and finally you join the elements of the returned array together with

commas.

What if you don’t want to scan for particular characters, but instead want to split a

string into multiple pieces? You can use the split method and tell it to split a string into

an array of strings on the periods, like so:

puts "Short sentence. Another. No more.".split(/\./).inspect

["Short sentence", " Another", " No more"]

There are a couple of important points here. First, if you’d used . in the regular

expression rather than \., you’d be splitting on every character rather than on full stops,

because . represents “any character” in a regular expression. Therefore, you have to

escape it by prefixing it with a backslash (escaping is the process of specifically denoting

a character to make its meaning clear). Second, rather than joining and printing out the

sentences, you’re using the inspect method to get a tidier result.

The inspect method is common to almost all built-in classes in Ruby, and it gives

you a textual representation of the object. For example, the preceding output shows the

result array in the same way that you might create an array yourself. inspect is incredibly

useful when experimenting and debugging!

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

65

split is also happy splitting on newlines, or multiple characters at once, to get a

cleaner result:

puts "Words with lots of spaces".split(/\s+/).inspect

["Words", "with", "lots", "of", "spaces"]

With Ruby and some regular expressions, you’re never far from solving any text

processing problem!

It is also important to cover p, an alternative to using inspect. The previous example

could also be written in this way:

p "Words with lots of spaces".split(/\s+/)

["Words", "with", "lots", "of", "spaces"]

p is an extremely useful alternative to using puts when playing with expressions in

irb. It automatically shows you the structure of the object(s) returned by the expression

following it. We will use p extensively throughout the rest of this chapter. You will almost

never need to use it in a production application, but for debugging and learning, it’s

excellent—not to mention quick to type!

�Array Iteration
Iterating through arrays is simple and uses the each method. The each method goes

through each element of the array and passes it as a parameter to the code block you

supply, for example:

[1, "test", 2, 3, 4].each { |element| puts element.to_s + "X" }

1X

testX

2X

3X

4X

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

66

Although each iterates through elements of an array, you can also convert an array

on the fly using the collect method:

[1, 2, 3, 4].collect { |element| element * 2 }

[2, 4, 6, 8]

collect iterates through an array element by element and assigns to that element

the result of any expression within the code block. In this example, you multiply the

value of the element by 2.

Note  map is functionally equivalent to collect. You may see both being used in
this book and in other code you encounter.

Programmers who have come from less dynamic and possibly non-object-oriented

languages might see these techniques as being quite modern. It’s possible to do things

“the old-fashioned way” with Ruby if required:

a = [1, "test", 2, 3, 4]

i = 0

while (i < a.length)

 puts a[i].to_s + "X"

 i += 1

end

This works in a similar way to the each example from earlier, but loops through

the array in a way more familiar to traditional programmers (from languages such as

C, BASIC, or JavaScript). However, it should be immediately apparent to anyone why

iterators, code blocks, and methods such as each and collect are preferable with Ruby,

as they make the code significantly easier to read and understand.

�Other Array Methods
Arrays have a lot of interesting methods, some of which I’ll cover in this section.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

67

�Array Addition and Concatenation

If you have two arrays, you can quickly combine their results into one:

x = [1, 2, 3]

y = ["a", "b", "c"]

z = x + y

p z

[1, 2, 3, "a", "b", "c"]

Note W e’re using p here instead of puts z.inspect. Go back to the “Splitting
Strings into Arrays” section if you missed the explanation of this key point.

�Array Subtraction and Difference

You can also compare two arrays by subtracting one against the other. This technique

removes any elements from the main array that are in both arrays:

x = [1, 2, 3, 4, 5]

y = [1, 2, 3]

z = x - y

p z

[4, 5]

�Checking for an Empty Array

If you’re about to iterate over an array, you might want to check if it has any items yet.

You could do this by checking if array.size or array.length is larger than 0, but a more

popular shorthand is to use empty?:

x = []

puts "x is empty" if x.empty?

x is empty

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

68

�Checking an Array for a Certain Item

The include? method returns true if the supplied parameter is in the array, and false

otherwise:

x = [1, 2, 3]

p x.include?("x")

p x.include?(3)

false

true

�Accessing the First and Last Elements of the Array

Accessing the first and last elements of an array is easy with the first and last

methods:

x = [1, 2, 3]

puts x.first

puts x.last

1

3

If you pass a numeric parameter to first or last, you’ll get that number of items

from the start or the end of the array:

x = [1, 2, 3]

puts x.first(2).join("-")

1-2

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

69

�Reversing the Order of the Array’s Elements

Like a string, an array can be reversed:

x = [1, 2, 3]

p x.reverse

[3, 2, 1]

�Hashes
Arrays are collections of objects, and so are hashes. However, hashes have a different

storage format and way to define each object within the collection. Rather than having

an assigned position in a list, objects within a hash are given a key that points to them.

It’s more like a dictionary than a list, as there’s no guaranteed order, but just simple links

between keys and values. Note we are not using the preferred hash syntax. This will

change when you learn about symbols. Here’s a basic hash with two entries:

dictionary = { cat: "feline animal", dog: "canine animal" }

The variable storing the hash is dictionary, and it contains two entries, as you can

inspect:

puts dictionary.size

2

One entry has a key of cat and a value of feline animal, while the other has a key of

dog and a value of canine animal. The key in this example is a symbol which is covered

later in this chapter. For now, don’t worry about the details of symbols. Just know

symbols are like strings with different properties. Like arrays, you use square brackets to

reference the element you wish to retrieve, for example:

puts dictionary[:cat]

feline animal

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

70

As you can see, a hash can be viewed as an array that has names for elements instead

of position numbers. You can even change values in the same way as an array:

dictionary[:cat] = "fluffy animal"

puts dictionary[:cat]

fluffy animal

Note  It won’t be immediately useful to you, but it’s worth noting that both keys
and values can be objects of any type. Therefore, it’s possible to use an array (or
even another hash) as a key. This might come in useful when you’re dealing with
more complex data structures in the future.

�Basic Hash Methods
As with arrays, hashes have many useful methods that you’ll look at in this section.

�Iterating Through Hash Elements

With arrays, you can use the each method to iterate through each element of the array.

You can do the same with hashes:

x = { "a" => 1, "b" => 2 }

x.each { |key, value| puts "#{key} equals #{value}" }

a equals 1

b equals 2

Note S ince Ruby 1.9, the order in which the elements were inserted into the
hash will be remembered, and each will return them in that order.

The each iterator method for a hash passes two parameters into the code block: first,

a key, and second, the value associated with that key. In this example, you assign them to

variables called key and value and use string interpolation to display their contents on

the screen.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

71

�Retrieving Keys

Sometimes you might not be interested in the values in a hash, but want to get a feel for

what the hash contains. A great way to do this is to look at the keys. Ruby gives you an

easy way to see the keys in any hash immediately, using the keys method:

x = { a: 1, b: 2, c: 3 }

p x.keys

[:a, :b, :c]

keys returns an array of all the keys in the hash, and if you’re ever in the mood,

values will return an array of all the values in the hash too. Generally, however, you’ll

look up values based on a key.

�Deleting Hash Elements

Deleting hash elements is easy with the delete method. All you do is pass in a key as a

parameter, and the element is removed:

x = { a: 1, b: 2 }

x.delete(:a)

p x

{:b=>2}

�Deleting Hash Elements Conditionally

Let’s say you want to delete any hash elements whose value is below a certain figure.

Here’s an example of how to do this:

x = { a: 100, b: 20 }

x.delete_if { |key, value| value < 25 }

p x

{:a=>100}

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

72

�Hashes Within Hashes
It’s possible to have hashes (or, indeed, any sort of object) within hashes, and even arrays

within hashes, within hashes! Because everything is an object and hashes and arrays can

contain any other objects, you could create giant tree structures with hashes and arrays.

Here’s a demonstration:

people = {

 fred: {

 name: "Fred Elliott",

 age: 63,

 gender: "male",

 favorite_painters: ["Monet", "Constable", "Da Vinci"]

 },

 janet: {

 name: "Janet S Porter",

 age: 55,

 gender: "female"

 }

}

puts people[:fred][:age]

puts people[:janet][:gender]

puts people[:janet]

63

female

{:name=>”Janet S Porter", :age=>55, :gender=>"female"}

Although the structure of the hash looks a little confusing at first, it becomes

reasonably fred and janet sections are simple hashes of their own, but they’re wrapped

up into another giant hash assigned to people. In the code that queries the giant hash,

you simply chain the lookups on top of each other, as with puts people[:fred][:age].

First, it gets people[:fred], which returns Fred’s hash, and then you request [:age] from

that, yielding the result of 63.

Even the array embedded within Fred’s hash is easy to access:

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

73

puts people[:fred][:favorite_painters].length

puts people[:fred][:favorite_painters].join(", ")

3

Monet, Constable, Da Vinci

These techniques are used more and explained in greater depth in the following

chapters.

�Flow Control
In this chapter, you’ve used comparisons, together with if and unless, to perform

different operations based on the circumstances. if and unless work well on single

lines of code, but when combined with large sections of code, they become even more

powerful. In this section, you’ll be looking at how Ruby lets you control the flow of your

programs with these and other constructs.

�if and unless
The first use of if within this chapter used this demonstration:

age = 10

puts "You're too young to use this system" if age < 18

If the value of age is under 18, the string is printed to the screen. The following code

is equivalent:

age = 10

if age < 18

 puts "You're too young to use this system"

end

It looks similar, but the code to be executed if the expression is true is contained

between the if expression and end, instead of the if expression being added onto the

end of a single line of code. This construction makes it possible to put any number of

lines of code in between the if statement and the end line:

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

74

age = 10

if age < 18

 puts "You're too young to use this system"

 puts "So we're going to exit your program now"

 exit

end

Note  If you copy and paste the previous code directly into irb, the exit call on
the fifth line will result in irb closing, so don’t be surprised by this. You will also see
this in the next example.

It’s worth noting that unless can work in exactly the same way because unless is just

the opposite of if:

age = 10

unless age >= 18

 puts "You're too young to use this system"

 puts "So we're going to exit your program now"

 exit

end

It’s possible to nest logic too, as in this example:

age = 19

if age < 21

 puts "You can't drink in most of the United States"

 if age >= 18

 puts "But you can in the United Kingdom!"

 end

end

if and unless also supply the else condition, used to delimit lines of code that you

want to be executed if the main expression is false:

age = 10

if age < 18

 puts "You're too young to use this system"

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

75

else

 puts "You can use this system"

end

�?, the Ternary Operator
The ternary operator makes it possible for an expression to contain a mini if/else

statement. It’s a construction that’s entirely optional to use, and some developers are

oblivious to its existence. However, because it can be useful to produce more compact

code, it’s worth learning early. Let’s dive in with an example:

age = 10

type = age < 18 ? "child" : "adult"

puts "You are a " + type

The second line contains the ternary operator. It starts by assigning the result of an

expression to the variable type. The expression is age < 18 ? "child" : "adult". The

structure is as follows:

<condition> ? <result if condition is true> : <result if condition is false>

In our example, age < 18 returns true, so the first result, "child", is returned and

assigned to type. However, if age < 18 were to be false, "adult" would be returned.

Consider an alternative:

age = 10

type = 'child' if age < 18

type = 'adult' unless age < 18

puts "You are a " + type

The double comparison makes it harder to read. Another alternative is to use the

multiline if/else option:

age = 10

if age < 18

 type = 'child'

else

 type = 'adult'

end

puts "You are a " + type

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

76

The ternary operator shows its immediate benefit in its conciseness, and as it can

be used to build expressions on a single line, you can use it easily in calls to methods

or within other expressions where if statements would be invalid. Consider this even

simpler version of the first example from this section:

age = 10

puts "You are a " + (age < 18 ? "child" : "adult")

�elsif and case
Sometimes it’s desirable to make several comparisons with the same variable at the

same time. You could do this with the if statement, as covered previously:

fruit = "orange"

color = "orange" if fruit == "orange"

color = "green" if fruit == "apple"

color = "yellow" if fruit == "banana"

If you want to use else to assign something different if fruit is not equal to orange,

apple, or banana, it will quickly get messy, as you’d need to create an if block to check

for the presence of any of these words and then perform the same comparisons as

earlier. An alternative is to use elsif, meaning “else if”:

fruit = "orange"

if fruit == "orange"

 color = "orange"

elsif fruit == "apple"

 color = "green"

elsif fruit == "banana"

 color = "yellow"

else

 color = "unknown"

end

elsif blocks act somewhat like else blocks, except that you can specify a whole new

comparison expression to be performed, and if none of those match, you can specify a

regular else block to be executed.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

77

A variant of this technique is to use a case block. Our preceding example, with a case

block, becomes as follows:

fruit = "orange"

case fruit

when "orange"

 color = "orange"

when "apple"

 color = "green"

when "banana"

 color = "yellow"

else

 color = "unknown"

end

This code is similar to the if block, except that the syntax is a lot cleaner. A case

block works by processing an expression first and then by finding a contained when

block that matches the result of that expression. If no matching when block is found,

then the else block within the case block is executed instead.

case has another trick up its sleeve. As all Ruby expressions return a result, you can

make the previous example even shorter:

fruit = "orange"

color = case fruit

when "orange"

 "orange"

when "apple"

 "green"

when "banana"

 "yellow"

else

 "unknown"

end

In this example, you use a case block, but you assign the result of whichever inner

block is executed directly to color.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

78

Note  If you are familiar with the switch/case syntax in C (or a C-related
language), you might think case/when is Ruby’s equivalent. It’s very similar, but
only one “case” can be matched in Ruby, as execution does not continue through
the list of options once a match has been made.

�case pattern matching
Using the case statement and pattern matching provides an easy way to deconstruct

complex objects and use their data. It's possible to use pattern matching with case

statements. Instead of using case/when, we use case/in with the pattern following the

“in” statement:

response = { error: 'Bad Gateway', code: 502 }

case response

in { data: data, code: code }

 puts "Success #{data}, Code: #{code}"

in { error: error, code: code }

 puts "Error: #{error}, Code: #{code}"

end

Error: Bad Gateway, Code: 502

In the example, we have a response object which contains an error message and a

code. We pass the response to the case statement. Ruby checks each pattern of the case

statement until it finds a pattern that matches. Since the response matches the second

pattern structure, Ruby binds the matched parts in the hash to the variable error and

code. Next, it runs the statement after the pattern which prints the error and the code

to the screen. If no patterns match, Ruby throws a NoMatchingPattern error rather than

return nil like in a case/when statement.

As you can see, pattern matching is very useful. The best part is pattern matching

doesn’t only work with hashes. You can use it with arrays, ranges, and objects. Check out

the Ruby docs for an in-depth guide to pattern matching: https://docs.ruby-lang.

org/en/master/syntax/pattern_matching_rdoc.html.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

https://docs.ruby-lang.org/en/master/syntax/pattern_matching_rdoc.html
https://docs.ruby-lang.org/en/master/syntax/pattern_matching_rdoc.html

79

�while and until
In previous sections, you’ve performed loops using iterator methods, like so:

1.upto(5) { |number| puts number }

1

2

3

4

5

However, it’s possible to loop code in other ways. while and until allow you to loop

code based on the result of a comparison made on each loop:

x = 1

while x < 100

 puts x

 x = x * 2

end

1

2

4

8

16

32

64

In this example, you have a while block that denotes a section of code that is to be

repeated over and over while the expression x < 100 is satisfied. Therefore, x is doubled

loop after loop and printed to the screen. Once x is 100 or over, the loop ends.

until provides the opposite functionality, looping until a certain condition is met:

x = 1

until x > 99

 puts x

 x = x * 2

end

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

80

It’s also possible to use while and until in a single line setting, as with if and

unless:

i = 1

i = i * 2 until i > 1000

puts i

1024

The value of i is doubled over and over until the result is over 1000, at which point

the loop ends (1024 being 2 to the power of 10).

�Code Blocks
Code blocks have been used in several code examples in this chapter, for example:

x = [1, 2, 3]

x.each { |y| puts y }

1

2

3

The each method accepts a single following code block. The code block is defined

within the { and } symbols or, alternatively, do and end delimiters:

x = [1, 2, 3]

x.each do |y|

 puts y

end

The code between { and } or do and end is a code block—essentially an anonymous,

nameless method or function. This code is passed to the each method, which then runs

the code block for each element of the array.

It’s possible to use numbered parameters instead of an explicit variable when

defining a block:

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

81

x = [1, 2, 3]

x.each do

 puts _1

end

The new example is the same functionality but uses the number parameter _1,

which is automatically defined and assigned to the value passed to the block. Numbered

parameters are useful for situations where providing a parameter name doesn't add any

additional meaning to the code.

You can write methods of your own to handle code blocks, for example:

def each_vowel(&code_block)

 %w{a e i o u}.each { |vowel| code_block.call(vowel) }

end

each_vowel { |vowel| puts vowel }

a

e

i

o

u

each_vowel is a method that accepts a code block, as designated by the ampersand

(&) before the variable name code_block in the method definition. It then iterates over

each vowel in the literal array %w{a e i o u} and uses the call method on code_block

to execute the code block once for each vowel, passing in the vowel variable as a

parameter each time.

Note  Code blocks passed in this way result in objects that have many methods
of their own, such as call. Remember, almost everything in Ruby is an object!
(Many elements of syntax are not objects, nor are code blocks in their literal form.)

An alternate technique is to use the yield method, which automatically detects any

passed code block and passes control to it:

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

82

def each_vowel

 %w{a e i o u}.each { |vowel| yield vowel }

end

each_vowel { |vowel| puts vowel }

This example is functionally equivalent to the last, although it’s less obvious what it

does because you see no code block being accepted in the function definition. Which

technique you choose to use is up to you.

Note O nly one code block can be passed at any one time. It’s not possible to
accept two or more code blocks as parameters to a method. However, code blocks
may accept none, one, or more parameters themselves.

It’s also possible to store code blocks within variables, using a Proc:

print_parameter_to_screen = Proc.new { |x| puts x }

print_parameter_to_screen.call(100)

100

As with accepting a code block into a method, you use the Proc object’s call method

to execute it, as well as to pass any parameters in.

Note  lambda is another way to define code blocks. There are a couple of
differences between a proc and lambda. Lambdas check if the number of
parameters matches the signature. If a lambda defines two parameters and your
code provides one, you get an error. Another difference is a lambda returns just
like a Ruby method, while a proc returns from the current context. Don’t worry too
much if this doesn’t make sense right now. Lambdas and procs are an advanced
topic you can revisit when you are more comfortable with Ruby.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

83

�Other Useful Building Blocks
So far in this chapter, we’ve covered the primary built-in data classes of numbers, strings,

arrays, and hashes. These few types of objects can get you a long way and will be used in

all your programs. You’ll be looking at objects in more depth in Chapter 6, but before you

get that far, there are a few other important points you need to look at first.

�Dates and Times
A concept that’s useful to represent within many computer programs is time, in the form

of dates and times. Ruby provides a class called Time to handle these concepts.

Internally, Time stores times as a number of microseconds since the UNIX time

epoch: January 1, 1970 00:00:00 Greenwich Mean Time (GMT)/Coordinated Universal

Time (UTC). This makes it easy to compare times using the standard comparison

operators, such as < and >.

Let’s look at how to use the Time class:

puts Time.now

2020-08-01 00:00:00 +0100

Time.now creates an instance of class Time that’s set to the current time. However,

because you’re trying to print it to the screen, it’s converted into the preceding string.

You can manipulate time objects by adding and subtracting numbers of seconds to

them, for example:

puts Time.now

puts Time.now - 10

puts Time.now + 86400

2020-07-01 00:00:00 +0100

2020-06-30 23:59:50 +0100

2020-07-02 00:00:00 +0100

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

84

In the first example, you print the current time, and then the current time minus

10 seconds, and then the current time with 86,400 seconds (exactly one day) added

on. Because times can be manipulated so easily in Ruby using normal mathematical

operators, but because people prefer to work with minutes, hours, and days rather than

seconds all of the time, some developers extend the Integer class with some helper

methods to make time manipulation even easier:

class Integer

 def seconds

 self

 end

 def minutes

 self * 60

 end

 def hours

 self * 60 * 60

 end

 def days

 self * 60 * 60 * 24

 end

end

puts Time.now

puts Time.now + 10.minutes

puts Time.now + 16.hours

puts Time.now - 7.days

2020-07-01 00:00:00 +0100

2020-07-01 00:10:00 +0100

2020-07-01 16:00:00 +0100

2020-06-24 00:00:00 +0100

Don’t worry if this code seems confusing and unfamiliar, as we’ll be covering this

type of technique more in the following chapters. Do note, however, the style used in the

final puts statements. It’s easy to manipulate dates with these helpers!

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

85

The Time class also allows you to create Time objects based on arbitrary dates:

year = 2020

month = 1

day = 16

hour = 12

min = 57

sec = 10

msec = 42

Time.local(year, month, day, hour, min, sec, msec)

The preceding code creates a Time object based on the current (local) time zone. All

arguments from month onward are optional and take default values of 1 or 0. You can

specify months numerically (between 1 and 12) or as three-letter abbreviations of their

English names:

Time.gm(year, month, day, hour, min, sec, msec)

The preceding code creates a Time object based on GMT/UTC. Argument

requirements are the same as for Time.local:

Time.utc(year, month, day, hour, min, sec, msec)

The preceding code is identical to Time.gm, although some might prefer this

method’s name.

You can also convert Time objects to an integer representing the number of seconds

since the UNIX time epoch:

Time.gm(2020, 02).to_i

1580515200

Likewise, you can convert epoch times back into Time objects. This technique can be

useful if you want to store times and dates in a file or a format where only a single integer

is needed, rather than an entire Time object:

epoch_time = Time.gm(2020, 2).to_i

t = Time.at(epoch_time)

puts t.year, t.month, t.day

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

86

2020

5

1

As well as demonstrating the conversions of times between Time objects and epoch

times, this code shows that Time objects also have methods that can be used to retrieve

certain sections of a date/time. A list of these methods is shown in Table 3-6.

Table 3-6.  Time Object Methods Used to Access Date/Time Attributes

Method What the Method Returns

hour A number representing the hour in 24-hour format (e.g., 21 for 9 p.m.)

min The number of minutes past the hour

sec The number of seconds past the minute

usec The number of microseconds past the second (there are 1,000,000 microseconds per

second)

day The number of the day in the month

mday Synonym for the day method, considered to be “month” day

wday The number of the day in terms of the week (Sunday is 0, Saturday is 6)

yday The number of the day in terms of the year

month The number of the month of the date (e.g., 11 for November)

year The year associated with the date

zone Returns the name of the time zone associated with the time

utc? Returns true or false depending on if the time/date is in the UTC/GMT time zone or not

gmt? Synonym for the utc? method for those who prefer to use the term GMT

Note that these methods are for retrieving attributes from a date or time and cannot

be used to set them. If you want to change elements of a date or time, you’ll either need

to add or subtract seconds or construct a new Time object using Time.gm or Time.local.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

87

Note  In Chapter 16, you’ll look at a Ruby gem called Chronic that lets you specify
dates and times in a natural, English language form and have them converted to
valid Time objects.

�Ranges
Sometimes it’s useful to be able to store the concept of a list, instead of its actual

contents. For example, if you want to represent all the letters between A and Z, you could

begin to create an array, like so:

x = ['A', 'B', 'C', 'D', 'E' .. and so on..]

It would be nice, though, merely to store the concept of “everything between A and

Z.” With a range, you can do that. A range is represented in this way:

('A'..'Z')

The range class offers a simple way to convert a range into an array with to_a. This

one-line example demonstrates

('A'..'Z').to_a.each { |letter| print letter }

It converts the range 'A' to 'Z' into an array with 26 elements, each one containing a

letter of the alphabet. It then iterates over each element using each, which you first used

in the previous section on arrays, and passes the value into letter, which is then printed

to the screen.

Note  Remember that as you’ve used print, rather than puts, the letters are
printed one after another on the same line, whereas puts starts a new line every
time it’s used.

Even though working with arrays is perhaps more obvious, the range class does have

an each method of its own, so while there is no array involved, the preceding example

could be rewritten as follows:

('A'..'Z').each { |letter| print letter }

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

88

The range class comes with other methods baked in too. It might also be useful to

test if something is included in the set of objects specified by the range. For example,

with your ('A'..'Z') range, you can check to see if R is within the range, using the

include? method, like so:

('A'..'Z').include?('R')

=> true

Being a lowercase letter, however, r is not included:

('A'..'Z').include?('r')

=> false

You can also use ranges as array indices to select multiple elements at the same time:

a = [2, 4, 6, 8, 10, 12]

p a[1..3]

[4, 6, 8]

Similarly, you can use them to set multiple elements at the same time (and following

on from the current contents of a):

a[1..3] = ["a", "b", "c"]

p a

[2, "a", "b", "c", 10, 12]

You can use ranges with objects belonging to many different classes, including the

ones you create yourself.

�Symbols
Symbols are abstract references represented, typically, by a short string prefixed with a

colon. Examples include :blue, :good, and :name. Sadly, there is no succinct, easy-to-

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

89

learn trick to symbols, so you’ll need to read this whole section—maybe even more than

once—to get it to stick. It certainly took me a while to pick them up when I started with

Ruby, but they are used so heavily by Rubyists that it’s worth the effort!

Let’s jump straight into an illustrative example:

current_situation = :good

puts "Everything is fine" if current_situation == :good

puts "PANIC!" if current_situation == :bad

Everything is fine

In this example, :good and :bad are symbols. Symbols don’t contain values or objects,

like variables do. Instead, they’re used as a consistent name within code. For example, in

the preceding code, you could easily replace the symbols with strings, like so:

current_situation = "good"

puts "Everything is fine" if current_situation == "good"

puts "PANIC!" if current_situation == "bad"

This gives the same result, but isn’t as efficient. In this example, every mention of

“good” and “bad” creates a new object stored separately in memory, whereas symbols

are single reference values that are only initialized once. In the first code example, only

:good and :bad exist, whereas in the second example, you end up with the full strings of

"good", "good", and "bad" taking up memory.

Symbols also result in cleaner code in many situations. Often you’ll use symbols to

give method parameters a name. Having varying data as strings and fixed information as

symbols results in easier-to-read code.

You might want to consider symbols to be literal constants that have no value, but

whose name is the most important factor. If you assign the :good symbol to a variable

and compare that variable with :good in the future, you’ll get a match. This makes

symbols useful in situations where you don’t necessarily want to store an actual value,

but a concept or an option.

Symbols are particularly useful when creating hashes and you want to have a

distinction between keys and values, for example:

s = { key: "value" }

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

90

This technique can also be useful when there’s a specification or consistency in

which key names to use:

person1 = { name: "Fred", age: 20, gender: :male }

person2 = { name: "Laura", age: 23, gender: :female }

Many methods provided by Ruby classes use this style to pass information into

that method (and often for return values). You’ll see examples of this construction

throughout this book.

Think of symbols as less flexible, straitjacketed strings that are used as identifiers. If it

still doesn’t make complete sense to you, keep an eye out for where we use symbols later

on in the book and refer back to this section.

�Converting Objects to Other Classes
Numbers, strings, symbols, and other types of data are just objects belonging to various

classes. Numbers belong to Integer and/or Float classes. Strings are objects of the

String class, symbols are objects of the Symbol class, and so on.

In most cases, you can convert objects between the different classes, so a number

can become a string and a string can become a number. Consider the following:

puts "12" + "10"

puts 12 + 10

1210

22

The first line joins two strings, which happen to contain representations of numbers,

together, resulting in 1210. The second line adds two numbers together, resulting in 22.

However, converting these objects to representations in different classes is possible:

puts "12".to_i + "10".to_i

puts 12.to_s + 10.to_s

22

1210

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

91

The tables have been turned with the to_ methods. The String class provides

the to_i and to_f methods to convert a string to an object of class Integer or Float,

respectively. The String class also offers to_sym, which converts a string into a symbol.

Symbols provide the inverse, with a to_s method to convert them into strings.

Likewise, the number classes support to_s to convert themselves into textual

representations, as well as to_i and to_f to convert to and between integers and floats.

�Summary
In this chapter, you’ve looked at the key building blocks of all computer programs—data,

expressions, and logic—and discovered how to implement them with Ruby. The topics in

this chapter provide a critical foundation for every other chapter in this book, as almost

every future line of your Ruby code will contain an expression, an iterator, or some sort

of logic.

Note  It’s important to remember that due to the depth of Ruby, I haven’t tried to
cover every single combination of classes and methods here. There’s more than
one way to do anything in Ruby, and we’ve looked at the easiest routes first before
moving on to more advanced techniques later in the book.

You have not yet exhausted the different types of data within Ruby. Objects and

classes, as covered in Chapter 2, are actually types of data too, although they might

appear not to be. In Chapter 6, you’ll directly manipulate objects and classes in a similar

way to how you’ve manipulated the numbers and strings in this chapter, and the bigger

picture will become clear.

Before moving on to Chapter 4, where you’ll develop a full but basic Ruby program,

let’s reflect on what we’ve covered so far:

•	 Variable: A placeholder that can hold (or refer to) an object—from

numbers, to text, to arrays, to objects of your own creation. (Variables

were covered in Chapter 2, but this chapter extended your knowledge

of them.)

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

92

•	 Operator: Something that’s used in an expression to manipulate

objects such as + (plus), - (minus), * (multiply), and / (divide). You

can also use operators to do comparisons, such as with <, >, and &&.

•	 Integer: A whole number, such as 5 or 923737.

•	 Float: A number with a decimal portion, such as 1.0 or 3.141592.

•	 Character: A single letter, digit, unit of space, or typographic symbol

(punctuation and the like).

•	 String: A collection of characters such as Hello, world! or Ruby is

cool. In Ruby, we represent strings by enclosing them in quotation

marks, such as "Hello" or 'Hello'.

•	 Constant: A variable with a fixed value. Constant variable names

begin with a capital letter.

•	 Iterator: A special method such as each, upto, or times that steps

through a list element by element. This process is called iteration,

and each, upto, and times are iterator methods.

•	 Interpolation: The mixing of expressions into strings.

•	 Array: A collection of objects or values with a defined, regular order.

•	 Hash: A collection of objects or values associated with keys. A key can

be used to find its respective value inside a hash, but items inside a

hash have no specific order. It’s a lookup table, much like the index of

a book or a dictionary.

•	 Regular expression: A way to describe patterns in text that can be

matched and compared against. If you want to play with these and

their operation, visit http://rubular.com/ for a handy tool.

•	 Flow control: The process of managing which sections of code to

execute based on certain conditions and states.

•	 Code block: A section of code, often used as an argument to an

iterator method, that has no discrete name and that is not a method

itself, but that can be called and handled by a method that receives

it as an argument. Code blocks can also be stored in variables as

objects of the Proc class (or as lambdas).

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

http://rubular.com/

93

•	 Range: The representation for an entire range of values between a

start point and an endpoint.

•	 Symbol: A unique reference defined by a string prefixed with a colon

(e.g., :blue or :name). Symbols don’t contain values as variables do,

but can be used to maintain a consistent reference within code. They

can be considered as identifiers or constants that stand alone in what

they abstractly represent.

Now it’s time to put together some of these basic elements and develop a fully

working program, which you’ll do in Chapter 4.

Chapter 3 Ruby’s Building Blocks: Data, Expressions, and Flow Control

95
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_4

CHAPTER 4

Developing Your First
Ruby Application
Up to this point, we’ve focused on covering the basics of the Ruby language and how

it works at the ground level. In this chapter, we’ll move into the world of real software

development and develop a complete, though very basic, Ruby application with a basic

set of features. Once we’ve developed and tested the basic application, we’ll look at

different ways to extend it to become more useful. On our way, we’ll cover some new

facets of development that haven’t been mentioned so far.

First, let’s look at the basics of source code organization before moving on to actual

programming.

�Working with Source Code Files
So far in this book, we’ve focused on using the irb immediate Ruby prompt to learn

about the language. However, for developing anything you wish to reuse over and over,

it’s essential to store the source code in a file (or often multiple files) that can be kept on

your hard drive, sent over the Internet, kept on a drive, and so forth.

The mechanism by which you create and manipulate source code files on your

system varies by operating system and personal preference. On Windows, you might be

familiar with the included Notepad software for creating and editing text files. At a Linux

prompt, you might be using vi, Emacs, pico, or nano. Mac users have TextEdit or Xcode at

their disposal. Whatever you use, you need to be able to create new files and save them

as plain text so that Ruby can use them properly. In the next few sections, you’re going to

look at some available tools that tie in well with Ruby development.

https://doi.org/10.1007/978-1-4842-6324-2_4#DOI

96

�Creating a Test File
The first step to developing a Ruby application is to get familiar with your text editor. If

you’re already familiar with text editors and how they relate to writing and saving source

code, skip down to the section titled “A Simple Source Code File.”

�Visual Studio Code

In 2015, Microsoft released a free, cross-platform code editor called Visual Studio Code—

not to be confused with their professional Visual Studio suite (Figure 4-1). At https://

code.visualstudio.com/, you can download Visual Studio Code for Windows, Mac OS

X, and Linux, and quickly install and use it as an editor for your future Ruby code.

Figure 4-1.  Using Visual Studio Code

Chapter 4 Developing Your First Ruby Application

https://code.visualstudio.com/
https://code.visualstudio.com/

97

After installing and running Visual Studio Code (as seen in Figure 4-1), you can

simply type or paste Ruby code and use the File ➤ Save menu option to save your text to

a location on your drive. It would probably be good to create a folder called ruby within

your home or user folder and save your initial Ruby source code there (using a filename

such as myapp.rb), as this is what the instructions assume in the next section.

If you would prefer a full IDE (integrated development environment) experience that

goes beyond what even Visual Studio Code offers, you could use RubyMine by JetBrains,

although it is a commercial product. You can find it at www.jetbrains.com/ruby/.

�Alternatives to Linux

Visual Studio Code is available for Linux, but desktop Linux distributions typically

come with at least one text editor already which you may prefer to use. If you’re working

entirely from the shell or terminal, you might be familiar with vim, Emacs, pico, or

nano, and all of these are suitable for editing Ruby source code. Some editors (such as

vi and Emacs) have extensions available that are specifically designed to make working

with Ruby easier. If you’re using Linux with a graphical interface, you might have Kate

(KDE Advanced Text Editor) and/or gedit (GNOME Editor) available. All the preceding

are great text and source code editors. Choose one and learn how to use it, if you don’t

choose to use Visual Studio Code or another IDE.

At this stage, it would be a good idea to create a folder in your home directory called

“ruby”, or something similar, so that you can save your Ruby code there and have it in an

easily remembered place.

�A Simple Source Code File
Once you’ve got an environment where you can edit and save text files, enter the

following code:

x = 2

print "This program is running okay if 2 + 2 = #{x + x}"

Note I f this code looks like nonsense to you, you’ve skipped too many chapters.
Head back to Chapter 3! This chapter requires full knowledge of everything
covered in Chapter 3.

Chapter 4 Developing Your First Ruby Application

http://www.jetbrains.com/ruby/

98

Save the code with a filename of example1.rb in a folder or directory of your choice.
It’s advisable that you create a folder called ruby located somewhere that’s easy to find.
On Windows, this might be directly off of your C drive, and on OS X or Linux, this could
be a folder located in your home directory.

Note  .rb is the de facto standard file extension for Ruby files, much like .php
is standard for PHP, .txt is common for text files, and .jpg is standard for JPEG
images.

Now you’re ready to run the code.

�Running Your Source Code
Once you’ve created the basic Ruby source code file, example1.rb, you need to get Ruby
to execute it. As always, the process by which to do this varies by operating system. Read
the particular following section that matches your operating system. If your operating
system isn’t listed, the OS X and Linux instructions are most likely to match those for
your platform.

Whenever this book asks you to “run” your program, this is what you’ll be doing each
time.

Note E ven though you’re going to be developing an application in this chapter,
there are still times when you’ll want to use irb to follow along with the tests or
basic theory work throughout the chapter. Use your judgment to jump between
these two methods of development. irb is extremely useful for testing small
concepts and short blocks of code without the overhead of jumping back and forth
between a text editor and the Ruby interpreter.

�Windows
Running Ruby from the command line provides the most flexibility and the most
predictable behavior. To do this, load the command prompt using the item in the Start
menu within the Ruby menu. This will ensure that the ruby command will work directly
from the prompt. Once the command prompt is loaded, you’ll need to navigate to the

folder containing example1.rb using the cd command and then type ruby example1.rb.

Chapter 4 Developing Your First Ruby Application

99

�Mac OS X/macOS

The simplest method to run Ruby applications on OS X is from Terminal, much in

the same way as irb is run. Terminal was explained in Chapter 1. If you followed the

preceding instructions, continue like so:

	 1.	 Launch Terminal (found in Applications/Utilities, or use

Spotlight to launch it).

	 2.	 Use cd to navigate to the folder where you placed example1.rb,

like so: cd ~/ruby. This tells Terminal to take you to the ruby

folder located in your home user folder.

	 3.	 Type ruby example1.rb and press Enter to execute the example1.

rb Ruby script.

	 4.	 If you get an error such as ruby: No such file or directory

​-- example1.rb (LoadError), you aren’t in the same folder as

the example1.rb source file, and you need to establish where you

have saved it.

If you get a satisfactory response from example1.rb, you’re ready to move on to the

“Our Application: A Text Analyzer” section.

Alternatively, if you’re using Visual Studio Code or Sublime Text, there are other ways

you can run your code directly from the editor. However, it may not always be an option,

so it’s essential to at least be familiar with how to run Ruby scripts from the terminal too.

�Linux and Other UNIX-Based Systems

In Linux or other UNIX-based systems, you run your Ruby applications from the shell

(i.e., within a terminal window) in the same way that you ran irb. The process to run irb

was explained in Chapter 1, so if you’ve forgotten how to get that far, you need to recap

before continuing, like so:

	 1.	 Launch your terminal emulator (such as xterm or, on Ubuntu,

simply “Terminal”) so you get a Linux shell/command prompt.

	 2.	 Navigate to the directory where you placed example1.rb using

the cd command (e.g., cd ~/ruby takes you to the ruby directory

located directly under your home directory, usually /home/<your

username>/).

Chapter 4 Developing Your First Ruby Application

100

	 3.	 Type ruby example1.rb and press Enter to make Ruby execute

the example1.rb script.

If you get a satisfactory response from example1.rb, you’re ready to move on.

TEXT EDITORS VS. SOURCE CODE EDITORS

Source code is basically the same as plain text, and although you can write your code in a

general text editor, some developers prefer to use a specialist source code editor (typically

known as an IDE).

RubyMine is an example of IDEs specifically created for Ruby developers. It allows you to edit

text, as with any other text editor, but both offer extended features such as source code syntax

coloring and the ability to run code directly from the editor. Sublime Text and Visual Studio

Code look like regular text editors, but also offer some IDE-like functionality, including source

code syntax coloring.

Some developers find source code syntax coloring an invaluable feature, as it makes their

code easier to read. Variable names, expressions, string literals, and other elements of your

source code are all given different colors, which makes it easy to pick them out.

Whether you choose an IDE or a basic text editor depends on your own preference, but it’s

worth trying both. Many developers prefer the freedom of a regular text editor and then

running their Ruby programs from the command line, whereas others prefer to work entirely

within a single environment. This book will not assume, however, that you are using an IDE, so

you may have a separate learning curve for picking up the IDE’s functions as well as Ruby’s in

general.

�Our Application: A Text Analyzer
The application you’re going to develop in this chapter will be a text analyzer. Your

Ruby code will read in text supplied in a separate file, analyze it for various patterns

and statistics, and print out the results for the user. It’s not a 3D graphical adventure

nor a fancy website, but text processing programs are the bread and butter of systems

administration and most application development. They can be vital for parsing log files

and user-submitted text on websites and manipulating other textual data.

Chapter 4 Developing Your First Ruby Application

101

Ruby is well suited for text and document analysis with its regular expression

features, along with the ease of use of scan and split, and you’ll be using these heavily

in your application.

Note  With this application, you’ll be focusing on implementing the features
quickly and pragmatically, rather than developing an elaborate object-oriented
structure, any documentation, or a testing methodology. The sole aim of this project
is to build a simple script that performs a number of operations in sequence. I’ll be
covering object orientation and its usage in larger programs in depth in Chapter 6,
and documentation and testing are covered in Chapter 8.

�Required Basic Features
Your text analyzer will provide the following basic statistics:

•	 Character count

•	 Character count (excluding spaces)

•	 Line count

•	 Word count

•	 Sentence count

•	 Paragraph count

•	 Average number of words per sentence

•	 Average number of sentences per paragraph

In the last two cases, the statistics are easily calculated from each other. That is, once

you have the total number of words and the total number of sentences, it becomes a

matter of a simple division to work out the average number of words per sentence.

Chapter 4 Developing Your First Ruby Application

102

�Building the Basic Application
When starting to develop a new program, it’s useful to think of the key steps involved. In

the past, it was common to draw flow charts to show how the operation of a computer

program would flow, but it’s easy to experiment, change things about, and remain agile

with modern tools such as Ruby. Let’s outline the basic steps as follows:

	 1.	 Load a file containing the text or document you want to analyze.

	 2.	 As you load the file line by line, keep a count of how many lines

there were (one of your statistics taken care of).

	 3.	 Put the text into a string and measure its length to get your

character count.

	 4.	 Temporarily remove all whitespace and measure the length of the

resulting string to get the character count excluding spaces.

	 5.	 Split out all the whitespace to find out how many words there are.

	 6.	 Split on full stops to find out how many sentences there are.

	 7.	 Split on double newlines to find out how many paragraphs there

are.

	 8.	 Perform calculations to work out the averages.

Create a new, blank Ruby source file and save it as analyzer.rb in your Ruby folder.

As you work through the next few sections, you’ll be able to fill it out.

�Obtaining Some Dummy Text
Before you start to code, the first step is to get some test data that your analyzer can

process. The first chapter of Oliver Twist is an ideal piece of text to use, as it’s copyright-

free and easy to obtain. It’s also of a reasonable length. You can find the text at https://

raw.github.com/Apress/beginnning-ruby-4e/master/oliver.txt for you to copy into

a local text file. Save the file in the same folder you saved example1.rb, and call it text.txt.

Your application will read from text.txt by default (although you’ll make it more dynamic

and able to accept other sources of data later on).

Chapter 4 Developing Your First Ruby Application

https://raw.github.com/Apress/beginnning-ruby-4e/master/oliver.txt
https://raw.github.com/Apress/beginnning-ruby-4e/master/oliver.txt

103

Tip I f the preceding web page is unavailable at the time of reading, use
your favorite search engine to search for “twist workhouse rendered profound
thingummy” (without the quotation marks) and you’re guaranteed to find it.
Alternatively, use any large block of text you can obtain.

If you’re using the Oliver Twist text and want your results to match up roughly with

those given as examples throughout this chapter, make sure you only copy and paste the

text including and between these sections:

Among other public buildings in a certain town, which for many

reasons it will be prudent to refrain from mentioning

and

Oliver cried lustily. If he could have known that he was an

orphan, left to the tender mercies of church-wardens and

overseers, perhaps he would have cried the louder.

�Loading Text Files and Counting Lines
Now it’s time to get coding! The first step is to load the file. Ruby provides a

comprehensive set of file manipulation methods via the File class. Whereas other

languages can make you jump through hoops to work with files, Ruby keeps the interface

simple. Here’s some code that opens up your text.txt file:

File.open("text.txt").each { |line| puts line }

Type this into analyzer.rb and run the code. If text.txt is in the current directory,

the result is that you’ll see the entire text file flying up the screen.

You’re asking the File class to open up text.txt, and then, much like with an array,

you can call the each method on the file directly, resulting in each line being passed to

the inner code block one by one, where puts sends the line as output to the screen. (In

Chapter 9, you’ll look at how file access and manipulation work in more detail, along

with more robust techniques than are used in this chapter!)

Chapter 4 Developing Your First Ruby Application

104

Edit the code to look like this instead:

line_count = 0

File.open("text.txt").each { |line| line_count += 1 }

puts line_count

You initialize line_count to store the line count and then open the file and iterate

over each line while incrementing line_count by 1 each time. When you’re done, you

print the total to the screen (approximately 119 if you’re using the Oliver Twist chapter).

You have your first statistic!

You’ve counted the lines, but still don’t have access to the contents of the file to

count the words, paragraphs, sentences, and so forth. This is easy to fix. Let’s change the

code a little and add a variable, text, to collect the lines together as one as we go:

text = ""

line_count = 0

File.open("text.txt").each do |line|

 line_count += 1

 text += line

end

puts "#{line_count} lines"

Note R emember that using { and } to surround blocks is the standard style for
single-line blocks, but using do and end is preferred for multiline blocks.

Compared to your previous attempt, this code introduces the text variable and adds

each line onto the end of it in turn. When the iteration over the file has finished—that is,

when you run out of lines—text contains the entire file in a single string ready for you to use.

That’s a simple-looking way to get the file into a single string and count the lines, but

File also has other methods that can be used to read files more quickly. For example,

you can rewrite the preceding code like this:

lines = File.readlines("text.txt")

line_count = lines.size

text = lines.join

puts "#{line_count} lines"

Chapter 4 Developing Your First Ruby Application

105

Much simpler! File implements a readlines method that reads an entire file into an array,

line by line. You can use this both to count the lines and join them all into a single string.

�Counting Characters
The second easiest statistic to work out is the number of characters in the file. As you’ve

collected the entire file into the text variable, and text is a string, you can use the

length method that all strings supply to get the exact size of the file, and therefore the

number of characters.

To the end of the previous code in analyzer.rb, add the following:

total_characters = text.length

puts "#{total_characters} characters"

If you ran analyzer.rb now with the Oliver Twist text, you’d get output like this:

119 lines

6289 characters

Note  Don’t worry about your results being identical to those shown in this
chapter. As long as they’re roughly in the same ballpark, you’re on the right track.

The second statistic you wanted to get relating to characters was a character total

excluding whitespace. If you can remember back to Chapter 3, strings have a gsub method

that performs a global substitution (like a search and replace) upon the string, for example:

"this is a test".gsub(/t/, 'X')

Xhis is a XesX

You can use gsub to eradicate the spaces from your text string in the same way and

then use the length method to get the length of the newly “de-spacified” text. Add the

following code to analyzer.rb:

total_characters_nospaces = text.gsub(/\s+/, '').length

puts "#{total_characters_nospaces} characters excluding spaces"

Chapter 4 Developing Your First Ruby Application

106

If you run analyzer.rb in its current state against the Oliver Twist text, the results

should be similar to the following:

119 lines

6289 characters

5142 characters (excluding spaces)

�Counting Words
A common feature offered by word processing software is a “word counter.” All it does

is count the number of complete words in your document or a selected area of text.

This information is useful to work out how many pages the document will take up when

printed. Many assignments also have requirements for a certain number of words, so

knowing the number of words in a piece of text is certainly useful.

You can approach this feature in a couple of ways:

	 1.	 Count the number of groups of contiguous letters using scan to

create an array of those groups and then use the length of the

array.

	 2.	 Split the text on whitespace and count the resulting fragments

using split and size.

Let’s look at each method in turn to see what’s best. Recall from Chapter 3 that scan

works by iterating over a string of text and finding certain patterns over and over, for

example:

puts "this is a test".scan(/\w/).join

thisisatest

In this example, scan looked through the string for anything matching \w, a special

term representing all alphanumeric characters (and underscores), and placed them into

an array that you’ve joined together into a string and printed to the screen.

You can do the same with groups of alphanumeric characters. In Chapter 3, you

learned that to match multiple characters with a regular expression, you could follow the

character with +. So let’s try again:

puts "this is a test".scan(/\w+/).join('-')

Chapter 4 Developing Your First Ruby Application

107

this-is-a-test

This time, scan has looked for all groups of alphanumeric characters and placed
them into the array that you’ve then joined together into a string using - as the
separation character.

To get the number of words in the string, you can use the length or size array
methods to count the number of elements rather than join them together:

puts "this is a test".scan(/\w+/).length

4

Excellent! So what about the split approach?
The split approach demonstrates a core tenet of Ruby (as well as some other

languages, particularly Perl): there’s always more than one way to do it! Analyzing
different methods to solve the same problem is a crucial part of becoming a good
programmer, as different methods can vary in their efficacy.

Let’s split the string by spaces and get the length of the resulting array, like so:

puts "this is a test".split.length

4

As it happens, by default, split will split by whitespace (single or multiple characters
of spaces, tabs, newlines, and so on), and that makes this code shorter and easier to read
than the scan alternative.

So what’s the difference between these two methods? Simply, one is looking for
words and returning them to you for you to count, and the other is splitting the string by
that which separates words—whitespace—and telling you how many parts the string was
broken into. Interestingly, these two approaches can yield different results:

text = "First-class decisions require clear-headed thinking."
puts "Scan method: #{text.scan(/\w+/).length}"
puts "Split method: #{text.split.length}"

Scan method: 7

Split method: 5

Chapter 4 Developing Your First Ruby Application

108

Interesting! The scan method is looking through for all blocks of alphanumeric

characters, and, sure enough, there are seven in the sentence. However, if you split

by spaces, there are five words. The reason is the hyphenated words. Hyphens aren’t

“alphanumeric,” so scan is seeing “first” and “class” as separate words.

Returning to analyzer.rb, let’s apply what we’ve learned here. Add the following:

word_count = text.split.length

puts "#{word_count} words"

Running the complete analyzer.rb gets these results:

1119 lines

6289 characters

5142 characters (excluding spaces)

1111 words

�Counting Sentences and Paragraphs
Once you understand the logic of counting words, counting the sentences and

paragraphs becomes easy. Rather than splitting on whitespace, sentences and

paragraphs have different splitting criteria.

Sentences end with full stops, question marks, and exclamation marks. They can

also be separated with dashes and other punctuation, but we won’t worry about these

rare cases here. The split is simple. Instead of asking Ruby to split the text on one type of

character, you simply ask it to split on any of three types of characters, like so:

sentence_count = text.split(/\.|\?|!/).length

The regular expression looks odd here, but the full stop, question mark, and

exclamation mark are clearly visible. Let’s look at the regular expression directly:

/\.|\?|!/

The forward slashes at the start and the end are the usual delimiters for a regular

expression, so those can be ignored. The first section is \., and this represents a full stop.

The reason why you can’t just use . without the backslash in front is because . represents

“any character” in a regular expression (as covered in Chapter 3), so it needs to be escaped

Chapter 4 Developing Your First Ruby Application

109

with the backslash to identify itself as a literal full stop. This also explains why the question

mark is escaped with a backslash, as a question mark in a regular expression usually means

“zero or one instances of the previous character”—also covered in Chapter 3. The ! is not

escaped, as it has no other meaning in terms of regular expressions.

The pipes (| characters) separate the three main characters, which means they’re

treated separately so that split can match one or another of them. This is what allows

the split to split on periods, question marks, and exclamation marks all at the same time.

You can test it like so:

puts "Test code! It works. Does it? Yes.".split(/\.|\?|!/).length

4

Paragraphs can also be split apart with regular expressions. Whereas paragraphs in a

printed book, such as this one, tend not to have any spacing between them, paragraphs

that are typed on a computer typically do, so you can split by a double newline (as

represented by the special combination \n\n—simply, two newlines in succession) to get

the paragraphs separated, for example:

text = %q{

This is a test of

paragraph one.

This is a test of

paragraph two.

This is a test of

paragraph three.

}

puts text.split(/\n\n/).length

3

Let’s add both these concepts to analyzer.rb:

paragraph_count = text.split(/\n\n/).length

puts "#{paragraph_count} paragraphs"

Chapter 4 Developing Your First Ruby Application

110

sentence_count = text.split(/\.|\?|!/).length

puts "#{sentence_count} sentences"

�Calculating Averages
The final statistics required for your basic application are the average number of words
per sentence and the average number of sentences per paragraph. You already have the
paragraph, sentence, and word counts available in the variables word_count, paragraph_
count, and sentence_count, so only basic arithmetic is required, like so:

puts "#{sentence_count / paragraph_count} sentences per paragraph
(average)"
puts "#{word_count / sentence_count} words per sentence (average)"

The calculations are so simple that they can be interpolated directly into the output
commands rather than pre-calculated. When run now, we’d see this:

119 lines
6289 characters
5142 characters excluding spaces
1111 words
20 paragraphs
45 sentences
2 sentences per paragraph (average)

24 words per sentence (average)

Note T he astute reader will notice that we’re dividing an integer by an integer
in the preceding code—thus resulting in integer division—without first converting
the numbers to floating point numbers to gain accurate division (recall from
Chapter 2 that 10 / 3 == 3, but 10.0 / 3 == 3.3333333333333). In this
case, integer division is fine, as it makes little sense to say that there are, say, 2.8
sentences per paragraph on average—it’s nicer just to see “3.”

Chapter 4 Developing Your First Ruby Application

111

�The Source Code So Far
You’ve been updating the source code as you’ve gone along, and in each case, you’ve
put the logic next to the puts statement that shows the result to the user. However, for
the final version of your basic application, it would be tidier to separate the logic from
the presentation a little and put the calculations in a separate block of code before
everything is printed to the screen.

There are no logic changes, but the finished source for analyzer.rb looks a little
cleaner this way:

lines = File.readlines("text.txt")
line_count = lines.size
text = lines.join
word_count = text.split.length
character_count = text.length
character_count_nospaces = text.gsub(/\s+/, '').length
paragraph_count = text.split(/\n\n/).length
sentence_count = text.split(/\.|\?|!/).length

puts "#{line_count} lines"
puts "#{character_count} characters"
puts "#{character_count_nospaces} characters excluding spaces"
puts "#{word_count} words"
puts "#{paragraph_count} paragraphs"
puts "#{sentence_count} sentences"
puts "#{sentence_count / paragraph_count} sentences per paragraph
(average)"
puts "#{word_count / sentence_count} words per sentence (average)"

When run, the result will be somewhat like the following:

1119 lines
6289 characters
5142 characters excluding spaces
1111 words
20 paragraphs
45 sentences
2 sentences per paragraph (average)

24 words per sentence (average)

Chapter 4 Developing Your First Ruby Application

112

If you’ve made it this far and everything’s making sense, congratulations are due. Let’s

look at how to extend our application a little further with some more interesting statistics.

�Adding Extra Features
Your analyzer has a few basic functions, but it’s not particularly interesting. Line,

paragraph, and word counts are useful statistics, but with the power of Ruby, you

can extract significantly more interesting data from the text. The only limit is your

imagination, but in this section, you’ll look at a couple other features you can

implement, and how to do so.

�Percentage of “Useful” Words
Most written material, including this very book, contains a large number of words that,

although providing context and structure, are not directly useful or interesting. In the

last sentence, the words that, and, are, and or are not of particular interest, even if the

sentence would make less sense to a human without them.

These words are typically called stop words and are often ignored by computer

systems whose job is to analyze and search through text, because they aren’t words

most people are likely to be searching for (e.g., as opposed to nouns). Google is a perfect

example of this, as it doesn’t want to have to store information that takes up space and

that’s generally irrelevant to searches.

Note  For more information about stop words, including links to complete lists,
visit https://en.wikipedia.org/wiki/Stop_words.

It can be argued that more “interesting” text should have a lower percentage of stop

words and a higher percentage of useful or interesting words. You can easily extend your

application to work out the percentage of non-stop words in the supplied text.

The first step is to build up a list of stop words. There are hundreds of possible stop

words, but you’ll start with just a handful. Let’s create an array to hold them:

stopwords = %w{the a by on for of are with just but and to the my I has

some in}

Chapter 4 Developing Your First Ruby Application

https://en.wikipedia.org/wiki/Stop_words

113

This code results in an array of stop words being assigned to the stopwords variable.

Tip I n Chapter 3, you saw arrays being defined like so: x = ['a', 'b', 'c'].
However, like many languages, Ruby has a shortcut that builds arrays quickly with
string-separated text. This segment can be shortened to the equivalent x = %w{a
b c}, as demonstrated in the preceding stop word code.

For demonstration purposes, let’s write a small, separate program to test the
concept:

text = %q{Los Angeles has some of the nicest weather in the country.}
stopwords = %w{the a by on for of are with just but and to the my in I has
some}

words = text.scan(/\w+/)
keywords = words.select { |word| !stopwords.include?(word) }

puts keywords.join(' ')

When you run this code, you get the following result:

Los Angeles nicest weather country

Cool, right? First, you put some text into the program and then the list of stop words.
Next, you get all the words from text into an array called words. Then you get to the
magic:

keywords = words.select { |word| !stopwords.include?(word) }

This line first takes your array of words, words, and calls the select method with a
block of code to process for each word (like the iterators you played with in Chapter 3).
The select method is available to all arrays and hashes that return the elements of that
array or hash that match the expression in the code block.

In this case, the code in the code block takes each word via the variable word and
asks the stopwords array whether it includes any elements equal to word. This is what
stopwords.include?(word) does.

The exclamation mark (!) before the expression negates the expression (an
exclamation mark negates any Ruby expression). The reason for this is you don’t want to

select words that are in the stopwords array. You want to select words that aren’t.

Chapter 4 Developing Your First Ruby Application

114

In closing, then, you select all elements of words that are not included in the

stopwords array and assign them to keywords. Don’t read on until that makes sense, as

this type of single-line construction is common in Ruby programming.

After that, working out the percentage of non-stop words to all words uses some

basic arithmetic:

((keywords.length.to_f / words.length.to_f) * 100).to_i

The reason for the .to_f’s is so that the lengths are treated as floating decimal point

numbers, and the percentage is worked out more accurately. When you work it up to the

real percentage (out of 100), you can convert back to an integer once again.

Here’s a look at how we can bring these concepts together with our other program

fragments so far:

stopwords = %w{the a by on for of are with just but and to the my I has

some in}

lines = File.readlines("text.txt")

line_count = lines.size

text = lines.join

Count the words, characters, paragraphs and sentences

word_count = text.split.length

character_count = text.length

character_count_nospaces = text.gsub(/\s+/, '').length

paragraph_count = text.split(/\n\n/).length

sentence_count = text.split(/\.|\?|!/).length

Make a list of words in the text that aren't stop words,

count them, and work out the percentage of non-stop words

against all words

all_words = text.scan(/\w+/)

good_words = all_words.reject{ |word| stopwords.include?(word) }

good_percentage = ((good_words.length.to_f / all_words.length.to_f) * 100).

to_i

Give the analysis back to the user

puts "#{line_count} lines"

puts "#{character_count} characters"

Chapter 4 Developing Your First Ruby Application

115

puts "#{character_count_nospaces} characters (excluding spaces)"

puts "#{word_count} words"

puts "#{sentence_count} sentences"

puts "#{paragraph_count} paragraphs"

puts "#{sentence_count / paragraph_count} sentences per paragraph

(average)"

puts "#{word_count / sentence_count} words per sentence (average)"

puts "#{good_percentage}% of words are non-fluff words"

With these results:

119 lines

6289 characters

5142 characters (excluding spaces)

1111 words

45 sentences

20 paragraphs

2 sentences per paragraph (average)

24 words per sentence (average)

76% of words are non-fluff words

�Summarizing by Finding “Interesting” Sentences
Word processors such as Microsoft Word generally have summarization features that

can take a long piece of text and seemingly pick out the best sentences to produce an

“at-a-glance” summary. The mechanisms for producing summaries have become more

complex over the years, but one of the simplest ways to develop a summarizer of your

own is to scan for sentences with certain characteristics.

One technique is to look for sentences that are of about average length and that look

like they contain nouns. Tiny sentences are unlikely to contain anything useful, and

long sentences are likely to be simply too long for a summary. Finding nouns reliably

would require systems that are far beyond the scope of this book, so you could “cheat” by

looking for words that indicate the presence of useful nouns in the same sentence, such

as “is” and “are” (e.g., “Noun is,” “Nouns are,” “There are x nouns”).

Chapter 4 Developing Your First Ruby Application

116

Let’s assume that you want to throw away two-thirds of the sentences—a third that

are the shortest sentences and a third that are the longest sentences—leaving you with

an ideal third of the original sentences that are ideally sized for your task.

For ease of development, let’s create a new program from scratch and transfer your

logic over to the main application later. Create a new program called summarize.rb and

use this code:

text = %q{

Ruby is a great programming language. It is object oriented

and has many groovy features. Some people don't like it, but that's

not our problem! It's easy to learn. It's great. To learn more about Ruby,

visit the official Ruby website today.

}

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)

sentences_sorted = sentences.sort_by { |sentence| sentence.length }

one_third = sentences_sorted.length / 3

ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/

}

puts ideal_sentences.join(". ")

And for good measure, run it to see what happens:

Ruby is a great programming language. It is object oriented and has many

groovy features

Seems like a success! Let’s walk through the program.

First, you define the variable text to hold the long string of multiple sentences, much

like in analyzer.rb. Next, you split text into an array of sentences like so:

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)

This is slightly different from the method used in analyzer.rb. There is an extra

gsub in the chain, as well as strip. The gsub gets rid of all large areas of whitespace and

replaces them with a single space (\s+ meaning “one or more whitespace characters”).

This is simply for cosmetic reasons. The strip removes all extra whitespace from the

start and end of the string. The split is then the same as that used in the analyzer.

Chapter 4 Developing Your First Ruby Application

117

Next, you sort the sentences by their lengths, as you want to ignore the shortest third
and the longest third:

sentences_sorted = sentences.sort_by { |sentence| sentence.length }

Arrays and hashes have the sort_by method, which can rearrange them into almost
any order you want. sort_by takes a code block as its argument, where the code block
is an expression that defines what to sort by. In this case, you’re sorting the sentences
array. You pass each sentence in as the sentence variable and choose to sort them by
their length, using the length method on the sentence. After this line, sentences_
sorted contains an array with the sentences in length order.

Next, you need to get the middle third of the length-sorted sentences in sentences_
sorted, as these are the ones you’ve deemed to be probably the most interesting. To do
this, you can divide the length of the array by 3 to get the number of elements in a third
and then grab that number of elements from one third into the array (note that you grab
one extra element to compensate for rounding caused by integer division). This is done
like so:

one_third = sentences_sorted.length / 3
ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

The first line takes the length of the array and divides it by 3 to get the quantity
that is equal to “a third of the array.” The second line uses the slice method to “cut
out” a section of the array to assign to ideal_sentences. In this case, assume that the
sentences_sorted is six elements long. 6 divided by 3 is 2, so a third of the array is two
elements long. The slice method then cuts from element 2 for 2 (plus 1) elements,
so you effectively carve out elements 2, 3, and 4 (remember that array elements start
counting from 0). This means you get the “inner third” of the ideal-length sentences you
wanted.

The penultimate line checks to see if the sentence includes the word is or are and
only accepts each sentence if so:

ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/
}

It uses the select method, as the stop-word removal code in the previous section
did. The expression in the code block uses a regular expression that matches against
sentence and only returns true if is or are is present within sentence. This means
ideal_sentences now only contains sentences that are in the middle third lengthwise

and contain either is or are.

Chapter 4 Developing Your First Ruby Application

118

The final line simply joins the ideal_sentences together with a full stop and space
between them to make them readable:

puts ideal_sentences.join(". ")

�Analyzing Files Other Than text.txt
So far, your application has the filename text.txt hard-coded into it. This is acceptable,
but it would be a lot nicer if you could specify, when you run the program, what file you
want the analyzer to process.

Note T his technique is only practical to demonstrate if you’re running
analyzer.rb from a command prompt or shell or if your IDE supports passing in
command-line arguments.

Typically, if you’re starting a program from the command line, you can append
parameters onto the end of the command, and the program will process them. You can
do the same with your Ruby application.

Ruby automatically places any parameters that are appended to the command line
when you launch your Ruby program into a special array called ARGV. To test it out, create
a new script called argv.rb and use this code:

puts ARGV.join('-')

From the command prompt, run the script like so:

ruby argv.rb

The result will be blank, but then try to run it like so:

ruby argv.rb test 123

test-123

This time the parameters are taken from ARGV, joined together with a hyphen,
and displayed on the screen. You can use this to replace the reference to text.txt in
analyzer.rb by replacing "text.txt" with ARGV[0] or ARGV.first (which both mean
exactly the same thing—the first element of the ARGV array). The line that reads the file

becomes the following:

Chapter 4 Developing Your First Ruby Application

119

lines = File.readlines(ARGV[0])

To process text.txt now, you’d run it like so:

ruby analyzer.rb text.txt

You’ll learn more about deploying programs and making them friendly to other

users, along with ARGV, in Chapter 10.

Note I f you ran the preceding code but specified a file that did not exist, the
program would still run but File.readlines would throw an error. We look at
ways to tackle this issue later.

�The Completed Program
You’ve already got the source for the completed basic program, but it’s time to add all the

new, extended features from the previous few sections to analyzer.rb to create the final

version of your text analyzer.

Note R emember that source code for this book is available in the Source Code
area at www.apress.com, so it isn’t strictly necessary to type in code directly
from the book.

Here we go:

analyzer.rb -- Text Analyzer

stopwords = %w{the a by on for of are with just but and to the my I has

some in}

lines = File.readlines(ARGV[0])

line_count = lines.size

text = lines.join

Count the words, characters, paragraphs and sentences

word_count = text.split.length

Chapter 4 Developing Your First Ruby Application

http://www.apress.com

120

character_count = text.length

character_count_nospaces = text.gsub(/\s+/, '').length

paragraph_count = text.split(/\n\n/).length

sentence_count = text.split(/\.|\?|!/).length

Make a list of words in the text that aren't stop words,

count them, and work out the percentage of non-stop words

against all words

all_words = text.scan(/\w+/)

good_words = all_words.reject{ |word| stopwords.include?(word) }

good_percentage = ((good_words.length.to_f / all_words.length.to_f) * 100).

to_i

Summarize the text by cherry picking some choice

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)

sentences_sorted = sentences.sort_by { |sentence| sentence.length }

one_third = sentences_sorted.length / 3

ideal_sentences = sentences_sorted.slice(one_third, one_third + 1)

ideal_sentences = ideal_sentences.select { |sentence| sentence =~ /is|are/

}

Give the analysis back to the user

puts "#{line_count} lines"

puts "#{character_count} characters"

puts "#{character_count_nospaces} characters (excluding spaces)"

puts "#{word_count} words"

puts "#{sentence_count} sentences"

puts "#{paragraph_count} paragraphs"

puts "#{sentence_count / paragraph_count} sentences per paragraph

(average)"

puts "#{word_count / sentence_count} words per sentence (average)"

puts "#{good_percentage}% of words are non-fluff words"

puts "Summary:\n\n" + ideal_sentences.join(". ")

puts "-- End of analysis"

Chapter 4 Developing Your First Ruby Application

121

Note H ave you noticed that the good_words line no longer uses select but
reject? It’s a quick exercise to you to work out how these methods differ and
why it has been used here instead of the original code.

Running the completed analyzer.rb with the Oliver Twist text now results in an
output like the following:

119 lines
6289 characters
5142 characters (excluding spaces)
1111 words
45 sentences
20 paragraphs
2 sentences per paragraph (average)
24 words per sentence (average)
76% of words are non-fluff words
Summary:

' The surgeon leaned over the body, and raised the left hand. Think what it

is to be a mother, there's a dear young lamb do. 'The old story,' he said,

shaking his head: 'no wedding-ring, I see. What an excellent example of

the power of dress, young Oliver Twist was. ' Apparently this consolatory

perspective of a mother's prospects failed in producing its due effect. '

The surgeon had been sitting with his face turned towards the fire: giving

the palms of his hands a warm and a rub alternately. ' 'You needn't mind

sending up to me, if the child cries, nurse,' said the surgeon, putting on

his gloves with great deliberation. She had walked some distance, for her

shoes were worn to pieces; but where she came from, or where she was going

to, nobody knows. ' He put on his hat, and, pausing by the bed-side on his

way to the door, added, 'She was a good-looking girl, too; where did she

come from

-- End of analysis

Try analyzer.rb with some other text of your choice (a web page, perhaps), and see
if you can make improvements to its features. This application is rife for improvement
with the concepts you’ll learn over the next several chapters, so keep it in mind if you’re

looking for some code to play with.

Chapter 4 Developing Your First Ruby Application

122

CODE COMMENTS

You might notice text in source code prefixed with # symbols. These are comments and are

generally used in programs for the benefit of the original developer(s), along with anyone

else who might need to read the source code. They’re particularly useful for making notes

to remind you of why you took a particular course of action that you’re likely to forget in the

future.

You can place comments in any Ruby source code file on their own lines or even at the end of

a line of code. Here are some valid examples of commenting in Ruby:

puts "2+2 = #{2+2}" # Adds 2+2 to make 4

A comment on a line by itself

As long as a comment is on a line by itself or is the last thing on a line, it’s fine. Comment

liberally, and your code will be easier to understand, especially if you come back to it a long

time later.

�Summary
In this chapter, you developed a complete, basic application that realized a set of

requirements and desired features. You then extended it with some nonessential but

useful elaborations. Ruby makes developing quick applications a snap.

The application you’ve developed in this chapter has demonstrated that if you have

a lot of text to process or a number of calculations to do, and you’re dreading doing the

work manually, Ruby can take the strain.

To keep things simple, we didn’t use any methods or flow control in our application.

It simply went through a process step by step to give a set of results. This is the simplest

form of a useful program. More complex programs will undoubtedly involve flow control

and methods, and we’ll be covering those in more depth in the following chapters.

Chapter 4 marks the end of the practical programming exercises in the first part of

this book. Next, in Chapter 5, you’ll take a look at the history of Ruby, Ruby’s community

of developers, and the historical reasons behind certain features in Ruby. You’ll also

learn how to get help from and become part of the Ruby community. Code makes up

only half the journey to becoming a great programmer!

Chapter 4 Developing Your First Ruby Application

123
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_5

CHAPTER 5

The Ruby Ecosystem
As with other programming languages, Ruby has its own culture and “ecosystem.” Ruby’s

ecosystem is made up of thousands of developers, maintainers, documenters, bloggers,

companies, and those who help sponsor or fund the development of the language.

Some programmers who are new to a language assume that learning about a

language’s history and community is pointless, but the most successful developers

quickly learn about the ecosystem and get involved in it. The motivations behind a

language’s development can provide significant clues about the best approaches to take

when solving problems, and understanding the vocabulary of other developers greatly

helps when it comes to looking for help and advice.

This chapter takes a break from the code-focused tutorials to bring you up to

speed with how the Ruby world works, the motivations behind the language, and the

best ways to find help and get involved with the community. If you’re new to software

development, this chapter will also explain some of the terms and phrases used by

developers relating to software development.

You’ll also take a quick look at Ruby’s history, Ruby’s creator, the idiomatic processes

and terminology that Ruby developers use, and the technologies that have taken

Ruby from being relatively unknown to being a first-class programming language of

significance.

https://doi.org/10.1007/978-1-4842-6324-2_5#DOI

124

�Ruby’s History
Ruby is relatively young in the world of programming languages, having been first

developed in 1993, making it roughly the same age as both Perl and Python. Among

the most popular programming languages still in use today, Fortran, for example, was

developed in 1953, and C was developed in the early 1970s. Ruby’s relative modernity is an

asset rather than a downfall, however. From day one, it was designed with object-oriented

programming in mind, and its syntax has remained consistent over time. Older languages

have frequently been forced to complicate their syntax and change radically to address

modern concepts such as object orientation, networking, and graphical environments.

Unlike languages that are formed out of pure necessity or research, Ruby’s birth

came from a sense of frustration with existing languages. Despite the presence of so

many established programming languages, a plucky Japanese computer scientist felt

development was becoming ever more complex and tiresome, and decided some fun

had to be injected into the world of programming languages.

�The Land of the Rising Sun
Ruby began life in Japan as the creation of Yukihiro Matsumoto, known more commonly

as Matz. Unlike that of most language developers, Matz’s motivation for Ruby was fun

and a principle of “least surprise” in order to improve overall developer productivity.

He couldn’t find a language that resonated with his mindset, so he took his own outlook

about how programming should work and created Ruby (named after the gemstone in

homage to the “Perl” programming language).

A longtime object-oriented programming fan, Matz felt object orientation was the best

model to adopt. However, unlike other languages, such as Perl, object orientation with Ruby

wouldn’t be an afterthought, but act as the core foundation for the language. Everything

(within reason) would be an object, and methods would fill the roles of the procedures and

functions developers had come to expect in older procedural languages. As Matz himself said

in a 2001 interview, “I wanted a language that was more powerful than Perl, and more object-

oriented than Python. That’s why I decided to design my own language.”

In December 1995, Matz released the first public alpha version of Ruby, and soon

thereafter a community began to form in Japan. However, although Ruby quickly

became relatively popular in Japan, it struggled to gain a foothold elsewhere.

Chapter 5 The Ruby Ecosystem

125

Note  In software development, the terms alpha, beta, and gamma, among others,
are used to denote the development stage of a piece of software. An initial release
that’s not for general use is often called an alpha. A release that implements most
of the required features, but might not be entirely tested or stable, is often called
a beta, although this term is becoming muddied by the plethora of websites and
games now more permanently using the term “beta” on otherwise fully released
products and services.

In 1996, the development of Ruby was opened up significantly, and a small team

of core developers and other contributors began to form alongside the more general

community of Ruby developers. Ruby 1.0 was released on December 25, 1996. These

core developers help Matz develop Ruby and submit their patches (adjustments to the

code) and ideas to him. Matz continues to act as a “benevolent dictator” who ultimately

controls the direction of the language, despite the ever-widening influence of other

developers.

Note A lthough developing software privately is still common, many projects are
now worked upon in a public manner, allowing them to be extended and worked
upon by any competent programmer. In many cases, this makes it possible for
other developers to fork the project (taking the existing code and splitting it into
their own version).

�Ruby’s Influences
In developing Ruby, Matz was heavily influenced by the programming languages he was

familiar with. Larry Wall, the developer of the popular Perl language, was a hero of Matz,

and Perl’s principle of there is more than one way to do it (TMTOWTDI) is present in Ruby.

Some languages, such as Python, prefer to provide more rigid structures and present

a clean method for developers to have a small number of options to perform a certain

task. Ruby allows its developers to solve problems in any one of many ways. This allows

the language great flexibility, and combined with the object-oriented nature of the

language, Ruby is highly customizable.

Chapter 5 The Ruby Ecosystem

126

In terms of its object-oriented nature, Ruby has also been heavily influenced by

Smalltalk, a prolific object-oriented language developed in the 1970s. As in Smalltalk,

almost everything in Ruby is an object, and Ruby also gives programmers the ability to

change many details of the language’s operation within their own programs on the fly.

This feature is called reflection.

To a lesser extent, Python, Lisp, Eiffel, Ada, and C++ have also influenced Ruby.

These influences demonstrate that Ruby isn’t a language that’s afraid to take on the best

ideas from other languages. This is one of many reasons why Ruby is such a powerful

and dynamic language. The implementation of many of these features has also made the

migration from other languages to Ruby significantly easier. Learning Ruby means, to a

great extent, learning the best features of other programming languages for free. (Refer to

Appendix A for a comparison between Ruby and other languages.)

�Go West
As a language initially developed for Matz’s own use in Japan, the initial documentation

was entirely in Japanese, locking most non-Japanese users out. Although Ruby has

always used English for its keywords (such as print, puts, if, and so on) like most

programming languages, it wasn’t until 1997 that the initial documentation actually

written in English began to be produced.

Matz first began to officially promote the Ruby language in English in late 1998 with

the creation of the ruby-talk mailing list, still one of the best places to discuss the Ruby

language, as well as a useful resource with more than 300,000 messages archived at the

list’s website (http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml).

Note Y ou can subscribe to ruby-talk yourself by visiting www.ruby-lang.
org/en/community/mailing-lists/ and using the signup form.

An official English language website soon followed in late 1999 with the creation of ruby-

lang.org (www.ruby-lang.org/), which is still Ruby’s official English language website (see

Figures 5-1 and 5-2 for a comparison of the official site between then and now).

Chapter 5 The Ruby Ecosystem

http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-lang.org/

127

Figure 5-1.  The official English language Ruby homepage in 2000

Chapter 5 The Ruby Ecosystem

128

Ruby failed to catch on with all but a few ardent developers until 2000 and 2001 (with

the main Ruby Usenet newsgroup comp.lang.ruby being created in May 2000), and even

then the English-speaking Ruby community was tiny. Matz didn’t consider this to be

important though, and was even surprised that other people found his language useful,

having only created it to fit his own way of thinking.

However, the exposure of Ruby to the larger audience of software developers

continued to be low. IBM published an article with a brief overview of Ruby and an

interview with Matz in 2000, and the much-revered Dr. Dobb’s Journal published an

article by Dave Thomas and Andy Hunt with a similar introduction in January 2001.

Despite Ruby’s obvious power, it appeared as if Python and PHP were going to win

the race to become “the next Perl” as general scripting and web languages, respectively,

up until 2004. But then everything changed when a young Dane released Ruby on Rails, a

Ruby-powered web application framework that quickly changed the perception of Ruby

in the worldwide development community. Before we look at Rails, however, we need to

see how else Ruby has flourished in the last several years.

Figure 5-2.  The official Ruby homepage as of 2020

Chapter 5 The Ruby Ecosystem

129

�Alternative Ruby Implementations
Until around 2007, the official Ruby implementation as developed by Matz and the Ruby

core team (known as MRI—Matz’s Ruby Interpreter) was the only reliable way to run

Ruby scripts. Since then, some alternative Ruby implementations have become viable for

certain uses.

This book does not focus on any implementations other than the official ones for

learning the language, but as the alternative implementations may have relevance for

you in the future, here are a few of the most popular ones:

•	 JRuby (www.jruby.org/): A Ruby implementation that runs on the

Java Virtual Machine (JVM). Even in 2009, it was on par with Ruby

1.9 in terms of performance, and since then has proven to be faster

than MRI in many situations. As a Java-based implementation, JRuby

gives Ruby developers access to the whole Java ecosystem, including

Java libraries, distribution tools, and application servers. Conversely,

developers on the JVM platform get access to Ruby’s benefits.

•	 IronRuby (http://ironruby.net/): An implementation of Ruby for

Microsoft’s.NET platform. The head developer was John Lam, who

worked for Microsoft. As of 2012, the project appeared to no longer

be regularly updated.

In practical terms, as of mid-2016, JRuby is an alternative to MRI for day-to-day and

production use, although it has its pros and cons. JRuby’s support for all things Java

makes it an attractive option in settings where a Java ecosystem is well established. For

anyone new to Ruby, however, I would strongly recommend sticking with MRI.

�Ruby on Rails
In the last several years, it has become impossible to publish any book or article about

Ruby without at least mentioning Ruby on Rails (or Rails, for short). Rails is a web

application framework that has propelled the popularity of Ruby outside of Japan

from a humble core of avid developers to hundreds of thousands of developers all

now interested in using the language. This section examines Rails, explains why it’s

important, and discusses how its presence has changed the whole dynamic of the Ruby

ecosystem.

Chapter 5 The Ruby Ecosystem

http://www.jruby.org/
http://ironruby.net/

130

Note A n application framework is a set of conventions, structures, and systems
that provide an underlying structure to make application development easier. Ruby
on Rails is such a framework for web application development.

I’ll be covering Ruby on Rails development briefly (the framework advances too quickly

for a full tutorial in a long-lasting book like this one) in Chapter 13, but let’s first look at the

motivation behind the framework and how it has changed the entire Ruby landscape.

�Why Rails Came into Existence
37signals (www.37signals.com/), a successful web software company recently renamed

Basecamp, was founded in 1999 initially as a web design agency that promoted the use

of clean, fast, and functional designs over the gee-whiz Flash-based websites that were

popular at the time. With only two cofounders running the entire company, they quickly

realized they needed some tools to help them run their business efficiently. They tried

some off-the-shelf software but found nothing that matched their needs and found most

solutions to be bloated and complex. They felt their attitude toward web design should

also be applied to applications, and in mid-2003 decided to develop their own project

management tool.

As designers rather than coders, 37signals turned to the services of David

Heinemeier Hansson, a student in Copenhagen, Denmark, to develop their project

management application. Rather than use the then-common tools such as Perl or PHP,

Hansson was convinced that 37signals could develop the application far more quickly

and completely by using Ruby. Previously a PHP coder, Hansson was beginning to feel

the pain of using PHP for large web application development, and felt a new direction

should be sought.

As development on the nascent application (called Basecamp) progressed, the team

members showed it to others in the industry and quickly realized from the responses they

heard that they should release the application to the public rather than keep it for their own use.

With a successful public release of Basecamp in February 2004—only about four

months after beginning the project—the development methodology adopted by

37signals and Hansson was proven, and 37signals began a rapid transition into an

application development company, with Hansson eventually becoming a partner at the

company.

Chapter 5 The Ruby Ecosystem

http://www.37signals.com/

131

Ruby proved to be the silver bullet that powered the rapid development of Basecamp.

Hansson used Ruby’s object orientation and reflection features to build a framework that

made developing database-driven web applications easier than ever before. This framework

became known as Ruby on Rails, and was first released to the public in July 2004. 37signals

continued to develop new products quickly using the power of the new framework.

Like Ruby itself, the Ruby on Rails framework didn’t immediately experience an

explosion of popularity, but found a small number of ardent fans who began to realize its

power and, in many cases, wished to replicate 37signals’ success.

�How the Web (2.0) Was Won
Ruby on Rails wasn’t a wallflower for long. 2005 was an epic year for Ruby on Rails, and

Ruby’s popularity exploded alongside it. The initial fans of Ruby on Rails had begun

blogging feverishly about the technology and were winning over converts with an

unintentional, but surprisingly potent, grassroots viral marketing campaign.

In January 2005, Slashdot, the world’s most popular technology community website

at the time, published its first post mentioning Ruby on Rails, and since then has run

scores of stories on the technology, each encouraging existing PHP, Perl, and Python

developers to give Ruby and Ruby on Rails a try.

In March 2005, Hansson announced the development of the first commercial Rails

book, which came out in beta PDF form in May of that year. In September 2005, the print

version of the book went on sale and immediately topped the Amazon.com chart for

programming books.

In the space of a year, Rails books were under development and being released by

a multitude of publishers; tens of thousands of blog posts had been made about the

technology; hundreds of thousands of screencasts (video tutorials demonstrating how to

use Rails) had been watched online; and David Heinemeier Hansson had won numerous

awards, including Google and O’Reilly’s “Best Hacker of the Year 2005.” Tens of thousands

of developers were suddenly flocking to Ruby on Rails and, as a consequence, to Ruby.

The Ruby ecosystem was thrust into the limelight, especially on the back of the then-

popular Web 2.0 concept, a coined term that referred to a supposed second generation

in Internet-based services, and was often used to refer to the growing culture of blogs,

social networking, wikis, and other user content–driven websites. As Ruby and Rails

made these sites easy to develop, many developers used these tools to their advantage to

get ahead in the Web 2.0 field and beyond.

Chapter 5 The Ruby Ecosystem

132

�The Open Source Culture
When Ruby was initially developed, Matz didn’t have a specific development culture in

mind. He developed the language to be for his own use and to fit his own mindset. For

the first couple years, he kept the language mostly to himself. Most of today’s culture

relating to how to develop software with Ruby has evolved in the last several years and is

partly shared with other programming languages.

A common element of the Ruby development culture that’s crucial to understand is

the open source movement.

Tip  Feel free to skip this section and move on to “Where and How to Get Help” if
you’re already familiar with the concepts surrounding open source.

�What Is Open Source?
If you’ve used Linux or downloaded certain types of software, you might be familiar with

the term open source. Simply, open source means that the source code to an application

or library is made available publicly for other people to look at and use. There might

be restrictions on what people can do with the code (generally via a license), but it’s

publicly viewable. Much like Linux, Ruby, along with nearly all its libraries, is released

under an open source license—in contrast to, say, Microsoft Windows, whose source

code isn’t readily available (although Microsoft is continuing to make more moves

toward open source in recent years).

The terms of Ruby’s license don’t require that any applications you produce with

Ruby also need to be made open source. You can develop proprietary “closed source”

applications with Ruby and never let anyone else see the code. Choosing whether to

release your code as open source or not can be a tough decision.

There are often shades of gray in the open source vs. closed source decision. When

37signals developed the first Ruby on Rails–powered application, Basecamp, they didn’t

release the source openly, but they did extract the Ruby on Rails framework and release

that as open source. The result is that their company has received a lot of publicity, and

37signals has hired some great coders who worked on Ruby on Rails for free, benefiting

everybody. Software products such as the popular Apache httpd and nginx web servers

and the PostgreSQL database system are also available under varying open source

licenses and are routinely improved by unpaid coders.

Chapter 5 The Ruby Ecosystem

133

The open source community is one of sharing knowledge freely and collaborating

to improve the systems and services that most of us use. Although proprietary software

will always have its place, open source is rapidly becoming the de facto way to develop

programming languages, libraries, and other non-application types of software.

Understanding open source is an important key to understanding the Ruby

community. Although many developers don’t necessarily open source the code to their

applications, they’ll often release the tools and code tricks to the community so that they

can benefit from the peer review and popularity that results.

Releasing your code as open source isn’t necessarily a bad business decision. It

could actually improve the quality of your code and tools, and make you much better

known in the industry.

�Where and How to Get Help
This book will help you learn all the essentials about Ruby and more besides, but it’s

often useful to get more timely or domain-specific assistance while coding. In this

section, you’ll look at a few ways that you can get assistance from the large community

of Ruby developers. (There’s also a more succinct and complete list of resources in

Appendix B that you might prefer for future reference.)

�Mailing Lists
For decades, mailing lists have been popular havens for discussion about programming

languages. Favored by the more technical members of any programming language’s

culture, they’re a good place to ask questions about the internals or future of the

language, along with esoteric queries that only a true language uber-geek could answer.

They are not, however, suited for basic queries.

Ruby has three official mailing lists for English speakers to which you can subscribe,

as follows:

•	 ruby-talk: Deals with general topics and questions about Ruby

•	 ruby-core: Discussion of core Ruby issues, specifically about the

development of the language

•	 ruby-doc: Discussion of the documentation standards and tools for

Ruby (rarely used)

Chapter 5 The Ruby Ecosystem

134

Further information about these lists is available at www.ruby-lang.org/en/

community/mailing-lists/.

Lists are also available in Japanese, French, and Portuguese, and these are similarly

listed on the first page in the preceding paragraph. The Japanese mailing lists, being

composed of some of the most experienced Ruby developers, are often read by English

speakers using translation software. Information about this is also available at the

aforementioned web page. Ruby’s mailing lists appear to be getting quieter year by year,

but do still work.

�Chat
On the Internet, there are several ways you can discuss topics with other users in real

time. For example, Slack and Discord provide real-time chat via a desktop, mobile, or

web app:

Ruby on Rails Slack channel (www.rubyonrails.link/):

A community of Ruby on Rails developers from all over the world.

Ruby Discord Server (https://discord.gg/bHB8Jkx): A Discord

server where developers discuss and seek help on various

Ruby topics.

�Documentation
There’s a significant amount of documentation available on the Web (as well as within

Ruby itself) for Ruby developers. The site www.ruby-doc.org/ provides a web-based

rendering of the documentation that comes with Ruby 1.8 through to 3.0 and allows you

to look up references for all of the internal classes and the standard library.

The API documentation for the current stable release of Ruby is available at www.

ruby-doc.org/core/. Produced automatically from the Ruby source code with Ruby’s

built-in documentation tool, rdoc, the structure of the documentation isn’t immediately

obvious. Usually you can choose between viewing documentation for certain files that

make up Ruby, documentation for each different base class, or documentation for

certain methods. You don’t get a logical order to follow, and there are no deep tutorials.

This sort of documentation is for reference purposes only.

Chapter 5 The Ruby Ecosystem

http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.rubyonrails.link/
https://discord.gg/bHB8Jkx
http://www.ruby-doc.org/
http://www.ruby-doc.org/core/
http://www.ruby-doc.org/core/

135

Most Ruby libraries and applications use a similar scheme for their documentation,

and the links to this are made available on their official sites. For example, Ruby on Rails’

API documentation is available at https://api.rubyonrails.org/.

�Forums
Forums make up some of the most popular websites on the Internet. Unlike newsgroups

or mailing lists, which tend to be the domain of more technical people, forums

provide extremely easy access to a non-real-time discussion on the Web. Forums are a

particularly good place to ask more basic questions and to get general advice.

Several Ruby forums are available to try:

•	 Ruby-Forum.com (www.ruby-forum.com/): Ruby-Forum.com

provides a forum style view onto some of the popular Ruby mailing

lists. This means it isn’t a true forum in the strictest sense, but people

used to forums will appreciate the structure.

•	 Go Rails Forum (https://gorails.com/forum): Go Rails Forum is an

active forum focused on Ruby on Rails.

�Joining the Community
One of the reasons for programming communities is for people to get help from others

who are experienced with the language, but also to share knowledge and to develop

useful tools and documentation together. Solely “taking” from the community is natural

at the start of a developer’s experience with a new language, but it’s essential to give

something back once you’ve developed some knowledge of your own. Ruby developers

are proud that their community is one of the friendliest and easiest to get involved with,

and there are a number of ways to make a mark.

�Give Help to Others
In the previous section, we looked at the ways that you can get help from other Ruby

developers, but once you’ve gained a certain amount of Ruby knowledge, you’ll be able to

start helping people yourself. You can participate on the IRC chatrooms, forums, and mailing

lists and begin to answer some of the questions for those with lesser knowledge than yourself.

Chapter 5 The Ruby Ecosystem

https://api.rubyonrails.org/
http://www.ruby-forum.com/
https://gorails.com/forum

136

Helping others isn’t always the selfless, time-consuming act it might seem at first.

Often, questions are asked that relate to your knowledge but require you to work out

something new or identify a new solution to a problem you’ve already solved. My

personal experience with helping people in the IRC chatrooms has been that my mind

has been constantly stretched. Although sometimes I might have the best answer, other

times I might give an inaccurate or confusing answer that’s then corrected by someone

else, helping me to gain new insights.

Don’t be afraid to dive in and try to help others. If you feel your answer is right, even if

it’s not, it’s likely that several people will try to help, and the Ruby community is generally

forgiving of such errors. In the Ruby community, effort is often prized above prowess.

�Contribute Code
Once you begin to develop your own Ruby applications, you might find features missing

in the applications or libraries you wish to use, and you’ll either develop your own or

work on upgrading those that already exist. If a project is open source, you should be

able to supply your changes and upgrades back to the project, meaning that you improve

the quality of the software for the entire community. Other than benefiting others, this

also means your code is likely to be extended and improved itself, and you’ll be able to

reap even more benefit than if you kept your code to yourself.

All open source Ruby libraries and applications have someone who is in charge

of maintaining them, and if no guidance is provided on the project’s website, simply

contact the maintainer and see whether you can contribute your code.

Alternatively, if you don’t feel confident enough to supply code, but see large gaps

in the documentation for a project—perhaps even in Ruby itself—maintainers are often

ecstatic if you’ll supply documentation. You can learn more about how to document

Ruby programs in Chapter 7. Many coders aren’t good at documentation or don’t have

the time to complete it, so if you have a skill for it, contributing documentation to a

project could make you very popular indeed!

Chapter 5 The Ruby Ecosystem

137

�News Sites and Sources
There are a variety of sites and podcasts through which you can get up-to-date Ruby

news and articles. The following are some of the most popular:

•	 RubyFlow (www.rubyflow.com/): This is a Ruby community link blog

where all of the items are supplied by other Ruby developers. You’ll

find a lot of interesting Ruby-related announcements and links to

tutorials scattered across the Web. Of course, if you write anything

helpful of your own, you can post it to RubyFlow and get the attention

of the Ruby community.

•	 Ruby Weekly (https://rubyweekly.com/): A weekly email newsletter

dedicated to sharing the latest from the entire Ruby world.

•	 Ruby on Reddit (https://reddit.com/r/ruby): The Ruby section of

the popular social bookmarking and discussion site aggregates most

of the best Ruby blogs into a single page.

By visiting these sites, you’ll quickly learn about hundreds of other Ruby resources,

tricks, and sources of documentation. If you comment on these sites and begin to update

a blog yourself with your experiences of Ruby, you’ll quickly become established in the

Ruby community.

�Summary
In this chapter, we’ve taken a break from coding to focus on the culture, community, and

ecosystem surrounding the Ruby language. Understanding the larger world around the

Ruby language is extremely useful, as it’s from this community that most developers will

get assistance, advice, code, and even paying work.

Being able to get help and give help in return benefits the community, helps the

cause of Ruby to progress, and ultimately helps with your own programming skills.

The Ruby community is important and friendly to new Ruby developers, making it

ideal to get involved as soon as possible when you begin to learn Ruby. Make sure you

use the resources the community provides to the fullest as you learn Ruby and begin

to develop applications. A single book cannot turn anyone into a Ruby expert, but a

collection of valuable resources and participation in the community can.

Refer to Appendix B for a larger collection of URLs and links to other Ruby resources

that are available online.

Chapter 5 The Ruby Ecosystem

http://www.rubyflow.com/
https://rubyweekly.com/
https://reddit.com/r/ruby

The Core of Ruby
This part of the book walks you through the remaining essential elements of Ruby and

goes into more detail about some previously seen aspects of the language. By the end

of Part 2, you’ll be able to develop Ruby applications complete with complex class

and object arrangements of your own; you’ll know how to test, document, and deploy

your applications; and you’ll use databases and external data sources to feed your

applications.

PART II

141
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_6

CHAPTER 6

Classes, Objects,
and Modules
In Chapter 2, we dived straight into the principles of object orientation, the method of

representing concepts in Ruby by using classes and objects. Since then, we’ve looked

at Ruby’s standard classes, such as String and Array, worked with them, and then

branched off to look at Ruby’s logic and other core features.

In this chapter, the focus is back onto object orientation, but rather than looking at

the concepts from afar, we’ll be getting into the details. We’ll look at why classes and

objects behave the way they do, why object orientation is a viable development tool, how

you can implement classes to match your own requirements, and how to override and

extend the classes Ruby provides by default. Finally, you’ll implement a basic dungeon

text adventure to demonstrate how several real-world concepts can combine into an

easily maintainable set of interconnected classes.

�Why Use Object Orientation?
Object orientation is not the only development approach with which to develop

software. The procedural style of programming predates it, and continues to be used

in languages such as C. Whereas object orientation dictates that you define concepts

and processes as classes from which you can create objects, programming procedurally

means you focus on the steps required to complete a task instead, without paying

particular attention to how the data is managed.

https://doi.org/10.1007/978-1-4842-6324-2_6#DOI

142

Imagine two developers within a single software development company who

are vying to be respected as the most knowledgeable programmer in the company.

Capitalizing on the rivalry, their boss issues both of them the same tasks and uses the

best code in each case. There’s only one difference between the two programmers. One

follows the principles of object-oriented development, and the other is a procedural

programmer coding without using classes and objects.

For a forthcoming project, the boss demands some code that can work out the perimeter

and area of various shapes. She says the shapes required are squares and triangles.

The procedural programmer rushes away and quickly comes up with four obvious

routines:

def perimeter_of_square(side_length)

 side_length * 4

end

def area_of_square(side_length)

 side_length * side_length

end

def perimeter_of_triangle(side1, side2, side3)

 side1 + side2 + side3

end

def area_of_triangle(base_width, height)

 base_width * height / 2

end

Note  Remember, it’s not necessary to use return to return values from
methods in Ruby. The last expression within the method is used as the return value
by default. If it feels right for the situation or seems clearer to you, however, you
can certainly use return with impunity!

Finishing first, the procedural programmer is sure his code will be chosen.

Chapter 6 Classes, Objects, and Modules

143

The object-oriented programmer takes longer. He recognizes that the specifications

might change in the future and that it would be useful to define a Shape class and then

create classes that would inherit from Shape. This would mean that if extra features needed

to be added to shapes in general, the code would be ready. He submits his initial solution:

class Shape

end

class Square < Shape

 def initialize(side_length)

 @side_length = side_length

 end

 def area

 @side_length * @side_length

 end

 def perimeter

 @side_length * 4

 end

end

class Triangle < Shape

 def initialize(base_width, height, side1, side2, side3)

 @base_width = base_width

 @height = height

 @side1 = side1

 @side2 = side2

 @side3 = side3

 end

 def area

 @base_width * @height / 2

 end

 def perimeter

 @side1 + @side2 + @side3

 end

end

Chapter 6 Classes, Objects, and Modules

144

Note  This code might seem complex and alien at this time, but we’ll be covering
the techniques used here later in this chapter. For now, simply recognize the
structure of laying down classes and methods, as covered in Chapter 2.

The procedural programmer scoffs at the object-oriented solution. “Why all the

pointless assignments of data? That object-oriented code is 90 percent structure and 10

percent logic!”

The boss is impressed by the shortness of the procedural code, but decides to try out

both versions for herself. She quickly spots a big difference:

puts area_of_triangle(6,6)

puts perimeter_of_square(5)

18

20

my_square = Square.new(5)

my_triangle = Triangle.new(6, 6, 7.81, 7.81, 7.81)

puts my_square.area

puts my_square.perimeter

puts my_triangle.area

puts my_triangle.perimeter

25

20

18

23.43

The boss notices that with the object-oriented code, she can create as many shapes

as she wants in a logical way, whereas the procedural code expects her to have a mental

note of the shapes she wants to work with. She isn’t without her concerns, though.

“More lines of code means more time required,” she says. “Is it worth taking the

object-oriented route if it means more lines of code, more time, and more hassles?”

The object-oriented developer has heard this complaint before and immediately

springs into action. “Try dealing with a large number of random shapes,” he says.

Chapter 6 Classes, Objects, and Modules

145

The boss isn’t entirely up to date with modern development trends, but when she

discovers that many new types of shapes can be produced easily by copying and pasting

the existing classes with some minor tweaks, she begins to be won over. She also realizes

that if a shape could be stored as an object referenced by a single variable and that if

each shape class accepted the same methods, the type of shape presented wouldn’t

matter (this quality is often referred to as polymorphism). She could call the perimeter

or area method on any shape without worry. The procedural code, on the other hand, is

just a jumble of different routines, and the developer would be forced to keep track of the

different types of shapes to know which procedures to run. The Shape class also provides

a way to give general functionality to all the different types of shapes if it’s necessary in

the future. The boss knows which code to choose!

“Object-oriented code requires a little more setup, but when it comes to scaling that

code to fit real-life requirements, there’s no contest,” she says.

Note  It’s worth noting that in the latter triangle example, the data provided is
erroneous (how can a side be 7.81 units long, yet the base be 6 units long?).
The beauty of object-oriented programming, however, is that since the triangle
is a single object, it would be easy to add a “validation” routine to check the
parameters used to define the object and reject or recalculate those that are
incorrect. With the procedural code, the developer should perform any “checks”
manually every time he wants to work with a triangle built from fresh data!

The basic advantage with object-oriented programming is that even if there’s more

structure involved in setting up your code, it’s easy for a non-expert to understand how

classes and objects relate, and it’s easier to maintain and update the code to deal with

real-life situations.

�Object Orientation Basics
Let’s recap the basic knowledge of classes and objects that you acquired over the past

few chapters.

A class is a blueprint for objects. You have only one class called Shape, but with it, you

can create multiple instances of shapes (Shape objects), all of which have the methods

and attributes defined by the Shape class.

Chapter 6 Classes, Objects, and Modules

146

An object is an instance of a class. If Shape is the class, then x = Shape.new creates a

new Shape instance and makes x reference that object. You would then say x is a Shape

object, or an object of class Shape.

�Local, Global, Object, and Class Variables
In Chapter 2, you created some classes and added methods to them. To recap, here’s

a simple demonstration of a class with two methods and how to use it. First, here’s the

class itself:

class Square

 def initialize(side_length)

 @side_length = side_length

 end

 def area

 @side_length * @side_length

 end

end

Next, let’s create some square objects and use their area methods:

a = Square.new(10)

b = Square.new(5)

puts a.area

puts b.area

100

25

The first method—and when I say “first,” I mean the first method in our example;

the actual order of methods in code is irrelevant—in the Square class is initialize.

initialize is a special method that’s called when a new object based on that class is

created. When you call Square.new(10), the Square class creates a new object instance

of itself and then calls initialize on that object.

Chapter 6 Classes, Objects, and Modules

147

In this case, initialize accepts a single argument into side_length as passed

by Square.new(10) and assigns the number 10 (now referenced by side_length) to a

variable called @side_length. The @ symbol before the variable name is important in

this case. But why? To understand why some variables are prefixed with certain symbols

requires understanding that there are multiple types of variables, such as local, global,

object, and class variables.

�Local Variables

In previous examples, you’ve created variables simply, like so:

x = 10

puts x

10

In Ruby, this sort of basic variable is called a local variable. It can be used only in

the same place it is defined. If you jump to using an object’s methods or a separate

method of your own, the variable x doesn’t come with you. It’s considered to be local

in scope. That is, it’s only present within the local area of code. Here’s an example that

demonstrates this:

def basic_method

 puts x

end

x = 10

basic_method

This example defines x to equal 10 and then jumps to a local method called basic_

method. If you ran this code through irb, you would get an error like this:

NameError (undefined local variable or method `x' for main:Object)

What’s happening is that when you jump to basic_method, you’re no longer in the

same scope as the variable x that you created. Because x is a local variable, it exists only

where it was defined. To avoid this problem, it’s important to remember to use only local

variables where they’re being directly used.

Chapter 6 Classes, Objects, and Modules

148

Here’s an example where you have two local variables with the same name but in

different scopes:

def basic_method

 x = 50

 puts x

end

x = 10

basic_method

puts x

50

10

This demonstrates that local variables live entirely in their original scope. You set x

to 10 in the main code and set x to 50 inside the method, but x is still 10 when you return

to the original scope. The x variable inside basic_method is not the same x variable that’s

outside of the method. They’re separate variables, distinct within their own scopes.

�Global Variables

In opposition to local variables, Ruby can also use global variables. As their name

suggests, global variables are available from everywhere within an application, including

inside classes or objects.

Global variables can be useful, but aren’t commonly used in Ruby. They don’t mesh

well with the ideals of object-oriented programming, as once you start using global

variables across an application, your code is likely to become dependent on them.

Because the ability to separate blocks of logic from one another is a useful aspect of

object-oriented programming, global variables are not favored.

You define global variables by putting a dollar sign ($) in front of the variable name,

like so:

def basic_method

 puts $x

end

$x = 10

Chapter 6 Classes, Objects, and Modules

149

basic_method

10

$x is defined as a global variable, and you can use it anywhere in your application.

Note  The $ and @ characters that denote global variables and object variables
(as demonstrated in the next section) are technically called sigils. Many developers
are, however, unaware of this. This book is not beyond giving you knowledge that
can make you more popular at cocktail parties!

�Instance or Object Variables

Where local variables are specific to the local scope and global variables have global

scope, instance variables (also known as object variables) are so named because they

have scope within, and are associated with, the current object. A demonstration of this

concept was shown at the start of this section with the Square class:

class Square

 def initialize(side_length)

 @side_length = side_length

 end

 def area

 @side_length * @side_length

 end

end

Instance variables are prefixed with an @ symbol. In the Square class, you assign

the side_length provided to the class to @side_length. @side_length, as an instance

variable, is then accessible from any other method inside that object. That’s how the

area method can then use @side_length to calculate the area of the square represented

by the object:

a = Square.new(10)

b = Square.new(5)

Chapter 6 Classes, Objects, and Modules

150

puts a.area

puts b.area

100

25

The results are different, even though the code to work out the area in both cases is

@side_length * @side_length. This is because @side_length is an instance variable

associated only with the current object or instance.

Tip  If you didn’t fully understand the Shape/Square/Triangle example at the
start of this chapter, now would be a good time to look back at it, as it used several
object variables to develop its functionality.

�Class Variables

The last major type of variable is the class variable. The scope of a class variable is within

the class itself, as opposed to within specific objects of that class. Class variables start

with two @ symbols (@@) as opposed to the single @ symbol of instance variables.

Class variables can be useful for storing information relevant to all objects of a

certain class. For example, you could store the number of objects created so far in a

certain class using a class variable like so:

class Square

 def initialize

 if defined?(@@number_of_squares)

 @@number_of_squares += 1

 else

 @@number_of_squares = 1

 end

 end

 def self.count

 @@number_of_squares

 end

end

Chapter 6 Classes, Objects, and Modules

151

a = Square.new

b = Square.new

puts Square.count

2

Because @@number_of_squares is a class variable, it’s already defined each time you

create a new object (except for the first time, but that’s why you check to see if it’s defined

and, if not, give it an initial value of 1).

Note  In recent years, class variables have begun to fall out of favor among
professional Ruby developers. Fashions come and go in the Ruby world but
ultimately enable developers to work together more smoothly. Since all classes are
themselves objects within Ruby, it has become more popular to simply use object
variables within the context of class methods in order to keep things simple.

�Class Methods vs. Instance Methods
In your Square class, you defined two methods: initialize and area. Both are instance

methods, as they relate to, and operate directly on, an instance of an object. Here’s the

code again:

class Square

 def initialize(side_length)

 @side_length = side_length

 end

 def area

 @side_length * @side_length

 end

end

Once you’ve created a square with s = Square.new(10), you can use s.area to get

back the area of the square represented by s. The area method is made available in all

objects of class Square, so it’s considered to be an instance method.

Chapter 6 Classes, Objects, and Modules

152

However, methods are not just useful to have available on object instances. It can be

useful to have methods that work directly on the class itself. In the previous section, you

used a class variable to keep a count of how many square objects had been created, and

it would be useful to access the @@number_of_squares class variable in some way other

than through Square objects.

Here’s a simple demonstration of a class method:

class Square

 def self.test_method

 puts "Hello from the Square class!"

 end

 def test_method

 puts "Hello from an instance of class Square!"

 end

end

Square.test_method

Square.new.test_method

Hello from the Square class!

Hello from an instance of class Square!

This class has two methods. The first is a class method, and the second is an instance

method, although both have the same name of test_method. The difference is that the

class method is denoted with self., where self represents the current class, so def

self.test_method defines the method as being specific to the class. However, with no

prefix, methods are automatically instance methods.

Class methods give you the mechanism to implement the “object counter” hinted at

earlier:

class Square

 def initialize

 if defined?(@@number_of_squares)

 @@number_of_squares += 1

 else

 @@number_of_squares = 1

Chapter 6 Classes, Objects, and Modules

153

 end

 end

 def self.count

 @@number_of_squares

 end

end

Let’s give it a try:

a = Square.new

puts Square.count

b = Square.new

puts Square.count

c = Square.new

puts Square.count

1

2

3

Notice you don’t refer to a, b, or c at all to get the count. You use the Square.count
class method directly. Consider it as if you’re asking the class to do something that’s
relevant to the class as a whole, rather than asking the objects.

�Inheritance
An interesting object-oriented programming concept is inheritance, which allows you

to generate a taxonomy of classes and objects. If you consider all living things as a class

called LivingThing (see Figure 6-1), under that class you could have (and let’s keep

this simple, biologists!) Plant and Animal classes. Under Animal, you’d have Mammal,

Fish, Amphibian, and so forth. Digging into Mammal, you could work through Primate

and Human. A Human is a living thing, a Human is an Animal, a Human is a Mammal, and so

forth, but each level down is more specific and targeted than that above it. This is class

inheritance in action! The same system applied to the Shape example where Triangle

and Square inherited directly from Shape.

Chapter 6 Classes, Objects, and Modules

154

The benefit of inheritance is that classes lower down the hierarchy get the features

of those higher up, but can also add specific features of their own. The basic “all living

things” class is so generic that the only functionality you could give to it is a basic “living

or dead” method. However, at the animal level, you could add methods such as eat,

excrete, or breathe. At the human level, you’d inherit all this functionality but be able to

add human methods and qualities such as sing, dance, and love.

Ruby’s inheritance features are similarly simple. Any class can inherit the features

and functionality of another class, but a class can inherit only from a single other

class. Some other languages support multiple inheritance, a feature that allows classes

to inherit features from multiple classes, but Ruby doesn’t support this. Multiple

inheritance can cause some confusing situations—for instance, classes could inherit

from one another in an endless loop—and the efficacy of multiple inheritance is

debatable.

Let’s look at how inheritance works in code form:

class ParentClass

 def method1

 puts "Hello from method1 in the parent class"

 end

 def method2

 puts "Hello from method2 in the parent class"

Figure 6-1.  An example of a hierarchy of “living things”

Chapter 6 Classes, Objects, and Modules

155

 end

end

class ChildClass < ParentClass

 def method2

 puts "Hello from method2 in the child class"

 end

end

my_object = ChildClass.new

my_object.method1

Hello from method1 in the parent class

my_object.method2

Hello from method2 in the child class

First, you create the ParentClass with two methods, method1 and method2. Then

you create ChildClass and make it inherit from ParentClass using the ChildClass <

ParentClass notation. Last, you create an object instance of ChildClass and call its

method1 and method2 methods.

The first result demonstrates inheritance perfectly. ChildClass has no method1 of its

own, but because it has inherited from ParentClass, and ParentClass has a method1, it

uses it.

However, in the second case, ChildClass already has a method2 method, so the

method2 method supplied by the parent class is ignored. In many cases, this is ideal

behavior, as it allows your more specific classes to override behavior provided by more

general classes. However, in some situations you might want a child method to call an

inherited method and do something with the result.

Consider some basic classes that represent different types of people:

class Person

 def initialize(name)

 @name = name

 end

Chapter 6 Classes, Objects, and Modules

156

 def name

 @name

 end

end

class Doctor < Person

 def name

 "Dr. " + super

 end

end

In this case, you have a Person class that implements the basic functionality of

storing and returning a person’s name. The Doctor class inherits from Person and

overrides the name method. Within the name method for doctors, it returns a string

starting with Dr., appended with the name as usual. This occurs by using super, which

looks up the inheritance chain and calls the method of the same name on the next

highest class. In this example, you only have two tiers, so using super within the name

method in Doctor then uses the name method in Person.

The benefit of using inheritance in this way is that you can implement generic

functionality in generic classes and then implement only the specific functionality that

more specific child classes require. This saves a lot of repetition and means that if you

make changes to the parent classes, child classes will inherit these changes too. A good

example of this might be if you changed Person to take two arguments, firstname and

lastname. The Doctor class wouldn’t need to be changed at all to support this change.

With one child class, this doesn’t seem too important, but when you have hundreds of

different classes in an application, it pays to cut down on repetition!

Note  In the Ruby world, the concept of cutting down on repetition is commonly
called DRY, meaning Don’t Repeat Yourself. If you can code something once and
reuse it from multiple places, that’s usually the best way to practice “DRY.”

Chapter 6 Classes, Objects, and Modules

157

�Overriding Existing Methods
Because it’s a dynamic language, one clever thing you can do with Ruby is override

existing classes and methods. For example, consider Ruby’s String class. As covered in

Chapter 3, if you create a string, you end up with an object of class String, for example:

x = "This is a test"
puts x.class

String

You can call a number of different methods upon the String object stored in x:

puts x.length
puts x.upcase

14

THIS IS A TEST

Let’s stir things up a bit by overriding the length method of the String class:

class String
 def length
 20
 end
end

Many newcomers to Ruby, even experienced developers, initially fail to believe this
will work, but the results are exactly as the code dictates:

puts "This is a test".length
puts "a".length
puts "A really long line of text".length

20
20

20

Chapter 6 Classes, Objects, and Modules

158

Some libraries and extensions (add-ons) to Ruby override the methods supplied by the

core classes to extend the functionality of Ruby in general. However, this demonstration
shows why it’s always necessary to tread with caution and be aware of what’s going on in
your application. If you were relying on being able to measure the length of strings, and the
length method gets overridden, you’re going to have a hard time!

You should also note that you can override your own methods. In fact, you’ve
probably been doing it a lot already by following these examples in irb:

class Dog
 def talk
 puts "Woof!"
 end
end

my_dog = Dog.new
my_dog.talk

Woof!

class Dog
 def talk
 puts "Howl!"
 end
end

my_dog.talk

Howl!

In this example, you created a basic class with a simple method, then reopened
that class, and redefined a method on the fly. The results of the redefinition were made
effective immediately, and my_dog began to howl as a result.

This ability to reopen classes and add and redefine methods is relatively unique
among object-oriented languages. Although it allows you to perform a number of
interesting tricks (some of which you’ll see in action later), it can also cause the
same sections of code to act in different ways depending on whether certain classes
upon which you depend were changed in the application, as demonstrated by your

redefinition of String’s length method previously.

Chapter 6 Classes, Objects, and Modules

159

Note  You might have noticed this class-reopening technique in action in some
of our earlier examples where you created methods in one example, only to add
new methods in a later example. If running under irb or within the same program,
reopening a class lets you add new methods or change old ones without losing
anything.

�Reflection and Discovering an Object’s Methods
Reflection is the process by which a computer program can inspect, analyze, and modify

itself while it’s running and being used. Ruby takes reflection to an extreme and allows you to

change the functionality of great swathes of the language itself while running your own code.

It’s possible to query almost any object within Ruby for the methods that are defined

within it. This is another part of reflection:

a = "This is a test"

puts a.methods.join(' ')

unicode_normalize unicode_normalize! ascii_only? to_r unpack encode

encode! unpack1 % include? * + count partition +@ -@ <=> << to_c == ===

sum =~ next [] casecmp casecmp? insert []= match match? bytesize empty?

eql? succ! next! upto index rindex replace clear chr getbyte setbyte

scrub! scrub undump byteslice freeze inspect capitalize upcase dump

downcase! swapcase downcase hex capitalize! upcase! lines length size

codepoints succ split swapcase! bytes oct prepend grapheme_clusters concat

start_with? reverse reverse! to_str to_sym crypt ord strip end_with? to_s

to_i to_f center intern gsub ljust chars delete_suffix sub rstrip scan

chomp rjust lstrip chop! delete_prefix chop sub! gsub! delete_prefix!

chomp! strip! lstrip! rstrip! squeeze delete_suffix! tr tr_s delete each_

line tr! tr_s! delete! squeeze! slice each_byte each_char each_codepoint

each_grapheme_cluster b slice! rpartition encoding force_encoding valid_

encoding? hash unicode_normalized? clamp between? <= >= > < dup itself

yield_self then taint tainted? untaint untrust untrusted? trust frozen?

methods singleton_methods protected_methods private_methods public_methods

instance_variables instance_variable_get instance_variable_set instance_

Chapter 6 Classes, Objects, and Modules

160

variable_defined? remove_instance_variable instance_of? kind_of? is_a?
tap display class singleton_class clone public_send method public_method
singleton_method define_singleton_method extend to_enum enum_for !~ nil?
respond_to? object_id send __send__ ! != __id__ equal? instance_eval
instance_exec

The methods method on any object (unless it has been overridden, of course!)
returns an array of methods made available by that object. Due to Ruby’s heavily object-
oriented structure, that’s usually a significantly larger number of methods than those you
have specifically defined yourself!

Note  The preceding method list may vary depending on your environment and
the specific Ruby interpreter you’re using. As long as your list is similar, you’re
doing fine.

The results reveal some other reflective methods too. For example, protected_
methods, private_methods, and public_methods all reveal methods encapsulated in
different ways (more on this in the next section).

Another interesting method is instance_variables. It returns the names of any
object variables associated with an instance (as opposed to class variables):

class Person
 attr_accessor :name, :age
end

p = Person.new
p.name = "Fred"
p.age = 20
puts p.instance_variables

@age
@name

Note  If you received an error while running the last example, try restarting irb
and running it again. Since we used the class Person in previous examples, irb may
still have the class definition loaded in memory.

Chapter 6 Classes, Objects, and Modules

161

At this stage, you might not see the value in these reflective methods, but as you
progress toward becoming more proficient with Ruby and object orientation, they’ll
become more important. This book doesn’t go deeply into metaprogramming and
advanced reflective techniques since they are beyond the scope of a beginner’s book.

�Encapsulation
Encapsulation describes the way in which data and methods can be bundled together
into objects that operate as a single unit. Encapsulation keeps functionality hidden
inside your classes and allows you to control how the outside world manipulates
your object’s data (thus maintaining the overall “single unit” of data and code bound
together). You can extend and change your classes without worrying that other elements
of your application will break.

Here’s an example class that represents a person:

class Person
 def initialize(name)
 set_name(name)
 end

 def name
 @first_name + ' ' + @last_name
 end

 def set_name(name)
 first_name, last_name = name.split(/\s+/)
 set_first_name(first_name)
 set_last_name(last_name)
 end

 def set_first_name(name)
 @first_name = name
 end

 def set_last_name(name)
 @last_name = name
 end

end

Chapter 6 Classes, Objects, and Modules

162

In previous examples, you would have written this with a single attr_accessor

:name and simply assigned the name to an object variable. Our example is only to
highlight the concept of encapsulation. You should use attr_accessor to accomplish
the same functionality in your real code.

In this case, the first name and last name are stored separately within each Person
object, in object variables called @first_name and @last_name. When a Person object
is created, the name is split into two halves and each is assigned to the correct object
variable by set_first_name and set_last_name, respectively. One possible reason
for such a construction could be that although you want to work with complete names
in your application, the database design might demand you have first names and last
names in separate columns. Therefore, you need to hide this difference by handling it in
the class code, as in the preceding code.

Note A side benefit of this approach is that you can perform checks on the data
before assigning it to the object variables. For example, in the set_first_name
and set_last_name methods, you could check that the names contain enough
characters to be considered valid names. If not, you can then raise an error.

The code appears to work fine:

p = Person.new("Fred Bloggs")
puts p.name

Fred Bloggs

However, you still seem to have some problems:

p = Person.new("Fred Bloggs")
p.set_last_name("Smith")
puts p.name

Fred Smith

Uh-oh! You wanted to abstract the first name/last name requirement and only allow
full names to be set or retrieved. However, the set_first_name and set_last_name are
still public and you can use them directly from any code where you have Person objects.

Luckily, encapsulation lets you solve the problem:

Chapter 6 Classes, Objects, and Modules

163

class Person
 def initialize(name)
 set_name(name)
 end

 def name
 @first_name + ' ' + @last_name
 end

private

 def set_name(name)
 first_name, last_name = name.split(/\s+/)
 set_first_name(first_name)
 set_last_name(last_name)
 end

 def set_first_name(name)
 @first_name = name
 end

 def set_last_name(name)
 @last_name = name
 end
end

The only difference in the Person class from the first example is the keyword private
has been added. private tells Ruby that any methods declared in this class from there
on should be kept private. This means that only code within the object’s methods can
access those private methods, whereas code outside of the class cannot. For example,
this code no longer works:

p = Person.new("Fred Bloggs")
p.set_last_name("Smith")

NoMethodError (undefined method `set_last_name' for
#<Person:0x00007faedfb31538 @age="Fred Bloggs">)

The opposite of the private keyword is public. You could put private before one

method, but then revert to public methods again afterward using public, like so:

Chapter 6 Classes, Objects, and Modules

164

class Person

 def anyone_can_access_this

 ...

 end

 private

 def this_is_private

 ...

 end

 public

 def another_public_method

 ...

 end

end

You can also use private as a command by passing in symbols representing the

methods you want to keep private, like so:

class Person

 def anyone_can_access_this; ...; end

 def this_is_private; ...; end

 def this_is_also_private; ...; end

 def another_public_method; ...; end

 private :this_is_private, :this_is_also_private

end

Note  Ruby supports ending lines of code with semicolons (;) and allows you
to put multiple lines of code onto a single line (e.g., x = 10; x += 1; putsx). In
this case, it’s been done to save on lines of code in the example, although it’s not
considered good style in production-quality Ruby code.

Chapter 6 Classes, Objects, and Modules

165

The command tells Ruby that this_is_private and this_is_also_private are

to be made into private methods. Whether you choose to use private as a directive

before methods or as a command specifying the method names directly is up to you,

and is another of many technically unimportant stylistic decisions you’ll make as a Ruby

programmer. However, it’s important to note that in the preceding example, the private

declaration has to come after the methods are defined.

Ruby supports a third form of encapsulation (other than public and private) called

protected that makes a method private, but within the scope of a class rather than

within a single object. For example, you were unable to directly call a private method

outside the scope of that object and its methods. However, you can call a protected

method from the scope of the methods of any object that’s a member of the same class:

class Person

 def initialize(age)

 @age = age

 end

 def age

 @age

 end

 def age_difference_with(other_person)

 (self.age - other_person.age).abs

 end

 protected :age

end

fred = Person.new(34)

chris = Person.new(25)

puts chris.age_difference_with(fred)

puts chris.age

9

MethodError (protected method `age' called for #<Person:0x00007faedfaebad8

@age=25>)

Chapter 6 Classes, Objects, and Modules

166

The preceding example uses a protected method so that the age method cannot

be used directly, except within any method belonging to an object of the Person class.

However, if age were made private, the preceding example would fail because other_

person.age would be invalid. That’s because private makes methods accessible only by

methods of a specific object.

Note that when you use age directly, on the last line, Ruby throws an exception.

�Polymorphism
Polymorphism is the concept of writing code that can work with objects of multiple

types and classes at once. For example, the + method works for adding numbers, joining

strings, and adding arrays together. What + does depends entirely on what type of things

you’re adding together.

Here’s a Ruby interpretation of a common demonstration of polymorphism:

class Animal

 attr_accessor :name

 def initialize(name)

 @name = name

 end

end

class Cat < Animal

 def talk

 "Meaow!"

 end

end

class Dog < Animal

 def talk

 "Woof!"

 end

end

animals = [Cat.new("Flossie"), Dog.new("Clive"), Cat.new("Max")]

animals.each do |animal|

Chapter 6 Classes, Objects, and Modules

167

 puts animal.talk

end

Meaow!

Woof!

Meaow!

In this example, you define three classes: an Animal class and Dog and Cat classes

that inherit from Animal. In the code at the bottom, you create an array of various animal

objects: two Cat objects and a Dog object (whose names are all processed by the generic

initialize method from the Animal class).

Next, you iterate over each of the animals, and on each loop, you place the animal

object into the local variable, animal. Last, you run puts animal.talk for each animal

in turn. As the talk method is defined on both the Cat and Dog class, but with different

output, you get the correct output of two “Meaow!”s and two “Woof!”s.

This demonstration shows how you can loop over and work on objects of different

classes, but get the expected results in each case if each class implements the same

methods.

If you were to create new classes under the Cat or Dog classes with inheritance (e.g.,

class Labrador < Dog), then Labrador.new.talk would still return “Woof!” thanks to

inheritance.

Some of Ruby’s built-in standard classes (such as Array, Hash, String, and so on)

have polymorphic methods of their own. For example, you can call the to_s method on

many built-in classes to return the contents of the object as a string:

puts 1000.to_s

puts [1,2,3].to_s

puts ({ name: 'Fred', age:10 }).to_s

1000

[1,2,3]

{:name => 'Fred', :age => 10}

The output isn’t particularly useful in this case, but being able to rely on most objects

to return a string with to_s can come in useful in many situations, such as when putting

representations of objects into strings.

Chapter 6 Classes, Objects, and Modules

168

�Nested Classes
In Ruby, it’s possible to define classes within other classes. These are called nested

classes. Nested classes are useful when a class depends on other classes, but those

classes aren’t necessarily useful anywhere else. They can also be useful when you want

to separate classes into groups of classes rather than keep them all distinct. Here’s an

example:

class Drawing

 class Line

 end

 class Circle

 end

end

Nested classes are defined in the same way as usual. However, they’re used

differently.

From within Drawing, you can access the Line and Circle classes directly, but from

outside the Drawing class, you can only access Line and Circle as Drawing::Line and

Drawing::Circle, for example:

class Drawing

 def self.give_me_a_circle

 Circle.new

 end

 class Line

 end

 class Circle

 def what_am_i

 "This is a circle"

 end

 end

end

a = Drawing.give_me_a_circle

puts a.what_am_i

Chapter 6 Classes, Objects, and Modules

169

b = Drawing::Circle.new

puts b.what_am_i

c = Circle.new

puts c.what_am_i

This is a circle

NameError (uninitialized constant Circle)

This is a circle

a = Drawing.give_me_a_circle calls the give_me_a_circle class method, which

returns a new instance of Drawing::Circle. Next, a = Drawing::Circle.new gets a new

instance of Drawing::Circle directly, which also works. The third attempt, a = Circle.

new, does not work, however, because Circle doesn’t exist. That’s because as a nested

class under Drawing, it’s known as Drawing::Circle instead.

You’re going to use nested classes in a project at the end of this chapter, where you’ll

see how they work in the scope of an entire program.

�The Scope of Constants
In Chapter 3, you looked at constants: special variables whose value(s) are unchanging

and permanent throughout an application, such as Pi = 3.141592. Here’s an example:

def circumference_of_circle(radius)

 2 * Pi * radius

end

Pi = 3.141592

puts circumference_of_circle(10)

62.83184

In this sense, a constant appears to work like a global variable, but it’s not. Constants

are defined within the scope of the current class and are made available to all child

classes, unless they’re overridden, for example:

Pi = 3.141592

Chapter 6 Classes, Objects, and Modules

170

class OtherPlanet

 Pi = 4.5

 def self.circumference_of_circle(radius)

 radius * 2 * Pi

 end

end

puts OtherPlanet.circumference_of_circle(10)

90.0

puts OtherPlanet::Pi

4.5

puts Pi

3.141592

This example demonstrates that constants have scope within the context of classes.

The OtherPlanet class has its own definition of Pi. However, if you hadn’t redefined it

there, the original Pi would have been available to OtherPlanet, as the OtherPlanet

class is defined within the global scope.

The second section of the preceding example also demonstrates that you can

interrogate constants within other classes directly. OtherPlanet::Pi refers directly to the

Pi constant within OtherPlanet.

�Modules, Namespaces, and Mix-Ins
Modules provide a structure to collect Ruby classes, methods, and constants into a

single, separately named and defined unit. This is useful so you can avoid clashes with

existing classes, methods, and constants, and also so that you can add (mix-in) the

functionality of modules into your classes. First, we’ll look at how to use modules to

create namespaces to avoid name-related clashes.

Chapter 6 Classes, Objects, and Modules

171

�Namespaces
One common feature used in Ruby is the ability to include code situated in other files

into the current program (this is covered in depth in the next chapter). When including

other files, you can quickly run into conflicts, particularly if files or libraries you’re

including then include multiple files of their own. You cannot guarantee that no file

that’s included (or one that’s included in a long chain of includes) will clash with code

you’ve already written or processed.

Take this example:

def random

 rand(1000000)

end

puts random

The random method returns a random number between 0 and 999,999. This method

could be in a remote file where it’s easily forgotten, which would cause problems if you

had another file you included using require that implemented a method like so:

def random

 (rand(26) + 65).chr

end

This random method returns a random capital letter.

Note  (rand(26) + 65).chr generates a random number between 0 and
25 and adds 65 to it, giving a number in the range of 65 to 90. The chr method
then converts a number into a character using the ASCII standard where 65 is
A, through to 90, which is Z. You can learn more about the ASCII character set at
https://en.wikipedia.org/wiki/ASCII, or refer to Chapter 3, where this
topic was covered in more detail.

Now you have two methods called random. If the first random method is in a file called

number_stuff.rb and the second random method is in a file called letter_stuff.rb,

you’re going to hit problems:

require './number_stuff'

Chapter 6 Classes, Objects, and Modules

https://en.wikipedia.org/wiki/ASCII

172

require './letter_stuff'

puts random

Which version of the random method is called?

Note  require is a Ruby statement used to load in code contained within
another file. This is covered in detail in the next chapter.

As the last file loaded, it turns out to be the latter version of random, and a random

letter should appear onscreen. Unfortunately, however, it means your other random

method has been “lost.”

This situation is known as a name conflict, and it can happen in even more gruesome

situations than the simplistic example shown in the preceding code. For example,

class names can clash similarly, and you could end up with two classes mixed into one

by accident. If a class called Song is defined in one external file and then defined in a

second external file, the class Song available in your program will be a dirty mix of the

two. Sometimes this might be the intended behavior, but in other cases, this can cause

significant problems.

Modules help to solve these conflicts by providing namespaces that can contain any

number of classes, methods, and constants and allow you to address them directly, for

example:

module NumberStuff

 def self.random

 rand(1000000)

 end

end

module LetterStuff

 def self.random

 (rand(26) + 65).chr

 end

end

puts NumberStuff.random

Chapter 6 Classes, Objects, and Modules

173

puts LetterStuff.random

184783
X

Note D ue to the randomness introduced by using rand, the results will vary
every time you run the program!

In this demonstration, it’s clear which version of random you’re trying to use in the
two last lines. The modules defined in the preceding code look a little like classes, except
they’re defined with the word module instead of class. However, in reality you cannot
create instances of a module, as they’re not actually classes, nor can they inherit from
anything. Modules simply provide ways to organize methods, classes, and constants into
separate namespaces.

A more complex example could involve demonstrating two classes with the same
name, but in different modules:

module ToolBox
 class Ruler
 attr_accessor :length
 end
end

module Country
 class Ruler
 attr_accessor :name
 end
end

a = ToolBox::Ruler.new
a.length = 50
b = Country::Ruler.new
b.name = "Genghis Khan from Moskau"

Rather than having the Ruler classes fighting it out for supremacy, or ending up
with a mutant Ruler class with both name and length attributes (how many measuring
rulers have names?), the Ruler classes are kept separately in the ToolBox and Country

namespaces.

Chapter 6 Classes, Objects, and Modules

174

You’ll be looking at why namespaces are even more useful than this later, but first

you have to look at the second reason why modules are so useful.

�Mix-Ins
Earlier you studied inheritance: the feature of object orientation that allows classes (and

their instance objects) to inherit methods from other classes. You discovered that Ruby

doesn’t support multiple inheritance, the ability to inherit from multiple classes at the

same time. Instead, Ruby’s inheritance functionality only lets you create simple trees of

classes, avoiding the confusion inherent with multiple inheritance systems.

However, in some cases it can be useful to share functionality between disparate

classes. In this sense, modules act like a sort of bundle of methods, classes, and

constants that can be included into other classes, extending that class with the methods

the module offers, for example:

module UsefulFeatures

 def class_name

 self.class.to_s

 end

end

class Person

 include UsefulFeatures

end

x = Person.new

puts x.class_name

Person

In this code, UsefulFeatures looks almost like a class and, well, it almost is.

However, modules are organizational tools rather than classes themselves. The class_

name method exists within the module and is then included in the Person class. Here’s

another example:

module AnotherModule

 def do_stuff

 puts "This is a test"

Chapter 6 Classes, Objects, and Modules

175

 end

end

include AnotherModule

do_stuff

This is a test

As you can see, you can include module methods in the current scope, even if you’re

not directly within a class. Somewhat like a class, though, you can use the methods

directly:

AnotherModule.do_stuff

Therefore, include takes a module and includes its contents into the current scope.

Ruby comes with several modules by standard that you can use. For example, the

Kernel module contains all the “standard” commands you use in Ruby (such as load,

require, exit, puts, and eval) without getting involved with objects or classes. None of

those methods are taking place directly in the scope of an object (as with the methods

in your own programs), but they’re special methods that get included in all classes

(including the main scope), by default, through the Kernel module.

However, of more interest to us are the modules Ruby provides that you can include

in your own classes to gain more functionality immediately. Two such modules are

Enumerable and Comparable.

�Enumerable

In previous chapters, you’ve performed the process of iteration, like so:

[1,2,3,4,5].each { |number| puts number }

In this case, you create a temporary array containing the numbers 1 through 5 and

use the each iterator to pass each value into the code block, assigning each value to

number that you then print to the screen with puts.

The each iterator gives you a lot of power, as it allows you to go through all the

elements of an array or a hash and use the data you retrieve to work out, for example, the

mean of an array of numbers, or the length of the longest string in an array, like so:

my_array = %w{this is a test of the longest word check}

Chapter 6 Classes, Objects, and Modules

176

longest_word = ''

my_array.each do |word|

 longest_word = word if longest_word.length < word.length

end

puts longest_word

longest

In this case, you loop through my_array, and if the currently stored longest word is

shorter than the length of word, you assign it to longest_word. When the loop finishes,

the longest word is in longest_word.

The same code could be tweaked to find the largest (or smallest) number in a set of

numbers:

my_array = %w{10 56 92 3 49 588 18}

highest_number = 0

my_array.each do |number|

 number = number.to_i

 highest_number = number if number > highest_number

end

puts highest_number

588

However, the Array class (for one) has pre-included the methods provided by the

Enumerable module, a module that supplies about 20 useful counting and iteration-

related methods, including collect, detect, find, find_all, include?, max, min,

select, sort, and to_a. All of these use Array’s each method to do their jobs, and if your

class can implement an each method, you can include Enumerable, and get all those

methods for free in your own class!

First, some examples of the methods provided by Enumerable:

[1,2,3,4].collect { |i| i.to_s + "x" }

=> ["1x", "2x", "3x", "4x"]

Chapter 6 Classes, Objects, and Modules

177

[1,2,3,4].detect { |i| i.between?(2,3) }

=> 2

[1,2,3,4].select { |i| i.between?(2,3) }

=> [2,3]

[4,1,3,2].sort

=> [1,2,3,4]

[1,2,3,4].max

=> 4

[1,2,3,4].min

=> 1

You can make your own class, implement an each method, and get these methods

for “free”:

class AllVowels

 VOWELS = %w{a e i o u}

 def each

 VOWELS.each { |v| yield v }

 end

end

This is a class that, in reality, doesn’t need to provide multiple objects, as it only

provides an enumeration of vowels. However, to keep the demonstration simple, it is

ideal. Here’s how it works:

Chapter 6 Classes, Objects, and Modules

178

x = AllVowels.new

x.each { |v| puts v }

a

e

i

o

u

Your AllVowels class contains an array constant containing the vowels, and the

instance-level each method iterates through the array constant VOWELS and yields to the

code block supplied to each, passing in each vowel, using yield v. Let’s get Enumerable

involved:

class AllVowels

 include Enumerable

 VOWELS = %w{a e i o u}

 def each

 VOWELS.each { |v| yield v }

 end

end

Note  yield and its relationship to code blocks were covered near the end of
Chapter 3; refer to that if you need a refresher.

Now let’s try to use those methods provided by Enumerable again. First, let’s get an

AllVowels object:

x = AllVowels.new

Now you can call the methods on x:

x.collect { |i| i + "x" }

=> ["ax", "ex", "ix", "ox", "ux"]

Chapter 6 Classes, Objects, and Modules

179

x.detect { |i| i > "j" }

=> "o"

x.select { |i| i > "j" }

=> ["o", "u"]

x.sort

=> ["a", "e", "i", "o", "u"]

x.max

=> "u"

x.min

=> "a"

�Comparable

The Comparable module provides methods that give other classes comparison operators

such as < (less than), <= (less than or equal to), == (equal to), >= (greater than or equal

to), and > (greater than), as well as the between? method that returns true if the value is

between (inclusively) the two parameters supplied (e.g., 4.between?(3,10) == true).

To provide these methods, the Comparable module uses the <=> comparison

operator on the class that includes it. <=> returns -1 if the supplied parameter is higher

than the object’s value, 0 if they are equal, or 1 if the object’s value is higher than the

parameter, for example:

1 <=> 2

-1

Chapter 6 Classes, Objects, and Modules

180

1 <=> 1

0

2 <=> 1

1

With this simple method, the Comparable module can provide the other basic

comparison operators and between?. Create your own class to try it out:

class Song

 include Comparable

 attr_accessor :length

 def <=>(other)

 @length <=> other.length

 end

 def initialize(song_name, length)

 @song_name = song_name

 @length = length

 end

end

a = Song.new('Rock around the clock', 143)

b = Song.new('Bohemian Rhapsody', 544)

c = Song.new('Minute Waltz', 60)

Here are the results of including the Comparable module:

a < b

=> true

b >= c

Chapter 6 Classes, Objects, and Modules

181

=> true

c > a

=> false

a.between?(c,b)

=> true

You can compare the songs as if you’re comparing numbers. Technically, you are.

By implementing the <=> method on the Song class, individual song objects can be

compared directly, and you use their lengths to do so. You could have implemented <=>

to compare by the length of the song title, or any other attribute, if you wished.

Modules give you the same ability to implement similar generic sets of functionality

that you can then apply to arbitrary classes. For example, you could create a module that

implements longest and shortest methods that could be included into Array, Hash, or

other classes and returns the longest or shortest string in a list.

�Using Mix-Ins with Namespaces and Classes

In a previous example, I demonstrated how you can use modules to define namespaces

using the following code:

module ToolBox

 class Ruler

 attr_accessor :length

 end

end

module Country

 class Ruler

 attr_accessor :name

 end

end

a = ToolBox::Ruler.new

Chapter 6 Classes, Objects, and Modules

182

a.length = 50

b = Country::Ruler.new

b.name = "Genghis Khan of Moskau"

In this case, the Ruler classes were accessed by directly addressing them via their

respective modules (as ToolBox::Ruler and Country::Ruler).

However, what if you wanted to assume temporarily that Ruler (with no module

name prefixed) was Country::Ruler and that if you wanted to access any other Ruler

class, you’d refer to it directly? include makes it possible.

In the previous sections, you’ve used include to include the methods of a module in

the current class and scope, but it also includes the classes present within a module (if

any) and makes them locally accessible too. Say, after the prior code, you did this:

include Country

c = Ruler.new

c.name = "King Henry VIII"

Success! The Country module’s contents (in this case, just the Ruler class) are

brought into the current scope, and you can use Ruler as if it’s a local class. If you

want to use the Ruler class located under ToolBox, you can still refer to it directly as

ToolBox::Ruler.

STATIC TYPING

As you are aware by this point in the book, Ruby is a dynamically typed language. This means

a variable’s type is determined at runtime. For example, if you assign the value 3 to a variable

named count, Ruby interprets that line and sets count to the type Integer:

count = 3

puts count.class

=> Integer

Dynamic typing provides flexibility, which in turn makes Ruby great for rapid development

and creating expressive code. These benefits come at a cost. Managing large projects written

in Ruby can be a significant undertaking. Statically typed languages like C# negate these

issues by performing several checks at compile time to catch issues that would appear only at

runtime for Ruby.

Chapter 6 Classes, Objects, and Modules

183

Since Ruby 3, it’s possible to use static typing via an opt-in system called RBS. There are

many benefits when using RBS:

•	 Uncover more bugs: Since RBS provides a way to define precisely what type a

class, method, or property requires, we can perform checks similar to statically

typed languages before runtime. This will uncover issues like undefined

methods and type mismatches. Problems like this are common as a codebase

matures and receives numerous refactors. Catching these issues before

runtime will save you many headaches.

•	 Nil safety: RBS makes it possible to specify whether or not a method can accept

a nil value.

•	 Guided duck typing: In Ruby, if it sounds like a duck and acts like a duck, it

must be a duck. This concept is fundamental in duck typing. RBS removes the

guessing and provides interface types to ensure an object is a duck. Interface

types specify the exact method signatures an object needs to implement to

pass to a method.

•	 IDE integration: RBS provides IDEs with a better understanding of our source

code. This means better integration with your favorite IDE. While all of this

sounds great, it requires some work on the developer’s part to implement.

To use RBS, create a separate .rbs file with the same name as the .rb file you want to enable

static typing. Having a separate file means we don’t need to use static typing on all of our

classes. We can slowly adopt RBS on a per-class basis.

Look at this example:

sig/employee.rbs

class Employee

 attr_reader name: String

 attr_reader security_level: Integer

 attr_reader email_addresses: Array[String]

 def initialize: (name: String, security_level:Integer) -> void

 def access_granted?: (level:Integer) -> bool

end

Chapter 6 Classes, Objects, and Modules

184

Here we define an rbs file for the class Employee. You will notice this looks similar to a

standard Ruby class except for some additional syntax. At the end of the attr_reader
definition, there is a type declaration. This type declaration states the property can only accept
values of the specified type. In the example, name accepts String values, while security_level
accepts Integer values. It’s also possible to specify more complex types. The property
email_addresses only allows arrays of type String.

Next, notice the method signatures. With RBS, we can specify the parameter types as well as

the type of the return value. The initialize method doesn’t return anything value, so its return

type is void, meaning nothing. The access_granted? method returns a bool or Boolean value.

We have only skimmed the surface of RBS. Visit the GitHub page for more info:

https://github.com/ruby/rbs.

�Building a Dungeon Text Adventure with Objects
So far in this chapter, you’ve looked at object-oriented concepts in depth, mostly in a

technical sense. At this point, it would be useful to extend that knowledge by applying it

in a real-world scenario.

In this section, you’re going to implement a mini text adventure/virtual dungeon.

Text adventures were popular in the 1980s, but have fallen out of favor with modern

gamers seeking graphical thrills. They’re perfect playgrounds for experimenting with

classes and objects, though, as replicating the real world in a virtual form requires a

complete understanding of mapping real-world concepts into classes.

�Dungeon Concepts
Before you can develop your classes, you have to figure out what you’re trying to model.

Your dungeon isn’t going to be complex at all, but you’ll design it to cope with at least the

following concepts:

•	 Dungeon: You need a general class that encapsulates the entire

concept of the dungeon game.

•	 Player: The player provides the link between the dungeon and you.

All experience of the dungeon comes through the player. The player

can move between rooms in the dungeon.

Chapter 6 Classes, Objects, and Modules

https://github.com/ruby/rbs

185

•	 Rooms: The rooms of the dungeon are the locations that the player
can navigate between. These will be linked together in multiple ways
(e.g., doors to the north, west, east, and south) and have descriptions.

A complete adventure would also have concepts representing items, enemies, other
characters, waypoints, spells, and triggers for various puzzles and outcomes. You could
easily extend what you’ll develop into a more complete game later on if you want.

�Creating the Initial Classes
Our first concept to develop is that of the dungeon and the game itself. Within this
framework come the other concepts, such as the player and rooms.

Using nested classes, you can lay down the initial code like so:

class Dungeon
 attr_accessor :player

 def initialize(player)
 @player = player
 @rooms = {}
 end
end

class Player
 attr_accessor :name, :location

 def initialize(player_name)
 @name = player_name
 end
end

class Room
 attr_accessor :reference, :name, :description, :connections

 def initialize (reference, name, description, connections)
 @reference = reference
 @name = name
 @description = description
 @connections = connections
 end

end

Chapter 6 Classes, Objects, and Modules

186

This code lays down the framework for your dungeon.

Your dungeon currently has instance variables to store the player (since the player

may change the state of the dungeon in some way) and the list of rooms (@rooms = {}

creates an empty Hash; it’s equivalent to @rooms = Hash.new).

The Player class lets the player object keep track of his or her name and current

location. The Room class lets room objects store their name, description (e.g., “Torture

Chamber” and “This is a dark, foreboding room.”), and connections to other rooms, as

well as a reference (to be used by other rooms for their connections).

When you create a dungeon with Dungeon.new, it expects to receive the name of the

player, whereupon it creates that player and assigns it to the dungeon’s object variable

@player. This is because the player and the dungeon need to be linked, so storing the

player object within the dungeon object makes sense. You can easily access the player

because the player variable has been made into an accessor with attr_accessor, for

example:

me = Player.new("Fred Bloggs")

my_dungeon = Dungeon.new(me)

puts my_dungeon.player.name

Fred Bloggs

You can access the player functionality directly by going through the dungeon

object. As @player contains the player object, and as @player has been made publicly

accessible with attr_accessor :player, you get complete access.

�Structs: Quick and Easy Data Classes
One thing should stand out about the main code listing so far. It’s repetitive. The Room

and Player classes are merely acting as basic placeholders for data rather than as true

classes with logic and functionality. There’s an easier way to create this sort of special

data-holding class in Ruby with a single line of a class called a struct.

A struct is a special class whose only job is to have attributes and to hold data. Here’s

a demonstration:

Person = Struct.new(:name, :gender, :age)

fred = Person.new("Fred", "male", 50)

Chapter 6 Classes, Objects, and Modules

187

chris = Person.new("Chris", "male", 25)

puts fred.age + chris.age

75

Simply, the Struct class builds classes to store data. On the first line, you create

a new class called Person that has built-in name, gender, and age attributes. On the

second line, you create a new object instance of Person and set the attributes on the fly.

The first line is equivalent to this longhand method:

class Person

 attr_accessor :name, :gender, :age

 def initialize(name, gender, age)

 @name = name

 @gender = gender

 @age = age

 end

end

Note  In actuality, this code is not exactly equivalent to the struct code (though
pragmatically it’s close enough), because parameters are optional when initializing
a Struct class, whereas the preceding Person class code requires the three
parameters (name, gender, and age) be present.

This code creates a Person class the “long way.” If all you want to do is store some

data, then the struct technique is quicker to type and easier to read, although if you

ultimately want to add more functionality to the class, creating a class the long way is

worth the effort. However, the good thing is that you can start out with a struct and

recode it into a full class when you’re ready. This is what you’re going to do with your

dungeon. Let’s rewrite it from scratch:

class Dungeon

 attr_accessor :player

 def initialize(player)

 @player = player

Chapter 6 Classes, Objects, and Modules

188

 @rooms = {}

 end

end

Player = Struct.new(:name, :location)

Room = Struct.new(:reference, :name, :description, :connections)

It’s certainly shorter, and because parameters are optional when creating instances

of Struct classes, you can still use Player.new(player_name), and the location

attribute is merely set to nil. If you ever need to add methods to Player or Room, you can

rewrite them as classes and add the attributes back with attr_accessor.

ATTR_ACCESSOR

Throughout the code in this chapter, as well as in Chapter 2, you have used attr_accessor

within classes to provide attributes for your objects. Recall that attr_accessor allows you to

do this:

class Person

 attr_accessor :name, :age

end

x = Person.new

x.name = "Fred"

x.age = 10

puts x.name, x.age

However, in reality attr_accessor isn’t doing anything magical. It’s simply writing some
code for you. This code is equivalent to the single attr_accessor :name, :age line in the
preceding Person class:

class Person

 def name

 @name

 end

 def name=(name)

 @name = name

 end

Chapter 6 Classes, Objects, and Modules

189

 def age

 @age

 end

 def age=(age)

 @age = age

 end

end

This code defines the name and age methods that return the current object variables for those

attributes, so that x.name and x.age (as in the prior code) work. It also defines two “setter”

methods that assign the values to the @name and @age object variables.

If you pay attention to the names of the setter methods, you’ll see they’re the same as the
methods that return values but suffixed with an equals sign (=). This means they’re the
methods that are run for code such as x.name = "Fred" and x.age = 10. In Ruby,
assignments are just calls to regular methods! Indeed, x.name = "Fred" is merely
shorthand for x.name=("Fred").

�Creating Rooms
Your dungeon now has the basic classes in place, but there’s still no way to create rooms,

so let’s add a method to the Dungeon class:

class Dungeon

 def add_room(reference, name, description, connections)

 @rooms[reference] = Room.new(reference, name, description, connections)

 end

end

You want to add rooms to the dungeon, so adding a method to dungeon objects

makes the most sense. Now you can create rooms like so (if my_dungeon is still defined, of

course):

my_dungeon.add_room(:largecave, "Large Cave", "a large cavernous cave", {

west: :smallcave })

my_dungeon.add_room(:smallcave, "Small Cave", "a small, claustrophobic

cave", { east: :largecave })

Chapter 6 Classes, Objects, and Modules

190

add_room accepts the reference, name, description, and connections arguments

and creates a new Room object with them before adding that object to the @rooms hash.

The reference, name, and descriptions arguments should seem obvious, but the

connections argument is designed to accept a hash that represents the connections that

a particular room has with other rooms. For example, { west: :smallcave } ties two

symbols (:west and :smallcave) together. Your dungeon logic uses this link to connect

the rooms. A connections hash of { west: :smallcave, south: :another_room }

would create two connections (one to the west heading to “small cave” and one to the

south heading to “another room”).

�Making the Dungeon Work
You have all the rooms loaded for your basic dungeon (and can add more whenever you

like with the add_room method), but you have no way of navigating the dungeon itself.

The first step is to create a method within Dungeon that starts everything off by

placing the user into the dungeon and giving you the description of the initial location:

class Dungeon

 def start(location)

 @player.location = location

 show_current_description

 end

 def show_current_description

 puts find_room_in_dungeon(@player.location).full_description

 end

 def find_room_in_dungeon(reference)

 @rooms[reference]

 end

end

class Room

 def full_description

 @name + "\n\nYou are in " + @description

 end

end

Chapter 6 Classes, Objects, and Modules

191

You define a start method within the dungeon that sets the player’s location

attribute. It then calls the dungeon’s show_current_description method, which finds

the room based on the player’s location, and then prints the full description of that

location to the screen. full_description does the work of taking the location’s name

and description and turning it into a full, useful description. find_room_in_dungeon, on

the other hand, returns the room whose reference matches that of the current location.

However, the problem with the preceding code is that Room is a struct, rather than

a full class, so it becomes necessary to turn it into a full class once again (as hinted

at earlier). This change requires a few key changes, so to keep things simple, here’s

the complete code so far, along with the change of Room to a regular class and some

additional methods to aid navigation of the dungeon:

class Dungeon

 attr_accessor :player

 def initialize(player)

 @player = player

 @rooms = {}

 end

 def add_room(reference, name, description, connections)

 @rooms[reference] = Room.new(reference, name, description, connections)

 end

 def start(location)

 @player.location = location

 show_current_description

 end

 def show_current_description

 puts find_room_in_dungeon(@player.location).full_description

 end

 def find_room_in_dungeon(reference)

 @rooms[reference]

 end

 def find_room_in_direction(direction)

 find_room_in_dungeon(@player.location).connections[direction]

Chapter 6 Classes, Objects, and Modules

192

 end

 def go(direction)

 puts "You go " + direction.to_s

 @player.location = find_room_in_direction(direction)

 show_current_description

 end

end

class Player

 attr_accessor :name, :location

 def initialize(name)

 @name = name

 end

end

class Room

 attr_accessor :reference, :name, :description, :connections

 def initialize(reference, name, description, connections)

 @reference = reference

 @name = name

 @description = description

 @connections = connections

 end

 def full_description

 @name + "\n\nYou are in " + @description

 end

end

player = Player.new("Fred Bloggs")

my_dungeon = Dungeon.new(player)

Add rooms to the dungeon

my_dungeon.add_room(:largecave,

 "Large Cave",

 "a large cavernous cave",

 { west: :smallcave })

Chapter 6 Classes, Objects, and Modules

193

my_dungeon.add_room(:smallcave,

 "Small Cave",

 "a small, claustrophobic cave",

 { east: :largecave })

Start the dungeon by placing the player in the large cave

my_dungeon.start(:largecave)

Large Cave

You are in a large cavernous cave

It’s a long piece of source code, but most of it should make sense by now. You’ve

changed Room and Player into true classes once more and implemented the basics of the

dungeon.

Two particularly interesting methods have been added to the Dungeon class:

def find_room_in_direction(direction)

 find_room_in_dungeon(@player.location).connections[direction]

end

def go(direction)

 puts "You go " + direction.to_s

 @player.location = find_room_in_direction(direction)

 show_current_description

end

The go method is what makes navigating the dungeon possible. It takes a single

argument—the direction to travel in—and uses that to change the player’s location to the

room that’s in that direction. It does this by calling find_room_in_direction, a method

that takes the reference related to the relevant direction’s connection on the current

room, and returns the reference of the destination room. Remember that you define a

room like so:

my_dungeon.add_room(:largecave,

 "Large Cave",

 "a large cavernous cave",

 { west: :smallcave })

Chapter 6 Classes, Objects, and Modules

194

If :largecave is the current room, then find_room_in_direction(:west) will use

the connections on that room to return :smallcave, and this is then assigned to @player.

location to define that as the new current location.

To test the navigation of the dungeon, you can simply type the go commands if

you’re using irb, or if you’re working with a source file in an editor, you’ll need to add the

go commands to the end of your source code and re-run it. Here’s what happens:

my_dungeon.show_current_description

Large Cave

You are in a large cavernous cave

my_dungeon.go(:west)

You go west

Small Cave

You are in a small, claustrophobic cave

my_dungeon.go(:east)

You go east

Large Cave

You are in a large cavernous cave

The code has no error checking (try going to a nonexistent room with my_dungeon.

go(:south)) and lacks items, an inventory, and other basic text-adventure features, but

you now have an operational group of objects that represents a dungeon, and that can be

navigated in a basic fashion.

This code is rife for extension and manipulation. With another class and several

more methods, you could easily add support for items within the game that you can

place at different locations, pick up, and then drop at other locations.

If you want an exercise, you can try turning the preceding dungeon code into a truly

interactive program by creating a loop that uses the gets method to retrieve instructions

from the player and then to “go” wherever the player determines. You can use chomp to

strip off the newline characters from the incoming text and to_sym to convert strings into

Chapter 6 Classes, Objects, and Modules

195

symbols for the go method. This might seem like a tough task at this stage, but if you pull

it off, I guarantee you’ll have learned a lot and you’ll be confident about going on to the

next chapter.

In Chapter 9, you’ll look at how to interact with files and read data from the

keyboard. At that point, you could extend the dungeon game to be properly interactive

and accept input from the user, validate that it represents a valid direction, and then call

the go method if so. With these additions and the addition of several more rooms, you’re

most of the way to a viable text adventure!

�Summary
In this chapter, we covered the essentials of object orientation and the features Ruby

provides to make object-oriented code a reality. You looked at the concepts that apply to

object orientation in most languages, such as inheritance, encapsulation, class methods,

instance methods, and the types of variables that you can use. Lastly, you developed a

basic set of classes to produce a simple dungeon.

Let’s reflect on some of the concepts we covered in this chapter:

•	 Classes: A class is a collection of methods and data that are used as a

blueprint to create multiple objects relating to that class.

•	 Objects: An object is a single instance of a class. An object of class

Person is a single person. An object of class Dog is a single dog. If

you think of objects as real-life objects, a class is the classification,

whereas an object is the actual object or “thing” itself.

•	 Local variable: A variable that can only be accessed and used from

the current scope.

•	 Instance/object variable: A variable that can be accessed and used

from the scope of a single object. An object’s methods can all access

that object’s object variables.

•	 Global variable: A variable that can be accessed and used from

anywhere within the current program.

•	 Class variable: A variable that can be accessed and used within the

scope of a class and all of its child objects.

Chapter 6 Classes, Objects, and Modules

196

•	 Encapsulation: The concept of objects containing both data and

methods that operate on that data, as well as allowing those methods

to have differing degrees of visibility outside of their class or

associated object.

•	 Polymorphism: The concept of methods being able to deal with

different classes of data and offering a more generic implementation

(as with the area and perimeter methods offered by your Square and

Triangle classes).

•	 Module: An organizational element that collects together any number

of classes, methods, and constants into a single namespace.

•	 Namespace: A named element of organization that keeps classes,

methods, and constants from clashing.

•	 Mix-in: A module that can mix its methods in to a class to extend that

class’s functionality.

•	 Enumerable: A mix-in module, provided as standard with Ruby, that

implements iterators and list-related methods for other classes, such

as collect, map, min, and max. Ruby uses this module by default with

the Array and Hash classes.

•	 Comparable: A mix-in module, provided as standard with Ruby, that

implements comparison operators (such as <, >, and ==) on classes

that implement the generic comparison operator <=>.

Throughout the next several chapters, I’ll assume you have knowledge of how classes

and objects work and how the different scopes of variables (including local, global,

instance, and class variables) work.

Chapter 6 Classes, Objects, and Modules

197
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_7

CHAPTER 7

Projects and Libraries
In previous chapters, we’ve looked at and worked with Ruby from a low-level perspective

by working directly with classes, objects, and functions. Each line of code we’ve used

in the small projects so far has been written specifically for that project from scratch. In

this chapter, we’ll look at how to build larger projects with Ruby and how to reuse code

written previously. Finally, we’ll look at how to use code already written and prepared

by other developers within your own applications so that you don’t need to reinvent the

wheel every time you create a new program.

This chapter is about the bigger picture: dealing with projects and libraries.

�Projects and Using Code from Other Files
As you become more familiar with Ruby and find more uses for it, it’s likely that you’ll

want to move from writing single small programs (with fewer than 100 or so lines) to

more complex applications and systems made up of multiple parts. Larger applications

and systems therefore often become known as projects and are managed in a different

way than simple one-file scripts.

The most common way to separate functionality in Ruby is to put different classes

in different files. This gives you the ability to write classes that could be used in multiple

projects simply by copying the file into your other project.

�Basic File Inclusion
Consider this code:

puts "This is a test".vowels.join('-')

https://doi.org/10.1007/978-1-4842-6324-2_7#DOI

198

If you try to execute this code, you’ll get an error complaining that the vowels

method is not available for the "This is a test" object of class String. This is true

because Ruby doesn’t provide that method. Let’s write an extension to the String class

to provide it:

class String

 def vowels

 self.scan(/[aeiou]/i)

 end

end

If this definition were included in the same file as the prior puts code—say, my_test.

rb—the result would be as follows:

i-i-a-e

In this case, you’ve extended String with a vowels method that uses scan to return

an array of all the vowels (the i option on the end makes the regular expression case-

insensitive).

However, you might want to write a number of methods to add to String that you’d

like to use in multiple programs. Rather than copy and paste the code each time, you can

copy it to a separate file and use the require command to load the external file into the

current program. For example, put this code in a file called string_extensions.rb:

class String

 def vowels

 self.scan(/[aeiou]/i)

 end

end

And put this code in a file called vowel_test.rb:

require './string_extensions'

puts "This is a test".vowels.join('-')

If you run vowel_test.rb, the expected result would appear onscreen. The first line,

require './string_extensions', simply loads in the string_extensions.rb file from

the current directory (as signified by the ./) and processes it as if the code were local.

This means that, in this case, the vowels method is available, all with a single line.

Chapter 7 Projects and Libraries

199

Ruby does not include the current directory in the path of directories to search for

Ruby files by default, so you can either specify the current directory specifically by using

./, as earlier, or by using require_relative. So this example is operationally identical to

the previous one:

require_relative 'string_extensions'

puts "This is a test".vowels.join('-')

As well as require and require_relative, you can use load to load external source

code files into your program. For example, this code would seem to function identically

to the preceding code:

load 'string_extensions.rb'

puts "This is a test".vowels.join('-')

Note  load requires a full filename, including the .rb suffix, whereas require
assumes the .rb suffix.

The output is the same in this case, but let’s try a different example to see the

difference. Put this in a .rb:

puts "Hello from a.rb"

And put this in a file called b.rb:

require_relative 'a'

puts "Hello from b.rb"

require_relative 'a'

puts "Hello again from b.rb"

Run with ruby b.rb to get the result:

Hello from a.rb

Hello rom b.rb

Hello again from b.rb

In this example, the a.rb file is included only once. It’s included on line 1, and

"Hello from a.rb" gets printed to the screen, but then when it’s included again on line

3 of b.rb, nothing occurs. In contrast, consider this code:

Chapter 7 Projects and Libraries

200

load 'a.rb'

puts "Hello from b.rb"

load 'a.rb'

puts "Hello again from b.rb"

Hello from a.rb

Hello from b.rb

Hello from a.rb

Hello again from b.rb

With load, the code is loaded and reprocessed anew each time you use the load

method. require and require_relative, on the other hand, process external files only

once.

Note R uby programmers nearly always use require or require_relative
rather than load. The effects of load are useful only if the code in the external file
has changed or if it contains active code that will be executed immediately.

�Inclusions from Other Directories
load and require have different approaches to finding files to load. load and require_

relative can bring in local files, but require does not. require 'a' looks for a.rb in a

multitude of other directories on your storage drive. By default, these other directories

are the various directories where Ruby stores its own files and libraries, although you can

override this when necessary.

Ruby stores the list of directories to search for included files in a special variable

called $: (or, if you prefer, $LOAD_PATH). You can see what $: contains by default using

irb:

$:.each { |d| puts d }

/Library/Ruby/Site/3.0.0

/Library/Ruby/Site/3.0.0/x86_64-darwin19

/Library/Ruby/Site/3.0.0/universal-darwin19.

Chapter 7 Projects and Libraries

201

Note T his result is what appears on my machine, but the list of directories will
probably differ significantly on your machine, particularly if you’re using Windows,
where the path layout will be entirely different, with the drive letter at the start and
backslashes instead of forward slashes.

If you want to add directories to this, it’s simple:

$:.push '/your/directory/here'

require 'yourfile'

$: is an array, so you can push extra items to it or use unshift to add an element

to the start of the list (if you want your directory to be searched before the default Ruby

ones—useful if you want to override Ruby’s standard libraries).

�Logic and Including Code
require and load both act like normal code in Ruby programs. You can put them at any

point in your Ruby code, and they’ll behave as if they were processed at that point, for

example:

$debug_mode = 0

require_relative $debug_mode == 0 ? "normal-classes" : "debug-classes"

It’s an obscure example, but it checks if the global variable $debug_mode is set to 0.

If it is, it requires normal-classes.rb and, if not, debug-classes.rb. This gives you the

power to include a different source file dependent on the value of a variable, ideal for

situations where your application has “regular” and “debug” modes. You could even

write an application that works perfectly, but then use a different require to include a

whole different set of files that have new or experimental functionality.

A commonly used shortcut uses arrays to quickly load a collection of libraries at

once, for example:

%w{file1 file2 file3 file4 file5}.each { |file| require file }

This loads five different external files or libraries with just two lines of code. However,

some coders are not keen on this style, as it can make the code harder to read, even if it’s

more efficient.

Chapter 7 Projects and Libraries

202

�Nested Inclusions
Code from files that are included in others with require and load has the same freedom

as if the code were pasted directly into the original file. This means files that you include

can call load, require, or require_relative themselves. For example, assume a.rb

contains the following:

require_relative 'b'

and b.rb contains the following:

require_relative 'c'

and c.rb contains the following:

def example

 puts "Hello!"

end

and d.rb contains the following:

require_relative 'a'

example

When d.rb is then run,

Hello!

d.rb includes a.rb with require, a.rb includes b.rb, and b.rb includes c.rb,

meaning the example method is available to d.rb.

This functionality makes it easy to put together large projects with interdependent

parts, as the structure can be as deep as you like.

�Libraries
In computer programming, a library is a collection of routines that can be called by

separate programs but that exist independently of those programs. For example, you

could create a library to load and process a data file and then use the routines in that

library from any number of other programs.

Chapter 7 Projects and Libraries

203

Earlier in this chapter, we looked at using the require command to load external

files into your Ruby programs, and back in Chapter 6, we looked at how modules can be

used to separate elements of functionality into separate namespaces. You can use both

of these concepts, jointly, to make libraries in Ruby.

At the start of this chapter, you developed an extremely simple library called string_

extensions.rb, like so:

class String

 def vowels

 self.scan(/[aeiou]/i)

 end

end

And you used this library with the following code:

require 'string_extensions'

puts "This is a test".vowels.join('-')

i-i-a-e

Nearly all libraries are more complex than this simple example, but nonetheless, this

is a basic demonstration of how a library works.

Next, we’re going to look at the libraries that come standard with Ruby and look at

a way to download and use libraries that other developers have made available on the

Internet.

�The Standard Libraries
Ruby comes with many standard libraries. They provide Ruby with a wide selection

of functionality “out of the box,” from webserving and networking tools through to

encryption, benchmarking, and testing routines.

Note  Collectively the “standard libraries” are often called “the Standard Library.”
When you see this term (it’s used particularly often in Chapter 16), it’s important
to remember it most likely refers to the collection rather than one library in
particular—a “library of libraries,” if you will.

Chapter 7 Projects and Libraries

204

In this section, we’re going to look at how you can use just two random standard

libraries (net/http and OpenStruct), so that you’re prepared for using and working with

other libraries in later chapters, where you’ll be using many other standard libraries in a

similar way. The choice of these two libraries is reasonably arbitrary, although both are

commonly used by Rubyists whereas some of the standard libraries get little use at all.

A list of all the standard libraries, including documentation, is available at

www.ruby-doc.org/stdlib/, although a sizable number of them are covered in more

detail in Chapter 16 of this book.

Note S ome users might discover that the number of standard libraries might
have been trimmed down, particularly if using a preinstalled version of Ruby.
However, if you installed Ruby from source, all the demonstrations in this section
should work.

�net/http

HTTP stands for HyperText Transfer Protocol, and it’s the main protocol that makes

the World Wide Web work, as it provides the mechanism by which web pages, files, and

other media can be sent between web servers and clients.

Ruby provides basic support for HTTP via the net/http library. For example, it’s

trivial to write a Ruby script that can download and print out the contents of a particular

web page:

require 'net/http'

uri = URI('https://ruby-doc.org')

http_request = Net::HTTP.new(uri.host, uri.port)

http_request.use_ssl = true

response = http_request.get('/')

puts response.body.force_encoding("ISO-8859-1")

Chapter 7 Projects and Libraries

http://www.ruby-doc.org/stdlib/

205

If you run this code, after a few seconds, many pages of HTML code should fly past

on your screen. The first line loads the net/http library into the current program, and the

second line creates a URI (another standard library, and one that’s loaded automatically

by net/http) to decipher a URL into its constituent parts for the net/http library to use

to make its request. The third line creates an instance of the Net::HTTP class (where Net

is a module defining the Net namespace and HTTP is a subclass). The fourth line tells the

Net::HTTP class to use ssl. On the fifth line, we call the get method which performs a HTTP

GET request to https://ruby-doc.org/ and store the response in a variable. On the last

line, we display the contents of the web page by calling the body method on the response

variable. Since we are requesting a page that uses SSL, we need to tell Ruby to force the

string encoding to ISO-8859-1. Hence, the additional method call force_encoding after

calling body. Don’t worry too much if you don’t understand what encoding is and why we

are using it. Just note that not all text is stored the same way on a computer. Sometimes we

need to convert between different formats.

You may also see the net/http library being used like this:

require 'net/http'

url = URI.parse('https://ruby-doc.org/')

response = Net::HTTP.start(url.host, url.port, use_ssl: true) do |http|

 http.get(url.path)

end

content = response.body

In this example, a HTTP connection is “started,” and within the scope of that connection,

a GET request is made with the get method (if this doesn’t make sense, don’t worry; it’s part

of how the HTTP protocol works). Finally, you retrieve the content from response.body, a

string containing the contents of the web page at https://ruby-doc.org/.

Note T he net/http library is only a basic library, and it requires its input to be
sanitized in advance, as in the preceding examples. The URI library is ideally suited
to this task.

Chapter 7 Projects and Libraries

https://ruby-doc.org/
https://ruby-doc.org/

206

In Chapter 14, we’ll look at net/http and some of its sister libraries, such as net/pop

and net/smtp, in more detail.

�OpenStruct

In Chapter 6, you worked with a special type of data structure called Struct. Struct

allowed you to create small data-handling classes on the fly, like so:

Person = Struct.new(:name, :age)

me = Person.new("Fred Bloggs", 25)

me.age += 1

Struct gives you the luxury of being able to create simple classes without having to

define a class in the long-handed way.

The OpenStruct class provided by the ostruct library makes it even easier. It allows

you to create data objects without specifying the attributes and allows you to create

attributes on the fly:

require 'ostruct'

person = OpenStruct.new

person.name = "Fred Bloggs"

person.age = 25

person is a variable pointing to an object of class OpenStruct, and OpenStruct allows

you to call attributes whatever you like, on the fly. It’s similar to how a hash works, but

using the object notation.

As the name implies, OpenStruct is more flexible than Struct, but this comes at

the cost of harder-to-read code. There’s no way to determine exactly, at a glance, which

attributes have been used. However, with traditional structs, you can see the attribute

names at the same place the struct is created.

�RubyGems
RubyGems is a packaging system for Ruby programs and libraries. It enables developers to

package their Ruby libraries in a form that’s easy for users to maintain and install. RubyGems

makes it easy to manage different versions of the same libraries on your machine and gives

you the ability to install them with a single line at the command prompt.

Chapter 7 Projects and Libraries

207

Each individually packaged Ruby library (or application) is known simply as a gem

or RubyGem. Gems have names, version numbers, and descriptions. You can manage

your computer’s local installations of gems using the gem command, available from

the command line. RubyGems comes standard with Ruby nowadays, but it was not

included with distributions of Ruby 1.8. You no longer need to be concerned with how it

is installed as it’s available "out of the box"!

�Finding Gems

It’s useful to get a list of the gems that are installed on your machine, as well as get a

list of the gems available for download and installation. To do this, you use gem’s list

command. If you run the following command from your command line:

gem list

you’ll get a result similar to this:

*** LOCAL GEMS ***

bigdecimal (2.0.0)

json (2.3.0)

minitest (5.14.0)

It’s not much, but it’s a start. This list shows that you have three different gems

installed, along with their version numbers. Your list of gems may be significantly longer

than this, but as long as it looks like a list and not an error message, you’re good to go.

You can query the remote gem server (currently hosted by rubygems.org, but you

can add other sources later) like so:

gem list --remote
abstract (1.0.0)
ackbar (0.1.1, 0.1.0)
action_profiler (1.0.0)

[..1,000s of lines about other gems removed for brevity..]

Chapter 7 Projects and Libraries

208

Within a minute or so, many thousands of gems and descriptions should go flying
past.

Wading through such a list is impractical for most purposes, but generally you’ll
be aware of which gem you want to install before you get to this stage. People on the
Internet will recommend gems, or you’ll be asked to install a particular gem by this book
or another tutorial.

However, if you wish to “browse,” the best way to do so is to visit https://rubygems.
org/, the home for the RubyGems repository. The site features search tools and more
information about each gem in the repository.

�Installing a Gem
Once you’ve found the name of a gem you wish to install, you can install it with a single
command at the command line (where chronic would be replaced with the name of the
gem you wish to install, although feedtools is a fine gem to test with):

gem install chronic

If all goes well, you’ll get output like this:

Fetching: chronic-0.10.2.gem (100%)
Successfully installed chronic-0.10.2
Parsing documentation for chronic-0.10.2
Installing ri documentation for chronic-0.10.2
Done installing documentation for chronic after 1 seconds

1 gem installed

First, RubyGems looks to see if the gem exists in the current directory (you can keep
your own store of gems locally, if you like), and if not, it heads off to rubygems.org to
download the gem and install it from afar. Last, it builds the documentation for the
library using rdoc (covered in Chapter 8), and installation is complete. This process is the

same for nearly all gems.

Chapter 7 Projects and Libraries

https://rubygems.org/
https://rubygems.org/

209

Note I n many cases, installing one gem requires other gems to be installed too.
That is, the gem you’re trying to install might have other gems it needs to operate,
also known as “dependencies.”

If you run gem list again at this point, your local list of gems will include the newly
installed gem (in this case, chronic).

If you are aware that you need to install a specific version of a gem (such as version
0.10.2 of Chronic, as earlier), you can specify this like so:

gem install -v 0.10.2 chronic

�Using Gems
As the RubyGems system isn’t an integrated part of Ruby, it’s necessary to tell your
programs that you want to use and load gems.

We will use gem install chronic, as demonstrated earlier, to install the gem.
Once the gem is installed, run irb or create a new Ruby source file, and use the

chronic gem like so:

require 'chronic'
puts Chronic.parse('may 10th')

2020-05-10 12:00:00 +0100

In this example, we load the Chronic library with require. The ‘chronic’ refers to the
main Ruby file and then we can use the Chronic class to do various things—in this case,
time manipulation.

�Upgrading and Uninstalling Gems
One of the main features of RubyGems is that gems can be updated easily. You can
update all of your currently installed gems with a single line:

gem update

This makes RubyGems go to the remote gem repository, look for new versions of all
the gems you currently have installed, and if there are new versions, install them. If you
want to upgrade only a specific gem, suffix the preceding command line with the name

of the gem in question.

Chapter 7 Projects and Libraries

210

Uninstalling gems is the simplest task of all. Use the uninstall command (where

feedtools is replaced by the name of the gem you wish to uninstall):

gem uninstall feedtools

Note A gain, remember to use sudo when the situation demands it, as covered in
previous sections.

If there are multiple versions of the same gem on the machine, RubyGems will ask
you which version you want to uninstall first (or you can tell it to uninstall all versions at
once), as in this example:

$ gem uninstall rubyforge

Select RubyGem to uninstall:
1. rubyforge-0.3.0
2. rubyforge-0.3.1

3. All versions

�Creating Your Own Gems
Naturally, it’s possible to create gems from your own libraries and applications. This
entire process is covered in Chapter 10, along with the other ways you can deploy your
applications to users.

�Bundler
Bundler (https://bundler.io/) is a tool that was developed to help you manage the
dependencies of a project (essentially, the libraries upon which your project depends)
in a more structured way. It comes by default on some Ruby installs, but you can always
ensure it's installed with gem install bundler.

Consider, for example, that you create a project that depends on several libraries or
gems. To run this application locally, you'd need to make sure that you have the right
versions of each gem installed on your system. But if you have numerous projects with
wide varieties of dependencies, you'll start to find it hard to track which gems you have
installed and what versions they are.

Chapter 7 Projects and Libraries

https://bundler.io/

211

Bundler lets you create a file (called Gemfile) within a project's directory that
specifies what libraries the project depends on. Here's an example of a very simple
Gemfile:

source 'https://rubygems.org'
gem 'nokogiri'

gem 'rack', '~>1.5'

This specifies where the gems are to be downloaded from by default and then which

two gems the current project depends upon. Nokogiri is specified without a version

number, but in Rack's case, a version query is specified at the end of the line which says

any version that's 1.5 or above (but not version 2 or above—so 1.5, 1.6, 1.6.13, etc.).

If you run bundle install from the directory where a Gemfile is present, Bundler

ensures that the right gems are installed or upgraded to the right versions:

Fetching gem metadata from https://rubygems.org/.........

Resolving dependencies...

Using bundler 2.1.4

Using mini_portile2 2.4.0

Using nokogiri 1.10.9

Using rack 1.6.13

Bundle complete! 2 Gemfile dependencies, 4 gems now installed.

Use 'bundle show [gemname]` to see where a bundled gem is installed.

The correct gems, as specified in Gemfile, are now installed. You can use these from

within your project, or if you want to ensure that the right versions are loaded, you can

specify require 'bundler/setup' within your program, like so:

require 'bundler/setup'

require 'rack'

Now Rack 1.5 or above is loaded properly and you can check by typing the

following:

Rack.version

Rack.release

Chapter 7 Projects and Libraries

212

One other thing to be aware of is that when you install or upgrade gems, another file

is created or updated called Gemfile.lock. This is not a file you are meant to change

yourself, but it simply reflects what the precise set of dependencies are, along with their

version numbers, so that if you distribute the project anywhere else, the very same set of

libraries and versions will be installed properly. Here's an example of the Gemfile.lock

produced by the install earlier:

GEM

 remote: https://rubygems.org/

 specs:

 mini_portile2 (2.4.0)

 nokogiri (1.10.9)

 mini_portile2 (~> 2.4.0)

 rack (1.6.13)

PLATFORMS

 ruby

DEPENDENCIES

 nokogiri

 rack (~> 1.5)

BUNDLED WITH

 2.1.4

Even though our main Gemfile specifies any version of Rack over 1.5 and under 2.0,

we specifically have 1.6.13 installed as that's the latest matching version at the time of

writing. If I transferred this project to you in the future, however, 1.7 may be the latest

matching Rack, and this could break the code. The Gemfile.lock’s job, therefore, is to

explicitly communicate which versions of which libraries are working with the project

right now.

If you want to learn more about Bundler, visit https://bundler.io/.

Chapter 7 Projects and Libraries

https://bundler.io/

213

�Summary
In this chapter, we’ve looked at some of the methods Ruby provides to make it possible

to handle large projects, as well as access the vast universe of prewritten code libraries to

make development easier.

Ruby provides a wealth of useful libraries within the main distribution, but using

tools such as RubyGems allows you to get access to code written by thousands of other

Ruby developers, allowing you to implement more-complex programs more quickly than

would otherwise be possible.

Let’s reflect on the main concepts covered in this chapter:

•	 Project: Any collection of multiple files and subdirectories that form a

single instance of a Ruby application or library.

•	 Library: A collection of routines, classes, methods, and/or modules

that provides a set of features that many other applications can use.

•	 RubyGems: The packaging system for Ruby libraries and/or

applications that makes them easier to install and maintain by

developers.

•	 Gem: A single library (or application) packaged using the RubyGems

system. Can also be called a “RubyGem.”

•	 require: A method that loads and processes the Ruby code from a

separate file, including whatever classes, modules, methods, and

constants are in that file, into the current scope. load is similar, but

rather than performing the inclusion operation once, it reprocesses

the code every time load is called. require_relative is like require

but lets you load files from the current directory too without prefixing

their names with ./.

•	 Bundler: A tool that makes it easier to handle the libraries that a

particular application depends on. It can install gems, handle the

upgrading of gems, and help lock certain versions of gems to your

specific projects.

In many of the chapters from here on, we’ll be using the power of libraries and

combining multiple libraries to make single applications. One such example is the Ruby

on Rails framework we’ll be covering in Chapter 13, which is, in essence, a giant library

made up of several libraries itself!

Chapter 7 Projects and Libraries

215
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_8

CHAPTER 8

Documentation, Error
Handling, Debugging,
and Testing
In this chapter, we’re going to look at the finer details of developing reliable programs:

documentation, error handling, debugging, and testing. These tasks aren’t what most

people think of as “development,” but are as important to the overall process as general

coding tasks. Without documenting, debugging, and testing your code, it’s unlikely that

anyone but you could work on the code with much success, and you run the risk of

releasing faulty scripts and applications.

This chapter demonstrates how to produce documentation, handle errors in your

programs, test the efficiency of your code, and make sure that your code is (mostly) bug-

free, all using tools that come with Ruby.

�Documentation
Even if you’re the only person to use and work on your Ruby code, it’s inevitable that

over time you’ll forget the nuances of how it was put together and how it works. To guard

against code amnesia, you should document your code as you develop it.

In the past, documentation would often be completed by a third party rather than

the developer or would be written after the majority of the development had been

completed. Although developers have used comments in their code, true documentation

of a quality such that other developers and users can understand it without seeing the

source code was an afterthought.

Ruby makes it extremely easy to document your code as you create it, using a utility

called RDoc (standing for “Ruby Documentation”).

https://doi.org/10.1007/978-1-4842-6324-2_8#DOI

216

�Generating Documentation with RDoc
RDoc calls itself a “Document Generator for Ruby Source.” It’s a tool that reads through

your Ruby source code files and creates structured HTML documentation. It comes with

the standard Ruby distribution, so it’s easy to find and use.

RDoc understands a lot of Ruby syntax and can create documentation for classes,

methods, modules, and numerous other Ruby constructs without much prompting.

The way you document your code in a way that RDoc can use is to leave comments

prior to the definition of the class, method, or module you want to document, for

example:

This class stores information about people.

class Person

 attr_accessor :name, :age, :gender

 # Create the person object and store their name

 def initialize(name)

 @name = name

 end

 # Print this person's name to the screen

 def print_name

 puts "Person called #{@name}"

 end

end

This is a simple class that’s been documented using comments. It’s quite readable

already, but RDoc can turn it into a pretty set of HTML documentation in seconds.

To use RDoc, simply run it from the command line using rdoc <name of source

file>.rb, like so:

rdoc person.rb

Note  On Linux and OS X, this should simply work “out of the box” (as long as the
directory containing RDoc—usually /usr/bin or /usr/local/bin—is in the
path). On Windows, it might be necessary to prefix rdoc with its full location or
add it to the PATH environment variable.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

217

This command tells RDoc to process person.rb and produce the HTML

documentation. By default, it does this by creating a directory called doc from the

current directory and placing its HTML and CSS files in there. Once RDoc has

completed, you can open index.html, located within doc, and you should see some

basic documentation, as in Figure 8-1.

The HTML documentation is shown with three frames across the top containing

links to the documented files, classes, and methods, respectively, and a main frame at

the bottom containing the documentation being viewed at present. The top three frames

let you jump between the various classes and methods with a single click. In a large set of

documentation, this quickly becomes useful.

When viewing the documentation for the Person class, the documentation shows

what methods it contains, the documentation for those methods, and the attributes the

class provides for its objects. RDoc works this out entirely from the source code and your

comments.

Figure 8-1.  Basic RDoc HTML output as seen from a web browser

Chapter 8 Documentation, Error Handling, Debugging, and Testing

218

�RDoc Techniques
In the prior section, you got RDoc to generate documentation from a few simple

comments in your source file. However, RDoc is rarely useful on such a small example,

and its real power comes into play when you’re working on larger projects and using its

advanced functions. This section will cover some of these functions so you can comment

the code on your larger projects correctly.

Note  The following sections give only a basic overview of some of RDoc’s
features. To read the full documentation for RDoc and learn about features that
are beyond the scope of this book, visit the official RDoc site at https://ruby.
github.io/rdoc/.

�Producing Documentation for an Entire Project
Previously you used rdoc along with a filename to produce documentation for a single

file. However, in the case of a large project, you could have many hundreds of files that

you want processed. If you run RDoc with no filenames supplied, RDoc will process

all the Ruby files found in the current directory and all other directories under that.

The full documentation is placed into the doc directory, as before, and the entire set of

documentation is available from index.html.

�Basic Formatting

Formatting your documentation for RDoc is easy. RDoc automatically recognizes

paragraphs within your comments and can even use spacing to recognize structure.

Here’s an example of some of the formatting RDoc recognizes:

#= This is a 1st level heading

#

#

#* First item in an outer list

* First item in an inner list

* Second item in an inner list

#* Second item in an outer list

Chapter 8 Documentation, Error Handling, Debugging, and Testing

https://ruby.github.io/rdoc/
https://ruby.github.io/rdoc/

219

* Only item in this inner list

#

#== This is a second level heading

#

#Visit https://www.apress.com

#

#== Test of text formatting features

#

#Want to see *bold* or _italic_ text? You can even embed

#+text that looks like code+ by surrounding it with plus

#symbols. Indented code will be automatically formatted:

#

class MyClass

def method_name

puts "test"

end

end

class MyClass

end

If you process this with RDoc, you’ll get a result that looks like Figure 8-2. To learn

more about RDoc’s general formatting features, the best method is to look at existing

code that is extensively prepared for RDoc, such as the source code to the Ruby on Rails

framework, or refer to the documentation at https://ruby.github.io/rdoc/RDoc/

Markup.html.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

https://ruby.github.io/rdoc/RDoc/Markup.html
https://ruby.github.io/rdoc/RDoc/Markup.html

220

�Modifiers and Options
RDoc can work without the developer knowing much about it, but to get the most

from RDoc, it’s necessary to know how several of its features work and how they can

be customized. RDoc supports a number of modifiers within comments, along with a

plethora of command-line options.

�:nodoc: Modifier

By default, RDoc will attempt to use anything it considers relevant to build up its

documentation. Sometimes, however, you’d rather RDoc ignore certain modules,

classes, or methods, particularly if you haven’t documented them yet. To make RDoc

ignore something in this way, simply follow the module, class, or method definition with

a comment of :nodoc:, like so:

This is a class that does nothing

class MyClass

Figure 8-2.  How RDoc renders the formatting feature test file

Chapter 8 Documentation, Error Handling, Debugging, and Testing

221

 # This method is documented

 def some_method

 end

 def secret_method #:nodoc:

 end

end

In this instance, RDoc will ignore secret_method.

:nodoc: only operates directly on the elements upon which it is placed. If you want

:nodoc: to apply to the current element and all those beneath it (e.g., all methods within

a class), do this:

This is a class that does nothing

class MyClass #:nodoc: all

 # This method is documented (or is it?)

 def some_method

 end

 def secret_method

 end

end

Now none of MyClass is documented by RDoc.

�Turning RDoc Processing On and Off

You can stop RDoc from processing comments temporarily using #++ and #--, like so:

This section is documented and read by RDoc.

#--

This section is hidden from RDoc and could contain developer

notes, private messages between developers, etc.

#++

RDoc begins processing again here after the ++.

This feature is particularly ideal in sections where you want to leave comments to

yourself that aren’t for general consumption.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

222

Note  RDoc doesn’t process comments that are within methods, so your usual
code comments are not used in the documentation produced. RDoc will also not
process comments that are separated from other comments with blank lines.

�Command-Line Options
Like most command-line applications, including Ruby itself, you can give RDoc a
number of options, as follows:

•	 ​--all: Usually RDoc processes only public methods, but --all forces
RDoc to document all methods within the source files.

•	 ​--fmt <format name>: Produce documentation in a certain format
(which currently includes darkfish, pot, and ri).

•	 ​--help: Get help with using RDoc’s command-line options and find
out which output formatters are available.

•	 ​--main <name>: Set the class, module, or file that appears as the main
index page for the documentation to <name> (e.g., rdoc --main
MyClass).

After any command-line options, rdoc is suffixed with the filename(s) of the files you
want to have RDoc document. Alternatively, if you specify nothing, RDoc will traverse
the current directory and all subdirectories and generate documentation for your entire
project.

Note  RDoc supports many more command-line options than these, and they are
all covered in RDoc’s official documentation. Alternatively, run RDoc with rdoc
​--help at the command line to get a list of its options.

�Debugging and Errors
Errors happen. It’s unavoidable that programs you develop will contain bugs, and you
won’t immediately be able to see what the errors are. A misplaced character in a regular
expression, or a typo with a mathematical symbol, can make the difference between a

reliable program and one that constantly throws errors or generates undesirable output.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

223

�Exceptions and Error Handling
An exception is an event that occurs when an error arises within a program. An exception

can cause the program to quit immediately with an error message or can be handled by

error-handling routines within the program to recover from the error in a sensible way.

For example, a program might depend on a network connection (e.g., the Internet),

and if the network connection is unavailable, an error will arise when the program

attempts to use the network. Rather than brusquely terminating with an obscure error

message, the code can handle the exception and print a human-friendly error message

to the screen first. Alternatively, the program might have a mechanism by which it can

work offline, and you can use the exception raised by trying to access an inaccessible

network or server to enter that mode of operation instead.

�Raising Exceptions
In Ruby, exceptions are packaged into objects of class Exception or one of Exception’s

many subclasses. Ruby has many predefined exception classes that deal with different

types of errors, such as NoMemoryError, StandardError, RuntimeError, SecurityError,

ZeroDivisionError, and NoMethodError. You might have already seen some of these in

error messages while working in irb.

When an exception is raised (exceptions are said to be raised when they occur within

the execution of a program), Ruby immediately looks back up the tree of routines that

called the current one (known as the stack) and looks for a routine that can handle that

particular exception. If it can’t find any error-handling routines, it quits the program with

the raw error message, for example:

irb(main):001:0> puts 10 / 0

ZeroDivisionError (divided by 0)

 from (irb):1:in `/'

 from (irb):1

This error message shows that an exception of type ZeroDivisionError has been

raised, because you attempted to divide ten by zero.

Ruby can raise exceptions automatically when you perform incorrect functions, and

you can raise exceptions from your own code too. You do this with the raise method

and by using an existing exception class or by creating one of your own that inherits from

the Exception class.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

224

One of the standard exception classes is ArgumentError, which is used when the

arguments provided to a method are fatally flawed. You can use this class as an exception

if bad data is supplied to a method of your own:

class Person

 def initialize(name)

 raise ArgumentError, "No name present" if name.empty?

 end

end

If you create a new object from Person and supply a blank name, an exception will

be raised:

fred = Person.new('')

ArgumentError: No name present

Note  You can call raise with no arguments at all, and a generic
RuntimeError exception will be raised. This is not good practice, though, as
the exception will have no message or meaning along with it. Always provide a
message and a class with raise, if possible.

However, you could create your own type of exception if you wanted to, for example:

class BadDataException < RuntimeError

end

class Person

 def initialize(name)

 raise BadDataException, "No name present" if name.empty?

 end

end

This time you’ve created a BadDataException class inheriting from Ruby’s standard

RuntimeError exception class.

Now, creating a new object with the wrong type of parameter raises a

BadDataException:

Chapter 8 Documentation, Error Handling, Debugging, and Testing

225

fred = Person.new('')

BadDataException (No name present)

At this point, it might seem meaningless as to why raising different types of

exceptions is useful. The reason is so that you can handle different exceptions in

different ways with your error-handling code, as you’ll do next.

�Handling Exceptions

In the previous section, we looked at how exceptions work. When raised, exceptions

halt the execution of the program and trace their way back up the stack to find some

code that can handle them. If no handler for the exception is found, the program ceases

execution and dies with an error message with information about the exception.

However, in most situations, stopping a program because of a single error isn’t

necessary. The error might only be minor, or there might be an alternative option to try.

Therefore, it’s possible to handle exceptions. In Ruby, the rescue clause is used, along

with begin and end, to define blocks of code to handle exceptions, for example:

begin

 puts 10 / 0

rescue

 puts "You caused an error!"

end

You caused an error!

In this case, begin and end define a section of code to be run, where if an exception

arises, it’s handled with the code inside the rescue block. First, you try to work out ten

divided by zero, which raises an exception of class ZeroDivisionError. However, being

inside a block containing a rescue section means that the exception is handled by the

code inside that rescue section. Rather than dying with a ZeroDivisionError, the text

“You caused an error!” is instead printed to the screen.

This can become important in programs that rely on external sources of data.

Consider this pseudo-code:

Chapter 8 Documentation, Error Handling, Debugging, and Testing

226

data = ""

begin

 <..code to retrieve the contents of a Web page..>

 data = <..content of Web page..>

rescue

 puts "The Web page could not be loaded! Using default data instead."

 data = <..load data from local file..>

end

puts data

This code demonstrates why handling exceptions is extremely useful. If retrieving

the contents of a web page fails (e.g., if you’re not connected to the Internet), then

the error-handling routine rescues the exception, alerts the user of an error, and then

loads some data from a local file instead—certainly better than exiting the program

immediately!

In the previous section, we looked at how to create your own exception classes, and

the motivation for doing this is that it’s possible to rescue different types of exceptions

in a different way. For example, you might want to react differently if there’s a fatal flaw

in the code vs. a simple error such as a lack of network connectivity. There might also be

errors you want to ignore and only specific exceptions you wish to handle.

rescue’s syntax makes handling different exceptions in different ways easy:

begin

 ... code here ...

rescue ZeroDivisionError

 ... code to rescue the zero division exception here ...

rescue YourOwnException

 ... code to rescue a different type of exception here ...

rescue

 ... code that rescues all other types of exception here ...

end

This code contains multiple rescue blocks, each of which is caused depending on

the type of exception raised. If a ZeroDivisionError is raised within the code between

begin and the rescue blocks, the rescue ZeroDivisionError code is executed to handle

the exception.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

227

�Handling Passed Exceptions

As well as handling different types of exceptions using different code blocks, it’s possible

to receive exceptions and use them. This is achieved with a little extra syntax on the

rescue block:

begin

 puts 10 / 0

rescue => e

 puts "You caused the error -> #{e.class}"

end

ZeroDivisionError

Rather than merely performing some code when an exception is raised, the

exception object itself is assigned to the variable e, whereupon you can use that variable

however you wish. This is particularly useful if the exception class contains extra

functionality or attributes that you want to access.

�Catch and Throw
Although creating your own exceptions and exception handlers is useful for resolving

error situations, sometimes you want to be able to break out of a thread of execution

(say, a loop) during normal operation in a similar way to an exception, but without

actually generating an error. Ruby provides two methods, catch and throw, for this

purpose.

catch and throw work in a way a little reminiscent of raise and rescue, but catch

and throw work with symbols rather than exceptions. They’re designed to be used in

situations where no error has occurred, but being able to escape quickly from a nested

loop, method call, or similar is necessary.

The following example creates a block using catch. The catch block with the :finish

symbol as an argument will immediately terminate (and move on to any code after that

block) if throw is called with the :finish symbol:

Chapter 8 Documentation, Error Handling, Debugging, and Testing

228

catch(:finish) do

 1000.times do

 x = rand(1000)

 throw :finish if x == 123

 end

 puts "Generated 1000 random numbers without generating 123!"

end

Within the catch block, you generate 1000 random numbers, and if the random

number is ever 123, you immediately escape out of the block using throw :finish.

However, if you manage to generate 1000 random numbers without generating the

number 123, the loop and the block complete, and you see the message.

catch and throw don’t have to be directly in the same scope. throw works from

methods called from within a catch block:

def generate_random_number_except_123

 x = rand(1000)

 throw :finish if x > 123 && x < 200

end

catch(:finish) do

 1000.times { generate_random_number_except_123 }

 puts "Generated 1000 random numbers without generating 123!"

end

This code operates in an identical way to the first. When throw can’t find a code

block using :finish in its current scope, it jumps back up the stack until it can.

�The Ruby Debugger
Debugging is the process of fixing the bugs in a piece of code. This process can be as

simple as changing a small section of your program, running it, monitoring the output,

and then looping through this process again and again until the output is correct and the

program behaves as expected.

However, constantly editing and re-running your program gives you no insight

into what’s actually happening deep within your code. Sometimes you want to know

what each variable contains at a certain point within your program’s execution, or you

Chapter 8 Documentation, Error Handling, Debugging, and Testing

229

might want to force a variable to contain a certain value. You can use puts to show what

variables contain at certain points in your program, but you can soon make your code

messy by interspersing it with debugging tricks.

A debugging tool can step through your code line by line (if you wish), set

breakpoints (places where execution will stop for you to check things out), and debug

your code. Code execution pauses giving you control to analyze variables and run

methods. It’s a little like irb, except you don’t need to type out a whole program. You can

specify your program’s filename, and you’ll be acting as if you are within that program.

Ruby provides a debugger, but at the time of writing this book, it’s not the primary

way developers debug their code. There are two debuggers currently used: Pry and

byebug. Since byebug is available by default in Rails, we will be covering it in this book.

You will need to install byebug to use it with Ruby. Run the following command to install

byebug:

gem install byebug

For example, create a basic Ruby script called debugtest.rb:

i = 1

j = 0

until i > 1000000

 i *= 2

 j += 1

end

puts "i = #{i}, j = #{j}"

If you run this code with ruby debugtest.rb, you’ll get the following result:

i = 1048576, j = 20

But say you run it with byebug like this:

byebug debugtest.rb

You’ll see something like this appear:

=> 1: i = 1

 2: j = 0

 3: until i > 1000000

Chapter 8 Documentation, Error Handling, Debugging, and Testing

230

 4: i *= 2

 5: j += 1

 6: end

 7: puts "i = #{i}, j = #{j}"

 8:

(byebug)

This means the debugger has loaded. Each line of our code is numbered and there

is a hash rocket informing you where the debugger paused (the first line, in this case). In

our example, the next line Ruby will interpret is line 1.

You may also place a byebug statement anywhere in your code to stop execution at

that line:

require 'byebug'

i = 1

j = 0

byebug

until i > 1000000

 i *= 2

 j += 1

end

puts "i = #{i}, j = #{j}"

Using the byebug syntax means we can run the program using the ruby interpreter:

ruby debugtest.rb

which will output the following:

 1: require 'byebug'

 2:

 3: i = 1

 4: j = 0

 5: byebug

=> 6: until i > 1000000

 7: i *= 2

 8: j += 1

Chapter 8 Documentation, Error Handling, Debugging, and Testing

231

 9: end

 10: puts "i = #{i}, j = #{j}"

(byebug)

Placing the byebug statement in your source code directly provides greater control

over where the debugger stops the program execution. This method is used more often

by developers.

The function of byebug is similar to irb, and you can type expressions and statements

directly onto the prompt here. However, its main strength is that you can use special

commands to run debugtest.rb line by line or set breakpoints.

Here are some useful commands to use at the debugger prompt. To use the

command, you type either the first letter of the word or the whole word:

•	 (s)tep: Runs the next line of the program. Steps into method

calls. After each step, you can check variables, change values, and

so on. This allows you to trace the exact point at which bugs occur.

Follow step by the number of lines you wish to execute if it’s higher

than one, such as step 2 to execute two lines.

•	 (n)ext: Runs the next line of the program. Same functionality as step,

except next steps “over” method calls.

•	 (c)ontinue: Runs the program without stepping. Execution will

continue until the program ends or reaches a breakpoint.

•	 (b)reak: Sets a breakpoint at the current line number. This means

that if you continue execution with continue, execution will run until

the breakpoint and stop again. This is useful for stopping execution

inside of a loop.

•	 backtrace (bt or w): Displays the current stack trace. This is useful

if you want to see which methods were called prior to the current

method.

•	 (q)uit: Exits the debugger.

•	 restart: Restarts the program as well as byebug.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

232

You can view the contents of a variable by typing the variable name and pressing

Enter. Also, you can run any method or instantiate any class available to you in the

current context. I recommend testing out different commands and looking at the

documentation for byebug which can be found at https://github.com/deivid-

rodriguez/byebug.

�Testing
Testing is a powerful part of modern software development and can help you resolve

many development snafus. Without a proper testing system in place, you can never be

confident that your app is bug-free. With a good testing system in place, you might only

be 99 percent bug-free, but it’s a significant improvement.

Previously, we’ve looked at how to handle explicit errors, but sometimes your

programs might perform oddly in certain situations. For example, certain data might

cause an algorithm to return an incorrect result, or invalid data might be produced that,

although invalid, does not result in an explicit error.

One way to resolve these problems is to debug your code, as you’ve seen, but

debugging solves only one problem at a time. It’s possible to debug your code to solve

one problem, but create many others! Therefore, debugging alone has become viewed

as a poor method of resolving bugs, and testing the overall functionality of code has

become important.

In the past, users and developers might have performed testing manually by

performing certain actions and seeing what happens. If an error occurs, the bug

in question is fixed and testing continues. Indeed, there was a time when it was

commonplace solely to use user feedback as a testing mechanism!

However, things have changed quickly with the rapidly growing popularity of test-

driven development (also often known as test-first development), a new philosophy that

turns software development practices on their head. Ruby developers have been at the

forefront of promoting and encouraging this technique.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

https://github.com/deivid-rodriguez/byebug
https://github.com/deivid-rodriguez/byebug

233

�The Philosophy of Test-Driven Development
Test-driven development is a technique where developers create a set of tests for a system

to pass before coding the system itself and then rigidly use these tests to maintain the

integrity of the code. In a lighter form, however, it can also refer to the technique of

implementing tests for any code, even if you don’t necessarily create the tests before the

code you’re testing.

Note  This section provides only a basic overview of test-driven development. The
topic is vast, and many books and resources are available on the topic if you wish
to learn more. Wikipedia’s entry on the topic at https://en.wikipedia.org/
wiki/Test-driven_development is a great place to start.

For example, you might add a simple method to String that’s designed to capitalize

text into titles:

class String

 def titleize

 self.capitalize

 end

end

Your intention is to create a method that can turn “this is a test” into “This Is A

Test”, that is, a method that makes strings look as if they’re titles. titleize, therefore,

capitalizes the current string with the capitalize method. If you’re in a rush or not

bothering to test your code, disaster will soon strike when the code is released into the

wild. capitalize capitalizes only the first letter of a string, not the whole string!

puts "this is a test".titleize

"This is a test"

That’s not the intended behavior! However, with test-driven development, you could

have avoided the pain of releasing broken code by first writing some tests to demonstrate

the outcome you expect:

raise "Fail 1" unless "this is a test".titleize == "This Is A Test"

Chapter 8 Documentation, Error Handling, Debugging, and Testing

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

234

raise "Fail 2" unless "another test 1234".titleize == "Another Test 1234"

raise "Fail 3" unless "We're testing titleize".titleize == "We're Testing

Titleize"

These three lines of code raise exceptions unless the output of titleize is what you

expect it to be.

Note  These tests are also known as assertions, as they’re asserting that a
certain condition is true.

If titleize passes these three tests, you can expect the functionality to be okay for

other examples.

Note  A set of tests or assertions that test a single component or a certain set of
functionalities is known as a test case.

Your current code fails on the first test of this test case, so let’s write the code to make
it work:

class String
 def titleize
 self.gsub(/\b\w/) { |letter| letter.upcase }
 end
end

This code takes the current string, finds all word boundaries (with \b), passes in the
first letter of each word (as obtained with \w), and converts it to uppercase. Job done?
Run the three tests again:

RuntimeError (Fail 3)

Why does test 3 fail?

puts "We're testing titleize".titleize

We'Re Testing Titleize

Chapter 8 Documentation, Error Handling, Debugging, and Testing

235

\b isn’t smart enough to detect true word boundaries. It merely uses whitespace or
“non-word” characters to discriminate words from non-words. Therefore, in “We’re,”
both the W and the R get capitalized. You need to tweak your code:

class String
 def titleize
 self.gsub(/\s\w/) { |letter| letter.upcase }
 end
end

If you make sure the character before the letter to capitalize is whitespace, you’re
guaranteed to now be scanning with a true, new word.

Re-run the tests:

RuntimeError: Failed test 1

You’re back to square one.
One thing you failed to take into account is that looking for whitespace before a

word doesn’t allow the first word of each string to be capitalized, because those strings
start with a letter and not whitespace. It sounds trivial, but it’s a great demonstration of
how complex simple functions can become and why testing is so vital to eradicate bugs.

However, the ultimate solution is simple:

class String

 def titleize

 self.gsub(/(\A|\s)\w/){ |letter| letter.upcase }

 end

end

If you run the tests again, you’ll notice they pass straight through. Success!

This basic example provides a sharp demonstration of why testing is important.

Small changes can lead to significant changes in functionality, but with a set of trusted

tests in place, you can focus on solving problems rather than worrying if your existing

code has bugs.

Rather than writing code and waiting for bugs to appear, you can proactively

determine what your code should do and then act as soon as the results don’t match up

with the expectations.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

236

�Unit Testing
In the previous section, you created some basic tests using raise, unless, and == and

compared the results of a method call with the expected results. It’s possible to test a lot

in this way, but with more than a few tests, it soon becomes messy, as there’s no logical

place for the tests to go (and you certainly don’t want to include tests with your actual,

functional code).

Luckily, there are a couple of popular options for Ruby, Minitest, and RSpec. These

gems make testing easy and organize test cases into a clean structure. This book will use

Minitest, but RSpec is a popular option as well. Before Ruby 2.2, Minitest came bundled

with Ruby. Due to issues maintaining Minitest as a part of Ruby’s core library, it was

removed and placed in a gem. To install Minitest, run the following command:

gem install minitest

Unit testing is the primary component of test-driven development and means that

you’re testing each individual unit of functionality within a program or system. Minitest

is Ruby’s official library for performing unit tests.

One of the benefits of Minitest is that it gives you a standardized framework for

writing and performing tests. Rather than writing assertions in an inconsistent number

of ways, Minitest gives you a core set of assertions to use.

Let’s take the titleize method from before to use as a demonstration of Minitest’s

features and create a new file called test_titleize.rb:

class String

 def titleize

 self.gsub(/(\A|\s)\w/){ |letter| letter.upcase }

 end

end

require 'minitest/autorun'

class TestTitleize < Minitest::Test

 def test_basic

 assert_equal("This Is A Test", "this is a test".titleize)

 assert_equal("Another Test 1234", "another test 1234".titleize)

 assert_equal("We're Testing", "We're testing".titleize)

 end

end

Chapter 8 Documentation, Error Handling, Debugging, and Testing

237

First, you include the titleize extension to String (typically this would be in its

own file that you’d then require in, but for this simple example, we’ll keep it associated

with the test code). Next, you load the Minitest class using require. Finally, you create a

test case by inheriting from Minitest::Test. Within this class, you have a single method

(though you can have as many as you like to separate your tests logically) that contains

three assertions, similar to the assertions made in the previous section.

If you run this script, you’ll see the tests in action:

Run options: --seed 45484

Running:

.

Finished in 0.002585s, 386.8906 runs/s, 1160.6718 assertions/s.

1 runs, 3 assertions, 0 failures, 0 errors, 0 skips

This output shows that the tests are started, a single test method is run (test_basic,

in this case), and that a single test method with three assertions passed successfully.

Say you add an assertion to test_basic that’s certainly going to fail, like so:

assert_equal("Let's make a test fail!", "foo".titleize)

and re-run the tests:

Run options: --seed 4300

Running:

F

Failure:

TestTitleize#test_basic [test_titleize.rb:11]:

Expected: "Let's make a test fail!"

 Actual: "Foo"

rails test test_titleize.rb:10

Finished in 0.000813s, 1230.0124 runs/s, 1230.0124 assertions/s.

1 runs, 1 assertions, 1 failures, 0 errors, 0 skips

Chapter 8 Documentation, Error Handling, Debugging, and Testing

238

You’ve added an assertion that was bound to fail, and it has. However, Minitest has
given you a full explanation of what happened. Using this information, you can go back
and either fix the assertion or fix the code that caused the test to fail. In this case, you
forced it to fail, but if your assertions are created normally, a failure such as this would
demonstrate a bug in your code.

�More Minitest Assertions
In the previous section, you used a single type of assertion, assert_equal. assert_equal
asserts that the first and second arguments are equal (whether they’re numbers, strings,
arrays, or objects of any other kind). The first argument is assumed to be the expected
outcome, and the second argument is assumed to be the generated output, as with your
prior assertion:

assert_equal("This Is A Test", "this is a test".titleize)

Note  assert_equal can also accept an optional third argument as a message
to be displayed if the assertion fails. A message might, in some cases, prove more
useful than the default assertion failure message.

You’re likely to find several other types of assertions useful as follows:

•	 assert(<boolean expression>): Passes only if the Boolean
expression isn’t false or nil (e.g., assert 2 == 1 will always fail).
refute is its direct opposite.

•	 assert_equal(expected, actual): Passes only if the expected and
actual values are equal (as compared with the == operator). assert_
equal('A', 'a'.upcase) will pass.

•	 refute_equal(expected, actual): Is the opposite of assert_equal.
This test will fail if the expected and actual values are equal. Any
negative/“not” assertions can be prefixed with refute_, but it’s a
personal preference as to which you use.

•	 assert_raises(exception_type, ..) { <code block> }:
Passes only if the code block following the assertion raises an
exception of the type(s) passed as arguments. assert_raises
(ZeroDivisionError) { 2 / 0 } will pass.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

239

•	 assert_instance_of(class_expected, object): Passes only if
object is of class class_expected.

•	 flunk: Is a special type of assertion in that it will always fail. It’s useful
if you haven’t quite finished writing your tests and you want to add a
strong reminder that your test case isn’t complete!

Note  All the preceding assertions, including flunk, can take an optional
message argument as the last argument, as with assert_equal.

You’ll use assertions and unit testing more in Chapter 12, where you’ll develop a set
of tests for a library you’ll build.

�Benchmarking and Profiling
Once your code is bug-free and working correctly, you may think it’s ready for release.
Sometimes, however, code can be inefficient and waste system resources. Before
Ruby 1.9, the Ruby interpreter was not particularly fast. Ruby 1.9, with its entirely new
implementation, is significantly faster than prior versions (2x speed improvements).
There were additional improvements with each release of Ruby 2.x, but Ruby 3.0
provides the most significant improvements yet (3x speed improvements). With Ruby

3.0, the Ruby runtime is no longer a performance concern for most applications.

If Ruby is so fast, then why worry about performance? While Ruby is fast, our
code may not be. To verify your code is fast enough, create a benchmark. Testing the
performance of your code with a benchmark is especially vital if your code runs often.

�Simple Benchmarking
Ruby’s standard library includes a module called Benchmark. Benchmark provides several
methods that measure the speed it takes to complete the code you provide, for example:

require 'benchmark'
puts Benchmark.measure { 10000.times { print "." } }

This code measures how long it takes to print 10,000 periods to the screen. Ignoring
the periods produced, the output (on my machine; yours might vary) is as follows:

0.050000 0.040000 0.090000 (0.455168)

Chapter 8 Documentation, Error Handling, Debugging, and Testing

240

The columns, in order, represent the amount of user CPU time, system CPU time,
total CPU, and “real” time taken. In this case, although it took nine-hundredths of a
second of CPU time to send 10,000 periods to the screen or terminal, it took almost half
a second for them to finish being printed to the screen among all the other things the
computer was doing.

Because measure accepts code blocks, you can make it as elaborate as you wish:

require 'benchmark'
iterations = 1000000

b = Benchmark.measure do
 for i in 1..iterations
 x = i
 end
end

c = Benchmark.measure do
 iterations.times do |i|
 x = i
 end
end

puts b
puts c

In this example, you benchmark two different ways of counting from one to one
million. The results might look like this:

0.800000 0.010000 0.810000 (0.949338)
0.890000 0.010000 0.900000 (1.033589)

These results show little difference, except that slightly more user CPU time is used
when using the times method rather than using for. You can use this same technique to
test different ways of calculating the same answers in your code and optimize your code
to use the fastest methods.

Benchmark also includes a way to make completing multiple tests more convenient.
You can rewrite the preceding benchmarking scenario like this:

require 'benchmark'
iterations = 1000000

Chapter 8 Documentation, Error Handling, Debugging, and Testing

241

Benchmark.bm do |bm|
 bm.report("for:") do
 for i in 1..iterations
 x = i
 end
 end
 bm.report("times:") do
 iterations.times do |i|
 x = i
 end
 end
end

The primary difference with using the bm method is that it allows you to collect a
group of benchmark tests together and display the results in a prettier way. Example
output for the preceding code is as follows:

 User system total real
for: 0.850000 0.000000 0.850000 (0.967980)
times: 0.970000 0.010000 0.980000 (1.301703)

bm makes the results even easier to read and provides headings for each column.
Another method, bmbm, repeats the benchmark set twice, using the first as a

“rehearsal” and the second for the true results, as in some situations CPU caching,
memory caching, and other factors can taint the results. Therefore, repeating the test
can lead to more accurate figures. Replacing the bm method with bmbm in the preceding
example (for the Benchmark method) gives results like these:

Rehearsal --
for: 0.780000 0.000001 0.780001 (0.958378)
times: 0.100000 0.010000 0.110000 (1.342837)
------------------------------- total: 0.890001sec

 User system total real
for: 0.850000 0.000000 0.850000 (0.967980)
times: 0.970000 0.010000 0.980000 (1.301703)

bmbm runs the tests twice and gives both sets of results, where the latter set should be

the most accurate.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

242

�Profiling
Whereas benchmarking is the process of measuring the total time it takes to achieve

something and comparing those results between different versions of code, profiling tells

you what code is taking what amount of time. For example, you might have a single line

in your code that’s causing the program to run slowly, so by profiling your code you can

immediately see where you should focus your optimization efforts.

Note  Some people consider profiling to be the holy grail of optimization. Rather
than thinking of efficient ways to write your application ahead of time, some
developers suggest writing your application, profiling it, and then fixing the slowest
areas. This is to prevent premature optimization. After all, you might prematurely
optimize something that didn’t actually warrant it, but miss out on an area of code
that could do with significant optimization.

Ruby comes with a code profiler, but it is increasingly showing its age, and I would

recommend instead installing ruby-prof (https://github.com/ruby-prof/ruby-prof).

This is available as a gem, so can be simply installed with

gem install ruby-prof

Note  The installation process on Windows is a little more involved, so look at the
ruby-prof GitHub repository at https://github.com/ruby-prof/ruby-prof
for further guidance.

Once installed successfully, simply use ruby-prof to run your Ruby code and you’ll

get a print out of the profiler’s findings.

For example, let’s say we have the following Ruby program:

require 'ruby-prof'

class Calculator

 def self.count_to_large_number

 x = 0

 100000.times { x += 1 }

 end

Chapter 8 Documentation, Error Handling, Debugging, and Testing

https://github.com/ruby-prof/ruby-prof
https://github.com/ruby-prof/ruby-prof

243

 def self.count_to_small_number

 x = 0

 1000.times { x += 1 }

 end

end

Calculator.count_to_large_number

Calculator.count_to_small_number

This can then be run using ruby-prof:

ruby-prof calculator.rb

Measure Mode: wall_time

Thread ID: 560

Fiber ID: 540

Total: 0.011410

Sort by: self_time

 %self total self wait child calls name

 96.82 0.011 0.011 0.000 0.000 2

Integer#times

 1.94 0.011 0.000 0.000 0.011 1

Kernel#load

 0.28 0.000 0.000 0.000 0.000 5

<Class::File>#file?

 0.17 0.000 0.000 0.000 0.000 4 Array#each

 0.16 0.000 0.000 0.000 0.000 2

<Class::File>#symlink?

There’s a lot of information given, but it’s easy to read. The code itself is simple.

Two class methods are defined that both count up to different numbers. Calculator.

count_to_large_ number contains a loop that repeats 100,000 times, and Calculator.

count_to_ small_number contains a loop that repeats 1000 times.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

244

Note  The reason larger numbers, such as the 1,000,000 loops in the
benchmarking tests, weren’t used is because profiling adds a severe overhead to
the operating speed of a program, unlike benchmarking. Although the program will
run slower, this slowdown is consistent, so the accuracy of the profiling results is
ensured regardless.

The result contains a number of columns. The first is the percentage of time spent
within the method named in the far right column. In the preceding example, the profiler
shows that 96.82 percent of the total execution time was spent in the times method in
the Integer class. The second column shows the amount of time in seconds rather
than as a percentage.

The calls column specifies how many times that method was called. In our case,
times was called only twice.

You can use the profiler’s results to discover the “sticky” points in your program and
help you work around using inefficient methods that suck up CPU time. It’s not worth
spending time optimizing routines that barely consume any time, so use the profile to
find those routines that are using the lion’s share of the CPU, and focus on optimizing
those.

Tip  ruby-prof can also be used from within code, rather than via the ruby-prof
program, in order to profile certain pieces of code rather than an entire script. See
ruby-prof’s documentation for more information.

�Summary
In this chapter, we’ve looked at the process behind, and the tools Ruby supplies for,
documentation, error handling, testing, benchmarking, and profiling.

The quality of the documentation, error handling, and tests associated with a
program or section of code demonstrates the professionalism of the developer and the
program. Small, quickly developed scripts might not require any of these elements, but if
you’re developing a system that’s designed to be used by other people or that’s mission-
critical, it’s essential to understand the basics of error handling and testing to avoid the

embarrassment of your code causing problems and behaving erroneously.

Furthermore, it’s important to benchmark and profile your code so that your code

has the ability to scale over time. You might expect your code to perform only a certain

Chapter 8 Documentation, Error Handling, Debugging, and Testing

245

small set of functions—for example, processing small files—but in the future you might

need to process significantly larger amounts of data with the same code and add extra,

unanticipated features. The small amount of time taken to benchmark, profile, and

optimize your code can pay dividends with reduced execution times later.

Let’s reflect on the main concepts covered in this chapter:

•	 RDoc: A tool that comes with Ruby that builds HTML documentation

using the structure and comments in your source code.

•	 Debugging: The process of resolving errors in source code, often by

stepping through and inspecting the state of a program in situ.

•	 Test-driven development/test-first development: The development

process of first writing tests that enforce certain expectations, then

writing the code to produce the correct results. Behavior-driven

development is a popular alternative that merely uses different

semantics.

•	 Test case: A group of tests to check the functionality of a section of

your program (e.g., a class or module).

•	 Assertion: A single test to see whether a certain condition or result is

met, which checks that a certain piece of code is working properly.

•	 Unit testing: The process of testing code by making assertions on

its various pieces of functionality to make sure each operates as

expected.

•	 Optimization: The process of improving the efficiency of your code by

reworking algorithms and finding new ways of solving problems.

•	 Benchmarking: A process involving testing the speed of your code

to see how quick it is under certain conditions, or using certain

methods and algorithms. You can use the benchmark results to

compare different versions of code, or compare coding techniques.

•	 Profiling: A process that shows you which methods and routines are

taking up the most execution time (or memory) in your programs.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

246

Most of these concepts are not used directly in the code samples in this book, as

they’re principally relevant to longer-term projects or code being prepared for release.

This doesn’t mean they’re unimportant concepts, but as in-depth parts of a longer

development process, they aren’t within the scope of the code examples used in other

chapters.

We’ll look briefly at testing methodologies again in Chapter 12, where we implement

some simple tests while developing a library.

Chapter 8 Documentation, Error Handling, Debugging, and Testing

247
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_9

CHAPTER 9

Files and Databases
In this chapter, we’re going to look at how to store, process, and interact with external

sources of data from our Ruby programs. In Chapter 4, we briefly looked at how to load

files to get data into an application, but this chapter will extend upon that greatly and

allow you to create files from scratch from your Ruby programs.

Later in this chapter, we’ll look at databases—specialized organizations of data—and

how to interact with them, along with some notes on interacting with popular database

systems such as SQLite, MySQL, and PostgreSQL. You can use databases for simple

tasks such as storing information about a small set of items or as an address book, but

databases are also used in the world’s busiest data processing environments. By the end

of this chapter, you’ll be able to use databases the same way as, or at least in a similar

way to, those used by professional developers around the world.

�Input and Output
Interaction, in computer terms, relates to the input and output of data, or I/O for short.

Most programming languages have built-in support for I/O, and Ruby’s is well designed

and easy to use.

I/O streams are the basis for all input and output in Ruby. An I/O stream is a conduit

or channel for input and output operations between one resource and another. Usually

this will be between your Ruby program and the keyboard or between your Ruby

program and a file. Along this stream, input and output operations can take place. In

some cases, such as when using the keyboard, I/O only works in one direction, as you

can’t send data to a keyboard, and data can only be sent to, and not from, a display.

In this section, we’re going to look at using the keyboard, using files, and other forms

of I/O in Ruby and how they can be used.

https://doi.org/10.1007/978-1-4842-6324-2_9#DOI

248

�Keyboard Input
The simplest way to get external data into a program is to use the keyboard, for example:

a = gets

puts a

gets accepts a single line of data from the standard input—the keyboard in this

case—and assigns it to a. You then print it, using puts, to the standard output—the

screen in this case.

STANDARD INPUT AND OUTPUT

The standard input is a default stream available in many operating systems that relates to the

standard way to accept input from a user or external process. In our case, the standard input

is the keyboard, but if, for example, you were to redirect data to a Ruby program from a UNIX-

like operating system, such as Linux or Mac OS X, the standard input would be the data being

directed to it. For example, let’s assume we put the preceding code example into a file called

test.rb and then ran it like so:

ruby test.rb < somedata.txt

The output provided this time would be the first line of somedata.txt, as gets would
retrieve a single line from the standard input that, in this case, would be the contents of the
file somedata.txt. Essentially, the file is now the input, not the keyboard.

Conversely, standard output is usually referring to the screen or display, but if the results
of your Ruby script are being redirected to a file or another program, that destination file or
program becomes the target for the standard output.

Alternatively, you can read multiple lines in one go by using readlines:

lines = readlines
puts lines.length

readlines accepts line after line of input until a terminator, most commonly
known as EOF (end of file), is found. You can create EOF on most platforms by pressing
Ctrl+D. When the terminating line is found, all the lines of input given are put into an
array that’s assigned to lines. This is particularly ideal for programs that accept piped or

redirected input on standard input.

Chapter 9 Files and Databases

249

Note that on the second line earlier we then look at the length of the lines array.

So if the preceding code were in a file called linecount.rb and you passed in a text file

containing ten lines:

ruby linecount.rb < textfile.txt

you’d get this result:

10

In reality, however, this mechanism is rarely used, unless writing shell scripts for use

at a UNIX prompt. In most cases, you’ll be writing to and from files directly, and you’ll

require only minimal keyboard input that you can get with gets.

�File I/O
In Chapter 4, you used the File class to open a text file so you could read in the contents

for your program to process. The File class is used as an abstraction to access and

handle file objects that can be accessed from a Ruby program. The File class lets you

write to both plain text and binary files (there’s not really an inherent difference—they’re

both just sets of data) and offers a collection of methods to make handling files easy.

�Opening and Reading Files

The most common file-related procedure is reading a file’s data for use within a program.

As you saw in Chapter 4, this is easily done:

File.open("text.txt").each { |line| puts line }

The File class’s open method is used to open the text file, text.txt, and upon that

File object, the each method returns each line one by one. You can also do it this way:

File.new("text.txt", "r").each { |line| puts line }

This method clarifies the process involved. By opening a file, you’re creating a

new File object that you can then use. The second parameter, "r", defines that you’re

opening the file for reading. This is the default mode, but when using File.new, it can

help to clarify what you want to do with the file (as “new” might imply the creation of a

Chapter 9 Files and Databases

250

file, which is not usually the case). This becomes important later when you write to files

or create new ones from scratch.

For opening and reading files, File.new and File.open are identical, but File.open

has one, extra feature. File.open can accept a code block, and once the block is finished,

the file will be closed automatically. However, File.new only returns a File object

referring to the file. To close the file, you have to use its close method. Let’s compare the

two methods. First, look at File.open:

File.open("text.txt") do |f|

 puts f.gets

end

This code opens text.txt and then passes the file handle into the code block as f.

puts f.gets takes a line of data from the file and prints it to the screen. Now, have a

look at the File.new approach:

f = File.new("text.txt", "r")

puts f.gets

f.close

In this example, a file handle/object is assigned to f directly. You close the file handle

manually with the close method at the end.

Both the code block and file handle techniques have their uses. Using a code block

is a clean way to open a single file quickly and perform operations in a single location.

However, assigning the File object with File.new (or File.open, if you choose) makes

the file reference available throughout the entire current scope without needing to

contain file manipulation code within a single block.

Note  You might need to specify the location of files directly, as text.txt might
not appear to be in the current directory. Simply replace f = File.new("text.
txt", "r") with f = File.new("c:\ full\ path\here\text.txt",
"r"), including the full path as necessary (this example demonstrates a Windows-
style path). Alternatively, use the result of Dir::pwd to see what the current
working directory is and put text.txt there.

You could also choose to assign the file handle to a class or instance variable:

Chapter 9 Files and Databases

251

class MyFile

 attr_reader :handle

 def initialize(filename)

 @handle = File.new(filename, "r")

 end

 def finished

 @handle.close

 end

end

f = MyFile.new("text.txt")

puts f.handle.gets

f.finished

�More File Reading Techniques

In the previous section, you used a File object’s each method to read each line one by

one within a code block. However, you can do a lot more than that. Let’s assume your

text.txt file contains this dummy data:

Fred Bloggs,Manager,Male,45

Laura Smith,Cook,Female,23

Debbie Watts,Professor,Female,38

Next, we’ll look at some of the different techniques you can use to read the file, along

with their outputs. First, you can read an I/O stream line by line using each:

File.open("text.txt").each { |line| puts line }

Fred Bloggs,Manager,Male,45

Laura Smith,Cook,Female,23

Debbie Watts,Professor,Female,38

Note  each technically reads from the file delimiter by delimiter, where the
standard delimiter is a “newline” character. You can change this delimiter.

Chapter 9 Files and Databases

252

You can read an I/O stream with each using a custom delimiter of your choosing:

File.open("text.txt").each(',') { |line| puts line }

Fred Bloggs,

Manager,

Male,

45

Laura Smith,

Cook,

Female,

23

Debbie Watts,

Professor,

Female,

38

In this case, you passed an optional argument to each that specified a different

delimiter from the default “newline” delimiter. Commas delimit the input.

Tip  You can override the default delimiter by setting the special variable $/ to
any delimiter you choose.

You can read an I/O stream byte by byte with each_byte:

File.open("text.txt").each_byte { |byte| puts byte }

70

114

101

100

...many lines skipped for brevity...

51

56

10

Chapter 9 Files and Databases

253

Note  When reading byte by byte, you get the single byte values of each character
rather than the characters themselves, much like when you do something like
puts "test"[0]. To convert into text characters, you can use the chr method.

There’s also an alternative called each_char that lets you read character by character.

In some character sets, characters may be represented by more than one byte, so this can

be useful:

File.open("text.txt").each_char { |byte| puts byte }

F

r

e

d

...many lines skipped for brevity...

,

3

8

Here’s how to read an I/O stream line by line using gets:

File.open("text.txt") do |f|

 2.times { puts f.gets }

end

Fred Bloggs,Manager,Male,45

Laura Smith,Cook,Female,23

gets isn’t an iterator like each or each_byte. Therefore, you have to call it multiple

times to get multiple lines. In this example, it was used twice, and pulled out the first two

lines of the example file. Like each, however, gets can accept an optional delimiter:

File.open("text.txt") do |f|

 2.times { puts f.gets(',') }

end

Chapter 9 Files and Databases

254

Fred Bloggs,
Manager,

There’s also a noniterative version of each_byte called getc:

File.open("text.txt") do |f|
 2.times { puts f.getc }
end

F
r

You can also read an entire file into an array, split by lines, using readlines:

puts File.open("text.txt").readlines.join("--")

Fred Bloggs,Manager,Male,45
--Laura Smith,Cook,Female,23
--Debbie Watts,Professor,Female,38

Note  The “newline” characters that are present at the end of each line of the file
are not removed, meaning that a newline occurs before each instance of --.

Lastly, you can choose to read an arbitrary number of bytes from a file into a single
variable using read:

File.open("text.txt") do |f|
 puts f.read(6)
end

Fred B

Note  You can use all these methods on any file, such as binary files (images,
executables, etc.), not just text files. However, on Windows, you might need to open
the file in binary mode. This is covered in the section “Writing to Files.”

Chapter 9 Files and Databases

255

The File class makes some convenient methods available so that you don’t need

to do things like File.open("text.txt").read to be able to read a file into a string.

Instead, you can do this:

data = File.read("text.txt")

This acts as a shorthand for opening the file, using the standard read method, and

then closing the file again.

You can also do this:

array_of_lines = File.readlines("text.txt")

Simple!

Generally, you should try to use these shortcut methods wherever possible, as they

result in shorter, easier-to-read code, and you don’t have to worry about closing the files.

Everything is taken care of for you in one step. Of course, if reading a file line by line is

necessary (perhaps if you’re working with extremely large files), then you can use the

techniques demonstrated earlier in this chapter for reading line by line.

�Your Position Within a File

When reading a file, it can be useful to know where you are within that file. The pos

method gives you access to this information:

f = File.open("text.txt")

puts f.pos

puts f.gets

puts f.pos

0

Fred Bloggs,Manager,Male,45

28

Before you begin to read any text from the file, the position is shown as 0. Once

you’ve read a line of text, the position is shown as 28. This is because pos returns the

position of the file pointer (i.e., the current location within the file that you’re reading

from) in the number of bytes from the start of the file.

However, pos can work both ways, as it has a sister method, pos=:

Chapter 9 Files and Databases

256

f = File.open("text.txt")

f.pos = 8

puts f.gets

puts f.pos

ggs,Manager,Male,45

28

In this instance, the file pointer was placed eight bytes into the file before reading

anything. This meant that “Fred Blo” was skipped, and only the rest of the line was

retrieved.

�Writing to Files

The ability to jump easily around files, read lines based on delimiters, and handle data

byte by byte makes Ruby ideal for manipulating data, but I haven’t yet covered how to

write new information to files or how to make changes to existing files.

Generally, you can mirror most of the techniques used to read files when writing to

files, for example:

File.open("text.txt", "w") do |f|

 f.puts "This is a test"

end

This code creates a new file (or overwrites an existing file) called text.txt and puts a

single line of text within it. Previously, you’ve used puts on its own to output data to the

screen. However, when used with a File object, puts writes the data to the file instead.

Simple!

The "w" passed as the second argument to File.open tells Ruby to open the file for

writing only and to create a new file or overwrite what is already in the file. This is in

contrast with the "r" mode used earlier when opening a file for reading only.

However, you can use several different file modes, as covered in Table 9-1.

Chapter 9 Files and Databases

257

Using the append mode described in Table 9-1, it’s trivial to create a program that

appends a line of text to a file each time it’s run:

f = File.new("logfile.txt", "a")

f.puts Time.now

f.close

If you run this code multiple times, logfile.txt will contain several dates and

times, one after the other. Append mode is particularly ideal for log file situations where

new information has to be added at different times.

The read and write modes work in a simple manner. If you want to open a file in a

mode where it can be read from and written to at the same time, you can do just that:

f = File.open("text.txt", "r+")

puts f.gets

f.puts "This is a test"

puts f.gets

f.close

Table 9-1.  File Modes Usable with File.open/File.new

File
Mode

Properties of the I/O Stream

r Read-only. The file pointer is placed at the start of the file.

r+ Both reading and writing are allowed. The file pointer is placed at the start of the file.

w Write-only. A new file is created (or an old one overwritten as if new).

w+ Both reading and writing are allowed, but File.new creates a new file from scratch (or

overwrites an old one as if new).

a Write (in append mode). The file pointer is placed at the end of the file and writes will

make the file longer.

a+ Both reading and writing are allowed (in append mode). The file pointer is placed at the

end of the file and writes will make the file longer.

b Binary file mode. You can use it in conjunction with any of the other modes listed.

Chapter 9 Files and Databases

258

The second line of this code reads the first line of text from the file, meaning the file
pointer is waiting at the start of the second line of data. However, the following f.puts
statement then puts a new line of text into the file at that position. Unfortunately, this
action will not push the previously existing second line to the third line of the file. All
it does is overwrite the equivalent number of bytes, so you end up with a broken third
line! This behavior means you really need to think carefully before writing data into the
middle of an existing file, as you may not get the outcome you thought you would!

Whereas puts outputs lines of text, you can perform the writing equivalents of getc
and read with putc and write:

f = File.open("text.txt", "r+")
f.putc "X"
f.close

This example opens text.txt for reading and writing and changes the first character
of the first line to X. Similarly:

f = File.open("text.txt", "r+")
f.write "123456"
f.close

This example overwrites the first six characters of the first line with 123456.

Note  It’s worth noticing that putc and write overwrite existing content in the
file rather than inserting it.

�Character Sets and Encodings
Ruby 1.9 and later come with built-in support for automatically handling alternative
character encodings when reading files. Character encodings are explained and covered
in depth in Chapter 11’s “Unicode, Character Encodings, and UTF-8 Support” section.

Whereas strings have just “internal” encodings, I/O objects also have “external”
encodings, since I/O objects deal with data coming from, or going to, somewhere else.

In all of the previous file reading examples in this chapter, Ruby used the default
encoding to represent data that is read in, even though this may be incorrect. Specifying
an external encoding when opening a file requires that you append any supplied file
mode with a colon and then specify the encoding’s name. For example, if you want to

read a file that uses the UTF-8 encoding scheme:

Chapter 9 Files and Databases

259

File.new("text.txt", "r:utf-8").each { |line| puts line }

In this example, we’re reading a file (as specified by the "r" mode), but we’re also
telling the File object to treat the data as if it’s in the UTF-8 encoding (whether it actually
is or not). This encoding is then applied for all data read from (or written to, if you’re in
the right mode) the file.

It is possible to determine the external encoding of an I/O object (such as those of
the File class) using its external_encoding method:

p File.open("text.txt", "r:iso-8859-1").external_encoding
p File.open("text.txt", "r").external_encoding

#<Encoding:ISO-8859-1>
#<Encoding:UTF-8>

Note  If your default encoding is not UTF-8, the second line will return whatever
your default encoding actually is, since no external encoding was specified when
creating the File object.

Another function of Ruby I/O encoding support is in transcoding from one encoding
to another. For example, you might be opening a file in the UTF-8 encoding system,
but want Ruby to “translate” it to another encoding on the fly as the data is read. This is
achieved by adding another colon and encoding the name to the file mode parameter:

File.open("text.txt", "r:utf-8:iso-8859-1") do |f|
 p f.external_encoding
 first_line = f.gets
 p first_line.encoding
end

#<Encoding:UTF-8>
#<Encoding:ISO-8859-1>

The transcoding feature will be useful if you want to represent all text within your
application in a certain encoding (UTF-8 would be a good choice, as you will see in
Chapter 11), but need to read files of varying encodings. In each case, use the relevant

external coding, but get Ruby to convert everything into UTF-8!

Chapter 9 Files and Databases

260

�Renaming and Deleting Files
If you want to change the name of a file, you could create a new file with the new name
and read into that file all the data from the original file. However, this isn’t necessary, and
you can simply use File.rename like so:

File.rename("file1.txt", "file2.txt")

Deleting a file is just as simple. You can delete either one file at a time or many at
once:

File.delete("file1.txt")
File.delete("file2.txt", "file3.txt", "file4.txt")
File.unlink("file1.txt")

Note  File.unlink does exactly the same thing as File.delete.

�File Operations
The File class offers you more than just the ability to read and write files. You can also
perform a number of checks and operations upon files.

Creating Filenames Platform Independently

Windows and UNIX-related operating systems have different ways of denoting filenames.
Windows filenames look like c:\directory\filename.ext, whereas UNIX-style
filenames look like /directory/filename.ext. If your Ruby scripts work with filenames
and need to operate under both systems, the File class provides the join method.

Under both systems, filenames (and complete paths) are built up from directory
names and local filenames. For example, in the preceding examples, the directory is
called directory, but on Windows, backslashes are used as opposed to forward slashes.

Note  In modern versions of Ruby on Windows, it’s fine to use UNIX-style
pathnames using forward slashes as directory separators, rather than having to
format filenames in a Windows style with backslashes. However, this section is
included for completeness, or for instances where you need to work with libraries
that don’t respect UNIX-style pathnames on other operating systems.

Chapter 9 Files and Databases

261

On Windows, you can use File.join to put together a filename using directory

names and a final filename:

File.join('full', 'path', 'here', 'filename.txt')

full\path\here\filename.txt

Note D epending on how your system is set up, you might even see a forward
slash version of the preceding code on Windows, although that is technically a
UNIX-style path.

On UNIX-related operating systems, such as Linux, the code is the same:

File.join('full', 'path', 'here', 'filename.txt')

full/path/here/filename.txt

The File.join method is simple to use, and it allows you to write the same code to

run on both systems rather than choosing between backslashes and forward slashes in

your code.

The separator itself is stored in a constant called File::SEPARATOR, so you can easily

turn a filename into an absolute filename (with an absolute path) by appending the

directory separator to the start, like so:

File.join(File::SEPARATOR , 'full', 'path', 'here', 'filename.txt')

/full/path/here/filename.txt

Similarly, you can use File.expand_path to turn basic filenames into complete

paths, for example:

File.expand_path("text.txt")

/Users/carleton/text.txt

Chapter 9 Files and Databases

262

Note  The result of File.expand_path will vary according to the operating
system the code is run under. As text.txt is a relative filename, it converts it to
an absolute filename and references the current working directory.

Seeking

In a previous example, you changed the position of the file pointer using pos=. However,

this only allows you to specify the exact position of the file pointer. If you want to move

the pointer forward by a certain offset or move the pointer to a certain position backward

from the end of the file, you need to use seek.

seek has three modes of operation:

•	 IO::SEEK_CUR: Seeks a certain number of bytes ahead of the current

position.

•	 IO::SEEK_END: Seeks to a position based on the end of the file. This

means that to seek to a certain position from the end of the file, you’ll

probably need to use a negative value.

•	 IO::SEEK_SET: Seeks to an absolute position in the file. This is

identical to pos=.

Therefore, to position the file pointer five bytes from the end of the file and change

the character to an X, you would use seek as follows:

f = File.open("text.txt", "r+")

f.seek(-5, IO::SEEK_END)

f.putc "X"

f.close

Note  Notice that because you’re writing to the file, you use the r+ file mode to
enable writing as well as reading.

Or you could do this to print every fifth character in a file:

f = File.open("text.txt", "r")

Chapter 9 Files and Databases

263

while a = f.getc

 puts a.chr

 f.seek(5, IO::SEEK_CUR)

end

Finding Out When a File Was Last Modified

To establish when a file was last modified, use File.mtime:

puts File.mtime("text.txt")

2020-05-08 13:51:27 -0600

The time is returned as a Time object, so you can get more information directly:

t = File.mtime("text.txt")

puts t.hour

puts t.min

puts t.sec

00

05

02

Note  You can learn more about the Time class and its methods in Chapter 3.

Checking Whether a File Exists

It’s useful to check whether a file actually exists, particularly if your program relies on

that file or if a user supplied the filename. If the file doesn’t exist, you can raise a user-

friendly error or exception. Invoke the File.exist? method to check for the existence of

a file:

puts "It exists!" if File.exist?("comic-books.txt")

Chapter 9 Files and Databases

264

File.exist? returns true if the named file exists. You could edit the MyFile class

created in a previous example to check for the existence of a file before opening it to
avoid a potential exception being thrown, like so:

class MyFile
 attr_reader :handle

 def initialize(filename)
 if File.exist?(filename)
 @handle = File.new(filename, "r")
 else
 return false
 end
 end
end

Getting the Size of a File

File.size returns the size of a file in bytes. If the file doesn’t exist, an exception is
thrown, so it would make sense to check its existence with File.exist? first:

puts File.size("text.txt")

How to Know When You’re at the End of a File

In previous examples, either you’ve used iterators to give you all the lines or bytes in a
file, or you’ve pulled only a few lines from a file here and there. However, it would be
useful to have a foolproof way to know when the file pointer is at, or has gone past, the
end of the file. The eof? method provides this feature:

f = File.new("text.txt", "r")
while !f.eof?
 puts f.gets
end
f.close

This example uses an “infinite” loop that will only conclude once f.eof? is true. This
specific example is not particularly useful, as f.each could have performed a similar
task, but in situations where you might be moving the file pointer around manually, or

making large jumps through a file, checking for an “end of file” situation is useful.

Chapter 9 Files and Databases

265

�Directories

All files are contained within various directories, and Ruby has no problem handling

these. Whereas the File class handles files, directories are handled with the Dir class.

Navigating Through Directories

To change directory within a Ruby program, use Dir.chdir:

Dir.chdir("/usr/bin")

This example changes the current directory to /usr/bin.

You can find out what the current directory is with Dir.pwd. For example, here’s the

result on my installation:

puts Dir.pwd

/Users/carleton

current = Dir.pwd

Dir.chdir("/usr/bin")

puts Dir.pwd

/usr/bin

Dir.chdir(current)

puts Dir.pwd

/Users/carleton

You can get a list of the files and directories within a specific directory using Dir.

entries:

puts Dir.entries("/usr/bin").join(' ')

... a2p aclocal aclocal-1.6 addftinfo afmtodit alias amlint ant appleping

appletviewer apply apropos apt ar arch as asa at at_cho_prn atlookup atos

atprint ...items removed for brevity... zless zmore znew zprint

Chapter 9 Files and Databases

266

Dir.entries returns an array with all the entries within the specified directory. Dir.

foreach provides the same feature, but as an iterator:

Dir.foreach("/usr/bin") do |entry|

 puts entry

end

An even more concise way of getting directory listings is by using Dir’s class array

method:

Dir["/usr/bin/*"]

["/usr/bin/a2p", "/usr/bin/aclocal", "/usr/bin/aclocal-1.6",

"/usr/bin/addftinfo", "/usr/bin/afmtodit", "/usr/bin/alias", "/usr/bin/

amlint", "/usr/bin/ant", ...items removed for brevity...]

In this case, each entry is returned as an absolute filename, making it easy to use the

File class’s methods to perform checks on each entry if you wished.

Creating a Directory

You use Dir.mkdir to create directories, like so:

Dir.mkdir("mynewdir")

Once the directory has been created, you can navigate to it with Dir.chdir.

You can also specify absolute paths to create directories under other specific

directories:

Dir.mkdir("/mynewdir")

Dir.mkdir("c:\test")

However, you cannot create directories under directories that don’t yet exist

themselves. If you want to create an entire structure of directories, you must create them

one by one from the top down.

Note  On UNIX-related operating systems, Dir.mkdir accepts a second optional
argument: an integer specifying the permissions for the directory. You can specify
this in octal, as with 0666 or 0777, representing modes 666 and 777, respectively.

Chapter 9 Files and Databases

267

Deleting a Directory

Deleting a directory is similar to deleting a file:

Dir.delete("mynewdir")

Note  Dir.unlink and Dir.rmdir perform exactly the same function and are
provided for convenience.

As with Dir.mkdir, you can use absolute pathnames.

One thing you need to consider when deleting directories is whether they’re empty.

If a directory isn’t empty, you cannot delete it with a single call to Dir.delete. You need

to iterate through each of the subdirectories and files and remove them all first. You can

do that iteration with Dir.foreach, looping recursively through the file tree by pushing

new directories and files to remove onto an array.

Alternatively, you can use the rm_f method of the FileUtils library that comes with

Ruby:

require 'fileutils'

FileUtils.rm_f(<directory_name>)

Caution  If you choose to use rm_f, tread carefully, as you might accidentally
delete the wrong thing!

Creating Files in the Temporary Directory

Most operating systems have the concept of a “temporary” directory where temporary
files can be stored. Temporary files are those that might be created briefly during a
program’s execution but aren’t a permanent store of information.

Dir.tmpdir provides the path to the temporary directory on the current system,
although the method is not available by default. To make Dir.tmpdir available, it’s
necessary to use require 'tmpdir':

require 'tmpdir'
puts Dir.tmpdir

Chapter 9 Files and Databases

268

/tmp

Note  On Mac OS X, the result might be somewhat more esoteric. For example,
I was given the temporary directory of /var/folders/80/80DFegkBHLmcQjJ
HdZ5SCE+++TI/-Tmp-. On Windows, I got C:/Users/username/AppData/
Local/Temp.

You can use Dir.tmpdir with File.join to create a platform-independent way of
creating a temporary file:

require 'tmpdir'
tempfilename = File.join(Dir.tmpdir, "myapp.dat")
tempfile = File.new(tempfilename, "w")
tempfile.puts "This is only temporary"
tempfile.close
File.delete(tempfilename)

This code creates a temporary file, writes data to it, and deletes it.
Ruby’s standard library also includes a library called tempfile that can create

temporary files for you:

require 'tempfile'
f = Tempfile.new('myapp')
f.puts "Hello"
puts f.path
f.close

/tmp/myfile1842.0

Unlike creating and managing your own temporary files, tempfile automatically

deletes the files it creates after they have been used. This is an important consideration

when choosing between the two techniques.

Chapter 9 Files and Databases

269

�Basic Databases
Many applications need to store, access, or manipulate data. In some cases, this is by

loading files, making changes to them, and outputting data to the screen or back to a file.

In many situations, however, a database is required.

A database is a system for organizing data on a computer in a systematic way. A

database can be as simple as a text file containing data that can be manipulated by a

computer program or as complex as many gigabytes of data spread across hundreds

of dedicated database servers. You can use Ruby in these scenarios and for those in

between.

First, we’re going to look at how to use simple text files as a form of organized data.

�Text File Databases
One simple type of database can be stored in a text file in a format commonly known

as CSV. CSV stands for comma-separated values and means that for each item of data

you’re storing, you can have multiple attributes separated with commas. The dummy

data in your text.txt file in the previous section used CSV data. To recap, text.txt

initially contained this code:

Fred Bloggs,Manager,Male,45

Laura Smith,Cook,Female,23

Debbie Watts,Professor,Female,38

Each line represents a different person, and commas separate the attributes relating

to each person. The commas allow you to access (and change) each attribute separately.

Ruby’s standard library includes a library called csv that allows you to use text files

containing CSV data as simple databases that are easy to read, create, and manipulate.

�Reading and Searching CSV Data

The CSV class provided by the csv standard library will manage the manipulation of CSV

data for you:

require 'csv'

CSV.open('text.txt').each do |person|

 p person

end

Chapter 9 Files and Databases

270

["Fred Bloggs", "Manager", "Male", "45"]

["Laura Smith", "Cook", "Female", "23"]

["Debbie Watts", "Professor", "Female", "38"]

You open the text.txt file by using CSV.open, and each line (i.e., each individual

“person” in the file) is passed into the block one by one using each. The inspect method

demonstrates that each entry is now represented in array form. This makes it easier to

read the data than when it was in its plain text form.

You can also use CSV alongside the File class:

require 'csv'

people = CSV.parse(File.read('text.txt'))

puts people[0][0]

puts people[1][0]

puts people[2][0]

Fred Bloggs

Laura Smith

Debbie Watts

This example uses the File class to open and read in the contents of a file, and CSV.

parse immediately uses these to convert the data into an array of arrays. The elements

in the main array represent each line in the file, and each element in those elements

represents a different attribute (or field) of that line. Therefore, by printing out the first

element of each entry, you get the people’s names only.

An even more succinct way of loading the data from a CSV-formatted file into an

array is with CSV.read:

require 'csv'

p CSV.read('text.txt')

[["Fred Bloggs", "Manager", "Male", "45"], ["Laura Smith", "Cook",

"Female", "23"],

["Debbie Watts", "Professor", "Female", "38"]]

Chapter 9 Files and Databases

271

The find and find_all methods (also known as detect and select, respectively)

provided by the Enumerable module to Array make it easy for you to perform searches

on the data available in the array. For example, you’d use this code if you wanted to pick

out the first person in the data called Laura:

require 'csv'

people = CSV.read('text.txt')

laura = people.find { |person| person[0] =~ /Laura/ }

p laura

["Laura Smith", "Cook", "Female", "23"]

Using the find (or detect) method with a code block that looks for the first matching

line where the name contains “Laura” gives you back the data you were looking for.

Where find returns the first matching element of an array or hash, find_all (or

select) returns all valid matches. Let’s say you want to find the people in your database

whose ages are between 20 and 40:

young_people = people.find_all do |p|

 p[3].to_i.between?(20, 40)

end

p young_people

[["Laura Smith", "Cook", "Female", "23"], ["Debbie Watts", "Professor",

"Female", "38"]]

This operation provides you with the two matching people contained within an array

that you can iterate through.

�Saving Data Back to the CSV File

Once you can read and query data, the next step is being able to change it, delete it,

and rewrite your CSV file with a new version of the data for future use. Luckily, this is as

simple as reopening the file with write access and “pushing” the data back to the file. The

CSV module handles all of the conversion:

require 'csv'

Chapter 9 Files and Databases

272

people = CSV.read('text.txt')

laura = people.find { |person| person[0] =~ /Laura/ }

laura[0] = "Lauren Smith"

CSV.open('text.txt', 'w') do |csv|

 people.each do |person|

 csv << person

 end

end

You load in the data, find a person to change, change her name, and then open the

CSV file and rewrite the data back to it. Notice, however, that you have to write the data

person by person. Once complete, text.txt is updated with the name change. This is

how to write back CSV data to file.

�Storing Objects and Data Structures
Working with CSV is easy, but it doesn’t feel very smooth. You’re always dealing with

arrays, so rather than getting nice names such as name, age, or job for the different

attributes, you have to remember in which element and at which position each attribute

is located.

You’re also forced to store simple arrays for each separate entry. There’s no nesting,

no way to relate one thing to another, no relationship to object orientation, and the data

is “flat.” This is sufficient for basic data, but what if you simply want to take data that

already exists in structures like arrays and hashes and save that data to disk for later use?

�PStore

PStore is a core Ruby library that allows you to use Ruby objects and data structures as

you normally would and then store them in a file. Later on, you can reload the objects

back into memory from the disk file. This technique is known as object persistence, and

relies on a technique called marshalling, where standard data structures are turned

into a form of flat data that can be stored to disk or transmitted over a network for later

reconstruction.

Let’s create a class to represent the structure of the data you were using in the CSV

examples:

Chapter 9 Files and Databases

273

class Person

 attr_accessor :name, :job, :gender, :age

end

You can re-create your data like so:

fred = Person.new

fred.name = "Fred Bloggs"

fred.age = 45

laura = Person.new

laura.name = "Laura Smith"

laura.age = 23

Note  For brevity, you’ll work only with these two objects in this example.

Rather than have your data in arrays, you now have your data available in a fully

object-oriented fashion. You could create methods within the Person class to help you

manipulate your objects and so forth. This style of storing and manipulating data is

true to the Ruby way of things and is entirely object-oriented. However, until now, your

objects have only lasted until the end of a program, but with PStore it’s easy to write

them to a file:

require 'pstore'

store = PStore.new("storagefile")

store.transaction do

 store[:people] ||= Array.new

 store[:people] << fred

 store[:people] << laura

end

In this example, you create a new PStore in a file called storagefile. You then

start a transaction (data within a PStore file can only be read or updated while inside a

“transaction” to prevent data corruption), and within the transaction you make sure the

:people element of the store contains something or gets assigned to be an array. Next,

you push the fred and laura objects to the :people element of the store and then end

the transaction.

Chapter 9 Files and Databases

274

The reason for the hash syntax is because a PStore is, effectively, a disk-based hash.
You can then store whatever objects you like within that hash. In this example, you’ve
created an array within store[:people] and pushed your two Person objects to it.

Later on, you can retrieve the data from the PStore database:

require 'pstore'
store = PStore.new("storagefile")
people = []
store.transaction do
 people = store[:people]
end

At this point the Person objects inside people can be treated
as totally local objects.
people.each do |person|
 puts person.name
end

Fred Bloggs
Laura Smith

Note  It’s necessary for the Person class to be defined and ready to use before
loading the Person objects from the PStore file, so if you ran the previous example
separately from the first, make sure you include the Person class definition again.

With only a simple storage and retrieval process, PStore makes it easy to add storage
facilities to existing Ruby programs by allowing you to store existing objects into a PStore
database. Object persistence is not ideal for many types of data storage, but if your
program is heavily dependent on objects and you want to store those objects to disk for
later use, PStore provides a simple method to use.

�YAML
YAML (standing for YAML Ain’t Markup Language) is a special text-based markup
language that was designed as a data serialization format that’s readable by humans. You
can use it in a similar way to PStore to serialize data structures, but unlike PStore’s data,
humans can easily read YAML data and even directly edit it with a text editor and a basic

knowledge of YAML syntax.

Chapter 9 Files and Databases

275

The YAML library comes as part of Ruby’s standard library, so it’s easy to use. Unlike

PStore, though, the YAML library converts data structures to and from YAML and doesn’t

provide a hash to use, so the technique is a little different. This example writes an array

of objects to disk:

require 'yaml'

class Person

 attr_accessor :name, :age

end

fred = Person.new

fred.name = "Fred Bloggs"

fred.age = 45

laura = Person.new

laura.name = "Laura Smith"

laura.age = 23

test_data = [fred, laura]

puts test_data.to_yaml

- !ruby/object:Person

 age: 45

 name: Fred Bloggs

- !ruby/object:Person

 name: Laura Smith

 age: 23

You can use the to_yaml method to convert your Person object array into YAML data,

which, as you might agree, is extremely readable! YAML.load performs the operation in

the other direction, turning YAML code into working Ruby objects. For example, let’s

modify the YAML data a little and see if it translates back into working objects:

require 'yaml'

class Person

Chapter 9 Files and Databases

276

 attr_accessor :name, :age

end

yaml_string = <<END_OF_DATA

- !ruby/object:Person

 age: 45

 name: Jimmy

- !ruby/object:Person

 age: 23

 name: Laura Smith

END_OF_DATA

test_data = YAML.load(yaml_string)

puts test_data[0].name

puts test_data[1].name

Jimmy

Laura Smith

Here YAML.load converts the YAML data back into the test_data array of Person

objects successfully.

You can use YAML to convert between most types of Ruby objects (including basic

types such as Array and Hash) and YAML. This makes it an ideal intermediary format for

storing data (such as configuration files) your applications need to access.

Note  When dealing with serialized objects, you must still have the classes used
by those objects defined within the program somewhere; otherwise, they won’t be
usable.

As plain text, you can safely transmit YAML via email, store it in normal text files, and

move it around more easily than the binary data created by libraries such as PStore.

To learn more about YAML formatting, read its Wikipedia entry at https://

en.wikipedia.org/wiki/YAML, or refer to the official YAML website at www.yaml.org/.

Chapter 9 Files and Databases

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML
http://www.yaml.org/

277

�Relational Databases and SQL
In the previous section, you created some extremely simplistic “databases” using text

files and object persistence. Text files, of course, have their limitations. They’re not

reliable if many processes are using them at the same time, and they’re slow. Loading a

CSV file into memory is fine when the dataset is small, but when it grows, the process of

working directly with files can soon become sluggish.

When developing more robust systems, you pass database filing and management

off to a separate application or system, and applications simply connect to a database

system to pass data back and forth. In the previous section, you were working with

database files and the data within them quite directly, and that’s unacceptable when

performance and reliability are necessary.

�Relational Database Concepts
One major benefit of using a dedicated database system is getting support for relational

databases. A relational database is composed of data grouped into one or more tables

that can be linked together. A table stores information about one type of thing. For

example, an address book database might be made up of a people table, an addresses

table, and a phonenumbers table. Each table stores information about people, addresses,

and phone numbers, respectively.

The people table would likely have a number of attributes (known as columns,

in database land) such as name, age, and gender. Each row of the table—that is, an

individual person—would then have information in each column. Figure 9-1 shows an

example.

Figure 9-1.  A basic people table containing three rows

Chapter 9 Files and Databases

278

Figure 9-1’s example also includes a column called id. In relational databases, it’s

standard procedure to have an id column on most tables to identify each row uniquely.

Although you could look up and retrieve data based on other columns, such as name,

numeric IDs are useful when you’re creating relationships between tables.

Note  In Figure 9-1, the table headings are written in a typical style, as you’d
expect in a normal address book or spreadsheet. However, when dealing with
relational databases at a lower level, it’s common to use all lowercase names for
column and table names. This explains why the text and later code examples in
this chapter refer to table and column names in lowercase only.

One benefit of relational databases is the way rows in different tables can be related

to one another. For example, your people table could have an address_id column that

stores the ID of the address associated with this user. If you want to find out the address

of a particular person, you can look up his or her address_id and then look up the

relevant row of the addresses table.

The reason for this sort of relationship is that many people in your people database

might share the same address, and rather than store the address separately for each

person, it’s more efficient to store a reference instead. This also means that if you update

the address in the future, it updates for all the relevant users at the same time.

The relationship functionality also supports the definition of many-to-many

relationships. You could create a separate table called related_people that has two

columns, first_person_id and second_person_id. This table could store pairs of ID

numbers that signify two people are related to each other. To work out to whom a person

is related, you can simply look for any rows mentioning his or her ID number, and you’d

get back the ID numbers of that person’s related people. This sort of relationship is used

in most databases and is what makes relational databases so useful.

�MySQL, PostgreSQL, and SQLite
Three well-known relational database systems available today that work on both

Windows and UNIX operating systems are MySQL, PostgreSQL, and SQLite. Each has

significantly different features from the others and therefore has different uses.

Chapter 9 Files and Databases

279

Most web developers will be familiar with MySQL, as it comes with most web hosting

packages and servers, making it easily the most commonly used database engine on the

Internet.

For our purposes in the next few sections of this chapter, we’ll be using a system

called SQLite. Unlike MySQL, or PostgreSQL, SQLite doesn’t run as a “server,” so it

doesn’t require any special resources. Whereas MySQL and PostgreSQL both run as

permanent server applications, SQLite is “on-demand” and works entirely on your local

machine. Despite this, it’s still fast and reliable and is ideal for local database purposes.

You can easily carry much of the knowledge you learn with SQLite across to other

systems. SQLite is also the default database engine used with Ruby on Rails apps, as

you’ll discover in Chapter 13.

Nonetheless, toward the end of this chapter, we’ll look at how you can connect

to databases using these other architectures, so that you can get direct access to any

existing databases you might have from your Ruby applications.

�Installing SQLite
The first step to getting a database system up and running quickly is to install SQLite3—

the latest version of SQLite. Mac OS X comes with SQLite 3 by default, as do some Linux

distributions. On Ubuntu or Debian Linux, you can run apt-get install sqlite3

libsqlite3-dev.

Once the SQLite3 libraries are installed at the operating system level, you can install

the Ruby library that gives Ruby access to SQLite3 databases. It’s packaged as a gem

called sqlite3-ruby and can be installed on all systems with gem install sqlite3 or

sudo gem install sqlite3 on UNIX-related operating systems if you aren’t running as

a superuser. (For information about installing Ruby gems, refer to Chapter 7.)

You can check that everything was installed okay with this code:

require 'sqlite3'

puts "It's all okay!" if defined?(SQLite3::Database)

It's all okay!

If the installation didn’t progress smoothly, links to SQLite resources are available in

Appendix B.

Chapter 9 Files and Databases

280

�A Crash Course in Basic Database Operations and SQL
To manage databases with any of the various database systems at a basic level,
knowledge of several SQL commands is required. In this section, we’re going to look at
how to create tables, add data to them, retrieve data, delete data, and change data.

Throughout this section, think entirely in terms of databases separately from Ruby.
A demonstration of how Ruby can use SQL to manipulate a database is covered in detail
in the later section “Using SQLite with Ruby.”

Note  If you’re already familiar with SQL, you can skip the next few sections
and jump straight to the section “Using SQLite with Ruby” to see SQL in action
alongside Ruby.

�What Is SQL?
Structured Query Language (SQL) is a special language, often known as a query language,
used to interact with database systems. You can use SQL to create, retrieve, update, and
delete data, as well as create and manipulate structures that hold that data. Its basic
purpose is to support the interaction between a client and a database system. In this
section, I’m going to give you a primer on SQL’s syntax and how you can use it from Ruby.

Be aware that this section is only a very basic introduction to SQL, as a full and deep
explanation of SQL is beyond the scope of this book.

Note that the way different database systems use and implement SQL can vary
wildly, which is why the following sections will only cover that which is reasonably
standard and enables you to perform basic data operations.

If you want to play along at home, you can use the command-line sqlite3 client to
create a database and perform SQL queries upon it without getting involved with Ruby at
all. Just run sqlite3 test.db, where test.db is your chosen database filename. You can
then type SQL and press Enter to execute it. To leave the client, you can type .quit on a
separate line and press Enter.

Note  There are also libraries that remove the necessity of writing SQL in order
to work with databases. We mention some of these at the end of the chapter.
Regardless, at least reading about how SQL works is going to be beneficial to you
in the long term.

Chapter 9 Files and Databases

281

�CREATE TABLE

Before you can add data into a database, it’s necessary to create one or many tables to

hold it. To create a table, you need to know what you want to store in it, what you want to

call it, and what attributes you want to store.

For your people table, you want to have name, job, gender, and age columns, as well

as a unique id column for possible relationships with other tables. To create a table, you

use a syntax like so:

CREATE TABLE table_name (

column_name data_type options,

column_name data_type options,

...,

...

);

Note  SQL commands are typically written in capital letters for clarity (and
it’s somewhat traditional). However, you don’t have to do this. Table names and
attributes, however, can be case-sensitive with some database systems, so stick to
lowercase for those!

Therefore, for your people table, you’d use this syntax:

CREATE TABLE people (

id integer primary key,

name varchar(50),

job varchar(50),

gender varchar(6),

age integer);

This SQL command creates a people table and gives it five columns. The data types

for the name, job, and gender columns are all VARCHARs, meaning they’re variable-

length character fields. In basic terms, it means they can contain strings. The number

in brackets refers to the maximum length of that string, so the name column can hold a

maximum of 50 characters.

Chapter 9 Files and Databases

282

Note  SQLite is a reasonably pragmatic database, and it ignores most
conventions relating to data types in SQL. Almost any form of data will fit into any
type of column. SQLite ignores the maximum lengths for these VARCHAR columns.
This is one reason why SQLite is great for quick and easy development, but not so
great for crucial systems!

The id column has the words primary key as its options. This means that the id

column is the primary reference to each row and that the ID must be unique for each

row. This means SQLite will automatically assign a unique ID to each row, so you don’t

need to specify one yourself each time you add a new row.

�INSERT INTO

You use the INSERT command to add rows to tables:

INSERT INTO people (name, age, gender, job) VALUES ("Chris Scott", 25,

"Male",  "Technician");

First, you specify the table you want to add a row to, and then list the columns you

wish to fill out, before passing in the values with which to fill the row.

You can omit the list of columns if the data passed after VALUES is in the correct

order:

INSERT INTO people VALUES ("Chris Scott", 25, "Male", "Technician");

Caution  This particular INSERT would cause an error on your people table! It’s
missing the id column.

However, it’s safer and more convenient if you specify the columns beforehand, as in

the first example. The second example clearly demonstrates why this is the case, as it’s

hard to tell which item of data relates to which column.

Columns that don’t have any data specified for them will be filled in automatically

with the defaults specified in the CREATE TABLE statement for that table. In the case of

the people table, the id column will automatically receive a unique ID number for each

row added.

Chapter 9 Files and Databases

283

�SELECT

You use the SELECT command to retrieve data from tables. You specify which columns

you want to retrieve (or use * as a wildcard to retrieve them all) and the table you want to
retrieve data from and optionally include a condition upon which to base the retrieval.
For example, you might only want to choose a particular row or rows that match certain
criteria.

This SQL statement retrieves the data from all columns for all rows in the people
table:

SELECT * FROM people;

This SQL retrieves all the values from just the name column of rows in the people
table (e.g., “Fred Bloggs,” “Chris Scott,” “Laura Smith”):

SELECT name FROM people;

This SQL retrieves rows with an id column equal to 2 from the people table (usually,
because id is a column containing unique values, only one row would be returned for
such a query):

SELECT * FROM people WHERE id = 2;

This SQL retrieves any rows that have a name column equal to “Chris Scott”:

SELECT * FROM people WHERE name = "Chris Scott";

This SQL retrieves all rows of people whose ages are between 20 and 40, inclusive:

SELECT * FROM people WHERE age >= 20 AND age <= 40;

The conditions used in SQL are somewhat similar to those used in Ruby and other
programming languages, except that logical operators such as AND and OR are written as
plain English. Also, as in Ruby, you can use parentheses to group expressions and build
up more complex requests.

It’s also possible to have the results returned in a certain order by appending an
ORDER BY clause such as ORDER column_name to the SQL query. You can further append
ASC to the column name to sort in an ascending fashion, or DESC to sort in a descending
fashion. For example, this SQL returns all rows from the people table ordered by the name
column in descending order (so names starting with Z come before those beginning
with A):

SELECT * FROM people ORDER BY name DESC;

Chapter 9 Files and Databases

284

This SQL returns all rows of those people between the ages of 20 and 40 in order of

age, youngest first:

SELECT * FROM people WHERE age >= 20 AND age <= 40 ORDER BY age ASC;

Another useful addition to a SELECT command is LIMIT. LIMIT allows you to place a

limit on the amount of rows returned on a single query:

SELECT * FROM people ORDER BY name DESC LIMIT 5;

In conjunction with ORDER, you can use LIMIT to find extremes in the data. For

example, finding the oldest person is easy:

SELECT * FROM people ORDER BY age DESC LIMIT 1;

This sorts the rows in descending order by age and returns the first result: the

highest. To get the youngest person, you could use ASC instead of DESC on the ordering.

Note D atabase engines sort columns automatically by their data type. Strings of
text are formatted alphanumerically, whereas integer and other number columns
are sorted by their numeric value.

�DELETE

The DELETE SQL command deletes rows from tables. You can delete rows based on an

SQL condition, for example:

DELETE FROM people WHERE name="Chris";

DELETE FROM people WHERE age > 100;

DELETE FROM people WHERE gender = "Male" AND age < 50;

As with SELECT, you can place limits on the number of deletions:

DELETE FROM people WHERE age > 100 LIMIT 10;

In this case, only ten rows with an age over 100 would be deleted.

Think of the DELETE command to be like SELECT, but instead of returning the rows, it

erases them. The format is otherwise reasonably similar.

Chapter 9 Files and Databases

285

�UPDATE

UPDATE provides the ability to update and amend information within the database. As

with DELETE, the syntax for UPDATE is similar to that of SELECT. Consider this:

SELECT * FROM people WHERE name = "Chris";

UPDATE people SET name = "Christopher" WHERE name = "Chris";

UPDATE first accepts the name of a table whose row(s) might be updated, then

accepts the column(s) to be changed along with the new data, and finally accepts an

optional condition for the change. Some examples follow.

This SQL changes the name column to “Christopher” on all rows where the name

column is currently equal to “Chris”:

UPDATE people SET name = "Christopher" WHERE name = "Chris";

This SQL changes the name column to “Christopher” and the age column to 44

where the name column is currently equal to “Chris”:

UPDATE people SET name = "Christopher", age = 44 WHERE name = "Chris";

This SQL changes the name column to “Christopher” where the name column is

“Chris” and the age column equals 25. Therefore, a row where the name is Chris and the

age is 21 will not be updated by this example query:

UPDATE people SET name = "Christopher" WHERE name = "Chris" AND age = 25;

This SQL changes the name column to “Christopher” on every row of the people

table. This demonstrates why it pays to be careful when building SQL queries, as short

statements can have big ramifications!

UPDATE people SET name = "Christopher";

�Using SQLite with Ruby
Now that you’ve installed SQLite and we’ve covered the basics of how SQL works, let’s

put together a basic demonstration of how it all works in conjunction with Ruby. To do

this, you’re going to write a program that allows you to manipulate a database based on

the people table that we’ve talked about so far in this chapter.

Chapter 9 Files and Databases

286

The first step is to write the basic code that can load or create a database. The sqlite

ruby gem makes this simple with the SQLite3::Database.new method, for example:

require 'sqlite3'

$db = SQLite3::Database.new("dbfile")

$db.results_as_hash = true

From this point, you can use $db in a similar way to the file handles you used earlier

in this chapter. For example, $db.close will similarly close the database file, just as you

closed regular files.

The $db.results_as_hash = true line forces SQLite to return data in a hash format

rather than as an array of attributes (as with CSV). This makes the results easier to

access.

Note  The database handle has been assigned to a global variable, $db, so that
you can split your program into multiple methods without creating a class. You
can therefore access the database handle, $db, from anywhere you wish. This
isn’t what you’d do in a large program, but for learning to use SQLite3 here, it will
suffice.

To cope with the closing situation, you’ll create a method specifically for

disconnecting the database and ending the program:

def disconnect_and_quit

 $db.close

 puts "Bye!"

 exit

end

Note  Remember that you must define methods before you use them, so put
these separate methods at the top of your source file.

Now let’s create a method that will use the CREATE TABLE SQL statement to create the

table where you’ll store your data:

Chapter 9 Files and Databases

287

def create_table

 puts "Creating people table"

 $db.execute %q{

 CREATE TABLE people (

 id integer primary key,

 name varchar(50),

 job varchar(50),

 gender varchar(6),

 age integer)

 }

end

A database handle will allow you to execute arbitrary SQL with the execute method.

All you need to do is pass the SQL as an argument, and SQLite will execute the SQL upon

the database.

Next, let’s create a method that asks for input from the user to add a new person to

the database:

def add_person

 puts "Enter name:"

 name = gets.chomp

 puts "Enter job:"

 job = gets.chomp

 puts "Enter gender:"

 gender = gets.chomp

 puts "Enter age:"

 age = gets.chomp

 $db.execute("INSERT INTO people (name, job, gender, age) VALUES (?, ?, ?,

?)", 

 name, job, gender, age)

end

Note  The chomp method added to gets removes the newline characters that
appear at the end of keyboard output retrieved with gets.

Chapter 9 Files and Databases

288

The start of the add_person method is mundane. You ask for each of the person’s

attributes in turn and assign them to variables. However, $db.execute is more intriguing

this time. In the previous section, the INSERT SQL was shown with the data in the main

statement, but in this method, you’re using question marks (?) as placeholders for the

data.

Ruby performs an automatic substitution from the other parameters passed to

execute into the placeholders. This acts as a way of securing your database. The reason

is that if you interpolated the user’s input directly into the SQL, the user might type some

SQL that could break your query. However, when you use the placeholder method, the

sqlite ruby library will clean up the supplied data for you and make sure it’s safe to put

into the database.

Now you need a way to be able to access the data entered. Time for another method!

This code example shows how to retrieve the associated data for a given name and ID:

def find_person

 puts "Enter name or ID of person to find:"

 id = gets.chomp

 �person = $db.execute("SELECT * FROM people WHERE name = ? OR id = ?", id,

id.to_i).first

 unless person

 puts "No result found"

 return

 end

 puts %Q{Name: #{person['name']}

Job: #{person['job']}

Gender: #{person['gender']}

Age: #{person['age']}}

end

The find_person method asks the user to enter either the name or the ID of the

person he or she is looking for. The $db.execute line cleverly checks both the name and

id columns at the same time. Therefore, a match on either the id or name will work. If no

match is found, the user will be told, and the method will end early. If there’s a match,

the information for that user will be extracted and printed on the screen.

Chapter 9 Files and Databases

289

You can tie it up with a main routine that acts as a menu system for the four methods

described earlier. You already have the database connection code in place, so creating a

menu is simple:

loop do

 puts %q{Please select an option:

 1. Create people table

 2. Add a person

 3. Look for a person

 4. Quit}

 case gets.chomp

 when '1'

 create_table

 when '2'

 add_person

 when '3'

 find_person

 when '4'

 disconnect_and_quit

 end

end

If the code is put together properly and then run, a typical first session could go like

this:

Please select an option:

1. Create people table

2. Add a person

3. Look for a person

4. Quit

1

Creating people table

Please select an option:

1. Create people table

2. Add a person

Chapter 9 Files and Databases

290

3. Look for a person

4. Quit

2

Enter name:

Fred Bloggs

Enter job:

Manager

Enter gender:

Male

Enter age:

48

Please select an option:

1. Create people table

2. Add a person

3. Look for a person

4. Quit

3

Enter name or ID of person to find:

1

Name: Fred Bloggs

Job: Manager

Gender: Male

Age: 48

Please select an option:

1. Create people table

2. Add a person

3. Look for a person

4. Quit

3

Enter name or ID of person to find:

Jane Smith

No result

Your quick and basic application provides a way to add data and retrieve data from a

remote data source in only a handful of lines!

Chapter 9 Files and Databases

291

Note  You should note that we have broken some of the best practices highlighted
through this book in the previous program. We used global variables and applied
almost no structure to the code at all. The goal here was solely to use SQLite3
quickly, but consider how you could dramatically improve the structure of the
program now that it works.

�Connecting to Other Database Systems
In the previous section, we looked at SQL and how to use it with the SQLite library, a

library that provides a basic database system on the local machine. More commonly,

however, you might want to use more elaborate databases or connect to databases

located on other machines (and potentially not even run by you).

Sequel (https://sequel.jeremyevans.net/) is a “database toolkit” for Ruby that

uses a DSL (domain-specific language) to abstract away some of the details of using a

database and interfaces with the libraries used to talk to various database systems. If you

write your code in a certain way, using Sequel, you can, as long as you do not use any

database-specific features, switch that code between, say, MySQL and PostgreSQL and it

would continue to work.

Sequel has “adapters” for a wide variety of database systems, the most popular

including MySQL, IBM DB, Oracle, PostgreSQL, and SQLite3. It also supports a variety

of common database features like prepared statements, stored procedures, and

transactions, so if you’re already familiar with using databases, it’s a library well worth

checking out.

Installing Sequel is easy:

gem install sequel

Once it’s installed, you’ll want to make sure you have the underlying driver library

for your database of choice installed too. For example, for MySQL, you could install the

mysql2 library. For PostgreSQL, install the pg library:

gem install pg

While this isn’t going to be a complete tour of Sequel, once you have things installed,

you can begin to write code like this:

Chapter 9 Files and Databases

https://sequel.jeremyevans.net/

292

require 'sequel'

require 'pg'

DB = Sequel.connect('postgres://user:password@localhost/dbname')

DB.create_table :people do

 primary_key :id

 String :first_name

 String :last_name

 Integer :age

end

people = DB[:people]

people.insert(:first_name => "Fred", :last_name => "Bloggs", :age => 32)

puts "There are #{people.count} people in the database"

people.each do |person|

 puts person[:first_name]

end

DB.fetch("SELECT * FROM people") do |row|

 puts row[:first_name]

end

In a relatively short program, we’ve seen how we can create a table, populate that

table with data, then query the length of the table, and look up rows within that table in

two different ways. As you may notice, this is a lot more straightforward than working

with a database driver library directly, as we did with the sqlite3 library earlier!

Note  In the preceding program, you could require in sqlite3 and then
change the first main line of code to DB = Sequel.sqlite to create a
temporary, in-memory SQLite database. This will let you run the code if you don’t
have access to a PostgreSQL server.

Refer to https://sequel.jeremyevans.net/ for more about using Sequel.

Chapter 9 Files and Databases

https://sequel.jeremyevans.net/

293

�ActiveRecord: A Sneak Peek
So far in this chapter, you’ve worked directly with databases and had to learn a whole

new language: SQL. Working with a database with SQL in mind can make things

more efficient and reliable than putting data into text files, say, as you did earlier, but

ActiveRecord makes it easier still (and even easier than Sequel). ActiveRecord is a

product of the Ruby on Rails framework, which we’ll look at in Chapter 13, but can be

used independently of it. ActiveRecord will be covered in more depth in that chapter, but

deserves a brief summary here.

ActiveRecord abstracts away the details of SQL and makes it possible to relate to

items within databases in an object-oriented fashion, as you did with PStore.

ActiveRecord gives you objects that correspond to rows and classes that correspond

to tables, and you can work with the data using Ruby syntax, like so:

person = Person.where(name: "Chris").first

person.age = 50

person.save

This code looks through the people table for a row whose name column matches

“Chris” and puts an object relating to that row into person. ActiveRecord makes

attributes available for all that row’s columns, so changing the age column is as easy as

assigning to the object’s attribute. However, once the object’s value has been changed,

you issue the save method to save the changes back to the database.

Note  The pluralization from a Person class to a people table is an automatic
part of ActiveRecord’s functionality.

The previous code could replace SQL such as this:

SELECT * FROM people WHERE name = "Chris";

UPDATE people SET age = 50 WHERE name = "Chris";

Even SQL gurus familiar with Ruby tend to find Ruby’s syntax more natural,

particularly in the scope of a Ruby program. There’s no need to mix two different

languages in one program if both sets of features can be provided in Ruby alone.

ActiveRecord will be covered again in Chapter 13.

Chapter 9 Files and Databases

294

�Summary
In this chapter, we’ve looked at how data can flow into and out of your Ruby programs.

Initially, we looked at the low-level concept of I/O streams before quickly moving on

to the pragmatism of databases. Databases provide a way to work with data in a more

abstracted fashion without worrying about the underlying structure of the data on the

computer’s filesystem. Indeed, databases can be located within memory or on totally

different machines, and our code could remain the same.

Let’s reflect on the main concepts covered in this chapter:

•	 I/O: Input/output. The concept of receiving input and sending output

by various means on a computer, often via I/O streams.

•	 I/O stream: A channel along which data can be sent and/or received.

•	 Standard input (stdin): A stream that relates to the default way of

accepting data into the application, usually the keyboard.

•	 Standard output (stdout): A stream that relates to the default way of

outputting data from the application, usually to the screen.

•	 File pointer: An abstract reference to the current “location” within a

file.

•	 Database: An organized collection of data structured in a way that

makes it easy to be accessed programmatically.

•	 CSV (comma-separated values): A way of structuring data with

attributes separated with commas. CSV can be stored in plain text

files.

•	 Marshalling: The process of converting a live data structure or object

into a flat set of data that can be stored on disk, sent across a network,

and then used to reconstruct the original data structure or object

elsewhere or at some other time.

•	 Table: A collection of data organized into rows, with multiple

columns, where each column represents a different attribute of each

row. There are usually multiple tables within a database, containing

different types of data.

Chapter 9 Files and Databases

295

•	 SQLite: An open source, public-domain relational database API

and library that works on a single-user basis on a local machine. It

supports SQL as its querying language.

•	 MySQL: An open source relational database system available in both

community and professional editions. It is maintained by MySQL

AB. Web hosting companies commonly offer MySQL database

support.

•	 PostgreSQL: A free, open source relational database system licensed

under the BSD license, making it possible to repackage and sell

within commercial products. PostgreSQL is often considered to be

of higher performance and have better conformity to SQL standards

than MySQL, although it’s less popular at the time of writing.

•	 Primary key: A column (or multiple columns) on a table whose data

uniquely identifies each row.

•	 SQL (Structured Query Language): A language specifically designed

to create, amend, retrieve, and otherwise manipulate data in

relational database systems.

•	 ActiveRecord: A library that abstracts databases, rows, columns, and

SQL into standard Ruby syntax using classes and objects. It’s a major

part of the Ruby on Rails framework, which is covered in Chapter 13.

With the ability to load, manipulate, and store data, the number of useful Ruby

applications you can develop increases significantly. Few applications depend entirely

on data typed in every time, and having access to files and databases makes it easy to

build powerful systems that can be used over time to manage data.

Next, in Chapter 10, we’re going to look at a few ways that you can make your

applications and libraries available to the world.

Chapter 9 Files and Databases

297
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_10

CHAPTER 10

Distributing Ruby Code
and Libraries
In this chapter, we’re going to look at how to distribute the Ruby code you write to other

developers and users.

Developing Ruby applications and libraries is so simple that you’ll soon want

to release them to the world. As covered in Chapter 5, Ruby has a proud history

of community and sharing, and nearly every Ruby developer will release code or

completed applications at some point.

This chapter will walk you through the considerations and processes of deploying

Ruby applications, libraries, and remotely accessible services using HTTP daemons and

CGI scripts.

�Distributing Basic Ruby Programs
Ruby is an interpreted language, so to distribute Ruby programs you can simply

distribute the source code files you’ve written. Anyone else who has Ruby installed can

then run the files in the same way that you do.

This process of distributing the actual source code for a program is typically how

most programs developed using a scripting language, such as Ruby, are shared; but more

traditionally, software has been distributed without the source code included. Popular

desktop application development languages such as C and C++ are compiled languages

whose source code is converted directly into machine code that runs on a certain

platform. This software can be distributed by copying the resulting compiled machine

code files, rather than the source, from machine to machine. However, this technique

is not possible with Ruby, as there is currently no Ruby compiler available (with the

exception of that in JRuby, but this is still a nascent area), so you have to distribute your

source code in one sense or another for other people to be able to run your programs.

https://doi.org/10.1007/978-1-4842-6324-2_10#DOI

298

Note  Later in this chapter, we’ll look at making the functionality of your Ruby
programs available across a network. This technique does not require you to make
your source code available, although it does require you to maintain a running copy
of your program on a machine that’s network accessible (such as a web server).

To see how you can distribute Ruby source code, let’s take an example Ruby file and

call it test.rb:

puts "Your program works!"

If you copy test.rb to another computer that has the Ruby interpreter installed on it,

you can run the program directly with the Ruby interpreter as you would normally:

ruby test.rb

Your program works!

This technique works well if you’re passing programs between your own machines

or servers or if you’re distributing your programs to other developers. As long as the

other users and machines have the same Ruby libraries or gems that your program uses,

your program should run fine. For example, if you develop something to work with the

standard version of Ruby that comes with Mac OS X, your program should work just fine

on other Mac OS X machines (assuming they are running the same or a later version of

OS X that includes Ruby).

This ability to interpret the code in the same way on varying machines is one benefit

of interpreted languages over compiled languages. If the same version of the Ruby

interpreter is available on a different platform, it should run the same programs that your

Ruby interpreter does. With compiled code (code that is specifically compiled down to

machine code for a specific platform), it is not the case that it will run identically on all

platforms; in fact, it usually won’t!

What if you want to distribute your Ruby program to people who aren’t au fait with

the Ruby interpreter? Depending on the target operating system (i.e., the operating

system the user is running), there are several ways to make deploying Ruby applications

simpler.

Chapter 10 Distributing Ruby Code and Libraries

299

�The Shebang Line
On UNIX-related operating systems (Linux, OS X, BSD, etc.), you can engineer your

program to run more simply by using a shebang line.

Note I n certain situations, such as when using the Apache HTTP server, shebang
lines can work in Windows. You can use shebang lines such as #!ruby and #!c:\
ruby\bin\ruby.exe to make Ruby CGI scripts work under Apache on Windows.

For example, say your script were to look like this:

#!/usr/bin/ruby

puts "Your program works!"

UNIX-related operating systems support putting the name of the interpreter of a file

on the first line of the file with a shebang line, where the “shebang” is simply the pound

(#) sign and the exclamation mark (!).

Note  The shebang line only needs to be in the file that’s initially run. It doesn’t
need to be in library or support files used by the main program.

In this case, /usr/bin/ruby, the Ruby interpreter, is used to interpret the rest of the

file. One problem you might run into, though, is that your Ruby interpreter might be

located in /usr/bin/local/ruby or have a different name entirely. However, there’s a

reasonably portable way to work around this problem. Many UNIX-related operating

systems (including most Linuxes and OS X) have a tool called env that stores the location

of certain applications and settings. You can use this tool to load Ruby without knowing

its exact location, for example:

#!/usr/bin/env ruby

puts "Your program works!"

You could copy this example to many different Linux or OS X machines, for example,

and it would work on the majority (env is not universal).

Chapter 10 Distributing Ruby Code and Libraries

300

If this script were called test.rb and located in the current working directory, you
could simply run it from a command line, like so:

./test.rb

Note O n most UNIX-like operating systems (including Mac OS X), as well as
adding a shebang line, it’s necessary to make the Ruby script “executable” by
using chmod for the preceding example to work, as in chmod +x test.rb.

Naturally, if you copied the script elsewhere (e.g., /usr/bin), you could access it
directly:

/usr/bin/test.rb

Or if the script’s location is in the path, it’s even easier:

test.rb

You could even remove the .rb suffix and make it look like a regular executable if you
wished.

�Associated File Types in Windows
Whereas shebang lines are used on UNIX-like operating systems, Windows users are
more familiar with file extensions (such as DOC, EXE, JPG, MP3, or TXT) dictating how a
file is processed.

If you use My Computer or Windows Explorer to find a folder containing a Ruby file,
the file might or might not already be associated with the Ruby interpreter (depending on
which Ruby package you installed). Alternatively, Ruby files might be associated with your
text editor. In any case, if you want to be able to double-click Ruby files in Windows and
have them run directly as regular Ruby programs, you can do this by changing the default
action for files with an extension of RB (or any other arbitrary extension you wish to use).

The easiest way to set an association is to right-click the icon representing a Ruby
file and choose the Open With option from the menu (or Open, if it’s currently not
associated with any program). Associate the program with the ruby.exe Ruby interpreter
on your computer and check the Always Use the Selected Program to Open This Kind of
File option. This will cause Ruby files to be executed directly by the Ruby interpreter in

the future.

Chapter 10 Distributing Ruby Code and Libraries

301

�Detecting Ruby’s Runtime Environment
Deploying Ruby programs can be made easier with the tools covered in the previous

section, but you can use a number of techniques directly within Ruby to make Ruby’s

interactions with its surrounding environment even better.

For example, it’s possible to detect information about the machine upon which a

Ruby script is running and then change the way the program operates on the fly. You can

also retrieve parameters passed to the program via the command line.

Detecting the runtime environment while the program is running can be useful to

restrict access to users on specific platforms if your program isn’t relevant to other users,

or to tailor internal settings in your program so that your program will work better on the

user’s operating system. It can also be a useful way to get system-specific information

(rather than operating system–specific information) that’s relevant directly to the machine

the program is running on, as it could affect the operation of your program. A common

example of this is retrieving the current user’s path: a string of various directory names on

the system that can be searched as default locations for files. There are also environment

variables dictating where to store temporary files, and so forth.

�Easy OS Detection with RUBY_PLATFORM
Among the myriad special variables Ruby makes accessible, a variable called RUBY_PLATFORM

contains the name of the current environment (operating system) you’re running under.

You can easily query this variable to detect what operating system your program is running

under. This can be useful if you want to use a certain filesystem notation or features that are

implemented differently under different operating systems.

On my Windows machine, RUBY_PLATFORM contains i386-mswin32, on my OS X

machine it contains x86_64-darwin13, and on my Linux machine it contains i686-

linux. This gives you the immediate power to segregate features and settings by

operating system:

if RUBY_PLATFORM =~ /win32/

 puts "We're in Windows!"

elsif RUBY_PLATFORM =~ /linux/

 puts "We're in Linux!"

elsif RUBY_PLATFORM =~ /darwin/

 puts "We're in Mac OS X!"

Chapter 10 Distributing Ruby Code and Libraries

302

elsif RUBY_PLATFORM =~ /freebsd/

 puts "We're in FreeBSD!"

else

 puts "We're running under an unknown operating system."

end

�Environment Variables
Whenever a program is run on a computer, it’s contained with a certain environment,

whether that’s the command line or a GUI. The operating system sets a number of

special variables called environment variables that contain information about the

environment. They vary by operating system, but can be a good way of detecting things

that could be useful in your programs.

You can quickly and easily inspect the environment variables (as supplied by your

operating system) on your current machine with irb by using the special ENV hash:

irb(main):001:0> pp ENV.each {|e| puts e.join(': ') }

TERM: vt100

SHELL: /bin/bash

USER: carleton

PATH: /bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/opt/local/bin:/usr/

local/sbin

PWD: /Users/carleton

SHLVL: 1

HOME: /Users/carleton

LOGNAME: carleton

SECURITYSESSIONID: 51bbd0

_: /usr/bin/irb

LINES: 32

COLUMNS: 120

Specifically, these are the results from my machine, and yours will probably be quite

different. For example, when I try the same code on a Windows machine, I get results

such as these:

Chapter 10 Distributing Ruby Code and Libraries

303

ALLUSERSPROFILE: F:\Documents and Settings\All Users

APPDATA: F:\Documents and Settings\carleton\Application Data

CLIENTNAME: Console

HOMEDRIVE: F:

HOMEPATH: \Documents and Settings\carleton

LOGONSERVER: \\PSHUTTLE

NUMBER_OF_PROCESSORS: 2

OS: Windows_NT

Path: F:\ruby\bin;F:\WINDOWS\system32;F:\WINDOWS

PATHEXT: .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;.WSH;.RB;.RBW

ProgramFiles: F:\Program Files

SystemDrive: F:

SystemRoot: F:\WINDOWS

TEMP: F:\DOCUME~1\Carleton\LOCALS~1\Temp

TMP: F:\DOCUME~1\Carleton\LOCALS~1\Temp

USERDOMAIN: PSHUTTLE

USERNAME: Carleton

USERPROFILE: F:\Documents and Settings\carleton

windir: F:\WINDOWS

You can use these environment variables to decide where to store temporary files or

to find out what sort of features your operating system offers, in real time, much as you

did with RUBY_PLATFORM:

tmp_dir = '/tmp'

if ENV['OS'] =~ /Windows_NT/

 puts "This program is running under Windows NT/2000/XP!"

 tmp_dir = ENV['TMP']

elsif ENV['PATH'] =~ /\/usr/

 puts "This program has access to a UNIX-style file system!"

else

 puts "I cannot figure out what environment I'm running in!"

 exit

end

[.. do something here ..]

Chapter 10 Distributing Ruby Code and Libraries

304

Note Y ou can also set environment variables with ENV['variable_name'] =
value. However, setting environment variables from within a program only applies
to the local process and any child processes.

Although ENV acts like a hash, it’s technically a special object, but you can convert it
to a true hash using its .to_hash method, as in ENV.to_hash.

�Accessing Command-Line Arguments
In Chapter 4, you used a special array called ARGV. ARGV is an array automatically created
by the Ruby interpreter that contains the parameters passed to the Ruby program
(whether on the command line or by other means). For example, say you created a script
called argvtest.rb:

p ARGV

You could run it like so:

ruby argvtest.rb these are command line parameters

["these", "are", "command", "line", "parameters"]

The parameters are passed into the program and become present in the ARGV array,
where they can be processed as you wish. Use of ARGV is ideal for command-line tools
where filenames and options are passed in this way.

Using ARGV also works if you call a script directly. On UNIX operating systems, you
could adjust argvtest.rb to be like this:

#!/usr/bin/env ruby
p ARGV

And you could call it in this way:

./argvtest.rb these are command line parameters

["these", "are", "command", "line", "parameters"]

Chapter 10 Distributing Ruby Code and Libraries

305

You generally use command-line arguments to pass options, settings, and data fragments
that might change between executions of a program. For example, a common utility found on
most operating systems is copy or cp, which is used to copy files. It’s used like so:

cp /directory1/from_filename /directory2/destination_filename

This would copy a file from one place to another (and rename it along the way)
within the filesystem. The two filenames are both command-line arguments, and a Ruby
script could receive data in the same way, like so:

#!/usr/bin/env ruby
from_filename = ARGV[0]
destination_filename = ARGV[1]

�Distributing Ruby Libraries As Gems
Over time, it’s likely you’ll develop your own libraries to solve various problems with
Ruby so that you don’t need to write the same code over and over in different programs,
but can call on the library for support.

Usually you’ll want to make these libraries available to use on other machines, on
servers upon which you deploy applications, or to other developers. You might even
open source your libraries to get community input and a larger developer base.

If you’ve read Chapter 5, you’ll have a good feel for Ruby’s commitment to open source
and how open source is important to Ruby developers. This section looks at how to release
your code and libraries in such a way that other developers can find them useful.

Luckily, deploying libraries is generally less problematic than deploying entire
applications, as the target audience is made up of other developers who are usually
familiar with installing libraries.

In Chapter 7, we looked at RubyGems, a library installation and management system
for Ruby. We looked at how RubyGems makes it easy to install libraries, but RubyGems
also makes it easy to create “gems” of your own from your own code.

�Creating a Gem
There are easy ways to create gems and slightly less easy ways. I’m going to take a “raw”
approach by showing how to create a gem from the ground up. Later, we’ll look at a
library that will do most of the grunt work for you.

Let’s first create a simple library that extends the String class and puts it in a file
called string_extend.rb:

Chapter 10 Distributing Ruby Code and Libraries

306

class String
 def vowels
 scan(/[aeiou]/i)
 end

end

This code adds a vowels method to the String class, which returns an array of all

the vowels in a string:

"This is a test".vowels

["i", "i", "a", "e"]

As a local library within the scope of a larger application, it could be loaded with

require or require_relative:

require_relative 'string_extend'

However, you want to turn it into a gem that you can use anywhere. Building a gem

involves three steps. The first is to organize your code and other files into a structure that

can be turned into a gem. The second is to create a specification file that lists information

about the gem. The third is to use the gem program to build the gem from the source files

and the specification.

�Structuring Your Files

Before you can build a gem, it’s necessary to collect all the files you want to make up

the gem. This is usually done using a standard structure. So far, you have your string_

extend.rb file, and this is the only file you want within your gem.

First, it’s necessary to create a folder to contain all the gem’s folders, so you create a

folder called string_extend. Under this folder, you create several other folders as follows:

•	 lib: This directory will contain the Ruby code related to the library.

•	 test or spec: This directory will contain any unit tests or other

testing scripts related to the library.

•	 doc: This is an optional directory that could contain documentation

about the library, particularly documentation created with or by

RDoc.

Chapter 10 Distributing Ruby Code and Libraries

307

•	 bin: This is another optional directory that can contain system

tools and command-line scripts that are related to the library. For

example, RubyGems itself installs the gem command-line tool; such a

tool would be placed into bin.

At a minimum, you should end up with string_extend/lib and string_extend/

test.

In this example, you should place string_extend.rb within the string_extend/lib

directory. If you have tests, documentation, or command-line scripts, place them into

the respective directories.

Note  The preceding directory names are written in UNIX style, but on Windows
would be represented similarly to this: c:\gems\string_extend, c:\gems\
string_extend\lib, and so on. Take this into account throughout this entire
section.

�Creating a Specification File

Once your files are organized, it’s time to create a specification file that describes the

gem and provides RubyGems with enough information to create the final gem. Create

a text file called string_extend.gemspec (or a filename that matches your own project

name) in the main string_extend folder, and fill it out like so:

Gem::Specification.new do |s|

 s.name = 'string_extend'

 s.version = '0.0.1'

 s.summary = "StringExtend adds useful features to the String class"

 s.platform = Gem::Platform::RUBY

 s.files = Dir.glob("**/**/**")

 s.test_files = Dir.glob("test/*_test.rb")

 s.authors = ["Your Name"]

 s.email = "your-email-address@email.com"

 s.required_ruby_version = '>= 2.0.0'

end

Chapter 10 Distributing Ruby Code and Libraries

308

This is a basic specification file. The specification file is effectively a simple Ruby

script that passes information through to Gem::Specification. The information it

provides is mostly simple, but let’s look at a few key areas.

First, you define the name of the gem, setting it to 'string_extend':

s.name = 'string_extend'

Next, you define the version number. Typically, version numbers for Ruby projects
(and for Ruby itself) contain three parts in order of significance. Early versions of
software—before an official release, perhaps—often begin with 0, as in 0.0.1 here:

s.version = '0.0.1'

The summary line is displayed by gem list, and can be useful to people prior to
installing the gem. Simply put together a short description of your library/gem here:

s.summary = "StringExtend adds useful features to the String class"

The files attribute accepts an array of all the files to include within the gem. In this
case, you use Dir.glob to get an array of all the files under the current directory:

s.files = Dir.glob("**/**/**")

However, you could explicitly reference every file in an array in the preceding line.
The test_files attribute, like the files attribute, accepts an array of files, in this

case associated with tests. You can leave this line intact even if you have no test folder,
as Dir.glob will just return an empty array, for example:

s.test_files = Dir.glob("test/*_test.rb")
or
s.test_files = Dir.glob("spec/*_spec.rb")

Last, sometimes libraries rely on features in certain versions of Ruby. You can specify
the required version of Ruby with the require_ruby_version parameter. If there’s no
required version, you can simply omit this line:

s.required_ruby_version = '>= 2.0.0'

Note A full list of the parameters you can use in a RubyGems specification file is
available at https://guides.rubygems.org/specification-reference/.
Also, you can learn more about versioning by visiting https://semver.org/.

Chapter 10 Distributing Ruby Code and Libraries

https://guides.rubygems.org/specification-reference/
https://semver.org/

309

�Building the Gem
Once the specifications file is complete, building the final .gem file is as simple as this:

gem build <spec file>

Note  gem build should be run from the directory that the spec file is in.

In your case:

gem build string_extend.gemspec

This makes gem create the final gem file, called string_extend-0.0.1.gem. You may

receive some warnings if there is any missing information. Read the warning carefully to

determine how to remove it.

Note I n the future, once you change and update your library, simply update the
version numbers and rebuild, and you’ll have a new gem ready to go that can be
installed to upgrade the existing installed gem.

Beyond this point, you could install your own gem with gem install string_extend,

and then use it from other scripts using require 'string_extend'. It’s that simple.

�Easier Gem Creation

In Chapter 7, we looked at a popular tool within the Ruby world called Bundler. Bundler

makes it easy to manage the dependencies of your Ruby programs, but it also has a

feature to create all of the boilerplate code that you saw in the past few pages. Knowing

how this code operates is important, which is why we covered it, but once you're up to

speed, using Bundler to automatically generate the files will save you time.

To create a new gem using Bundler is as simple as

bundle gem string_extend

Note B ear in mind if you followed the previous section and created a gem
by hand, what we're doing here will conflict with that, so consider moving to a
different directory or creating something with a different name.

Chapter 10 Distributing Ruby Code and Libraries

310

You will be asked to select a testing framework, if you want to us the MIT license and

if you want to include the code of conduct. In the following output, I’m using RSpec, the

MIT license and the code of conduct. The result is a directory and a set of files, as well as

the initialization of a Git repository:

 create string_extend/Gemfile

 create string_extend/lib/string_extend.rb

 create string_extend/lib/string_extend/version.rb

 create string_extend/string_extend.gemspec

 create string_extend/Rakefile

 create string_extend/README.md

 create string_extend/bin/console

 create string_extend/bin/setup

 create string_extend/.gitignore

 create string_extend/.travis.yml

 create string_extend/.rspec

 create string_extend/spec/spec_helper.rb

 create string_extend/spec/string_extend_spec.rb

 create string_extend/LICENSE.txt

 create string_extend/CODE_OF_CONDUCT.md

Initializing git repo in /users/jane/ruby/string_extend

Due to Bundler's boilerplate code needing to cope with almost any example of

creating a gem out of the box, its gem specification file is slightly more complex than the

one we created earlier but follows the same structure:

require_relative 'lib/string_extend/version'

Gem::Specification.new do |spec|

 spec.name = "string_extend"

 spec.version = StringExtend::VERSION

 spec.authors = ["Carleton DiLeo"]

 spec.email = ["example@email.com"]

 spec.summary = %q{TODO: Write a short summary, because RubyGems

requires one.}

Chapter 10 Distributing Ruby Code and Libraries

311

 spec.description = %q{TODO: Write a longer description or delete this line.}

 spec.homepage = "TODO: Put your gem's website or public repo URL here."

 spec.license = "MIT"

 spec.required_ruby_version = Gem::Requirement.new(">= 2.3.0")

 spec.metadata["allowed_push_host"] = "TODO: Set to 'http://mygemserver.com'"

 spec.metadata["homepage_uri"] = spec.homepage

 �spec.metadata["source_code_uri"] = "TODO: Put your gem's public repo URL

here."

 �spec.metadata["changelog_uri"] = "TODO: Put your gem's CHANGELOG.md URL

here."

 # Specify which files should be added to the gem when it is released.

 # �The `git ls-files -z` loads the files in the RubyGem that have been

added into git.

 spec.files = Dir.chdir(File.expand_path('..', __FILE__)) do

 `�git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|feat

ures)/}) }

 end

 spec.bindir = "exe"

 spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }

 spec.require_paths = ["lib"]

end

All that's left now is to fill out the blanks and carry on developing your library.

�Installing Your Gem
Distributing a gem is easy. You can upload it to a website or transfer it in any way you

would normally transfer a file. You can then install the gem with the command gem

install and refer to the local file.

The best way to distribute gems, however, is in a form where they can be installed

over the Internet without specifying a source, for example:

gem install gem_name

Chapter 10 Distributing Ruby Code and Libraries

312

This command installs the gem gem_name by looking for it on the Internet and

downloading it to the local machine. But how does gem know where to download gems?
By default, RubyGems searches a Ruby project repository called RubyGems.org for gems
if no source is specified. We’ll look at how to make gems available in the default database
using RubyGems.org next.

�RubyGems.org
RubyGems.org (https://rubygems.org/) is the largest community repository for Ruby
projects and libraries. It contains thousands of projects and acts as a centralized location
for the hosting of gems. Nearly all the major Ruby libraries are available from or hosted
there, including Ruby on Rails.

If you want your gem to be installed easily by users, hosting it on RubyGems.org is
key. And, happily, it's entirely free.

To host a project on RubyGems.org, you first need an account, but once you're set
up you'll be able to push any valid gem you've created on your local machine up to the
RubyGems.org site like so:

gem push your_gems_filename-0.0.1.gem

Note Y ou will get an error if you push up a gem that has the same name as a
gem that already exists on the RubyGems.org site, so you might want to check
if your name conflicts before you even start to build your library, or at least be
prepared to rename or namespace it.

If you use the Bundler approach to create a gem, as explained in the previous
section, you can use Rake instead:

rake release

�Deploying Ruby Applications As Remote Services
An alternative to giving people your source or packaging it up to be run locally on a
user’s machine is making a program’s functionality available as a remote service over a
network. This only works for a small subset of functionality, but providing functionality

remotely gives you more control over your code and how it is used.

Chapter 10 Distributing Ruby Code and Libraries

https://rubygems.org/

313

Ruby’s networking and web features will be covered in more depth in Chapters 14

and 15, but in this section, we’ll look at how to put together basic services with Ruby that

allow users to access a program’s functionality over a network.

Note I f you want to build a true web application, refer to Chapter 13. This section
is about building small, ad hoc services.

�CGI Scripts
A common way to make scripts available online is to upload them to web hosting

providers as CGI scripts. Common Gateway Interface (CGI) is a standard that allows web

server software (such as Apache or Microsoft IIS) to launch programs and send data back

and forth between them and the web client.

Many people associate the term CGI with the Perl language, as Perl has been the

most common language with which to write CGI scripts. However, CGI is language

agnostic, and you can just as easily write CGI scripts with Ruby (more easily, in fact!).

�A Basic CGI Script

The most basic Ruby CGI script looks like this:

#!/usr/bin/ruby

puts "Content-type: text/html\n\n"

puts "<html><body>This is a test</body></html>"

If you called this script test.cgi and uploaded it to a UNIX-based web hosting

provider (the most common type) with the right permissions, you could use it as a CGI

script. For example, if you have the website www.example.com/ hosted with a Linux web

hosting provider and you upload test.cgi to the main directory and give it execute

permissions, then visiting www.example.com/test.cgi should return an HTML page

saying, “This is a test”.

Note A lthough /usr/bin/ruby is referenced in the previous example, for many
users or web hosting providers, Ruby might be located at /usr/local/bin/
ruby. Make sure to check or try using /usr/bin/env ruby.

Chapter 10 Distributing Ruby Code and Libraries

http://www.example.com/
http://www.example.com/test.cgi

314

When test.cgi is requested from a web browser, the web server looks for test.

cgi on the website and then executes it using the Ruby interpreter (due to the shebang

line—as covered earlier in this chapter). The Ruby script returns a basic HTTP header

(specifying the content type as HTML) and then returns a basic HTML document.

Ruby comes with a special library called cgi that enables more sophisticated

interactions than those with the preceding CGI script. Let’s create a basic CGI script that

uses cgi:

#!/usr/bin/env ruby

require 'cgi'

cgi = CGI.new

puts cgi.header

puts "<html><body>This is a test</body></html>"

In this example, you created a CGI object and used it to print the header line for you.

This is easier than remembering what header to output, and it can be tailored. However,

the real benefit of using the cgi library is so that you can do things such as accept data

coming from a web browser (or an HTML form) and return more complex data to the

user.

�Accepting CGI Variables
A benefit of CGI scripts is that they can process information passed to them from a form

on an HTML page or merely specified within the URL. For example, if you had a web

form with an <input> element with a name of “text” that posted to test.cgi, you can

access the data passed to it like this:

#!/usr/bin/env ruby

require 'cgi'

cgi = CGI.new

text = cgi['text']

puts cgi.header

puts "<html><body>#{text.reverse}</body></html>"

Chapter 10 Distributing Ruby Code and Libraries

315

In this case, the user would see the text he or she entered on the form reversed. You

could also test this CGI script by passing the text directly within the URL, such as with

www.example.com/test.cgi?text=this+is+a+test.

Here’s a more complete example:

#!/usr/bin/env ruby

require 'cgi'

cgi = CGI.new

from = cgi['from'].to_i

to = cgi['to'].to_i

number = rand(to-from+1) + from

puts cgi.header

puts "<html><body>#{number}</body></html>"

This CGI script responds with a random number that’s between the number

supplied in the from CGI variable and the to CGI variable. An associated but basic form

that could send the correct data would have HTML code like so:

<form method="POST" action="http://www.example.com/test.cgi">

For a number between <input type="text" name="from" value="" /> and

<input type="text" name="to" value="" /> <input type="submit"

value="Click here!" /></form>

In Chapter 16, the cgi library is covered in more depth, along with information about

using HTTP cookies and sessions, so if this mode of deployment is of interest to you,

refer there for extended information and longer examples.

In general, however, CGI execution isn’t a popular option due to its lack of speed

and the need for a Ruby interpreter to be executed on every request. This makes CGI

unsuitable for high-use or heavy-load situations.

Tip  Depending on your setup (or hosting environment), you might find that
Sinatra offers a nicer way to do what we’ve looked at in this section. See the
Sinatra section in Chapter 13.

Chapter 10 Distributing Ruby Code and Libraries

http://www.example.com/test.cgi?text=this+is+a+test

316

�Generic HTTP Servers
HTTP is the communications protocol of the World Wide Web. Even though it’s

commonly used to shuttle web pages from one place to another, it can also be used on

an internal network or even to communicate between services on a single machine.

Creating an HTTP server from your Ruby program can provide a way for users (or

even other programs) to make requests to your Ruby program, meaning you don’t

need to distribute the source code, but can instead make your program’s functionality

available over a network (such as the Internet).

In this section, we’re going to look directly at creating a basic HTTP server using

WEBrick, part of Ruby's standard library. It's useful to have experience building servers

directly so that you can see how things work at a low level, even though, ultimately, you

will almost certainly choose to use a web app framework (as covered in Chapter 13)

to make life easier. Given this, if you find any code in this section intimidating, skip

to the Sinatra-based approach demonstrated in Chapter 13 as it will be a lot more

straightforward and hide many of the details covered here.

Note I n this section, we’re creating scripts that are HTTP servers themselves and
do not rely on established HTTP servers such as Apache.

�WEBrick

WEBrick is a Ruby library that makes it easy to build an HTTP server with Ruby. It comes

with most installations of Ruby by default (it’s part of the standard library), so you can

usually create a basic web/HTTP server with only several lines of code:

require 'webrick'

server = WEBrick::GenericServer.new(:Port => 1234)

trap("INT"){ server.shutdown }

server.start do |socket|

 socket.puts Time.now

end

Chapter 10 Distributing Ruby Code and Libraries

317

This code creates a generic WEBrick server on the local machine on port 1234, shuts

the server down if the process is interrupted (often done with Ctrl+C), and for each

new connection prints the current date and time. If you run this code, you could try to

view the results in your web browser by visiting http://127.0.0.1:1234/ or http://

localhost:1234/.

Caution B ecause your test program doesn’t output valid HTTP, it might fail with
some particularly sensitive web browsers. However, if you understand how to use
the telnet program, you can use telnet 127.0.0.1 1234 to see the result.
Otherwise, continue to the next example, where valid HTTP is returned for web
browsers to view.

However, a more powerful technique is when you create servlets that exist in their

own class and have more control over the requests and responses made to them:

require 'webrick'

class MyServlet < WEBrick::HTTPServlet::AbstractServlet

 def do_GET(request, response)

 response.status = 200

 response.content_type = "text/plain"

 response.body = "Hello, world!"

 end

end

server = WEBrick::HTTPServer.new(:Port => 1234)

server.mount "/", MyServlet

trap("INT"){ server.shutdown }

server.start

This code is more elaborate, but you now have access to request and response

objects that represent both the incoming request and the outgoing response.

For example, you can now find out what URL the user tried to access in his or her

browser with such a line:

response.body = "You are trying to load #{request.path}"

Chapter 10 Distributing Ruby Code and Libraries

318

request.path contains the path within the URL (e.g., /abcd from

http://127.0.0.1:1234/abcd), meaning you can interpret what the user was trying to

request, call a different method, and provide the correct output.

Here’s a more elaborate example:

require 'webrick'

class MyNormalClass

 def MyNormalClass.add(a, b)

 a.to_i + b.to_i

 end

 def MyNormalClass.subtract(a,b)

 a.to_i - b.to_i

 end

end

class MyServlet < WEBrick::HTTPServlet::AbstractServlet

 def do_GET(request, response)

 if request.query['a'] && request.query['b']

 a = request.query['a']

 b = request.query['b']

 response.status = 200

 response.content_type = 'text/plain'

 result = nil

 case request.path

 when '/add'

 result = MyNormalClass.add(a,b)

 when '/subtract'

 result = MyNormalClass.subtract(a,b)

 else

 result = "No such method"

 end

 response.body = result.to_s + "\n"

 else

 response.status = 400

Chapter 10 Distributing Ruby Code and Libraries

319

 response.body = "You did not provide the correct parameters"

 end

 end

end

server = WEBrick::HTTPServer.new(:Port => 1234)

server.mount '/', MyServlet

trap('INT'){ server.shutdown }

server.start

In this example, you have a regular, basic Ruby class called MyNormalClass that

implements two basic arithmetic methods. The WEBrick servlet uses the request object

to retrieve parameters from the URL, as well as get the Ruby method requested from

request.path. If the parameters aren’t passed, an HTTP error is returned.

To use the preceding script, you’d use URLs such as these:

http://127.0.0.1:1234/add?a=10&b=20

30

http://127.0.0.1:1234/subtract?a=100&b=10

90

http://127.0.0.1:1234/subtract

You did not provide the correct parameters.

http://127.0.0.1:1234/abcd?a=10&b=20

No such method.

Chapter 10 Distributing Ruby Code and Libraries

320

�Summary
In this chapter, we looked at how to deploy Ruby programs and libraries, as well as how

to make their functions available to web browsers and other applications over a network.

We also interrogated the environment so we can pursue different techniques on a per-

operating system basis if we choose.

Let’s reflect on the main concepts covered in this chapter:

•	 Shebang line: A special line at the start of a source code file that

determines which interpreter is used to process the file. Used

primarily on UNIX-based operating systems, shebang lines can also

work on Windows when used with the Apache web server.

•	 RUBY_PLATFORM: A special variable preset by Ruby that contains the

name of the current platform (environment).

•	 Environment variables: Special variables set by the operating system

or other processes that contain information relevant to the current

execution environment and information about the operating system.

•	 RubyGems.org: A centralized repository and website dedicated to

hosting and distributing Ruby projects and libraries.

•	 GitHub: A popular hub and community site for users of the Git source

code management system—now popular in the Ruby world. You can

find it at https://github.com/.

•	 CGI: Common Gateway Interface. A standard that enables web

servers to execute scripts and provide an interface between web users

and scripts located on that server.

•	 WEBrick: A simple and easy HTTP server library for Ruby that comes

with Ruby as standard.

In Chapter 15, we’re going to return to looking at network servers, albeit in a different

fashion; but first, in Chapter 11, we’re going to take a look at some more advanced Ruby

topics to flesh out the ideas we’ve covered so far.

Chapter 10 Distributing Ruby Code and Libraries

https://github.com/

321
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_11

CHAPTER 11

Advanced Ruby Features
In this chapter, we’re going to look at some advanced Ruby techniques that have not

been covered in prior chapters. This chapter is the last instructional chapter in the

second part of the book, and although we’ll be covering useful libraries, frameworks, and

Ruby-related technologies in Part 3, this chapter rounds off the mandatory knowledge

that any proficient Ruby programmer should have. This means that although this chapter

will jump between several different topics, each is essential to becoming a professional

Ruby developer.

The myriad topics covered in this chapter include how to create Ruby code

dynamically on the fly, methods to make your Ruby code safe, how to issue commands

to the operating system, how to integrate with Microsoft Windows, and how to create

libraries for Ruby using other programming languages. Essentially, this chapter is

designed to cover a range of discrete, important topics that you might find you need to

use, but that fall outside the immediate scope of other chapters.

�Dynamic Code Execution
As a dynamic, interpreted language, Ruby is able to execute code created dynamically.

The way to do this is with the eval method, for example:

eval "puts 2 + 2"

4

Note that while 4 is displayed, 4 is not returned as the result of the whole eval

expression. puts always returns nil. To return 4 from eval, you can do this:

https://doi.org/10.1007/978-1-4842-6324-2_11#DOI

322

puts eval("2 + 2")

4

Here’s a more complex example that uses strings and interpolation:

my_number = 15

my_code = %{#{my_number} * 2}

puts eval(my_code)

30

The eval method simply executes (or evaluates) the code passed to it and returns the

result. The first example made eval execute puts 2 + 2, whereas the second used string

interpolation to build an expression of 15 * 2, which was then evaluated and printed to

the screen using puts.

�Bindings
In Ruby, a binding is a reference to a context, scope, or state of execution. A binding

includes things such as the current value of variables and other details of the execution

environment.

It’s possible to pass a binding to eval and to have eval execute the supplied code

under that binding rather than the current one. In this way, you can keep things that

happen with eval separate from the main execution context of your code.

Here’s an example:

def binding_elsewhere

 x = 20

 return binding

end

remote_binding = binding_elsewhere

Chapter 11 Advanced Ruby Features

323

x = 10

eval("puts x")

eval("puts x", remote_binding)

10

20

This code demonstrates that eval accepts an optional second parameter, a binding,

which in this case is returned from the binding_elsewhere method. The variable

remote_binding contains a reference to the execution context within the binding_

elsewhere method rather than in the main code. Therefore, when you print x, 20 is

shown, as x is defined as equal to 20 in binding_elsewhere!

Note Y ou can obtain the binding of the current scope at any point with the
Kernel module’s binding method.

Let’s build on the previous example:

eval("x = 10")

eval("x = 50", remote_binding)

eval("puts x")

eval("puts x", remote_binding)

10

50

In this example, two bindings are in play: the default binding and the remote_

binding (from the binding_elsewhere method).

Therefore, even though you set x first to 10, and then to 50, you’re not dealing with

the same x in each case. One x is a local variable in the current context, and the other x is

a variable in the context of binding_elsewhere.

Chapter 11 Advanced Ruby Features

324

�Other Forms of eval
Although eval executes code within the current context (or the context supplied with a

binding), class_eval, module_eval, and instance_eval can evaluate code within the

context of classes, modules, and object instances, respectively.

class_eval is ideal for adding methods to a class dynamically:

class Person

end

def add_accessor_to_person(accessor_name)

 Person.class_eval %{

 attr_accessor :#{accessor_name}

 }

end

person = Person.new

add_accessor_to_person :name

add_accessor_to_person :gender

person.name = "Carleton DiLeo"

person.gender = "male"

puts "#{person.name} is #{person.gender}"

Carleton DiLeo is male

In this example, you use the add_accessor_to_person method to add accessors

dynamically to the Person class. Prior to using the add_accessor_to_person method,

neither the name nor gender accessors exist within Person.

Note that the key part of the code, the class_eval method, operates by using string

interpolation to create the desired code for Person:

Person.class_eval %{

 attr_accessor :#{accessor_name}

}

String interpolation makes the eval methods powerful tools for generating different

features on the fly. This ability is a power unseen in the majority of programming

languages, and is one that’s used to great effect in systems such as Ruby on Rails

(covered in Chapter 13).

Chapter 11 Advanced Ruby Features

325

It’s possible to take the previous example a lot further and add an add_accessor

method to every class by putting your class_eval cleverness in a new method, defined

within the Class class (from which all other classes descend):

class Class

 def add_accessor(accessor_name)

 self.class_eval %{

 attr_accessor :#{accessor_name}

 }

 end

end

class Person

end

person = Person.new

Person.add_accessor :name

Person.add_accessor :gender

person.name = "Carleton DiLeo"

person.gender = "male"

puts "#{person.name} is #{person.gender}"

In this example, you add the add_accessor method to the Class class, thereby

adding it to every other class defined within your program. This makes it possible to add

accessors to any class dynamically, by calling add_accessor. (If the logic of this approach

isn’t clear, make sure to try this code yourself, step through each process, and establish

what is occurring at each step of execution.)

The technique used in the previous example also lets you define classes like this:

class SomethingElse

 add_accessor :whatever

end

Because add_accessor is being used within a class, the method call will work its way

up to the add_accessor method defined in class Class.

Moving back to simpler techniques, using instance_eval is somewhat like using

regular eval, but within the context of an object (rather than a method). In this example,

you use instance_eval to execute code within the scope of an object:

Chapter 11 Advanced Ruby Features

326

class MyClass

 def initialize

 @my_variable = 'Hello, world!'

 end

end

obj = MyClass.new

obj.instance_eval { puts @my_variable }

Hello, world!

�Creating Your Own Version of attr_accessor
So far, you’ve used the attr_accessor method within your classes to generate accessor

functions for instance variables quickly. For example, in longhand you might have this

code:

class Person

 def name

 @name

 end

 def name=(name)

 @name = name

 end

end

This allows you to do things such as puts person.name and person.name = 'Fred'.

Alternatively, however, you can use attr_accessor:

class Person

 attr_accessor :name

end

This version of the class is more concise and has exactly the same functionality as the

longhand version. Now it’s time to ask the question, how does attr_accessor work?

Chapter 11 Advanced Ruby Features

327

It turns out that attr_accessor isn’t as magical as it looks, and it’s extremely easy to

implement your own version using eval. Consider this code:

class Class

 def add_accessor(accessor_name)

 self.class_eval %{

 def #{accessor_name}

 @#{accessor_name}

 end

 def #{accessor_name}=(value)

 @#{accessor_name} = value

 end

 }

 end

end

At first, this code looks complex, but it’s very similar to the add_accessor code you

created in the previous section. You use class_eval to define getter and setter methods

dynamically for the attribute within the current class.

If accessor_name is equal to name, then the code that class_eval is executing is

equivalent to this code:

def name

 @name

end

def name=(value)

 @name = value

end

Thus, you have duplicated the functionality of attr_accessor.

You can use this technique to create a multitude of different “code generators” and

methods that can act as a “macro” language to perform things in Ruby that are otherwise

lengthy to type out.

Chapter 11 Advanced Ruby Features

328

�Running Other Programs from Ruby
Often, it’s useful to be able to run other programs on the system from your own

programs. In this way, you can reduce the amount of features your program needs to

implement, as you can pass off work to other programs that are already written. It can

also be useful to hook up several of your own programs so that functionality is spread

among them. Rather than using the RPC systems covered in the previous chapter, you

can simply run other programs from your own with one of a few different methods made

available by Ruby.

�Getting Results from Other Programs
There are three simple ways to run another program from within Ruby: the system

method (defined in the Kernel module), backtick syntax (``), and delimited input

literals (%x{}). Using system is ideal when you want to run another program and aren’t

concerned with its output, whereas you should use backticks when you want the output

of the remote program returned.

These lines demonstrate two ways of running the system’s directory list program:

On OS X or Linux:

x = system("ls")

x = `ls`

On Windows:

x = system("dir")

x = `dir`

For the first line, the list program output displays in the console and x equals true.

For the second line, x contains the output of the list command. Which method you

use depends on what you’re trying to achieve. If you don’t want the output of the other

program to show on the same screen as that of your Ruby script, then use backticks (or a

literal, %x{}).

Note  %x{} is functionally equivalent to using backticks, for example, %x{ls}
or %x{dir}.

Chapter 11 Advanced Ruby Features

329

�Transferring Execution to Another Program
Sometimes it’s desirable to jump immediately to another program and cease execution

of the current program. This is useful if you have a multistep process and have written

an application for each. To end the current program and invoke another, simply use the

exec method in place of system, for example:

exec "ruby another_script.rb"

puts "This will never be displayed"

In this example, execution is transferred to a different program, and the current

program ceases immediately—the second line is never executed.

�Running Two Programs at the Same Time
Forking is where an instance of a program (a process) duplicates itself, resulting in two

processes of that program running concurrently. You can run other programs from this

second process by using exec, and the first (parent) process will continue running the

original program.

fork is a method provided by the Kernel module that creates a fork of the current

process. It returns the child process’s process ID in the parent, but nil in the child

process—you can use this to determine which process a script is in. The following

example forks the current process into two processes and only executes the exec

command within the child process (the process generated by the fork):

if fork.nil?

 exec "ruby some_other_file.rb"

end

puts "This Ruby script now runs alongside some_other_file.rb"

Caution D on’t run the preceding code from irb. If irb forks, you’ll end up with two
copies of irb running simultaneously, and the result will be unpredictable.

Chapter 11 Advanced Ruby Features

330

If the other program (being run by exec) is expected to finish at some point and you

want to wait for it to finish executing before doing something in the parent program, you

can use Process.wait to wait for all child processes to finish before continuing. Here’s

an example:

child = fork do

 sleep 3

 puts "Child says 'hi'!"

end

puts "Waiting for the child process..."

Process.wait child

puts "All done!"

Waiting for the child process...

<3 second delay>

Child says 'hi'!

All done!

Note  Forking is not possible with the Windows version of Ruby, as POSIX-style
forking is not natively supported on that platform. You will use the spawn()
method instead. More information at https://ruby-doc.org/core/Kernel.
html#method-i-spawn.

�Interacting with Another Program
The previous methods are fine for simple situations where you just want to get basic

results from a remote program and don’t need to interact directly with it in any way

while it’s running. However, sometimes you might want to pass data back and forth

between two separate programs.

Chapter 11 Advanced Ruby Features

https://ruby-doc.org/core/Kernel.html#method-i-spawn
https://ruby-doc.org/core/Kernel.html#method-i-spawn

331

Ruby’s IO module has a popen method that allows you to run another program

and have an I/O stream between it and the current program. The I/O stream between

programs works like the other types of I/O streams we looked at in Chapter 9, but

instead of reading and writing to a file, you’re reading and writing to another program.

Obviously, this technique only works successfully with programs that accept direct input

and produce direct output at a command prompt level (so not GUI applications).

Here’s a simple read-only example:

ls = IO.popen("ls", "r")

while line = ls.gets

 puts line

end

ls.close

In this example, you open an I/O stream with ls (the UNIX command to list the

contents of the current directory—try it with dir if you’re using Microsoft Windows). You

read the lines one by one, as with other forms of I/O streams, and close the stream when

you’re done.

Similarly, you can also open a program with a read/write I/O stream and handle data

in both directions:

handle = IO.popen("other_program", "r+")

handle.puts "send input to other program"

handle.close_write

while line = handle.gets

 puts line

end

Note T he reason for handle.close_write is to close the I/O stream’s writing
stream, thereby sending any data waiting to be written out to the remote program. IO
also has a flush method that can be used if the write stream needs to remain open.

Chapter 11 Advanced Ruby Features

332

�Threads
Thread is short for thread of execution. You use threads to split the execution of a

program into multiple parts that can be run concurrently. For example, a program

designed to email thousands of people at once might split the task between 20 different

threads that all send email at once. Such parallelism is faster than processing one item

after another, especially on systems with more than one CPU, because different threads

of execution can be run on different processors. It can also be faster because rather than

wasting time waiting for a response from a remote machine, you can continue with other

operations.

Ruby 1.8 didn’t support threads in the traditional sense. Typically, threading

capabilities are provided by the operating system and vary from one system to another.

However, Ruby 1.8 provided Ruby’s threading capabilities directly which meant they

lacked some of the power of traditional system-level threads. In Ruby 1.9, Ruby began to

use system-based threads, and this is now the default expectation among Rubyists.

While Ruby 1.9 and 2.x’s threads are system (native) threads, in order to remain

compatible with 1.8 code, a global interpreter lock (GIL) has been left in place so that

threads do not truly run simultaneously. This means that all of what is covered in this

section is relevant to all of 1.8, 1.9, 2.0, and beyond. A Ruby 1.9-and-beyond–only

alternative, fibers, is covered in the next primary section of this chapter which now

supports non-blocking concurrency.

�Basic Ruby Threads in Action
Here’s a basic demonstration of Ruby threading in action:

threads = []

10.times do

 thread = Thread.new do

 10.times { |i| print i; $stdout.flush; sleep rand(2) }

 end

 threads << thread

end

threads.each { |thread| thread.join }

Chapter 11 Advanced Ruby Features

333

You create an array to hold your Thread objects so that you can easily keep track of

them. Then you create ten threads, sending the block of code to be executed in each

thread to Thread.new, and add each generated thread to the array.

Note  When you create a thread, it can access any variables that are within scope
at that point. However, any local variables that are then created within the thread
are entirely local to that thread. This is similar to the behavior of other types of
code blocks.

Once you’ve created the threads, you wait for all of them to complete before the

program finishes. You wait by looping through all the thread objects in threads and

calling each thread’s join method. The join method makes the main program wait until

a thread’s execution is complete before continuing. In this way, you make sure all the

threads are complete before exiting.

The preceding program results in output similar to the following (the variation is due

to the randomness of the sleeping):

0010120001001010121231212423251232345323433663454436554674454877655788668

97567656797

9789878889899999

The example has created ten Ruby threads whose sole job is to count and sleep

randomly. This results in the preceding pseudo-random output.

Rather than sleeping, the threads could have been fetching web pages, performing

math operations, or sending emails. In fact, Ruby threads are ideal for almost every

situation where concurrency within a single Ruby program is desired.

Note  In Chapter 15, you’ll be using threads to create a server that creates new
threads of execution for each client that connects to it, so that you can develop a
simple chat system.

Chapter 11 Advanced Ruby Features

334

�Advanced Thread Operations
As you’ve seen, creating and running basic threads is fairly simple, but threads also offer

a number of advanced features. These are discussed in the following subsections.

�Waiting for Threads to Finish Redux

When you waited for your threads to finish by using the join method, you could have

specified a timeout value (in seconds) for which to wait. If the thread doesn’t finish

within that time, join returns nil. Here’s an example where each thread is given only

one second to execute:

threads.each do |thread|

 puts "Thread #{thread.object_id} didn't finish in 1s" unless thread.join(1)

end

�Getting a List of All Threads

It’s possible to get a global list of all threads running within your program using Thread.

list. In fact, if you didn’t want to keep your own store of threads, you could rewrite the

earlier example from the section “Basic Ruby Threads in Action” down to these two

lines:

10.times { Thread.new { 10.times { |i| print i; $stdout.flush; sleep

rand(2) } } } Thread.list.each { |thread| thread.join unless thread ==

Thread.main }

However, keeping your own list of threads is essential if you’re likely to have more

than one group of threads working within an application and you want to keep them

separate from one another when it comes to using join or other features.

The list of threads also includes the main thread representing the main program’s

thread of execution, which is why we explicitly do not join it in the prior code.

�Thread Operations from Within Threads Themselves

Threads aren’t just tiny, dumb fragments of code. They have the ability to talk with the

Ruby thread scheduler and provide updates on their status. For example, a thread can

stop itself:

Chapter 11 Advanced Ruby Features

335

Thread.new do

 10.times do |i|

 print i

 $stdout.flush

 Thread.stop

 end

end

Every time the thread created in this example prints a number to the screen, it stops

itself. It can then only be restarted or resumed by the parent program calling the run

method on the thread, like so:

Thread.list.each { |thread| thread.run }

A thread can also tell the Ruby thread scheduler that it wants to pass execution over

to another thread. The technique of voluntarily ceding control to another thread is often

known as cooperative multitasking, because the thread or process itself is saying that

it’s okay to pass execution on to another thread or process. Used properly, cooperative

multitasking can make threading even more efficient, as you can code in pass requests at

ideal locations. Here’s an example showing how to cede control from a thread:

2.times { Thread.new { 10.times { |i| print i; $stdout.flush; Thread.pass }

} } Thread.list.each { |thread| thread.join unless thread == Thread.main }

00112233445566778899

In this example, execution flip-flops between the two threads, causing the pattern

shown in the results.

�Fibers
Fibers offer an alternative to threads in Ruby 1.9 and beyond. In Ruby 3, Fiber was

rewritten, so it no longer blocks on IO operations and supports non-blocking fibers.

Fibers are lightweight units of execution that control their own scheduling (often referred

to as cooperative scheduling). Whereas threads will typically run continually, fibers hand

over control once they have performed certain tasks. Unlike regular methods, however,

once a fiber hands over control, it continues to exist and can be resumed at will.

Chapter 11 Advanced Ruby Features

336

In short, fibers are pragmatically similar to threads, but fibers aren’t scheduled to all

run together. You have to manually control the scheduling.

�A Fiber in Action
Nothing will demonstrate fibers as succinctly as a demonstration, so let’s look at a very

simple implementation to generate a sequence of square numbers:

sg = Fiber.new do

 s = 0

 loop do

 square = s * s

 Fiber.yield square

 s += 1

 end

end

10.times { puts sg.resume }

0

1

4

9

16

25

36

49

64

81

Chapter 11 Advanced Ruby Features

337

In this example, we create a fiber using a block, much in the same style as we created

threads earlier. The difference, however, is that the fiber will run solely on its own until

the Fiber.yield method is used to yield control back to whatever last told the fiber to

run (which, in this case, is the sg.resume method call). Alternatively, if the fiber “ends,”

the value of the last executed expression is returned.

In this example, it’s worth noting that you don’t have to use the fiber forever,

although since the fiber contains an infinite loop, it would certainly be possible to do

so. Even though the fiber contains an infinite loop, however, the fiber is not continually

running, so it results in no performance issues.

If you do develop a fiber that has a natural ending point, calling its resume method

once it has concluded will result in an exception (which, of course, you can catch—refer

to Chapter 8’s “Handling Exceptions” section) that states you are trying to resume a dead

fiber.

�Passing Data to a Fiber
It is possible to pass data back into a fiber when you resume its execution as well as

receive data from it. For example, let’s tweak the square number generator fiber to

support receiving back an optional new base from which to provide square numbers:

sg = Fiber.new do

 s = 0

 loop do

 square = s * s

 s += 1

 s = Fiber.yield(square) || s

 end

end

puts sg.resume

puts sg.resume

puts sg.resume

puts sg.resume

puts sg.resume 40

puts sg.resume

puts sg.resume

Chapter 11 Advanced Ruby Features

338

puts sg.resume 0

puts sg.resume

puts sg.resume

0

1

4

9

1600

1681

1764

0

1

4

In this case, we start out by getting back square numbers one at a time as before. On

the fifth attempt, however, we pass back the number 40, which is then assigned to the

fiber’s s variable and used to generate square numbers. After a couple of iterations, we

then reset the counter to 0. The number is received by the fiber as the result of calling

Fiber.yield.

It is not possible to send data into the fiber in this way with the first resume, however,

since the first resume call does not follow on from the fiber yielding or concluding in any

way. In that case, any data you passed is passed into the fiber block, much as if it were a

method.

�Non-blocking Fiber
Ruby 3 introduces the ability to create non-blocking fibers. Creating a non-blocking

fiber is simple: specify the parameter blocking: false in the constructor. This option

prevents blocking on blocking operations such as I/O, sleep, and so on:

Chapter 11 Advanced Ruby Features

339

non_blocking = Fiber.new(blocking: false) do
 puts "Blocking Fiber? #{Fiber.current.blocking?}"

 # Will not block

 sleep 2

end

3.times { puts non_blocking.resume }

Blocking Fiber? false

Blocking Fiber? false

Blocking Fiber? false

When used correctly, non-blocking fibers will increase performance since multiple

operations are performed at once. Since non-blocking fibers are opt-in, Ruby 3 will not

break existing code. By default, all I/O operations in fiber are non-blocking with Ruby 3.

�Why Fibers?
A motivation to use fibers over threads in some situations is efficiency. Creating hundreds

of fibers is a lot faster than creating the equivalent threads, since threads are created at the

operating system level. There are also significant memory efficiency benefits.

One of the greatest benefits of fibers is in implementing lightweight I/O management

routines within other libraries, so even if you don’t use fibers directly, you might still end

up benefiting from their use elsewhere.

�Unicode, Character Encodings, and UTF-8 Support
Unicode is the industry standard way of representing characters from every writing

system (character set) in the world. It’s the only viable way to be able to manage multiple

different alphabets and character sets in a reasonably standard context.

One of Ruby 1.8’s most cited flaws was in the way it dealt with character encodings—

namely, hardly at all. There were some workarounds, but they were hackish. Ruby 1.8

treated strings as simple collections of bytes rather than true characters, which is just

fine if you’re using a standard English character set, but if you wanted to work with, say,

Arabic or Japanese, you have problems!

Chapter 11 Advanced Ruby Features

340

Ruby 1.9 and beyond, on the other hand, support Unicode, alternative character sets,

and encodings out of the box. In this chapter, we’ll focus on the direct support in Ruby

1.9 and up.

Note  For a full rundown of Unicode and how it works and relates to software
development, read www.joelonsoftware.com/articles/Unicode.html.
The official Unicode site, at http://unicode.org/, also has specifications and
further details.

�Ruby 1.9 and Beyond’s Character Encoding Support
Unlike with Ruby 1.8, no hacks or workarounds are necessary to work with multiple

character sets and encodings in Ruby 1.9 and above. Ruby 1.9 supports a large number of

encodings out of the box (over 100 at the time of writing), and the interface is seamless.

You not only get character encoding support for strings within your programs, but for

your source code itself too.

Note  Encoding.list returns an array of Encoding objects that represent the
different character encodings that your Ruby interpreter supports.

�Strings

Strings have encoding support out of the box. To determine the current encoding for a

string, you can call its encoding method:

"this is a test".encoding

=> #<Encoding:US-ASCII>

By default, a regular ASCII string will be encoded using the US-ASCII, UTF-8, or

CP850 encodings, depending on how your system is set up, but if you get a bit more

elaborate, then UTF-8 (a character encoding that can be used to represent any Unicode

character) will typically be used:

Chapter 11 Advanced Ruby Features

http://www.joelonsoftware.com/articles/Unicode.html
http://unicode.org/

341

"ça va?".encoding

=> #<Encoding:UTF-8>

To convert a string into a different encoding, use its encode method:

"ça va?".encode("ISO-8859-1")

Not every character encoding will support being able to represent every type of
character that exists in your text. For example, the cedilla character (ç) in the preceding
example cannot be represented in plain US-ASCII. If we try to do a conversion to US-
ASCII, therefore, we get the necessary error:

"ça va?".encode("US-ASCII")

Encoding::UndefinedConversionError: "\xC3\xA7" from UTF-8 to US-ASCII

I would personally suggest that, where possible, you try and use the UTF-8 encoding
exclusively in any apps that are likely to accept input from people typing in many
different languages. UTF-8 is an excellent “global” encoding that can represent any
character in the Unicode standard, so using it globally throughout your projects will
ensure that everything works as expected.

Tip  Make sure to refer to Chapter 9 to see how to open files and read data that is
in different character encodings.

�Source Code
As well as supporting character encodings out of the box for strings and files, Ruby 1.9
and beyond also allow you to use any of the supported character sets for your actual
source code files.

All you need to do is include a comment on the first or second line (in case you’re
using a shebang line) that contains coding: [format name], for example:

coding: utf-8

The primary reason for doing this is so that you can use UTF-8 (or whichever
encoding you choose to specify) within literal strings defined with your source files

without running into snags with String#length, regular expressions, and the like.

Chapter 11 Advanced Ruby Features

342

Another fun (but not endorsed by me!) option is to use alternate non-ASCII

characters in method names, variable names, and so forth. The danger of this, of course,

is that you reduce the usability of your code with developers who might prefer to use

other encodings.

�Summary
In this chapter, we looked at an array of advanced Ruby topics, from dynamic code

execution to writing high-performance functions in the C programming language. This is

the last chapter that covers general Ruby-related knowledge that any intermediate Ruby

programmer should be familiar with. In Chapter 12, we’ll be taking a different approach

and will develop an entire Ruby application, much as we did in Chapter 4.

Let’s reflect on the main concepts covered in this chapter:

•	 Binding: A representation of a scope (execution) context as an object.

•	 Forking: When an instance of a program duplicates itself into two

processes, one as a parent and one as a child, both continuing

execution.

•	 Threads: Separate “strands” of execution that run concurrently with

each other. Ruby’s threads in 1.8 were implemented entirely by the

Ruby interpreter, but since Ruby 1.9 use system-based threads, and

are a commonly used tool in application development.

•	 Fibers: Lightweight cooperative alternatives to threads. They must

yield execution in order to be scheduled.

•	 Character encoding: This describes a system and code that pair

characters (whether they’re Roman letters, Chinese symbols, Arabic

letters, etc.) to a set of numbers that a computer can use to represent

those characters.

•	 UTF-8 (Unicode Transformation Format-8): This is a character

encoding that can support any character in the Unicode standard. It

supports variable-length characters, and is designed to support ASCII

coding natively, while also providing the ability to use up to four

bytes to represent characters from other character sets.

Now you can move on to Chapter 12, where you’ll develop an entire Ruby application

using much of the knowledge obtained in this book so far.

Chapter 11 Advanced Ruby Features

343
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_12

CHAPTER 12

Tying It Together:
Developing a Larger Ruby
Application
In this chapter, we’re going to step back from focusing on individual facets of Ruby and

develop an entire program using much of the knowledge you’ve gained so far. We’ll focus

on the structural concerns of developing a program and look at how a flexible structure

can benefit you and other developers in the long run.

The important thing to remember while working through this chapter is that the

program itself is not as important as the concepts used while developing it. We’ll

be rapidly (and relatively shallowly) covering a number of areas relevant to most

development you’ll do, such as testing and basic refactoring.

�Let’s Build a Bot
Before we get to any code, we’re going to look at what we’re going to build, why we’re

going to build it, and how we’re going to do it.

�What Is a Bot?
In this chapter, we’re going to build a robot. Not a sci-fi type of robot, such as that in Lost

in Space, but a computer program that can hold a conversation with us. These types

of programs are commonly known as bots or chatterbots. Bots are present in a lot of

different software and tools these days. You can ask them for gift ideas and movie times.

In short, it’s a little like talking to a customer service agent, except the agent is entirely

automated.

https://doi.org/10.1007/978-1-4842-6324-2_12#DOI

344

You might be familiar with bots on your own computer. Microsoft Office used to

come with the “Clippy” bot turned on by default, and many websites have automated

chatbots in an attempt to cut down on support costs and, supposedly, to improve

usability.

The history of bots goes back to the 1960s, when a computer scientist at MIT named

Joseph Weizenbaum developed a bot called ELIZA. It eventually became so popular that

most computer users throughout the 1980s and 1990s were exposed to it in one form or

another through the many “talk to your computer”–type programs that became popular.

The conversations you can have with ELIZA-type bots aren’t mind blowing, but

can prove entertaining, as shown in Figure 12-1. The general mechanism ELIZA bots

use is to take whatever you say and twist it around into a statement or question to you.

For example, if you were to say “I am bored,” ELIZA might respond, “How long have

you been bored?” or “Why are you bored?” This form of bouncing back the user’s input

seems crude when described in this way, but people are often fooled into believing

they’re talking to something more intelligent simply because of its reflective nature (this

is known as the ELIZA effect).

Figure 12-1.  A demonstration of a session with an online ELIZA bot

Chapter 12 Tying It Together: Developing a Larger Ruby Application

345

Our bot won’t be exactly like ELIZA—that is, it won’t be an ELIZA clone—but will

share some of the same features and use some similar techniques. We’ll also look at how

to extend our bot with other features.

Note I f you want to learn about or play with some Internet-hosted versions of
ELIZA, visit https://en.wikipedia.org/wiki/ELIZA.

�Why a Bot?
The good thing about developing a bot is that it can be as simple or as complex as you

like. Toward the end of this chapter, we’ll be looking at ways you can extend the bot, but

the initial construction is quite simple.

You’ll be using most of the techniques covered so far in this book to build your bot.

You’ll be doing a bit of testing and documentation, as well as using classes and complex

data structures. You’ll also be using files to store information the bot uses, and looking

at how to make your bot available to the general public using HTTP servers and CGI

scripts. This project also demands you use a lot of string and list-related functions, along

with comparison logic. These are all things you’re likely to use in a larger development

project, and as Ruby is a particularly good language for text processing, this project is

perfect for demonstrating Ruby’s strengths.

A bot also allows you to have some fun and experiment. Working on a contact

information management tool (for example) isn’t that much fun, even though such

a system would use similar techniques to your bot. You can still implement testing,

documentation, classes, and storage systems, but end up with a fun result that can be

extended and improved indefinitely.

�How?
The primary focus of this chapter is to keep each fragment of functionality in your bot

loosely coupled to the others. This is an important decision when developing certain

types of applications if you plan to extend them in the future. The plan for this bot is

to make it as easy to extend, or change, as possible, allowing you to customize it, add

features, and make it your own.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

https://en.wikipedia.org/wiki/ELIZA

346

In terms of the general operation of the chatterbot, your bot will exist within a class,

allowing you to replicate bots easily by creating new instances. When you create a bot, it

will be “blank,” except for the logic contained within the class, and you’ll pass in a special

data file to give it a set of knowledge and a set of responses it can use when conversing

with users. User input will be via the keyboard, but the input mechanism will be kept

flexible enough so that the bot could easily be used from a website or elsewhere.

Your bot will only have a few public methods to begin with. It needs to be able to

load its data file into memory and accept input given by the user and then return its

responses. Behind the scenes, the bot will need to parse what the users “say” and be able

to build up a coherent reply. Therefore, the first step is to begin processing language and

recognizing words.

�Creating a Simple Text Processing Library
Several stages are required to accept input such as “I am bored” and turn it into a

response such as “Why are you bored?” The first is to perform some preprocessing—tasks

that make the text easier to parse—such as cleaning up the text, expanding terms such

as “I’m” into “I am,” “you’re” into “you are,” and so forth. Next, you’ll split up the input

into sentences and words, choose the best sentence to respond to, and finally look up

responses from your data files that match the input.

Some of these language tasks are generic enough that they could be useful in

other applications, so you’ll develop a basic library for them. This will make your bot

code simpler and give you a library to use in other applications if you need. Logic and

methods that are specific to bots can go in the bot’s source code, and generic methods

that perform operations on text can go into the library.

This section covers the development of a simple library, including testing and

documentation.

�Building the WordPlay Library
You’re going to call your text manipulation and processing library WordPlay, so create a

file called wordplay.rb with a basic class:

class WordPlay

end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

347

Now that you’ve got the library’s main file set up, you’ll move on to implementing

some of the text manipulation and processing features you know your bot will require,

but are reasonably application agnostic. (I covered the construction of classes in depth

in Chapter 6.)

�Splitting Text into Sentences

Your bot, like most others, is only interested in single-sentence inputs. Therefore, it’s

important to accept only the first sentence of each line of input. However, rather than

specifically tear out the first sentence, you’ll split the input into sentences and then

choose the first one. The reason for this approach is to have a generic sentence-splitting

method, rather than to create a unique solution for each case.

You’ll create a sentences method on Ruby’s String class to keep the resulting

code clean. You could create a class method within the WordPlay class and use it like

WordPlay.sentences(our_input), but it wouldn’t feel as intuitive and as object-oriented

as our_input.sentences, where sentences is a method of the String class:

class String

 def sentences

 gsub(/\n|\r/, ' ').split(/\.\s*/)

 end

end

Note T he preceding sentences method only splits text into sentences based on
a period followed by whitespace. A more accurate technique could involve dealing
with other punctuation (e.g., question marks and semicolons).

You can test it easily:

p %q{Hello. This is a test of

basic sentence splitting. It

even works over multiple lines.}.sentences

["Hello", "This is a test of basic sentence splitting", "It even works

over multiple lines"]

Chapter 12 Tying It Together: Developing a Larger Ruby Application

348

�Splitting Sentences into Words

You also need your library to be able to split sentences into words. As with the sentences

method, add a words method to the String class:

class String

 def words

 scan(/\w[\w\'\-]*/)

 end

end

p "This is a test of words' capabilities".words

["This", "is", "a", "test", "of", "words'", "capabilities"]

You can test words in conjunction with sentences:

p %q{Hello. This is a test of

basic sentence splitting. It

even works over multiple lines}.sentences[1].words[3]

test

This test picks out the second sentence with sentences[1] and then the fourth word

with words[3]—remember, arrays are zero-based. (The splitting techniques covered in

this section were also explained in Chapter 3.)

�Word Matching

You can use the new methods, along with existing array methods, to extract sentences

that match certain words, as in this example:

hot_words = %w{test ruby great}

my_string = "This is a test. Dull sentence here. Ruby is great. So is

cake."

t = my_string.sentences.find_all do |s|

 s.downcase.words.any? { |word| hot_words.include?(word) }

end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

349

p t.to_a

["This is a test", "Ruby is great"]

In this example, you define three “hot” words that you want to find within sentences,

and you look through the sentences in my_string for any that contain either of your hot

words. The way you do this is by seeing if, for any of the words in the sentence, it’s true

that the hot_words array also contains that word.

Experienced readers will wonder if regular expressions could be used in this

situation. They could, but the focus here is on clean list logic that’s easy to extend and

adjust. You also get the benefit, if you wish, to use the difference in lengths between the

word array, and the word array with hot words removed, to rank sentences in the order

of which match the most hot words. This could be useful if you decided to tweak your

bot (or any other software using WordPlay) to pick out and process the most important

sentence, rather than just the first one, for example:

class WordPlay

 def self.best_sentence(sentences, desired_words)

 ranked_sentences = sentences.sort_by do |s|

 s.words.length - (s.downcase.words - desired_words).length

 end

 ranked_sentences.last

 end

end

puts WordPlay.best_sentence(my_string.sentences, hot_words)

Ruby is great

This class method accepts an array of sentences and an array of “desired words” as

arguments. Next, it sorts the sentences by how many words difference each sentence has

from the desired words list. If the difference is high, then there must be many desired

words in that sentence. At the end of best_sentence, the sentence with the biggest

number of matching words is returned.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

350

�Switching Subject and Object Pronouns

Switching pronouns is when you swap “you” and “I,” “I” and “you,” “my” and “your,”

and “your” and “my.” This simple change makes sentences easy to use as a response.

Consider what happens if you simply reflect back whatever the user says by switching

the pronouns in his or her input. Some examples are shown in Table 12-1.

Table 12-1.  Inputs Coupled with Potential Responses

Input Response

My cat is sick. Your cat is sick.

I hate my car. You hate your car.

You are an awful bot. I are an awful bot.

These aren’t elaborate conversations, but the first two responses are valid English

and are the sort of thing your bot can use. The third response highlights that you also

need to pay attention to conjugating “am” to “are” and vice versa when using “I” and

“you.”

You’ll add the basic pronoun-switching feature as a class method on the WordPlay

class. As this feature won’t be chained with other methods and doesn’t need to be

particularly concise, you can put it into the WordPlay class rather than continue to add

more methods to the String class:

def self.switch_pronouns(text)

 text.gsub(/\b(I am|You are|I|You|Your|My)\b/i) do |pronoun|

 case pronoun.downcase

 when "i"

 "you"

 when "you"

 "I"

 when "i am"

 "you are"

 when "you are"

 "i am"

 when "your"

Chapter 12 Tying It Together: Developing a Larger Ruby Application

351

 "my"

 when "my"

 "your"

 end

 end

end

This method accepts any text supplied as a string and performs a substitution on

each instance of “I am,” “you are,” “I,” “you,” “your,” or “my.” Next, a case construction

is used to substitute each pronoun with its opposing pronoun. (You first used the case/

when syntax in Chapter 3, where you can also find a deeper explanation of how it works.)

The reason for performing a substitution in this way is so that you only change each

pronoun once. If you’d used four gsubs to change all “I’s” to “you’s,” “you’s” to “I’s,” and

so on, changes made by the previous gsub would be overwritten by the next. Therefore,

it’s important to use one gsub that scans through the input pronoun by pronoun rather

than making several blanket substitutions in succession.

If you use irb and require in the WordPlay library, you can quickly check the results:

WordPlay.switch_pronouns("Your cat is fighting with my cat")

my cat is fighting with your cat

WordPlay.switch_pronouns("You are my robot")

i am your robot

It’s easy to find an exception to these results, though:

WordPlay.switch_pronouns("I gave you life")

you gave I life

When the “you” or “I” is the object of the sentence, rather than the subject, “you”

becomes “me” and “me” becomes “you,” whereas “I” becomes “you” and “you” becomes

“I” on the subject of the sentence.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

352

Without descending into complex processing of sentences to establish which

reference is the subject and which reference is the object, we’ll assume that every

reference to “you” that’s not at the start of a sentence is an object and should become

“me” and that if “you” is at the beginning of a sentence, you should assume it’s the

subject and use “I” instead. This new rule makes your method change slightly:

def self.switch_pronouns(text)

 text.gsub(/\b(I am|You are|I|You|Me|Your|My)\b/i) do |pronoun|

 case pronoun.downcase

 when "i"

 "you"

 when "you"

 "me"

 when "me"

 "you"

 when "i am"

 "you are"

 when "you are"

 "i am"

 when "your"

 "my"

 when "my"

 "your"

 end

 end.sub(/^me\b/i, 'i')

end

What you do in this case seems odd on the surface. You let switch_pronouns process

the pronouns and then correct it when it changes “you” to “me” at the start of a sentence

by changing the “me” to “I.” This is done with the chained sub at the end.

Let’s try it out:

WordPlay.switch_pronouns('Your cat is fighting with my cat')

my cat is fighting with your cat

Chapter 12 Tying It Together: Developing a Larger Ruby Application

353

WordPlay.switch_pronouns('My cat is fighting with you')

your cat is fighting with me

WordPlay.switch_pronouns('You are my robot')

i am your robot

WordPlay.switch_pronouns('I gave you hope')

you gave me hope

WordPlay.switch_pronouns('You gave me hope')

i gave you hope

Success!

If you were so cruelly inclined, you could create an extremely annoying bot with this

method alone. Consider this basic example:

while input = gets

 puts '>> ' + WordPlay.switch_pronouns(input).chomp + '?'

end

I am ready to talk

>> you are ready to talk?

yes

>> yes?

You are a dumb computer

>> i am a dumb computer?

We clearly have some work to do!

Chapter 12 Tying It Together: Developing a Larger Ruby Application

354

�Testing the Library
When building a larger application or libraries upon which other applications will

depend, it’s important to make sure everything is fully tested. In Chapter 8, we looked

at using Ruby’s unit testing features for simple testing. You can use the same methods

here to test WordPlay. Make sure the Minitest gem is installed. If you need help, review

Chapter 8.

You’ll use the same process as in Chapter 8. Create a file called test_wordplay.rb in

the same directory as wordplay.rb and implement the following basic structure:

require 'minitest/autorun'

require_relative 'wordplay'

class TestWordPlay < Minitest::Test

end

Now let’s write some tests.

�Testing Sentence Separation

To add groups of test assertions to test_wordplay.rb, you can simply create methods

with names starting with test_. Creating a simple test method for testing sentence

separations is easy:

def test_sentences

 assert_equal(["a", "b", "c d", "e f g"], "a. b. c d. e f g.".sentences)

 test_text = %q{Hello. This is a test

of sentence separation. This is the end

of the test.}

 assert_equal("This is the end of the test", test_text.sentences[2])

end

The first assertion tests that the dummy sentence "a. b. c d. e f g." is

successfully separated into the constituent “sentences.” The second assertion uses

a longer predefined text string and makes sure that the third sentence is correctly

identified.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

355

Note I deally, you’d extend this basic set of assertions with several more to test
more complex cases, such as sentences ending with multiple periods, commas,
and other oddities. As these extra tests wouldn’t demonstrate any further Ruby
functionality, they’re not covered here, but feel free to try some out!

�Testing Word Separation

Testing that the words method works properly is even easier than testing sentences:

def test_words

 assert_equal(%w{this is a test}, "this is a test".words)

 assert_equal(%w{these are mostly words}, "these are, mostly, words".words)

end

These assertions are simple. You split sentences into words and compare them with

predefined arrays of those words. The assertions pass.

This highlights one reason why test-first development can be a good idea. It’s easy

to see how you could develop these tests first and then use their passing or failure as an

indicator that you’ve implemented words correctly. This is an advanced programming

concept, but one worth keeping in mind if writing tests in this way “clicks” with you.

�Testing Best Sentence Choice

You also need to test your WordPlay.best_sentence method, as your bot will use it to

choose the sentence with the most interesting keywords from the user’s input:

def test_sentence_choice

 assert_equal('This is a great test',

 WordPlay.best_sentence(['This is a test',

 'This is another test',

 'This is a great test'],

 %w{test great this}))

 assert_equal('This is a great test',

 WordPlay.best_sentence(['This is a great test'],

 %w{still the best}))

end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

356

This test method performs a simple assertion that the correct sentence is chosen

from three options. Three sentences are provided to WordPlay.best_sentence, along

with the desired keywords of “test,” “great,” and “this.” Therefore, the third sentence

should be the best match. The second assertion makes sure that WordPlay.best_

sentence returns a sentence even if there are no matches, because in this case, any

sentence is a “best” match.

�Testing Pronoun Switches

When you developed the switch_pronouns method, you used some vague grammatical

rules, so testing is essential to make sure they stand up for at least basic sentences:

def test_basic_pronouns

 assert_equal("i am a robot", WordPlay.switch_pronouns("you are a robot"))

 �assert_equal("you are a person", WordPlay.switch_pronouns("i am a

person"))

 assert_equal("i love you", WordPlay.switch_pronouns("you love me"))

end

These basic assertions prove that the “you are,” “I am,” “you,” and “me” phrases are

switched correctly.

You can also create a separate test method to perform some more complex

assertions:

def test_mixed_pronouns

 assert_equal("you gave me life", WordPlay.switch_pronouns("i gave you life"))

 �assert_equal("i am not what you are", WordPlay.switch_pronouns("you are

not what i am"))

 assert_equal("i annoy your dog", WordPlay.switch_pronouns("you annoy my dog"))

end

These examples are more complex, but prove that switch_pronouns can handle a

few more complex situations with multiple pronouns.

You can construct tests that cause switch_pronouns to fail:

def test_complex_pronouns

 assert_equal("yes, i rule", WordPlay.switch_pronouns("yes, you rule"))

 assert_equal("why do i cry", WordPlay.switch_pronouns("why do you cry"))

end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

357

These tests both fail because they circumvent the trick you used to make sure that

“you” is translated to “me” and “I” in the right situations. In these situations, they should

become “I,” but because “I” isn’t at the start of the sentence, they become “me” instead.

It’s important to notice that basic statements tend to work okay, whereas questions

or more elaborate statements can fail. However, for your bot’s purposes, the basic

substitutions suffice and you can remove these tests.

If you were to focus solely on producing an accurate language processor, you

could use tests such as these to guide your development, and you’ll probably use this

technique when developing libraries to deal with edge cases such as these in your own

projects.

�WordPlay’s Source Code
Your nascent WordPlay library is complete for now, and in a state that you can use its

features to make your bot’s source code simpler and easier to read. Next, I’ll present the

source code for the library as is, as well as its associated unit test file. As an addition, the

code also includes comments prior to each class and method definition, so that you can

use RDoc to produce HTML documentation files, as covered in Chapter 8.

Note R emember that source code for this book is available in the Source Code
area at www.apress.com, so it isn’t necessary to type in code directly from the
book.

�wordplay.rb

Here’s the code for the WordPlay library:

class String

 def sentences

 self.gsub(/\n|\r/, ' ').split(/\.\s*/)

 end

 def words

 self.scan(/\w[\w\'\-]*/)

 end

end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

http://www.apress.com

358

class WordPlay

 def self.switch_pronouns(text)

 text.gsub(/\b(I am|You are|I|You|Me|Your|My)\b/i) do |pronoun|

 case pronoun.downcase

 when "i"

 "you"

 when "you"

 "me"

 when "me"

 "you"

 when "i am"

 "you are"

 when "you are"

 "i am"

 when "your"

 "my"

 when "my"

 "your"

 end

 end.sub(/^me\b/i, 'i')

 end

 def self.best_sentence(sentences, desired_words)

 ranked_sentences = sentences.sort_by do |s|

 s.words.length - (s.downcase.words - desired_words).length

 end

 ranked_sentences.last

 end

end

�test_wordplay.rb

Here’s the test suite associated with the WordPlay library:

require 'minitest/autorun'

require_relative 'wordplay'

Chapter 12 Tying It Together: Developing a Larger Ruby Application

359

Unit testing class for the WordPlay library

class TestWordPlay < Minitest::Test

 # Test that multiple sentence blocks are split up into individual

 # words correctly

 def test_sentences

 assert_equal(["a", "b", "c d", "e f g"], "a. b. c d. e f g.".sentences)

 �test_text = %q{Hello. This is a test

of sentence separation. This is the end

of the test.}

 assert_equal("This is the end of the test", test_text.sentences[2])

 end

 # Test that sentences of words are split up into distinct words correctly

 def test_words

 assert_equal(%w{this is a test}, "this is a test".words)

 assert_equal(%w{these are mostly words}, "these are, mostly, words".words)

 end

 # Test that the correct sentence is chosen, given the input

 def test_sentence_choice

 assert_equal('This is a great test',

 WordPlay.best_sentence(['This is a test',

 'This is another test',

 'This is a great test'],

 %w{test great this}))

 assert_equal('This is a great test',

 WordPlay.best_sentence(['This is a great test'],

 %w{still the best}))

 end

 # Test that basic pronouns are switched by switch_pronouns

 def test_basic_pronouns

 assert_equal("i am a robot", WordPlay.switch_pronouns("you are a robot"))

 �assert_equal("you are a person", WordPlay.switch_pronouns("i am a

person"))

 assert_equal("i love you", WordPlay.switch_pronouns("you love me"))

 end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

360

 # Test more complex sentence switches using switch_pronouns

 def test_mixed_pronouns

 assert_equal("you gave me life",

 WordPlay.switch_pronouns("i gave you life"))

 assert_equal("i am not what you are",

 WordPlay.switch_pronouns("you are not what i am"))

 end

end

�Building the Bot’s Core
In the previous section, you put together the WordPlay library to provide some features

you knew that your bot would need, such as basic sentence and word separation. Now

you can get on with the task of fleshing out the logic of the bot itself.

You’ll create the bot within a Bot class, allowing you to create multiple bot instances

and assign them different names and datasets, and work with them separately. This is

the cleanest structure, as it allows you to keep the bot’s logic separated from the logic of

interacting with the bot. For example, if your finished Bot class exists in bot.rb, writing

a Ruby program to allow a user to converse with the bot using the keyboard could be as

simple as this:

require_relative 'bot'

bot = Bot.new(name: "Botty", data_file: "botty.bot")

puts bot.greeting

while input = gets and input.chomp != 'goodbye'

 puts ">> " + bot.response_to(input)

end

puts bot.farewell

You’ll use this barebones client program as a yardstick while creating the Bot class.

In the previous example, you created a bot object and passed in some parameters,

which enables you to use the bot’s methods, along with keyboard input, to make the bot

converse with the user.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

361

In certain situations, it’s useful to write an example of the higher-level, more

abstracted code that you expect ultimately to write, and then write the lower-level

code to satisfy it. This isn’t the same as test-first development, although the principle is

similar. You write the easiest, most abstract code first and then work your way down to

the details.

Next, let’s look at how you expect the bot to operate throughout a normal session and

then begin to develop the required features one by one.

�The Program’s Lifecycle and Parts
So far we have focused on verbal descriptions of what we want to do. In Figure 12-2,

however, we take a more visual look at the more overall lifecycle of a bot, and the client

accessing it, that we’ll develop.

Your entire application will be composed of four parts:

	 1.	 The Bot class, within bot.rb, containing all the bot’s logic and any

subclasses.

	 2.	 The WordPlay library, within wordplay.rb, containing the

WordPlay class and extensions to String.

	 3.	 Basic “client” applications that create bots and allows users to

interact with them. You’ll first create a basic keyboard-entry client,

but we’ll look at some alternatives later in the chapter.

	 4.	 A helper program to generate the bot’s data files easily.

Figure 12-2 demonstrates the basic lifecycle of a sample client application and

its associated bot object. The client program creates a bot instance and then keeps

requesting user input passing it to the bot. Responses are printed to the screen, and the

loop continues until the user decides to quit.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

362

You’ll begin putting together the Bot class and then look at how the bot will find and

process its data.

�Bot Data
One of your first concerns is where the bot will get its data. The bot’s data includes

information about word substitutions to perform during preprocessing, as well as

myriad keywords and phrases that the bot can use in its responses.

Figure 12-2.  A basic flowchart showing a sample lifecycle of the bot client and bot
object

Chapter 12 Tying It Together: Developing a Larger Ruby Application

363

�The Data Structure

You’ll keep the bot’s data in a hash, somewhat like this:

bot_data = {

 :presubs => [

 ["dont", "don't"],

 ["youre", "you're"],

 ["love", "like"]

],

 :responses => {

 :default => [

 "I don't understand.",

 "What?",

 "Huh?"

],

 :greeting => ["Hi. I'm [name]. Want to chat?"],

 :farewell => ["Good bye!"],

 'hello' => [

 "How's it going?",

 "How do you do?"

],

 'i like *' => [

 "Why do you like *?",

 "Wow! I like * too!"

]

 }

}

The main hash has two parent elements, :presubs and :responses. The :presubs

element references an array of arrays that contain substitutions to be made to the

user’s input before the bot forms a response. In this instance, the bot will expand some

contractions and also change any reference of “love” to “like.” The reason for this

becomes clear when you look at :responses.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

364

Note T he preceding data structure is intentionally lightly populated to save space
for discussion of the practicalities. By the end of this chapter, you’ll have a more
complete set of data to use with your bot. This style of data structure was also
covered in Chapter 3.

:responses references another hash: one that has elements with the names

:default, :greeting, :farewell, 'hello', and 'i like *'. This hash contains all the

different phrases the bot will use as responses, or templates used to create full phrases.

The array assigned to :default contains some phrases to use at random when the bot

cannot figure out what to say based on the input. Those associated with :greeting and

:farewell contain generic greeting and farewell phrases.

More interesting are the arrays associated with 'hello' and 'i like *'. These

phrases are used when the input matches the hash key for each array. For example, if a

user says “hello computer,” then a match with 'hello' is made, and a response is chosen

from the array at random. If a user says “i like computers,” then 'i like *' is matched

and the asterisk is used to substitute the remainder of the user’s input (after “i like”) into

the bot’s output phrase. This could result in output such as “Wow! I like computers too,”

if the second phrase were to be used.

�Storing the Data Externally

Using a hash makes data access easy (rather than relying on, say, a database) and fast

when it comes to choosing sentences and performing matches. However, because your

bot class needs to be able to deal with multiple datasets, it’s necessary to store the hash

of data for each bot within a file that can be chosen when a bot is started.

In Chapter 9, you learned about the concept of object persistence, where Ruby data

structures can be “frozen” and stored. One library you used was called PStore, which

stores Ruby data structures in a non-human-readable binary format; and the other

was YAML, which is human-readable and represented as a specially formatted text file.

For this project, you’ll use YAML, as you want to be able to make changes to the data

files on the fly, to change things your bot will say, and to test out new phrases without

constructing a whole new file each time.

It’s possible to create your data files by hand and then let the Bot class load them, but

to make life easier, you’ll create a small program that can create the initial data file for

you, as you did in Chapter 9. An ideal name for it would be bot_data_to_yaml.rb:

Chapter 12 Tying It Together: Developing a Larger Ruby Application

365

require 'yaml'

bot_data = {

 :presubs => [

 ["dont", "don't"],

 ["youre", "you're"],

 ["love", "like"]

],

 :responses => {

 :default => [

 "I don't understand.",

 "What?",

 "Huh?"

],

 :greeting => ["Hi. I'm [name]. Want to chat?"],

 :farewell => ["Good bye!"],

 'hello' => [

 "How's it going?",

 "How do you do?"

],

 'i like *' => [

 "Why do you like *?",

 "Wow! I like * too!"

]

 }

}

Show the user the YAML data for the bot structure

puts bot_data.to_yaml

Write the YAML data to file

f = File.open(ARGV.first || 'bot_data', "w")

f.puts bot_data.to_yaml

f.close

Chapter 12 Tying It Together: Developing a Larger Ruby Application

366

This short program lets you define the bot data in the bot_data hash and then shows

the YAML representation on the screen before writing it to file. The filename is specified

on the command line, or defaults to bot_data if none is supplied:

ruby bot_data_to_yaml.rb

:presubs:

- - dont

 - don't

- - youre

 - you're

- - love

 - like

:responses:

 i like *:

 - Why do you like *?

 - Wow! I like * too!

 :default:

 - I don't understand.

 - What?

 - Huh?

 hello:

 - How's it going?

 - How do you do?

 :greeting:

 - Hi. I'm [name]. Want to chat?

 :farewell:

 - Good bye!

Note that as the YAML data is plain text, you can edit it directly in the file or just

tweak the bot_data structure and re-run bot_data_to_yaml.rb. From here on out,

let’s assume you’ve run this and generated the preceding YAML file as bot_data in the

current directory.

Now that you have a basic data file, you need to construct the Bot class and get its

initialize method to use it.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

367

�Constructing the Bot Class and Data Loader
Let’s create bot.rb and the start of the Bot class:

require 'yaml'

require_relative 'wordplay'

class Bot

 attr_reader :name

 def initialize(options)

 @name = options[:name] || "Unnamed Bot"

 begin

 @data = YAML.load(File.read(options[:data_file]))

 rescue

 raise "Can't load bot data"

 end

 end

end

The initialize method sets up each newly created object and uses the options

hash to populate two class variables, @name and @data. External access to @name is

provided courtesy of attr_reader. File.open, along with the read method, opens the

data file and reads in the full contents to be processed by the YAML library. YAML.load

converts the YAML data into the original hash data structure and assigns it to the @data

class variable. If the data file opening or YAML processing fails, an exception is raised, as

the bot cannot function without data.

Now you can create the greeting and farewell methods that display a random

greeting and farewell message from the bot’s dataset. These methods are used when

people first start to use the bot or just before the bot client exits:

def greeting

 @data[:responses][:greeting][rand(@data[:responses][:greeting].length)]

end

def farewell

 @data[:responses][:farewell][rand(@data[:responses][:farewell].length)]

end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

368

Ouch! This isn’t nice at all. You have access to the greetings (and farewells) via

@data[:responses], but selecting a single random phrase gets ugly fast. This looks like

an excellent opportunity to create a private method that retrieves a random phrase

from a selected response group:

private

def random_response(key)

 random_index = rand(@data[:responses][key].length)

 @data[:responses][key][random_index].gsub(/\[name\]/, @name)

end

This method simplifies the routine of taking a random phrase from a particular

phrase set in @data. The second line of random_response performs a substitution so

that any responses that contain [name] have [name] substituted for the bot’s name. For

example, one of the demo greeting phrases is “Hi. I’m [name]. Want to chat?” However,

if you created the bot object and specified a name of “Fred,” the output would appear as

“Hi. I’m Fred. Want to chat?”

Note R emember that a private method is a method that cannot be called from
outside the class itself. As random_response is only needed internally to the
class, it’s a perfect candidate to be a private method.

Let’s update greeting and farewell to use random_response:

def greeting

 random_response :greeting

end

def farewell

 random_response :farewell

end

Isn’t separating common functionality into distinct methods great? These methods

now look a lot simpler and make immediate sense compared to the jumble they

contained previously.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

369

Note T his technique is also useful in situations where you have “ugly” or
complex-looking code and you simply want to hide it inside a single method you
can call from anywhere. Keep complex code in the background and make the rest
of the code look as simple as possible.

�The response_to Method
The core of the Bot class is the response_to method. It’s used to pass user input to the

bot and get the bot’s response in return. However, the method itself should be simple

and have one line per required operation to call private methods that perform each step.

response_to must perform several actions:

	 1.	 Accept the user’s input.

	 2.	 Perform preprocessing substitutions, as described in the bot’s

data file.

	 3.	 Split the input into sentences and choose the most keyword-rich

sentence.

	 4.	 Search for matches against the response phrase set keys.

	 5.	 Perform pronoun switching against the user input.

	 6.	 Pick a random phrase that matches (or a default phrase if there are

no matches) and perform any substitutions of the user input into

the result.

	 7.	 Return the completed output phrase.

Let’s look at each action in turn.

�Accepting Input and Performing Substitutions

First, you accept the input as a basic argument to the response_to method:

def response_to(input)

end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

370

Then you move on to performing the preprocessing word and phrase substitutions

as dictated by the :presubs array in the bot data file. You’ll recall the :presubs array is

an array of arrays that specifies words and phrases that should be changed to another

word or phrase. The reason for this is so that you can deal with multiple terms with a

single phrase. For example, if you substitute all instances of “yeah” for “yes,” a relevant

phrase will be shown whether the user says “yeah” or “yes,” even though the phrase is

only matching on “yes.”

As you’re focusing on keeping response_to simple, you’ll use a single method call:

def response_to(input)

 prepared_input = preprocess(input).downcase

end

Now you can implement preprocess as a private method:

private

def preprocess(input)

 perform_substitutions input

end

Then you can implement the substitution method itself:

def perform_substitutions(input)

 @data[:presubs].each { |s| input.gsub!(s[0], s[1]) }

 input

end

This code loops through each substitution defined in the :presubs array and uses

gsub! on the input.

At this point, it’s worth wondering why you have a string of methods just to get to the

perform_substitutions method. Why not just call it directly from response_to?

The rationale in this case is that you’re trying to keep logic separated from other

logic within this program as much as possible. This is how larger applications work, as

it allows you to extend them more easily. For example, if you wanted to perform more

preprocessing tasks in the future, you could simply create methods for them and call them

from preprocess without having to make any changes to response_to. Although this looks

inefficient, it actually results in code that’s easy to extend and read in the long run. A little

verbosity is the price for a lot of flexibility. You’ll see a lot of similar techniques used in

other Ruby programs, which is why it’s demonstrated so forcefully here.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

371

�Choosing the Best Sentence

After you have the preprocessed input at your disposal, it’s time to split it up into

sentences and choose the best one. You can add another line to response_to:

def response_to(input)

 prepared_input = preprocess(input.downcase)

 sentence = best_sentence(prepared_input)

end

Then you can implement best_sentence as a private method:

def best_sentence(input)

 hot_words = @data[:responses].keys.select do |k|

 k.class == String && k =~ /^\w+$/

 end

 WordPlay.best_sentence(input.sentences, hot_words)

end

First, best_sentence collects an array of single words from the keys in the

:responses hash. It looks for all keys that are strings (you don’t want the :default,

:greeting, or :farewell symbols getting mixed in) and only a single word. You then use

this list with the WordPlay.best_sentence method you developed earlier in this chapter

to choose the sentence from the user input that matches the most “hot” words (if any).

You could rewrite this method in any style you wish. If you only ever wanted to

choose the first sentence in the user input, that’s easy to do:

def best_sentence(input)

 input.sentences.first

end

Or how about the longest sentence?

def best_sentence(input)

 input.sentences.sort_by { |s| s.length }.last

end

Again, by having the tiny piece of logic of choosing the best sentence in a separate

method, you can change the way the program works without meddling with larger

methods.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

372

�Looking for Matching Phrases

Now you have the sentence you want to parse and the substitutions have been

performed. The next step is to find the phrases that are suitable as responses to the

chosen sentence and to pick one at random.

Let’s extend response_to again:

def response_to(input)

 prepared_input = preprocess(input.downcase)

 sentence = best_sentence(prepared_input)

 responses = possible_responses(sentence)

end

and implement possible_responses:

def possible_responses(sentence)

 responses = []

 # Find all patterns to try to match against

 @data[:responses].keys.each do |pattern|

 next unless pattern.is_a?(String)

 # For each pattern, see if the supplied sentence contains

 # a match. Remove substitution symbols (*) before checking.

 # Push all responses to the responses array.

 if sentence.match('\b' + pattern.gsub(/*/, '') + '\b')

 responses << @data[:responses][pattern]

 end

 end

 # If there were no matches, add the default ones

 responses << @data[:responses][:default] if responses.empty?

 # Flatten the blocks of responses to a flat array

 responses.flatten

end

possible_responses accepts a single sentence and then uses the string keys within

the :responses hash to check for matches. Whenever the sentence has a match with

a key from :responses, the various suitable responses are pushed onto the responses

array. This array is flattened so that a single array is returned.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

373

If no specifically matched responses are found, the default ones (found in

:responses with the :default key) are used.

�Putting Together the Final Phrase

You now have all the pieces available in response_to to put together the final response.

Let’s choose a random phrase from responses to use:

def response_to(input)

 prepared_input = preprocess(input.downcase)

 sentence = best_sentence(prepared_input)

 responses = possible_responses(sentence)

 responses[rand(responses.length)]

end

If you weren’t doing any substitutions against the pronoun-switched sentence, this

version of response_to would be the final one. However, your bot has the capability to

use some of the user’s input in its responses. A section of your dummy bot data looked

like this:

'i like *' => [

 "Why do you like *?",

 "Wow! I like * too!"

]

This rule matches when the user says “I like.” The first possible response—“Why

do you like *?”—contains an asterisk symbol that you’ll use to substitute in part of the

user’s sentence in conjunction with the pronoun-switching method you developed in

WordPlay earlier.

For example, a user might say, “I like to talk to you.” If the pronouns were switched,

you’d get “You like to talk to me.” If the segment following “You like” were substituted

into the first possible response, you’d end up with “Why do you like to talk to me?” This is

a great response that compels the user to continue typing and demonstrates the power of

the pronoun-switching technique.

Therefore, if the chosen response contains an asterisk (the character you’re using

as a placeholder in response phrases), you’ll need to substitute the relevant part of the

original sentence into the phrase and perform pronoun switching on that part.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

374

Here’s the new version of possible_responses with the changes in bold:

def possible_responses(sentence)

 responses = []

Find all patterns to try to match against

 @data[:responses].keys.each do |pattern|

 next unless pattern.is_a?(String)

 # For each pattern, see if the supplied sentence contains

 # a match. Remove substitution symbols (*) before checking.

 # Push all responses to the responses array.

 if sentence.match('\b' + pattern.gsub(/*/, '') + '\b')

 # If the pattern contains substitution placeholders,

 # perform the substitutions

 if pattern.include?('*')

 responses << @data[:responses][pattern].collect do |phrase|

 # First, erase everything before the placeholder

 # leaving everything after it

 matching_section = sentence.sub(/^.*#{pattern}\s+/, '')

 # Then substitute the text after the placeholder, with

 # the pronouns switched

 phrase.sub('*', WordPlay.switch_pronouns(matching_section))

 end

 else

 # No placeholders? Just add the phrases to the array

 responses << @data[:responses][pattern]

 end

 end

 end

 # If there were no matches, add the default ones

 responses << @data[:responses][:default] if responses.empty?

 # Flatten the blocks of responses to a flat array

 responses.flatten

end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

375

This new version of possible_responses checks to see if the pattern contains an

asterisk, and if so, extracts the correct part of the source sentence to use into matching_

section, switches the pronouns on that section, and then substitutes that into each

relevant phrase.

�Playing with the Bot
You have the basic methods implemented in the Bot class, so let’s play with it asis before

looking at extending it any further. The first step is to prepare a better set of data for the

bot to use so that your conversations can be more engaging than those with the dummy

test data shown earlier in this chapter.

�Fred: Your Bot’s Personality

In this section, you’re going to tweak the bot_data_to_yaml.rb script you created earlier

to generate a YAML file for your first bot to use. Its name will be Fred, and you’ll generate

a bot data file called fred.bot. Here’s bot_data_to_yaml.rb extended with a better set

of phrases and substitutions:

require 'yaml'

bot_data = {

 :presubs => [

 ["dont", "do not"],

 ["don't", "do not"],

 ["youre", "you're"],

 ["love", "like"],

 ["apologize", "are sorry"],

 ["dislike", "hate"],

 ["despise", "hate"],

 ["yeah", "yes"],

 ["mom", "family"]

],

 :responses => {

 :default => [

 "I don't understand.",

 "What?",

Chapter 12 Tying It Together: Developing a Larger Ruby Application

376

 "Huh?",

 "Tell me about something else.",

 "I'm tired of this. Change the subject."

],

 :greeting => [

 "Hi. I'm [name]. Want to chat?",

 "What's on your mind today?",

 "Hi. What would you like to talk about?"

],

 :farewell => ["Good bye!", "Au revoir!"],

 'hello' => [

 "How's it going?",

 "How do you do?",

 "Enough of the pleasantries!"

],

 'sorry' => ["There's no need to apologize."],

 'different' => [

 "How is it different?",

 "What has changed?"

],

 'everyone *' => ["You think everyone *?"],

 'do not know'=> ["Are you always so indecisive?"],

 'yes' => [

 "At least you're positive about something!",

 "Great."

],

 'family' => ["Tell me about your family"],

 'you are *' => [

 "What makes you think I am *?",

 "Are you so sure I am *?"

],

 'i am *' => [

 "Is it normal for you to be *?",

 "Do you like being *?"

],

Chapter 12 Tying It Together: Developing a Larger Ruby Application

377

 'i do not *' => ["Why don't you *?"],

 'what' => ["Why do you ask?", "Why?", "I don't know. Do you?"],

 'no' => [

 "Really?",

 "Fair enough."

],

 'why does *' => [

 "I don't know why *",

 "Do you already know the answer?"

],

 'why can\'t i *' => ["Do you want to *?"],

 'why can\'t you *' => ["Do you want me to *?"],

 'hates *' => [

 "Why do you think they hate *?"

],

 'hate *' => [

 "Why don't you like *?",

 "Why the dislike of *?"

],

 'i like *' => [

 "Why do you like *?",

 "Wow! I like * too!"

]

 }

}

Show the user the YAML data for the bot structure

puts bot_data.to_yaml

Write the YAML data to file

f = File.open(ARGV.first || 'bot_data', "w")

f.puts bot_data.to_yaml

f.close

If you run this with ruby bot_data_to_yaml.rb fred.bot, you’ll end up with a bot

data file called fred.bot that contains the necessary data to converse with a basic bot.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

378

�The First Real Conversation

Here’s a basic program—we’ll refer to it as basic_client.rb—that can use the Bot class,

which reads input from the keyboard and prints the bot’s responses to the screen:

require_relative 'bot'

bot = Bot.new(name: 'Fred', data_file: 'fred.bot')

puts bot.greeting

while input = gets and input.chomp != 'end'

 puts '>> ' + bot.response_to(input)

end

puts bot.farewell

Note T he full code for bot.rb is provided a little later in the chapter, so if you
run into problems, check it out in case the code you have implemented is missing
anything.

It’s almost the same as the script we thought of before implementing the Bot class.

You used the method names dictated by that program and made it fit. (The completed

source for the Bot class is provided in the next section if you want to refer to it.)

Without further ado, give it a try and see if you can have a conversation. Here’s a

demonstration run:

Hi. What would you like to talk about?

I don't know

>> Are you always so indecisive?

Yes, usually

>> Great.

I'm sorry!

>> There's no need to apologize.

So why can't you talk to me properly?

>> Do you want me to talk to you properly?

Yes

Chapter 12 Tying It Together: Developing a Larger Ruby Application

379

>> At least you're positive about something!

I don't know about that

>> Are you always so indecisive?

Woe is me, why can't I make decisions?

>> Do you want to make decisions?

Everyone does

>> You think everyone does?

The bot works! The conversation might be a little stilted and manipulated to use

some of the phrases and words covered by your dataset, but with this basic mechanism,

and a dataset extended even further, significantly more complex conversations would be

possible. Unfortunately, it’s outside the scope of this book to provide a large dataset.

In the next section, the final code for the basic bot is presented, and then you’ll see

how you can extend the bot’s functionality further.

�Main Bot Code Listing
This section makes available the full source code to the Bot class, bot.rb, including extra

documentation that RDoc can use. Also included is the source to a basic bot client that

you can use to converse with a bot on a one-on-one basis using the keyboard from the

command line.

Note Y ou will also need the WordPlay class we wrote earlier.

As this code is commented, as opposed to the examples so far in this chapter, I

recommend you at least browse through the following code to get a feel for how the

entire program operates as a set of parts.

Note Y ou can also find these listings available to download in the Source Code/
Download area of www.apress.com/.

�bot.rb
Here’s the source code for the main Bot class:

Chapter 12 Tying It Together: Developing a Larger Ruby Application

http://www.apress.com/

380

require 'yaml'

require_relative 'wordplay'

A basic implementation of a chatterbot

class Bot

 attr_reader :name

 # Initializes the bot object, loads in the external YAML data

 # file and sets the bot's name. Raises an exception if

 # the data loading process fails.

 def initialize(options)

 @name = options[:name] || "Unnamed Bot"

 begin

 @data = YAML.load(File.open(options[:data_file]).read)

 rescue

 raise "Can't load bot data"

 end

 end

 # Returns a random greeting as specified in the bot's data file

 def greeting

 random_response(:greeting)

 end

 # Returns a random farewell message as specified in the bot's

 # data file

 def farewell

 random_response(:farewell)

 end

 # Responds to input text as given by a user

 def response_to(input)

 prepared_input = preprocess(input.downcase)

 sentence = best_sentence(prepared_input)

 reversed_sentence = WordPlay.switch_pronouns(sentence)

 responses = possible_responses(sentence)

 responses[rand(responses.length)]

 end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

381

 private

 # Chooses a random response phrase from the :responses hash

 # and substitutes metadata into the phrase

 def random_response(key)

 random_index = rand(@data[:responses][key].length)

 @data[:responses][key][random_index].gsub(/\[name\]/, @name)

 end

 # Performs preprocessing tasks upon all input to the bot

 def preprocess(input)

 perform_substitutions(input)

 end

 # Substitutes words and phrases on supplied input as dictated by

 # the bot's :presubs data

 def perform_substitutions(input)

 @data[:presubs].each { |s| input.gsub!(s[0], s[1]) }

 input

end

 # Using the single word keys from :responses, we search for the

 # sentence that uses the most of them, as it's likely to be the

 # 'best' sentence to parse

 def best_sentence(input)

 hot_words = @data[:responses].keys.select do |k|

 k.class == String && k =~ /^\w+$/

 end

 WordPlay.best_sentence(input.sentences, hot_words)

 end

 # Using a supplied sentence, go through the bot's :responses

 # data set and collect together all phrases that could be

 # used as responses

 def possible_responses(sentence)

 responses = []

Chapter 12 Tying It Together: Developing a Larger Ruby Application

382

 # Find all patterns to try to match against

 @data[:responses].keys.each do |pattern|

 next unless pattern.is_a?(String)

 # For each pattern, see if the supplied sentence contains

 # a match. Remove substitution symbols (*) before checking.

 # Push all responses to the responses array.

 if sentence.match('\b' + pattern.gsub(/*/, '') + '\b')

 # If the pattern contains substitution placeholders,

 # perform the substitutions

 if pattern.include?('*')

 responses << @data[:responses][pattern].collect do |phrase|

 # First, erase everything before the placeholder

 # leaving everything after it

 matching_section = sentence.sub(/^.*#{pattern}\s+/, '')

 # Then substitute the text after the placeholder, with

 # the pronouns switched

 phrase.sub('*', WordPlay.switch_pronouns(matching_section))

 end

 else

 # No placeholders? Just add the phrases to the array

 responses << @data[:responses][pattern]

 end

 end

 end

 # If there were no matches, add the default ones

 responses << @data[:responses][:default] if responses.empty?

 # Flatten the blocks of responses to a flat array

 responses.flatten

 end

end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

383

�basic_client.rb
This basic client accepts input from the user via the keyboard and prints the bot’s

responses back to the screen. This is the simplest form of client possible:

require_relative 'bot'

bot = Bot.new(name: ARGV[0], data_file: ARGV[1])

puts bot.greeting

while input = $stdin.gets and input.chomp != 'end'

 puts '>> ' + bot.response_to(input)

end

puts bot.farewell

Use the client like so:

ruby basic_client.rb <bot name><data file>

Note Y ou can find listings for basic web, bot-to-bot, and text file clients in the
next section of this chapter, “Extending the Bot.”

�Extending the Bot
One significant benefit of keeping all your bot’s functionality well separated within its

own class and with multiple interoperating methods is that you can tweak and add

functionality easily. In this section, we’re going to look at some ways we can easily extend

the basic bot’s functionality to handle other input sources than just the keyboard.

When you began to create the core Bot class, you looked at a sample client

application that accepted input from the keyboard, passed it on to the bot, and printed

the response. This simple structure demonstrated how abstracting separate sections

of an application into loosely coupled classes makes applications easier to amend and

extend. You can use this loose coupling to create clients that work with other forms of

input.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

384

Note  When designing larger applications, it’s useful to keep in mind the
usefulness of loosely coupling the different sections so that if the specifications or
requirements change over time, it doesn’t require a major rewrite of any code to
achieve the desired result.

�Using Text Files As a Source of Conversation
You could create an entire one-sided conversation in a text file and pass it in to a bot to test

how different bots respond to the same conversation. Consider the following example:

require_relative 'bot'

bot = Bot.new(name: ARGV[0], data_file: ARGV[1])

user_lines = File.readlines(ARGV[2])

puts "#{bot.name} says: " + bot.greeting

user_lines.each do |line|

 puts "You say: " + line

 puts "#{bot.name} says:" + bot.response_to(line)

end

This program accepts the bot’s name, data filename, and conversation filename as

command-line arguments, reads in the user-side conversation into an array, and loops

through the array, passing each line to the bot in turn.

�Connecting the Bot to the Web
One common thing to do with many applications is tie them up to the Web so that

anyone can use them. This is a reasonably trivial process using the WEBrick library

covered in Chapter 10:

require 'webrick'

require_relative 'bot'

Chapter 12 Tying It Together: Developing a Larger Ruby Application

385

Class that responds to HTTP/Web requests and interacts with the bot

class BotServlet < WEBrick::HTTPServlet::AbstractServlet

 # A basic HTML template consisting of a basic page with a form

 # and text entry box for the user to converse with our bot. It uses

 # some placeholder text (%RESPONSE%) so the bot's responses can be

 # substituted in easily later.

 @@html = %q{

<html><body>

<form method="get">

<h1>Talk To A Bot</h1>

 %RESPONSE%

<p>

You say:<input type="text" name="line" size="40" />

<input type="submit" />

</p>

</form>

</body></html>

 }

 def do_GET(request, response)

 # Mark the request as successful and set MIME type to support HTML

 response.status = 200

 response.content_type = "text/html"

 # If the user supplies some text, respond to it

 if request.query['line'] && request.query['line'].length > 1

 bot_text = $bot.response_to(request.query['line'].chomp)

 else

 bot_text = $bot.greeting

 end

 # Format the text and substitute into the HTML template

 bot_text = %Q{<p>I say: #{bot_text}</p>}

 response.body = @@html.sub(/\%RESPONSE\%/, bot_text)

 end

Chapter 12 Tying It Together: Developing a Larger Ruby Application

386

end

Create an HTTP server on port 1234 of the local machine

accessible via http://localhost:1234/ or http://127.0.0.1:1234/

server = WEBrick::HTTPServer.new(:Port => 1234)

$bot = Bot.new(name: "Fred", data_file: "fred.bot")

server.mount "/", BotServlet

trap("INT"){ server.shutdown }

server.start

Upon running this script, you can talk to the bot using your web browser by visiting

http://127.0.0.1:1234/ or http://localhost:1234/. An example of what this should

look like is shown in Figure 12-3.

Figure 12-3.  Accessing the bot web client with a web browse

Alternatively, you could create a CGI script (called bot.cgi, or similar) that could be

used with any web hosting provider that provides Ruby as a supported language:

#!/usr/bin/env ruby

require_relative 'bot'

require 'cgi'

Chapter 12 Tying It Together: Developing a Larger Ruby Application

387

A basic HTML template creating a basic page with a forum and text

entry box for the user to converse with our bot. It uses some

placeholder text (%RESPONSE%) so the bot's responses can be

substituted in easily later

html = %q{

<html><body>

<form method="get">

<h1>Talk To A Bot</h1>

 %RESPONSE%

<p>

You say:<input type="text" name="line" size="40" />

<input type="submit" />

</p>

</form>

</body></html>

}

Set up the CGI environment and make the parameters easy to access

cgi = CGI.new

params = cgi.params

line = params['line'] && params['line'].first

bot = Bot.new(name: "Fred", data_file: "fred.bot")

If the user supplies some text, respond to it

if line && line.length > 1

 bot_text = bot.response_to(line.chomp)

else

 bot_text = bot.greeting

end

Format the text and substitute into the HTML template

as well as sending the MIME header for HTML support

bot_text = %Q{<p>I say: #{bot_text}</p>}

puts "Content-type: text/html\n\n"

puts html.sub(/\%RESPONSE\%/, bot_text)

Chapter 12 Tying It Together: Developing a Larger Ruby Application

388

Note Y ou also need to make sure you upload the bot.rb, wordplay.rb, and
bot data file(s).

�Bot-to-Bot Conversations
As well as letting users interact with the bot, you can let bots interact with each other!

Because it only takes a single method on the bot instance to elicit a response, you can

pipe responses back and forth between two bots with just a few lines of code:

require_relative 'bot'

fred = Bot.new(name: 'Fred', data_file: 'fred.bot')

chris = Bot.new(name: 'Chris', data_file: 'fred.bot')

r = fred.greeting

10.times do

 puts "#{fred.name} said: " + r

 r = chris.response_to(r)

 puts "#{chris.name} said: " + r

 r = fred.response_to(r)

end

This could result in the following conversation (it will vary due to the randomness of

some of the multiple responses available in the data files):

Fred said: Hi. What would you like to talk about?

Chris said: Why?

Fred said: What?

Chris said: I don't know. Do you?

Fred said: What?

Chris said: Why do you ask?

Fred said: I don't understand.

Chris said: Tell me about something else.

Fred said: Tell me about something else.

Chris said: Tell me about something else.

Fred said: I'm tired of this. Change the subject.

Chapter 12 Tying It Together: Developing a Larger Ruby Application

389

Chris said: What?

Fred said: Why?

Chris said: Tell me about something else.

Fred said: I don't understand.

Chris said: What?

Fred said: Why do you ask?

Chris said: What?

Fred said: Why?

Chris said: Huh?

It’s not the greatest conversation ever seen, but it’s certainly entertaining to see two

ersatz therapists getting along with each other. Of course, if you manage to develop two

bots that actually have an engrossing conversation, you’ll be on the path to artificial

intelligence stardom!

The key problem with your bot’s data is that none of the default data contains any

keywords that can be picked up by other phrases, so both bots are locked in a loop of

throwing default phrases at each other. That’s why it’s important to extend the basic set

of data if you want to use the bot for anything that looks impressive!

�Summary
In this chapter, we looked at developing a simple chatterbot, developed a library along

the way, produced tests for the library, worked with storing our bot’s vocabulary in an

external file, and looked at a number of ways to extend our project with databases or by

hooking it up to a website.

This chapter marks the end of the second part of this book, and you should now have

enough Ruby knowledge to pass as a solid, yet still learning, Ruby developer. You should

be able to understand the majority of Ruby documentation available online and be able

to use Ruby productively either professionally or for fun.

Part 3 of this book digs a little deeper into Ruby’s libraries and frameworks, from

Ruby on Rails and the Web to general networking and library use. Chapter 16, which

looks at a plethora of different Ruby libraries and how to use them, will be particularly

useful to refer to as you develop your own programs, so that you don’t reinvent the wheel

too often!

Chapter 12 Tying It Together: Developing a Larger Ruby Application

Ruby Online
This part of the book looks primarily at Ruby’s Internet and networking abilities. The

knowledge covered in this part of the book is not essential for developing general

Ruby applications, but because the Internet and the Web are important in the scope of

modern software development, you’re sure to find these chapters useful. This part of

the book concludes with a reference-style chapter that covers a choice selection of Ruby

libraries and the features they offer.

PART III

393
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_13

CHAPTER 13

Two Web Application
Approaches: Rails
and Sinatra
In this chapter, we’re going to look at web application (or web app, for short)

frameworks—libraries of code that provide an easily reusable structure and design

patterns for developing web applications. If you want to develop something useful for

the Web, you’ll probably find a web application framework very useful, and Ruby has a

wonderful selection of them, of which we’ll look at two: Rails and Sinatra.

�Background
Ruby’s most famous web application framework is the Ruby on Rails, and the majority

of this chapter will be dedicated to it. We’ll walk through developing a (very) basic Rails

application and getting it running with a database. After I’ve covered Rails, we’ll take a

more cursory look at Sinatra, another library that provides a lightweight approach that is

quick and easy to learn.

https://doi.org/10.1007/978-1-4842-6324-2_13#DOI

394

�The Limitations and Benefits of Our Approach
It is very important to note at this stage that web application development is a significant

branch of development in general. This book is an introductory Ruby book, rather than

a web application development book, so this chapter is focused on giving you a brief

walk-through of the concepts involved with Rails and Sinatra, and information on where

to go to learn more, rather than exhaustively showing you how to develop complete

applications from scratch. Apress has a selection of books specifically about Ruby on

Rails and web development available if you wish to learn more and progress further

down this line of development. Also, links to further resources and tutorials are provided

throughout this chapter.

As well as limitations of space, a key reason for not focusing too much on the

details in this chapter is that web application frameworks in particular have a history of

changing rapidly. Indeed, this chapter has had to be rewritten twice almost entirely since

the first edition of this book in 2006 because the techniques have become obsolete. To

prevent you running into too much obsolete code if you come to this book a year or two

after publication, we’ll focus on the higher-level concepts and look at quick examples

of how they relate to code. Then, when you decide to investigate web application

frameworks on your own, you’ll be informed as to their basic operation, even if the

specific techniques have changed.

�Pros and Cons of the Frameworks Covered
Rails and Sinatra are easily the two popular web application frameworks used by

Rubyists, and they each have distinct pros and cons:

Rails is a large, robust web application framework that has lots

of features baked in. Rails can be used to build applications that

are both large and small, but it tends to use more memory and

resources than the other frameworks. A typical Rails application

will be composed of many tens of files and have a tight structure

built of models, views, and controllers (these are explained later).

Rails is popular because it’s powerful, reasonably standardized,

and, admittedly, has the critical mass of community support to

keep its popularity growing.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

395

Sinatra is almost the direct opposite of Rails in terms of its

qualities. It’s fast, lightweight, and pragmatic, and an application

can be built within a single Ruby file. There’s a lack of any

enforced structure (though you could build your own), and fewer

features are available out of the box; you will often need to call

on other Ruby libraries to fill in the basics, like database support.

Despite this, Sinatra is popular due to its extreme simplicity and

its suitability for small, agile web applications and services.

�Rails: Ruby’s Killer App
Due to Rails’ significance in making Ruby more popular and its popularity with Rubyists

generally, Rails is often called “Ruby’s killer app.” It’s the biggest attractor of new

developers to Ruby, and many popular Ruby-related projects online (including Twitter

and GitHub) tend to use Rails in some form or another.

Before you can begin to use Rails, it’s essential first to know what it is and why it’s

used, as well as how to get it running, as its installation process is more involved than

that of other Ruby libraries.

�What Is Rails and Why Use It?
Ruby on Rails is an open source web application development framework. It makes the

development of web applications simple. For some of the nontechnical history behind

Rails, including the motivation for its development, refer to Chapter 5.

The goal of Rails (as with other web application frameworks) is to make it possible

to develop web applications in an easy, straightforward manner and with as few lines

of code as necessary. By default, Rails makes a lot of assumptions and has a default

configuration that works for most web applications. It’s easy to override most of

Rails’ default assumptions, but these defaults are in place to keep initial application

development simple. In Rails parlance, this is commonly called “convention over

configuration.” That is, there’s no need to work on lots of complex configuration files to

get going, since sensible defaults will be assumed.

Rails applications operate upon a model-view-controller (MVC) architectural pattern.

This means that they’re primarily split into three sections: models, views, and controllers.

These components have the following roles:

Chapter 13 Two Web Application Approaches: Rails and Sinatra

396

•	 Models: These are used to represent forms of data used by the

application and contain the logic to manipulate and retrieve that

data. In Rails, a model is represented as a class. You can think of

models as abstracted, idealized interfaces between controller code

and data. These forms of data are not low-level things like strings

or arrays, but domain-specific things like users, websites, videos,

animals, or classrooms (which could be represented by classes

named User, Website, Video, Animal, and Classroom, respectively).

•	 Views: These are the templates (typically formed of a mixture of

HTML and Ruby code) that are used to build up the data that users

of the web application see in their browsers or through other clients.

Views can be rendered as HTML for web browsers, XML, RSS, or

other formats. While views can contain any combination of HTML

and Ruby code, typically only the minimal Ruby code necessary

to produce the view should be used, as the controller should be

handling most of the logic.

•	 Controllers: Controllers provide the logic that binds together models

(and their associated data) and views. They process input, call

methods made available by models, and deliver data to the views. In

Rails, controllers contain methods known as actions that, generally,

represent each action relevant to that controller, such as “show,”

“hide,” “view,” “delete,” and so forth.

The basic relationship between these components is shown in Figure 13-1.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

397

Note  You can learn more about the MVC paradigm at https://
en.wikipedia.org/wiki/Model-view-controller.

The most common motivation to use Rails is that it removes a lot of the groundwork

necessary to develop web applications using other technologies. Features such as

database access, dynamic page elements (using Ajax—Asynchronous JavaScript and

XML), templating, and data validation are either preconfigured or take only a few lines of

code to configure.

Figure 13-1.  The interactions between an application’s users, views, controllers,
and models

Chapter 13 Two Web Application Approaches: Rails and Sinatra

https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller

398

Rails also encourages good development practices. All Rails applications come with

support for unit testing (among other forms of testing), and Rails’ guiding principles are

“don’t repeat yourself” (known as DRY) and “convention over configuration.”

�Installing Rails
The Rails framework is made up of several different libraries, but it’s simple to install

because all the parts are distributed as gems. The following is a list of Rails’ main

constituent libraries as of version 6:

•	 Rails: The core library of the Ruby on Rails framework that ties the

other libraries together.

•	 Action Mailer: A library that makes it easy to send email from Rails

applications. A basic overview of ActionMailer, including how to use

it to send mail separately from Rails, is given in Chapter 14.

•	 Action Pack: A framework for handling and responding to requests.

The framework includes components to perform routing, define

controllers, and render views.

•	 Active Record: An object-relational mapper that ties database tables to

classes. If you have an ActiveRecord object that references a row in a

database table, you can work with that object as you would any other

Ruby object (by using attributes and other methods), and changes

will be stored in the relevant database table. A basic overview of

ActiveRecord was given in Chapter 9.

•	 Active Support: A library that collects a number of support and utility

classes used by various Rails features. For example, ActiveSupport

implements many useful methods for manipulating times, numbers,

arrays, and hashes.

•	 Active Job: A framework for defining tasks that can take place

independently of the usual request and response cycle of the web

app.

•	 ActiveStorage: Makes uploaded and referencing files in the cloud easy.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

399

•	 ActiveModel: A building block for ActiveRecord. This library allows

you to create models using a common template.

•	 ActionView: A framework for handling view template lookup and

rendering.

•	 ActionText: Provides rich text editing for Rails. It includes the Trix

editor (https://trix-editor.org/) to use as a rich text editor in

your app.

Generally, you won’t need to know or care about each of these elements as a discrete

library because you can install them all at once using RubyGems. Before you can install

Rails, you must first install Node.js. Visit https://nodejs.org/en/download/ to find and

download the latest Node.js for your OS. Once you’ve installed node, verify it’s installed

by running

node –version

You should get the version of node installed. Make sure it’s greater than 8.16.0. Next,

you will need to install Yarn. Visit https://classic.yarnpkg.com/en/docs/install

to find and download the latest Yarn for your OS. Once you’ve installed Yarn, verify it’s

installed by running

yarn -v

Finally, install the Rails gem like so:

gem install rails

Verify Rails is installed by running the following in a terminal:

rails -v

Note  Using sudo or run as a superuser on UNIX-like operating systems may fix
permissions issues but is not recommended. If you are having issues installing
gems, try using either rbenv (https://github.com/rbenv/rbenv) or rvm
(https://rvm.io/) to manage your Ruby environment.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

https://trix-editor.org/
https://nodejs.org/en/download/
https://classic.yarnpkg.com/en/docs/install
https://github.com/rbenv/rbenv
https://rvm.io/

400

�Database Considerations

As Rails is used primarily to develop data-driven web applications, it’s necessary to have

a database system available to use on your computer.

Database engines are covered in Chapter 9, and you can use all those covered

(MySQL, SQLite, and PostgreSQL) with Ruby on Rails. In production, most developers

use MySQL or PostgreSQL, as Rails supports these database engines best, but SQLite

is the “default” with Rails as it’s so easy to set up and is more than fast enough for

development purposes (some sites even use it in production with no troubles).

For this chapter’s purposes, ensure you have SQLite3 installed and install the

SQLite3 gem like so:

gem install sqlite3

Verify sqlite3 is installed by running the following command in a terminal:

sqlite3 -version

On Linux, installing the sqlite3-ruby gem might raise errors if the SQLite3 libraries

are not installed. On Ubuntu and Debian, this is easy to resolve:

apt-get install sqlite3 libsqlite3-dev

On Red Hat, CentOS, or other Red Hat–derived distributions, you can use the

following:

yum install sqlite sqlite-devel

If you’re using a different distribution or have standing issues with getting SQLite3

installed, the best source of help is the many random blog posts you can find on Google

by searching for “install sqlite3 [your operating system’s name].”

�Building a Basic Rails Application
As explained in the previous section, Rails is popular because it makes developing web

applications easy. In this section, I’ll demonstrate that by showing you how to generate a

very basic web application, and we’ll take a look through how certain parts of it work.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

401

�Creating a Blank Rails Application

As you can use Rails to develop both small and large applications, different types of files

are organized into different directories to keep elements separated for tidiness on large

projects. A lot of pre-created files are also placed within a new, blank Rails project. The

quickest way to look at these files and the overall directory structure is to leap right in

and create a new Rails project.

Your project in this chapter will be to create a simple diary app, similar to a blog (or

weblog). The resulting application will let you view your diary and add, delete, or edit

specific entries.

The basic feature set of being able to create, read, update, and delete items is known

as CRUD which is a common structure used in web application. For example, a photo

gallery site allows you to add, view, edit, and delete photos, which are all CRUD actions.

Therefore, the mechanics of developing a basic diary tool are easily transferable to

developing most other types of web applications.

Note  CRUD is an acronym to refer to the concept of a system that allows the
creation, reading, updating, and deletion of discrete items.

The Rails Command-Line Tool

When you installed Rails, a script called rails was also installed. You use the rails

script to create new Rails projects, their default files, and their directory structure. To

use it, navigate to a place in your filesystem where you would like to store Rails projects

(possibly creating a rails directory in the process) and run rails new, specifying an

application name as the sole argument:

rails new mydiary

Tip B y default, SQLite will be specified as the database type in the database.
yml file generated in the preceding code. If you’re going to be using MySQL,
however, use rails mydiary -d mysql instead. Try rails -h if you want to
see more of the available command-line options.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

402

A lot of files and directories are produced, but don’t feel overwhelmed! You won’t

even use many of them in this chapter, as they are for more advanced cases that aren’t

relevant to the very basic web application development we’re looking at. In most cases,

Rails provides sane defaults anyway, so you don’t need to change a lot of files unless

you’re doing something special. Nonetheless, we’ll take a look at what these directories

are for in the following section.

�Files and Directories Within a Rails Application
In this section, we’re going to go through the directories and files created by rails and

look at what they’re for. Don’t become overwhelmed by this section. If there’s something

you don’t understand, keep going, as most of the new terms and concepts mentioned

here are explained as we use them throughout this chapter.

rails generates the following main folders:

•	 app: Contains most of the Ruby source code and output templates

directly associated with the application. It contains several other

folders that I’ll cover next.

•	 app/assets: A place to store image and CSS files that can be compiled

down to more efficient “packaged” versions later.

•	 app/javascript: A place to store JavaScript files. JavaScript is in a

separate folder from other assets due to Rails 6 adding Webpacker

support. Webpacker provides a lot of powerful feature needed for

modern JavaScript development. Read more about Webpacker here:

https://github.com/rails/webpacker.

•	 app/channel: Contains files for ActionCable. ActionCable is

framework that allows Rails to work with websockets.

•	 app/mailers: Contains code to handle emails. For example, the code

for the welcome email would be stored here.

•	 app/controllers: Contains the controller files. In an empty project,

only application_controller.rb exists. application_controller.

rb is an application-wide controller where you can define methods

that other controllers will inherit.

•	 app/helpers: Contains helper files—Ruby source code files that

provide methods that you can use from views.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

https://github.com/rails/webpacker

403

•	 app/models: Contains a file for each model in the application. In an

empty project, no models are yet defined, so this directory is empty.

•	 app/views: Contains the output templates (views) for the application.

Typically, each controller has its own folder under app/views, with

templates located in those folders. There’s also a layouts folder that

Rails uses to store generic application-wide templates.

•	 bin: Contains app-tailored scripts that you run from the terminal, for

example, rails and bundle.

•	 config: An important folder that contains configuration files for

the application. For example, database.yml is a YAML file with

information about the database(s) that the application will use.

•	 db: A folder to be used for database dumps, backups, and migrations.

•	 lib: Contains third-party libraries and Rake tasks. Plugins have largely

superseded the features offered by libraries that were once placed

into lib.

•	 log: Contains log files relating to the operation of the application.

•	 node_modules: Contains JavaScript libraries and dependencies

managed by Webpacker. Webpacker will use npm or Yarn to

download libraries and store them here.

•	 public: Contains non-dynamic files that are accessible under your

application’s URL scheme, for example, JavaScript libraries (in

public/javascripts), images (in public/ images), and CSS style

sheets (in public/stylesheets). This folder also includes several

“dispatch” scripts and an .htaccess file that can be used in certain

situations to run your application (such as when/if you choose

to use CGI or FastCGI execution methods—neither of which are

recommended).

•	 test: Contains the test subsystems for a Rails application. This folder

is covered in more detail later in this chapter in the “Testing” section.

•	 tmp: Temporary storage area for data created and used by your Rails

application (including cache and session files).

Chapter 13 Two Web Application Approaches: Rails and Sinatra

404

I’ll briefly mention some of these folders again throughout the rest of the chapter as

you create files within them to get your basic application working.

�Database Configuration

Earlier I said that Rails applications are generally database dependent. With this in mind,

at this stage it’s necessary to create a database for your application on your database

server.

Note  You could develop an app that has no need to permanently store data or
operates without a database, but this would be atypical.

By default, your Rails application will use an SQLite database, and it will generate

this for itself when you first run your database’s migrations (covered later). If you are

using any other database engine, however, the technique you’ll use to create a database

for your application will vary with database type and how you have your database server

installed.

Database configuration settings are stored in database.yml. Since we are using

SQLite, it’s not necessary to change these settings at all, but it’s worth looking at them

nonetheless.

Ignoring the comments, you’ll notice three main sections in database.yml, called

“development,” “test,” and “production.” These sections represent the three different

environments your application can run under. For example, while developing, you want

your application to return verbose error messages and automatically detect changes

you make to the code. In production (better thought of as being a “deployment”

environment), you want speed, caching, and non-verbose error messages. The test

environment is provided so that testing can occur on a different database away from your

regular data. The “development” section is used to configure your local development

environment.

database.yml tells Rails how to access the database associated with the application,

so it’s essential that the details are correct. If not, you’ll get error messages when you try

to run your eventual application (though, thankfully, these errors will often tend to give

you some great clues as to how to fix the problem).

Chapter 13 Two Web Application Approaches: Rails and Sinatra

405

�Using Scaffolding

A Rails application without any models is not a working application at all. Any

application you build will need at least one model. In our case, we’re first going to focus

on the concept of “entries” in our virtual diary.

Rails comes with a concept called scaffolding that will generate default (but fully

working) code that will do the database and code work necessary to create a model, a

controller for that model, and some default views to interact with that model’s data. It’s

possible to do this in gradual steps, or even entirely by hand, but scaffolding enables you

to get up and running a lot more quickly.

Think of the Rails generator we used earlier to generate all of the files essential for a

Rails project. Scaffolding is the next logical step up from that. Instead of creating the files

necessary for a Rails project, scaffolding creates some of the code (including a database

migration to create the database table for the model) and views necessary to represent a

single model within your application.

You can then build your own extra views and controller methods off of this basic

scaffolding. It’s designed to give you a jump-start without making you code everything

from scratch (although you can code from scratch if you want to, particularly if your

ambitions differ wildly from what the scaffolding provides).

Note I n Rails, models and database tables typically have a direct relationship.
If you have a model called Entry, this will by default be related to the database
table called entries. Rails takes care of the pluralization between model class
names and database table names.

For our diary application, entries will initially solely consist of a title and some

content. There are other attributes (or “columns” in the database sense) that Rails

will add by default to the table, such as id (a unique numeric identifier). A directive is

also added into the default migration code to create timestamp columns: created_at

(a timestamp of when the row/associated object was created) and updated_at (a

timestamp of when the row/associated object was amended last). Because of this

automation, it is only necessary to specify the two custom, additional attributes to the

scaffold generator to get things going.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

406

To generate scaffolding for your entries table, use the generate script again:

rails generate scaffold Entry title:string content:text

invoke active_record

create db/migrate/20200807024733_create_entries.rb

create app/models/entry.rb

invoke test_unit

create test/models/entry_test.rb

create test/fixtures/entries.yml

invoke resource_route

route resources :entries

invoke scaffold_controller

create app/controllers/entries_controller.rb

invoke erb

create app/views/entries

create app/views/entries/index.html.erb

create app/views/entries/edit.html.erb

create app/views/entries/show.html.erb

create app/views/entries/new.html.erb

create app/views/entries/_form.html.erb

invoke test_unit

create test/controllers/entries_controller_test.rb

create test/system/entries_test.rb

invoke helper

Chapter 13 Two Web Application Approaches: Rails and Sinatra

407

create app/helpers/entries_helper.rb

invoke test_unit

invoke jbuilder

create app/views/entries/index.json.jbuilder

create app/views/entries/show.json.jbuilder

create app/views/entries/_entry.json.jbuilder

invoke assets

invoke scss

create app/assets/stylesheets/entries.scss

invoke scss

create app/assets/stylesheets/scaffolds.scss

The scaffolding generator has done a lot of work for us! The generator has created

some view files (in app/views/entries) to enable us to see our entries, create new

entries, and edit them. It has also produced an “entries” controller (in app/controllers),

some dummy tests (in test/*), and a database migration (in db/migrate; note that the

migration’s filename starts with a timestamp, so it will vary).

But what is a database migration, and why does it matter?

�Database Migrations

I’ve mentioned before that in Rails, models and database tables are directly related. It is

necessary, therefore, for the table relating to a Rails model to exist within the database.

Migrations provide a Ruby-based way to define database tables. Instead of doing

the SQL yourself, you specify what tables, columns, and indexes you want to exist and

run the migration, and Rails’ ActiveRecord library does the hard work for you. Even

better, you can have multiple migrations for the same table, so that if you decide to add

a column to a table later, you create a new migration and specify that you’d like to add a

new column.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

408

Migrations are considered desirable because they provide a programmatic way to

both upgrade and downgrade databases. Since migrations are normal source code,

it’s also possible to put them into your source code management system and share

them between multiple developers, if you wish. Migrations provide abstraction and

mechanization to make organizing database changes associated with a Rails application

easy.

The scaffolding generator you ran in the previous section produced a database

migration. Let’s take a look at it to see how it works. You’ll find it in the db/migrate

directory—it will have a filename ending in "create_entries.rb" because the first part

of the filename is timestamped. It should contain the following:

class CreateEntries < ActiveRecord::Migration[6.0]

 def change

 create_table :entries do |t|

 t.string :title

 t.text :content

 t.timestamps

 end

 end

end

A single migration is defined in a single file as a class that inherits from

ActiveRecord::Migration and it creates the entries table using the create_table

method, which is supplied with a symbol representing the table name (:entries) and a

code block within where the attributes/columns can be defined.

In this case, a string column called title and a text column called content are

created. “Timestamp” columns are also created. At the time of writing, these are

created_at and updated_at; they store the date and time of when a row was created and

when it was last amended, respectively.

Note T he difference between a string column and a text column is that,
classically, string columns are for storing short (often fixed-length) textual strings,
whereas text columns can store both short strings and very long blocks of text.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

409

Your application has a migration ready to go to create the entries table. To get it

to run, you need to invoke a rake task (see the following “Rake Tasks” sidebar for more

information about these) called db:migrate that will then run all migrations that have

not yet been processed:

rake db:migrate

== 20200807024733 CreateEntries: migrating

====================================

-- create_table(:entries)

 -> 0.0010s

== 20200807024733 CreateEntries: migrated (0.0011s)

===========================

The output verifies that the CreateEntries migration was run, and now the entries

table exists (with the specified columns) within the database associated with your

application. In essence, you now have a Rails application that’s ready to be used!

Note T here’s a lot more to migrations than this section has scope to cover.
Luckily, the Rails documentation team has a great guide specifically about
migrations, how they work, and how you can create and customize your own.
You can find the migrations guide at https://guides.rubyonrails.org/
migrations.html.

RAKE TASKS

Rake tasks are administrative tasks associated with your application that are managed by

the Rake tool. Rake, meaning “Ruby Make,” is a tool that you can use to process and trigger

actions to perform upon Ruby projects and code, and it’s used commonly within Rails projects

to do things such as start unit tests and perform migrations.

To perform a Rake task, you simply run rake followed by the name of a task:

Chapter 13 Two Web Application Approaches: Rails and Sinatra

https://guides.rubyonrails.org/migrations.html
https://guides.rubyonrails.org/migrations.html

410

rake <task name>

You can also get a list of all the Rake tasks available, like so:

rake --tasks

With Rails 6, there are 67 tasks by default. To save space, they aren’t listed here, but it’s worth

looking through the list to get a feel for what tasks are available.

�Running the Basic, Scaffolded App

You’ve run the scaffold generator, you’ve looked at the database migration for your

entries table, and you’ve used the db:migrate rake task to bring your database up

to speed. That’s all you have to do to get a working application! To try it out, you need

to run the server script that provides a basic web server through which to access the

application:

rails server

=> Booting Puma

=> Rails 6.0.3.2 application starting in development

=> Run `rails server --help` for more startup options

Puma starting in single mode...

* Version 4.3.5, codename: Mysterious Traveller

* Min threads: 5, max threads: 5

* Environment: development

* Listening on tcp://127.0.0.1:3000

* Listening on tcp://[::1]:3000

Use Ctrl-C to stop

At this point, the application sits there doing nothing. This is because it’s waiting to

serve HTTP requests (such as from your web browser).

Chapter 13 Two Web Application Approaches: Rails and Sinatra

411

Go to your web browser of choice and access the application using the

URL given by the output (http://localhost:3000/ in this case, but it might be

http://127.0.0.1:3000/ on your machine depending on your OS and network setup).

You should see a page like the one in Figure 13-2.

The page you’re seeing is the index.html file from the public folder. This is because

if no action is found within a Rails application that associates with the URL you’re

loading from your web browser, a Rails application should return a file from the public

folder—if any file matches—or an error message. Because the default page to load on a

web server is usually index.html, public/index.html is returned.

When you generated the scaffolding for the Entry model, a controller called

entries was created, as app/controllers/entries_controller.rb. By default,

you access controller methods in a Rails application using a URL in the format of

http://[hostname]/[controller]/[action].

Figure 13-2.  The default Rails application index.html page

Chapter 13 Two Web Application Approaches: Rails and Sinatra

412

Note D on’t worry about this too much, but for completeness, even though
http://[hostname]/ [controller]/[action] is a default, it can be
superseded. As entries has been created as a scaffolded resource, you can
also use http://[hostname]/entries/[id] as an alternative to http://
[hostname]/ entries/show/[id], since routes have been automatically
created to route requests to certain methods based on the HTTP verb (GET, PUT,
POST, or DELETE) used—for example, a DELETE HTTP request can automatically
route to the destroy action where applicable.

So, with this application, load http://localhost:3000/entries (replace localhost

with whatever hostname is used on your local machine). No action name is specified,

but by default an action name of index is assumed, and the scaffolding has implemented

this. If you’re successful, you’ll see a basic list of entries, as shown in Figure 13-3.

The list of entries in Figure 13-3 is noticeably bare. This is because your entries

table has no data in it. The column headings for your table are obvious, though (Title

and Content), and a New Entry link is available.

Clicking New Entry takes you to http://localhost:3000/entries/new—the new

method within the entries controller—and presents you with a page containing a form that

allows you to fill out the data for a single entry. This view is demonstrated in Figure 13-4.

Figure 13-3.  The basic list or index view of the entries scaffolding

Figure 13-4.  The new method of the entries controller, used to create new entries

Chapter 13 Two Web Application Approaches: Rails and Sinatra

413

From this point, you can create new entries, return to the list, edit those entries (the

form looks similar to that in Figure 13-4), and delete entries. That covers all the CRUD

functions!

With scaffolding, you get a basic but complete data-driven web application with

a few lines at the command prompt. However, next you need to look at what the

scaffolding generator actually generated and learn how to customize the models,

controllers, and views to create the specific application that you want. This experience

will be particularly valuable if you choose to pursue Rails development further.

�Controllers and Views
In the last section, you put together a basic web application that allowed you to create,

edit, list, and delete diary entries. You used scaffolding, which let you put a whole

working application together with no direct coding effort required. In this section, you’re

going to look at what the scaffolding generated, how it works, and how you can extend

the application a little.

�Controller Actions

The first URL you accessed in your application was http://localhost:3000/entries.

This URL takes you to the entries controller’s index method. Let’s look in app/

controllers/entries_controller.rb to find it:

class EntriesController < ApplicationController

 before_action :set_entry, only: [:show, :edit, :update, :destroy]

 # GET /entries

 # GET /entries.json

 def index

 @entries = Entry.all

 end

 # GET /entries/1

 # GET /entries/1.json

 def show

 end

Chapter 13 Two Web Application Approaches: Rails and Sinatra

414

 # GET /entries/new

 def new

 @entry = Entry.new

 end

 # GET /entries/1/edit

 def edit

 end

 # POST /entries

 # POST /entries.json

 def create

 @entry = Entry.new(entry_params)

 respond_to do |format|

 if @entry.save

 �format.html { redirect_to @entry, notice: 'Entry was successfully

created.' }

 format.json { render :show, status: :created, location: @entry }

 else

 format.html { render :new }

 �format.json { render json: @entry.errors, status: :unprocessable_

entity }

 end

 end

 end

 # PATCH/PUT /entries/1

 # PATCH/PUT /entries/1.json

 def update

 respond_to do |format|

 if @entry.update(entry_params)

 �format.html { redirect_to @entry, notice: 'Entry was successfully

updated.' }

 format.json { render :show, status: :ok, location: @entry }

 else

 format.html { render :edit }

Chapter 13 Two Web Application Approaches: Rails and Sinatra

415

 �format.json { render json: @entry.errors, status: :unprocessable_

entity }

 end

 end

 end

 # DELETE /entries/1

 # DELETE /entries/1.json

 def destroy

 @entry.destroy

 respond_to do |format|

 �format.html { redirect_to entries_url, notice: 'Entry was

successfully destroyed.' }

 format.json { head :no_content }

 end

 end

 private

 # Use callbacks to share common setup or constraints between actions.

 def set_entry

 @entry = Entry.find(params[:id])

 end

 # Only allow a list of trusted parameters through.

 def entry_params

 params.require(:entry).permit(:title, :content)

 end

end

This code shows that Ruby controllers are implemented as classes that inherit from

ApplicationController (found in app/controllers/application_controller.rb),

which in turn inherits from a core Rails class, ActionController::Base.

When a user tries to access the index method of the entries controller, control is

delegated to the index method (or action) in the EntriesController class, shown on its

own here:

Chapter 13 Two Web Application Approaches: Rails and Sinatra

416

GET /entries

GET /entries.json

def index

 @entries = Entry.all

end

This code is simple for what it does. It collects all of the Entry objects (represented

by rows in the entries table) within the database using @entries = Entry.all.

Entry is the model class and models inherit from ApplicationRecord which inherits

from ActiveRecord::Base, which provides methods suitable to navigate and find data

in the associated table for that model. Therefore, Entry.all returns all rows (as objects)

from the entries table and places them as an array into @entries.

Following on from that, Rails automatically knows to render the correct template for

displaying the entries. Let's take a look at how that works now.

�Views and Embedded Ruby (ERB)

Now let’s look at the equivalent view for the index controller action examined in the

previous section. The view template is located in app/views/entries/index.html.erb:

<p id="notice"><%= notice %></p>

<h1>Entries</h1>

<table>

 <thead>

 <tr>

 <th>Title</th>

 <th>Content</th>

 <th colspan="3"></th>

 </tr>

 </thead>

 <tbody>

 <% @entries.each do |entry| %>

 <tr>

 <td><%= entry.title %></td>

Chapter 13 Two Web Application Approaches: Rails and Sinatra

417

 <td><%= entry.content %></td>

 <td><%= link_to 'Show', entry %></td>

 <td><%= link_to 'Edit', edit_entry_path(entry) %></td>

 �<td><%= link_to 'Destroy', entry, method: :delete, data: { confirm:

'Are you sure?' } %></td>

 </tr>

 <% end %>

 </tbody>

</table>

<%= link_to 'New Entry', new_entry_path %>

If you’re familiar with both Ruby and HTML, you’ll note that this view is basically

HTML with Ruby embedded in it (with the Ruby located between <% and %> tags). In

Ruby and Rails parlance, this is called an ERB template.

Note T he file extension of ERB templates is .erb. Those that are HTML-based
typically use the dual extension of .html.erb in Rails. This naming convention
allows you to have many erb files with the same root name but for different
response types.

The core part of the list view contains this code:

<% @entries.each do |entry| %>

 <tr>

 <td><%= entry.title %></td>

 <td><%= entry.content %></td>

 <td><%= link_to 'Show', entry %></td>

 <td><%= link_to 'Edit', edit_entry_path(entry) %></td>

 <td><%= �link_to 'Destroy', entry, method: :delete, data: { confirm:

'Are you sure?' } %></td>

 </tr>

<% end %>

Chapter 13 Two Web Application Approaches: Rails and Sinatra

418

This view code results in the main, dynamic part of the page being rendered: the

actual list of entries. There are a few key things to note. This whole section is a loop

over each element of @entries (using @entries’ each method with a code block). You
should recall that your controller code placed Entry objects from the database into the
@entries array, so the view code iterates over each element (or each entry). Next, two
table columns (using the <td> HTML tag) show the current entry’s title and content,
respectively. This is achieved using the <%= entry.title %> and <%= entry.content
%> blocks. Expressions within <%= and %> tags are interpreted and then substituted into
the final HTML output.

After the data for the entry has been shown, you reach this:

<td><%= link_to 'Show', entry %></td>
<td><%= link_to 'Edit', edit_entry_path(entry) %></td>
<td><%= link_to 'Destroy', entry, method: :delete, data: { confirm: 'Are
you sure?' } %>
</td>

The important parts to look at are the calls to the link_to method. link_to is a
special method provided by Rails that generates an HTML link to another controller
and/or action within the application. Let’s look at the first line:

<td><%= link_to 'Show', entry %></td>

Whereas the general Ruby code in the view is located within <% and %> tags, Ruby
code that results in something to be rendered in the document (i.e., shown on the web
page) is included within <%= and %> tags (as in the earlier <%= entry.title %> column).

The link_to method accepts the text to use for the link, and then it accepts
parameters that specify where the link should go.

In the <%= link_to 'Show', entry %> case, link_to assumes that since it has been
passed an entry object, you want to link to the page that will show only that entry—
specifically /entries/[id of entry].

In the second example, <%= link_to 'Edit', edit_entry_path(entry) %>, the
edit_entry_path shortcut method is used (with the entry object as a parameter) to
provide the hash of parameters to link to /entries/[id of entry]/edit.

The last example, <%= link_to 'Destroy', entry, method: :delete, data: {
confirm: 'Are you sure?' } %>, provides the entry object, as with the “show” version,
but the HTTP DELETE method is specified using the method argument, so link_to is
smart enough to realize you want to direct the link to the destroy method of the entries

controller in this case.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

419

Separate from these shortcuts, however, let’s look at how the parameters of link_to

can be manipulated directly to get the results you want.

Let’s review the generated output of various link_to examples (assuming a basic

Entry object is present in the entry variable):

<%= entry.id %>)

3

<%= entry.content %>

This is an example entry.

<%= link_to 'Show', :action => 'show' %>

Show

<%= link_to entry.title, :action => 'show', :id => entry.id %>

Example Entry

<%= link_to 'Show', :action => 'show', :id => entry.id %>

Show

It’s important to understand how these examples work, as many elements of views

rendered by Rails will contain patterns such as these, whether for generating links,

including images, or creating forms to post data back to your application.

At this stage, you might be wondering why you can’t write the HTML you want

directly into views and then build up the links manually, for example:

<a href="/entries/show/<%= entry.id %>"><%= entry.title %>

instead of

<%= link_to entry.title, :action => 'show', :id => entry.id %>

Chapter 13 Two Web Application Approaches: Rails and Sinatra

420

The simple answer is you can! Stylistically, however, Rails developers prefer to let

Rails’ helper methods (such as link_to) do the work of putting together fragments of

HTML that might need to change in the future. For example, in the future you might

choose to change the “entries” part of the URLs to “entry” for some reason or another,

and with Rails you could make changes to the application’s routing to do this. The

links generated by helpers such as link_to would then automatically reflect the new

conventions, whereas if you coded them with HTML, as previously, you’d have a lot of

searching and replacing to do in your views!

�Models and Relationships
So far, your application only has a single model, Entry, that relates to diary entries.

However, one major benefit the ActiveRecord library provides is the ability to relate

models easily to one another. For example, you could create another model called User

that relates to different people who can post diary entries in your system.

The full depth of ActiveRecord and model relationships (also known as associations)

can and does take up entire books, so is beyond the scope of this introduction, but in

this section, we’ll look at a basic example of how ActiveRecord models can relate to one

another.

In earlier sections of this chapter, you saw how ActiveRecord objects work at a basic

level, for example:

entry = Entry.find(1)

entry.title = 'Title of the first entry'

entry.save

Columns in the database become attributes that you can get and set on the objects,

and you can then save those objects back to the database with the object’s save method.

If you want to see the previous example in action, try using the Rails console. Similar

to irb, the Rails console allows developers to run commands. Unlike irb, Rails console

loads the entire Rails environment so that you can access all of the code in your project.

Running the console is simple. Using a terminal, go to the root directory of your Rails

project and type the following:

Chapter 13 Two Web Application Approaches: Rails and Sinatra

421

rails console

Running via Spring preloader in process 85677

Loading development environment (Rails 6.0.2.2)

irb(main):001:0>

Let’s imagine that you have a User model that contains columns including a user’s

name, email address, and other user-related information. Now let’s imagine that you

directly relate users and entries in your application. You might expect to be able to do

things like this:

entry = Entry.find(1)

entry.user.name = 'Name of whoever posted the entry'

entry.user.email = 'Their email address'

This is, indeed, what one-to-many relationships with ActiveRecord enable. Setting

up such a relationship between models is easy. Consider the two models, located in app/

models/entry.rb and app/models/user.rb, respectively:

class Entry < ApplicationRecord

 belongs_to :user

end

You would use this code for the User model:

class User < ApplicationRecord

 has_many :entries

end

ActiveRecord was designed to allow an almost natural language mechanism of defining

model relationships. In our Entry model, we say that Entry objects “belong_to” User

objects. In the User model, we say that a User object “has_many” associated Entry objects.

The only thing you need to set up, other than the relationship itself, is a column in

the entries table that enables the relationship to work. You need to store the id of the

associated user with each Entry object, so you need to add an integer column to entries

called user_id. You could do this by creating a new migration and using a directive such

as add_column :entries, :user_id, or :integer or by adding the column manually with

SQL (through another client).

Chapter 13 Two Web Application Approaches: Rails and Sinatra

422

Once the model relationship has been defined and relationships between data have

been made—which is as easy as, say, entry.user = User.find(1)—you can then access

data across the relationship. For example, in a view showing an entry, you might have

some view code such as this:

<p>Posted by <%= entry.user.name %> at <%= entry.created_at %></p>

ActiveRecord also supports many-to-many relationships. For example, consider the

relationship between fictional Student and Class models. Students can be associated

with more than one class at a time, and each class can contain many students. With

ActiveRecord, you can define these relationships using a join table and a has_and_

belongs_to_many relationship, or through an intermediary model such as Enrollment,

which defines the links between Students and Classes using has_many with a :through

parameter.

Note I t’s worth pointing out that a model called Class wouldn’t be allowed in
Rails, because there’s already a class called Class built into Ruby. Beware of
reserved words and using names that are already used elsewhere!

The variety of relationships possible are documented in the official Ruby on Rails

documentation at https://guides.rubyonrails.org/association_basics.html.

�Sessions and Filters
A useful feature provided by Rails applications is support for sessions. When a web

browser makes a request to your application, Rails silently sends back a cookie containing

a unique identifier for that browser. Whenever that browser makes further requests, it

sends back the cookie with the unique identifier, so the application always knows when a

certain previous visitor is making another request. You can use the session’s ability to store

information that’s specific to a particular visitor for use on future requests.

Sessions are commonly used on websites for features such as shopping carts or

keeping track of what pages you’ve visited. For example, if you add an item to your cart at

an ecommerce site, the item chosen is stored in a data store associated with your session’s

ID. When you come to check out, your session ID is used to look up data specific to your

session in the session system’s data store and find out what you have in your cart.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

https://guides.rubyonrails.org/association_basics.html

423

To demonstrate basic session storage in your Rails application, you’ll count and show a

user how many times he or she has accessed actions within your application. To do this, you

need to have some way of performing this logic on each request made to the application. You

could add logic to every controller action, but an easier way is to use a filter method called

before_action.

before_action is a method you can use at the controller class level to define that

a method (or, indeed, many methods) should be executed before the method for the

controller action of the current request. Filters make it possible to perform generic

activities before every request (or before requests to certain groups of methods or certain

controllers).

Note A common use for filters within Rails is to make sure visitors are
authenticated and authorized to visit certain controllers and perform certain
actions. If you have a controller class called AdminController, you might want
to add a before_action that ensures a visitor is logged in to the site as an
admin user before you let him or her use the potentially dangerous actions within!

In this example, you’ll use before_action to perform some logic before every

request to the application. To do this, you’ll add some code to app/controllers/

application_controller.rb so that every controller in your application (although there

is only one in this case, entries) will be subjected to the filter.

Here’s app/controllers/application_controller.rb before the new code:

class ApplicationController < ActionController::Base

end

Here’s the same file after implementing your request-counting code (and removing

the comments):

class ApplicationController < ActionController::Base

 before_action :count_requests_in_session

 def count_requests_in_session

 session[:requests] ||= 0

 session[:requests] += 1

 end

end

Chapter 13 Two Web Application Approaches: Rails and Sinatra

424

You use before_action with a symbol as a parameter, where the symbol represents

the count_requests_in_session method.

Tip L earn more about filters at https://guides.rubyonrails.org/
action_controller_overview.html#filters.

Within the count_requests_in_session method, a hash provided by Rails called

session is used. Automatically, session is always a data store associated with the

current session, so anything you write to it or read from it is always associated with the

current session.

In this case, you initialize session[:requests] with 0 if it is not already defined, and

then you increase the count on the next line. You can access this information from your

views now quite easily. Go to app/views/entries/index.html.erb and add this line to

the top of the file:

<%= session[:requests] %>

If you now load http://localhost:3000/entries, you’ll see 1 at the top of the page.

Reload the page, and the number increases for each reload. Sessions in action!

�Other Features
Although you’ve managed to create a basic working Rails application so far, I’ve only

covered the bare essentials. In this section, I’ll quickly cover a few key areas that you’ll

want to know about before exploring Rails further independently.

�Layouts

In the Rails application developed earlier in this chapter, you let scaffolding do the work

of creating views for you. You then looked through the views created to see how they

work. The scaffolding generator also created a layout, a sort of super-template that can

be used to render the generic code around the code specific for a certain action. For

example, most HTML documents would start off something like this:

<!doctype html>

<html lang="en">

<head>

Chapter 13 Two Web Application Approaches: Rails and Sinatra

https://guides.rubyonrails.org/action_controller_overview.html#filters
https://guides.rubyonrails.org/action_controller_overview.html#filters

425

 <meta charset="utf-8">

 <title>Page Title Here</title>

 <link rel="stylesheet" href="styles.css">

</head>

<body>

And, at the very least, a typical HTML document would end somewhat like this:

</body>

</html>

In Rails, layouts are special, generic wrapper templates that multiple views can use.

Instead of repeating the HTML header and footer code within every view, you can simply

embed each view’s output into a layout instead. By default, if there’s a file with the same

base name as the current controller in app/views/layouts, it’s used as a layout.

In the scaffolded application’s case, the layout used was app/views/layouts/

application.html.erb. Let’s take a look at it:

<!DOCTYPE html>

<html>

 <head>

 <title>Mydiary</title>

 <%= csrf_meta_tags %>

 <%= csp_meta_tag %>

 <%= �stylesheet_link_tag 'application', media: 'all', 'data-turbolinks-

track': 'reload' %>

 <%= �javascript_pack_tag 'application', 'data-turbolinks-track':

'reload' %>

 </head>

 <body>

 <%= yield %>

 </body>

</html>

This layout includes the basic HTML header and footer items, but also uses some

special Rails code to include style sheets (with the stylesheet_link_tag method),

JavaScript, and more that the page relies on.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

426

The <%= yield %> code yields the rendering process to the view for the current

action, so the contents of the current view are rendered at that location.

If you so choose, you can force a view to be displayed without a layout by adding

a line at the point of render (i.e., in the relevant method or action) in the entries

controller, like so:

render layout: false

You can also specify a different layout to use in this way by supplying a layout name

to render instead:

render layout: 'some_other_layout'

This would then use app/views/layouts/some_other_layout.html.erb for the

layout of that action’s view.

Note  You can learn more about layouts at https://guides.rubyonrails.
org/layouts_and_rendering.html.

�Where to Go Next: References, Books, and Example Apps
Rails has been in popular use since the end of 2004, and it has attracted the interest

of thousands of developers, many of whom blog about the framework or release the

source of their own Rails applications for free. You can also look to some large-scale Rails

applications for inspiration.

The best way to learn Rails, beyond the basics, is to keep up with the new features

being added to the framework as it is being developed, to read the source code of other

people’s applications, and to experiment. Rails isn’t something that you can master

quickly.

This section provides links to several useful references, books, and example

applications you can investigate.

�Reference Sites and Tutorials

Following are some useful reference sites and tutorials to help you get started using

Rails:

Chapter 13 Two Web Application Approaches: Rails and Sinatra

https://guides.rubyonrails.org/layouts_and_rendering.html
https://guides.rubyonrails.org/layouts_and_rendering.html

427

•	 Official Ruby on Rails API (https://api.rubyonrails.org/): The

official documentation for the Ruby on Rails framework. Almost

every class and method provided by Rails is documented.

•	 Ruby on Rails guides (https://guides.rubyonrails.org/): A useful

set of guides for Ruby on Rails written by prominent community

members. They’re very well written and kept up to date with the

latest version of Rails.

•	 Getting Started with Rails (https://guides.rubyonrails.org/

getting_started.html): A beautifully written introduction to Rails

that covers much of the same ground as this chapter. The benefit of

this guide, however, is that it will be kept up to date with the latest

version of Rails, which may be useful to you in case there are major

changes.

�Rails Books

There are several books that will walk you through Rails from start to finish, from setting

up and looking at scaffolded apps (as in this chapter) to building complete apps with

multiple models and customized views that are deployed on the Web.

I recommend investigating the following:

•	 Agile Web Development with Rails 4, by Sam Ruby, Dave Thomas,

and David Heinemeier Hansson (Pragmatic Bookshelf, 2013): Many

Rails developers consider Agile Web Development with Rails to be

the canonical Rails tutorial book, particularly as Rails’ creator David

Heinemeier Hansson has always been involved in its development.

Its latest edition came out in September 2013, and it covers Rails 4.0

specifically, although much of it will continue to be relevant now.

•	 The Rails Tutorial, by Michael Hartl: In the past few years, this has

essentially become the Rails tutorial. It’s a paid-for ebook and set of

screencasts, but you can also read the material on the Web for free.

It's superb and walks you through the entire process of building a

complete Rails app. I strongly recommend you move onto it after

reading this book. It's available at http://railstutorial.org/.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

https://api.rubyonrails.org/
https://guides.rubyonrails.org/
https://guides.rubyonrails.org/getting_started.html
https://guides.rubyonrails.org/getting_started.html
http://railstutorial.org/

428

�Sinatra: Lightweight, Simple Web Applications
Sinatra calls itself a “DSL for quickly creating web applications.” It’s not a framework in

the typical sense. It’s a library that offers HTTP deployment functionality. In essence,

however, it’s a very lightweight web application framework that lets you either add HTTP

functionality to existing apps or build new ones from scratch as simply as possible.

Sinatra was initially developed solely by Blake Mizerany and first appeared in 2007,

but it was not until early 2009 that its popularity exploded, and now there are many

developers responsible for it.

To install Sinatra, you can run

gem install Sinatra

You can visit the project’s homepage at http://sinatrarb.com/ for further

instructions.

�The Extreme Simplicity of Sinatra
Unlike Rails, there’s no enforcement of concepts like MVC or REST in Sinatra. Sinatra

is very “at the bare metal” in terms of its functionality. You can write an entire app in a

single Ruby file if you wish, or, alternatively, you can develop lots of classes, sprawl your

app out over hundreds of files, and really go to town. Sinatra is permissive of almost any

development style and offers no Rails-like formula or constraints.

A great way to see how simple a Sinatra app can be is, as always, by trying an example

application:

require 'sinatra'

get '/' do

 "Hello, world!"

end

Place the code in a file named hello_world.rb. Start the Sinatra server by running

ruby hello_world.rb

A HTTP server will start on your local machine on port 4567. You can try to access it

at http://localhost:4567/, where upon you should see “Hello, world!” returned.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

http://sinatrarb.com/

429

Other than the necessities of loading Sinatra, the only command is get, which has a

single parameter referring to the path ("/") on which to serve the result of the attached

code block (which merely returns the string “Hello, world!” in this case).

Note  You can make a Sinatra app run on a different port by specifying a -p
[PORT] option on the command line (e.g., ruby sinatra1.rb -p 1234). You can
see other command-line functions by using the -h option.

When comparing Sinatra with Rails, it’s notable that this app is a single file with only

a few lines of code. There’s no large framework of ancillary code and there’s no database.

This has its pros and cons, depending on what you’re trying to develop. Loading a

database library works the same way in a Sinatra app as in a regular Ruby app, if you

choose to do so. You might also choose to use PStore or CSV, as we did in Chapter 9. The

key point is that it’s entirely up to you. Sinatra is completely flexible!

�General URL Routing and Parameter Matching
In the previous section, we looked at an app that returned a string on an HTTP GET

request for the root path of a URL. It’s possible, of course, to take it further:

require 'sinatra'

get '/' do

 "Hello, world!"

end

get '/bye' do

 "Leaving already?"

end

get '/time' do

 Time.now.to_s

end

In this example, we’re serving up different content for different specified URLs—

nothing too complex about that. But what if we want to dynamically work with content or

parameters provided in the URL? That’s possible too:

Chapter 13 Two Web Application Approaches: Rails and Sinatra

430

get '/add/:a/:b' do

 (params[:a].to_i + params[:b].to_i).to_s

end

Note  For brevity, I’m omitting the requires in the examples from here on.

This time we’ve used a special format to denote a named parameter in the

URL. These parameters are then made available to the code block in the params hash

(parameters work in a similar way in Rails).

If we ran the last example and made a request for /add/5/6, then 5 would end up in

params[:a] and 6 would end up in params[:b], which enables us to add them together

and return the result to the HTTP client.

It’s also possible to access named parameters with block parameters. This example is

functionally equivalent to the last:

get '/add/:a/:b' do |a, b|

 (a.to_i + b.to_i).to_s

end

Tip S inatra also has support for wildcard and regular expression parameters.
These are beyond the scope of this introduction, but basic examples can be found
in Sinatra’s README document at www.sinatrarb.com/intro.html.

It’s also possible to support other HTTP verbs, such as POST, PUT, and DELETE. You

can do this by using the post, put, and delete methods to define blocks instead of using

get. Here’s an example of using get and post together on the same URL to implement a

form:

get '/' do

 %q{<form method="post">

 Enter your name: <input type="text" name="name" />

 <input type="submit" value="Go!" />

 </form>}

end

Chapter 13 Two Web Application Approaches: Rails and Sinatra

http://www.sinatrarb.com/intro.html

431

post '/' do

 "Hello #{params[:name]}!"

end

If you visit http://localhost:4567/, fill in the text field, and click the Go! button,

your web browser will issue a POST HTTP request back to the same URL, and the second

method in the example will be executed.

�Views, Templates, and Static Files
As with Rails, views make up the part of web applications that users see and interact

with in their browsers. In the basic examples in the previous section, we simply returned

strings containing HTML from the Sinatra routing methods (get, post, put, and delete).

Luckily, you’re not consigned to this style, and Sinatra provides some handy shortcuts

for making views a lot easier to work with.

�Inline and In-File Templates

Sinatra provides easy access to template renderers for ERB, Haml, Builder (used for

XML), and Sass (used for CSS) out of the box, assuming that you have their respective

gems installed, for example:

before do

 @people = [

 { name: "Beatrice", age: 20 },

 { name: "Eugenie", age: 18 },

 { name: "Louise", age: 6 }

]

end

get '/' do

 erb %{

 <% @people.each do |person| %>

 <p><%= person[:name] %> is <%= person[:age] %> years old</p>

 <% end %>

 }

end

Chapter 13 Two Web Application Approaches: Rails and Sinatra

432

In this case, we’re using an ERB template (much as Rails views typically use)

supplied as a string to the erb method, which then renders the ERB template into a final

string that is returned to the client. This is commonly referred to as an inline template. In

this case, the output would be as follows:

Beatrice is 20 years old

Eugenie is 18 years old

Louise is 6 years old

Note  You can learn more about ERB in Chapter 16.

BEFORE FILTERS

Notice that in the first example in this section, the @people variable is defined within a

before code block. before blocks are designed to be used for code that is to be executed

before every request. Anything that occurs within a before block will be in the same object

scope as the processing of the request (as in the get block). Therefore, the before block was

used, in this case, to provide a simple data structure for the ERB template to use.

If you were familiar with the Haml, Builder, or Sass templating systems, you could

use those in a similar way to render HTML, XML, and CSS, respectively.

It is also possible to store templates at the end of the source code file and reference

them from the calls to erb, haml, builder, or sass, for example:

get '/' do

 erb :index

end

__END__

Chapter 13 Two Web Application Approaches: Rails and Sinatra

433

@@ index

 <% @people.each do |person| %>

 <p><%= person[:name] %> is <%= person[:age] %> years old</p>

 <% end %>

Note  For brevity, the before block is not shown in this example.

This example works in exactly the same way as the one prior, except that the

template has been moved into a special data area after the main Ruby source code.

In Ruby, if the _END_ delimiter is used, then any text coming after it is not processed

as Ruby code but as input to the application if the application so chooses to read it.

Sinatra can use this functionality to support placing named templates into the source

code file itself.

Templates used in this way are prefixed with @@ [name] so that the template can

then be referenced by the template rendering commands (erb in this case) by using the

symbol representing the name of the template (e.g., erb :index).

�Layouts

Similarly to Rails, Sinatra supports layouts for generic templating. For example, complete

HTML files tend to have full <html> and <head> definitions, titles, references to style

sheets, JavaScript, and so forth. You don’t want to code this into every individual

template, so instead you can concoct a layout that wraps around your views.

In Sinatra, a layout is defined in the same way as any other template. If you define

a template with the name of layout, then it will be used by the template rendering

methods (such as erb) by default, for example:

before do

 @people = [

 { name: "Beatrice", age: 20 },

 { name: "Eugenie", age: 18 },

 { name: "Louise", age: 6 }

]

end

Chapter 13 Two Web Application Approaches: Rails and Sinatra

434

get '/' do

 erb :index

end

__END__

@@ layout

 <html>

 <head><title>My App</title></head>

 <body>

 <h1>My App</h1>

 <%= yield %>

 </body>

 </html>

@@ index

 <% @people.each do |person| %>

 <p><%= person[:name] %> is <%= person[:age] %> years old</p>

 <% end %>

This application has two templates: layout and index. When the index template is

rendered, erb will notice that there’s a template called layout and render that first, only

yielding to the index template when it encounters the yield method. This results in a

page that contains all of layout’s HTML, but with index’s specific HTML embedded

within.

You can, of course, have more than one layout. For example, if you defined a second

layout called anotherlayout, you could tell erb to render it specifically:

erb :index, layout: :anotherlayout

You could also choose to render no layout at all:

erb :index, layout: false

�External Templates and Layouts

Having templates and layouts within your source code file can result in a very small,

easy-to-understand application, but once your application reaches a certain size, it can

become cumbersome—not only to read, but to maintain!

Chapter 13 Two Web Application Approaches: Rails and Sinatra

435

Luckily, you can place templates (including layouts) into external files that Sinatra

will load when it comes to render time.

By default, external template files are expected to be in a directory called views

located within that of your source code file, although you can override this if you wish

using a set directive at the start of your app:

set :views, File.dirname(FILE) + '/templates'

Once you have your folder ready, you can place views into it using filenames

along the lines of [template name].[format]. For example, assume this is how we’re

rendering our view:

erb :index, :layout => 'mylayout'

If no in-file template called index is defined, Sinatra will look for the file index.erb

in the views directory (or whatever directory you set). Similarly, if you were using the

sass, haml, or builder methods, they would be looking for their own extensions.

The layout situation is very much the same. With the previous line of code, Sinatra

would be looking for the mylayout.erb file.

�Static Files

Most web applications will rely on static files, often in rendering views. Static files

include things like JavaScript files, images, or style sheets. Rather than define templates

for these things or serve them programmatically, Sinatra can serve them directly for you.

By default, static files are expected to be in the public subdirectory. As with the

external templates directory, however, you can define where you want static files to be if

you wish:

set :public, File.dirname(FILE) + '/myfiles'

When a request comes in to the Sinatra app for, say, /images/box.gif, Sinatra will

first look to see if public/images/box.gif exists before dispatching the request to your

application. If the file exists, it will be served up directly. If not, the request will make its

way into your app, where it will either be caught with a route or generate an error.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

436

�Request Flow Control
So far we’ve looked at how to make a Sinatra app return content for requests made to

specific URLs, but we haven’t looked at any flow control.

What if you wanted to only show a page in a certain situation or wanted to redirect

someone somewhere else if other conditions are present? What if you needed to raise an

error? We’ll look at these situations in this section.

�Redirection

Let’s say that you want to build a simple, scrappy web application that only gives out data

if someone uses the right password. You could write it like this:

require 'sinatra'

get '/' do

 erb :index, :layout => :layout

end

post '/secretdata' do

 erb :secretdata

end

__END__

@@ layout

 <html><head><title>My App</title></head>

 <body><%= yield %></body></html>

@@ index

 <form method="POST" action="/secretdata">

 Password: <input type="text" name="password" />

 <input type="submit" value="Log in" />

 </form>

@@ secretdata

 Here's our secret data: <code>30'N 12'W</code>

Chapter 13 Two Web Application Approaches: Rails and Sinatra

437

Your app is a regular Sinatra app with all of the templates within the source file.

The index template features a form that asks for a password that is then sent to the /

secretdata action through an HTTP POST request. The “secret data” is then rendered.

In this example, whatever password you type in (or even no password at all) will

result in you seeing the secret data. So what if you want to redirect someone back to

the form if they get the password wrong? All you have to do is change the /secretdata

action:

post '/secretdata' do

 redirect '/' if params[:password] != 'xyzzy'

 erb :secretdata

end

Now you’re using Ruby’s regular if construct to see if the password parameter is not

equal to 'xyzzy', and if not, you redirect back to the index URL (/).

redirect in Sinatra is a lot simpler than redirect_to in Rails. Its parameter is simply

the URL you want to redirect to, whether an absolute URL or a relative one (as used in

the prior example). Using an absolute URL, you could redirect the user anywhere:

redirect 'http://www.google.com/'

�Halting

In the last section, we looked at a basic “secret data” app that prevents access to a certain

page unless the correct password is supplied. We’ll use the context of that example again

to explore halting and passing in this section.

Assume that your app is for another computer program to use, rather than web

browser–equipped humans. Redirecting to the front page when the password is wrong

is not particularly illustrative to an automated client, and typically you’d return an HTTP

error code and message instead. In the case of a wrong password, you’d typically return a

403-status code and a “Forbidden” message.

Tip L earn more about HTTP status codes and messages at https://
en.wikipedia.org/wiki/List_of_HTTP_status_codes.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

438

When you want a request to cease and return a particular message (rather than a

rendered page), you use Sinatra’s halt method to halt the request. Let’s rewrite the /

secretdata method from the app in the last section to do this:

post '/secretdata' do

 halt 403 if params[:password] != 'xyzzy'

 erb :secretdata

end

In this case, you’ve replaced the redirect with a call to the halt method. If you want

to set an HTTP status code and return a message, you pass it an array with those items

respectively. Alternatively, you could pass an HTTP status code, although it’s better to

return a message too in case a human is accessing your app and doesn’t know what 403

really means!

�Error Handling

If you try to access a URL on a Sinatra application that isn’t handled by one of the route

methods, an error page will show up. You can control what this error page looks like by

defining a not_found block:

require 'sinatra'

not_found do

 "<html><body>Sorry, you're lost!</body></html>"

end

If you ran this application, every request you made to it would result in the HTML in

the not_found block being returned because no routes are defined to handle requests to

any URL. Note that you could define an external (on internal) view and render it in the

typical way with the erb method instead, if you wished.

As well as not_found, Sinatra offers a way to define a response that should be used

when a fatal error occurs in the application. For example, let’s build a small application

that divides two numbers:

require 'rubygems'

require 'sinatra'

set :show_exceptions, false

Chapter 13 Two Web Application Approaches: Rails and Sinatra

439

error do

 redirect 'http://en.wikipedia.org/wiki/Division_by_zero'

end

get '/divide/:a/:b' do |a, b|

 "#{a.to_i / b.to_i}"

end

Note T he set :show_exceptions, false directive is included because,
when you’re in development mode, Sinatra shows you a helpful “exception” page
by default which overrides what you do in error blocks.

If you ran this application and accessed http://127.0.0.1:4567/divide/40/10,

you’d be given “4” as a response. Try http://127.0.0.1:4567/divide/10/0, however,

and you’ll be cheekily redirected to a Wikipedia page all about the perils of dividing a

number by zero! This is probably not how you’d want to treat your real-life users, but the

point is made.

In a way, the error block has worked in a similar way to the rescue block when

handling Ruby exceptions.

Tip H ead back to the “Exceptions and Error Handling” section of Chapter 8 if you
need a rescue refresher!

Like rescue, Sinatra’s error blocks can also be defined to only respond to certain

types of exceptions, whether regular Ruby exceptions or ones of your own creation. A

single exception’s class or an array of exception classes can be provided as a parameter

before the associated code block.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

440

�Summary
In this chapter, we looked at how to develop some very basic web applications using Rails

and Sinatra. Rails in particular gives you a lot of power out of the box and enables you to

develop a fully working, database-driven web application in a short period of time. Sinatra,

on the other hand, shows you how simple it can be to put smaller web apps together.

We’ve merely scratched the surface in this chapter, as Rails is a large and complex

framework (though simple to use, it has many details that are complex for advanced usage).

Entire books larger than this one have been written about Rails, so this chapter merely

provides a taste. You can use the references in the previous section to learn more about the

framework, and you can investigate the selection of Apress books available about Rails (see

www.apress.com). Sinatra also goes a lot deeper than we’ve been able to scratch here.

Larger frameworks like Rails can seem complex initially, but the complexity of the

directory structure and default files created by the rails tool are only there to make your

job as a developer easier by providing a familiar structure and separation of concerns.

Once you’re familiar with the layout and the tools Rails makes available, developing web

applications is a simple, organized process.

Let’s reflect on the main concepts introduced in this chapter:

•	 Ruby on Rails: A Ruby-based web application development

framework developed by David Heinemeier Hansson. See Chapter 5

for the history behind Ruby on Rails.

•	 Framework: A set of libraries and tools that can be used as a

foundation for developing applications.

•	 Models: Classes that represent forms of data used by the application

and that contain the logic to manipulate and retrieve that data.

•	 Views: Templates and HTML code (more accurately, code that

includes both HTML and embedded Ruby code) that produce the

pages that users of the web application will see. Views can output

data as HTML for web browsers, XML, RSS, and other formats.

•	 Controllers: Classes that process user input and control what data is

sent to the views to output. Controllers contain the logic that binds

together models, data, and views.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

http://www.apress.com

441

•	 Actions: Methods contained within controllers that are accessed

when requests for specific URLs are made on the parent web

application.

•	 CRUD (create, read, update, delete): The four basic actions you can

perform upon discrete items and that are common to most web

applications. In Rails, these operations can correspond to the PUT,

GET, POST, and DELETE HTTP verbs.

•	 ActiveRecord: A library that abstracts databases, rows, columns, and

SQL into standard Ruby syntax using classes and objects. It’s a major

part of the Ruby on Rails framework.

•	 Routing: The process of translating a URL into the desired controller

and action by using routing patterns.

•	 Session: A process by which a unique ID is given to a new user of

an application, and this unique ID is given back and forth on each

further request, thereby making it possible to track that user.

•	 Plugins: Libraries for the Ruby on Rails framework that “plug in” to

your applications. Plugins can override Rails’ default behaviors or

extend the framework with new features you can easily use from your

application, such as authentication systems. Plugins are installed

on a per-application basis rather than for the Rails framework as a

whole.

•	 Sinatra: A lightweight framework (or library) for developing web-

facing applications in Ruby without significant amounts of ancillary

code. A Sinatra app can be represented in a few lines of code. Its

official website is at http://sinatrarb.com/.

In this chapter, we looked at developing web applications under an organized

framework, and in the next chapter, we’ll look at using Internet protocols more directly.

You can combine the techniques covered in Chapter 14 with your Rails applications so

that they can communicate with other services available online, such as email, FTP, and

data from other websites.

Chapter 13 Two Web Application Approaches: Rails and Sinatra

http://sinatrarb.com/

443
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_14

CHAPTER 14

Ruby and the Internet
In this chapter, we’re going to look at how to use Ruby with the Internet and with the

various services available on the Internet, from the Web to email and file transfers.

The Internet has recently become an inescapable part of software development, and

Ruby has a significant number of libraries available to deal with the plethora of Internet

services available. In this chapter, we’ll focus on a few of the more popular services: the

Web, email (POP3 and SMTP), and FTP, along with how to process the data we retrieve.

In Chapter 15, we’ll look at how to develop actual server or daemon code using

Ruby along with lower-level networking features, such as pinging, TCP/IP, and sockets.

However, this chapter focuses on accessing and using data from the Internet, rather than

on the details of Ruby’s networking features.

�HTTP and the Web
HyperText Transfer Protocol (HTTP) is an Internet protocol that defines how web

servers and web clients (such as web browsers) communicate with each other. The

basic principle of HTTP, and the Web in general, is that every resource (such as a web

page) available on the Web has a distinct Uniform Resource Locator (URL) and that web

clients can use HTTP verbs such as GET, POST, PUT, and DELETE to retrieve or otherwise

manipulate those resources. For example, when a web browser retrieves a web page,

a GET request is made to the correct web server for that page, which then returns the

contents of the web page.

In Chapter 10, we looked briefly at HTTP and developed some simple web server

applications to demonstrate how Ruby applications can make their features available

on the Internet. In this section, we’re going to look at how to retrieve data from the Web,

parse it, and generate web-compatible content.

https://doi.org/10.1007/978-1-4842-6324-2_14#DOI

444

�Downloading Web Pages
One of the most basic actions you can perform on the Web is downloading a single web

page or document. First, we’ll look at how to use the most commonly used Ruby HTTP

library, net/http, before moving on to a few notable alternatives.

�The net/http Library

The net/http library comes standard with Ruby and is the most commonly used library

to access websites. Here’s a basic example:

require 'net/http'

Net::HTTP.start("www.apress.com", use_ssl: true) do |http|

 req = Net::HTTP::Get.new('/sitemap.xml')

 body = http.request(req).body

 puts body.force_encoding("UTF-8")

end

This example loads the net/http library, connects to the web server www.apress.com

(the publisher page of this book), and performs an HTTP GET request for /sitemap.xml.

The HTML for the page is returned and displayed. The equivalent URL for this request is

www.apress.com/sitemap.xml, and if you load that URL in your web browser, you’ll get

the same response as Ruby.

Note  In the example, there was something we haven’t learned about: force_
encoding(“UTF-8”). This method forces Ruby to output the body of the response
using UTF-8 encoding. Depending on what operating system you use, this may
or not be needed. Encoding is an important topic in computing, but we will not
be covering it in this book. Check out the Ruby docs page for more information:
https://ruby-doc.org/core/Encoding.html.

As the example demonstrates, the net/http library is barebones. Rather than simply

passing it a URL, you have to pass it the URL of the web server and then the resource

path. You also have to specify the GET HTTP request type and trigger the request using

the request method. You can simplify your code by using the URI library that comes

Chapter 14 Ruby and the Internet

http://www.apress.com
http://www.apress.com/sitemap.xml
https://ruby-doc.org/core/Encoding.html

445

with Ruby, which provides a number of methods to turn a URL into the various pieces

needed by net/http. Here’s an example:

require 'net/http'

url = URI.parse('https://www.apress.com/sitemap.xml')

Net::HTTP.start(url.host, url.port, use_ssl: true) do |http|

 req = Net::HTTP::Get.new(url.path)

 body = http.request(req).body

 puts body.force_encoding("UTF-8")

end

In this example, you use the URI class (automatically loaded by net/http) to parse

the supplied URL. An object is returned whose methods host, port, and path supply

different parts of the URL for Net::HTTP to use. Note that in this example you provide

three parameters to the main Net::HTTP.start method: the URL’s hostname, the

URL’s port number, and an options hash that configures Net:HTTP to use SSL. The port

number is optional, but URI.parse is clever enough to return the HTTP port number of

443.

It’s possible to produce an even simpler example:

require 'net/http'

url = URI.parse('https://www.apress.com/sitemap.xml')

response = Net::HTTP.get_response(url)

puts response.body.force_encoding("UTF-8")

Instead of creating the HTTP connection and issuing the GET explicitly, Net::HTTP.

get_response allows you to perform the request in one stroke. We removed use_ssl

since get_response determines if SSL is needed from the URL. There are situations

where this can prove less flexible, but if you simply want to retrieve documents from the

Web, it’s an ideal method to use.

Chapter 14 Ruby and the Internet

446

Checking for Errors and Redirects

Our examples so far have assumed that you’re using valid URLs and are accessing

documents that actually exist. However, Net::HTTP will return different responses based

on whether the request is a success or not or if the client is being redirected to a different

URL, and you can check for these. In the following example, a method called get_web_

document is created that accepts a single URL as a parameter. It parses the URL, attempts

to get the required document, and then subjects the response to a case/when block:

require 'net/http'

def get_web_document(url)

 uri = URI.parse(url)

 response = Net::HTTP.get_response(uri)

 case response

 when Net::HTTPSuccess

 return response.body.force_encoding("UTF-8")

 when Net::HTTPRedirection

 return get_web_document(response['Location'])

 else

 return nil

 end

end

puts get_web_document('https://www.apress.com/sitemap.xml')

puts get_web_document('https://www.apress.com/doesnotexist.xml')

puts get_web_document('https://ruby-doc.org/core')

Note  https://ruby-doc.org/core redirects to the latest version of the Ruby
core library. This helps to demonstrate that the redirect is handled correctly.

If the response is of the Net::HTTPSuccess class, the content of the response will be

returned; if the response is a redirection (represented by a Net::HTTPRedirection object

being returned), then get_web_document will be called again, with the URL specified

as the target of the redirection by the remote server. If the response is neither a success

Chapter 14 Ruby and the Internet

https://ruby-doc.org/core

447

nor a redirection request, an error of some sort has occurred, and nil will be returned

(hence the empty line in the preceding results).

If you wish, you can check for errors in a more granular way. For example, the

error 404 means “File Not Found” and is specifically used when trying to request a

file that does not exist on the remote web server. When this error occurs, Net::HTTP

returns a response of class Net::HTTPNotFound. However, when dealing with error 403,

“Forbidden,” Net::HTTP returns a response of class Net::HTTPForbidden.

Note A list of HTTP errors and their associated Net::HTTP response classes
is available at www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/
classes/Net/HTTP.html.

Basic Authentication

As well as basic document retrieval, net/http supports the Basic Authentication scheme

used by many web servers to protect their documents in a password-protected area.

This demonstration shows how the flexibility of performing the entire request with

Net::HTTP.start can come in useful:

require 'net/http'

url = URI.parse('http://browserspy.dk/password-ok.php')

Net::HTTP.start(url.host, url.port) do |http|

 req = Net::HTTP::Get.new(url.path)

 req.basic_auth('test', 'test')

 puts http.request(req).body

end

Note A uthentication is ignored on requests for unprotected URLs, but if you were
trying to access a URL protected by Basic Authentication, basic_auth allows you
to specify your credentials.

Chapter 14 Ruby and the Internet

http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/classes/Net/HTTP.html
http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/classes/Net/HTTP.html

448

Posting Form Data

In our examples so far, we have only been retrieving data from the Web. Another form

of interaction is to send data to a web server. The most common example of this is

when you fill out a form on a web page. You can perform the same action from Ruby, for

example:

require 'net/http'

url = URI.parse('fakeserver.apress.com/form.cgi')

response = Net::HTTP.post_form(url,{'name' => 'David', 'age' => '24'})

puts response.body

You say David is 24 years old.

In this example, you use Net::HTTP.post_form to perform a POST HTTP request to

the specified URL with the data in the hash parameter to be used as the form data.

Note  fakeserver.apress.com/form.cgi is not a working URL. For this
code to work, you will need to provide a URL that accepts a HTTP POST.

As with the basic document retrieval examples, there’s a more complex, lower-level

way to achieve the same thing by taking control of each step of the form submission

process:

require 'net/http'

url = URI.parse('fakeserver.apress.com/form.cgi')

Net::HTTP.start(url.host, url.port) do |http|

 req = Net::HTTP::Post.new(url.path)

 req.set_form_data({ 'name' => 'David', 'age' => '24' })

 puts http.request(req).body

end

This technique also allows you to use the basic_auth method if needed.

Chapter 14 Ruby and the Internet

449

Using HTTP Proxies

Proxying is when HTTP requests do not go directly between the client and the HTTP

server, but through a third party en route. In some situations, it might be necessary to use

an HTTP proxy for your HTTP requests. This is a common scenario in schools and offices

where web access is regulated or filtered.

net/http supports proxying by creating an HTTP proxy class upon which you

can then use and perform the regular HTTP methods. To create the proxy class, use

Net::HTTP::Proxy, for example:

web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)

This call to Net::HTTP::Proxy generates an HTTP proxy class that uses a proxy with

a particular hostname on port 8080. You would use such a proxy in this fashion:

require 'net/http'

web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)

url = URI.parse('https://www.apress.com/sitemap.xml')

web_proxy.start(url.host, url.port, use_ssl: true) do |http|

 req = Net::HTTP::Get.new(url.path)

 puts http.request(req).body.force_encoding("UTF-8")

end

In this example, web_proxy replaces the reference to Net::HTTP when using the

start method. You can use it with the simple get_response technique you used earlier

too:

require 'net/http'

web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)

url = URI.parse('https://www.apress.com/sitemap.xml')

response = web_proxy.get_response(url)

puts response.body.force_encoding("UTF-8")

Chapter 14 Ruby and the Internet

450

These examples demonstrate that if your programs are likely to need proxy support

for HTTP requests, it might be worth generating a proxy-like system even if a proxy isn’t

required in every case, for example:

require 'net/http'

http_class = ARGV.first ? Net::HTTP::Proxy(ARGV[0], ARGV[1]) : Net::HTTP

url = URI.parse('https://www.apress.com/sitemap.xml')

response = http_class.get_response(url)

puts response.body.force_encoding("UTF-8")

If this program is run and an HTTP proxy hostname and port are supplied on the

command line as arguments for the program, an HTTP proxy class will be assigned to

http_class. If no proxy is specified, http_class will simply reference Net::HTTP. This

allows http_class to be used in place of Net::HTTP when requests are made, so that

both proxy and nonproxy situations work and are coded in exactly the same way.

Secure HTTP with HTTPS

HTTP is a plain text, unencrypted protocol, and this makes it unsuitable for transferring

sensitive data such as credit card information. HTTPS is the solution, as it’s the same as

HTTP but routed over Secure Socket Layer (SSL), which makes it unreadable to any third

parties.

Ruby’s net/https library makes it possible to access HTTPS URLs, and you can make

net/http use it semi-transparently by setting the use_ssl attribute on a Net::HTTP

instance to true, like so:

require 'net/http'

url = URI.parse('https://www.apress.com/sitemap.xml')

http = Net::HTTP.new(url.host, url.port)

http.use_ssl = true if url.scheme == 'https'

request = Net::HTTP::Get.new(url.path)

puts http.request(request).body.force_encoding("UTF-8")

Chapter 14 Ruby and the Internet

451

Note that you use the scheme method of url to detect if the remote URL is in fact one

that requires SSL to be activated.

It’s trivial to mix in the form-posting code to get a secure way of sending sensitive

information to the remote server:

require 'net/http'

This isn't a working URL, replace with a URL that accepts POST request

url = URI.parse('https://your.serversomewhere.com/form1')

http = Net::HTTP.new(url.host, url.port)

http.use_ssl = true if url.scheme == 'https'

request = Net::HTTP::Post.new(url.path)

request.set_form_data({ 'credit_card_number' => '1234123412341234' })

puts http.request(request).body.force_encoding("UTF-8")

net/https also supports associating your own client certificate and certification

directory with your requests, as well as retrieving the server’s peer certificate. However,

these are advanced features only required in a small number of cases and are beyond the

scope of this section. Refer to Appendix B for links to further information.

�The Open-Uri Library

open-uri is a library that wraps up the functionality of net/http, net/https, and net/ftp

into a single package. Although it lacks some of the raw power of using the constituent

libraries directly, open-uri makes it a lot easier to perform all the main functions.

A key part of open-uri is the way it abstracts common Internet actions and allows file

I/O techniques to be used on them. Retrieving a document from the Web becomes much

like opening a text file on the local machine:

require 'open-uri'

f = open('https://www.apress.com/sitemap.xml')

puts f.readlines.join

As with File::open, open returns an I/O object (technically a StringIO object), and

you can use methods such as each_line, readlines, and read, as you did in Chapter 9:

Chapter 14 Ruby and the Internet

452

require 'open-uri'

f = open('https://www.apress.com/sitemap.xml')

puts "The document is #{f.size} bytes in length"

f.each_line do |line|

 puts line

end

The document is 706 bytes in length

Also, in a similar fashion to the File class, you can use open in a block style:

require 'open-uri'

open('https://www.apress.com/sitemap.xml') do |f|

 puts f.readlines.join

end

Note H TTPS and FTP URLs are treated transparently. You can use any HTTP,
HTTPS, or FTP URL with open.

As well as providing the open method as a base method that can be used anywhere,

you can use it directly on URI objects:

require 'open-uri'

url = URI.parse('https://www.apress.com/sitemap.xml')

url.open { |f| puts f.read }

or perhaps:

require 'open-uri'

puts URI.parse('https://www.apress.com/sitemap.xml').open.read

Chapter 14 Ruby and the Internet

453

In addition to acting like an I/O object, open-uri enables you to use methods

associated with the object it returns to find out particulars about the HTTP (or FTP)

response itself, for example:

require 'open-uri'

f = URI.open('https://www.apress.com/sitemap.xml')

puts f.content_type

puts f.last_modified

application/xml

2020-08-11 00:47:07 UTC

Last, it’s possible to send extra header fields with an HTTP request by supplying an

optional hash parameter to open:

require 'open-uri'

f = URI.open('https://www.apress.com/sitemap.xml',

 {�'User-Agent' => 'Mozilla/5.0 (platform; rv:geckoversion) Gecko/

geckotrail Firefox/firefoxversion'})

puts f.read

In this example, a “user agent” header is sent with the HTTP request that makes

it appear as if you’re using Firefox to request the remote file. Sending a user agent

header can be a useful technique if you’re dealing with a website that returns different

information to different types of browsers. Ideally, however, you should use a user agent

header that reflects the name of your program.

Tip  The HTTParty gem offers yet another way to fetch data via HTTP and is
particularly well suited to interacting with APIs.

Chapter 14 Ruby and the Internet

454

�Processing Web Content
As you saw earlier, retrieving data from the Web is easy with Ruby. Once you’ve retrieved

the data, it’s likely you’ll want to do something with it. Parsing data from the Web using

regular expressions and the usual Ruby string methods is an option, but several libraries

exist that make it easier to deal with different forms of web content specifically. In this

section, we’ll look at some of the best ways to process HTML and XML.

�Parsing HTML with Nokogiri

Nokogiri is a Ruby library designed to make HTML parsing fast, easy, and fun. It’s

available as a Rubygem via gem install nokogiri.

Once installed, Nokogiri is easy to use. The following example loads the library,

places some basic HTML in a string, creates a document object, and then searches for

H1 tags (using a CSS selector in the css method call). It then retrieves the first H1 tag

(using first, as css returns an array) and looks at the HTML within it (using inner_

html):

require 'nokogiri'

html = <<END_OF_HTML

<html>

<head>

<title>This is the page title</title>

</head>

<body>

<h1>Big heading!</h1>

<p>A paragraph of text.</p>

Item 1 in a listItem 2<li class="highlighted">Item

3

</body>

</html>

END_OF_HTML

Chapter 14 Ruby and the Internet

455

doc = Nokogiri::HTML(html)

puts doc.css("h1").first.inner_html

Big heading!

Nokogiri can work directly with open-uri to load HTML from remote files, as in the

following example:

require 'nokogiri'

require 'open-uri'

doc = Nokogiri::HTML(URI.open('https://www.apress.com/us/about'))

puts doc.css("h1").first.inner_html

Using a combination of search methods, you can search for the list within the HTML

(defined by the tags, where the tags denote each item in the list) and then

extract each item from the list:

list = doc.css("ul").first

list.css("li").each do |item|

 puts item.inner_html

end

Search

Menu

As well as searching for elements and returning an array, Nokogiri can also search for

the first instance of an element only, using at:

list = doc.at("ul")

However, Nokogiri can search for more than element or tag names. It also supports

XPath and CSS expressions. These querying styles are beyond the scope of this chapter,

but here’s a demonstration of using CSS classes to find certain elements:

Chapter 14 Ruby and the Internet

456

list = doc.at("ul")

highlighted_item = list.at(".search")

puts highlighted_item.inner_html

Search

This example finds the first list in the HTML file and then looks for a child element

that has a class name of search. The rule .search looks for a class name of search,

whereas a rule of #search would search for an element with the ID of search.

�Parsing JSON

JavaScript Object Notation (JSON) is a simple, lightweight data format that can represent

many different structures of data. Here is an example of a JSON document:

[

 {

 "name": "Peter Cooper",

 "gender": "Male"

 },

 {

 "name": "Carleton DiLeo"

 "gender": "Male"

 }

]

This JSON document defines a set of people containing two individual persons, each

of whom has a name and gender.

JSON is prevalent when it comes to sharing data on the Internet in a form that’s

easy for machines to parse and is especially popular when using APIs and machine-

accessible services provided online, such as Google APIs and other programming

interfaces to online services. Due to JSON’s popularity, it’s worthwhile to see how to

parse it with Ruby.

Ruby provides a JSON as part of the standard library. It’s very easy to use.

Here’s a basic demonstration of parsing a JSON file looking for certain elements:

Chapter 14 Ruby and the Internet

457

require 'json'

json = <<END_JSON
[
 {
 "name": "Peter Cooper",
 "gender": "Male"
 },
 {
 "name": "Carleton DiLeo",
 "gender": "Male"
 }
]
END_JSON

people = JSON.parse(json, symbolize_names: true)

people.each do |person|
 puts "#{person[:name]} is a #{person[:gender]}"
end

Peter Cooper is a Male

Carleton DiLeo is a Male

In this example, we store JSON in the variable json. Next, we use JSON.parse method
call to parse the JSON into a Ruby hash. Notice we include the option symbolize_names.
This option allows us to use a symbol instead of a string to access the hash returned by
JSON.parse. Using symbolize_names isn’t necessary, but without it, our code looks like
this:

people = JSON.parse(json)
people.each do |person|
 puts "#{person['name']} is a #{person['gender']}"
end

While functional, it’s a little harder to read. The Ruby JSON library has a lot more
functionality. Check out the ruby docs page, https://ruby-doc.com/stdlib/libdoc/

json/rdoc/JSON.html, for more information.

Chapter 14 Ruby and the Internet

https://ruby-doc.com/stdlib/libdoc/json/rdoc/JSON.html
https://ruby-doc.com/stdlib/libdoc/json/rdoc/JSON.html

458

�Email
Email predates the invention of the Internet and is still one of the most important and

popular technologies used online. In this section, you’ll look at how to retrieve and

manage email located on POP3 servers, as well as how to send email using an SMTP

server.

�Receiving Mail with POP3
Post Office Protocol 3 (POP3) is the most popular protocol used to retrieve email from

a mail server. If you’re using an email program that’s installed on your computer (as

opposed to webmail, such as Gmail or Microsoft Outlook), it probably uses the POP3

protocol to communicate with the mail server that receives your mail from the outside

world.

With Ruby, it’s possible to use the net/pop library to do the same things that your

email client can, such as preview, retrieve, or delete mail. If you were feeling creative,

you could even use net/pop to develop your own anti-spam tools.

Note  In this section, our examples won’t run without adjustments, as they
need to operate on a real mail account. If you wish to run them, you would need
to replace the server name, username, and passwords with those of a POP3/
mail account that you have access to. Ideally, you’ll be able to create a test email
account if you want to play with the examples here, or have a backup of your mail
first, in case of unforeseen errors. That’s because although you cannot delete mail
directly from your local email program, you might delete any new mail waiting on
your mail server. Once you’re confident of your code and what you want to achieve,
you can then change your settings to work on a live account.

The basic operations you can perform with a POP3 server are to connect to it,

receive information about the mail an account contains, view that mail, delete the mail,

and disconnect. First, you’ll connect to a POP3 server to see if there are any messages

available for download, and if so, how many:

require 'net/pop'

Chapter 14 Ruby and the Internet

459

mail_server = Net::POP3.new('mail.mailservernamehere.com')

begin

 mail_server.start('username','password')

 if mail_server.mails.empty?

 puts "No mails"

 else

 puts "#{mail_server.mails.length} mails waiting"

 end

rescue

 puts "Mail error"

end

This code first creates an object referring to the server and then uses the start

method to connect. The entire section of the program that connects to and works with

the mail server is wrapped within a begin/ensure/end block so that connection errors

are picked up without the program crashing out with an obscure error.

Once start has connected to the POP3 server, mail_server.mails contains an array

of Net::POPMail objects that refer to each message waiting on the server. You use Array’s

empty? method to see if any mail is available; if so, the size of the array is used to tell how

many mails are waiting.

You can use the Net::POPMail objects’ methods to manipulate and collect the

server-based mails. Downloading all the mails is as simple as using the pop method for

each Net::POPMail object:

mail_server.mails.each do |m|

 mail = m.pop

 puts mail

end

As each mail is retrieved (or popped, if you will) from the server, the entire content

of the mail, with headers and body text, is placed into the mail variable before being

displayed on the screen.

To delete a mail, you can use the delete method, although mails are only marked for

deletion later, once the session has ended:

Chapter 14 Ruby and the Internet

460

mail_server.mails.each do |m|

 m.delete if m.pop =~ /\bthis is a spam email\b/i

end

This code goes through every message in the account and marks it for deletion if it

contains the string this is a spam email.

You can also retrieve just the headers. This is useful if you’re looking for a mail with

a particular subject or a mail from a particular email address. Whereas pop returns the

entire mail (which could be up to many megabytes in size), header only returns the

mail’s header from the server. The following example deletes messages if their subject

contains the word medicines:

mail_server.mails.each do |m|

 m.delete if m.header =~ /Subject:.+?medicines\b/i

end

To build a rudimentary anti-spam filter, you could use a combination of the mail

retrieval and deletion techniques to connect to your mail account and delete unwanted

mails before your usual mail client ever sees them. Consider what you could achieve by

downloading mail, passing it through several regular expressions, and then choosing to

delete depending on what you match.

�Sending Mail with SMTP
Whereas POP3 handles the client-side operations of retrieving, deleting, and previewing

email, Simple Mail Transfer Protocol (SMTP) handles sending email and routing email

between mail servers. In this section, you won’t be looking at this latter use, but will use

SMTP simply to send mails to an email address.

The net/smtp library allows you to communicate with SMTP servers directly. On

many UNIX machines, especially servers on the Internet, you can send mail to the SMTP

server running on the local machine and it will be delivered across the Internet. In these

situations, sending email is as easy as this:

require 'net/smtp'

message = <<MESSAGE_END

From: Private Person <me@privacy.net>

Chapter 14 Ruby and the Internet

461

To: Authors of Beginning Ruby <test@rubyinside.com>

Subject: SMTP email test

This is a test email message.

MESSAGE_END

Net::SMTP.start('localhost', 25) do |smtp|

 smtp.send_message message, 'me@privacy.net', 'test@rubyinside.com'

end

You place a basic email in message, using a here document, taking care to format the

headers correctly (emails require From, To, and Subject headers, separated from the

body of the email with a blank line, as in the preceding code). To send the mail, you use

Net::SMTP to connect to the SMTP server on the local machine and then use the send_

message method along with the message, the from address, and the destination address

as parameters (even though the from and to addresses are within the email itself, these

aren’t always used to route mail).

If you’re not running an SMTP server on your machine, you can use Net::SMTP to

communicate with a remote SMTP server. Unless you’re using a webmail service (such

as Hotmail or Yahoo! Mail), your email provider will have provided you with outgoing

mail server details that you can supply to Net::SMTP, as follows:

Net::SMTP.start('mail.your-domain.com')

This line of code connects to the SMTP server on port 25 of mail.your-domain.com

without using any username or password. If you need to, though, you can specify port

number and other details, for example:

Net::SMTP.start('mail.your-domain.com', 25, 'localhost', 'username', 

'password', :plain)

This example connects to the SMTP server at mail.your-domain.com using a

username and password in plain text format. It identifies the client’s hostname as

localhost.

Note N et::SMTP also supports LOGIN and CRAM-MD5 authentication schemes.
To use these, use :login or :cram_md5 as the sixth parameter passed into start.

Chapter 14 Ruby and the Internet

462

�File Transfers with FTP
File Transfer Protocol (FTP) is a basic networking protocol for transferring files on

any TCP/IP network. Although files can be sent back and forth on the Web, FTP is

still commonly used for large files or for access to large file repositories that have no

particular relevance to the Web. One of the benefits of FTP is that authentication and

access control is built in.

The core part of the FTP system is an FTP server, a program that runs on a file server

that allows FTP clients to download and/or upload files to that machine.

In a previous section of this chapter, called “The open-uri Library,” we looked at

using the open-uri library to retrieve files easily from the Internet. The open-uri supports

HTTP, HTTPS, and FTP URLs and is an ideal library to use if you want to download files

from FTP servers with as little code as possible. Here’s an example:

require 'open-uri'

output = File.new('MD5SUM.txt', 'wb')

URI.open('ftp://cdimage.debian.org/debian-cd/current/amd64/iso-cd/MD5SUMS')

do |f|

 output.print f.read

end

output.close

This example downloads a file from an FTP server and saves its contents into a local

file.

Note  The example might fail for you, as your network connection might not
support active FTP and might require a passive FTP connection. This is covered
later in this section.

However, for more complex operations, the net/ftp library is ideal, as it gives you

lower-level access to FTP connections, as net/http does to HTTP requests.

�Connection and Basic FTP Actions
Connecting to an FTP server with net/ftp using an FTP URL is a simple operation:

Chapter 14 Ruby and the Internet

463

require 'net/ftp'

require 'uri'

uri = URI.parse('ftp://cdimage.debian.org/debian-cd/current')

Net::FTP.open(uri.host) do |ftp|

 ftp.login 'anonymous', 'me@privacy.net'

 ftp.passive = true

 ftp.list(uri.path) { |path| puts path }

end

drwxr-sr-x 19 ftp ftp 19 Aug 02 04:00 amd64

drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 arm64

drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 armel

drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 armhf

drwxr-sr-x 19 ftp ftp 19 Aug 02 04:00 i386

drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 mips

drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 mips64el

drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 mipsel

drwxr-sr-x 7 ftp ftp 7 Aug 02 04:00 multi-arch

drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 ppc64el

drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 s390x

drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 source

drwxr-sr-x 2 ftp ftp 4 Jul 06 2019 trace

You use URI.parse to parse a basic FTP URL and connect to the FTP server with

Net::FTP. open. Once the connection is open, you have to specify login credentials

(much like the authentication credentials when using Net::HTTP) with the ftp object’s

login method. Then you set the connection type to be passive (this is an FTP option that

Chapter 14 Ruby and the Internet

464

makes an FTP connection more likely to succeed when made from behind a firewall—

the technical details are beyond the scope of this book) and then ask the FTP server to

return a list of the files in the directory referenced in your URL (the root directory of the

FTP server in this case).

Net::FTP provides a login method that you can use against a Net::FTP object, like

so:

require 'net/ftp'

ftp = Net::FTP.new('cdimage.debian.org')

ftp.passive = true

ftp.login

ftp.list('*') { |file| puts file }

ftp.close

Note  If you know you’re going to be connecting to an anonymous FTP server
(one that is public and requires only generic credentials to log in), you don’t need
to specify any credentials with the login method. This is what happens in the
preceding example.

This example demonstrates a totally different way of using Net::FTP to connect to

an FTP server. As with Net::HTTP and File classes, it’s possible to use Net::FTP within

a structural block or by manually opening and closing the connection by using the

reference object (ftp in this case).

As no username and password are supplied, the login method performs an

anonymous login to cdimage.debian.org. Note that in this example you connect to

an FTP server by its hostname rather than with a URL. However, if a username and

password are required, use this code:

ftp.login(username, password)

Once connected, you use the list method on the ftp object to get a list of all files in

the current directory. Because you haven’t specified a directory to change to, the current

directory is the one that the FTP server puts you in by default. However, to change

directories, you can use the chdir method:

Chapter 14 Ruby and the Internet

465

ftp.chdir('debian-cd')

It’s also possible to change to any directory in the remote filesystem:

ftp.chdir('/debian-cd/current')

If you have permission to do so (this depends on your account with the FTP server),

you might also be able to create directories. This is done with mkdir:

ftp.mkdir('test')

Performing this operation on an FTP server where you don’t have the correct

permissions causes an exception, so it’s worth wrapping such volatile actions within

blocks to trap any exceptions that arise.

Likewise, you can delete and rename files:

ftp.rename(filename, new_name)

ftp.delete(filename)

These operations will work only if you have the correct permissions.

�Downloading Files
Downloading files from an FTP server is easy if you know the filename and what type of

file you’re trying to download. Net::FTP provides two useful methods to download files:

getbinaryfile and gettextfile. Plain text files and binary files (such as images, sounds,

or applications) are sent in a different way, so it’s essential you use the correct method.

In most situations, you’ll be aware ahead of time which technique is required. Here’s an

example showing how to download a binary file from the official Ruby FTP server:

require 'net/ftp'

ftp = Net::FTP.new('cdimage.debian.org')

ftp.passive = true

ftp.login

ftp.chdir('/debian-cd/current/amd64/iso-cd/')

ftp.getbinaryfile('MD5SUMS')

ftp.close

Chapter 14 Ruby and the Internet

466

getbinaryfile accepts several parameters, only one of which is mandatory. The

first parameter is the name of the remote file (MD5SUMS in this case), an optional second

parameter is the name of the local file to write to, and the third optional parameter is a

block size that specifies in what size chunks (in bytes) the file is downloaded. If you omit

the second parameter, the downloaded file will be written to the same filename in the

local directory, but if you want to write the remote file to a particular local location, you

can specify this.

One problem with using getbinaryfile in this way is that it locks up your program

until the download is complete. However, if you supply getbinaryfile with a code

block, the downloaded data will be supplied into the code block as well as saved to the

file:

ftp.getbinaryfile('MD5SUMS', 'local-filename', 1024) do |blk|

 puts "A 100KB block of the file has been downloaded"

end

This code prints a string to the screen whenever another 1KB of the file has been

downloaded. You can use this technique to provide updates to the user, rather than

make him or her wonder whether the file is being downloaded.

You could also download the file in blocks such as this and process them on the fly in

the code block, like so:

ftp.getbinaryfile('MD5SUMS', 'local-filename', 1024) do |blk|

 .. do something with blk here ..

end

Each 1KB chunk of the file that’s downloaded is passed into the code block.

Unfortunately, the file is still saved to a local file, but if this isn’t desired, you could use

tempfile (as covered in Chapter 9), which is then immediately deleted.

Downloading text or ASCII-based files uses the same technique as in the preceding

code, but demands using gettextfile instead. The only difference is that gettextfile

doesn’t accept the third block size parameter and instead returns data to the code block

line by line.

Chapter 14 Ruby and the Internet

467

�Uploading Files
Uploading files to an FTP server is possible only if you have write permissions on the

server in the directory to which you want to upload. Therefore, none of the examples in

this section will work unedited, as you can’t provide an FTP server with write access (for

obvious reasons!).

Uploading is the exact opposite of downloading, and net/ftp provides putbinaryfile

and puttextfile methods that accept the same parameters as getbinaryfile and

gettextfile. The first parameter is the name of the local file you want to upload, the

optional second parameter is the name to give the file on the remote server (defaults to

the same as the uploaded file’s name if omitted), and the optional third parameter for

putbinaryfile is the block size to use for the upload. Here’s an upload example:

require 'net/ftp'

ftp = Net::FTP.new('ftp.domain.com')

ftp.passive = true

ftp.login

ftp.chdir('/your/folder/name/here')

ftp.putbinaryfile('local_file')

ftp.close

As with getbinaryfile and gettextfile, if you supply a code block, the uploaded

chunks of the file are passed into it, allowing you to keep the user informed of the

progress of the upload:

require 'net/ftp'

ftp = Net::FTP.new('ftp.domain.com')

ftp.passive = true

ftp.login

ftp.chdir('/your/folder/name/here')

count = 0

ftp.putbinaryfile('local_file', 'local_file', 100000) do |block|

 count += 100000

Chapter 14 Ruby and the Internet

468

 puts "#{count} bytes uploaded"

end

ftp.close

If you need to upload data that’s just been generated by your Ruby script and isn’t

within a file, you need to create a temporary file with tempfile and upload from that, for

example:

require 'net/ftp'

require 'tempfile'

tempfile = Tempfile.new('test')

my_data = "This is some text data I want to upload via FTP."

tempfile.puts my_data

ftp = Net::FTP.new('ftp.domain.com')

ftp.passive = true

ftp.login

ftp.chdir('/your/folder/name/here')

ftp.puttextfile(tempfile.path, 'my_data')

ftp.close

tempfile.close

�Summary
In this chapter, we looked at Ruby’s support for using various Internet systems and

protocols, how Ruby can work with the Web, and how to process and manipulate data

retrieved from the Internet.

Let’s reflect on the main concepts covered in this chapter:

•	 HTTP (HyperText Transfer Protocol): A protocol that defines the way

web browsers (clients) and web servers talk to each other across a

network such as the Internet.

•	 HTTPS: A secure version of HTTP that ensures data being transferred

in either direction is only readable at each end. Anyone intercepting

Chapter 14 Ruby and the Internet

469

an HTTPS stream cannot decipher it. It’s commonly used for

ecommerce and for transmitting financial data on the Web.

•	 HTML (HyperText Markup Language): A text formatting and layout

language used to represent web pages.

•	 Nokogiri: An HTML and XML parser developed to make it easy to

process and parse HTML and XML directly with Ruby. It is noted for

its speed, with portions that demand extra performance written in C.

•	 POP3 (Post Office Protocol 3): A mail server protocol commonly

used when retrieving email. You can learn more about the protocol

specifically at www.ietf.org/rfc/rfc1939.txt.

•	 SMTP (Simple Mail Transfer Protocol): A mail server protocol

commonly used to transfer mail to a mail server or between mail

servers. From a typical user’s perspective, SMTP is used for sending

mail, rather than receiving it. You can learn more about the protocol

specifically at www.faqs.org/rfcs/rfc821.html.

•	 FTP (File Transfer Protocol): An Internet protocol for providing access

to files located on a server and allowing users to download from it

and upload to it.

This chapter covered a variety of Internet-related functions, but in Chapter 15, we’re

going to look more deeply at networking, servers, and network services. Most of what is

covered in Chapter 15 is also applicable to the Internet, but is at a much lower level than

FTP or using the Web.

Chapter 14 Ruby and the Internet

http://www.ietf.org/rfc/rfc1939.txt
http://www.faqs.org/rfcs/rfc821.html

471
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_15

CHAPTER 15

Networking and Sockets
In this chapter, we’re going to look at how to use Ruby to perform network-related

operations, how to create servers and network services, and how to create persistent

processes (daemons) that can respond to queries over a network.

Chapter 14 looked at Ruby’s Internet capabilities from a high level, like making

requests to websites, processing HTML, working with JSON, retrieving email, and

managing files over FTP. In contrast, this chapter looks at networking and network

services at a lower level.

Let’s start with a look at the basic networking concepts we’ll be using in this chapter.

�Networking Concepts
A network is a group of computers connected in some fashion. If you have several

computers at home all sharing a wired or wireless router, this is called your local area

network (LAN). Your computers are probably also connected to the Internet, another

form of network. Networking is the overall concept of communications between two or

more computers or devices, and this chapter looks at how you can use Ruby to perform

operations relating to a network, whether a local or global one.

Note  If you are experienced with networks and TCP, UDP, and IP protocols, you
might wish to skip ahead a little to the “Basic Network Operations” section.

�TCP and UDP
There are many types of networks, but the type of network we’re most interested in is

one that uses TCP/IP. TCP/IP is the collective name for two protocols: Transmission

Control Protocol (TCP) and Internet Protocol (IP). TCP defines the concept of computers

https://doi.org/10.1007/978-1-4842-6324-2_15#DOI

472

connecting to one another, and it makes sure packets of data are transmitted and

successfully received by machines, in the correct order. IP, on the other hand, is the

protocol that’s concerned with actually routing the data from one machine to another. IP

is the base of most local networks and the Internet, but TCP is a protocol that sits on top

and makes the connections reliable.

User Datagram Protocol (UDP) is another protocol like TCP, but unlike TCP, it isn’t

considered reliable and it doesn’t ensure that a remote machine receives the data you

sent. When you send data using UDP, you simply have to hope it reached its destination,

as you’ll receive no acknowledgment of failure. Despite this, UDP is still used for various

non-mission-critical tasks, as it’s fast and has a low overhead.

Commonly, operations that require a permanent connection (whether over a long

period of time or not) between two machines use TCP and TCP-based protocols. For

example, almost all services that require authentication to work, such as email access,

use TCP-based protocols so that the authentication information can be sent only once—

at the start of the connection—and then both ends of the connection are satisfied that

connection has been authenticated.

Quick operations where a connection is unimportant or easily repeatable, such as

converting domain names and hostnames into IP addresses and vice versa, can run on

UDP. If an answer to a query isn’t received in sufficient time, another query can simply

be issued. UDP is sometimes also used for streaming video and audio due to its low

overhead and latency.

�IP Addresses and DNS
A machine on an IP-based network has one or many IP addresses. Each IP number

used on a network must be unique, although each computer has local IP addresses that

refer to the current machine (e.g., 127.0.0.1, also known as localhost). When data is sent

across the network to a particular IP address, the machine with that address will receive

the data.

When you use the Web and access a website such as www.apress.com, your computer

first asks a Domain Name Service (DNS) server for the IP address associated with the

hostname www.apress.com. Once it gets the raw address in response (in this case,

207.97.243.208), your web browser makes a connection to that machine on port 80.

Machines can make and receive connections on different TCP (or UDP) ports (from a

range of 0 through 65,535), and different ports are assigned to different types of services.

Chapter 15 Networking and Sockets

http://www.apress.com
http://www.apress.com

473

For example, port 80 is the default port used for web servers operating over the insecure

default HTTP port. (HTTPS/SSL, as used for encrypted web traffic, uses port 443 by

default.)

Next in this chapter, we’re going to look at how to perform operations over an IP-

based network, such as checking the availability of machines on the network, and we’ll

create basic TCP and UDP clients and servers.

�Basic Network Operations
Network programming is usually a difficult process. At the lowest levels, it involves a lot

of arcane terminology and interfacing with antique libraries. However, Ruby is not usual,

and Ruby’s libraries take away most of the complexities usually associated with network

programming.

In this section, we’re going to look at how to achieve a few basic networking

operations, such as checking whether a server is present on a network, looking at how

data is routed across the network between two points, and how to connect directly to a

service offered on a remote machine.

�Checking Machine and Service Availability
One of the most basic network operations you can perform is a ping, a simple check that

another machine is available on the network or that a service it offers is available.

One ping library that’s available is net-ping, which is available as a gem with gem

install net-ping. net-ping can interface with your operating system’s ping command

to get a reliable response. It can also connect directly to services offered by a remote

machine to gauge whether it’s responding to requests or not:

require 'net/ping'

if Net::Ping::External.new('www.google.com').ping

 puts "Pong!"

else

 puts "No response"

end

Pong!

Chapter 15 Networking and Sockets

474

However, if you want to check whether a particular service is available, rather than a

machine in general, you can use net-ping to connect to a specific port using TCP or UDP:

require 'net/ping'

if Net::Ping::TCP.new('www.google.com', 80).ping

 puts "Pong!"

else

 puts "No response"

end

In this instance, you connect directly to www.google.com’s HTTP port as if you were

a web browser, but once you get a connection, you immediately disconnect again. This

allows you to verify that www.google.com is accepting HTTP connections.

�Performing DNS Queries
Most Ruby networking libraries allow you to specify domain names and hostnames

when you want to interact with a remote server and automatically resolve these names

into IP addresses. However, this adds a small overhead, so in some situations you might

prefer to resolve IP addresses ahead of time yourself.

You might also use DNS queries to check for the existence of different hostnames

and to check whether a domain is active or not, even if it’s not pointing to a web server.

resolv is a library in the Ruby standard library, and it offers several methods that are

useful for converting between hostnames and IP addresses:

require 'resolv'

puts Resolv.getaddress("www.google.com")

209.85.229.99

This code returns an IP address of 209.85.229.99 for the main Google website.

However, if you run the same code several times, you might get several different

responses. The reason for this is that large websites such as Google spread their requests

over multiple web servers to increase speed.

Chapter 15 Networking and Sockets

http://www.google.com’s
http://www.google.com

475

You can also turn IP addresses into hostnames using the getname method, which

performs a reverse DNS lookup:

require 'resolv'

ip = "192.0.34.166"

begin

 puts Resolv.getname(ip)

rescue

 puts "No hostname associated with #{ip}"

end

34-166.lax.icann.org

It’s important to note that not all IP addresses resolve back into hostnames, as this is

an optional requirement of the DNS system.

As well as converting between IP addresses and hostnames, resolv can also

retrieve other information from DNS servers, such as the mail server(s) associated

with a particular host or domain name. Whereas the records of which IP addresses are

associated with which hostnames are called A records, the records of which mail servers

are associated with a hostname are called MX records.

In the previous examples, you’ve used special helper methods directly made

available by the Resolv class, but to search for MX records, you have to use the

Resolv::DNS class directly so you can pass in the extra options needed to search for

different types of records:

require 'resolv'

Resolv::DNS.open do |dns|

 mail_servers = dns.getresources("google.com",

Resolv::DNS::Resource::IN::MX)

 mail_servers.each do |server|

 puts "#{server.exchange.to_s} - #{server.preference}"

 end

end

Chapter 15 Networking and Sockets

476

alt3.aspmx.l.google.com - 40

alt1.aspmx.l.google.com - 20

alt2.aspmx.l.google.com - 30

aspmx.l.google.com - 10

alt4.aspmx.l.google.com – 50

In this example, you’ve performed a DNS request in a more detailed way

using Resolv::DNS directly, rather than the convenient Resolv.getname and

Resolv.getaddress helpers, so that you could specify the MX request using the

Resolv::DNS::Resource::IN::MX option.

Note R eaders who are savvy with DNS terminology might like to try using
CNAME, A, SOA, PTR, NS, and TXT variations of the preceding option, as these are
all supported.

MX records are useful if you want to send email to people, but you have no SMTP

server you can send mail through, as you can use Net::SMTP (as shown in Chapter 14)

directly against the mail servers for the domain name of the email address you want to

send to. For example, if you wanted to email someone whose email address ended with @

google.com, you could use Net::SMTP to connect directly to smtp2.google.com (or any

of the other choices) and send the mail directly to that user:

require 'resolv'

require 'net/smtp'

from = "your-email@example.com"

to = "another-email@example.com"

message = <<MESSAGE_END

From: #{from}

To: #{to}

Subject: Direct email test

This is a test email message.

MESSAGE_END

to_domain = to.match(/\@(.+)/)[1]

Chapter 15 Networking and Sockets

477

Resolv::DNS.open do |dns|

 mail_servers = dns.getresources(to_domain, Resolv::DNS::Resource::IN::MX)

 mail_server = mail_servers[rand(mail_servers.size)].exchange.to_s

 Net::SMTP.start(mail_server) do |smtp|

 smtp.send_message message, from, to

 end

end

Note  You can learn more about DNS at https://en.wikipedia.org/wiki/
Domain_Name_System.

�Servers and Clients
Clients and servers are the two major types of software that use networks. Clients connect

to servers, and servers process information and manage connections and data being

received from and sent to the clients. In this section, you’re going to create some servers

that you can connect to using net/telnet and other client libraries covered in both this

chapter and Chapter 14.

�UDP Client and Server
To demonstrate a basic client/server system, UDP is an ideal place to start. Unlike with

TCP, UDP has no concept of connections, so it works on a simple system where messages

are passed from one place to another with no guarantee of them arriving. Whereas TCP

is like making a phone call, UDP is like sending a postcard in the mail.

Creating a UDP server is easy. Let’s create a script named udpserver.rb:

require 'socket'

s = UDPSocket.new

s.bind(nil, 1234)

5.times do

 text, sender = s.recvfrom(16)

 puts text

end

Chapter 15 Networking and Sockets

https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System

478

This code uses Ruby’s socket library, a library that provides the lowest-level access to

your operating system’s networking capabilities. socket is well suited for UDP, and in this

example, you create a new UDP socket and bind it to port 1234 on the local machine. You

loop five times, accepting data in 16-byte chunks from the socket and printing it to the

screen.

Note  The reason for looping just five times is so that the script can end
gracefully after it receives five short messages. Later, however, we’ll look at ways
to keep servers running permanently.

Now that you have a server, you need a client to send data to it. Let’s create

udpclient.rb:

require 'socket'

s = UDPSocket.new

s.send("hello", 0, 'localhost', 1234)

This code creates a UDP socket, but instead of listening for data, it sends the string

"hello" to the UDP server on localhost at port 1234. If you run udpserver.rb at the

same time as udpclient.rb, “hello” should appear on the screen where udpserver.rb is

running. You have successfully sent data across a network (albeit on the same machine)

from a client to a server using UDP.

It’s possible, of course, to run the client and server on different machines, and if you

have multiple machines at your disposal, all you need to do is change 'localhost' on

the send method to the hostname or IP address of the machine where udpserver.rb is

running and ensure the receiver is using an IP address that the sender can reach (e.g.,

you could bind to 0.0.0.0 to accept connections from any externally facing IP address on

your machine).

Note  localhost refers to your local loopback network interface, but this can
also sometimes be referred to using the IP address 127.0.0.1 (which will also be
picked up through 0.0.0.0), as you will see in the next example.

Chapter 15 Networking and Sockets

479

As you’ve seen, UDP is simple, but it’s possible to layer more advanced features

on top of it. For example, because there is no connection involved, you can alternate

between client and server modes with a single program, accomplishing a two-way effect.

You can demonstrate this easily by making a single program send and receive UDP data

to and from itself:

require 'socket'

host = 'localhost'

port = 1234

s = UDPSocket.new

s.bind(nil, port)

s.send("1", 0, host, port)

5.times do

 text, sender = s.recvfrom(16)

 remote_host = sender[3]

 puts "#{remote_host} sent #{text}"

 response = (text.to_i * 2).to_s

 puts "We will respond with #{response}"

 s.send(response, 0, host, port)

end

127.0.0.1 sent 1

We will respond with 2

127.0.0.1 sent 2

We will respond with 4

127.0.0.1 sent 4

We will respond with 8

127.0.0.1 sent 8

We will respond with 16

127.0.0.1 sent 16

We will respond with 32

Chapter 15 Networking and Sockets

480

Note  In a real-world situation, you would typically have two scripts, each on
a different machine and communicating between each other, but this example
demonstrates the logic necessary to achieve that result on a single machine for
ease of testing.

UDP has some benefits in speed and the amount of resources needed, but because it

lacks a state of connection and reliability in data transfer, TCP is more commonly used.

Next, we’ll look at how to create some simple TCP servers to which you can connect with

net/telnet and other applications.

�Building a Simple TCP Server
TCP servers are the foundation of most Internet services. Although lightweight time

servers and DNS servers can survive with UDP, when sending web pages and emails

around, it’s necessary to build a connection with a remote server to make the requests

and send and receive data. In this section, you’re going to build a basic TCP server

that can respond to requests via telnet before moving on to creating something more

complex.

Let’s look at a basic server that operates on port 1234, accepts connections, prints

any text sent to it from a client, and sends back an acknowledgment:

require 'socket'

server = TCPServer.new(1234)

while connection = server.accept

 while line = connection.gets

 break if line =~ /quit/

 puts line

 connection.puts "Received!"

 end

 connection.puts "Closing the connection. Bye!"

 connection.close

end

Chapter 15 Networking and Sockets

481

Note  This server will go around the main loop permanently. To exit it, press Ctrl+C.

As well as being used to create UDP servers and clients, socket can also create TCP

servers and clients. In this example, you create a TCPServer object on port 1234 of the

local machine and then enter a loop that processes whenever a new connection is

accepted using the accept method on the TCPServer object. Once a connection has

been made, the server accepts line after line of input, only closing the connection if any

line contains the word quit.

To test this client, you can use your operating system’s telnet client (built into Linux

and Windows. OS X removed telnet so you will need to install it to use it. Once installed,

it is accessible from the command line as telnet.) as follows:

telnet 127.0.0.1 1234

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Hello!

Received!

quit

Connection closed by foreign host.

Alternatively, you can create your own basic client using net/telnet:

require 'net/telnet'

server = Net::Telnet::new('Host' => '127.0.0.1',

 'Port' => 1234,

 'Telnetmode' => false)

lines_to_send = ['Hello!', 'This is a test', 'quit']

lines_to_send.each do |line|

 server.puts(line)

 server.waitfor(/./) do |data|

 puts data

 end

end

Chapter 15 Networking and Sockets

482

As with the UDP client and server example, the client and server applications can

(and usually would) be placed on different machines. These test applications would

work in exactly the same way if the server were located on the other side of the world

and the client were running from your local machine, as long as both machines were

connected to the Internet.

However, one downside to your TCP server is that it can only accept one connection

at a time. If you telnet to it once and begin typing, but then another connection is

attempted, it might begin to connect, but no responses will be forthcoming for anything

sent. The reason for this is that your TCP server can work with only one connection at a

time in its current state. In the next section, we’re going to look at how to create a more

advanced server that can deal with multiple clients at the same time.

�Multi-client TCP Servers
Most servers on the Internet are designed to deal with large numbers of clients at any

one time. A web server that can only serve one file at once would quickly result in the

world’s slowest website as users began to stack up waiting to be served! The TCP server

in the previous section operated in this way and would be commonly known as a “single-

threaded” or “sequential” server.

Ruby’s Thread class makes it easy to create a multithreaded server—one that accepts

requests and immediately creates a new thread of execution to process the connection

while allowing the main program to await more connections:

require 'socket'

server = TCPServer.new(1234)

loop do

 Thread.start(server.accept) do |connection|

 while line = connection.gets

 break if line =~ /quit/

 puts line

 connection.puts "Received!"

 end

Chapter 15 Networking and Sockets

483

 connection.puts "Closing the connection. Bye!"

 connection.close

 end

end

In this example, you have a permanent loop, and when server.accept responds,

a new thread is created and started immediately to handle the connection that has just

been accepted, using the connection object passed into the thread. However, the main

program immediately loops back and awaits new connections.

�GServer
GServer is a Ruby library that used to be part of the standard library but that can now

be installed as a Ruby gem using gem install gserver, which implements a “generic

server” system. It features thread pool management, logging, and tools to manage

multiple servers at the same time. GServer is offered as a class, and you produce server

classes that inherit from it.

Other than simple management, GServer also allows you to run multiple servers

at once on different ports, allowing you to put together an entire suite of services in

just a few lines of code. Threading is entirely handled by GServer, although you can

get involved with the process if you like. GServer also implements logging features,

although, again, you can provide your own code for these functions if you wish.

Let’s look at the simplest TCP server possible with GServer:

require 'gserver'

class HelloServer < GServer

 def serve(io)

 io.puts("Hello!")

 end

end

server = HelloServer.new(1234)

server.start

server.join

Chapter 15 Networking and Sockets

484

This code implements a basic server that simply outputs the word “Hello!” to any

client connecting to port 1234. If you telnet to connect to port 1234 (or even a web

browser, using http://127.0.0.1:1234/), you’ll see the string “Hello!” returned to you

before the connection is closed.

In this example, you create a server class called HelloServer that descends from

GServer. GServer implements all the thread and connection management, leaving you

with only a handful of technicalities to worry about. In this simple example, you only

create a single server process, tell it to use port 1234, and start it immediately.

However, even this simple example will work with multiple clients, and if you telnet

to it multiple times in parallel, you’ll find that all requests are processed successfully.

However, it’s possible to set a maximum number of allowed connections by supplying

more parameters to new:

require 'gserver'

class HelloServer < GServer

 def serve(io)

 io.puts("Say something to me:")

 line = io.gets

 io.puts("You said '#{line.chomp}'")

 end

end

server = HelloServer.new(1234, '127.0.0.1', 4)

server.start

server.join

The new method for GServer accepts several parameters. In order, they are the port

number to run the server(s) on, the name of the host or interface to run the server(s) on,

the maximum number of connections to allow at once (set to 4 in this example), a file

handle of where to send logging messages, and a true or false flag to turn logging on

or off.

As mentioned earlier, you can create multiple servers at once:

require 'gserver'

class HelloServer < GServer

 def serve(io)

 io.puts("Say something to me:")

Chapter 15 Networking and Sockets

485

 line = io.gets

 io.puts("You said '#{line.chomp}'")

 end

end

server = HelloServer.new(1234, '127.0.0.1', 4)

server.start

server2 = HelloServer.new(1235, '127.0.0.1', 4)

server2.start

sleep 10

Creating multiple servers is as easy as creating a new instance of HelloServer (or

any GServer descendent class), assigning it to a variable, and calling its start method.

Another difference between this example and the last is that at the end you don’t call

server.join. With GServer objects, join works in the same way as with Thread objects,

where calling join waits for that thread to complete before continuing execution. In

the first GServer examples, your programs would wait forever until you exited them

manually (e.g., using Ctrl+C). However, in the preceding example, you didn’t call any

join methods and only slept for 10 seconds using sleep 10. This means the servers

you created are only available on ports 1234 and 1235 for 10 seconds after running the

program, at which point the program and its child threads all exit at once.

Because GServer allows multiple servers to run at the same time without impeding

the execution of the main program, you can manage the currently running servers by

using several methods GServer makes available to start, stop, and check servers:

require 'gserver'

class HelloServer < GServer

 def serve(io)

 io.puts("To stop this server, type 'shutdown'")

 self.stop if io.gets =~ /shutdown/

 end

end

server = HelloServer.new(1234)

server.start

Chapter 15 Networking and Sockets

486

loop do

 break if server.stopped?

end

puts "Server has been terminated"

This time you put the main program into a loop waiting for the server to be stopped.

The server is stopped if someone connects and types shutdown, which triggers that

server’s stop method, leading to the whole server program ending.

You can also check from the process running a GServer whether a GServer is running on

a port without having the object reference available by using the in_service? class method:

if GServer.in_service?(1234)

 puts "Can't create new server. Already running!"

else

 server = HelloServer.new(1234)

end

�A GServer-Based Chat Server
With the knowledge picked up in the previous section, only a small jump in complexity is

required to build a practical application using GServer. You’ll build a simple chat server

that allows a number of clients to connect and chat among each other.

The first step is to subclass GServer into a new class, ChatServer, and override the

new method with your own so that you can set up variables to store client IDs and the

chat log for all the clients to share:

require 'gserver'

class ChatServer < GServer

 def initialize(*args)

 super(*args)

 # Keep an overall record of the client IDs allocated

 # and the lines of chat

 @client_id = 0

 @chat = []

 end

end

Chapter 15 Networking and Sockets

487

The main part of your program can be like your other GServer-based apps, with a

basic initialization and a loop until the chat server shuts itself down:

server = ChatServer.new(1234)

server.start

loop do

 break if server.stopped?

end

Note R emember that you can specify the hostname to serve from as the second
parameter to ChatServer.new. If you want to use this chat server over the
Internet, you will need to specify your remotely accessible IP address (or 0.0.0.0)
as this second parameter; otherwise, your server might only be available to
machines on your local network.

Now that you have the basics in order, you need to create a serve method that assigns

the connection the next available client ID (by using the variable @client_id), welcomes

the user, accepts lines of text from the user, and shows him or her the latest lines of text

entered by other users from time to time.

As the serve method is particularly long in this case, the complete source code of the

chat server is shown here, including comments:

require 'gserver'

class ChatServer < GServer

 def initialize(*args)

 super(*args)

 # Keep an overall record of the client IDs allocated

 # and the lines of chat

 @client_id = 0

 @chat = []

 end

 def serve(io)

 # Increment the client ID so each client gets a unique ID

 @client_id += 1

Chapter 15 Networking and Sockets

488

 my_client_id = @client_id

 my_position = @chat.size

 io.puts("Welcome to the chat, client #{@client_id}!")

 # Leave a message on the chat queue to signify this client

 # has joined the chat

 @chat << [my_client_id, "<joins the chat>"]

 loop do

 # Every 2 seconds check to see if we are receiving any data

 if IO.select([io], nil, nil, 2)

 # If so, retrieve the data and process it...

 line = io.gets

 # If the user says 'quit', disconnect them

 if line =~ /quit/

 @chat << [my_client_id, "<leaves the chat>"]

 break

 end

 # Shut down the server if we hear 'shutdown'

 self.stop if line =~ /shutdown/

 # Add the client's text to the chat array along with the

 # client's ID

 @chat << [my_client_id, line]

 else

 # No data, so print any new lines from the chat stream

 @chat[my_position..(@chat.size - 1)].each_with_index do |line, index|

 io.puts("#{line[0]} says: #{line[1]}")

 end

 # Move the position to one past the end of the array

 my_position = @chat.size

 end

 end

end

end

Chapter 15 Networking and Sockets

489

server = ChatServer.new(1234)

server.start

loop do

 break if server.stopped?

end

The chat server operates primarily within a simple loop that constantly checks

whether any data is waiting to be received with the following line:

if IO.select([io], nil, nil, 2)

IO.select is a special function that can check to see if an I/O stream has any data in

its various buffers (receive, send, and exceptions/errors, in that order). IO.select([io],

nil, nil, 2) returns a value if the connection with the client has any data received that

you haven’t processed, but you ignore whether there is any data to send or any errors.

The final parameter, 2, specifies that you have a timeout of two seconds, so you wait for

two seconds before either succeeding or failing. This means that every two seconds, the

else block is executed, and any new messages in the chat log are sent to the client.

If you use telnet to connect to this chat server, a session would look somewhat like

this:

$ telnet 127.0.0.1 1234

Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

Welcome to the chat, client 1!

1 says: <joins the chat>

2 says: <joins the chat>

Hello 2!

1 says: Hello 2!

2 says: Hello 1!

2 says: I'm going now.. bye!

2 says: <leaves the chat>

quit

Connection closed by foreign host.

Chapter 15 Networking and Sockets

490

With the basic GServer principles covered in this and the previous sections, you

can create servers that operate to protocols of your own design or even create server

programs that can respond to preexisting protocols. All it requires is being able to receive

data, process it, and send back the data required by the client. Using these techniques,

it’s possible to create a mail server, web server, or any other type of server necessary

online.

�Web/HTTP Servers
As hinted at in the previous section, web servers are also TCP servers and use many of

the same techniques covered in the last few sections, such as forking and threading. A

web server is a normal TCP server that talks HTTP.

However, we’re not going to look at HTTP servers directly here, as I covered them

previously in Chapter 10, so if you want to recap how to construct a basic web server in,

refer to the latter sections of that chapter.

�Summary
In this chapter, we’ve looked at Ruby’s support for building lower-level networking tools

and servers, as well as using Ruby to develop daemons and other persistently running

processes.

Let’s reflect on the main concepts covered in this chapter:

•	 Network: A collection of computers connected in such a way that they

can send and receive data between one another.

•	 TCP (Transmission Control Protocol): A protocol that handles

connections between two machines over an IP-based network and

ensures packets are transmitted and received successfully and in the

correct order.

•	 UDP (User Datagram Protocol): A protocol that allows two

computers to send and receive messages between each other where

no “connection” is made, and no assurances are made whether the

data is received by the remote party.

Chapter 15 Networking and Sockets

491

•	 IP (Internet Protocol): A packet-based protocol for delivering

data across networks. IP also makes provisions for each machine

connected to the network to have one or many IP addresses.

•	 DNS (Domain Name Service): A system of referencing host or

machine names against different IP addresses and converting

between the two.

•	 Ping: The process of verifying whether a machine with a particular

IP is valid and accepting requests by sending it a small packet of data

and waiting for a response.

•	 Server: A process that runs on a machine and responds to clients

connecting to it from other machines, such as a web server.

•	 Client: A process that connects to a server, transmits and receives

data, and then disconnects once a task is completed. A web browser

is a basic example of a client.

•	 GServer: A Ruby library that makes developing network servers and

services easy. It handles the thread and connection management and

allows servers to be created by simply subclassing the GServer class.

This marks the last chapter of narrated, instructional content, with Chapter 16 being

a reference-style guide to a wide collection of Ruby libraries (both in the standard library

and those available as gems). With this in mind, all of us involved in the production

of this book would like to thank you for reading so far and hope you find the following

reference chapter and appendixes useful.

I wish you the best on your continuing journey into the world of Ruby. You have only

scratched the surface so far! Be sure to look at the remaining chapter of this book to flesh

out your Ruby knowledge further.

Chapter 15 Networking and Sockets

493
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_16

CHAPTER 16

Useful Ruby Libraries
This chapter is a basic reference to a collection of useful Ruby libraries that you might

want to use in your programs. We’re going to look at libraries covering a vast array of

functionality, from networking and Internet access to file parsing and compression. The

libraries in this chapter are in alphabetical order, and each library starts on a new page

with the name as the page header for easy browsing. Below each library’s title, several

subsections follow:

•	 Overview: A brief description of what the library does, its basic

functionality, and why you would want to use it.

•	 Installation: Information on where the library is found, how to install

it, and how to get it running on most systems.

•	 Examples: One or more examples of how to use the library that

demonstrate its various elements of functionality. Example results

are included too. This section can be split into multiple subsections,

each containing a single example of how to use a particular branch of

functionality.

•	 Further Information: Links and pointers to further information about

the library, including online references and tutorials.

Unlike the other main chapters in this book, this is a reference chapter, one that you

might not necessarily need right away, but that will become useful over time when you

want to find out how to perform a certain function. In any case, make sure at least to

scan through the list of libraries to get a feel for the variety of Ruby libraries available so

that you don’t unnecessarily reinvent the wheel when you want to do something a library

already does!

https://doi.org/10.1007/978-1-4842-6324-2_16#DOI

494

Note  Ruby is in the process of gemifying its standard library. The goal is to
move all of the Ruby standard library to gems rather than as part of the main Ruby
codebase. These gems fall into two categories: default and bundled. Default gems
are part of the Ruby installation and can be required directly. Default gems cannot
be uninstalled. Bundled gems are installed along with Ruby but can be uninstalled.
More information at https://stdgems.org.

�abbrev
The abbrev library offers a single method that calculates a set of unique abbreviations for

each of a supplied group of strings.

�Installation
abbrev is in the standard library, so it comes with Ruby by default. To use it, you only

need to place this line near the start of your program:

require 'abbrev'

�Examples
abbrev provides a single method that’s accessible in two ways: either directly through

Abbrev::abbrev or as an added method to the Array class. Let’s look at the most basic

example first:

require 'abbrev'

require 'pp'

pp Abbrev::abbrev(%w{Peter Patricia Petal Petunia})

{"Peter"=>"Peter",

 "Pete"=>"Peter",

 "Patricia"=>"Patricia",

 "Patrici"=>"Patricia",

 "Patric"=>"Patricia",

 "Patri"=>"Patricia",

Chapter 16 Useful Ruby Libraries

https://stdgems.org

495

 "Patr"=>"Patricia",

 "Pat"=>"Patricia",

 "Pa"=>"Patricia",

 "Petal"=>"Petal",

 "Peta"=>"Petal",

 "Petunia"=>"Petunia",

 "Petuni"=>"Petunia",

 "Petun"=>"Petunia",

 "Petu"=>"Petunia"}

abbrev can be useful if you have an input requirement with a number of guessable

answers, as you can detect partially entered or erroneous entries more easily, for

example:

require 'abbrev'

abbrevs = %w{Peter Paul Patricia Petal Pauline}.abbrev

puts "Please enter your name:"

name = gets.chomp

if a = abbrevs.find { |a, n| a.downcase == name.downcase }

 puts "Did you mean #{a.join(' or ')}?"

 name = gets.chomp

end

Please enter your name:

paulin

Did you mean Paulin or Pauline?

pauline

Because the results given by abbrev are the longest unique abbreviations possible,

it’s viable to rely on them more if the entry dataset is smaller.

�Further Information
•	 Official documentation for abbrev: https://ruby-doc.org/stdlib/

libdoc/abbrev/rdoc/Abbrev.html

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/abbrev/rdoc/Abbrev.html
https://ruby-doc.org/stdlib/libdoc/abbrev/rdoc/Abbrev.html

496

�Base64
Base64 is a way to encode 8-bit binary data into a format that can be represented in

seven bits. It does this by using only the characters A–Z, a–z, 0–9, +, and / to represent

data (= is also used to pad data). Typically, three 8-bit bytes are converted into four 7-bit

bytes using this encoding, resulting in data that’s 33 percent longer in length. The main

benefit of the Base64 technique is that it allows binary data to be represented in a way

that looks and acts like plain text, so it can more reliably be sent in emails, stored in

databases, or used in text-based formats such as YAML, JSON, and XML.

Note  The Base64 standard is technically specified in RFC 2045 at www.ietf.
org/rfc/rfc2045.txt.

�Installation
The base64 library is a part of the standard library, so it comes with Ruby by default. To

use it, you only need to place this line near the start of your program:

require 'base64'

�Examples
The following two examples show how to convert binary data to Base64 notation and

back again. Then we’ll look at a third example showing how to make your use of Base64

notation more efficient through compression.

�Converting Binary Data to Base64

The base64 library makes a single module, Base64, available, which provides encode64

and decode64 methods. To convert data into Base64 format, use encode64:

require 'base64'

puts Base64.encode64('testing')

dGVzdGluZw==

Chapter 16 Useful Ruby Libraries

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

497

In this example, you only encode data that’s already printable (though it’s still

technically 8-bit data internally), but this is acceptable. However, generally you’d encode

binary data from files or other sources:

require 'base64'

puts Base64.encode64(File.read('/bin/bash'))

yv66vgAAAAIAAAAHAAAAAwAAEAAAB4xQAAAADAAAABIAAAAAAAegAAAIrywA

AAAMAA

AA

[output continues onwards.. trimmed for brevity..]

Note  This example works on OS X and Linux operating systems. On a Windows
machine, you could try replacing /bin/bash with c:\windows\system\cmd.
exe to get a similar result.

�Converting Base64 Data to Binary Data

To convert Base64-encoded data back to the original data, use decode64:

require 'base64'

puts Base64.decode64(Base64.encode64('testing'))

testing

Note that if you attempt to decode data that isn’t in Base64 format, you’ll receive

no error in response. Instead, you’ll end up with no legitimate data coming back from

decode64.

�Using Compression to Make Base64 Efficient

Even though Base64 adds 33 percent to the length of a piece of data, it’s possible

to overcome this by compressing the data before converting it to Base64 and then

uncompressing it when you want to convert it back to binary data.

Chapter 16 Useful Ruby Libraries

498

Note  Not all binary data compresses well, although in most cases you’ll achieve
a reduction of at least 5 percent, usually more.

To compress and uncompress, you can use the zlib library, which is covered later in

this chapter, like so:

require 'base64'

require 'zlib'

module Base64

 def Base64.new_encode64(data)

 encode64(Zlib::Deflate.deflate(data))

 end

 def Base64.new_decode64(data)

 Zlib::Inflate.inflate(decode64(data))

 end

end

test_data = 'this is a test' * 100

data = Base64.encode64(test_data)

puts "The uncompressed data is #{data.length} bytes long in Base64"

data = Base64.new_encode64(test_data)

puts "The compressed data is #{data.length} bytes long in Base64"

The uncompressed data is 1900 bytes long in Base64

The compressed data is 45 bytes long in Base64

In this example, two new methods have been added to the Base64 module that use

zlib to compress the data before converting it to Base64 and then to uncompress the

data after converting it back from Base64. In this way, you’ve received significant space

savings.

Read the “zlib” section in this chapter for more information about zlib’s operation.

Chapter 16 Useful Ruby Libraries

499

�Further Information
The following are some links to good information on the base64 library and on Base64 in

general:

•	 Standard library documentation for base64: https://ruby-doc.org/

stdlib/libdoc/base64/rdoc/Base64.html

•	 General information about the Base64 standard: https://

en.wikipedia.org/wiki/Base64

•	 A practical look at how Base64 works: https://email.about.com/

cs/standards/a/base64_encoding.htm

�Benchmark
The Benchmark module can be used to measure the time it takes to execute blocks of

Ruby code. This can be useful to find which techniques are more efficient than others or

to find slow points in your code.

�Installation
Benchmark is part of the Ruby standard library, so you're all set to go after loading it in

with

require 'benchmark'

�Examples
The simplest example of benchmarking some code is to simply use Benchmark's

measure method, like so:

require 'benchmark'

puts Benchmark.measure { 10000000.times { rand } }

0.660000 0.000000 0.660000 (0.655942)

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/base64/rdoc/Base64.html
https://ruby-doc.org/stdlib/libdoc/base64/rdoc/Base64.html
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://email.about.com/cs/standards/a/base64_encoding.htm
https://email.about.com/cs/standards/a/base64_encoding.htm

500

The output shows user CPU time, system CPU time, the sum of both times, and the

real time that has elapsed, respectively.

The bm method can be used for a more complicated benchmarking situation where

you want to compare the results of multiple approaches. For example, let's try three ways

to loop 10 million times:

require 'benchmark'

TIMES = 10000000

Benchmark.bm do |b|

 b.report("times") { TIMES.times { rand } }

 b.report("upto") { 1.upto(TIMES) { rand } }

 b.report("loop") {

 i = 0

 loop do

 rand

 i += 1

 break if i == TIMES

 end

 }

end

 user system total real

times 0.640000 0.000000 0.640000 (0.648547)

upto 0.650000 0.000000 0.650000 (0.649027)

loop 0.830000 0.000000 0.830000 (0.841448)

This report includes labels for each row and column and demonstrates that

manually creating a loop and using a variable to track its progress is slightly slower than

using the times method.

�Further Information
•	 Official documentation for Benchmark: https://ruby-doc.org/

stdlib/libdoc/benchmark/rdoc/Benchmark.html

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/benchmark/rdoc/Benchmark.html
https://ruby-doc.org/stdlib/libdoc/benchmark/rdoc/Benchmark.html

501

�chronic
The chronic library makes it easy to convert dates and times written in almost any format

into dates and times that Ruby recognizes correctly internally. It accepts strings such as

'tomorrow' and 'last tuesday 5pm' and turns them into valid Time objects.

�Installation
The chronic library isn’t part of the Ruby standard library, but it is available as a

Rubygem. To install it, use the typical gem installation process (as covered in Chapter 7),

like so:

gem install chronic

�Examples
chronic is designed to accept dates and times written in a natural language format and to

return valid Time objects. Here are some basic examples:

require 'chronic'

puts Chronic.parse('last tuesday 5am')

2020-03-29 05:00:00 +0100

puts Chronic.parse('last tuesday 5:33')

2020-03-29 17:33:00 +0100

puts Chronic.parse('last tuesday lunchtime')

2020-03-29 12:00:00 +0100

puts Chronic.parse('june 29th at 1am')

2020-06-29 01:00:00 +0100

Chapter 16 Useful Ruby Libraries

502

puts Chronic.parse('in 3 years')

2023-04-04 11:30:57 +0100

puts Chronic.parse('sep 23 2033')

2033-09-23 12:00:00 +0100

puts Chronic.parse('2003-11-10 01:02')

2003-11-10 01:02:00 +0000

Chronic.parse will return nil if a date or time isn’t recognized.

Note A n extension to the Time class provided by the standard library can also
parse times, although at a more preformatted level. See https://ruby-doc.
org/stdlib/libdoc/time/rdoc/Time.html for information.

�Further Information
•	 Documentation for chronic: https://github.com/mojombo/chronic

�Digest
A digest (more commonly known as a hash—though not the same type of hash as you’ve

used to store data structures in Ruby) is a number or string of data that’s generated from

another collection of data. Digests are significantly shorter than the original data and

act as a form of checksum against the data. Digests are generated in such a way that it’s

unlikely some other valid data would produce the same value and that it’s difficult, if not

impossible, to create valid data that would result in the same hash value.

A common use for hashes or digests is to store passwords in a database securely.

Rather than store passwords in plain text where they could potentially be seen, you can

create a digest of the password that you then compare against when you need to validate

that the password is correct. You’ll look at an example of this in the “Examples” section.

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/time/rdoc/Time.html
https://ruby-doc.org/stdlib/libdoc/time/rdoc/Time.html
https://github.com/mojombo/chronic

503

�Installation
The libraries to produce digests in Ruby are called digest/sha2 and digest/md5. Other

algorithms like SHA1 and HMAC are available, however. All aforementioned digest

libraries are a part of the standard library, so they come with Ruby by default. To use

them, you only need to place this line near the start of your program:

require 'digest/sha2'

or

require 'digest/md5'

or to require both

require 'digest'

�Examples
Let’s look at what a digest of some data can look like:

require 'digest/sha2'

puts Digest::SHA2.hexdigest('password')

5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8

You can use hexdigest (on both Digest::SHA2 and Digest::MD5—more about

this later in this section) to produce a digest of any data. The digest is a string of 32

hexadecimal numbers (resulting in 64 characters, as each hexadecimal number is

formed using two digits). In this case, the digest is significantly longer than the input

data. No matter the input length, a digest generated via Digest::SHA2 is always the same

length. For example, here’s a digest of a 4000-character input string:

require 'digest/sha2'

puts Digest::SHA2.hexdigest('test' * 1000)

f23eb679397f33bd94ce44d22909189c8f07f3464a4c0e8e36267cf275fd1d38

Chapter 16 Useful Ruby Libraries

504

Digest::SHA2 operates using the SHA-2 hashing algorithm. It results in a 256-bit

output (this is the default), meaning there are 2256 possible hash values. This almost

guarantees there will be no clashing hash values for legitimate data within a single

domain.

Another hashing mechanism provided by Ruby is based on the MD5 hashing

algorithm. MD5 produces a 128-bit hash value, giving 340,282,366,920,938,463,463,374,6

07,431,768,211,456 combinations. MD5 is considered to be less secure than SHA-2, as it’s

possible to generate “hash collisions,” where two sets of valid data can be engineered to

get the same hash value. Hash collisions can be used to break into authentication systems

that rely on MD5 hashing. However, MD5 is still a popular hashing mechanism, so the

Ruby support is useful. You can use Digest::MD5 in exactly the same way as SHA-2:

require 'digest/md5'

puts Digest::MD5.hexdigest('test' * 1000)

b38968b763b8b56c4b703f93f510be5a

Tip  There is also a Digest::SHA1 class available in digest/sha1 that
provides for the creation of digests of a smaller, less secure length.

Using digests in place of passwords is easy:

require 'digest/sha2'

puts "Enter the password to use this program:"

password = gets

if Digest::SHA2.hexdigest(password) ==

 �'5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62

a11ef721d1542d8'

 puts "You've passed!"

else

 puts "Wrong!"

 exit

end

Chapter 16 Useful Ruby Libraries

505

In this case, the password is stored as a SHA-2 hex digest, and you hash any incoming

passwords to establish if they’re equal. Yet without knowing what the password is, there’s

no way you could succeed with the preceding program even by looking at the source

code!

You can also generate the raw digest without it being rendered into a string of

hexadecimal characters by using the digest method, like so:

Digest::SHA2.digest('test' * 1000)

As the result is 32 bytes data, it’s unlikely you would be satisfied with the output if

you printed it to the screen as characters, but you can prove the values are there:

Digest::SHA2.digest('test' * 1000).each_byte do |byte|

 print byte, "-"

end

242-62-182-121-57-127-51-189-148-206-68-210-41-9-24-156-143-7-243-70-74-

76-14-142-54-38-124-242-117-253-29-56-

It’s worth noting that if you want to store digests in text format, but want something

that takes up less space than the 64 hexadecimal characters, the base64 library can help:

require 'base64'

require 'digest'

puts Digest::SHA2.hexdigest('test')

puts Base64.encode64(Digest::SHA1.digest('test'))

9f86d081884c7d659a2feaa0c55ad015a3bf4f1b2b0b822cd15d6c15b0f00a08

qUqP5cyxm6YcTAhz05Hph5gvu9M=

�Further Information
•	 Further information about SHA-2: https://en.wikipedia.org/

wiki/SHA-2

•	 Further information about MD5: https://en.wikipedia.org/wiki/MD5

Chapter 16 Useful Ruby Libraries

https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/MD5

506

�English
Throughout this book, you’ve often used special variables provided by Ruby for various

purposes. For example, $! contains a string of the last error message raised in the

program, $$ returns the process ID of the current program, and $/ lets you add the

default line or record separator as used by the gets method. The English library allows

you to access Ruby’s special variables using names expressed in English, rather than

symbols. This makes the variables easier to remember.

�Installation
The English library is a part of the standard library, so it comes with Ruby by default. To

use it, you only need to place this line near the start of your program:

require 'English'

�Examples
Using require 'English' (note the capitalization of the first letter, as opposed to the

standard, all-lowercase names adopted by the filenames of other libraries) creates

English language aliases to Ruby’s special variables, some of which are covered in the

following list:

•	 $DEFAULT_OUTPUT (alias for $>) is an alias for the destination of output

sent by commands such as print and puts. By default, it points to

$stdout, the standard output, typically the screen or current terminal

(see the sidebar “Standard Input and Output” in Chapter 9 for more

information).

•	 $DEFAULT_INPUT (alias for $<) is an object that acts somewhat like

a File object for data being sent to the script at the command line,

or if the data is missing, the standard input (usually the keyboard or

current terminal). It is read-only.

•	 $ERROR_INFO (alias for $!) refers to the exception object passed to

raise, or, more pragmatically, can contain the most recent error

message. In the initial form, it can be useful when used within a

rescue block.

Chapter 16 Useful Ruby Libraries

507

•	 $ERROR_POSITION (alias for $@) returns a stack trace as generated

by the previous exception. This is in the same format as the trace

provided by Kernel.caller.

•	 $OFS and $OUTPUT_FIELD_SEPARATOR (aliases for $,) can be set or

read and contain the default separator as used in output from the

print method and Array’s join method. The default value is nil, as

can be confirmed with %w{a b c}.join, which results in abc.

•	 $ORS and $OUTPUT_RECORD_SEPARATOR (aliases for $\) can be set or

read, and contain the default separator as used when sending output

with methods such as print and IO.write. The default value is nil,

as typically you use puts instead when you want to append a newline

to data being sent.

•	 $FS and $FIELD_SEPARATOR (aliases for $;) can be set or read, and

contain the default separator as used by String’s split method.

Changing this and then calling split on a string without a split regex

or character can give different results than expected.

•	 $RS and $INPUT_RECORD_SEPARATOR (aliases for $/) can be set or read,

and contain the default separator as used for input, such as from

gets. The default value is a newline (\n) and results in gets receiving

one line at a time. If this value is set to nil, then gets would read an

entire file or data stream in one go.

•	 $PID and $PROCESS_ID (alias for $$) return the process ID of the

current program. This ID is unique for every program or instance of a

program running on a computer, which is why tempfile uses it when

constructing names for temporary files. It is read-only.

•	 $LAST_MATCH_INFO (alias for $~) returns a MatchData object that

contains the results of the last successful pattern match.

•	 $IGNORECASE (alias for $=) is a flag that you can set or read from

that determines whether regular expressions and pattern matches

performed in the program will be case-insensitive by default. This

special variable is deprecated and only effective in Ruby 1.8 (not

Ruby 1.9 or later). Typically, if you required this feature, you’d use the

/i flag on the end of a regular expression instead.

Chapter 16 Useful Ruby Libraries

508

•	 $MATCH (alias for $&) contains the entire string matched by the last

successful regular expression match in the current scope. If there has

been no match, its value is nil.

•	 $PREMATCH (alias for $`) contains the string preceding the match

discovered by the last successful regular expression match in the

current scope. If there has been no match, its value is nil.

•	 $POSTMATCH (alias for $') contains the string succeeding the match

discovered by the last successful regular expression match in the

current scope. If there has been no match, its value is nil.

�Further Information
•	 Standard library documentation for English: https://ruby-doc.org/

stdlib/libdoc/English/rdoc/English.html

�ERB
ERB is a templating library for Ruby that allows you to mix content and Ruby code. ERB

is used as the main template system in Ruby on Rails when rendering RHTML views

(see Chapter 13 for more information). Mixing Ruby code with other content results in a

powerful templating system.

�Installation
The ERB library is a part of the standard library, so it comes with Ruby by default. To use

it, you only need to place this line near the start of your program:

require 'erb'

�Examples
ERB works by accepting data written in ERB’s template language, converting it to Ruby

code that can produce the desired output, and then executing that code.

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/English/rdoc/English.html
https://ruby-doc.org/stdlib/libdoc/English/rdoc/English.html

509

�Basic Templates and Rendering

A basic ERB script might look like this:

<% 1.upto(5) do |i| %>

<p>This is iteration <%= i %></p>

<% end %>

In this template, Ruby and HTML code are mixed. Ruby code that’s meant to be

executed is placed within <% and %> tags. Ruby code that’s to be evaluated and “printed”

is placed within <%= and %> tags, and normal content is left as is.

Running the preceding template through ERB would result in this output:

<p>This is iteration 1</p>

<p>This is iteration 2</p>

<p>This is iteration 3</p>

<p>This is iteration 4</p>

<p>This is iteration 5</p>

Note  Due to the spacing in the template, the spacing in the output can look odd.
Usually added whitespace isn’t an issue with HTML or XHTML, but if you’re using
ERB to output other forms of data, you might need to develop your templates with
whitespace in mind.

You use the ERB library to render ERB code from Ruby:

require 'erb'

template = <<EOF

<% 1.upto(5) do |i| %>

 <p>This is iteration <%= i %></p>

<% end %>

EOF

puts ERB.new(template).result

Chapter 16 Useful Ruby Libraries

510

The result method doesn’t print the data directly, but returns the rendered

template to the caller, so you then print it to the screen with puts. If you’d rather have

ERB print the output directly to the screen, you can use the run method:

ERB.new(template).run

�Accessing Outside Variables

ERB templates can also access variables in the current scope, for example:

require 'erb'

array_of_stuff = %w{this is a test}

template = <<EOF

<% array_of_stuff.each_with_index do |item, index| %>

 <p>Item <%= index %>: <%= item %></p>

<% end %>

EOF

puts ERB.new(template).result(binding)

<p>Item 0: this</p>

<p>Item 1: is</p>

<p>Item 2: a</p>

<p>Item 3: test</p>

Note  The result and run methods accept a binding as an optional parameter if
you want ERB to have access to variables that are defined in a different (or the current)
scope or if you want to “sandbox” the variables to which templates have access. If you
allow them access to your main binding, as in the preceding example, remember that
code within templates could change the value of the current variables!

�Further Information
•	 Standard library documentation for ERB: https://ruby-doc.org/

stdlib/libdoc/erb/rdoc/ERB.html

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/erb/rdoc/ERB.html
https://ruby-doc.org/stdlib/libdoc/erb/rdoc/ERB.html

511

�json
The json library enables you to parse and create JSON (JavaScript Object Notation) from

Ruby objects. JSON is a popular data interchange format that's commonly used in web-

based APIs and within JavaScript applications. It's also possible to read JSON easily as it's

notated entirely in plain text.

�Installation
The json library is part of the standard library, so all we need to do is require it in.

�Examples
Here's an example of a very simple JSON document:

{"name":"Maggie Robertson","age":37,"interests":["Golf","Bridge","Food"]}

This is essentially a hash with numerous keys and values, with the values being a

string, number, and an array of strings respectively.

To convert this plain text JSON into a hash we can use within a Ruby program, we

can do this:

require 'json'

json_data = %{

 {"name":"Maggie Robertson","age":37,"interests":["Golf","Bridge","Food"]}

}

obj = JSON.load(json_data)

puts obj.class

puts obj.keys

Hash

name

age

interests

Chapter 16 Useful Ruby Libraries

512

Likewise, you can go from a Ruby hash to JSON by using a to_json method that the

json library introduces to all objects:

require 'json'

person = {

 name: 'Maggie Robertson',

 age: 37,

 interests: ['Golf', 'Bridge', 'Food']

}

puts person.to_json

{"name":"Maggie Robertson","age":37,"interests":["Golf","Bridge","Food"]}

�Further Information
•	 Introducing JSON: www.json.org/json-en.html

•	 JSON tutorial: www.w3schools.com/js/js_json_intro.asp

•	 Ruby JSON documentation: https://ruby-doc.org/stdlib/libdoc/

json/rdoc/JSON.html

�logger
logger is a library developed by Hiroshi Nakamura and Gavin Sinclair that provides

sophisticated logging features to Ruby applications. It supports automatic log rotation

and multiple urgency levels and can output to file, to standard output, or to standard

error handles. Ruby on Rails uses logger as its main logging system, but you can use it

from any Ruby application.

�Installation
The logger library is a part of the standard library, so it comes with Ruby by default. To

use it, you only need to place this line near the start of your program:

require 'logger'

Chapter 16 Useful Ruby Libraries

http://www.json.org/json-en.html
http://www.w3schools.com/js/js_json_intro.asp
https://ruby-doc.org/stdlib/libdoc/json/rdoc/JSON.html
https://ruby-doc.org/stdlib/libdoc/json/rdoc/JSON.html

513

�Examples
To use logger, you create Logger objects and then use the methods provided by the

objects to report events that occur while your program is running. The first step is to get

a Logger object.

�Setting Up a Logger

Loggers can write to standard output, standard error, or to a file. Specify a file handle or

filename to Logger.new. For example, here’s how to write log messages directly to the

screen or terminal:

require 'logger'

logger = Logger.new(STDERR)

Use this code to write log messages to file:

logger = Logger.new('mylogfile.log')

logger = Logger.new('/tmp/some_log_file.log')

You can also specify that a log file ages daily, weekly, or monthly (old log files are

suffixed with date indicators):

logger = Logger.new('mylogfile.log', 'daily')

logger = Logger.new('mylogfile.log', 'weekly')

logger = Logger.new('mylogfile.log', 'monthly')

Last, it’s possible to create a logger that only creates a log file up to a certain size.

Once the log file hits that size, logger copies the existing log file to another filename and

then starts a new log file. This is known as log rotation:

logger = Logger.new('mylogfile.log', 10, 100000)

This logger logs files to mylogfile.log until it reaches 100,000 bytes in length,

whereupon the logger renames the log file (by suffixing it with a number) and creates a

new mylogfile.log. It keeps the ten most recent but unused log files available.

Chapter 16 Useful Ruby Libraries

514

�Logging Levels

There are five different logging levels, ranked in order of severity, as follows:

•	 DEBUG: The lowest severity, used for debugging information for the

developer

•	 INFO: General information about the operation of the program,

library, or system

•	 WARN: A nonfatal warning about the state of the program

•	 ERROR: An error that can be handled (as with a rescued exception)

•	 FATAL: An error that is unrecoverable and that forces an immediate

end to the program

Whenever you start a logger, you can specify the level of messages it should track.

If a message is of that level or above, it will be logged. If it’s below that level, it will be

ignored. This is useful so that during development you can log every debug message,

whereas when your program is being used for real, you only log the important messages.

To set the severity level of a logger, use the logger’s sev_threshold method. This

level ensures only FATAL messages are logged:

logger.sev_threshold = Logger::FATAL

This level ensures every message of all levels is logged:

logger.sev_threshold = Logger::DEBUG

�Logging Messages

Each Logger object provides several methods to allow you to send a message to the

log. The most commonly used way is to use the debug, info, warn, error, and fatal

methods, which all create log messages of their respective severity:

require 'logger'

logger = Logger.new(STDOUT)

logger.debug "test"

logger.info "test"

logger.fatal "test"

Chapter 16 Useful Ruby Libraries

515

D, [2020-08-11T11:06:06.805072 #9289] DEBUG -- : test

I, [2020-08-11T11:06:06.825144 #9289] INFO -- : test

F, [2020-08-11T11:06:06.825288 #9289] FATAL -- : test

Log messages are notated by their severity as a single letter, the date and time of their

creation, the process ID of which process created them, and their severity label, followed

by the actual message. Optionally, the program name might be present, if it was specified

in the logging method, with the normal message coming from a block, like so:

logger.info("myprog") { "test" }

I, [2020-08-11T11:09:32.284956 #9289] INFO -- myprog: test

You can also assign a severity to a log message dynamically, like so:

logger.add(Logger::FATAL) { "message here" }

F, [2020-08-11T11:13:06.880818 #9289] FATAL -- : message here

To use different severities, pass the severity’s class (Logger::FATAL, Logger::DEBUG,

Logger::INFO, and so on) as the argument to add.

�Closing a Logger

You close a logger as you would a file or any other I/O structure:

logger.close

�Further Information
•	 Standard library documentation for logger: https://ruby-doc.org/

stdlib/libdoc/logger/rdoc/Logger.html

�Nokogiri
The Nokogiri library is a fast HTML, XML, SAX, and Reader parser with XPath and CSS

selector support.

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/logger/rdoc/Logger.html
https://ruby-doc.org/stdlib/libdoc/logger/rdoc/Logger.html

516

�Installation
The Nokogiri library isn’t part of the Ruby standard library, but it is available as a

Rubygem. To install it, use the typical gem installation process (as covered in Chapter 7),

like so:

gem install nokogiri

Alternatively, you can download the source from Nokogiri’s GitHub repository. The

link is provided in the following “Further Information” subsection.

�Examples
Nokogiri is a fast XML and HTML parser with full CSS3 selector and XPath support.

A great way to start using it is to see how easy it is to parse an HTML page:

require 'rubygems'

require 'nokogiri'

require 'open-uri'

doc = Nokogiri::HTML(URI.open('https://www.apress.com/'))

doc.css('p').each do |para|

 puts para.inner_text

end

In this example, we’ve used open-uri to make the retrieval of a website a lot quicker.

Nokogiri will, however, also accept strings if you want to process local or user-supplied

XML or HTML data.

The document is processed as HTML by Nokogiri, thanks to the use of

Nokogiri::HTML (Nokogiri::XML can be used to process XML). We’ve then used the css

method on the document to search for all paragraphs (the <p> tag in HTML). Any CSS

selector can be specified as an argument. For example, if you wanted to search for all

 tags under a <div> with an ID of “story,” you’d use the selector #story li.

The each method is then used to iterate over each paragraph, and the inner_text

method is used to return the plain text contents of the tag.

Chapter 16 Useful Ruby Libraries

517

�Further Information
•	 Nokogiri homepage: www.nokogiri.org/

•	 CSS Selector tutorial: www.w3schools.com/css/css_selectors.asp

•	 Nokogiri GitHub repository: https://github.com/sparklemotion/

nokogiri

�pp
pp is a “pretty printer” that provides better formatted output than a simple puts

something.inspect or p command. It presents a cleaner look at data structures that are

properly tabulated and spaced, unlike inspect or p’s output.

�Installation
The pp library is a part of the standard library, so it comes with Ruby by default. To use it,

you only need to place this line near the start of your program:

require 'pp'

�Examples
To use pp, simply use the pp method, followed by the object whose structure you wish to

display. Here’s a basic comparison of inspect and pp:

person1 = { :name => "Peter", :gender => :male }

person2 = { :name => "Carleton", :gender => :male }

people = [person1, person2, person1, person1, person1]

puts people.inspect

[{:name=>"Peter", :gender=>:male}, {:name=>" Carleton", :gender=>:male},

{:name=>"Peter", :gender=>:male}, {:name=>"Peter", :gender=>:male},

{:name=>"Peter", :gender=>:male}]

pp people

Chapter 16 Useful Ruby Libraries

http://www.nokogiri.org/
http://www.w3schools.com/css/css_selectors.asp
https://github.com/sparklemotion/nokogiri
https://github.com/sparklemotion/nokogiri

518

[{:name=>"Peter", :gender=>:male},

{:name=>"Carleton", :gender=>:male},

{:name=>"Peter", :gender=>:male},

{:name=>"Peter", :gender=>:male},

{:name=>"Peter", :gender=>:male}]

As demonstrated, pp is mostly useful when dealing with complex objects whose data

cannot fit on a single line. Here’s a more contrived example:

require 'pp'

class TestClass

 def initialize(count)

 @@a = defined?(@@a) ? @@a + 1 : 0

 @c = @@a

 @d = [:a => {:b => count }, :c => :d] * count

 end

end

pp TestClass.new(2), STDOUT, 60

pp TestClass.new(3), $>, 60

pp TestClass.new(4), $>, 60

#<TestClass:0x357000

 @c=0,

 @d=[{:a=>{:b=>2}, :c=>:d}, {:a=>{:b=>2}, :c=>:d}]>

#<TestClass:0x354364

 @c=1,

 @d=

 [{:a=>{:b=>3}, :c=>:d},

 {:a=>{:b=>3}, :c=>:d},

 {:a=>{:b=>3}, :c=>:d}]>

#<TestClass:0x3503f4

 @c=2,

 @d=

 [{:a=>{:b=>4}, :c=>:d},

Chapter 16 Useful Ruby Libraries

519

 {:a=>{:b=>4}, :c=>:d},

 {:a=>{:b=>4}, :c=>:d},

 {:a=>{:b=>4}, :c=>:d}]>

Where it’s practical, pp fits data onto a single line, but when more data is to be shown

than could fit on a single line, pp formats and spaces that data accordingly.

Note that in the preceding example, the pp calls are in this format:

pp TestClass.new(4), $>, 60

With no parameters, pp assumes a display width of 79 characters. However, pp

supports two optional parameters, which set the destination for its output and the

width of the output field. In this case, you output to the standard output and assume a

wrapping width of 60 characters.

�Further Information
•	 Standard library documentation for pp: https://ruby-doc.org/

stdlib/libdoc/prettyprint/rdoc/PrettyPrint.html

�RedCarpet
RedCarpet is a library that converts specially formatted text documents (in a formatting

known as Markdown) into valid HTML. The reasoning behind languages such as

Markdown is that most users prefer to write their documents in a clean format, rather

than be forced to use HTML tags everywhere and create documents that don’t read

well as plain text. Markdown allows you to format text in a way that makes documents

look good as plain text, but also allows the text to be converted quickly to HTML for

use on the Web. This makes languages such as Markdown popular for use with posting

and commenting systems online, and many blog authors even first write their posts in

languages such as Markdown before converting them for publication.

�Installation
RedCarpet isn’t part of the Ruby standard library, but it is available as a Rubygem. To

install it, use the typical gem installation process (as covered in Chapter 7), like so:

gem install redcarpet

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/prettyprint/rdoc/PrettyPrint.html
https://ruby-doc.org/stdlib/libdoc/prettyprint/rdoc/PrettyPrint.html

520

�Examples
An example Markdown document might look like this:

This is a title

===============

Here is some _text_ that's formatted according to [Markdown][1]

specifications. And how about a quote?

 [1]: http://daringfireball.net/projects/markdown/

> This section is a quote.. a block quote

> more accurately..

Lists are also possible:

* Item 1

* Item 2

* Item 3

In the following example, we’ll assume this document is already assigned to the

variable markdown_text to save space on the page.

Here’s how to convert Markdown syntax to HTML:

require 'redcarpet'

markdown_text=<<MARKDOWN

This is a title

===============

Here is some _text_ that's formatted according to [Markdown][1]

specifications. And how about a quote?

 [1]: http://daringfireball.net/projects/markdown/

> This section is a quote.. a block quote

> more accurately..

Lists are also possible:

Chapter 16 Useful Ruby Libraries

521

* Item 1

* Item 2

* Item 3

MARKDOWN

markdown = Redcarpet::Markdown.new(Redcarpet::Render::HTML)

puts markdown.render(markdown_text)

<h1>This is a title</h1>

<p>Here is some text that's formatted according to Markdown

specifications. And how about a quote?</p>

<blockquote>

<p>This section is a quote.. a block quote

more accurately..</p>

</blockquote>

<p>Lists are also possible:</p>

Item 1

Item 2

Item 3

The output HTML correctly resembles the Markdown syntax when viewed with a

web browser.

To learn more about the Markdown format and its syntax, visit the official Markdown

homepage, as linked in the following section.

�Further Information
•	 Official RedCarpet homepage: https://github.com/vmg/redcarpet

•	 Official Markdown format homepage: https://daringfireball.

net/projects/markdown/

Chapter 16 Useful Ruby Libraries

https://github.com/vmg/redcarpet
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/

522

�StringScanner
StringScanner is a library that lets you “walk through” a string, matching patterns one

at a time, while only applying them to the remainder of the data that you haven’t yet

matched. This is in stark contrast to the standard scan method that automatically returns

all matching patterns immediately.

�Installation
StringScanner is in the standard library, so it comes with Ruby by default. To use it, you

only need to place this line near the start of your program:

require 'strscan'

Note I t’s important to recognize that the filename doesn’t match the name of the
library, or class in this case. Although most library developers tend to keep names
consistent, not all do!

�Examples
The best way to see StringScanner’s feature set is to see it in action:

require 'strscan'

string = StringScanner.new "This is a test"

puts string.scan(/\w+/)

puts string.scan(/\s+/)

puts string.scan(/\w+/)

puts string.scan(/\s+/)

puts string.rest

This

is

a test

Chapter 16 Useful Ruby Libraries

523

In this example, you step through the string by first matching a word with scan,

then whitespace, then another word, and then more whitespace, before asking

StringScanner to give you the rest of the string with the rest method.

However, scan will return content only if the specified pattern matches at the current

position in the string. For example, this doesn’t retrieve each word:

puts string.scan(/\w+/)

puts string.scan(/\w+/)

puts string.scan(/\w+/)

puts string.scan(/\w+/)

This

nil

nil

nil

After the first scan, the pointer for string is waiting at the whitespace after “This,”

and scan must match the whitespace for it to continue. One way to get around this would

be like so:

puts string.scan(/\w+\s*/)

puts string.scan(/\w+\s*/)

puts string.scan(/\w+\s*/)

puts string.scan(/\w+\s*/)

In the preceding example, you’d retrieve the words and any whitespace located after

each word. Of course, this might not be desirable, so StringScanner also provides other

useful methods for scanning through strings.

scan_until scans through the string from the current position until the specified

pattern matches. All the data from the start of the scan, until and including the match,

is then returned. In this example, you perform a normal scan and pick off the first word,

but then you use scan_until to scan all text until you reach a number:

string = StringScanner.new "I want to live to be 100 years old!"

puts string.scan(/\w+/)

puts string.scan_until(/\d+/)

Chapter 16 Useful Ruby Libraries

524

I

want to live to be 100

You can also use scan_until to give a different solution to the previous “scan for

each word” problem:

string = StringScanner.new("This is a test")

puts string.scan_until(/\w+/)

puts string.scan_until(/\w+/)

puts string.scan_until(/\w+/)

puts string.scan_until(/\w+/)

Another useful method is unscan, which gives you the opportunity to roll back a

single scan:

string = StringScanner.new "I want to live to be 100 years old!"

puts string.scan(/\w+/)

string.unscan

puts string.scan_until(/\d+/)

string.unscan

puts string.scan_until(/live/)

I

I want to live to be 100

I want to live

You can also retrieve the current position of the scanner in the string:

string = StringScanner.new "I want to live to be 100 years old!"

string.scan(/\w+/)

string.unscan

puts string.pos

string.scan_until(/\d+/)

puts string.pos

string.unscan

string.scan_until(/live/)

puts string.pos

Chapter 16 Useful Ruby Libraries

525

0

24

14

You can use pos to set or override the position of the scanner too:

string = StringScanner.new "I want to live to be 100 years old!"

string.pos = 12

puts string.scan(/...../)

ve to

Note S tringScanner isn’t a subclass of String, so typical methods provided by
String won’t necessarily work. However, StringScanner does implement some
of them, such as <<, which concatenates data onto the end of the string.

�Further Information
•	 Standard library documentation for StringScanner: https://ruby-

doc.org/stdlib/libdoc/strscan/rdoc/StringScanner.html

�tempfile
Temporary files are intended for a single, one-time purpose. They’re ephemeral files that

you use to store information temporarily but that are quickly erased. In Chapter 9, you

looked at the creation of temporary files using several techniques, but tempfile provides

an easy and standard way to create and manipulate them.

�Installation
tempfile is in the standard library, so it comes with Ruby by default. To use it, you only

need to place this line near the start of your program:

require 'tempfile'

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/strscan/rdoc/StringScanner.html
https://ruby-doc.org/stdlib/libdoc/strscan/rdoc/StringScanner.html

526

�Examples
tempfile manages the creation and manipulation of temporary files. It creates temporary

files in the correct place for your operating system, and it gives them unique names so

that you can concentrate on the main logic of your application.

To create a temporary file, use Tempfile.new:

require 'tempfile'

f = Tempfile.new('myapp')

f.puts "Hello"

puts f.path

f.close

/tmp/myapp1842.0

Tempfile.new creates a temporary file using the given string as a prefix in the format

of <supplied name>-<program's process ID>.<unique number>. The returned object

is a Tempfile object that delegates most of its methods to the usual File and IO classes,

allowing you to use the file methods you’re already familiar with, as with f.puts earlier.

To use the data in your temporary file, you can close it and reopen it quickly:

f.close

f.open

If you specify no arguments to f.open, it will reopen the temporary file associated

with that object. At that point, you can continue to write to the temporary file or read

from it:

require 'tempfile'

f = Tempfile.new('myapp')

f.puts "Hello"

f.close

f.open

puts f.read

f.close!

Hello

Chapter 16 Useful Ruby Libraries

527

The preceding code creates a temporary file, writes data to it, closes the temporary

file (which flushes the written data out to disk from the memory buffers), and then

reopens it for reading.

The last line uses close! instead of close, which forces the temporary file to be

closed and permanently deleted.

Of course, you can flush the buffers manually, so you can use the same temporary

file for reading and writing without having to close it at any point:

require 'tempfile'

f = Tempfile.new('myapp')

f.puts "Hello"

f.pos = 0

f.print "Y"

f.pos = f.size - 1

f.print "w"

f.flush

f.pos = 0

puts f.read

f.close!

Yellow

Note  By default, temporary files are opened in the w+ mode.

In some situations, you might want to use temporary files, but not allow tempfile to

put them in a place that can be seen by other programs or users. Tempfile.new accepts an

optional second argument that specifies where you want temporary files to be created:

f = Tempfile.new('myapp', '/my/secret/temporary/directory')

As with other file-related classes, you can use Tempfile in block form:

require 'tempfile'

Tempfile.open('myapp') do |f|

 f.puts "Hello"

 f.pos = 0

Chapter 16 Useful Ruby Libraries

528

 f.print "Y"

 f.pos = f.size - 1

 f.print "w"

 f.flush

 f.pos = 0

 puts f.read

end

Yellow

Note Y ou use Tempfile.open instead of Tempfile.new when using a block.

The benefit of using block form in this case is that the temporary file is removed

automatically, and no closing is required. However, if you want to use a temporary file

throughout the scope of a whole program, block form might not be suitable.

�Further Information
•	 Standard library documentation for tempfile: https://ruby-doc.

org/stdlib/libdoc/tempfile/rdoc/Tempfile.html

�uri
You use the uri library to manage Uniform Resource Identifiers (URIs), which are

typically referred to as Uniform Resource Locators (URLs). A URL is an address such

as www.apress.com/, ftp://your-ftp-site.com/directory/filename, or even

mailto:your-email- address@privacy.net. uri makes it easy to detect, create, parse,

and manipulate these addresses.

�Installation
uri is in the standard library, so it comes with Ruby by default. To use it, you only need to

place this line near the start of your program:

require 'uri'

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/tempfile/rdoc/Tempfile.html
https://ruby-doc.org/stdlib/libdoc/tempfile/rdoc/Tempfile.html
http://www.apress.com/

529

�Examples
In this section, you’ll look at a few examples of how to use the uri library to perform basic

URL-related functions.

�Extracting URLs from Text

URI.extract is a class method that extracts URLs from a given string into an array:

require 'uri'

puts URI.extract('Check out https://www.apress.com/ or email mailto:me@

apress.com').inspect

["https://www.apress.com/", "mailto:me@apress.com"]

You can also limit the types of URLs that extract should find:

require 'uri'

puts URI.extract('https://www.apress.com/ and mailto:me@apress.com',

['https']).inspect

["https://www.apress.com/"]

If you immediately want to use the URLs one by one, you can use extract with a

block:

require 'uri'

email = %q{Some cool Ruby sites are https://www.ruby-lang.org/ and 

https://www.apress.com/ and https://www.w3.org/}

URI.extract(email, ['http', 'https']) do |url|

 puts "Fetching URL #{url}"

 # Do some work here…

end

Chapter 16 Useful Ruby Libraries

530

�Parsing URLs

A URL in a string can be useful, particularly if you want to use that URL with open-uri or

net/http, for example. However, it can also be useful to split URLs into their constituent

sections. Doing this with a regular expression would give inconsistent results and be

prone to failure in uncommon situations, so the URI class provides the tools necessary to

split URLs apart easily:

URI.parse('https://www.apress.com/')

=> #< URI::HTTPS https://www.apress.com/>

URI.parse parses a URL provided in a string and returns a URI-based object for it.

URI has specific subclasses for FTP, HTTP, HTTPS, LDAP, and MailTo URLs, but returns a

URI::Generic object for an unrecognized URL that’s in a URL-type format.

The URI objects have a number of methods that you can use to access information

about the URL:

require 'uri'

a = URI.parse('https://www.apress.com/')

puts a.scheme

puts a.host

puts a.port

puts a.path

puts a.query

https

www.apress.com

443

/

nil

Note that URI::HTTP is smart enough to know that if no port is specifically stated in

an HTTP URL, the default port 80 must apply. The other URI classes, such as URI::FTP

and URI::HTTPS, also make similar assumptions.

Chapter 16 Useful Ruby Libraries

531

With more complex URLs, you can access some extended data:

require 'uri'

url = 'https://www.x.com:1234/test/1.html?x=y&y=z#top'

puts URI.parse(url).port

puts URI.parse(url).path

puts URI.parse(url).query

puts URI.parse(url).fragment

1234

/test/1.html

x=y&y=z

top

The uri library also makes a convenience method available to make it even easier to

parse URLs:

u = URI('https://www.test.com/')

In this case, URI(url) is synonymous with URI.parse.

As well as URI.parse, you can use URI.split to split a URL into its constituent parts

without involving a URI object:

URI.split('https://www.x.com:1234/test/1.html?x=y&y=z#top')

=> ["http", nil, "www.x.com", "1234", nil, "/test/1.html", nil,

 "x=y&y=z", "top"]

URI.split returns, in order, the scheme, user info, hostname, port number, registry,

path, opaque attribute, query, and fragment. Any elements that are missing are nil.

Note  The only benefit of URI.split is that no URI object is created, so there
can be minimal gains in memory and processor usage. However, generally it’s
more acceptable to use URI() or URI.parse so that you can address the
different elements by name, rather than rely on the order of elements in an array
(which could change between versions of the library).

Chapter 16 Useful Ruby Libraries

532

�Creating URLs

You can also use uri to create URLs that meet the accepted specifications. At their

simplest, you can use the URI subclasses for each protocol to generate URLs by passing

in a hash of the elements you want to make up the URL:

require 'uri'

u = URI::HTTP.build(host: 'apress.com', path: '/')

puts u.to_s

puts u.request_uri

http://apress.com/

/

Note that to_s returns the entire URL, whereas request_uri returns the portion of

the URL that follows the hostname. This is because libraries such as net/http would use

the data from request_uri, whereas libraries such as open-uri can use the entire URL.

You could also pass in :port, :query, :fragment, :userinfo, and other elements to

the URI subclasses to generate more complex URLs.

Here’s an example of creating an FTP URL:

ftp_url = URI::FTP.build(userinfo: 'username:password',

host: 'ftp.example.com',

path: '/pub/folder',

typecode: 'a')

puts ftp_url.to_s

ftp://username:password@ftp.example.com/pub/folder;type=a

Also note that uri is good at adjusting URLs in a safe manner, as you can set the

various attributes to new values, as well as read them:

require 'uri'

my_url = "http://www.test.com/something/test.html"

url = URI.parse(my_url)

url.host = "www.test2.com"

Chapter 16 Useful Ruby Libraries

533

url.port = 1234

puts url.to_s

http://www.test2.com:1234/something/test.html

�Further Information
•	 Standard library documentation for uri: https://ruby-doc.org/

stdlib/libdoc/uri/rdoc/URI.html

•	 Information about URLs and URIs: https://en.wikipedia.org/

wiki/URL

�zlib
zlib is an open source data-compression library. It’s a significant standard in data

compression, and you can manipulate zlib archives on almost every platform. Notably,

zlib is often used to compress web pages between servers and web browsers, is used in

the Linux kernel, and forms a key part of many operating system libraries.

You can use zlib from Ruby as a mechanism to compress and uncompress data.

�Installation
zlib is in the standard library, so it comes with Ruby by default. To use it, you only need

to place this line near the start of your program:

require 'zlib'

�Examples
Under zlib, compression and uncompression are called deflating and inflating. The

quickest way to compress (deflate) data is by using the Zlib::Deflate class directly:

require 'zlib'

test_text = 'this is a test string' * 100

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/uri/rdoc/URI.html
https://ruby-doc.org/stdlib/libdoc/uri/rdoc/URI.html
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/URL

534

puts "Original string is #{test_text.length} bytes long"

compressed_text = Zlib::Deflate.deflate(test_text)

puts "Compressed data is #{compressed_text.length} bytes long"

Original string is 2100 bytes long

Compressed data is 46 bytes long

This test text compresses extremely well, as it’s the same string repeated 100 times

over. However, on normal data, it’s more practical to see compression rates of around 10

to 50 percent.

Restoring compressed data requires Zlib::Inflate:

require 'zlib'

test_text = 'this is a test string' * 100

puts "Original string is #{test_text.length} bytes long"

compressed_text = Zlib::Deflate.deflate(test_text)

puts "Compressed data is #{compressed_text.length} bytes long"

uncompressed_text = Zlib::Inflate.inflate(compressed_text)

puts "Uncompressed data is back to #{uncompressed_text.length} bytes in

length"

Original string is 2100 bytes long

Compressed data is 46 bytes long

Uncompressed data is back to 2100 bytes in length

Note  The compressed data returned by zlib is full 8-bit data, so might not be
suitable to use in emails or in formats where regular plain text is necessary. To
get around this, you can compress your data using zlib as usual and then use the
base64 library to turn the compressed results into plain text.

zlib also comes with classes to help you work directly with compressed files.

Files compressed with the zlib algorithm are often known as gzipped files, and

Zlib::GzipWriter and Zlib::GzipReader make it easy to create and read from these

files:

Chapter 16 Useful Ruby Libraries

535

require 'zlib'

Zlib::GzipWriter.open('my_compressed_file.gz') do |gz|

 gz.write 'This data will be compressed automatically!'

end

Zlib::GzipReader.open('my_compressed_file.gz') do |my_file|

 puts my_file.read

end

This data will be compressed automatically!

�Further Information
•	 Standard library documentation for zlib: https://ruby-doc.org/

stdlib/libdoc/zlib/rdoc/Zlib.html

Chapter 16 Useful Ruby Libraries

https://ruby-doc.org/stdlib/libdoc/zlib/rdoc/Zlib.html
https://ruby-doc.org/stdlib/libdoc/zlib/rdoc/Zlib.html

537
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2

�APPENDIX A

Ruby Primer and Review
for Developers
This appendix is designed to act as both a Ruby primer and review, useful both to

developers who want to brush up rapidly on their Ruby knowledge and to those who are

new to the language but who have existing programming knowledge and want to get a

quick overview.

If you’re a new programmer or at least are new to concepts such as object

orientation, scripting languages, and dynamic languages, you’ll want to read through

Chapter 2 and continue with the rest of the book instead of depending on this appendix

to teach you about Ruby. This appendix is designed for either those who have finished

reading the rest of this book and want to brush up on the basics or those who want to

look quickly through some basic elements of Ruby syntax in the flesh.

With that in mind, this appendix isn’t instructional, as most of the other chapters in this

book are. A lot of concepts will be covered at a quick pace with succinct code examples.

References to more explanatory detail found in this book are given where possible.

�The Basics
In this section, I’ll give a brief overview of the Ruby programming language, its concepts,

and how to use the Ruby interpreter.

�Definition and Concepts
Ruby is an open source, object-oriented programming language created and maintained by

Yukihiro Matsumoto (among others). Languages such as Perl, LISP, Smalltalk, and Python

have inspired the syntax and styling of the language. It is cross-platform and runs on several

different architectures, although its informal “home” architecture is Linux on x86.

https://doi.org/10.1007/978-1-4842-6324-2#DOI

538

Among other things, Ruby has automatic garbage collection, is (mostly) portable,

supports multitasking (both native and its own cooperative “green” threads), has a large

standard library, and supports most features associated with dynamic languages (such

as closures, iterators, exceptions, overloading, and reflection).

Ruby is an interpreted language. This is in opposition to languages that are compiled.

Code developed in languages such as C and C++ has to be compiled into object code

that represents instructions supported by a computer’s processor. Ruby, however, is

compiled down into platform-independent bytecode that is run by a virtual machine.

Python, Java, and C# share this characteristic, although they all run on different virtual

machine implementations and have different execution characteristics. Table A-1

highlights some key differences between several popular programming languages.

Ruby has been developed with the “principle of least surprise” in mind, so the way

you’d expect things to work is usually a valid way of doing something. This means Ruby

is very much a “there’s more than one way to do it” type of language, in the same vein as

Perl but quite different in philosophy from languages such as Python, where having one

clear process to achieve something is seen as the best way to do things.

Table A-1.  Feature Comparison Between Several Popular Programming Languages

Language Object-Oriented? Reflective? Dynamically Typed? Interpreted?

Ruby Yes Yes Yes Yes (usually)

C No No No No

C++ Yes No No No

C# Yes Yes Yes Yes, through VM

Perl Partially Partially Yes Yes

Java Yes, mostly Not generally No Yes, through VM

Python Yes Yes Yes Yes

Golang Partially Yes No No

Appendix A Ruby Primer and Review for Developers

539

Note  A useful resource is the official Ruby site’s “Ruby From Other Languages”
section at www.ruby-lang.org/en/documentation/ruby-from-other-
languages/, where you’ll find in-depth comparisons of Ruby against C, C++,
Java, Perl, PHP, and Python.

One important concept in Ruby is that almost everything is an object. For example,

the following line of code calls a primitive, internal method called puts with a single

argument of 10. puts prints its arguments to the screen:

puts 10

10

Note  You could run this as a complete Ruby program or perform it in an
interactive manner using Ruby’s irb tool.

The following line of code calls the class method on the numeric object 10. Even

the literal number 10 is an object in this situation. The result demonstrates that 10 is an

object of the Integer class:

puts 10.class

Integer

Ruby’s reflection, overriding, object orientation, and other dynamic features make

it possible for developers to entirely override the behaviors of even built-in classes such

as Integer. It’s possible to make Integer objects work in totally different ways. You can

override Integer to the point that 2 + 2 could well equal 5. Although some developers

already experienced with languages such as Java and C see this as a downside, this level

of control over the internals of the language gives Ruby developers a significant amount

of power. The key is to use that power carefully.

Appendix A Ruby Primer and Review for Developers

http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/

540

�The Ruby Interpreter and Running Ruby Code
As Ruby is an interpreted language, Ruby code is executed using the Ruby interpreter. On

most platforms, that makes running a Ruby script as easy as this:

ruby name_of_script.rb

Note  Ruby program files usually end with the extension of .rb, although this isn’t
a strict requirement.

The Ruby interpreter has a number of options. You can ask the Ruby interpreter to

print out its version details using the -v (version) option:

ruby -v

ruby 3.0.0p0 (2020-12-25) [x86_64-darwin17]

You can also execute Ruby commands directly from the command line, using -e:

ruby -e "puts 2 + 2"

4

You can learn more about the Ruby interpreter’s command-line options by typing

man ruby (on UNIX-related platforms) or by visiting a web-based version of the Ruby

man page at https://linux.die.net/man/1/ruby.

Note O n Microsoft Windows, you might choose to associate the Ruby interpreter
directly with any .rb files so that you can double-click Ruby files to execute them.

On UNIX-related platforms, it’s possible to add a “shebang” line as the first line of

a Ruby script so that it can be executed without having to invoke the Ruby interpreter

explicitly, for example:

#!/usr/bin/ruby

puts "Hello, world!"

Appendix A Ruby Primer and Review for Developers

https://linux.die.net/man/1/ruby

541

You can take this script, give it a simple filename such as hello (no .rb extension

needed), make the file executable (using chmod), and run it directly using its filename

rather than having to invoke the Ruby interpreter explicitly. Chapter 10 covers this

technique in more depth. More information about the shebang line specifically is

available at https://en.wikipedia.org/wiki/Shebang_(Unix).

�Interactive Ruby
With the normal Ruby interpreter also comes an interactive Ruby interpreter called irb.

This allows you to write Ruby code in an immediate, interactive environment where the

results of your code are given as soon as you type it. Here’s an example irb session:

irb

irb(main):001:0> puts "test"

test

=>nil

irb(main):002:0> 10 + 10

=> 20

irb(main):003:0> 10 == 20

=>false

irb(main):004:0> exit

irb gives you the results of methods and expressions immediately. This makes it

an ideal tool for debugging or putting together quick snippets of code and for testing

concepts.

�Expressions and Flow Control
Expressions, logic, and flow control make up a significant part of any developer’s tools in

any programming language. This section looks at how Ruby implements them.

�Basic Expressions
Ruby supports expressions in a style familiar to almost any programmer:

Appendix A Ruby Primer and Review for Developers

https://en.wikipedia.org/wiki/Shebang_(Unix)

542

"a" + "b" + "c"

abc

10 + 20 + 30

60

("a" * 5) + ("c" * 6)

aaaaacccccc

a = 10

b = 20

a * b

200

You can assign the results of expressions to variables, which you can then use in

other expressions.

Method calls, variables, literals, brackets, and operators can all combine so long

as sub-expressions always feed values of the correct type into their parent expressions

or provide methods that allow them to be coerced into the right types. The next section

covers this topic in more depth. (Expressions are covered in depth in Chapter 3.)

�Class Mismatches
Ruby is a dynamic language, but objects aren’t converted between different classes

automatically (in this sense Ruby is a strongly typed language). For example, this

expression is valid in JavaScript:

"20" + 10

30

Appendix A Ruby Primer and Review for Developers

543

However, in Ruby, you get an error response with the same expression:

TypeError (no implicit conversion of Integer into String)

from (irb):1:in `+'

from (irb):1

In Ruby, you can only use objects that are of the same class or that support automatic

translation between classes (coercion) in operations with one another (usually via methods

called things like to_s and to_h, for conversions to strings and hashes, respectively).

However, Ruby comes with a set of methods that exist on many types of objects,

which make conversion easy, for example:

"20" + 10.to_s

"2010"

In this example, the number 10 is converted to a string "10" in situ with the to_s

method. Consider this inverse example, where you convert the string "20" into an

integer object using the to_i method before adding 10 to it:

"20".to_i + 10

30

Note  Methods are covered in depth in Chapters 2, 3, and 6, as well as later in
this appendix.

The to_s method provided by all number classes in Ruby results in a number being

converted into a String object. Programmers might recognize this concept as similar to

casting.

Other conversions that can take place are converting integers to floats using to_f,

and vice versa with to_i. You can convert strings and numbers using to_s, to_i, and

to_f. Many other classes support to_s for converting their structure and other data into

a string (the Time class provides a good demonstration of this). This topic is covered in

Chapter 3 in the section “Converting Objects to Other Classes.”

Appendix A Ruby Primer and Review for Developers

544

�Comparison Expressions
Comparison expressions in Ruby, as in most other languages, return true or false,

except that in some situations comparisons might return nil, Ruby’s concept of “null” or

nonexistence, for example:

2 == 1

false

2 == 2

true

(2 == 2) && (1 == 1)

true

x = 12

x * 2 == x + 1

false

x * x == x ** 2

true

In each of the preceding examples, you test whether variables, literals, or other

expressions are equal to one another using == (symbolizing “is equal to”). You can check

that multiple expressions result in true (logical “and”—if x and y are true) using &&

(symbolizing “and”).

As in other languages, the concept of a logical “or” is symbolized by ||:

(2 == 5) || (1 == 1)

true

Appendix A Ruby Primer and Review for Developers

545

This expression is true because even though 2 is not equal to 5, the other sub-

expression is true, meaning that one or another of the expressions is true, so the whole

comparison is also true.

Last, it can be useful to negate expressions. You can do this with the ! operator, as in

many other programming languages. For example, you might want to see if one thing is

true but another thing is false. Here’s an example:

(2 == 2) && !(1 == 2)

true

The expression is true because both sub-expressions are true. 2 is equal to 2, and 1

is not equal to 2.

You can also check that one thing is not equal to another with the inequality operator !=:

(2 == 2) && (1 != 2)

True

�Flow
Ruby supports a few different forms of flow control. In this section, you’ll see several

techniques you can use for branching and looping. (All the topics in this section are

covered in more depth in Chapter 3.)

�Branching and Conditional Execution

The simplest form of conditional execution is with just a single line using if or unless:

puts "The universe is broken!" if 2 == 1

This example won’t print anything to the screen because 2 is not equal to 1. In this

case, if performs the comparison before the rest of the line is executed.

Ruby also supports a multiline construction:

if 2 == 1

 puts "The universe is broken!"

end

Appendix A Ruby Primer and Review for Developers

546

This multiline construction is less space efficient than the previous, single-line

construction, but it allows you to put multiple lines between the condition and the end

of the block, which isn’t possible with the “end of line” technique.

Note  unless is the opposite of if. It executes code if the expression is false
(or nil), rather than true. Some Rubyists think of it as “if not,” because unless
acts like if with the expression negated. Other developers avoid it entirely due to
the potential confusion it can cause.

Ruby also supports the else directive:

if 2 == 1

 puts "The universe is broken!"

else

 puts "The universe is okay!"

end

The universe is okay!

If the expression (2 == 1 in this example) is true, the main block of code is executed,

else the other block of code is. There’s also a feature called elsif that lets you chain

multiple ifs together:

x = 12

if x == 1 || x == 3 || x == 5 || x == 7 || x == 9

 puts "x is odd and under 10"

elsif x == 2 || x == 4 || x == 6 || x == 8

 puts "x is even and under 10"

else

 puts "x is over 10 or under 1"

end

The preceding rather obtuse example demonstrates how you can use if, elsif,

and else in tandem. The only thing to note is that end always finishes an if (or unless)

block, whether end is on its own or features elsif and else blocks too. In some

languages, there’s no need to delimit the end of if blocks if they contain only a single

line. This isn’t true of Ruby.

Appendix A Ruby Primer and Review for Developers

547

Note  JavaScript and C# coders will be used to else if. Ruby’s uses elsif
instead.

Ruby also supports another construction familiar to C#, C++, Java, and JavaScript

coders, called case (known as switch in C#, C++, Java, and JavaScript):

fruit = "apple"

color = case fruit

when "orange"

 "orange"

when "apple"

 "green"

when "banana"

 "yellow"

else

 "unknown"

end

puts color

green

This code is similar to the if block, except that the syntax is a lot cleaner. A case

block works by processing an expression first (supplied after case), and then the case

block finds and executes a contained when block with an associated value matching the

result of that expression. If no matching when block is found, then the else block within

the case block will be executed instead.

�The Ternary Operator (Conditional Expressions)

Ruby supports a construction called the ternary operator. Its usage is simple:

x = 10

puts x > 10 ? "Higher than ten" : "Lower or equal to ten"

Lower or equal to ten

Appendix A Ruby Primer and Review for Developers

548

The ternary operator works like so:

expression ? true_expression : false_expression

It works like an expression, but with built-in flow control. If the initial expression is true,

then the first following expression will be evaluated and returned. If the initial expression is

false, then the final following expression will be evaluated and returned instead.

�Loops

Ruby supports loops in a similar way to other programming languages. For example,

while, loop, until, next, and break features will be familiar (although with possibly

different names) to most programmers.

Note  Ruby also supports iteration and code blocks, which can prove a lot more
powerful than regular loops. These are covered later in this appendix and in
Chapters 2, 3, and 6.

Loop techniques are covered in Chapter 3, but some basic demonstrations follow.

Here’s a permanent loop that you can break out of using break:

i = 0

loop do

 i += 1

 puts i

 break if i > 100

end

Note I t’s worth noting that unlike in C# or JavaScript, you cannot increment
variables by 1 with variable++ in Ruby. variable = variable + 1 or
variable += 1 is necessary instead.

Here’s a while loop, using next to skip even numbers (using the % modulo operator):

i = 0

while (i < 15)

 i += 1

Appendix A Ruby Primer and Review for Developers

549

 next if i % 2 == 0

 puts i

end

1

3

5

7

9

11

13

15

Note  until is the opposite of while. until (i >= 15) is equivalent to
while (i < 15).

Further looping techniques are covered in Chapter 3 and throughout the book.

�Object Orientation
Ruby is considered a pure object-oriented language, because everything appears to Ruby

as an object. An earlier example in this appendix demonstrated this:

puts 10.class

Integer

Even literal data (such as strings or numbers embedded directly in your source code)

is considered to be an object, and you can call the methods made available by those

objects (and/or their parent classes).

Note O bject orientation, classes, objects, methods, and their respective
techniques are covered in full in Chapters 2 and 6. This section presents merely a
brief overview.

Appendix A Ruby Primer and Review for Developers

550

Ruby implements object orientation in a simple way (syntax-wise), but offers more

dynamic features than other major languages (see Chapter 6 for many examples of such

features).

�Objects
Objects in Ruby have no special qualities beyond objects that exist in any other object-

oriented programming language. However, the key difference between Ruby and most

other major object-oriented languages is that in Ruby everything is an object. With this

in mind, you can call methods on almost everything and even chain methods together:

something.function3.function2.function1

Periods are used between an object and the method to call, as in C# or JavaScript.

In this example, you call the function3 method on the something object, then the

function2 method on the result of that, and then the function1 method on the result of

that. A real-world demonstration can illustrate

"this is a test".reverse

tset a si siht

"this is a test".reverse.upcase.split(' ').reverse.join('-')

SIHT-SI-A-TSET

This example is deliberately long to demonstrate the power of method chaining

in Ruby. This example takes your string "this is a test", reverses it, converts it to

uppercase, splits it into words (splitting on spaces), reverses the position of the words

in an array, and then joins the array back into a string with each element separated by

dashes. (Objects are covered in depth in Chapters 2, 3, and 6.)

�Classes and Methods
Ruby classes are similar in style to those in C# or Java, but keep the benefits of Ruby’s

dynamic features. Let’s look at an example class definition:

Appendix A Ruby Primer and Review for Developers

551

class Person

 def initialize(name, age)

 @name = name

 @age = age

 end

 def name

 return @name

 end

 def age

 return @age

 end

end

This class features an initialize method that is called automatically when you

create a new instance of that class. Two parameters or arguments are accepted (name and

age) and assigned to instance variables. Instance variables are variables associated with

a particular instance of a class and begin with an @ sign (as in @name). Java developers

should recognize @name as being similar to this.name.

After the initializer come two methods (name and age) that act as basic accessors.

They simply return the value of their respective instance variables.

Note I n Ruby, if no value is explicitly returned from a method, the value of the
last expression is returned instead. Therefore, return @name and just @name as
the last line in the name method would be equivalent.

With the preceding class definition, it’s trivial to create new objects:

person1 = Person.new('Chris', 25)

person2 = Person.new('Laura', 23)

puts person1.name

puts person2.age

Chris

23

Appendix A Ruby Primer and Review for Developers

552

One benefit of Ruby is that you can add features to classes even if they’ve already

been defined. Within the same program as before, you can simply “reopen” the class and

add more definitions:

class Person

 def name=(new_name)

 @name = new_name

 end

 def age=(new_age)

 @age = new_age

 end

end

These new methods are added to the Person class and are automatically made

available to any existing instances of that class. These new methods are setter methods,

as signified by the equals sign following their names. They allow you to do this:

person1.name = "Barney"

person2.age = 101

puts person1.name

puts person2.age

Barney

101

Ruby can simplify most of the preceding work for you though, as it provides the

attr_accessor helper method that automatically creates accessors and setter methods

within a class for you:

class Person

attr_accessor :name, :age

end

You can also create class methods: methods that don’t exist within the scope of a

single object, but that are bound directly to the class, for example:

class Person

 @@count = 0

Appendix A Ruby Primer and Review for Developers

553

def initialize

 @@count += 1

end

def self.count

 @@count

end

end

a = Person.new

b = Person.new

c = Person.new

puts Person.count

3

This Person class implements a count class method (notice that it is defined as self.

count, rather than just count, making it a class method). The count class method returns

the value of a class variable (@@count) that stores the total number of Person objects

created so far. Class variables begin with two @ signs and exist within the scope of a class

and all its objects, but not within the scope of any specific object. Therefore, @@count

equals 3 and only 3 once you’ve created three Person objects.

This section has given only a brief overview of classes, objects, and their special

variables. For a detailed look at classes and objects, refer to Chapter 6.

�Reflection
Ruby is often called a reflective language, as it supports reflection. Reflection is a process

that allows a computer program to observe and modify its own structure and behavior

during execution. This functionality can seem like a novelty to developers experienced

with C#, C++, and Java, but it’s incredibly important in terms of Ruby’s operation and

Ruby’s ability to define domain-specific languages, making other forms of development

easier.

A brief demonstration of reflection is the ability to programmatically retrieve a list of

all the methods associated with any object or class in Ruby. For example, here’s how to

display a list of all methods of the Hash class:

Appendix A Ruby Primer and Review for Developers

554

Hash.methods

[:[], :try_convert, :ruby2_keywords_hash?, :ruby2_keywords_hash, :new,

:allocate, :superclass, :<=>, :<=, :>=, :==, :===, :included_modules,

:include?, :ancestors, :attr, :attr_reader, :attr_writer, :attr_accessor,

:freeze, :inspect, :public_instance_methods, :instance_methods,

:const_missing, :protected_instance_methods, :private_instance_methods,

:const_set, :constants, :remove_class_variable, :class_variable_get,

:class_variable_set, :class_variable_defined?, :const_get, :const_

defined?, :<, :>, :public_constant, :class_variables, :private_constant,

:deprecate_constant, :singleton_class?, :const_source_location, :to_s,

:class_eval, :include, :module_exec, :module_eval, :prepend, :undef_

method, :alias_method, :class_exec, :remove_method, :method_defined?,

:name, :private_class_method, :public_method_defined?, :private_method_

defined?, :protected_method_defined?, :public_class_method, :define_

method, :autoload, :autoload?, :instance_method, :public_instance_method,

:dup, :itself, :yield_self, :then, :taint, :tainted?, :untaint, :untrust,

:untrusted?, :trust, :frozen?, :methods, :singleton_methods, :protected_

methods, :private_methods, :public_methods, :instance_variables,

:instance_variable_get, :instance_variable_set, :instance_variable_

defined?, :remove_instance_variable, :instance_of?, :kind_of?, :is_a?,

:tap, :display, :hash, :class, :singleton_class, :clone, :public_send,

:method, :public_method, :singleton_method, :define_singleton_method,

:extend, :to_enum, :enum_for, :=~, :!~, :nil?, :eql?, :respond_to?,

:object_id, :send, :__send__, :!, :!=, :__id__, :equal?, :instance_eval,

:instance_exec]

Similarly, you can retrieve a list of methods available on a String object directly:

"testing".methods

[:unicode_normalize, :unicode_normalize!, :ascii_only?, :to_r, :unpack,

:encode, :encode!, :unpack1, :%, :include?, :*, :+, :count, :partition,

:+@, :-@, :<=>, :<<, :to_c, :==, :===, :sum, :=~, :next, :[], :casecmp,

:casecmp?, :insert, :[]=, :match, :match?, :bytesize, :empty?, :eql?,

:succ!, :next!, :upto, :index, :rindex, :replace, :clear, :chr, :getbyte,

Appendix A Ruby Primer and Review for Developers

555

:setbyte, :scrub!, :scrub, :undump, :byteslice, :freeze, :inspect,

:capitalize, :upcase, :dump, :downcase!, :swapcase, :downcase, :hex,

:capitalize!, :upcase!, :lines, :length, :size, :codepoints, :succ,

:split, :swapcase!, :bytes, :oct, :prepend, :grapheme_clusters, :concat,

:start_with?, :reverse, :reverse!, :to_str, :to_sym, :crypt, :ord, :strip,

:end_with?, :to_s, :to_i, :to_f, :center, :intern, :gsub, :ljust, :chars,

:delete_suffix, :sub, :rstrip, :scan, :chomp, :rjust, :lstrip, :chop!,

:delete_prefix, :chop, :sub!, :gsub!, :delete_prefix!, :chomp!, :strip!,

:lstrip!, :rstrip!, :squeeze, :delete_suffix!, :tr, :tr_s, :delete,

:each_line, :tr!, :tr_s!, :delete!, :squeeze!, :slice, :each_byte, :each_

char, :each_codepoint, :each_grapheme_cluster, :b, :slice!, :rpartition,

:encoding, :force_encoding, :valid_encoding?, :hash, :unicode_normalized?,

:clamp, :between?, :<=, :>=, :>, :<, :dup, :itself, :yield_self, :then,

:taint, :tainted?, :untaint, :untrust, :untrusted?, :trust, :frozen?,

:methods, :singleton_methods, :protected_methods, :private_methods,

:public_methods, :instance_variables, :instance_variable_get, :instance_

variable_set, :instance_variable_defined?, :remove_instance_variable,

:instance_of?, :kind_of?, :is_a?, :tap, :display, :class, :singleton_

class, :clone, :public_send, :method, :public_method, :singleton_method,

:define_singleton_method, :extend, :to_enum, :enum_for, :!~, :nil?,

:respond_to?, :object_id, :send, :__send__, :!, :!=, :__id__, :equal?,

:instance_eval, :instance_exec]

Note F uture versions of Ruby may show different results.

The results given by the methods method might seem overwhelming at first, but over

time they become incredibly useful. Using the methods method on any object allows you

to learn about methods that aren’t necessarily covered in this book (or other books) or

that are new to the language. You can also use methods to retrieve a list of class methods,

because classes are also objects in Ruby!

This section provides only a taste of reflection, but the topic is covered in more detail

in Chapter 6.

Appendix A Ruby Primer and Review for Developers

556

�Reopening Classes
It’s trivial to override already defined methods on classes. Earlier in this appendix, I

mentioned that, if you so wish, you can adjust the Integer class so that 2 + 2 would

equal 5. Here’s how you do that:

class Integer

 alias_method :old_plus, :+

 def +(other_number)

 return 5 if self == 2 && other_number == 2

 old_plus other_number

 end

end

puts 2 + 2

5

The first thing this code does is to enter the Integer class, so you can define methods

and perform actions within it. Next, you make an alias from the addition operator/

method (+) to a new method called old_plus. This is so you can still use the normal

addition feature, though with a different name.

Next, you redefine (or “override”) the + method and return 5 if the current number is

2 and the number you’re adding to the current number is also 2. Otherwise, you simply

call old_plus (the original addition function) with the supplied argument. This means

that 2 + 2 now equals 5, but all other addition is performed correctly.

You can redefine nearly any method within Ruby. This can make testing essential

because you (or another developer) might incorporate changes that affect classes and

objects being used elsewhere within your program. Testing is covered in Chapters 8 and 12.

�Method Visibility
It’s possible to change the visibility of methods within Ruby classes in one of three ways.

Methods can be public (callable by any scope within the program), private (callable only

within the scope of the instance the methods exist upon), and protected (callable by any

object of the same class). Full details about method visibility are available in Chapter 6.

Appendix A Ruby Primer and Review for Developers

557

To encapsulate methods as public, private, or protected, you can use two different

techniques. Using the words public, private, and protected within a class definition

causes the methods defined thereafter to be encapsulated in the respective fashion:

class MyClass

 def public_method

 end

 private

 def private_method1

 end

 def private_method2

 end

 protected

 def protected_method

 end

end

You can also explicitly set methods to be encapsulated in one way or another, but

only after you’ve first defined them, for example:

class MyClass

 def public_method

 end

 def private_method1

 end

 def private_method2

 end

 def protected_method

 end

 public :public_method

 private :private_method1, :private_method2

 protected :protected_method

end

Appendix A Ruby Primer and Review for Developers

558

Declarations such as this should come after you define the methods, as otherwise

Ruby won’t know what you’re referring to.

�Data
As everything is an object in Ruby, all forms of data represented within Ruby are also

objects, just of varying classes. Therefore, some Ruby developers will try to correct you if

you refer to types rather than classes, although this is merely pedantry.

In this section, we’ll take a quick look at some of the basic data classes in Ruby.

�Strings
Strings in Ruby are generally unexceptional, except for the object-oriented benefits you

gain. Previously in this appendix, we looked at how powerful classes and methods can

be when working on strings:

"this is a test".reverse.upcase.split(' ').reverse.join('-')

SIHT-SI-A-TSET

The String class offers a plethora of useful methods for managing text. I’ll cover

several of these in the “Regular Expressions” section. However, if you want to see what

other methods strings offer, it’s easy: just execute "test".methods.

�Regular Expressions
In Ruby, regular expressions are implemented in a reasonably standard way. If you’re

familiar with regular expressions, Ruby’s techniques shouldn’t seem alien:

"this is a test".sub(/[aeiou]/, '*')

th*s is a test

"this is a test".gsub(/[aeiou]/, '*')

th*s *s * t*st

Appendix A Ruby Primer and Review for Developers

559

"THIS IS A TEST".gsub(/[aeiou]/, '*')

THIS IS A TEST

"THIS IS A TEST".gsub(/[aeiou]/i, '*')

TH*S *S * T*ST

sub performs a single substitution based on a regular expression, whereas gsub

performs a global substitution. As in other languages, you use the /i option to make the

regular expression case-insensitive.

Ruby also makes matching easy, with the match method of String returning a special

MatchData array you can query:

m = "this is a test".match(/\b..\b/)

m[0]

is

m = "this is a test".match(/\b(.)(.)\b/)

m[0]

is

m[1]

i

m[2]

s

The latter example demonstrates how you can parenthesize elements of the regular

expression to separate their contents in the results. m[0] contains the full match, whereas

m[1] onward matches each set of parentheses.

Appendix A Ruby Primer and Review for Developers

560

You can also scan through a string, returning each match for a regular expression:

"this is a test".scan(/[aeiou]/)

['i', 'i', 'a', 'e']

"this is a test".scan(/\w+/)

['this', 'is', 'a', 'test']

Methods such as split also accept regular expressions (as well as normal strings):

"this is a test".split(/\s/)

['this', 'is', 'a', 'test']

Regular expressions are covered in more depth in Chapter 3, and are used

throughout the book.

�Numbers
Integers and floating point numbers are available in Ruby and operate mostly as

you’d expect. Numbers support all common operators such as modulus (%), addition,

subtraction, division, multiplication, and powers (**).

A key consideration with numbers in Ruby is that unless you explicitly define a

number as a floating point number, it won’t be one unless it contains a decimal point, for

example:

10 / 3

3

Appendix A Ruby Primer and Review for Developers

561

In this situation, 10 and 3 are both considered integers, so integer division is used.

If integer division is what you’re after—and it might be in some cases—then you’re fine.

But if you’re after floating point division, you need to do something to ensure that at least

one of the values involved is recognized as a floating point number. You can generate a

floating point value in one of three ways as follows:

•	 By invoking the to_f method to convert an integer to its floating point

equivalent

•	 By writing the number with a decimal point, even if you just add “.0”

to the end

•	 By invoking the Float() initializer method to convert an integer to a

floating point value

Here are some examples:

10.to_f / 3

3.33333333333335

10.0 / 3

3.33333333333335

10 / Float(3)

3.33333333333335

Which method you choose to make the 10 be recognized as a Float object can be

largely influenced by the situation, so it’s useful to see all your options.

Numbers are covered in depth in Chapter 3.

Note  You can produce roots easily by raising a number to the power of 1 divided
by the root desired. For example, you can find the square (2) root of 25 with 25 **
0.5.

Appendix A Ruby Primer and Review for Developers

562

�Arrays
As in other programming languages, arrays act as ordered collections. However, in Ruby

specifically, arrays are ordered collections of objects, because everything in Ruby is an

object! Arrays can contain any combination of objects of any class.

At first sight, Ruby arrays work much like arrays in any other language, although

note that you work on an array using methods, because an array itself is an object. The

following example shows the invocation of the Array class’s push method:

a = []

a.push(10)

a.push('test')

a.push(30)

a << 40

[10, 'test', 30, 40]

Notice the use of a different form of pushing objects to an array with the << operator

on the last line of the preceding example.

You can then retrieve elements like so:

puts a[0]

puts a[1]

puts a[2]

10

test

30

Note  Although [] defines an empty literal array, you can also use Array.new to
generate an empty array if you prefer to stick to object orientation all the way.

Arrays are objects of class Array and support a plethora of useful methods, as

covered in full in Chapter 3.

Appendix A Ruby Primer and Review for Developers

563

�Hashes (Associative Arrays)
Hashes (also known as associative arrays) exist as a concept in many programming

languages. Hashes are data structures that let you associate keys with values.

Ruby’s implementation of hashes is straightforward and should be familiar to Python

developers, despite some minor syntax changes, for example:

fred = {

 'name' => 'Fred Elliott',

 'age' => 63,

 'gender' => 'male',

 'favorite painters' => ['Monet', 'Constable', 'Da Vinci']

}

fred refers to a basic hash that contains four elements that have keys of 'name',

'age', 'gender', and 'favorite painters'. You can refer back to each of these

elements easily:

puts fred['age']

63

puts fred['gender']

male

puts fred['favorite painters'].first

Monet

Hashes are objects of class Hash and come with a large number of helpful methods

to make hashes easy to navigate and manipulate, much like regular arrays. It’s important

to note that both hash element keys and values can be objects of any class themselves,

as long as each element key is distinct. Otherwise, previously existing values will be

Appendix A Ruby Primer and Review for Developers

564

overwritten. Hashes and associated methods and techniques are covered in detail in

Chapter 3.

In Ruby 1.9 and above, a new style of defining hashes is available and is preferred in

modern Ruby. It would allow the previous example to be written like so:

fred = {

 name: 'Fred Elliott',

 age: 63,

 gender: 'male',

 favorite_painters: ['Monet', 'Constable', 'Da Vinci']

}

�Complex Structures
Because hashes and arrays can contain other objects, it’s possible to create complex

structures of data. Here’s a basic example of a hash containing other hashes (and

another hash containing an array at one point):

people = {

 fred: {

 name: 'Fred Elliott',

 age: 63,

 gender: 'male',

 favorite_painters: ['Monet', 'Constable', 'Da Vinci']

 },

 janet: {

 name: 'Janet S Porter',

 age: 68,

 gender: 'female'

 }

}

puts people[:fred][:age]

puts people[:janet][:gender]

puts people[:janet].inspect

Appendix A Ruby Primer and Review for Developers

565

63

female

{:name=>"Janet S Porter", :age=>68, :gender=>"female"}

This example presents a hash called people that contains two entries with keys of

:fred and :janet, each of which refers to another hash containing information about

each person. These sorts of structures are common in Ruby. They are covered in more

depth in Chapter 3 and throughout this book. Typically, compared to other languages,

the syntax is simple, and in Ruby, the simplest answer is usually the right one.

�Input/Output
Ruby has powerful input/output (I/O) support, from the ability to create, read,

and manipulate files through to database support, external devices, and network

connectivity. These topics are covered in full in this book (primarily in Chapters 9, 14,

and 15), but this section presents a basic overview of the most important forms of I/O.

�Files
Ruby’s support for file I/O is powerful compared to that of other languages. Although

Ruby supports traditional techniques for reading and manipulating files, its object-

oriented features and tight syntax offer more exciting possibilities. First, here is the

traditional way you’d open and read a file (as when using a more procedural language):

lines = []

file_handle = File.open("/file/name/here", "r")

while line = file_handle.gets

 lines<< line

end

file_handle.close

Note  You would need to replace /file/name/here with a legitimate path for
this to work asis.

Appendix A Ruby Primer and Review for Developers

566

This example opens a file in read-only mode and then uses the file handle to read the

file line by line before pushing it into an array. Let’s look at a Ruby-specific technique:

lines = File.readlines('/file/name/here')

Ruby’s file handling and manipulation support is particularly deep and extensive,

so it’s out of the scope of this chapter. However, the preceding examples should have

provided a glimpse into what’s possible, and files are covered in full in Chapter 9 of this

book.

�Databases
There are several ways to connect to database systems such as MySQL, MongoDB,

PostgreSQL, Oracle, SQLite, and Microsoft SQL Server from Ruby. Typically, a “driver”

library is available for each of the main database systems, although these don’t come

with Ruby by default. You typically install database driver libraries using the RubyGems

Ruby library packaging system, or you might need to download and install them

manually. Explaining how to use such libraries is beyond the scope of this appendix, but

they are covered in full in Chapter 9.

Ruby also has libraries that can provide more standardized interfaces to various

driver libraries. Consider looking at sequel for this.

�Web Access
Ruby comes with libraries that make accessing data on the Web incredibly easy. At a

high level is the open-uri library, which makes it easy to access data from the Web. This

example retrieves a web page and returns an array containing all the lines on that page:

require 'open-uri'

URI.open('https://www.apress.com/').readlines

open-uri is a convenience library that provides an open method that allows you to

load data from URLs. open returns a File handle (technically a Tempfile object) that

works in the same way as any other File object, allowing you to use methods such

as readlines to read all the lines of the data into an array. (This topic is covered in

significantly more depth in Chapter 14.)

Appendix A Ruby Primer and Review for Developers

567

Ruby also provides lower-level libraries, such as net/http. Here’s an example of

retrieving a file from a website and displaying it on the screen:

require 'net/http'

Net::HTTP.start('www.apress.com', use_ssl: true) do |http|

 req = Net::HTTP::Get.new('/sitemap.xml')

 puts http.request(req).body

end

<?xml version="1.0" encoding="UTF-8"?><sitemapindex xmlns="http://

www.sitemaps.org/schemas/sitemap/0.9"><sitemap><loc>https://

www.apress.com/sitemap-books-aa.xml</loc><lastmod>2020-08-

12T15:47:18.948Z</lastmod></sitemap><sitemap><loc>https://www.apress.

com/sitemap-books-gp-1.xml</loc><lastmod>2020-08-12T15:47:19.113Z</

lastmod></sitemap><sitemap><loc>https://www.apress.com/sitemap-

books-gp-2.xml</loc><lastmod>2020-08-12T15:47:19.298Z</lastmod></

sitemap><sitemap><loc>https://www.apress.com/sitemap-books-

gp-3.xml</loc><lastmod>2020-08-12T15:47:19.486Z</lastmod></

sitemap><sitemap><loc>https://www.apress.com/sitemap-books-gp-4.xml</

loc><lastmod>2020-08-12T15:47:19.663Z</lastmod></sitemap></sitemapindex>

This example connects to the web server at www.apress.com and performs an HTTP

GET request for /sitemap.xml. This file’s contents are then returned and displayed. The

equivalent URL for this request is www.apress.com/sitemap.xml, and if you load that

URL in your web browser, you’ll get the same response as this Ruby program.

net/http also lets you make requests using other HTTP verbs such as POST and

DELETE, and it is the most flexible HTTP library for Ruby. Refer to Chapter 14 for full

information.

�Libraries
This section looks at how you can organize code into multiple files and manage libraries

within Ruby.

Appendix A Ruby Primer and Review for Developers

http://www.apress.com
http://www.apress.com/sitemap.xml

568

�File Organization
Ruby libraries don’t need to be packaged in any special way (unlike, say, Java’s JAR

archives). Ruby does have a library packaging system called RubyGems (covered in

the next section), but its use is entirely optional. The simplest way to create a library is

to create a Ruby file containing classes and methods and use require to load it. This

technique is similar in C# (using) or JavaScript (import).

Let’s assume you have a file called mylib.rb containing the following:

class MyLib

 def self.hello_world

 puts "Hello, world!"

 end

end

And then you have another file like so:

require_relative 'mylib'

MyLib.hello_world

This program loads in mylib.rb and includes its classes, methods, and other

particulars into the current runtime environment, meaning that MyLib.hello_world calls

the correct routine.

Ruby searches through its library folders in a specific order (and usually the current

directory too, as in the previous example), as dictated by the special variable $:. This

variable is an array that can be manipulated like any other array. You can push, pop, and

otherwise change the order and directories in which your program searches for libraries.

This topic is covered in depth in Chapter 7, and demonstrations of several Ruby libraries

are offered in Chapter 16. A basic Ruby library is also created from scratch in Chapter 12.

�Packaging
RubyGems (https://rubygems.org/) is a packaging system for Ruby libraries and

applications. Each package within the RubyGems universe is called a gem or RubyGem

(in this book, both terms are used interchangeably). RubyGems makes it easier to

distribute, update, install, and remove libraries and applications on your system. A

further system called Bundler makes it possible to “bundle” together gems in the context

of a single Ruby project that you might be working on.

Appendix A Ruby Primer and Review for Developers

https://rubygems.org/

569

RubyGems has been included by standard with Ruby since Ruby 1.9, but was

previously an optional, third-party technology.

Before the advent of RubyGems, Ruby libraries and applications were distributed in

a basic fashion in archive files or even as source code to copy and paste from the Web.

RubyGems makes it easier and more centralized and also takes care of any prerequisites

and dependencies required when installing a library. For example, here’s how to install

the Ruby on Rails framework:

gem install rails

Note O n some platforms, you will have permissions issues installing gems. Avoid
using sudo as a work around since it will cause issues. Instead, try using rbenv
(https://github.com/rbenv/rbenv) or rvm (https://rvm.io/) to
manage your Ruby install.

This installs the gems that make up Rails along with all their dependencies. Bundler

provides an alternative whereby gems are defined within a special file and then the

Bundler tool automatically installs the required dependencies for you.

You can uninstall gems in as simple a fashion:

gem uninstall rails

If you have multiple versions of the same gem(s) installed, gem will ask you which

version(s) you want to remove.

By default, gems are searched for in the default repository, hosted at RubyGems.org.

There is documentation on the official RubyGems site if you want to create your own

account to be able to release your own gems via the site.

Optionally you can run your own gems repository on your own website or by using

the RubyGems server software. This is less common and requires users of your gems to

specify your server name at the same time as installing the gem. I would not advise this.

RubyGems and Bundler are covered in Chapter 7, and several RubyGems are

documented in Chapter 16.

Appendix A Ruby Primer and Review for Developers

https://github.com/rbenv/rbenv
https://rvm.io/

571
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2

�APPENDIX B

Useful Resources
This appendix provides links to useful Ruby resources that are available online, from

websites to chatrooms and mailing lists.

As the Internet is ever changing, some resources that were available at the time of

writing may no longer be available to you. When you find that to be the case, it’s worth

using a search engine to search for the keywords involved, as the site you’re looking for

might have simply changed URLs.

�Tutorials and Guides
The Internet is host to a significant number of tutorials and guides on how to use various

features of Ruby and its libraries. Often there are multiple tutorials on how to do the

same thing in different ways, and tutorials can appear quickly after libraries are released.

This is why it’s worth subscribing to a few Ruby-related Twitter feeds and other news

sources so that you can learn about the latest action as it happens.

However, in this section are links to a number of useful tutorials and guides that are

more perennially useful.

�General Ruby Tutorials and Information
Try Ruby! (https://try.ruby-lang.org/): An online Ruby

interpreter with a built-in tutorial.

Ruby in Twenty Minutes (www.ruby-lang.org/en/documentation/

quickstart/): A basic primer to the bare essentials of Ruby. This

guide won’t be of any use to readers of this book, but might be

useful to forward to others who are interested in Ruby and want to

get a quick look at the language from a beginner’s point of view.

https://doi.org/10.1007/978-1-4842-6324-2#DOI
https://try.ruby-lang.org/
http://www.ruby-lang.org/en/documentation/quickstart/
http://www.ruby-lang.org/en/documentation/quickstart/

572

Learn Ruby (http://rubylearning.com): A collection of short

tutorials and ebooks on various aspects of Ruby, by Satish Talim.

It’s ideal as a quick recap on various topics. Satish also runs Ruby-

related online classes.

Ruby Tapas (www.rubytapas.com): Short screencasts covering

various Ruby topics.

�Ruby on Rails
Getting Started with Rails (https://guides.rubyonrails.org/

getting_started.html): An excellent walk-through of how to

use Rails from a basic point of view. Covers creating a very basic

application and provides links to further resources. Well worth

reviewing after reading Chapter 13 of this book.

The Rails Tutorial Book (www.railstutorial.org/book): A book

by Michael Hartl that is available to read in its entirely online. This

is what I recommend if you want to learn Rails from scratch.

�Other
SQL Tutorial (www.w3schools.com/sql/): A comprehensive SQL

tutorial, expanding on what is covered in Chapter 9 of this book.

�References
The resources covered in this section are general references to Ruby and Ruby on Rails.

For specific tutorials and guides to doing certain things, you need to refer instead to the

“Tutorials and Guides” section later on in this appendix.

Appendix B Useful Resources

http://rubylearning.com
http://www.rubytapas.com
https://guides.rubyonrails.org/getting_started.html
https://guides.rubyonrails.org/getting_started.html
http://www.railstutorial.org/book
http://www.w3schools.com/sql/

573

�Ruby
Official Ruby Homepage (www.ruby-lang.org/): The official Ruby

homepage.

Ruby-Doc.org (www.ruby-doc.org/): A documentation site built

by the Ruby community that features documentation for the

core API, standard libraries, and other miscellaneous Ruby bits

and pieces. Its primary maintainer is James Britt, who has been

involved with Ruby documentation for many years.

Ruby Core Documentation (https://ruby-doc.org/core/):

Documentation for the core elements of Ruby 2.3 (at the time

of writing), such as the included classes (Array, Hash, etc.), as

well as most of the standard library. This URL will redirect to the

documentation for the latest production version of Ruby as it

changes over time.

Ruby Standard Library Documentation (https://ruby-doc.org/

stdlib/): Documentation for the Ruby standard libraries. Each

library is presented separately, making it easier to read than the

core documentation.

Clean Ruby (www.apress.com/gp/book/9781484255452): Learn

how to make better decisions and write cleaner Ruby code.

�Ruby on Rails
Official Rails Homepage (https://rubyonrails.org/): The

official homepage for the Ruby on Rails framework. It features

screencasts, tutorials, and links to many useful Rails references.

Rails API Documentation (https://api.rubyonrails.org/): API

documentation for the entire Ruby on Rails framework in RDoc

format. This is the most useful reference documentation for Ruby

on Rails, as almost all Rails techniques and methods are covered.

Appendix B Useful Resources

http://www.ruby-lang.org/
http://www.ruby-doc.org/
https://ruby-doc.org/core/
https://ruby-doc.org/stdlib/
https://ruby-doc.org/stdlib/
http://www.apress.com/gp/book/9781484255452
https://rubyonrails.org/
https://api.rubyonrails.org/

574

Ruby on Rails Guides (https://guides.rubyonrails.org/):

Well-written walk-through guides for various Rails features,

such as how to get started with Rails and how to use the

internationalization features, routing, and database migrations.

�Ruby-Related Content
�Aggregators and News

RubyFlow (www.rubyflow.com/): A community-driven link blog

for all things related to Ruby and Rails. It’s very popular and

a great way to keep up with the day-to-day Ruby news and to

promote your own blog posts.

Ruby News (www.ruby-lang.org/en/news/): The official news

site for the main implementation of Ruby. It is only updated

sporadically and when there are key release or security

announcements.

/r/ruby on Reddit (https://reddit.com/r/ruby): An area of the

popular Reddit community discussion and bookmarking site

dedicated to Ruby-related items.

Riding Rails (https://weblog.rubyonrails.org/): The official

blog for Ruby on Rails, updated by several core Rails developers

and activists. The blog focuses on sporadic announcements of

interesting uses or deployments of Rails, as well as new Rails

features.

Ruby Weekly (https://rubyweekly.com/): A weekly Ruby

and Rails email newsletter with almost 40,000 subscribers. It’s

produced by your humble author and is highly recommended if

you want to stay up to date with Ruby news on a frequent basis.

Appendix B Useful Resources

https://guides.rubyonrails.org/
http://www.rubyflow.com/
http://www.ruby-lang.org/en/news/
https://reddit.com/r/ruby
https://weblog.rubyonrails.org/
https://rubyweekly.com/

575

�Forums
Ruby Forum (www.ruby-forum.com/): A popular help and

discussion forum.

�Mailing Lists
Mailing lists are like forums, but based on email. People subscribe to a “list,” and then all

messages sent to that list are received by all the subscribers. There are also archives of

email lists available on the Web for reference or for those who don’t want to sign up for

the list:

Ruby Mailing Lists (www.ruby-lang.org/en/community/

mailing-lists/): The official page on the Ruby site that provides

information about the official Ruby mailing lists.

Ruby-Talk Mailing List: Ruby-Talk is the most popular Ruby

mailing list, where all aspects of Ruby development are discussed.

You can subscribe via the preceding link.

Ruby-Talk Mailing List Archives (http://blade.nagaokaut.

ac.jp/ruby/ruby-talk/index.shtml): Offers web access to

more than 400,000 posts made to the Ruby-Talk mailing list and

includes a search feature.

ruby-core (http://blade.nagaokaut.ac.jp/ruby/ruby-

core/index.shtml): A mailing list dedicated to discussing

implementation details and the development of Ruby. Those who

are developing the Ruby language use this list. However, it isn’t a

list on which to ask general Ruby questions.

Note I t’s important when using a mailing list that you look at the format and tone
of other posts and don’t offend anyone. If your postings sound too demanding or
are of the wrong tone, you might not get any responses.

Appendix B Useful Resources

http://www.ruby-forum.com/
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-lang.org/en/community/mailing-lists/
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://blade.nagaokaut.ac.jp/ruby/ruby-core/index.shtml
http://blade.nagaokaut.ac.jp/ruby/ruby-core/index.shtml

576

�Chat
On the Internet, there are several ways you can discuss topics with other users in real

time. For example, Slack and Discord provide real-time chat via a desktop, mobile, or

web app:

Ruby on Rails Slack channel (www.rubyonrails.link/):

A community of Ruby on Rails developers from all over the world.

Ruby Discord Server (https://discord.gg/bHB8Jkx): A Discord

server where developers discuss and seek help on various Ruby

topics.

Appendix B Useful Resources

http://www.rubyonrails.link/
https://discord.gg/bHB8Jkx

577
© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2

Index

A
Arrays/lists

elements, 61, 62
iteration, 65, 66
methods

addition/concatenation, 67
certain item, 68
empty array, checking, 67
first/last elements, accessing, 68
reversing order, 69
subtraction/difference, 67

popping, 63
splitting strings into arrays, 64

abbrev library
examples, 494, 495
installation, 494

access_granted? method, 184
ActiveRecord, 293
add_person method, 288
add_room method, 190
a.rb file, 199
ARGV, 304
attr_accessor method, 188, 326

B
Base64

definition, 496
examples, 496, 498, 499
installation, 496

basic_method, 147
Benchmark module

definition, 499
examples, 499, 500
installation, 499
profiling, 242–244
simple, 239–241

Bots, 343
building core, 360, 361
code listing

basic client, 383
bot.rb, 379, 381, 382

data loader, 367, 368
data structure, 363, 364
extend

Bot-to-Bot conversation, 388, 389
connect to Web, 384, 386, 387
text files, 384

history, 344
lifecycle and parts, 361, 362
playing

conversation, 378, 379
Fred, 375, 377

store data, 364, 366
Branching/conditional execution, 545–547
Building blocks

converting objects to other
classes, 90, 91

dates and times, 83–86
ranges, 87

https://doi.org/10.1007/978-1-4842-6324-2#DOI

578

symbols, 88, 89
byebug statement, 231

C
Chain methods, 53
Chatterbots, 343
chdir method, 464
Classes, 550–553
class_name method, 174
Class variable, 150
Clients and servers

building TCP server, 480–482
defining, 477
GServer based chat server, 483–490
multi-client TCP servers, 482, 483
UDP, 477–479
Web/HTTP servers, 490

Code block, 92
Code inclusion, 201
Command-line tools, 304
Common Gateway Interface (CGI), 313
Complex structures, 564, 565

D
Data

arrays, 562
complex structures, 564, 565
hashes/associative arrays, 563, 564
numbers, 560, 561
regular expressions, 558–560
strings, 558

Database, 566
store/structures

PStore, 272–274
YAML, 274–276

text file, 269
reading/searching CSV, 269–271
saving CSV, 271, 272

Debugging, 228–230
commands, 231
testing, 232

Debugging/errors
catch and throw, 227, 228
exceptions

handling, 225, 226
handling passed, 227
raising, 223–225

Directories
create, 266
delete, 267
navigation, 265, 266
temporary, 267, 268

Documentation
formatting, 218–220
generating, RDoc, 216, 217
modifiers/options

command-line, 222
:nodoc:, 220, 221
on/off, 221

RDoc techniques, 218
Domain Name Service (DNS), 491
DRY, 156
Dungeon text adventures

concepts, 184
create rooms, 189, 190
creating initial classes, 185, 186
structs, 186–189
work, 190–194

Dynamic code execution
accessor functions, 326, 327
bindings, 322, 323
eval, 324, 325

Dynamic typing, 182

Building blocks (cont.)

Index

579

E
each_vowel, 81
ELIZA bot, 344
Email

POP3, receiving mail, 458–460
SMTP, sending mail, 460, 461

Encapsulation, 161
End of file (EOF), 248
Environment variables, 302, 303
exec method, 329
Expressions/flow control

basic expressions, 541, 542
branching/conditional execution,

545–547
class mismatches, 542, 543
comparison expressions, 544, 545
loops, 548, 549
ternary operator, 547

F
Fibers

in action, 336, 337
motivation, 339
non-blocking, 338
passing data, 337, 338

File inclusion, 198, 199
File I/O

character encodings, 258, 259
modes, 256
opening/reading, 249–251
position, 255, 256
reading techniques, 251–255
rename/delete, 260
writing, 256–258

File operations
EOF, 264
file existence, 263

filename creation, 260, 261
last modified, 263
seek, 262
size, 264

File organization, 568
Files, 565, 566
File Transfer Protocol (FTP)

connections/actions, 462–465
definition, 462
downloading files, 465, 466
example, 462
uploading files, 467, 468

find_person method, 288
find_room_in_direction, 193
Flow control

case pattern matching, 78
code blocks, 80–82
elsif and case, 76
if and unless, 73, 74
ternary operator, 75, 76
while/until, 79

Forking, 329, 330

G
getname method, 475
Greenwich Mean Time (GMT), 83
gsub method, 105
Guided duck typing, 183

H
Hashes

example, 69
methods

deleting elements, 71
iteration, elements, 70
retrieving keys, 71

within hashes, 72

Index

580

Hashes/associative arrays, 563, 564
HTML documentation, 217
HTTP/web

downloading web pages, 444
processing web content, 454–457

HyperText Transfer Protocol (HTTP), 443

I
Immediate/interactive environment, 14
include? method, 68
Inheritance, 153
Input/output (I/O)

databases, 566
files, 565, 566
web access, 566, 567

Interactive Ruby (irb), 541
Internet Protocol (IP), 471
Iterator, 92

J
JavaScript Object Notation

(JSON), 456, 457
JRuby, 129
json library, 511
JSON.parse method, 457

K
Kernel method, 29, 30
Keyboard input, 248, 249

L
letter_stuff.rb, 171
Libraries

bundler, 210–212

file organization, 568
packaging, 568, 569
RubyGems

create, 210
finding, 207, 208
installing, 208
upgrade/uninstall, 209, 210
using, 209

standard, 203
net/http, 204, 205
OpenStruct, 206

Library testing
pronoun switches, 356, 357
sentence choice, 355
sentence separations, 354
word separations, 355

Library WordPlay
sentences into words, 348
switching pronouns, 350–352
text into sentences, 347
word matching, 348, 349

Linux
package managers, 8
Ruby installation, 7, 8
source code, 9, 10

load and require, 200
Local area network (LAN), 471
Local variable, 147
Logger, 512
Loops, 548, 549

M
Mac OS X/macOS, 6, 7
Method visibility, 556–558
Mix-Ins

comparable module, 179, 180
enumerable, 175–178

Index

581

example, 174
namespaces and classes, 181–184

Model-view-controller (MVC), 395

N
Namespaces, 171, 173, 174
Nested classes, 168
Nested inclusion, 202
net/http library, 444, 445
Network

checking machine/service availability,
473, 474

definition, 471
IP addresses/DNS, 472
performing DNS queries, 474–477
TCP/IP, 471, 472

Nokogiri, 454, 455, 469, 515
Non-object-oriented style, 34, 35
@@number_of_squares, 151
Numbers, 560, 561
Numbers/expressions

blocks/iterators, 43–45
comparison operators, 41, 42
constants, 47
example, 38
floating point numbers, 46
variables, 38–40

number_stuff.rb, 171

O
Object orientation

advantages, 145
classes, 145, 146
classes/methods, 550–553
class methods vs. instance methods,

151, 152
class variables, 150, 151

definition, 141
developer, 144
encapsulation, 161–165
English for Computers, 15
error, 18
global variables, 148, 149
inheritance, 153–156
instance/object variables, 149, 150
interactive Ruby (irb), 14, 15, 17
local variable, 147, 148
method visibility, 556–558
nested classes, 168, 169
object, 146
overriding existing methods, 157, 158
periods, 550
polymorphism, 166, 167
procedural style, 141–144
programming language, 16, 17
reflection, 553–555
reflection/discovery, 159, 160
reopening classes, 556
scope of constants, 169
square objects, 146

Objects
class method, 29
code, 28
concepts, 28
Kernel method, 29, 30
passing data, 30, 31
string class, 32, 33

Object variables, 149
ord method, 50
ostruct library, 206

P, Q
Packging, 568, 569
Polymorphism, 166

Index

582

popen method, 331
Post Office Protocol 3 (POP3), 458
Programming languages, 538
putbinaryfile methods, 467
puttextfile methods, 467

R
Rails, 394, 395

blank applications, 401
books, 427
command-line tool, 401
components, 395, 397
controller actions, 413, 414, 416
database configuration, 400, 404
database migrations, 407–409
entries controller, 412
ERB, 416
features

layouts, 424–426
files/directories, 402, 403
goal, 395
install, 398
libraries, 398, 399
models/relationship, 420, 422
reference sites/tutorials, 426
scaffold generator, 410, 411
scaffolding, 405–407
sessions/filters, 422–424
views, 417–419

Range, 93
RedCarpet, 519
Reflection, 126, 159
Regular expressions, 54, 92, 558–560
Relational databases

concepts, 277, 278
create table, 281, 282
DELETE, 284

INSERT INTO, 282
MySQL, 278
PostgreSQL, 279
SELECT, 283, 284
SQL, 280
SQLite, 279, 285–289
UPDATE, 285

Resources
aggregators/news, 574
chat, 134, 576
Learn Ruby, 572
mailing lists, 575
Rails, 572
references, 573
Ruby forums, 575
Ruby Tapas, 572
SQL Tutorial, 572
Try Ruby, 571

response_to method
actions, 369
best sentence, 371
final phrase, 373, 375
matching phrases, 372, 373
substitutions, 370

result and run methods, 510
Ruby

class method, 539
concept, 539
definition, 537
garbage collection, 538
Integer objects, 539

Ruby 1.9, 340
Ruby code, 540

objects/classes, 20
people to pets

control, 27
Person class, 24
structure, 25, 26

Index

583

Person class, 20–22
variables, 23

RubyGems, 206, 568
Ruby interpreter, 540, 541
Ruby libraries, 305

abbrev, 494, 495
Base64, 496–498
benchmark, 499, 500
chronic, 501, 502
digest, 502–505
English, 506, 507
ERB, 508, 510
gem creation

building gem, 309
easier gem creation, 309, 310
specification file, 307, 308
structuring, 306, 307

install gem, 311
json, 511
logger, 512–515
Nokogiri, 515, 516
PP, 517–519
RedCarpet, 519–521
RubyGems.org, 312
StringScanner, 522–525
tempfile, 525–527
URIs, 528, 530–532
Zlib, 533, 534

RubyMine, 100
RUBY_PLATFORM, 301, 302
Ruby programs

file types, 300
runtime environment, 301
source code, 298

Ruby’s ecosystem
definition, 123
documentation, 134
forums, 135

history
Go West, 126, 128
implementations, 129
influences, 125
land of rising Sun, 124

mailing lists, 133, 134
open source culture, 132
programming communities, 135–137
Rails, 129–131

Ruby’s networking
CGI, 313

script, 313, 314
variables, 314, 315

HTTP, 316
WEBrick, 316, 317, 319

S
Scaffolding, 405
send_message method, 461
Sentence-splitting method, 347
Sequel, 291
Shebang line, 299
show_current_description

method, 191
Simple Mail Transfer Protocol (SMTP),

460
Sinatra, 395, 428, 429

external template, 434, 435
flow control

error handling, 438, 439
halting, 437, 438
redirection, 436, 437

inline template, 431–433
layouts, 433, 434
parameters, 429–431
static files, 435
URL, 429

Index

584

Source code files, 341
creating test file, 96, 97
mechanism, 95
running

Linux/other UNIX-based systems,
99, 100

Mac OS X/macOS, 99
Windows, 98

simple file, 97, 98
Square.count class method, 153
Standard input, 248
Standard libraries, 203
Standard output, 248
stopwords variable, 113
String literal, 48
Strings, 340, 558
StringScanner, 522
struct, 186
Structured Query Language (SQL), 280
summarize.rb, 116
Symbols, 93
system method, 328

T
tempfile, 525
Ternary operator, 547
Test-driven development, 233–235

assertions, 238, 239
unit, 236–238

test_method, 152
Text analyzer

basic statistics, 101
building application, 102
calculating averages, 110
completed program, 119, 121
counting characters, 105
counting sentences/paragraphs, 108, 109

counting words, 106–108
features

finding interesting sentences,
115–117

text.txt, 118
useful words, 112–114

loading text files/counting
lines, 103, 104

obtaining Dummy text, 102, 103
source code, 111

Texts/strings
expressions, 49, 50
interpolation, 51, 52
literals, 48, 49
methods, 53
regular expressions

iteration, 56–59
matching, 60, 61
substitutions, 54, 55

The open-uri Library, 462
this_is_private and this_is_also_

private, 165
Thread, 332

in action, 332, 333
advanced features, 334
list, 334
operations, 334, 335

to_f method, 46
to_i and to_f methods, 91
to_json method, 512
to_s method, 53
Transmission

Control Protocol (TCP), 471, 490

U
Unicode, 339
Uniform Resource Identifiers (URIs), 528

Index

585

Uniform Resource Locator (URL), 443
Unit testing, 236–238
UNIX-related operating systems, 299
User Datagram Protocol (UDP), 472, 490

V
Variables, 91

W, X, Y
Web access, 566, 567

Windows
command prompt, 6
irb, 5
Ruby installation, 4, 5

WordPlay library
test_wordplay.rb, 358, 360
wordplay.rb, 357

Z
zlib, 533

Index

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Part I: Foundations and Scaffolding
	Chapter 1: Let’s Get It Started: Installing Ruby
	Installing Ruby
	Windows
	Mac OS X/macOS
	Installing Ruby on OS X with Homebrew

	Linux
	Checking If Ruby Is Installed on Linux
	Installing Ruby with a Package Manager
	Installing Ruby from Source Code

	Other Platforms

	Summary

	Chapter 2: Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation
	Baby Steps
	irb: Interactive Ruby
	Ruby Is “English for Computers”
	Why Ruby Makes a Great Programming Language
	Trails for the Mind

	Turning Ideas into Ruby Code
	How Ruby Understands Concepts with Objects and Classes
	The Making of a Person
	Basic Variables
	From People to Pets
	Structuring Your Pets Logically
	Controlling Your Pets

	Everything Is an Object
	Kernel Methods
	Passing Data to Methods
	Using the Methods of the String Class

	Using Ruby in a Non-object-Oriented Style
	Summary

	Chapter 3: Ruby’s Building Blocks: Data, Expressions, and Flow Control
	Numbers and Expressions
	Basic Expressions
	Variables
	Comparison Operators and Expressions
	Looping Through Numbers with Blocks and Iterators
	Floating Point Numbers
	Constants

	Text and Strings
	String Literals
	String Expressions
	Interpolation
	String Methods
	Regular Expressions and String Manipulation
	Substitutions
	Iteration with a Regular Expression
	Matching

	Arrays and Lists
	Basic Arrays
	Splitting Strings into Arrays
	Array Iteration
	Other Array Methods
	Array Addition and Concatenation
	Array Subtraction and Difference
	Checking for an Empty Array
	Checking an Array for a Certain Item
	Accessing the First and Last Elements of the Array
	Reversing the Order of the Array’s Elements

	Hashes
	Basic Hash Methods
	Iterating Through Hash Elements
	Retrieving Keys
	Deleting Hash Elements
	Deleting Hash Elements Conditionally

	Hashes Within Hashes

	Flow Control
	if and unless
	?, the Ternary Operator
	elsif and case
	case pattern matching
	while and until
	Code Blocks

	Other Useful Building Blocks
	Dates and Times
	Ranges
	Symbols
	Converting Objects to Other Classes

	Summary

	Chapter 4: Developing Your First Ruby Application
	Working with Source Code Files
	Creating a Test File
	Visual Studio Code
	Alternatives to Linux

	A Simple Source Code File
	Running Your Source Code
	Windows
	Mac OS X/macOS
	Linux and Other UNIX-Based Systems

	Our Application: A Text Analyzer
	Required Basic Features
	Building the Basic Application
	Obtaining Some Dummy Text
	Loading Text Files and Counting Lines
	Counting Characters
	Counting Words
	Counting Sentences and Paragraphs
	Calculating Averages
	The Source Code So Far

	Adding Extra Features
	Percentage of “Useful” Words
	Summarizing by Finding “Interesting” Sentences
	Analyzing Files Other Than text.txt

	The Completed Program
	Summary

	Chapter 5: The Ruby Ecosystem
	Ruby’s History
	The Land of the Rising Sun
	Ruby’s Influences
	Go West
	Alternative Ruby Implementations

	Ruby on Rails
	Why Rails Came into Existence
	How the Web (2.0) Was Won

	The Open Source Culture
	What Is Open Source?

	Where and How to Get Help
	Mailing Lists
	Chat
	Documentation
	Forums

	Joining the Community
	Give Help to Others
	Contribute Code
	News Sites and Sources

	Summary

	Part II: The Core of Ruby
	Chapter 6: Classes, Objects, and Modules
	Why Use Object Orientation?
	Object Orientation Basics
	Local, Global, Object, and Class Variables
	Local Variables
	Global Variables
	Instance or Object Variables
	Class Variables

	Class Methods vs. Instance Methods
	Inheritance
	Overriding Existing Methods
	Reflection and Discovering an Object’s Methods
	Encapsulation
	Polymorphism
	Nested Classes
	The Scope of Constants

	Modules, Namespaces, and Mix-Ins
	Namespaces
	Mix-Ins
	Enumerable
	Comparable
	Using Mix-Ins with Namespaces and Classes

	Building a Dungeon Text Adventure with Objects
	Dungeon Concepts
	Creating the Initial Classes
	Structs: Quick and Easy Data Classes
	Creating Rooms
	Making the Dungeon Work

	Summary

	Chapter 7: Projects and Libraries
	Projects and Using Code from Other Files
	Basic File Inclusion
	Inclusions from Other Directories
	Logic and Including Code
	Nested Inclusions

	Libraries
	The Standard Libraries
	net/http
	OpenStruct

	RubyGems
	Finding Gems
	Installing a Gem
	Using Gems
	Upgrading and Uninstalling Gems
	Creating Your Own Gems

	Bundler

	Summary

	Chapter 8: Documentation, Error Handling, Debugging, and Testing
	Documentation
	Generating Documentation with RDoc
	RDoc Techniques
	Producing Documentation for an Entire Project
	Basic Formatting

	Modifiers and Options
	:nodoc: Modifier
	Turning RDoc Processing On and Off
	Command-Line Options

	Debugging and Errors
	Exceptions and Error Handling
	Raising Exceptions
	Handling Exceptions
	Handling Passed Exceptions

	Catch and Throw
	The Ruby Debugger

	Testing
	The Philosophy of Test-Driven Development
	Unit Testing
	More Minitest Assertions

	Benchmarking and Profiling
	Simple Benchmarking
	Profiling

	Summary

	Chapter 9: Files and Databases
	Input and Output
	Keyboard Input
	File I/O
	Opening and Reading Files
	More File Reading Techniques
	Your Position Within a File
	Writing to Files
	Character Sets and Encodings
	Renaming and Deleting Files
	File Operations
	Creating Filenames Platform Independently
	Seeking
	Finding Out When a File Was Last Modified
	Checking Whether a File Exists
	Getting the Size of a File
	How to Know When You’re at the End of a File

	Directories
	Navigating Through Directories
	Creating a Directory
	Deleting a Directory
	Creating Files in the Temporary Directory

	Basic Databases
	Text File Databases
	Reading and Searching CSV Data
	Saving Data Back to the CSV File

	Storing Objects and Data Structures
	PStore
	YAML

	Relational Databases and SQL
	Relational Database Concepts
	MySQL, PostgreSQL, and SQLite
	Installing SQLite
	A Crash Course in Basic Database Operations and SQL
	What Is SQL?
	CREATE TABLE
	INSERT INTO
	SELECT
	DELETE
	UPDATE

	Using SQLite with Ruby
	Connecting to Other Database Systems
	ActiveRecord: A Sneak Peek

	Summary

	Chapter 10: Distributing Ruby Code and Libraries
	Distributing Basic Ruby Programs
	The Shebang Line
	Associated File Types in Windows

	Detecting Ruby’s Runtime Environment
	Easy OS Detection with RUBY_PLATFORM
	Environment Variables
	Accessing Command-Line Arguments

	Distributing Ruby Libraries As Gems
	Creating a Gem
	Structuring Your Files
	Creating a Specification File
	Building the Gem
	Easier Gem Creation

	Installing Your Gem
	RubyGems.org

	Deploying Ruby Applications As Remote Services
	CGI Scripts
	A Basic CGI Script
	Accepting CGI Variables

	Generic HTTP Servers
	WEBrick

	Summary

	Chapter 11: Advanced Ruby Features
	Dynamic Code Execution
	Bindings
	Other Forms of eval
	Creating Your Own Version of attr_accessor

	Running Other Programs from Ruby
	Getting Results from Other Programs
	Transferring Execution to Another Program
	Running Two Programs at the Same Time
	Interacting with Another Program

	Threads
	Basic Ruby Threads in Action
	Advanced Thread Operations
	Waiting for Threads to Finish Redux
	Getting a List of All Threads
	Thread Operations from Within Threads Themselves

	Fibers
	A Fiber in Action
	Passing Data to a Fiber
	Non-blocking Fiber
	Why Fibers?

	Unicode, Character Encodings, and UTF-8 Support
	Ruby 1.9 and Beyond’s Character Encoding Support
	Strings
	Source Code

	Summary

	Chapter 12: Tying It Together: Developing a Larger Ruby Application
	Let’s Build a Bot
	What Is a Bot?
	Why a Bot?
	How?

	Creating a Simple Text Processing Library
	Building the WordPlay Library
	Splitting Text into Sentences
	Splitting Sentences into Words
	Word Matching
	Switching Subject and Object Pronouns

	Testing the Library
	Testing Sentence Separation
	Testing Word Separation
	Testing Best Sentence Choice
	Testing Pronoun Switches

	WordPlay’s Source Code
	wordplay.rb
	test_wordplay.rb

	Building the Bot’s Core
	The Program’s Lifecycle and Parts
	Bot Data
	The Data Structure
	Storing the Data Externally

	Constructing the Bot Class and Data Loader
	The response_to Method
	Accepting Input and Performing Substitutions
	Choosing the Best Sentence
	Looking for Matching Phrases
	Putting Together the Final Phrase

	Playing with the Bot
	Fred: Your Bot’s Personality
	The First Real Conversation

	Main Bot Code Listing
	bot.rb
	basic_client.rb

	Extending the Bot
	Using Text Files As a Source of Conversation
	Connecting the Bot to the Web
	Bot-to-Bot Conversations

	Summary

	Part III: Ruby Online
	Chapter 13: Two Web Application Approaches: Rails and Sinatra
	Background
	The Limitations and Benefits of Our Approach
	Pros and Cons of the Frameworks Covered

	Rails: Ruby’s Killer App
	What Is Rails and Why Use It?
	Installing Rails
	Database Considerations

	Building a Basic Rails Application
	Creating a Blank Rails Application
	The Rails Command-Line Tool

	Files and Directories Within a Rails Application
	Database Configuration
	Using Scaffolding
	Database Migrations
	Running the Basic, Scaffolded App

	Controllers and Views
	Controller Actions
	Views and Embedded Ruby (ERB)

	Models and Relationships
	Sessions and Filters
	Other Features
	Layouts

	Where to Go Next: References, Books, and Example Apps
	Reference Sites and Tutorials
	Rails Books

	Sinatra: Lightweight, Simple Web Applications
	The Extreme Simplicity of Sinatra
	General URL Routing and Parameter Matching
	Views, Templates, and Static Files
	Inline and In-File Templates
	Layouts
	External Templates and Layouts
	Static Files

	Request Flow Control
	Redirection
	Halting
	Error Handling

	Summary

	Chapter 14: Ruby and the Internet
	HTTP and the Web
	Downloading Web Pages
	The net/http Library
	Checking for Errors and Redirects
	Basic Authentication
	Posting Form Data
	Using HTTP Proxies
	Secure HTTP with HTTPS

	The Open-Uri Library

	Processing Web Content
	Parsing HTML with Nokogiri
	Parsing JSON

	Email
	Receiving Mail with POP3
	Sending Mail with SMTP

	File Transfers with FTP
	Connection and Basic FTP Actions
	Downloading Files
	Uploading Files

	Summary

	Chapter 15: Networking and Sockets
	Networking Concepts
	TCP and UDP
	IP Addresses and DNS

	Basic Network Operations
	Checking Machine and Service Availability
	Performing DNS Queries

	Servers and Clients
	UDP Client and Server
	Building a Simple TCP Server
	Multi-client TCP Servers
	GServer
	A GServer-Based Chat Server
	Web/HTTP Servers

	Summary

	Chapter 16: Useful Ruby Libraries
	abbrev
	Installation
	Examples
	Further Information

	Base64
	Installation
	Examples
	Converting Binary Data to Base64
	Converting Base64 Data to Binary Data
	Using Compression to Make Base64 Efficient

	Further Information

	Benchmark
	Installation
	Examples
	Further Information

	chronic
	Installation
	Examples
	Further Information

	Digest
	Installation
	Examples
	Further Information

	English
	Installation
	Examples
	Further Information

	ERB
	Installation
	Examples
	Basic Templates and Rendering
	Accessing Outside Variables

	Further Information

	json
	Installation
	Examples
	Further Information

	logger
	Installation
	Examples
	Setting Up a Logger
	Logging Levels
	Logging Messages
	Closing a Logger

	Further Information

	Nokogiri
	Installation
	Examples
	Further Information

	pp
	Installation
	Examples
	Further Information

	RedCarpet
	Installation
	Examples
	Further Information

	StringScanner
	Installation
	Examples
	Further Information

	tempfile
	Installation
	Examples
	Further Information

	uri
	Installation
	Examples
	Extracting URLs from Text
	Parsing URLs
	Creating URLs

	Further Information

	zlib
	Installation
	Examples
	Further Information

	Appendix A:
Ruby Primer and Review for Developers
	The Basics
	Definition and Concepts
	The Ruby Interpreter and Running Ruby Code
	Interactive Ruby

	Expressions and Flow Control
	Basic Expressions
	Class Mismatches
	Comparison Expressions
	Flow
	Branching and Conditional Execution
	The Ternary Operator (Conditional Expressions)
	Loops

	Object Orientation
	Objects
	Classes and Methods
	Reflection
	Reopening Classes
	Method Visibility

	Data
	Strings
	Regular Expressions
	Numbers
	Arrays
	Hashes (Associative Arrays)
	Complex Structures

	Input/Output
	Files
	Databases
	Web Access

	Libraries
	File Organization
	Packaging

	Appendix B:
Useful Resources
	Tutorials and Guides
	General Ruby Tutorials and Information
	Ruby on Rails
	Other

	References
	Ruby
	Ruby on Rails

	Ruby-Related Content
	Aggregators and News
	Forums

	Mailing Lists
	Chat

	Index

