From Beginner to Pro
Fourth Edition

Carleton DiLeo
Peter Cooper

Apress:

Beginning Ruby 3
From Beginner to Pro

Fourth Edition

Carleton DiLeo
Peter Cooper

Apress’

Beginning Ruby 3: From Beginner to Pro

Carleton DiLeo Peter Cooper
Boulder, CO, USA Louth, UK
ISBN-13 (pbk): 978-1-4842-6323-5 ISBN-13 (electronic): 978-1-4842- 6324-2

https://doi.org/10.1007/978-1-4842-6324-2

Copyright © 2021 by Carleton DiLeo, Peter Cooper

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Jason D on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484263235. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6324-2

For Laura, Penny and Imogen
—Peter

For Jennifer and my parents
—Carleton

Table of Contents

ADOUL The AUtNOKS....eee e iiiiirrrrsssmnmessssssrnnsssssssssssassssssssssmsssssssssssssnnnnnnssssssnssssnnnnnnnnnss XiX
About the TeChNICAl REVIEWETcvrirrrmmrssmmmnsssssssmmmssssnnnsssssssssssssnnnnsssssssssssssnnnnnnnnss XXi
FOF@UVONM ..evvussesmneesssssssssssssnnmssssssssnssssssnssssssssnnnsssnnnnsssssssnnssssnnnnssssssnsssssnnnnnnsnssnsnnns XXxiii
AcknowIedgmentsccccussmenmnsssssnnmssssssnnsssssssnssesssssnnsesssssnnssssssnnnnessssnnnnsssssnnnnssss XXVii
0 0 [T T) XXiX
Part I: Foundations and Scaffoldingccuucccmmmmmnnsemmnmmmmssssnsnnmmmssssssnnmensnns 1
Chapter 1: Let’s Get It Started: Installing Ruby.........cccuscemmsssmnmmssnsmsssnsmsssssssssssssssnnsnns 3
INSTAING RUDY ...ttt s b s e e s s e e s 4

L 0 L0 4

MAC 0S X/MACOS.......ceeiitiiiiiiieisieire e ssr e s e s s s e s e s e s r e s b e sab e s e e s b e sanesasesaaesaresanesasesanesanerns 6

1 10 7
01 Lo gl o 1 (0] RS 10

£ 11104 R 11

Chapter 2: Programming == Joy: A Whistle-Stop Tour of Ruby and

Object Orientation.........cccciuisemmmmmssnnnmmmssssnmmssssssnmmsssssnmessssnsneesssssnnnessnnnnnssssnnnnsnsss 13
22 0] (=] 1S 14
irD: INtEractive RUDY.......c.ccoceeee s s 14

Ruby Is “English for COMPUEEIS” ... 15

Why Ruby Makes a Great Programming Languageccceeeerernerereserensesessssessenesensesessenens 16
Trails for the MiNd.........coeoeeeeere s 17
Turning Ideas into RUDY COUEccoveierenirnerresere e 19
How Ruby Understands Concepts with Objects and ClasSescccocvvrvrennnnieniesssensensenns 20

The Making 0f @ PEISON.........cccvveierenerresesesese s ses s ssssssessssesesssssnssnens 20

TABLE OF CONTENTS

BaSIC VariahIesccceeriiiireerc s s 23
From People 10 PEIS ..ot 23
Everything IS @n ODJECT ... e 28
Kernel MEthOdS ... e s 29
Passing Data 10 Methods........ccceverririene s e s 30
Using the Methods of the String CIAaSScccvvrierererrersereresersereresessessessessssessessessesessessessens 32
Using Ruby in a Non-object-Oriented Style.........ccccrniinininncnrn e 34
SUIMIMANY....eeeereecreree e e e e e e e s re e e e e e e e e Re e s ae e se s e e nRe e s sa e nennn e nrnnnes 35
Chapter 3: Ruby’s Building Blocks: Data, Expressions, and Flow Control 37
NUMDErS and EXPreSSIONScccerreeerrrirrrrenerresesrsesssssse s sssse e s e ssssessssssesssssssssessssssessssessnns 37
BaSIC EXPreSSIONS.....ccvicerrrerrrrierresesssesssess e sesse s s s se s ss s sss e ss s s sss e ssesesessesnsssnensans 38
LT 10 TSSO 38
Comparison Operators and EXPreSSiONS.........ccveverrrensesennsessessesessssessessesssssssessesssssssessessens 41
Looping Through Numbers with Blocks and Ieratorscccuovvermrenmsnsesnsessssesesesesensesenns 43
Floating POINt NUMDEISccveoiiescrresese s se s ses s nsanes 45
CONSTANES......eeeriecrircsi e e p e p e e e e 47
TEXE AN SEHNYS ..ot s a e e e ae e e e e s aenne e 47
STHNG LITEIaAIScoveeeeereerisesese e sr e e sp s pe e n s 47
SrNG EXPrESSIONS...c.vivierrierrsresirese s p e pe e np e n s 49
INEEIPOIALION ... —————————— 51
SEHNG METNOUS ... e 53
Regular Expressions and String Manipulation.............coceevnrennennnssnessnesessse e 54
Arrays AN LISTS ...cvveieerirciriere s s st sae s sre e s s sa e s ae e e s ae s ae s e e e e nne e 61
BASIC AITAYS.....eeuerrereeerersersesessesessessssessessesseses e ssesae st s e saesae s s e e s e saesae e s e naesae e e e naeeaesee e e e eneses 61
Splitting StriNgS iNT0 ArTAYS......ciiiririere e 64

L VT 1= LU RS 65
Other Array METOUS.covvririererir e s sa e s sae e aenne s 66
HASNES ... s 69
Basic Hash Methods..........cccccvrrrnnncsns s 70
Hashes Within Hashes ... sessssseas 72

TABLE OF CONTENTS

L 0110 P 73
If AN UNIESS ... 73
?,the TErNary OPEIALOr........ccccveerererrerrererresersere s e e s se s s s e se s e ssesaess s e s e saesaesessesaesaesasensessens 75
EISIT ANU CASE ... s 76
case pattern MatChiNgc.ccocvevrrrrere e s s r e e e nnen 78
WHile @NA UNL.....covr s 79
0010 T TR 80

Other UsSeful BUIldiNG BIOCKS.......cccererrrrerserersessnsersessessssessessessssssssssessesssssssessessessssessessesssssssesseses 83
DAteS ANA TIMESccieiererceree e e ne e 83
32110 T S 87
L3310 88
Converting 0bjects t0 OthEr ClASSESuiviurrerierererserserersesessessersessssessessesssssssessessessssessessens 90

11T 1117 SRS 91

Chapter 4: Developing Your First Ruby Application.........ccccmemmmnirnssssssssssssnnsessssnns 95

Working with SoUrce Code FileSccovirrnrernnenrsnsersse s s senses 95
Creating @ TESE FIlecccce v e 96
A Simple Source Code File ... s 97
Running YOUr SOUICE COUEccoveererererenerieesesese s se e ses e s e ssens 98

Our Application: A TEXt ANGIYZENc.cuvivrierinnrirrne s sae s 100
Required BasiC FEALUIEScccrivrirerenn st se s 101
Building the Basic APPlICALIONccucvcerirrirr e 102
Obtaining SOMe DUMMY TEXL........cooveerniererenernsesese s srases 102
Loading Text Files and Counting LINESccoveerrenerenmrensssesesesssesessesesssssssssesessssssssssssenes 103
CouNting CRAraCIEIScccvierereere s nr s 105
COUNTING WOTAScveeeeriecrenerere s se s se s sn s ne s e nns e nsnnis 106
Counting Sentences and Paragraphscccouverrenmsenmrnssssssesesssesessessssssessesesssssssssssessnnes 108
CalCUIating AVEIAQEScccrevsererreerrssesessesessese s sesss e e ses s ssssssessssesessssnsssssssesssssssssnssnsssnnes 110
The SoUrCe COUE SO Far.......ccoeerrerereerese s s nneens 111

vii

TABLE OF CONTENTS

Adding EXIra FEAUIES.......ccovererersir et e 112
Percentage of “USeful” WOrdScccvieniniiniensie s sses e ssessss s sessesssessessenns 112
Summarizing by Finding “Interesting” SENtENCES........ccocvvvrrveriernrenseriere s seesesessens 115
Analyzing Files Other Than teXt.iXt........ccccvririnnsnr s 118

The COmMPIELEd PrOgramcccvceverererrerseressesessesessessssessessesssssssessessesssssssessesssssssessesaesssssssesseses 119

SUMIMAIY ..ttt e e R e e e e e R e R e e e e e RE e R e e e e e Re e Re R e e e e e Re e R e e e e e Renns 122

Chapter 5: The Ruby ECOSYStemcccccssemmmmmsssnnmnmmssssssnmssssssnnsssssssnnsssssssnssssssnnnnss 123

31110t 5 1Y o] o S 124
The Land of the RiSING SUN.........ccovcerirmresernesre s s sesssssssenens 124
RUDY’S INFIUBNCES ... s 125
6N 126
Alternative Ruby Implementationsc.ccovvernenriensnsesssesese s sessesessenens 129

RUDY ON RIS ... 129
Why Rails Came int0 EXiSTENCEccccverererernesenesessse s e sesse s ssssesessessssenens 130
How the Web (2.0) WaS WON ... se s sss s s s senses 131

The OPen SOUICE CUITUIEcoveeeeeeierree s se s se s sn s sr s sessesnsnenens 132
What IS QPN SOUICE?coveveerreerinesessese e srs s s e ss s e r e sae e e sss s snanens 132

Where and HOW 10 GET HEIP ...cocevereririerere st s s s ss e snesas e sessesnesessessesne s 133
MAITING LISTS ...ueruerverieiererestsrersere st s s s e s s ae e e sae st e e sae b e e e saesae e s e naennes 133
51 | PP 134
DOCUMENTALION ... 134
FOTUMS Lo 135

J0oiNiNG the COMMUNILYccecerierere st s sr s sa e sa e e ae s re e e e s nne s 135
(AT 5 e TR (0T 3T £ 135
CONTrDULE COUE......c.cerrrerreeeeri i 136
NEWS SiteS @Nd SOUCES........cccucerererrrrnsesise s s 137

£ 1134 7 137

viii

TABLE OF CONTENTS

Part II: The Core of RubY.......cccuunmmnsssssmmmmsmsnnnnnmmsssssssssssssssssssssssssssssssssssssnsss 139

Chapter 6: Classes, Objects, and Modules..........ccccunsmmmnmmssssnnnmsssssnnssssssssssssssssnnns 141
Why Use Object Orientation? ... 141
Object Orientation BaSiCS.........currinnninienn s e e 145

Local, Global, Object, and Class VariabIescccccvvrvrnenceriersene s s e e 146
Class Methods vs. Instance Methodscovevrerererrnsrrese s 151
0] LT 7= T T 153
Overriding EXisting Methods..........ccccvviiniinininsn e e 157
Reflection and Discovering an Object’s Methods ..., 159
ENCAPSUIALIONcveieiccc e e 161
a0 10 0] T | OSSOSO 166
NESTEA CIASSES ...c.vvriueueereresrssessesese s se s se s e r s se s e e s s ns s ne e 168
The Scope 0f CONSTANES........cccviirnrr s 169
Modules, Namespaces, and MiX-INScccerervrrrrenerrrsir e sses e s s e e ssessesse s s essessesaenns 170
NAMESPACESccueiieiiirere s e b e e e R b e e R b e e e R e Re e e e e R nns 171
3 3 174
Building a Dungeon Text Adventure with ODJECESccoeveerecrecrrr e 184
DUNGEON CONCEPLS ...cveeeeercrererersesesree s sessese s ses e sesseses s e ssssesessesessssessssessssesesssnssssnsssnnes 184
Creating the INQtial CIASSESccoerrerererrererrenerssese s ses s srenis 185
Structs: Quick and Easy Data ClaSSeScueeuerererersereresesresersssesesesessssessssesessssessssesessesenns 186
Creating ROOMIS ..o e e s 189
Making the DUNGEON WOTK ... 190
£ 11T 195

Chapter 7: Projects and LIbrarieSccccesrurmmmmss 197

Projects and Using Code from OTher FileScccvvrierererrnieniesessenesessssessesessesessessessessssessessens 197
BasiC File INCIUSION........cccoiiiiircrc s 197
Inclusions from Other DIr@CIOMIES........cocvieermrereresserese s 200
Logic and INCIUAING COUEccverrererrerierereererrereseesessessessessssessessessssesessesaessssessessesssssssesneses 201
NESEEd INCIUSIONS ... e 202

L]0 2 1= 202

ix

TABLE OF CONTENTS

The Standard LIDIaries ... sssssssssssssssssssssssssens 203
LT 206
310] N 210

£ 1134 7 213
Chapter 8: Documentation, Error Handling, Debugging, and Testing........ccueueeunes 215
[0 T0Te1 0T 1T 1 L0 o T 215
Generating Documentation with RDOC..........cccvcriinnnnninnsnc e 216
RDOC TECHNIGUESeeereerierieirer ettt s s e s e 218
Producing Documentation for an Entire Project ..o, 218
Modifiers and OPLIONS ..o s 220
Debugging and ErTOrSccovecerenerescrneseseses e s se s s sesss s 222
Exceptions and Error HANAINGcccoevveenenenereerese s sennes 223
L0210 B 10 I 0 227
The RUDY DEDUGQETcveeeeeeeerieerereressee e sesesesse s sesse e s e s e ses s sessssessssessssesenssnsnsenens 228
L2 T SO ST PSSTRSTRT 232
The Philosophy of Test-Driven DeVEIOPMENL..........cccouveerererisernsesrsesessse s sessesessenens 233
UNIETESHING ... e e ne e nr s 236
More MiniteSt ASSEITIONScccerrererirerrse s e re e 238
Benchmarking and Profiling..........cccoievrnninennininiern s sesesessssessesessssessessessesssssssessens 239
Simple BENChMArKINGcccvvreiirirririe e s s sa e s e 239

g €0 {113 S 242

£ 11134 7R 244
Chapter 9: Files and Databasescccururmsssnsmsssnsmsssnsssssnsesssssssssssssssnssssssnssssnnssssas 247
INPUL AN OQUIPUL ... s 247
G200 L0 I o 248
FIIE 10 ettt s 249
BaSiC DALADASEScccereereeererererese e 269
TeXt File DAtaDASES.c.cvoererrererreerereresese s s se s s e s e nnenens 269
Storing Objects and Data StrUCIUIESccovveerererncerr s 272

TABLE OF CONTENTS

Relational Databases and SQL...........ccouerrnninsnnsssss s s s 277
Relational Database CONCEPLS.......ccuvvrrerererrerrererseserseresae s e ssessessesessessessssessessesassessessesaes 277
MySQL, PostgreSQL, and SALITE..........ccveerrererrerrerierrnrerseresesesseressessssessessessssessessesssssssessesses 278
INSEAIlING SALITE....cccvvieriierirerire s s 279
A Crash Course in Basic Database Operations and SQL..........cccocecvvvvnvenninnnscsnseseneens 280
Using SQLite With RUDYcccoiiirirncn st 285
Connecting to Other Database SYStEMScccvvevvrrrrierin e 291
ActiveRecord: A SNEAK PEEK...........ccverrrminmnmsininsssssse s 293

£ 1134 7R 294

Chapter 10: Distributing Ruby Code and Librariesc..ccccusmmmmssmsmsssnnsssssssssssnssnas 297

Distributing Basic RUDY Programsccoeerrenrnsrnnesesese s sesese s sesesessesenns 297
The SHEDANG LINE.......coooeeeerecrrcere e s n e 299
Associated File TYpes in WiNAOWScocveeerreerererereseressesesese s sesese s ssesesessesessenens 300

Detecting Ruby’s Runtime ENVIrONMEeNt...........covoreennesrese s 301
Easy 0S Detection with RUBY_PLATFORMccccoiunmnninnninninene e sssssssessesnes 301
Environment Variables.........ocovreernesreere e s 302
Accessing Command-Ling ArgumMENts..........couevrenerenernsesessesessesesesse s e sesessssessenens 304

Distributing Ruby Libraries AS GEIMS.........ccourererenmrnsesnisesese s sessesssse s s sessesessssessssssessssenns 305
Creating @ GEIM.........cccveeerreere s n e ne s nnnne e nr s 305
INSEAIING YOUF GEIM......ovierircere s s 311
31T 03 Lo Ty 1300 TS 312

Deploying Ruby Applications AS Remote ServiCes........ocummrnnrnsesssesesssesssesssseses e sessesenns 312
6] 0 C OO 313
GENEIIC HTTP SEIVEIS.....ccciveierreserrssesrssesessesesss e sssse e sa s sss e s sss e s sessesnssssnssesessnsssssssnsnsans 316

BT 11134 RS 320

Chapter 11: Advanced Ruby Features........ccccunemmmmmmssnnnmmsssssnnssssssssssssssssssssssssnnnss 321

Dynamic Code EXECULIONc.courueereccrircsre ettt 321
BINUINGS...cvi it e e e e 322
Other FOrmMS 0Of BV ..o s 324
Creating Your Own Version of @ttr_aCCESSOIc.cuvrrerierererserserersssessessessessssessessesssssssessees 326

xi

TABLE OF CONTENTS

Running Other Programs from RUDYcccvievirniniennninrene s s ssssesessessssssessessesssssssessens 328
Getting Results from Other Programs..........cceveeverersnsenienessensesessssessessessessssessessesssssssessees 328
Transferring Execution to Another Program...........cccvvrvninininne e sessesses e 329
Running Two Programs at the SAame TiMe........ccocevvvrvriernrnrnse s sessesse e sessessesees 329
Interacting with ANOther Programc.ccovcvvrenenessnsenssss s sessessessesessessessessssessessees 330

L7 T 3T 332
Basic Ruby Threads in ACLIONccccucriereririerree s s e s s s saesnesaesaeens 332
Advanced Thread OPErationsS.........ccevevererreriereserserseressssessersesessssessessessessssessessesssssssessesees 334

0= ST 335
LA T Tc T AT o] PP RT 336
Passing Data 10 @ FiDEr ... s 337
NON-DIOCKING FIDETcocereeietrcre st 338
L 10T OO R 339

Unicode, Character Encodings, and UTF-8 SUPPOItcccvvrinincnnsinsene s sessennens 339
Ruby 1.9 and Beyond’s Character Encoding SUPPOrt........cccouvvrrinnnnrniennsessese s s sessennes 340

£ 7 T 342

Chapter 12: Tying It Together: Developing a Larger Ruby Application.............c.... 343

Let’'s BUild @ BOL ..o s 343
L L U 3 W 2 343
L T2) O 345
HOW? s 345

Creating a Simple Text Processing LiDrary........cccveeveverrrvereveesensessesessssessessessssessessessessssessesses 346
Building the WOordPIay LIDIaryccccccveerievrinsenennsersenesssessesessessssessessessssessessesssssssessenses 346
TeSHING the LIDIAry......ccvcveerererrsere st se e ss s ssesae e s s saesae e s saeenes 354
WOrdPIAY’S SOUICE COUE.....cruerrererrerersereesersersessessssessessessessssessessessssessessesaessssessessesssssssensesaes 357

BUIlAING The BOE'S COTE.....ccceuereerererereessrseressessesesessesssssssessessesssssssessesssssssessesssssssessessessessnsesaens 360
The Program’s Lifecycle and Parts...........cccocvvrverininsense s sessee e sese e s s 361
BOE DALA......ccoirieririire s 362
Constructing the Bot Class and Data LOAdErccucvverererrerserersesensessessessssessessessssessessenes 367
The response_to Method...........cceirininnninn s 369
Playing With the Bt ... 375

xii

TABLE OF CONTENTS

Main Bot COAE LiSTNGcuvverrerrrierierieresensersersessssessessessessssessessessssessessesssssssessessesssessessesssssnsessens 379
DOLID e ——————————————— 379
DASIC_CHBNT.ID ...t —— 383

EXtending the BOt.........ccvciiicrsrc s e 383
Using Text Files As @ Source of CONVErsationcccveeveverrrrerernsensessesesessessessessssessessenes 384
Connecting the Bot 10 the WEDcccvcevevririere e se s e ssesae s 384
Bot-t0-B0ot CONVEISALIONSc.cceererrnieccse s 388

SUMIMANY ..ttt e e R e e e e R e R e e e e e R e R e e e e e Re e Re R e e e e e Re e b e e e e e aennn 389

Part lll: Ruby Online.......cccccussemmmmmmmmsssesnnmmmssssssssnsmsssssssssssssssssssssssssssssassnnesss 39 1

Chapter 13: Two Web Application Approaches: Rails and Sinatra..........ccccssueennns 393
BaCKGIOUNG...... .o s n e e s nnea 393
The Limitations and Benefits of Our Approachcccvvcevnnennesensssnnsesssesesssesesesssseens 394
Pros and Cons of the Frameworks COVEredcouvvmennenmsssesssessssesessse s sessssessssssessnnes 394
RailS: RUDY’S KIllEr APP....cierrerreieriereriesesseresessssesessessssessessessesessessessesssssssessessessssessessssssnsssesnens 395
What Is Rails and Why USE It?ccccveveirirere et sse e s ssssesesaeenes 395
LTS3 P2 11T 0T T 3OS 398
Building a Basic Rails APPlICALiONccccevvirrenennninsere s ssssessessesnes 400
Controllers and VIBWS.........cccvrrmimnmsininnsssss s s s sesssssssas 413
Models and RelationShipscccueverinmrnsennesinsse s sen s 420
SeSSIONS AN FITEIS ...vcvveerccrrese e e 422
OthEr FEALUIES......ccvvveerieer e e ne e nr s 424
Where to Go Next: References, Books, and EXample APPS......cccuveernreressesesesessnsesessesssseens 426
Sinatra: Lightweight, Simple Web Applications...........ccoccvvrevnrninnene s sessesessesessessesees 428
The Extreme Simplicity of Sinatra.........cccovivinnninininnrr s 428
General URL Routing and Parameter MatChingcccvevvvvnvnennsnsenie s s sesesesessesesnens 429
Views, Templates, and Static Files ..o ssssessessesees 431
Request FIOW CONTIOLcovcvvverereiinsirerenissese s se s s sse s s s e ssesaessssessesaesasssssensesnes 436

£ 11134 7O 440

xiii

TABLE OF CONTENTS

Chapter 14: Ruby and the Internet...........ccccinnnemmninnnmnnnnssnnmssss———— 443
HTTP @nd the WEDccceeeeeeees s se e sssssensnenes 443
Downloading Web Pages ... sns s snas 444
Processing Weh CONENt..........cccueviiirinicnne st stssesesnssesesss 454
111 T 458
Receiving Mail With POP3..........coi i sss e snes 458
Sending Mail With SMTP.......ccccoii e ne s 460
File TranSfers With FTP........ccovorrerc s s 462
Connection and BasiC FTP ACLIONSccccoovrerrnerennenerese s sese s sennes 462
DOWNIOAAING FIlESceveeeeecrirerererer s 465
UPIOAAING FIlES ... e 467
£ 7 S 468
Chapter 15: Networking and SOCKERSuccemmsssnsmsssnsssssnnssssnsssssnsssssnnssssnnssssanssssns 471
NEtWOrKing CONCEPIS.....cvcrirrierierie et a e s sae s ne e e e s nne e 471
TCP @NG UDP......iiiistririsii e bbb 471

IP Addresses and DNS ... s 472
Basic NEetwWOrk OPErationsccveerererserseressssessesesssssssessessesessessessessssessessesssssssessessesssssnsesaens 473
Checking Machine and Service Availabilityc.ccvevreriennrenierienssesserse s seesesesse s 473
Performing DNS QUEKIES.....c.uvevireririserise s st stsesessssesess 474
Servers and CHENTS.........ociecrererre s 477
UDP ClENt and SEIVE ..o s ses s 477
Building @ SIMPIE TCP SEIVELcivververereererrereressesessessesaessssessessessssessessessssssessesasssssessesaes 480
MUIti-ClieNt TCP SEIVETS.......ccicccriresissssse s e e s 482

L6 T O 483

A GServer-Based Chat SEIVET ... ss s ssssssens 486
WED/HTTP SEIVEIS....covieieicciririsieeee s se s 490
31111117 SO S 490

Xiv

TABLE OF CONTENTS

Chapter 16: Useful Ruby LiDrariesccuseurmmsssssnnssssssnsssssssssssssssssssssssssssssssssssnnnss 493
0] 0] (T 494
INSEAIALION.......covieecce s 494
EXAMPIES ...t e e e e R e e s 494
FUurther INFOrmation ... s 495
BASEOA ...t e e e e 496
TSy 10 o O 496
EXAMPIES ...t e e e e e nn 496
FUrther INFOrmMation ... s 499

272 1 1 T 499
TSy 0 o 499
EXAMPIES ..ot e e e e e R e e 499
FUrther INFOrmMation ... s 500
(1111 0] 0 T 501
LTSy 10 o T 501
EXAMPIES ...t e e e 501
FUrther INFOrmation ... s 502
D012 OSSR 502
INSTAIALION........covieeerece e nr s 503
EXAMPIES ... e e e e e 503
Further INFOrmation ... s 505
ENGIISH ot 506
INSTAIALION........covieerrcere e 506
EXAMPIES ...t n e n e e nn e 506
Further INFOrmation ... s 508
ERB ...ttt R R pnE e 508
INSTAALION......coiviccr e ————————— 508
e 111][OSSOSO 508
Further INformation ... 510

TABLE OF CONTENTS

10 SR 511
INSEAIALION.......coiicirce e ———————————— 511
6 111][511
Further INFOrmation ... 512

[0 -1 SO 512
INSEAIALION.......covieecce s 512
06 111][R 513
FUurther INFOrmationcco s 515

000] OSSOSO 515
TSy e 10 o 516
EXAMPIES ... e e e e 516
FUurther INFOrmationco s 517

0] 517
TSy 0 o 517
EXAMPIES ... e e e e e e 517
FUrther INFOrmMation ... 519

REACAIPETL ...ttt e e e e s b e R b ae 519
TSy 0 o 519
EXAMPIES ... e e e e e e nn 520
FUrther INFOrmation ... e 521

B TR 1y T ST 522
TSy = 0 o T 522
EXAMPIES ...t e e e 522
FUurther INFOrmation ... s 525

BEMIPTIlR ... —————————— 525
INSTAIALION........covieeerese e nr s 525
EXAMPIES ...t n e e an 526
Further INFOrmation ... s 528

TABLE OF CONTENTS

] 528
INSEAIALION........coiicece e ——————————— 528
6 111]SS 529
Further INFOrmation ... 533

2 | o 533
INSEAIALION.......cvieeccer s 533
06 111][R 533
FUurther INFOrmation ... s 535

Appendix A: Ruby Primer and Review for Developers.......ccuseerrmssssnnsssssssnsssssssnns 537

THE BASICS....ucuerveuererererseerseesesesessesessseses e sse e se e ses e e sse e se e ses e e sse e ssesesessesessssessanesenssssnsenens 537
Definition and CONCEPLSccvcreriiiniric e 537
The Ruby Interpreter and Running Ruby COde..........covorrerrnenereneree e 540
INTEractive RUDY ..o s s 541

Expressions and FIOW CONTrol..........cooinniincnr st snens 541
BaSIC EXPIESSIONS......cciveruirriirire s s st s e s e bbb e e s a e e nns 541
Class MISMAICNESc.cecrerrerereeresesese e s 542
ComPariSON EXPrESSIONSccccveriiirsirieresiesessese s s s sse s e s e s ss s s saessssessesnessssessesneens 544
FIOW .. R s 545

ODJECt OrENtAtiONc.ccereecrrresie e 549
00 1= o P 550
Classes and MEthodsccccoverernnernsenesese s s s sessssensanis 550
L2211 T 0 TS 553
REOPENING CIASSEScvcerveecrrrcrereserene s sesse e s e e s e sesns e nennis 556
LS (LT RV TS] o1 TS 556

D VOSSPSR 558
R3] (] 103 OSSPSR 558
RegUIAr EXPIrESSIONScciveerrierrssesessesessssessssesessese s sessesssssssssssesessessssssnsssnssssssssssssssssssssanes 558
NUMDEIS ..ttt se s e ne e e s e p e nr s 560
ATTAYS ..evieeessesessese s ses e se e s e s e s s e s s e R e e e e e e R e e R e e e R e Re e R e e e RnnnRennas 562
Hashes (ASSOCIALIVE AITAYS)cccvvrerreserrnseresesessesessssesessesesssse s s sessesessssnssssessssessssssssssssssnnes 563
COMPIEX STTUCTUIES ..c.veveiecir e e e p e s s 564

Xvii

TABLE OF CONTENTS

0 0 70Ty OO 565
FIlBS ettt e 565
DAtabaSES........cce v ———————————————— 566
WED ACCESSuevuerrcaeresscse e e e sa e e s e R 566

L]0 2 1= 567
File Organization.........cccvevererreriernsenseresessssesessessssessessesasssssessessessssessesaesssssssesassasssssensesaes 568
T 2 T 1 o SR 568

Appendix B: Useful ReSOUICEScurusumrmssansmsssnsmsssnsssssnsssssnsssssnsssssnnssssnnssssanssssnnssss 571

TUOFAIS ANU GUILES......ceeeecreecreee e nne e r e se e e e nne e 571
General Ruby Tutorials and INfOrmationccoeeeoeerrncnnsese s 571
RUDY 0N RIS.....coeceeeeeeee e e 572
011 572

RETBIBINCES ... e e 572
211 TS 573
RUDY 0N RaIS.....cooeereeerieerresere e 573

Ruby-Related CoNteNt.........ccovcvvenerese s 574
Aggregators @and NEWSccveeerrsenesesesesesssesesesssse e sessesssss s s sessssssessssssssnsssssssssssssssennes 574
FOTUMS <ot r s ne e e e e n e e 575

MailiNG LISTS...cvieeriirirresiriee st e 575

3 | OSSR 576

1T - 577

Xviii

About the Authors

Carleton DiLeo is a founder, author, and developer who
brings nearly two decades of experience working with
technology. His expertise includes building high-traffic
websites, big data systems, and video games. This wide base
of knowledge provides Carleton with a unique perspective
when working with Ruby.

Peter Cooper is an experienced Ruby developer and trainer
and editor of Ruby Weekly (www.rubyweekly.com/) and
JavaScript Weekly (https://javascriptweekly.com/).
Since 2004, Peter has developed many commercial
websites using Ruby on Rails, the Ruby-based web
framework.
In addition to development work, Peter has written

professionally about various development techniques and
tools since 1998.

He lives in Lincolnshire, England, with his wife, Laura, and children, Penny and
Imogen.

http://www.rubyweekly.com/
https://javascriptweekly.com/

About the Technical Reviewer

Ronald Petty, M.B.A., M.S., is founder of Minimum
Distance LLC, a management consulting firm based in San
Francisco. He spends his time helping technology-based
startups do the right thing. He is also an instructor at UC
Berkeley Extension.

xxi

Foreword

hege is a nice this one's justa
mountan in JaFan. meadow with a herse bowl of CuRR ;
'fﬂf(;riﬂ 7 gqu, &S- delicievs..

™

_rysee! isw't ths Tofally ;7 | ——=
¥The casiest % intRoductiong s

not dvmbed down, just NOT in a Resh. o

T"‘i‘ . =Y .' -' S ¥y
\B&l]fv = eVl

- —

& FORFWORP TO ——

[o
(BECINNINETZ
e \ N\ NS
w {m P,

5 ' Cabvpage! |
; ;;';?'ﬂj "CJ, <h? .a

?? : - C}R aSShog"ﬁ#

xxiii

FOREWORD

‘ ’ oM Nene.

howeveR, fagie bval WiRe

utly dgassembled. it was pRetty
TS . 1kqan. zed,

[*w Mubtiedy
Vowuran Weae

Yes, it's tRve! Ruby's inventoR,
YUKIHIRO
MATSUMOTO

("matz®)
Chogped vp
all of his

FaveR ite
p ComputeR
\anguajcs...

Like Some kind
of elephant

that's & bet omd @
pugm 1310

bt also.. YouR FRIEND!

TwWiSTEeD New

LANGVvA GES
RUB(T %

XXiv

FOREWORD

If | had kads like that | would
awara them a special Powertul
Young Minds award. They
always inow exactly where
their Mejackets are! And.n
an emergency stuation, you
cant be openng &l of those dff-
éert Compatmernt s . that's muats,
b
5=t some beet sucks and
gauze in thal drawe!

Ohn, tlam!l
RUBY IS EVERY THING!

Al languages i onel

20, veart, does Buby aam eventhing
in there all haphazardly? My lnds cram

/ all thex Ife jackets under the backiedt ¢
my boat and let me say:it's & disaster,

e
The gentleman father makes & good
pont sn't Buby terrbly complex with

A

Miss Teen orage Sofls 2006
5 (LEgacketeer ofthe Yearl

L

- ~
4)

A

Wall, you wont be playing

any a4 songs after learming
RAut

somuch stuffed nsde’

s SC you « ans 'n;-“‘_.r
your lfe ana np those

black keys oLt today.

Mostpeople dont
use ALl of Puby,
You start with the ample
stult, you x o’
Lo S PET
Uke howtheblackkeysona L/

prano are only for sad songs?

s B

Goodbye | Just Ded n Your
Armns Tonight™ by Cutting Crew!
| guess | won nead you anymore

7w

_W-hq-feveﬂ the Case m—nj be,
Uou'ke Soinj 1o b€ & Whlz

1z

e ——

YOU'R_G ﬁ? AMAZING Pefsow,

—

(l\.‘(,... whste rv& M"'l')

#So leng AS yev Aen't get sidetRacked ‘\

Pfﬂj;ui Final Fapsasy ok _quf_tnblqd}ng af whatever...

why the lucky stiff

XXV

Acknowledgments

I want to thank my parents, Ken and Margaret DiLeo, for supporting me when I started
my journey to become a software engineer long ago. Thank you to my close friends
Jennifer Reyes, Joseph Guetierrez, and their daughter Madison Guetierrez for being my
sounding board and encouraging me to keep going when times were tough. Thank you
to Peter Cooper, my coauthor to this book, and to Apress, our publisher.

Finally, thank you to those reading this book. I hope you find the same enjoyment
and satisfaction I have found digging into the vast world of software development.

—Carleton DiLeo

It is often said that writing is a lonely task, but it’s not until you write a book that you
realize the process has to be anything but lonely. Without the help and reassurance of
the large team of people backing this book, and backing me personally, this book could
not have been written.

My first thanks go to Keir Thomas, who approached me with the idea of writing a
Ruby book back in 2005. He gave me great freedom over the scope and specification of
the book, and was the most essential piece of the puzzle in getting the book approved
and everything sorted out in the early stages.

Beth Christmas and Mark Powers of Apress deserve special thanks for their project
management and reassurance during the writing of this book across the three editions
of this book so far. Without their schedules and assurance that everything was on track, I
would have been a nervous wreck.

Jonathan Gennick, Tim Fletcher, Peter Marklund, Alan Bradburne, Ronald Petty,
and Peter Szinek deserve much praise for their seemingly unending reading and
rereading of this book’s chapters throughout the various stages of development. I'd
also like to praise Susannah Davidson Pfalzer for her diligent approach to copy editing
the first edition of this book by fixing my pronouns, removing my overuse of words like
however and therefore, and generally making it possible to read the book without going
insane. As the first edition of this book was my first book for Apress, I depended on

Xxvii

ACKNOWLEDGMENTS

Susannah’s deep knowledge of Apress customs a great deal. For the second edition of
the book, I thank Damon Larson for performing the same role admirably, and for this
third edition, thanks to Kezia Endsley.

Naturally, thanks go to all of the other people I directly worked with on the book,
whether they’re from Apress or independent—in no particular order, Michelle Lowman,
Laura Esterman, Candace English, Nancy Bell, Jason Gilmore, Lori Bring, Nancy
Sixsmith, and “why the lucky stiff”

Separately from the book itself, I have to give thanks to many in the Ruby community
for working alongside me, producing tools I've used, or just making the Ruby language
more appealing in general—in no particular order, “why the lucky stiff” (for an
unforgettable foreword), Yukihiro “Matz” Matsumoto, Zach Inglis, Satish Talim,

Amy Hoy, Evan Weaver, Geoffrey Grosenbach, Obie Fernandez, Gregg Pollack, Jason
Seifer, Damien Tanner, Chris Roos, Martin Sadler, Pat Eyler, Ian Ozsvald, Caius Durling,
Jeremy Jarvis, Nic Williams, Shane Vitarana, Josh Catone, Ryan Tomayko, Karel Minarik,
Jonathan Conway, Alex MacCaw, Benjamin Curtis, David Heinemeier Hansson, and

the late James Golick and Jim Weirich. I am anxious I've missed some names, especially
with the exploding population of the Ruby community between the three editions of this
book, so if you're missing from this list, I humbly apologize.

Those in my personal life have also supported me a great deal by putting up with
my weird work hours and annoying habits, and by asking questions about the book,
feeding me, or just being there to talk to. In this regard, I'd like to thank—again in no
particular order—Laura Cooper, Clive Cooper, Ann Cooper, David Sculley, Michael
Wong, Dave Hunt, Chris Ueland, Ben Neumann, Rob Willie, Kristian Roebuck, Graham
Craggs, Lorraine Craggs, and Robert Smith. Laura Cooper deserves a special mention for
having had to put up with me nearly 24 hours a day during the writing of this book; she is
awesome.

Last, it’s necessary to thank you, the reader, for choosing to buy this book, for if no
one bought it, these acknowledgments and the efforts of many people during the writing
would have been wasted. Thank you! If at all possible, both T and all of the fine folks at
Apress would be delighted if you'd be able to post a small review of this book on Amazon.
com, Amazon.co.uk, or whichever online bookstore is popular in your part of the world.
Reading the reviews makes our day!

—DPeter Cooper

xxviii

Introduction

I wanted to minimize my frustration during programming, so I want to
minimize my effortin programming. That was my primary goal in designing
Ruby. I want to have fun in programming myself.

—Yukihiro Matsumoto (Matz), creator of Ruby

Ruby is a “best of breed” language that has been assembled from the best
and most powerful programming features found in its predecessors.

—Jim White

Ruby makes me smile.

—Amy Hoy (slash7.com)

Ruby is a fun toy. It’s also a serious programming language. Ruby is the jolly uncle who
puts in solid 12-hour days at the construction site during the week but keeps the kids
entertained come rain or shine. To hundreds of thousands of programmers, Ruby has
become a good friend and a trusted servant, and has revealed a new way of thinking
about programming and software development. It’s fun and it works.

Like the guitar, it’s claimed that Ruby is an easy language to learn and a hard one to
master. I agree, with some provisions. If you don’t know any programming languages
already, Ruby will be surprisingly easy to learn. If you already know some languages such
as PHP, Python, C#, or Golang, some of the concepts in Ruby will already be familiar to
you, but the different perspective Ruby takes could throw you at first. Like the differences
between spoken languages, Ruby differs from most other programming languages not
only by syntax but by culture, grammar, and customs. In fact, Ruby has more in common
with more esoteric languages like LISP and Smalltalk than with better-known languages
such as PHP and C#.

XXix

INTRODUCTION

While Ruby’s roots might be different from other languages, it’s heavily used and
respected in many industries. Companies that use or support Ruby in one way or
another include such prestigious names as Intel, Microsoft, Apple, and Amazon.com.
The Ruby on Rails web framework is a system for developing web applications that
uses Ruby as its base language, and it powers hundreds of large websites. Ruby is also
used as a generic language from the command prompt. Grammarians, biochemists,
database administrators, and thousands of other professionals and hobbyists use Ruby
to make their work easier. Ruby is a truly international language with almost unlimited
application.

This book is designed to cater both to people new to programming and to those with
programming experience in other languages. Ruby’s culture is different enough from
other languages that most of this book will be of use to both groups. Any large sections
that can be skipped by already proficient programmers are noted in the text. In any
case, I'd suggest that all programmers at least speed-read the sections that might seem
obvious to them, as there are some surprising ways in which Ruby is different from what
you've done before.

When reading this book, be prepared for a little informality, some quirky examples,
and a heavy dose of pragmatism. Ruby is an extremely pragmatic language, less
concerned with formalities and more concerned with ease of development and valid
results. From time to time, I'll show you how you can do things the “wrong” way in Ruby,
merely for illustrative purposes, but mostly you'll be working with code that does things
“the Ruby way.” When I started to learn Ruby, I learned primarily by example, and with
a language as original and idiomatic as Ruby, it’s the easiest way to pick up good habits
for the future. However, there’s always more than one way to do it, so if you think some
code in this book could be rewritten in a different way that fits in more with your way of
thinking, try it out!

As you start this book, be prepared to think in new ways and to feel motivated to
start coding for both fun and profit. Ruby has helped a lot of jaded developers become
productive once again, and whether you're a beginner to programming or one of those
jaded programmers, it’s almost inevitable that you’ll see how Ruby can be both fun and
productive for you.

Last, if you're coming from other modern scripting languages such as JavaScript,
PHP, or Python, you might want to jump to Appendix A before reading Chapter 1. It
covers the key differences between Ruby and other scripting languages, which might
help you move through the initial chapters of this book more easily.

Good luck, and I hope you enjoy this book. I'll see you in Chapter 1.

XXX

PART |

Foundations and
Scaffolding

This part of the book is where you build the foundations of your Ruby knowledge. By the
end of this part, you'll be able to develop a complete, though basic, Ruby program. You'll
learn how to get Ruby working, what object orientation is, how to develop some basic
programs, and about the data types and control structures Ruby uses and can operate
on. Finally, I'll walk you through creating a small program from start to finish.

CHAPTER 1

Let’s Get It Started:
Installing Ruby

Ruby is a popular programming language, but not all computers have it installed by
default. This chapter takes you through the steps necessary to get Ruby working on your
computer.

As an open source language, Ruby has been adapted to run on many different
computer platforms and architectures. This means that if you develop a Ruby program
on one machine, it’s likely you’ll be able to run it without any changes on a different
machine. You can use Ruby, in one form or another, on all the following operating
systems and platforms:

e« Microsoft Vista, 7, 8, and 10

e MacOSX

¢ Linux (most distributions)

e BSDs (including FreeBSD and OpenBSD)

o Any platform for which a full Java Virtual Machine exists (using
JRuby)

Caution Some specifics of Ruby vary between platforms, but most of the code in
this book (particularly in the earlier chapters) runs on all varieties. When we begin
to look at more complex code, such as external libraries and interfacing between
Ruby and other systems, you should be prepared to make changes in your code

or accept that you won’t have access to every feature. However, if you’re using
Windows, Linux, or OS X, almost everything will work as described in this book
without changes.

© Carleton DiLeo, Peter Cooper 2021
C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_1

https://doi.org/10.1007/978-1-4842-6324-2_1#DOI

CHAPTER 1 LET’S GET IT STARTED: INSTALLING RUBY

Before you can start playing with Ruby, you need to get your computer to understand
the Ruby language by installing an implementation of Ruby on your system, which I'll
cover first. In some cases, Ruby may already be present on your computer, and we will
cover these situations also since you may not need to do anything to get started.

Installing Ruby

Typically, when you install Ruby onto your computer, you'll get the Ruby interpreter, the
program that understands other programs written in the Ruby language, along with a
collection of extensions and libraries to make your Ruby more fully featured.

To satisfy the majority of readers without referring to external documentation, I'm
providing full instructions for using Ruby on Windows, Mac OS X, and Linux, along with
links to Ruby implementations for other platforms. In each case, I provide instructions to
check that the installation is successful before sending you on to the programming fun in
Chapter 2.

Note Ruby comes in multiple versions. The code in this book is primarily aimed
at versions 3.0 and above, but nearly all of it will work in older versions as well.
There are major differences between Ruby versions that can become important
when you reach more advanced topics, but at this stage, you can choose
whichever is easiest to install on your platform. Or, if Ruby is already installed on
your machine, simply use that as is.

Windows

Ruby was initially designed for use under UNIX and UNIX-related operating systems

such as Linux, but Windows users have access to an excellent Windows-specific

installer that installs Ruby, a horde of extensions, a source code editor, and various

documentation. Ruby on Windows is as reliable and useful as it is on other operating

systems, and Windows is a reasonable environment for developing Ruby programs.
To get up and running as quickly as possible, follow these steps:

1. Open aweb browser and go to https://rubyinstaller.org/.

https://rubyinstaller.org/

CHAPTER 1 LET’S GET IT STARTED: INSTALLING RUBY

2. Click the big Download button and then choose the latest version
to download. There are two sections of downloads: “with devkit”
and “without devkit”. It's recommended to download the installer
under the “with devkit” section. Make sure you select the “x64”
download. There are further details about the installer on the
sidebar of the download page if you're interested.

3. Run the downloaded file to launch the installer.

4. If Windows gives you a Security Error box, click the Run button to
give your approval.

5. A typical installation program appears with some instructions. On
the initial screen, click to accept the license and then click Next.

6. Work your way through the installation screens. Unless you have a
specific reason not to, let the installation program install Ruby in
its default location and its default program group. Check the box
for “Add Ruby Executables to Your PATH” if possible, as well as the
“Associate .rb and .rbw Files with this Ruby Installation” option.

7. If given the option, install the “MSYS2 development toolchain.
It provides a much richer command-line interface than what is
provided by Windows. We won'’t be using it in this book, but I
recommend looking into what MSYS2 has to offer.

8. Installation is complete when the installation program gives you a
Finish button to exit it.

If Ruby installed correctly, congratulations! To test that your Ruby installation works
correctly for Chapter 2, you need to load Interactive Ruby prompt or irb. If you are using
Windows 7 or higher, use the search bar to find the irb by searching for “irb” You should
see “Interactive Ruby” in the results. Click the “Interactive Ruby” icon to launch the tool.
If the program loads successfully, you'll see a screen that looks somewhat like Figure 1-1.

» Interactive Ruby i -10] x|
irh<main>:@001:8> g
=~

Figure 1-1. The Interactive Ruby (irb) prompt running on Windows 10

CHAPTER 1 LET’S GET IT STARTED: INSTALLING RUBY

Ifirb started properly, Ruby is installed correctly. Congratulations! Lastly, you need
to be familiar with running Ruby and its associated utilities from the command prompt
and use the search toolbar to search for “Start Command Prompt with Ruby.” You should
see “Start Command Prompt with Ruby” in your results. Click the icon to start the
command prompt.

Throughout this book, commands that can be used at the command prompt will be
given. This is because using a command prompt such as this is a standard technique
in operating systems such as Linux and OS X. For example, in Chapter 7, we’ll look at
installing extra features (libraries) for Ruby, and the command prompt will be used for
this. Therefore, it’s necessary for you to know how to access it and run programs.

If you type irb at this prompt and press Enter, you should see something like the
following:

irb(main):001:0>

If you see the preceding line, everything is set up correctly, and you can type exit
and press Enter to be returned to the command prompt.
Now you can move on to Chapter 2 and start to play with the Ruby language itself.

Mac 0S X/mac0S

Unlike Windows, most modern Apple machines running OS X come with a version

of Ruby already installed. OS X Catalina (10.15.4) comes with Ruby 2.6 out of the box.

It’s not recommended to use this version of Ruby since there are limitations that will
make development difficult. Instead, we will use a Homebrew to install ruby. Once you
become more advanced, I recommend looking into tools like rbenv (https://github.
com/rbenv/rbenv) and rvm (https://rvm.io/) which help manage multiple versions of
Ruby on the same computer.

Installing Ruby on 0S X with Homebrew

Since we are not using the system-provided version of Ruby, we will install it using a
packaging system called Homebrew (https://brew.sh/). Installing Homebrew is easy.
Open up a Terminal and type the following command:

https://github.com/rbenv/rbenv
https://github.com/rbenv/rbenv
https://rvm.io/
https://brew.sh/

CHAPTER 1 LET’S GET IT STARTED: INSTALLING RUBY

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/
install/master/install.sh)"

Once Homebrew has installed, you can run brew install ruby to install the latest
version of Ruby. You can then test that Ruby installed correctly using the command
ruby -v. If this command does not work, restart the terminal and try again.

Note If you are running OS X Catalina or higher, you may need to link your
terminal to the Ruby installation. This can be done by running the following
command:

echo 'export PATH="/usr/local/opt/ruby/bin:$PATH"'
>> ~/.bash_profile

If the Homebrew install command doesn’t work, visit the Homebrew site https://
brew.sh/ for details on installing Homebrew.

Linux

As an open source programming language, Ruby is already installed with many Linux
distributions. It’s not universal, though, but you can check if Ruby is installed by
following the instructions in the next section. If this fails, there are further instructions to
help you install it.

Checking If Ruby Is Installed on Linux

Try to run the Ruby interpreter from the command prompt (or terminal window), as
follows:

ruby -v

If Ruby is installed, the current Ruby version will be printed on the screen. This book
requires 2.7.1 as a bare minimum (with 3.0+ being preferred), so if the version is earlier
than 2.7.1, you'll need to continue onward in this chapter and install a more recent
version of Ruby. However, if Ruby appears to be installed and up to date, try to run the

irb interactive Ruby interpreter, as follows:

https://brew.sh/
https://brew.sh/

CHAPTER 1 LET’S GET IT STARTED: INSTALLING RUBY
irb

Once you've run irb, you should get the following output:
irb(main):001:0>

If running irb results in a similar output, you can move on to Chapter 2. (You might
wish to type exit and press Enter to get back to the command line!) Otherwise, read on
to install a fresh version of Ruby.

Installing Ruby with a Package Manager

The installation procedure for Ruby on Linux varies between different Linux
distributions. Some distributions, such as Debian, Arch Linux, and Red Hat, provide
“package managers” to make installation of programs easy. Others require that you
install directly from source or install a package manager beforehand.

If you're comfortable with using emerge, rpm, or apt-get, you can install Ruby
quickly with the following methods:

e Yum (on Red Hat, CentOS, and Fedora): Install as follows: sudo yum
install -y ruby

e Pacman (on Arch Linux): Install as follows: sudo pacman -S ruby
o Debian: Use apt-get, as such: sudo apt-get install ruby-full

o Ubuntu-based distributions: Use snap, as such: sudo snap install
ruby --classic

If one of these methods works for you, try to run Ruby and irb as shown in the
preceding section, and progress to Chapter 2 if you're ready. Alternatively, you can
search your distribution’s package repository for Ruby, as the name of the Ruby package
in your distribution might be nonstandard or changing over time. However, if all else
fails, you can install Ruby directly from its source code in the next section.

CHAPTER 1 LET’S GET IT STARTED: INSTALLING RUBY

Installing Ruby from Source Code

Installing Ruby from its source code is a great option if you don’t mind getting your
hands dirty. The process is similar on all forms of UNIX (not just Linux—this will work
on OS X too). Here are the basic steps:

1.

Make sure that your Linux distribution can build applications
from source by searching for the “make” and “gcc” tools (on OS

X, Xcode allows you to install these). From the terminal, you can
use which gccandwhich make to see if the development tools are
installed. If not, you need to install these development tools (on
Ubuntu, try apt-get install build-essential; on Red Hat or
CentOS, try sudo yum groupinstall "Development Tools").

Open a web browser and go to www.ruby-lang.org/.
Click the Downloads link at the top of the page.

On the download page, scroll down to Compiling Ruby - Source
Code and download the archive file containing the latest version.
This downloads a tar.gz file containing the source code for the
latest stable version of Ruby.

Uncompress the tar.gz file. If you're at a command prompt

or terminal window, go to the same directory as the ruby-
3.x.x.tar.gzfile and run tar xzvf ruby-3.x.x.tar.gz (where
ruby-3.x.x.tar.gz is the name of the file you just downloaded).

Go into the Ruby folder that was created during decompression. If
you're not using a command prompt at this stage, open a terminal
window and go to the directory.

Run ./configure to generate the makefile and config.h files. If
you receive numerous errors, particularly about no C compiler
being available, you have not installed the development tools
properly on your operating system and should search for further
help online on how to achieve this.

Run make to compile Ruby from source. This might take a while.

http://www.ruby-lang.org/

CHAPTER 1 LET’S GET IT STARTED: INSTALLING RUBY

10. Runmake install to install Ruby to its correct location on the
system. You need to do this as a superuser (such as root), so you
might need to run it as sudo make install and type in your
password if you are not logged in as a superuser already.

11. Ifthere are errors by this stage, read the README file that
accompanies the source code files for pointers. Otherwise, try to
see what version of Ruby is now installed with ruby -v.

If the expected version of Ruby appears at this point, you're ready to move to
Chapter 2 and begin programming. If you get an error complaining that Ruby can’t be
found or the wrong version of Ruby is installed, the place where Ruby was installed
might not be in your path (the place your operating system looks for files to run). To fix
this, scroll up and find out exactly where Ruby was installed (often in /usr/local/bin or
/usr/bin) and add the relevant directory to your path. The process to do this varies by
distribution and shell type, so refer to your Linux documentation on changing your path.

Once you can check which version of Ruby is running and you can run irb and get
a Ruby interpreter prompt, your Ruby installation is complete (for now!) and you can
move on to Chapter 2.

Other Platforms

If you're not using Windows, OS X, or Linux, it is possible you may be able to use a
variant or port of Ruby. Up until version 2.0, the official Ruby interpreter supported a
variety of other platforms (including BeOS, MS-DOS, and even the Atari ST), but it is now
primarily focused on mainstream operating systems, so in this edition, we will not be
providing any pointers, as they are now out of date.

In many cases, the versions of Ruby for some operating systems might be out of date
or unsupported. If this is the case and you're confident about being able to compile your
own version of Ruby directly from the Ruby source code, the source code is available to
download from www.ruby-lang.org/.

To test that Ruby is installed sufficiently to continue with this book, you want to
check which version of Ruby is installed by asking Ruby for its version, as follows:

Tuby -v

10

http://www.ruby-lang.org/

CHAPTER 1 LET’S GET IT STARTED: INSTALLING RUBY

You also need access to Ruby’s interactive prompt, irb. You access this simply by
running irb (if it’s in your path) as follows:

irb

If Ruby and irb do not work without complaint, you need to seek assistance for your
specific platform. Appendix B provides a list of useful resources. If irb does load, you can
type exit and press Enter to close it again.

Summary

In this chapter, we've focused on making sure Ruby is properly installed and that you can
run the irb tool, which you'll be using over the next several chapters.

Although Ruby is an easy language to learn and develop with, it’s easy to become
overwhelmed with the administration of Ruby itself, its installation, and its upgrades. As
Ruby is a language constantly in development, it’s possible that points covered in this
chapter will go out of date and other ways to install Ruby will come along.

An important part of being a proficient Ruby developer is being able to use the
resources the Ruby community makes available, and being able to find the latest sources
of help over time. The Ruby community, including your humble author, can provide help
in most cases, and a variety of resources to try are covered in Chapter 5 and Appendix B.

11

CHAPTER 2

Programming == Joy: A
Whistle-Stop Tour of Ruby
and Object Orientation

Depending on who you ask, programming is both a science and an art. Telling
computers what to do with computer programs requires being able to think analytically,
like a scientist, and conceptually, like an artist. Being an artist is essential for coming up
with big ideas and being flexible enough to take unique approaches. Being a scientist is
essential to understanding how and why certain methodologies need to be taken into
account, and to approach testing and debugging from a logical perspective, rather than
an emotional one.

Luckily, you don’t need to be an artist or a scientist already. As with training the
body, programming exercises and thinking about how to solve problems train the
mind to make you a better programmer. Anyone can learn to program. The biggest
impediments are a lack of motivation and commitment or an unnecessary level of
complexity early on. Ruby is one of the easiest programming languages to learn, so that
leaves motivation and commitment. You've probably bought this book with a view to
creating a certain program, web app, or to solve a certain task, hence your motivation,
leaving only commitment. To help cover the commitment angle, we’re going to try to
keep things smooth and uncomplicated.

By the time you reach the end of this chapter, I hope you can get a taste of the fun
that lies ahead with the knowledge of a powerful yet deceptively simple programming
language, and you will begin to feel excited about building your own things!

13
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_2

https://doi.org/10.1007/978-1-4842-6324-2_2#DOI

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Note This chapter does not follow an instructional format as subsequent
chapters do. Instead, I'll be moving quickly from concept to concept to give you a
feel for Ruby as a language before we circle around to the details later.

Baby Steps

In Chapter 1, you focused on installing Ruby so that your computer can understand the
language. At the end of the chapter, you loaded a program called irb.

irb: Interactive Ruby

” u

irb stands for “Interactive Ruby.” “Interactive” means that as soon as you type something
and press Enter, your computer will immediately attempt to process it. Sometimes this
sort of environment is called an immediate or interactive environment.

Note If you cannot remember how to load irb, refer to the section of Chapter 1
dedicated to your computer’s operating system.

Start irb and make sure a prompt appears, like so:
irb(main):001:0>

This prompt is not as complex as it looks. All it means is that you're in the irb
program, you're typing your first line (001), and you're at a depth of 0. You don’t need to
place any importance on the depth element at this time.

Type this after the preceding prompt and press Enter:

1+1
The result should come back quickly: 2. The entire process looks like this:

irb(main):001:0> 1 + 1
=> 2
irb(main):002:0>

14

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Ruby is now ready to accept another command or expression from you.

As a new Ruby programmer, you'll spend a lot of time in irb testing concepts and
building up insights into Ruby. It provides the perfect environment for tweaking and
testing the language.

irb’s interactive environment gives you the benefit of immediate feedback—an
essential tool when learning. Rather than writing a program in a text editor, saving it,
getting the computer to run it, and then looking through the errors to see where you
went wrong, you can just type in small snippets of code, press Enter, and immediately
see what happens.

If you want to experiment further, try other arithmetic such as 100 * 5, 57 + 99, 10 -
50, or 100 / 10 (if the last one seems alien to you, in Ruby, the forward slash character, /,
is the operator for division).

Ruby Is “English for Computers”

At the lowest level, computer processors are made out of transistors that respond to
and act on electronic signals, but thinking about performing operations at this level
is time-consuming and complicated, so we tend to use higher-level “languages” to
communicate our intentions, much as we do with natural languages like English.

Computers can understand languages, though in a rather different fashion than how
most people do. Being logical devices that cannot understand subtlety or ambiguity,
languages such as English and French aren’t appealing to computers. Computers require
languages with logical structures and a well-defined syntax so that there’s a logical clarity
in what you're telling the computer to do.

Clarity is required because almost everything you relay to the computer while
programming is an instruction (or command). Instructions are the basic building
blocks of all programs, and for the computer to perform (or execute) them properly, the
programmer’s intentions must be clear and precise. Many hundreds of these instructions
are tied together into programs that perform certain tasks, which means there’s little
room for error.

You also need to consider that other programmers might need to maintain computer
programs you've written. This won't be the case if you're just programming for fun, but
it'’s important that your programs are easy to understand, so you can understand them
when you come back to them later on.

15

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Why Ruby Makes a Great Programming Language

Although English would make a bad programming language, due to its ambiguity and
complexity, Ruby can feel surprisingly English-like at times. Ruby is just one of hundreds
of programming languages, but it’s special because it feels a lot like a natural language

to many programmers while having the clarity required by computers. Consider this
example code:

10.times do print "Hello, world!" end

Read through this code aloud (it helps, really!). It doesn’t flow quite as well as
English, but the meaning should be immediately clear. It asks the computer to “10

” «u

times” “print” “Hello, world!” to the screen. It works. If you've got irb running, type in the

preceding code and press Enter to see the results:

Hello, world!Hello, world!Hello, world!Hello, world!Hello, world!Hello,
world!Hello, world!Hello, world!Hello, world!Hello, world! => 10

If you read the code aloud, the resulting output (“Hello, world!” printed ten times)
should not be a surprise. The => 10 on the end might seem more confusing, however,
but we’ll be covering the meaning of that later.

Note Experienced programmers might wonder why there’s no semicolon at the
end of the previous code example. Unlike many other languages, such as C#, PHP,
C, and C++, a semicolon is not needed at the end of lines in Ruby (although it
won’t hurt if you do use one). This can take a little while to get used to at first, but
for new programmers it makes Ruby even easier to learn.

Here’s a much more complex example that might occur in a real-world web app:

user = User.find by email('me@privacy.net')
user.country = 'Belgium’

Note Don’t copy and paste this code. It won’t work outside the context of a
particular application.

16

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

This code is nowhere near as obvious as the “Hello, world!” example, but you should
still be able to take a good guess at what it does. First, it tells the computer you want
to work with a concept called User. Next, it tries to find a user with a specified email
address. Last, it changes the user’s country data to Belgium. Don’t worry about how the
data is stored for users at this point; that comes later.

This is a reasonably advanced and abstract example, but demonstrates a single
concept from a potentially complex application where you can deal with different
concepts such as “users.” By the end of this chapter, you'll see how you can create your
own real-life concepts in Ruby and operate on them in a similar way to this example.
Your code can be almost as easy to read as English too.

Trails for the Mind

Learning can be a fun activity in its own right, but merely reading about something won'’t
make you an expert at it. I've read a few cookbooks, but this doesn’t seem to improve my
cooking when I attempt it from time to time. The missing ingredient is experimentation
and testing, as without these, your efforts are academic, at best.

With this in mind, it’s essential to get into the mood of experimenting and testing
from day one of using Ruby. Throughout the book, I'll ask you to try out different blocks
of code and to play with them to see if you get the results you want. You'll occasionally
surprise yourself and sometimes chase your code into dead ends; this is all part of the
fun. Whatever happens, all good programmers learn from experimentation, and you can
only master a language and programming concepts by experimenting as you go along.

This book will lead you through a forest of code and concepts, but without testing
and proving the code is correct to yourself, you can quickly become lost. Use irb and the
other tools I'll cover frequently, and experiment with the code as much as possible so
that the knowledge will stick.

Type in the following code at your irb prompt and press Enter:

print "test"

The result is simply

test => nil

17

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Logically, print "test" results in test being printed to the screen. However, the =>
nil suffix is the result of your code as an expression (more about these in Chapter 3). This
appears because all lines of code in Ruby are made up of expressions that refurn values.
However, print displays data to the screen rather than return any value as an expression,
so you get nil. More about this in Chapter 3. It is perfectly okay to be semi-confused
about this at this stage.

Let’s try something else:

print "2+3 is equal to " + 2 + 3

This command seems logical on the surface. If 2 + 3 is equal to 5 and you're adding
that to the end of "2+3 is equal to ", youshould get"2+3 is equal to 5", right?
Unfortunately, you get this error instead:

Traceback (most recent call last):
5: from bin/irb:23:in “<main>'
4: from bin/irb:23:in "load’
3: from exe/irb:11:in “<top (required)>'TypeError (no implicit
conversion of Integer into String)
2: from (irb):2
1: from (irb):2:in “+'
TypeError (no implicit conversion of Integer into String)

Ruby complains when you make an error, and here it’s complaining that you can’t
convert a number into a string (where a “string” is a collection of text, such as this very
sentence). Numbers and strings can’t be mixed in this way. Deciphering the reason
isn’t important yet, but experiments such as this along the way will help you learn and
remember more about Ruby than reading this book alone. When an error like this
occurs, you can use the error message as a clue to the solution, whether you find it in this
book, on the Internet, or by asking another developer.

As a quick side activity, copy and paste the "no implicit conversion of
Integer into String" error into Google and see what comes up. If you are like most
programmers, you will do this a lot over your programming career. Not every article you
find will be useful, but sometimes you can get out of tricky situations by seeing what
other people suggest online.

An interim solution to the preceding problem would be to do this:

18

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

print "2+3 is equal to
print 2 + 3

Or this:
print "2+3 is equal to " + (2 + 3).to_s

Try them both.
Let’s try one more example. What about 10 divided by 3?

irb(main):002:0> 10 / 3
:)3

Computers are supposed to be precise, but anyone with basic arithmetic skills will
know that 10 divided by 3 is 3.33 recurring, rather than 3!

The reason for the curious result is that, by default, Ruby assumes a number such as
10 or 3 to be an infeger—a whole number. Arithmetic with integers in Ruby gives integer
results, so it’s necessary to provide Ruby with a floating point number (a number with
decimal places) to get a floating point answer such as 3.33. Here’s an example of how to
do that:

Irb(main):001:0> 10.0 / 3
=> 3.333333333333

Outcomes such as these make testing and experimentation not only a good learning
tool but essential tactics when developing larger programs.
That’s enough of the errors for now. Let’s make something useful!

Turning Ideas into Ruby Code

Part of the artistry of programming is in being able to turn your ideas into computer
programs. Once you become proficient with a programming language, you can turn
your ideas directly into code. However, before you can do this, you need to see how Ruby
understands real-world concepts, and how you can relay your ideas into a form that
Ruby appreciates.

19

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

How Ruby Understands Concepts with Objects
and Classes

Ruby is an object-oriented programming language. In the simplest sense, this means
that your Ruby programs can define and operate on concepts in a fashion that mimics
how we might deal with concepts in the real world. Your program can contain concepts
such as “people,” “boxes,” “tickets,” “maps,” or any other concept you want to work with.
Object-oriented languages make it easy to implement these concepts in a way that you
can create objects based on them. As an object-oriented language, Ruby can then act on
and understand the relationships between these concepts in any way you can define.

For example, you might want to create an application that can manage the booking
of tickets for sports events. The concepts involved include “events,” “people,” “tickets,’
“venues,” and so forth. Ruby lets you put these concepts directly into your programs,
create object instances of them (instances of an “event” might be the Super Bowl or the
final of the World Cup), and perform operations on and define relationships between
them. With all these concepts in your program, you can quickly relate “events” to
“venues” and “tickets” to “people,” meaning that your code forms a logical system from
the outset.

If you haven’t programmed much before, the idea of taking real-life concepts and
using them directly in a computer program might seem like an obvious way to make
software development easier. However, object orientation is a reasonably new idea in
software development (the concept was developed in the 1960s, but it only became
popular in mainstream programming in the 1990s). With non-object-oriented languages,
the programmer has to take a more manual approach for handling concepts and the
relationships between them, and while this adds more control, it also introduces extra

complexity.

The Making of a Person

Let’s jump directly into some source code demonstrating a simple concept, a person:

class Person
attr_accessor :name, :age, :gender
end

20

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Ruby seemed a lot like English before, but it doesn’t seem much like English when
defining concepts. Let’s go through it step by step:

class Person

This line is where you start to define the concept of a “person.” When we define
concepts in Ruby (or in most other object-oriented languages, for that matter), we call
them classes. A class is the definition of a single type of object. Class names in Ruby
always start with a capital letter, so your programs will end up with classes with names
like User, Person, Place, Topic, Message, and so forth:

attr_accessor :name, :age, :gender

The preceding line provides three attributes for the Person class. An individual
person has a name, an age, and a gender, and this line creates those attributes. attr
stands for “attribute,” and accessor roughly means “make these attributes accessible to
be set and changed at will.” This means that when you're working with a Person object in
your code, you can change that person’s name, age, and gender (or, more accurately, the
object’s name, age, and gender attributes):

end

The end line should be of obvious utility. It matches up with the class definition on
the first line and tells Ruby that you're no longer defining the Person class.

To recap, a class defines a concept (such as a Person), and an object is a single thing
based on class (such as a “Chris” or a “Mrs. Smith”).

So let’s experiment with our Person class. Go to your irb prompt and type in the
Person class found earlier. Your efforts should look like this:

irb(main):001:0> class Person

irb(main):002:?> attr accessor :name, :age, :gender
irb(main):003:?> end

=> nil

irb(main):004:0>

You'll notice that irb recognizes when you were “inside” a class definition because it
automatically indents your code.

21

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Once you've finished your class definition and Ruby has processed it, nil is returned,
because defining a class results in no return value, and nil is Ruby’s way of representing
“nothing.” As there were no errors, your Person class now exists within Ruby, so let’s do
something with it:

person_instance = Person.new
person_instance.inspect
=> #<Person:0x007fbb0c625f88>

What the first line does is create a “new” instance of the Person class, so you're
creating a “new person” and assigning it to person_instance—a placeholder
representing the new person, known as a variable. The second line is Ruby’s response to
creating a new person and isn’t important at this stage. The 0x007fbb0c62588 bit will
be different from computer to computer and only represents an internal reference that
Ruby has assigned to the new person. You don’t have to take it into account at all.

Let’s immediately do something with person_instance:

person_instance.name = "Christine"

In this basic example, you refer to person_instance’s name attribute and give it a
value of "Christine". You've just given your person a name. The Person class has two
other attributes: age and gender. Let’s set those:

person_instance.age = 52
person_instance.gender = "female"

Simple. You've given person_instance a basic identity. What about printing the
person’s name back to the screen?

puts person_instance.name

Christine appears when you press Enter. Try the same with the age and the gender.

Note In previous examples, you've used print to put things on the screen. In
the preceding example, you used puts. The difference between print and puts
is that puts automatically moves the output cursor to the next line (i.e., it adds a
newline character to start a new line), whereas print continues printing text onto
the same line as the previous time. Generally, you’ll want to use puts, but | used
print to make the earlier examples more intuitive when reading them out loud.

22

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Basic Variables

In the previous section, you created a person and assigned that person to a variable
(computer terminology for a “placeholder”) called person_instance.

Variables are an important part of programming, and they’re easy to understand,
especially if you have the barest of knowledge of algebra. Consider this:

X = 10

This code assigns the value 10 to the variable x. Since x now equals 10, you can do
things like this:

X * 2

20

Note Some new programmers can be confused by the definition of = as an
assignor of value, rather than an indicator of equality. When we say x = 10, we do
not mean that x and 10 are equal, but that x should now be considered to refer to
the value 10.

Variables in Ruby can refer to any value-related concept that Ruby understands,
such as numbers, text, and other data structures I'll cover throughout this book. In the
previous section, person_instance was a variable that referred to an object instance
of the Person class, much like x is a variable containing the number 10. More simply,
consider person_instance as a name that refers to a particular, unique Person object.

When you want to store something and use it over multiple lines within a program,
you'll use variables as temporary storage places for the data you're working with.

From People to Pets

Previously, you created a simple class (Person), created an object of that class, assigned it
as the person_instance variable, and gave it an identity (we called it Christine) that you
queried. If these concepts seem simple to you, well done—you understand the bare basics
of object orientation! If not, reread the previous section and make sure you follow along on
your computer, but also read this section, as I'm going to go into a little more depth.

23

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

You started out with a Person class, but now you need something a bit more
complex, so let’s create some “pets” to live inside Ruby. You'll create some cats, dogs,
and snakes. The first step is to define the classes. You could do something like this:

class Cat

attr_accessor :name, :age, :gender, :color
end
class Dog

attr_accessor :name, :age, :gender, :color
end

class Snake
attr accessor :name, :age, :gender, :color
end

It’s just like creating the Person class, but multiplied for the three different animals.
You could continue by creating animals with code such as lassie = Dog.new or sammy =
Snake.new and setting the attributes for the pets with code such as lassie.age = 12 or
sammy.color = "Green". Type in the preceding code and give it a try if you like.

However, creating the classes in this way would miss out on one of the more
interesting features of object-oriented programming: inheritance.

Inheritance allows different classes to relate to one another and group concepts by
their similarities. In this case, cats, dogs, and snakes are all pets. Inheritance allows you to
create a “parent” Pet class, and then let your Cat, Dog, and Snake classes inherit (“is-a”) the
features that all pets have.

Almost everything in real life exists in a similar structure to your classes. Cats can
be pets, which are, in turn, animals; which are, in turn, living things; which are, in turn,
objects that exist in the universe. A hierarchy of classes exists everywhere, and object-
oriented languages let you define those relationships in code.

Note Chapter 6 features a helpful diagram showing the concept of inheritance
between different forms of life such as mammals, plants, and so forth.

24

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Structuring Your Pets Logically

Now that we've come up with some ideas to improve our code, let’s retype it from
scratch. To totally cleanse out and reset what you're working on, you can restart irb. irb
doesn’t remember information between the different times you use it. So restart irb (to
exit irb, type exit and press Enter) and rewrite the class definitions like so:

class Pet
attr_accessor :name, :age, :gender, :color
end

class Cat < Pet
end

class Dog < Pet
end

class Snake < Pet
end

Note In the code listings in this chapter, any code that’s within classes is
indented, as with the attr_accessor line in the preceding Pet class. This is only
a matter of style, and it makes the code easier to read. When you type it into irb,
it’s not necessary to replicate the effect, as it will do some indentation for you. You
can simply type what you see. Once you start using a text editor to write longer
programs, you’ll want to indent your code to make it easier to read too, but it’s not
important yet.

First, you create the Pet class and define the name, age, gender, and color attributes
available to Pet objects. Next, you define the Cat, Dog, and Snake classes that inherit
from the Pet class (the < operator, in this case, denotes which class is inherited from).
This means that cat, dog, and snake objects will all have the name, age, gender, and color
attributes, but because the functionality of these attributes is inherited from the Pet
class, the functionality doesn’t have to be created specifically in each class. This makes
the code easier to maintain and update if you wanted to store more information about
the pets or if you wanted to add another type of animal.

25

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

What about attributes that aren’t relevant to every animal? What if you wanted to
store the length of snakes, but didn’t want to store the length of dogs or cats? Luckily,
inheritance gives you lots of benefits with no downside. You can still add class-specific
code wherever you want. Reenter the Snake class like so:

class Snake < Pet
attr_accessor :length
end

The Snake class now has a length attribute. However, this is added to the attributes
Snake has inherited from Pet, so Snake has name, age, gender, color, and length
attributes, whereas Cat and Dog only have the first four attributes. You can test this like so
(some output lines have been removed for clarity):

irb(main):001:0> snake = Snake.new
irb(main):002:0> snake.name = "Sammy"
irb(main):003:0> snake.length = 500
irb(main):004:0> lassie = Dog.new
irb(main):005:0> lassie.name = "Lassie"
irb(main):006:0> lassie.age = 20
irb(main):007:0> lassie.length = 10

NoMethodError (undefined method 'length="' for #<Dog:0x32fddc @age=20,
@name=“Lassie">)

Here you created a dog and a snake. You gave the snake a length of 500, before trying
to give the dog a length of 10 (the units aren’t important). Trying to give the dog a length
results in an error of undefined method 'length=', because you only gave the Snake
class the length attribute.

Try playing with the other attributes and creating other pets. Try using attributes that
don’t exist and see what the error messages are.

Note You might be wondering why we’re using such artificial examples as cats,
dogs, and snakes here. They have been chosen to provide a simple to understand
and easily mentally visualized model of how classes work. In your eventual apps,
you’ll work with things like different types of users, events, products, photos, and
so forth, and they will work in a somewhat similar way. Feel free to create your
own classes using concepts relevant to your planned programs and follow along

using those instead, substituting the names of the classes where appropriate.

26

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Controlling Your Pets

So far, you've been creating classes and objects with various changeable attributes.
Attributes are data related to individual objects. A snake can have a length, a dog can have
aname, and a cat can be of a certain color. What about the instructions I spoke of earlier?
How do you give your objects instructions to perform? You define methods for each class.

Methods are important in Ruby. They enable you to tell objects to perform actions.
For example, you might want to add a bark method to your Dog class, which, if called on
aDog object, prints Woof! to the screen. You could write it like so:

class Dog < Pet
def bark
puts "Woof!"
end
end

After entering this code, any dogs you create can now bark. Let’s try it out:

irb(main):0> a_dog = Dog.new
irb(main):0> a_dog.bark

Woo+!

Eureka! You'll notice that the way you make the dog bark is simply by referring to the
dog (a_dog, in this case) and including a period (.) followed by the bark method’s name,
whereby your dog “barks.” Let’s dissect exactly what happened.

First, you added a bark method to your Dog class. The way you did this was by
defining the method. To define a method, you use the word def followed by the name
of the method you wish to define. This is what the def bark line means. It means “I'm
defining the bark method within this class until I say end.” The following line then simply
puts the word “Woof!” on the screen, and the last line of the method ends the definition
of that method. The last end ends the class definition (this is why indentation is useful,
so you can see which end lines up with which definition). The Dog class then contains a
new method called bark, as you used earlier.

Think about how you would create methods for the other Pet classes or for the Pet
class itself. Are there any methods that are generic to all pets? If so, they'd go in the Pet
class. Are there methods specific to cats? They’'d go in the Cat class.

27

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Everything Is an Object

In this chapter, we've looked at how Ruby can understand concepts in the form of classes
and objects. We created virtual cats and dogs, gave them names, and triggered their
methods (e.g., the bark method). These basic concepts form the core of object-oriented
programming, and you’ll use them constantly throughout this book. Dogs and cats are
merely an example of the flexibility object orientation offers, but the concepts we've
used so far could apply to most concepts, whether we're giving a “ticket” a command to
change its price or a “user” a command to change his or her password. Begin to think of
the programs you want to develop in terms of their general concepts and how you can
turn them into classes you can manipulate with Ruby.

Among even object-oriented programming languages, Ruby is reasonably unique
in that almost everything in the language is an object, even the concepts relating to the
language itself. Consider the following line of code:

puts 1 + 10

If you typed this into irb and pressed Enter, you'd see the number 11 in response.
You've asked Ruby to print the result of 1 + 10 to the screen. It seems simple enough,
but believe it or not, this simple line uses two objects. 1 is an object, as is 10. They're
objects of class Integer, and this built-in class has methods already defined to perform
operations on numbers, such as addition and subtraction.

We've considered how concepts can be related to different classes. Our pets make
a good example. However, even defining the concepts that programmers use to write
computer programs as classes and objects makes sense. When you write a simple sum
such as 2 + 2, you expect the computer to add two numbers together to make 4. In its
object-oriented way, Ruby considers the two numbers (2 and 2) to be number objects.
2 + 2isthen merely shorthand for asking the first number object to add the second
number object to itself. In fact, the + sign is actually an addition method! (It’s true;
2.+(2) will work just fine!)

You can prove that everything in Ruby is an object by asking the things of which class
they’re a member. In the pet example earlier, you could have made a_dog tell you what
class it’s a member of with the following code:

puts a_dog.class

Dog

28

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

class isn’t a method you created yourself, such as the bark method, but one that
Ruby supplies by default to all objects. This means that you can ask any object which
class it’s a member of by using its class method. So a_dog.class equals Dog.

What about if you ask a number what its class is? Try it out:

puts 2.class
Integer

The number 2 is an object of the Integer class. This means that all Ruby has to do is
implement the logic and code for adding numbers together in the Integer class, much
like you created the bark method for your Dog class, and then Ruby will know how to add
any two numbers together! Better than that, though, is that you can then add your own
methods to the Integer class and process numbers in any way you see fit.

Kernel Methods

Kernel is a special class (actually, a module—but don’t worry about that until Chapter 6!)

whose methods are made available in every class and scope throughout Ruby (if

this sounds complicated, consider the Kernel methods to be those available in every

situation without fail). You've used a key method provided by Kernel already.
Consider the puts method. You've been using the puts method to print data to the

screen, like so:

puts "Hello, world!"

However, unlike the methods on your own classes, puts isn’t prefixed by the name
of a class or object on which to complete the method. It would seem logical that the full
command should be something like Screen.puts or Display.puts, as puts places text
on the screen. However, in reality, puts is a method made available from the Kernel
module—a special type of class packed full of standard, commonly used methods,
making your code easier to read and write.

Note The Kernel module in Ruby has no relationship to kernels in operating
systems or the Linux kernel. As with a kernel and its operating system, the Kernel
module is part of Ruby’s “core,” but there is no connection beyond that. The word

“kernel” is used merely in a traditional sense.

29

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

When you type puts "Hello, world!", Ruby can tell that there’s no class or object
involved, so it looks through its default, predefined classes and modules for a method
called puts, finds it in the Kernel module, and does its thing. When you see lines of
code where there’s no obvious class or object involved, take time to consider where the
method call is going.

To guarantee that you're using the Kernel puts method, you can refer to it explicitly,
although this is rarely done with puts:

Kernel.puts "Hello, world!"

Passing Data to Methods

Asking a dog to bark or asking an object its class is simple with Ruby. You simply refer
to a class or object and follow it with a period (.) and the name of the method, such as
a_dog.bark, 2.class, or Dog.new. However, there are situations where you don’t want to
issue a simple command, but you want to associate some data with it too.

Let’s create a very simple class that represents a dog:

class Dog
def bark
puts "Woof!"
end
end

Now we can simply make a dog bark by calling the relevant method:

my_dog = Dog.new
my _dog.bark

Woo+!

That’s simple, but what about if we have an action where some user input would be
useful? We can write methods to accept data when they are called, for example:

class Dog
def bark(i)
i.times do
puts "Woof!"
end
end

end

30

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

This time we can make the dog bark a certain number of times by passing a value to
the bark method:

my_dog = Dog.new
my_dog.bark(3)

Woof!
Woo+!
Woof!

When we specify the argument of 3 inmy_dog.bark(3), it is passed to the bark
method and is placed into the defined parameter i. We can then use 1 as a source value
for running the puts command three times (or, more accurately, i times) using a times
block.

There are a couple of other things to be aware of at this early stage. First, you can
specify many different parameters that can be accepted by a method, for example:

class Dog
def say(a, b, c)
puts a
puts b
puts ¢
end
end

Now we can pass three arguments:
my dog = Dog.new
my dog.say("Dogs", "can't", "talk!")

Dogs
can't
talk!

You should also be aware that parentheses around the arguments on the end of the
method call are optional when there’s only a single argument and the method call is not

joined to any others. For example, you've previously seen code like this:

31

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION
puts "Hello"

But you could just as easily write
puts("Hello")

You will continue to see many examples of calling methods and passing arguments
to them throughout this book. Keep your eyes peeled for the various ways this occurs,
with and without arguments and with and without parentheses.

Using the Methods of the String Class

You've played with dogs and numbers, but lines of text (strings) can be interesting to play
with too:

puts "This is a test".length
14

You've asked the string "This is a test", which is an object of the String class
(confirm this with "This is a test".class), to print its length onto the screen using
the length method. The length method is available on all strings, so you can replace
"This is a test" with any text you want and you'll get a valid answer.

Asking a string for its length isn’t the only thing you can do. Consider this:

puts "This is a test".upcase

THIS IS A TEST

The String class has many methods, which I'll cover in the next chapter, but
experiment with some of the following: capitalize, downcase, chop, next, reverse, sum,
and swapcase. Table 2-1 demonstrates some of the methods available to strings.

32

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Table 2-1. The Results of Using Different
Methods on the String “Test” or “test”

Expression Output
"Test" + "Test" TestTest
"test".capitalize Test
"Test".downcase test
"Test".chop Tes
"Test".next Tesu
"Test".reverse tseT
"Test".sum 416
"Test".swapcase tEST
"Test".upcase TEST

"Test".upcase.reverse TSET

"Test".upcase.reverse. TSEU
next

Some of the examples in Table 2-1 are obvious, such as changing the case of the
text or reversing it, but the last two examples are of particular interest. Rather than
processing one method against the text, you process two or three in succession. The
reason you can do this is that methods will return the original object after it’s been
adjusted by the method, so you have a fresh String object upon which to process
another method. "Test".upcase results in the string TEST being returned, upon which
the reverse method is called, resulting in TSET, upon which the next method is called,
which “increments” the last character, resulting in TSEU.

In the next chapter, we'll be looking at strings more deeply, but the concept of
chaining methods together to get quick results is an important one in Ruby. You can
read the preceding examples aloud and they make sense. Not many other programming
languages can give you that level of instant familiarity!

33

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

Using Ruby in a Non-object-Oriented Style

So far in this chapter, we've looked at several reasonably complex concepts. With some
programming languages, object orientation is almost an afterthought, and beginners’
books for these languages don’t cover object orientation until readers understand the
basics of the language (particularly with Perl and PHP, other popular web development
languages). However, this doesn’t work for Ruby because Ruby is a pure object-oriented
language, and you can gain significant advantages over users of other languages by
understanding these concepts right away.

Ruby has its roots in other languages, though. Ruby has been heavily influenced
by languages such as Perl and C, both usually considered procedural non-object-
oriented languages (although Perl has some object-oriented features). As such, even
though almost everything in Ruby is an object, you can use Ruby in a similar way as a
non-object-oriented language if you like, even if it’s less than ideal. Essentially, you'd
be “ignoring” Ruby’s object-oriented features, even though they'd still be in operation
under the hood.

A common demonstration program for a language such as Perl or C involves creating
a subroutine (essentially a sort of method that has no associated object or class) and
calling it, much like you called the bark method on your Dog objects. Here’s a similar
program, written in Ruby:

def dog_barking
puts "Woof!"
end

dog_barking

This looks a lot different from your previous experiments. Rather than appearing
to define a method within a class, it looks as if you're defining it on its own, totally
independently. The method is a general one and doesn’t appear to be tied to any
particular class or object. In a language such as Perl or C, this method would be called
a procedure, function, or subfunction, as method is a word generally used to refer to an
action that can take place on an object. In Ruby, this method is still being defined on a
class (the Object class), but we can ignore that within this context.

After the method is defined—it’s still called a method, even though other languages
would consider it to be a subroutine or function—it becomes available to use
immediately without using a class or object name, like how puts is available without

34

CHAPTER2 PROGRAMMING == JOY: A WHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

referring directly to the Kernel module. You call the method simply by using its name on
its own, as on the last line of the preceding example. Typing the preceding code into irb
results in the dog_barking method being called, giving the following result:

Woo+!

In Ruby, almost everything’s an object, and that includes the magical space where
classless methods end up! Understanding exactly where isn’t important at this stage, but
it’s always useful to bear Ruby’s object-oriented ways in mind even when you're trying
not to use object-oriented techniques!

Note If you want to experiment, you'll find dog_barking at Object.dog_
barking.

Summary

In this chapter, you learned about several important concepts not only for programming
in Ruby but for programming in general. If these concepts seem logical to you already,
you're well on the way to being a solid Ruby developer. Let’s recap the main concepts
before moving on:

e Class: A class is a definition of a concept in an object-oriented
language such as Ruby. We created classes called Pet, Dog, Cat,
Snake, and Person. Classes can inherit features from other classes,
but still have unique features of their own.

e Object: An object is a single instance of a class (or, as can be the case,
an instance of a class itself). An object of class Person is a single
person. An object of class Dog is a single dog. Think of objects as
real-life objects. A class is the classification, whereas an object is the
actual object or “thing” itself.

e Object orientation: Object orientation is the approach of using
classes and objects to model real-world concepts in a programming
language, such as Ruby.

35

CHAPTER2 PROGRAMMING == JOY: AWHISTLE-STOP TOUR OF RUBY AND OBJECT ORIENTATION

o Variable: In Ruby, a variable is a placeholder for a single object,
which may be a number, string, list (of other objects), or instance of a
class that you defined, such as, in this chapter, a Pet.

e Method: A method represents a set of code (containing multiple
commands and statements) within a class and/or an object. For
example, our Dog class objects had a bark method that printed
“Woof!” to the screen. Methods can also be directly linked to classes,
aswith fred = Person.new, where new is a method that creates a new
object based on the Person class. Methods can also accept data—
known as arguments or parameters—included in parentheses after
the method name, as with puts("Test").

o Arguments/parameters: These are the data passed to methods in
parentheses (or, as in some cases, following the method name
without parentheses, as in puts "Test"). Technically, you pass
arguments fo methods, and methods receive parameters, but for
pragmatic purposes, the terms are interchangeable.

e Kernel: Some methods don’t require a class or module name to be
usable, such as puts. These are usually built-in, common methods
that don’t have an obvious connection to any classes or modules.
Many of these methods are included in Ruby’s Kernel module, a
module that provides functions that work from anywhere within
Ruby code without being explicitly referred to (a global “grab bag” of
useful methods, if you will).

o Experimentation: One of the most fulfilling things about
programming is that you can turn your dreams into reality. The
amount of skill you need varies with your dreams, but generally if
you want to develop a certain type of application or service, you
can give it a try. Most software comes from necessity or a dream,
so keeping your eyes and ears open for things you might want to
develop is important. It’s even more important when you first get
practical knowledge of a new language, as you are while reading this
book. If an idea crosses your mind, break it down into the smallest
components that you can represent as Ruby classes and see if you can
put together the building blocks with the Ruby you've learned so far.
Your programming skills can only improve with practice.

In the next few chapters, we're going to look at the topics briefly passed over in this
chapter in more detail.

36

CHAPTER 3

Ruby’s Building Blocks:
Data, Expressions,
and Flow Control

Computer programs spend nearly all their time manipulating data or waiting for data
to arrive from elsewhere. We type in words, phrases, and numbers; listen to music; and
watch videos, while the computer performs calculations, makes decisions, and relays
information to us. To write computer programs, it’s essential to understand the basics of
data and its manipulation.

This chapter looks at some of the basic forms of data that Ruby supports, along with
how to work with and manipulate them. The topics covered in this chapter will provide
the majority of the foundation of knowledge on which your future Ruby programs will be

developed.

Numbers and Expressions

At the lowest level, computers are entirely number-based, with everything represented
by streams of numbers. A language such as Ruby tries to insulate you from the internal
workings of the computer, and numbers in Ruby are used for mostly the same things

that you use numbers for in real life, such as counting, logical comparisons, arithmetic,
and so on. Let’s look at how you can use numbers in these ways in Ruby and how to do

something with them.

37
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_3

https://doi.org/10.1007/978-1-4842-6324-2_3#DOI

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Basic Expressions

When programming, an expression is a combination of data (such as numbers or strings
of text), operators (such as + or -), and variables that, when understood by the computer,
result in an answer of some form. For example, these are all expressions:

5

1+ 2

"a" + "b" + "c"
100 - 5 * (2 - 1)
X+Yy

The top four expressions all work right away with irb (try them out now!) and get
the answers you'd expect from such basic operations (1 + 2 resultsin 3, "a" + "b" +
"c" results in abc, and so on). The final expression would fail, but try it out anyway and
consider the error returned and how you could resolve the situation. (Tip: Set the x and y
variables to something!)

Brackets (parentheses) work the same way as with regular arithmetic. Anything

inside brackets is calculated first (or, more technically, given higher precedence).

Note You can work through all the topics in this chapter using irb, the interactive
Ruby interpreter. If you get stuck, simply leave irb by typing exit or pressing
Ctrl+D at any time, and start irb again as demonstrated in Chapter 1. If this fails,
press Ctrl+C and then the Enter key and then type exit.

Expressions are used regularly throughout all computer programs and not just with
numbers. However, an understanding of how expressions and operations work with
numbers immediately translates into a basic knowledge of how they work with text, lists,
and other items too.

Variables

In Chapter 2, we ran through a multitude of concepts, including variables. Variables are
placeholders or references to objects, including numbers, text, or any types of objects
you've chosen to create, for example:

x=10

38

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

puts x

10

Here you assign the numeric value of 10 to a variable called x. Be aware that you

always need to initialize variables (i.e., assign a value to them) before using them;

otherwise, you will end up with an error.

Note Ruby 3 adds a new way to assign values to variables. This new feature is
called “right assignment.” This feature uses a hash rocket operator, =>, instead
of an equal operator. We write the value first, then a hash rocket, and finally the

variable name:

"Jane Doe" =>name puts name

This new syntax introduces more natural flow to variable assignment, but it's not
considered a replacement. Use this syntax where it makes sense and improves

code readability.

You can name variables however you like, with only a few limitations. Variable

names must be a single unit (no spaces!); must start with either a letter or an underscore;

must contain only letters, numbers, or underscores; and are case-sensitive. Table 3-1

demonstrates variable names that are valid and invalid.

Table 3-1. Valid and Invalid Variable Names

Variable Name

Valid or Invalid?

X

y2
X
7X
this is a test
this is a test
this'is@a'test!

this-is-a-test

Valid

Valid

Valid

Invalid (starts with a digit)

Valid

Invalid (not a single word)

Invalid (contains invalid characters: ', @, and !)

Invalid (looks like subtraction)

39

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Variables are important because they allow you to write and use programs that
perform operations on varying data. For example, consider a small program that has the
sole job of subtracting two numbers:

X = 100

y = 10
puts x -y
90

If the code was written simply as puts 100 - 10, you'd get the same result, but it’s
not as flexible. Using variables, you can get the values for x and y from the user, a file, or
some other source. The only logic is the subtraction.

As variables are placeholders for values and data, they can also be assigned the
results of an expression (such as x = 2 - 1) and be used in expressions themselves
(suchasx - y + 2).Here’s a more complex example:

X =50
y = x * 100
X 4=y
puts x

5050

Step through the example line by line. First, you set x to equal 50. You then set y to
the value of x * 100 (50 * 100 or 5000). Next, you add y to x before printing the result,
5050, to the screen. It makes sense, but the third line isn’t obvious at first. Adding y
to x looks more logical if you say x = x + yrather than x += y. This is another Ruby
shortcut. Because the act of a variable performing an operation upon itself is so common
in programming, you can shortenx = X + ytox += y.The same works for other
operations too, such as multiplication and division, with x *= yand x /= y being valid
too. A common way to increase a variable’s value by 1is x += 1, which is shorthand for x
=X + 1

40

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Comparison Operators and Expressions

A program without logic is merely a calculator. Computers don’t just perform single

operations on data. They also use logic to determine different courses of action. A basic

form of logic is to use comparison operators within expressions to make decisions.
Consider a system that demands the user be over a certain age:

age = 10
puts "You're too young to use this system" if age < 18

If you try this code, you'll see “You're too young to use this system” because the code
prints the text to the screen only when the value of age is under 18 (note the “less than”
symbol). Let’s make something more complex:

age = 24
puts "You're a teenager" if age > 12 && age < 20

This code results in no response because someone aged 24 is not a teenager.
However, if age were to be between 13 and 19 inclusive, the message would appear. This
is a case where two small expressions (age > 12 and age < 20) are joined together with
&8, meaning “and.” Reading expressions such as this aloud is the best way to understand
them: “Print the text if age is larger than 12 and age is smaller than 20

To get the opposite effect, you can use the word unless:

age = 24
puts "You're NOT a teenager" unless age > 12 && age < 20

This time you’d get the message that you're not a teenager with your age of 24. This
is because unless means the opposite of if. You display the message unless the age is in
the teenage range.

Note Another cute technique offered by Ruby is the between? method that
returns true or false if the object is between or equal to two supplied values.
For example, when dealing with integers, at least, age.between?(13, 19)is
equivalent to age >= 13 && age <= 19.

41

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL
You can also test for equality:

age = 24
puts "You're 24!" if age == 24

Notice that the “equals” concept is represented in two different ways, due to the two
different meanings. On the first line, you're saying that age is to equal 24, meaning you
want age to refer to the number 24. However, on the second line, you're asking if age “is
equal to” 24. In the first case, you're demanding, and in the second case, you're asking.
This difference results in different operators. Therefore, the equality operator is == and
the assignment operator is just =. A list of comparison operators for numbers is shown in
Table 3-2.

Table 3-2. A Full List of Number Comparison Operators in Ruby

Comparison Meaning

X >y Greater than

X<y Less than

X ==Yy Equal to

X >=y Greater than orequal to

X <=y Less than orequal to

X <=>Yy Comparison; returns 0 if x and y are equal, 1 if x is higher, and -1 if x is lower
x l=y Not equal to

As you saw earlier, it’s possible to group multiple expressions into a single
expression, as with the following:

puts "You're a teenager" if age > 12 && age < 20

8& is used to enforce that both age > 12 and age < 20 are true. However, you can also
check whether one or the other is true by using ||, as so:

puts "You're either very young or very old" if age > 80 || age < 10

Note The | symbol used in | | is the pipe symbol, not the letter /nor the number 1.

42

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Grouping together multiple comparisons is also possible with a clever use of
parentheses:

gender ="male"
age = 6
puts "A very young or old man" if gender == "male" 8& (age < 18 || age > 85)

This example checks if gender is equal to "male” and if age is under 18 or over 85.
If we did not use the parentheses, the line would be printed even if the gender were
“female” and the age were over 85, because the Ruby interpreter would consider the
comparisons on an individual basis, rather than making the initial & depend on
satisfaction of the age < 18 || age > 85 comparison.

Looping Through Numbers with Blocks and Iterators

Nearly all programs require certain operations to be repeated over and over again to
accomplish a result. It would be extremely inefficient (and inflexible!) to write a program
to count through numbers like this:

X =1
puts
X +=
puts
X +=

X B X BB X

puts

What you want to do in these situations is implement a loop—a mechanism that makes
the program use the same code over and over. Here’s a basic way to implement a loop:

5.times do puts "Test" end

Test
Test
Test
Test
Test

43

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

First, you take the number 5. Next, you call the times method, common to all
numbers in Ruby. Rather than pass data to this method, you pass it more code: the code
between do and end. The times method then uses the code five times in succession,
producing the preceding five lines of output.

Another way to write this is with curly brackets instead of do and end. Although do
and end are encouraged for multiple-line code blocks, curly brackets make the code
easier to read on a single line. Therefore, this code works in exactly the same way:

5.times { puts "Test" }

You'll be using this style for single lines of code from here on, but will be using do
and end for longer blocks of code. This is a good habit to pick up, as it’s the style nearly all
professional Ruby developers follow (although there are always exceptions to the rule).

In Ruby, one mechanism to create a loop is called an iterator. An iterator is
something that progresses through a list of items one by one. In this case, it loops, or
iterates, through five steps, resulting in five lines of Test. Other iterators are available for
numbers, such as the following:

1.upto(5) { ...code to loop here... }
10.downto(5) { ...code to loop here... }
0.step(50, 5) { ...code to loop here... }

The first example counts from 1 up to 5. The second example counts from 10 down
to 5. The last example counts up from 0 to 50 in steps of 5, because you're using the step
method on the number 0.

What isn’t obvious is how to get hold of the number being iterated upon at each step
of the way so that you can do something with it in the looped code. What if you wanted
to print out the current iteration number? How could you develop a counting program
with these iterators? Thankfully, all of the iterators just explained automatically pass the
state of the iteration to the looped code as a parameter, which you can then retrieve into
a variable and use, like so:

1.upto(5) { |number| puts number }

Ui » W N R

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

The easiest way to understand this is that the code between { and } (or, potentially,
do and end, remember?) is the code being looped upon. At the start of that code, the
number from the “1 up to 5” count is sent down a “chute” into a variable called number.
You can visualize the chute with the bars surrounding number. This is how parameters
are passed into blocks of code that don’t have specific names (unlike methods on classes
and objects, which have names). In the preceding line of code, you ask Ruby to count
from 1 to 5. It starts with 1, which is passed into the code block and displayed with puts.
This is repeated for the numbers 2 through 5, resulting in the output shown.

Note that Ruby (and irb) doesn’t care whether you spread your code over multiple
lines or not (usually—there are exceptions!). For example, this code works in exactly the

same way as the previous example:

1.upto(5) do |number|
puts number
end

The key point to realize here is that some methods will execute code blocks and pass
along data that you can then capture into variables. In the previous example, the upto
method available on integers passes the value of each iteration into the code block, and
we “captured” it into the variable number.

Floating Point Numbers

In Chapter 2, you ran a test where you divided 10 by 3, like so:

puts 10 / 3

3

The result is 3, although the actual answer should be 3.33 recurring. The reason for
this is that, by default, Ruby considers any numbers without a floating point (also known
as a decimal point) to be an integer—a whole number. When you say 10 / 3, you're
asking Ruby to divide two integers, and Ruby gives you an integer as a result. Let’s refine
the code slightly:

puts 10.0 / 3.0

3.33333333333

45

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Now you get the desired result. Ruby is now working with number objects of the
Float class, and returns a Float, giving you the level of precision you'd expect.

There might be situations where you don’t have control over the incoming numbers,
but you still want to have them treated as floats. Consider a situation where a user enters
two numbers to be divided, and the numbers require a precise answer:

X =10
y =3
puts x /vy
3

Both input numbers are integers, so the result is an integer, as before. Luckily,
integers have a special method that converts them to floats on the fly. You'd simply
rewrite the code like this:

X = 10

y=3

puts x.to f / y.to f
3.333333333335

In this situation, when you reach the division, both x and y are converted to their
floating point number equivalents using the Integer class’s to_f method. Similarly,
floating point numbers can be converted back in the other direction, to integers, using
to i:

puts 5.7.to_i

We'll look at this technique used in other ways in the section “Converting Objects to
Other Classes” later in this chapter.

46

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Constants

Earlier you looked at separating data and logic with variables, concluding that there’s
rarely a need for data to be a direct part of a computer program. This is true in most
cases, but consider some values that never change—the value of pi, for example. These
unchanging values are called constants and can also be represented in Ruby by a variable
name beginning with a capital letter:

Pi = 3.141592

If you enter the preceding line into irb and then try to change the value of Pi, it will
let you do it, but you'll get a warning:
Pi
Pi

3.141592
500

(irb): warning: already initialized constant Pi

Ruby gives you full control over the value of constants, but the warning gives out
a clear message. In the future, Ruby might enforce tighter control over constants, so
respect this style of usage and try not to reassign constants mid-program.

The eagle-eyed reader might recall that in Chapter 2 you referred to classes by
names such as Dog and Cat, beginning with capital letters. This is because once a class is
defined, it’s a constant part of the program and therefore acts as a constant too.

Text and Strings

If numbers are the most basic type of data that a computer can process, text is our next
rung up the data ladder. Text is used everywhere, especially when communicating with
users (directly in email, over the Web, or otherwise). In this section, you'll find out how
to manipulate text to your heart’s content.

String Literals

We've used strings already in some of our earlier code examples, like so:

puts "Hello, world!"

47

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

A string is a collection of textual characters (including digits, letters, whitespace, and
symbols) of any length. All strings in Ruby are objects of the String class, as you can
discover by calling a string’s class method and printing the result:

puts "Hello, world!".class
String

When a string is embedded directly into code, using quotation marks as earlier, the
construction is called a string literal. This differs from a string whose data comes from
aremote source, such as a user typing in text, a file, or the Internet. Any text that’s pre-
embedded within a program is a string literal.

Like numbers, strings can be included in operations, added to, and compared
against. You can also assign strings to variables:

x = "Test"
y = "String"
puts "Success!" if x + y == "TestString"

Success!

There are several other ways of including a string literal within a program. For
example, you might want to include multiple lines of text. Using quotation marks is only
viable for a single line, but if you want to span multiple lines, try this:

x = %q{This is a test
of the multi
line capabilities}

In this example, the quotation marks have been replaced with %q{ and }. You don’t
have to use curly brackets, though. You can use < and >, (and), or simply two other
delimiters of your choice, such as ! and !. This code works in exactly the same way:

x = %q!This is a test
of the multi
line capabilities!

48

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

However, the important thing to remember is that if you use exclamation marks
as your delimiter, then any exclamation marks in the text you're quoting will cause
this technique to go awry. If delimiter characters are present in your string, your string
literal will end early and Ruby will consider your remaining text erroneous. Choose your
delimiters wisely!

Another way to build up a long string literal is by using a here document or heredoc,
a concept found in many other programming languages. It works in a similar way to
the previous example, except that the delimiter can be many characters long. Here’s an
example:

X = <<END_MY_STRING PLEASE
This is the string

And a second line

END MY STRING PLEASE

In this case, << marks the start of the string literal and is followed by a delimiter of
your choice (END_MY_ STRING PLEASE in this case). The string literal then starts from the
next new line and finishes when the delimiter is repeated again on a line on its own.
Using this method means that you're unlikely to run into any problems with choosing a
bad delimiter, as long as you're creative! Do note that you can’t include spaces in your
delimiter; it has to be a single group of displayed characters.

String Expressions

Using the + symbol concatenates (joins together) the two strings "Test” and "String" to
produce "TestString", meaning that the following comparison is true, which results in
"Success!" being written to the screen:

puts "Success!" if "Test" + "String" == "TestString"

Likewise, you can multiply strings. For example, let’s say you want to replicate a
string five times, like so:

puts "abc" * 5

abcabcabcabcabc

49

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

You can also perform “greater than” and “less than” comparisons:

puts "x" > "y"
false
puts "y" > "x"
true

Note "x" > "y"and"y" > "x" are expressions that, by using a comparison
operator, result in true or false outcomes.

In this situation, Ruby compares the numbers that represent the characters in
the string. As mentioned previously, characters are stored as numbers inside your
computer’s memory. Every letter and symbol has a value, called an ASCII value. These
values aren’t particularly important, but they do mean you can do comparisons between
letters, and even longer strings, in this way. If you're interested to learn what value a
particular character has, find out like so:

puts "x".ord

120

puts "A".ord
65

The String class’s ord method returns an integer matching the position of that
character in the ASCII table, an international standard for representing characters as
values.

You can achieve the inverse by using the String class’s chr method, for example:

puts 120.chr

50

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Note Explaining more about the ASCII character set here is beyond the scope of
this book, but there are many resources on the Web if you wish to learn more. One
excellent resource is https://en.wikipedia.org/wiki/ASCII

Interpolation

In previous examples, you've printed the results of your code to the screen with the puts
method. However, your results have had little explanation. If a random user came along
and used your code, it wouldn’t be obvious what'’s going on, as they won'’t be interested
in reading your source code. Therefore, it’s essential to provide user-friendly output from
your programs. You'll go back to using numbers for this example:

X = 10
y = 20
puts "#{x} + #{y} = #{x + y}"

10 + 20 = 30

It’s kindergarten-level math, but the result highlights an interesting capability. You
can embed expressions (and even logic) directly into strings. This process is called
interpolation.

In this situation, interpolation refers to the process of inserting the result of an
expression into a string literal. The way to interpolate within a string is to place the
expression within #{ and } symbols. An even more basic example demonstrates

puts "100 * 5 = #{100 * 5}"
100 * 5 = 500

The #{100 * 5} section interpolates the result of 100 * 5 (500) into the string at
that position, resulting in the output shown. Examine this code:

puts "#{x} + #{y} = #{x + y}"

51

https://en.wikipedia.org/wiki/ASCII

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

You first interpolate the value of X, then the value of y, and then the value of x added
to y. You surround each section with the relevant mathematical symbols, and hey presto,
you get a complete mathematical equation:

10 + 20 = 30
You can interpolate other strings too:

x = "cat"
puts "The #{x} in the hat"

The cat in the hat

Or if you want to get clever:

puts "It's a #{"bad " * 5}world"

It's a bad bad bad bad bad world

In this instance, you interpolate a repetition of a string, "bad ", five times. It’s
certainly a lot quicker than typing it!
Interpolation also works within strings used in assignments:

my string = "It's a #{"bad " * 5}world"
puts my string

It's a bad bad bad bad bad world

It’s worth noting that you could achieve the same results as the preceding by placing
the expressions outside the strings, without using interpolation, for example:

x =10
y = 20
puts x.to s + "+ " +y.tos+ " ="+ (x +y).tos

puts "#{x} + #{y} = #{x + y}"

52

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

The two puts lines result in the same output. The first uses string concatenation (+)
to join several different strings together. The numbers in x and y are converted to strings
with their to_s method. However, the second puts line uses interpolation, which doesn’t
require the numbers to be converted to strings explicitly.

String Methods

We've looked at using strings in expressions, but you can do a lot more with strings
than add them together or multiply them. As you experimented in Chapter 2, you can
use a number of different methods on a string. Table 3-3 provides a recap of the string
methods you looked at in Chapter 2.

Table 3-3. The Results of Using Different Methods on the String “Test”

Expression Output
"Test" + "Test" TestTest
"test".capitalize Test
"Test".downcase test
"Test".chop Tes
"Test".next Tesu
"Test".reverse tseT
"Test".sum 416
"Test".swapcase tEST
"Test".upcase TEST
"Test".upcase.reverse TSET
"Test".upcase.reverse.next TSEU

In each example in Table 3-3, you're using a method that the string offers, whether it’s
concatenation, conversion to uppercase, reversal, or merely incrementing the last letter.
You can chain methods together, as in the final example of the table. First, you create the
"Test" string literal; then you convert it to uppercase, returning TEST; then you reverse
that, returning TSET; and then you increment the last letter of that, returning TSEU.

53

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL
Another method you used in Chapter 2 was length, like so:

puts "This is a test".length
14

These methods are useful, but they don’t let you do anything particularly impressive
with your strings. Let’s move on to playing directly with the text itself.

Regular Expressions and String Manipulation

When working with strings at an advanced level, it becomes necessary to learn about
regular expressions. A regular expression is, essentially, a search query, and not to

be confused with the expressions we've discussed already in this chapter. If you type
ruby into your favorite search engine, you'd expect information about Ruby to appear.
Likewise, if your regular expression is ruby and you run that query against, say, a long
string, you'd expect any matches to be returned. A regular expression, therefore, is a
string that describes a pattern for matching elements in other strings.

Note This section provides only a brief introduction to regular expressions.
Regular expressions are a major branch of computer science, and many books and
websites are dedicated to their use. Ruby supports the majority of standard regular
expression syntax, so non-Ruby-specific knowledge about regular expressions
obtained from elsewhere can still prove useful in Ruby.

Substitutions

One thing you'll often want to do is substitute something within a string for something
else. Take this example:

puts "foobar".sub('bar', 'foo')

foofoo

54

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

In this example, you use a method on the string called sub, which substitutes the
first instance of the first parameter 'bar' with the second parameter 'foo', resulting
in foofoo. sub only does one substitution at a time, on the first instance of the text to
match, whereas gsub does multiple substitutions at once, as this example demonstrates:

puts "this is a test".gsub('i', '')
ths s a test

Here you've substituted all occurrences of the letter 'i' with an empty string. What
about more complex patterns? Simply matching the letter 'i' is not a true example of a
regular expression. For example, let’s say you want to replace the first two characters of a
string with 'Hello':

x = "This is a test"
puts x.sub(/*../, 'Hello")

Hellois is a test

In this case, you make a single substitution with sub. The first parameter given to
sub isn’t a string but a regular expression—forward slashes are used to start and end
aregular expression. Within the regular expression is A... The A is an anchor, meaning
the regular expression will match from the beginning of any lines within the string.
The two periods each represent “any character” In all, /A../ means “any two characters
immediately after the start of a line” Therefore, Th of "This is a test" gets replaced
with Hello.

Likewise, if you want to change the last two letters, you can use a different anchor:

x = "This is a test"
puts x.sub(/..$/, 'Hello")

This is a teHello

This time the regular expression matches the two characters that are anchored to the
end of any lines within the string.

55

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Note If you want to anchor to the absolute start or end of a string, you can use
\A and \z, respectively, whereas * and $ anchor to the starts and ends of lines
within a string.

Iteration with a Regular Expression

Previously, you used iterators to move through sets of numbers, counting from 1 to 10,
for example. What if you want to iterate through a string and have access to each section
of it separately? scan is the iterator method you require:

"xyz".scan(/./) { |letter| puts letter }

scan lives up to its name. It scans through the string looking for anything that
matches the regular expression passed to it. In this case, you've supplied a regular
expression that looks for a single character at a time. That’s why you get x, y, and z
separately in the output. Each letter is fed to the block, assigned to letter, and printed
to the screen. Try this more elaborate example:

"This is a test".scan(/../) { |x| puts x }

Th
is
i
S
a
te
st

This time you're scanning for two characters at a time. Easy! Scanning for all
characters results in some weird output, though, with all the spaces mixed in. Let’s adjust
our regular expression to match only letters and digits, like so:

56

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

"This is a test".scan(/\w\w/) { |x| puts x }

Th
is
is
te
st

Within regular expressions, there are special characters that are denoted with a
backslash, and they have special meanings. \w means “any alphanumeric character or an
underscore.” There are many others, as illustrated in Table 3-4.

Table 3-4. Basic Special Characters and Symbols Within Regular Expressions

Character Meaning
N Anchor for the beginning of a line
$ Anchor for the end of a line
\A Anchor for the start of a string
\z Anchor for the end of a string
Any character
\w Any letter, digit, or underscore
\W Anything that \w doesn’t match
\d Any digit
\D Anything that \d doesn’t match (non-digits)
\s Whitespace (spaces, tabs, newlines, and so on)
\S Non-whitespace (any visible character)

57

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

58

Using the knowledge from Table 3-4, you can easily extract numbers from a string:

"The car costs $1000 and the cat costs $10".scan(/\d+/) do |x]|
puts x
end

1000
10

You've just gotten Ruby to extract meaning from some arbitrary English text! The
scan method was used as before, but you've given it a regular expression that uses \d
to match any digit, and the + that follows \d makes \d match as many digits in a row
as possible. This means it matches both 1000 and 10, rather than just each individual
digit at a time. To prove it, try this:

"The car costs $1000 and the cat costs $10".scan(/\d/) do |x]|
puts x
end

O »r O O O Bk

So, + after a character in a regular expression means maich one or more of that type
of character. There are other types of modifiers, and these are shown in Table 3-5.

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Table 3-5. Regular Expression Character and Sub-expression Modifiers

Modifier Description

* Match zero or more occurrences of the preceding character, and match as many as
possible.

+ Match one or more occurrences of the preceding character, and match as many as
possible.

*? Match zero or more occurrences of the preceding character, and match as few as
possible.

+? Match one or more occurrences of the preceding character, and match as few as
possible.

? Match either one or none of the preceding character.

{x} Match x occurrences of the preceding character.

{x,y} Match at least x occurrences and at most y occurrences.

The last important aspect of regular expressions you need to understand at this stage

is character classes. These allow you to match against a specific set of characters. For

example, you can scan through all the vowels in a string:

"This is a test".scan(/[aeiou]/) { |x| puts x }

o Y e e

[aeiou] means “match any of a, €, i, 0, or u” You can also specify ranges of

characters inside the square brackets, like so:

"This is a test".scan(/[a-m]/) { |x| puts x }

o N H R S

59

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

This scan matches all lowercase letters between a and m.

Regular expressions can be complex and confusing, and entire books larger than this
one have been dedicated to them. Most coders only need to understand the basics, as
the more advanced techniques will become apparent with time—but they're a powerful
tool when you experiment with and master them.

You'll be using and expanding on all the techniques covered in this section in code
examples throughout the rest of the book.

Matching

Making substitutions and extracting certain text from strings is useful, but sometimes
you merely want to check whether a certain string matches against the pattern of your
choice. You might want to establish quickly if a string contains any vowels:

puts "String has vowels" if "This is a test" =~ /[aeiou]/

In this example, =~ is another form of operator: a matching operator. If the string has
a match with the regular expression following the operator, then the expression returns
the position of the first match (2 in this case—which logically is non-false, so the if
condition is satisfied). You can, of course, do the opposite:

puts "String contains no digits" unless "This is a test" =~ /[0-9]/

This time you're saying that unless the range of digits from 0 to 9 matches against the
test string, tell the user that there are no digits in the string.

It's also possible to use a method called match, provided by the String class.
Whereas ="~ returns the position of the first match or nil depending on whether the
regular expression matches the string, match provides a lot more power. Here’s a basic

example:
puts "String has vowels" if "This is a test".match(/[aeiou]/)

In regular expressions, if you surround a section of the expression with
parentheses—(and)—the data matched by that section of the regular expression is
made available separately from the rest. match lets you access this data:

x = "This is a test".match(/(\w+) (\w+)/)
puts x[0]
puts x[1]

60

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

puts x[2]

This is
This
is

match returns a MatchData object that can be accessed like an array. The first
element (x[0]) contains the data matched by the entire regular expression. However,
each successive element contains that which was matched by each match group of the
regular expression. In this example, the first (\w+) matched This and the second (\w+)
matched is.

Note Matching can get far more complex than this, but I'll be covering more
advanced uses in the next chapter when you put together your first complete Ruby
program.

Arrays and Lists

So far in this chapter, you've created single instances of number and string objects and
manipulated them. After a while, it becomes necessary to create collections of these
objects and to work with them as a list. In Ruby, you can represent ordered collections of
objects using arrays.

Basic Arrays

Here’s a basic array:
X = [1) 2, 3, 4]

This array has four elements. Each element is an integer, and is separated by commas
from its neighboring elements. Square brackets are used to denote an array literal.
Elements can be accessed by their index (their position within the array). To access
a particular element, an array (or a variable containing an array) is followed by the index
contained within square brackets. This is called an element reference, for example:

61

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

X = [1) 2, 3, 4]
puts x[2]

As with most programming languages, the indexing for Ruby’s arrays starts from
0, so the first element of the array is element 0, and the second element of the array is
element 1, and so on. In our example, this means x[2] is addressing what we'd call the
third element of the array, which in this case is an object representing the number 3.
To change an element, you can simply assign it a new value or manipulate it as you've
manipulated numbers and strings earlier in this chapter:

x[2] += 1
puts x[2]
4

Or

x[2] = "Fish" * 3
puts x[2]

FishFishFish

Arrays don’t need to be set up with predefined entries or have elements allocated
manually. You can create an empty array like so:

x =[]

The array is empty, and trying to address, say, X[5] results in nil being returned. You
can add things to the end of the array by pushing data into it, like so:

x =[]

X << "Word"

After this, the array contains a single element: a string saying "Word". With arrays, <<
is the operator for pushing an item onto the end of an array. You can also use the push
method, which is equivalent:

x.push("Word")

62

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

You can also remove entries from an array one by one. Arrays can act as a stack, “last
in, first out,” where items are pushed onto the end of the array and also popped from the
end (popping is the process of retrieving and removing items from the end of the array):

x =[]

X << "Word"
x << "Play
x << "Fun
puts x.pop
puts X.pop
puts x.length

Fun
Play
1

You push "Word", "Play", and "Fun" into the array held in x and then display the
first “popped” element on the screen. Elements are popped from the end of the array,
so "Fun" comes out first. Next comes "Play". For good measure, you then print out the
length of the array at that point, using the aptly named length method (size works too,
and gives exactly the same result), which is 1 because only "Word" is still present in the
array.

Another useful feature is that if an array is full of strings, you can join all the elements
together into one big string by calling the join method on the array:

X - [Ilword"’ llPlayll’ "Funll]
puts x.join
WordPlayFun
The join method can take an optional parameter that’s placed between each
element in the resulting string:
X - [Ilwordll) llPlayll’ IIFunll]
puts x.join(", ")
Word, Play, Fun

63

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

This time you join the array elements together, but between each set of elements you
place a comma and a space. This results in cleaner output.

Splitting Strings into Arrays

In the section relating to strings, you used scan to iterate through the contents of the
string looking for characters that matched patterns you expressed as regular expressions.
With scan, you used a block of code that accepted each set of characters and displayed
them on the screen. However, if you use scan without a block of code, it returns an array
of all the matching parts of the string, like so:

puts "This is a test".scan(/\w/).join(',")
T,h,i,s,i,s,a,t,e,s,t

First, you define a string literal, then you scan over it for alphanumeric characters
(using /\w/), and finally you join the elements of the returned array together with
commas.

What if you don’t want to scan for particular characters, but instead want to split a
string into multiple pieces? You can use the split method and tell it to split a string into
an array of strings on the periods, like so:

puts "Short sentence. Another. No more.".split(/\./).inspect
["Short sentence", " Another", " No more"]

There are a couple of important points here. First, if you'd used . in the regular
expression rather than \., you'd be splitting on every character rather than on full stops,
because . represents “any character” in a regular expression. Therefore, you have to
escape it by prefixing it with a backslash (escaping is the process of specifically denoting
a character to make its meaning clear). Second, rather than joining and printing out the
sentences, you're using the inspect method to get a tidier result.

The inspect method is common to almost all built-in classes in Ruby, and it gives
you a textual representation of the object. For example, the preceding output shows the
result array in the same way that you might create an array yourself. inspect is incredibly
useful when experimenting and debugging!

64

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

split is also happy splitting on newlines, or multiple characters at once, to get a
cleaner result:

puts "Words with lots of spaces”.split(/\s+/).inspect
["Words", "with", "lots", "of", "spaces"]

With Ruby and some regular expressions, you're never far from solving any text
processing problem!

It is also important to cover p, an alternative to using inspect. The previous example
could also be written in this way:

p "Words with lots of spaces”.split(/\s+/)
["Words", "with", "lots", "of", "spaces"]

p is an extremely useful alternative to using puts when playing with expressions in
irb. It automatically shows you the structure of the object(s) returned by the expression
following it. We will use p extensively throughout the rest of this chapter. You will almost
never need to use it in a production application, but for debugging and learning, it’s
excellent—not to mention quick to type!

Array Iteration

Iterating through arrays is simple and uses the each method. The each method goes
through each element of the array and passes it as a parameter to the code block you
supply, for example:

[1, "test", 2, 3, 4].each { |element| puts element.to s + "X" }

1X
testX
2X
3X
4X

65

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Although each iterates through elements of an array, you can also convert an array
on the fly using the collect method:

[1, 2, 3, 4].collect { |element| element * 2 }
[2) 4) 6) 8]
collect iterates through an array element by element and assigns to that element

the result of any expression within the code block. In this example, you multiply the
value of the element by 2.

Note map is functionally equivalent to collect. You may see both being used in
this book and in other code you encounter.

Programmers who have come from less dynamic and possibly non-object-oriented
languages might see these techniques as being quite modern. It’s possible to do things
“the old-fashioned way” with Ruby if required:

a = [1, "test", 2, 3, 4]
i=0

while (i < a.length)
puts a[i].to s + "X"
i+=1

end

This works in a similar way to the each example from earlier, but loops through
the array in a way more familiar to traditional programmers (from languages such as
C, BASIC, or JavaScript). However, it should be immediately apparent to anyone why
iterators, code blocks, and methods such as each and collect are preferable with Ruby,
as they make the code significantly easier to read and understand.

Other Array Methods

Arrays have a lot of interesting methods, some of which I'll cover in this section.

66

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Array Addition and Concatenation

If you have two arrays, you can quickly combine their results into one:

X = [1) 2, 3]

y = ["a", "b", "c’]
Z=Xx+y

p z

[1, 2, 3, llall, Ilbll) IICII]

Note We’re using p here instead of puts z. inspect. Go back to the “Splitting
Strings into Arrays” section if you missed the explanation of this key point.

Array Subtraction and Difference

You can also compare two arrays by subtracting one against the other. This technique
removes any elements from the main array that are in both arrays:

X = [1) 2, 3, 4, 5]
y = [1) 2, 3]
Z=Xx-Y

p z

[4, 5]

Checking for an Empty Array

If you're about to iterate over an array, you might want to check if it has any items yet.
You could do this by checking if array.size or array.lengthis larger than 0, but a more
popular shorthand is to use empty?:

x =[]
puts "x is empty" if x.empty?

x is empty

67

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Checking an Array for a Certain Item

The include? method returns true if the supplied parameter is in the array, and false

otherwise:

[1, 2, 3]
.include?("x")
.include?(3)

X

P
P

xX X

false
true

Accessing the First and Last Elements of the Array

Accessing the first and last elements of an array is easy with the first and last
methods:

X = [1) 2, 3]
puts x.first
puts x.last

If you pass a numeric parameter to first or last, you'll get that number of items
from the start or the end of the array:

X = [1) 2, 3]
puts x.first(2).join("-")

1-2

68

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Reversing the Order of the Array’s Elements

Like a string, an array can be reversed:

X = [1) 2, 3]
p X.reverse

[3, 2, 1]

Hashes

Arrays are collections of objects, and so are hashes. However, hashes have a different
storage format and way to define each object within the collection. Rather than having
an assigned position in a list, objects within a hash are given a key that points to them.
It's more like a dictionary than a list, as there’s no guaranteed order, but just simple links
between keys and values. Note we are not using the preferred hash syntax. This will
change when you learn about symbols. Here’s a basic hash with two entries:

dictionary = { cat: "feline animal", dog: "canine animal" }

The variable storing the hash is dictionary, and it contains two entries, as you can
inspect:

puts dictionary.size

One entry has a key of cat and a value of feline animal, while the other has a key of
dog and a value of canine animal. The key in this example is a symbol which is covered
later in this chapter. For now, don’t worry about the details of symbols. Just know
symbols are like strings with different properties. Like arrays, you use square brackets to
reference the element you wish to retrieve, for example:

puts dictionary[:cat]

feline animal

69

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

As you can see, a hash can be viewed as an array that has names for elements instead
of position numbers. You can even change values in the same way as an array:

dictionary[:cat] = "fluffy animal”
puts dictionary[:cat]

fluffy animal

Note It won’t be immediately useful to you, but it’s worth noting that both keys
and values can be objects of any type. Therefore, it’s possible to use an array (or
even another hash) as a key. This might come in useful when you’re dealing with
more complex data structures in the future.

Basic Hash Methods

As with arrays, hashes have many useful methods that you'll look at in this section.

Iterating Through Hash Elements

With arrays, you can use the each method to iterate through each element of the array.
You can do the same with hashes:

X - { Ilall => 1’ Ilbll => 2 }
x.each { |key, value| puts "#{key} equals #{value}" }

a equals 1
b equals 2

Note Since Ruby 1.9, the order in which the elements were inserted into the
hash will be remembered, and each will return them in that order.

The each iterator method for a hash passes two parameters into the code block: first,
a key, and second, the value associated with that key. In this example, you assign them to
variables called key and value and use string interpolation to display their contents on

the screen.

70

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Retrieving Keys

Sometimes you might not be interested in the values in a hash, but want to get a feel for
what the hash contains. A great way to do this is to look at the keys. Ruby gives you an
easy way to see the keys in any hash immediately, using the keys method:

x={a:1, b:r2,c 3}
p x.keys

keys returns an array of all the keys in the hash, and if you're ever in the mood,
values will return an array of all the values in the hash too. Generally, however, you'll
look up values based on a key.

Deleting Hash Elements

Deleting hash elements is easy with the delete method. All you do is pass in a key as a
parameter, and the element is removed:

x={a:1, b: 2}
x.delete(:a)
p X

{:b=>2}

Deleting Hash Elements Conditionally

Let’s say you want to delete any hash elements whose value is below a certain figure.
Here’s an example of how to do this:

x = { a: 100, b: 20 }
x.delete if { |key, value| value < 25 }
p X

{:a=>100}

71

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Hashes Within Hashes

It's possible to have hashes (or, indeed, any sort of object) within hashes, and even arrays
within hashes, within hashes! Because everything is an object and hashes and arrays can
contain any other objects, you could create giant tree structures with hashes and arrays.
Here’s a demonstration:

people = {
fred: {
name: "Fred Elliott",
age: 63,

gender: "male",
favorite painters: ["Monet", "Constable", "Da Vinci"]
}J
janet: {
name: "Janet S Porter",
age: 55,
gender: "female"
}
}

puts people[:fred][:age]
puts people[:janet][:gender]
puts people[:janet]

63
female
{:name=>"Janet S Porter", :age=>55, :gender=>"female"}

Although the structure of the hash looks a little confusing at first, it becomes
reasonably fred and janet sections are simple hashes of their own, but they're wrapped
up into another giant hash assigned to people. In the code that queries the giant hash,
you simply chain the lookups on top of each other, as with puts people[:fred][:age].
First, it gets people[: fred], which returns Fred’s hash, and then you request [: age] from
that, yielding the result of 63.

Even the array embedded within Fred’s hash is easy to access:

72

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

puts people[:fred][:favorite painters].length
puts people[:fred][:favorite painters].join(", ")

3
Monet, Constable, Da Vinci

These techniques are used more and explained in greater depth in the following
chapters.

Flow Control

In this chapter, you've used comparisons, together with if and unless, to perform
different operations based on the circumstances. if and unless work well on single
lines of code, but when combined with large sections of code, they become even more
powerful. In this section, you'll be looking at how Ruby lets you control the flow of your
programs with these and other constructs.

if and unless

The first use of 1 within this chapter used this demonstration:

age = 10
puts "You're too young to use this system" if age < 18

If the value of age is under 18, the string is printed to the screen. The following code
is equivalent:

age = 10
if age < 18

puts "You're too young to use this system"
end

It looks similar, but the code to be executed if the expression is true is contained
between the if expression and end, instead of the if expression being added onto the
end of a single line of code. This construction makes it possible to put any number of
lines of code in between the if statement and the end line:

73

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

age = 10

if age < 18
puts "You're too young to use this system"
puts "So we're going to exit your program now"
exit

end

Note If you copy and paste the previous code directly into irb, the exit call on
the fifth line will result in irb closing, so don’t be surprised by this. You will also see
this in the next example.

It's worth noting that unless can work in exactly the same way because unless is just
the opposite of if:

age = 10

unless age >= 18
puts "You're too young to use this system"
puts "So we're going to exit your program now"
exit

end

It’s possible to nest logic too, as in this example:

age = 19
if age < 21
puts "You can't drink in most of the United States"
if age >= 18
puts "But you can in the United Kingdom!"
end
end

if and unless also supply the else condition, used to delimit lines of code that you
want to be executed if the main expression is false:

age = 10
if age < 18
puts "You're too young to use this system"

74

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

else
puts "You can use this system"
end

?, the Ternary Operator

The ternary operator makes it possible for an expression to contain a mini if/else
statement. It’s a construction that’s entirely optional to use, and some developers are
oblivious to its existence. However, because it can be useful to produce more compact
code, it’s worth learning early. Let’s dive in with an example:

age = 10
type = age < 18 ? "child" : "adult"

puts "You are a " + type

The second line contains the ternary operator. It starts by assigning the result of an
expression to the variable type. The expressionisage < 18 ? "child" : "adult".The
structure is as follows:

<condition> ? <result if condition is true> : <result if condition is false>

In our example, age < 18 returns true, so the first result, "child", is returned and
assigned to type. However, if age < 18 were to be false, "adult" would be returned.

Consider an alternative:

age = 10
type = 'child' if age < 18

type = 'adult' unless age < 18
puts "You are a "

+ type

The double comparison makes it harder to read. Another alternative is to use the
multiline if/else option:

age = 10
if age < 18
type = 'child’
else

type = 'adult’
end

puts "You are a " + type

75

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

The ternary operator shows its immediate benefit in its conciseness, and as it can
be used to build expressions on a single line, you can use it easily in calls to methods
or within other expressions where if statements would be invalid. Consider this even

simpler version of the first example from this section:

age = 10
puts "You are a " + (age < 18 ? "child" : "adult")

elsif and case

Sometimes it’s desirable to make several comparisons with the same variable at the
same time. You could do this with the if statement, as covered previously:

fruit = "orange"

color = "orange" if fruit == "orange"
color = "green" if fruit == "apple"
color = "yellow" if fruit == "banana"

If you want to use else to assign something different if fruit is not equal to orange,
apple, or banana, it will quickly get messy, as you'd need to create an if block to check
for the presence of any of these words and then perform the same comparisons as
earlier. An alternative is to use elsif, meaning “else if”:

fruit = "orange"

if fruit == "orange"
color = "orange"

elsif fruit == "apple"
color = "green"

elsif fruit == "banana"
color = "yellow"
else

color = "unknown"
end

elsif blocks act somewhat like else blocks, except that you can specify a whole new
comparison expression to be performed, and if none of those match, you can specify a
regular else block to be executed.

76

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

A variant of this technique is to use a case block. Our preceding example, with a case
block, becomes as follows:

fruit = "orange"
case fruit
when "orange"
color = "orange"
when "apple"
color = "green"
when "banana"
color = "yellow"
else
color = "unknown"
end

This code is similar to the if block, except that the syntax is a lot cleaner. A case
block works by processing an expression first and then by finding a contained when
block that matches the result of that expression. If no matching when block is found,
then the else block within the case block is executed instead.

case has another trick up its sleeve. As all Ruby expressions return a result, you can
make the previous example even shorter:

fruit = "orange"

color = case fruit

when "orange"
"orange"

when "apple"
"green”

when "banana"
"yellow"

else
"unknown"

end

In this example, you use a case block, but you assign the result of whichever inner
block is executed directly to color.

77

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Note If you are familiar with the switch/case syntax in C (or a C-related
language), you might think case/when is Ruby’s equivalent. It’s very similar, but
only one “case” can be matched in Ruby, as execution does not continue through
the list of options once a match has been made.

case pattern matching

Using the case statement and pattern matching provides an easy way to deconstruct
complex objects and use their data. It's possible to use pattern matching with case
statements. Instead of using case/when, we use case/in with the pattern following the
“in” statement:

response = { error: 'Bad Gateway', code: 502 }
case response
in { data: data, code: code }
puts "Success #{data}, Code: #{code}"
in { error: error, code: code }
puts "Error: #{error}, Code: #{code}"
end

Error: Bad Gateway, Code: 502

In the example, we have a response object which contains an error message and a
code. We pass the response to the case statement. Ruby checks each pattern of the case
statement until it finds a pattern that matches. Since the response matches the second
pattern structure, Ruby binds the matched parts in the hash to the variable error and
code. Next, it runs the statement after the pattern which prints the error and the code
to the screen. If no patterns match, Ruby throws a NoMatchingPattern error rather than
return nil like in a case/when statement.

As you can see, pattern matching is very useful. The best part is pattern matching
doesn’t only work with hashes. You can use it with arrays, ranges, and objects. Check out
the Ruby docs for an in-depth guide to pattern matching: https://docs.ruby-lang.
org/en/master/syntax/pattern_matching rdoc.html.

78

https://docs.ruby-lang.org/en/master/syntax/pattern_matching_rdoc.html
https://docs.ruby-lang.org/en/master/syntax/pattern_matching_rdoc.html

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

while and until

In previous sections, you've performed loops using iterator methods, like so:

1.upto(5) { |number| puts number }

uvi B W N R

However, it’s possible to loop code in other ways. while and until allow you to loop
code based on the result of a comparison made on each loop:

X =1
while x < 100
puts x
X =x%*2
end

o B~ N B

32
64

In this example, you have a while block that denotes a section of code that is to be
repeated over and over while the expression x < 100 is satisfied. Therefore, x is doubled
loop after loop and printed to the screen. Once x is 100 or over, the loop ends.

until provides the opposite functionality, looping until a certain condition is met:

X =1
until x > 99
puts x
X =x*2
end

79

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

It’s also possible to use while and until in a single line setting, as with if and
unless:

i=1
i=1%*2until i > 1000
puts i

1024

The value of i is doubled over and over until the result is over 1000, at which point
the loop ends (1024 being 2 to the power of 10).

Code Blocks

Code blocks have been used in several code examples in this chapter, for example:

X = [1) 2, 3]
x.each { |y| puts y }

The each method accepts a single following code block. The code block is defined
within the { and } symbols or, alternatively, do and end delimiters:

X = [1) 2, 3]

x.each do |y]|
puts y

end

The code between { and } or do and end is a code block—essentially an anonymous,
nameless method or function. This code is passed to the each method, which then runs
the code block for each element of the array.

It’s possible to use numbered parameters instead of an explicit variable when
defining a block:

80

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

X = [1) 2, 3]
x.each do

puts 1
end

The new example is the same functionality but uses the number parameter _1,
which is automatically defined and assigned to the value passed to the block. Numbered
parameters are useful for situations where providing a parameter name doesn't add any
additional meaning to the code.

You can write methods of your own to handle code blocks, for example:

def each vowel(&code block)
%w{a e 1 o u}.each { |vowel| code block.call(vowel) }
end

each _vowel { |vowel| puts vowel }

c O K+ M W

each_vowel is a method that accepts a code block, as designated by the ampersand
(&) before the variable name code_block in the method definition. It then iterates over
each vowel in the literal array %w{a e i o u} and usesthe call method on code_block
to execute the code block once for each vowel, passing in the vowel variable as a
parameter each time.

Note Code blocks passed in this way result in objects that have many methods
of their own, such as call. Remember, almost everything in Ruby is an object!
(Many elements of syntax are not objects, nor are code blocks in their literal form.)

An alternate technique is to use the yield method, which automatically detects any
passed code block and passes control to it:

81

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

def each_vowel

%w{a e i o u}.each { |vowel| yield vowel }
end

each _vowel { |vowel| puts vowel }

This example is functionally equivalent to the last, although it’s less obvious what it
does because you see no code block being accepted in the function definition. Which
technique you choose to use is up to you.

Note Only one code block can be passed at any one time. It's not possible to
accept two or more code blocks as parameters to a method. However, code blocks
may accept none, one, or more parameters themselves.

It’s also possible to store code blocks within variables, using a Proc:

print parameter to screen = Proc.new { |x| puts x }
print parameter to screen.call(100)

100

As with accepting a code block into a method, you use the Proc object’s call method

to execute it, as well as to pass any parameters in.

Note /ambdais another way to define code blocks. There are a couple of
differences between a proc and lambda. Lambdas check if the number of
parameters matches the signature. If a lambda defines two parameters and your
code provides one, you get an error. Another difference is a lambda returns just
like @ Ruby method, while a proc returns from the current context. Don’t worry too
much if this doesn’t make sense right now. Lambdas and procs are an advanced
topic you can revisit when you are more comfortable with Ruby.

82

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Other Useful Building Blocks

So far in this chapter, we've covered the primary built-in data classes of numbers, strings,
arrays, and hashes. These few types of objects can get you a long way and will be used in
all your programs. You'll be looking at objects in more depth in Chapter 6, but before you
get that far, there are a few other important points you need to look at first.

Dates and Times

A concept that’s useful to represent within many computer programs is time, in the form
of dates and times. Ruby provides a class called Time to handle these concepts.
Internally, Time stores times as a number of microseconds since the UNIX time
epoch: January 1, 1970 00:00:00 Greenwich Mean Time (GMT)/Coordinated Universal
Time (UTC). This makes it easy to compare times using the standard comparison
operators, such as < and >.
Let’s look at how to use the Time class:

puts Time.now
2020-08-01 00:00:00 +0100

Time.now creates an instance of class Time that’s set to the current time. However,
because you're trying to print it to the screen, it’s converted into the preceding string.

You can manipulate time objects by adding and subtracting numbers of seconds to
them, for example:

puts Time.now
puts Time.now - 10
puts Time.now + 86400

2020-07-01 00:00:00 +0100

2020-06-30 23:59:50 +0100
2020-07-02 00:00:00 +0100

83

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

In the first example, you print the current time, and then the current time minus
10 seconds, and then the current time with 86,400 seconds (exactly one day) added
on. Because times can be manipulated so easily in Ruby using normal mathematical
operators, but because people prefer to work with minutes, hours, and days rather than
seconds all of the time, some developers extend the Integer class with some helper
methods to make time manipulation even easier:

class Integer
def seconds
self
end
def minutes
self * 60
end
def hours
self * 60 * 60
end
def days
self * 60 * 60 * 24
end
end

puts Time.now

puts Time.now + 10.minutes
puts Time.now + 16.hours
puts Time.now - 7.days

2020-07-01 00:00:00 +0100
2020-07-01 00:10:00 +0100
2020-07-01 16:00:00 +0100
2020-06-24 00:00:00 +0100

Don’t worry if this code seems confusing and unfamiliar, as we’ll be covering this
type of technique more in the following chapters. Do note, however, the style used in the
final puts statements. It’s easy to manipulate dates with these helpers!

84

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

The Time class also allows you to create Time objects based on arbitrary dates:

year = 2020
month = 1
day = 16
hour = 12
min = 57
sec = 10
msec = 42

Time.local(year, month, day, hour, min, sec, msec)

The preceding code creates a Time object based on the current (local) time zone. All
arguments from month onward are optional and take default values of 1 or 0. You can
specify months numerically (between 1 and 12) or as three-letter abbreviations of their
English names:

Time.gm(year, month, day, hour, min, sec, msec)

The preceding code creates a Time object based on GMT/UTC. Argument
requirements are the same as for Time.local:

Time.utc(year, month, day, hour, min, sec, msec)

The preceding code is identical to Time.gm, although some might prefer this
method’s name.

You can also convert Time objects to an integer representing the number of seconds
since the UNIX time epoch:

Time.gm(2020, 02).to i
1580515200

Likewise, you can convert epoch times back into Time objects. This technique can be
useful if you want to store times and dates in a file or a format where only a single integer
is needed, rather than an entire Time object:

epoch time = Time.gm(2020, 2).to i
t = Time.at(epoch_time)
puts t.year, t.month, t.day

85

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

2020

5
1

As well as demonstrating the conversions of times between Time objects and epoch
times, this code shows that Time objects also have methods that can be used to retrieve
certain sections of a date/time. A list of these methods is shown in Table 3-6.

Table 3-6. Time Object Methods Used to Access Date/Time Attributes

Method What the Method Returns

hour A number representing the hour in 24-hour format (e.g., 21 for 9 p.m.)
min The number of minutes past the hour
sec The number of seconds past the minute

usec The number of microseconds past the second (there are 1,000,000 microseconds per
second)

day The number of the day in the month

mday Synonym for the day method, considered to be “month” day

wday The number of the day in terms of the week (Sunday is 0, Saturday is 6)

yday The number of the day in terms of the year

month The number of the month of the date (e.g., 11 for November)

year The year associated with the date

zone Returns the name of the time zone associated with the time

utc? Returns true or false depending on if the time/date is in the UTC/GMT time zone or not

gmt? Synonym for the utc? method for those who prefer to use the term GMT

Note that these methods are for retrieving attributes from a date or time and cannot
be used to set them. If you want to change elements of a date or time, you'll either need
to add or subtract seconds or construct a new Time object using Time.gmor Time.local.

86

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Note In Chapter 16, you'll look at a Ruby gem called Chronic that lets you specify
dates and times in a natural, English language form and have them converted to
valid Time objects.

Ranges

Sometimes it’s useful to be able to store the concept of a list, instead of its actual
contents. For example, if you want to represent all the letters between A and Z, you could
begin to create an array, like so:

x=["A", 'B', 'C', 'D', "E' .. and so on..]

It would be nice, though, merely to store the concept of “everything between A and
Z! With a range, you can do that. A range is represented in this way:

("A'..'Z")

The range class offers a simple way to convert a range into an array with to_a. This

one-line example demonstrates
("A"..'Z2").to _a.each { |letter| print letter }

It converts the range 'A' to 'Z' into an array with 26 elements, each one containing a
letter of the alphabet. It then iterates over each element using each, which you first used
in the previous section on arrays, and passes the value into letter, which is then printed
to the screen.

Note Remember that as you’ve used print, rather than puts, the letters are
printed one after another on the same line, whereas puts starts a new line every
time it’s used.

Even though working with arrays is perhaps more obvious, the range class does have
an each method of its own, so while there is no array involved, the preceding example
could be rewritten as follows:

("A"..'Z2").each { |letter| print letter }

87

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

The range class comes with other methods baked in too. It might also be useful to
test if something is included in the set of objects specified by the range. For example,
withyour ('A'.."'Z") range, you can check to see if R is within the range, using the
include? method, like so:

("A".."Z").include?('R")
=> true

Being a lowercase letter, however, 1 is not included:
("A".."'Z").include?('r")
=> false

You can also use ranges as array indices to select multiple elements at the same time:

a=1[2,4, 6, 8, 10, 12]
p a[1..3]

[4, 6, 8]

Similarly, you can use them to set multiple elements at the same time (and following
on from the current contents of a):

al1..3] = ["a", "b", "c"]
p a

[2, llall’ llbll’ "C") 10’ 12]

You can use ranges with objects belonging to many different classes, including the
ones you create yourself.

Symbols

Symbols are abstract references represented, typically, by a short string prefixed with a
colon. Examples include :blue, :good, and : name. Sadly, there is no succinct, easy-to-

88

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

learn trick to symbols, so you'll need to read this whole section—maybe even more than
once—to get it to stick. It certainly took me a while to pick them up when I started with
Ruby, but they are used so heavily by Rubyists that it's worth the effort!

Let’s jump straight into an illustrative example:

current_situation = :good
puts "Everything is fine" if current situation == :good
puts "PANIC!" if current situation == :bad

Everything is fine

In this example, :good and :bad are symbols. Symbols don’t contain values or objects,
like variables do. Instead, they're used as a consistent name within code. For example, in
the preceding code, you could easily replace the symbols with strings, like so:

current_situation = "good"
puts "Everything is fine" if current situation == "good"
puts "PANIC!" if current situation == "bad"

This gives the same result, but isn’t as efficient. In this example, every mention of
“good” and “bad” creates a new object stored separately in memory, whereas symbols
are single reference values that are only initialized once. In the first code example, only
:good and :bad exist, whereas in the second example, you end up with the full strings of
"good", "good", and "bad" taking up memory.

Symbols also result in cleaner code in many situations. Often you'll use symbols to
give method parameters a name. Having varying data as strings and fixed information as
symbols results in easier-to-read code.

You might want to consider symbols to be literal constants that have no value, but
whose name is the most important factor. If you assign the : good symbol to a variable
and compare that variable with :good in the future, you'll get a match. This makes
symbols useful in situations where you don’t necessarily want to store an actual value,
but a concept or an option.

Symbols are particularly useful when creating hashes and you want to have a
distinction between keys and values, for example:

s = { key: "value" }

89

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

This technique can also be useful when there’s a specification or consistency in
which key names to use:

personl = { name: "Fred", age: 20, gender: :male }
person2 = { name: "Laura", age: 23, gender: :female }

Many methods provided by Ruby classes use this style to pass information into
that method (and often for return values). You'll see examples of this construction
throughout this book.

Think of symbols as less flexible, straitjacketed strings that are used as identifiers. If it
still doesn’t make complete sense to you, keep an eye out for where we use symbols later
on in the book and refer back to this section.

Converting Objects to Other Classes

Numbers, strings, symbols, and other types of data are just objects belonging to various
classes. Numbers belong to Integer and/or Float classes. Strings are objects of the
String class, symbols are objects of the Symbol class, and so on.

In most cases, you can convert objects between the different classes, so a number
can become a string and a string can become a number. Consider the following:

puts "12" + "10"
puts 12 + 10

1210
22

The first line joins two strings, which happen to contain representations of numbers,
together, resulting in 1210. The second line adds two numbers together, resulting in 22.
However, converting these objects to representations in different classes is possible:
puts "12".to i + "10".to i
puts 12.to s + 10.to_s

22
1210

90

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

The tables have been turned with the to_methods. The String class provides
the to_iand to_f methods to convert a string to an object of class Integer or Float,
respectively. The String class also offers to_sym, which converts a string into a symbol.
Symbols provide the inverse, with a to_s method to convert them into strings.
Likewise, the number classes support to_s to convert themselves into textual
representations, as well as to_i and to_f to convert to and between integers and floats.

Summary

In this chapter, you've looked at the key building blocks of all computer programs—data,
expressions, and logic—and discovered how to implement them with Ruby. The topics in
this chapter provide a critical foundation for every other chapter in this book, as almost
every future line of your Ruby code will contain an expression, an iterator, or some sort

of logic.

Note It’s important to remember that due to the depth of Ruby, | haven’t tried to
cover every single combination of classes and methods here. There’s more than
one way to do anything in Ruby, and we’ve looked at the easiest routes first before
moving on to more advanced techniques later in the book.

You have not yet exhausted the different types of data within Ruby. Objects and
classes, as covered in Chapter 2, are actually types of data too, although they might
appear not to be. In Chapter 6, you'll directly manipulate objects and classes in a similar
way to how you've manipulated the numbers and strings in this chapter, and the bigger
picture will become clear.

Before moving on to Chapter 4, where you'll develop a full but basic Ruby program,
let’s reflect on what we've covered so far:

o Variable: A placeholder that can hold (or refer to) an object—from
numbers, to text, to arrays, to objects of your own creation. (Variables
were covered in Chapter 2, but this chapter extended your knowledge
of them.)

91

CHAPTER 3

92

RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

Operator: Something that’s used in an expression to manipulate
objects such as + (plus), - (minus), * (multiply), and / (divide). You
can also use operators to do comparisons, such as with <, >, and &8&.

Integer: A whole number, such as 5 or 923737.
Float: Anumber with a decimal portion, such as 1.0 or 3.141592.

Character: A single letter, digit, unit of space, or typographic symbol
(punctuation and the like).

String: A collection of characters such as Hello, world!orRuby is
cool. In Ruby, we represent strings by enclosing them in quotation
marks, such as "Hello" or 'Hello'.

Constant: A variable with a fixed value. Constant variable names
begin with a capital letter.

Iterator: A special method such as each, upto, or times that steps
through a list element by element. This process is called iteration,
and each, upto, and times are iterator methods.

Interpolation: The mixing of expressions into strings.
Array: A collection of objects or values with a defined, regular order.

Hash: A collection of objects or values associated with keys. A key can
be used to find its respective value inside a hash, but items inside a
hash have no specific order. It’s a lookup table, much like the index of
a book or a dictionary.

Regular expression: A way to describe patterns in text that can be
matched and compared against. If you want to play with these and
their operation, visit http://rubular.com/ for a handy tool.

Flow control: The process of managing which sections of code to
execute based on certain conditions and states.

Code block: A section of code, often used as an argument to an
iterator method, that has no discrete name and that is not a method
itself, but that can be called and handled by a method that receives
it as an argument. Code blocks can also be stored in variables as
objects of the Proc class (or as lambdas).

http://rubular.com/

CHAPTER 3 RUBY’S BUILDING BLOCKS: DATA, EXPRESSIONS, AND FLOW CONTROL

e Range: The representation for an entire range of values between a
start point and an endpoint.

e Symbol: A unique reference defined by a string prefixed with a colon
(e.g., :blue or :name). Symbols don’t contain values as variables do,
but can be used to maintain a consistent reference within code. They
can be considered as identifiers or constants that stand alone in what
they abstractly represent.

Now it’s time to put together some of these basic elements and develop a fully
working program, which you’ll do in Chapter 4.

93

CHAPTER 4

Developing Your First
Ruby Application

Up to this point, we've focused on covering the basics of the Ruby language and how
it works at the ground level. In this chapter, we’ll move into the world of real software
development and develop a complete, though very basic, Ruby application with a basic
set of features. Once we've developed and tested the basic application, we'll look at
different ways to extend it to become more useful. On our way, we’ll cover some new
facets of development that haven’t been mentioned so far.

First, let’s look at the basics of source code organization before moving on to actual
programming.

Working with Source Code Files

So far in this book, we’ve focused on using the irb immediate Ruby prompt to learn
about the language. However, for developing anything you wish to reuse over and over,
it’s essential to store the source code in a file (or often multiple files) that can be kept on
your hard drive, sent over the Internet, kept on a drive, and so forth.

The mechanism by which you create and manipulate source code files on your
system varies by operating system and personal preference. On Windows, you might be
familiar with the included Notepad software for creating and editing text files. At a Linux
prompt, you might be using vi, Emacs, pico, or nano. Mac users have TextEdit or Xcode at
their disposal. Whatever you use, you need to be able to create new files and save them
as plain text so that Ruby can use them properly. In the next few sections, you're going to
look at some available tools that tie in well with Ruby development.

95
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_4

https://doi.org/10.1007/978-1-4842-6324-2_4#DOI

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Creating a Test File

The first step to developing a Ruby application is to get familiar with your text editor. If
you're already familiar with text editors and how they relate to writing and saving source
code, skip down to the section titled “A Simple Source Code File”

Visual Studio Code

In 2015, Microsoft released a free, cross-platform code editor called Visual Studio Code—
not to be confused with their professional Visual Studio suite (Figure 4-1). Athttps://
code.visualstudio.com/, you can download Visual Studio Code for Windows, Mac OS
X, and Linux, and quickly install and use it as an editor for your future Ruby code.

® L # test.rb - Visual Studio Code

@ test.rb /Users/peter/Sandbox Mm@ x

jLo.times do
puts "I'm running Visual Studio Code!"

p : end

Ln1,Col1 UTF-8 LF Ruby @

Figure 4-1. Using Visual Studio Code

96

https://code.visualstudio.com/
https://code.visualstudio.com/

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

After installing and running Visual Studio Code (as seen in Figure 4-1), you can
simply type or paste Ruby code and use the File » Save menu option to save your text to
a location on your drive. It would probably be good to create a folder called ruby within
your home or user folder and save your initial Ruby source code there (using a filename
such as myapp.rb), as this is what the instructions assume in the next section.

If you would prefer a full IDE (integrated development environment) experience that
goes beyond what even Visual Studio Code offers, you could use RubyMine by JetBrains,
although it is a commercial product. You can find it at www. jetbrains.com/ruby/.

Alternatives to Linux

Visual Studio Code is available for Linux, but desktop Linux distributions typically
come with at least one text editor already which you may prefer to use. If you're working
entirely from the shell or terminal, you might be familiar with vim, Emacs, pico, or
nano, and all of these are suitable for editing Ruby source code. Some editors (such as
vi and Emacs) have extensions available that are specifically designed to make working
with Ruby easier. If you're using Linux with a graphical interface, you might have Kate
(KDE Advanced Text Editor) and/or gedit (GNOME Editor) available. All the preceding
are great text and source code editors. Choose one and learn how to use it, if you don’t
choose to use Visual Studio Code or another IDE.

At this stage, it would be a good idea to create a folder in your home directory called
“ruby’, or something similar, so that you can save your Ruby code there and have it in an
easily remembered place.

A Simple Source Code File

Once you've got an environment where you can edit and save text files, enter the

following code:

X =2
print "This program is running okay if 2 + 2 = #{x + x}"

Note If this code looks like nonsense to you, you've skipped too many chapters.
Head back to Chapter 3! This chapter requires full knowledge of everything
covered in Chapter 3.

97

http://www.jetbrains.com/ruby/

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Save the code with a filename of examplel.rb in a folder or directory of your choice.
It's advisable that you create a folder called ruby located somewhere that’s easy to find.
On Windows, this might be directly off of your C drive, and on OS X or Linux, this could
be a folder located in your home directory.

Note .rb is the de facto standard file extension for Ruby files, much like . php
is standard for PHP, . txt is common for text files, and . jpg is standard for JPEG
images.

Now you're ready to run the code.

Running Your Source Code

Once you've created the basic Ruby source code file, examplel.rb, you need to get Ruby
to execute it. As always, the process by which to do this varies by operating system. Read
the particular following section that matches your operating system. If your operating
system isn’t listed, the OS X and Linux instructions are most likely to match those for
your platform.

Whenever this book asks you to “run” your program, this is what you'll be doing each
time.

Note Even though you’re going to be developing an application in this chapter,
there are still times when you’ll want to use irb to follow along with the tests or
basic theory work throughout the chapter. Use your judgment to jump between
these two methods of development. irb is extremely useful for testing small
concepts and short blocks of code without the overhead of jumping back and forth
between a text editor and the Ruby interpreter.

Windows

Running Ruby from the command line provides the most flexibility and the most
predictable behavior. To do this, load the command prompt using the item in the Start
menu within the Ruby menu. This will ensure that the ruby command will work directly
from the prompt. Once the command prompt is loaded, you'll need to navigate to the
folder containing example1.rb using the cd command and then type ruby examplel.rb.

98

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Mac 0S X/mac0S

The simplest method to run Ruby applications on OS X is from Terminal, much in
the same way as irb is run. Terminal was explained in Chapter 1. If you followed the
preceding instructions, continue like so:

1. Launch Terminal (found in Applications/Utilities, or use
Spotlight to launch it).

2. Use cd to navigate to the folder where you placed examplel.rb,
like so: cd ~/ruby. This tells Terminal to take you to the ruby
folder located in your home user folder.

3. Typeruby examplel.rb and press Enter to execute the examplel.
rb Ruby script.

4. Ifyou getan error such as ruby: No such file or directory
-- examplel.rb (LoadError), you aren'’tin the same folder as
the examplel.rb source file, and you need to establish where you
have saved it.

If you get a satisfactory response from examplel.rb, you're ready to move on to the
“Our Application: A Text Analyzer” section.

Alternatively, if you're using Visual Studio Code or Sublime Text, there are other ways
you can run your code directly from the editor. However, it may not always be an option,
so it’s essential to at least be familiar with how to run Ruby scripts from the terminal too.

Linux and Other UNIX-Based Systems

In Linux or other UNIX-based systems, you run your Ruby applications from the shell
(i.e., within a terminal window) in the same way that you ran irb. The process to run irb
was explained in Chapter 1, so if you've forgotten how to get that far, you need to recap
before continuing, like so:

1. Launch your terminal emulator (such as xterm or, on Ubuntu,
simply “Terminal”) so you get a Linux shell/command prompt.

2. Navigate to the directory where you placed examplel.rb using
the cd command (e.g., cd ~/ruby takes you to the ruby directory
located directly under your home directory, usually /home/<your
username>/).

99

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

3. Type ruby examplel.rb and press Enter to make Ruby execute
the examplel.rb script.

If you get a satisfactory response from examplel.rb, you're ready to move on.

TEXT EDITORS VS. SOURCE CODE EDITORS

Source code is basically the same as plain text, and although you can write your code in a
general text editor, some developers prefer to use a specialist source code editor (typically
known as an IDE).

RubyMine is an example of IDEs specifically created for Ruby developers. It allows you to edit
text, as with any other text editor, but both offer extended features such as source code syntax
coloring and the ability to run code directly from the editor. Sublime Text and Visual Studio
Code look like regular text editors, but also offer some IDE-like functionality, including source
code syntax coloring.

Some developers find source code syntax coloring an invaluable feature, as it makes their
code easier to read. Variable names, expressions, string literals, and other elements of your
source code are all given different colors, which makes it easy to pick them out.

Whether you choose an IDE or a basic text editor depends on your own preference, but it's
worth trying both. Many developers prefer the freedom of a regular text editor and then
running their Ruby programs from the command line, whereas others prefer to work entirely
within a single environment. This book will not assume, however, that you are using an IDE, so
you may have a separate learning curve for picking up the IDE’s functions as well as Ruby’s in
general.

Our Application: A Text Analyzer

The application you're going to develop in this chapter will be a text analyzer. Your
Ruby code will read in text supplied in a separate file, analyze it for various patterns
and statistics, and print out the results for the user. It's not a 3D graphical adventure
nor a fancy website, but text processing programs are the bread and butter of systems

administration and most application development. They can be vital for parsing log files

and user-submitted text on websites and manipulating other textual data.

100

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Ruby is well suited for text and document analysis with its regular expression

features, along with the ease of use of scan and split, and you'll be using these heavily

in your application.

Note With this application, you’ll be focusing on implementing the features
quickly and pragmatically, rather than developing an elaborate object-oriented
structure, any documentation, or a testing methodology. The sole aim of this project
is to build a simple script that performs a number of operations in sequence. I'll be
covering object orientation and its usage in larger programs in depth in Chapter 6,
and documentation and testing are covered in Chapter 8.

Required Basic Features

Your text analyzer will provide the following basic statistics:

Character count

Character count (excluding spaces)
Line count

Word count

Sentence count

Paragraph count

Average number of words per sentence

Average number of sentences per paragraph

In the last two cases, the statistics are easily calculated from each other. That is, once

you have the total number of words and the total number of sentences, it becomes a

matter of a simple division to work out the average number of words per sentence.

101

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Building the Basic Application

When starting to develop a new program, it’s useful to think of the key steps involved. In
the past, it was common to draw flow charts to show how the operation of a computer
program would flow, but it’s easy to experiment, change things about, and remain agile
with modern tools such as Ruby. Let’s outline the basic steps as follows:

1. Load afile containing the text or document you want to analyze.

2. Asyouload the file line by line, keep a count of how many lines
there were (one of your statistics taken care of).

3. Putthe text into a string and measure its length to get your
character count.

4. Temporarily remove all whitespace and measure the length of the
resulting string to get the character count excluding spaces.

5. Split out all the whitespace to find out how many words there are.
6. Split on full stops to find out how many sentences there are.

7. Split on double newlines to find out how many paragraphs there
are.

8. Perform calculations to work out the averages.

Create a new, blank Ruby source file and save it as analyzer.rb in your Ruby folder.
As you work through the next few sections, you'll be able to fill it out.

Obtaining Some Dummy Text

Before you start to code, the first step is to get some test data that your analyzer can
process. The first chapter of Oliver Twist is an ideal piece of text to use, as it’s copyright-
free and easy to obtain. It’s also of a reasonable length. You can find the text at https://
raw.github.com/Apress/beginnning-ruby-4e/master/oliver.txt for you to copy into
a local text file. Save the file in the same folder you saved examplel.rb, and call it text.txt.
Your application will read from text.txt by default (although you’ll make it more dynamic
and able to accept other sources of data later on).

102

https://raw.github.com/Apress/beginnning-ruby-4e/master/oliver.txt
https://raw.github.com/Apress/beginnning-ruby-4e/master/oliver.txt

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Tip If the preceding web page is unavailable at the time of reading, use
your favorite search engine to search for “twist workhouse rendered profound
thingummy” (without the quotation marks) and you’re guaranteed to find it.
Alternatively, use any large block of text you can obtain.

If you're using the Oliver Twist text and want your results to match up roughly with
those given as examples throughout this chapter, make sure you only copy and paste the
text including and between these sections:

Among other public buildings in a certain town, which for many
reasons it will be prudent to refrain from mentioning

and

Oliver cried lustily. If he could have known that he was an
orphan, left to the tender mercies of church-wardens and
overseers, perhaps he would have cried the louder.

Loading Text Files and Counting Lines

Now it’s time to get coding! The first step is to load the file. Ruby provides a
comprehensive set of file manipulation methods via the File class. Whereas other
languages can make you jump through hoops to work with files, Ruby keeps the interface
simple. Here’s some code that opens up your text. txt file:

File.open("text.txt").each { |line| puts line }

Type this into analyzer.rb and run the code. If text.txt is in the current directory,
the result is that you'll see the entire text file flying up the screen.

You're asking the File class to open up text.txt, and then, much like with an array,
you can call the each method on the file directly, resulting in each line being passed to
the inner code block one by one, where puts sends the line as output to the screen. (In
Chapter 9, you'll look at how file access and manipulation work in more detail, along
with more robust techniques than are used in this chapter!)

103

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION
Edit the code to look like this instead:

line_count = 0
File.open("text.txt").each { |line| line count += 1 }
puts line count

You initialize 1ine_count to store the line count and then open the file and iterate
over each line while incrementing line_count by 1 each time. When you're done, you
print the total to the screen (approximately 119 if you're using the Oliver Twist chapter).
You have your first statistic!

You've counted the lines, but still don’t have access to the contents of the file to
count the words, paragraphs, sentences, and so forth. This is easy to fix. Let’s change the
code a little and add a variable, text, to collect the lines together as one as we go:

text = ""
line count = 0
File.open("text.txt").each do |line|
line count += 1
text += line
end

puts "#{line count} lines"

Note Remember that using { and } to surround blocks is the standard style for
single-line blocks, but using do and end is preferred for multiline blocks.

Compared to your previous attempt, this code introduces the text variable and adds
each line onto the end of it in turn. When the iteration over the file has finished—that s,
when you run out of lines—text contains the entire file in a single string ready for you to use.

That’s a simple-looking way to get the file into a single string and count the lines, but
File also has other methods that can be used to read files more quickly. For example,
you can rewrite the preceding code like this:

lines = File.readlines("text.txt")
line_count = lines.size
text = lines.join

puts "#{1line count} lines"
104

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Much simpler! File implements a readlines method that reads an entire file into an array,
line by line. You can use this both to count the lines and join them all into a single string.

Counting Characters

The second easiest statistic to work out is the number of characters in the file. As you've
collected the entire file into the text variable, and text is a string, you can use the
length method that all strings supply to get the exact size of the file, and therefore the
number of characters.

To the end of the previous code in analyzer.rb, add the following:

total_characters = text.length
puts "#{total characters} characters"”

If youran analyzer.rb now with the Oliver Twist text, you'd get output like this:

119 lines
6289 characters

Note Don’t worry about your results being identical to those shown in this
chapter. As long as they’re roughly in the same ballpark, you’re on the right track.

The second statistic you wanted to get relating to characters was a character total
excluding whitespace. If you can remember back to Chapter 3, strings have a gsub method
that performs a global substitution (like a search and replace) upon the string, for example:

"this is a test".gsub(/t/, 'X")
Xhis is a XesX

You can use gsub to eradicate the spaces from your text string in the same way and
then use the length method to get the length of the newly “de-spacified” text. Add the
following code to analyzer.rb:

total characters nospaces = text.gsub(/\s+/, '').length
puts "#{total characters nospaces} characters excluding spaces”

105

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

If yourun analyzer.rb in its current state against the Oliver Twist text, the results
should be similar to the following:

119 lines
6289 characters
5142 characters (excluding spaces)

Counting Words

A common feature offered by word processing software is a “word counter.” All it does
is count the number of complete words in your document or a selected area of text.
This information is useful to work out how many pages the document will take up when
printed. Many assignments also have requirements for a certain number of words, so
knowing the number of words in a piece of text is certainly useful.

You can approach this feature in a couple of ways:

1. Count the number of groups of contiguous letters using scan to
create an array of those groups and then use the length of the
array.

2. Split the text on whitespace and count the resulting fragments
using split and size.

Let’s look at each method in turn to see what'’s best. Recall from Chapter 3 that scan
works by iterating over a string of text and finding certain patterns over and over, for
example:

puts "this is a test".scan(/\w/).join
thisisatest

In this example, scan looked through the string for anything matching \w, a special
term representing all alphanumeric characters (and underscores), and placed them into
an array that you've joined together into a string and printed to the screen.

You can do the same with groups of alphanumeric characters. In Chapter 3, you
learned that to match multiple characters with a regular expression, you could follow the
character with +. So let’s try again:

puts "this is a test".scan(/\w+/).join('-")

106

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION
this-is-a-test

This time, scan has looked for all groups of alphanumeric characters and placed
them into the array that you've then joined together into a string using - as the
separation character.

To get the number of words in the string, you can use the length or size array
methods to count the number of elements rather than join them together:

puts "this is a test".scan(/\w+/).length

Excellent! So what about the split approach?

The split approach demonstrates a core tenet of Ruby (as well as some other
languages, particularly Perl): there’s always more than one way to do it! Analyzing
different methods to solve the same problem is a crucial part of becoming a good
programmer, as different methods can vary in their efficacy.

Let’s split the string by spaces and get the length of the resulting array, like so:

puts "this is a test".split.length

As it happens, by default, split will split by whitespace (single or multiple characters
of spaces, tabs, newlines, and so on), and that makes this code shorter and easier to read
than the scan alternative.

So what's the difference between these two methods? Simply, one is looking for
words and returning them to you for you to count, and the other is splitting the string by
that which separates words—whitespace—and telling you how many parts the string was
broken into. Interestingly, these two approaches can yield different results:

text = "First-class decisions require clear-headed thinking."
puts "Scan method: #{text.scan(/\w+/).length}"
puts "Split method: #{text.split.length}"

Scan method: 7
Split method: 5

107

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Interesting! The scan method is looking through for all blocks of alphanumeric
characters, and, sure enough, there are seven in the sentence. However, if you split
by spaces, there are five words. The reason is the hyphenated words. Hyphens aren’t
“alphanumeric,” so scan is seeing “first” and “class” as separate words.

Returning to analyzer.rb, let’s apply what we've learned here. Add the following:

word count = text.split.length
puts "#{word count} words"

Running the complete analyzer.rb gets these results:

1119 lines

6289 characters

5142 characters (excluding spaces)
1111 words

Counting Sentences and Paragraphs

Once you understand the logic of counting words, counting the sentences and
paragraphs becomes easy. Rather than splitting on whitespace, sentences and
paragraphs have different splitting criteria.

Sentences end with full stops, question marks, and exclamation marks. They can
also be separated with dashes and other punctuation, but we won’t worry about these
rare cases here. The split is simple. Instead of asking Ruby to split the text on one type of
character, you simply ask it to split on any of three types of characters, like so:

sentence_count = text.split(/\.|\?]!/).length

The regular expression looks odd here, but the full stop, question mark, and
exclamation mark are clearly visible. Let’s look at the regular expression directly:

INCN2] 1Y

The forward slashes at the start and the end are the usual delimiters for a regular
expression, so those can be ignored. The first section is \ ., and this represents a full stop.
The reason why you can’t just use . without the backslash in front is because . represents
“any character” in a regular expression (as covered in Chapter 3), so it needs to be escaped

108

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

with the backslash to identify itself as a literal full stop. This also explains why the question
mark is escaped with a backslash, as a question mark in a regular expression usually means
“zero or one instances of the previous character”—also covered in Chapter 3. The ! is not
escaped, as it has no other meaning in terms of regular expressions.

The pipes (| characters) separate the three main characters, which means they’re
treated separately so that split can match one or another of them. This is what allows
the split to split on periods, question marks, and exclamation marks all at the same time.
You can test it like so:

puts "Test code! It works. Does it? Yes.".split(/\.|\?|!/).length

Paragraphs can also be split apart with regular expressions. Whereas paragraphs in a
printed book, such as this one, tend not to have any spacing between them, paragraphs
that are typed on a computer typically do, so you can split by a double newline (as
represented by the special combination \n\n—simply, two newlines in succession) to get
the paragraphs separated, for example:

text = %q{
This is a test of
paragraph one.

This is a test of
paragraph two.

This is a test of
paragraph three.

}
puts text.split(/\n\n/).length

Let’s add both these concepts to analyzer.rb:

paragraph count = text.split(/\n\n/).length
puts "#{paragraph count} paragraphs"

109

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

sentence_count = text.split(/\.|\?]!/).length
puts "#{sentence count} sentences"

Calculating Averages

The final statistics required for your basic application are the average number of words
per sentence and the average number of sentences per paragraph. You already have the
paragraph, sentence, and word counts available in the variables word_count, paragraph_
count, and sentence_count, so only basic arithmetic is required, like so:

puts "#{sentence count / paragraph count} sentences per paragraph
(average)"
puts "#{word count / sentence count} words per sentence (average)"

The calculations are so simple that they can be interpolated directly into the output
commands rather than pre-calculated. When run now, we’d see this:

119 lines

6289 characters

5142 characters excluding spaces
1111 words

20 paragraphs

45 sentences

2 sentences per paragraph (average)
24 words per sentence (average)

Note The astute reader will notice that we’re dividing an integer by an integer
in the preceding code—thus resulting in integer division—without first converting
the numbers to floating point numbers to gain accurate division (recall from
Chapter 2that 10 / 3 ==3,but10.0 / 3 == 3.3333333333333).Inthis
case, integer division is fine, as it makes little sense to say that there are, say, 2.8
sentences per paragraph on average—it’s nicer just to see “3.”

110

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

The Source Code So Far

You've been updating the source code as you've gone along, and in each case, you've
put the logic next to the puts statement that shows the result to the user. However, for
the final version of your basic application, it would be tidier to separate the logic from
the presentation a little and put the calculations in a separate block of code before
everything is printed to the screen.

There are no logic changes, but the finished source for analyzer.rb looks a little
cleaner this way:

lines = File.readlines("text.txt")

line count = lines.size

text = lines.join

word count = text.split.length

character_count = text.length

character count_nospaces = text.gsub(/\s+/, '').length
paragraph count = text.split(/\n\n/).length
sentence_count = text.split(/\.|\?]!/).length

puts "#{1line count} lines"

puts "#{character count} characters"

puts "#{character count nospaces} characters excluding spaces”
puts "#{word count} words"

puts "#{paragraph_count} paragraphs"

puts "#{sentence count} sentences"

puts "#{sentence count / paragraph count} sentences per paragraph
(average)"

puts "#{word count / sentence count} words per sentence (average)"

When run, the result will be somewhat like the following:

1119 lines

6289 characters

5142 characters excluding spaces
1111 words

20 paragraphs

45 sentences

2 sentences per paragraph (average)
24 words per sentence (average)

111

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

If you've made it this far and everything’s making sense, congratulations are due. Let’s
look at how to extend our application a little further with some more interesting statistics.

Adding Extra Features

Your analyzer has a few basic functions, but it’s not particularly interesting. Line,
paragraph, and word counts are useful statistics, but with the power of Ruby, you
can extract significantly more interesting data from the text. The only limit is your
imagination, but in this section, you'll look at a couple other features you can
implement, and how to do so.

Percentage of “Useful” Words

Most written material, including this very book, contains a large number of words that,
although providing context and structure, are not directly useful or interesting. In the
last sentence, the words that, and, are, and or are not of particular interest, even if the
sentence would make less sense to a human without them.

These words are typically called stop words and are often ignored by computer
systems whose job is to analyze and search through text, because they aren’t words
most people are likely to be searching for (e.g., as opposed to nouns). Google is a perfect
example of this, as it doesn’t want to have to store information that takes up space and
that’s generally irrelevant to searches.

Note For more information about stop words, including links to complete lists,
visit https://en.wikipedia.org/wiki/Stop_words.

It can be argued that more “interesting” text should have a lower percentage of stop
words and a higher percentage of useful or interesting words. You can easily extend your
application to work out the percentage of non-stop words in the supplied text.

The first step is to build up a list of stop words. There are hundreds of possible stop
words, but you'll start with just a handful. Let’s create an array to hold them:

stopwords = %w{the a by on for of are with just but and to the my I has
some in}

112

https://en.wikipedia.org/wiki/Stop_words

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

This code results in an array of stop words being assigned to the stopwords variable.

Tip In Chapter 3, you saw arrays being defined likeso:x = ['a', 'b"', 'c'].
However, like many languages, Ruby has a shortcut that builds arrays quickly with
string-separated text. This segment can be shortened to the equivalent x = %w{a
b c}, as demonstrated in the preceding stop word code.

For demonstration purposes, let’s write a small, separate program to test the
concept:

text = %q{Los Angeles has some of the nicest weather in the country.}
stopwords = %w{the a by on for of are with just but and to the my in I has
some}

words = text.scan(/\w+/)
keywords = words.select { |word| !stopwords.include?(word) }

puts keywords.join(' ")

When you run this code, you get the following result:
Los Angeles nicest weather country

Cool, right? First, you put some text into the program and then the list of stop words.
Next, you get all the words from text into an array called words. Then you get to the
magic:

keywords = words.select { |word| !stopwords.include?(word) }

This line first takes your array of words, words, and calls the select method with a
block of code to process for each word (like the iterators you played with in Chapter 3).
The select method is available to all arrays and hashes that return the elements of that
array or hash that match the expression in the code block.

In this case, the code in the code block takes each word via the variable word and
asks the stopwords array whether it includes any elements equal to word. This is what
stopwords.include?(word) does.

The exclamation mark (!) before the expression negates the expression (an
exclamation mark negates any Ruby expression). The reason for this is you don’t want to
select words that are in the stopwords array. You want to select words that aren't.

113

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

In closing, then, you select all elements of words that are not included in the
stopwords array and assign them to keywords. Don’t read on until that makes sense, as
this type of single-line construction is common in Ruby programming.

After that, working out the percentage of non-stop words to all words uses some
basic arithmetic:

((keywords.length.to f / words.length.to f) * 100).to i

The reason for the .to_f’s is so that the lengths are treated as floating decimal point
numbers, and the percentage is worked out more accurately. When you work it up to the
real percentage (out of 100), you can convert back to an integer once again.

Here’s a look at how we can bring these concepts together with our other program
fragments so far:

stopwords = %w{the a by on for of are with just but and to the my I has
some in}

lines = File.readlines("text.txt")

line count = lines.size

text = lines.join

Count the words, characters, paragraphs and sentences
word count = text.split.length

character_count = text.length

character count_nospaces = text.gsub(/\s+/, '').length
paragraph _count = text.split(/\n\n/).length
sentence_count = text.split(/\.|\?]!/).length

Make a list of words in the text that aren't stop words,

count them, and work out the percentage of non-stop words

against all words

all words = text.scan(/\w+/)

good words = all words.reject{ |word| stopwords.include?(word) }

good percentage = ((good words.length.to f / all words.length.to f) * 100).
to i

Give the analysis back to the user
puts "#{line count} lines"
puts "#{character count} characters”

114

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

puts "#{character count nospaces} characters (excluding spaces)"
puts "#{word count} words"

puts "#{sentence count} sentences”

puts "#{paragraph count} paragraphs"

puts "#{sentence count / paragraph count} sentences per paragraph
(average)"

puts "#{word count / sentence count} words per sentence (average)"
puts "#{good percentage}% of words are non-fluff words"

With these results:

119 lines

6289 characters

5142 characters (excluding spaces)
1111 words

45 sentences

20 paragraphs

2 sentences per paragraph (average)
24 words per sentence (average)

76% of words are non-fluff words

Summarizing by Finding “Interesting” Sentences

Word processors such as Microsoft Word generally have summarization features that
can take a long piece of text and seemingly pick out the best sentences to produce an
“at-a-glance” summary. The mechanisms for producing summaries have become more
complex over the years, but one of the simplest ways to develop a summarizer of your
own is to scan for sentences with certain characteristics.

One technique is to look for sentences that are of about average length and that look
like they contain nouns. Tiny sentences are unlikely to contain anything useful, and
long sentences are likely to be simply too long for a summary. Finding nouns reliably
would require systems that are far beyond the scope of this book, so you could “cheat” by
looking for words that indicate the presence of useful nouns in the same sentence, such

” u ” u

as “is” and “are” (e.g., “Noun is,” “Nouns are,” “There are x nouns”).

115

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Let’s assume that you want to throw away two-thirds of the sentences—a third that
are the shortest sentences and a third that are the longest sentences—leaving you with
an ideal third of the original sentences that are ideally sized for your task.

For ease of development, let’s create a new program from scratch and transfer your
logic over to the main application later. Create a new program called summarize.rb and
use this code:

text = %q{

Ruby is a great programming language. It is object oriented

and has many groovy features. Some people don't like it, but that's

not our problem! It's easy to learn. It's great. To learn more about Ruby,
visit the official Ruby website today.

}

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)

sentences_sorted = sentences.sort by { |sentence| sentence.length }
one_third = sentences_sorted.length / 3

ideal sentences = sentences_sorted.slice(one_third, one_third + 1)

ideal sentences = ideal sentences.select { |sentence| sentence =~ /is|are/

}

puts ideal sentences.join(". ")

And for good measure, run it to see what happens:

Ruby is a great programming language. It is object oriented and has many
groovy features

Seems like a success! Let’s walk through the program.
First, you define the variable text to hold the long string of multiple sentences, much
like in analyzer.rb. Next, you split text into an array of sentences like so:

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)

This is slightly different from the method used in analyzer.rb. There is an extra
gsub in the chain, as well as strip. The gsub gets rid of all large areas of whitespace and
replaces them with a single space (\s+ meaning “one or more whitespace characters”).
This is simply for cosmetic reasons. The strip removes all extra whitespace from the
start and end of the string. The split is then the same as that used in the analyzer.

116

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Next, you sort the sentences by their lengths, as you want to ignore the shortest third
and the longest third:

sentences_sorted = sentences.sort by { |sentence| sentence.length }

Arrays and hashes have the sort_by method, which can rearrange them into almost
any order you want. sort_by takes a code block as its argument, where the code block
is an expression that defines what to sort by. In this case, you're sorting the sentences
array. You pass each sentence in as the sentence variable and choose to sort them by
their length, using the length method on the sentence. After this line, sentences_
sorted contains an array with the sentences in length order.

Next, you need to get the middle third of the length-sorted sentences in sentences_
sorted, as these are the ones you've deemed to be probably the most interesting. To do
this, you can divide the length of the array by 3 to get the number of elements in a third
and then grab that number of elements from one third into the array (note that you grab
one extra element to compensate for rounding caused by integer division). This is done
like so:

one_third = sentences_sorted.length / 3
ideal sentences = sentences sorted.slice(one third, one third + 1)

The first line takes the length of the array and divides it by 3 to get the quantity
that is equal to “a third of the array.” The second line uses the slice method to “cut
out” a section of the array to assign to ideal sentences. In this case, assume that the
sentences_sorted is six elements long. 6 divided by 3 is 2, so a third of the array is two
elements long. The slice method then cuts from element 2 for 2 (plus 1) elements,
so you effectively carve out elements 2, 3, and 4 (remember that array elements start
counting from 0). This means you get the “inner third” of the ideal-length sentences you
wanted.

The penultimate line checks to see if the sentence includes the word is or are and
only accepts each sentence if so:

ideal sentences = ideal sentences.select { |sentence| sentence =. /is|are/

}

It uses the select method, as the stop-word removal code in the previous section
did. The expression in the code block uses a regular expression that matches against
sentence and only returns true if is or are is present within sentence. This means
ideal sentences now only contains sentences that are in the middle third lengthwise
and contain either is or are.

117

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

The final line simply joins the ideal sentences together with a full stop and space
between them to make them readable:

puts ideal sentences.join(". ")

Analyzing Files Other Than text.txt

So far, your application has the filename text.txt hard-coded into it. This is acceptable,
but it would be a lot nicer if you could specify, when you run the program, what file you
want the analyzer to process.

Note This technique is only practical to demonstrate if you’re running
analyzer.rb from a command prompt or shell or if your IDE supports passing in
command-line arguments.

Typically, if you're starting a program from the command line, you can append
parameters onto the end of the command, and the program will process them. You can
do the same with your Ruby application.

Ruby automatically places any parameters that are appended to the command line
when you launch your Ruby program into a special array called ARGV. To test it out, create
anew script called argv.rb and use this code:

puts ARGV.join('-")

From the command prompt, run the script like so:
ruby argv.rb

The result will be blank, but then try to run it like so:

ruby argv.rb test 123
test-123

This time the parameters are taken from ARGV, joined together with a hyphen,
and displayed on the screen. You can use this to replace the reference to text.txt in
analyzer.rb by replacing "text.txt" with ARGV[0] or ARGV.first (which both mean
exactly the same thing—the first element of the ARGV array). The line that reads the file
becomes the following:

118

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

lines = File.readlines(ARGV[0])
To process text. txt now, you'd run it like so:
ruby analyzer.rb text.txt

You'll learn more about deploying programs and making them friendly to other
users, along with ARGV, in Chapter 10.

Note If you ran the preceding code but specified a file that did not exist, the
program would still run but File.readlines would throw an error. We look at
ways to tackle this issue later.

The Completed Program

You've already got the source for the completed basic program, but it’s time to add all the
new, extended features from the previous few sections to analyzer.rb to create the final

version of your text analyzer.

Note Remember that source code for this book is available in the Source Code
area at www.apress.com, o it isn’t strictly necessary to type in code directly
from the book.

Here we go:

analyzer.rb -- Text Analyzer

stopwords = %w{the a by on for of are with just but and to the my I has
some in}

lines = File.readlines(ARGV[0])

line_count = lines.size

text = lines.join

Count the words, characters, paragraphs and sentences
word count = text.split.length

119

http://www.apress.com

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

character_count = text.length

character count_nospaces = text.gsub(/\s+/, '').length
paragraph_count = text.split(/\n\n/).length
sentence_count = text.split(/\.|\?]!/).length

Make a list of words in the text that aren't stop words,

count them, and work out the percentage of non-stop words

against all words

all words = text.scan(/\w+/)

good words = all words.reject{ |word| stopwords.include?(word) }
good percentage = ((good words.length.to f / all words.length.to f) * 100).
to i

Summarize the text by cherry picking some choice

sentences = text.gsub(/\s+/, ' ').strip.split(/\.|\?|!/)
sentences_sorted = sentences.sort by { |sentence| sentence.length }
one_third = sentences sorted.length / 3

ideal sentences = sentences sorted.slice(one third, one third + 1)
ideal sentences

}

Give the analysis back to the user

ideal sentences.select { |sentence| sentence =. /is|are/

puts "#{1line count} lines"

puts "#{character count} characters"

puts "#{character count nospaces} characters (excluding spaces)"
puts "#{word count} words"

puts "#{sentence count} sentences”

puts "#{paragraph count} paragraphs"

puts "#{sentence count / paragraph count} sentences per paragraph
(average)"

puts "#{word count / sentence count} words per sentence (average)"
puts "#{good percentage}% of words are non-fluff words"

puts "Summary:\n\n" + ideal sentences.join(". ")

puts "-- End of analysis"

120

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

Note Have you noticed that the good_words line no longer uses select but
reject? It’s a quick exercise to you to work out how these methods differ and
why it has been used here instead of the original code.

Running the completed analyzer.rb with the Oliver Twist text now results in an
output like the following:

119 lines

6289 characters

5142 characters (excluding spaces)

1111 words

45 sentences

20 paragraphs

2 sentences per paragraph (average)

24 words per sentence (average)

76% of words are non-fluff words

Summary:

' The surgeon leaned over the body, and raised the left hand. Think what it
is to be a mother, there's a dear young lamb do. 'The old story,' he said,
shaking his head: 'no wedding-ring, I see. What an excellent example of
the power of dress, young Oliver Twist was. ' Apparently this consolatory
perspective of a mother's prospects failed in producing its due effect. '
The surgeon had been sitting with his face turned towards the fire: giving
the palms of his hands a warm and a rub alternately. ' 'You needn't mind
sending up to me, if the child cries, nurse,' said the surgeon, putting on
his gloves with great deliberation. She had walked some distance, for her
shoes were worn to pieces; but where she came from, or where she was going
He put on his hat, and, pausing by the bed-side on his

to, nobody knows.
way to the door, added, 'She was a good-looking girl, too; where did she
come from

-- End of analysis

Try analyzer.rb with some other text of your choice (a web page, perhaps), and see
if you can make improvements to its features. This application is rife for improvement
with the concepts you'll learn over the next several chapters, so keep it in mind if you're
looking for some code to play with.

121

CHAPTER 4 DEVELOPING YOUR FIRST RUBY APPLICATION

CODE COMMENTS

You might notice text in source code prefixed with # symbols. These are comments and are
generally used in programs for the benefit of the original developer(s), along with anyone
else who might need to read the source code. They’re particularly useful for making notes
to remind you of why you took a particular course of action that you’re likely to forget in the
future.

You can place comments in any Ruby source code file on their own lines or even at the end of
a line of code. Here are some valid examples of commenting in Ruby:

puts "2+2 = #{2+2}" # Adds 2+2 to make 4
A comment on a line by itself

As long as a comment is on a line by itself or is the last thing on a line, it’s fine. Comment
liberally, and your code will be easier to understand, especially if you come back to it a long
time later.

Summary

In this chapter, you developed a complete, basic application that realized a set of
requirements and desired features. You then extended it with some nonessential but
useful elaborations. Ruby makes developing quick applications a snap.

The application you've developed in this chapter has demonstrated that if you have
a lot of text to process or a number of calculations to do, and you're dreading doing the
work manually, Ruby can take the strain.

To keep things simple, we didn’t use any methods or flow control in our application.
It simply went through a process step by step to give a set of results. This is the simplest
form of a useful program. More complex programs will undoubtedly involve flow control
and methods, and we’ll be covering those in more depth in the following chapters.

Chapter 4 marks the end of the practical programming exercises in the first part of
this book. Next, in Chapter 5, you'll take a look at the history of Ruby, Ruby’s community
of developers, and the historical reasons behind certain features in Ruby. You'll also
learn how to get help from and become part of the Ruby community. Code makes up
only half the journey to becoming a great programmer!

122

CHAPTER 5

The Ruby Ecosystem

As with other programming languages, Ruby has its own culture and “ecosystem.” Ruby’s
ecosystem is made up of thousands of developers, maintainers, documenters, bloggers,
companies, and those who help sponsor or fund the development of the language.

Some programmers who are new to a language assume that learning about a
language’s history and community is pointless, but the most successful developers
quickly learn about the ecosystem and get involved in it. The motivations behind a
language’s development can provide significant clues about the best approaches to take
when solving problems, and understanding the vocabulary of other developers greatly
helps when it comes to looking for help and advice.

This chapter takes a break from the code-focused tutorials to bring you up to
speed with how the Ruby world works, the motivations behind the language, and the
best ways to find help and get involved with the community. If you're new to software
development, this chapter will also explain some of the terms and phrases used by
developers relating to software development.

You'll also take a quick look at Ruby’s history, Ruby’s creator, the idiomatic processes
and terminology that Ruby developers use, and the technologies that have taken
Ruby from being relatively unknown to being a first-class programming language of

significance.

123
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_5

https://doi.org/10.1007/978-1-4842-6324-2_5#DOI

CHAPTER 5 THE RUBY ECOSYSTEM

Ruby’s History

Ruby is relatively young in the world of programming languages, having been first
developed in 1993, making it roughly the same age as both Perl and Python. Among
the most popular programming languages still in use today, Fortran, for example, was
developed in 1953, and C was developed in the early 1970s. Ruby’s relative modernity is an
asset rather than a downfall, however. From day one, it was designed with object-oriented
programming in mind, and its syntax has remained consistent over time. Older languages
have frequently been forced to complicate their syntax and change radically to address
modern concepts such as object orientation, networking, and graphical environments.
Unlike languages that are formed out of pure necessity or research, Ruby’s birth
came from a sense of frustration with existing languages. Despite the presence of so
many established programming languages, a plucky Japanese computer scientist felt
development was becoming ever more complex and tiresome, and decided some fun
had to be injected into the world of programming languages.

The Land of the Rising Sun

Ruby began life in Japan as the creation of Yukihiro Matsumoto, known more commonly
as Matz. Unlike that of most language developers, Matz’s motivation for Ruby was fun
and a principle of “least surprise” in order to improve overall developer productivity.

He couldn’t find a language that resonated with his mindset, so he took his own outlook
about how programming should work and created Ruby (named after the gemstone in
homage to the “Perl” programming language).

Alongtime object-oriented programming fan, Matz felt object orientation was the best
model to adopt. However, unlike other languages, such as Per], object orientation with Ruby
wouldn’t be an afterthought, but act as the core foundation for the language. Everything
(within reason) would be an object, and methods would fill the roles of the procedures and
functions developers had come to expect in older procedural languages. As Matz himself said
in a 2001 interview, “I wanted a language that was more powerful than Perl, and more object-
oriented than Python. That’s why I decided to design my own language.”

In December 1995, Matz released the first public alpha version of Ruby, and soon
thereafter a community began to form in Japan. However, although Ruby quickly
became relatively popular in Japan, it struggled to gain a foothold elsewhere.

124

CHAPTER 5 THE RUBY ECOSYSTEM

Note In software development, the terms alpha, beta, and gamma, among others,
are used to denote the development stage of a piece of software. An initial release
that’s not for general use is often called an alpha. A release that implements most
of the required features, but might not be entirely tested or stable, is often called

a beta, although this term is becoming muddied by the plethora of websites and
games now more permanently using the term “beta” on otherwise fully released
products and services.

In 1996, the development of Ruby was opened up significantly, and a small team
of core developers and other contributors began to form alongside the more general
community of Ruby developers. Ruby 1.0 was released on December 25, 1996. These
core developers help Matz develop Ruby and submit their patches (adjustments to the
code) and ideas to him. Matz continues to act as a “benevolent dictator” who ultimately
controls the direction of the language, despite the ever-widening influence of other
developers.

Note Although developing software privately is still common, many projects are
now worked upon in a public manner, allowing them to be extended and worked
upon by any competent programmer. In many cases, this makes it possible for
other developers to fork the project (taking the existing code and splitting it into
their own version).

Ruby’s Influences

In developing Ruby, Matz was heavily influenced by the programming languages he was
familiar with. Larry Wall, the developer of the popular Perl language, was a hero of Matz,
and Perl’s principle of there is more than one way to do it (TMTOWTDI) is present in Ruby.

Some languages, such as Python, prefer to provide more rigid structures and present
a clean method for developers to have a small number of options to perform a certain
task. Ruby allows its developers to solve problems in any one of many ways. This allows
the language great flexibility, and combined with the object-oriented nature of the
language, Ruby is highly customizable.

125

CHAPTER 5 THE RUBY ECOSYSTEM

In terms of its object-oriented nature, Ruby has also been heavily influenced by
Smalltalk, a prolific object-oriented language developed in the 1970s. As in Smalltalk,
almost everything in Ruby is an object, and Ruby also gives programmers the ability to
change many details of the language’s operation within their own programs on the fly.
This feature is called reflection.

To a lesser extent, Python, Lisp, Fiffel, Ada, and C++ have also influenced Ruby.
These influences demonstrate that Ruby isn’t a language that’s afraid to take on the best
ideas from other languages. This is one of many reasons why Ruby is such a powerful
and dynamic language. The implementation of many of these features has also made the
migration from other languages to Ruby significantly easier. Learning Ruby means, to a
great extent, learning the best features of other programming languages for free. (Refer to
Appendix A for a comparison between Ruby and other languages.)

Go West

As a language initially developed for Matz’s own use in Japan, the initial documentation
was entirely in Japanese, locking most non-Japanese users out. Although Ruby has
always used English for its keywords (such as print, puts, if, and so on) like most
programming languages, it wasn’t until 1997 that the initial documentation actually
written in English began to be produced.

Matz first began to officially promote the Ruby language in English in late 1998 with
the creation of the ruby-talk mailing list, still one of the best places to discuss the Ruby
language, as well as a useful resource with more than 300,000 messages archived at the
list’s website (http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml).

Note You can subscribe to ruby-talk yourself by visiting www.ruby-1lang.
org/en/community/mailing-1lists/ and using the signup form.

An official English language website soon followed in late 1999 with the creation of ruby-
lang.org (www.ruby-lang.org/), which is still Ruby’s official English language website (see
Figures 5-1 and 5-2 for a comparison of the official site between then and now).

126

http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-lang.org/

CHAPTER 5 THE RUBY ECOSYSTEM

Ruby Search
L]
Ruby: A gem of a programming language
R b Search
] % Su—
What's New B s
Rl.by_
» The new stable version 1.4.6 is released (0O0816) o Tgs
+ The book from Addison Wesley by Dave & Andy is going to be out around mid October. Stay mned. (00/08/16) &
+ "Brave GNU World' introduces Ruby. (00/08/14)
Brave GNU World issue 18 contains the article about Ruby. Brave GNU World is the international column magazine: English, =

Japanese, German, French, Espanish.
» Perl/Ruby Conference will be held in Kyoto (00/08/03)

PerlRuby Conference in Japan will be held from Nov. 29 to Dev. 1 at Kyoto Intemational Conference Hall. This conference is sponsored by
O'Reilly Japan and Japan Linux Association.

« The Page of the Day (00/08/02)

Thirty-seven R ns I Love Ru
I'love this page.

» Nightly snapshot is available. This is tar'ed and gzip'ed file of the latest CV'S. It may contain unfixed problems. (as usual ;-) (00/06/30)
« InformIT published an article The Ruby Programming Language. Matz wrote this. (00/06/13)
« Ruby Bug Tracking System is available. (00/04/10)
* IBM developerWork picked up Ruby in Ruby: An open source gem from Japan. (00/02/10)
« new better FAQ is available.
+ The first book about Ruby is published: ISBN4-7561-3254-5. (99/10/26)
But it is written in Japanese! Sormry.

Figure 5-1. The official English language Ruby homepage in 2000

127

CHAPTER 5 THE RUBY ECOSYSTEM

Ruby

A PROGRAMMER'S BEST FRIEND

Downloads Documentation Libraries Community News Security About Ruby

Ru by is... say .-F::".I léve Rub}
puts say

A dynamic, open source programming language with a N

focus on simplicity and productivity. It has an elegant say['love'] = "*loves"

syntax that is natural to read and easy to write. EOCE 587 UPCHNY

@ Download RUby or Read More... ‘.t:.nes {I";:.nu.ts say }

Support of Ruby 2.4 has ended Get Started, it's easy!

We announce that all support of the Ruby 2.4 series has ended. Try Ruby! (in your browser)

ntinue R iNg... Ribin Tty Mivdies
Posted by usa on 5 Apr 2020 by e Ot
Languages
Ruby 2.7.1 Released
Rubv 2.7.1 has been released. Explore a new world...

Figure 5-2. The official Ruby homepage as of 2020

Ruby failed to catch on with all but a few ardent developers until 2000 and 2001 (with
the main Ruby Usenet newsgroup comp.lang.ruby being created in May 2000), and even
then the English-speaking Ruby community was tiny. Matz didn’t consider this to be
important though, and was even surprised that other people found his language useful,
having only created it to fit his own way of thinking.

However, the exposure of Ruby to the larger audience of software developers
continued to be low. IBM published an article with a brief overview of Ruby and an
interview with Matz in 2000, and the much-revered Dr. Dobb’s Journal published an
article by Dave Thomas and Andy Hunt with a similar introduction in January 2001.

Despite Ruby’s obvious power, it appeared as if Python and PHP were going to win
the race to become “the next Perl” as general scripting and web languages, respectively,
up until 2004. But then everything changed when a young Dane released Ruby on Rails, a
Ruby-powered web application framework that quickly changed the perception of Ruby
in the worldwide development community. Before we look at Rails, however, we need to
see how else Ruby has flourished in the last several years.

128

CHAPTER 5 THE RUBY ECOSYSTEM

Alternative Ruby Implementations

Until around 2007, the official Ruby implementation as developed by Matz and the Ruby
core team (known as MRI—Matz’s Ruby Interpreter) was the only reliable way to run
Ruby scripts. Since then, some alternative Ruby implementations have become viable for
certain uses.

This book does not focus on any implementations other than the official ones for
learning the language, but as the alternative implementations may have relevance for
you in the future, here are a few of the most popular ones:

o JRuby (www.jruby.org/): A Ruby implementation that runs on the
Java Virtual Machine (JVM). Even in 2009, it was on par with Ruby
1.9 in terms of performance, and since then has proven to be faster
than MRI in many situations. As a Java-based implementation, JRuby
gives Ruby developers access to the whole Java ecosystem, including
Java libraries, distribution tools, and application servers. Conversely,
developers on the JVM platform get access to Ruby’s benefits.

o IronRuby (http://ironruby.net/): An implementation of Ruby for
Microsoft’s.NET platform. The head developer was John Lam, who
worked for Microsoft. As of 2012, the project appeared to no longer
be regularly updated.

In practical terms, as of mid-2016, JRuby is an alternative to MRI for day-to-day and
production use, although it has its pros and cons. JRuby’s support for all things Java
makes it an attractive option in settings where a Java ecosystem is well established. For
anyone new to Ruby, however, I would strongly recommend sticking with MRI.

Ruby on Rails

In the last several years, it has become impossible to publish any book or article about
Ruby without at least mentioning Ruby on Rails (or Rails, for short). Rails is a web
application framework that has propelled the popularity of Ruby outside of Japan

from a humble core of avid developers to hundreds of thousands of developers all

now interested in using the language. This section examines Rails, explains why it’s
important, and discusses how its presence has changed the whole dynamic of the Ruby
ecosystem.

129

http://www.jruby.org/
http://ironruby.net/

CHAPTER 5 THE RUBY ECOSYSTEM

Note An application framework is a set of conventions, structures, and systems
that provide an underlying structure to make application development easier. Ruby
on Rails is such a framework for web application development.

I'll be covering Ruby on Rails development briefly (the framework advances too quickly
for a full tutorial in a long-lasting book like this one) in Chapter 13, butlet’s first look at the
motivation behind the framework and how it has changed the entire Ruby landscape.

Why Rails Came into Existence

37signals (www.37signals.com/), a successful web software company recently renamed
Basecamp, was founded in 1999 initially as a web design agency that promoted the use
of clean, fast, and functional designs over the gee-whiz Flash-based websites that were
popular at the time. With only two cofounders running the entire company, they quickly
realized they needed some tools to help them run their business efficiently. They tried
some off-the-shelf software but found nothing that matched their needs and found most
solutions to be bloated and complex. They felt their attitude toward web design should
also be applied to applications, and in mid-2003 decided to develop their own project
management tool.

As designers rather than coders, 37signals turned to the services of David
Heinemeier Hansson, a student in Copenhagen, Denmark, to develop their project
management application. Rather than use the then-common tools such as Perl or PHP,
Hansson was convinced that 37signals could develop the application far more quickly
and completely by using Ruby. Previously a PHP coder, Hansson was beginning to feel
the pain of using PHP for large web application development, and felt a new direction
should be sought.

As development on the nascent application (called Basecamp) progressed, the team
members showed it to others in the industry and quickly realized from the responses they
heard that they should release the application to the public rather than keep it for their own use.

With a successful public release of Basecamp in February 2004—only about four
months after beginning the project—the development methodology adopted by
37signals and Hansson was proven, and 37signals began a rapid transition into an
application development company, with Hansson eventually becoming a partner at the
company.

130

http://www.37signals.com/

CHAPTER 5 THE RUBY ECOSYSTEM

Ruby proved to be the silver bullet that powered the rapid development of Basecamp.
Hansson used Ruby’s object orientation and reflection features to build a framework that
made developing database-driven web applications easier than ever before. This framework
became known as Ruby on Rails, and was first released to the public in July 2004. 37signals
continued to develop new products quickly using the power of the new framework.

Like Ruby itself, the Ruby on Rails framework didn’t immediately experience an
explosion of popularity, but found a small number of ardent fans who began to realize its
power and, in many cases, wished to replicate 37signals’ success.

How the Web (2.0) Was Won

Ruby on Rails wasn’t a wallflower for long. 2005 was an epic year for Ruby on Rails, and
Ruby’s popularity exploded alongside it. The initial fans of Ruby on Rails had begun
blogging feverishly about the technology and were winning over converts with an
unintentional, but surprisingly potent, grassroots viral marketing campaign.

In January 2005, Slashdot, the world’s most popular technology community website
at the time, published its first post mentioning Ruby on Rails, and since then has run
scores of stories on the technology, each encouraging existing PHP, Perl, and Python
developers to give Ruby and Ruby on Rails a try.

In March 2005, Hansson announced the development of the first commercial Rails
book, which came out in beta PDF form in May of that year. In September 2005, the print
version of the book went on sale and immediately topped the Amazon.com chart for
programming books.

In the space of a year, Rails books were under development and being released by
a multitude of publishers; tens of thousands of blog posts had been made about the
technology; hundreds of thousands of screencasts (video tutorials demonstrating how to
use Rails) had been watched online; and David Heinemeier Hansson had won numerous
awards, including Google and O’Reilly’s “Best Hacker of the Year 2005.” Tens of thousands
of developers were suddenly flocking to Ruby on Rails and, as a consequence, to Ruby.

The Ruby ecosystem was thrust into the limelight, especially on the back of the then-
popular Web 2.0 concept, a coined term that referred to a supposed second generation
in Internet-based services, and was often used to refer to the growing culture of blogs,
social networking, wikis, and other user content-driven websites. As Ruby and Rails
made these sites easy to develop, many developers used these tools to their advantage to
get ahead in the Web 2.0 field and beyond.

131

CHAPTER 5 THE RUBY ECOSYSTEM

The Open Source Culture

When Ruby was initially developed, Matz didn’t have a specific development culture in
mind. He developed the language to be for his own use and to fit his own mindset. For
the first couple years, he kept the language mostly to himself. Most of today’s culture
relating to how to develop software with Ruby has evolved in the last several years and is
partly shared with other programming languages.

A common element of the Ruby development culture that’s crucial to understand is
the open source movement.

Tip Feel free to skip this section and move on to “Where and How to Get Help” if
you're already familiar with the concepts surrounding open source.

What Is Open Source?

If you've used Linux or downloaded certain types of software, you might be familiar with
the term open source. Simply, open source means that the source code to an application
or library is made available publicly for other people to look at and use. There might

be restrictions on what people can do with the code (generally via a license), but it’s
publicly viewable. Much like Linux, Ruby, along with nearly all its libraries, is released
under an open source license—in contrast to, say, Microsoft Windows, whose source
code isn’t readily available (although Microsoft is continuing to make more moves
toward open source in recent years).

The terms of Ruby’s license don’t require that any applications you produce with
Ruby also need to be made open source. You can develop proprietary “closed source”
applications with Ruby and never let anyone else see the code. Choosing whether to
release your code as open source or not can be a tough decision.

There are often shades of gray in the open source vs. closed source decision. When
37signals developed the first Ruby on Rails-powered application, Basecamp, they didn’t
release the source openly, but they did extract the Ruby on Rails framework and release
that as open source. The result is that their company has received a lot of publicity, and
37signals has hired some great coders who worked on Ruby on Rails for free, benefiting
everybody. Software products such as the popular Apache httpd and nginx web servers
and the PostgreSQL database system are also available under varying open source
licenses and are routinely improved by unpaid coders.

132

CHAPTER 5 THE RUBY ECOSYSTEM

The open source community is one of sharing knowledge freely and collaborating
to improve the systems and services that most of us use. Although proprietary software
will always have its place, open source is rapidly becoming the de facto way to develop
programming languages, libraries, and other non-application types of software.

Understanding open source is an important key to understanding the Ruby
community. Although many developers don’t necessarily open source the code to their
applications, they’ll often release the tools and code tricks to the community so that they
can benefit from the peer review and popularity that results.

Releasing your code as open source isn’t necessarily a bad business decision. It
could actually improve the quality of your code and tools, and make you much better
known in the industry.

Where and How to Get Help

This book will help you learn all the essentials about Ruby and more besides, but it’s
often useful to get more timely or domain-specific assistance while coding. In this
section, you'll look at a few ways that you can get assistance from the large community
of Ruby developers. (There’s also a more succinct and complete list of resources in
Appendix B that you might prefer for future reference.)

Mailing Lists

For decades, mailing lists have been popular havens for discussion about programming
languages. Favored by the more technical members of any programming language’s
culture, they're a good place to ask questions about the internals or future of the
language, along with esoteric queries that only a true language uber-geek could answer.
They are not, however, suited for basic queries.

Ruby has three official mailing lists for English speakers to which you can subscribe,
as follows:

o ruby-talk: Deals with general topics and questions about Ruby

e ruby-core: Discussion of core Ruby issues, specifically about the
development of the language

e ruby-doc: Discussion of the documentation standards and tools for
Ruby (rarely used)

133

CHAPTER 5 THE RUBY ECOSYSTEM

Further information about these lists is available at waw.ruby-1lang.org/en/
community/mailing-lists/.

Lists are also available in Japanese, French, and Portuguese, and these are similarly
listed on the first page in the preceding paragraph. The Japanese mailing lists, being
composed of some of the most experienced Ruby developers, are often read by English
speakers using translation software. Information about this is also available at the
aforementioned web page. Ruby’s mailing lists appear to be getting quieter year by year,
but do still work.

Chat

On the Internet, there are several ways you can discuss topics with other users in real
time. For example, Slack and Discord provide real-time chat via a desktop, mobile, or
web app:

Ruby on Rails Slack channel (www. rubyonrails.1link/):
A community of Ruby on Rails developers from all over the world.

Ruby Discord Server (https://discord.gq/bHB8Jkx): A Discord
server where developers discuss and seek help on various
Ruby topics.

Documentation

There’s a significant amount of documentation available on the Web (as well as within
Ruby itself) for Ruby developers. The site www.ruby-doc.org/ provides a web-based
rendering of the documentation that comes with Ruby 1.8 through to 3.0 and allows you
to look up references for all of the internal classes and the standard library.

The API documentation for the current stable release of Ruby is available at www.
ruby-doc.org/core/. Produced automatically from the Ruby source code with Ruby’s
built-in documentation tool, rdoc, the structure of the documentation isn’t immediately
obvious. Usually you can choose between viewing documentation for certain files that
make up Ruby, documentation for each different base class, or documentation for
certain methods. You don’t get a logical order to follow, and there are no deep tutorials.
This sort of documentation is for reference purposes only.

134

http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.rubyonrails.link/
https://discord.gg/bHB8Jkx
http://www.ruby-doc.org/
http://www.ruby-doc.org/core/
http://www.ruby-doc.org/core/

CHAPTER 5 THE RUBY ECOSYSTEM

Most Ruby libraries and applications use a similar scheme for their documentation,
and the links to this are made available on their official sites. For example, Ruby on Rails’
API documentation is available at https://api.rubyonrails.org/.

Forums

Forums make up some of the most popular websites on the Internet. Unlike newsgroups
or mailing lists, which tend to be the domain of more technical people, forums
provide extremely easy access to a non-real-time discussion on the Web. Forums are a
particularly good place to ask more basic questions and to get general advice.

Several Ruby forums are available to try:

e Ruby-Forum.com (Wwww.ruby-forum.com/): Ruby-Forum.com
provides a forum style view onto some of the popular Ruby mailing
lists. This means it isn’t a true forum in the strictest sense, but people
used to forums will appreciate the structure.

o Go Rails Forum (https://gorails.com/forum): Go Rails Forum is an
active forum focused on Ruby on Rails.

Joining the Community

One of the reasons for programming communities is for people to get help from others
who are experienced with the language, but also to share knowledge and to develop
useful tools and documentation together. Solely “taking” from the community is natural
at the start of a developer’s experience with a new language, but it’s essential to give
something back once you've developed some knowledge of your own. Ruby developers
are proud that their community is one of the friendliest and easiest to get involved with,
and there are a number of ways to make a mark.

Give Help to Others

In the previous section, we looked at the ways that you can get help from other Ruby
developers, but once you've gained a certain amount of Ruby knowledge, you'll be able to
start helping people yourself. You can participate on the IRC chatrooms, forums, and mailing
lists and begin to answer some of the questions for those with lesser knowledge than yourself.

135

https://api.rubyonrails.org/
http://www.ruby-forum.com/
https://gorails.com/forum

CHAPTER 5 THE RUBY ECOSYSTEM

Helping others isn’t always the selfless, time-consuming act it might seem at first.
Often, questions are asked that relate to your knowledge but require you to work out
something new or identify a new solution to a problem you've already solved. My
personal experience with helping people in the IRC chatrooms has been that my mind
has been constantly stretched. Although sometimes I might have the best answer, other
times I might give an inaccurate or confusing answer that’s then corrected by someone
else, helping me to gain new insights.

Don’t be afraid to dive in and try to help others. If you feel your answer is right, even if
it's not, it’s likely that several people will try to help, and the Ruby community is generally
forgiving of such errors. In the Ruby community, effort is often prized above prowess.

Contribute Code

Once you begin to develop your own Ruby applications, you might find features missing
in the applications or libraries you wish to use, and you'll either develop your own or
work on upgrading those that already exist. If a project is open source, you should be
able to supply your changes and upgrades back to the project, meaning that you improve
the quality of the software for the entire community. Other than benefiting others, this
also means your code is likely to be extended and improved itself, and you’ll be able to
reap even more benefit than if you kept your code to yourself.

All open source Ruby libraries and applications have someone who is in charge
of maintaining them, and if no guidance is provided on the project’s website, simply
contact the maintainer and see whether you can contribute your code.

Alternatively, if you don’t feel confident enough to supply code, but see large gaps
in the documentation for a project—perhaps even in Ruby itself—maintainers are often
ecstatic if you'll supply documentation. You can learn more about how to document
Ruby programs in Chapter 7. Many coders aren’t good at documentation or don’t have
the time to complete it, so if you have a skill for it, contributing documentation to a
project could make you very popular indeed!

136

CHAPTER 5 THE RUBY ECOSYSTEM

News Sites and Sources

There are a variety of sites and podcasts through which you can get up-to-date Ruby
news and articles. The following are some of the most popular:

e RubyFlow (Wwww.rubyflow.com/): This is a Ruby community link blog
where all of the items are supplied by other Ruby developers. You'll
find a lot of interesting Ruby-related announcements and links to
tutorials scattered across the Web. Of course, if you write anything
helpful of your own, you can post it to RubyFlow and get the attention
of the Ruby community.

o Ruby Weekly (https://rubyweekly.com/): A weekly email newsletter
dedicated to sharing the latest from the entire Ruby world.

o Ruby on Reddit (https://reddit.com/x/ruby): The Ruby section of
the popular social bookmarking and discussion site aggregates most
of the best Ruby blogs into a single page.

By visiting these sites, you'll quickly learn about hundreds of other Ruby resources,
tricks, and sources of documentation. If you comment on these sites and begin to update
a blog yourself with your experiences of Ruby, you'll quickly become established in the
Ruby community.

Summary

In this chapter, we’ve taken a break from coding to focus on the culture, community, and
ecosystem surrounding the Ruby language. Understanding the larger world around the
Ruby language is extremely useful, as it’s from this community that most developers will
get assistance, advice, code, and even paying work.

Being able to get help and give help in return benefits the community, helps the
cause of Ruby to progress, and ultimately helps with your own programming skills.

The Ruby community is important and friendly to new Ruby developers, making it
ideal to get involved as soon as possible when you begin to learn Ruby. Make sure you
use the resources the community provides to the fullest as you learn Ruby and begin
to develop applications. A single book cannot turn anyone into a Ruby expert, but a
collection of valuable resources and participation in the community can.

Refer to Appendix B for a larger collection of URLs and links to other Ruby resources
that are available online.

137

http://www.rubyflow.com/
https://rubyweekly.com/
https://reddit.com/r/ruby

PART Il

The Core of Ruby

This part of the book walks you through the remaining essential elements of Ruby and
goes into more detail about some previously seen aspects of the language. By the end
of Part 2, you'll be able to develop Ruby applications complete with complex class
and object arrangements of your own; you'll know how to test, document, and deploy
your applications; and you'll use databases and external data sources to feed your

applications.

CHAPTER 6

Classes, Objects,
and Modules

In Chapter 2, we dived straight into the principles of object orientation, the method of
representing concepts in Ruby by using classes and objects. Since then, we’ve looked
at Ruby’s standard classes, such as String and Array, worked with them, and then
branched off to look at Ruby’s logic and other core features.

In this chapter, the focus is back onto object orientation, but rather than looking at
the concepts from afar, we’ll be getting into the details. We'll look at why classes and
objects behave the way they do, why object orientation is a viable development tool, how
you can implement classes to match your own requirements, and how to override and
extend the classes Ruby provides by default. Finally, you'll implement a basic dungeon
text adventure to demonstrate how several real-world concepts can combine into an

easily maintainable set of interconnected classes.

Why Use Object Orientation?

Object orientation is not the only development approach with which to develop
software. The procedural style of programming predates it, and continues to be used

in languages such as C. Whereas object orientation dictates that you define concepts
and processes as classes from which you can create objects, programming procedurally
means you focus on the steps required to complete a task instead, without paying
particular attention to how the data is managed.

141
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_6

https://doi.org/10.1007/978-1-4842-6324-2_6#DOI

CHAPTER6 CLASSES, OBJECTS, AND MODULES

Imagine two developers within a single software development company who
are vying to be respected as the most knowledgeable programmer in the company.
Capitalizing on the rivalry, their boss issues both of them the same tasks and uses the
best code in each case. There’s only one difference between the two programmers. One
follows the principles of object-oriented development, and the other is a procedural
programmer coding without using classes and objects.

For a forthcoming project, the boss demands some code that can work out the perimeter
and area of various shapes. She says the shapes required are squares and triangles.

The procedural programmer rushes away and quickly comes up with four obvious
routines:

def perimeter of square(side length)
side_length * 4
end

def area_of square(side length)
side_length * side length
end

def perimeter of triangle(sidei, side2, side3)
sidel + side2 + side3
end

def area of triangle(base width, height)
base_width * height / 2
end

Note Remember, it’s not necessary to use return to return values from
methods in Ruby. The last expression within the method is used as the return value
by default. If it feels right for the situation or seems clearer to you, however, you
can certainly use return with impunity!

Finishing first, the procedural programmer is sure his code will be chosen.

142

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

The object-oriented programmer takes longer. He recognizes that the specifications
might change in the future and that it would be useful to define a Shape class and then
create classes that would inherit from Shape. This would mean that if extra features needed
to be added to shapes in general, the code would be ready. He submits his initial solution:

class Shape
end

class Square < Shape
def initialize(side length)
@side length = side length
end

def area
@side_length * @side_length
end

def perimeter
@side_length * 4
end
end

class Triangle < Shape

def initialize(base width, height, side1l, side2, side3)
@base_width = base_width
@height = height
@sidel = sidel
@side2 = side2
@side3 = side3

end

def area
@base_width * @height / 2
end

def perimeter
@sidel + @side2 + @side3
end
end

143

CHAPTER6 CLASSES, OBJECTS, AND MODULES

Note This code might seem complex and alien at this time, but we’ll be covering
the techniques used here later in this chapter. For now, simply recognize the
structure of laying down classes and methods, as covered in Chapter 2.

The procedural programmer scoffs at the object-oriented solution. “Why all the
pointless assignments of data? That object-oriented code is 90 percent structure and 10
percent logic!”

The boss is impressed by the shortness of the procedural code, but decides to try out

both versions for herself. She quickly spots a big difference:

puts area of triangle(6,6)
puts perimeter of square(5)

18
20

my_square = Square.new(5)

my triangle = Triangle.new(6, 6, 7.81, 7.81, 7.81)
puts my square.area

puts my square.perimeter

puts my triangle.area

puts my triangle.perimeter

25
20
18
23.43

The boss notices that with the object-oriented code, she can create as many shapes
as she wants in a logical way, whereas the procedural code expects her to have a mental
note of the shapes she wants to work with. She isn’t without her concerns, though.

“More lines of code means more time required,” she says. “Is it worth taking the
object-oriented route if it means more lines of code, more time, and more hassles?”

The object-oriented developer has heard this complaint before and immediately
springs into action. “Try dealing with a large number of random shapes,” he says.

144

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

The boss isn’t entirely up to date with modern development trends, but when she
discovers that many new types of shapes can be produced easily by copying and pasting
the existing classes with some minor tweaks, she begins to be won over. She also realizes
that if a shape could be stored as an object referenced by a single variable and that if
each shape class accepted the same methods, the type of shape presented wouldn't
matter (this quality is often referred to as polymorphism). She could call the perimeter
or area method on any shape without worry. The procedural code, on the other hand, is
just a jumble of different routines, and the developer would be forced to keep track of the
different types of shapes to know which procedures to run. The Shape class also provides
a way to give general functionality to all the different types of shapes if it’s necessary in
the future. The boss knows which code to choose!

“Object-oriented code requires a little more setup, but when it comes to scaling that
code to fit real-life requirements, there’s no contest,” she says.

Note It's worth noting that in the latter triangle example, the data provided is
erroneous (how can a side be 7.81 units long, yet the base be 6 units long?).
The beauty of object-oriented programming, however, is that since the triangle
is a single object, it would be easy to add a “validation” routine to check the
parameters used to define the object and reject or recalculate those that are
incorrect. With the procedural code, the developer should perform any “checks”
manually every time he wants to work with a triangle built from fresh data!

The basic advantage with object-oriented programming is that even if there’s more
structure involved in setting up your code, it’s easy for a non-expert to understand how
classes and objects relate, and it’s easier to maintain and update the code to deal with
real-life situations.

Object Orientation Basics

Let’s recap the basic knowledge of classes and objects that you acquired over the past
few chapters.

A class is a blueprint for objects. You have only one class called Shape, but with it, you
can create multiple instances of shapes (Shape objects), all of which have the methods
and attributes defined by the Shape class.

145

CHAPTER6 CLASSES, OBJECTS, AND MODULES

An object is an instance of a class. If Shape is the class, then x = Shape.new creates a
new Shape instance and makes x reference that object. You would then say x is a Shape
object, or an object of class Shape.

Local, Global, Object, and Class Variables

In Chapter 2, you created some classes and added methods to them. To recap, here’s
a simple demonstration of a class with two methods and how to use it. First, here’s the
class itself:

class Square
def initialize(side_length)
@side_length = side length
end

def area
@side_length * @side_length
end
end

Next, let’s create some square objects and use their area methods:

a = Square.new(10)
b = Square.new(5)
puts a.area
puts b.area

100
25

The first method—and when I say “first,” mean the first method in our example;
the actual order of methods in code is irrelevant—in the Square class is initialize.
initialize is a special method that’s called when a new object based on that class is
created. When you call Square.new(10), the Square class creates a new object instance
of itself and then calls initialize on that object.

146

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

In this case, initialize accepts a single argument into side_length as passed
by Square.new(10) and assigns the number 10 (now referenced by side_length)to a
variable called @side_length. The @ symbol before the variable name is important in
this case. But why? To understand why some variables are prefixed with certain symbols
requires understanding that there are multiple types of variables, such as local, global,
object, and class variables.

Local Variables

In previous examples, you've created variables simply, like so:

X = 10
puts x
10

In Ruby, this sort of basic variable is called a local variable. It can be used only in
the same place it is defined. If you jump to using an object’s methods or a separate
method of your own, the variable x doesn’t come with you. It’s considered to be local
in scope. That is, it’s only present within the local area of code. Here’s an example that
demonstrates this:

def basic_method
puts x
end

X =10
basic_method

This example defines x to equal 10 and then jumps to a local method called basic_
method. If you ran this code through irb, you would get an error like this:

NameError (undefined local variable or method “x' for main:Object)

What'’s happening is that when you jump to basic_method, you're no longer in the
same scope as the variable x that you created. Because X is a local variable, it exists only
where it was defined. To avoid this problem, it’s important to remember to use only local
variables where they’re being directly used.

147

CHAPTER6 CLASSES, OBJECTS, AND MODULES

Here’s an example where you have two local variables with the same name but in
different scopes:

def basic_method
X = 50
puts x

end

x =10
basic_method
puts x

50
10

This demonstrates that local variables live entirely in their original scope. You set x
to 10 in the main code and set x to 50 inside the method, but x is still 10 when you return
to the original scope. The x variable inside basic_method is not the same x variable that’s
outside of the method. They're separate variables, distinct within their own scopes.

Global Variables

In opposition to local variables, Ruby can also use global variables. As their name
suggests, global variables are available from everywhere within an application, including
inside classes or objects.

Global variables can be useful, but aren’t commonly used in Ruby. They don’t mesh
well with the ideals of object-oriented programming, as once you start using global
variables across an application, your code is likely to become dependent on them.
Because the ability to separate blocks of logic from one another is a useful aspect of
object-oriented programming, global variables are not favored.

You define global variables by putting a dollar sign ($) in front of the variable name,
like so:

def basic_method
puts $x
end

$x = 10

148

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

basic_method
10

$x is defined as a global variable, and you can use it anywhere in your application.

Note The $ and @ characters that denote global variables and object variables
(as demonstrated in the next section) are technically called sigils. Many developers
are, however, unaware of this. This book is not beyond giving you knowledge that
can make you more popular at cocktail parties!

Instance or Object Variables

Where local variables are specific to the local scope and global variables have global
scope, instance variables (also known as object variables) are so named because they
have scope within, and are associated with, the current object. A demonstration of this
concept was shown at the start of this section with the Square class:

class Square
def initialize(side length)
@side length = side length
end

def area
@side_length * @side_length
end
end

Instance variables are prefixed with an @ symbol. In the Square class, you assign
the side_length provided to the class to @side_length. @side_length, as an instance
variable, is then accessible from any other method inside that object. That’s how the
area method can then use @side_length to calculate the area of the square represented
by the object:

Square.new(10)

Square.new(5)

149

CHAPTER6 CLASSES, OBJECTS, AND MODULES

puts a.area
puts b.area

100
25

The results are different, even though the code to work out the area in both cases is
@side_length * @side_length. This is because @side_length is an instance variable
associated only with the current object or instance.

Tip If you didn’t fully understand the Shape/Square/Triangle example at the
start of this chapter, now would be a good time to look back at it, as it used several
object variables to develop its functionality.

Class Variables

The last major type of variable is the class variable. The scope of a class variable is within
the class itself, as opposed to within specific objects of that class. Class variables start
with two @ symbols (@@) as opposed to the single @ symbol of instance variables.

Class variables can be useful for storing information relevant to all objects of a
certain class. For example, you could store the number of objects created so far in a
certain class using a class variable like so:

class Square
def initialize
if defined?(@@number of squares)
@@number of squares += 1
else
@@number of squares = 1
end
end

def self.count
@@number_of squares
end
end

150

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

a
b
puts Square.count

Square.new
Square.new

Because @@number_of squares is a class variable, it’s already defined each time you
create a new object (except for the first time, but that’s why you check to see if it’s defined
and, if not, give it an initial value of 1).

Note In recent years, class variables have begun to fall out of favor among
professional Ruby developers. Fashions come and go in the Ruby world but
ultimately enable developers to work together more smoothly. Since all classes are
themselves objects within Ruby, it has become more popular to simply use object
variables within the context of class methods in order to keep things simple.

Class Methods vs. Instance Methods

In your Square class, you defined two methods: initialize and area. Both are instance
methods, as they relate to, and operate directly on, an instance of an object. Here’s the
code again:

class Square
def initialize(side length)
@side_length = side_length
end

def area
@side length * @side length
end
end

Once you've created a square with s = Square.new(10), you can use s.area to get
back the area of the square represented by s. The area method is made available in all
objects of class Square, so it’s considered to be an instance method.

151

CHAPTER6 CLASSES, OBJECTS, AND MODULES

However, methods are not just useful to have available on object instances. It can be
useful to have methods that work directly on the class itself. In the previous section, you
used a class variable to keep a count of how many square objects had been created, and
it would be useful to access the @@number_of squares class variable in some way other
than through Square objects.

Here’s a simple demonstration of a class method:

class Square
def self.test method
puts "Hello from the Square class!"
end

def test method
puts "Hello from an instance of class Square!"
end
end

Square.test method
Square.new.test _method

Hello from the Square class!
Hello from an instance of class Square!

This class has two methods. The first is a class method, and the second is an instance
method, although both have the same name of test_method. The difference is that the
class method is denoted with self., where self represents the current class, so def
self.test_method defines the method as being specific to the class. However, with no
prefix, methods are automatically instance methods.

Class methods give you the mechanism to implement the “object counter” hinted at

earlier:

class Square
def initialize
if defined?(@@number of squares)
@@number of squares += 1
else
@@number of squares = 1

152

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

end
end

def self.count
@@number_of squares
end
end

Let’s give it a try:

a = Square.new
puts Square.count
b = Square.new
puts Square.count
Cc = Square.new
puts Square.count

Notice you don’t refer to a, b, or c at all to get the count. You use the Square.count
class method directly. Consider it as if you're asking the class to do something that’s
relevant to the class as a whole, rather than asking the objects.

Inheritance

An interesting object-oriented programming concept is inheritance, which allows you
to generate a taxonomy of classes and objects. If you consider all living things as a class
called LivingThing (see Figure 6-1), under that class you could have (and let’s keep
this simple, biologists!) Plant and Animal classes. Under Animal, you'd have Mammal,
Fish, Amphibian, and so forth. Digging into Mammal, you could work through Primate
and Human. A Human is a living thing, a Human is an Animal, a Human is a Mammal, and so
forth, but each level down is more specific and targeted than that above it. This is class
inheritance in action! The same system applied to the Shape example where Triangle
and Square inherited directly from Shape.

153

CHAPTER6 CLASSES, OBJECTS, AND MODULES

Living Thing e’ :
pd TN o0
Animal Plant |-~~~
e N ‘. “va
Mammal Fish -l _ " S .
/ RN TN
Primate | | N e
7 b
Human
Monkey

Figure 6-1. An example of a hierarchy of “living things”

The benefit of inheritance is that classes lower down the hierarchy get the features
of those higher up, but can also add specific features of their own. The basic “all living
things” class is so generic that the only functionality you could give to it is a basic “living
or dead” method. However, at the animal level, you could add methods such as eat,
excrete, or breathe. At the human level, you'd inherit all this functionality but be able to
add human methods and qualities such as sing, dance, and love.

Ruby’s inheritance features are similarly simple. Any class can inherit the features
and functionality of another class, but a class can inherit only from a single other
class. Some other languages support multiple inheritance, a feature that allows classes
to inherit features from multiple classes, but Ruby doesn’t support this. Multiple
inheritance can cause some confusing situations—for instance, classes could inherit
from one another in an endless loop—and the efficacy of multiple inheritance is
debatable.

Let’s look at how inheritance works in code form:

class ParentClass
def method1
puts "Hello from methodl in the parent class"
end

def method2
puts "Hello from method2 in the parent class"

154

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

end
end

class ChildClass < ParentClass
def method2
puts "Hello from method2 in the child class"
end
end

my object = ChildClass.new
my_object.method1

Hello from method1 in the parent class
my_object.method2
Hello from method2 in the child class

First, you create the ParentClass with two methods, method1 and method2. Then
you create ChildClass and make it inherit from ParentClass using the ChildClass <
ParentClass notation. Last, you create an object instance of ChildClass and call its
method1 and method2 methods.

The first result demonstrates inheritance perfectly. ChildClass has no method1 of its
own, but because it has inherited from ParentClass, and ParentClass has a method1, it
uses it.

However, in the second case, ChildClass already has a method2 method, so the
method2 method supplied by the parent class is ignored. In many cases, this is ideal
behavior, as it allows your more specific classes to override behavior provided by more
general classes. However, in some situations you might want a child method to call an
inherited method and do something with the result.

Consider some basic classes that represent different types of people:

class Person
def initialize(name)
@®name = name
end

155

CHAPTER6 CLASSES, OBJECTS, AND MODULES

def name
@®name
end
end

class Doctor < Person
def name
"Dr. " + super
end
end

In this case, you have a Person class that implements the basic functionality of
storing and returning a person’s name. The Doctor class inherits from Person and
overrides the name method. Within the name method for doctors, it returns a string
starting with Dr., appended with the name as usual. This occurs by using super, which
looks up the inheritance chain and calls the method of the same name on the next
highest class. In this example, you only have two tiers, so using super within the name
method in Doctor then uses the name method in Person.

The benefit of using inheritance in this way is that you can implement generic
functionality in generic classes and then implement only the specific functionality that
more specific child classes require. This saves a lot of repetition and means that if you
make changes to the parent classes, child classes will inherit these changes too. A good
example of this might be if you changed Person to take two arguments, firstname and
lastname. The Doctor class wouldn’t need to be changed at all to support this change.
With one child class, this doesn’t seem too important, but when you have hundreds of
different classes in an application, it pays to cut down on repetition!

Note In the Ruby world, the concept of cutting down on repetition is commonly
called DRY, meaning Don’t Repeat Yourself. If you can code something once and
reuse it from multiple places, that’s usually the best way to practice “DRY.”

156

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

Overriding Existing Methods

Because it’s a dynamic language, one clever thing you can do with Ruby is override
existing classes and methods. For example, consider Ruby’s String class. As covered in
Chapter 3, if you create a string, you end up with an object of class String, for example:

X = "This is a test"
puts x.class

String

You can call a number of different methods upon the String object stored in x:

puts x.length
puts X.upcase

14
THIS IS A TEST

Let’s stir things up a bit by overriding the length method of the String class:

class String
def length
20
end
end

Many newcomers to Ruby, even experienced developers, initially fail to believe this
will work, but the results are exactly as the code dictates:

puts "This is a test".length
puts "a".length
puts "A really long line of text".length

20

20
20

157

CHAPTER6 CLASSES, OBJECTS, AND MODULES

Some libraries and extensions (add-ons) to Ruby override the methods supplied by the
core classes to extend the functionality of Ruby in general. However, this demonstration
shows why it’s always necessary to tread with caution and be aware of what'’s going on in
your application. If you were relying on being able to measure the length of strings, and the
length method gets overridden, you're going to have a hard time!

You should also note that you can override your own methods. In fact, you've
probably been doing it a lot already by following these examples in irb:

class Dog
def talk
puts "Woof!"
end
end

my_dog = Dog.new
my_dog.talk

Woo+!

class Dog
def talk
puts "Howl!"
end
end

my_dog.talk
Howl!

In this example, you created a basic class with a simple method, then reopened
that class, and redefined a method on the fly. The results of the redefinition were made
effective immediately, and my_dog began to howl as a result.

This ability to reopen classes and add and redefine methods is relatively unique
among object-oriented languages. Although it allows you to perform a number of
interesting tricks (some of which you'll see in action later), it can also cause the
same sections of code to act in different ways depending on whether certain classes
upon which you depend were changed in the application, as demonstrated by your
redefinition of String’s length method previously.

158

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

Note You might have noticed this class-reopening technique in action in some
of our earlier examples where you created methods in one example, only to add
new methods in a later example. If running under irb or within the same program,
reopening a class lets you add new methods or change old ones without losing
anything.

Reflection and Discovering an Object’s Methods

Reflection is the process by which a computer program can inspect, analyze, and modify
itself while it's running and being used. Ruby takes reflection to an extreme and allows you to
change the functionality of great swathes of the language itself while running your own code.

It's possible to query almost any object within Ruby for the methods that are defined
within it. This is another part of reflection:

a = "This is a test"
puts a.methods.join("' ")

unicode normalize unicode normalize! ascii only? to_r unpack encode
encode! unpackl % include? * + count partition +@ -@ <=> << to _c == ===
sum =~ next [] casecmp casecmp? insert []= match match? bytesize empty?
eql? succ! next! upto index rindex replace clear chr getbyte setbyte
scrub! scrub undump byteslice freeze inspect capitalize upcase dump
downcase! swapcase downcase hex capitalize! upcase! lines length size
codepoints succ split swapcase! bytes oct prepend grapheme clusters concat
start with? reverse reverse! to str to sym crypt ord strip end with? to s
to i to f center intern gsub ljust chars delete suffix sub rstrip scan
chomp rjust lstrip chop! delete prefix chop sub! gsub! delete prefix!
chomp! strip! lstrip! rstrip! squeeze delete suffix! tr tr s delete each_
line tr! tr s! delete! squeeze! slice each byte each char each codepoint
each_grapheme _cluster b slice! rpartition encoding force encoding valid_
encoding? hash unicode normalized? clamp between? <= >= > < dup itself
yield self then taint tainted? untaint untrust untrusted? trust frozen?
methods singleton_methods protected methods private methods public_methods
instance variables instance variable get instance variable set instance_

159

CHAPTER6 CLASSES, OBJECTS, AND MODULES

variable defined? remove instance variable instance of? kind of? is a?
tap display class singleton_class clone public_send method public_method
singleton method define singleton method extend to_enum enum for !~ nil?
respond to? object id send send ! != id equal? instance eval
instance_exec

The methods method on any object (unless it has been overridden, of course!)
returns an array of methods made available by that object. Due to Ruby’s heavily object-
oriented structure, that’s usually a significantly larger number of methods than those you
have specifically defined yourself!

Note The preceding method list may vary depending on your environment and
the specific Ruby interpreter you’re using. As long as your list is similar, you're
doing fine.

The results reveal some other reflective methods too. For example, protected
methods, private_methods, and public_methods all reveal methods encapsulated in
different ways (more on this in the next section).

Another interesting method is instance_variables. It returns the names of any
object variables associated with an instance (as opposed to class variables):

class Person
attr_accessor :name, :age
end

p = Person.new

p.name = "Fred"

p.age = 20

puts p.instance variables

@age
@name

Note If you received an error while running the last example, try restarting irb
and running it again. Since we used the class Person in previous examples, irb may
still have the class definition loaded in memory.

160

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

At this stage, you might not see the value in these reflective methods, but as you
progress toward becoming more proficient with Ruby and object orientation, they’ll
become more important. This book doesn’t go deeply into metaprogramming and
advanced reflective techniques since they are beyond the scope of a beginner’s book.

Encapsulation

Encapsulation describes the way in which data and methods can be bundled together
into objects that operate as a single unit. Encapsulation keeps functionality hidden
inside your classes and allows you to control how the outside world manipulates
your object’s data (thus maintaining the overall “single unit” of data and code bound
together). You can extend and change your classes without worrying that other elements
of your application will break.

Here’s an example class that represents a person:

class Person
def initialize(name)
set_name(name)
end

def name
@first_name + ' ' + @last_name
end

def set_name(name)
first name, last name = name.split(/\s+/)
set first name(first_name)
set_last name(last name)

end

def set first name(name)
@first_name = name
end

def set last name(name)
@last name = name
end
end

161

CHAPTER6 CLASSES, OBJECTS, AND MODULES

In previous examples, you would have written this with a single attr_accessor
:name and simply assigned the name to an object variable. Our example is only to
highlight the concept of encapsulation. You should use attr_accessor to accomplish
the same functionality in your real code.

In this case, the first name and last name are stored separately within each Person
object, in object variables called @first_name and @last_name. When a Person object
is created, the name is split into two halves and each is assigned to the correct object
variable by set_first name and set_last name, respectively. One possible reason
for such a construction could be that although you want to work with complete names
in your application, the database design might demand you have first names and last
names in separate columns. Therefore, you need to hide this difference by handling it in
the class code, as in the preceding code.

Note A side benefit of this approach is that you can perform checks on the data
before assigning it to the object variables. For example, in the set _first name
and set_last name methods, you could check that the names contain enough

characters to be considered valid names. If not, you can then raise an error.

The code appears to work fine:
p = Person.new("Fred Bloggs")
puts p.name

Fred Bloggs

However, you still seem to have some problems:

p = Person.new("Fred Bloggs")
p.set_last name("Smith")
puts p.name

Fred Smith
Uh-oh! You wanted to abstract the first name/last name requirement and only allow

full names to be set or retrieved. However, the set_first _name and set_last_name are
still public and you can use them directly from any code where you have Person objects.

Luckily, encapsulation lets you solve the problem:

162

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

class Person
def initialize(name)
set_name(name)
end

def name
@first name + ' ' + @last name
end

private

def set_name(name)
first name, last name = name.split(/\s+/)
set first name(first_name)
set_last name(last _name)

end

def set first name(name)
@first name = name
end

def set last name(name)
@last name = name
end
end

The only difference in the Person class from the first example is the keyword private
has been added. private tells Ruby that any methods declared in this class from there
on should be kept private. This means that only code within the object’s methods can
access those private methods, whereas code outside of the class cannot. For example,
this code no longer works:

p = Person.new("Fred Bloggs")
p.set last name("Smith")

NoMethodError (undefined method “set last name' for
#<Person:0x00007faedfb31538 @age="Fred Bloggs">)

The opposite of the private keyword is public. You could put private before one
method, but then revert to public methods again afterward using public, like so:

163

CHAPTER 6 CLASSES, OBJECTS, AND MODULES
class Person

def anyone can access this

end

private

def this_is private

end

public

def another public method

end
end

You can also use private as a command by passing in symbols representing the
methods you want to keep private, like so:

class Person

def anyone can_access this; ...; end
def this is private; ...; end
def this is also private; ...; end

def another public_method; ...; end

private :this_is_private, :this_is_also_private
end

Note Ruby supports ending lines of code with semicolons (;) and allows you
to put multiple lines of code onto a single line (e.9., x = 10; x += 1; putsx).In
this case, it’s been done to save on lines of code in the example, although it’s not
considered good style in production-quality Ruby code.

164

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

The command tells Ruby that this_is private and this_is also private are
to be made into private methods. Whether you choose to use private as a directive
before methods or as a command specifying the method names directly is up to you,
and is another of many technically unimportant stylistic decisions you’ll make as a Ruby
programmer. However, it’s important to note that in the preceding example, the private
declaration has to come after the methods are defined.

Ruby supports a third form of encapsulation (other than public and private) called
protected that makes a method private, but within the scope of a class rather than
within a single object. For example, you were unable to directly call a private method
outside the scope of that object and its methods. However, you can call a protected
method from the scope of the methods of any object that’s a member of the same class:

class Person
def initialize(age)
@age = age
end

def age
@age
end

def age difference with(other person)
(self.age - other person.age).abs
end

protected :age
end

fred = Person.new(34)

chris = Person.new(25)

puts chris.age difference with(fred)
puts chris.age

9

MethodError (protected method “age' called for #<Person:0x00007faedfaebad8
@age=25>)

165

CHAPTER6 CLASSES, OBJECTS, AND MODULES

The preceding example uses a protected method so that the age method cannot
be used directly, except within any method belonging to an object of the Person class.
However, if age were made private, the preceding example would fail because other
person.age would be invalid. That’s because private makes methods accessible only by
methods of a specific object.

Note that when you use age directly, on the last line, Ruby throws an exception.

Polymorphism

Polymorphism is the concept of writing code that can work with objects of multiple
types and classes at once. For example, the + method works for adding numbers, joining
strings, and adding arrays together. What + does depends entirely on what type of things
you're adding together.

Here’s a Ruby interpretation of a common demonstration of polymorphism:

class Animal
attr accessor :name

def initialize(name)
@name = name
end
end

class Cat < Animal
def talk
"Meaow!"
end
end

class Dog < Animal
def talk
"Woof!"
end
end

animals = [Cat.new("Flossie"), Dog.new("Clive"), Cat.new("Max")]
animals.each do |animal]|

166

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

puts animal.talk
end

Meaow!
Woo+!
Meaow!

In this example, you define three classes: an Animal class and Dog and Cat classes
that inherit from Animal. In the code at the bottom, you create an array of various animal
objects: two Cat objects and a Dog object (whose names are all processed by the generic
initialize method from the Animal class).

Next, you iterate over each of the animals, and on each loop, you place the animal
object into the local variable, animal. Last, you run puts animal.talk for each animal
in turn. As the talk method is defined on both the Cat and Dog class, but with different
output, you get the correct output of two “Meaow!”s and two “Woofl”s.

This demonstration shows how you can loop over and work on objects of different
classes, but get the expected results in each case if each class implements the same
methods.

If you were to create new classes under the Cat or Dog classes with inheritance (e.g.,
class Labrador < Dog), then Labrador.new.talk would still return “Woof!” thanks to
inheritance.

Some of Ruby’s built-in standard classes (such as Array, Hash, String, and so on)
have polymorphic methods of their own. For example, you can call the to_s method on
many built-in classes to return the contents of the object as a string:

puts 1000.to_s
puts [1,2,3].to s
puts ({ name: 'Fred', age:10 }).to s

1000
[1,2,3]
{:name => 'Fred', :age => 10}

The output isn’t particularly useful in this case, but being able to rely on most objects
to return a string with to_s can come in useful in many situations, such as when putting
representations of objects into strings.

167

CHAPTER6 CLASSES, OBJECTS, AND MODULES

Nested Classes

In Ruby, it’s possible to define classes within other classes. These are called nested
classes. Nested classes are useful when a class depends on other classes, but those
classes aren’t necessarily useful anywhere else. They can also be useful when you want
to separate classes into groups of classes rather than keep them all distinct. Here’s an

example:

class Drawing
class Line
end

class Circle
end
end

Nested classes are defined in the same way as usual. However, they’re used
differently.

From within Drawing, you can access the Line and Circle classes directly, but from
outside the Drawing class, you can only access Line and Circle as Drawing: :Line and
Drawing::Circle, for example:

class Drawing
def self.give me a circle
Circle.new
end

class Line
end

class Circle
def what_am_i
"This is a circle"
end
end
end

a = Drawing.give me_a circle
puts a.what_am i

168

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

b = Drawing::Circle.new
puts b.what _am i

¢ = Circle.new

puts c.what_am_i

This is a circle
NameError (uninitialized constant Circle)
This is a circle

a = Drawing.give me a circle callsthe give me_a circle class method, which
returns a new instance of Drawing: :Circle. Next, a = Drawing::Circle.new gets a new
instance of Drawing: : Circle directly, which also works. The third attempt, a = Circle.
new, does not work, however, because Circle doesn’t exist. That’s because as a nested
class under Drawing, it’s known as Drawing: :Circle instead.

You're going to use nested classes in a project at the end of this chapter, where you'll
see how they work in the scope of an entire program.

The Scope of Constants

In Chapter 3, you looked at constants: special variables whose value(s) are unchanging
and permanent throughout an application, such as Pi = 3.141592. Here’s an example:

def circumference of circle(radius)
2 * Pi * radius
end

Pi = 3.141592
puts circumference of circle(10)

62.83184

In this sense, a constant appears to work like a global variable, but it’s not. Constants
are defined within the scope of the current class and are made available to all child
classes, unless they're overridden, for example:

Pi = 3.141592

169

CHAPTER6 CLASSES, OBJECTS, AND MODULES

class OtherPlanet
Pi = 4.5
def self.circumference of circle(radius)
radius * 2 * Pi
end
end

puts OtherPlanet.circumference of circle(10)
90.0

puts OtherPlanet::Pi

4.5

puts Pi

3.141592

This example demonstrates that constants have scope within the context of classes.
The OtherPlanet class has its own definition of Pi. However, if you hadn’t redefined it
there, the original Pi would have been available to OtherPlanet, as the OtherPlanet
class is defined within the global scope.

The second section of the preceding example also demonstrates that you can
interrogate constants within other classes directly. OtherPlanet: : Pi refers directly to the
Pi constant within OtherPlanet.

Modules, Namespaces, and Mix-Ins

Modules provide a structure to collect Ruby classes, methods, and constants into a
single, separately named and defined unit. This is useful so you can avoid clashes with
existing classes, methods, and constants, and also so that you can add (mix-in) the
functionality of modules into your classes. First, we’ll look at how to use modules to
create namespaces to avoid name-related clashes.

170

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

Namespaces

One common feature used in Ruby is the ability to include code situated in other files
into the current program (this is covered in depth in the next chapter). When including
other files, you can quickly run into conflicts, particularly if files or libraries you're
including then include multiple files of their own. You cannot guarantee that no file
that’s included (or one that’s included in a long chain of includes) will clash with code
you've already written or processed.

Take this example:

def random
rand(1000000)
end

puts random

The random method returns a random number between 0 and 999,999. This method
could be in a remote file where it’s easily forgotten, which would cause problems if you
had another file you included using require that implemented a method like so:

def random
(rand(26) + 65).chr
end

This random method returns a random capital letter.

Note (rand(26) + 65).chr generates a random number between 0 and
25 and adds 65 to it, giving a number in the range of 65 to 90. The chr method
then converts a number into a character using the ASCII standard where 65 is

A, through to 90, which is Z. You can learn more about the ASCII character set at
https://en.wikipedia.org/wiki/ASCII, or refer to Chapter 3, where this
topic was covered in more detail.

Now you have two methods called random. If the first random method is in a file called
number_stuff.rb and the second random method is in a file called letter_stuff.rb,
you're going to hit problems:

require './number stuff'

171

https://en.wikipedia.org/wiki/ASCII

CHAPTER 6 CLASSES, OBJECTS, AND MODULES
require './letter stuff'
puts random

Which version of the random method is called?

Note require isa Ruby statement used to load in code contained within
another file. This is covered in detail in the next chapter.

As the last file loaded, it turns out to be the latter version of random, and a random
letter should appear onscreen. Unfortunately, however, it means your other random
method has been “lost.”

This situation is known as a name conflict, and it can happen in even more gruesome
situations than the simplistic example shown in the preceding code. For example,
class names can clash similarly, and you could end up with two classes mixed into one
by accident. If a class called Song is defined in one external file and then defined in a
second external file, the class Song available in your program will be a dirty mix of the
two. Sometimes this might be the intended behavior, but in other cases, this can cause
significant problems.

Modules help to solve these conflicts by providing namespaces that can contain any
number of classes, methods, and constants and allow you to address them directly, for
example:

module NumberStuff
def self.random
rand(1000000)
end
end

module LetterStuff
def self.random
(rand(26) + 65).chr
end
end

puts NumberStuff.random

172

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

puts LetterStuff.random

184783
X

Note Due to the randomness introduced by using rand, the results will vary
every time you run the program!

In this demonstration, it’s clear which version of random you're trying to use in the
two last lines. The modules defined in the preceding code look a little like classes, except
they're defined with the word module instead of class. However, in reality you cannot
create instances of a module, as they're not actually classes, nor can they inherit from
anything. Modules simply provide ways to organize methods, classes, and constants into
separate namespaces.

A more complex example could involve demonstrating two classes with the same
name, but in different modules:

module ToolBox
class Ruler
attr_accessor :length
end
end

module Country
class Ruler
attr_accessor :name
end

end

a = ToolBox::Ruler.new

a.length = 50

b = Country::Ruler.new

b.name = "Genghis Khan from Moskau"

Rather than having the Ruler classes fighting it out for supremacy, or ending up
with a mutant Ruler class with both name and length attributes (how many measuring
rulers have names?), the Ruler classes are kept separately in the ToolBox and Country
namespaces.

173

CHAPTER6 CLASSES, OBJECTS, AND MODULES

You'll be looking at why namespaces are even more useful than this later, but first
you have to look at the second reason why modules are so useful.

Mix-Ins

Earlier you studied inheritance: the feature of object orientation that allows classes (and
their instance objects) to inherit methods from other classes. You discovered that Ruby
doesn’t support multiple inheritance, the ability to inherit from multiple classes at the
same time. Instead, Ruby’s inheritance functionality only lets you create simple trees of
classes, avoiding the confusion inherent with multiple inheritance systems.

However, in some cases it can be useful to share functionality between disparate
classes. In this sense, modules act like a sort of bundle of methods, classes, and
constants that can be included into other classes, extending that class with the methods
the module offers, for example:

module UsefulFeatures
def class name
self.class.to s
end
end

class Person
include UsefulFeatures
end

X = Person.new
puts x.class_name

Person

In this code, UsefulFeatures looks almost like a class and, well, it almost is.
However, modules are organizational tools rather than classes themselves. The class_
name method exists within the module and is then included in the Person class. Here’s
another example:

module AnotherModule
def do_stuff
puts "This is a test"

174

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

end
end

include AnotherModule
do_stuff

This is a test

Asyou can see, you can include module methods in the current scope, even if you're
not directly within a class. Somewhat like a class, though, you can use the methods
directly:

AnotherModule.do stuff

Therefore, include takes a module and includes its contents into the current scope.

Ruby comes with several modules by standard that you can use. For example, the
Kernel module contains all the “standard” commands you use in Ruby (such as load,
require, exit, puts, and eval) without getting involved with objects or classes. None of
those methods are taking place directly in the scope of an object (as with the methods
in your own programs), but they’re special methods that get included in all classes
(including the main scope), by default, through the Kernel module.

However, of more interest to us are the modules Ruby provides that you can include
in your own classes to gain more functionality immediately. Two such modules are
Enumerable and Comparable.

Enumerable

In previous chapters, you've performed the process of iteration, like so:
[1,2,3,4,5].each { |number| puts number }

In this case, you create a temporary array containing the numbers 1 through 5 and
use the each iterator to pass each value into the code block, assigning each value to
number that you then print to the screen with puts.

The each iterator gives you a lot of power, as it allows you to go through all the
elements of an array or a hash and use the data you retrieve to work out, for example, the
mean of an array of numbers, or the length of the longest string in an array, like so:

my _array = %w{this is a test of the longest word check}

175

CHAPTER6 CLASSES, OBJECTS, AND MODULES

longest word = "'
my array.each do |word|
longest word = word if longest_word.length < word.length
end
puts longest word

longest

In this case, you loop through my_array, and if the currently stored longest word is
shorter than the length of word, you assign it to longest_word. When the loop finishes,
the longest word is in longest_word.

The same code could be tweaked to find the largest (or smallest) number in a set of
numbers:

my_array = %w{10 56 92 3 49 588 18}
highest_number = 0
my array.each do |number|
number = number.to i
highest_number = number if number > highest number
end
puts highest number

588

However, the Array class (for one) has pre-included the methods provided by the
Enumerable module, a module that supplies about 20 useful counting and iteration-
related methods, including collect, detect, find, find all, include?, max, min,
select, sort, and to_a. All of these use Array’s each method to do their jobs, and if your
class can implement an each method, you can include Enumerable, and get all those
methods for free in your own class!

First, some examples of the methods provided by Enumerable:

[1,2,3,4].collect { |i] i.to_ s + "x" }

=> [Illxll, IIZXII, II3XII, "4X"]

176

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

[1,2,3,4].detect { |i| i.between?(2,3) }

=> 2

[1,2,3,4].select { |i| i.between?(2,3) }

=> [2’3]

[4,1,3,2].s0rt

=> [1:2:3)4]

[1,2,3,4].max

=> 4

[1,2,3,4].min

You can make your own class, implement an each method, and get these methods
for “free”:

class AllVowels
VOWELS = %w{a e i o u}

def each
VOWELS.each { |v| yield v }
end
end

This is a class that, in reality, doesn’t need to provide multiple objects, as it only
provides an enumeration of vowels. However, to keep the demonstration simple, it is
ideal. Here’s how it works:

177

CHAPTER6 CLASSES, OBJECTS, AND MODULES

x = AllVowels.new
x.each { |v| puts v }

C O H M QD

Your Al1Vowels class contains an array constant containing the vowels, and the
instance-level each method iterates through the array constant VOWELS and yields to the
code block supplied to each, passing in each vowel, using yield v. Let’s get Enumerable
involved:

class AllVowels
include Enumerable

VOWELS = %w{a e i o u}

def each
VOWELS.each { |v| yield v }
end
end

Note yield and its relationship to code blocks were covered near the end of
Chapter 3; refer to that if you need a refresher.

Now let’s try to use those methods provided by Enumerable again. First, let’s get an
AllVowels object:

x = AllVowels.new
Now you can call the methods on x:

x.collect { |i] i + "x" }

=> ["ax", "ex", "ix", "ox", "ux"]

178

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

x.detect { [i] i > "j" }

x.select { [i] 1> "j" }

> [0, "u']

X.sort

=> [Ilall, Ilell, Ilill, IIOII, llull]

X.Mmax

Comparable

The Comparable module provides methods that give other classes comparison operators
such as < (less than), <= (less than or equal to), == (equal to), >= (greater than or equal
to), and > (greater than), as well as the between? method that returns true if the value is
between (inclusively) the two parameters supplied (e.g., 4.between?(3,10) == true).

To provide these methods, the Comparable module uses the <=> comparison
operator on the class that includes it. <=> returns -1 if the supplied parameter is higher
than the object’s value, 0 if they are equal, or 1 if the object’s value is higher than the
parameter, for example:

1<=>2

-1

179

CHAPTER6 CLASSES, OBJECTS, AND MODULES

1<=>1

2 <=>1

With this simple method, the Comparable module can provide the other basic
comparison operators and between?. Create your own class to try it out:

class Song
include Comparable

attr_accessor :length

def <=>(other)
@length <=> other.length
end

def initialize(song_name, length)
@song_name = song_name
@length = length
end
end

Song.new('Rock around the clock', 143)
Song.new('Bohemian Rhapsody', 544)
Song.new('Minute Waltz', 60)

(@]
1]

Here are the results of including the Comparable module:

180

=> true

c>a

=> false
a.between?(c,b)

=> true

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

You can compare the songs as if you're comparing numbers. Technically, you are.

By implementing the <=> method on the Song class, individual song objects can be

compared directly, and you use their lengths to do so. You could have implemented <=>

to compare by the length of the song title, or any other attribute, if you wished.

Modules give you the same ability to implement similar generic sets of functionality

that you can then apply to arbitrary classes. For example, you could create a module that

implements longest and shortest methods that could be included into Array, Hash, or

other classes and returns the longest or shortest string in a list.

Using Mix-Ins with Namespaces and Classes

In a previous example, I demonstrated how you can use modules to define namespaces

using the following code:

module ToolBox
class Ruler
attr accessor :length
end

end

module Country
class Ruler
attr_accessor :name
end
end

a = ToolBox::Ruler.new

181

CHAPTER6 CLASSES, OBJECTS, AND MODULES

a.length = 50
b = Country::Ruler.new
b.name = "Genghis Khan of Moskau"

In this case, the Ruler classes were accessed by directly addressing them via their
respective modules (as ToolBox: :Ruler and Country: :Ruler).

However, what if you wanted to assume temporarily that Ruler (with no module
name prefixed) was Country: :Ruler and that if you wanted to access any other Ruler
class, you'd refer to it directly? include makes it possible.

In the previous sections, you've used include to include the methods of a module in
the current class and scope, but it also includes the classes present within a module (if
any) and makes them locally accessible too. Say, after the prior code, you did this:

include Country
c = Ruler.new
c.name = "King Henry VIII"

Success! The Country module’s contents (in this case, just the Ruler class) are
brought into the current scope, and you can use Ruler as if it’s a local class. If you
want to use the Ruler class located under ToolBox, you can still refer to it directly as
ToolBox: :Ruler.

STATIC TYPING

As you are aware by this point in the book, Ruby is a dynamically typed language. This means
a variable’s type is determined at runtime. For example, if you assign the value 3 to a variable
named count, Ruby interprets that line and sets count to the type Integer:

count = 3
puts count.class
=> Integer

Dynamic typing provides flexibility, which in turn makes Ruby great for rapid development

and creating expressive code. These benefits come at a cost. Managing large projects written
in Ruby can be a significant undertaking. Statically typed languages like C# negate these
issues by performing several checks at compile time to catch issues that would appear only at
runtime for Ruby.

182

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

Since Ruby 3, it's possible to use static typing via an opt-in system called RBS. There are
many benefits when using RBS:

Uncover more bugs: Since RBS provides a way to define precisely what type a
class, method, or property requires, we can perform checks similar to statically
typed languages before runtime. This will uncover issues like undefined
methods and type mismatches. Problems like this are common as a codebase
matures and receives numerous refactors. Catching these issues before
runtime will save you many headaches.

Nil safety. RBS makes it possible to specify whether or not a method can accept
a nil value.

Guided duck typing: In Ruby, if it sounds like a duck and acts like a duck, it
must be a duck. This concept is fundamental in duck typing. RBS removes the
guessing and provides interface types to ensure an object is a duck. Interface
types specify the exact method signatures an object needs to implement to
pass to a method.

IDE integration: RBS provides IDEs with a better understanding of our source
code. This means better integration with your favorite IDE. While all of this
sounds great, it requires some work on the developer’s part to implement.

To use RBS, create a separate .rbs file with the same name as the .rb file you want to enable
static typing. Having a separate file means we don’t need to use static typing on all of our
classes. We can slowly adopt RBS on a per-class basis.

Look at this example:

sig/employee.rbs

class Employee
attr reader name: String
attr_reader security level: Integer
attr reader email addresses: Array[String]

def initialize: (name: String, security level:Integer) -> void

def access_granted?: (level:Integer) -> bool

end

183

CHAPTER6 CLASSES, OBJECTS, AND MODULES

Here we define an rbs file for the class Employee. You will notice this looks similar to a
standard Ruby class except for some additional syntax. At the end of the attr_reader
definition, there is a type declaration. This type declaration states the property can only accept
values of the specified type. In the example, name accepts String values, while security_level
accepts Integer values. It’s also possible to specify more complex types. The property
email_addresses only allows arrays of type String.

Next, notice the method signatures. With RBS, we can specify the parameter types as well as
the type of the return value. The initialize method doesn’t return anything value, so its return
type is void, meaning nothing. The access_granted? method returns a bool or Boolean value.

We have only skimmed the surface of RBS. Visit the GitHub page for more info:
https://github.com/ruby/rbs.

Building a Dungeon Text Adventure with Objects

So far in this chapter, you've looked at object-oriented concepts in depth, mostly in a
technical sense. At this point, it would be useful to extend that knowledge by applying it
in a real-world scenario.

In this section, you're going to implement a mini text adventure/virtual dungeon.
Text adventures were popular in the 1980s, but have fallen out of favor with modern
gamers seeking graphical thrills. They’re perfect playgrounds for experimenting with
classes and objects, though, as replicating the real world in a virtual form requires a
complete understanding of mapping real-world concepts into classes.

Dungeon Concepts

Before you can develop your classes, you have to figure out what you're trying to model.
Your dungeon isn’t going to be complex at all, but you'll design it to cope with at least the

following concepts:

o Dungeon: You need a general class that encapsulates the entire
concept of the dungeon game.

e Player: The player provides the link between the dungeon and you.
All experience of the dungeon comes through the player. The player
can move between rooms in the dungeon.

184

https://github.com/ruby/rbs

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

e Rooms: The rooms of the dungeon are the locations that the player
can navigate between. These will be linked together in multiple ways
(e.g., doors to the north, west, east, and south) and have descriptions.

A complete adventure would also have concepts representing items, enemies, other
characters, waypoints, spells, and triggers for various puzzles and outcomes. You could
easily extend what you'll develop into a more complete game later on if you want.

Creating the Initial Classes

Our first concept to develop is that of the dungeon and the game itself. Within this
framework come the other concepts, such as the player and rooms.
Using nested classes, you can lay down the initial code like so:

class Dungeon
attr accessor :player

def initialize(player)
@player = player
@rooms = {}
end
end

class Player
attr_accessor :name, :location

def initialize(player name)
@name = player name
end
end

class Room
attr accessor :reference, :name, :description, :connections

def initialize (reference, name, description, connections)
@reference = reference
®name = name

@description = description
@connections = connections
end

end

185

CHAPTER6 CLASSES, OBJECTS, AND MODULES

This code lays down the framework for your dungeon.

Your dungeon currently has instance variables to store the player (since the player
may change the state of the dungeon in some way) and the list of rooms (@rooms = {}
creates an empty Hash; it’s equivalent to @rooms = Hash.new).

The Player class lets the player object keep track of his or her name and current
location. The Room class lets room objects store their name, description (e.g., “Torture
Chamber” and “This is a dark, foreboding room.”), and connections to other rooms, as
well as a reference (to be used by other rooms for their connections).

When you create a dungeon with Dungeon. new, it expects to receive the name of the
player, whereupon it creates that player and assigns it to the dungeon’s object variable
@player. This is because the player and the dungeon need to be linked, so storing the
player object within the dungeon object makes sense. You can easily access the player
because the player variable has been made into an accessor with attr_accessor, for

example:

me = Player.new("Fred Bloggs")
my_dungeon = Dungeon.new(me)
puts my dungeon.player.name

Fred Bloggs

You can access the player functionality directly by going through the dungeon
object. As @player contains the player object, and as @player has been made publicly
accessible with attr_accessor :player, you get complete access.

Structs: Quick and Easy Data Classes

One thing should stand out about the main code listing so far. It’s repetitive. The Room
and Player classes are merely acting as basic placeholders for data rather than as true
classes with logic and functionality. There’s an easier way to create this sort of special
data-holding class in Ruby with a single line of a class called a struct.

A struct is a special class whose only job is to have attributes and to hold data. Here’s
a demonstration:

Person = Struct.new(:name, :gender, :age)
fred = Person.new("Fred", "male", 50)

186

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

chris = Person.new("Chris", "male", 25)
puts fred.age + chris.age

75

Simply, the Struct class builds classes to store data. On the first line, you create
anew class called Person that has built-in name, gender, and age attributes. On the
second line, you create a new object instance of Person and set the attributes on the fly.
The first line is equivalent to this longhand method:

class Person
attr_accessor :name, :gender, :age

def initialize(name, gender, age)
@name = name
@gender = gender
@age = age
end
end

Note In actuality, this code is not exactly equivalent to the struct code (though
pragmatically it’s close enough), because parameters are optional when initializing
a Struct class, whereas the preceding Person class code requires the three
parameters (name, gender, and age) be present.

This code creates a Person class the “long way.” If all you want to do is store some
data, then the struct technique is quicker to type and easier to read, although if you
ultimately want to add more functionality to the class, creating a class the long way is
worth the effort. However, the good thing is that you can start out with a struct and
recode it into a full class when you're ready. This is what you're going to do with your
dungeon. Let’s rewrite it from scratch:

class Dungeon
attr accessor :player

def initialize(player)
@player = player

187

CHAPTER6 CLASSES, OBJECTS, AND MODULES

@rooms = {}
end
end

Player = Struct.new(:name, :location)
Room = Struct.new(:reference, :name, :description, :connections)

It’s certainly shorter, and because parameters are optional when creating instances
of Struct classes, you can still use Player.new(player name), and the location
attribute is merely set to nil. If you ever need to add methods to Player or Room, you can
rewrite them as classes and add the attributes back with attr_accessor.

ATTR_ACCESSOR

Throughout the code in this chapter, as well as in Chapter 2, you have used attr_accessor
within classes to provide attributes for your objects. Recall that attr accessor allows you to
do this:

class Person
attr_accessor :name, :age
end

X = Person.new
x.name = "Fred"
X.age = 10

puts x.name, X.age

However, in reality attr accessor isn’t doing anything magical. It’s simply writing some
code for you. This code is equivalent to the single attr_accessor :name, :age linein the
preceding Person class:

class Person
def name
@name
end

def name=(name)
@name = name
end

188

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

def age
@age
end
def age=(age)
@age = age
end
end

This code defines the name and age methods that return the current object variables for those
attributes, so that x. name and x. age (as in the prior code) work. It also defines two “setter”
methods that assign the values to the @name and @age object variables.

If you pay attention to the names of the setter methods, you’ll see they’re the same as the
methods that return values but suffixed with an equals sign (=). This means they’re the
methods that are run for code such as x.name = "Fred" and x.age = 10. In Ruby,
assignments are just calls to regular methods! Indeed, x.name = "Fred" is merely
shorthand for x.name=("Fred").

Creating Rooms

Your dungeon now has the basic classes in place, but there’s still no way to create rooms,
so let’s add a method to the Dungeon class:

class Dungeon
def add_room(reference, name, description, connections)
@rooms[reference] = Room.new(reference, name, description, connections)
end
end

You want to add rooms to the dungeon, so adding a method to dungeon objects
makes the most sense. Now you can create rooms like so (ifmy_dungeon is still defined, of
course):

my dungeon.add_room(:largecave, "Large Cave", "a large cavernous cave", {
west: :smallcave })

my_dungeon.add_room(:smallcave, "Small Cave", "a small, claustrophobic
cave", { east: :largecave })

189

CHAPTER6 CLASSES, OBJECTS, AND MODULES

add_room accepts the reference, name, description, and connections arguments
and creates a new Room object with them before adding that object to the @rooms hash.

The reference, name, and descriptions arguments should seem obvious, but the
connections argument is designed to accept a hash that represents the connections that
a particular room has with other rooms. For example, { west: :smallcave } tiestwo
symbols (:west and :smallcave) together. Your dungeon logic uses this link to connect
the rooms. A connections hash of { west: :smallcave, south: :another room }
would create two connections (one to the west heading to “small cave” and one to the
south heading to “another room”).

Making the Dungeon Work

You have all the rooms loaded for your basic dungeon (and can add more whenever you

like with the add_room method), but you have no way of navigating the dungeon itself.
The first step is to create a method within Dungeon that starts everything off by

placing the user into the dungeon and giving you the description of the initial location:

class Dungeon
def start(location)
@player.location = location
show_current description
end

def show_current description
puts find room in dungeon(@player.location).full description
end

def find room_in dungeon(reference)
@rooms[reference]
end
end

class Room
def full description
@name + "\n\nYou are in

+ @description
end
end

190

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

You define a start method within the dungeon that sets the player’s location
attribute. It then calls the dungeon’s show_current description method, which finds
the room based on the player’s location, and then prints the full description of that
location to the screen. full _description does the work of taking the location’s name
and description and turning it into a full, useful description. find_room_in_dungeon, on
the other hand, returns the room whose reference matches that of the current location.

However, the problem with the preceding code is that Roomis a struct, rather than
a full class, so it becomes necessary to turn it into a full class once again (as hinted
at earlier). This change requires a few key changes, so to keep things simple, here’s
the complete code so far, along with the change of Room to a regular class and some
additional methods to aid navigation of the dungeon:

class Dungeon
attr_accessor :player

def initialize(player)
@player = player
@rooms = {}

end

def add_room(reference, name, description, connections)
@rooms[reference] = Room.new(reference, name, description, connections)
end

def start(location)
@player.location = location
show_current description
end

def show_current description
puts find room in_dungeon(@player.location).full description
end

def find room_in dungeon(reference)
@rooms|[reference]
end

def find room in direction(direction)
find_room in_dungeon(@player.location).connections[direction]

191

CHAPTER6 CLASSES, OBJECTS, AND MODULES

end

def go(direction)
puts "You go " + direction.to_s
@player.location = find room in direction(direction)
show_current description
end
end

class Player
attr_accessor :name, :location
def initialize(name)
@name = name
end
end

class Room
attr accessor :reference, :name, :description, :connections
def initialize(reference, name, description, connections)
@reference = reference
@name = name

@description = description
@connections = connections
end

def full description
@name + "\n\nYou are in
end

+ @description

end

player = Player.new("Fred Bloggs")
my _dungeon = Dungeon.new(player)

Add rooms to the dungeon
my_dungeon.add_room(:largecave,
"Large Cave",
"a large cavernous cave",
{ west: :smallcave })

192

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

my_dungeon.add_room(:smallcave,
"Small Cave",
"a small, claustrophobic cave",
{ east: :largecave })

Start the dungeon by placing the player in the large cave
my_dungeon.start(:largecave)

Large Cave
You are in a large cavernous cave

It’s a long piece of source code, but most of it should make sense by now. You've
changed Room and Player into true classes once more and implemented the basics of the
dungeon.

Two particularly interesting methods have been added to the Dungeon class:

def find room in direction(direction)
find_room_in_dungeon(@player.location).connections[direction]
end

def go(direction)
puts "You go " + direction.to s
@player.location = find_room in_direction(direction)
show_current description

end

The go method is what makes navigating the dungeon possible. It takes a single
argument—the direction to travel in—and uses that to change the player’s location to the
room that’s in that direction. It does this by calling find_room_in_direction, a method
that takes the reference related to the relevant direction’s connection on the current
room, and returns the reference of the destination room. Remember that you define a
room like so:

my_dungeon.add_room(:largecave,
"Large Cave",
"a large cavernous cave",
{ west: :smallcave })

193

CHAPTER6 CLASSES, OBJECTS, AND MODULES

If : largecave is the current room, then find_room in direction(:west) will use
the connections on that room to return :smallcave, and this is then assigned to @player.
location to define that as the new current location.

To test the navigation of the dungeon, you can simply type the go commands if
you're using irb, or if you're working with a source file in an editor, you'll need to add the
go commands to the end of your source code and re-run it. Here’s what happens:

my_dungeon.show_current description

Large Cave
You are in a large cavernous cave

my_dungeon.go(:west)

You go west
Small Cave
You are in a small, claustrophobic cave

my dungeon.go(:east)

You go east
Large Cave

You are in a large cavernous cave

The code has no error checking (try going to a nonexistent room with my_dungeon.
go(:south)) and lacks items, an inventory, and other basic text-adventure features, but
you now have an operational group of objects that represents a dungeon, and that can be
navigated in a basic fashion.

This code is rife for extension and manipulation. With another class and several
more methods, you could easily add support for items within the game that you can
place at different locations, pick up, and then drop at other locations.

If you want an exercise, you can try turning the preceding dungeon code into a truly
interactive program by creating a loop that uses the gets method to retrieve instructions
from the player and then to “go” wherever the player determines. You can use chomp to
strip off the newline characters from the incoming text and to_sym to convert strings into

194

CHAPTER 6 CLASSES, OBJECTS, AND MODULES

symbols for the go method. This might seem like a tough task at this stage, but if you pull
it off, I guarantee you'll have learned a lot and you'll be confident about going on to the
next chapter.

In Chapter 9, you'll look at how to interact with files and read data from the
keyboard. At that point, you could extend the dungeon game to be properly interactive
and accept input from the user, validate that it represents a valid direction, and then call
the go method if so. With these additions and the addition of several more rooms, you're
most of the way to a viable text adventure!

Summary

In this chapter, we covered the essentials of object orientation and the features Ruby
provides to make object-oriented code a reality. You looked at the concepts that apply to
object orientation in most languages, such as inheritance, encapsulation, class methods,
instance methods, and the types of variables that you can use. Lastly, you developed a
basic set of classes to produce a simple dungeon.

Let’s reflect on some of the concepts we covered in this chapter:

o Classes: A class is a collection of methods and data that are used as a
blueprint to create multiple objects relating to that class.

e Objects: An object is a single instance of a class. An object of class
Person is a single person. An object of class Dog is a single dog. If
you think of objects as real-life objects, a class is the classification,
whereas an object is the actual object or “thing” itself.

o Local variable: A variable that can only be accessed and used from
the current scope.

o Instance/object variable: A variable that can be accessed and used
from the scope of a single object. An object’s methods can all access
that object’s object variables.

o Global variable: A variable that can be accessed and used from
anywhere within the current program.

e Class variable: A variable that can be accessed and used within the
scope of a class and all of its child objects.

195

CHAPTER6 CLASSES, OBJECTS, AND MODULES

Encapsulation: The concept of objects containing both data and
methods that operate on that data, as well as allowing those methods
to have differing degrees of visibility outside of their class or
associated object.

Polymorphism: The concept of methods being able to deal with
different classes of data and offering a more generic implementation
(as with the area and perimeter methods offered by your Square and
Triangle classes).

Module: An organizational element that collects together any number
of classes, methods, and constants into a single namespace.

Namespace: A named element of organization that keeps classes,
methods, and constants from clashing.

Mix-in: A module that can mix its methods in to a class to extend that
class’s functionality.

Enumerable: A mix-in module, provided as standard with Ruby, that

implements iterators and list-related methods for other classes, such
as collect, map, min, and max. Ruby uses this module by default with
the Array and Hash classes.

Comparable: A mix-in module, provided as standard with Ruby, that
implements comparison operators (such as <, >, and ==) on classes
that implement the generic comparison operator <=>.

Throughout the next several chapters, I'll assume you have knowledge of how classes

and objects work and how the different scopes of variables (including local, global,

instance, and class variables) work.

196

CHAPTER 7

Projects and Libraries

In previous chapters, we've looked at and worked with Ruby from a low-level perspective
by working directly with classes, objects, and functions. Each line of code we've used
in the small projects so far has been written specifically for that project from scratch. In
this chapter, we’ll look at how to build larger projects with Ruby and how to reuse code
written previously. Finally, we'll look at how to use code already written and prepared
by other developers within your own applications so that you don’t need to reinvent the
wheel every time you create a new program.

This chapter is about the bigger picture: dealing with projects and libraries.

Projects and Using Code from Other Files

As you become more familiar with Ruby and find more uses for it, it’s likely that you'll
want to move from writing single small programs (with fewer than 100 or so lines) to
more complex applications and systems made up of multiple parts. Larger applications
and systems therefore often become known as projects and are managed in a different
way than simple one-file scripts.

The most common way to separate functionality in Ruby is to put different classes
in different files. This gives you the ability to write classes that could be used in multiple
projects simply by copying the file into your other project.

Basic File Inclusion

Consider this code:

puts "This is a test".vowels.join('-")

197
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_7

https://doi.org/10.1007/978-1-4842-6324-2_7#DOI

CHAPTER 7 PROJECTS AND LIBRARIES

If you try to execute this code, you'll get an error complaining that the vowels
method is not available for the "This is a test" object of class String. This is true
because Ruby doesn’t provide that method. Let’s write an extension to the String class
to provide it:

class String
def vowels
self.scan(/[aeiou]/1i)
end
end

If this definition were included in the same file as the prior puts code—say, my test.
rb—the result would be as follows:

i-i-a-e

In this case, you've extended String with a vowels method that uses scan to return
an array of all the vowels (the i option on the end makes the regular expression case-
insensitive).

However, you might want to write a number of methods to add to String that you'd
like to use in multiple programs. Rather than copy and paste the code each time, you can
copy it to a separate file and use the require command to load the external file into the
current program. For example, put this code in a file called string_extensions.rb:

class String
def vowels
self.scan(/[aeiou]/i)
end
end

And put this code in a file called vowel test.rb:

require './string_extensions'
puts "This is a test".vowels.join('-")

If yourun vowel test.rb, the expected result would appear onscreen. The first line,
require './string_extensions', simply loads in the string_extensions.rb file from
the current directory (as signified by the . /) and processes it as if the code were local.
This means that, in this case, the vowels method is available, all with a single line.

198

CHAPTER 7 PROJECTS AND LIBRARIES

Ruby does not include the current directory in the path of directories to search for
Ruby files by default, so you can either specify the current directory specifically by using
./, as earlier, or by using require_relative. So this example is operationally identical to
the previous one:

require_relative 'string extensions'
puts "This is a test".vowels.join('-")

Aswell as require and require relative, you can use load to load external source
code files into your program. For example, this code would seem to function identically
to the preceding code:

load 'string extensions.rb'
puts "This is a test".vowels.join('-")

Note load requires a full filename, including the .rb suffix, whereas require
assumes the . rb suffix.

The output is the same in this case, but let’s try a different example to see the
difference. Put thisin a .rb:

puts "Hello from a.rb"

And put this in a file called b. rb:

require relative 'a
puts "Hello from b.rb"
require relative 'a’

puts "Hello again from b.rb"

Run with ruby b.rb to get the result:
Hello from a.rb

Hello rom b.rb
Hello again from b.rb

In this example, the a.rb file is included only once. It’s included on line 1, and
"Hello from a.rb" gets printed to the screen, but then when it’s included again on line
3 of b.rb, nothing occurs. In contrast, consider this code:

199

CHAPTER 7 PROJECTS AND LIBRARIES

load 'a.rb'
puts "Hello from b.rb"
load 'a.rb'

puts "Hello again from b.rb"

Hello from a.rb
Hello from b.rb
Hello from a.rb
Hello again from b.rb

With load, the code is loaded and reprocessed anew each time you use the load
method. require and require_relative, on the other hand, process external files only

once.

Note Ruby programmers nearly always use require or require relative
rather than load. The effects of 1oad are useful only if the code in the external file
has changed or if it contains active code that will be executed immediately.

Inclusions from Other Directories

load and require have different approaches to finding files to load. load and require_
relative can bring in local files, but require does not. require 'a’looksfora.rbina
multitude of other directories on your storage drive. By default, these other directories
are the various directories where Ruby stores its own files and libraries, although you can
override this when necessary.

Ruby stores the list of directories to search for included files in a special variable
called $: (or, if you prefer, $LOAD_PATH). You can see what $: contains by default using
irb:

$:.each { |d| puts d }
/Library/Ruby/Site/3.0.0
/Library/Ruby/Site/3.0.0/x86_64-darwini19
/Library/Ruby/Site/3.0.0/universal-darwini9.

200

CHAPTER 7 PROJECTS AND LIBRARIES

Note This result is what appears on my machine, but the list of directories will
probably differ significantly on your machine, particularly if you’re using Windows,
where the path layout will be entirely different, with the drive letter at the start and
backslashes instead of forward slashes.

If you want to add directories to this, it’s simple:

$:.push '/your/directory/here’
require 'yourfile'

$: is an array, so you can push extra items to it or use unshift to add an element
to the start of the list (if you want your directory to be searched before the default Ruby
ones—useful if you want to override Ruby’s standard libraries).

Logic and Including Code

require and load both act like normal code in Ruby programs. You can put them at any
point in your Ruby code, and they’ll behave as if they were processed at that point, for
example:

$debug_mode = 0
require_relative $debug mode == 0 ? "normal-classes" : "debug-classes"

It's an obscure example, but it checks if the global variable $debug_mode is set to 0.
If it is, it requires normal-classes.rb and, if not, debug-classes.rb. This gives you the
power to include a different source file dependent on the value of a variable, ideal for
situations where your application has “regular” and “debug” modes. You could even
write an application that works perfectly, but then use a different require to include a
whole different set of files that have new or experimental functionality.

A commonly used shortcut uses arrays to quickly load a collection of libraries at
once, for example:

fow{file1 file2 file3 file4 file5}.each { |file| require file }

This loads five different external files or libraries with just two lines of code. However,
some coders are not keen on this style, as it can make the code harder to read, even if it’s
more efficient.

201

CHAPTER 7 PROJECTS AND LIBRARIES

Nested Inclusions

Code from files that are included in others with require and load has the same freedom
as if the code were pasted directly into the original file. This means files that you include
can call load, require, or require relative themselves. For example, assume a.rb
contains the following:

require relative 'b'
and b.rb contains the following:
require relative 'c'
and c.rb contains the following:

def example
puts "Hello!"
end

and d.rb contains the following:

require_relative 'a
example

When d.rb is then run,
Hello!

d.rbincludes a.rb with require, a.rb includes b.rb, and b.rb includes c. rb,
meaning the example method is available to d. rb.

This functionality makes it easy to put together large projects with interdependent
parts, as the structure can be as deep as you like.

Libraries

In computer programming, a library is a collection of routines that can be called by
separate programs but that exist independently of those programs. For example, you
could create a library to load and process a data file and then use the routines in that
library from any number of other programs.

202

CHAPTER 7 PROJECTS AND LIBRARIES

Earlier in this chapter, we looked at using the require command to load external
files into your Ruby programs, and back in Chapter 6, we looked at how modules can be
used to separate elements of functionality into separate namespaces. You can use both
of these concepts, jointly, to make libraries in Ruby.

At the start of this chapter, you developed an extremely simple library called string_
extensions.rb, like so:

class String
def vowels
self.scan(/[aeiou]/i)
end
end

And you used this library with the following code:

require 'string extensions'
puts "This is a test".vowels.join('-")

i-i-a-e

Nearly all libraries are more complex than this simple example, but nonetheless, this
is a basic demonstration of how a library works.

Next, we're going to look at the libraries that come standard with Ruby and look at
a way to download and use libraries that other developers have made available on the
Internet.

The Standard Libraries

Ruby comes with many standard libraries. They provide Ruby with a wide selection
of functionality “out of the box,” from webserving and networking tools through to
encryption, benchmarking, and testing routines.

Note Collectively the “standard libraries” are often called “the Standard Library.”
When you see this term (it’s used particularly often in Chapter 16), it’s important
to remember it most likely refers to the collection rather than one library in
particular—a “library of libraries,” if you will.

203

CHAPTER 7 PROJECTS AND LIBRARIES

In this section, we're going to look at how you can use just two random standard
libraries (net/http and OpenStruct), so that you're prepared for using and working with
other libraries in later chapters, where you’ll be using many other standard libraries in a
similar way. The choice of these two libraries is reasonably arbitrary, although both are
commonly used by Rubyists whereas some of the standard libraries get little use at all.

Alist of all the standard libraries, including documentation, is available at
www.Tuby-doc.org/stdlib/, although a sizable number of them are covered in more
detail in Chapter 16 of this book.

Note Some users might discover that the number of standard libraries might
have been trimmed down, particularly if using a preinstalled version of Ruby.
However, if you installed Ruby from source, all the demonstrations in this section
should work.

net/http

HTTP stands for HyperText Transfer Protocol, and it’s the main protocol that makes
the World Wide Web work, as it provides the mechanism by which web pages, files, and
other media can be sent between web servers and clients.

Ruby provides basic support for HTTP via the net/http library. For example, it’s
trivial to write a Ruby script that can download and print out the contents of a particular
web page:

require 'net/http’

uri = URI('https://ruby-doc.org")

http_request = Net::HTTP.new(uri.host, uri.port)
http _request.use ssl = true

response = http request.get('/")

puts response.body.force encoding("IS0-8859-1")

204

http://www.ruby-doc.org/stdlib/

CHAPTER 7 PROJECTS AND LIBRARIES

If you run this code, after a few seconds, many pages of HTML code should fly past
on your screen. The first line loads the net/http library into the current program, and the
second line creates a URI (another standard library, and one that’s loaded automatically
by net/http) to decipher a URL into its constituent parts for the net/http library to use
to make its request. The third line creates an instance of the Net : :HTTP class (where Net
is a module defining the Net namespace and HTTP is a subclass). The fourth line tells the
Net: :HTTP class to use ssl. On the fifth line, we call the get method which performs a HTTP
GET request to https://ruby-doc.org/ and store the response in a variable. On the last
line, we display the contents of the web page by calling the body method on the response
variable. Since we are requesting a page that uses SSL, we need to tell Ruby to force the
string encoding to ISO-8859-1. Hence, the additional method call force_encoding after
calling body. Don’t worry too much if you don’t understand what encoding is and why we
are using it. Just note that not all text is stored the same way on a computer. Sometimes we
need to convert between different formats.

You may also see the net/http library being used like this:

require 'net/http’

url = URI.parse('https://ruby-doc.org/")

response = Net::HTTP.start(url.host, url.port, use ssl: true) do |http]
http.get(url.path)

end

content = response.body

In this example, a HTTP connection is “started,” and within the scope of that connection,
a GET request is made with the get method (if this doesn’t make sense, don’t worry; it’s part
of how the HTTP protocol works). Finally, you retrieve the content from response.body, a
string containing the contents of the web page at https://ruby-doc.org/.

Note The net/http library is only a basic library, and it requires its input to be
sanitized in advance, as in the preceding examples. The URI library is ideally suited
to this task.

205

https://ruby-doc.org/
https://ruby-doc.org/

CHAPTER 7 PROJECTS AND LIBRARIES

In Chapter 14, we’'ll look at net/http and some of its sister libraries, such as net/pop
and net/smtp, in more detail.

OpenStruct

In Chapter 6, you worked with a special type of data structure called Struct. Struct
allowed you to create small data-handling classes on the fly, like so:

Person = Struct.new(:name, :age)
me = Person.new("Fred Bloggs", 25)
me.age += 1

Struct gives you the luxury of being able to create simple classes without having to
define a class in the long-handed way.

The OpenStruct class provided by the ostruct library makes it even easier. It allows
you to create data objects without specifying the attributes and allows you to create
attributes on the fly:

require 'ostruct'

person = OpenStruct.new
person.name = "Fred Bloggs"
person.age = 25

person is a variable pointing to an object of class OpenStruct, and OpenStruct allows
you to call attributes whatever you like, on the fly. It’s similar to how a hash works, but
using the object notation.

As the name implies, OpenStruct is more flexible than Struct, but this comes at
the cost of harder-to-read code. There’s no way to determine exactly, at a glance, which
attributes have been used. However, with traditional structs, you can see the attribute
names at the same place the struct is created.

RubyGems

RubyGems is a packaging system for Ruby programs and libraries. It enables developers to
package their Ruby libraries in a form that’s easy for users to maintain and install. RubyGems
makes it easy to manage different versions of the same libraries on your machine and gives
you the ability to install them with a single line at the command prompt.

206

CHAPTER 7 PROJECTS AND LIBRARIES

Each individually packaged Ruby library (or application) is known simply as a gem
or RubyGem. Gems have names, version numbers, and descriptions. You can manage
your computer’s local installations of gems using the gem command, available from
the command line. RubyGems comes standard with Ruby nowadays, but it was not
included with distributions of Ruby 1.8. You no longer need to be concerned with how it
is installed as it’s available "out of the box"!

Finding Gems

It’s useful to get a list of the gems that are installed on your machine, as well as get a
list of the gems available for download and installation. To do this, you use gem’s 1ist

command. If you run the following command from your command line:
gem list
you'll get a result similar to this:

%x LOCAL GEMS *

bigdecimal (2.0.0)
json (2.3.0)
minitest (5.14.0)

It's not much, but it’s a start. This list shows that you have three different gems
installed, along with their version numbers. Your list of gems may be significantly longer
than this, but as long as it looks like a list and not an error message, you're good to go.

You can query the remote gem server (currently hosted by rubygems . org, but you
can add other sources later) like so:

gem list --remote
abstract (1.0.0)

ackbar (0.1.1, 0.1.0)
action profiler (1.0.0)

[..1,000s of lines about other gems removed for brevity..]

207

CHAPTER 7 PROJECTS AND LIBRARIES

Within a minute or so, many thousands of gems and descriptions should go flying
past.

Wading through such a list is impractical for most purposes, but generally you'll
be aware of which gem you want to install before you get to this stage. People on the
Internet will recommend gems, or you'll be asked to install a particular gem by this book
or another tutorial.

However, if you wish to “browse,” the best way to do so is to visit https://rubygems.
org/, the home for the RubyGems repository. The site features search tools and more
information about each gem in the repository.

Installing a Gem

Once you've found the name of a gem you wish to install, you can install it with a single
command at the command line (where chronic would be replaced with the name of the
gem you wish to install, although feedtools is a fine gem to test with):

gem install chronic

If all goes well, you'll get output like this:

Fetching: chronic-0.10.2.gem (100%)

Successfully installed chronic-0.10.2

Parsing documentation for chronic-0.10.2

Installing ri documentation for chronic-0.10.2

Done installing documentation for chronic after 1 seconds
1 gem installed

First, RubyGems looks to see if the gem exists in the current directory (you can keep
your own store of gems locally, if you like), and if not, it heads off to rubygems . org to
download the gem and install it from afar. Last, it builds the documentation for the
library using rdoc (covered in Chapter 8), and installation is complete. This process is the
same for nearly all gems.

208

https://rubygems.org/
https://rubygems.org/

CHAPTER 7 PROJECTS AND LIBRARIES

Note In many cases, installing one gem requires other gems to be installed too.
That is, the gem you're trying to install might have other gems it needs to operate,
also known as “dependencies.”

If yourun gem list again at this point, your local list of gems will include the newly
installed gem (in this case, chronic).

If you are aware that you need to install a specific version of a gem (such as version
0.10.2 of Chronic, as earlier), you can specify this like so:

gem install -v 0.10.2 chronic

Using Gems

As the RubyGems system isn’t an integrated part of Ruby, it’s necessary to tell your
programs that you want to use and load gems.
We will use gem install chronic, as demonstrated earlier, to install the gem.
Once the gem is installed, run irb or create a new Ruby source file, and use the
chronic gem like so:

require 'chronic’
puts Chronic.parse('may 10th")

2020-05-10 12:00:00 +0100

In this example, we load the Chronic library with require. The ‘chronic’ refers to the
main Ruby file and then we can use the Chronic class to do various things—in this case,
time manipulation.

Upgrading and Uninstalling Gems

One of the main features of RubyGems is that gems can be updated easily. You can
update all of your currently installed gems with a single line:

gem update

This makes RubyGems go to the remote gem repository, look for new versions of all
the gems you currently have installed, and if there are new versions, install them. If you
want to upgrade only a specific gem, suffix the preceding command line with the name
of the gem in question.

209

CHAPTER 7 PROJECTS AND LIBRARIES

Uninstalling gems is the simplest task of all. Use the uninstall command (where
feedtools is replaced by the name of the gem you wish to uninstall):

gem uninstall feedtools

Note Again, remember to use sudo when the situation demands it, as covered in
previous sections.

If there are multiple versions of the same gem on the machine, RubyGems will ask
you which version you want to uninstall first (or you can tell it to uninstall all versions at
once), as in this example:

$ gem uninstall rubyforge

Select RubyGem to uninstall:
1. rubyforge-0.3.0

2. rubyforge-0.3.1

3. All versions

Creating Your Own Gems

Naturally, it’s possible to create gems from your own libraries and applications. This
entire process is covered in Chapter 10, along with the other ways you can deploy your
applications to users.

Bundler

Bundler (https://bundler.io/)is a tool that was developed to help you manage the
dependencies of a project (essentially, the libraries upon which your project depends)
in a more structured way. It comes by default on some Ruby installs, but you can always
ensure it's installed with gem install bundler.

Consider, for example, that you create a project that depends on several libraries or
gems. To run this application locally, you'd need to make sure that you have the right
versions of each gem installed on your system. But if you have numerous projects with
wide varieties of dependencies, you'll start to find it hard to track which gems you have
installed and what versions they are.

210

https://bundler.io/

CHAPTER 7 PROJECTS AND LIBRARIES

Bundler lets you create a file (called Gemfile) within a project's directory that
specifies what libraries the project depends on. Here's an example of a very simple
Gemfile:

source 'https://rubygems.org’
gem 'nokogiri'
gem 'rack', '™>1.5

This specifies where the gems are to be downloaded from by default and then which
two gems the current project depends upon. Nokogiri is specified without a version
number, but in Rack's case, a version query is specified at the end of the line which says
any version that's 1.5 or above (but not version 2 or above—so 1.5, 1.6, 1.6.13, etc.).

If you run bundle install from the directory where a Gemfile is present, Bundler
ensures that the right gems are installed or upgraded to the right versions:

Fetching gem metadata from https://rubygems.org/.........

Resolving dependencies...

Using bundler 2.1.4

Using mini_portile2 2.4.0

Using nokogiri 1.10.9

Using rack 1.6.13

Bundle complete! 2 Gemfile dependencies, 4 gems now installed.

Use 'bundle show [gemname] ™ to see where a bundled gem is installed.

The correct gems, as specified in Gemfile, are now installed. You can use these from
within your project, or if you want to ensure that the right versions are loaded, you can
specify require 'bundler/setup' within your program, like so:

require 'bundler/setup’

require 'rack’

Now Rack 1.5 or above is loaded properly and you can check by typing the
following:

Rack.version

Rack.release

211

CHAPTER 7 PROJECTS AND LIBRARIES

One other thing to be aware of is that when you install or upgrade gems, another file
is created or updated called Gemfile.lock. This is not a file you are meant to change
yourself, but it simply reflects what the precise set of dependencies are, along with their
version numbers, so that if you distribute the project anywhere else, the very same set of
libraries and versions will be installed properly. Here's an example of the Gemfile.lock
produced by the install earlier:

GEM
remote: https://rubygems.org/
specs:
mini_portile2 (2.4.0)
nokogiri (1.10.9)
mini_portile2 (~> 2.4.0)
rack (1.6.13)

PLATFORMS
ruby

DEPENDENCIES
nokogiri
rack (~> 1.5)

BUNDLED WITH
2.1.4

Even though our main Gemfile specifies any version of Rack over 1.5 and under 2.0,
we specifically have 1.6.13 installed as that's the latest matching version at the time of
writing. If I transferred this project to you in the future, however, 1.7 may be the latest
matching Rack, and this could break the code. The Gemfile.lock’s job, therefore, is to
explicitly communicate which versions of which libraries are working with the project
right now.

If you want to learn more about Bundler, visit https://bundler.io/.

212

https://bundler.io/

CHAPTER 7 PROJECTS AND LIBRARIES

Summary

In this chapter, we've looked at some of the methods Ruby provides to make it possible

to handle large projects, as well as access the vast universe of prewritten code libraries to

make development easier.

Ruby provides a wealth of useful libraries within the main distribution, but using

tools such as RubyGems allows you to get access to code written by thousands of other

Ruby developers, allowing you to implement more-complex programs more quickly than

would otherwise be possible.

Let’s reflect on the main concepts covered in this chapter:

Project: Any collection of multiple files and subdirectories that form a
single instance of a Ruby application or library.

Library: A collection of routines, classes, methods, and/or modules
that provides a set of features that many other applications can use.

RubyGems: The packaging system for Ruby libraries and/or
applications that makes them easier to install and maintain by
developers.

Gem: A single library (or application) packaged using the RubyGems
system. Can also be called a “RubyGem.”

require: A method thatloads and processes the Ruby code from a
separate file, including whatever classes, modules, methods, and
constants are in that file, into the current scope. load is similar, but
rather than performing the inclusion operation once, it reprocesses
the code every time load is called. require relative islike require
but lets you load files from the current directory too without prefixing
their names with ./.

Bundler: A tool that makes it easier to handle the libraries that a
particular application depends on. It can install gems, handle the
upgrading of gems, and help lock certain versions of gems to your
specific projects.

In many of the chapters from here on, we'll be using the power of libraries and

combining multiple libraries to make single applications. One such example is the Ruby

on Rails framework we’ll be covering in Chapter 13, which is, in essence, a giant library

made up of several libraries itself!

213

CHAPTER 8

Documentation, Error
Handling, Debugging,
and Testing

In this chapter, we're going to look at the finer details of developing reliable programs:
documentation, error handling, debugging, and testing. These tasks aren’t what most
people think of as “development,” but are as important to the overall process as general
coding tasks. Without documenting, debugging, and testing your code, it’s unlikely that
anyone but you could work on the code with much success, and you run the risk of
releasing faulty scripts and applications.

This chapter demonstrates how to produce documentation, handle errors in your
programs, test the efficiency of your code, and make sure that your code is (mostly) bug-
free, all using tools that come with Ruby.

Documentation

Even if you're the only person to use and work on your Ruby code, it’s inevitable that
over time you'll forget the nuances of how it was put together and how it works. To guard
against code amnesia, you should document your code as you develop it.

In the past, documentation would often be completed by a third party rather than
the developer or would be written after the majority of the development had been
completed. Although developers have used comments in their code, true documentation
of a quality such that other developers and users can understand it without seeing the
source code was an afterthought.

Ruby makes it extremely easy to document your code as you create it, using a utility
called RDoc (standing for “Ruby Documentation”).

215
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_8

https://doi.org/10.1007/978-1-4842-6324-2_8#DOI

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Generating Documentation with RDoc

RDoc calls itself a “Document Generator for Ruby Source.” It’s a tool that reads through
your Ruby source code files and creates structured HTML documentation. It comes with
the standard Ruby distribution, so it’s easy to find and use.

RDoc understands a lot of Ruby syntax and can create documentation for classes,
methods, modules, and numerous other Ruby constructs without much prompting.

The way you document your code in a way that RDoc can use is to leave comments
prior to the definition of the class, method, or module you want to document, for

example:

This class stores information about people.
class Person
attr_accessor :name, :age, :gender

Create the person object and store their name
def initialize(name)

@name = name
end

Print this person's name to the screen
def print_name
puts "Person called #{@name}"
end
end

This is a simple class that’s been documented using comments. It’s quite readable
already, but RDoc can turn it into a pretty set of HTML documentation in seconds.

To use RDoc, simply run it from the command line using rdoc <name of source
file>.rb, like so:

rdoc person.rb

Note On Linux and OS X, this should simply work “out of the box” (as long as the
directory containing RDoc—usually /usx/bin or /usr/local/bin—is in the
path). On Windows, it might be necessary to prefix rdoc with its full location or
add it to the PATH environment variable.

216

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

This command tells RDoc to process person.rb and produce the HTML
documentation. By default, it does this by creating a directory called doc from the
current directory and placing its HTML and CSS files in there. Once RDoc has
completed, you can open index.html, located within doc, and you should see some
basic documentation, as in Figure 8-1.

Home
Pages Classes Methods

class Person

Attributes

age [RW]
gender [RW]
name [RW]

Public Class Methods

new (name)

Public Instance Methods

print_name()

Figure 8-1. Basic RDoc HTML output as seen from a web browser

The HTML documentation is shown with three frames across the top containing
links to the documented files, classes, and methods, respectively, and a main frame at
the bottom containing the documentation being viewed at present. The top three frames
let you jump between the various classes and methods with a single click. In a large set of
documentation, this quickly becomes useful.

When viewing the documentation for the Person class, the documentation shows
what methods it contains, the documentation for those methods, and the attributes the
class provides for its objects. RDoc works this out entirely from the source code and your

comments.

217

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

RDoc Techniques

In the prior section, you got RDoc to generate documentation from a few simple
comments in your source file. However, RDoc is rarely useful on such a small example,
and its real power comes into play when you're working on larger projects and using its
advanced functions. This section will cover some of these functions so you can comment
the code on your larger projects correctly.

Note The following sections give only a basic overview of some of RDoc’s
features. To read the full documentation for RDoc and learn about features that
are beyond the scope of this book, visit the official RDoc site at https://ruby.
github.io/rdoc/.

Producing Documentation for an Entire Project

Previously you used rdoc along with a filename to produce documentation for a single
file. However, in the case of a large project, you could have many hundreds of files that
you want processed. If you run RDoc with no filenames supplied, RDoc will process
all the Ruby files found in the current directory and all other directories under that.
The full documentation is placed into the doc directory, as before, and the entire set of
documentation is available from index.html.

Basic Formatting

Formatting your documentation for RDoc is easy. RDoc automatically recognizes
paragraphs within your comments and can even use spacing to recognize structure.
Here’s an example of some of the formatting RDoc recognizes:

#
#
#
#* First item in an outer list

This is a 1st level heading

* First item in an inner list
* Second item in an inner list
#* Second item in an outer list

https://ruby.github.io/rdoc/
https://ruby.github.io/rdoc/

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

* Only item in this inner list

#

#== This is a second level heading

#

#Visit https://www.apress.com

#

#== Test of text formatting features

#

#Want to see *bold* or _italic_ text? You can even embed
#+text that looks like code+ by surrounding it with plus
#symbols. Indented code will be automatically formatted:
#

class MyClass

def method_name

puts "test"

end

end

class MyClass
end

If you process this with RDoc, you'll get a result that looks like Figure 8-2. To learn
more about RDoc’s general formatting features, the best method is to look at existing
code that is extensively prepared for RDoc, such as the source code to the Ruby on Rails
framework, or refer to the documentation at https://ruby.github.io/rdoc/RDoc/
Markup.html.

219

https://ruby.github.io/rdoc/RDoc/Markup.html
https://ruby.github.io/rdoc/RDoc/Markup.html

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

o class MyClass

Pages Classes Methods

Table of Contents ThiS is @ 1st level heading

« Firstitem in an outer list

o Firstitem in an inner list
Sl o Second item in aninner list
Object
» Second item in an outer list
o Only item in this inner list

This is a second level heading

Visit wwaw.rubyir

Test of text formatting features

Want to see bold or italic text? You can even embed +text that looks like code+ by surrounding it with plus symbols.
Indented code will be automatically formatted:

Figure 8-2. How RDoc renders the formatting feature test file

Modifiers and Options

RDoc can work without the developer knowing much about it, but to get the most
from RDoc, it’s necessary to know how several of its features work and how they can
be customized. RDoc supports a number of modifiers within comments, along with a
plethora of command-line options.

:nodoc: Modifier

By default, RDoc will attempt to use anything it considers relevant to build up its
documentation. Sometimes, however, you'd rather RDoc ignore certain modules,
classes, or methods, particularly if you haven’t documented them yet. To make RDoc
ignore something in this way, simply follow the module, class, or method definition with
a comment of :nodoc :, like so:

This is a class that does nothing
class MyClass

220

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

This method is documented
def some_method
end
def secret _method #:nodoc:
end

end

In this instance, RDoc will ignore secret_method.

:nodoc: only operates directly on the elements upon which it is placed. If you want
:nodoc: to apply to the current element and all those beneath it (e.g., all methods within
a class), do this:

This is a class that does nothing

class MyClass #:nodoc: all
This method is documented (or is it?)
def some_method
end

def secret_method
end
end

Now none of MyClass is documented by RDoc.

Turning RDoc Processing On and Off

You can stop RDoc from processing comments temporarily using #++ and #--, like so:

This section is documented and read by RDoc.

#--

This section is hidden from RDoc and could contain developer
notes, private messages between developers, etc.

#++

RDoc begins processing again here after the ++.

This feature is particularly ideal in sections where you want to leave comments to
yourself that aren’t for general consumption.

221

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Note RDoc doesn’t process comments that are within methods, so your usual
code comments are not used in the documentation produced. RDoc will also not
process comments that are separated from other comments with blank lines.

Command-Line Options

Like most command-line applications, including Ruby itself, you can give RDoc a
number of options, as follows:

e --all: Usually RDoc processes only public methods, but --all forces
RDoc to document all methods within the source files.

o --fmt <format name>: Produce documentation in a certain format
(which currently includes darkfish, pot, and ri).

o --help: Get help with using RDoc’s command-line options and find
out which output formatters are available.

e --main <name>: Set the class, module, or file that appears as the main
index page for the documentation to <name> (e.g., rdoc --main
MyClass).

After any command-line options, rdoc is suffixed with the filename(s) of the files you
want to have RDoc document. Alternatively, if you specify nothing, RDoc will traverse
the current directory and all subdirectories and generate documentation for your entire
project.

Note RDoc supports many more command-line options than these, and they are
all covered in RDoc’s official documentation. Alternatively, run RDoc with rdoc
--help at the command line to get a list of its options.

Debugging and Errors

Errors happen. It's unavoidable that programs you develop will contain bugs, and you
won’t immediately be able to see what the errors are. A misplaced character in a regular
expression, or a typo with a mathematical symbol, can make the difference between a
reliable program and one that constantly throws errors or generates undesirable output.

222

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Exceptions and Error Handling

An exception is an event that occurs when an error arises within a program. An exception
can cause the program to quit immediately with an error message or can be handled by
error-handling routines within the program to recover from the error in a sensible way.

For example, a program might depend on a network connection (e.g., the Internet),
and if the network connection is unavailable, an error will arise when the program
attempts to use the network. Rather than brusquely terminating with an obscure error
message, the code can handle the exception and print a human-friendly error message
to the screen first. Alternatively, the program might have a mechanism by which it can
work offline, and you can use the exception raised by trying to access an inaccessible
network or server to enter that mode of operation instead.

Raising Exceptions

In Ruby, exceptions are packaged into objects of class Exception or one of Exception’s
many subclasses. Ruby has many predefined exception classes that deal with different
types of errors, such as NoMemoryError, StandardError, RuntimeError, SecurityError,
ZeroDivisionError, and NoMethodError. You might have already seen some of these in
error messages while working in irb.

When an exception is raised (exceptions are said to be raised when they occur within
the execution of a program), Ruby immediately looks back up the tree of routines that
called the current one (known as the stack) and looks for a routine that can handle that
particular exception. If it can’t find any error-handling routines, it quits the program with
the raw error message, for example:

irb(main):001:0> puts 10 / 0
ZeroDivisionError (divided by 0)
from (irb):1:in ~/'
from (irb):1

This error message shows that an exception of type ZeroDivisionError has been
raised, because you attempted to divide ten by zero.

Ruby can raise exceptions automatically when you perform incorrect functions, and
you can raise exceptions from your own code too. You do this with the raise method
and by using an existing exception class or by creating one of your own that inherits from
the Exception class.

223

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

One of the standard exception classes is ArgumentError, which is used when the
arguments provided to a method are fatally flawed. You can use this class as an exception
if bad data is supplied to a method of your own:

class Person
def initialize(name)
raise ArgumentError, "No name present" if name.empty?
end
end

If you create a new object from Person and supply a blank name, an exception will
be raised:

fred = Person.new('")

ArgumentError: No name present

Note You can call raise with no arguments at all, and a generic
RuntimeError exception will be raised. This is not good practice, though, as
the exception will have no message or meaning along with it. Always provide a
message and a class with raise, if possible.

However, you could create your own type of exception if you wanted to, for example:

class BadDataException < RuntimeError
end

class Person
def initialize(name)
raise BadDataException, "No name present" if name.empty?
end
end

This time you've created a BadDataException class inheriting from Ruby’s standard
RuntimeError exception class.

Now, creating a new object with the wrong type of parameter raises a
BadDataException:

224

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

fred = Person.new('")
BadDataException (No name present)

At this point, it might seem meaningless as to why raising different types of
exceptions is useful. The reason is so that you can handle different exceptions in
different ways with your error-handling code, as you'll do next.

Handling Exceptions

In the previous section, we looked at how exceptions work. When raised, exceptions
halt the execution of the program and trace their way back up the stack to find some
code that can handle them. If no handler for the exception is found, the program ceases
execution and dies with an error message with information about the exception.

However, in most situations, stopping a program because of a single error isn’t
necessary. The error might only be minor, or there might be an alternative option to try.
Therefore, it’s possible to handle exceptions. In Ruby, the rescue clause is used, along
with begin and end, to define blocks of code to handle exceptions, for example:

begin

puts 10 / O
rescue

puts "You caused an error!"
end

You caused an error!

In this case, begin and end define a section of code to be run, where if an exception
arises, it’s handled with the code inside the rescue block. First, you try to work out ten
divided by zero, which raises an exception of class ZeroDivisionError. However, being
inside a block containing a rescue section means that the exception is handled by the
code inside that rescue section. Rather than dying with a ZeroDivisionError, the text
“You caused an error!” is instead printed to the screen.

This can become important in programs that rely on external sources of data.
Consider this pseudo-code:

225

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

data = ""
begin
<..code to retrieve the contents of a Web page..>
data = <..content of Web page..>
rescue
puts "The Web page could not be loaded! Using default data instead."
data = <..load data from local file..>
end
puts data

This code demonstrates why handling exceptions is extremely useful. If retrieving
the contents of a web page fails (e.g., if you're not connected to the Internet), then
the error-handling routine rescues the exception, alerts the user of an error, and then
loads some data from a local file instead—certainly better than exiting the program
immediately!

In the previous section, we looked at how to create your own exception classes, and
the motivation for doing this is that it’s possible to rescue different types of exceptions
in a different way. For example, you might want to react differently if there’s a fatal flaw
in the code vs. a simple error such as a lack of network connectivity. There might also be
errors you want to ignore and only specific exceptions you wish to handle.

rescue’s syntax makes handling different exceptions in different ways easy:

begin

. code here ...
rescue ZeroDivisionError

. code to rescue the zero division exception here ...
rescue YourOwnException

. code to rescue a different type of exception here ...
rescue

. code that rescues all other types of exception here ...
end

This code contains multiple rescue blocks, each of which is caused depending on
the type of exception raised. If a ZeroDivisionError is raised within the code between
begin and the rescue blocks, the rescue ZeroDivisionError code is executed to handle
the exception.

226

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Handling Passed Exceptions

As well as handling different types of exceptions using different code blocks, it’s possible
to receive exceptions and use them. This is achieved with a little extra syntax on the
rescue block:

begin

puts 10 / 0
rescue => e

puts "You caused the error -> #{e.class}"
end

ZeroDivisionError

Rather than merely performing some code when an exception is raised, the
exception object itself is assigned to the variable e, whereupon you can use that variable
however you wish. This is particularly useful if the exception class contains extra
functionality or attributes that you want to access.

Catch and Throw

Although creating your own exceptions and exception handlers is useful for resolving
error situations, sometimes you want to be able to break out of a thread of execution
(say, aloop) during normal operation in a similar way to an exception, but without
actually generating an error. Ruby provides two methods, catch and throw, for this
purpose.

catch and throw work in a way a little reminiscent of raise and rescue, but catch
and throw work with symbols rather than exceptions. They're designed to be used in
situations where no error has occurred, but being able to escape quickly from a nested
loop, method call, or similar is necessary.

The following example creates a block using catch. The catch block with the : finish
symbol as an argument will immediately terminate (and move on to any code after that
block) if throw is called with the : finish symbol:

227

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

catch(:finish) do
1000.times do
x = rand(1000)
throw :finish if x == 123
end

puts "Generated 1000 random numbers without generating 123!"
end

Within the catch block, you generate 1000 random numbers, and if the random
number is ever 123, you immediately escape out of the block using throw : finish.
However, if you manage to generate 1000 random numbers without generating the
number 123, the loop and the block complete, and you see the message.

catch and throw don’t have to be directly in the same scope. throw works from
methods called from within a catch block:

def generate_random_number except 123
X = rand(1000)
throw :finish if x > 123 && x < 200
end

catch(:finish) do

1000.times { generate random number except 123 }

puts "Generated 1000 random numbers without generating 123!"
end

This code operates in an identical way to the first. When throw can’t find a code
block using : finish in its current scope, it jumps back up the stack until it can.

The Ruby Debugger

Debugging is the process of fixing the bugs in a piece of code. This process can be as
simple as changing a small section of your program, running it, monitoring the output,
and then looping through this process again and again until the output is correct and the
program behaves as expected.

However, constantly editing and re-running your program gives you no insight
into what's actually happening deep within your code. Sometimes you want to know

what each variable contains at a certain point within your program’s execution, or you

228

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

might want to force a variable to contain a certain value. You can use puts to show what
variables contain at certain points in your program, but you can soon make your code
messy by interspersing it with debugging tricks.

A debugging tool can step through your code line by line (if you wish), set
breakpoints (places where execution will stop for you to check things out), and debug
your code. Code execution pauses giving you control to analyze variables and run
methods. It’s a little like irb, except you don’t need to type out a whole program. You can
specify your program’s filename, and you'll be acting as if you are within that program.

Ruby provides a debugger, but at the time of writing this book, it’s not the primary
way developers debug their code. There are two debuggers currently used: Pry and
byebug. Since byebug is available by default in Rails, we will be covering it in this book.
You will need to install byebug to use it with Ruby. Run the following command to install
byebug:

gem install byebug

For example, create a basic Ruby script called debugtest.rb:

i=1

j=0

until i > 1000000
i*=2
j+=1

end

puts "i = #{i}, j = #{j}"

If you run this code with ruby debugtest.rb, you'll get the following result:
i = 1048576, j = 20

But say you run it with byebug like this:
byebug debugtest.rb

You'll see something like this appear:

2: j=0
3: until i > 1000000

229

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

4 i*=2
5: j+=1
6: end
7: puts "i = #{i}, j = #{j}"
8:
(byebug)

This means the debugger has loaded. Each line of our code is numbered and there
is a hash rocket informing you where the debugger paused (the first line, in this case). In
our example, the next line Ruby will interpret is line 1.

You may also place a byebug statement anywhere in your code to stop execution at
that line:

require 'byebug'
i=1
j=0
byebug
until i > 1000000
i*=2
j+=1
end
puts "i = #{i}, j = #{j}"

Using the byebug syntax means we can run the program using the ruby interpreter:
ruby debugtest.rb

which will output the following:

1: require 'byebug'
2
3:1=1
4: 7 =0
5: byebug
=> 6: until i > 1000000
7: 1*=2
8: j+=1

230

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

9: end
10: puts "i = #{i}, j = #{j}"
(byebug)

Placing the byebug statement in your source code directly provides greater control
over where the debugger stops the program execution. This method is used more often
by developers.

The function of byebug is similar to irb, and you can type expressions and statements
directly onto the prompt here. However, its main strength is that you can use special
commands to run debugtest.rb line by line or set breakpoints.

Here are some useful commands to use at the debugger prompt. To use the
command, you type either the first letter of the word or the whole word:

o (s)tep: Runs the next line of the program. Steps into method
calls. After each step, you can check variables, change values, and
so on. This allows you to trace the exact point at which bugs occur.
Follow step by the number of lines you wish to execute if it’s higher
than one, such as step 2 to execute two lines.

e (n)ext: Runs the next line of the program. Same functionality as step,
except next steps “over” method calls.

o (c)ontinue: Runs the program without stepping. Execution will
continue until the program ends or reaches a breakpoint.

o (b)reak: Sets a breakpoint at the current line number. This means
that if you continue execution with continue, execution will run until
the breakpoint and stop again. This is useful for stopping execution
inside of a loop.

o backtrace (bt or w):Displays the current stack trace. This is useful
if you want to see which methods were called prior to the current
method.

o (q)uit: Exits the debugger.

o restart: Restarts the program as well as byebug.

231

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

You can view the contents of a variable by typing the variable name and pressing
Enter. Also, you can run any method or instantiate any class available to you in the
current context. I recommend testing out different commands and looking at the
documentation for byebug which can be found at https://github.com/deivid-
rodriguez/byebug.

Testing

Testing is a powerful part of modern software development and can help you resolve
many development snafus. Without a proper testing system in place, you can never be
confident that your app is bug-free. With a good testing system in place, you might only
be 99 percent bug-free, but it’s a significant improvement.

Previously, we've looked at how to handle explicit errors, but sometimes your
programs might perform oddly in certain situations. For example, certain data might
cause an algorithm to return an incorrect result, or invalid data might be produced that,
although invalid, does not result in an explicit error.

One way to resolve these problems is to debug your code, as you've seen, but
debugging solves only one problem at a time. It’s possible to debug your code to solve
one problem, but create many others! Therefore, debugging alone has become viewed
as a poor method of resolving bugs, and testing the overall functionality of code has
become important.

In the past, users and developers might have performed testing manually by
performing certain actions and seeing what happens. If an error occurs, the bug
in question is fixed and testing continues. Indeed, there was a time when it was
commonplace solely to use user feedback as a testing mechanism!

However, things have changed quickly with the rapidly growing popularity of test-
driven development (also often known as test-first development), a new philosophy that
turns software development practices on their head. Ruby developers have been at the
forefront of promoting and encouraging this technique.

232

https://github.com/deivid-rodriguez/byebug
https://github.com/deivid-rodriguez/byebug

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

The Philosophy of Test-Driven Development

Test-driven development is a technique where developers create a set of tests for a system
to pass before coding the system itself and then rigidly use these tests to maintain the
integrity of the code. In a lighter form, however, it can also refer to the technique of
implementing tests for any code, even if you don’t necessarily create the tests before the
code you're testing.

Note This section provides only a basic overview of test-driven development. The
topic is vast, and many books and resources are available on the topic if you wish
to learn more. Wikipedia’s entry on the topic at https://en.wikipedia.org/
wiki/Test-driven development is a great place to start.

For example, you might add a simple method to String that’s designed to capitalize
text into titles:

class String
def titleize
self.capitalize
end
end

Your intention is to create a method that can turn “this is a test” into “This Is A
Test’, that is, a method that makes strings look as if they’re titles. titleize, therefore,
capitalizes the current string with the capitalize method. If you're in a rush or not
bothering to test your code, disaster will soon strike when the code is released into the
wild. capitalize capitalizes only the first letter of a string, not the whole string!

puts "this is a test".titleize
"This is a test"

That’s not the intended behavior! However, with test-driven development, you could
have avoided the pain of releasing broken code by first writing some tests to demonstrate
the outcome you expect:

raise "Fail 1" unless "this is a test".titleize == "This Is A Test"

233

https://en.wikipedia.org/wiki/Test-driven_development
https://en.wikipedia.org/wiki/Test-driven_development

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

raise "Fail 2" unless "another test 1234".titleize == "Another Test 1234"
raise "Fail 3" unless "We're testing titleize".titleize == "We're Testing
Titleize"

These three lines of code raise exceptions unless the output of titleize is what you
expect it to be.

Note These tests are also known as assertions, as they’re asserting that a
certain condition is true.

If titleize passes these three tests, you can expect the functionality to be okay for
other examples.

Note A set of tests or assertions that test a single component or a certain set of
functionalities is known as a test case.

Your current code fails on the first test of this test case, so let’s write the code to make
it work:

class String
def titleize
self.gsub(/\b\w/) { |letter| letter.upcase }
end
end

This code takes the current string, finds all word boundaries (with \b), passes in the
first letter of each word (as obtained with \w), and converts it to uppercase. Job done?
Run the three tests again:

RuntimeError (Fail 3)

Why does test 3 fail?

puts "We're testing titleize".titleize

We'Re Testing Titleize

234

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

\b isn’t smart enough to detect true word boundaries. It merely uses whitespace or
“non-word” characters to discriminate words from non-words. Therefore, in “We're,”
both the W and the R get capitalized. You need to tweak your code:

class String
def titleize
self.gsub(/\s\w/) { |letter| letter.upcase }
end
end

If you make sure the character before the letter to capitalize is whitespace, you're
guaranteed to now be scanning with a true, new word.
Re-run the tests:

RuntimeError: Failed test 1

You're back to square one.

One thing you failed to take into account is that looking for whitespace before a
word doesn’t allow the first word of each string to be capitalized, because those strings
start with a letter and not whitespace. It sounds trivial, but it’s a great demonstration of
how complex simple functions can become and why testing is so vital to eradicate bugs.
However, the ultimate solution is simple:

class String
def titleize
self.gsub(/(\A|\s)\w/){ |letter| letter.upcase }
end
end

If you run the tests again, you'll notice they pass straight through. Success!

This basic example provides a sharp demonstration of why testing is important.
Small changes can lead to significant changes in functionality, but with a set of trusted
tests in place, you can focus on solving problems rather than worrying if your existing
code has bugs.

Rather than writing code and waiting for bugs to appear, you can proactively
determine what your code should do and then act as soon as the results don’t match up
with the expectations.

235

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Unit Testing

In the previous section, you created some basic tests using raise, unless, and == and
compared the results of a method call with the expected results. It’s possible to test a lot
in this way, but with more than a few tests, it soon becomes messy, as there’s no logical
place for the tests to go (and you certainly don’t want to include tests with your actual,
functional code).

Luckily, there are a couple of popular options for Ruby, Minitest, and RSpec. These
gems make testing easy and organize test cases into a clean structure. This book will use
Minitest, but RSpec is a popular option as well. Before Ruby 2.2, Minitest came bundled
with Ruby. Due to issues maintaining Minitest as a part of Ruby’s core library, it was
removed and placed in a gem. To install Minitest, run the following command:

gem install minitest

Unit testing is the primary component of test-driven development and means that
you're testing each individual unit of functionality within a program or system. Minitest
is Ruby’s official library for performing unit tests.

One of the benefits of Minitest is that it gives you a standardized framework for
writing and performing tests. Rather than writing assertions in an inconsistent number
of ways, Minitest gives you a core set of assertions to use.

Let’s take the titleize method from before to use as a demonstration of Minitest’s
features and create a new file called test_titleize.rb:

class String
def titleize
self.gsub(/(\A|\s)\w/){ |letter| letter.upcase }
end
end

require 'minitest/autorun’

class TestTitleize < Minitest::Test
def test basic
assert equal("This Is A Test", "this is a test".titleize)
assert _equal("Another Test 1234", "another test 1234".titleize)
assert_equal("We're Testing", "We're testing".titleize)
end
end

236

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

First, you include the titleize extension to String (typically this would be in its
own file that you'd then require in, but for this simple example, we’ll keep it associated
with the test code). Next, you load the Minitest class using require. Finally, you create a
test case by inheriting from Minitest: : Test. Within this class, you have a single method
(though you can have as many as you like to separate your tests logically) that contains
three assertions, similar to the assertions made in the previous section.

If you run this script, you'll see the tests in action:

Run options: --seed 45484
Running:

Finished in 0.002585s, 386.8906 runs/s, 1160.6718 assertions/s.
1 runs, 3 assertions, 0 failures, 0 errors, 0 skips

This output shows that the tests are started, a single test method is run (test_basic,
in this case), and that a single test method with three assertions passed successfully.
Say you add an assertion to test_basic that’s certainly going to fail, like so:

assert_equal("Let's make a test faill!", "foo".titleize)

and re-run the tests:

Run options: --seed 4300

Running:

Failure:
TestTitleize#test basic [test titleize.rb:11]:
Expected: "Let's make a test faill!"

Actual: "Foo"

rails test test titleize.rb:10

Finished in 0.000813s, 1230.0124 runs/s, 1230.0124 assertions/s.
1 runs, 1 assertions, 1 failures, O errors, 0 skips

237

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

You've added an assertion that was bound to fail, and it has. However, Minitest has
given you a full explanation of what happened. Using this information, you can go back
and either fix the assertion or fix the code that caused the test to fail. In this case, you
forced it to fail, but if your assertions are created normally, a failure such as this would
demonstrate a bug in your code.

More Minitest Assertions

In the previous section, you used a single type of assertion, assert_equal. assert equal
asserts that the first and second arguments are equal (whether they’re numbers, strings,
arrays, or objects of any other kind). The first argument is assumed to be the expected
outcome, and the second argument is assumed to be the generated output, as with your
prior assertion:

assert equal("This Is A Test", "this is a test".titleize)

Note assert equal can also accept an optional third argument as a message
to be displayed if the assertion fails. A message might, in some cases, prove more
useful than the default assertion failure message.

You're likely to find several other types of assertions useful as follows:

o assert(<boolean expression>): Passes only if the Boolean
expression isn’'t false or nil (e.g., assert 2 == 1 will always fail).
refute is its direct opposite.

o assert equal(expected, actual):Passes only if the expected and
actual values are equal (as compared with the == operator). assert_
equal('A', 'a'.upcase)will pass.

o refute equal(expected, actual):Isthe opposite of assert equal.
This test will fail if the expected and actual values are equal. Any
negative/“not” assertions can be prefixed with refute_, butit’s a
personal preference as to which you use.

o assert raises(exception type, ..) { <code block> }:
Passes only if the code block following the assertion raises an
exception of the type(s) passed as arguments. assert_raises
(ZeroDivisionError) { 2 / 0 }will pass.

238

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

o assert instance of(class_expected, object): Passes only if
objectis of class class_expected.

o flunk:Is a special type of assertion in that it will always fail. It’s useful
if you haven’t quite finished writing your tests and you want to add a
strong reminder that your test case isn’t complete!

Note All the preceding assertions, including f1unk, can take an optional
message argument as the last argument, as with assert_equal.

You'll use assertions and unit testing more in Chapter 12, where you’ll develop a set
of tests for a library you’ll build.

Benchmarking and Profiling

Once your code is bug-free and working correctly, you may think it’s ready for release.
Sometimes, however, code can be inefficient and waste system resources. Before
Ruby 1.9, the Ruby interpreter was not particularly fast. Ruby 1.9, with its entirely new
implementation, is significantly faster than prior versions (2x speed improvements).
There were additional improvements with each release of Ruby 2.x, but Ruby 3.0
provides the most significant improvements yet (3x speed improvements). With Ruby
3.0, the Ruby runtime is no longer a performance concern for most applications.

If Ruby is so fast, then why worry about performance? While Ruby is fast, our
code may not be. To verify your code is fast enough, create a benchmark. Testing the
performance of your code with a benchmark is especially vital if your code runs often.

Simple Benchmarking

Ruby’s standard library includes a module called Benchmark. Benchmark provides several
methods that measure the speed it takes to complete the code you provide, for example:

require 'benchmark’
puts Benchmark.measure { 10000.times { print "." } }

This code measures how long it takes to print 10,000 periods to the screen. Ignoring
the periods produced, the output (on my machine; yours might vary) is as follows:

0.050000 0.040000 0.090000 (0.455168)

239

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

The columns, in order, represent the amount of user CPU time, system CPU time,
total CPU, and “real” time taken. In this case, although it took nine-hundredths of a
second of CPU time to send 10,000 periods to the screen or terminal, it took almost half
a second for them to finish being printed to the screen among all the other things the
computer was doing.

Because measure accepts code blocks, you can make it as elaborate as you wish:

require 'benchmark'
iterations = 1000000

b = Benchmark.measure do
for i in 1..iterations
X =1
end
end

¢ = Benchmark.measure do
iterations.times do |i]
X =1
end
end

puts b
puts c

In this example, you benchmark two different ways of counting from one to one
million. The results might look like this:

0.800000 0.010000 0.810000 (0.949338)
0.890000 0.010000 0.900000 (1.033589)

These results show little difference, except that slightly more user CPU time is used
when using the times method rather than using for. You can use this same technique to
test different ways of calculating the same answers in your code and optimize your code
to use the fastest methods.

Benchmark also includes a way to make completing multiple tests more convenient.
You can rewrite the preceding benchmarking scenario like this:

require 'benchmark’
iterations = 1000000

240

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Benchmark.bm do |bm|
bm.report("for:") do
for i in 1..iterations
X =1
end
end
bm.report("times:") do
iterations.times do |i]
X =1
end
end
end

The primary difference with using the bm method is that it allows you to collect a
group of benchmark tests together and display the results in a prettier way. Example
output for the preceding code is as follows:

User system total real
for: 0.850000 0.000000 0.850000 (0.967980)
times: 0.970000 0.010000 0.980000 (1.301703)

bm makes the results even easier to read and provides headings for each column.

Another method, bmbm, repeats the benchmark set twice, using the first as a
“rehearsal” and the second for the true results, as in some situations CPU caching,
memory caching, and other factors can taint the results. Therefore, repeating the test
can lead to more accurate figures. Replacing the bm method with bmbm in the preceding
example (for the Benchmark method) gives results like these:

Rehearsal -----------mmmm e
for: 0.780000 0.000001 0.780001 (0.958378)
times: 0.100000 0.010000 0.110000 (1.342837)
------------------------------- total: 0.890001sec

User system total real
for: 0.850000 0.000000 0.850000 (0.967980)
times: 0.970000 0.010000 0.980000 (1.301703)

bmbm runs the tests twice and gives both sets of results, where the latter set should be
the most accurate.
241

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Profiling

Whereas benchmarking is the process of measuring the total time it takes to achieve
something and comparing those results between different versions of code, profiling tells
you what code is taking what amount of time. For example, you might have a single line
in your code that’s causing the program to run slowly, so by profiling your code you can
immediately see where you should focus your optimization efforts.

Note Some people consider profiling to be the holy grail of optimization. Rather
than thinking of efficient ways to write your application ahead of time, some
developers suggest writing your application, profiling it, and then fixing the slowest
areas. This is to prevent premature optimization. After all, you might prematurely
optimize something that didn’t actually warrant it, but miss out on an area of code
that could do with significant optimization.

Ruby comes with a code profiler, but it is increasingly showing its age, and I would
recommend instead installing ruby-prof (https://github.com/ruby-prof/ruby-prof).
This is available as a gem, so can be simply installed with

gem install ruby-prof

Note The installation process on Windows is a little more involved, so look at the
ruby-prof GitHub repository at https://github.com/ruby-prof/ruby-prof
for further guidance.

Once installed successfully, simply use ruby-prof to run your Ruby code and you’ll
get a print out of the profiler’s findings.
For example, let’s say we have the following Ruby program:

require 'ruby-prof'
class Calculator
def self.count_to large number

X =0
100000.times { x += 1 }
end

242

https://github.com/ruby-prof/ruby-prof
https://github.com/ruby-prof/ruby-prof

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

def self.count_to_small number
X =0
1000.times { x += 1 }
end
end

Calculator.count_to_large number
Calculator.count to small number

This can then be run using ruby-prof:

ruby-prof calculator.rb

Measure Mode: wall time
Thread ID: 560

Fiber ID: 540

Total: 0.011410

Sort by: self time

%self total self wait child calls name
96.82 0.011 0.011 0.000 0.000 2
Integer#times
1.94 0.011 0.000 0.000 0.011 1
Kernel#load
0.28 0.000 0.000 0.000 0.000 5
<Class::File>#file?
0.17 0.000 0.000 0.000 0.000 4 Array#each
0.16 0.000 0.000 0.000 0.000 2

<Class::File>#symlink?

There’s a lot of information given, but it’s easy to read. The code itself is simple.
Two class methods are defined that both count up to different numbers. Calculator.
count_to_large number contains aloop that repeats 100,000 times, and Calculator.
count_to_ small number contains a loop that repeats 1000 times

243

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Note The reason larger numbers, such as the 1,000,000 loops in the
benchmarking tests, weren’t used is because profiling adds a severe overhead to
the operating speed of a program, unlike benchmarking. Although the program will
run slower, this slowdown is consistent, so the accuracy of the profiling results is
ensured regardless.

The result contains a number of columns. The first is the percentage of time spent
within the method named in the far right column. In the preceding example, the profiler
shows that 96.82 percent of the total execution time was spent in the times method in
the Integer class. The second column shows the amount of time in seconds rather
than as a percentage.

The calls column specifies how many times that method was called. In our case,
times was called only twice.

You can use the profiler’s results to discover the “sticky” points in your program and
help you work around using inefficient methods that suck up CPU time. It’s not worth
spending time optimizing routines that barely consume any time, so use the profile to
find those routines that are using the lion’s share of the CPU, and focus on optimizing
those.

Tip ruby-prof can also be used from within code, rather than via the ruby-prof
program, in order to profile certain pieces of code rather than an entire script. See
ruby-prof’s documentation for more information.

Summary

In this chapter, we've looked at the process behind, and the tools Ruby supplies for,
documentation, error handling, testing, benchmarking, and profiling.

The quality of the documentation, error handling, and tests associated with a
program or section of code demonstrates the professionalism of the developer and the
program. Small, quickly developed scripts might not require any of these elements, but if
you're developing a system that’s designed to be used by other people or that’s mission-
critical, it’s essential to understand the basics of error handling and testing to avoid the
embarrassment of your code causing problems and behaving erroneously.

Furthermore, it's important to benchmark and profile your code so that your code
has the ability to scale over time. You might expect your code to perform only a certain

244

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

small set of functions—for example, processing small files—but in the future you might

need to process significantly larger amounts of data with the same code and add extra,

unanticipated features. The small amount of time taken to benchmark, profile, and

optimize your code can pay dividends with reduced execution times later.

Let’s reflect on the main concepts covered in this chapter:

RDoc: A tool that comes with Ruby that builds HTML documentation
using the structure and comments in your source code.

Debugging: The process of resolving errors in source code, often by
stepping through and inspecting the state of a program in situ.

Test-driven development/test-first development: The development
process of first writing tests that enforce certain expectations, then
writing the code to produce the correct results. Behavior-driven
development is a popular alternative that merely uses different

semantics.

Test case: A group of tests to check the functionality of a section of
your program (e.g., a class or module).

Assertion: A single test to see whether a certain condition or result is
met, which checks that a certain piece of code is working properly.

Unit testing: The process of testing code by making assertions on
its various pieces of functionality to make sure each operates as
expected.

Optimization: The process of improving the efficiency of your code by
reworking algorithms and finding new ways of solving problems.

Benchmarking: A process involving testing the speed of your code
to see how quick it is under certain conditions, or using certain
methods and algorithms. You can use the benchmark results to
compare different versions of code, or compare coding techniques.

Profiling: A process that shows you which methods and routines are
taking up the most execution time (or memory) in your programs.

245

CHAPTER 8 DOCUMENTATION, ERROR HANDLING, DEBUGGING, AND TESTING

Most of these concepts are not used directly in the code samples in this book, as
they’re principally relevant to longer-term projects or code being prepared for release.
This doesn’t mean they’re unimportant concepts, but as in-depth parts of a longer
development process, they aren’t within the scope of the code examples used in other
chapters.

We'll look briefly at testing methodologies again in Chapter 12, where we implement
some simple tests while developing a library.

246

CHAPTER 9

Files and Databases

In this chapter, we're going to look at how to store, process, and interact with external
sources of data from our Ruby programs. In Chapter 4, we briefly looked at how to load
files to get data into an application, but this chapter will extend upon that greatly and
allow you to create files from scratch from your Ruby programs.

Later in this chapter, we'll look at databases—specialized organizations of data—and
how to interact with them, along with some notes on interacting with popular database
systems such as SQLite, MySQL, and PostgreSQL. You can use databases for simple
tasks such as storing information about a small set of items or as an address book, but
databases are also used in the world’s busiest data processing environments. By the end
of this chapter, you'll be able to use databases the same way as, or at least in a similar
way to, those used by professional developers around the world.

Input and Output

Interaction, in computer terms, relates to the input and output of data, or I/0 for short.
Most programming languages have built-in support for I/0, and Ruby’s is well designed
and easy to use.

I/0 streams are the basis for all input and output in Ruby. An I/O stream is a conduit
or channel for input and output operations between one resource and another. Usually
this will be between your Ruby program and the keyboard or between your Ruby
program and a file. Along this stream, input and output operations can take place. In
some cases, such as when using the keyboard, I/0 only works in one direction, as you
can’t send data fo a keyboard, and data can only be sent fo, and not from, a display.

In this section, we're going to look at using the keyboard, using files, and other forms
of I/0 in Ruby and how they can be used.

247
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_9

https://doi.org/10.1007/978-1-4842-6324-2_9#DOI

CHAPTER9 FILES AND DATABASES

Keyboard Input

The simplest way to get external data into a program is to use the keyboard, for example:

a = gets
puts a

gets accepts a single line of data from the standard input—the keyboard in this
case—and assigns it to a. You then print it, using puts, to the standard output—the
screen in this case.

STANDARD INPUT AND OUTPUT

The standard inputis a default stream available in many operating systems that relates to the
standard way to accept input from a user or external process. In our case, the standard input
is the keyboard, but if, for example, you were to redirect data to a Ruby program from a UNIX-
like operating system, such as Linux or Mac 0S X, the standard input would be the data being
directed to it. For example, let’s assume we put the preceding code example into a file called
test.rb and then ran it like so:

ruby test.rb < somedata.txt

The output provided this time would be the first line of somedata.txt, as gets would
retrieve a single line from the standard input that, in this case, would be the contents of the
file somedata. txt. Essentially, the file is now the input, not the keyboard.

Conversely, standard output is usually referring to the screen or display, but if the results
of your Ruby script are being redirected to a file or another program, that destination file or
program becomes the target for the standard output.

Alternatively, you can read multiple lines in one go by using readlines:

lines = readlines
puts lines.length

readlines accepts line after line of input until a terminator, most commonly
known as EOF (end of file), is found. You can create EOF on most platforms by pressing
Ctrl+D. When the terminating line is found, all the lines of input given are put into an
array that’s assigned to lines. This is particularly ideal for programs that accept piped or

redirected input on standard input.

248

CHAPTER9 FILES AND DATABASES

Note that on the second line earlier we then look at the length of the 1ines array.
So if the preceding code were in a file called 1inecount.rb and you passed in a text file
containing ten lines:

ruby linecount.rb < textfile.txt

you’d get this result:
10

In reality, however, this mechanism is rarely used, unless writing shell scripts for use
at a UNIX prompt. In most cases, you'll be writing to and from files directly, and you'll
require only minimal keyboard input that you can get with gets.

File 1/0

In Chapter 4, you used the File class to open a text file so you could read in the contents
for your program to process. The File class is used as an abstraction to access and
handle file objects that can be accessed from a Ruby program. The File class lets you
write to both plain text and binary files (there’s not really an inherent difference—they’re
both just sets of data) and offers a collection of methods to make handling files easy.

Opening and Reading Files

The most common file-related procedure is reading a file’s data for use within a program.
As you saw in Chapter 4, this is easily done:

File.open("text.txt").each { |line| puts line }

The File class’s open method is used to open the text file, text. txt, and upon that
File object, the each method returns each line one by one. You can also do it this way:

File.new("text.txt", "r").each { |line| puts line }

This method clarifies the process involved. By opening a file, you're creating a
new File object that you can then use. The second parameter, "r", defines that you're
opening the file for reading. This is the default mode, but when using File.new, it can
help to clarify what you want to do with the file (as “new” might imply the creation of a

249

CHAPTER9 FILES AND DATABASES

file, which is not usually the case). This becomes important later when you write to files
or create new ones from scratch.

For opening and reading files, File.new and File.open are identical, but File.open
has one, extra feature. File.open can accept a code block, and once the block is finished,
the file will be closed automatically. However, File.new only returns a File object
referring to the file. To close the file, you have to use its close method. Let’s compare the
two methods. First, look at File.open:

File.open("text.txt") do |f|
puts f.gets
end

This code opens text.txt and then passes the file handle into the code block as .
puts f.gets takes aline of data from the file and prints it to the screen. Now, have a
look at the File.new approach:

f = File.new("text.txt", "r")
puts f.gets
f.close

In this example, a file handle/object is assigned to f directly. You close the file handle
manually with the close method at the end.

Both the code block and file handle techniques have their uses. Using a code block
is a clean way to open a single file quickly and perform operations in a single location.
However, assigning the File object with File.new (or File.open, if you choose) makes
the file reference available throughout the entire current scope without needing to
contain file manipulation code within a single block.

Note You might need to specify the location of files directly, as text. txt might
not appear to be in the current directory. Simply replace f = File.new("text.
txt", "r")withf = File.new("c:\ full\ path\here\text.txt",
"r"), including the full path as necessary (this example demonstrates a Windows-
style path). Alternatively, use the result of Dir: : pwd to see what the current
working directory is and put text.txt there.

You could also choose to assign the file handle to a class or instance variable:

250

CHAPTER9 FILES AND DATABASES

class MyFile
attr reader :handle

def initialize(filename)
@handle = File.new(filename, "r")
end

def finished
@handle.close
end
end

f = MyFile.new("text.txt")
puts f.handle.gets
f.finished

More File Reading Techniques

In the previous section, you used a File object’s each method to read each line one by
one within a code block. However, you can do a lot more than that. Let’s assume your
text.txt file contains this dummy data:

Fred Bloggs,Manager,Male,45
Laura Smith,Cook,Female,23
Debbie Watts,Professor,Female,38

Next, we'll look at some of the different techniques you can use to read the file, along
with their outputs. First, you can read an I/O stream line by line using each:

File.open("text.txt").each { |line| puts line }
Fred Bloggs,Manager,Male,45

Laura Smith,Cook,Female,23

Debbie Watts,Professor,Female,38

Note each technically reads from the file delimiter by delimiter, where the
standard delimiter is a “newline” character. You can change this delimiter.

251

CHAPTER9 FILES AND DATABASES

You can read an I/0 stream with each using a custom delimiter of your choosing:

File.open("text.txt").each(',") { |line| puts line }
Fred Bloggs,
Manager,
Male,

45

Laura Smith,
Cook,

Female,

23

Debbie Watts,
Professor,
Female,

38

In this case, you passed an optional argument to each that specified a different
delimiter from the default “newline” delimiter. Commas delimit the input.

Tip You can override the default delimiter by setting the special variable $/ to
any delimiter you choose.

You can read an I/O stream byte by byte with each_byte:

File.open("text.txt").each_byte { |byte| puts byte }
70

114

101

100

...many lines skipped for brevity...

51

56

10

252

CHAPTER9 FILES AND DATABASES

Note When reading byte by byte, you get the single byte values of each character
rather than the characters themselves, much like when you do something like
puts "test"[0].To convert into text characters, you can use the chr method.

There’s also an alternative called each_char that lets you read character by character.
In some character sets, characters may be represented by more than one byte, so this can
be useful:

File.open("text.txt").each char { |byte| puts byte }

Q ® K MM

...many lines skipped for brevity...

Here’s how to read an I/0 stream line by line using gets:

File.open("text.txt") do |f|
2.times { puts f.gets }
end

Fred Bloggs,Manager,Male,45
Laura Smith,Cook,Female,23

gets isn’t an iterator like each or each_byte. Therefore, you have to call it multiple
times to get multiple lines. In this example, it was used twice, and pulled out the first two
lines of the example file. Like each, however, gets can accept an optional delimiter:

File.open("text.txt") do |f|
2.times { puts f.gets(',") }
end

253

CHAPTER9 FILES AND DATABASES

Fred Bloggs,
Manager,

There’s also a noniterative version of each_byte called getc:

File.open("text.txt") do |f|
2.times { puts f.getc }
end

You can also read an entire file into an array, split by lines, using readlines:
puts File.open("text.txt").readlines.join("--")
Fred Bloggs,Manager,Male,45

--Laura Smith,Cook,Female,23
--Debbie Watts,Professor,Female,38

Note The “newline” characters that are present at the end of each line of the file
are not removed, meaning that a newline occurs before each instance of - -.

Lastly, you can choose to read an arbitrary number of bytes from a file into a single
variable using read:

File.open("text.txt") do |f|
puts f.read(6)
end

Fred B

Note You can use all these methods on any file, such as binary files (images,
executables, etc.), not just text files. However, on Windows, you might need to open

the file in binary mode. This is covered in the section “Writing to Files.”

254

CHAPTER9 FILES AND DATABASES

The File class makes some convenient methods available so that you don’t need
to do things like File.open("text.txt").read to be able to read a file into a string.
Instead, you can do this:

data = File.read("text.txt")

This acts as a shorthand for opening the file, using the standard read method, and
then closing the file again.
You can also do this:

array of lines = File.readlines("text.txt")

Simple!

Generally, you should try to use these shortcut methods wherever possible, as they
result in shorter, easier-to-read code, and you don’t have to worry about closing the files.
Everything is taken care of for you in one step. Of course, if reading a file line by line is
necessary (perhaps if you're working with extremely large files), then you can use the
techniques demonstrated earlier in this chapter for reading line by line.

Your Position Within a File

When reading a file, it can be useful to know where you are within that file. The pos
method gives you access to this information:

f = File.open("text.txt")
puts f.pos
puts f.gets
puts f.pos

0
Fred Bloggs,Manager,Male,45
28

Before you begin to read any text from the file, the position is shown as 0. Once
you've read a line of text, the position is shown as 28. This is because pos returns the
position of the file pointer (i.e., the current location within the file that you're reading
from) in the number of bytes from the start of the file.

However, pos can work both ways, as it has a sister method, pos=:

255

CHAPTER9 FILES AND DATABASES

f = File.open("text.txt")
f.pos = 8

puts f.gets

puts f.pos

ggs,Manager,Male, 45
28

In this instance, the file pointer was placed eight bytes into the file before reading
anything. This meant that “Fred Blo” was skipped, and only the rest of the line was
retrieved.

Writing to Files

The ability to jump easily around files, read lines based on delimiters, and handle data
byte by byte makes Ruby ideal for manipulating data, but I haven'’t yet covered how to
write new information to files or how to make changes to existing files.

Generally, you can mirror most of the techniques used to read files when writing to
files, for example:

File.open("text.txt", "w") do |f|
f.puts "This is a test"
end

This code creates a new file (or overwrites an existing file) called text.txt and puts a
single line of text within it. Previously, you've used puts on its own to output data to the
screen. However, when used with a File object, puts writes the data to the file instead.
Simple!

The "w" passed as the second argument to File.open tells Ruby to open the file for
writing only and to create a new file or overwrite what is already in the file. This is in

contrast with the "r" mode used earlier when opening a file for reading only.
However, you can use several different file modes, as covered in Table 9-1.

256

CHAPTER9 FILES AND DATABASES

Table 9-1. File Modes Usable with File.open/File.new

File Properties of the 1/0 Stream

Mode

T Read-only. The file pointer is placed at the start of the file.

I+ Both reading and writing are allowed. The file pointer is placed at the start of the file.

W Write-only. A new file is created (or an old one overwritten as if new).

W+ Both reading and writing are allowed, but File.new creates a new file from scratch (or
overwrites an old one as if new).

a Write (in append mode). The file pointer is placed at the end of the file and writes will
make the file longer.

a+ Both reading and writing are allowed (in append mode). The file pointer is placed at the
end of the file and writes will make the file longer.

b Binary file mode. You can use it in conjunction with any of the other modes listed.

Using the append mode described in Table 9-1, it’s trivial to create a program that
appends a line of text to a file each time it’s run:

f = File.new("logfile.txt", "a")
f.puts Time.now
f.close

If you run this code multiple times, logfile.txt will contain several dates and
times, one after the other. Append mode is particularly ideal for log file situations where
new information has to be added at different times.

The read and write modes work in a simple manner. If you want to open a file in a
mode where it can be read from and written to at the same time, you can do just that:

f = File.open("text.txt", "r+")
puts f.gets

f.puts "This is a test"

puts f.gets

f.close

257

CHAPTER9 FILES AND DATABASES

The second line of this code reads the first line of text from the file, meaning the file
pointer is waiting at the start of the second line of data. However, the following f. puts
statement then puts a new line of text into the file at that position. Unfortunately, this
action will not push the previously existing second line to the third line of the file. All
it does is overwrite the equivalent number of bytes, so you end up with a broken third
line! This behavior means you really need to think carefully before writing data into the
middle of an existing file, as you may not get the outcome you thought you would!

Whereas puts outputs lines of text, you can perform the writing equivalents of getc
and read with putc and write:

f = File.open("text.txt", "r+")
f.putc "X"
f.close

This example opens text.txt for reading and writing and changes the first character
of the first line to X. Similarly:

f = File.open("text.txt", "r+")
f.write "123456"
f.close

This example overwrites the first six characters of the first line with 123456.

Note It’s worth noticing that putc and write overwrite existing content in the
file rather than inserting it.

Character Sets and Encodings

Ruby 1.9 and later come with built-in support for automatically handling alternative
character encodings when reading files. Character encodings are explained and covered
in depth in Chapter 11’s “Unicode, Character Encodings, and UTF-8 Support” section.

Whereas strings have just “internal” encodings, I/O objects also have “external”
encodings, since I/0 objects deal with data coming from, or going to, somewhere else.

In all of the previous file reading examples in this chapter, Ruby used the default
encoding to represent data that is read in, even though this may be incorrect. Specifying
an external encoding when opening a file requires that you append any supplied file
mode with a colon and then specify the encoding’s name. For example, if you want to
read a file that uses the UTF-8 encoding scheme:

258

CHAPTER9 FILES AND DATABASES

File.new("text.txt", "r:utf-8").each { |line| puts line }

In this example, we're reading a file (as specified by the "r" mode), but we’re also
telling the File object to treat the data as if it’s in the UTF-8 encoding (whether it actually
is or not). This encoding is then applied for all data read from (or written to, if you're in
the right mode) the file.

It is possible to determine the external encoding of an I/O object (such as those of
the File class) using its external encoding method:

p File.open("text.txt", "r:iso-8859-1").external encoding

p File.open("text.txt", "r").external encoding

#<Encoding:IS0-8859-1>
#<Encoding:UTF-8>

Note If your default encoding is not UTF-8, the second line will return whatever
your default encoding actually is, since no external encoding was specified when
creating the File object.

Another function of Ruby I/0 encoding support is in transcoding from one encoding
to another. For example, you might be opening a file in the UTF-8 encoding system,
but want Ruby to “translate” it to another encoding on the fly as the data is read. This is
achieved by adding another colon and encoding the name to the file mode parameter:

File.open("text.txt", "r:utf-8:iso-8859-1") do |f|
p f.external encoding
first line = f.gets
p first line.encoding

end

#<Encoding:UTF-8>
#<Encoding:IS0-8859-1>

The transcoding feature will be useful if you want to represent all text within your
application in a certain encoding (UTF-8 would be a good choice, as you will see in
Chapter 11), but need to read files of varying encodings. In each case, use the relevant
external coding, but get Ruby to convert everything into UTF-8!

259

CHAPTER9 FILES AND DATABASES

Renaming and Deleting Files

If you want to change the name of a file, you could create a new file with the new name
and read into that file all the data from the original file. However, this isn’t necessary, and
you can simply use File.rename like so:

File.rename("file1.txt", "file2.txt")

Deleting a file is just as simple. You can delete either one file at a time or many at
once:

File.delete("filel.txt")
File.delete("file2.txt", "file3.txt", "file4.txt")
File.unlink("filel.txt")

Note File.unlink does exactly the same thing as File.delete.

File Operations

The File class offers you more than just the ability to read and write files. You can also
perform a number of checks and operations upon files.

Creating Filenames Platform Independently

Windows and UNIX-related operating systems have different ways of denoting filenames.
Windows filenames look like c: \directory\filename.ext, whereas UNIX-style
filenames look like /directory/filename.ext. If your Ruby scripts work with filenames
and need to operate under both systems, the File class provides the join method.
Under both systems, filenames (and complete paths) are built up from directory
names and local filenames. For example, in the preceding examples, the directory is
called directory, but on Windows, backslashes are used as opposed to forward slashes.

Note In modern versions of Ruby on Windows, it’s fine to use UNIX-style
pathnames using forward slashes as directory separators, rather than having to
format filenames in a Windows style with backslashes. However, this section is
included for completeness, or for instances where you need to work with libraries

that don’t respect UNIX-style pathnames on other operating systems.

260

CHAPTER9 FILES AND DATABASES

On Windows, you can use File.join to put together a filename using directory
names and a final filename:

File.join('full', 'path', 'here', 'filename.txt"')
full\path\here\filename.txt

Note Depending on how your system is set up, you might even see a forward
slash version of the preceding code on Windows, although that is technically a
UNIX-style path.

On UNIX-related operating systems, such as Linux, the code is the same:

File.join('full', 'path', 'here', 'filename.txt')
full/path/here/filename.txt

The File.join method is simple to use, and it allows you to write the same code to
run on both systems rather than choosing between backslashes and forward slashes in
your code.

The separator itself is stored in a constant called File: : SEPARATOR, so you can easily
turn a filename into an absolute filename (with an absolute path) by appending the
directory separator to the start, like so:

File.join(File::SEPARATOR , 'full', ‘'path', 'here', 'filename.txt"')
/full/path/here/filename.txt

Similarly, you can use File.expand_path to turn basic filenames into complete
paths, for example:

File.expand path("text.txt")

/Users/carleton/text.txt

261

CHAPTER9 FILES AND DATABASES

Note The result of File.expand path will vary according to the operating
system the code is run under. As text.txt is a relative filename, it converts it to
an absolute filename and references the current working directory.

Seeking

In a previous example, you changed the position of the file pointer using pos=. However,
this only allows you to specify the exact position of the file pointer. If you want to move
the pointer forward by a certain offset or move the pointer to a certain position backward
from the end of the file, you need to use seek.

seek has three modes of operation:

o I0::SEEK_CUR: Seeks a certain number of bytes ahead of the current
position.

o I0::SEEK END: Seeks to a position based on the end of the file. This
means that to seek to a certain position from the end of the file, you'll
probably need to use a negative value.

o I0::SEEK SET: Seeks to an absolute position in the file. This is
identical to pos-=.

Therefore, to position the file pointer five bytes from the end of the file and change
the character to an X, you would use seek as follows:

f = File.open("text.txt", "r+")
f.seek(-5, I0::SEEK_END)

f.putc "X"

f.close

Note Notice that because you’re writing to the file, you use the r+ file mode to
enable writing as well as reading.

Or you could do this to print every fifth character in a file:

f = File.open("text.txt", "r")

262

CHAPTER9 FILES AND DATABASES

while a = f.getc

puts a.chr

f.seek(5, I0::SEEK CUR)
end

Finding Out When a File Was Last Modified

To establish when a file was last modified, use File.mtime:

puts File.mtime("text.txt")
2020-05-08 13:51:27 -0600

The time is returned as a Time object, so you can get more information directly:

t = File.mtime("text.txt")
puts t.hour

puts t.min

puts t.sec

00
05
02

Note You can learn more about the Time class and its methods in Chapter 3.

Checking Whether a File Exists

It’s useful to check whether a file actually exists, particularly if your program relies on
that file or if a user supplied the filename. If the file doesn’t exist, you can raise a user-
friendly error or exception. Invoke the File.exist? method to check for the existence of
a file:

puts "It exists!" if File.exist?("comic-books.txt")

263

CHAPTER9 FILES AND DATABASES

File.exist? returns true if the named file exists. You could edit the MyFile class
created in a previous example to check for the existence of a file before opening it to
avoid a potential exception being thrown, like so:

class MyFile
attr reader :handle

def initialize(filename)
if File.exist?(filename)
@handle = File.new(filename, "1")
else
return false
end
end
end

Getting the Size of a File

File.size returns the size of a file in bytes. If the file doesn’t exist, an exception is
thrown, so it would make sense to check its existence with File.exist? first:

puts File.size("text.txt")

How to Know When You’re at the End of a File

In previous examples, either you've used iterators to give you all the lines or bytes in a
file, or you've pulled only a few lines from a file here and there. However, it would be
useful to have a foolproof way to know when the file pointer is at, or has gone past, the
end of the file. The eof? method provides this feature:

f = File.new("text.txt", "r")
while !f.eof?
puts f.gets
end
f.close

This example uses an “infinite” loop that will only conclude once f.eof? is true. This
specific example is not particularly useful, as f.each could have performed a similar
task, but in situations where you might be moving the file pointer around manually, or
making large jumps through a file, checking for an “end of file” situation is useful.

264

CHAPTER9 FILES AND DATABASES

Directories

All files are contained within various directories, and Ruby has no problem handling
these. Whereas the File class handles files, directories are handled with the Dir class.

Navigating Through Directories
To change directory within a Ruby program, use Dir.chdir:
Dir.chdir("/usr/bin")

This example changes the current directory to /usr/bin.
You can find out what the current directory is with Dir. pwd. For example, here’s the
result on my installation:

puts Dir.pwd
/Users/carleton

current = Dir.pwd
Dir.chdir("/uszr/bin")
puts Dir.pwd

/usr/bin

Dir.chdir(current)
puts Dir.pwd

/Users/carleton

You can get a list of the files and directories within a specific directory using Dir.
entries:
puts Dir.entries("/usr/bin").join(" ")

. a2p aclocal aclocal-1.6 addftinfo afmtodit alias amlint ant appleping

appletviewer apply apropos apt ar arch as asa at at_cho prn atlookup atos
atprint ...items removed for brevity... zless zmore znew zprint

265

CHAPTER9 FILES AND DATABASES

Dir.entries returns an array with all the entries within the specified directory. Dir.
foreach provides the same feature, but as an iterator:

Dir.foreach("/usr/bin") do |entry]|
puts entry
end

An even more concise way of getting directory listings is by using Dir’s class array
method:

Dir["/usr/bin/*"]
["/usr/bin/a2p", "/usr/bin/aclocal”, "/usr/bin/aclocal-1.6",

"/usr/bin/addftinfo", "/usr/bin/afmtodit", "/usr/bin/alias", "/usr/bin/
amlint", "/usr/bin/ant", ...items removed for brevity...]

In this case, each entry is returned as an absolute filename, making it easy to use the
File class’s methods to perform checks on each entry if you wished.
Creating a Directory
You use Dir.mkdir to create directories, like so:
Dir.mkdir("mynewdir")

Once the directory has been created, you can navigate to it with Dir.chdir.
You can also specify absolute paths to create directories under other specific
directories:

Dir.mkdir("/mynewdir")
Dir.mkdir("c:\test")

However, you cannot create directories under directories that don’t yet exist
themselves. If you want to create an entire structure of directories, you must create them
one by one from the top down.

Note On UNIX-related operating systems, Dir.mkdir accepts a second optional
argument: an integer specifying the permissions for the directory. You can specify

this in octal, as with 0666 or 0777, representing modes 666 and 777, respectively.

266

CHAPTER9 FILES AND DATABASES

Deleting a Directory
Deleting a directory is similar to deleting a file:

Dir.delete("mynewdir")

Note Dir.unlink and Dir.rmdir perform exactly the same function and are
provided for convenience.

As with Dir.mkdir, you can use absolute pathnames.

One thing you need to consider when deleting directories is whether they're empty.
If a directory isn’t empty, you cannot delete it with a single call to Dir.delete. You need
to iterate through each of the subdirectories and files and remove them all first. You can
do that iteration with Dir.foreach, looping recursively through the file tree by pushing
new directories and files to remove onto an array.

Alternatively, you can use the rm_f method of the FileUtils library that comes with
Ruby:

require 'fileutils'
FileUtils.rm f(<directory name>)

Caution If you choose to use rm_f, tread carefully, as you might accidentally
delete the wrong thing!

Creating Files in the Temporary Directory

Most operating systems have the concept of a “temporary” directory where temporary
files can be stored. Temporary files are those that might be created briefly during a
program’s execution but aren’t a permanent store of information.

Dir.tmpdir provides the path to the temporary directory on the current system,
although the method is not available by default. To make Dir.tmpdir available, it’s
necessary to use require 'tmpdir':

require 'tmpdir'
puts Dir.tmpdir

267

CHAPTER9 FILES AND DATABASES

/tmp

Note On Mac OS X, the result might be somewhat more esoteric. For example,
| was given the temporary directory of /var/folders/80/80DFegkBHLmcQjJ]
HdZ5SCE+++TI/-Tmp-. On Windows, | got C: /Users/username/AppData/
Local/Temp.

You can use Dir.tmpdir with File. join to create a platform-independent way of
creating a temporary file:

require 'tmpdir'

tempfilename = File.join(Dir.tmpdir, "myapp.dat")
tempfile = File.new(tempfilename, "w")
tempfile.puts "This is only temporary"
tempfile.close

File.delete(tempfilename)

This code creates a temporary file, writes data to it, and deletes it.
Ruby’s standard library also includes a library called tempfile that can create
temporary files for you:

require 'tempfile’

f = Tempfile.new('myapp")
f.puts "Hello"

puts f.path

f.close

/tmp/myfile1842.0
Unlike creating and managing your own temporary files, tempfile automatically

deletes the files it creates after they have been used. This is an important consideration
when choosing between the two techniques.

268

CHAPTER9 FILES AND DATABASES

Basic Databases

Many applications need to store, access, or manipulate data. In some cases, this is by
loading files, making changes to them, and outputting data to the screen or back to a file.
In many situations, however, a database is required.

A database is a system for organizing data on a computer in a systematic way. A
database can be as simple as a text file containing data that can be manipulated by a
computer program or as complex as many gigabytes of data spread across hundreds
of dedicated database servers. You can use Ruby in these scenarios and for those in
between.

First, we're going to look at how to use simple text files as a form of organized data.

Text File Databases

One simple type of database can be stored in a text file in a format commonly known
as CSV. CSV stands for comma-separated values and means that for each item of data
you're storing, you can have multiple attributes separated with commas. The dummy
data in your text.txt file in the previous section used CSV data. To recap, text.txt
initially contained this code:

Fred Bloggs,Manager,Male,45
Laura Smith,Cook,Female,23
Debbie Watts,Professor,Female,38

Each line represents a different person, and commas separate the attributes relating
to each person. The commas allow you to access (and change) each attribute separately.

Ruby’s standard library includes a library called csv that allows you to use text files
containing CSV data as simple databases that are easy to read, create, and manipulate.

Reading and Searching CSV Data

The CSV class provided by the csv standard library will manage the manipulation of CSV
data for you:

require 'csv'

CSV.open('text.txt").each do |person]|
p person

end

269

CHAPTER9 FILES AND DATABASES

["Fred Bloggs", "Manager", "Male", "45"]
["Laura Smith", "Cook", "Female", "23"]
["Debbie Watts", "Professor", "Female", "38"]

You open the text.txt file by using CSV.open, and each line (i.e., each individual
“person” in the file) is passed into the block one by one using each. The inspect method
demonstrates that each entry is now represented in array form. This makes it easier to
read the data than when it was in its plain text form.

You can also use CSV alongside the File class:

require 'csv'

people = CSV.parse(File.read('text.txt"))
puts people[0][0]

puts people[1][0]

puts people[2][0]

Fred Bloggs
Laura Smith
Debbie Watts

This example uses the File class to open and read in the contents of a file, and CSV.
parse immediately uses these to convert the data into an array of arrays. The elements
in the main array represent each line in the file, and each element in those elements
represents a different attribute (or field) of that line. Therefore, by printing out the first
element of each entry, you get the people’s names only.

An even more succinct way of loading the data from a CSV-formatted file into an
array is with CSV.read:

require 'csv'

p CSV.read('text.txt")

[["Fred Bloggs", "Manager", "Male", "45"], ["Laura Smith", "Cook",
"Femalell’ "23"],
["Debbie Watts", "Professor", "Female", "38"]]

270

CHAPTER9 FILES AND DATABASES

The find and find_all methods (also known as detect and select, respectively)
provided by the Enumerable module to Array make it easy for you to perform searches
on the data available in the array. For example, you'd use this code if you wanted to pick
out the first person in the data called Laura:

require 'csv
people = CSV.read('text.txt")

laura = people.find { |person| person[0] =~ /Laura/ }
p laura

["Laura Smith", "Cook", "Female", "23"]

Using the find (or detect) method with a code block that looks for the first matching
line where the name contains “Laura” gives you back the data you were looking for.

Where find returns the first matching element of an array or hash, find all (or
select) returns all valid matches. Let’s say you want to find the people in your database
whose ages are between 20 and 40:

young_people = people.find all do |p]|
p[3].to_i.between?(20, 40)
end

p young_people

[["Laura Smith", "Cook", "Female", "23"], ["Debbie Watts", "Professor",
llFemalell’ "38"]]

This operation provides you with the two matching people contained within an array
that you can iterate through.

Saving Data Back to the CSV File

Once you can read and query data, the next step is being able to change it, delete it,

and rewrite your CSV file with a new version of the data for future use. Luckily, this is as
simple as reopening the file with write access and “pushing” the data back to the file. The
CSV module handles all of the conversion:

require 'csv'

271

CHAPTER9 FILES AND DATABASES

people = CSV.read('text.txt')
laura = people.find { |person| person[0] =~ /Laura/ }
laura[o] = "Lauren Smith"

CSV.open('text.txt', 'w') do |csv]|
people.each do |person]|
CSV << person
end
end

You load in the data, find a person to change, change her name, and then open the
CSV file and rewrite the data back to it. Notice, however, that you have to write the data
person by person. Once complete, text.txt is updated with the name change. This is
how to write back CSV data to file.

Storing Objects and Data Structures

Working with CSV is easy, but it doesn’t feel very smooth. You're always dealing with
arrays, so rather than getting nice names such as name, age, or job for the different
attributes, you have to remember in which element and at which position each attribute
is located.

You're also forced to store simple arrays for each separate entry. There’s no nesting,
no way to relate one thing to another, no relationship to object orientation, and the data
is “flat” This is sufficient for basic data, but what if you simply want to take data that
already exists in structures like arrays and hashes and save that data to disk for later use?

PStore

PStore is a core Ruby library that allows you to use Ruby objects and data structures as
you normally would and then store them in a file. Later on, you can reload the objects
back into memory from the disk file. This technique is known as object persistence, and
relies on a technique called marshalling, where standard data structures are turned
into a form of flat data that can be stored to disk or transmitted over a network for later
reconstruction.

Let’s create a class to represent the structure of the data you were using in the CSV
examples:

272

CHAPTER9 FILES AND DATABASES

class Person
attr_accessor :name, :job, :gender, :age
end

You can re-create your data like so:

fred = Person.new
fred.name = "Fred Bloggs"
fred.age = 45

laura = Person.new
laura.name = "Laura Smith"
laura.age = 23

Note For brevity, you’ll work only with these two objects in this example.

Rather than have your data in arrays, you now have your data available in a fully
object-oriented fashion. You could create methods within the Person class to help you
manipulate your objects and so forth. This style of storing and manipulating data is
true to the Ruby way of things and is entirely object-oriented. However, until now, your
objects have only lasted until the end of a program, but with PStore it’s easy to write
them to a file:

require 'pstore’
store = PStore.new("storagefile")
store.transaction do
store[:people] ||= Array.new
store[:people] << fred
store[:people] << laura
end

In this example, you create a new PStore in a file called storagefile. You then
start a transaction (data within a PStore file can only be read or updated while inside a
“transaction” to prevent data corruption), and within the transaction you make sure the
:people element of the store contains something or gets assigned to be an array. Next,
you push the fred and laura objects to the : people element of the store and then end
the transaction.

273

CHAPTER9 FILES AND DATABASES

The reason for the hash syntax is because a PStore is, effectively, a disk-based hash.
You can then store whatever objects you like within that hash. In this example, you've
created an array within store[: people] and pushed your two Person objects to it.

Later on, you can retrieve the data from the PStore database:

require 'pstore’
store = PStore.new("storagefile")
people = []
store.transaction do
people = store[:people]
end

At this point the Person objects inside people can be treated
as totally local objects.
people.each do |person]|
puts person.name
end

Fred Bloggs
Laura Smith

Note It’s necessary for the Pexrson class to be defined and ready to use before
loading the Person objects from the PStore file, so if you ran the previous example
separately from the first, make sure you include the Person class definition again.

With only a simple storage and retrieval process, PStore makes it easy to add storage
facilities to existing Ruby programs by allowing you to store existing objects into a PStore
database. Object persistence is not ideal for many types of data storage, but if your
program is heavily dependent on objects and you want to store those objects to disk for
later use, PStore provides a simple method to use.

YAML

YAML (standing for YAML Ain’t Markup Language) is a special text-based markup
language that was designed as a data serialization format that’s readable by humans. You
can use it in a similar way to PStore to serialize data structures, but unlike PStore’s data,
humans can easily read YAML data and even directly edit it with a text editor and a basic
knowledge of YAML syntax.

274

CHAPTER9 FILES AND DATABASES

The YAML library comes as part of Ruby’s standard library, so it’s easy to use. Unlike
PStore, though, the YAML library converts data structures to and from YAML and doesn’t
provide a hash to use, so the technique is a little different. This example writes an array
of objects to disk:

require 'yaml'

class Person
attr_accessor :name, :age
end

fred = Person.new
fred.name = "Fred Bloggs"
fred.age = 45

laura = Person.new
laura.name = "Laura Smith"
laura.age = 23

test data = [fred, laura]

puts test data.to yaml

- lruby/object:Person
age: 45
name: Fred Bloggs

- lruby/object:Person
name: Laura Smith
age: 23

You can use the to_yaml method to convert your Person object array into YAML data,
which, as you might agree, is extremely readable! YAML. load performs the operation in
the other direction, turning YAML code into working Ruby objects. For example, let’s
modify the YAML data a little and see if it translates back into working objects:

require 'yaml'

class Person

275

CHAPTER9 FILES AND DATABASES

attr_accessor :name, :age
end

yaml_string = <<END_OF DATA
- lruby/object:Person
age: 45
name: Jimmy
- lruby/object:Person
age: 23
name: Laura Smith
END_OF DATA
test data = YAML.load(yaml string)
puts test data[0].name
puts test data[1].name

Jimmy
Laura Smith

Here YAML.load converts the YAML data back into the test_data array of Person
objects successfully.

You can use YAML to convert between most types of Ruby objects (including basic
types such as Array and Hash) and YAML. This makes it an ideal intermediary format for
storing data (such as configuration files) your applications need to access.

Note When dealing with serialized objects, you must still have the classes used
by those objects defined within the program somewhere; otherwise, they won’t be
usable.

As plain text, you can safely transmit YAML via email, store it in normal text files, and
move it around more easily than the binary data created by libraries such as PStore.

To learn more about YAML formatting, read its Wikipedia entry at https://
en.wikipedia.org/wiki/YAML, or refer to the official YAML website at www.yaml.org/.

276

https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/YAML
http://www.yaml.org/

CHAPTER9 FILES AND DATABASES

Relational Databases and SQL

In the previous section, you created some extremely simplistic “databases” using text
files and object persistence. Text files, of course, have their limitations. They're not
reliable if many processes are using them at the same time, and they’re slow. Loading a
CSV file into memory is fine when the dataset is small, but when it grows, the process of
working directly with files can soon become sluggish.

When developing more robust systems, you pass database filing and management
off to a separate application or system, and applications simply connect to a database
system to pass data back and forth. In the previous section, you were working with
database files and the data within them quite directly, and that’s unacceptable when
performance and reliability are necessary.

Relational Database Concepts

One major benefit of using a dedicated database system is getting support for relational
databases. A relational database is composed of data grouped into one or more tables
that can be linked together. A table stores information about one type of thing. For
example, an address book database might be made up of a people table, an addresses
table, and a phonenumbers table. Each table stores information about people, addresses,
and phone numbers, respectively.

The people table would likely have a number of attributes (known as columns,
in database land) such as name, age, and gender. Each row of the table—that is, an
individual person—would then have information in each column. Figure 9-1 shows an

example.
Columns
A
4 N
I :] Neme [5] Job _ [5] Age [*]| Gender |%
Rows 1|Fred Bloggs Manager 45 Male
2 Laura Smith Cook 23 Female
3|/Debble Watts Professor 38 Female

Figure 9-1. A basic people table containing three rows

277

CHAPTER9 FILES AND DATABASES

Figure 9-1’s example also includes a column called id. In relational databases, it’s
standard procedure to have an id column on most tables to identify each row uniquely.
Although you could look up and retrieve data based on other columns, such as name,
numeric IDs are useful when you’re creating relationships between tables.

Note In Figure 9-1, the table headings are written in a typical style, as you’d
expect in a normal address book or spreadsheet. However, when dealing with
relational databases at a lower level, it’s common to use all lowercase names for
column and table names. This explains why the text and later code examples in
this chapter refer to table and column names in lowercase only.

One benefit of relational databases is the way rows in different tables can be related
to one another. For example, your people table could have an address_id column that
stores the ID of the address associated with this user. If you want to find out the address
of a particular person, you can look up his or her address_id and then look up the
relevant row of the addresses table.

The reason for this sort of relationship is that many people in your people database
might share the same address, and rather than store the address separately for each
person, it’s more efficient to store a reference instead. This also means that if you update
the address in the future, it updates for all the relevant users at the same time.

The relationship functionality also supports the definition of many-to-many
relationships. You could create a separate table called related people that has two
columns, first _person_idand second_person_id. This table could store pairs of ID
numbers that signify two people are related to each other. To work out to whom a person
is related, you can simply look for any rows mentioning his or her ID number, and you'd
get back the ID numbers of that person’s related people. This sort of relationship is used
in most databases and is what makes relational databases so useful.

MySQL, PostgreSQL, and SQLite

Three well-known relational database systems available today that work on both
Windows and UNIX operating systems are MySQL, PostgreSQL, and SQLite. Each has
significantly different features from the others and therefore has different uses.

278

CHAPTER9 FILES AND DATABASES

Most web developers will be familiar with MySQL, as it comes with most web hosting
packages and servers, making it easily the most commonly used database engine on the
Internet.

For our purposes in the next few sections of this chapter, we'll be using a system
called SQLite. Unlike MySQL, or PostgreSQL, SQLite doesn’t run as a “server,” so it
doesn’t require any special resources. Whereas MySQL and PostgreSQL both run as
permanent server applications, SQLite is “on-demand” and works entirely on your local
machine. Despite this, it’s still fast and reliable and is ideal for local database purposes.
You can easily carry much of the knowledge you learn with SQLite across to other
systems. SQLite is also the default database engine used with Ruby on Rails apps, as
you'll discover in Chapter 13.

Nonetheless, toward the end of this chapter, we’ll look at how you can connect
to databases using these other architectures, so that you can get direct access to any
existing databases you might have from your Ruby applications.

Installing SQLite

The first step to getting a database system up and running quickly is to install SQLite3—
the latest version of SQLite. Mac OS X comes with SQLite 3 by default, as do some Linux
distributions. On Ubuntu or Debian Linux, you can run apt-get install sqlite3
libsqlite3-dev.

Once the SQLite3 libraries are installed at the operating system level, you can install
the Ruby library that gives Ruby access to SQLite3 databases. It’s packaged as a gem
called sqlite3-ruby and can be installed on all systems with gem install sqlite3 or
sudo gem install sqlite3 on UNIX-related operating systems if you aren’t running as
a superuser. (For information about installing Ruby gems, refer to Chapter 7.)

You can check that everything was installed okay with this code:

require 'sqlite3’
puts "It's all okay!" if defined?(SQLite3::Database)

It's all okay!

If the installation didn’t progress smoothly, links to SQLite resources are available in
Appendix B.

279

CHAPTER9 FILES AND DATABASES

A Crash Course in Basic Database Operations and SQL

To manage databases with any of the various database systems at a basic level,
knowledge of several SQL commands is required. In this section, we’re going to look at
how to create tables, add data to them, retrieve data, delete data, and change data.

Throughout this section, think entirely in terms of databases separately from Ruby.
A demonstration of how Ruby can use SQL to manipulate a database is covered in detail
in the later section “Using SQLite with Ruby.”

Note If you're already familiar with SQL, you can skip the next few sections
and jump straight to the section “Using SQLite with Ruby” to see SQL in action
alongside Ruby.

What Is SQL?

Structured Query Language (SQL) is a special language, often known as a query language,
used to interact with database systems. You can use SQL to create, retrieve, update, and
delete data, as well as create and manipulate structures that hold that data. Its basic
purpose is to support the interaction between a client and a database system. In this
section, I'm going to give you a primer on SQLs syntax and how you can use it from Ruby.

Be aware that this section is only a very basic introduction to SQL, as a full and deep
explanation of SQL is beyond the scope of this book.

Note that the way different database systems use and implement SQL can vary
wildly, which is why the following sections will only cover that which is reasonably
standard and enables you to perform basic data operations.

If you want to play along at home, you can use the command-line sqlite3 client to
create a database and perform SQL queries upon it without getting involved with Ruby at
all. Just run sqlite3 test.db, where test.db is your chosen database filename. You can
then type SQL and press Enter to execute it. To leave the client, you can type .quit ona
separate line and press Enter.

Note There are also libraries that remove the necessity of writing SQL in order
to work with databases. We mention some of these at the end of the chapter.
Regardless, at least reading about how SQL works is going to be beneficial to you

in the long term.

280

CHAPTER9 FILES AND DATABASES

CREATE TABLE

Before you can add data into a database, it’s necessary to create one or many tables to
hold it. To create a table, you need to know what you want to store in it, what you want to
call it, and what attributes you want to store.

For your people table, you want to have name, job, gender, and age columns, as well
as a unique id column for possible relationships with other tables. To create a table, you
use a syntax like so:

CREATE TABLE table name (
column_name data_type options,
column_name data_type options,

cey

)5

Note SQL commands are typically written in capital letters for clarity (and

it's somewhat traditional). However, you don’t have to do this. Table names and
attributes, however, can be case-sensitive with some database systems, so stick to
lowercase for those!

Therefore, for your people table, you'd use this syntax:

CREATE TABLE people (
id integer primary key,
name varchar(50),

job varchar(50),

gender varchar(6),

age integer);

This SQL command creates a people table and gives it five columns. The data types
for the name, job, and gender columns are all VARCHARs, meaning they're variable-
length character fields. In basic terms, it means they can contain strings. The number
in brackets refers to the maximum length of that string, so the name column can hold a

maximum of 50 characters.

281

CHAPTER9 FILES AND DATABASES

Note SQLite is a reasonably pragmatic database, and it ignores most
conventions relating to data types in SQL. Almost any form of data will fit into any
type of column. SQLite ignores the maximum lengths for these VARCHAR columns.
This is one reason why SQLite is great for quick and easy development, but not so
great for crucial systems!

The id column has the words primary key as its options. This means that the id
column is the primary reference to each row and that the ID must be unique for each
row. This means SQLite will automatically assign a unique ID to each row, so you don’t
need to specify one yourself each time you add a new row.

INSERT INTO

You use the INSERT command to add rows to tables:

INSERT INTO people (name, age, gender, job) VALUES ("Chris Scott", 25,
"Male", « "Technician");

First, you specify the table you want to add a row to, and then list the columns you
wish to fill out, before passing in the values with which to fill the row.

You can omit the list of columns if the data passed after VALUES is in the correct
order:

INSERT INTO people VALUES ("Chris Scott", 25, "Male", "Technician");

Caution This particular INSERT would cause an error on your people table! It's
missing the id column.

However, it’s safer and more convenient if you specify the columns beforehand, as in
the first example. The second example clearly demonstrates why this is the case, as it’s
hard to tell which item of data relates to which column.

Columns that don’t have any data specified for them will be filled in automatically
with the defaults specified in the CREATE TABLE statement for that table. In the case of
the people table, the id column will automatically receive a unique ID number for each
row added.

282

CHAPTER9 FILES AND DATABASES

SELECT

You use the SELECT command to retrieve data from tables. You specify which columns
you want to retrieve (or use * as a wildcard to retrieve them all) and the table you want to
retrieve data from and optionally include a condition upon which to base the retrieval.
For example, you might only want to choose a particular row or rows that match certain
criteria.

This SQL statement retrieves the data from all columns for all rows in the people
table:

SELECT * FROM people;

This SQL retrieves all the values from just the name column of rows in the people
table (e.g., “Fred Bloggs,” “Chris Scott,” “Laura Smith”):

SELECT name FROM people;

This SQL retrieves rows with an id column equal to 2 from the people table (usually,
because id is a column containing unique values, only one row would be returned for
such a query):

SELECT * FROM people WHERE id = 2;

This SQL retrieves any rows that have a name column equal to “Chris Scott”:
SELECT * FROM people WHERE name = "Chris Scott";

This SQL retrieves all rows of people whose ages are between 20 and 40, inclusive:
SELECT * FROM people WHERE age >= 20 AND age <= 40;

The conditions used in SQL are somewhat similar to those used in Ruby and other
programming languages, except that logical operators such as AND and OR are written as
plain English. Also, as in Ruby, you can use parentheses to group expressions and build
up more complex requests.

It’s also possible to have the results returned in a certain order by appending an
ORDER BY clause such as ORDER column_name to the SQL query. You can further append
ASC to the column name to sort in an ascending fashion, or DESC to sort in a descending
fashion. For example, this SQL returns all rows from the people table ordered by the name
column in descending order (so names starting with Z come before those beginning
with A):

SELECT * FROM people ORDER BY name DESC;

283

CHAPTER9 FILES AND DATABASES

This SQL returns all rows of those people between the ages of 20 and 40 in order of
age, youngest first:

SELECT * FROM people WHERE age >= 20 AND age <= 40 ORDER BY age ASC;

Another useful addition to a SELECT command is LIMIT. LIMIT allows you to place a
limit on the amount of rows returned on a single query:

SELECT * FROM people ORDER BY name DESC LIMIT 5;

In conjunction with ORDER, you can use LIMIT to find extremes in the data. For
example, finding the oldest person is easy:

SELECT * FROM people ORDER BY age DESC LIMIT 1;

This sorts the rows in descending order by age and returns the first result: the
highest. To get the youngest person, you could use ASC instead of DESC on the ordering.

Note Database engines sort columns automatically by their data type. Strings of
text are formatted alphanumerically, whereas integer and other number columns
are sorted by their numeric value.

DELETE

The DELETE SQL command deletes rows from tables. You can delete rows based on an
SQL condition, for example:

DELETE FROM people WHERE name="Chris";
DELETE FROM people WHERE age > 100;
DELETE FROM people WHERE gender = "Male" AND age < 50;

As with SELECT, you can place limits on the number of deletions:
DELETE FROM people WHERE age > 100 LIMIT 10;

In this case, only ten rows with an age over 100 would be deleted.
Think of the DELETE command to be like SELECT, but instead of returning the rows, it
erases them. The format is otherwise reasonably similar.

284

CHAPTER9 FILES AND DATABASES

UPDATE

UPDATE provides the ability to update and amend information within the database. As
with DELETE, the syntax for UPDATE is similar to that of SELECT. Consider this:

SELECT * FROM people WHERE name = "Chris";
UPDATE people SET name = "Christopher" WHERE name = "Chris";

UPDATE first accepts the name of a table whose row(s) might be updated, then
accepts the column(s) to be changed along with the new data, and finally accepts an
optional condition for the change. Some examples follow.

This SQL changes the name column to “Christopher” on all rows where the name
column is currently equal to “Chris”:

UPDATE people SET name = "Christopher" WHERE name = "Chris";

This SQL changes the name column to “Christopher” and the age column to 44
where the name column is currently equal to “Chris”:

UPDATE people SET name = "Christopher", age = 44 WHERE name = "Chris";

This SQL changes the name column to “Christopher” where the name column is
“Chris” and the age column equals 25. Therefore, a row where the name is Chris and the
age is 21 will not be updated by this example query:

UPDATE people SET name = "Christopher" WHERE name = "Chris" AND age = 25;

This SQL changes the name column to “Christopher” on every row of the people
table. This demonstrates why it pays to be careful when building SQL queries, as short

statements can have big ramifications!

UPDATE people SET name = "Christopher";

Using SQLite with Ruby

Now that you've installed SQLite and we’ve covered the basics of how SQL works, let’s
put together a basic demonstration of how it all works in conjunction with Ruby. To do
this, you're going to write a program that allows you to manipulate a database based on
the people table that we've talked about so far in this chapter.

285

CHAPTER9 FILES AND DATABASES

The first step is to write the basic code that can load or create a database. The sqlite
ruby gem makes this simple with the SQLite3: :Database.new method, for example:

require 'sqlite3’
$db = SQLite3::Database.new("dbfile")
$db.results as_hash = true

From this point, you can use $db in a similar way to the file handles you used earlier
in this chapter. For example, $db.close will similarly close the database file, just as you
closed regular files.

The $db.results as hash = true line forces SQLite to return data in a hash format
rather than as an array of attributes (as with CSV). This makes the results easier to

access.

Note The database handle has been assigned to a global variable, $db, so that
you can split your program into multiple methods without creating a class. You
can therefore access the database handle, $db, from anywhere you wish. This
isn’t what you’d do in a large program, but for learning to use SQLite3 here, it will
suffice.

To cope with the closing situation, you'll create a method specifically for
disconnecting the database and ending the program:

def disconnect_and quit
$db.close
puts "Bye!"
exit

end

Note Remember that you must define methods before you use them, so put
these separate methods at the top of your source file.

Now let’s create a method that will use the CREATE TABLE SQL statement to create the
table where you'll store your data:

286

CHAPTER9 FILES AND DATABASES

def create table
puts "Creating people table
$db.execute %q{
CREATE TABLE people (
id integer primary key,
name varchar(50),
job varchar(50),
gender varchar(6),
age integer)

}

end

A database handle will allow you to execute arbitrary SQL with the execute method.
All you need to do is pass the SQL as an argument, and SQLite will execute the SQL upon
the database.

Next, let’s create a method that asks for input from the user to add a new person to
the database:

def add_person

puts "Enter name:"

name = gets.chomp

puts "Enter job:"

job = gets.chomp

puts "Enter gender:"

gender = gets.chomp

puts "Enter age:"

age = gets.chomp

$db.execute("INSERT INTO people (name, job, gender, age) VALUES (?, ?, ?,
", -

name, job, gender, age)

end

Note The chomp method added to gets removes the newline characters that
appear at the end of keyboard output retrieved with gets.

287

CHAPTER9 FILES AND DATABASES

The start of the add_person method is mundane. You ask for each of the person’s
attributes in turn and assign them to variables. However, $db.execute is more intriguing
this time. In the previous section, the INSERT SQL was shown with the data in the main
statement, but in this method, you're using question marks (?) as placeholders for the
data.

Ruby performs an automatic substitution from the other parameters passed to
execute into the placeholders. This acts as a way of securing your database. The reason
is that if you interpolated the user’s input directly into the SQL, the user might type some
SQL that could break your query. However, when you use the placeholder method, the
sqlite ruby library will clean up the supplied data for you and make sure it’s safe to put
into the database.

Now you need a way to be able to access the data entered. Time for another method!
This code example shows how to retrieve the associated data for a given name and ID:

def find person
puts "Enter name or ID of person to find:"
id = gets.chomp

person = $db.execute("SELECT * FROM people WHERE name = ? OR id = ?", id,
id.to_i).first

unless person
puts "No result found"
return

end

puts %Q{Name: #{person['name’]}
Job: #{person['job']}
Gender: #{person['gender']}
Age: #{person['age']}}
end

The find_person method asks the user to enter either the name or the ID of the
person he or she is looking for. The $db.execute line cleverly checks both the name and
id columns at the same time. Therefore, a match on either the id or name will work. If no
match is found, the user will be told, and the method will end early. If there’s a match,
the information for that user will be extracted and printed on the screen.

288

CHAPTER9 FILES AND DATABASES

You can tie it up with a main routine that acts as a menu system for the four methods
described earlier. You already have the database connection code in place, so creating a
menu is simple:

loop do
puts %q{Please select an option:
1. Create people table
2. Add a person
3. Look for a person
4. Quit}

case gets.chomp
when "1’
create table

when '2'
add_person

when '3’
find_person

when '4'
disconnect_and quit

end

end

If the code is put together properly and then run, a typical first session could go like
this:

Please select an option:

1. Create people table
2. Add a person

3. Look for a person
4. Quit

1

Creating people table
Please select an option:

1. Create people table
2. Add a person

289

CHAPTER9 FILES AND DATABASES

3. Look for a person
4. Quit

2

Enter name:

Fred Bloggs

Enter job:

Manager

Enter gender:

Male

Enter age:

48

Please select an option:

1. Create people table
2. Add a person

3. Look for a person

4. Quit

3

Enter name or ID of person to find:
1

Name: Fred Bloggs

Job: Manager

Gender: Male

Age: 48

Please select an option:
1. Create people table
2. Add a person

3. Look for a person

4. Quit

3

Enter name or ID of person to find:

Jane Smith

No result

Your quick and basic application provides a way to add data and retrieve data from a
remote data source in only a handful of lines!

290

CHAPTER9 FILES AND DATABASES

Note You should note that we have broken some of the best practices highlighted
through this book in the previous program. We used global variables and applied
almost no structure to the code at all. The goal here was solely to use SQLite3
quickly, but consider how you could dramatically improve the structure of the
program now that it works.

Connecting to Other Database Systems

In the previous section, we looked at SQL and how to use it with the SQLite library, a
library that provides a basic database system on the local machine. More commonly,
however, you might want to use more elaborate databases or connect to databases
located on other machines (and potentially not even run by you).

Sequel (https://sequel.jeremyevans.net/)is a “database toolkit” for Ruby that
uses a DSL (domain-specific language) to abstract away some of the details of using a
database and interfaces with the libraries used to talk to various database systems. If you
write your code in a certain way, using Sequel, you can, as long as you do not use any
database-specific features, switch that code between, say, MySQL and PostgreSQL and it
would continue to work.

Sequel has “adapters” for a wide variety of database systems, the most popular
including MySQL, IBM DB, Oracle, PostgreSQL, and SQLite3. It also supports a variety
of common database features like prepared statements, stored procedures, and
transactions, so if you're already familiar with using databases, it’s a library well worth
checking out.

Installing Sequel is easy:

gem install sequel

Once it’s installed, you'll want to make sure you have the underlying driver library
for your database of choice installed too. For example, for MySQL, you could install the
mysql2 library. For PostgreSQL, install the pg library:

gem install pg
While this isn’t going to be a complete tour of Sequel, once you have things installed,

you can begin to write code like this:

291

https://sequel.jeremyevans.net/

CHAPTER9 FILES AND DATABASES

require 'sequel’
require 'pg'

DB = Sequel.connect('postgres://user:password@localhost/dbname")

DB.create_table :people do
primary key :id
String :first name
String :last_name
Integer :age

end

people = DB[:people]
people.insert(:first name => "Fred", :last name => "Bloggs", :age => 32)

puts "There are #{people.count} people in the database"

people.each do |person]|
puts person[:first name]
end

DB.fetch("SELECT * FROM people") do |row|
puts row[:first name]
end

In a relatively short program, we’ve seen how we can create a table, populate that
table with data, then query the length of the table, and look up rows within that table in
two different ways. As you may notice, this is a lot more straightforward than working
with a database driver library directly, as we did with the sqlite3 library earlier!

Note In the preceding program, you could require in sqlite3 and then
change the first main line of code to DB = Sequel.sqlite to create a
temporary, in-memory SQLite database. This will let you run the code if you don’t
have access to a PostgreSQL server.

Refer to https://sequel.jeremyevans.net/ for more about using Sequel.

292

https://sequel.jeremyevans.net/

CHAPTER9 FILES AND DATABASES

ActiveRecord: A Sneak Peek

So far in this chapter, you've worked directly with databases and had to learn a whole
new language: SQL. Working with a database with SQL in mind can make things
more efficient and reliable than putting data into text files, say, as you did earlier, but
ActiveRecord makes it easier still (and even easier than Sequel). ActiveRecord is a
product of the Ruby on Rails framework, which we’ll look at in Chapter 13, but can be
used independently of it. ActiveRecord will be covered in more depth in that chapter, but
deserves a brief summary here.
ActiveRecord abstracts away the details of SQL and makes it possible to relate to
items within databases in an object-oriented fashion, as you did with PStore.
ActiveRecord gives you objects that correspond to rows and classes that correspond
to tables, and you can work with the data using Ruby syntax, like so:

person = Person.where(name: "Chris").first
person.age = 50
person.save

This code looks through the people table for a row whose name column matches
“Chris” and puts an object relating to that row into person. ActiveRecord makes
attributes available for all that row’s columns, so changing the age column is as easy as
assigning to the object’s attribute. However, once the object’s value has been changed,
you issue the save method to save the changes back to the database.

Note The pluralization from a Person class to a people table is an automatic
part of ActiveRecord’s functionality.

The previous code could replace SQL such as this:

SELECT * FROM people WHERE name = "Chris";
UPDATE people SET age = 50 WHERE name = "Chris";

Even SQL gurus familiar with Ruby tend to find Ruby’s syntax more natural,
particularly in the scope of a Ruby program. There’s no need to mix two different
languages in one program if both sets of features can be provided in Ruby alone.

ActiveRecord will be covered again in Chapter 13.

293

CHAPTER9 FILES AND DATABASES

Summary

In this chapter, we've looked at how data can flow into and out of your Ruby programs.
Initially, we looked at the low-level concept of I/O streams before quickly moving on
to the pragmatism of databases. Databases provide a way to work with data in a more
abstracted fashion without worrying about the underlying structure of the data on the
computer’s filesystem. Indeed, databases can be located within memory or on totally
different machines, and our code could remain the same.

Let’s reflect on the main concepts covered in this chapter:

e I/O: Input/output. The concept of receiving input and sending output
by various means on a computer, often via I/O streams.

e I/0 stream: A channel along which data can be sent and/or received.

e Standard input (stdin): A stream that relates to the default way of
accepting data into the application, usually the keyboard.

o Standard output (stdout): A stream that relates to the default way of
outputting data from the application, usually to the screen.

e File pointer: An abstract reference to the current “location” within a
file.

e Database: An organized collection of data structured in a way that
makes it easy to be accessed programmatically.

e CSV (comma-separated values): A way of structuring data with
attributes separated with commas. CSV can be stored in plain text
files.

e Marshalling: The process of converting a live data structure or object
into a flat set of data that can be stored on disk, sent across a network,
and then used to reconstruct the original data structure or object
elsewhere or at some other time.

e Table: A collection of data organized into rows, with multiple
columns, where each column represents a different attribute of each
row. There are usually multiple tables within a database, containing
different types of data.

294

CHAPTER9 FILES AND DATABASES

e SQLite: An open source, public-domain relational database API
and library that works on a single-user basis on a local machine. It
supports SQL as its querying language.

e MySQL: An open source relational database system available in both
community and professional editions. It is maintained by MySQL
AB. Web hosting companies commonly offer MySQL database
support.

o PostgreSQL: A free, open source relational database system licensed
under the BSD license, making it possible to repackage and sell
within commercial products. PostgreSQL is often considered to be
of higher performance and have better conformity to SQL standards
than MySQL, although it’s less popular at the time of writing.

e Primary key: A column (or multiple columns) on a table whose data
uniquely identifies each row.

o SQL (Structured Query Language): A language specifically designed
to create, amend, retrieve, and otherwise manipulate data in
relational database systems.

e ActiveRecord: A library that abstracts databases, rows, columns, and
SQL into standard Ruby syntax using classes and objects. It’s a major
part of the Ruby on Rails framework, which is covered in Chapter 13.

With the ability to load, manipulate, and store data, the number of useful Ruby
applications you can develop increases significantly. Few applications depend entirely
on data typed in every time, and having access to files and databases makes it easy to
build powerful systems that can be used over time to manage data.

Next, in Chapter 10, we're going to look at a few ways that you can make your
applications and libraries available to the world.

295

CHAPTER 10

Distributing Ruby Code
and Libraries

In this chapter, we're going to look at how to distribute the Ruby code you write to other
developers and users.

Developing Ruby applications and libraries is so simple that you'll soon want
to release them to the world. As covered in Chapter 5, Ruby has a proud history
of community and sharing, and nearly every Ruby developer will release code or
completed applications at some point.

This chapter will walk you through the considerations and processes of deploying
Ruby applications, libraries, and remotely accessible services using HTTP daemons and
CGI scripts.

Distributing Basic Ruby Programs

Ruby is an interpreted language, so to distribute Ruby programs you can simply
distribute the source code files you've written. Anyone else who has Ruby installed can
then run the files in the same way that you do.

This process of distributing the actual source code for a program is typically how
most programs developed using a scripting language, such as Ruby, are shared; but more
traditionally, software has been distributed without the source code included. Popular
desktop application development languages such as C and C++ are compiled languages
whose source code is converted directly into machine code that runs on a certain
platform. This software can be distributed by copying the resulting compiled machine
code files, rather than the source, from machine to machine. However, this technique
is not possible with Ruby, as there is currently no Ruby compiler available (with the
exception of that in JRuby, but this is still a nascent area), so you have to distribute your
source code in one sense or another for other people to be able to run your programs.

297
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_10

https://doi.org/10.1007/978-1-4842-6324-2_10#DOI

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

Note Later in this chapter, we’ll look at making the functionality of your Ruby
programs available across a network. This technique does not require you to make
your source code available, although it does require you to maintain a running copy
of your program on a machine that’s network accessible (such as a web server).

To see how you can distribute Ruby source code, let’s take an example Ruby file and
call it test.rb:

puts "Your program works!"

If you copy test.rb to another computer that has the Ruby interpreter installed on it,
you can run the program directly with the Ruby interpreter as you would normally:

ruby test.rb
Your program works!

This technique works well if you're passing programs between your own machines
or servers or if you're distributing your programs to other developers. As long as the
other users and machines have the same Ruby libraries or gems that your program uses,
your program should run fine. For example, if you develop something to work with the
standard version of Ruby that comes with Mac OS X, your program should work just fine
on other Mac OS X machines (assuming they are running the same or a later version of
OS X that includes Ruby).

This ability to interpret the code in the same way on varying machines is one benefit
of interpreted languages over compiled languages. If the same version of the Ruby
interpreter is available on a different platform, it should run the same programs that your
Ruby interpreter does. With compiled code (code that is specifically compiled down to
machine code for a specific platform), it is not the case that it will run identically on all
platforms; in fact, it usually won't!

What if you want to distribute your Ruby program to people who aren’t au fait with
the Ruby interpreter? Depending on the target operating system (i.e., the operating
system the user is running), there are several ways to make deploying Ruby applications

simpler.

298

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

The Shebang Line

On UNIX-related operating systems (Linux, OS X, BSD, etc.), you can engineer your
program to run more simply by using a shebang line.

Note In certain situations, such as when using the Apache HTTP server, shebang
lines can work in Windows. You can use shebang lines such as #!ruby and #!c:\
ruby\bin\ruby.exe to make Ruby CGI scripts work under Apache on Windows.

For example, say your script were to look like this:

#!/usr/bin/ruby

puts "Your program works!"

UNIX-related operating systems support putting the name of the interpreter of a file
on the first line of the file with a shebang line, where the “shebang” is simply the pound
(#) sign and the exclamation mark (!).

Note The shebang line only needs to be in the file that’s initially run. It doesn’t
need to be in library or support files used by the main program.

In this case, /usr/bin/ruby, the Ruby interpreter, is used to interpret the rest of the
file. One problem you might run into, though, is that your Ruby interpreter might be
located in /usr/bin/local/ruby or have a different name entirely. However, there’s a
reasonably portable way to work around this problem. Many UNIX-related operating
systems (including most Linuxes and OS X) have a tool called env that stores the location
of certain applications and settings. You can use this tool to load Ruby without knowing
its exact location, for example:

#!/usr/bin/env ruby

puts "Your program works!"

You could copy this example to many different Linux or OS X machines, for example,
and it would work on the majority (env is not universal).

299

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

If this script were called test.rb and located in the current working directory, you
could simply run it from a command line, like so:

./test.1b

Note On most UNIX-like operating systems (including Mac OS X), as well as
adding a shebang line, it’s necessary to make the Ruby script “executable” by
using chmod for the preceding example to work, as in chmod +x test.rb.

Naturally, if you copied the script elsewhere (e.g., /usr/bin), you could access it
directly:

/usr/bin/test.rb
Or if the script’s location is in the path, it’s even easier:
test.rb

You could even remove the .rb suffix and make it look like a regular executable if you
wished.

Associated File Types in Windows

Whereas shebang lines are used on UNIX-like operating systems, Windows users are
more familiar with file extensions (such as DOC, EXE, JPG, MP3, or TXT) dictating how a
file is processed.

If you use My Computer or Windows Explorer to find a folder containing a Ruby file,
the file might or might not already be associated with the Ruby interpreter (depending on
which Ruby package you installed). Alternatively, Ruby files might be associated with your
text editor. In any case, if you want to be able to double-click Ruby files in Windows and
have them run directly as regular Ruby programs, you can do this by changing the default
action for files with an extension of RB (or any other arbitrary extension you wish to use).

The easiest way to set an association is to right-click the icon representing a Ruby
file and choose the Open With option from the menu (or Open, if it’s currently not
associated with any program). Associate the program with the ruby.exe Ruby interpreter
on your computer and check the Always Use the Selected Program to Open This Kind of
File option. This will cause Ruby files to be executed directly by the Ruby interpreter in
the future.

300

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

Detecting Ruby’s Runtime Environment

Deploying Ruby programs can be made easier with the tools covered in the previous
section, but you can use a number of techniques directly within Ruby to make Ruby’s
interactions with its surrounding environment even better.

For example, it’s possible to detect information about the machine upon which a
Ruby script is running and then change the way the program operates on the fly. You can
also retrieve parameters passed to the program via the command line.

Detecting the runtime environment while the program is running can be useful to
restrict access to users on specific platforms if your program isn’t relevant to other users,
or to tailor internal settings in your program so that your program will work better on the
user’s operating system. It can also be a useful way to get system-specific information
(rather than operating system-specific information) that’s relevant directly to the machine
the program is running on, as it could affect the operation of your program. A common
example of this is retrieving the current user’s path: a string of various directory names on
the system that can be searched as default locations for files. There are also environment
variables dictating where to store temporary files, and so forth.

Easy 0S Detection with RUBY_PLATFORM

Among the myriad special variables Ruby makes accessible, a variable called RUBY_PLATFORM
contains the name of the current environment (operating system) you're running under.
You can easily query this variable to detect what operating system your program is running
under. This can be useful if you want to use a certain filesystem notation or features that are
implemented differently under different operating systems.

On my Windows machine, RUBY_PLATFORM contains 1386-mswin32, on my OS X
machine it contains x86_64-darwin13, and on my Linux machine it contains 1686-
linux. This gives you the immediate power to segregate features and settings by
operating system:

if RUBY_PLATFORM =~ /win32/
puts "We're in Windows!"

elsif RUBY_PLATFORM =~ /linux/
puts "We're in Linux!"

elsif RUBY PLATFORM =~ /darwin/
puts "We're in Mac 0S X!"

301

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

elsif RUBY_PLATFORM =~ /freebsd/

puts "We're in FreeBSD!"
else

puts "We're running under an unknown operating system."
end

Environment Variables

Whenever a program is run on a computer, it’s contained with a certain environment,
whether that’s the command line or a GUI. The operating system sets a number of
special variables called environment variables that contain information about the
environment. They vary by operating system, but can be a good way of detecting things
that could be useful in your programs.

You can quickly and easily inspect the environment variables (as supplied by your
operating system) on your current machine with irb by using the special ENV hash:

irb(main):001:0> pp ENV.each {|e| puts e.join(': ') }

TERM: vti100

SHELL: /bin/bash

USER: carleton

PATH: /bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/opt/local/bin:/usr/
local/sbin

PWD: /Users/carleton
SHLVL: 1

HOME: /Users/carleton
LOGNAME: carleton
SECURITYSESSIONID: 51bbdo
_: /usr/bin/irb

LINES: 32

COLUMNS: 120

Specifically, these are the results from my machine, and yours will probably be quite
different. For example, when I try the same code on a Windows machine, I get results
such as these:

302

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

ALLUSERSPROFILE: F:\Documents and Settings\All Users
APPDATA: F:\Documents and Settings\carleton\Application Data
CLIENTNAME: Console

HOMEDRIVE: F:

HOMEPATH: \Documents and Settings\carleton

LOGONSERVER: \\PSHUTTLE

NUMBER_OF PROCESSORS: 2

0S: Windows NT

Path: F:\ruby\bin;F:\WINDOWS\system32;F:\WINDOWS

PATHEXT: .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.ISE; . WSF; . WSH; .RB; . RBW
ProgramFiles: F:\Program Files

SystemDrive: F:

SystemRoot: F:\WINDOWS

TEMP: F:\DOCUME~1\Carleton\LOCALS~1\Temp

TMP: F:\DOCUME~1\Carleton\LOCALS~1\Temp

USERDOMAIN: PSHUTTLE

USERNAME: Carleton

USERPROFILE: F:\Documents and Settings\carleton

windir: F:\WINDOWS

You can use these environment variables to decide where to store temporary files or
to find out what sort of features your operating system offers, in real time, much as you
did with RUBY_PLATFORM:

tmp_dir = '/tmp'
if ENV['0S'] =~ /Windows NT/
puts "This program is running under Windows NT/2000/XP!"
tmp _dir = ENV['TMP']
elsif ENV['PATH'] =~ /\/ust/
puts "This program has access to a UNIX-style file system!"
else
puts "I cannot figure out what environment I'm running in!"
exit
end

[.. do something here ..]

303

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

Note You can also set environment variables with ENV['variable name'] =
value. However, setting environment variables from within a program only applies
to the local process and any child processes.

Although ENV acts like a hash, it’s technically a special object, but you can convert it
to a true hash using its .to_hash method, as in ENV.to_hash.

Accessing Command-Line Arguments

In Chapter 4, you used a special array called ARGV. ARGV is an array automatically created
by the Ruby interpreter that contains the parameters passed to the Ruby program
(whether on the command line or by other means). For example, say you created a script
called argvtest.xb:

p ARGV
You could run it like so:

ruby argvtest.rb these are command line parameters
["these", "are", "command", "line", "parameters"]

The parameters are passed into the program and become present in the ARGV array,
where they can be processed as you wish. Use of ARGV is ideal for command-line tools
where filenames and options are passed in this way.

Using ARGV also works if you call a script directly. On UNIX operating systems, you
could adjust axrgvtest.rb to be like this:

#!/usr/bin/env ruby
p ARGV

And you could call it in this way:

./argvtest.rb these are command line parameters

["these", "are", "command", "line", "parameters"]

304

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

You generally use command-line arguments to pass options, settings, and data fragments
that might change between executions of a program. For example, a common utility found on
most operating systems is copy or cp, which is used to copy files. It's used like so:

cp /directory1/from filename /directory2/destination_filename

This would copy a file from one place to another (and rename it along the way)
within the filesystem. The two filenames are both command-line arguments, and a Ruby
script could receive data in the same way, like so:

#!/usr/bin/env ruby
from filename = ARGV[O]
destination filename = ARGV[1]

Distributing Ruby Libraries As Gems

Over time, it’s likely you'll develop your own libraries to solve various problems with
Ruby so that you don’t need to write the same code over and over in different programs,
but can call on the library for support.

Usually you'll want to make these libraries available to use on other machines, on
servers upon which you deploy applications, or to other developers. You might even
open source your libraries to get community input and a larger developer base.

If you've read Chapter 5, you'll have a good feel for Ruby’s commitment to open source
and how open source is important to Ruby developers. This section looks at how to release
your code and libraries in such a way that other developers can find them useful.

Luckily, deploying libraries is generally less problematic than deploying entire
applications, as the target audience is made up of other developers who are usually
familiar with installing libraries.

In Chapter 7, we looked at RubyGems, a library installation and management system
for Ruby. We looked at how RubyGems makes it easy to install libraries, but RubyGems
also makes it easy to create “gems” of your own from your own code.

Creating a Gem

There are easy ways to create gems and slightly less easy ways. I'm going to take a “raw”
approach by showing how to create a gem from the ground up. Later, we'll look at a
library that will do most of the grunt work for you.

Let’s first create a simple library that extends the String class and puts it in a file
called string_extend.rb:

305

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

class String
def vowels
scan(/[aeiou]/1i)
end
end

This code adds a vowels method to the String class, which returns an array of all

the vowels in a string:

"This is a test".vowels
["ill, Ilill, llall’ Ilell]

As alocal library within the scope of a larger application, it could be loaded with
require or require_relative:

require_relative 'string extend'

However, you want to turn it into a gem that you can use anywhere. Building a gem
involves three steps. The first is to organize your code and other files into a structure that
can be turned into a gem. The second is to create a specification file that lists information
about the gem. The third is to use the gem program to build the gem from the source files
and the specification.

Structuring Your Files

Before you can build a gem, it’s necessary to collect all the files you want to make up
the gem. This is usually done using a standard structure. So far, you have your string_
extend.rb file, and this is the only file you want within your gem.

First, it’s necessary to create a folder to contain all the gem’s folders, so you create a
folder called string_extend. Under this folder, you create several other folders as follows:

e lib: This directory will contain the Ruby code related to the library.

o test or spec: This directory will contain any unit tests or other
testing scripts related to the library.

e doc: This is an optional directory that could contain documentation
about the library, particularly documentation created with or by
RDoc.

306

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

e bin: This is another optional directory that can contain system
tools and command-line scripts that are related to the library. For
example, RubyGems itself installs the gem command-line tool; such a
tool would be placed into bin.

At a minimum, you should end up with string_extend/lib and string_extend/
test.

In this example, you should place string_extend.rb within the string extend/lib
directory. If you have tests, documentation, or command-line scripts, place them into
the respective directories.

Note The preceding directory names are written in UNIX style, but on Windows
would be represented similarly to this: c:\gems\string extend, c:\gems\
string extend\1lib, and so on. Take this into account throughout this entire
section.

Creating a Specification File

Once your files are organized, it’s time to create a specification file that describes the
gem and provides RubyGems with enough information to create the final gem. Create
a text file called string_extend.gemspec (or a filename that matches your own project
name) in the main string_extend folder, and fill it out like so:

Gem: :Specification.new do |s]|
s.name = 'string extend'

s.version = '0.0.1'
s.summary = "StringExtend adds useful features to the String class”
s.platform = Gem::Platform::RUBY
s.files = Dir.glob("**/**/**")
s.test files = Dir.glob("test/* test.rb")
s.authors = ["Your Name"]
s.email = "your-email-address@email.com"
s.required ruby version = '>= 2.0.0'
end

307

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

This is a basic specification file. The specification file is effectively a simple Ruby
script that passes information through to Gem: : Specification. The information it
provides is mostly simple, but let’s look at a few key areas.

First, you define the name of the gem, setting it to 'string extend':

s.name = 'string extend'

Next, you define the version number. Typically, version numbers for Ruby projects
(and for Ruby itself) contain three parts in order of significance. Early versions of
software—before an official release, perhaps—often begin with 0, asin 0.0.1 here:

s.version = '0.0.1"

The summary line is displayed by gem 1ist, and can be useful to people prior to
installing the gem. Simply put together a short description of your library/gem here:

s.summary = "StringExtend adds useful features to the String class”

The files attribute accepts an array of all the files to include within the gem. In this
case, you use Dir.glob to get an array of all the files under the current directory:

s.files = Dir.glob("**/**/**")

However, you could explicitly reference every file in an array in the preceding line.

The test_files attribute, like the files attribute, accepts an array of files, in this
case associated with tests. You can leave this line intact even if you have no test folder,
as Dir.glob will just return an empty array, for example:

s.test files
or
s.test files

Dir.glob("test/* test.rb")

Dir.glob("spec/* spec.rb")

Last, sometimes libraries rely on features in certain versions of Ruby. You can specify
the required version of Ruby with the require_ruby version parameter. If there’s no
required version, you can simply omit this line:

s.required ruby version = '>= 2.0.0'

Note A full list of the parameters you can use in a RubyGems specification file is
available at https://guides.rubygems.org/specification-reference/.
Also, you can learn more about versioning by visiting https://semver.org/.

308

https://guides.rubygems.org/specification-reference/
https://semver.org/

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

Building the Gem
Once the specifications file is complete, building the final . gem file is as simple as this:

gem build <spec file>

Note gem build should be run from the directory that the spec file is in.

In your case:
gem build string extend.gemspec

This makes gem create the final gem file, called string_extend-0.0.1.gem. You may
receive some warnings if there is any missing information. Read the warning carefully to
determine how to remove it.

Note In the future, once you change and update your library, simply update the
version numbers and rebuild, and you’ll have a new gem ready to go that can be
installed to upgrade the existing installed gem.

Beyond this point, you could install your own gem with gem install string extend,
and then use it from other scripts using require 'string extend'.It’s that simple.

Easier Gem Creation

In Chapter 7, we looked at a popular tool within the Ruby world called Bundler. Bundler
makes it easy to manage the dependencies of your Ruby programs, but it also has a
feature to create all of the boilerplate code that you saw in the past few pages. Knowing
how this code operates is important, which is why we covered it, but once you're up to
speed, using Bundler to automatically generate the files will save you time.

To create a new gem using Bundler is as simple as

bundle gem string extend

Note Bear in mind if you followed the previous section and created a gem
by hand, what we're doing here will conflict with that, so consider moving to a
different directory or creating something with a different name.

309

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

You will be asked to select a testing framework, if you want to us the MIT license and

if you want to include the code of conduct. In the following output, I'm using RSpec, the

MIT license and

the initialization

create
create
create
create
create
create
create
Ccreate
create
create
create
create
create
create
create
Initializing g

the code of conduct. The result is a directory and a set of files, as well as
of a Git repository:

string_extend/Gemfile

string extend/lib/string_extend.rb

string extend/lib/string_extend/version.rb
string_extend/string_extend.gemspec
string extend/Rakefile
string_extend/README.md
string_extend/bin/console

string extend/bin/setup

string extend/.gitignore

string extend/.travis.yml

string extend/.rspec

string extend/spec/spec_helper.rb
string_extend/spec/string extend spec.rb
string_extend/LICENSE.txt
string_extend/CODE_OF_CONDUCT.md

it repo in /users/jane/ruby/string extend

Due to Bundler's boilerplate code needing to cope with almost any example of

creating a gem out of the box, its gem specification file is slightly more complex than the

one we created earlier but follows the same structure:

require_relative 'lib/string extend/version'

Gem: :Specification.new do |spec|

spec.name
spec.version
spec.authors
spec.email

spec.summary
requires one.}

310

"string extend"
StringExtend: :VERSION
["Carleton DilLeo"]
["example@email.com"]

%q{TODO: Write a short summary, because RubyGems

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

spec.description = %q{TODO: Write a longer description or delete this line.}
spec.homepage = "TODO: Put your gem's website or public repo URL here."
spec.license = "MIT"

spec.required ruby version = Gem::Requirement.new(">= 2.3.0")
spec.metadata["allowed push host"] = "TODO: Set to 'http://mygemserver.com'"
spec.metadata["homepage uri"] = spec.homepage
spec.metadata["source _code uri"] = "TODO: Put your gem's public repo URL
here."

spec.metadata["changelog uri"] = "TODO: Put your gem's CHANGELOG.md URL
here."

Specify which files should be added to the gem when it is released.

The “git ls-files -z° loads the files in the RubyGem that have been

ad

ded into git.

spec.files = Dir.chdir(File.expand path('..', FILE)) do
“git 1s-files -z .split("\x0").reject { |f| f.match(%r{"(test|spec|feat
ures)/}) }
end
spec.bindir = "exe"
spec.executables = spec.files.grep(%r{"exe/}) { |f| File.basename(f) }
spec.require paths = ["1ib"]

end

All that's left now is to fill out the blanks and carry on developing your library.

Installing Your Gem

Distributing a gem is easy. You can upload it to a website or transfer it in any way you
would normally transfer a file. You can then install the gem with the command gem
install and refer to the local file.

The best way to distribute gems, however, is in a form where they can be installed

over the Internet without specifying a source, for example:

gem install gem name

311

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

This command installs the gem gem_name by looking for it on the Internet and
downloading it to the local machine. But how does gem know where to download gems?
By default, RubyGems searches a Ruby project repository called RubyGems .org for gems
if no source is specified. We'll look at how to make gems available in the default database
using RubyGems . org next.

RubyGems.org

RubyGems.org (https://rubygems.org/) is the largest community repository for Ruby
projects and libraries. It contains thousands of projects and acts as a centralized location
for the hosting of gems. Nearly all the major Ruby libraries are available from or hosted
there, including Ruby on Rails.

If you want your gem to be installed easily by users, hosting it on RubyGems.org is
key. And, happily, it's entirely free.

To host a project on RubyGems . org, you first need an account, but once you're set
up you'll be able to push any valid gem you've created on your local machine up to the
RubyGems . org site like so:

gem push your gems filename-0.0.1.gem

Note You will get an error if you push up a gem that has the same name as a
gem that already exists on the RubyGems . org site, so you might want to check
if your name conflicts before you even start to build your library, or at least be
prepared to rename or namespace it.

If you use the Bundler approach to create a gem, as explained in the previous
section, you can use Rake instead:

rake release

Deploying Ruby Applications As Remote Services

An alternative to giving people your source or packaging it up to be run locally on a
user’s machine is making a program’s functionality available as a remote service over a
network. This only works for a small subset of functionality, but providing functionality
remotely gives you more control over your code and how it is used.

312

https://rubygems.org/

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

Ruby’s networking and web features will be covered in more depth in Chapters 14
and 15, but in this section, we’ll look at how to put together basic services with Ruby that
allow users to access a program’s functionality over a network.

Note If you want to build a true web application, refer to Chapter 13. This section
is about building small, ad hoc services.

CGl Scripts

A common way to make scripts available online is to upload them to web hosting
providers as CGI scripts. Common Gateway Interface (CGI) is a standard that allows web
server software (such as Apache or Microsoft IIS) to launch programs and send data back
and forth between them and the web client.

Many people associate the term CGI with the Perl language, as Perl has been the
most common language with which to write CGI scripts. However, CGI is language
agnostic, and you can just as easily write CGI scripts with Ruby (more easily, in fact!).

A Basic CGl Script

The most basic Ruby CGI script looks like this:

#!/usr/bin/ruby
puts "Content-type: text/html\n\n"
puts "<html><body>This is a test</body></html>"

If you called this script test.cgi and uploaded it to a UNIX-based web hosting
provider (the most common type) with the right permissions, you could use it as a CGI
script. For example, if you have the website www.example.com/ hosted with a Linux web
hosting provider and you upload test.cgi to the main directory and give it execute
permissions, then visiting www.example.com/test.cgi should return an HTML page
saying, “This is a test”

Note Although /usr/bin/zuby is referenced in the previous example, for many
users or web hosting providers, Ruby might be located at /usxr/local/bin/
ruby. Make sure to check or try using /usr/bin/env ruby.

313

http://www.example.com/
http://www.example.com/test.cgi

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

When test.cgi is requested from a web browser, the web server looks for test.
cgi on the website and then executes it using the Ruby interpreter (due to the shebang
line—as covered earlier in this chapter). The Ruby script returns a basic HTTP header
(specifying the content type as HTML) and then returns a basic HTML document.

Ruby comes with a special library called cgi that enables more sophisticated
interactions than those with the preceding CGI script. Let’s create a basic CGI script that
uses cgi:

#!/usr/bin/env ruby
require 'cgi’
cgi = CGI.new

puts cgi.header
puts "<html><body>This is a test</body></html>"

In this example, you created a CGI object and used it to print the header line for you.
This is easier than remembering what header to output, and it can be tailored. However,
the real benefit of using the cgi library is so that you can do things such as accept data
coming from a web browser (or an HTML form) and return more complex data to the
user.

Accepting CGlI Variables

A benefit of CGI scripts is that they can process information passed to them from a form
on an HTML page or merely specified within the URL. For example, if you had a web
form with an <input> element with a name of “text” that posted to test.cgi, you can
access the data passed to it like this:

#!/usr/bin/env ruby

require 'cgi'
cgi = CGI.new

text = cgi['text']

puts cgi.header
puts "<html><body>#{text.reverse}</body></html>"

314

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

In this case, the user would see the text he or she entered on the form reversed. You
could also test this CGI script by passing the text directly within the URL, such as with
www.example.com/test.cgi?text=this+is+a+test.

Here’s a more complete example:
#!/usxr/bin/env ruby

require 'cgi'
cgi = CGI.new

from = cgi['from'].to i
to = cgi['to'].to i

number = rand(to-from+1) + from

puts cgi.header
puts "<html><body>#{number}</body></html>"

This CGI script responds with a random number that’s between the number
supplied in the from CGI variable and the to CGI variable. An associated but basic form
that could send the correct data would have HTML code like so:

<form method="POST" action="http://www.example.com/test.cgi">

For a number between <input type="text" name="from" value="" /> and
<input type="text" name="to" value="" /> <input type="submit"

value="Click here!" /></form>

In Chapter 16, the cgi library is covered in more depth, along with information about
using HTTP cookies and sessions, so if this mode of deployment is of interest to you,
refer there for extended information and longer examples.

In general, however, CGI execution isn’t a popular option due to its lack of speed
and the need for a Ruby interpreter to be executed on every request. This makes CGI
unsuitable for high-use or heavy-load situations.

Tip Depending on your setup (or hosting environment), you might find that
Sinatra offers a nicer way to do what we’ve looked at in this section. See the
Sinatra section in Chapter 13.

315

http://www.example.com/test.cgi?text=this+is+a+test

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

Generic HTTP Servers

HTTP is the communications protocol of the World Wide Web. Even though it’s
commonly used to shuttle web pages from one place to another, it can also be used on
an internal network or even to communicate between services on a single machine.

Creating an HTTP server from your Ruby program can provide a way for users (or
even other programs) to make requests to your Ruby program, meaning you don’t
need to distribute the source code, but can instead make your program’s functionality
available over a network (such as the Internet).

In this section, we're going to look directly at creating a basic HTTP server using
WEBTick, part of Ruby's standard library. It's useful to have experience building servers
directly so that you can see how things work at a low level, even though, ultimately, you
will almost certainly choose to use a web app framework (as covered in Chapter 13)
to make life easier. Given this, if you find any code in this section intimidating, skip
to the Sinatra-based approach demonstrated in Chapter 13 as it will be a lot more
straightforward and hide many of the details covered here.

Note In this section, we’re creating scripts that are HTTP servers themselves and
do not rely on established HTTP servers such as Apache.

WEBrick

WEBFrick is a Ruby library that makes it easy to build an HTTP server with Ruby. It comes
with most installations of Ruby by default (it’s part of the standard library), so you can
usually create a basic web/HTTP server with only several lines of code:

require 'webrick'
server = WEBrick::GenericServer.new(:Port => 1234)
trap("INT"){ server.shutdown }

server.start do |socket]
socket.puts Time.now
end

316

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

This code creates a generic WEBrick server on the local machine on port 1234, shuts
the server down if the process is interrupted (often done with Ctrl+C), and for each
new connection prints the current date and time. If you run this code, you could try to
view the results in your web browser by visiting http://127.0.0.1:1234/ or http://
localhost:1234/.

Caution Because your test program doesn’t output valid HTTP, it might fail with
some particularly sensitive web browsers. However, if you understand how to use
the telnet program, you can use telnet 127.0.0.1 1234 to see the result.
Otherwise, continue to the next example, where valid HTTP is returned for web
browsers to view.

However, a more powerful technique is when you create servlets that exist in their
own class and have more control over the requests and responses made to them:

require 'webrick'

class MyServlet < WEBrick::HTTPServlet::AbstractServlet
def do GET(request, response)
response.status = 200
response.content_type = "text/plain”
response.body = "Hello, world!"
end
end

server = WEBrick::HTTPServer.new(:Port => 1234)
server.mount "/", MyServlet

trap("INT"){ server.shutdown }

server.start

This code is more elaborate, but you now have access to request and response
objects that represent both the incoming request and the outgoing response.
For example, you can now find out what URL the user tried to access in his or her

browser with such a line:

response.body = "You are trying to load #{request.path}"

317

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

request.path contains the path within the URL (e.g., /abcd from
http://127.0.0.1:1234/abcd), meaning you can interpret what the user was trying to
request, call a different method, and provide the correct output.

Here’s a more elaborate example:

require 'webrick'

class MyNormalClass
def MyNormalClass.add(a, b)
a.to i + b.to i
end
def MyNormalClass.subtract(a,b)
a.to i - b.to i
end
end

class MyServlet < WEBrick::HTTPServlet::AbstractServlet
def do GET(request, response)
if request.query['a'] && request.query['b']

a = request.query['a']

b = request.query['b"]

response.status = 200

response.content_type = 'text/plain’

result = nil

case request.path
when '/add'
result = MyNormalClass.add(a,b)
when '/subtract'
result = MyNormalClass.subtract(a,b)
else
result = "No such method"
end

response.body = result.to s + "\n"
else
response.status = 400

318

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

response.body = "You did not provide the correct parameters”
end
end
end

server = WEBrick::HTTPServer.new(:Port => 1234)
server.mount '/', MyServlet

trap('INT'){ server.shutdown }

server.start

In this example, you have a regular, basic Ruby class called MyNormalClass that
implements two basic arithmetic methods. The WEBrick servlet uses the request object
to retrieve parameters from the URL, as well as get the Ruby method requested from
request.path. If the parameters aren’t passed, an HTTP error is returned.

To use the preceding script, you'd use URLs such as these:

http://127.0.0.1:1234/add?a=108b=20

30
http://127.0.0.1:1234/subtract?a=100&b=10
90

http://127.0.0.1:1234/subtract

You did not provide the correct parameters.
http://127.0.0.1:1234/abcd?a=10&b=20

No such method.

319

CHAPTER 10 DISTRIBUTING RUBY CODE AND LIBRARIES

Summary

In this chapter, we looked at how to deploy Ruby programs and libraries, as well as how
to make their functions available to web browsers and other applications over a network.
We also interrogated the environment so we can pursue different techniques on a per-
operating system basis if we choose.

Let’s reflect on the main concepts covered in this chapter:

o Shebang line: A special line at the start of a source code file that
determines which interpreter is used to process the file. Used
primarily on UNIX-based operating systems, shebang lines can also
work on Windows when used with the Apache web server.

o RUBY_PLATFORM: A special variable preset by Ruby that contains the

name of the current platform (environment).

o Environment variables: Special variables set by the operating system
or other processes that contain information relevant to the current

execution environment and information about the operating system.

» RubyGems.org: A centralized repository and website dedicated to
hosting and distributing Ruby projects and libraries.

e GitHub: A popular hub and community site for users of the Git source
code management system—now popular in the Ruby world. You can
find itathttps://github.com/.

e CGI: Common Gateway Interface. A standard that enables web
servers to execute scripts and provide an interface between web users
and scripts located on that server.

e WEBFrick: A simple and easy HTTP server library for Ruby that comes
with Ruby as standard.

In Chapter 15, we're going to return to looking at network servers, albeit in a different
fashion; but first, in Chapter 11, we’re going to take a look at some more advanced Ruby
topics to flesh out the ideas we've covered so far.

320

https://github.com/

CHAPTER 11

Advanced Ruby Features

In this chapter, we're going to look at some advanced Ruby techniques that have not
been covered in prior chapters. This chapter is the last instructional chapter in the
second part of the book, and although we’ll be covering useful libraries, frameworks, and
Ruby-related technologies in Part 3, this chapter rounds off the mandatory knowledge
that any proficient Ruby programmer should have. This means that although this chapter
will jump between several different topics, each is essential to becoming a professional
Ruby developer.

The myriad topics covered in this chapter include how to create Ruby code
dynamically on the fly, methods to make your Ruby code safe, how to issue commands
to the operating system, how to integrate with Microsoft Windows, and how to create
libraries for Ruby using other programming languages. Essentially, this chapter is
designed to cover a range of discrete, important topics that you might find you need to
use, but that fall outside the immediate scope of other chapters.

Dynamic Code Execution

As a dynamic, interpreted language, Ruby is able to execute code created dynamically.
The way to do this is with the eval method, for example:

eval "puts 2 + 2"

Note that while 4 is displayed, 4 is not returned as the result of the whole eval
expression. puts always returns nil. To return 4 from eval, you can do this:

321
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_11

https://doi.org/10.1007/978-1-4842-6324-2_11#DOI

CHAPTER 11 ADVANCED RUBY FEATURES

puts eval("2 + 2")

Here’s a more complex example that uses strings and interpolation:

my_number = 15
my code = %{#{my number} * 2}
puts eval(my code)

30

The eval method simply executes (or evaluates) the code passed to it and returns the
result. The first example made eval execute puts 2 + 2, whereas the second used string
interpolation to build an expression of 15 * 2, which was then evaluated and printed to
the screen using puts.

Bindings

In Ruby, a bindingis a reference to a context, scope, or state of execution. A binding
includes things such as the current value of variables and other details of the execution
environment.

It's possible to pass a binding to eval and to have eval execute the supplied code
under that binding rather than the current one. In this way, you can keep things that
happen with eval separate from the main execution context of your code.

Here’s an example:

def binding_elsewhere

X = 20
return binding
end

remote_binding = binding_elsewhere

322

CHAPTER 11 ADVANCED RUBY FEATURES

X =10
eval("puts x")
eval("puts x", remote binding)

10

20

This code demonstrates that eval accepts an optional second parameter, a binding,
which in this case is returned from the binding_elsewhere method. The variable
remote_binding contains a reference to the execution context within the binding_
elsewhere method rather than in the main code. Therefore, when you print x, 20 is
shown, as x is defined as equal to 20 in binding_elsewhere!

Note You can obtain the binding of the current scope at any point with the
Kernel module’s binding method.

Let’s build on the previous example:

eval("x = 10")
eval("x = 50", remote binding)
eval("puts x")
eval("puts x", remote binding)

10
50

In this example, two bindings are in play: the default binding and the remote
binding (from the binding elsewhere method).

Therefore, even though you set x first to 10, and then to 50, you're not dealing with

the same x in each case. One x is a local variable in the current context, and the other x is
a variable in the context of binding_elsewhere.

323

CHAPTER 11 ADVANCED RUBY FEATURES

Other Forms of eval

Although eval executes code within the current context (or the context supplied with a
binding), class_eval, module_eval, and instance_eval can evaluate code within the
context of classes, modules, and object instances, respectively.

class_eval is ideal for adding methods to a class dynamically:

class Person
end

def add_accessor to person(accessor name)
Person.class eval %{
attr accessor :#{accessor name}

}

end

person = Person.new
add_accessor_to_person :name
add_accessor_to_person :gender
person.name = "Carleton Dileo"
person.gender = "male"

puts "#{person.name} is #{person.gender}"

Carleton DiLeo is male

In this example, you use the add_accessor_to _person method to add accessors
dynamically to the Person class. Prior to using the add_accessor_to_person method,
neither the name nor gender accessors exist within Person.

Note that the key part of the code, the class_eval method, operates by using string
interpolation to create the desired code for Person:

Person.class eval %{
attr_accessor :#{accessor_name}

}

String interpolation makes the eval methods powerful tools for generating different
features on the fly. This ability is a power unseen in the majority of programming
languages, and is one that’s used to great effect in systems such as Ruby on Rails
(covered in Chapter 13).

324

CHAPTER 11 ADVANCED RUBY FEATURES

It’s possible to take the previous example a lot further and add an add_accessor
method to every class by putting your class_eval cleverness in a new method, defined
within the Class class (from which all other classes descend):

class Class
def add_accessor(accessor_name)
self.class eval %{
attr accessor :#{accessor name}
}
end
end

class Person
end

person = Person.new

Person.add accessor :name

Person.add accessor :gender

person.name = "Carleton Dileo"
person.gender = "male"

puts "#{person.name} is #{person.gender}"

In this example, you add the add_accessor method to the Class class, thereby
adding it to every other class defined within your program. This makes it possible to add
accessors to any class dynamically, by calling add_accessor. (If the logic of this approach
isn’t clear, make sure to try this code yourself, step through each process, and establish
what is occurring at each step of execution.)

The technique used in the previous example also lets you define classes like this:

class SomethingElse
add_accessor :whatever
end

Because add_accessor is being used within a class, the method call will work its way
up to the add_accessor method defined in class Class.

Moving back to simpler techniques, using instance_eval is somewhat like using
regular eval, but within the context of an object (rather than a method). In this example,
you use instance_eval to execute code within the scope of an object:

325

CHAPTER 11 ADVANCED RUBY FEATURES

class MyClass
def initialize
@my variable = 'Hello, world!'
end
end

obj = MyClass.new
obj.instance eval { puts @my variable }

Hello, world!

Creating Your Own Version of attr_accessor

So far, you've used the attr_accessor method within your classes to generate accessor
functions for instance variables quickly. For example, in longhand you might have this
code:

class Person
def name
@name
end

def name=(name)
@name = name
end
end

This allows you to do things such as puts person.name and person.name = 'Fred'.
Alternatively, however, you can use attr_accessor:

class Person
attr_accessor :name
end

This version of the class is more concise and has exactly the same functionality as the
longhand version. Now it’s time to ask the question, how does attr_accessor work?

326

CHAPTER 11 ADVANCED RUBY FEATURES

It turns out that attr_accessor isn’t as magical as it looks, and it’s extremely easy to
implement your own version using eval. Consider this code:

class Class
def add_accessor(accessor _name)
self.class eval %{
def #{accessor name}
@#{accessor_name}
end

def #{accessor name}=(value)
@#{accessor _name} = value
end
}
end
end

At first, this code looks complex, but it’s very similar to the add_accessor code you
created in the previous section. You use class_eval to define getter and setter methods
dynamically for the attribute within the current class.

If accessor_name is equal to name, then the code that class_eval is executing is
equivalent to this code:

def name
@name
end

def name=(value)
@name = value
end

Thus, you have duplicated the functionality of attr _accessor.

You can use this technique to create a multitude of different “code generators” and
methods that can act as a “macro” language to perform things in Ruby that are otherwise
lengthy to type out.

327

CHAPTER 11 ADVANCED RUBY FEATURES

Running Other Programs from Ruby

Often, it’s useful to be able to run other programs on the system from your own
programs. In this way, you can reduce the amount of features your program needs to
implement, as you can pass off work to other programs that are already written. It can
also be useful to hook up several of your own programs so that functionality is spread
among them. Rather than using the RPC systems covered in the previous chapter, you
can simply run other programs from your own with one of a few different methods made
available by Ruby.

Getting Results from Other Programs

There are three simple ways to run another program from within Ruby: the system
method (defined in the Kernel module), backtick syntax (" *), and delimited input
literals (%x{}). Using system is ideal when you want to run another program and aren’t
concerned with its output, whereas you should use backticks when you want the output
of the remote program returned.
These lines demonstrate two ways of running the system’s directory list program:
On OS X or Linux:

system("1s")

x = "1s°
On Windows:
x = system("dir")

Tdir’

X
1

For the first line, the list program output displays in the console and x equals true.
For the second line, x contains the output of the 1ist command. Which method you
use depends on what you're trying to achieve. If you don’t want the output of the other
program to show on the same screen as that of your Ruby script, then use backticks (or a
literal, %x{}).

Note %x{} is functionally equivalent to using backticks, for example, %x{1s}
or %x{dir}.

328

CHAPTER 11 ADVANCED RUBY FEATURES

Transferring Execution to Another Program

Sometimes it’s desirable to jump immediately to another program and cease execution
of the current program. This is useful if you have a multistep process and have written
an application for each. To end the current program and invoke another, simply use the
exec method in place of system, for example:

exec "ruby another script.rb"
puts "This will never be displayed"

In this example, execution is transferred to a different program, and the current
program ceases immediately—the second line is never executed.

Running Two Programs at the Same Time

Forking is where an instance of a program (a process) duplicates itself, resulting in two
processes of that program running concurrently. You can run other programs from this
second process by using exec, and the first (parent) process will continue running the
original program.

fork is a method provided by the Kernel module that creates a fork of the current
process. It returns the child process’s process ID in the parent, but nil in the child
process—you can use this to determine which process a script is in. The following
example forks the current process into two processes and only executes the exec
command within the child process (the process generated by the fork):

if fork.nil?
exec "ruby some other file.rb"
end
puts "This Ruby script now runs alongside some other file.rb"

Caution Don’t run the preceding code from irb. If irb forks, you'll end up with two
copies of irb running simultaneously, and the result will be unpredictable.

329

CHAPTER 11 ADVANCED RUBY FEATURES

If the other program (being run by exec) is expected to finish at some point and you
want to wait for it to finish executing before doing something in the parent program, you
can use Process.wait to wait for all child processes to finish before continuing. Here’s

an example:

child = fork do

sleep 3

puts "Child says 'hi'!"
end

puts "Waiting for the child process..."
Process.wait child

puts "All done!"

Waiting for the child process...

<3 second delay>

Child says 'hi'!

All done!

Note Forking is not possible with the Windows version of Ruby, as POSIX-style
forking is not natively supported on that platform. You will use the spawn()
method instead. More information at https://ruby-doc.org/core/Kernel.
html#method-1i-spawn.

Interacting with Another Program

The previous methods are fine for simple situations where you just want to get basic
results from a remote program and don’t need to interact directly with it in any way

while it’s running. However, sometimes you might want to pass data back and forth

between two separate programs.

330

https://ruby-doc.org/core/Kernel.html#method-i-spawn
https://ruby-doc.org/core/Kernel.html#method-i-spawn

CHAPTER 11 ADVANCED RUBY FEATURES

Ruby’s I0 module has a popen method that allows you to run another program
and have an I/0O stream between it and the current program. The I/O stream between
programs works like the other types of I/O streams we looked at in Chapter 9, but
instead of reading and writing to a file, you're reading and writing to another program.
Obviously, this technique only works successfully with programs that accept direct input
and produce direct output at a command prompt level (so not GUI applications).

Here’s a simple read-only example:

1s = I0.popen("1s", "r")

while line = ls.gets
puts line

end

1s.close

In this example, you open an I/0 stream with 1s (the UNIX command to list the
contents of the current directory—try it with dir if you're using Microsoft Windows). You
read the lines one by one, as with other forms of I/O streams, and close the stream when
you're done.

Similarly, you can also open a program with a read/write I/O stream and handle data
in both directions:

handle = I0.popen("other program", "r+"
handle.puts "send input to other program"
handle.close write
while line = handle.gets

puts line
end

Note The reason for handle.close write is to close the I/0 stream’s writing
stream, thereby sending any data waiting to be written out to the remote program. I0
also has a flush method that can be used if the write stream needs to remain open.

331

CHAPTER 11 ADVANCED RUBY FEATURES

Threads

Thread is short for thread of execution. You use threads to split the execution of a
program into multiple parts that can be run concurrently. For example, a program
designed to email thousands of people at once might split the task between 20 different
threads that all send email at once. Such parallelism is faster than processing one item
after another, especially on systems with more than one CPU, because different threads
of execution can be run on different processors. It can also be faster because rather than
wasting time waiting for a response from a remote machine, you can continue with other
operations.

Ruby 1.8 didn’t support threads in the traditional sense. Typically, threading
capabilities are provided by the operating system and vary from one system to another.
However, Ruby 1.8 provided Ruby’s threading capabilities directly which meant they
lacked some of the power of traditional system-level threads. In Ruby 1.9, Ruby began to
use system-based threads, and this is now the default expectation among Rubyists.

While Ruby 1.9 and 2.x’s threads are system (native) threads, in order to remain
compatible with 1.8 code, a global interpreter lock (GIL) has been left in place so that
threads do not truly run simultaneously. This means that all of what is covered in this
section is relevant to all of 1.8, 1.9, 2.0, and beyond. A Ruby 1.9-and-beyond-only
alternative, fibers, is covered in the next primary section of this chapter which now
supports non-blocking concurrency.

Basic Ruby Threads in Action

Here’s a basic demonstration of Ruby threading in action:

threads = []

10.times do
thread = Thread.new do
10.times { |i| print i; $stdout.flush; sleep rand(2) }
end

threads << thread
end

threads.each { |thread| thread.join }

332

CHAPTER 11 ADVANCED RUBY FEATURES

You create an array to hold your Thread objects so that you can easily keep track of
them. Then you create ten threads, sending the block of code to be executed in each
thread to Thread.new, and add each generated thread to the array.

Note When you create a thread, it can access any variables that are within scope
at that point. However, any local variables that are then created within the thread
are entirely local to that thread. This is similar to the behavior of other types of
code blocks.

Once you've created the threads, you wait for all of them to complete before the
program finishes. You wait by looping through all the thread objects in threads and
calling each thread’s join method. The join method makes the main program wait until
a thread’s execution is complete before continuing. In this way, you make sure all the
threads are complete before exiting.

The preceding program results in output similar to the following (the variation is due
to the randomness of the sleeping):

0010120001001010121231212423251232345323433663454436554674454877655788668
97567656797

9789878889899999

The example has created ten Ruby threads whose sole job is to count and sleep
randomly. This results in the preceding pseudo-random output.

Rather than sleeping, the threads could have been fetching web pages, performing
math operations, or sending emails. In fact, Ruby threads are ideal for almost every
situation where concurrency within a single Ruby program is desired.

Note In Chapter 15, you'll be using threads to create a server that creates new
threads of execution for each client that connects to it, so that you can develop a
simple chat system.

333

CHAPTER 11 ADVANCED RUBY FEATURES

Advanced Thread Operations

As you've seen, creating and running basic threads is fairly simple, but threads also offer
a number of advanced features. These are discussed in the following subsections.

Waiting for Threads to Finish Redux

When you waited for your threads to finish by using the join method, you could have
specified a timeout value (in seconds) for which to wait. If the thread doesn’t finish
within that time, join returns nil. Here’s an example where each thread is given only
one second to execute:

threads.each do |thread|
puts "Thread #{thread.object id} didn't finish in 1s" unless thread.join(1)
end

Getting a List of All Threads

It’s possible to get a global list of all threads running within your program using Thread.
list. In fact, if you didn’t want to keep your own store of threads, you could rewrite the
earlier example from the section “Basic Ruby Threads in Action” down to these two

lines:

10.times { Thread.new { 10.times { |i| print i; $stdout.flush; sleep
rand(2) } } } Thread.list.each { |thread| thread.join unless thread ==
Thread.main }

However, keeping your own list of threads is essential if you're likely to have more
than one group of threads working within an application and you want to keep them
separate from one another when it comes to using join or other features.

The list of threads also includes the main thread representing the main program’s
thread of execution, which is why we explicitly do not join it in the prior code.

Thread Operations from Within Threads Themselves

Threads aren’t just tiny, dumb fragments of code. They have the ability to talk with the
Ruby thread scheduler and provide updates on their status. For example, a thread can
stop itself:

334

CHAPTER 11 ADVANCED RUBY FEATURES

Thread.new do
10.times do |i|
print i
$stdout.flush
Thread.stop
end
end

Every time the thread created in this example prints a number to the screen, it stops
itself. It can then only be restarted or resumed by the parent program calling the run
method on the thread, like so:

Thread.list.each { |thread| thread.run }

A thread can also tell the Ruby thread scheduler that it wants to pass execution over
to another thread. The technique of voluntarily ceding control to another thread is often
known as cooperative multitasking, because the thread or process itself is saying that
it’s okay to pass execution on to another thread or process. Used properly, cooperative
multitasking can make threading even more efficient, as you can code in pass requests at
ideal locations. Here’s an example showing how to cede control from a thread:

2.times { Thread.new { 10.times { |i| print i; $stdout.flush; Thread.pass }
} } Thread.list.each { |thread| thread.join unless thread == Thread.main }

00112233445566778899

In this example, execution flip-flops between the two threads, causing the pattern
shown in the results.

Fibers

Fibers offer an alternative to threads in Ruby 1.9 and beyond. In Ruby 3, Fiber was
rewritten, so it no longer blocks on 10 operations and supports non-blocking fibers.
Fibers are lightweight units of execution that control their own scheduling (often referred
to as cooperative scheduling). Whereas threads will typically run continually, fibers hand
over control once they have performed certain tasks. Unlike regular methods, however,
once a fiber hands over control, it continues to exist and can be resumed at will.

335

CHAPTER 11 ADVANCED RUBY FEATURES

In short, fibers are pragmatically similar to threads, but fibers aren’t scheduled to all
run together. You have to manually control the scheduling.

A Fiber in Action

Nothing will demonstrate fibers as succinctly as a demonstration, so let’s look at a very

simple implementation to generate a sequence of square numbers:

sg = Fiber.new do
s =0
loop do
square = s * s
Fiber.yield square
S +=1
end
end

10.times { puts sg.resume }

16
25
36
49
64

81

336

CHAPTER 11 ADVANCED RUBY FEATURES

In this example, we create a fiber using a block, much in the same style as we created
threads earlier. The difference, however, is that the fiber will run solely on its own until
the Fiber.yield method is used to yield control back to whatever last told the fiber to
run (which, in this case, is the sg.resume method call). Alternatively, if the fiber “ends,’
the value of the last executed expression is returned.

In this example, it's worth noting that you don’t have to use the fiber forever,
although since the fiber contains an infinite loop, it would certainly be possible to do
so. Even though the fiber contains an infinite loop, however, the fiber is not continually
running, so it results in no performance issues.

If you do develop a fiber that has a natural ending point, calling its resume method
once it has concluded will result in an exception (which, of course, you can catch—refer
to Chapter 8’s “Handling Exceptions” section) that states you are trying to resume a dead
fiber.

Passing Data to a Fiber

It is possible to pass data back into a fiber when you resume its execution as well as
receive data from it. For example, let’s tweak the square number generator fiber to
support receiving back an optional new base from which to provide square numbers:

sg = Fiber.new do

s =0
loop do
square = s * s
S +=1
s = Fiber.yield(square) || s
end
end

puts sg.resume
puts sg.resume
puts sg.resume
puts sg.resume
puts sg.resume 40
puts sg.resume
puts sg.resume

337

CHAPTER 11 ADVANCED RUBY FEATURES

puts sg.resume O
puts sg.resume
puts sg.resume

1600
1681

1764

In this case, we start out by getting back square numbers one at a time as before. On
the fifth attempt, however, we pass back the number 40, which is then assigned to the
fiber’s s variable and used to generate square numbers. After a couple of iterations, we
then reset the counter to 0. The number is received by the fiber as the result of calling
Fiber.yield.

It is not possible to send data into the fiber in this way with the first resume, however,
since the first resume call does not follow on from the fiber yielding or concluding in any
way. In that case, any data you passed is passed into the fiber block, much as if it were a
method.

Non-blocking Fiber

Ruby 3 introduces the ability to create non-blocking fibers. Creating a non-blocking
fiber is simple: specify the parameter blocking: false in the constructor. This option
prevents blocking on blocking operations such as I/0, sleep, and so on:

338

CHAPTER 11 ADVANCED RUBY FEATURES

non_blocking = Fiber.new(blocking: false) do
puts "Blocking Fiber? #{Fiber.current.blocking?}"

Will not block
sleep 2
end

3.times { puts non_blocking.resume }

Blocking Fiber? false
Blocking Fiber? false

Blocking Fiber? false

When used correctly, non-blocking fibers will increase performance since multiple
operations are performed at once. Since non-blocking fibers are opt-in, Ruby 3 will not
break existing code. By default, all I/O operations in fiber are non-blocking with Ruby 3.

Why Fibers?

A motivation to use fibers over threads in some situations is efficiency. Creating hundreds
of fibers is a lot faster than creating the equivalent threads, since threads are created at the
operating system level. There are also significant memory efficiency benefits.

One of the greatest benefits of fibers is in implementing lightweight I/O management
routines within other libraries, so even if you don’t use fibers directly, you might still end
up benefiting from their use elsewhere.

Unicode, Character Encodings, and UTF-8 Support

Unicode is the industry standard way of representing characters from every writing
system (character set) in the world. It’s the only viable way to be able to manage multiple
different alphabets and character sets in a reasonably standard context.

One of Ruby 1.8’s most cited flaws was in the way it dealt with character encodings—
namely, hardly at all. There were some workarounds, but they were hackish. Ruby 1.8
treated strings as simple collections of bytes rather than true characters, which is just
fine if you're using a standard English character set, but if you wanted to work with, say,
Arabic or Japanese, you have problems!

339

CHAPTER 11 ADVANCED RUBY FEATURES

Ruby 1.9 and beyond, on the other hand, support Unicode, alternative character sets,
and encodings out of the box. In this chapter, we’ll focus on the direct support in Ruby
1.9 and up.

Note For a full rundown of Unicode and how it works and relates to software
development, read www. joelonsoftware.com/articles/Unicode.html.
The official Unicode site, at http://unicode.org/, also has specifications and
further details.

Ruby 1.9 and Beyond’s Character Encoding Support

Unlike with Ruby 1.8, no hacks or workarounds are necessary to work with multiple
character sets and encodings in Ruby 1.9 and above. Ruby 1.9 supports a large number of
encodings out of the box (over 100 at the time of writing), and the interface is seamless.
You not only get character encoding support for strings within your programs, but for
your source code itself too.

Note Encoding.list returns an array of Encoding objects that represent the
different character encodings that your Ruby interpreter supports.

Strings

Strings have encoding support out of the box. To determine the current encoding for a

string, you can call its encoding method:

"this is a test".encoding
=> #<Encoding:US-ASCII>

By default, a regular ASCII string will be encoded using the US-ASCII, UTF-8, or
CP850 encodings, depending on how your system is set up, but if you get a bit more
elaborate, then UTF-8 (a character encoding that can be used to represent any Unicode

character) will typically be used:

340

http://www.joelonsoftware.com/articles/Unicode.html
http://unicode.org/

CHAPTER 11 ADVANCED RUBY FEATURES

"ca va?".encoding
=> #<Encoding:UTF-8>

To convert a string into a different encoding, use its encode method:
"ca va?".encode("IS0-8859-1")

Not every character encoding will support being able to represent every type of
character that exists in your text. For example, the cedilla character (¢) in the preceding
example cannot be represented in plain US-ASCILI. If we try to do a conversion to US-
ASCII, therefore, we get the necessary error:

"ca va?".encode("US-ASCII")
Encoding: :UndefinedConversionError: "\xC3\xA7" from UTF-8 to US-ASCII

I would personally suggest that, where possible, you try and use the UTF-8 encoding
exclusively in any apps that are likely to accept input from people typing in many
different languages. UTF-8 is an excellent “global” encoding that can represent any
character in the Unicode standard, so using it globally throughout your projects will
ensure that everything works as expected.

Tip Make sure to refer to Chapter 9 to see how to open files and read data that is
in different character encodings.

Source Code

As well as supporting character encodings out of the box for strings and files, Ruby 1.9
and beyond also allow you to use any of the supported character sets for your actual
source code files.

All you need to do is include a comment on the first or second line (in case you're
using a shebang line) that contains coding: [format name], for example:

coding: utf-8

The primary reason for doing this is so that you can use UTF-8 (or whichever
encoding you choose to specify) within literal strings defined with your source files
without running into snags with String#length, regular expressions, and the like.

341

CHAPTER 11 ADVANCED RUBY FEATURES

Another fun (but not endorsed by me!) option is to use alternate non-ASCII
characters in method names, variable names, and so forth. The danger of this, of course,
is that you reduce the usability of your code with developers who might prefer to use
other encodings.

Summary

In this chapter, we looked at an array of advanced Ruby topics, from dynamic code
execution to writing high-performance functions in the C programming language. This is
the last chapter that covers general Ruby-related knowledge that any intermediate Ruby
programmer should be familiar with. In Chapter 12, we’ll be taking a different approach
and will develop an entire Ruby application, much as we did in Chapter 4.

Let’s reflect on the main concepts covered in this chapter:

e Binding: A representation of a scope (execution) context as an object.

o Forking: When an instance of a program duplicates itself into two
processes, one as a parent and one as a child, both continuing
execution.

o Threads: Separate “strands” of execution that run concurrently with
each other. Ruby’s threads in 1.8 were implemented entirely by the
Ruby interpreter, but since Ruby 1.9 use system-based threads, and
are a commonly used tool in application development.

o Fibers: Lightweight cooperative alternatives to threads. They must
yield execution in order to be scheduled.

e Character encoding: This describes a system and code that pair
characters (whether they’'re Roman letters, Chinese symbols, Arabic
letters, etc.) to a set of numbers that a computer can use to represent
those characters.

e UTF-8 (Unicode Transformation Format-8): This is a character
encoding that can support any character in the Unicode standard. It
supports variable-length characters, and is designed to support ASCII
coding natively, while also providing the ability to use up to four
bytes to represent characters from other character sets.

Now you can move on to Chapter 12, where you'll develop an entire Ruby application
using much of the knowledge obtained in this book so far.

342

CHAPTER 12

Tying It Together:
Developing a Larger Ruby
Application

In this chapter, we're going to step back from focusing on individual facets of Ruby and
develop an entire program using much of the knowledge you’ve gained so far. We’ll focus
on the structural concerns of developing a program and look at how a flexible structure
can benefit you and other developers in the long run.

The important thing to remember while working through this chapter is that the
program itself is not as important as the concepts used while developing it. We'll
be rapidly (and relatively shallowly) covering a number of areas relevant to most
development you'll do, such as testing and basic refactoring.

Let’s Build a Bot

Before we get to any code, we're going to look at what we’re going to build, why we're
going to build it, and how we’re going to do it.

What Is a Bot?

In this chapter, we're going to build a robot. Not a sci-fi type of robot, such as that in Lost
in Space, but a computer program that can hold a conversation with us. These types

of programs are commonly known as bots or chatterbots. Bots are present in a lot of
different software and tools these days. You can ask them for gift ideas and movie times.
In short, it’s a little like talking to a customer service agent, except the agent is entirely
automated.

343
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_12

https://doi.org/10.1007/978-1-4842-6324-2_12#DOI

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

You might be familiar with bots on your own computer. Microsoft Office used to
come with the “Clippy” bot turned on by default, and many websites have automated
chatbots in an attempt to cut down on support costs and, supposedly, to improve
usability.

The history of bots goes back to the 1960s, when a computer scientist at MIT named
Joseph Weizenbaum developed a bot called ELIZA. It eventually became so popular that
most computer users throughout the 1980s and 1990s were exposed to it in one form or
another through the many “talk to your computer”-type programs that became popular.

The conversations you can have with ELIZA-type bots aren’t mind blowing, but
can prove entertaining, as shown in Figure 12-1. The general mechanism ELIZA bots
use is to take whatever you say and twist it around into a statement or question to you.
For example, if you were to say “I am bored,” ELIZA might respond, “How long have
you been bored?” or “Why are you bored?” This form of bouncing back the user’s input
seems crude when described in this way, but people are often fooled into believing
they're talking to something more intelligent simply because of its reflective nature (this
is known as the ELIZA effect).

Eliza: Hi. I'm Eliza. Tell me your problems!

You :ldon't have any problems!

Eliza: We have to find the reason why you don't have any problems!
You : How can there be a reason for that?

Eliza: Why do you ask?

You : Itwas a rhetorical question.

Eliza: Perhaps you would like to talk about a problem?

You : Okay, let's talk about my book.

Eliza: What does this mean for you, saying " Okay, let's talk about your book *?
You : Huh?

Eliza: | understand!

You : I'm glad about that.

Eliza: How long are you glad about that?

You : Five seconds?

Eliza: I'm not sure wether | understand you!

You : And you sure can't spell.

Eliza: Come on! Explain your thinkings!

Figure 12-1. A demonstration of a session with an online ELIZA bot

344

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Our bot won’t be exactly like ELIZA—that is, it won’t be an ELIZA clone—but will
share some of the same features and use some similar techniques. We’ll also look at how
to extend our bot with other features.

Note If you want to learn about or play with some Internet-hosted versions of
ELIZA, visit https://en.wikipedia.org/wiki/ELIZA.

Why a Bot?

The good thing about developing a bot is that it can be as simple or as complex as you
like. Toward the end of this chapter, we'll be looking at ways you can extend the bot, but
the initial construction is quite simple.

You'll be using most of the techniques covered so far in this book to build your bot.
You'll be doing a bit of testing and documentation, as well as using classes and complex
data structures. You'll also be using files to store information the bot uses, and looking
at how to make your bot available to the general public using HTTP servers and CGI
scripts. This project also demands you use a lot of string and list-related functions, along
with comparison logic. These are all things you're likely to use in a larger development
project, and as Ruby is a particularly good language for text processing, this project is
perfect for demonstrating Ruby’s strengths.

A bot also allows you to have some fun and experiment. Working on a contact
information management tool (for example) isn’t that much fun, even though such
a system would use similar techniques to your bot. You can still implement testing,
documentation, classes, and storage systems, but end up with a fun result that can be
extended and improved indefinitely.

How?

The primary focus of this chapter is to keep each fragment of functionality in your bot
loosely coupled to the others. This is an important decision when developing certain
types of applications if you plan to extend them in the future. The plan for this bot is
to make it as easy to extend, or change, as possible, allowing you to customize it, add
features, and make it your own.

345

https://en.wikipedia.org/wiki/ELIZA

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

In terms of the general operation of the chatterbot, your bot will exist within a class,
allowing you to replicate bots easily by creating new instances. When you create a bot, it
will be “blank,” except for the logic contained within the class, and you’ll pass in a special
data file to give it a set of knowledge and a set of responses it can use when conversing
with users. User input will be via the keyboard, but the input mechanism will be kept
flexible enough so that the bot could easily be used from a website or elsewhere.

Your bot will only have a few public methods to begin with. It needs to be able to
load its data file into memory and accept input given by the user and then return its
responses. Behind the scenes, the bot will need to parse what the users “say” and be able
to build up a coherent reply. Therefore, the first step is to begin processing language and

recognizing words.

Creating a Simple Text Processing Library

Several stages are required to accept input such as “I am bored” and turn it into a
response such as “Why are you bored?” The first is to perform some preprocessing—tasks
that make the text easier to parse—such as cleaning up the text, expanding terms such
as “I'm” into “I am,” “you’re” into “you are,” and so forth. Next, you'll split up the input
into sentences and words, choose the best sentence to respond to, and finally look up
responses from your data files that match the input.

Some of these language tasks are generic enough that they could be useful in
other applications, so you'll develop a basic library for them. This will make your bot
code simpler and give you a library to use in other applications if you need. Logic and
methods that are specific to bots can go in the bot’s source code, and generic methods
that perform operations on text can go into the library.

This section covers the development of a simple library, including testing and

documentation.

Building the WordPlay Library

You're going to call your text manipulation and processing library WordPlay, so create a
file called wordplay.rb with a basic class:

class WordPlay
end

346

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Now that you've got the library’s main file set up, you'll move on to implementing
some of the text manipulation and processing features you know your bot will require,
but are reasonably application agnostic. (I covered the construction of classes in depth
in Chapter 6.)

Splitting Text into Sentences

Your bot, like most others, is only interested in single-sentence inputs. Therefore, it’s
important to accept only the first sentence of each line of input. However, rather than
specifically tear out the first sentence, you'll split the input into sentences and then
choose the first one. The reason for this approach is to have a generic sentence-splitting
method, rather than to create a unique solution for each case.

You'll create a sentences method on Ruby’s String class to keep the resulting
code clean. You could create a class method within the WordPlay class and use it like
WordPlay.sentences(our_input), butit wouldn’t feel as intuitive and as object-oriented
asour_input.sentences, where sentences is a method of the String class

class String
def sentences
gsub(/\n|\x/, " ").split(/\.\s*/)
end
end

Note The preceding sentences method only splits text into sentences based on
a period followed by whitespace. A more accurate technique could involve dealing
with other punctuation (e.g., question marks and semicolons).

You can test it easily:

p %q{Hello. This is a test of
basic sentence splitting. It
even works over multiple lines.}.sentences

["Hello", "This is a test of basic sentence splitting"”, "It even works
over multiple lines"]

347

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Splitting Sentences into Words

You also need your library to be able to split sentences into words. As with the sentences
method, add a words method to the String class:

class String
def words
scan(/\w[\w\"\-]*/)
end
end

p "This is a test of words' capabilities".words

["This", "is", "a", "test", "of", "words'", "capabilities"]

You can test words in conjunction with sentences:

p %q{Hello. This is a test of
basic sentence splitting. It
even works over multiple lines}.sentences[1].words[3]

test

This test picks out the second sentence with sentences[1] and then the fourth word
with words[3]—remember, arrays are zero-based. (The splitting techniques covered in
this section were also explained in Chapter 3.)

Word Matching

You can use the new methods, along with existing array methods, to extract sentences
that match certain words, as in this example:

hot words = %w{test ruby great}
my string = "This is a test. Dull sentence here. Ruby is great. So is
cake."

t = my string.sentences.find all do |s]|
s.downcase.words.any? { |word| hot words.include?(word) }
end

348

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

p t.to a
["This is a test", "Ruby is great"]

In this example, you define three “hot” words that you want to find within sentences,
and you look through the sentences in my string for any that contain either of your hot
words. The way you do this is by seeing if, for any of the words in the sentence, it’s true
that the hot_words array also contains that word.

Experienced readers will wonder if regular expressions could be used in this
situation. They could, but the focus here is on clean list logic that’s easy to extend and
adjust. You also get the benefit, if you wish, to use the difference in lengths between the
word array, and the word array with hot words removed, to rank sentences in the order
of which match the most hot words. This could be useful if you decided to tweak your
bot (or any other software using WordPlay) to pick out and process the most important
sentence, rather than just the first one, for example:

class WordPlay
def self.best sentence(sentences, desired words)
ranked sentences = sentences.sort by do |s|
s.words.length - (s.downcase.words - desired words).length
end

ranked_sentences.last
end
end

puts WordPlay.best sentence(my string.sentences, hot words)
Ruby is great

This class method accepts an array of sentences and an array of “desired words” as
arguments. Next, it sorts the sentences by how many words difference each sentence has
from the desired words list. If the difference is high, then there must be many desired
words in that sentence. At the end of best_sentence, the sentence with the biggest
number of matching words is returned.

349

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Switching Subject and Object Pronouns

)]

Switching pronouns is when you swap “you” and “I,
and “your” and “my.” This simple change makes sentences easy to use as a response.
Consider what happens if you simply reflect back whatever the user says by switching
the pronouns in his or her input. Some examples are shown in Table 12-1.

” «

” «In and uyou’ myn and “youl',"

Table 12-1. Inputs Coupled with Potential Responses

Input Response

My cat is sick. Your cat is sick.

| hate my car. You hate your car.
You are an awful bot. | are an awful bot.

These aren’t elaborate conversations, but the first two responses are valid English
and are the sort of thing your bot can use. The third response highlights that you also
need to pay attention to conjugating “am” to “are” and vice versa when using “I” and

You'll add the basic pronoun-switching feature as a class method on the WordPlay
class. As this feature won’t be chained with other methods and doesn’t need to be
particularly concise, you can put it into the WordPlay class rather than continue to add

more methods to the String class:

def self.switch pronouns(text)
text.gsub(/\b(I am|You are|I|You|Your|My)\b/i) do |pronoun
case pronoun.downcase

when "i"
Ilyou"
when "you"
IIIII
when "i am"
"you are"
when "you are"
lli amll
when "your"

350

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

my
when "my"
llyoUI_"
end
end

This method accepts any text supplied as a string and performs a substitution on

” « n uyn u ” «

each instance of “I am,” “you are,” “I,” “you,” “your,” or “my.” Next, a case construction
is used to substitute each pronoun with its opposing pronoun. (You first used the case/
when syntax in Chapter 3, where you can also find a deeper explanation of how it works.)
The reason for performing a substitution in this way is so that you only change each
pronoun once. If you'd used four gsubs to change all “I's” to “you’s,” “you’s” to “I's,” and
so on, changes made by the previous gsub would be overwritten by the next. Therefore,
it’s important to use one gsub that scans through the input pronoun by pronoun rather
than making several blanket substitutions in succession.

If you use irb and require in the WordPlay library, you can quickly check the results:

WordPlay.switch_pronouns("Your cat is fighting with my cat")
my cat is fighting with your cat

WordPlay.switch pronouns("You are my robot")

i am your robot

It’s easy to find an exception to these results, though:

WordPlay.switch pronouns("I gave you life")
you gave I life
When the “you” or “I” is the object of the sentence, rather than the subject, “you”

becomes “me” and “me” becomes “you,” whereas “I” becomes “you” and “you” becomes

“I” on the subject of the sentence.

351

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Without descending into complex processing of sentences to establish which
reference is the subject and which reference is the object, we’ll assume that every
reference to “you” that’s not at the start of a sentence is an object and should become
“me” and that if “you” is at the beginning of a sentence, you should assume it’s the
subject and use “I” instead. This new rule makes your method change slightly:

def self.switch pronouns(text)
text.gsub(/\b(I am|You are|I|You|Me|Your|My)\b/i) do |pronoun]|
case pronoun.downcase

when "i

when "you"
"ne"

when "me"

when "i am"
"you are"

when "you are'
n

iam"
when "your"

when "my"
"your"
end
end.sub(/*me\b/i, 'i')
end

What you do in this case seems odd on the surface. You let switch_pronouns process
the pronouns and then correct it when it changes “you” to “me” at the start of a sentence
by changing the “me” to “I” This is done with the chained sub at the end.

Let’s try it out:

WordPlay.switch_pronouns('Your cat is fighting with my cat')

my cat is fighting with your cat

352

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

WordPlay.switch pronouns('My cat is fighting with you')
your cat is fighting with me
WordPlay.switch_pronouns('You are my robot")
i am your robot
WordPlay.switch _pronouns('I gave you hope")
you gave me hope
WordPlay.switch _pronouns('You gave me hope')
i gave you hope
Success!

If you were so cruelly inclined, you could create an extremely annoying bot with this
method alone. Consider this basic example:

while input = gets
puts '>> ' + WordPlay.switch_pronouns(input).chomp + '?'
end

I am ready to talk

>> you are ready to talk?
yes

>> yes?

You are a dumb computer
>> 1 am a dumb computer?

We clearly have some work to do!

353

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Testing the Library

When building a larger application or libraries upon which other applications will
depend, it’s important to make sure everything is fully tested. In Chapter 8, we looked
at using Ruby’s unit testing features for simple testing. You can use the same methods
here to test WordPlay. Make sure the Minitest gem is installed. If you need help, review
Chapter 8.

You'll use the same process as in Chapter 8. Create a file called test_wordplay.rbin
the same directory as wordplay.rb and implement the following basic structure:

require 'minitest/autorun’
require_relative 'wordplay'

class TestWordPlay < Minitest::Test
end

Now let’s write some tests.

Testing Sentence Separation

To add groups of test assertions to test_wordplay.rb, you can simply create methods
with names starting with test_. Creating a simple test method for testing sentence
separations is easy:

def test sentences

assert_equal(["a", "b", "c d", "e f g"], "a. b. c d. e f g.".sentences)

test text = %q{Hello. This is a test
of sentence separation. This is the end
of the test.}

assert_equal("This is the end of the test", test text.sentences[2])
end

The first assertion tests that the dummy sentence "a. b. c d. e f g."is
successfully separated into the constituent “sentences.” The second assertion uses
alonger predefined text string and makes sure that the third sentence is correctly
identified.

354

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Note Ideally, you'd extend this basic set of assertions with several more to test
more complex cases, such as sentences ending with multiple periods, commas,
and other oddities. As these extra tests wouldn’t demonstrate any further Ruby
functionality, they’re not covered here, but feel free to try some out!

Testing Word Separation

Testing that the words method works properly is even easier than testing sentences:

def test words
assert _equal(%w{this is a test}, "this is a test".words)
assert_equal(%w{these are mostly words}, "these are, mostly, words".words)
end

These assertions are simple. You split sentences into words and compare them with
predefined arrays of those words. The assertions pass.

This highlights one reason why test-first development can be a good idea. It’s easy
to see how you could develop these tests first and then use their passing or failure as an
indicator that you've implemented words correctly. This is an advanced programming
concept, but one worth keeping in mind if writing tests in this way “clicks” with you.

Testing Best Sentence Choice

You also need to test your WordPlay.best sentence method, as your bot will use it to
choose the sentence with the most interesting keywords from the user’s input:

def test sentence choice
assert _equal('This is a great test’',
WordPlay.best sentence(['This is a test’,
'This is another test',
'This is a great test'],
%w{test great this}))

assert_equal('This is a great test’,
WordPlay.best sentence(['This is a great test'],
%w{still the best}))
end

355

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

This test method performs a simple assertion that the correct sentence is chosen
from three options. Three sentences are provided to WordPlay.best_sentence, along
with the desired keywords of “test,” “great,” and “this.” Therefore, the third sentence
should be the best match. The second assertion makes sure that WordPlay.best
sentence returns a sentence even if there are no matches, because in this case, any

sentence is a “best” match.

Testing Pronoun Switches

When you developed the switch_pronouns method, you used some vague grammatical
rules, so testing is essential to make sure they stand up for at least basic sentences:

def test basic_pronouns
assert equal("i am a robot", WordPlay.switch pronouns("you are a robot"))
assert_equal("you are a person"”, WordPlay.switch pronouns("i am a
person”))
assert equal("i love you", WordPlay.switch pronouns(“"you love me"))

end

” u ” «

These basic assertions prove that the “you are,” “I am,” “you,” and “me” phrases are
switched correctly.
You can also create a separate test method to perform some more complex

assertions:

def test mixed pronouns
assert_equal("you gave me life", WordPlay.switch pronouns("i gave you life"))
assert_equal("i am not what you are", WordPlay.switch pronouns("you are
not what i am"))
assert_equal("i annoy your dog", WordPlay.switch pronouns("you annoy my dog"))
end

These examples are more complex, but prove that switch _pronouns can handle a
few more complex situations with multiple pronouns.
You can construct tests that cause switch_pronouns to fail:

def test _complex pronouns
assert _equal("yes, i rule", WordPlay.switch pronouns("yes, you rule"))
assert_equal("why do i cry", WordPlay.switch_pronouns("why do you cry"))
end

356

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

These tests both fail because they circumvent the trick you used to make sure that
“you” is translated to “me” and “I” in the right situations. In these situations, they should
become “I,” but because “I” isn’t at the start of the sentence, they become “me” instead.
It’s important to notice that basic statements tend to work okay, whereas questions
or more elaborate statements can fail. However, for your bot’s purposes, the basic
substitutions suffice and you can remove these tests.

If you were to focus solely on producing an accurate language processor, you
could use tests such as these to guide your development, and you'll probably use this
technique when developing libraries to deal with edge cases such as these in your own
projects.

WordPlay’s Source Code

Your nascent WordPlay library is complete for now, and in a state that you can use its
features to make your bot’s source code simpler and easier to read. Next, I'll present the
source code for the library as is, as well as its associated unit test file. As an addition, the
code also includes comments prior to each class and method definition, so that you can
use RDoc to produce HTML documentation files, as covered in Chapter 8.

Note Remember that source code for this book is available in the Source Code
area at www.apress.com, So it isn’t necessary to type in code directly from the
book.

wordplay.rb
Here’s the code for the WordPlay library:

class String
def sentences
self.gsub(/\n|\x/, ' ").split(/\.\s*/)
end

def words
self.scan(/\w[\w\"\-]*/)
end
end

357

http://www.apress.com

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

class WordPlay
def self.switch pronouns(text)
text.gsub(/\b(I am|You are|I|You|Me|Your|My)\b/i) do |pronoun
case pronoun.downcase
when "i"

when "you"
e

when "me"

when "i am"
"you are"

when "you are"
"i am"

when "your"

my
when "my"
"your"
end
end.sub(/*me\b/i, 'i")
end
def self.best sentence(sentences, desired words)
ranked sentences = sentences.sort by do |s|
s.words.length - (s.downcase.words - desired words).length
end

ranked_sentences.last
end
end

test_wordplay.rb
Here’s the test suite associated with the WordPlay library:

require 'minitest/autorun’
require relative 'wordplay’

358

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Unit testing class for the WordPlay library
class TestWordPlay < Minitest::Test

Test that multiple sentence blocks are split up into individual
words correctly
def test_sentences

assert_equal(["a", "b", "c d", "e f g"], "a. b. c d. e f g.".sentences)

test text = %q{Hello. This is a test
of sentence separation. This is the end
of the test.}
assert equal("This is the end of the test", test text.sentences[2])
end
Test that sentences of words are split up into distinct words correctly
def test words
assert _equal(%w{this is a test}, "this is a test".words)
assert_equal(%w{these are mostly words}, "these are, mostly, words".words)
end
Test that the correct sentence is chosen, given the input
def test sentence choice
assert_equal('This is a great test’,
WordPlay.best sentence(['This is a test’',
'This is another test',
'This is a great test'],
%w{test great this}))
assert equal('This is a great test’,
WordPlay.best sentence(['This is a great test'],
fw{still the best}))
end

Test that basic pronouns are switched by switch pronouns
def test basic_pronouns
assert equal("i am a robot", WordPlay.switch pronouns("you are a robot"))
assert_equal("you are a person”, WordPlay.switch pronouns("i am a
person”))
assert_equal("i love you", WordPlay.switch pronouns("you love me"))
end

359

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Test more complex sentence switches using switch_pronouns
def test mixed pronouns
assert _equal("you gave me life",
WordPlay.switch _pronouns("i gave you life"))

assert_equal("i am not what you are",
WordPlay.switch pronouns("you are not what i am"))
end
end

Building the Bot’s Core

In the previous section, you put together the WordPlay library to provide some features
you knew that your bot would need, such as basic sentence and word separation. Now
you can get on with the task of fleshing out the logic of the bot itself.

You'll create the bot within a Bot class, allowing you to create multiple bot instances
and assign them different names and datasets, and work with them separately. This is
the cleanest structure, as it allows you to keep the bot’s logic separated from the logic of
interacting with the bot. For example, if your finished Bot class exists in bot.rb, writing
a Ruby program to allow a user to converse with the bot using the keyboard could be as
simple as this:

require relative 'bot’
bot = Bot.new(name: "Botty", data file: "botty.bot")

puts bot.greeting

while input = gets and input.chomp != 'goodbye'
puts ">> " + bot.response_to(input)

end

puts bot.farewell

You'll use this barebones client program as a yardstick while creating the Bot class.
In the previous example, you created a bot object and passed in some parameters,
which enables you to use the bot’s methods, along with keyboard input, to make the bot
converse with the user.

360

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

In certain situations, it’s useful to write an example of the higher-level, more
abstracted code that you expect ultimately to write, and then write the lower-level
code to satisfy it. This isn’t the same as test-first development, although the principle is
similar. You write the easiest, most abstract code first and then work your way down to
the details.

Next, let’s look at how you expect the bot to operate throughout a normal session and
then begin to develop the required features one by one.

The Program’s Lifecycle and Parts

So far we have focused on verbal descriptions of what we want to do. In Figure 12-2,
however, we take a more visual look at the more overall lifecycle of a bot, and the client
accessing it, that we’ll develop.

Your entire application will be composed of four parts:

1. The Bot class, within bot.rb, containing all the bot’s logic and any
subclasses.

2. The WordPlay library, within wordplay.rb, containing the
WordPlay class and extensions to String.

3. Basic “client” applications that create bots and allows users to
interact with them. You'll first create a basic keyboard-entry client,
but we'll look at some alternatives later in the chapter.

4. Ahelper program to generate the bot’s data files easily.

Figure 12-2 demonstrates the basic lifecycle of a sample client application and
its associated bot object. The client program creates a bot instance and then keeps
requesting user input passing it to the bot. Responses are printed to the screen, and the
loop continues until the user decides to quit.

361

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Client Program

Start

Create Bot

Bot Program

Object
Created

Load and process
data file

i Print b.Ot 5 ; Return greeting
greeting /

Accept input Print bot’s Find and construct
f— |
from user response phrase to return

Has user No
said = Send input to bot Process input
goodbye?
Yes
Print bot's
farewell End

Figure 12-2. A basic flowchart showing a sample lifecycle of the bot client and bot
object

You'll begin putting together the Bot class and then look at how the bot will find and
process its data.

Bot Data

One of your first concerns is where the bot will get its data. The bot’s data includes
information about word substitutions to perform during preprocessing, as well as
myriad keywords and phrases that the bot can use in its responses.

362

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

The Data Structure

You'll keep the bot’s data in a hash, somewhat like this:

bot data = {
:presubs => [
["dont", "don't"],
["youre", "you're"],
["love", "like"]

1,
:responses => {
:default => [
"I don't understand.",
"What?",
"Huh?"
1,
:greeting => ["Hi. I'm [name]. Want to chat?"],
:farewell => ["Good bye!"],
"hello’ => [
"How's it going?",
"How do you do?"
1,
'i like *' => [
"Why do you like *?",
"Wow! I like * too!"
]
}
}

The main hash has two parent elements, :presubs and :responses. The :presubs
element references an array of arrays that contain substitutions to be made to the
user’s input before the bot forms a response. In this instance, the bot will expand some
contractions and also change any reference of “love” to “like.” The reason for this
becomes clear when you look at : responses.

363

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Note The preceding data structure is intentionally lightly populated to save space
for discussion of the practicalities. By the end of this chapter, you’ll have a more
complete set of data to use with your bot. This style of data structure was also
covered in Chapter 3.

:responses references another hash: one that has elements with the names
:default, :greeting, : farewell, 'hello',and 'i like *'.This hash contains all the
different phrases the bot will use as responses, or templates used to create full phrases.
The array assigned to :default contains some phrases to use at random when the bot
cannot figure out what to say based on the input. Those associated with :greeting and
:farewell contain generic greeting and farewell phrases.

More interesting are the arrays associated with 'hello' and 'i like *'.These
phrases are used when the input matches the hash key for each array. For example, if a
user says “hello computer,” then a match with 'hello' is made, and a response is chosen
from the array at random. If a user says “i like computers,” then 'i like *' is matched
and the asterisk is used to substitute the remainder of the user’s input (after “i like”) into
the bot’s output phrase. This could result in output such as “Wow! I like computers too,”
if the second phrase were to be used.

Storing the Data Externally

Using a hash makes data access easy (rather than relying on, say, a database) and fast
when it comes to choosing sentences and performing matches. However, because your
bot class needs to be able to deal with multiple datasets, it’s necessary to store the hash
of data for each bot within a file that can be chosen when a bot is started.

In Chapter 9, you learned about the concept of object persistence, where Ruby data
structures can be “frozen” and stored. One library you used was called PStore, which
stores Ruby data structures in a non-human-readable binary format; and the other
was YAML, which is human-readable and represented as a specially formatted text file.
For this project, you'll use YAML, as you want to be able to make changes to the data
files on the fly, to change things your bot will say, and to test out new phrases without
constructing a whole new file each time.

It’s possible to create your data files by hand and then let the Bot class load them, but
to make life easier, you'll create a small program that can create the initial data file for
you, as you did in Chapter 9. An ideal name for it would be bot_data _to_yaml.rb:

364

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

require 'yaml'

bot data = {
:presubs => [
["dont", "don't"],
["youre", "you're"],
["1love", "like"]

])
:responses => {
:default = [
"I don't understand.",
"What?",
"Huh?"
B
:greeting => ["Hi. I'm [name]. Want to chat?"],
:farewell => ["Good bye!"],
"hello’ = [
"How's it going?",
"How do you do?"
1,
'i like *' = [
"Why do you like *?",
"Wow! I like * too!"
]
}
}

Show the user the YAML data for the bot structure
puts bot data.to yaml

Write the YAML data to file

f = File.open(ARGV.first || 'bot _data', "w")
f.puts bot data.to_yaml

f.close

365

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

This short program lets you define the bot data in the bot_data hash and then shows
the YAML representation on the screen before writing it to file. The filename is specified
on the command line, or defaults to bot_data if none is supplied:

ruby bot data to yaml.rb

:presubs:
- - dont

- don't
youre

- you're

- - love
- like

:responses:
i like *:
- Why do you like *?
- Wow! I like * too!
:default:
- I don't understand.
- What?
- Huh?
hello:
- How's it going?
- How do you do?
:greeting:
- Hi. I'm [name]. Want to chat?
:farewell:
- Good bye!

Note that as the YAML data is plain text, you can edit it directly in the file or just
tweak the bot_data structure and re-run bot_data_to_yaml.rb. From here on out,
let’s assume you've run this and generated the preceding YAML file as bot_data in the
current directory.

Now that you have a basic data file, you need to construct the Bot class and get its
initialize method to use it.

366

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Constructing the Bot Class and Data Loader

Let’s create bot.rb and the start of the Bot class:

require 'yaml'
require_relative 'wordplay'

class Bot
attr reader :name

def initialize(options)

@name = options[:name] || "Unnamed Bot"
begin
@data = YAML.load(File.read(options[:data file]))
rescue
raise "Can't load bot data"
end
end

end

The initialize method sets up each newly created object and uses the options
hash to populate two class variables, @name and @data. External access to @name is
provided courtesy of attr_reader. File.open, along with the read method, opens the
data file and reads in the full contents to be processed by the YAML library. YAML. load
converts the YAML data into the original hash data structure and assigns it to the @data
class variable. If the data file opening or YAML processing fails, an exception is raised, as
the bot cannot function without data.

Now you can create the greeting and farewell methods that display a random
greeting and farewell message from the bot’s dataset. These methods are used when
people first start to use the bot or just before the bot client exits:

def greeting
@data[:responses][:greeting][rand(@data[:responses][:greeting].length)]
end

def farewell
@data[:responses][:farewell][rand(@data[:responses][:farewell].length)]
end

367

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Ouch! This isn’t nice at all. You have access to the greetings (and farewells) via
@data[:responses], but selecting a single random phrase gets ugly fast. This looks like
an excellent opportunity to create a private method that retrieves a random phrase
from a selected response group:

private

def random response(key)

random_index = rand(@data[:responses][key].length)

@data[:responses][key][random _index].gsub(/\[name\]/, @name)
end

This method simplifies the routine of taking a random phrase from a particular
phrase set in @data. The second line of random_response performs a substitution so
that any responses that contain [name] have [name] substituted for the bot’s name. For
example, one of the demo greeting phrases is “Hi. I'm [name]. Want to chat?” However,
if you created the bot object and specified a name of “Fred,” the output would appear as
“Hi. I'm Fred. Want to chat?”

Note Remember that a private method is a method that cannot be called from
outside the class itself. As random_response is only needed internally to the
class, it’s a perfect candidate to be a private method.

Let’s update greeting and farewell to use random_response:

def greeting
random_response :greeting
end

def farewell
random_response :farewell
end

Isn’t separating common functionality into distinct methods great? These methods
now look a lot simpler and make immediate sense compared to the jumble they
contained previously.

368

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Note

This technique is also useful in situations where you have “ugly” or

complex-looking code and you simply want to hide it inside a single method you
can call from anywhere. Keep complex code in the background and make the rest
of the code look as simple as possible.

The response_to Method

The core of the Bot class is the response_to method. It’s used to pass user input to the

bot and get the bot’s response in return. However, the method itself should be simple

and have one line per required operation to call private methods that perform each step.

response_to must perform several actions:

1.

2.

7.

Accept the user’s input.

Perform preprocessing substitutions, as described in the bot’s
data file.

Split the input into sentences and choose the most keyword-rich

sentence.
Search for matches against the response phrase set keys.
Perform pronoun switching against the user input.

Pick a random phrase that matches (or a default phrase if there are
no matches) and perform any substitutions of the user input into
the result.

Return the completed output phrase.

Let’s look at each action in turn.

Accepting Input and Performing Substitutions

First, you accept the input as a basic argument to the response_to method:

def response to(input)

end

369

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Then you move on to performing the preprocessing word and phrase substitutions
as dictated by the :presubs array in the bot data file. You'll recall the :presubs array is
an array of arrays that specifies words and phrases that should be changed to another
word or phrase. The reason for this is so that you can deal with multiple terms with a
single phrase. For example, if you substitute all instances of “yeah” for “yes,” a relevant
phrase will be shown whether the user says “yeah” or “yes,” even though the phrase is
only matching on “yes.”

Asyou're focusing on keeping response_to simple, you'll use a single method call:

def response to(input)
prepared input = preprocess(input).downcase
end

Now you can implement preprocess as a private method:
private

def preprocess(input)
perform substitutions input
end

Then you can implement the substitution method itself:

def perform substitutions(input)
@data[:presubs].each { |s| input.gsub!(s[0], s[1]) }
input

end

This code loops through each substitution defined in the : presubs array and uses
gsub! on the input.

At this point, it's worth wondering why you have a string of methods just to get to the
perform substitutions method. Why not just call it directly from response_to?

The rationale in this case is that you're trying to keep logic separated from other
logic within this program as much as possible. This is how larger applications work, as
it allows you to extend them more easily. For example, if you wanted to perform more
preprocessing tasks in the future, you could simply create methods for them and call them
from preprocess without having to make any changes to response_to. Although this looks
inefficient, it actually results in code that’s easy to extend and read in the long run. A little
verbosity is the price for a lot of flexibility. You'll see a lot of similar techniques used in
other Ruby programs, which is why it's demonstrated so forcefully here.

370

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Choosing the Best Sentence

After you have the preprocessed input at your disposal, it’s time to split it up into
sentences and choose the best one. You can add another line to response_to:

def response_to(input)
prepared_input = preprocess(input.downcase)
sentence = best sentence(prepared input)
end

Then you can implement best_sentence as a private method:

def best_sentence(input)
hot words = @data[:responses].keys.select do |k|
k.class == String && k =~ /"\w+$/
end

WordPlay.best sentence(input.sentences, hot words)
end

First, best_sentence collects an array of single words from the keys in the
:responses hash. It looks for all keys that are strings (you don’t want the :default,
:greeting, or : farewell symbols getting mixed in) and only a single word. You then use
this list with the WordPlay.best sentence method you developed earlier in this chapter
to choose the sentence from the user input that matches the most “hot” words (if any).

You could rewrite this method in any style you wish. If you only ever wanted to
choose the first sentence in the user input, that’s easy to do:

def best sentence(input)
input.sentences.first
end

Or how about the longest sentence?

def best sentence(input)
input.sentences.sort by { |s| s.length }.last
end

Again, by having the tiny piece of logic of choosing the best sentence in a separate
method, you can change the way the program works without meddling with larger
methods.

371

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Looking for Matching Phrases

Now you have the sentence you want to parse and the substitutions have been
performed. The next step is to find the phrases that are suitable as responses to the
chosen sentence and to pick one at random.

Let’s extend response_to again:

def response to(input)
prepared_input = preprocess(input.downcase)
sentence = best sentence(prepared input)
responses = possible responses(sentence)
end

and implement possible responses

def possible responses(sentence)
responses = []

Find all patterns to try to match against
@data[:responses].keys.each do |pattern|
next unless pattern.is_a?(String)

For each pattern, see if the supplied sentence contains
a match. Remove substitution symbols (*) before checking.
Push all responses to the responses array.
if sentence.match('\b' + pattern.gsub(/*/, "") + "\b")
responses << @data[:responses][pattern]
end
end

If there were no matches, add the default ones
responses << @data[:responses][:default] if responses.empty?

Flatten the blocks of responses to a flat array
responses.flatten
end

possible responses accepts a single sentence and then uses the string keys within
the :responses hash to check for matches. Whenever the sentence has a match with
a key from :responses, the various suitable responses are pushed onto the responses
array. This array is flattened so that a single array is returned.

372

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

If no specifically matched responses are found, the default ones (found in
:responses with the :default key) are used.

Putting Together the Final Phrase

You now have all the pieces available in response_to to put together the final response.
Let’s choose a random phrase from responses to use:

def response_to(input)
prepared input = preprocess(input.downcase)
sentence = best sentence(prepared input)
responses = possible_responses(sentence)
responses[rand(responses.length)]

end

If you weren’t doing any substitutions against the pronoun-switched sentence, this
version of response_to would be the final one. However, your bot has the capability to
use some of the user’s input in its responses. A section of your dummy bot data looked
like this:

'i like *' => [
"Why do you like *?2",
"Wow! I like * too!"

This rule matches when the user says “I like.” The first possible response—“Why
do you like *?”—contains an asterisk symbol that you'll use to substitute in part of the
user’s sentence in conjunction with the pronoun-switching method you developed in
WordPlay earlier.

For example, a user might say, “I like to talk to you.” If the pronouns were switched,
you’d get “You like to talk to me.” If the segment following “You like” were substituted
into the first possible response, you'd end up with “Why do you like to talk to me?” This is
a great response that compels the user to continue typing and demonstrates the power of
the pronoun-switching technique.

Therefore, if the chosen response contains an asterisk (the character you're using
as a placeholder in response phrases), you'll need to substitute the relevant part of the
original sentence into the phrase and perform pronoun switching on that part.

373

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION
Here’s the new version of possible responses with the changes in bold:

def possible responses(sentence)
responses = []

Find all patterns to try to match against
@data[:responses].keys.each do |pattern|
next unless pattern.is a?(String)

For each pattern, see if the supplied sentence contains
a match. Remove substitution symbols (*) before checking.
Push all responses to the responses array.
if sentence.match('\b' + pattern.gsub(/*/, "") + "\b")
If the pattern contains substitution placeholders,
perform the substitutions
if pattern.include?('*")
responses << @data[:responses][pattern].collect do |phrase|
First, erase everything before the placeholder
leaving everything after it
matching_section = sentence.sub(/".*#{pattern}\s+/, '')

Then substitute the text after the placeholder, with
the pronouns switched
phrase.sub('*', WordPlay.switch_pronouns(matching_section))
end
else
No placeholders? Just add the phrases to the array
responses << @data[:responses][pattern]
end
end
end

If there were no matches, add the default ones
responses << @data[:responses][:default] if responses.empty?

Flatten the blocks of responses to a flat array
responses.flatten
end

374

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

This new version of possible responses checks to see if the pattern contains an
asterisk, and if so, extracts the correct part of the source sentence to use into matching_
section, switches the pronouns on that section, and then substitutes that into each
relevant phrase.

Playing with the Bot

You have the basic methods implemented in the Bot class, so let’s play with it asis before
looking at extending it any further. The first step is to prepare a better set of data for the
bot to use so that your conversations can be more engaging than those with the dummy
test data shown earlier in this chapter.

Fred: Your Bot’s Personality

In this section, you're going to tweak the bot_data_to_yaml.rb script you created earlier
to generate a YAML file for your first bot to use. Its name will be Fred, and you’ll generate
a bot data file called fred.bot. Here’s bot_data to_yaml.rb extended with a better set
of phrases and substitutions:

require 'yaml'

bot data = {
:presubs => [

["dont", "do not"],
["don't", "do not"],
["youre", "you're"],
["love", "like"],
["apologize", "are sorry"],
["dislike", "hate"],
["despise", "hate"],
["yeah", "yes"],
["mom", "family"]

]J
:responses => {
:default = [
"I don't understand.",
"What?",

375

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

376

"Huh?",
"Tell me about something else.”,
"I'm tired of this. Change the subject.”
])
:greeting = [
"Hi. I'm [name]. Want to chat?",
"What's on your mind today?",
"Hi. What would you like to talk about?"
]J
:farewell => ["Good bye!", "Au revoir!"],
"hello’ = [
"How's it going?",
"How do you do?",
"Enough of the pleasantries!"”
1,
"sorry’ => ["There's no need to apologize."],
"different' => [
"How is it different?",
"What has changed?"
])
"everyone *' => ["You think everyone *?"],
"do not know'=> ["Are you always so indecisive?"],
'yes' => [
"At least you're positive about something!",
"Great.”
])
'family' => ["Tell me about your family"],
'you are *' => [
"What makes you think I am *?",
"Are you so sure I am *?"
1,
'i am *' = [
"Is it normal for you to be *?",
"Do you like being *?"

1,

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

'i do not *' => ["Why don't you *?"],
'what' => ["Why do you ask?", "Why?", "I don't know. Do you?"],
"no’ > [

"Really?",

"Fair enough."

])
'why does *' => [

"I don't know why *",

"Do you already know the answer?"
])
'why can\'t i *' => [
'why can\'t you *' => ["Do you want me to *?"],
'hates *' => |

"Why do you think they hate *?"

Do you want to *?"],

1,
"hate *' = [
"Why don't you like *?",
"Why the dislike of *?"
])
'i like *' = [
"Why do you like *?",
"Wow! I like * too!"

]

Show the user the YAML data for the bot structure
puts bot_data.to_yaml

Write the YAML data to file

f = File.open(ARGV.first || 'bot data', "w")
f.puts bot data.to_yaml

f.close

If you run this with ruby bot_data_to_yaml.rb fred.bot, you'll end up with a bot

data file called fred.bot that contains the necessary data to converse with a basic bot.

377

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

The First Real Conversation

Here’s a basic program—we’ll refer to it as basic_client.rb—that can use the Bot class,
which reads input from the keyboard and prints the bot’s responses to the screen:

require_relative 'bot’
bot = Bot.new(name: 'Fred', data file: 'fred.bot")
puts bot.greeting

while input = gets and input.chomp != 'end’

puts '>>
end

+ bot.response_to(input)

puts bot.farewell

Note The full code for bot.rb is provided a little later in the chapter, so if you
run into problems, check it out in case the code you have implemented is missing
anything.

It’s almost the same as the script we thought of before implementing the Bot class.
You used the method names dictated by that program and made it fit. (The completed
source for the Bot class is provided in the next section if you want to refer to it.)

Without further ado, give it a try and see if you can have a conversation. Here’s a
demonstration run:

Hi. What would you like to talk about?

I don't know

>> Are you always so indecisive?

Yes, usually

>> Great.

I'm sorry!

>> There's no need to apologize.

So why can't you talk to me properly?

>> Do you want me to talk to you properly?
Yes

378

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

>> At least you're positive about something!
I don't know about that

>> Are you always so indecisive?

Woe is me, why can't I make decisions?

>> Do you want to make decisions?

Everyone does

>> You think everyone does?

The bot works! The conversation might be a little stilted and manipulated to use
some of the phrases and words covered by your dataset, but with this basic mechanism,
and a dataset extended even further, significantly more complex conversations would be
possible. Unfortunately, it’s outside the scope of this book to provide a large dataset.

In the next section, the final code for the basic bot is presented, and then you'll see
how you can extend the bot’s functionality further.

Main Bot Code Listing

This section makes available the full source code to the Bot class, bot.rb, including extra
documentation that RDoc can use. Also included is the source to a basic bot client that
you can use to converse with a bot on a one-on-one basis using the keyboard from the

command line.

Note You will also need the WordPlay class we wrote earlier.

As this code is commented, as opposed to the examples so far in this chapter, I
recommend you at least browse through the following code to get a feel for how the
entire program operates as a set of parts.

Note You can also find these listings available to download in the Source Code/
Download area of www.apress.com/.

bot.rb

Here’s the source code for the main Bot class:

379

http://www.apress.com/

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

require 'yaml'
require relative 'wordplay’

A basic implementation of a chatterbot
class Bot
attr _reader :name

Initializes the bot object, loads in the external YAML data
file and sets the bot's name. Raises an exception if

the data loading process fails.

def initialize(options)

@name = options[:name] || "Unnamed Bot"
begin

@data = YAML.load(File.open(options[:data file]).read)
rescue

raise "Can't load bot data"
end
end

Returns a random greeting as specified in the bot's data file
def greeting

random_response(:greeting)
end

Returns a random farewell message as specified in the bot's
data file
def farewell
random response(:farewell)
end

Responds to input text as given by a user

def response to(input)
prepared_input = preprocess(input.downcase)
sentence = best sentence(prepared input)
reversed sentence = WordPlay.switch pronouns(sentence)
responses = possible responses(sentence)
responses[rand(responses.length)]

end

380

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

private

Chooses a random response phrase from the :responses hash
and substitutes metadata into the phrase
def random response(key)
random_index = rand(@data[:responses][key].length)
@data[:responses][key][random index].gsub(/\[name\]/, @name)
end

Performs preprocessing tasks upon all input to the bot
def preprocess(input)

perform substitutions(input)
end

Substitutes words and phrases on supplied input as dictated by
the bot's :presubs data
def perform substitutions(input)
@data[:presubs].each { |s| input.gsub!(s[0], s[1]) }
input
end

Using the single word keys from :responses, we search for the
sentence that uses the most of them, as it's likely to be the
'best' sentence to parse
def best sentence(input)
hot_words = @data[:responses].keys.select do |k|
k.class == String && k =~ /"\w+$/
end

WordPlay.best sentence(input.sentences, hot words)
end

Using a supplied sentence, go through the bot's :responses
data set and collect together all phrases that could be
used as responses
def possible responses(sentence)
responses = []

381

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Find all patterns to try to match against
@data[:responses].keys.each do |pattern|
next unless pattern.is a?(String)

For each pattern, see if the supplied sentence contains
a match. Remove substitution symbols (*) before checking.
Push all responses to the responses array.
if sentence.match('\b' + pattern.gsub(/*/, '') + '\b")
If the pattern contains substitution placeholders,
perform the substitutions
if pattern.include?('*")
responses << @data[:responses][pattern].collect do |phrase]
First, erase everything before the placeholder
leaving everything after it
matching section = sentence.sub(/".*#{pattern}\s+/, '")

Then substitute the text after the placeholder, with
the pronouns switched
phrase.sub('*", WordPlay.switch_pronouns(matching section))
end
else
No placeholders? Just add the phrases to the array
responses << @data[:responses][pattern]
end
end
end

If there were no matches, add the default ones
responses << @data[:responses][:default] if responses.empty?

Flatten the blocks of responses to a flat array
responses.flatten
end

end

382

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

basic_client.rb

This basic client accepts input from the user via the keyboard and prints the bot’s
responses back to the screen. This is the simplest form of client possible:

require_relative 'bot’
bot = Bot.new(name: ARGV[0], data file: ARGV[1])
puts bot.greeting

while input = $stdin.gets and input.chomp != 'end’
puts '>> ' + bot.response_to(input)
end

puts bot.farewell
Use the client like so:

ruby basic_client.rb <bot name><data file>

Note You can find listings for basic web, bot-to-bot, and text file clients in the
next section of this chapter, “Extending the Bot.”

Extending the Bot

One significant benefit of keeping all your bot’s functionality well separated within its
own class and with multiple interoperating methods is that you can tweak and add
functionality easily. In this section, we’re going to look at some ways we can easily extend
the basic bot’s functionality to handle other input sources than just the keyboard.

When you began to create the core Bot class, you looked at a sample client
application that accepted input from the keyboard, passed it on to the bot, and printed
the response. This simple structure demonstrated how abstracting separate sections
of an application into loosely coupled classes makes applications easier to amend and
extend. You can use this loose coupling to create clients that work with other forms of
input.

383

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Note When designing larger applications, it’s useful to keep in mind the
usefulness of loosely coupling the different sections so that if the specifications or
requirements change over time, it doesn’t require a major rewrite of any code to
achieve the desired result.

Using Text Files As a Source of Conversation

You could create an entire one-sided conversation in a text file and pass it in to a bot to test
how different bots respond to the same conversation. Consider the following example:

require relative 'bot’

bot = Bot.new(name: ARGV[0], data file: ARGV[1])
user lines = File.readlines(ARGV[2])

puts "#{bot.name} says: " + bot.greeting
user_lines.each do |line|
+ line

puts "You say:
puts "#{bot.name} says:'
end

+ bot.response to(line)

This program accepts the bot’s name, data filename, and conversation filename as
command-line arguments, reads in the user-side conversation into an array, and loops
through the array, passing each line to the bot in turn.

Connecting the Bot to the Web

One common thing to do with many applications is tie them up to the Web so that
anyone can use them. This is a reasonably trivial process using the WEBrick library
covered in Chapter 10:

require 'webrick'
require relative 'bot’

384

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Class that responds to HTTP/Web requests and interacts with the bot
class BotServlet < WEBrick::HTTPServlet::AbstractServlet

A basic HTML template consisting of a basic page with a form
and text entry box for the user to converse with our bot. It uses
some placeholder text (%RESPONSE%) so the bot's responses can be
substituted in easily later.
@@html = %q{
<html><body>
<form method="get">
<h1>Talk To A Bot</h1>
%RESPONSE%
<p>
You say:<input type="text" name="line" size="40" />
<input type="submit" />
</p>
</form>
</body></html>

}

def do GET(request, response)
Mark the request as successful and set MIME type to support HTML
response.status = 200
response.content_type = "text/html"

If the user supplies some text, respond to it
if request.query['line'] &3 request.query['line'].length > 1
bot text = $bot.response to(request.query['line’].chomp)
else
bot_text = $bot.greeting
end

Format the text and substitute into the HTML template

bot text = %Q{<p>I say: #{bot text}</p>}

response.body = @@html.sub(/\%RESPONSE\%/, bot text)
end

385

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION
end

Create an HTTP server on port 1234 of the local machine

accessible via http://localhost:1234/ or http://127.0.0.1:1234/
server = WEBrick::HTTPServer.new(:Port => 1234)

$bot = Bot.new(name: "Fred", data file: "fred.bot")

server.mount "/", BotServlet

trap("INT"){ server.shutdown }

server.start

Upon running this script, you can talk to the bot using your web browser by visiting
http://127.0.0.1:1234/ or http://localhost:1234/. An example of what this should
look like is shown in Figure 12-3.

.3 0 6 Mozilla Firefox _ o |
¢) hup://127.0.0.1:1234 /| v i (|Gl Google Q
Talk To A Bot
You say: | Submit Query |
j Done (@ PageRank:unranked AlexaRank:n/a

Figure 12-3. Accessing the bot web client with a web browse

Alternatively, you could create a CGI script (called bot.cgi, or similar) that could be
used with any web hosting provider that provides Ruby as a supported language:

#!/usr/bin/env ruby

require relative 'bot’

require 'cgi

386

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

A basic HTML template creating a basic page with a forum and text
entry box for the user to converse with our bot. It uses some
placeholder text (%RESPONSE%) so the bot's responses can be
substituted in easily later
html = %q{
<html><body>
<form method="get">
<h1>Talk To A Bot</h1>
%RESPONSE%
<p>
You say:<input type="text" name="line" size="40" />
<input type="submit" />
</p>
</form>
</body></html>
}
Set up the CGI environment and make the parameters easy to access
cgi = CGI.new
params = cgi.params
line = params['line'] && params['line'].first

bot = Bot.new(name: "Fred", data file: "fred.bot")

If the user supplies some text, respond to it
if line && line.length > 1
bot text = bot.response to(line.chomp)
else
bot_text = bot.greeting
end

Format the text and substitute into the HTML template
as well as sending the MIME header for HTML support
bot_text = %Q{<p>I say: #{bot text}</p>}

puts "Content-type: text/html\n\n"

puts html.sub(/\%RESPONSE\%/, bot_text)

387

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Note You also need to make sure you upload the bot.rb, wordplay.rb, and
bot data file(s).

Bot-to-Bot Conversations

As well as letting users interact with the bot, you can let bots interact with each other!
Because it only takes a single method on the bot instance to elicit a response, you can
pipe responses back and forth between two bots with just a few lines of code:

require relative 'bot’

fred = Bot.new(name: 'Fred', data file: 'fred.bot')
chris = Bot.new(name: 'Chris', data file: 'fred.bot')

r = fred.greeting

10.times do
puts "#{fred.name} said: " + r
r = chris.response_to(r)
puts "#{chris.name} said: " + r
r = fred.response to(r)

end

This could result in the following conversation (it will vary due to the randomness of
some of the multiple responses available in the data files):

Fred said: Hi. What would you like to talk about?
Chris said: Why?

Fred said: What?

Chris said: I don't know. Do you?

Fred said: What?

Chris said: Why do you ask?

Fred said: I don't understand.

Chris said: Tell me about something else.

Fred said: Tell me about something else.

Chris said: Tell me about something else.

Fred said: I'm tired of this. Change the subject.

388

CHAPTER 12 TYING IT TOGETHER: DEVELOPING A LARGER RUBY APPLICATION

Chris said: What?

Fred said: Why?

Chris said: Tell me about something else.
Fred said: I don't understand.

Chris said: What?

Fred said: Why do you ask?

Chris said: What?

Fred said: Why?

Chris said: Huh?

It’s not the greatest conversation ever seen, but it’s certainly entertaining to see two
ersatz therapists getting along with each other. Of course, if you manage to develop two
bots that actually have an engrossing conversation, you'll be on the path to artificial
intelligence stardom!

The key problem with your bot’s data is that none of the default data contains any
keywords that can be picked up by other phrases, so both bots are locked in a loop of
throwing default phrases at each other. That’s why it’s important to extend the basic set
of data if you want to use the bot for anything that looks impressive!

Summary

In this chapter, we looked at developing a simple chatterbot, developed a library along
the way, produced tests for the library, worked with storing our bot’s vocabulary in an
external file, and looked at a number of ways to extend our project with databases or by
hooking it up to a website.

This chapter marks the end of the second part of this book, and you should now have
enough Ruby knowledge to pass as a solid, yet still learning, Ruby developer. You should
be able to understand the majority of Ruby documentation available online and be able
to use Ruby productively either professionally or for fun.

Part 3 of this book digs a little deeper into Ruby’s libraries and frameworks, from
Ruby on Rails and the Web to general networking and library use. Chapter 16, which
looks at a plethora of different Ruby libraries and how to use them, will be particularly
useful to refer to as you develop your own programs, so that you don’t reinvent the wheel
too often!

389

PART Il

Ruby Online

This part of the book looks primarily at Ruby’s Internet and networking abilities. The
knowledge covered in this part of the book is not essential for developing general

Ruby applications, but because the Internet and the Web are important in the scope of
modern software development, you're sure to find these chapters useful. This part of
the book concludes with a reference-style chapter that covers a choice selection of Ruby

libraries and the features they offer.

CHAPTER 13

Two Web Application
Approaches: Rails
and Sinatra

In this chapter, we're going to look at web application (or web app, for short)
frameworks—libraries of code that provide an easily reusable structure and design
patterns for developing web applications. If you want to develop something useful for
the Web, you'll probably find a web application framework very useful, and Ruby has a
wonderful selection of them, of which we’ll look at two: Rails and Sinatra.

Background

Ruby’s most famous web application framework is the Ruby on Rails, and the majority
of this chapter will be dedicated to it. We'll walk through developing a (very) basic Rails
application and getting it running with a database. After I've covered Rails, we’ll take a
more cursory look at Sinatra, another library that provides a lightweight approach that is
quick and easy to learn.

393
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_13

https://doi.org/10.1007/978-1-4842-6324-2_13#DOI

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

The Limitations and Benefits of Our Approach

It is very important to note at this stage that web application development is a significant
branch of development in general. This book is an introductory Ruby book, rather than
aweb application development book, so this chapter is focused on giving you a brief
walk-through of the concepts involved with Rails and Sinatra, and information on where
to go to learn more, rather than exhaustively showing you how to develop complete
applications from scratch. Apress has a selection of books specifically about Ruby on
Rails and web development available if you wish to learn more and progress further
down this line of development. Also, links to further resources and tutorials are provided
throughout this chapter.

As well as limitations of space, a key reason for not focusing too much on the
details in this chapter is that web application frameworks in particular have a history of
changing rapidly. Indeed, this chapter has had to be rewritten twice almost entirely since
the first edition of this book in 2006 because the techniques have become obsolete. To
prevent you running into too much obsolete code if you come to this book a year or two
after publication, we’ll focus on the higher-level concepts and look at quick examples
of how they relate to code. Then, when you decide to investigate web application
frameworks on your own, you'll be informed as to their basic operation, even if the
specific techniques have changed.

Pros and Cons of the Frameworks Covered

Rails and Sinatra are easily the two popular web application frameworks used by
Rubyists, and they each have distinct pros and cons:

Rails is a large, robust web application framework that has lots

of features baked in. Rails can be used to build applications that
are both large and small, but it tends to use more memory and
resources than the other frameworks. A typical Rails application
will be composed of many tens of files and have a tight structure
built of models, views, and controllers (these are explained later).
Rails is popular because it’s powerful, reasonably standardized,
and, admittedly, has the critical mass of community support to
keep its popularity growing.

394

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Sinatra is almost the direct opposite of Rails in terms of its
qualities. It’s fast, lightweight, and pragmatic, and an application
can be built within a single Ruby file. There’s a lack of any
enforced structure (though you could build your own), and fewer
features are available out of the box; you will often need to call
on other Ruby libraries to fill in the basics, like database support.
Despite this, Sinatra is popular due to its extreme simplicity and
its suitability for small, agile web applications and services.

Rails: Ruby’s Killer App

Due to Rails’ significance in making Ruby more popular and its popularity with Rubyists
generally, Rails is often called “Ruby’s killer app.” It’s the biggest attractor of new
developers to Ruby, and many popular Ruby-related projects online (including Twitter
and GitHub) tend to use Rails in some form or another.

Before you can begin to use Rails, it’s essential first to know what it is and why it’s
used, as well as how to get it running, as its installation process is more involved than
that of other Ruby libraries.

What Is Rails and Why Use It?

Ruby on Rails is an open source web application development framework. It makes the
development of web applications simple. For some of the nontechnical history behind
Rails, including the motivation for its development, refer to Chapter 5.

The goal of Rails (as with other web application frameworks) is to make it possible
to develop web applications in an easy, straightforward manner and with as few lines
of code as necessary. By default, Rails makes a lot of assumptions and has a default
configuration that works for most web applications. It’s easy to override most of
Rails’ default assumptions, but these defaults are in place to keep initial application
development simple. In Rails parlance, this is commonly called “convention over
configuration.” That is, there’s no need to work on lots of complex configuration files to
get going, since sensible defaults will be assumed.

Rails applications operate upon a model-view-controller (MVC) architectural pattern.
This means that they're primarily split into three sections: models, views, and controllers.
These components have the following roles:

395

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

396

Models: These are used to represent forms of data used by the
application and contain the logic to manipulate and retrieve that
data. In Rails, a model is represented as a class. You can think of
models as abstracted, idealized interfaces between controller code
and data. These forms of data are not low-level things like strings
or arrays, but domain-specific things like users, websites, videos,
animals, or classrooms (which could be represented by classes
named User, Website, Video, Animal, and Classroom, respectively).

Views: These are the templates (typically formed of a mixture of
HTML and Ruby code) that are used to build up the data that users
of the web application see in their browsers or through other clients.
Views can be rendered as HTML for web browsers, XML, RSS, or
other formats. While views can contain any combination of HTML
and Ruby code, typically only the minimal Ruby code necessary

to produce the view should be used, as the controller should be
handling most of the logic.

Controllers: Controllers provide the logic that binds together models
(and their associated data) and views. They process input, call
methods made available by models, and deliver data to the views. In
Rails, controllers contain methods known as actions that, generally,
represent each action relevant to that controller, such as “show,”
“hide,” “view,” “delete,” and so forth.

The basic relationship between these components is shown in Figure 13-1.

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

g
E
=2
@
y

Databass

Figure 13-1. The interactions between an application’s users, views, controllers,
and models

Note You can learn more about the MVC paradigm at https://
en.wikipedia.org/wiki/Model-view-controller.

The most common motivation to use Rails is that it removes a lot of the groundwork
necessary to develop web applications using other technologies. Features such as
database access, dynamic page elements (using Ajax—Asynchronous JavaScript and
XML), templating, and data validation are either preconfigured or take only a few lines of
code to configure.

397

https://en.wikipedia.org/wiki/Model-view-controller
https://en.wikipedia.org/wiki/Model-view-controller

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

support for unit testing (among other forms of testing), and Rails’ guiding principles are

Rails also encourages good development practices. All Rails applications come with

“don’t repeat yourself” (known as DRY) and “convention over configuration.”

Installing Rails

The Rails framework is made up of several different libraries, but it’s simple to install

because all the parts are distributed as gems. The following is a list of Rails’ main

constituent libraries as of version 6:

398

Rails: The core library of the Ruby on Rails framework that ties the
other libraries together.

Action Mailer: A library that makes it easy to send email from Rails
applications. A basic overview of ActionMailer, including how to use
it to send mail separately from Rails, is given in Chapter 14.

Action Pack: A framework for handling and responding to requests.
The framework includes components to perform routing, define
controllers, and render views.

Active Record: An object-relational mapper that ties database tables to
classes. If you have an ActiveRecord object that references a row in a
database table, you can work with that object as you would any other
Ruby object (by using attributes and other methods), and changes
will be stored in the relevant database table. A basic overview of

ActiveRecord was given in Chapter 9.

Active Support: A library that collects a number of support and utility
classes used by various Rails features. For example, ActiveSupport
implements many useful methods for manipulating times, numbers,
arrays, and hashes.

Active Job: A framework for defining tasks that can take place
independently of the usual request and response cycle of the web
app.

ActiveStorage: Makes uploaded and referencing files in the cloud easy.

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA
e ActiveModel: A building block for ActiveRecord. This library allows

you to create models using a common template.

o ActionView: A framework for handling view template lookup and

rendering.

o ActionText: Provides rich text editing for Rails. It includes the Trix
editor (https://trix-editor.org/) to use as a rich text editor in

your app.

Generally, you won’t need to know or care about each of these elements as a discrete
library because you can install them all at once using RubyGems. Before you can install
Rails, you must first install Node.js. Visit https://nodejs.org/en/download/ to find and
download the latest Node.js for your OS. Once you've installed node, verify it’s installed
by running

node -version

You should get the version of node installed. Make sure it’s greater than 8.16.0. Next,
you will need to install Yarn. Visit https://classic.yarnpkg.com/en/docs/install
to find and download the latest Yarn for your OS. Once you've installed Yarn, verify it’s
installed by running

yarn -v
Finally, install the Rails gem like so:
gem install rails
Verify Rails is installed by running the following in a terminal:

rails -v

Note Using sudo or run as a superuser on UNIX-like operating systems may fix
permissions issues but is not recommended. If you are having issues installing
gems, try using either rbenv (https://github.com/rbenv/rbenv) or rvm
(https://rvm.1io/) to manage your Ruby environment.

399

https://trix-editor.org/
https://nodejs.org/en/download/
https://classic.yarnpkg.com/en/docs/install
https://github.com/rbenv/rbenv
https://rvm.io/

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Database Considerations

As Rails is used primarily to develop data-driven web applications, it’s necessary to have
a database system available to use on your computer.

Database engines are covered in Chapter 9, and you can use all those covered
(MySQL, SQLite, and PostgreSQL) with Ruby on Rails. In production, most developers
use MySQL or PostgreSQL, as Rails supports these database engines best, but SQLite
is the “default” with Rails as it’s so easy to set up and is more than fast enough for
development purposes (some sites even use it in production with no troubles).

For this chapter’s purposes, ensure you have SQLite3 installed and install the
SQLite3 gem like so:

gem install sqlite3
Verify sqlite3 is installed by running the following command in a terminal:
sqlite3 -version

On Linux, installing the sqlite3-ruby gem might raise errors if the SQLite3 libraries
are not installed. On Ubuntu and Debian, this is easy to resolve:

apt-get install sqlite3 libsqlite3-dev

On Red Hat, CentOS, or other Red Hat-derived distributions, you can use the
following:

yum install sqlite sqlite-devel

If you're using a different distribution or have standing issues with getting SQLite3
installed, the best source of help is the many random blog posts you can find on Google
by searching for “install sqlite3 [your operating system’s name].

Building a Basic Rails Application

As explained in the previous section, Rails is popular because it makes developing web
applications easy. In this section, I'll demonstrate that by showing you how to generate a
very basic web application, and we’ll take a look through how certain parts of it work.

400

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Creating a Blank Rails Application

As you can use Rails to develop both small and large applications, different types of files
are organized into different directories to keep elements separated for tidiness on large
projects. A lot of pre-created files are also placed within a new, blank Rails project. The
quickest way to look at these files and the overall directory structure is to leap right in
and create a new Rails project.

Your project in this chapter will be to create a simple diary app, similar to a blog (or
weblog). The resulting application will let you view your diary and add, delete, or edit
specific entries.

The basic feature set of being able to create, read, update, and delete items is known
as CRUD which is a common structure used in web application. For example, a photo
gallery site allows you to add, view, edit, and delete photos, which are all CRUD actions.
Therefore, the mechanics of developing a basic diary tool are easily transferable to
developing most other types of web applications.

Note CRUD is an acronym to refer to the concept of a system that allows the
creation, reading, updating, and deletion of discrete items.

The Rails Command-Line Tool

When you installed Rails, a script called rails was also installed. You use the rails
script to create new Rails projects, their default files, and their directory structure. To
use it, navigate to a place in your filesystem where you would like to store Rails projects
(possibly creating a rails directory in the process) and run rails new, specifying an
application name as the sole argument:

rails new mydiary

Tip By default, SQLite will be specified as the database type in the database.
yml file generated in the preceding code. If you’re going to be using MySQL,
however, use rails mydiary -d mysql instead. Try rails -h if you want to
see more of the available command-line options.

401

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

A lot of files and directories are produced, but don’t feel overwhelmed! You won’t
even use many of them in this chapter, as they are for more advanced cases that aren’t
relevant to the very basic web application development we’re looking at. In most cases,
Rails provides sane defaults anyway, so you don’t need to change a lot of files unless
you're doing something special. Nonetheless, we’ll take a look at what these directories
are for in the following section.

Files and Directories Within a Rails Application

In this section, we're going to go through the directories and files created by rails and
look at what they're for. Don’t become overwhelmed by this section. If there’s something
you don’t understand, keep going, as most of the new terms and concepts mentioned
here are explained as we use them throughout this chapter.

rails generates the following main folders:

e app: Contains most of the Ruby source code and output templates
directly associated with the application. It contains several other
folders that I'll cover next.

e app/assets: A place to store image and CSS files that can be compiled
down to more efficient “packaged” versions later.

e app/javascript: A place to store JavaScript files. JavaScript is in a
separate folder from other assets due to Rails 6 adding Webpacker
support. Webpacker provides a lot of powerful feature needed for
modern JavaScript development. Read more about Webpacker here:
https://github.com/rails/webpacker.

e app/channel: Contains files for ActionCable. ActionCable is
framework that allows Rails to work with websockets.

e app/mailers: Contains code to handle emails. For example, the code
for the welcome email would be stored here.

o app/controllers: Contains the controller files. In an empty project,
only application controller.rb exists. application controller.
rb is an application-wide controller where you can define methods
that other controllers will inherit.

e app/helpers: Contains helper files—Ruby source code files that
provide methods that you can use from views.

402

https://github.com/rails/webpacker

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

app/models: Contains a file for each model in the application. In an
empty project, no models are yet defined, so this directory is empty.

app/views: Contains the output templates (views) for the application.
Typically, each controller has its own folder under app/views, with
templates located in those folders. There’s also a 1ayouts folder that
Rails uses to store generic application-wide templates.

bin: Contains app-tailored scripts that you run from the terminal, for
example, rails and bundle.

config: An important folder that contains configuration files for
the application. For example, database.yml is a YAML file with
information about the database(s) that the application will use.

db: A folder to be used for database dumps, backups, and migrations.

lib: Contains third-party libraries and Rake tasks. Plugins have largely
superseded the features offered by libraries that were once placed
into 1ib.

log: Contains log files relating to the operation of the application.

node_modules: Contains JavaScript libraries and dependencies
managed by Webpacker. Webpacker will use npm or Yarn to
download libraries and store them here.

public: Contains non-dynamic files that are accessible under your
application’s URL scheme, for example, JavaScript libraries (in
public/javascripts), images (in public/ images), and CSS style
sheets (in public/stylesheets). This folder also includes several
“dispatch” scripts and an . htaccess file that can be used in certain
situations to run your application (such as when/if you choose

to use CGI or FastCGI execution methods—neither of which are
recommended).

test: Contains the test subsystems for a Rails application. This folder
is covered in more detail later in this chapter in the “Testing” section.

tmp: Temporary storage area for data created and used by your Rails
application (including cache and session files).

403

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

I'll briefly mention some of these folders again throughout the rest of the chapter as
you create files within them to get your basic application working.

Database Configuration

Earlier I said that Rails applications are generally database dependent. With this in mind,
at this stage it’s necessary to create a database for your application on your database

Server.

Note You could develop an app that has no need to permanently store data or
operates without a database, but this would be atypical.

By default, your Rails application will use an SQLite database, and it will generate
this for itself when you first run your database’s migrations (covered later). If you are
using any other database engine, however, the technique you'll use to create a database
for your application will vary with database type and how you have your database server
installed.

Database configuration settings are stored in database.yml. Since we are using
SQLite, it's not necessary to change these settings at all, but it’s worth looking at them
nonetheless.

Ignoring the comments, you'll notice three main sections in database.yml, called
“development,” “test,” and “production.” These sections represent the three different
environments your application can run under. For example, while developing, you want
your application to return verbose error messages and automatically detect changes
you make to the code. In production (better thought of as being a “deployment”
environment), you want speed, caching, and non-verbose error messages. The test
environment is provided so that testing can occur on a different database away from your
regular data. The “development” section is used to configure your local development
environment.

database.yml tells Rails how to access the database associated with the application,
so it’s essential that the details are correct. If not, you'll get error messages when you try
to run your eventual application (though, thankfully, these errors will often tend to give
you some great clues as to how to fix the problem).

404

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Using Scaffolding

A Rails application without any models is not a working application at all. Any
application you build will need at least one model. In our case, we're first going to focus
on the concept of “entries” in our virtual diary.

Rails comes with a concept called scaffolding that will generate default (but fully
working) code that will do the database and code work necessary to create a model, a
controller for that model, and some default views to interact with that model’s data. It’s
possible to do this in gradual steps, or even entirely by hand, but scaffolding enables you
to get up and running a lot more quickly.

Think of the Rails generator we used earlier to generate all of the files essential for a
Rails project. Scaffolding is the next logical step up from that. Instead of creating the files
necessary for a Rails project, scaffolding creates some of the code (including a database
migration to create the database table for the model) and views necessary to represent a
single model within your application.

You can then build your own extra views and controller methods off of this basic
scaffolding. It’s designed to give you a jump-start without making you code everything
from scratch (although you can code from scratch if you want to, particularly if your
ambitions differ wildly from what the scaffolding provides).

Note In Rails, models and database tables typically have a direct relationship.
If you have a model called Entry, this will by default be related to the database
table called entries. Rails takes care of the pluralization between model class
names and database table names.

For our diary application, entries will initially solely consist of a title and some
content. There are other attributes (or “columns” in the database sense) that Rails
will add by default to the table, such as id (a unique numeric identifier). A directive is
also added into the default migration code to create timestamp columns: created at
(a timestamp of when the row/associated object was created) and updated_at (a
timestamp of when the row/associated object was amended last). Because of this
automation, it is only necessary to specify the two custom, additional attributes to the
scaffold generator to get things going.

405

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA
To generate scaffolding for your entries table, use the generate script again:

rails generate scaffold Entry title:string content:text

invoke active record

create db/migrate/20200807024733_create_entries.rb
create app/models/entry.rb

invoke test unit

create test/models/entry test.rb

create test/fixtures/entries.yml

invoke resource route

route resources :entries

invoke scaffold controller

create app/controllers/entries_controller.rb

invoke erb

create app/views/entries

create app/views/entries/index.html.erb
create app/views/entries/edit.html.erb
create app/views/entries/show.html.erb
create app/views/entries/new.html.erb
create app/views/entries/ _form.html.erb

invoke test unit
create test/controllers/entries_controller test.rb
Create test/system/entries test.rb

invoke helper

406

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA
create app/helpers/entries helper.rb
invoke test unit

invoke jbuilder

create app/views/entries/index.json.jbuilder
create app/views/entries/show. json.jbuilder
create app/views/entries/_entry.json.jbuilder

invoke assets

invoke SCss

create app/assets/stylesheets/entries.scss
invoke scss

create app/assets/stylesheets/scaffolds.scss

The scaffolding generator has done a lot of work for us! The generator has created
some view files (in app/views/entries) to enable us to see our entries, create new
entries, and edit them. It has also produced an “entries” controller (in app/controllers),
some dummy tests (in test/*), and a database migration (in db/migrate; note that the
migration’s filename starts with a timestamp, so it will vary).

But what is a database migration, and why does it matter?

Database Migrations

I've mentioned before that in Rails, models and database tables are directly related. It is
necessary, therefore, for the table relating to a Rails model to exist within the database.

Migrations provide a Ruby-based way to define database tables. Instead of doing
the SQL yourself, you specify what tables, columns, and indexes you want to exist and
run the migration, and Rails’ ActiveRecord library does the hard work for you. Even
better, you can have multiple migrations for the same table, so that if you decide to add
a column to a table later, you create a new migration and specify that you'd like to add a
new column.

407

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Migrations are considered desirable because they provide a programmatic way to
both upgrade and downgrade databases. Since migrations are normal source code,
it’s also possible to put them into your source code management system and share
them between multiple developers, if you wish. Migrations provide abstraction and
mechanization to make organizing database changes associated with a Rails application
easy.

The scaffolding generator you ran in the previous section produced a database
migration. Let’s take a look at it to see how it works. You'll find it in the db/migrate
directory—it will have a filename ending in "create_entries.rb" because the first part
of the filename is timestamped. It should contain the following:

class CreateEntries < ActiveRecord::Migration[6.0]
def change
create table :entries do |t
t.string :title
t.text :content

t.timestamps
end
end
end

A single migration is defined in a single file as a class that inherits from
ActiveRecord: :Migration and it creates the entries table using the create_table
method, which is supplied with a symbol representing the table name (:entries) and a
code block within where the attributes/columns can be defined.

In this case, a string column called title and a text column called content are
created. “Timestamp” columns are also created. At the time of writing, these are
created at and updated_at; they store the date and time of when a row was created and
when it was last amended, respectively.

Note The difference between a string column and a text column is that,
classically, string columns are for storing short (often fixed-length) textual strings,
whereas text columns can store both short strings and very long blocks of text.

408

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Your application has a migration ready to go to create the entries table. To get it
to run, you need to invoke a rake task (see the following “Rake Tasks” sidebar for more
information about these) called db:migrate that will then run all migrations that have

not yet been processed:

rake db:migrate

== 20200807024733 CreateEntries: migrating

-- create table(:entries)
-> 0.0010s

== 20200807024733 CreateEntries: migrated (0.0011s)

The output verifies that the CreateEntries migration was run, and now the entries
table exists (with the specified columns) within the database associated with your
application. In essence, you now have a Rails application that’s ready to be used!

Note There’s a lot more to migrations than this section has scope to cover.
Luckily, the Rails documentation team has a great guide specifically about
migrations, how they work, and how you can create and customize your own.
You can find the migrations guide at https://guides.rubyonrails.org/
migrations.html.

RAKE TASKS

Rake tasks are administrative tasks associated with your application that are managed by
the Rake tool. Rake, meaning “Ruby Make,” is a tool that you can use to process and trigger
actions to perform upon Ruby projects and code, and it’s used commonly within Rails projects
to do things such as start unit tests and perform migrations.

To perform a Rake task, you simply run rake followed by the name of a task:

409

https://guides.rubyonrails.org/migrations.html
https://guides.rubyonrails.org/migrations.html

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA
rake <task name>

You can also get a list of all the Rake tasks available, like so:

rake --tasks

With Rails 6, there are 67 tasks by default. To save space, they aren’t listed here, but it’s worth
looking through the list to get a feel for what tasks are available.

Running the Basic, Scaffolded App

You've run the scaffold generator, you've looked at the database migration for your
entries table, and you've used the db:migrate rake task to bring your database up
to speed. That’s all you have to do to get a working application! To try it out, you need
to run the server script that provides a basic web server through which to access the

application:

rails server

=> Booting Puma

=> Rails 6.0.3.2 application starting in development
=> Run "rails server --help” for more startup options
Puma starting in single mode...

* Version 4.3.5, codename: Mysterious Traveller

* Min threads: 5, max threads: 5

*

Environment: development

* Listening on tcp://127.0.0.1:3000
* Listening on tcp://[::1]:3000

Use Ctrl-C to stop

At this point, the application sits there doing nothing. This is because it’s waiting to
serve HTTP requests (such as from your web browser).

410

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Go to your web browser of choice and access the application using the
URL given by the output (http://localhost:3000/ in this case, but it might be
http://127.0.0.1:3000/ on your machine depending on your OS and network setup).
You should see a page like the one in Figure 13-2.

mILS

Yay! You're on Rails!

Figure 13-2. The default Rails application index.html page

The page you're seeing is the index. html file from the public folder. This is because
if no action is found within a Rails application that associates with the URL you're
loading from your web browser, a Rails application should return a file from the public
folder—if any file matches—or an error message. Because the default page to load on a
web server is usually index.html, public/index.html is returned.

When you generated the scaffolding for the Entry model, a controller called
entries was created, as app/controllers/entries_controller.rb. By default,
you access controller methods in a Rails application using a URL in the format of
http://[hostname]/[controller]/[action].

411

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Note Don’t worry about this too much, but for completeness, even though
http://[hostname]/ [controller]/[action] isa default, it can be
superseded. As entries has been created as a scaffolded resource, you can
also use http://[hostname]/entries/[id] as an alternative to http://
[hostname]/ entries/show/[id], since routes have been automatically
created to route requests to certain methods based on the HTTP verb (GET, PUT,
POST, or DELETE) used—for example, a DELETE HTTP request can automatically
route to the destroy action where applicable.

So, with this application, load http://localhost:3000/entries (replace localhost
with whatever hostname is used on your local machine). No action name is specified,
but by default an action name of index is assumed, and the scaffolding has implemented
this. If you're successful, you'll see a basic list of entries, as shown in Figure 13-3.

Entries

Title Content

New Entry

Figure 13-3. The basic list or index view of the entries scaffolding

The list of entries in Figure 13-3 is noticeably bare. This is because your entries
table has no data in it. The column headings for your table are obvious, though (Title
and Content), and a New Entry link is available.

Clicking New Entry takes you to http://localhost:3000/entries/new—the new
method within the entries controller—and presents you with a page containing a form that
allows you to fill out the data for a single entry. This view is demonstrated in Figure 13-4.

New Entry

Title

Content

Create entry

Back

Figure 13-4. The new method of the entries controller, used to create new entries

412

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

From this point, you can create new entries, return to the list, edit those entries (the
form looks similar to that in Figure 13-4), and delete entries. That covers all the CRUD
functions!

With scaffolding, you get a basic but complete data-driven web application with
a few lines at the command prompt. However, next you need to look at what the
scaffolding generator actually generated and learn how to customize the models,
controllers, and views to create the specific application that you want. This experience
will be particularly valuable if you choose to pursue Rails development further.

Controllers and Views

In the last section, you put together a basic web application that allowed you to create,
edit, list, and delete diary entries. You used scaffolding, which let you put a whole
working application together with no direct coding effort required. In this section, you're
going to look at what the scaffolding generated, how it works, and how you can extend
the application a little.

Controller Actions

The first URL you accessed in your application was http://localhost:3000/entries.
This URL takes you to the entries controller’s index method. Let’s look in app/
controllers/entries controller.rb to find it:

class EntriesController < ApplicationController
before action :set entry, only: [:show, :edit, :update, :destroy]

GET /entries
GET /entries.json
def index

@entries = Entry.all
end

GET /entries/1

GET /entries/1.json
def show

end

413

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

GET /entries/new
def new

@entry = Entry.new
end

GET /entries/1/edit
def edit
end

POST /entries
POST /entries.json
def create
@entry = Entry.new(entry params)

respond_to do |format]|
if @entry.save
format.html { redirect to @entry, notice: 'Entry was successfully
created.’' }
format.json { render :show, status: :created, location: @entry }
else
format.html { render :new }
format.json { render json: @entry.errors, status: :unprocessable
entity }
end
end
end

PATCH/PUT /entries/1
PATCH/PUT /entries/1.json
def update
respond_to do |format]|
if @entry.update(entry params)
format.html { redirect to @entry, notice: 'Entry was successfully
updated.' }
format.json { render :show, status: :ok, location: @entry }
else
format.html { render :edit }

414

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

format.json { render json: @entry.errors, status: :unprocessable_
entity }
end
end
end

DELETE /entries/1
DELETE /entries/1.json
def destroy
@entry.destroy
respond_to do |format]|
format.html { redirect to entries url, notice: 'Entry was
successfully destroyed.' }
format.json { head :no_content }
end
end

private
Use callbacks to share common setup or constraints between actions.
def set_entry
@entry = Entry.find(params[:id])
end

Only allow a list of trusted parameters through.
def entry params

params.require(:entry).permit(:title, :content)
end

end

This code shows that Ruby controllers are implemented as classes that inherit from
ApplicationController (found in app/controllers/application_controller.rb),

which in turn inherits from a core Rails class, ActionController: :Base.

When a user tries to access the index method of the entries controller, control is
delegated to the index method (or action) in the EntriesController class, shown on its

own here:

415

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

GET /entries
GET /entries.json
def index

@entries = Entry.all
end

This code is simple for what it does. It collects all of the Entry objects (represented
by rows in the entries table) within the database using @entries = Entry.all.

Entry is the model class and models inherit from ApplicationRecord which inherits
from ActiveRecord: :Base, which provides methods suitable to navigate and find data
in the associated table for that model. Therefore, Entry.all returns all rows (as objects)
from the entries table and places them as an array into @entries.

Following on from that, Rails automatically knows to render the correct template for
displaying the entries. Let's take a look at how that works now.

Views and Embedded Ruby (ERB)

Now let’s look at the equivalent view for the index controller action examined in the
previous section. The view template is located in app/views/entries/index.html.erb:

<p id="notice"><%= notice %></p>
<h1>Entries</h1>

<table>
<thead>
<tr>
<th>Title</th>
<th>Content</th>
<th colspan="3"></th>
</tr>
</thead>

<tbody>
<% @entries.each do |entry| %>

<tr>
<td><%= entry.title %></td>

416

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

<td><%= entry.content %></td>
<td><%= link _to 'Show', entry 7%></td>
<td><%= link_to 'Edit', edit_entry path(entry) %></td>
<td><%= link to 'Destroy', entry, method: :delete, data: { confirm:
"Are you sure?' } %></td>
</tr>
<% end %>
</tbody>
</table>

<%= link_to 'New Entry', new_entry path %>

If you're familiar with both Ruby and HTML, you'll note that this view is basically
HTML with Ruby embedded in it (with the Ruby located between <% and %> tags). In
Ruby and Rails parlance, this is called an ERB template.

Note The file extension of ERB templates is .exrb. Those that are HTML-based
typically use the dual extension of .html.erb in Rails. This naming convention
allows you to have many erb files with the same root name but for different
response types.

The core part of the list view contains this code:

<% @entries.each do |entry| %>
<tr>
<td><%= entry.title %></td>
<td><%= entry.content %></td>
<td><%= link _to 'Show', entry %></td>
<td><%= link to 'Edit', edit_entry path(entry) %></td>
<td><%= link to 'Destroy', entry, method: :delete, data: { confirm:
'Are you sure?' } %></td>
</tr>
<% end %>

417

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

This view code results in the main, dynamic part of the page being rendered: the
actual list of entries. There are a few key things to note. This whole section is a loop
over each element of @entries (using @entries’ each method with a code block). You
should recall that your controller code placed Entry objects from the database into the
@entries array, so the view code iterates over each element (or each entry). Next, two
table columns (using the <td> HTML tag) show the current entry’s title and content,
respectively. This is achieved using the <%= entry.title %> and <%= entry.content
%> blocks. Expressions within <%= and %> tags are interpreted and then substituted into
the final HTML output.

After the data for the entry has been shown, you reach this:

<td><%= link_to 'Show', entry %></td>

<td><%= link_to 'Edit', edit_entry path(entry) %></td>

<td><%= link to 'Destroy', entry, method: :delete, data: { confirm: 'Are
you sure?' } %>

</td>

The important parts to look at are the calls to the 1ink to method. link toisa
special method provided by Rails that generates an HTML link to another controller
and/or action within the application. Let’s look at the first line:

<td><%= link_to 'Show', entry %></td>

Whereas the general Ruby code in the view is located within <% and %> tags, Ruby
code that results in something to be rendered in the document (i.e., shown on the web
page) is included within <%= and %> tags (as in the earlier <%= entry.title %> column).

The 1link_to method accepts the text to use for the link, and then it accepts
parameters that specify where the link should go.

Inthe <%= link _to 'Show', entry %> case, link to assumes that since it has been
passed an entry object, you want to link to the page that will show only that entry—
specifically /entries/[id of entry].

In the second example, <%= link to 'Edit', edit entry path(entry) %>, the
edit_entry path shortcut method is used (with the entry object as a parameter) to
provide the hash of parameters to link to /entries/[id of entry]/edit.

The last example, <%= 1link_to 'Destroy', entry, method: :delete, data: {
confirm: 'Are you sure?' } %>, provides the entry object, as with the “show” version,
but the HTTP DELETE method is specified using the method argument, so 1ink tois
smart enough to realize you want to direct the link to the destroy method of the entries
controller in this case.

418

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Separate from these shortcuts, however, let’s look at how the parameters of link to
can be manipulated directly to get the results you want.

Let’s review the generated output of various 1ink to examples (assuming a basic
Entry object is present in the entry variable):

<%= entry.id %>)

<%= entry.content %>

This is an example entry.

<%= link to 'Show', :action => 'show' %>

Show

<%= link_to entry.title, :action => 'show', :id => entry.id %>
Example Entry

<%= link_to 'Show', :action => 'show', :id => entry.id %>

Show

It’s important to understand how these examples work, as many elements of views
rendered by Rails will contain patterns such as these, whether for generating links,
including images, or creating forms to post data back to your application.

At this stage, you might be wondering why you can’t write the HTML you want
directly into views and then build up the links manually, for example:

<a href="/entries/show/<%= entry.id %>"><%= entry.title %>
instead of

<%= link_to entry.title, :action => 'show', :id => entry.id %>

419

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

The simple answer is you can! Stylistically, however, Rails developers prefer to let
Rails’ helper methods (such as 1ink_to) do the work of putting together fragments of
HTML that might need to change in the future. For example, in the future you might
choose to change the “entries” part of the URLs to “entry” for some reason or another,
and with Rails you could make changes to the application’s routing to do this. The
links generated by helpers such as 1ink to would then automatically reflect the new
conventions, whereas if you coded them with HTML, as previously, you'd have a lot of
searching and replacing to do in your views!

Models and Relationships

So far, your application only has a single model, Entry, that relates to diary entries.
However, one major benefit the ActiveRecord library provides is the ability to relate
models easily to one another. For example, you could create another model called User
that relates to different people who can post diary entries in your system.

The full depth of ActiveRecord and model relationships (also known as associations)
can and does take up entire books, so is beyond the scope of this introduction, but in
this section, we’ll look at a basic example of how ActiveRecord models can relate to one
another.

In earlier sections of this chapter, you saw how ActiveRecord objects work at a basic

level, for example:

entry = Entry.find(1)
entry.title = 'Title of the first entry'
entry.save

Columns in the database become attributes that you can get and set on the objects,
and you can then save those objects back to the database with the object’s save method.

If you want to see the previous example in action, try using the Rails console. Similar
to irb, the Rails console allows developers to run commands. Unlike irb, Rails console
loads the entire Rails environment so that you can access all of the code in your project.
Running the console is simple. Using a terminal, go to the root directory of your Rails
project and type the following:

420

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

rails console

Running via Spring preloader in process 85677
Loading development environment (Rails 6.0.2.2)

irb(main):001:0>

Let’s imagine that you have a User model that contains columns including a user’s
name, email address, and other user-related information. Now let’s imagine that you
directly relate users and entries in your application. You might expect to be able to do
things like this:

entry = Entry.find(1)
entry.user.name = 'Name of whoever posted the entry'
entry.user.email = 'Their email address'

This is, indeed, what one-to-many relationships with ActiveRecord enable. Setting
up such a relationship between models is easy. Consider the two models, located in app/
models/entry.rb and app/models/user.zrb, respectively:

class Entry < ApplicationRecord
belongs to :user
end

You would use this code for the User model:

class User < ApplicationRecord
has_many :entries
end

ActiveRecord was designed to allow an almost natural language mechanism of defining
model relationships. In our Entry model, we say that Entry objects “belong _to” User
objects. In the User model, we say that a User object “has_many” associated Entry objects.

The only thing you need to set up, other than the relationship itself, is a column in
the entries table that enables the relationship to work. You need to store the id of the
associated user with each Entry object, so you need to add an integer column to entries
called user_id. You could do this by creating a new migration and using a directive such
asadd_column :entries, :user id, or :integer or by adding the column manually with
SQL (through another client).

421

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Once the model relationship has been defined and relationships between data have
been made—which is as easy as, say, entry.user = User.find(1)—you can then access
data across the relationship. For example, in a view showing an entry, you might have
some view code such as this:

<p>Posted by <%= entry.user.name %> at <%= entry.created at %></p>

ActiveRecord also supports many-to-many relationships. For example, consider the
relationship between fictional Student and Class models. Students can be associated
with more than one class at a time, and each class can contain many students. With
ActiveRecord, you can define these relationships using a join table and a has_and _
belongs to_many relationship, or through an intermediary model such as Enrollment,
which defines the links between Students and Classes using has_many with a : through
parameter.

Note It’'s worth pointing out that a model called Class wouldn’t be allowed in
Rails, because there’s already a class called Class built into Ruby. Beware of
reserved words and using names that are already used elsewhere!

The variety of relationships possible are documented in the official Ruby on Rails
documentation at https://guides.rubyonrails.org/association_basics.html.

Sessions and Filters

A useful feature provided by Rails applications is support for sessions. When a web
browser makes a request to your application, Rails silently sends back a cookie containing
a unique identifier for that browser. Whenever that browser makes further requests, it
sends back the cookie with the unique identifier, so the application always knows when a
certain previous visitor is making another request. You can use the session’s ability to store
information that’s specific to a particular visitor for use on future requests.

Sessions are commonly used on websites for features such as shopping carts or
keeping track of what pages you've visited. For example, if you add an item to your cart at
an ecommerce site, the item chosen is stored in a data store associated with your session’s
ID. When you come to check out, your session ID is used to look up data specific to your
session in the session system’s data store and find out what you have in your cart.

422

https://guides.rubyonrails.org/association_basics.html

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

To demonstrate basic session storage in your Rails application, youll count and show a
user how many times he or she has accessed actions within your application. To do this, you
need to have some way of performing this logic on each request made to the application. You
could add logic to every controller action, but an easier way is to use a filter method called
before action.

before action is a method you can use at the controller class level to define that
a method (or, indeed, many methods) should be executed before the method for the
controller action of the current request. Filters make it possible to perform generic
activities before every request (or before requests to certain groups of methods or certain
controllers).

Note A common use for filters within Rails is to make sure visitors are
authenticated and authorized to visit certain controllers and perform certain
actions. If you have a controller class called AdminController, you might want
to add a before_action that ensures a visitor is logged in to the site as an
admin user before you let him or her use the potentially dangerous actions within!

In this example, you'll use before _action to perform some logic before every
request to the application. To do this, you'll add some code to app/controllers/
application _controller.rb so that every controller in your application (although there
is only one in this case, entries) will be subjected to the filter.

Here’s app/controllers/application_controller.rb before the new code:

class ApplicationController < ActionController::Base
end

Here's the same file after implementing your request-counting code (and removing
the comments):

class ApplicationController < ActionController::Base
before action :count requests in session

def count_requests in session
session[:requests] ||= 0
session[:requests] += 1
end
end

423

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

You use before action with a symbol as a parameter, where the symbol represents
the count_requests _in session method.

Tip Learn more about filters at https://guides.rubyonrails.org/
action controller overview.html#filters.

Within the count_requests_in_session method, a hash provided by Rails called
session is used. Automatically, session is always a data store associated with the
current session, so anything you write to it or read from it is always associated with the
current session.

In this case, you initialize session[:requests] with 0 if it is not already defined, and
then you increase the count on the next line. You can access this information from your
views now quite easily. Go to app/views/entries/index.html.erb and add this line to
the top of the file:

<%= session[:requests] %>

If you now load http://localhost:3000/entries, you'll see 1 at the top of the page.
Reload the page, and the number increases for each reload. Sessions in action!

Other Features

Although you’ve managed to create a basic working Rails application so far, I've only
covered the bare essentials. In this section, I'll quickly cover a few key areas that you'll
want to know about before exploring Rails further independently.

Layouts

In the Rails application developed earlier in this chapter, you let scaffolding do the work
of creating views for you. You then looked through the views created to see how they
work. The scaffolding generator also created a layout, a sort of super-template that can
be used to render the generic code around the code specific for a certain action. For
example, most HTML documents would start off something like this:

<!doctype html>
<html lang="en">
<head>

424

https://guides.rubyonrails.org/action_controller_overview.html#filters
https://guides.rubyonrails.org/action_controller_overview.html#filters

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

<meta charset="utf-8">

<title>Page Title Here</title>

<link rel="stylesheet" href="styles.css">
</head>
<body>

And, at the very least, a typical HTML document would end somewhat like this:

</body>
</html>

In Rails, layouts are special, generic wrapper templates that multiple views can use.
Instead of repeating the HTML header and footer code within every view, you can simply
embed each view’s output into a layout instead. By default, if there’s a file with the same
base name as the current controller in app/views/layouts, it’s used as a layout.

In the scaffolded application’s case, the layout used was app/views/layouts/
application.html.erb. Let’s take a look at it:

<!DOCTYPE html>
<html>
<head>
<title>Mydiary</title>
<%= csrf_meta_tags %>
<%= csp_meta_tag %>

<%= stylesheet link tag 'application', media: 'all', 'data-turbolinks-
track': 'reload' %>
<%= javascript_pack_tag 'application', 'data-turbolinks-track':
'reload' %>
</head>

<body>
<%= yield %>
</body>
</html>

This layout includes the basic HTML header and footer items, but also uses some
special Rails code to include style sheets (with the stylesheet link_ tag method),
JavaScript, and more that the page relies on.

425

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

The <%= yield %> code yields the rendering process to the view for the current
action, so the contents of the current view are rendered at that location.

If you so choose, you can force a view to be displayed without a layout by adding
aline at the point of render (i.e., in the relevant method or action) in the entries
controller, like so:

render layout: false

You can also specify a different layout to use in this way by supplying a layout name
to render instead:

render layout: 'some other layout'

This would then use app/views/layouts/some_other layout.html.erb for the
layout of that action’s view.

Note You can learn more about layouts at https://guides.rubyonrails.
org/layouts and rendering.html.

Where to Go Next: References, Books, and Example Apps

Rails has been in popular use since the end of 2004, and it has attracted the interest

of thousands of developers, many of whom blog about the framework or release the
source of their own Rails applications for free. You can also look to some large-scale Rails
applications for inspiration.

The best way to learn Rails, beyond the basics, is to keep up with the new features
being added to the framework as it is being developed, to read the source code of other
people’s applications, and to experiment. Rails isn’t something that you can master
quickly.

This section provides links to several useful references, books, and example
applications you can investigate.

Reference Sites and Tutorials

Following are some useful reference sites and tutorials to help you get started using
Rails:

426

https://guides.rubyonrails.org/layouts_and_rendering.html
https://guides.rubyonrails.org/layouts_and_rendering.html

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Official Ruby on Rails API (https://api.rubyonrails.org/): The
official documentation for the Ruby on Rails framework. Almost
every class and method provided by Rails is documented.

Ruby on Rails guides (https://guides.rubyonrails.org/): A useful
set of guides for Ruby on Rails written by prominent community
members. They're very well written and kept up to date with the
latest version of Rails.

Getting Started with Rails (https://guides.rubyonrails.org/
getting started.html): A beautifully written introduction to Rails
that covers much of the same ground as this chapter. The benefit of
this guide, however, is that it will be kept up to date with the latest
version of Rails, which may be useful to you in case there are major
changes.

Rails Books

There are several books that will walk you through Rails from start to finish, from setting

up and looking at scaffolded apps (as in this chapter) to building complete apps with

multiple models and customized views that are deployed on the Web.

I recommend investigating the following:

Agile Web Development with Rails 4, by Sam Ruby, Dave Thomas,
and David Heinemeier Hansson (Pragmatic Bookshelf, 2013): Many
Rails developers consider Agile Web Development with Rails to be
the canonical Rails tutorial book, particularly as Rails’ creator David
Heinemeier Hansson has always been involved in its development.
Its latest edition came out in September 2013, and it covers Rails 4.0
specifically, although much of it will continue to be relevant now.

The Rails Tutorial, by Michael Hartl: In the past few years, this has
essentially become the Rails tutorial. It’s a paid-for ebook and set of
screencasts, but you can also read the material on the Web for free.
It's superb and walks you through the entire process of building a
complete Rails app. I strongly recommend you move onto it after
reading this book. It's available at http://railstutorial.org/.

427

https://api.rubyonrails.org/
https://guides.rubyonrails.org/
https://guides.rubyonrails.org/getting_started.html
https://guides.rubyonrails.org/getting_started.html
http://railstutorial.org/

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Sinatra: Lightweight, Simple Web Applications

Sinatra calls itself a “DSL for quickly creating web applications.” It’s not a framework in
the typical sense. It’s a library that offers HTTP deployment functionality. In essence,
however, it’s a very lightweight web application framework that lets you either add HTTP
functionality to existing apps or build new ones from scratch as simply as possible.

Sinatra was initially developed solely by Blake Mizerany and first appeared in 2007,
but it was not until early 2009 that its popularity exploded, and now there are many
developers responsible for it.

To install Sinatra, you can run

gem install Sinatra

You can visit the project’s homepage at http://sinatrarb.com/ for further
instructions.

The Extreme Simplicity of Sinatra

Unlike Rails, there’s no enforcement of concepts like MVC or REST in Sinatra. Sinatra
is very “at the bare metal” in terms of its functionality. You can write an entire app in a
single Ruby file if you wish, or, alternatively, you can develop lots of classes, sprawl your
app out over hundreds of files, and really go to town. Sinatra is permissive of almost any
development style and offers no Rails-like formula or constraints.

A great way to see how simple a Sinatra app can be is, as always, by trying an example
application:

require 'sinatra’
get '/' do

"Hello, world!"
end

Place the code in a file named hello_world.rb. Start the Sinatra server by running
ruby hello world.rb

A HTTP server will start on your local machine on port 4567. You can try to access it

'"

athttp://localhost:4567/, where upon you should see “Hello, world!” returned.

428

http://sinatrarb.com/

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Other than the necessities of loading Sinatra, the only command is get, which has a
single parameter referring to the path (/") on which to serve the result of the attached
code block (which merely returns the string “Hello, world!” in this case).

Note You can make a Sinatra app run on a different port by specifying a -p
[PORT] option on the command line (e.g., ruby sinatral.rb -p 1234).You can
see other command-line functions by using the -h option.

When comparing Sinatra with Rails, it’s notable that this app is a single file with only
afew lines of code. There’s no large framework of ancillary code and there’s no database.
This has its pros and cons, depending on what you're trying to develop. Loading a
database library works the same way in a Sinatra app as in a regular Ruby app, if you
choose to do so. You might also choose to use PStore or CSV, as we did in Chapter 9. The
key point is that it’s entirely up to you. Sinatra is completely flexible!

General URL Routing and Parameter Matching

In the previous section, we looked at an app that returned a string on an HTTP GET
request for the root path of a URL. It’s possible, of course, to take it further:

require 'sinatra’

get '/' do
"Hello, world!"

end

get '/bye' do

"Leaving already?"
end

get '/time' do
Time.now.to_s

end

In this example, we're serving up different content for different specified URLs—
nothing too complex about that. But what if we want to dynamically work with content or
parameters provided in the URL? That’s possible too:

429

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

get '/add/:a/:b' do
(params[:a].to i + params[:b].to i).to s
end

Note For brevity, I'm omitting the requires in the examples from here on.

This time we've used a special format to denote a named parameter in the
URL. These parameters are then made available to the code block in the params hash
(parameters work in a similar way in Rails).

If we ran the last example and made a request for /add/5/6, then 5 would end up in
params[:a] and 6 would end up in params[:b], which enables us to add them together
and return the result to the HTTP client.

It’s also possible to access named parameters with block parameters. This example is
functionally equivalent to the last:

get '/add/:a/:b' do |a, b]|
(a.to i + b.to i).to s
end

Tip Sinatra also has support for wildcard and regular expression parameters.
These are beyond the scope of this introduction, but basic examples can be found
in Sinatra’s README document at www.sinatrarb.com/intro.html.

It’s also possible to support other HTTP verbs, such as POST, PUT, and DELETE. You
can do this by using the post, put, and delete methods to define blocks instead of using
get. Here’s an example of using get and post together on the same URL to implement a
form:

get '/' do
%q{<form method="post">
Enter your name: <input type="text" name="name" />
<input type="submit" value="Go!" />
</formy>}
end

430

http://www.sinatrarb.com/intro.html

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

post '/' do
"Hello #{params[:name]}!"
end

If you visit http://localhost:4567/, fill in the text field, and click the Go! button,
your web browser will issue a POST HTTP request back to the same URL, and the second
method in the example will be executed.

Views, Templates, and Static Files

As with Rails, views make up the part of web applications that users see and interact
with in their browsers. In the basic examples in the previous section, we simply returned
strings containing HTML from the Sinatra routing methods (get, post, put, and delete).
Luckily, you're not consigned to this style, and Sinatra provides some handy shortcuts
for making views a lot easier to work with.

Inline and In-File Templates

Sinatra provides easy access to template renderers for ERB, Haml, Builder (used for
XML), and Sass (used for CSS) out of the box, assuming that you have their respective
gems installed, for example:

before do
@people = [
{ name: "Beatrice", age: 20 },
{ name: "Eugenie", age: 18 },
{ name: "Louise", age: 6 }
]
end
get '/' do
erb %{

<% @people.each do |person| %>
<p><%= person[:name] %> is <%= person[:age] %> years old</p>
<% end %>

end

431

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

In this case, we're using an ERB template (much as Rails views typically use)
supplied as a string to the erb method, which then renders the ERB template into a final
string that is returned to the client. This is commonly referred to as an inline template. In
this case, the output would be as follows:

Beatrice is 20 years old

Eugenie is 18 years old

Louise is 6 years old

Note You can learn more about ERB in Chapter 16.

BEFORE FILTERS

Notice that in the first example in this section, the @people variable is defined within a
before code block. before blocks are designed to be used for code that is to be executed
before every request. Anything that occurs within a before block will be in the same object
scope as the processing of the request (as in the get block). Therefore, the before block was
used, in this case, to provide a simple data structure for the ERB template to use.

If you were familiar with the Haml, Builder, or Sass templating systems, you could
use those in a similar way to render HTML, XML, and CSS, respectively.

It is also possible to store templates at the end of the source code file and reference
them from the calls to erb, haml, builder, or sass, for example:

get '/' do
erb :index
end
END

432

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

@@ index
<% @people.each do |person| %>
<p><%= person[:name] %> is <%= person[:age] %> years old</p>
<% end %>

Note For brevity, the before block is not shown in this example.

This example works in exactly the same way as the one prior, except that the
template has been moved into a special data area after the main Ruby source code.

In Ruby, if the END_ delimiter is used, then any text coming after it is not processed
as Ruby code but as input to the application if the application so chooses to read it.
Sinatra can use this functionality to support placing named templates into the source
code file itself.

Templates used in this way are prefixed with @ [name] so that the template can
then be referenced by the template rendering commands (erb in this case) by using the
symbol representing the name of the template (e.g., erb :index).

Layouts

Similarly to Rails, Sinatra supports layouts for generic templating. For example, complete
HTML files tend to have full <html> and <head> definitions, titles, references to style
sheets, JavaScript, and so forth. You don’t want to code this into every individual
template, so instead you can concoct a layout that wraps around your views.

In Sinatra, a layout is defined in the same way as any other template. If you define
a template with the name of layout, then it will be used by the template rendering
methods (such as erb) by default, for example:

before do
@people = [
{ name: "Beatrice", age: 20 },
{ name: "Eugenie", age: 18 },
{ name: "Louise", age: 6 }
]
end

433

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

get '/' do
erb :index
end

__END__
@@ layout
<html>
<head><title>My App</title></head>
<body>
<h1>My App</h1>
<%= yield %>
</body>
</html>

@@ index
<% @people.each do |person| %>
<p><%= person[:name] %> is <%= person[:age] %> years old</p>
<% end %>

This application has two templates: layout and index. When the index template is
rendered, erb will notice that there’s a template called layout and render that first, only
yielding to the index template when it encounters the yield method. This results in a
page that contains all of layout’s HTML, but with index’s specific HTML embedded
within.

You can, of course, have more than one layout. For example, if you defined a second
layout called anotherlayout, you could tell erb to render it specifically:

erb :index, layout: :anotherlayout
You could also choose to render no layout at all:

erb :index, layout: false

External Templates and Layouts

Having templates and layouts within your source code file can result in a very small,
easy-to-understand application, but once your application reaches a certain size, it can
become cumbersome—not only to read, but to maintain!

434

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Luckily, you can place templates (including layouts) into external files that Sinatra
will load when it comes to render time.

By default, external template files are expected to be in a directory called views
located within that of your source code file, although you can override this if you wish
using a set directive at the start of your app:

set :views, File.dirname(FILE) + '/templates'

Once you have your folder ready, you can place views into it using filenames
along the lines of [template name].[format]. For example, assume this is how we're
rendering our view:

erb :index, :layout => 'mylayout’

If no in-file template called index is defined, Sinatra will look for the file index.erb
in the views directory (or whatever directory you set). Similarly, if you were using the
sass, haml, or builder methods, they would be looking for their own extensions.

The layout situation is very much the same. With the previous line of code, Sinatra
would be looking for the mylayout.erb file.

Static Files

Most web applications will rely on static files, often in rendering views. Static files
include things like JavaScript files, images, or style sheets. Rather than define templates
for these things or serve them programmatically, Sinatra can serve them directly for you.

By default, static files are expected to be in the public subdirectory. As with the
external templates directory, however, you can define where you want static files to be if
you wish:

set :public, File.dirname(FILE) + '/myfiles’

When a request comes in to the Sinatra app for, say, /images/box.gif, Sinatra will
first look to see if public/images/box.gif exists before dispatching the request to your
application. If the file exists, it will be served up directly. If not, the request will make its
way into your app, where it will either be caught with a route or generate an error.

435

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Request Flow Control

So far we've looked at how to make a Sinatra app return content for requests made to
specific URLs, but we haven’t looked at any flow control.

What if you wanted to only show a page in a certain situation or wanted to redirect
someone somewhere else if other conditions are present? What if you needed to raise an
error? We'll look at these situations in this section.

Redirection

Let’s say that you want to build a simple, scrappy web application that only gives out data
if someone uses the right password. You could write it like this:

require 'sinatra’

get '/' do
erb :index, :layout => :layout
end

post '/secretdata' do
erb :secretdata
end

__END__

@@ layout
<html><head><title>My App</title></head>
<body><%= yield %></body></html>

@@ index
<form method="POST" action="/secretdata">
Password: <input type="text" name="password" />
<input type="submit" value="Log in" />
</form>

@@ secretdata
Here's our secret data: <code>30'N 12'W</code>

436

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Your app is a regular Sinatra app with all of the templates within the source file.
The index template features a form that asks for a password that is then sent to the /
secretdata action through an HTTP POST request. The “secret data” is then rendered.

In this example, whatever password you type in (or even no password at all) will
result in you seeing the secret data. So what if you want to redirect someone back to
the form if they get the password wrong? All you have to do is change the /secretdata
action:

post '/secretdata' do
redirect '/' if params[:password] != 'xyzzy'
erb :secretdata

end

Now you’re using Ruby’s regular if construct to see if the password parameter is not
equal to 'xyzzy', and if not, you redirect back to the index URL (/).

redirect in Sinatra is a lot simpler than redirect to in Rails. Its parameter is simply
the URL you want to redirect to, whether an absolute URL or a relative one (as used in
the prior example). Using an absolute URL, you could redirect the user anywhere:

redirect 'http://www.google.com/'

Halting

In the last section, we looked at a basic “secret data” app that prevents access to a certain
page unless the correct password is supplied. We'll use the context of that example again
to explore halting and passing in this section.

Assume that your app is for another computer program to use, rather than web
browser-equipped humans. Redirecting to the front page when the password is wrong
is not particularly illustrative to an automated client, and typically you'd return an HTTP
error code and message instead. In the case of a wrong password, you'd typically return a
403-status code and a “Forbidden” message.

Tip Learn more about HTTP status codes and messages at https://
en.wikipedia.org/wiki/List of HTTP status codes.

437

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

When you want a request to cease and return a particular message (rather than a
rendered page), you use Sinatra’s halt method to halt the request. Let’s rewrite the /
secretdata method from the app in the last section to do this:

post '/secretdata' do
halt 403 if params[:password] != 'xyzzy'
erb :secretdata

end

In this case, you've replaced the redirect with a call to the halt method. If you want
to set an HTTP status code and return a message, you pass it an array with those items
respectively. Alternatively, you could pass an HTTP status code, although it’s better to
return a message too in case a human is accessing your app and doesn’t know what 403
really means!

Error Handling

If you try to access a URL on a Sinatra application that isn’t handled by one of the route
methods, an error page will show up. You can control what this error page looks like by
defining a not_found block:

require 'sinatra’
not_found do

"<html><body>Sorry, you're lost!</body></html>"
end

If you ran this application, every request you made to it would result in the HTML in
the not_found block being returned because no routes are defined to handle requests to
any URL. Note that you could define an external (on internal) view and render it in the
typical way with the erb method instead, if you wished.

As well as not_found, Sinatra offers a way to define a response that should be used
when a fatal error occurs in the application. For example, let’s build a small application
that divides two numbers:

require 'rubygems'’
require 'sinatra’

set :show_exceptions, false

438

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

error do
redirect 'http://en.wikipedia.org/wiki/Division_by zero'
end

get '/divide/:a/:b' do |a, b]|
"#{a.to i / b.to i}"
end

Note The set :show exceptions, false directive is included because,
when you're in development mode, Sinatra shows you a helpful “exception” page
by default which overrides what you do in error blocks.

If you ran this application and accessed http://127.0.0.1:4567/divide/40/10,
you'd be given “4” as a response. Try http://127.0.0.1:4567/divide/10/0, however,
and you'll be cheekily redirected to a Wikipedia page all about the perils of dividing a
number by zero! This is probably not how you'd want to treat your real-life users, but the
point is made.

In a way, the error block has worked in a similar way to the rescue block when
handling Ruby exceptions.

Tip Head back to the “Exceptions and Error Handling” section of Chapter 8 if you
need a rescue refresher!

Like rescue, Sinatra’s error blocks can also be defined to only respond to certain
types of exceptions, whether regular Ruby exceptions or ones of your own creation. A
single exception’s class or an array of exception classes can be provided as a parameter
before the associated code block.

439

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Summary

In this chapter, we looked at how to develop some very basic web applications using Rails
and Sinatra. Rails in particular gives you a lot of power out of the box and enables you to
develop a fully working, database-driven web application in a short period of time. Sinatra,
on the other hand, shows you how simple it can be to put smaller web apps together.

We've merely scratched the surface in this chapter, as Rails is a large and complex
framework (though simple to use, it has many details that are complex for advanced usage).
Entire books larger than this one have been written about Rails, so this chapter merely
provides a taste. You can use the references in the previous section to learn more about the
framework, and you can investigate the selection of Apress books available about Rails (see
www . apress.com). Sinatra also goes a lot deeper than we've been able to scratch here.

Larger frameworks like Rails can seem complex initially, but the complexity of the
directory structure and default files created by the rails tool are only there to make your
job as a developer easier by providing a familiar structure and separation of concerns.
Once you're familiar with the layout and the tools Rails makes available, developing web
applications is a simple, organized process.

Let’s reflect on the main concepts introduced in this chapter:

e Ruby on Rails: A Ruby-based web application development
framework developed by David Heinemeier Hansson. See Chapter 5
for the history behind Ruby on Rails.

e Framework: A set of libraries and tools that can be used as a
foundation for developing applications.

e Models: Classes that represent forms of data used by the application
and that contain the logic to manipulate and retrieve that data.

e Views: Templates and HTML code (more accurately, code that
includes both HTML and embedded Ruby code) that produce the
pages that users of the web application will see. Views can output
data as HTML for web browsers, XML, RSS, and other formats.

o Controllers: Classes that process user input and control what data is
sent to the views to output. Controllers contain the logic that binds
together models, data, and views.

440

http://www.apress.com

CHAPTER 13 TWO WEB APPLICATION APPROACHES: RAILS AND SINATRA

Actions: Methods contained within controllers that are accessed
when requests for specific URLs are made on the parent web
application.

CRUD (create, read, update, delete): The four basic actions you can
perform upon discrete items and that are common to most web
applications. In Rails, these operations can correspond to the PUT,
GET, POST, and DELETE HTTP verbs.

ActiveRecord: A library that abstracts databases, rows, columns, and
SQL into standard Ruby syntax using classes and objects. It’s a major
part of the Ruby on Rails framework.

Routing: The process of translating a URL into the desired controller
and action by using routing patterns.

Session: A process by which a unique ID is given to a new user of
an application, and this unique ID is given back and forth on each
further request, thereby making it possible to track that user.

Plugins: Libraries for the Ruby on Rails framework that “plug in” to
your applications. Plugins can override Rails’ default behaviors or
extend the framework with new features you can easily use from your
application, such as authentication systems. Plugins are installed

on a per-application basis rather than for the Rails framework as a
whole.

Sinatra: A lightweight framework (or library) for developing web-
facing applications in Ruby without significant amounts of ancillary
code. A Sinatra app can be represented in a few lines of code. Its
official website is at http://sinatrarb.com/.

In this chapter, we looked at developing web applications under an organized

framework, and in the next chapter, we'll look at using Internet protocols more directly.

You can combine the techniques covered in Chapter 14 with your Rails applications so

that they can communicate with other services available online, such as email, FTP, and

data from other websites.

441

http://sinatrarb.com/

CHAPTER 14

Ruby and the Internet

In this chapter, we're going to look at how to use Ruby with the Internet and with the
various services available on the Internet, from the Web to email and file transfers.

The Internet has recently become an inescapable part of software development, and
Ruby has a significant number of libraries available to deal with the plethora of Internet
services available. In this chapter, we'll focus on a few of the more popular services: the
Web, email (POP3 and SMTP), and FTP, along with how to process the data we retrieve.

In Chapter 15, we'll look at how to develop actual server or daemon code using
Ruby along with lower-level networking features, such as pinging, TCP/IP, and sockets.
However, this chapter focuses on accessing and using data from the Internet, rather than
on the details of Ruby’s networking features.

HTTP and the Web

HyperText Transfer Protocol (HTTP) is an Internet protocol that defines how web
servers and web clients (such as web browsers) communicate with each other. The
basic principle of HTTP, and the Web in general, is that every resource (such as a web
page) available on the Web has a distinct Uniform Resource Locator (URL) and that web
clients can use HTTP verbs such as GET, POST, PUT, and DELETE to retrieve or otherwise
manipulate those resources. For example, when a web browser retrieves a web page,

a GET request is made to the correct web server for that page, which then returns the
contents of the web page.

In Chapter 10, we looked briefly at HTTP and developed some simple web server
applications to demonstrate how Ruby applications can make their features available
on the Internet. In this section, we’re going to look at how to retrieve data from the Web,
parse it, and generate web-compatible content.

443
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_14

https://doi.org/10.1007/978-1-4842-6324-2_14#DOI

CHAPTER 14 RUBY AND THE INTERNET

Downloading Web Pages

One of the most basic actions you can perform on the Web is downloading a single web
page or document. First, we'll look at how to use the most commonly used Ruby HTTP
library, net/http, before moving on to a few notable alternatives.

The net/http Library

The net/http library comes standard with Ruby and is the most commonly used library
to access websites. Here’s a basic example:

require 'net/http’

Net::HTTP.start("www.apress.com", use ssl: true) do |http]|
req = Net::HTTP::Get.new('/sitemap.xml")
body = http.request(req).body
puts body.force encoding("UTF-8")

end

This example loads the net/http library, connects to the web server www.apress.com
(the publisher page of this book), and performs an HTTP GET request for /sitemap.xml.
The HTML for the page is returned and displayed. The equivalent URL for this request is
www . apress.com/sitemap.xml, and if you load that URL in your web browser, you'll get
the same response as Ruby.

Note In the example, there was something we haven’t learned about: force_
encoding(“UTF-8”). This method forces Ruby to output the body of the response
using UTF-8 encoding. Depending on what operating system you use, this may
or not be needed. Encoding is an important topic in computing, but we will not
be covering it in this book. Check out the Ruby docs page for more information:
https://ruby-doc.org/core/Encoding.html.

As the example demonstrates, the net/http library is barebones. Rather than simply
passing it a URL, you have to pass it the URL of the web server and then the resource
path. You also have to specify the GET HTTP request type and trigger the request using
the request method. You can simplify your code by using the URI library that comes

444

http://www.apress.com
http://www.apress.com/sitemap.xml
https://ruby-doc.org/core/Encoding.html

CHAPTER 14 RUBY AND THE INTERNET

with Ruby, which provides a number of methods to turn a URL into the various pieces
needed by net/http. Here’s an example:

require 'net/http’
url = URI.parse('https://www.apress.com/sitemap.xml")

Net::HTTP.start(url.host, url.port, use ssl: true) do |http]
req = Net::HTTP::Get.new(url.path)
body = http.request(req).body
puts body.force encoding("UTF-8")

end

In this example, you use the URI class (automatically loaded by net/http) to parse
the supplied URL. An object is returned whose methods host, port, and path supply
different parts of the URL for Net:: HTTP to use. Note that in this example you provide
three parameters to the main Net: :HTTP.start method: the URL's hostname, the
URL's port number, and an options hash that configures Net: HTTP to use SSL. The port
number is optional, but URI.parse is clever enough to return the HTTP port number of
443.

It’s possible to produce an even simpler example:

require 'net/http’

url = URI.parse('https://www.apress.com/sitemap.xml")
response = Net::HTTP.get response(url)
puts response.body.force encoding("UTF-8")

Instead of creating the HTTP connection and issuing the GET explicitly, Net: :HTTP.
get response allows you to perform the request in one stroke. We removed use_ssl
since get_response determines if SSL is needed from the URL. There are situations
where this can prove less flexible, but if you simply want to retrieve documents from the
Web, it’s an ideal method to use.

445

CHAPTER 14 RUBY AND THE INTERNET

Checking for Errors and Redirects

Our examples so far have assumed that you're using valid URLs and are accessing
documents that actually exist. However, Net:: HTTP will return different responses based
on whether the request is a success or not or if the client is being redirected to a different
URL, and you can check for these. In the following example, a method called get_web
document is created that accepts a single URL as a parameter. It parses the URL, attempts
to get the required document, and then subjects the response to a case/when block:

require 'net/http’

def get web document(url)
uri = URI.parse(url)
response = Net::HTTP.get response(uri)

case response
when Net::HTTPSuccess
return response.body.force encoding("UTF-8")
when Net::HTTPRedirection
return get web document(response['Location'])
else
return nil
end
end

puts get web_document('https://www.apress.com/sitemap.xml")
puts get web_document('https://www.apress.com/doesnotexist.xml")
puts get web_document('https://ruby-doc.org/core")

Note https://ruby-doc.org/core redirects to the latest version of the Ruby
core library. This helps to demonstrate that the redirect is handled correctly.

If the response is of the Net: :HTTPSuccess class, the content of the response will be
returned; if the response is a redirection (represented by a Net: :HTTPRedirection object
being returned), then get _web_document will be called again, with the URL specified
as the target of the redirection by the remote server. If the response is neither a success

446

https://ruby-doc.org/core

CHAPTER 14 RUBY AND THE INTERNET

nor a redirection request, an error of some sort has occurred, and nil will be returned
(hence the empty line in the preceding results).

If you wish, you can check for errors in a more granular way. For example, the
error 404 means “File Not Found” and is specifically used when trying to request a
file that does not exist on the remote web server. When this error occurs, Net::HTTP
returns a response of class Net : :HTTPNotFound. However, when dealing with error 403,
“Forbidden,” Net::HTTP returns a response of class Net: :HTTPForbidden.

Note Alist of HTTP errors and their associated Net::HTTP response classes
is available at www. ruby-doc.org/stdlib/libdoc/net/http/xrdoc/
classes/Net/HTTP.html.

Basic Authentication

As well as basic document retrieval, net/http supports the Basic Authentication scheme
used by many web servers to protect their documents in a password-protected area.
This demonstration shows how the flexibility of performing the entire request with
Net::HTTP.start can come in useful:

require 'net/http’
url = URI.parse('http://browserspy.dk/password-ok.php")

Net::HTTP.start(url.host, url.port) do |http]|
req = Net::HTTP::Get.new(url.path)
req.basic_auth('test', 'test')
puts http.request(req).body

end

Note Authentication is ignored on requests for unprotected URLSs, but if you were
trying to access a URL protected by Basic Authentication, basic_auth allows you
to specify your credentials.

447

http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/classes/Net/HTTP.html
http://www.ruby-doc.org/stdlib/libdoc/net/http/rdoc/classes/Net/HTTP.html

CHAPTER 14 RUBY AND THE INTERNET

Posting Form Data

In our examples so far, we have only been retrieving data from the Web. Another form
of interaction is to send data to a web server. The most common example of this is
when you fill out a form on a web page. You can perform the same action from Ruby, for
example:

require 'net/http’
url = URI.parse('fakeserver.apress.com/form.cgi')

response = Net::HTTP.post form(url,{'name' => 'David', ‘'age' => '24'})
puts response.body

You say David is 24 years old.

In this example, you use Net: :HTTP.post_form to perform a POST HTTP request to
the specified URL with the data in the hash parameter to be used as the form data.

Note fakeserver.apress.com/form.cgi isnota working URL. For this
code to work, you will need to provide a URL that accepts a HTTP POST.

As with the basic document retrieval examples, there’s a more complex, lower-level
way to achieve the same thing by taking control of each step of the form submission
process:

require 'net/http’
url = URI.parse('fakeserver.apress.com/form.cgi')

Net::HTTP.start(url.host, url.port) do |http]|
req = Net::HTTP::Post.new(url.path)
req.set_form data({ 'name' => 'David', 'age' => '24' })
puts http.request(req).body

end

This technique also allows you to use the basic_auth method if needed.

448

CHAPTER 14 RUBY AND THE INTERNET

Using HTTP Proxies

Proxying is when HTTP requests do not go directly between the client and the HTTP
server, but through a third party en route. In some situations, it might be necessary to use
an HTTP proxy for your HTTP requests. This is a common scenario in schools and offices
where web access is regulated or filtered.

net/http supports proxying by creating an HTTP proxy class upon which you
can then use and perform the regular HTTP methods. To create the proxy class, use
Net::HTTP::Proxy, for example:

web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)

This call to Net: :HTTP: : Proxy generates an HTTP proxy class that uses a proxy with
a particular hostname on port 8080. You would use such a proxy in this fashion:

require 'net/http’
web proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip', 8080)
url = URI.parse('https://www.apress.com/sitemap.xml")

web _proxy.start(url.host, url.port, use ssl: true) do |http]|
req = Net::HTTP::Get.new(url.path)
puts http.request(req).body.force encoding("UTF-8")

end

In this example, web_proxy replaces the reference to Net:: HTTP when using the
start method. You can use it with the simple get_response technique you used earlier
too:

require 'net/http’
web_proxy = Net::HTTP::Proxy('your.proxy.hostname.or.ip", 8080)
url = URI.parse('https://www.apress.com/sitemap.xml")

response = web_proxy.get response(url)
puts response.body.force encoding("UTF-8")

449

CHAPTER 14 RUBY AND THE INTERNET

These examples demonstrate that if your programs are likely to need proxy support
for HTTP requests, it might be worth generating a proxy-like system even if a proxy isn’t
required in every case, for example:

require 'net/http’

http_class = ARGV.first ? Net::HTTP::Proxy(ARGV[O], ARGV[1]) : Net::HTTP
url = URI.parse('https://www.apress.com/sitemap.xml")

response = http _class.get response(url)
puts response.body.force encoding("UTF-8")

If this program is run and an HTTP proxy hostname and port are supplied on the
command line as arguments for the program, an HTTP proxy class will be assigned to
http_class. If no proxy is specified, http class will simply reference Net::HTTP. This
allows http_class to be used in place of Net:: HTTP when requests are made, so that
both proxy and nonproxy situations work and are coded in exactly the same way.

Secure HTTP with HTTPS

HTTP is a plain text, unencrypted protocol, and this makes it unsuitable for transferring
sensitive data such as credit card information. HTTPS is the solution, as it’s the same as
HTTP but routed over Secure Socket Layer (SSL), which makes it unreadable to any third
parties.

Ruby’s net/https library makes it possible to access HTTPS URLs, and you can make
net/http use it semi-transparently by setting the use_ss1 attribute on a Net::HTTP
instance to true, like so:

require 'net/http’
url = URI.parse('https://www.apress.com/sitemap.xml")

http = Net::HTTP.new(url.host, url.port)
http.use ssl = true if url.scheme == 'https'

request = Net::HTTP::Get.new(url.path)
puts http.request(request).body.force encoding("UTF-8")

450

CHAPTER 14 RUBY AND THE INTERNET

Note that you use the scheme method of url to detect if the remote URL is in fact one
that requires SSL to be activated.
It’s trivial to mix in the form-posting code to get a secure way of sending sensitive

information to the remote server:

require 'net/http’

This isn't a working URL, replace with a URL that accepts POST request
url = URI.parse('https://your.serversomewhere.com/form1")

http = Net::HTTP.new(url.host, url.port)
http.use_ssl = true if url.scheme == 'https'

request = Net::HTTP::Post.new(url.path)
request.set_form_data({ 'credit_card_number' =»> '1234123412341234' })
puts http.request(request).body.force encoding("UTF-8")

net/https also supports associating your own client certificate and certification
directory with your requests, as well as retrieving the server’s peer certificate. However,
these are advanced features only required in a small number of cases and are beyond the
scope of this section. Refer to Appendix B for links to further information.

The Open-Uri Library

open-uri is a library that wraps up the functionality of net/http, net/https, and net/ftp
into a single package. Although it lacks some of the raw power of using the constituent
libraries directly, open-uri makes it a lot easier to perform all the main functions.

A key part of open-uri is the way it abstracts common Internet actions and allows file
1/0 techniques to be used on them. Retrieving a document from the Web becomes much
like opening a text file on the local machine:

require 'open-uri'
f = open('https://www.apress.com/sitemap.xml")
puts f.readlines.join

As with File: :open, open returns an I/O object (technically a StringIO object), and
you can use methods such as each_line, readlines, and read, as you did in Chapter 9:

451

CHAPTER 14 RUBY AND THE INTERNET
require 'open-uri'
f = open('https://www.apress.com/sitemap.xml")
puts "The document is #{f.size} bytes in length"
f.each _line do |line|

puts line
end

The document is 706 bytes in length

Also, in a similar fashion to the File class, you can use open in a block style:
require 'open-uri’
open('https://www.apress.com/sitemap.xml') do ||

puts f.readlines.join
end

Note HTTPS and FTP URLs are treated transparently. You can use any HTTP,
HTTPS, or FTP URL with open.

As well as providing the open method as a base method that can be used anywhere,
you can use it directly on URI objects:

require 'open-uri'

url = URI.parse('https://www.apress.com/sitemap.xml")
url.open { |f| puts f.read }

or perhaps:

require 'open-uri'
puts URI.parse('https://www.apress.com/sitemap.xml').open.read

452

CHAPTER 14 RUBY AND THE INTERNET

In addition to acting like an I/O object, open-uri enables you to use methods
associated with the object it returns to find out particulars about the HTTP (or FTP)
response itself, for example:

require 'open-uri'
f = URI.open('https://www.apress.com/sitemap.xml")

puts f.content_type
puts f.last modified

application/xml
2020-08-11 00:47:07 UTC
Last, it’s possible to send extra header fields with an HTTP request by supplying an
optional hash parameter to open:
require 'open-uri'
f = URI.open('https://www.apress.com/sitemap.xml’,

{'User-Agent' => 'Mozilla/5.0 (platform; rv:geckoversion) Gecko/
geckotrail Firefox/firefoxversion'})

puts f.read

In this example, a “user agent” header is sent with the HTTP request that makes
it appear as if you're using Firefox to request the remote file. Sending a user agent
header can be a useful technique if you're dealing with a website that returns different
information to different types of browsers. Ideally, however, you should use a user agent
header that reflects the name of your program.

Tip The HTTParty gem offers yet another way to fetch data via HTTP and is
particularly well suited to interacting with APIs.

453

CHAPTER 14 RUBY AND THE INTERNET

Processing Web Content

As you saw earlier, retrieving data from the Web is easy with Ruby. Once you've retrieved
the data, it’s likely you'll want to do something with it. Parsing data from the Web using
regular expressions and the usual Ruby string methods is an option, but several libraries
exist that make it easier to deal with different forms of web content specifically. In this
section, we'll look at some of the best ways to process HTML and XML.

Parsing HTML with Nokogiri

Nokogiri is a Ruby library designed to make HTML parsing fast, easy, and fun. It’s
available as a Rubygem via gem install nokogiri

Once installed, Nokogiri is easy to use. The following example loads the library,
places some basic HTML in a string, creates a document object, and then searches for
H1 tags (using a CSS selector in the css method call). It then retrieves the first H1 tag
(using first, as css returns an array) and looks at the HTML within it (using inner_
html):

require 'nokogiri'

html = <<END_OF HTML

<html>

<head>

<title>This is the page title</title>
</head>

<body>

<h1>Big heading!</h1>

<p>A paragraph of text.</p>

Item 1 in a listItem 2<li class="highlighted">Item
3</1i>

</body>

</html>

END_OF HTML

454

CHAPTER 14 RUBY AND THE INTERNET

doc = Nokogiri::HTML(html)
puts doc.css("h1").first.inner html

Big heading!
Nokogiri can work directly with open-uri to load HTML from remote files, as in the

following example:

require 'nokogiri’
require 'open-uri'

doc = Nokogiri::HTML(URI.open('https://www.apress.com/us/about"))
puts doc.css("h1").first.inner html

Using a combination of search methods, you can search for the list within the HTML
(defined by the tags, where the <1i> tags denote each item in the list) and then
extract each item from the list:

list = doc.css("ul").first

list.css("1i").each do |item|
puts item.inner html

end

Search
Menu

As well as searching for elements and returning an array, Nokogiri can also search for
the first instance of an element only, using at:

list = doc.at("ul")

However, Nokogiri can search for more than element or tag names. It also supports
XPath and CSS expressions. These querying styles are beyond the scope of this chapter,
but here’s a demonstration of using CSS classes to find certain elements:

455

CHAPTER 14 RUBY AND THE INTERNET

list = doc.at("ul")
highlighted item = list.at(".search")
puts highlighted item.inner html

Search

This example finds the first list in the HTML file and then looks for a child element
that has a class name of search. The rule . search looks for a class name of search,
whereas a rule of #search would search for an element with the ID of search.

Parsing JSON

JavaScript Object Notation (JSON) is a simple, lightweight data format that can represent
many different structures of data. Here is an example of a JSON document:

[
{

"name": "Peter Cooper",
"gender": "Male"

})

{

"name": "Carleton DilLeo"
"gender": "Male"

}

This JSON document defines a set of people containing two individual persons, each
of whom has a name and gender.

JSON is prevalent when it comes to sharing data on the Internet in a form that’s
easy for machines to parse and is especially popular when using APIs and machine-
accessible services provided online, such as Google APIs and other programming
interfaces to online services. Due to JSON’s popularity, it’s worthwhile to see how to
parse it with Ruby.

Ruby provides a JSON as part of the standard library. It’s very easy to use.

Here’s a basic demonstration of parsing a JSON file looking for certain elements:

456

CHAPTER 14 RUBY AND THE INTERNET
require 'json'

json = <<END_JSON

[
{
"name": "Peter Cooper",
"gender": "Male"
1
{
"name": "Carleton Dileo",
"gender": "Male"
}
]
END_JSON

people = JSON.parse(json, symbolize names: true)

people.each do |person]|
puts "#{person[:name]} is a #{person[:gender]}"
end

Peter Cooper is a Male

Carleton DiLeo is a Male

In this example, we store JSON in the variable json. Next, we use JSON.parse method
call to parse the JSON into a Ruby hash. Notice we include the option symbolize names.
This option allows us to use a symbol instead of a string to access the hash returned by
JSON.parse. Using symbolize names isn’t necessary, but without it, our code looks like
this:

people = JSON.parse(json)
people.each do |person]|

puts "#{person['name']} is a #{person['gender']}"
end

While functional, it’s a little harder to read. The Ruby JSON library has a lot more
functionality. Check out the ruby docs page, https://ruby-doc.com/stdlib/1libdoc/
json/rdoc/ISON.html, for more information.

457

https://ruby-doc.com/stdlib/libdoc/json/rdoc/JSON.html
https://ruby-doc.com/stdlib/libdoc/json/rdoc/JSON.html

CHAPTER 14 RUBY AND THE INTERNET

Email

Email predates the invention of the Internet and is still one of the most important and
popular technologies used online. In this section, you'll look at how to retrieve and
manage email located on POP3 servers, as well as how to send email using an SMTP

Server.

Receiving Mail with POP3

Post Office Protocol 3 (POP3) is the most popular protocol used to retrieve email from
a mail server. If you're using an email program that’s installed on your computer (as
opposed to webmail, such as Gmail or Microsoft Outlook), it probably uses the POP3
protocol to communicate with the mail server that receives your mail from the outside
world.

With Ruby, it’s possible to use the net/pop library to do the same things that your
email client can, such as preview, retrieve, or delete mail. If you were feeling creative,

you could even use net/pop to develop your own anti-spam tools.

Note In this section, our examples won’t run without adjustments, as they

need to operate on a real mail account. If you wish to run them, you would need

to replace the server name, username, and passwords with those of a POP3/

mail account that you have access to. Ideally, you’ll be able to create a test email
account if you want to play with the examples here, or have a backup of your mail
first, in case of unforeseen errors. That’s because although you cannot delete mail
directly from your local email program, you might delete any new mail waiting on
your mail server. Once you’re confident of your code and what you want to achieve,
you can then change your settings to work on a live account.

The basic operations you can perform with a POP3 server are to connect to it,
receive information about the mail an account contains, view that mail, delete the mail,
and disconnect. First, you'll connect to a POP3 server to see if there are any messages

available for download, and if so, how many:

require 'net/pop’

458

CHAPTER 14 RUBY AND THE INTERNET

mail server = Net::POP3.new('mail.mailservernamehere.com")

begin
mail server.start('username','password")
if mail server.mails.empty?
puts "No mails"
else
puts "#{mail server.mails.length} mails waiting"
end
rescue
puts "Mail error"
end

This code first creates an object referring to the server and then uses the start
method to connect. The entire section of the program that connects to and works with
the mail server is wrapped within a begin/ensure/end block so that connection errors
are picked up without the program crashing out with an obscure error.

Once start has connected to the POP3 server, mail server.mails contains an array
of Net: :POPMail objects that refer to each message waiting on the server. You use Array’s
empty? method to see if any mail is available; if so, the size of the array is used to tell how
many mails are waiting.

You can use the Net: : POPMail objects’ methods to manipulate and collect the
server-based mails. Downloading all the mails is as simple as using the pop method for
each Net: :POPMail object:

mail server.mails.each do |m|
mail = m.pop
puts mail

end

As each mail is retrieved (or popped, if you will) from the server, the entire content
of the mail, with headers and body text, is placed into the mail variable before being
displayed on the screen.

To delete a mail, you can use the delete method, although mails are only marked for
deletion later, once the session has ended:

459

CHAPTER 14 RUBY AND THE INTERNET

mail server.mails.each do |m|
m.delete if m.pop =~ /\bthis is a spam email\b/i
end

This code goes through every message in the account and marks it for deletion if it
contains the string this is a spam email.

You can also retrieve just the headers. This is useful if you're looking for a mail with
a particular subject or a mail from a particular email address. Whereas pop returns the
entire mail (which could be up to many megabytes in size), header only returns the
mail’s header from the server. The following example deletes messages if their subject
contains the word medicines:

mail server.mails.each do |m|
m.delete if m.header =~ /Subject:.+?medicines\b/i
end

To build a rudimentary anti-spam filter, you could use a combination of the mail
retrieval and deletion techniques to connect to your mail account and delete unwanted
mails before your usual mail client ever sees them. Consider what you could achieve by
downloading mail, passing it through several regular expressions, and then choosing to
delete depending on what you match.

Sending Mail with SMTP

Whereas POP3 handles the client-side operations of retrieving, deleting, and previewing
email, Simple Mail Transfer Protocol (SMTP) handles sending email and routing email
between mail servers. In this section, you won’t be looking at this latter use, but will use
SMTP simply to send mails to an email address.

The net/smtp library allows you to communicate with SMTP servers directly. On
many UNIX machines, especially servers on the Internet, you can send mail to the SMTP
server running on the local machine and it will be delivered across the Internet. In these
situations, sending email is as easy as this:

require 'net/smtp’

message = <<MESSAGE_END
From: Private Person <me@privacy.net>

460

CHAPTER 14 RUBY AND THE INTERNET

To: Authors of Beginning Ruby <test@rubyinside.com>
Subject: SMTP email test

This is a test email message.
MESSAGE_END

Net::SMTP.start('localhost', 25) do |smtp|
smtp.send_message message, 'me@privacy.net', 'test@rubyinside.com’
end

You place a basic email in message, using a here document, taking care to format the
headers correctly (emails require From, To, and Subject headers, separated from the
body of the email with a blank line, as in the preceding code). To send the mail, you use
Net::SMTP to connect to the SMTP server on the local machine and then use the send_
message method along with the message, the from address, and the destination address
as parameters (even though the from and to addresses are within the email itself, these
aren’t always used to route mail).

If you're not running an SMTP server on your machine, you can use Net::SMTP to
communicate with a remote SMTP server. Unless you're using a webmail service (such
as Hotmail or Yahoo! Mail), your email provider will have provided you with outgoing
mail server details that you can supply to Net::SMTP, as follows:

Net::SMTP.start('mail.your-domain.com")

This line of code connects to the SMTP server on port 25 of mail.your-domain.com
without using any username or password. If you need to, though, you can specify port
number and other details, for example:

Net::SMTP.start('mail.your-domain.com', 25, 'localhost', 'username', «
"password’, :plain)

This example connects to the SMTP server atmail.your-domain.comusing a
username and password in plain text format. It identifies the client’s hostname as
localhost.

Note Net::SMTP also supports LOGIN and CRAM-MD5 authentication schemes.
To use these, use :1login or :cram_md5 as the sixth parameter passed into start.

461

CHAPTER 14 RUBY AND THE INTERNET

File Transfers with FTP

File Transfer Protocol (FTP) is a basic networking protocol for transferring files on
any TCP/IP network. Although files can be sent back and forth on the Web, FTP is
still commonly used for large files or for access to large file repositories that have no
particular relevance to the Web. One of the benefits of FTP is that authentication and
access control is built in.

The core part of the FTP system is an FTP server, a program that runs on a file server
that allows FTP clients to download and/or upload files to that machine.

In a previous section of this chapter, called “The open-uri Library,” we looked at
using the open-uri library to retrieve files easily from the Internet. The open-uri supports
HTTP, HTTPS, and FTP URLs and is an ideal library to use if you want to download files
from FTP servers with as little code as possible. Here’s an example:

require 'open-uri'

output = File.new('MD5SUM.txt"', 'wb')
URI.open('ftp://cdimage.debian.org/debian-cd/current/amd64/iso-cd/MD5SUMS")
do |f|

output.print f.read
end
output.close

This example downloads a file from an FTP server and saves its contents into a local
file.

Note The example might fail for you, as your network connection might not
support active FTP and might require a passive FTP connection. This is covered
later in this section.

However, for more complex operations, the net/ftp library is ideal, as it gives you
lower-level access to FTP connections, as net/http does to HTTP requests.

Connection and Basic FTP Actions

Connecting to an FTP server with net/ftp using an FTP URL is a simple operation:

462

CHAPTER 14 RUBY AND THE INTERNET
require 'net/ftp'
require 'uri'

uri = URI.parse('ftp://cdimage.debian.org/debian-cd/current")

Net::FTP.open(uri.host) do |ftp|
ftp.login 'anonymous', 'me@privacy.net’
ftp.passive = true
ftp.list(uri.path) { |path| puts path }

end

drwxr-sr-x 19 ftp ftp 19 Aug 02 04:00 amd64
drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 armé64
drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 armel
drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 armhf
drwxr-sr-x 19 ftp ftp 19 Aug 02 04:00 1386
drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 mips
drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 mipsé64el
drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 mipsel
drwxr-sr-x 7 ftp ftp 7 Aug 02 04:00 multi-arch
drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 ppcb4el
drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 s390x
drwxr-sr-x 11 ftp ftp 11 Aug 02 04:00 source
drwxr-sr-x 2 ftp ftp 4 Jul 06 2019 trace

You use URI.parse to parse a basic FTP URL and connect to the FTP server with
Net::FTP. open. Once the connection is open, you have to specify login credentials
(much like the authentication credentials when using Net::HTTP) with the ftp object’s
login method. Then you set the connection type to be passive (this is an FTP option that

463

CHAPTER 14 RUBY AND THE INTERNET

makes an FTP connection more likely to succeed when made from behind a firewall—
the technical details are beyond the scope of this book) and then ask the FTP server to
return a list of the files in the directory referenced in your URL (the root directory of the
FTP server in this case).

Net::FTP provides a login method that you can use against a Net: : FTP object, like
s0:

require 'net/ftp'

ftp = Net::FTP.new('cdimage.debian.org")
ftp.passive = true

ftp.login

ftp.list('*') { |file| puts file }
ftp.close

Note If you know you’re going to be connecting to an anonymous FTP server
(one that is public and requires only generic credentials to log in), you don’t need
to specify any credentials with the login method. This is what happens in the
preceding example.

This example demonstrates a totally different way of using Net::FTP to connect to
an FTP server. As with Net: :HTTP and File classes, it’s possible to use Net::FTP within
a structural block or by manually opening and closing the connection by using the
reference object (ftp in this case).

As no username and password are supplied, the login method performs an
anonymous login to cdimage.debian.org. Note that in this example you connect to
an FTP server by its hostname rather than with a URL. However, if a username and
password are required, use this code:

ftp.login(username, password)

Once connected, you use the 1ist method on the ftp object to get a list of all files in
the current directory. Because you haven't specified a directory to change to, the current
directory is the one that the FTP server puts you in by default. However, to change
directories, you can use the chdir method:

464

CHAPTER 14 RUBY AND THE INTERNET
ftp.chdir('debian-cd")
It’s also possible to change to any directory in the remote filesystem:
ftp.chdir('/debian-cd/current")

If you have permission to do so (this depends on your account with the FTP server),
you might also be able to create directories. This is done with mkdir:

ftp.mkdir('test")

Performing this operation on an FTP server where you don’t have the correct
permissions causes an exception, so it's worth wrapping such volatile actions within
blocks to trap any exceptions that arise.

Likewise, you can delete and rename files:

ftp.rename(filename, new_name)
ftp.delete(filename)

These operations will work only if you have the correct permissions.

Downloading Files

Downloading files from an FTP server is easy if you know the filename and what type of
file you're trying to download. Net::FTP provides two useful methods to download files:
getbinaryfile and gettextfile. Plain text files and binary files (such as images, sounds,
or applications) are sent in a different way, so it’s essential you use the correct method.

In most situations, you’'ll be aware ahead of time which technique is required. Here’s an
example showing how to download a binary file from the official Ruby FTP server:

require 'net/ftp’

ftp = Net::FTP.new('cdimage.debian.org")
ftp.passive = true

ftp.login
ftp.chdir('/debian-cd/current/amd64/iso-cd/")
ftp.getbinaryfile('MD5SUMS")

ftp.close

465

CHAPTER 14 RUBY AND THE INTERNET

getbinaryfile accepts several parameters, only one of which is mandatory. The
first parameter is the name of the remote file (MD5SUMS in this case), an optional second
parameter is the name of the local file to write to, and the third optional parameter is a
block size that specifies in what size chunks (in bytes) the file is downloaded. If you omit
the second parameter, the downloaded file will be written to the same filename in the
local directory, but if you want to write the remote file to a particular local location, you
can specify this.

One problem with using getbinaryfile in this way is that it locks up your program
until the download is complete. However, if you supply getbinaryfile with a code
block, the downloaded data will be supplied into the code block as well as saved to the
file:

ftp.getbinaryfile('MD5SUMS', 'local-filename', 1024) do |blk|
puts "A 100KB block of the file has been downloaded"
end

This code prints a string to the screen whenever another 1KB of the file has been
downloaded. You can use this technique to provide updates to the user, rather than
make him or her wonder whether the file is being downloaded.

You could also download the file in blocks such as this and process them on the fly in
the code block, like so:

ftp.getbinaryfile('MD5SUMS', 'local-filename', 1024) do |blk|
.. do something with blk here ..
end

Each 1KB chunk of the file that's downloaded is passed into the code block.
Unfortunately, the file is still saved to a local file, but if this isn’t desired, you could use
tempfile (as covered in Chapter 9), which is then immediately deleted.

Downloading text or ASCII-based files uses the same technique as in the preceding
code, but demands using gettextfile instead. The only difference is that gettextfile
doesn’t accept the third block size parameter and instead returns data to the code block
line by line.

466

CHAPTER 14 RUBY AND THE INTERNET

Uploading Files

Uploading files to an FTP server is possible only if you have write permissions on the
server in the directory to which you want to upload. Therefore, none of the examples in
this section will work unedited, as you can’t provide an FTP server with write access (for
obvious reasons!).

Uploading is the exact opposite of downloading, and net/ftp provides putbinaryfile
and puttextfile methods that accept the same parameters as getbinaryfile and
gettextfile. The first parameter is the name of the local file you want to upload, the
optional second parameter is the name to give the file on the remote server (defaults to
the same as the uploaded file’s name if omitted), and the optional third parameter for
putbinaryfile is the block size to use for the upload. Here’s an upload example:

require 'net/ftp'

ftp = Net::FTP.new('ftp.domain.com")
ftp.passive = true

ftp.login
ftp.chdir('/your/folder/name/here")
ftp.putbinaryfile('local file")
ftp.close

Aswith getbinaryfile and gettextfile, if you supply a code block, the uploaded
chunks of the file are passed into it, allowing you to keep the user informed of the
progress of the upload:

require 'net/ftp'
ftp = Net::FTP.new('ftp.domain.com")
ftp.passive = true

ftp.login
ftp.chdir('/your/folder/name/here")

count = 0

ftp.putbinaryfile('local file', 'local file', 100000) do |block|
count += 100000

467

CHAPTER 14 RUBY AND THE INTERNET

puts "#{count} bytes uploaded"
end

ftp.close

If you need to upload data that’s just been generated by your Ruby script and isn’t
within a file, you need to create a temporary file with tempfile and upload from that, for
example:

require 'net/ftp'
require 'tempfile’

tempfile = Tempfile.new('test")

my data = "This is some text data I want to upload via FTP."
tempfile.puts my data

ftp = Net::FTP.new('ftp.domain.com")
ftp.passive = true

ftp.login
ftp.chdir('/your/folder/name/here")

ftp.puttextfile(tempfile.path, 'my data"')
ftp.close
tempfile.close

Summary

In this chapter, we looked at Ruby’s support for using various Internet systems and
protocols, how Ruby can work with the Web, and how to process and manipulate data
retrieved from the Internet.

Let’s reflect on the main concepts covered in this chapter:

e HTTP (HyperText Transfer Protocol): A protocol that defines the way
web browsers (clients) and web servers talk to each other across a
network such as the Internet.

e HTTPS: A secure version of HTTP that ensures data being transferred
in either direction is only readable at each end. Anyone intercepting

468

CHAPTER 14 RUBY AND THE INTERNET

an HTTPS stream cannot decipher it. It's commonly used for
ecommerce and for transmitting financial data on the Web.

e HTML (HyperText Markup Language): A text formatting and layout
language used to represent web pages.

e Nokogiri: An HTML and XML parser developed to make it easy to
process and parse HTML and XML directly with Ruby. It is noted for
its speed, with portions that demand extra performance written in C.

e POP3 (Post Office Protocol 3): A mail server protocol commonly
used when retrieving email. You can learn more about the protocol
specifically at www.ietf.org/rfc/rfc1939.txt.

e SMTP (Simple Mail Transfer Protocol): A mail server protocol
commonly used to transfer mail to a mail server or between mail
servers. From a typical user’s perspective, SMTP is used for sending
mail, rather than receiving it. You can learn more about the protocol
specifically at www.fags.org/rfcs/rfc821.html.

e FTP (File Transfer Protocol): An Internet protocol for providing access
to files located on a server and allowing users to download from it
and upload to it.

This chapter covered a variety of Internet-related functions, but in Chapter 15, we're
going to look more deeply at networking, servers, and network services. Most of what is
covered in Chapter 15 is also applicable to the Internet, but is at a much lower level than
FTP or using the Web.

469

http://www.ietf.org/rfc/rfc1939.txt
http://www.faqs.org/rfcs/rfc821.html

CHAPTER 15

Networking and Sockets

In this chapter, we're going to look at how to use Ruby to perform network-related
operations, how to create servers and network services, and how to create persistent
processes (daemons) that can respond to queries over a network.

Chapter 14 looked at Ruby’s Internet capabilities from a high level, like making
requests to websites, processing HTML, working with JSON, retrieving email, and
managing files over FTP. In contrast, this chapter looks at networking and network
services at a lower level.

Let’s start with a look at the basic networking concepts we’ll be using in this chapter.

Networking Concepts

A network is a group of computers connected in some fashion. If you have several
computers at home all sharing a wired or wireless router, this is called your local area
network (LAN). Your computers are probably also connected to the Internet, another
form of network. Networking is the overall concept of communications between two or
more computers or devices, and this chapter looks at how you can use Ruby to perform
operations relating to a network, whether a local or global one.

Note If you are experienced with networks and TCP, UDP, and IP protocols, you
might wish to skip ahead a little to the “Basic Network Operations” section.

TCP and UDP

There are many types of networks, but the type of network we’re most interested in is
one that uses TCP/IP. TCP/IP is the collective name for two protocols: Transmission
Control Protocol (TCP) and Internet Protocol (IP). TCP defines the concept of computers

471
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_15

https://doi.org/10.1007/978-1-4842-6324-2_15#DOI

CHAPTER 15 NETWORKING AND SOCKETS

connecting to one another, and it makes sure packets of data are transmitted and
successfully received by machines, in the correct order. IP, on the other hand, is the
protocol that’s concerned with actually routing the data from one machine to another. IP
is the base of most local networks and the Internet, but TCP is a protocol that sits on top
and makes the connections reliable.

User Datagram Protocol (UDP) is another protocol like TCP, but unlike TCP, it isn’t
considered reliable and it doesn’t ensure that a remote machine receives the data you
sent. When you send data using UDP, you simply have to hope it reached its destination,
as you'll receive no acknowledgment of failure. Despite this, UDP is still used for various
non-mission-critical tasks, as it’s fast and has a low overhead.

Commonly, operations that require a permanent connection (whether over a long
period of time or not) between two machines use TCP and TCP-based protocols. For
example, almost all services that require authentication to work, such as email access,
use TCP-based protocols so that the authentication information can be sent only once—
at the start of the connection—and then both ends of the connection are satisfied that
connection has been authenticated.

Quick operations where a connection is unimportant or easily repeatable, such as
converting domain names and hostnames into IP addresses and vice versa, can run on
UDP. If an answer to a query isn’t received in sufficient time, another query can simply
be issued. UDP is sometimes also used for streaming video and audio due to its low
overhead and latency.

IP Addresses and DNS

A machine on an IP-based network has one or many IP addresses. Each IP number
used on a network must be unique, although each computer has local IP addresses that
refer to the current machine (e.g., 127.0.0.1, also known as localhost). When data is sent
across the network to a particular IP address, the machine with that address will receive
the data.

When you use the Web and access a website such as www.apress.com, your computer
first asks a Domain Name Service (DNS) server for the IP address associated with the
hostname www. apress.com. Once it gets the raw address in response (in this case,
207.97.243.208), your web browser makes a connection to that machine on port 80.
Machines can make and receive connections on different TCP (or UDP) ports (from a
range of 0 through 65,535), and different ports are assigned to different types of services.

472

http://www.apress.com
http://www.apress.com

CHAPTER 15 NETWORKING AND SOCKETS

For example, port 80 is the default port used for web servers operating over the insecure
default HTTP port. (HTTPS/SSL, as used for encrypted web traffic, uses port 443 by
default.)

Next in this chapter, we're going to look at how to perform operations over an IP-
based network, such as checking the availability of machines on the network, and we’ll
create basic TCP and UDP clients and servers.

Basic Network Operations

Network programming is usually a difficult process. At the lowest levels, it involves a lot
of arcane terminology and interfacing with antique libraries. However, Ruby is not usual,
and Ruby’s libraries take away most of the complexities usually associated with network
programming.

In this section, we're going to look at how to achieve a few basic networking
operations, such as checking whether a server is present on a network, looking at how
data is routed across the network between two points, and how to connect directly to a
service offered on a remote machine.

Checking Machine and Service Availability

One of the most basic network operations you can perform is a ping, a simple check that
another machine is available on the network or that a service it offers is available.

One ping library that’s available is net-ping, which is available as a gem with gem
install net-ping. net-ping can interface with your operating system’s ping command
to get a reliable response. It can also connect directly to services offered by a remote
machine to gauge whether it’s responding to requests or not:

require 'net/ping’

if Net::Ping::External.new('www.google.com').ping

puts "Pong!"
else

puts "No response”
end
Pong!

473

CHAPTER 15 NETWORKING AND SOCKETS

However, if you want to check whether a particular service is available, rather than a
machine in general, you can use net-ping to connect to a specific port using TCP or UDP:

require 'net/ping’

if Net::Ping::TCP.new('www.google.com', 80).ping
puts "Pong!"

else
puts "No response"

end

In this instance, you connect directly to www.google.com’s HTTP port as if you were
a web browser, but once you get a connection, you immediately disconnect again. This
allows you to verify that www.google. comis accepting HTTP connections.

Performing DNS Queries

Most Ruby networking libraries allow you to specify domain names and hostnames
when you want to interact with a remote server and automatically resolve these names
into IP addresses. However, this adds a small overhead, so in some situations you might
prefer to resolve IP addresses ahead of time yourself.

You might also use DNS queries to check for the existence of different hostnames
and to check whether a domain is active or not, even if it’s not pointing to a web server.

resolv is a library in the Ruby standard library, and it offers several methods that are
useful for converting between hostnames and IP addresses:

require 'resolv’
puts Resolv.getaddress("www.google.com")
209.85.229.99
This code returns an IP address of 209.85.229.99 for the main Google website.
However, if you run the same code several times, you might get several different

responses. The reason for this is that large websites such as Google spread their requests
over multiple web servers to increase speed.

474

http://www.google.com’s
http://www.google.com

CHAPTER 15 NETWORKING AND SOCKETS

You can also turn IP addresses into hostnames using the getname method, which
performs a reverse DNS lookup:

require 'resolv'
ip = "192.0.34.166"

begin

puts Resolv.getname(ip)
rescue

puts "No hostname associated with #{ip}"
end

34-166.1lax.icann.org

It’s important to note that not all IP addresses resolve back into hostnames, as this is
an optional requirement of the DNS system.

As well as converting between IP addresses and hostnames, resolv can also
retrieve other information from DNS servers, such as the mail server(s) associated
with a particular host or domain name. Whereas the records of which IP addresses are
associated with which hostnames are called A records, the records of which mail servers
are associated with a hostname are called MX records.

In the previous examples, you've used special helper methods directly made
available by the Resolv class, but to search for MX records, you have to use the
Resolv: :DNS class directly so you can pass in the extra options needed to search for
different types of records:

require 'resolv'

Resolv::DNS.open do |dns|
mail_servers = dns.getresources("google.com",
Resolv::DNS::Resource: :IN: :MX)
mail servers.each do |server|
puts "#{server.exchange.to s} - #{server.preference}"
end
end

475

CHAPTER 15 NETWORKING AND SOCKETS

alt3.aspmx.l.google.com - 40
alti.aspmx.l.google.com - 20
alt2.aspmx.l.google.com - 30
aspmx.l.google.com - 10

alt4.aspmx.1l.google.com - 50

In this example, you've performed a DNS request in a more detailed way
using Resolv: :DNS directly, rather than the convenient Resolv.getname and
Resolv.getaddress helpers, so that you could specify the MX request using the
Resolv::DNS::Resource: :IN: :MX option.

Note Readers who are savvy with DNS terminology might like to try using
CNAME, A, SOA, PTR, NS, and TXT variations of the preceding option, as these are
all supported.

MX records are useful if you want to send email to people, but you have no SMTP
server you can send mail through, as you can use Net::SMTP (as shown in Chapter 14)
directly against the mail servers for the domain name of the email address you want to
send to. For example, if you wanted to email someone whose email address ended with @
google.com, you could use Net::SMTP to connect directly to smtp2.google.com (or any
of the other choices) and send the mail directly to that user:

require 'resolv'
require 'net/smtp’

from = "your-email@example.com"
to = "another-email@example.com"

message = <<MESSAGE_END
From: #{from}

To: #{to}

Subject: Direct email test

This is a test email message.
MESSAGE_END

to domain = to.match(/\@(.+)/)[1]

476

CHAPTER 15 NETWORKING AND SOCKETS

Resolv::DNS.open do |dns|
mail _servers = dns.getresources(to domain, Resolv::DNS::Resource::IN::MX)
mail server = mail servers[rand(mail servers.size)].exchange.to s

Net::SMTP.start(mail server) do |smtp|
smtp.send_message message, from, to
end
end

Note You can learn more about DNS at https://en.wikipedia.org/wiki/
Domain_Name_System.

Servers and Clients

Clients and servers are the two major types of software that use networks. Clients connect
to servers, and servers process information and manage connections and data being
received from and sent to the clients. In this section, you're going to create some servers
that you can connect to using net/telnet and other client libraries covered in both this
chapter and Chapter 14.

UDP Client and Server

To demonstrate a basic client/server system, UDP is an ideal place to start. Unlike with
TCP, UDP has no concept of connections, so it works on a simple system where messages
are passed from one place to another with no guarantee of them arriving. Whereas TCP
is like making a phone call, UDP is like sending a postcard in the mail.

Creating a UDP server is easy. Let’s create a script named udpserver.rb:

require 'socket'

s = UDPSocket.new

s.bind(nil, 1234)

5.times do
text, sender = s.recvfrom(16)
puts text

end

477

https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Domain_Name_System

CHAPTER 15 NETWORKING AND SOCKETS

This code uses Ruby’s socket library, a library that provides the lowest-level access to
your operating system’s networking capabilities. socket is well suited for UDP, and in this
example, you create a new UDP socket and bind it to port 1234 on the local machine. You
loop five times, accepting data in 16-byte chunks from the socket and printing it to the

screen.

Note The reason for looping just five times is so that the script can end
gracefully after it receives five short messages. Later, however, we’ll look at ways
to keep servers running permanently.

Now that you have a server, you need a client to send data to it. Let’s create
udpclient.rb:

require 'socket'

s = UDPSocket.new
s.send("hello", 0, 'localhost', 1234)

This code creates a UDP socket, but instead of listening for data, it sends the string
"hello" to the UDP server on localhost at port 1234. If you run udpserver.rb at the
same time as udpclient.rb, “hello” should appear on the screen where udpserver.rb is
running. You have successfully sent data across a network (albeit on the same machine)
from a client to a server using UDP.

It’s possible, of course, to run the client and server on different machines, and if you
have multiple machines at your disposal, all you need to do is change 'localhost' on
the send method to the hostname or IP address of the machine where udpserver.rb is
running and ensure the receiver is using an IP address that the sender can reach (e.g.,
you could bind to 0.0.0.0 to accept connections from any externally facing IP address on
your machine).

Note localhost refers to your local loopback network interface, but this can
also sometimes be referred to using the IP address 127.0.0.1 (which will also be
picked up through 0.0.0.0), as you will see in the next example.

478

CHAPTER 15 NETWORKING AND SOCKETS

As you've seen, UDP is simple, but it’s possible to layer more advanced features
on top of it. For example, because there is no connection involved, you can alternate
between client and server modes with a single program, accomplishing a two-way effect.
You can demonstrate this easily by making a single program send and receive UDP data
to and from itself:

require 'socket'

host = 'localhost'’

port = 1234

s = UDPSocket.new
s.bind(nil, port)
s.send("1", 0, host, port)

5.times do
text, sender = s.recvfrom(16)
remote _host = sender[3]

puts "#{remote host} sent #{text}"

response = (text.to i * 2).to s
puts "We will respond with #{response}
s.send(response, 0, host, port)

end

127.0.0.1 sent 1

We will respond with 2

127.0.0.1 sent 2

We will respond with 4

127.0.0.1 sent 4

We will respond with 8

127.0.0.1 sent 8

We will respond with 16
127.0.0.1 sent 16

We will respond with 32

479

CHAPTER 15 NETWORKING AND SOCKETS

Note In a real-world situation, you would typically have two scripts, each on
a different machine and communicating between each other, but this example
demonstrates the logic necessary to achieve that result on a single machine for
ease of testing.

UDP has some benefits in speed and the amount of resources needed, but because it
lacks a state of connection and reliability in data transfer, TCP is more commonly used.
Next, we'll look at how to create some simple TCP servers to which you can connect with
net/telnet and other applications.

Building a Simple TCP Server

TCP servers are the foundation of most Internet services. Although lightweight time
servers and DNS servers can survive with UDP, when sending web pages and emails
around, it’s necessary to build a connection with a remote server to make the requests
and send and receive data. In this section, you're going to build a basic TCP server
that can respond to requests via telnet before moving on to creating something more
complex.

Let’s look at a basic server that operates on port 1234, accepts connections, prints
any text sent to it from a client, and sends back an acknowledgment:

require 'socket'
server = TCPServer.new(1234)

while connection = server.accept
while line = connection.gets
break if line =~ /quit/
puts line
connection.puts "Received!"
end

connection.puts "Closing the connection. Bye!"
connection.close
end

480

CHAPTER 15 NETWORKING AND SOCKETS

Note This server will go around the main loop permanently. To exit it, press Ctrl+C.

As well as being used to create UDP servers and clients, socket can also create TCP
servers and clients. In this example, you create a TCPServer object on port 1234 of the
local machine and then enter a loop that processes whenever a new connection is
accepted using the accept method on the TCPServer object. Once a connection has
been made, the server accepts line after line of input, only closing the connection if any
line contains the word quit.

To test this client, you can use your operating system’s telnet client (built into Linux
and Windows. OS X removed telnet so you will need to install it to use it. Once installed,
itis accessible from the command line as telnet.) as follows:

telnet 127.0.0.1 1234

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.

Hello!

Received!

quit

Connection closed by foreign host.

Alternatively, you can create your own basic client using net/telnet:
require 'net/telnet’

server = Net::Telnet::new('Host' => '127.0.0.1°',
"Port' => 1234,
'Telnetmode' => false)

lines to send = ['Hello!', 'This is a test', 'quit']

lines to send.each do |line|
server.puts(line)

server.waitfor(/./) do |datal|
puts data
end
end
481

CHAPTER 15 NETWORKING AND SOCKETS

As with the UDP client and server example, the client and server applications can
(and usually would) be placed on different machines. These test applications would
work in exactly the same way if the server were located on the other side of the world
and the client were running from your local machine, as long as both machines were
connected to the Internet.

However, one downside to your TCP server is that it can only accept one connection
at a time. If you telnet to it once and begin typing, but then another connection is
attempted, it might begin to connect, but no responses will be forthcoming for anything
sent. The reason for this is that your TCP server can work with only one connection at a
time in its current state. In the next section, we're going to look at how to create a more
advanced server that can deal with multiple clients at the same time.

Multi-client TCP Servers

Most servers on the Internet are designed to deal with large numbers of clients at any
one time. A web server that can only serve one file at once would quickly result in the
world’s slowest website as users began to stack up waiting to be served! The TCP server
in the previous section operated in this way and would be commonly known as a “single-
threaded” or “sequential” server.

Ruby’s Thread class makes it easy to create a multithreaded server—one that accepts
requests and immediately creates a new thread of execution to process the connection
while allowing the main program to await more connections:

require 'socket'
server = TCPServer.new(1234)

loop do
Thread.start(server.accept) do |connection|
while line = connection.gets
break if line =~ /quit/
puts line
connection.puts "Received!"
end

482

CHAPTER 15 NETWORKING AND SOCKETS

connection.puts "Closing the connection. Bye!"
connection.close
end
end

In this example, you have a permanent loop, and when server.accept responds,
anew thread is created and started immediately to handle the connection that has just
been accepted, using the connection object passed into the thread. However, the main
program immediately loops back and awaits new connections.

GServer

GServer is a Ruby library that used to be part of the standard library but that can now
be installed as a Ruby gem using gem install gserver, which implements a “generic
server” system. It features thread pool management, logging, and tools to manage
multiple servers at the same time. GServer is offered as a class, and you produce server
classes that inherit from it.

Other than simple management, GServer also allows you to run multiple servers
at once on different ports, allowing you to put together an entire suite of services in
just a few lines of code. Threading is entirely handled by GServer, although you can
get involved with the process if you like. GServer also implements logging features,
although, again, you can provide your own code for these functions if you wish.

Let’s look at the simplest TCP server possible with GServer:

require 'gserver'

class HelloServer < GServer
def serve(io)
io.puts("Hello!")
end
end

server = HelloServer.new(1234)
server.start
server.join

483

CHAPTER 15 NETWORKING AND SOCKETS

This code implements a basic server that simply outputs the word “Hello!” to any
client connecting to port 1234. If you telnet to connect to port 1234 (or even a web
browser, using http://127.0.0.1:1234/), you'll see the string “Hello!” returned to you
before the connection is closed.

In this example, you create a server class called HelloServer that descends from
GServer. GServer implements all the thread and connection management, leaving you
with only a handful of technicalities to worry about. In this simple example, you only
create a single server process, tell it to use port 1234, and start it immediately.

However, even this simple example will work with multiple clients, and if you telnet
to it multiple times in parallel, you'll find that all requests are processed successfully.
However, it’s possible to set a maximum number of allowed connections by supplying
more parameters to new:

require 'gserver'

class HelloServer < GServer
def serve(io)
io.puts("Say something to me:")
line = io.gets
io.puts("You said '#{line.chomp}'")
end
end

server = HelloServer.new(1234, '127.0.0.1', 4)
server.start
server.join

The new method for GServer accepts several parameters. In order, they are the port
number to run the server(s) on, the name of the host or interface to run the server(s) on,
the maximum number of connections to allow at once (set to 4 in this example), a file
handle of where to send logging messages, and a true or false flag to turn logging on
or off.

As mentioned earlier, you can create multiple servers at once:

require 'gserver'

class HelloServer < GServer
def serve(io)
io.puts("Say something to me:")

484

CHAPTER 15 NETWORKING AND SOCKETS

line = io.gets
io.puts("You said '#{line.chomp}'")
end
end

server = HelloServer.new(1234, '127.0.0.1', 4)
server.start

server2 = HelloServer.new(1235, '127.0.0.1', 4)
server2.start
sleep 10

Creating multiple servers is as easy as creating a new instance of HelloServer (or
any GServer descendent class), assigning it to a variable, and calling its start method.

Another difference between this example and the last is that at the end you don’t call
server.join. With GServer objects, join works in the same way as with Thread objects,
where calling join waits for that thread to complete before continuing execution. In
the first GServer examples, your programs would wait forever until you exited them
manually (e.g., using Ctrl+C). However, in the preceding example, you didn'’t call any
join methods and only slept for 10 seconds using sleep 10. This means the servers
you created are only available on ports 1234 and 1235 for 10 seconds after running the
program, at which point the program and its child threads all exit at once.

Because GServer allows multiple servers to run at the same time without impeding
the execution of the main program, you can manage the currently running servers by
using several methods GServer makes available to start, stop, and check servers:

require 'gserver'

class HelloServer < GServer
def serve(io)
io.puts("To stop this server, type 'shutdown'")
self.stop if io.gets =~ /shutdown/
end
end

server = HelloServer.new(1234)
server.start

485

CHAPTER 15 NETWORKING AND SOCKETS

loop do
break if server.stopped?
end

puts "Server has been terminated"

This time you put the main program into a loop waiting for the server to be stopped.
The server is stopped if someone connects and types shutdown, which triggers that
server’s stop method, leading to the whole server program ending.

You can also check from the process running a GServer whether a GServer is running on
a port without having the object reference available by using the in_service? class method:

if GServer.in service?(1234)

puts "Can't create new server. Already running!"
else

server = HelloServer.new(1234)
end

A GServer-Based Chat Server

With the knowledge picked up in the previous section, only a small jump in complexity is
required to build a practical application using GServer. You'll build a simple chat server
that allows a number of clients to connect and chat among each other.

The first step is to subclass GServer into a new class, ChatServer, and override the
new method with your own so that you can set up variables to store client IDs and the
chat log for all the clients to share:

require 'gserver'

class ChatServer < GServer
def initialize(*args)
super(*args)
Keep an overall record of the client IDs allocated
and the lines of chat
@client id = 0
@chat = []
end
end

486

CHAPTER 15 NETWORKING AND SOCKETS

The main part of your program can be like your other GServer-based apps, with a
basic initialization and a loop until the chat server shuts itself down:

server = ChatServer.new(1234)
server.start

loop do
break if server.stopped?
end

Note Remember that you can specify the hostname to serve from as the second
parameter to ChatServer.new. If you want to use this chat server over the
Internet, you will need to specify your remotely accessible IP address (or 0.0.0.0)
as this second parameter; otherwise, your server might only be available to
machines on your local network.

Now that you have the basics in order, you need to create a serve method that assigns
the connection the next available client ID (by using the variable @client_id), welcomes
the user, accepts lines of text from the user, and shows him or her the latest lines of text
entered by other users from time to time.

As the serve method is particularly long in this case, the complete source code of the
chat server is shown here, including comments:

require 'gserver'

class ChatServer < GServer
def initialize(*args)
super(*args)

Keep an overall record of the client IDs allocated
and the lines of chat
@client id = 0
@chat = []
end

def serve(io)
Increment the client ID so each client gets a unique ID
@client id += 1

487

CHAPTER 15 NETWORKING AND SOCKETS

my client id = @client id
my position = @chat.size

io.puts("Welcome to the chat, client #{@client id}!")

Leave a message on the chat queue to signify this client
has joined the chat
@chat << [my client id, "<joins the chat>"]

loop do
Every 2 seconds check to see if we are receiving any data
if I0.select([io], nil, nil, 2)
If so, retrieve the data and process it...
line = io.gets

If the user says 'quit', disconnect them
if line =~ /quit/
@chat << [my client id, "<leaves the chat>"]
break
end

Shut down the server if we hear 'shutdown'
self.stop if line =~ /shutdown/

Add the client's text to the chat array along with the
client's ID
@chat << [my client id, line]
else
No data, so print any new lines from the chat stream
@chat[my position..(@chat.size - 1)].each with index do |line, index|
io.puts("#{1line[0]} says: #{line[1]}")
end

Move the position to one past the end of the array
my position = @chat.size
end
end

end
end

488

CHAPTER 15 NETWORKING AND SOCKETS

server = ChatServer.new(1234)
server.start

loop do
break if server.stopped?
end

The chat server operates primarily within a simple loop that constantly checks
whether any data is waiting to be received with the following line:

if I0.select([io], nil, nil, 2)

I0.select is a special function that can check to see if an I/O stream has any data in
its various buffers (receive, send, and exceptions/errors, in that order). I0.select([io],
nil, nil, 2) returns a value if the connection with the client has any data received that
you haven'’t processed, but you ignore whether there is any data to send or any errors.
The final parameter, 2, specifies that you have a timeout of two seconds, so you wait for
two seconds before either succeeding or failing. This means that every two seconds, the
else block is executed, and any new messages in the chat log are sent to the client.

If you use telnet to connect to this chat server, a session would look somewhat like
this:

$ telnet 127.0.0.1 1234

Trying 127.0.0.1...

Connected to localhost.

Escape character is '*]'.
Welcome to the chat, client 1!
1 says: <joins the chat>

2 says: <joins the chat>
Hello 2!

1 says: Hello 2!

2 says: Hello 1!

2 says: I'm going now.. bye!

2 says: <leaves the chat>
quit

Connection closed by foreign host.

489

CHAPTER 15 NETWORKING AND SOCKETS

With the basic GServer principles covered in this and the previous sections, you
can create servers that operate to protocols of your own design or even create server
programs that can respond to preexisting protocols. All it requires is being able to receive
data, process it, and send back the data required by the client. Using these techniques,
it'’s possible to create a mail server, web server, or any other type of server necessary
online.

Web/HTTP Servers

As hinted at in the previous section, web servers are also TCP servers and use many of
the same techniques covered in the last few sections, such as forking and threading. A
web server is a normal TCP server that talks HTTP.

However, we're not going to look at HTTP servers directly here, as I covered them
previously in Chapter 10, so if you want to recap how to construct a basic web server in,
refer to the latter sections of that chapter.

Summary

In this chapter, we’ve looked at Ruby’s support for building lower-level networking tools
and servers, as well as using Ruby to develop daemons and other persistently running
processes.

Let’s reflect on the main concepts covered in this chapter:

e Network: A collection of computers connected in such a way that they
can send and receive data between one another.

e TCP (Transmission Control Protocol): A protocol that handles
connections between two machines over an IP-based network and
ensures packets are transmitted and received successfully and in the
correct order.

e UDP (User Datagram Protocol): A protocol that allows two
computers to send and receive messages between each other where
no “connection” is made, and no assurances are made whether the
data is received by the remote party.

490

CHAPTER 15 NETWORKING AND SOCKETS

e [P (Internet Protocol): A packet-based protocol for delivering
data across networks. IP also makes provisions for each machine
connected to the network to have one or many IP addresses.

e DNS (Domain Name Service): A system of referencing host or
machine names against different IP addresses and converting
between the two.

o Ping: The process of verifying whether a machine with a particular
IP is valid and accepting requests by sending it a small packet of data
and waiting for a response.

e Server: A process that runs on a machine and responds to clients
connecting to it from other machines, such as a web server.

o Client: A process that connects to a server, transmits and receives
data, and then disconnects once a task is completed. A web browser
is a basic example of a client.

e GServer: A Ruby library that makes developing network servers and
services easy. It handles the thread and connection management and
allows servers to be created by simply subclassing the GServer class.

This marks the last chapter of narrated, instructional content, with Chapter 16 being
a reference-style guide to a wide collection of Ruby libraries (both in the standard library
and those available as gems). With this in mind, all of us involved in the production
of this book would like to thank you for reading so far and hope you find the following
reference chapter and appendixes useful.

I wish you the best on your continuing journey into the world of Ruby. You have only
scratched the surface so far! Be sure to look at the remaining chapter of this book to flesh
out your Ruby knowledge further.

491

CHAPTER 16

Useful Ruby Libraries

This chapter is a basic reference to a collection of useful Ruby libraries that you might
want to use in your programs. We're going to look at libraries covering a vast array of
functionality, from networking and Internet access to file parsing and compression. The
libraries in this chapter are in alphabetical order, and each library starts on a new page
with the name as the page header for easy browsing. Below each library’s title, several
subsections follow:

e Overview: A brief description of what the library does, its basic
functionality, and why you would want to use it.

e Installation: Information on where the library is found, how to install
it, and how to get it running on most systems.

e Examples: One or more examples of how to use the library that
demonstrate its various elements of functionality. Example results
are included too. This section can be split into multiple subsections,
each containing a single example of how to use a particular branch of
functionality.

o Further Information: Links and pointers to further information about
the library, including online references and tutorials.

Unlike the other main chapters in this book, this is a reference chapter, one that you
might not necessarily need right away, but that will become useful over time when you
want to find out how to perform a certain function. In any case, make sure at least to
scan through the list of libraries to get a feel for the variety of Ruby libraries available so
that you don’t unnecessarily reinvent the wheel when you want to do something a library

already does!

493
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2_16

https://doi.org/10.1007/978-1-4842-6324-2_16#DOI

CHAPTER 16 USEFUL RUBY LIBRARIES

Note Ruby is in the process of gemifying its standard library. The goal is to
move all of the Ruby standard library to gems rather than as part of the main Ruby
codebase. These gems fall into two categories: default and bundled. Default gems
are part of the Ruby installation and can be required directly. Default gems cannot
be uninstalled. Bundled gems are installed along with Ruby but can be uninstalled.
More information at https://stdgems.org.

abbrev

The abbrev library offers a single method that calculates a set of unique abbreviations for
each of a supplied group of strings.

Installation

abbrev is in the standard library, so it comes with Ruby by default. To use it, you only
need to place this line near the start of your program:

require 'abbrev'

Examples

abbrev provides a single method that’s accessible in two ways: either directly through
Abbrev: :abbrev or as an added method to the Array class. Let’s look at the most basic
example first:

require 'abbrev'
require 'pp'
pp Abbrev::abbrev(%w{Peter Patricia Petal Petunia})

{"Peter"=>"Peter",
"Pete"=>"Peter",
"Patricia"=>"Patricia",
"Patrici"=>"Patricia",
"Patric"=>"Patricia",
"Patri"=>"Patricia",

494

https://stdgems.org

CHAPTER 16 USEFUL RUBY LIBRARIES

"Patr"=>"Patricia",
"Pat"=>"Patricia",
"Pa"=>"Patricia",
"Petal"=>"Petal",
"Peta"=>"Petal",
"Petunia"=>"Petunia",
"Petuni"=>"Petunia",
"Petun"=>"Petunia",
"Petu"=>"Petunia"}

abbrev can be useful if you have an input requirement with a number of guessable
answers, as you can detect partially entered or erroneous entries more easily, for
example:

require 'abbrev'

abbrevs = %w{Peter Paul Patricia Petal Pauline}.abbrev
puts "Please enter your name:"

name = gets.chomp

if a

abbrevs.find { |a, n| a.downcase == name.downcase }
puts "Did you mean #{a.join(' or ")}?"
name = gets.chomp

end

Please enter your name:

paulin

Did you mean Paulin or Pauline?
pauline

Because the results given by abbrev are the longest unique abbreviations possible,
it’s viable to rely on them more if the entry dataset is smaller.

Further Information

o Official documentation for abbrev: https://ruby-doc.org/stdlib/
libdoc/abbrev/rdoc/Abbrev.html

495

https://ruby-doc.org/stdlib/libdoc/abbrev/rdoc/Abbrev.html
https://ruby-doc.org/stdlib/libdoc/abbrev/rdoc/Abbrev.html

CHAPTER 16 USEFUL RUBY LIBRARIES

Base64

Base64 is a way to encode 8-bit binary data into a format that can be represented in
seven bits. It does this by using only the characters A-Z, a-z, 0-9, +, and / to represent
data (=is also used to pad data). Typically, three 8-bit bytes are converted into four 7-bit
bytes using this encoding, resulting in data that’s 33 percent longer in length. The main
benefit of the Base64 technique is that it allows binary data to be represented in a way
that looks and acts like plain text, so it can more reliably be sent in emails, stored in
databases, or used in text-based formats such as YAML, JSON, and XML.

Note The Base64 standard is technically specified in RFC 2045 at www.ietf.
org/rfc/rfc2045.txt.

Installation

The base64 library is a part of the standard library, so it comes with Ruby by default. To
use it, you only need to place this line near the start of your program:

require 'base64'

Examples

The following two examples show how to convert binary data to Base64 notation and
back again. Then we’ll look at a third example showing how to make your use of Base64
notation more efficient through compression.

Converting Binary Data to Base64

The base64 library makes a single module, Base64, available, which provides encode64
and decode64 methods. To convert data into Base64 format, use encode64:

require 'base64'
puts Base64.encode64('testing")

dGVzdGluZw==

496

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

CHAPTER 16 USEFUL RUBY LIBRARIES

In this example, you only encode data that’s already printable (though it’s still
technically 8-bit data internally), but this is acceptable. However, generally you'd encode
binary data from files or other sources:

require 'base64’
puts Baseb64.encode64(File.read('/bin/bash'))

yv66VgAAAATAAAAHAAAAAWAAEAAAB4XQAAAADAAAABIAAAAAAAegAAAT rywA
AAAMAA
AA
[output continues onwards.. trimmed for brevity..]

Note This example works on OS X and Linux operating systems. On a Windows
machine, you could try replacing /bin/bash with c:\windows\system\cmd.
exe to get a similar result.

Converting Base64 Data to Binary Data

To convert Base64-encoded data back to the original data, use decode64:
require 'base64'

puts Base64.decode64(Base64.encodeb4('testing'))

testing

Note that if you attempt to decode data that isn’t in Base64 format, you'll receive
no error in response. Instead, you'll end up with no legitimate data coming back from
decode64.

Using Compression to Make Base64 Efficient

Even though Base64 adds 33 percent to the length of a piece of data, it’s possible
to overcome this by compressing the data before converting it to Base64 and then
uncompressing it when you want to convert it back to binary data.

497

CHAPTER 16 USEFUL RUBY LIBRARIES

Note Not all binary data compresses well, although in most cases you’ll achieve
a reduction of at least 5 percent, usually more.

To compress and uncompress, you can use the zlib library, which is covered later in
this chapter, like so:

require 'base64’
require 'zlib'

module Base64
def Base64.new_encode64(data)
encode64(Z1ib: :Deflate.deflate(data))
end
def Base64.new_decode64(data)
Z1ib::Inflate.inflate(decode64(data))
end
end

test _data = 'this is a test' * 100

data = Base64.encode64(test data)
puts "The uncompressed data is #{data.length} bytes long in Base64"

data = Baseb4.new_encodeb4(test data)
puts "The compressed data is #{data.length} bytes long in Base64"

The uncompressed data is 1900 bytes long in Base64
The compressed data is 45 bytes long in Base64

In this example, two new methods have been added to the Base64 module that use
zlib to compress the data before converting it to Base64 and then to uncompress the
data after converting it back from Base64. In this way, you've received significant space
savings.

Read the “zlib” section in this chapter for more information about zlib’s operation.

498

CHAPTER 16 USEFUL RUBY LIBRARIES

Further Information

The following are some links to good information on the base64 library and on Base64 in
general:

o Standard library documentation for base64: https://ruby-doc.org/
stdlib/libdoc/base64/rdoc/Base64.html

o General information about the Base64 standard: https://
en.wikipedia.org/wiki/Base64

o A practical look at how Base64 works: https://email.about.com/
cs/standards/a/base64_encoding.htm

Benchmark

The Benchmark module can be used to measure the time it takes to execute blocks of
Ruby code. This can be useful to find which techniques are more efficient than others or
to find slow points in your code.

Installation

Benchmark is part of the Ruby standard library, so you're all set to go after loading it in
with

require 'benchmark'

Examples

The simplest example of benchmarking some code is to simply use Benchmark's
measure method, like so:

require 'benchmark'
puts Benchmark.measure { 10000000.times { rand } }

0.660000 0.000000 0.660000 (0.655942)

499

https://ruby-doc.org/stdlib/libdoc/base64/rdoc/Base64.html
https://ruby-doc.org/stdlib/libdoc/base64/rdoc/Base64.html
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://email.about.com/cs/standards/a/base64_encoding.htm
https://email.about.com/cs/standards/a/base64_encoding.htm

CHAPTER 16 USEFUL RUBY LIBRARIES

The output shows user CPU time, system CPU time, the sum of both times, and the
real time that has elapsed, respectively.

The bm method can be used for a more complicated benchmarking situation where
you want to compare the results of multiple approaches. For example, let's try three ways
to loop 10 million times:

require 'benchmark’

TIMES = 10000000

Benchmark.bm do |b|
b.report("times") { TIMES.times { rand } }
b.report("upto") { 1.upto(TIMES) { rand } }
b.report("loop") {

1=0
loop do
rand
i+=1
break if i == TIMES
end
}
end
user system total real

times 0.640000 0.000000 0.640000 (0.648547)
upto 0.650000 0.000000 0.650000 (0.649027)
loop 0.830000 0.000000 0.830000 (0.841448)

This report includes labels for each row and column and demonstrates that
manually creating a loop and using a variable to track its progress is slightly slower than
using the times method.

Further Information

o Official documentation for Benchmark: https://ruby-doc.org/
stdlib/1libdoc/benchmark/rdoc/Benchmark.html

500

https://ruby-doc.org/stdlib/libdoc/benchmark/rdoc/Benchmark.html
https://ruby-doc.org/stdlib/libdoc/benchmark/rdoc/Benchmark.html

CHAPTER 16 USEFUL RUBY LIBRARIES

chronic

The chronic library makes it easy to convert dates and times written in almost any format
into dates and times that Ruby recognizes correctly internally. It accepts strings such as
"tomorrow' and 'last tuesday 5pm' and turns them into valid Time objects.

Installation

The chronic library isn’t part of the Ruby standard library, but it is available as a
Rubygem. To install it, use the typical gem installation process (as covered in Chapter 7),
like so:

gem install chronic

Examples

chronic is designed to accept dates and times written in a natural language format and to
return valid Time objects. Here are some basic examples:

require 'chronic’
puts Chronic.parse('last tuesday 5am")

2020-03-29 05:00:00 +0100

puts Chronic.parse('last tuesday 5:33")
2020-03-29 17:33:00 +0100

puts Chronic.parse('last tuesday lunchtime')
2020-03-29 12:00:00 +0100

puts Chronic.parse('june 29th at 1am")

2020-06-29 01:00:00 +0100

501

CHAPTER 16 USEFUL RUBY LIBRARIES

puts Chronic.parse('in 3 years')
2023-04-04 11:30:57 +0100

puts Chronic.parse('sep 23 2033")
2033-09-23 12:00:00 +0100

puts Chronic.parse('2003-11-10 01:02")
2003-11-10 01:02:00 +0000

Chronic.parse will return nil if a date or time isn’t recognized.

Note An extension to the Time class provided by the standard library can also
parse times, although at a more preformatted level. See https://ruby-doc.
org/stdlib/libdoc/time/rdoc/Time.html for information.

Further Information

o Documentation for chronic: https://github.com/mojombo/chronic

Digest

A digest (more commonly known as a hash—though not the same type of hash as you've
used to store data structures in Ruby) is a number or string of data that’s generated from
another collection of data. Digests are significantly shorter than the original data and
act as a form of checksum against the data. Digests are generated in such a way that it’s
unlikely some other valid data would produce the same value and that it’s difficult, if not
impossible, to create valid data that would result in the same hash value.

A common use for hashes or digests is to store passwords in a database securely.
Rather than store passwords in plain text where they could potentially be seen, you can
create a digest of the password that you then compare against when you need to validate
that the password is correct. You'll look at an example of this in the “Examples” section.

502

https://ruby-doc.org/stdlib/libdoc/time/rdoc/Time.html
https://ruby-doc.org/stdlib/libdoc/time/rdoc/Time.html
https://github.com/mojombo/chronic

CHAPTER 16 USEFUL RUBY LIBRARIES

Installation

The libraries to produce digests in Ruby are called digest/sha2 and digest/md5. Other
algorithms like SHA1 and HMAC are available, however. All aforementioned digest
libraries are a part of the standard library, so they come with Ruby by default. To use
them, you only need to place this line near the start of your program:

require 'digest/sha2’
or

require 'digest/md5’
or to require both

require 'digest’

Examples

Let’s look at what a digest of some data can look like:

require 'digest/sha2’
puts Digest::SHA2.hexdigest('password")

50884898da28047151d0e5618dc6292773603d0od6aabbdd62a11ef721d1542d8

You can use hexdigest (on both Digest: :SHA2 and Digest: :MD5—more about
this later in this section) to produce a digest of any data. The digest is a string of 32
hexadecimal numbers (resulting in 64 characters, as each hexadecimal number is
formed using two digits). In this case, the digest is significantly longer than the input
data. No matter the input length, a digest generated via Digest: : SHA2 is always the same
length. For example, here’s a digest of a 4000-character input string:

require 'digest/sha2’
puts Digest::SHA2.hexdigest('test' * 1000)

£23eb679397133bd94ce44d22909189c8f0713464a4c0e8e36267cf275fd1d38

503

CHAPTER 16 USEFUL RUBY LIBRARIES

Digest: :SHA2 operates using the SHA-2 hashing algorithm. It results in a 256-bit
output (this is the default), meaning there are 22°° possible hash values. This almost
guarantees there will be no clashing hash values for legitimate data within a single
domain.

Another hashing mechanism provided by Ruby is based on the MD5 hashing
algorithm. MD5 produces a 128-bit hash value, giving 340,282,366,920,938,463,463,374,6
07,431,768,211,456 combinations. MD5 is considered to be less secure than SHA-2, as it’s
possible to generate “hash collisions,” where two sets of valid data can be engineered to
get the same hash value. Hash collisions can be used to break into authentication systems
that rely on MD5 hashing. However, MD5 is still a popular hashing mechanism, so the
Ruby support is useful. You can use Digest: :MD5 in exactly the same way as SHA-2:

require 'digest/mds5’
puts Digest::MD5.hexdigest('test' * 1000)

b38968b763b8b56c4b703193f510be5a

Tip There is also a Digest: : SHA1 class available in digest/sha1 that
provides for the creation of digests of a smaller, less secure length.

Using digests in place of passwords is easy:
require 'digest/sha2’

puts "Enter the password to use this program:"
password = gets
if Digest::SHA2.hexdigest(password) ==
'5e884898da28047151d0e5618dc6292773603d0d6aabbdd62
alilef721d1542d8"
puts "You've passed!"
else
puts "Wrong!"
exit
end

504

CHAPTER 16 USEFUL RUBY LIBRARIES

In this case, the password is stored as a SHA-2 hex digest, and you hash any incoming
passwords to establish if they’'re equal. Yet without knowing what the password is, there’s
no way you could succeed with the preceding program even by looking at the source
code!

You can also generate the raw digest without it being rendered into a string of
hexadecimal characters by using the digest method, like so:

Digest::SHA2.digest('test' * 1000)

As the result is 32 bytes data, it’s unlikely you would be satisfied with the output if
you printed it to the screen as characters, but you can prove the values are there:

Digest::SHA2.digest('test' * 1000).each byte do |byte|
print byte, "-"
end

242-62-182-121-57-127-51-189-148-206-68-210-41-9-24-156-143-7-243-70-74-
76-14-142-54-38-124-242-117-253-29-56-

It's worth noting that if you want to store digests in text format, but want something
that takes up less space than the 64 hexadecimal characters, the base64 library can help:

require 'base64'
require 'digest’

puts Digest::SHA2.hexdigest('test")
puts Baseb4.encode64(Digest::SHA1.digest('test"))

9t86d081884c7d659a2feaadc55ad015a3bf4f1b2bob822cd15d6c15b0f00a08
qugP5cyxm6YcTAhzO5Hph5gvu9M=

Further Information

o Further information about SHA-2: https://en.wikipedia.org/
wiki/SHA-2

o Further information about MD5: https://en.wikipedia.org/wiki/MD5

505

https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/SHA-2
https://en.wikipedia.org/wiki/MD5

CHAPTER 16 USEFUL RUBY LIBRARIES

English

Throughout this book, you've often used special variables provided by Ruby for various
purposes. For example, $! contains a string of the last error message raised in the
program, $$ returns the process ID of the current program, and $/ lets you add the
default line or record separator as used by the gets method. The English library allows
you to access Ruby’s special variables using names expressed in English, rather than
symbols. This makes the variables easier to remember.

Installation

The English library is a part of the standard library, so it comes with Ruby by default. To
use it, you only need to place this line near the start of your program:

require 'English’

Examples

Using require 'English' (note the capitalization of the first letter, as opposed to the
standard, all-lowercase names adopted by the filenames of other libraries) creates
English language aliases to Ruby’s special variables, some of which are covered in the
following list:

o $DEFAULT OUTPUT (alias for $>) is an alias for the destination of output
sent by commands such as print and puts. By default, it points to
$stdout, the standard output, typically the screen or current terminal
(see the sidebar “Standard Input and Output” in Chapter 9 for more

information).

e $DEFAULT_INPUT (alias for $<) is an object that acts somewhat like
a File object for data being sent to the script at the command line,
or if the data is missing, the standard input (usually the keyboard or
current terminal). It is read-only.

o $ERROR_INFO (alias for $!) refers to the exception object passed to
raise, or, more pragmatically, can contain the most recent error
message. In the initial form, it can be useful when used within a
rescue block.

506

CHAPTER 16 USEFUL RUBY LIBRARIES

$ERROR_POSITION (alias for $@) returns a stack trace as generated
by the previous exception. This is in the same format as the trace
provided by Kernel.caller.

$OFS and $OUTPUT_FIELD SEPARATOR (aliases for $,) can be set or
read and contain the default separator as used in output from the
print method and Array’s join method. The default value is nil, as
can be confirmed with %w{a b c}.join, which results in abc.

$ORS and $OUTPUT_RECORD_SEPARATOR (aliases for $\) can be set or
read, and contain the default separator as used when sending output
with methods such as print and I0.write. The default value is nil,
as typically you use puts instead when you want to append a newline
to data being sent.

$FS and $FIELD_SEPARATOR (aliases for $;) can be set or read, and
contain the default separator as used by String’s split method.
Changing this and then calling split on a string without a split regex
or character can give different results than expected.

$RS and $INPUT_RECORD_SEPARATOR (aliases for $/) can be set or read,
and contain the default separator as used for input, such as from
gets. The default value is a newline (\n) and results in gets receiving
one line at a time. If this value is set to nil, then gets would read an
entire file or data stream in one go.

$PID and $PROCESS_ID (alias for $$) return the process ID of the
current program. This ID is unique for every program or instance of a
program running on a computer, which is why tempfile uses it when
constructing names for temporary files. It is read-only.

$LAST_MATCH_INFO (alias for $~) returns a MatchData object that
contains the results of the last successful pattern match.

$IGNORECASE (alias for $=) is a flag that you can set or read from

that determines whether regular expressions and pattern matches
performed in the program will be case-insensitive by default. This
special variable is deprecated and only effective in Ruby 1.8 (not
Ruby 1.9 or later). Typically, if you required this feature, you'd use the
/1 flag on the end of a regular expression instead.

507

CHAPTER 16 USEFUL RUBY LIBRARIES

e $MATCH (alias for $&) contains the entire string matched by the last
successful regular expression match in the current scope. If there has
been no match, its value is nil.

e $PREMATCH (alias for $) contains the string preceding the match
discovered by the last successful regular expression match in the
current scope. If there has been no match, its value is nil.

e $POSTMATCH (alias for $") contains the string succeeding the match
discovered by the last successful regular expression match in the
current scope. If there has been no match, its value is nil.

Further Information

o Standard library documentation for English: https://ruby-doc.org/
stdlib/libdoc/English/rdoc/English.html

ERB

ERB is a templating library for Ruby that allows you to mix content and Ruby code. ERB
is used as the main template system in Ruby on Rails when rendering RHTML views
(see Chapter 13 for more information). Mixing Ruby code with other content results in a
powerful templating system.

Installation

The ERB library is a part of the standard library, so it comes with Ruby by default. To use
it, you only need to place this line near the start of your program:

require 'erb'

Examples

ERB works by accepting data written in ERB’s template language, converting it to Ruby
code that can produce the desired output, and then executing that code.

508

https://ruby-doc.org/stdlib/libdoc/English/rdoc/English.html
https://ruby-doc.org/stdlib/libdoc/English/rdoc/English.html

CHAPTER 16 USEFUL RUBY LIBRARIES

Basic Templates and Rendering
A basic ERB script might look like this:

<% 1.upto(5) do |i]| %>
<p>This is iteration <%= i %></p>
<% end %>

In this template, Ruby and HTML code are mixed. Ruby code that’s meant to be
executed is placed within <% and %> tags. Ruby code that’s to be evaluated and “printed”
is placed within <%= and %> tags, and normal content is left as is.

Running the preceding template through ERB would result in this output:

<p>This is iteration 1</p>
<p>This is iteration 2</p>
<p>This is iteration 3</p>
<p>This is iteration 4</p>
<p>This is iteration 5</p>

Note Due to the spacing in the template, the spacing in the output can look odd.
Usually added whitespace isn’t an issue with HTML or XHTML, but if you’re using
ERB to output other forms of data, you might need to develop your templates with
whitespace in mind.

You use the ERB library to render ERB code from Ruby:

require 'erb'
template = <<EOF
<% 1.upto(5) do |i| %>
<p>This is iteration <%= i %></p>
<% end %>
EOF
puts ERB.new(template).result

509

CHAPTER 16 USEFUL RUBY LIBRARIES

The result method doesn’t print the data directly, but returns the rendered
template to the caller, so you then print it to the screen with puts. If you'd rather have
ERB print the output directly to the screen, you can use the run method:

ERB.new(template).run

Accessing Outside Variables

ERB templates can also access variables in the current scope, for example:
require 'erb'
array of stuff = %w{this is a test}

template = <<EOF

<% array of stuff.each with_index do |item, index| %>
<p>Item <%= index %>: <%= item %></p>

<% end %>

EOF

puts ERB.new(template).result(binding)

<p>Item 0: this</p>
<p>Item 1: is</p>
<p>Item 2: a</p>
<p>Item 3: test</p>

Note The result and run methods accept a binding as an optional parameter if
you want ERB to have access to variables that are defined in a different (or the current)
scope or if you want to “sandbox” the variables to which templates have access. If you
allow them access to your main binding, as in the preceding example, remember that
code within templates could change the value of the current variables!

Further Information

o Standard library documentation for ERB: https://ruby-doc.org/
stdlib/libdoc/erb/rdoc/ERB.html

510

https://ruby-doc.org/stdlib/libdoc/erb/rdoc/ERB.html
https://ruby-doc.org/stdlib/libdoc/erb/rdoc/ERB.html

CHAPTER 16 USEFUL RUBY LIBRARIES
json

The json library enables you to parse and create JSON (JavaScript Object Notation) from
Ruby objects. JSON is a popular data interchange format that's commonly used in web-
based APIs and within JavaScript applications. It's also possible to read JSON easily as it's
notated entirely in plain text.

Installation

The json library is part of the standard library, so all we need to do is require it in.

Examples

Here's an example of a very simple JSON document:

"name":"Maggie Robertson","age":37,"interests":["Golf","Bridge","Food"]}

This is essentially a hash with numerous keys and values, with the values being a
string, number, and an array of strings respectively.

To convert this plain text JSON into a hash we can use within a Ruby program, we
can do this:

require 'json'

json_data = %{

"name": "Maggie Robertson","age":37,"interests":["Golf","Bridge","Food"]}

}

obj = JSON.load(json_data)
puts obj.class
puts obj.keys

Hash

name

age
interests

511

CHAPTER 16 USEFUL RUBY LIBRARIES

Likewise, you can go from a Ruby hash to JSON by using a to_json method that the
json library introduces to all objects:

require 'json'

person = {
name: 'Maggie Robertson',
age: 37,

interests: ['Golf', 'Bridge', 'Food']
}

puts person.to json

"name":"Maggie Robertson","age":37,"interests":["Golf","Bridge","Food"]}

Further Information

o Introducing JSON: www.json.org/json-en.html
o JSON tutorial: waw.w3schools.com/js/js_json_intro.asp

e RubyJSON documentation: https://ruby-doc.org/stdlib/libdoc/
json/rdoc/ISON.html

logger

logger is a library developed by Hiroshi Nakamura and Gavin Sinclair that provides
sophisticated logging features to Ruby applications. It supports automatic log rotation
and multiple urgency levels and can output to file, to standard output, or to standard
error handles. Ruby on Rails uses logger as its main logging system, but you can use it
from any Ruby application.

Installation

The logger library is a part of the standard library, so it comes with Ruby by default. To
use it, you only need to place this line near the start of your program:

require 'logger’

512

http://www.json.org/json-en.html
http://www.w3schools.com/js/js_json_intro.asp
https://ruby-doc.org/stdlib/libdoc/json/rdoc/JSON.html
https://ruby-doc.org/stdlib/libdoc/json/rdoc/JSON.html

CHAPTER 16 USEFUL RUBY LIBRARIES

Examples

To use logger, you create Logger objects and then use the methods provided by the
objects to report events that occur while your program is running. The first step is to get
a Logger object.

Setting Up a Logger

Loggers can write to standard output, standard error, or to a file. Specify a file handle or
filename to Logger.new. For example, here’s how to write log messages directly to the
screen or terminal:

require 'logger’
logger = Logger.new(STDERR)

Use this code to write log messages to file:

logger = Logger.new('mylogfile.log")

logger

Logger.new("'/tmp/some_log file.log")

You can also specify that a log file ages daily, weekly, or monthly (old log files are
suffixed with date indicators):

logger = Logger.new('mylogfile.log', 'daily")
logger = Logger.new('mylogfile.log', 'weekly")
logger = Logger.new('mylogfile.log', 'monthly")

Last, it’s possible to create a logger that only creates a log file up to a certain size.
Once the log file hits that size, logger copies the existing log file to another filename and
then starts a new log file. This is known as log rotation:

logger = Logger.new('mylogfile.log', 10, 100000)

This logger logs files to mylogfile. log until it reaches 100,000 bytes in length,
whereupon the logger renames the log file (by suffixing it with a number) and creates a
new mylogfile.log. It keeps the ten most recent but unused log files available.

513

CHAPTER 16 USEFUL RUBY LIBRARIES

Logging Levels

There are five different logging levels, ranked in order of severity, as follows:

e DEBUG: The lowest severity, used for debugging information for the
developer

o INFO: General information about the operation of the program,
library, or system

o WARN: A nonfatal warning about the state of the program
o ERROR: An error that can be handled (as with a rescued exception)

e FATAL: An error that is unrecoverable and that forces an immediate
end to the program

Whenever you start a logger, you can specify the level of messages it should track.
If a message is of that level or above, it will be logged. If it’s below that level, it will be
ignored. This is useful so that during development you can log every debug message,
whereas when your program is being used for real, you only log the important messages.
To set the severity level of a logger, use the logger’s sev_threshold method. This
level ensures only FATAL messages are logged:

logger.sev_threshold = Logger::FATAL
This level ensures every message of all levels is logged:

logger.sev_threshold = Logger::DEBUG

Logging Messages

Each Logger object provides several methods to allow you to send a message to the
log. The most commonly used way is to use the debug, info, warn, error, and fatal
methods, which all create log messages of their respective severity:

require 'logger’
logger = Logger.new(STDOUT)

logger.debug "test"
logger.info "test"
logger.fatal "test"

514

CHAPTER 16 USEFUL RUBY LIBRARIES

D, [2020-08-11T11:06:06.805072 #9289] DEBUG -- : test
I, [2020-08-11T11:06:06.825144 #9289] INFO -- : test
F, [2020-08-11T11:06:06.825288 #9289] FATAL -- : test

Log messages are notated by their severity as a single letter, the date and time of their
creation, the process ID of which process created them, and their severity label, followed
by the actual message. Optionally, the program name might be present, if it was specified
in the logging method, with the normal message coming from a block, like so:

logger.info("myprog") { "test" }
I, [2020-08-11T11:09:32.284956 #9289] INFO -- myprog: test

You can also assign a severity to a log message dynamically, like so:

logger.add(Logger: :FATAL) { "message here" }
F, [2020-08-11T11:13:06.880818 #9289] FATAL -- : message here

To use different severities, pass the severity’s class (Logger: : FATAL, Logger : : DEBUG,
Logger: : INFO, and so on) as the argument to add.

Closing a Logger
You close a logger as you would a file or any other I/O structure:

logger.close

Further Information

o Standard library documentation for logger: https://ruby-doc.org/
stdlib/libdoc/logger/rdoc/Logger.html

Nokogiri

The Nokogirilibrary is a fast HTML, XML, SAX, and Reader parser with XPath and CSS

selector support.
515

https://ruby-doc.org/stdlib/libdoc/logger/rdoc/Logger.html
https://ruby-doc.org/stdlib/libdoc/logger/rdoc/Logger.html

CHAPTER 16 USEFUL RUBY LIBRARIES

Installation

The Nokogiri library isn’t part of the Ruby standard library, but it is available as a
Rubygem. To install it, use the typical gem installation process (as covered in Chapter 7),
like so:

gem install nokogiri

Alternatively, you can download the source from Nokogiri’s GitHub repository. The
link is provided in the following “Further Information” subsection.

Examples

Nokogiri is a fast XML and HTML parser with full CSS3 selector and XPath support.
A great way to start using it is to see how easy it is to parse an HTML page:

require 'rubygems'’
require 'nokogiri'
require 'open-uri'

doc = Nokogiri::HTML(URI.open('https://www.apress.com/"))

doc.css('p').each do |paral
puts para.inner text
end

In this example, we've used open-uri to make the retrieval of a website a lot quicker.
Nokogiri will, however, also accept strings if you want to process local or user-supplied
XML or HTML data.

The document is processed as HTML by Nokogiri, thanks to the use of
Nokogiri: :HTML (Nokogiri: :XML can be used to process XML). We've then used the css
method on the document to search for all paragraphs (the <p> tag in HTML). Any CSS
selector can be specified as an argument. For example, if you wanted to search for all
<1i> tags under a <div> with an ID of “story,” you'd use the selector #story 1i.

The each method is then used to iterate over each paragraph, and the inner_text
method is used to return the plain text contents of the tag.

516

CHAPTER 16 USEFUL RUBY LIBRARIES

Further Information
o Nokogiri homepage: waw.nokogiri.org/
o CSS Selector tutorial: waw.w3schools.com/css/css_selectors.asp

o Nokogiri GitHub repository: https://github.com/sparklemotion/
nokogiri

pp

pp is a “pretty printer” that provides better formatted output than a simple puts
something.inspect or p command. It presents a cleaner look at data structures that are
properly tabulated and spaced, unlike inspect or p’s output.

Installation

The pp library is a part of the standard library, so it comes with Ruby by default. To use it,
you only need to place this line near the start of your program:

require 'pp'

Examples

To use pp, simply use the pp method, followed by the object whose structure you wish to
display. Here’s a basic comparison of inspect and pp:

personl = { :name => "Peter", :gender => :male }
person2 = { :name => "Carleton", :gender => :male }
people = [personil, person2, personl, personl, personi]
puts people.inspect

[{:name=>"Peter", :gender=>:male}, {:name=>" Carleton", :gender=>:male},
{:name=>"Peter", :gender=>:male}, {:name=>"Peter", :gender=>:male},

{:name=>"Peter", :gender=>:male}]

pp people

517

http://www.nokogiri.org/
http://www.w3schools.com/css/css_selectors.asp
https://github.com/sparklemotion/nokogiri
https://github.com/sparklemotion/nokogiri

CHAPTER 16 USEFUL RUBY LIBRARIES

{:name=>"Peter", :gender=>:male},
name=>"Carleton", :gender=>:male},
name=>"Peter", :gender=»>:male},
name=>"Peter", :gender=»>:male},
name=>"Peter", :gender=>:male}]

[
{
{
{
{

As demonstrated, pp is mostly useful when dealing with complex objects whose data
cannot fit on a single line. Here’s a more contrived example:

require 'pp'

class TestClass
def initialize(count)
@@a = defined?(@@a) ? @@a + 1 : O
@c = @@a
@ = [:a => {:b => count }, :c => :d] * count
end

end

pp TestClass.new(2), STDOUT, 60
pp TestClass.new(3), $>, 60
pp TestClass.new(4), $>, 60

#<TestClass:0x357000
@c=0,
@d=[{:a=>{:b=>2}, :c=>:d}, {:a=>{:b=>2}, :c=>:d}]>
#<TestClass:0x354364
@c=1,
@d=
[{:a=>{:b=>3}, :c=>:d},
{:a=>{:b=>3}, :c=>:d},
{:a=>{:b=>3}, :c=>:d}]»
#<TestClass:0x3503f4
@c=2,
@d=
[{:a=>{:b=>4}, :c=>:d},

518

CHAPTER 16 USEFUL RUBY LIBRARIES

{:a=>{:b=>4}, :c=>:d},
{:a=>{:b=>4}, :c=>:d},
{:a=>{:b=>4}, :c=>:d}]>

Where it’s practical, pp fits data onto a single line, but when more data is to be shown
than could fit on a single line, pp formats and spaces that data accordingly.
Note that in the preceding example, the pp calls are in this format:

pp TestClass.new(4), $>, 60

With no parameters, pp assumes a display width of 79 characters. However, pp
supports two optional parameters, which set the destination for its output and the
width of the output field. In this case, you output to the standard output and assume a
wrapping width of 60 characters.

Further Information

o Standard library documentation for pp: https://ruby-doc.org/
stdlib/libdoc/prettyprint/rdoc/PrettyPrint.html

RedCarpet

RedCarpet is a library that converts specially formatted text documents (in a formatting
known as Markdown) into valid HTML. The reasoning behind languages such as
Markdown is that most users prefer to write their documents in a clean format, rather
than be forced to use HTML tags everywhere and create documents that don’t read
well as plain text. Markdown allows you to format text in a way that makes documents
look good as plain text, but also allows the text to be converted quickly to HTML for

use on the Web. This makes languages such as Markdown popular for use with posting
and commenting systems online, and many blog authors even first write their posts in
languages such as Markdown before converting them for publication.

Installation

RedCarpet isn’t part of the Ruby standard library, but it is available as a Rubygem. To
install it, use the typical gem installation process (as covered in Chapter 7), like so:

gem install redcarpet
519

https://ruby-doc.org/stdlib/libdoc/prettyprint/rdoc/PrettyPrint.html
https://ruby-doc.org/stdlib/libdoc/prettyprint/rdoc/PrettyPrint.html

CHAPTER 16 USEFUL RUBY LIBRARIES

Examples

An example Markdown document might look like this:

This is a title

Here is some _text that's formatted according to [Markdown][1]
specifications. And how about a quote?

[1]: http://daringfireball.net/projects/markdown/

> This section is a quote.. a block quote
> more accurately..

Lists are also possible:

* Ttem 1
* Ttem 2
* Item 3

In the following example, we’ll assume this document is already assigned to the
variable markdown_text to save space on the page.
Here’s how to convert Markdown syntax to HTML:

require 'redcarpet’

markdown_text=<<MARKDOWN
This is a title

Here is some _text that's formatted according to [Markdown][1]
specifications. And how about a quote?

[1]: http://daringfireball.net/projects/markdown/

> This section is a quote.. a block quote
> more accurately..

Lists are also possible:

520

CHAPTER 16 USEFUL RUBY LIBRARIES

* Item 1
* Item 2
* Item 3
MARKDOWN

markdown = Redcarpet: :Markdown.new(Redcarpet: :Render: :HTML)
puts markdown.render(markdown text)

<h1>This is a title</h1>

<p>Here is some text that's formatted according to Markdown
specifications. And how about a quote?</p>

<blockquote>

<p>This section is a quote.. a block quote
more accurately..</p>

</blockquote>

<p>Lists are also possible:</p>

Item 1</1i>
Item 2</1i>
Item 3</1i>

The output HTML correctly resembles the Markdown syntax when viewed with a
web browser.

To learn more about the Markdown format and its syntax, visit the official Markdown
homepage, as linked in the following section.

Further Information

o Official RedCarpet homepage: https://github.com/vmg/redcarpet

o Official Markdown format homepage: https://daringfireball.
net/projects/markdown/

521

https://github.com/vmg/redcarpet
https://daringfireball.net/projects/markdown/
https://daringfireball.net/projects/markdown/

CHAPTER 16 USEFUL RUBY LIBRARIES

StringScanner

StringScanner is a library that lets you “walk through” a string, matching patterns one

at a time, while only applying them to the remainder of the data that you haven'’t yet
matched. This is in stark contrast to the standard scan method that automatically returns
all matching patterns immediately.

Installation

StringScanner is in the standard library, so it comes with Ruby by default. To use it, you
only need to place this line near the start of your program:

require 'strscan'

Note It's important to recognize that the filename doesn’t match the name of the
library, or class in this case. Although most library developers tend to keep names
consistent, not all do!

Examples

The best way to see StringScanner’s feature set is to see it in action:

require 'strscan'

string = StringScanner.new "This is a test"
puts string.scan(/\w+/)

puts string.scan(/\s+/)

puts string.scan(/\w+/)

puts string.scan(/\s+/)

puts string.rest

This

is
a test

522

CHAPTER 16 USEFUL RUBY LIBRARIES

In this example, you step through the string by first matching a word with scan,
then whitespace, then another word, and then more whitespace, before asking
StringScanner to give you the rest of the string with the rest method.

However, scan will return content only if the specified pattern matches at the current
position in the string. For example, this doesn’t retrieve each word:

puts string.scan(/\w+/)
puts string.scan(/\w+/)
puts string.scan(/\w+/)
puts string.scan(/\w+/)

This
nil
nil
nil

After the first scan, the pointer for string is waiting at the whitespace after “This,’
and scan must match the whitespace for it to continue. One way to get around this would
be like so:

puts string.scan(/\w+\s*/)
puts string.scan(/\w+\s*/)
puts string.scan(/\w+\s*/)
puts string.scan(/\w+\s*/)

In the preceding example, you'd retrieve the words and any whitespace located after
each word. Of course, this might not be desirable, so StringScanner also provides other
useful methods for scanning through strings.

scan_until scans through the string from the current position until the specified
pattern matches. All the data from the start of the scan, until and including the match,
is then returned. In this example, you perform a normal scan and pick off the first word,
but then you use scan_until to scan all text until you reach a number:

string = StringScanner.new "I want to live to be 100 years old!"
puts string.scan(/\w+/)
puts string.scan_until(/\d+/)

523

CHAPTER 16 USEFUL RUBY LIBRARIES

I
want to live to be 100

You can also use scan_until to give a different solution to the previous “scan for
each word” problem:

string = StringScanner.new("This is a test")
puts string.scan_until(/\w+/)
puts string.scan_until(/\w+/)
puts string.scan_until(/\w+/)
puts string.scan until(/\w+/)

Another useful method is unscan, which gives you the opportunity to roll back a
single scan:

string = StringScanner.new "I want to live to be 100 years old!"
puts string.scan(/\w+/)

string.unscan

puts string.scan_until(/\d+/)

string.unscan

puts string.scan until(/live/)

I
I want to live to be 100
I want to live

You can also retrieve the current position of the scanner in the string:

string = StringScanner.new "I want to live to be 100 years old!"
string.scan(/\w+/)

string.unscan

puts string.pos

string.scan_until(/\d+/)

puts string.pos

string.unscan

string.scan_until(/live/)

puts string.pos

524

CHAPTER 16 USEFUL RUBY LIBRARIES

24
14
You can use pos to set or override the position of the scanner too:

string = StringScanner.new "I want to live to be 100 years old!"
string.pos = 12
puts string.scan(/..... /)

ve to

Note StringScanner isn’t a subclass of String, so typical methods provided by
String won’t necessarily work. However, StringScanner does implement some
of them, such as <<, which concatenates data onto the end of the string.

Further Information

o Standard library documentation for StringScanner: https://ruby-
doc.org/stdlib/libdoc/strscan/rdoc/StringScanner.html

tempfile

Temporary files are intended for a single, one-time purpose. They're ephemeral files that
you use to store information temporarily but that are quickly erased. In Chapter 9, you
looked at the creation of temporary files using several techniques, but tempfile provides
an easy and standard way to create and manipulate them.

Installation

tempfile is in the standard library, so it comes with Ruby by default. To use it, you only
need to place this line near the start of your program:
require 'tempfile'

525

https://ruby-doc.org/stdlib/libdoc/strscan/rdoc/StringScanner.html
https://ruby-doc.org/stdlib/libdoc/strscan/rdoc/StringScanner.html

CHAPTER 16 USEFUL RUBY LIBRARIES

Examples

tempfile manages the creation and manipulation of temporary files. It creates temporary
files in the correct place for your operating system, and it gives them unique names so
that you can concentrate on the main logic of your application.

To create a temporary file, use Tempfile.new:

require 'tempfile’

f = Tempfile.new('myapp")
f.puts "Hello"

puts f.path

f.close

/tmp/myapp1842.0

Tempfile.new creates a temporary file using the given string as a prefix in the format
of <supplied name>-<program's process ID>.<unique number>.The returned object
is a Tempfile object that delegates most of its methods to the usual File and IO classes,
allowing you to use the file methods you're already familiar with, as with f.puts earlier.

To use the data in your temporary file, you can close it and reopen it quickly:

f.close
f.open

If you specify no arguments to f.open, it will reopen the temporary file associated
with that object. At that point, you can continue to write to the temporary file or read
from it:

require 'tempfile’

f = Tempfile.new('myapp")
f.puts "Hello"

f.close

f.open

puts f.read

f.close!

Hello

526

CHAPTER 16 USEFUL RUBY LIBRARIES

The preceding code creates a temporary file, writes data to it, closes the temporary
file (which flushes the written data out to disk from the memory buffers), and then
reopens it for reading.

The last line uses close! instead of close, which forces the temporary file to be
closed and permanently deleted.

Of course, you can flush the buffers manually, so you can use the same temporary
file for reading and writing without having to close it at any point:

require 'tempfile’

f = Tempfile.new('myapp")
f.puts "Hello"
f.pos = 0
f.print "Y"
f.pos = f.size - 1
f.print "w"
f.flush
f.pos = 0
puts f.read
f.close!

Yellow

Note By default, temporary files are opened in the w+ mode.

In some situations, you might want to use temporary files, but not allow tempfile to
put them in a place that can be seen by other programs or users. Tempfile.new accepts an
optional second argument that specifies where you want temporary files to be created:

f = Tempfile.new('myapp', '/my/secret/temporary/directory")
As with other file-related classes, you can use Tempfile in block form:
require 'tempfile'

Tempfile.open('myapp') do |f|
f.puts "Hello"
f.pos =0

527

CHAPTER 16 USEFUL RUBY LIBRARIES

f.print "Y"
f.pos = f.size - 1
f.print "w"
t.flush
f.pos = 0
puts f.read

end

Yellow

Note You use Tempfile.open instead of Tempfile.new when using a block.

The benefit of using block form in this case is that the temporary file is removed
automatically, and no closing is required. However, if you want to use a temporary file
throughout the scope of a whole program, block form might not be suitable.

Further Information

o Standard library documentation for tempfile: https://ruby-doc.
org/stdlib/libdoc/tempfile/rdoc/Tempfile.html

uri

You use the uri library to manage Uniform Resource Identifiers (URIs), which are
typically referred to as Uniform Resource Locators (URLs). A URL is an address such
as www.apress.com/, ftp://your-ftp-site.com/directory/filename, or even
mailto:your-email- address@privacy.net. uri makes it easy to detect, create, parse,
and manipulate these addresses.

Installation

uri is in the standard library, so it comes with Ruby by default. To use it, you only need to
place this line near the start of your program:

require 'uri'

528

https://ruby-doc.org/stdlib/libdoc/tempfile/rdoc/Tempfile.html
https://ruby-doc.org/stdlib/libdoc/tempfile/rdoc/Tempfile.html
http://www.apress.com/

CHAPTER 16 USEFUL RUBY LIBRARIES

Examples

In this section, you'll look at a few examples of how to use the uri library to perform basic
URL-related functions.

Extracting URLs from Text
URI.extract is a class method that extracts URLs from a given string into an array:

require 'uri'
puts URI.extract('Check out https://www.apress.com/ or email mailto:me@
apress.com').inspect

["https://www.apress.com/", "mailto:me@apress.com"]

You can also limit the types of URLs that extract should find:

require 'uri'
puts URI.extract('https://www.apress.com/ and mailto:me@apress.com’,
['https']).inspect

["https://www.apress.com/"]

If you immediately want to use the URLs one by one, you can use extract with a
block:
require 'uri'

email = %q{Some cool Ruby sites are https://www.ruby-lang.org/ and «
https://www.apress.com/ and https://www.w3.org/}

URI.extract(email, ['http', 'https']) do |url]
puts "Fetching URL #{url}"
Do some work here..

end

529

CHAPTER 16 USEFUL RUBY LIBRARIES

Parsing URLs

A URL in a string can be useful, particularly if you want to use that URL with open-uri or
net/http, for example. However, it can also be useful to split URLs into their constituent
sections. Doing this with a regular expression would give inconsistent results and be
prone to failure in uncommon situations, so the URI class provides the tools necessary to
split URLs apart easily:

URI.parse('https://www.apress.com/")
=> #< URL::HTTPS https://www.apress.com/>

URI.parse parses a URL provided in a string and returns a URI-based object for it.
URT has specific subclasses for FTP, HTTP, HTTPS, LDAP, and MailTo URLs, but returns a
URI: :Generic object for an unrecognized URL that’s in a URL-type format.

The URI objects have a number of methods that you can use to access information
about the URL:

require 'uri'
a = URI.parse('https://www.apress.com/")
puts a.scheme

puts a.host
puts a.port
puts a.path
puts a.query
https
WWW.apress.com
443

/

nil

Note that URI: :HTTP is smart enough to know that if no port is specifically stated in
an HTTP URL, the default port 80 must apply. The other URI classes, such as URI: : FTP
and URI: :HTTPS, also make similar assumptions.

530

CHAPTER 16 USEFUL RUBY LIBRARIES
With more complex URLSs, you can access some extended data:

require 'uri'

url = "https://www.x.com:1234/test/1.html?x=y8&y=z#top'
puts URI.parse(url).port

puts URI.parse(url).path

puts URI.parse(url).query

puts URI.parse(url).fragment

1234
/test/1.html
x=y8y=z

top

The uri library also makes a convenience method available to make it even easier to
parse URLSs:
u = URI(https://www.test.com/")

In this case, URI(url) is synonymous with URI.parse.
Aswell as URI.parse, you can use URI.split to split a URL into its constituent parts
without involving a URT object:

URI.split('https://www.x.com:1234/test/1.html?x=y8y=z#top")

=> ["http", nil, "www.x.com", "1234", nil, "/test/1.html", nil,
||X=y&y=2"’ ||top||]

URI.split returns, in order, the scheme, user info, hostname, port number, registry,
path, opaque attribute, query, and fragment. Any elements that are missing are nil.

Note The only benefit of URI.split is that no URI object is created, so there
can be minimal gains in memory and processor usage. However, generally it’s
more acceptable to use URI() or URI.parse so that you can address the
different elements by name, rather than rely on the order of elements in an array
(which could change between versions of the library).

531

CHAPTER 16 USEFUL RUBY LIBRARIES

Creating URLs

You can also use uri to create URLs that meet the accepted specifications. At their
simplest, you can use the URI subclasses for each protocol to generate URLSs by passing
in a hash of the elements you want to make up the URL:

require 'uri'

u = URI::HTTP.build(host: 'apress.com', path: '/')
puts u.to_s

puts u.request uri

http://apress.com/
/

Note that to_s returns the entire URL, whereas request_uri returns the portion of
the URL that follows the hostname. This is because libraries such as net/http would use
the data from request_uri, whereas libraries such as open-uri can use the entire URL.

You could also pass in :port, :query, : fragment, :userinfo, and other elements to
the URI subclasses to generate more complex URLs.

Here’s an example of creating an FTP URL:

ftp_url = URI::FTP.build(userinfo: 'username:password',
host: 'ftp.example.com',

path: '/pub/folder’,

typecode: 'a')

puts ftp url.to s
ftp://username:password@ftp.example.com/pub/folder;type=a
Also note that uri is good at adjusting URLs in a safe manner, as you can set the

various attributes to new values, as well as read them:

require 'uri'

my_url = "http://www.test.com/something/test.html"”
url = URI.parse(my_url)

url.host = "www.test2.com"

532

CHAPTER 16 USEFUL RUBY LIBRARIES

url.port = 1234
puts url.to s

http://www.test2.com:1234/something/test.html

Further Information

o Standard library documentation for uri: https://ruby-doc.org/
stdlib/libdoc/uri/rdoc/URI.html

o Information about URLs and URIs: https://en.wikipedia.org/
wiki/URL

zlib

zlib is an open source data-compression library. It’s a significant standard in data
compression, and you can manipulate zlib archives on almost every platform. Notably,
zlib is often used to compress web pages between servers and web browsers, is used in
the Linux kernel, and forms a key part of many operating system libraries.

You can use zlib from Ruby as a mechanism to compress and uncompress data.

Installation

zlib is in the standard library, so it comes with Ruby by default. To use it, you only need
to place this line near the start of your program:

require 'zlib'

Examples

Under zlib, compression and uncompression are called deflating and inflating. The
quickest way to compress (deflate) data is by using the Z1ib: :Deflate class directly:

require 'zlib'

test_text = 'this is a test string' * 100

533

https://ruby-doc.org/stdlib/libdoc/uri/rdoc/URI.html
https://ruby-doc.org/stdlib/libdoc/uri/rdoc/URI.html
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/URL

CHAPTER 16 USEFUL RUBY LIBRARIES

puts "Original string is #{test text.length} bytes long"
compressed_text = Zlib::Deflate.deflate(test_text)
puts "Compressed data is #{compressed text.length} bytes long"

Original string is 2100 bytes long
Compressed data is 46 bytes long

This test text compresses extremely well, as it’s the same string repeated 100 times
over. However, on normal data, it's more practical to see compression rates of around 10
to 50 percent.

Restoring compressed data requires Z1ib: : Inflate:

require 'zlib'

test_text = 'this is a test string' * 100

puts "Original string is #{test text.length} bytes long"
compressed_text = Zlib::Deflate.deflate(test text)

puts "Compressed data is #{compressed text.length} bytes long"
uncompressed_text = Zlib::Inflate.inflate(compressed_text)

puts "Uncompressed data is back to #{uncompressed text.length} bytes in
length"

Original string is 2100 bytes long
Compressed data is 46 bytes long
Uncompressed data is back to 2100 bytes in length

Note The compressed data returned by zlib is full 8-bit data, so might not be
suitable to use in emails or in formats where regular plain text is necessary. To
get around this, you can compress your data using zlib as usual and then use the
base64 library to turn the compressed results into plain text.

zlib also comes with classes to help you work directly with compressed files.
Files compressed with the zlib algorithm are often known as gzipped files, and
Zlib::GzipWriter and Z1ib: :GzipReader make it easy to create and read from these
files:

534

CHAPTER 16 USEFUL RUBY LIBRARIES
require 'zlib'

Z1ib::GzipWriter.open('my compressed file.gz') do |gz|
gz.write 'This data will be compressed automatically!’
end

Z1ib::GzipReader.open('my compressed file.gz') do |my file|
puts my file.read
end

This data will be compressed automatically!

Further Information

o Standard library documentation for zlib: https://ruby-doc.org/
stdlib/libdoc/z1ib/rdoc/Z1ib.html

535

https://ruby-doc.org/stdlib/libdoc/zlib/rdoc/Zlib.html
https://ruby-doc.org/stdlib/libdoc/zlib/rdoc/Zlib.html

APPENDIX A

Ruby Primer and Review
for Developers

This appendix is designed to act as both a Ruby primer and review, useful both to
developers who want to brush up rapidly on their Ruby knowledge and to those who are
new to the language but who have existing programming knowledge and want to get a
quick overview.

If you're a new programmer or at least are new to concepts such as object
orientation, scripting languages, and dynamic languages, you'll want to read through
Chapter 2 and continue with the rest of the book instead of depending on this appendix
to teach you about Ruby. This appendix is designed for either those who have finished
reading the rest of this book and want to brush up on the basics or those who want to
look quickly through some basic elements of Ruby syntax in the flesh.

With that in mind, this appendix isn’t instructional, as most of the other chapters in this
book are. A lot of concepts will be covered at a quick pace with succinct code examples.
References to more explanatory detail found in this book are given where possible.

The Basics

In this section, I'll give a brief overview of the Ruby programming language, its concepts,
and how to use the Ruby interpreter.

Definition and Concepts

Ruby is an open source, object-oriented programming language created and maintained by
Yukihiro Matsumoto (among others). Languages such as Perl, LISP, Smalltalk, and Python
have inspired the syntax and styling of the language. It is cross-platform and runs on several
different architectures, although its informal “home” architecture is Linux on x86.

537
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2

https://doi.org/10.1007/978-1-4842-6324-2#DOI

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Among other things, Ruby has automatic garbage collection, is (mostly) portable,
supports multitasking (both native and its own cooperative “green” threads), has a large
standard library, and supports most features associated with dynamic languages (such
as closures, iterators, exceptions, overloading, and reflection).

Ruby is an interpreted language. This is in opposition to languages that are compiled.
Code developed in languages such as C and C++ has to be compiled into object code
that represents instructions supported by a computer’s processor. Ruby, however, is
compiled down into platform-independent bytecode that is run by a virtual machine.
Python, Java, and C# share this characteristic, although they all run on different virtual
machine implementations and have different execution characteristics. Table A-1
highlights some key differences between several popular programming languages.

Table A-1. Feature Comparison Between Several Popular Programming Languages

Language Object-Oriented? Reflective? Dynamically Typed? Interpreted?
Ruby Yes Yes Yes Yes (usually)

C No No No No

C++ Yes No No No

C# Yes Yes Yes Yes, through VM
Perl Partially Partially Yes Yes

Java Yes, mostly Not generally No Yes, through VM
Python Yes Yes Yes Yes

Golang Partially Yes No No

Ruby has been developed with the “principle of least surprise” in mind, so the way
you’d expect things to work is usually a valid way of doing something. This means Ruby
is very much a “there’s more than one way to do it” type of language, in the same vein as
Perl but quite different in philosophy from languages such as Python, where having one
clear process to achieve something is seen as the best way to do things.

538

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Note A useful resource is the official Ruby site’s “Ruby From Other Languages”
section at waw. ruby-lang.org/en/documentation/ruby-from-other-
languages/, where you'll find in-depth comparisons of Ruby against C, C++,
Java, Perl, PHP, and Python.

One important concept in Ruby is that almost everything is an object. For example,
the following line of code calls a primitive, internal method called puts with a single
argument of 10. puts prints its arguments to the screen:

puts 10

10

Note You could run this as a complete Ruby program or perform it in an
interactive manner using Ruby’s irb tool.

The following line of code calls the class method on the numeric object 10. Even
the literal number 10 is an object in this situation. The result demonstrates that 10 is an
object of the Integer class:

puts 10.class
Integer

Ruby’s reflection, overriding, object orientation, and other dynamic features make
it possible for developers to entirely override the behaviors of even built-in classes such
as Integer. It’s possible to make Integer objects work in totally different ways. You can
override Integer to the point that 2 + 2 could well equal 5. Although some developers
already experienced with languages such as Java and C see this as a downside, this level
of control over the internals of the language gives Ruby developers a significant amount
of power. The key is to use that power carefully.

539

http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/
http://www.ruby-lang.org/en/documentation/ruby-from-other-languages/

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

The Ruby Interpreter and Running Ruby Code

As Ruby is an interpreted language, Ruby code is executed using the Ruby interpreter. On
most platforms, that makes running a Ruby script as easy as this:

ruby name_of script.rb

Note Ruby program files usually end with the extension of . rb, although this isn’t
a strict requirement.

The Ruby interpreter has a number of options. You can ask the Ruby interpreter to
print out its version details using the -v (version) option:

ruby -v
ruby 3.0.0p0 (2020-12-25) [x86_64-darwini7]

You can also execute Ruby commands directly from the command line, using -e:

ruby -e "puts 2 + 2"

You can learn more about the Ruby interpreter’s command-line options by typing
man ruby (on UNIX-related platforms) or by visiting a web-based version of the Ruby
man page at https://linux.die.net/man/1/ruby.

Note On Microsoft Windows, you might choose to associate the Ruby interpreter
directly with any . rb files so that you can double-click Ruby files to execute them.

On UNIX-related platforms, it’s possible to add a “shebang” line as the first line of
a Ruby script so that it can be executed without having to invoke the Ruby interpreter
explicitly, for example:

#!/usr/bin/ruby
puts "Hello, world!"

540

https://linux.die.net/man/1/ruby

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

You can take this script, give it a simple filename such as hello (no .rb extension
needed), make the file executable (using chmod), and run it directly using its filename
rather than having to invoke the Ruby interpreter explicitly. Chapter 10 covers this
technique in more depth. More information about the shebang line specifically is
available at https://en.wikipedia.org/wiki/Shebang_(Unix).

Interactive Ruby

With the normal Ruby interpreter also comes an interactive Ruby interpreter called irb.
This allows you to write Ruby code in an immediate, interactive environment where the
results of your code are given as soon as you type it. Here’s an example irb session:

irb

irb(main):001:0> puts "test"
test

=>nil

irb(main):002:0> 10 + 10

=> 20

irb(main):003:0> 10 == 20
=>false

irb(main):004:0> exit

irb gives you the results of methods and expressions immediately. This makes it
an ideal tool for debugging or putting together quick snippets of code and for testing
concepts.

Expressions and Flow Control

Expressions, logic, and flow control make up a significant part of any developer’s tools in
any programming language. This section looks at how Ruby implements them.

Basic Expressions

Ruby supports expressions in a style familiar to almost any programmer:

541

https://en.wikipedia.org/wiki/Shebang_(Unix)

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS
"a" + "b" + "c"

abc

10 + 20 + 30

60

("a" *5) + ("c" * 6)

aaaaacccccc

10

b =20
ax*b

Q
1]

200

You can assign the results of expressions to variables, which you can then use in
other expressions.

Method calls, variables, literals, brackets, and operators can all combine so long
as sub-expressions always feed values of the correct type into their parent expressions
or provide methods that allow them to be coerced into the right types. The next section
covers this topic in more depth. (Expressions are covered in depth in Chapter 3.)

Class Mismatches

Ruby is a dynamic language, but objects aren’t converted between different classes
automatically (in this sense Ruby is a strongly typed language). For example, this
expression is valid in JavaScript:

"20" + 10

30

542

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

However, in Ruby, you get an error response with the same expression:

TypeError (no implicit conversion of Integer into String)
from (irb):1:in “+'
from (irb):1

In Ruby, you can only use objects that are of the same class or that support automatic
translation between classes (coercion) in operations with one another (usually via methods
called things like to_s and to_h, for conversions to strings and hashes, respectively).

However, Ruby comes with a set of methods that exist on many types of objects,

which make conversion easy, for example:

"20" + 10.to0 s

||2010||

In this example, the number 10 is converted to a string "10" in situ with the to_s
method. Consider this inverse example, where you convert the string "20" into an
integer object using the to_i method before adding 10 to it:

"20".to i + 10

30

Note Methods are covered in depth in Chapters 2, 3, and 6, as well as later in
this appendix.

The to_s method provided by all number classes in Ruby results in a number being
converted into a String object. Programmers might recognize this concept as similar to
casting.

Other conversions that can take place are converting integers to floats using to_f,
and vice versa with to_i. You can convert strings and numbers using to_s, to_i, and
to_f. Many other classes support to_s for converting their structure and other data into
a string (the Time class provides a good demonstration of this). This topic is covered in
Chapter 3 in the section “Converting Objects to Other Classes.”

543

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Comparison Expressions

Comparison expressions in Ruby, as in most other languages, return true or false,
except that in some situations comparisons might return nil, Ruby’s concept of “null” or
nonexistence, for example:

2 ==1

false

true
(2 ==12) 8 (1 ==1)

true

false
X ¥ x == x ¥ 2
true

In each of the preceding examples, you test whether variables, literals, or other
expressions are equal to one another using == (symbolizing “is equal to”). You can check
that multiple expressions result in true (logical “and”—if x and y are true) using &&
(symbolizing “and”).

As in other languages, the concept of a logical “or” is symbolized by ||:

(2==5) [| (1==1)
true

544

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

This expression is true because even though 2 is not equal to 5, the other sub-
expression is true, meaning that one or another of the expressions is true, so the whole
comparison is also true.

Last, it can be useful to negate expressions. You can do this with the ! operator, as in
many other programming languages. For example, you might want to see if one thing is
true but another thing is false. Here’s an example:

(2 ==12) 8 !(1 ==2)
true

The expression is true because both sub-expressions are true. 2 is equal to 2, and 1
is not equal to 2.
You can also check that one thing is not equal to another with the inequality operator !=:

(2 ==2) 8 (1 !=2)

True

Flow

Ruby supports a few different forms of flow control. In this section, you'll see several
techniques you can use for branching and looping. (All the topics in this section are
covered in more depth in Chapter 3.)

Branching and Conditional Execution

The simplest form of conditional execution is with just a single line using if or unless:
puts "The universe is broken!" if 2 ==

This example won't print anything to the screen because 2 is not equal to 1. In this
case, if performs the comparison before the rest of the line is executed.
Ruby also supports a multiline construction:

if 2 ==
puts "The universe is broken!"
end

545

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

This multiline construction is less space efficient than the previous, single-line
construction, but it allows you to put multiple lines between the condition and the end
of the block, which isn’t possible with the “end of line” technique.

Note unless is the opposite of if. It executes code if the expression is false
(or nil), rather than true. Some Rubyists think of it as “if not,” because unless
acts like if with the expression negated. Other developers avoid it entirely due to
the potential confusion it can cause.

Ruby also supports the else directive:

if 2 ==

puts "The universe is broken!"
else

puts "The universe is okay!"
end

The universe is okay!

If the expression (2 == 1 in this example) is true, the main block of code is executed,
else the other block of code is. There’s also a feature called elsif that lets you chain
multiple ifs together:

X = 12

ifx==1 || x==3]]x==5x==7]|] x==
puts "x is odd and under 10"

elsif x == 2 || x==4 || x==6 || x == 8
puts "x is even and under 10"

else
puts "x is over 10 or under 1"

end

The preceding rather obtuse example demonstrates how you can use if, elsif,
and else in tandem. The only thing to note is that end always finishes an if (or unless)
block, whether end is on its own or features elsif and else blocks too. In some
languages, there’s no need to delimit the end of if blocks if they contain only a single
line. This isn’t true of Ruby.

546

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Note JavaScript and C# coders will be used to else if.Ruby’s uses elsif
instead.

Ruby also supports another construction familiar to C#, C++, Java, and JavaScript
coders, called case (known as switch in C#, C++, Java, and JavaScript):

fruit = "apple"

color = case fruit

when "orange"
"orange"

when "apple"
"green”

when "banana"
"yellow"

else
"“unknown"

end

puts color

green

This code is similar to the if block, except that the syntax is a lot cleaner. A case
block works by processing an expression first (supplied after case), and then the case
block finds and executes a contained when block with an associated value matching the
result of that expression. If no matching when block is found, then the else block within
the case block will be executed instead.

The Ternary Operator (Conditional Expressions)

Ruby supports a construction called the ternary operator. Its usage is simple:

X =10
puts x > 10 ? "Higher than ten" : "Lower or equal to ten"

Lower or equal to ten

547

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS
The ternary operator works like so:
expression ? true expression : false expression

It works like an expression, but with built-in flow control. If the initial expression is true,
then the first following expression will be evaluated and returned. If the initial expression is
false, then the final following expression will be evaluated and returned instead.

Loops

Ruby supports loops in a similar way to other programming languages. For example,
while, loop, until, next, and break features will be familiar (although with possibly
different names) to most programmers.

Note Ruby also supports iteration and code blocks, which can prove a lot more
powerful than regular loops. These are covered later in this appendix and in
Chapters 2, 3, and 6.

Loop techniques are covered in Chapter 3, but some basic demonstrations follow.
Here’s a permanent loop that you can break out of using break:

i=0
loop do

i+=1

puts 1

break if i > 100
end

Note It's worth noting that unlike in C# or JavaScript, you cannot increment
variables by 1 with variable++ in Ruby. variable = variable + 1or
variable += 1 is necessary instead.

Here’s awhile loop, using next to skip even numbers (using the % modulo operator):

i=0
while (i < 15)
i+=1

548

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

next if i %2 ==0
puts 1
end

Note untilis the opposite of while. until (i >= 15) is equivalent to
while (i < 15).

Further looping techniques are covered in Chapter 3 and throughout the book.

Object Orientation

Ruby is considered a pure object-oriented language, because everything appears to Ruby
as an object. An earlier example in this appendix demonstrated this:

puts 10.class
Integer
Even literal data (such as strings or numbers embedded directly in your source code)

is considered to be an object, and you can call the methods made available by those
objects (and/or their parent classes).

Note Object orientation, classes, objects, methods, and their respective
techniques are covered in full in Chapters 2 and 6. This section presents merely a
brief overview.

549

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Ruby implements object orientation in a simple way (syntax-wise), but offers more
dynamic features than other major languages (see Chapter 6 for many examples of such
features).

Objects

Objects in Ruby have no special qualities beyond objects that exist in any other object-
oriented programming language. However, the key difference between Ruby and most
other major object-oriented languages is that in Ruby everything is an object. With this
in mind, you can call methods on almost everything and even chain methods together:

something.function3.function2.function1

Periods are used between an object and the method to call, as in C# or JavaScript.
In this example, you call the function3 method on the something object, then the
function2 method on the result of that, and then the function1 method on the result of
that. A real-world demonstration can illustrate

"this is a test".reverse
tset a si siht
"this is a test".reverse.upcase.split(' ').reverse.join('-")

SIHT-SI-A-TSET

This example is deliberately long to demonstrate the power of method chaining
in Ruby. This example takes your string "this is a test", reverses it, converts it to
uppercase, splits it into words (splitting on spaces), reverses the position of the words
in an array, and then joins the array back into a string with each element separated by
dashes. (Objects are covered in depth in Chapters 2, 3, and 6.)

Classes and Methods

Ruby classes are similar in style to those in C# or Java, but keep the benefits of Ruby’s
dynamic features. Let’s look at an example class definition:

550

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

class Person
def initialize(name, age)
@®name = name
@age = age
end

def name
return @name
end

def age
return @age
end
end

This class features an initialize method that is called automatically when you
create a new instance of that class. Two parameters or arguments are accepted (name and
age) and assigned to instance variables. Instance variables are variables associated with
a particular instance of a class and begin with an @ sign (as in @name). Java developers
should recognize @name as being similar to this.name.

After the initializer come two methods (name and age) that act as basic accessors.
They simply return the value of their respective instance variables.

Note In Ruby, if no value is explicitly returned from a method, the value of the
last expression is returned instead. Therefore, return @name and just @name as
the last line in the name method would be equivalent.

With the preceding class definition, it’s trivial to create new objects:

personl = Person.new('Chris', 25)
person2 = Person.new('Laura’, 23)
puts personl.name
puts person2.age

Chris
23

551

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

One benefit of Ruby is that you can add features to classes even if they’ve already
been defined. Within the same program as before, you can simply “reopen” the class and
add more definitions:

class Person
def name=(new_name)
@name = new_name
end

def age=(new_age)
@age = new_age
end
end

These new methods are added to the Person class and are automatically made
available to any existing instances of that class. These new methods are setter methods,
as signified by the equals sign following their names. They allow you to do this:

personil.name = "Barney"
person2.age = 101
puts personl.name
puts person2.age

Barney
101

Ruby can simplify most of the preceding work for you though, as it provides the
attr accessor helper method that automatically creates accessors and setter methods
within a class for you:

class Person
attr_accessor :name, :age
end

You can also create class methods: methods that don’t exist within the scope of a
single object, but that are bound directly to the class, for example:

class Person
@@count = 0

552

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

def initialize
@@count += 1
end

def self.count
@@count

end

end

a Person.new

b
C

Person.new

Person.new
puts Person.count

This Person class implements a count class method (notice that it is defined as self.
count, rather than just count, making it a class method). The count class method returns
the value of a class variable (@@count) that stores the total number of Person objects
created so far. Class variables begin with two @ signs and exist within the scope of a class
and all its objects, but not within the scope of any specific object. Therefore, @@count
equals 3 and only 3 once you've created three Person objects.

This section has given only a brief overview of classes, objects, and their special
variables. For a detailed look at classes and objects, refer to Chapter 6.

Reflection

Ruby is often called a reflective language, as it supports reflection. Reflection is a process
that allows a computer program to observe and modify its own structure and behavior
during execution. This functionality can seem like a novelty to developers experienced
with C#, C++, and Java, but it’s incredibly important in terms of Ruby’s operation and
Ruby’s ability to define domain-specific languages, making other forms of development
easier.

A brief demonstration of reflection is the ability to programmatically retrieve a list of
all the methods associated with any object or class in Ruby. For example, here’s how to
display a list of all methods of the Hash class:

553

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Hash.methods

[:[], :try convert, :ruby2 keywords hash?, :ruby2 keywords hash, :new,
:allocate, :superclass, :<=>, :<=, :>=, :==, :===, :included modules,
:include?, :ancestors, :attr, :attr reader, :attr writer, :attr_accessor,
:freeze, :inspect, :public_instance methods, :instance_methods,
:const_missing, :protected instance methods, :private instance methods,
:const_set, :constants, :remove class variable, :class variable get,
:class_variable set, :class variable defined?, :const_get, :const_
defined?, :<, :>, :public_constant, :class variables, :private constant,
:deprecate_constant, :singleton class?, :const source location, :to_s,
:class eval, :include, :module exec, :module eval, :prepend, :undef_
method, :alias method, :class exec, :remove method, :method defined?,
:name, :private class method, :public_method defined?, :private method
defined?, :protected method defined?, :public_class method, :define_
method, :autoload, :autoload?, :instance method, :public_instance method,
:dup, :itself, :yield self, :then, :taint, :tainted?, :untaint, :untrust,
:untrusted?, :trust, :frozen?, :methods, :singleton methods, :protected_
methods, :private methods, :public_methods, :instance variables,
:instance variable get, :instance variable set, :instance_variable
defined?, :remove instance variable, :instance of?, :kind of?, :is a?,
:tap, :display, :hash, :class, :singleton class, :clone, :public_send,
:method, :public_method, :singleton method, :define singleton method,
:extend, :to_enum, :enum for, :=~, :!~, :nil?, :eql?, :respond_to?,
:object_id, :send, : send , :!, :!=, : id , :equal?, :instance eval,
:instance_exec]

Similarly, you can retrieve a list of methods available on a String object directly:
"testing".methods

[:unicode normalize, :unicode normalize!, :ascii only?, :to r, :unpack,
:encode, :encode!, :unpacki, :%, :include?, :*, :+, :count, :partition,
4@, :-@, :<=>, <<, :to c, ==, ===, :sum, :=~, :next, :[], :casecmp,
:casecmp?, :insert, :[]=, :match, :match?, :bytesize, :empty?, :eql?,
:succ!, :next!, :upto, :index, :rindex, :replace, :clear, :chr, :getbyte,

554

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

:setbyte, :scrub!, :scrub, :undump, :byteslice, :freeze, :inspect,
:capitalize, :upcase, :dump, :downcase!, :swapcase, :downcase, :hex,
:capitalize!, :upcase!, :lines, :length, :size, :codepoints, :succ,
:split, :swapcase!, :bytes, :oct, :prepend, :grapheme clusters, :concat,
:start with?, :reverse, :reverse!, :to str, :to sym, :crypt, :ord, :strip,
tend with?, :to s, :to i, :to f, :center, :intern, :gsub, :ljust, :chars,
:delete suffix, :sub, :rstrip, :scan, :chomp, :rjust, :lstrip, :chop!,
:delete prefix, :chop, :sub!, :gsub!, :delete prefix!, :chomp!, :strip!,
:1strip!, :rstrip!, :squeeze, :delete suffix!, :tr, :tr s, :delete,
:each_line, :tr!, :tr s!, :delete!, :squeeze!, :slice, :each byte, :each_
char, :each _codepoint, :each_grapheme cluster, :b, :slice!, :rpartition,
:encoding, :force encoding, :valid encoding?, :hash, :unicode normalized?,
:clamp, :between?, :<=, :>=, :>, :¢, :dup, :itself, :yield self, :then,
:taint, :tainted?, :untaint, :untrust, :untrusted?, :trust, :frozen?,
:methods, :singleton methods, :protected methods, :private methods,
:public_methods, :instance variables, :instance variable get, :instance_
variable set, :instance variable defined?, :remove instance variable,
:instance_of?, :kind of?, :is_a?, :tap, :display, :class, :singleton_
class, :clone, :public_send, :method, :public_method, :singleton method,
:define_singleton_method, :extend, :to_enum, :enum for, :!~, :nil?,
:respond_to?, :object_id, :send, : send_ , :!, :l=, : id , :equal?,
:instance_eval, :instance_exec]

Note Future versions of Ruby may show different results.

The results given by the methods method might seem overwhelming at first, but over
time they become incredibly useful. Using the methods method on any object allows you
to learn about methods that aren’t necessarily covered in this book (or other books) or
that are new to the language. You can also use methods to retrieve a list of class methods,
because classes are also objects in Ruby!

This section provides only a taste of reflection, but the topic is covered in more detail
in Chapter 6.

555

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Reopening Classes

It’s trivial to override already defined methods on classes. Earlier in this appendix, I
mentioned that, if you so wish, you can adjust the Integer class so that2 + 2 would
equal 5. Here’s how you do that:

class Integer
alias method :o0ld plus, :+

def +(other number)
return 5 if self == 2 && other number ==
old plus other number
end
end

puts 2 + 2

The first thing this code does is to enter the Integer class, so you can define methods
and perform actions within it. Next, you make an alias from the addition operator/
method (+) to a new method called old_plus. This is so you can still use the normal
addition feature, though with a different name.

Next, you redefine (or “override”) the + method and return 5 if the current number is
2 and the number you're adding to the current number is also 2. Otherwise, you simply
call o1d_plus (the original addition function) with the supplied argument. This means
that2 + 2 now equals 5, but all other addition is performed correctly.

You can redefine nearly any method within Ruby. This can make testing essential
because you (or another developer) might incorporate changes that affect classes and
objects being used elsewhere within your program. Testing is covered in Chapters 8 and 12.

Method Visibility

It’s possible to change the visibility of methods within Ruby classes in one of three ways.
Methods can be public (callable by any scope within the program), private (callable only
within the scope of the instance the methods exist upon), and protected (callable by any
object of the same class). Full details about method visibility are available in Chapter 6.

556

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

To encapsulate methods as public, private, or protected, you can use two different
techniques. Using the words public, private, and protected within a class definition
causes the methods defined thereafter to be encapsulated in the respective fashion:

class MyClass
def public_method
end

private
def private method1
end

def private method2
end

protected
def protected method
end

end

You can also explicitly set methods to be encapsulated in one way or another, but
only after you've first defined them, for example:

class MyClass
def public_method
end

def private_method1
end

def private _method2
end

def protected method
end

public :public_method
private :private method1, :private method2
protected :protected method

end

557

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Declarations such as this should come after you define the methods, as otherwise
Ruby won'’t know what you're referring to.

Data

As everything is an object in Ruby, all forms of data represented within Ruby are also
objects, just of varying classes. Therefore, some Ruby developers will try to correct you if
you refer to types rather than classes, although this is merely pedantry.

In this section, we’ll take a quick look at some of the basic data classes in Ruby.

Strings

Strings in Ruby are generally unexceptional, except for the object-oriented benefits you
gain. Previously in this appendix, we looked at how powerful classes and methods can
be when working on strings:

"this is a test".reverse.upcase.split(' ').reverse.join('-")
SIHT-SI-A-TSET
The String class offers a plethora of useful methods for managing text. I'll cover

several of these in the “Regular Expressions” section. However, if you want to see what
other methods strings offer, it’s easy: just execute "test".methods.

Regular Expressions

In Ruby, regular expressions are implemented in a reasonably standard way. If you're
familiar with regular expressions, Ruby’s techniques shouldn’t seem alien:

"this is a test".sub(/[aeiou]/, '*')
th*s is a test

"this is a test".gsub(/[aeiou]/, '*')
th*s *s * t*st

558

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

"THIS IS A TEST".gsub(/[aeiou]/, '*')

THIS IS A TEST

"THIS IS A TEST".gsub(/[aeiou]/i, '*')

TH*S *S * T*ST

sub performs a single substitution based on a regular expression, whereas gsub
performs a global substitution. As in other languages, you use the /i option to make the
regular expression case-insensitive.

Ruby also makes matching easy, with the match method of String returning a special
MatchData array you can query:

m = "this is a test".match(/\b..\b/)
m[0]

is

m = "this is a test".match(/\b(.)(.)\b/)
m[0]

is

The latter example demonstrates how you can parenthesize elements of the regular
expression to separate their contents in the results. m[0] contains the full match, whereas
m[1] onward matches each set of parentheses.

559

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS
You can also scan through a string, returning each match for a regular expression:

"this is a test".scan(/[aeiou]/)

"this is a test".scan(/\w+/)
['this', 'is', 'a', "test']

Methods such as split also accept regular expressions (as well as normal strings):

"this is a test".split(/\s/)
['this', "is', 'a', "test']

Regular expressions are covered in more depth in Chapter 3, and are used
throughout the book.

Numbers

Integers and floating point numbers are available in Ruby and operate mostly as
you'd expect. Numbers support all common operators such as modulus (%), addition,
subtraction, division, multiplication, and powers (**).

A key consideration with numbers in Ruby is that unless you explicitly define a
number as a floating point number, it won’t be one unless it contains a decimal point, for
example:

10 / 3

560

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

In this situation, 10 and 3 are both considered integers, so integer division is used.
If integer division is what you're after—and it might be in some cases—then you're fine.
But if you're after floating point division, you need to do something to ensure that at least
one of the values involved is recognized as a floating point number. You can generate a
floating point value in one of three ways as follows:

e Byinvoking the to_f method to convert an integer to its floating point
equivalent

e Bywriting the number with a decimal point, even if you just add “0”
to the end

e By invoking the Float() initializer method to convert an integer to a
floating point value

Here are some examples:

10.to f / 3
3.33333333333335
10.0 / 3
3.33333333333335
10 / Float(3)
3.33333333333335
Which method you choose to make the 10 be recognized as a Float object can be

largely influenced by the situation, so it’s useful to see all your options.
Numbers are covered in depth in Chapter 3.

Note You can produce roots easily by raising a number to the power of 7 divided
by the root desired. For example, you can find the square (2) root of 25 with 25 **
0.5.

561

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Arrays

As in other programming languages, arrays act as ordered collections. However, in Ruby
specifically, arrays are ordered collections of objects, because everything in Ruby is an
object! Arrays can contain any combination of objects of any class.

At first sight, Ruby arrays work much like arrays in any other language, although
note that you work on an array using methods, because an array itself is an object. The
following example shows the invocation of the Array class’s push method:

=[]
.push(10)
.push('test")
.push(30)

<< 40

[\DIR <D I <D R D <]

[10, 'test', 30, 40]

Notice the use of a different form of pushing objects to an array with the << operator
on the last line of the preceding example.
You can then retrieve elements like so:

puts a[o0]
puts a[1]
puts a[2]

10
test
30

Note Although [] defines an empty literal array, you can also use Array.new to
generate an empty array if you prefer to stick to object orientation all the way.

Arrays are objects of class Array and support a plethora of useful methods, as
covered in full in Chapter 3.

562

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Hashes (Associative Arrays)

Hashes (also known as associative arrays) exist as a concept in many programming
languages. Hashes are data structures that let you associate keys with values.

Ruby’s implementation of hashes is straightforward and should be familiar to Python
developers, despite some minor syntax changes, for example:

fred = {
"name' => 'Fred Elliott',
‘age' => 63,

‘gender' => 'male’,
'‘favorite painters' => ['Monet’, 'Constable', 'Da Vinci']

}

fred refers to a basic hash that contains four elements that have keys of 'name’,
‘age’, 'gender', and 'favorite painters'.You can refer back to each of these
elements easily:

puts fred['age']
63
puts fred['gender']
male
puts fred['favorite painters'].first
Monet
Hashes are objects of class Hash and come with a large number of helpful methods
to make hashes easy to navigate and manipulate, much like regular arrays. It's important

to note that both hash element keys and values can be objects of any class themselves,
as long as each element key is distinct. Otherwise, previously existing values will be

563

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

overwritten. Hashes and associated methods and techniques are covered in detail in
Chapter 3.

In Ruby 1.9 and above, a new style of defining hashes is available and is preferred in
modern Ruby. It would allow the previous example to be written like so:

fred = {
name: 'Fred Elliott’,
age: 63,

gender: 'male’,
favorite painters: ['Monet', 'Constable', 'Da Vinci']

Complex Structures

Because hashes and arrays can contain other objects, it’s possible to create complex
structures of data. Here’s a basic example of a hash containing other hashes (and
another hash containing an array at one point):

people = {
fred: {
name: 'Fred Elliott',
age: 63,

gender: 'male’,
favorite painters: ['Monet', 'Constable', 'Da Vinci']
})
janet: {
name: 'Janet S Porter’,
age: 68,
gender: 'female'
}
}

puts people[:fred][:age]
puts people[:janet][:gender]
puts people[:janet].inspect

564

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

63
female
{:name=>"Janet S Porter", :age=>68, :gender=>"female"}

This example presents a hash called people that contains two entries with keys of
:fred and : janet, each of which refers to another hash containing information about
each person. These sorts of structures are common in Ruby. They are covered in more
depth in Chapter 3 and throughout this book. Typically, compared to other languages,
the syntax is simple, and in Ruby, the simplest answer is usually the right one.

Input/Output

Ruby has powerful input/output (I/O) support, from the ability to create, read,

and manipulate files through to database support, external devices, and network
connectivity. These topics are covered in full in this book (primarily in Chapters 9, 14,
and 15), but this section presents a basic overview of the most important forms of I/O.

Files

Ruby’s support for file I/O is powerful compared to that of other languages. Although
Ruby supports traditional techniques for reading and manipulating files, its object-
oriented features and tight syntax offer more exciting possibilities. First, here is the
traditional way you'd open and read a file (as when using a more procedural language):

lines = []
file_handle = File.open("/file/name/here", "r")

while line = file handle.gets
lines<< line
end

file handle.close

Note You would need to replace /file/name/here with a legitimate path for
this to work asis.

565

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

This example opens a file in read-only mode and then uses the file handle to read the
file line by line before pushing it into an array. Let’s look at a Ruby-specific technique:

lines = File.readlines('/file/name/here")

Ruby’s file handling and manipulation support is particularly deep and extensive,
so it’s out of the scope of this chapter. However, the preceding examples should have
provided a glimpse into what'’s possible, and files are covered in full in Chapter 9 of this
book.

Databases

There are several ways to connect to database systems such as MySQL, MongoDB,
PostgreSQL, Oracle, SQLite, and Microsoft SQL Server from Ruby. Typically, a “driver”
library is available for each of the main database systems, although these don’t come
with Ruby by default. You typically install database driver libraries using the RubyGems
Ruby library packaging system, or you might need to download and install them
manually. Explaining how to use such libraries is beyond the scope of this appendix, but
they are covered in full in Chapter 9.

Ruby also has libraries that can provide more standardized interfaces to various
driver libraries. Consider looking at sequel for this.

Web Access

Ruby comes with libraries that make accessing data on the Web incredibly easy. At a
high level is the open-uri library, which makes it easy to access data from the Web. This
example retrieves a web page and returns an array containing all the lines on that page:

require 'open-uri'
URI.open('https://www.apress.com/").readlines

open-uri is a convenience library that provides an open method that allows you to
load data from URLs. open returns a File handle (technically a Tempfile object) that
works in the same way as any other File object, allowing you to use methods such
as readlines to read all the lines of the data into an array. (This topic is covered in
significantly more depth in Chapter 14.)

566

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

Ruby also provides lower-level libraries, such as net/http. Here’s an example of
retrieving a file from a website and displaying it on the screen:

require 'net/http’

Net::HTTP.start('www.apress.com', use ssl: true) do |http]|
req = Net::HTTP::Get.new('/sitemap.xml")
puts http.request(req).body

end

<?xml version="1.0" encoding="UTF-8"?><sitemapindex xmlns="http://
www.sitemaps.org/schemas/sitemap/0.9"><sitemap><loc>https://
www.apress.com/sitemap-books-aa.xml</loc><lastmod>2020-08-
12T15:47:18.948Z</lastmod></sitemap><sitemap><loc>https://www.apress.
com/sitemap-books-gp-1.xml</loc><lastmod>2020-08-12T715:47:19.113Z</
lastmod></sitemap><sitemap><loc>https://www.apress.com/sitemap-
books-gp-2.xml</loc><lastmod>2020-08-12T15:47:19.298Z</lastmod></
sitemap><sitemap><loc>https://www.apress.com/sitemap-books-
gp-3.xml</loc><lastmod>2020-08-12T15:47:19.486Z</lastmod></
sitemap><sitemap><loc>https://www.apress.com/sitemap-books-gp-4.xml</
loc><lastmod>2020-08-12T15:47:19.663Z</lastmod></sitemap></sitemapindex>

This example connects to the web server at www.apress.com and performs an HTTP
GET request for /sitemap.xml. This file’s contents are then returned and displayed. The
equivalent URL for this request is www.apress.com/sitemap.xml, and if you load that
URL in your web browser, you'll get the same response as this Ruby program.

net/http also lets you make requests using other HTTP verbs such as POST and
DELETE, and it is the most flexible HTTP library for Ruby. Refer to Chapter 14 for full
information.

Libraries

This section looks at how you can organize code into multiple files and manage libraries
within Ruby.

567

http://www.apress.com
http://www.apress.com/sitemap.xml

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

File Organization

Ruby libraries don’t need to be packaged in any special way (unlike, say, Java’s JAR
archives). Ruby does have a library packaging system called RubyGems (covered in
the next section), but its use is entirely optional. The simplest way to create a library is
to create a Ruby file containing classes and methods and use require to load it. This
technique is similar in C# (using) or JavaScript (import).

Let’s assume you have a file called mylib.rb containing the following:

class MyLib
def self.hello world
puts "Hello, world!"
end
end

And then you have another file like so:

require_relative 'mylib’
MyLib.hello world

This program loads in mylib.rb and includes its classes, methods, and other
particulars into the current runtime environment, meaning that MyLib.hello_world calls
the correct routine.

Ruby searches through its library folders in a specific order (and usually the current
directory too, as in the previous example), as dictated by the special variable $:. This
variable is an array that can be manipulated like any other array. You can push, pop, and
otherwise change the order and directories in which your program searches for libraries.

This topicis covered in depth in Chapter 7, and demonstrations of several Ruby libraries
are offered in Chapter 16. A basic Ruby library is also created from scratch in Chapter 12.

Packaging

RubyGems (https://rubygems.org/) is a packaging system for Ruby libraries and
applications. Each package within the RubyGems universe is called a gem or RubyGem
(in this book, both terms are used interchangeably). RubyGems makes it easier to
distribute, update, install, and remove libraries and applications on your system. A
further system called Bundler makes it possible to “bundle” together gems in the context
of a single Ruby project that you might be working on.

568

https://rubygems.org/

APPENDIXA RUBY PRIMER AND REVIEW FOR DEVELOPERS

RubyGems has been included by standard with Ruby since Ruby 1.9, but was
previously an optional, third-party technology.

Before the advent of RubyGems, Ruby libraries and applications were distributed in
a basic fashion in archive files or even as source code to copy and paste from the Web.
RubyGems makes it easier and more centralized and also takes care of any prerequisites
and dependencies required when installing a library. For example, here’s how to install
the Ruby on Rails framework:

gem install rails

Note On some platforms, you will have permissions issues installing gems. Avoid
using sudo as a work around since it will cause issues. Instead, try using rbenv
(https://github.com/rbenv/rbenv) or rvm (https://rvm.io/) to
manage your Ruby install.

This installs the gems that make up Rails along with all their dependencies. Bundler
provides an alternative whereby gems are defined within a special file and then the
Bundler tool automatically installs the required dependencies for you.

You can uninstall gems in as simple a fashion:

gem uninstall rails

If you have multiple versions of the same gem(s) installed, gem will ask you which
version(s) you want to remove.

By default, gems are searched for in the default repository, hosted at RubyGems . org.
There is documentation on the official RubyGems site if you want to create your own
account to be able to release your own gems via the site.

Optionally you can run your own gems repository on your own website or by using
the RubyGems server software. This is less common and requires users of your gems to
specify your server name at the same time as installing the gem. I would not advise this.

RubyGems and Bundler are covered in Chapter 7, and several RubyGems are
documented in Chapter 16.

569

https://github.com/rbenv/rbenv
https://rvm.io/

APPENDIX B

Useful Resources

This appendix provides links to useful Ruby resources that are available online, from
websites to chatrooms and mailing lists.

As the Internet is ever changing, some resources that were available at the time of
writing may no longer be available to you. When you find that to be the case, it’s worth
using a search engine to search for the keywords involved, as the site you're looking for
might have simply changed URLs.

Tutorials and Guides

The Internet is host to a significant number of tutorials and guides on how to use various
features of Ruby and its libraries. Often there are multiple tutorials on how to do the
same thing in different ways, and tutorials can appear quickly after libraries are released.
This is why it’s worth subscribing to a few Ruby-related Twitter feeds and other news
sources so that you can learn about the latest action as it happens.

However, in this section are links to a number of useful tutorials and guides that are
more perennially useful.

General Ruby Tutorials and Information

Try Ruby! (https://try.ruby-lang.org/): An online Ruby
interpreter with a built-in tutorial.

Ruby in Twenty Minutes (waw.Tuby-lang.org/en/documentation/
quickstart/): A basic primer to the bare essentials of Ruby. This
guide won'’t be of any use to readers of this book, but might be
useful to forward to others who are interested in Ruby and want to
get a quick look at the language from a beginner’s point of view.

571
© Carleton DiLeo, Peter Cooper 2021

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2

https://doi.org/10.1007/978-1-4842-6324-2#DOI
https://try.ruby-lang.org/
http://www.ruby-lang.org/en/documentation/quickstart/
http://www.ruby-lang.org/en/documentation/quickstart/

APPENDIXB USEFUL RESOURCES

Learn Ruby (http://rubylearning.com): A collection of short
tutorials and ebooks on various aspects of Ruby, by Satish Talim.
It’s ideal as a quick recap on various topics. Satish also runs Ruby-
related online classes.

Ruby Tapas (www.rubytapas.com): Short screencasts covering
various Ruby topics.

Ruby on Rails

Getting Started with Rails (https://guides.rubyonrails.org/
getting started.html): An excellent walk-through of how to
use Rails from a basic point of view. Covers creating a very basic
application and provides links to further resources. Well worth
reviewing after reading Chapter 13 of this book.

The Rails Tutorial Book (www.railstutorial.org/book): A book
by Michael Hartl that is available to read in its entirely online. This
is what I recommend if you want to learn Rails from scratch.

Other

SQL Tutorial (www.w3schools.com/sql/): A comprehensive SQL
tutorial, expanding on what is covered in Chapter 9 of this book.

References

The resources covered in this section are general references to Ruby and Ruby on Rails.
For specific tutorials and guides to doing certain things, you need to refer instead to the
“Tutorials and Guides” section later on in this appendix.

572

http://rubylearning.com
http://www.rubytapas.com
https://guides.rubyonrails.org/getting_started.html
https://guides.rubyonrails.org/getting_started.html
http://www.railstutorial.org/book
http://www.w3schools.com/sql/

Ruby

APPENDIX B USEFUL RESOURCES

Official Ruby Homepage (www.xuby-1lang.org/): The official Ruby
homepage.

Ruby-Doc.org (waw.ruby-doc.org/): A documentation site built
by the Ruby community that features documentation for the
core API, standard libraries, and other miscellaneous Ruby bits
and pieces. Its primary maintainer is James Britt, who has been
involved with Ruby documentation for many years.

Ruby Core Documentation (https://ruby-doc.org/core/):
Documentation for the core elements of Ruby 2.3 (at the time

of writing), such as the included classes (Array, Hash, etc.), as
well as most of the standard library. This URL will redirect to the
documentation for the latest production version of Ruby as it
changes over time.

Ruby Standard Library Documentation (https://ruby-doc.org/
stdlib/): Documentation for the Ruby standard libraries. Each
library is presented separately, making it easier to read than the
core documentation.

Clean Ruby (www.apress.com/gp/book/9781484255452): Learn
how to make better decisions and write cleaner Ruby code.

Ruby on Rails

Official Rails Homepage (https://rubyonrails.org/): The
official homepage for the Ruby on Rails framework. It features
screencasts, tutorials, and links to many useful Rails references.

Rails API Documentation (https://api.rubyonrails.org/): API
documentation for the entire Ruby on Rails framework in RDoc

format. This is the most useful reference documentation for Ruby
on Rails, as almost all Rails techniques and methods are covered.

573

http://www.ruby-lang.org/
http://www.ruby-doc.org/
https://ruby-doc.org/core/
https://ruby-doc.org/stdlib/
https://ruby-doc.org/stdlib/
http://www.apress.com/gp/book/9781484255452
https://rubyonrails.org/
https://api.rubyonrails.org/

APPENDIXB USEFUL RESOURCES

Ruby on Rails Guides (https://guides.rubyonrails.org/):
Well-written walk-through guides for various Rails features,
such as how to get started with Rails and how to use the

internationalization features, routing, and database migrations.

Ruby-Related Content
Aggregators and News

574

RubyFlow (www.Tubyflow.com/): A community-driven link blog
for all things related to Ruby and Rails. It’s very popular and

a great way to keep up with the day-to-day Ruby news and to
promote your own blog posts.

Ruby News (www.ruby-lang.org/en/news/): The official news
site for the main implementation of Ruby. It is only updated
sporadically and when there are key release or security
announcements.

/r/ruby on Reddit (https://reddit.com/r/ruby): An area of the
popular Reddit community discussion and bookmarking site
dedicated to Ruby-related items.

Riding Rails (https://weblog.rubyonrails.org/): The official
blog for Ruby on Rails, updated by several core Rails developers
and activists. The blog focuses on sporadic announcements of
interesting uses or deployments of Rails, as well as new Rails
features.

Ruby Weekly (https://rubyweekly.com/): A weekly Ruby

and Rails email newsletter with almost 40,000 subscribers. It’s
produced by your humble author and is highly recommended if
you want to stay up to date with Ruby news on a frequent basis.

https://guides.rubyonrails.org/
http://www.rubyflow.com/
http://www.ruby-lang.org/en/news/
https://reddit.com/r/ruby
https://weblog.rubyonrails.org/
https://rubyweekly.com/

APPENDIX B USEFUL RESOURCES

Forums

Ruby Forum (www.xuby-forum.com/): A popular help and

discussion forum.

Mailing Lists

Mailing lists are like forums, but based on email. People subscribe to a “list,” and then all

messages sent to that list are received by all the subscribers. There are also archives of

email lists available on the Web for reference or for those who don’t want to sign up for

the list:

Ruby Mailing Lists (www.Tuby-lang.org/en/community/
mailing-lists/): The official page on the Ruby site that provides
information about the official Ruby mailing lists.

Ruby-Talk Mailing List: Ruby-Talk is the most popular Ruby
mailing list, where all aspects of Ruby development are discussed.
You can subscribe via the preceding link.

Ruby-Talk Mailing List Archives (http://blade.nagaokaut.
ac.jp/ruby/ruby-talk/index.shtml): Offers web access to
more than 400,000 posts made to the Ruby-Talk mailing list and
includes a search feature.

ruby-core (http://blade.nagaokaut.ac.jp/ruby/ruby-
core/index.shtml): A mailing list dedicated to discussing
implementation details and the development of Ruby. Those who
are developing the Ruby language use this list. However, itisn’t a
list on which to ask general Ruby questions.

Note

It’s important when using a mailing list that you look at the format and tone

of other posts and don’t offend anyone. If your postings sound too demanding or
are of the wrong tone, you might not get any responses.

575

http://www.ruby-forum.com/
http://www.ruby-lang.org/en/community/mailing-lists/
http://www.ruby-lang.org/en/community/mailing-lists/
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://blade.nagaokaut.ac.jp/ruby/ruby-talk/index.shtml
http://blade.nagaokaut.ac.jp/ruby/ruby-core/index.shtml
http://blade.nagaokaut.ac.jp/ruby/ruby-core/index.shtml

APPENDIXB USEFUL RESOURCES

Chat

On the Internet, there are several ways you can discuss topics with other users in real
time. For example, Slack and Discord provide real-time chat via a desktop, mobile, or
web app:

Ruby on Rails Slack channel (www. rubyonrails.1link/):
A community of Ruby on Rails developers from all over the world.

Ruby Discord Server (https://discord.gg/bHB8Jkx): A Discord
server where developers discuss and seek help on various Ruby
topics.

576

http://www.rubyonrails.link/
https://discord.gg/bHB8Jkx

Index

A

Arrays/lists
elements, 61, 62
iteration, 65, 66
methods
addition/concatenation, 67
certain item, 68
empty array, checking, 67
first/last elements, accessing, 68
reversing order, 69
subtraction/difference, 67
popping, 63
splitting strings into arrays, 64
abbrev library
examples, 494, 495
installation, 494
access_granted? method, 184
ActiveRecord, 293
add_person method, 288
add_room method, 190
a.rb file, 199
ARGV, 304
attr_accessor method, 188, 326

B

Base64
definition, 496
examples, 496, 498, 499
installation, 496

© Carleton DiLeo, Peter Cooper 2021

basic_method, 147
Benchmark module
definition, 499
examples, 499, 500
installation, 499
profiling, 242-244
simple, 239-241
Bots, 343
building core, 360, 361
code listing
basic client, 383
bot.rb, 379, 381, 382
data loader, 367, 368
data structure, 363, 364
extend
Bot-to-Bot conversation, 388, 389
connect to Web, 384, 386, 387
text files, 384
history, 344
lifecycle and parts, 361, 362
playing
conversation, 378, 379
Fred, 375, 377
store data, 364, 366
Branching/conditional execution, 545-547
Building blocks
converting objects to other
classes, 90, 91
dates and times, 83-86
ranges, 87

577

C. DiLeo and P. Cooper, Beginning Ruby 3, https://doi.org/10.1007/978-1-4842-6324-2

https://doi.org/10.1007/978-1-4842-6324-2#DOI

INDEX

Building blocks (cont.)
symbols, 88, 89
byebug statement, 231

C

Chain methods, 53

Chatterbots, 343

chdir method, 464

Classes, 550-553

class_name method, 174

Class variable, 150

Clients and servers
building TCP server, 480-482
defining, 477
GServer based chat server, 483-490
multi-client TCP servers, 482, 483
UDP, 477-479
Web/HTTP servers, 490

Code block, 92

Code inclusion, 201

Command-line tools, 304

Common Gateway Interface (CGI), 313

Complex structures, 564, 565

D

Data
arrays, 562
complex structures, 564, 565
hashes/associative arrays, 563, 564
numbers, 560, 561
regular expressions, 558-560
strings, 558
Database, 566
store/structures
PStore, 272-274
YAML, 274-276

578

text file, 269
reading/searching CSV, 269-271
saving CSV, 271, 272

Debugging, 228-230
commands, 231
testing, 232

Debugging/errors

catch and throw, 227, 228

exceptions
handling, 225, 226
handling passed, 227
raising, 223-225

Directories

create, 266

delete, 267

navigation, 265, 266

temporary, 267, 268

Documentation

formatting, 218-220

generating, RDoc, 216, 217

modifiers/options
command-line, 222
:nodoc:, 220, 221
on/off, 221

RDoc techniques, 218

Domain Name Service (DNS), 491

DRY, 156

Dungeon text adventures

concepts, 184

create rooms, 189, 190

creating initial classes, 185, 186

structs, 186-189

work, 190-194

Dynamic code execution

accessor functions, 326, 327

bindings, 322, 323

eval, 324, 325

Dynamic typing, 182

E

each_vowel, 81
ELIZA bot, 344
Email
POP3, receiving mail, 458-460
SMTP, sending mail, 460, 461
Encapsulation, 161
End of file (EOF), 248
Environment variables, 302, 303
exec method, 329
Expressions/flow control
basic expressions, 541, 542
branching/conditional execution,
545-547
class mismatches, 542, 543
comparison expressions, 544, 545
loops, 548, 549
ternary operator, 547

F

Fibers
in action, 336, 337
motivation, 339
non-blocking, 338
passing data, 337, 338

File inclusion, 198, 199

File I/O
character encodings, 258, 259
modes, 256
opening/reading, 249-251
position, 255, 256
reading techniques, 251-255
rename/delete, 260
writing, 256-258

File operations
EOFE 264
file existence, 263

INDEX

filename creation, 260, 261
last modified, 263
seek, 262
size, 264
File organization, 568
Files, 565, 566
File Transfer Protocol (FTP)
connections/actions, 462-465
definition, 462
downloading files, 465, 466
example, 462
uploading files, 467, 468
find_person method, 288
find_room_in_direction, 193
Flow control
case pattern matching, 78
code blocks, 80-82
elsif and case, 76
if and unless, 73, 74
ternary operator, 75, 76
while/until, 79
Forking, 329, 330

G

getname method, 475

Greenwich Mean Time (GMT), 83
gsub method, 105

Guided duck typing, 183

H

Hashes
example, 69
methods
deleting elements, 71
iteration, elements, 70
retrieving keys, 71
within hashes, 72

579

INDEX

Hashes/associative arrays, 563, 564
HTML documentation, 217
HTTP/web
downloading web pages, 444
processing web content, 454-457
HyperText Transfer Protocol (HTTP), 443

Immediate/interactive environment, 14
include? method, 68
Inheritance, 153
Input/output (I/0)
databases, 566
files, 565, 566
web access, 566, 567
Interactive Ruby (irb), 541
Internet Protocol (IP), 471
Iterator, 92

J

JavaScript Object Notation
(JSON), 456, 457

JRuby, 129

json library, 511

JSON.parse method, 457

K

Kernel method, 29, 30
Keyboard input, 248, 249

L

letter_stuff.rb, 171
Libraries
bundler, 210-212

580

file organization, 568
packaging, 568, 569
RubyGems
create, 210
finding, 207, 208
installing, 208
upgrade/uninstall, 209, 210
using, 209
standard, 203
net/http, 204, 205
OpenStruct, 206
Library testing
pronoun switches, 356, 357
sentence choice, 355
sentence separations, 354
word separations, 355
Library WordPlay
sentences into words, 348
switching pronouns, 350-352
text into sentences, 347
word matching, 348, 349
Linux
package managers, 8
Ruby installation, 7, 8
source code, 9, 10
load and require, 200
Local area network (LAN), 471
Local variable, 147
Logger, 512
Loops, 548, 549

Mac OS X/macOS, 6, 7
Method visibility, 556-558
Mix-Ins
comparable module, 179, 180
enumerable, 175-178

example, 174
namespaces and classes, 181-184
Model-view-controller (MVC), 395

N

Namespaces, 171, 173, 174
Nested classes, 168
Nested inclusion, 202
net/http library, 444, 445
Network
checking machine/service availability,
473,474
definition, 471
IP addresses/DNS, 472
performing DNS queries, 474-477
TCP/IP, 471, 472
Nokogiri, 454, 455, 469, 515
Non-object-oriented style, 34, 35
@@number_of_squares, 151
Numbers, 560, 561
Numbers/expressions
blocks/iterators, 43-45
comparison operators, 41, 42
constants, 47
example, 38
floating point numbers, 46
variables, 38-40
number_stuff.rb, 171

O

Object orientation
advantages, 145
classes, 145, 146
classes/methods, 550-553
class methods vs. instance methods,
151, 152
class variables, 150, 151

INDEX

definition, 141
developer, 144
encapsulation, 161-165
English for Computers, 15
error, 18
global variables, 148, 149
inheritance, 153-156
instance/object variables, 149, 150
interactive Ruby (irb), 14, 15, 17
local variable, 147, 148
method visibility, 556-558
nested classes, 168, 169
object, 146
overriding existing methods, 157, 158
periods, 550
polymorphism, 166, 167
procedural style, 141-144
programming language, 16, 17
reflection, 553-555
reflection/discovery, 159, 160
reopening classes, 556
scope of constants, 169
square objects, 146

Objects
class method, 29
code, 28
concepts, 28
Kernel method, 29, 30
passing data, 30, 31
string class, 32, 33

Object variables, 149

ord method, 50

ostruct library, 206

Packging, 568, 569
Polymorphism, 166

581

INDEX

popen method, 331

Post Office Protocol 3 (POP3), 458
Programming languages, 538
putbinaryfile methods, 467
puttextfile methods, 467

R

Rails, 394, 395
blank applications, 401
books, 427
command-line tool, 401
components, 395, 397
controller actions, 413, 414, 416
database configuration, 400, 404
database migrations, 407-409
entries controller, 412
ERB, 416
features
layouts, 424-426
files/directories, 402, 403
goal, 395
install, 398
libraries, 398, 399
models/relationship, 420, 422
reference sites/tutorials, 426
scaffold generator, 410, 411
scaffolding, 405-407
sessions/filters, 422-424
views, 417-419
Range, 93
RedCarpet, 519
Reflection, 126, 159
Regular expressions, 54, 92, 558-560
Relational databases
concepts, 277,278
create table, 281, 282
DELETE, 284

582

INSERT INTO, 282
MySQL, 278
PostgreSQL, 279
SELECT, 283, 284
SQL, 280
SQLite, 279, 285-289
UPDATE, 285
Resources
aggregators/news, 574
chat, 134, 576
Learn Ruby, 572
mailing lists, 575
Rails, 572
references, 573
Ruby forums, 575
Ruby Tapas, 572
SQL Tutorial, 572
Try Ruby, 571
response_to method
actions, 369
best sentence, 371
final phrase, 373, 375
matching phrases, 372, 373
substitutions, 370
result and run methods, 510
Ruby
class method, 539
concept, 539
definition, 537
garbage collection, 538
Integer objects, 539
Ruby 1.9, 340
Ruby code, 540
objects/classes, 20
people to pets
control, 27
Person class, 24
structure, 25, 26

Person class, 20-22
variables, 23
RubyGems, 206, 568
Ruby interpreter, 540, 541
Ruby libraries, 305
abbrev, 494, 495
Baseb64, 496-498
benchmark, 499, 500
chronic, 501, 502
digest, 502-505
English, 506, 507
ERB, 508, 510
gem creation
building gem, 309
easier gem creation, 309, 310
specification file, 307, 308
structuring, 306, 307
install gem, 311
json, 511
logger, 512-515
Nokogiri, 515, 516
PP, 517-519
RedCarpet, 519-521
RubyGems.org, 312
StringScanner, 522-525
tempfile, 525-527
URIs, 528, 530-532
Zlib, 533, 534
RubyMine, 100
RUBY_PLATFORM, 301, 302
Ruby programs
file types, 300
runtime environment, 301
source code, 298
Ruby’s ecosystem
definition, 123
documentation, 134
forums, 135

INDEX

history
Go West, 126, 128
implementations, 129
influences, 125
land of rising Sun, 124
mailing lists, 133, 134
open source culture, 132
programming communities, 135-137
Rails, 129-131
Ruby’s networking
CGI, 313
script, 313, 314
variables, 314, 315
HTTP, 316
WEBrick, 316, 317, 319

S

Scaffolding, 405
send_message method, 461
Sentence-splitting method, 347
Sequel, 291
Shebang line, 299
show_current_description
method, 191
Simple Mail Transfer Protocol (SMTP),
460
Sinatra, 395, 428, 429
external template, 434, 435
flow control
error handling, 438, 439
halting, 437, 438
redirection, 436, 437
inline template, 431-433
layouts, 433, 434
parameters, 429-431
static files, 435
URL, 429

583

INDEX

Source code files, 341
creating test file, 96, 97
mechanism, 95
running
Linux/other UNIX-based systems,
99, 100
Mac OS X/macOS, 99
Windows, 98
simple file, 97, 98
Square.count class method, 153
Standard input, 248
Standard libraries, 203
Standard output, 248
stopwords variable, 113
String literal, 48
Strings, 340, 558
StringScanner, 522
struct, 186
Structured Query Language (SQL), 280
summarize.rb, 116
Symbols, 93
system method, 328

T

tempfile, 525

Ternary operator, 547

Test-driven development, 233-235
assertions, 238, 239
unit, 236-238

test_method, 152

Text analyzer
basic statistics, 101
building application, 102
calculating averages, 110
completed program, 119, 121
counting characters, 105

counting sentences/paragraphs, 108, 109

584

counting words, 106-108
features
finding interesting sentences,
115-117
text.txt, 118
useful words, 112-114
loading text files/counting
lines, 103, 104
obtaining Dummy text, 102, 103
source code, 111
Texts/strings
expressions, 49, 50
interpolation, 51, 52
literals, 48, 49
methods, 53
regular expressions
iteration, 56-59
matching, 60, 61
substitutions, 54, 55
The open-uri Library, 462
this_is_private and this_is_also_
private, 165
Thread, 332
in action, 332, 333
advanced features, 334
list, 334
operations, 334, 335
to_f method, 46
to_i and to_f methods, 91
to_json method, 512
to_s method, 53
Transmission
Control Protocol (TCP), 471, 490

U

Unicode, 339
Uniform Resource Identifiers (URIs), 528

Uniform Resource Locator (URL), 443
Unit testing, 236-238

UNIX-related operating systems, 299
User Datagram Protocol (UDP), 472, 490

\'

Variables, 91

W XY

Web access, 566, 567

Windows
command prompt, 6
irb, 5
Ruby installation, 4, 5
WordPlay library
test_wordplay.rb, 358, 360
wordplay.rb, 357

y4

zlib, 533

INDEX

585

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Foreword
	Acknowledgments
	Introduction
	Part I: Foundations and Scaffolding
	Chapter 1: Let’s Get It Started: Installing Ruby
	Installing Ruby
	Windows
	Mac OS X/macOS
	Installing Ruby on OS X with Homebrew

	Linux
	Checking If Ruby Is Installed on Linux
	Installing Ruby with a Package Manager
	Installing Ruby from Source Code

	Other Platforms

	Summary

	Chapter 2: Programming == Joy: A Whistle-Stop Tour of Ruby and Object Orientation
	Baby Steps
	irb: Interactive Ruby
	Ruby Is “English for Computers”
	Why Ruby Makes a Great Programming Language
	Trails for the Mind

	Turning Ideas into Ruby Code
	How Ruby Understands Concepts with Objects and Classes
	The Making of a Person
	Basic Variables
	From People to Pets
	Structuring Your Pets Logically
	Controlling Your Pets

	Everything Is an Object
	Kernel Methods
	Passing Data to Methods
	Using the Methods of the String Class

	Using Ruby in a Non-object-Oriented Style
	Summary

	Chapter 3: Ruby’s Building Blocks: Data, Expressions, and Flow Control
	Numbers and Expressions
	Basic Expressions
	Variables
	Comparison Operators and Expressions
	Looping Through Numbers with Blocks and Iterators
	Floating Point Numbers
	Constants

	Text and Strings
	String Literals
	String Expressions
	Interpolation
	String Methods
	Regular Expressions and String Manipulation
	Substitutions
	Iteration with a Regular Expression
	Matching

	Arrays and Lists
	Basic Arrays
	Splitting Strings into Arrays
	Array Iteration
	Other Array Methods
	Array Addition and Concatenation
	Array Subtraction and Difference
	Checking for an Empty Array
	Checking an Array for a Certain Item
	Accessing the First and Last Elements of the Array
	Reversing the Order of the Array’s Elements

	Hashes
	Basic Hash Methods
	Iterating Through Hash Elements
	Retrieving Keys
	Deleting Hash Elements
	Deleting Hash Elements Conditionally

	Hashes Within Hashes

	Flow Control
	if and unless
	?, the Ternary Operator
	elsif and case
	case pattern matching
	while and until
	Code Blocks

	Other Useful Building Blocks
	Dates and Times
	Ranges
	Symbols
	Converting Objects to Other Classes

	Summary

	Chapter 4: Developing Your First Ruby Application
	Working with Source Code Files
	Creating a Test File
	Visual Studio Code
	Alternatives to Linux

	A Simple Source Code File
	Running Your Source Code
	Windows
	Mac OS X/macOS
	Linux and Other UNIX-Based Systems

	Our Application: A Text Analyzer
	Required Basic Features
	Building the Basic Application
	Obtaining Some Dummy Text
	Loading Text Files and Counting Lines
	Counting Characters
	Counting Words
	Counting Sentences and Paragraphs
	Calculating Averages
	The Source Code So Far

	Adding Extra Features
	Percentage of “Useful” Words
	Summarizing by Finding “Interesting” Sentences
	Analyzing Files Other Than text.txt

	The Completed Program
	Summary

	Chapter 5: The Ruby Ecosystem
	Ruby’s History
	The Land of the Rising Sun
	Ruby’s Influences
	Go West
	Alternative Ruby Implementations

	Ruby on Rails
	Why Rails Came into Existence
	How the Web (2.0) Was Won

	The Open Source Culture
	What Is Open Source?

	Where and How to Get Help
	Mailing Lists
	Chat
	Documentation
	Forums

	Joining the Community
	Give Help to Others
	Contribute Code
	News Sites and Sources

	Summary

	Part II: The Core of Ruby
	Chapter 6: Classes, Objects, and Modules
	Why Use Object Orientation?
	Object Orientation Basics
	Local, Global, Object, and Class Variables
	Local Variables
	Global Variables
	Instance or Object Variables
	Class Variables

	Class Methods vs. Instance Methods
	Inheritance
	Overriding Existing Methods
	Reflection and Discovering an Object’s Methods
	Encapsulation
	Polymorphism
	Nested Classes
	The Scope of Constants

	Modules, Namespaces, and Mix-Ins
	Namespaces
	Mix-Ins
	Enumerable
	Comparable
	Using Mix-Ins with Namespaces and Classes

	Building a Dungeon Text Adventure with Objects
	Dungeon Concepts
	Creating the Initial Classes
	Structs: Quick and Easy Data Classes
	Creating Rooms
	Making the Dungeon Work

	Summary

	Chapter 7: Projects and Libraries
	Projects and Using Code from Other Files
	Basic File Inclusion
	Inclusions from Other Directories
	Logic and Including Code
	Nested Inclusions

	Libraries
	The Standard Libraries
	net/http
	OpenStruct

	RubyGems
	Finding Gems
	Installing a Gem
	Using Gems
	Upgrading and Uninstalling Gems
	Creating Your Own Gems

	Bundler

	Summary

	Chapter 8: Documentation, Error Handling, Debugging, and Testing
	Documentation
	Generating Documentation with RDoc
	RDoc Techniques
	Producing Documentation for an Entire Project
	Basic Formatting

	Modifiers and Options
	:nodoc: Modifier
	Turning RDoc Processing On and Off
	Command-Line Options

	Debugging and Errors
	Exceptions and Error Handling
	Raising Exceptions
	Handling Exceptions
	Handling Passed Exceptions

	Catch and Throw
	The Ruby Debugger

	Testing
	The Philosophy of Test-Driven Development
	Unit Testing
	More Minitest Assertions

	Benchmarking and Profiling
	Simple Benchmarking
	Profiling

	Summary

	Chapter 9: Files and Databases
	Input and Output
	Keyboard Input
	File I/O
	Opening and Reading Files
	More File Reading Techniques
	Your Position Within a File
	Writing to Files
	Character Sets and Encodings
	Renaming and Deleting Files
	File Operations
	Creating Filenames Platform Independently
	Seeking
	Finding Out When a File Was Last Modified
	Checking Whether a File Exists
	Getting the Size of a File
	How to Know When You’re at the End of a File

	Directories
	Navigating Through Directories
	Creating a Directory
	Deleting a Directory
	Creating Files in the Temporary Directory

	Basic Databases
	Text File Databases
	Reading and Searching CSV Data
	Saving Data Back to the CSV File

	Storing Objects and Data Structures
	PStore
	YAML

	Relational Databases and SQL
	Relational Database Concepts
	MySQL, PostgreSQL, and SQLite
	Installing SQLite
	A Crash Course in Basic Database Operations and SQL
	What Is SQL?
	CREATE TABLE
	INSERT INTO
	SELECT
	DELETE
	UPDATE

	Using SQLite with Ruby
	Connecting to Other Database Systems
	ActiveRecord: A Sneak Peek

	Summary

	Chapter 10: Distributing Ruby Code and Libraries
	Distributing Basic Ruby Programs
	The Shebang Line
	Associated File Types in Windows

	Detecting Ruby’s Runtime Environment
	Easy OS Detection with RUBY_PLATFORM
	Environment Variables
	Accessing Command-Line Arguments

	Distributing Ruby Libraries As Gems
	Creating a Gem
	Structuring Your Files
	Creating a Specification File
	Building the Gem
	Easier Gem Creation

	Installing Your Gem
	RubyGems.org

	Deploying Ruby Applications As Remote Services
	CGI Scripts
	A Basic CGI Script
	Accepting CGI Variables

	Generic HTTP Servers
	WEBrick

	Summary

	Chapter 11: Advanced Ruby Features
	Dynamic Code Execution
	Bindings
	Other Forms of eval
	Creating Your Own Version of attr_accessor

	Running Other Programs from Ruby
	Getting Results from Other Programs
	Transferring Execution to Another Program
	Running Two Programs at the Same Time
	Interacting with Another Program

	Threads
	Basic Ruby Threads in Action
	Advanced Thread Operations
	Waiting for Threads to Finish Redux
	Getting a List of All Threads
	Thread Operations from Within Threads Themselves

	Fibers
	A Fiber in Action
	Passing Data to a Fiber
	Non-blocking Fiber
	Why Fibers?

	Unicode, Character Encodings, and UTF-8 Support
	Ruby 1.9 and Beyond’s Character Encoding Support
	Strings
	Source Code

	Summary

	Chapter 12: Tying It Together: Developing a Larger Ruby Application
	Let’s Build a Bot
	What Is a Bot?
	Why a Bot?
	How?

	Creating a Simple Text Processing Library
	Building the WordPlay Library
	Splitting Text into Sentences
	Splitting Sentences into Words
	Word Matching
	Switching Subject and Object Pronouns

	Testing the Library
	Testing Sentence Separation
	Testing Word Separation
	Testing Best Sentence Choice
	Testing Pronoun Switches

	WordPlay’s Source Code
	wordplay.rb
	test_wordplay.rb

	Building the Bot’s Core
	The Program’s Lifecycle and Parts
	Bot Data
	The Data Structure
	Storing the Data Externally

	Constructing the Bot Class and Data Loader
	The response_to Method
	Accepting Input and Performing Substitutions
	Choosing the Best Sentence
	Looking for Matching Phrases
	Putting Together the Final Phrase

	Playing with the Bot
	Fred: Your Bot’s Personality
	The First Real Conversation

	Main Bot Code Listing
	bot.rb
	basic_client.rb

	Extending the Bot
	Using Text Files As a Source of Conversation
	Connecting the Bot to the Web
	Bot-to-Bot Conversations

	Summary

	Part III: Ruby Online
	Chapter 13: Two Web Application Approaches: Rails and Sinatra
	Background
	The Limitations and Benefits of Our Approach
	Pros and Cons of the Frameworks Covered

	Rails: Ruby’s Killer App
	What Is Rails and Why Use It?
	Installing Rails
	Database Considerations

	Building a Basic Rails Application
	Creating a Blank Rails Application
	The Rails Command-Line Tool

	Files and Directories Within a Rails Application
	Database Configuration
	Using Scaffolding
	Database Migrations
	Running the Basic, Scaffolded App

	Controllers and Views
	Controller Actions
	Views and Embedded Ruby (ERB)

	Models and Relationships
	Sessions and Filters
	Other Features
	Layouts

	Where to Go Next: References, Books, and Example Apps
	Reference Sites and Tutorials
	Rails Books

	Sinatra: Lightweight, Simple Web Applications
	The Extreme Simplicity of Sinatra
	General URL Routing and Parameter Matching
	Views, Templates, and Static Files
	Inline and In-File Templates
	Layouts
	External Templates and Layouts
	Static Files

	Request Flow Control
	Redirection
	Halting
	Error Handling

	Summary

	Chapter 14: Ruby and the Internet
	HTTP and the Web
	Downloading Web Pages
	The net/http Library
	Checking for Errors and Redirects
	Basic Authentication
	Posting Form Data
	Using HTTP Proxies
	Secure HTTP with HTTPS

	The Open-Uri Library

	Processing Web Content
	Parsing HTML with Nokogiri
	Parsing JSON

	Email
	Receiving Mail with POP3
	Sending Mail with SMTP

	File Transfers with FTP
	Connection and Basic FTP Actions
	Downloading Files
	Uploading Files

	Summary

	Chapter 15: Networking and Sockets
	Networking Concepts
	TCP and UDP
	IP Addresses and DNS

	Basic Network Operations
	Checking Machine and Service Availability
	Performing DNS Queries

	Servers and Clients
	UDP Client and Server
	Building a Simple TCP Server
	Multi-client TCP Servers
	GServer
	A GServer-Based Chat Server
	Web/HTTP Servers

	Summary

	Chapter 16: Useful Ruby Libraries
	abbrev
	Installation
	Examples
	Further Information

	Base64
	Installation
	Examples
	Converting Binary Data to Base64
	Converting Base64 Data to Binary Data
	Using Compression to Make Base64 Efficient

	Further Information

	Benchmark
	Installation
	Examples
	Further Information

	chronic
	Installation
	Examples
	Further Information

	Digest
	Installation
	Examples
	Further Information

	English
	Installation
	Examples
	Further Information

	ERB
	Installation
	Examples
	Basic Templates and Rendering
	Accessing Outside Variables

	Further Information

	json
	Installation
	Examples
	Further Information

	logger
	Installation
	Examples
	Setting Up a Logger
	Logging Levels
	Logging Messages
	Closing a Logger

	Further Information

	Nokogiri
	Installation
	Examples
	Further Information

	pp
	Installation
	Examples
	Further Information

	RedCarpet
	Installation
	Examples
	Further Information

	StringScanner
	Installation
	Examples
	Further Information

	tempfile
	Installation
	Examples
	Further Information

	uri
	Installation
	Examples
	Extracting URLs from Text
	Parsing URLs
	Creating URLs

	Further Information

	zlib
	Installation
	Examples
	Further Information

	Appendix A:
Ruby Primer and Review for Developers
	The Basics
	Definition and Concepts
	The Ruby Interpreter and Running Ruby Code
	Interactive Ruby

	Expressions and Flow Control
	Basic Expressions
	Class Mismatches
	Comparison Expressions
	Flow
	Branching and Conditional Execution
	The Ternary Operator (Conditional Expressions)
	Loops

	Object Orientation
	Objects
	Classes and Methods
	Reflection
	Reopening Classes
	Method Visibility

	Data
	Strings
	Regular Expressions
	Numbers
	Arrays
	Hashes (Associative Arrays)
	Complex Structures

	Input/Output
	Files
	Databases
	Web Access

	Libraries
	File Organization
	Packaging

	Appendix B:
Useful Resources
	Tutorials and Guides
	General Ruby Tutorials and Information
	Ruby on Rails
	Other

	References
	Ruby
	Ruby on Rails

	Ruby-Related Content
	Aggregators and News
	Forums

	Mailing Lists
	Chat

	Index

