>

s
Learn by doing: less theory, more results

Statistical Analysis
with R

Take control of your data and produce superior
statistical analyses with R

Beginner’s Guide

John M. Quick [open source

eeeeeeeeeeeeeeeeeeeeeeeeeeee
IIIIIIIIII

Download from Wow! eBook <www.wowebook.com>

Statistical Analysis with R

Beginner’s Guitde

Take control of your data and produce superior statistical
analyses with R

John M. Quick

open source

community experience distilled

PUBLISHING

BIRMINGHAM - MUMBAI

Statistical Analysis with R

Beginner's Guide

Copyright © 2010 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2010
Production Reference: 1191010

Published by Packt Publishing Ltd.
32 Lincoln Road

Olton

Birmingham, B27 6PA, UK.

ISBN 978-1-849512-08-4

www . packtpub.com

Cover Image by John M. Quick (johnejohnmquick.com)

Author
John M. Quick

Reviewers
Ajay Ohri

Joshua Wiley

Acquisition Editor
Douglas Paterson

Development Editor

Meeta Rajani

Technical Editor

Vanjeet D'souza

Indexer

Tejal Daruwale

Editorial Team Leader

Akshara Aware

Project Team Leader

Priya Mukherji

Project Coordinator

Jovita Pinto

Proofreaders

Aaron Nash

Chris Smith

Graphics
Nilesh Mohite

Production Coordinator

Aparna Bhagat

Cover Work
Aparna Bhagat

John M. Quick is an Educational Technology Ph.D. student at Arizona State University who
is interested in the design, research, and use of educational innovations. Currently, his work
focuses on mixed-reality systems, interactive media, and innovation adoption. In addition,
he has recently published multiple gaming applications for the iPhone and iPad. John's blog,
High-Technically Correct, which covers various topics in technology, is available online at
http://www.johnmgquick.com.

| give thanks to the R Project and its user community for offering the

world superior open-source statistical software. | also thank Dr. Roy Levy
for introducing me to, and encouraging me to share my knowledge of, R.
Lastly, | would like to thank my parents for their lifelong support and Zarraz
for the companionship and insights that she offered to me throughout the
authoring of this book.

Ajay Ohri has been working in the field of analytics since 2004 , when it was a still nascent
emerging Industry in India. He has worked with the top two Indian outsourcers listed

on NYSE, and with Citigroup on cross-sell analytics where he helped sell an extra 50000
credit cards by cross-sell analytics .He was one of the very first independent data mining
consultants in India working on analytics products and domestic Indian market analytics.
He regularly writes on analytics topics on his website www.decisionstats.comand is
currently working on open source analytical tools like R and analytical software like SAS.

Joshua Wiley has implemented R in several laboratories on multiple campuses of the
University of California system to run statistical analyses and produce high-quality graphics.
He also uses it for data processing in descriptive and inferential statistics. He is currently
working towards his Ph.D. at UCLA, where he researches Health Psychology. In addition to
his own work with R, Mr. Wiley has led tutorials for other psychology researchers on using R,
and is an active member of the R-help mailing list.

<WO0D"00gaMOM MMM > 400g3 jMOA\ WOL) PEOJUMOQ

Tahle of Contents

Preface 1
Chapter 1: Uncovering the Strategist's Data Analysis Tool 7
What is R? 8
What are the benefits of using R? 8
Why should | use R? 9
Why should | read this book? 9
What topics are covered in this book? 9
Chapter 2—Preparing R for Battle 10
Chapter 3—Exploring the Mysterious Data Analysis Tool 11
Chapter 4—Collecting and Organizing Information 11
Chapter 5—Assessing the Situation 12
Chapter 6—Planning the Attack 12
Chapter 7—Organizing the Battle Plans 13
Chapter 8 —Briefing the Emperor 14
Chapter 9—Briefing the Generals 15
Chapter 10—Becoming a Master Strategist 17
Summary 17
Chapter 2: Preparing R for Battle 19
Time for action — downloading and installing R 20
Example: R 2.11.1 Mac OS X 10.5+ installation wizard demonstration 24
Time for action — issuing your first R command 29
Time for action — setting your R working directory 30
Summary 32
Chapter 3: Exploring the Mysterious Data Analysis Tool 33
Deciphering Zhuge Liang's magic square 34
Time for action — solving the first 4x4 magic square 35
Lines 37
Comments 37

Table of Contents

Calculations 38
Output 38
Visualizing the R console 39
Summary 41
Chapter 4: Collecting and Organizing Information 43
Time for action — importing external data 43
read.csv(file) 44
comma-separated values (csv) files 44
Time for action — creating and calling variables 45
Time for action — accessing data within variables 47
variableScolumn notation 49
attach(variable) function 49
variable[row, column] notation 50
Time for action — manipulating variable data 51
Performing a calculation on an entire dataset 53
Performing a calculation on a row, column, or cell 54
Using variable data in function arguments 54
Saving a variable calculation into a new variable 55
Time for action — managing the R workspace 57
Listing the contents of the R workspace 58
Saving the contents of the R workspace 59
Loading the contents of the R workspace 59
Quitting R 59
Distinguishing between the R console and workspace 59
Saving the R console 60
Summary 62
Chapter 5: Assessing the Situation 63
Time for action — making an initial inference from our data 63
Examining our data 65
Time for action — creating a subset from a large dataset 66
Multi-argument functions 67
Variable-argument functions 67
Equivalency operators 67
subset(data, ...) 67
Time for action — deriving summary statistics 69
Means 71
Standard deviations 71
Ranges 72
summary(object) 72
Why use summary statistics? 72

Table of Contents

Time for action — quantifying categorical variables 73
as.numeric(data) 75
Overwriting variables 75

Time for action — correlating variables 77
Interpreting correlations 78
cor(x, y) 79
cor(data) 80
NA values 80

Regression 82

Time for action — modelling with simple linear regression 82
Im(formula, data) 84
Linear model output 84
Linear model summary 85
Interpreting a linear regression model 86

Time for action — modelling with multiple linear regression 88
Interpreting the summary output 90
Explaining model differences 91

Time for action — modelling interactions 92
Interpreting interaction variables 94

Time for action — comparing and choosing models 96

Interpreting the model summaries 98
Interpreting the ANOVA results 99
anova(object, ...) 100
Summary 101
Chapter 6: Planning the Attack 103

Review of models 103
Head to head 104
Surround 105
Ambush 106
Fire 107

Predicting outcomes using regression models 108
Rating 108
Successfully executed 108
Number of Wei soldiers 109
Duration of battle 110
A word about assumptions 110

Time for action — calculating outcomes from regression models 110

Time for action — creating custom functions 111
function() 113

Extended lines 114

Table of Contents

Time for action — creating resource-focused custom functions 115
Logistical considerations 117
Gold 117
Provisions 117
Equipment 118
Soldiers 118
Resource and cost summary 118
Resource map 118
Time for action — incorporating resource constraints into predictions 119
Gold cost function explanation 120
Assessing viability 121
Time for action — assessing the viability of potential strategies 122
Remember your assumptions 122
Summary 124
Chapter 7: Organizing the Battle Plans 125
Retracing and refining a complete analysis 125
Time for action — first steps 126
Time for action — data setup 126
read.table(...) 128
Time for action — data exploration 129
Time for action — model development 132
gim(...) 138
AlC(object, ...) 138
Time for action — model deployment 139
coef(object) 143
Time for action — last steps 145
The common steps to all R analyses 145
Step 1: Set your working directory 145
Comment your work 146
Step 2: Import your data (or load an existing workspace) 146
Step 3: Explore your data 147
Step 4: Conduct your analysis 148
Step 5: Save your workspace and console files 148
Summary 150
Chapter 8: Briefing the Emperor 151
Charts, graphs, and plots in R 151
Time for action — creating a bar chart 152
barplot(...) 153
Vectors 154

Graphic window 154

Table of Contents

Time for action — customizing graphics 156
Graphic customization arguments 159
main, xlab, and ylab 159

xlim and ylim 160

Col 161
legend(...) 162
Time for action — creating a scatterplot 164
Single scatterplot 167
Multiple scatterplots 167
Time for action — creating a line chart 168
type 170
Number-colon-number notation 170
Time for action — creating a box plot 172
boxplot(...) 174
Time for action — creating a histogram 175
hist(...) 176
Time for action — creating a pie chart 177
pie(...) 179
Time for action — exporting graphics 181
Summary 184
Chapter 9: Briefing the Generals 185
More charts, graphs, and plots in R 186
Time for action — customizing a bar chart 186
names 194
width and space 194
horiz 195
beside 196
density and angle 197
legend(...) with density, angle, and cex 198
Time for action — customizing a scatterplot 199
pch and cex 206
points(...) 207
legend(...) 209
abline(...) 209
Time for action — customizing a line chart 212
Iwd 216
lines(...) 217
legend(...) 219
Time for action — customizing a box plot 220
range 223
axis(...) 223

Table of Contents

Time for action — customizing a histogram 225
breaks 228
freq 228

Time for action — customizing a pie chart 230
Custom labels 231
legend(...) 233

Time for action — building a graphic 234

Time for action — building a graphic with multiple visuals 242
par(mfcol) 249
Graphics 249

Horizontal and vertical lines 250
Nested functions 250
Summary 252
Chapter 10: Becoming a Master Strategist 253

R's built-in resources 253

Time for action — using R's help function 254
help(...) 256

Time for action — expanding R with packages 257
Choose a CRAN mirror 260
Install a package 260
Load the package 260
Use the package 261

R's online resources 262
Websites 263

The R Project for Statistical Computing 263
Quick-R 263

R Programming wikibook 263

R Graph Gallery 263
Crantastic! 264
Blogs 264
R bloggers 264

R Tutorial Series 264
Online communities 264
R-help mailing list 264
Other mailing lists 265
Search engines 265
R Seek 265
Google 265
Summary 266

Table of Contents

Appendix: Pop Quiz Answer Key 267
Chapter 2 267
Chapter 3 267
Chapter 4 267
Chapter 5 268
Chapter 6 269
Chapter 7 270
Chapter 8 270
Chapter 9 271
Chapter 10 273

Index 275

You have unexpectedly been thrust into the role of lead strategist for the kingdom. After

you install your predecessor's mysterious data analysis tool, you will begin to explore its
fundamental elements. Next, you will use R to import and organize your data. Then, you will
use functions and statistical analyses to arrive at potential courses of action. Subsequently,
you will design your own functions to assess the practical impacts of your predictions. Lastly,
you will focus on communicating your results through the use of charts, plots, graphs, and
custom built visualizations. The fate of the kingdom is in your hands. Your rapid development
as a master R strategist is the key to future success.

Chapter 1, Uncovering the Strategist's Data Analysis Tool, serves as an introduction to the
R Project. We will explore the benefits of using R and the topics covered in this book.

Chapter 2, Preparing R for Battle, includes a step-by-step guide to downloading and
installing R. We will also launch R and execute our first commands.

Chapter 3, Exploring the Mysterious Data Analysis Tool, is an introduction to the R interface
and programming language. In this chapter, we will use R to solve a complex puzzle.

Chapter 4, Collecting and Organizing Information, covers how to import data into R and
manipulate it using variables. We will also learn how manage the R workspace.

Chapter 5, Assessing the Situation, focuses on evaluating our data and using it to generate
predictive models. We will also consider the statistical and practical significance of
our analyses.

Chapter 6, Planning the Attack, involves using our data models to predict potential
outcomes and assess their logistical viability. Along the way, we will learn to build our
own custom functions.

Download from Wow! eBook <www.wowebook.com>

Preface

Chapter 7, Organizing the Battle Plans, revisits the task of planning and organizing
a complete data analysis, such that it can be effectively communicated to others.
Throughout this process, we will apply the common steps to all R analyses.

Chapter 8, Briefing the Emperor, is a first look at R's graphical capabilities. We will make
customizable charts, graphs, and plots that can be exported for use outside of R.

Chapter 9, Briefing the Generals, examines the in-depth customization options available
to several types of charts, graphs, and plots. We will also build our own custom graphics
from scratch.

Chapter 10, Becoming a Master Strategist, describes the resources that are available to you
beyond the contents of this book for further expanding your knowledge of R.

This code used in this book should be applicable to any version of R on any platform,
although it was generated and tested using R 2.11.1 for Mac OS X.

You want to take control of your data and learn how to conduct effective analyses with R.
Whether you are a data analyst, business or information technology professional, student,
educator, researcher, or anyone else who wants to learn about R, this book is for you.

No prior experience with R is necessary. Knowledge of other programming languages,
software packages, or statistics may be helpful, but is not required. With a willingness to
learn and an interest in conducting superior data analyses, you will quickly become an
experienced and knowledgeable R user.

In this book, you will find several headings appearing frequently.

To give clear instructions of how to complete a procedure or task, we use:

Time for action - heading

1. Action1
2. Action?2

3. Action3

[2]

Preface

Instructions often need some extra explanation so that they make sense, so they are
followed with:

What just happened?

This heading explains the working of tasks or instructions that you have just completed.

You will also find some other learning aids in the book, including:

These are short multiple choice questions intended to help you test your own understanding.

These set practical challenges and give you ideas for experimenting with what you
have learned.

You will also find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We also expanded upon the 1egend (.. .)
function to gain more control over its appearance."

A block of code is set as follows:

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelX,

ylab = barAllMethodsDurationLabely,

x1lim = barAllMethodsDurationLimX,

ylim = barAllMethodsDurationLimY,

col = barAllMethodsDurationRainbowColors)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelY,

ylab = barAllMethodsDurationLabelX,

xlim = barAllMethodsDurationLimY,

ylim = barAllMethodsDurationLimX,

col = barAllMethodsDurationRainbowColors)

[31]

Preface

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "The R Help window will
open to display documentation on the provided function".

% Warnings or important notes appear in a box like this.

~\l
Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedbackepacktpub.com, and
mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in the
SUGGEST A TITLE form on www . packtpub. com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code for this book

from your account at http: //www.PacktPub. com. If you purchased this
book elsewhere, you can visithttp: //www.PacktPub.com/support and
register to have the files e-mailed directly to you.

Q‘Q You can download the example code files for all Packt books you have purchased

[4]

Preface

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you

find any errata, please report them by visiting http: //www.packtpub.com/support,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support

Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyrightepacktpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

[51]

Uncovering the Strategist's Data
Analysis Tool

Near the end of the second century A.D., China's Han dynasty crumbled and

left numerous warlords fighting for the throne. By the start of the third century,
three kingdoms—Shu, Wei, and Wu—emerged as contenders for China's rule.
These factions would vie for power for the better part of 80 years during what is
known as the Three Kingdoms period of Chinese history.

The most famous military strategist of the era, Zhuge Liang, joined the Shu army
in 207 A.D. He is well known for baffling opposing forces with ingenious techniques
and cunning tactics. As a result, Zhuge Liang remains a Chinese cultural symbol

of intellect and wisdom to this day. In 228 A.D., Zhuge Liang would launch the

first of five campaigns against the rival kingdom of Wei. During his fifth, and final,
campaign at the Wuzhang Plains, Zhuge Liang fell terminally ill. Following his
death in August of 234 A.D., the Shu army was forced to withdraw from its conflict
with the kingdom of Wei.

— Taken from Three Kingdoms. Beijing, China: Foreign Language Press; Luo
Guanzhong. Translator Moss Roberts.

Prior to his passing, the legendary strategist chose you to succeed him as commander of the
Shu forces. Zhuge Liang also left you with secret documents that reveal the knowledge of a
powerful data analysis tool.

With your forces currently recuperating in Hanzhong, China, it is your duty to plan the next
move. Armed with the late strategist's tool and your talents for data analysis, the fate of the
Shu kingdom is in your hands.

Uncovering the Strategist’s Data Analysis Tool

By the end of this chapter, you will be able to:

Describe the R Project for Statistical Computing
Detail how you will benefit from using R
Explain why R is an essential tool for your work

Decide why this book is right for you

* 6 & o o

List the major topics covered in this book

As the newly appointed strategist for the Shu army, your decisions will impact the lives of
many. Great decisions tend not to occur by random chance. Rather, they are a product of
knowledge, planning, and sound rationale. A major factor in generating fruitful outcomes is
considering the available information and using it to assess your potential courses of action.
Fortunately, an essential software tool exists that will help you rise to the occasion and make
the most of any situation.

The R Project for Statistical Computing (or just R for short) is a powerful data analysis tool. It
is both a programming language and a computational and graphical environment.

R is free, open source software made available under the GNU General Public License. It runs
on Mac, Windows, and Unix operating systems.

The official R website is available at the following site:

http://www.r-project.org

There are several ways in which R will benefit you, be it as an information technology
professional, business analyst, leader of the Shu army, or otherwise. These benefits are
discussed in the following points:

¢ Free: Ris available to you at no cost. The saying, "give a person a data analysis tool
and he or she will learn to analyze data" has never been more true.

¢ Cross-platform: R runs on Mac, Windows, and numerous Unix systems. Whether
you are visiting the Emperor in Chengdu or laying siege to the enemy capital at
Luoyang, you can be confident that your software will run, regardless of the local
operating system.

¢ Open source: R is open source. It allows you to exercise your genius in ways that a
closed software does not.

Chapter 1

¢ Programmable: R includes a powerful yet straightforward programming language
that is designed to compliment the formation of complex strategies.

¢ Extendable: R can be expanded through thousands of available packages. If you are
looking for a function to calculate the odds of a successful fire attack, the chances
are someone has already made it. If not, you can create it and offer it to the world.

¢ Graphical: R contains robust graphical capabilities. Whether you are looking to
create an unassuming plot of provision use over time or an elaborate array of battle
maps, R is at your service.

¢ Community-supported: R has a vast user community that is continually updating
and contributing to its capabilities. Even the great Zhuge Liang had to rely on his
allies from time to time.

You should use R because you are interested in taking control of and making the most out
of your data. R provides you with opportunities to design and execute complex, customized
analyses that other software packages do not. At the same time, R remains accessible and
relevant to a large audience of potential users.

With the fate of a kingdom resting upon your shoulders, you can ill afford a miscalculation
or misinterpretation. R will assist you in making the best possible decisions and allow you
to rise to greatness as a premier strategist.

You should read this book because you are interested in learning how to improve your work
through the use of R. You do not need to be an expert at using a programming language,
other software packages, or statistics. No prior experience with R is necessary. With a
willingness to learn and an interest in conducting superior data analyses, you will quickly
become an experienced and knowledgeable user of R.

What topics are covered in this hook?

This book covers an extensive range of topics in R. It will comfortably and rapidly familiarize
you with the basics, before you proceed into in-depth analyses and custom graphics. A brief
description of each chapter's content is provided.

Uncovering the Strategist’s Data Analysis Tool

Chapter 2—Preparing R for Battle

In this chapter, we will step through the R installation process. Afterwards, you will launch R
and execute your first commands in the R console.

By the end of the chapter, you will be able to:

Download R
Install R
Run R on your computer

Issue an R command

* & 6 o o

Set your R working directory

®NoO R Console

©R«DAGS0N) 10

~{Desktop Q

E ()

R version 2.11.1 (2010-85-31)
Copyright (C) 2818 The R Foundation for Statistical Computing
ISEN 3-0Q0A51-07-9

R is free software and comes with ABSOLUTELY MO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()"' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
"citation{}' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start(}"' for an HTML browser interface to help.
Type "q()' to quit R.

[R.app GUI 1.34 (5589) x86_64-apple-darwind.8.0]

[101

Chapter 1

Chapter 3—Exploring the Mysterious Data Analysis Tool

In this chapter, we will explore the anatomy of the R console in greater depth by solving a
challenging puzzle that was presented to us by the late Zhuge Liang.

By the end of the chapter, you will be able to:

Use proper syntax within the R console
Comment your R code

Make calculations using formulas

* 6 o o

Distinguish between different types of input and output in the R console

= #first we will solve the top-left corner of the puzzle

= #by breaking it down into Z2x?2 squares and making sure
comments that the sum of all rows, columns, and diagonals equal

130

= #the value for Bl is:

= 138 - 1 - 62 - 35

~ p—
calculations -[1] 32
= #the value for B4 1is:
output = 138 - 32 - 35 - 34
[1] 29

Chapter 4—Collecting and Organizing Information

In this chapter, we will focus on getting our data into R and then manipulating it via variables.
We will also learn how to manage the R workspace.

By the end of the chapter, you will be able to:

¢ Import external data into R
¢ Use variables to organize and manipulate your data

¢ Manage the R workspace

= 1s()

[1] "baxiSoldiersAfterRelocation”

[2] "guanghanSoldiersAfterRelocation”
[3] "hanzhongResources"

[4] "hanzhongResourcesAfterFlood”

[5] "maxSoldiersByCity"

[6] "meanSoldiersByCity"

[7] "minSoldiersByCity"

[8] "soldiersByCity"

[9] "totalSoldiers"

nl

Uncovering the Strategist’s Data Analysis Tool

Chapter 9—Assessing the Situation

In this chapter, we will extensively examine and evaluate our data. This will entail the use
of diverse functions to create predictive data models. Throughout this process, we will also
consider the practical and statistical meaning behind our analyses.

By the end of the chapter, you will be able to:

¢ Use multi-argument and variable-argument functions to make calculations
¢ Create predictive data models using regression analysis

¢ Consider the statistical and practical significance of your analyses

» subsetHeadToHead
Method Rating SuccessfullyExecuted Result ShuSoldiersEngoged WeiSoldiersEngaged DurationlnDays

1 headToHead 5 ¥ Defeat 500 15000 116
2 headToHead 15 ¥ Defeat 5000 19000 96
3 headToHead 25 Y Defeat 5009 10000 76
4 headToHead 25 Y Defeat 5009 10000 61
5 headToHead a5 ¥ Defeat 7509 15000 52
6 headToHead 20 ¥ Defeat 50000 190009 94
7 headToHead E1] Y Defeat 190009 200009 87
& headToHead &5 ¥ Victory 10008 5008 6
9 headToHead a5 ¥ Victory 100009 50009 44
18 headToHead 85 ¥ Victory 30009 15009 49
11 headToHead 18 Y Defeat 2509 5009 112
12 headToHead 15 ¥ Defeat 2000 2509 a9
13 headToHead 15 ¥ Defeat 250 590 111
14 headToHead 20 ¥ Defeat 1000 2009 93
15 headToHead 18 Y Defeat 7009 7509 129
16 headToHead 19 ¥ Defeat 500 7509 100
17 headToHead 99 ¥ Victory 15000 19000 35
18 headToHead 20 ¥ Victory 15009 10000 45
19 headToHead 85 ¥ Victory 25000 10000 4@
20 headToHead 85 Y Victory 25000 20000 45
21 headToHead a5 ¥ Defeat 30000 35000 95
22 headToHead 45 Y Defeat 25000 35000 185
23 headToHead 1] Y Defeat 40009 45000 109
24 headToHead a5 ¥ Defeat 30000 45009 a1
25 headToHead 25 ¥ Defeat 65000 75000 120
26 headToHead 20 Y Defeat 50000 75000 a9
27 headToHead k1] ¥ Defeat 60000 75000 102
28 headToHead a9 ¥ Victory 75000 49900 44
29 headToHead 99 ¥ Victory 50000 25000 50
3@ headToHead a5 Y Victory 190009 60000 30

In this chapter, we will turn towards using our data models to predict outcomes. We will also
assess the viability of these outcomes. Along the way, we will create and employ our own
custom functions that expand the capabilities of R.

121

Chapter 1

By the end of the chapter, you will be able to:

& Use regression models to predict outcomes

¢ Create your own custom functions to address specific needs

& Assess the viability of achieving the outcomes predicted by regression models.

Chapter 7—Organizing the Battle Plans

In this chapter, our task will be to review and organize a complete data analysis. We will
emphasize the need to clarify and communicate our data analyses effectively, which can be
achieved through a series of common steps.

1131

Uncovering the Strategist’s Data Analysis Tool

By the end of the chapter, you will be able to:

¢ Organize and clarify your raw R data analyses
¢ Communicate your raw R data analyses in the most effective manner

¢ Apply the steps common to all well-conducted R analyses

» ImFireRating_ExecutionDuration_Summary

Call:
alm{formula = Rating ~ SuccessfullyExecuted 4 DurationInDays,
data = subsetFire)

Deviance Residuals:
Min 10 Median Eli] Max
-26.515 -6.360 3.052 g.377 12.9@5

Coefficients:

Estimate Std. Error t wvalue Pri=1t1)
(Intercept) 38.1253 4.9899 0,322 6.27e-10 ¥**
SuccessfullyExecuted 52.9484 3.9815 13.299 2.28p-13 ¥***
DurationInDays -1.6177 @.4493 -3.600 0.00126 **

Signif. codes: @ #%¥*' @ Q@1 “**' 4. Q1 “*' @.@5 . @.1 ¢ * 1

(Dispersion parameter for gaussion fomily token to be 98, 24895)
Null deviance: 25396.7 on 29 degrees of freedom

Residual deviance: 2652.7 on 27 degrees of freedom

AIC: 227.6

Number of Fisher Scoring iterations: 2

In this chapter, we will take our first look at R's graphical capabilities by generating several
charts, graphs, and plots. Throughout, we will use common graphical parameters to
customize these visuals. We will also save and export our graphics for external use.

By the end of the chapter, you will be able to:

¢ Create six different charts, graphs, and plots in R

¢ Customize your R visuals using text, colors, axes, and legends

(1]

Download from Wow! eBook <www.wowebook.com>

Chapter 1

Save and export your graphics for use outside of R

Frequency

Duration of Past Fire Attacks

10
|

I I T T T I I 1
0 2 4 6 8 10 12 14

Duration in Days

In this chapter, we will take a deeper look at R's graphical capabilities. We will practice
customizing different types of charts, graphs, and plots by modifying their unique
parameters. We will also learn how to build our own custom graphics from scratch
using R's graphics functions.

151

Uncovering the Strategist’s Data Analysis Tool

By the end of the chapter, you will be able to:

¢ Customize several charts, graphs, and plots using arguments specific to each
¢ Use graphics functions to add information to any visual

¢ Create custom graphics by building them from the ground up

Soldiers Engaged by Kingdom Result When Successfully Executed
50000 — 0o)
B Victory
| Shu m Defeat
40000 - | W Wei o o
o
30000 —
(] a G000
20000 A =
Qoo
10000 — oo I:DIZ__}"{JZJQ o
5000 0000000000
1000 -{ BEHEEEo0000%

TTTTTT T T I T T IT IR T T T T 77T
0 3 6 9 13 17 21 25 29

Battle Number

Duration in Days Cost Comparison by Method
14
12 I f 5
11 ||| [|| I W || (7]
10 A % f g |
9] |||||| T [1¢ 3
@ 8 — | | | | || \ [i
7 Ll
a g ; [Te || | 1/ | 1 IF.III lllll £]
s | Exact Cost
4 — q‘: | LI'I | |I l,'.i || | E (!) < | 6792
3 | | J If ° o 24780
2 \ = o 233356
EI] 1 W 398255
TTTTTTTTTT T T I T I T T I I T 77T I T T 1 1
0 3 6 9 13 17 21 25 29 0 100 200 300 400
Battle Number Gold Cost (in thousands)

1161

Chapter 1

Chapter 10—Becoming a Master Strategist

In the final chapter, we will look to the future. We will focus on the ways in which you can
learn beyond the contents of this book to further expand your knowledge of R.

By the end of the chapter, you will be able to:

Use R's built-in help system
Install packages that expand R's functionality

Take advantage of electronic learning resources, such as websites, blogs, and
online communities

In this chapter, we were introduced to R. We learned that its benefits include being free,
cross-platform, open source, programmable, extendable, graphical, and community-
supported. We also considered why you should use R to conduct your data analyses

and how this book can help you quickly become an experienced R user.

You should now be able to:

Describe the R Project for Statistical Computing
Detail how you will benefit from using R
Explain why R is an essential tool for your work

Decide why this book is right for you

* 6 6 o o

List the major topics covered in this book

In the next chapter, we will work through the installation process to prepare R for battle.

[l

Before you can begin to formulate a strategy for the Shu forces, you must
ensure that your data analysis tool is in working order. Fortunately, R can be
prepared for battle in a few straightforward steps.

By the end of this chapter, you will be able to:

Download R
Install R
Run R on your computer

Issue an R command

* 6 6 o o

Set your R working directory

Preparing R for Battle

Time for action — downloading and installing R

Let us see now how to download and install R:

1. Browse to the official R website at http: //www.r-project.org; the home page
looks like the following:

The R Project for Statistical Computing
PCA 5 vars
I princemplx = . o = cxe) [] ® b
= e .
Feriify \ L [
| B
About R { \ ... ’ [] ®
Whatis R? |)] Examinaton] 8]
i Catholel” /™ esucaton] | g @, . e e
Screenshots - g
What's new? Potis ¢ ;
b B . ® S
Download, Packages (1 3) 60% . L] of 'Y et
CRAN l e
R Proj !:{t:t D - [— L]
mﬁ’“—rgg:z’z I Clustering 4 groups Factor 1 [41%] Factor 3 [19%]
Mailing Lists R
Bug Tracking -
Developer Page ——
Conferences - °
| B S
h L 0 40 = L]
Documentation
;MA—?]S Getting Started:
W * R is a free software environment for statistical computing and graphics. It compiles and runs
e . on a wide variety of UNIX platforms, Windows and MacOS. To download R, please
Cmmir . choose your preferred CRAN mirror.
Onh]im » If you have questions about R like how to download and install the software, or what the
Hhet license terms are, please read our answers to frequently asked questions before you send an
Mise email.
Bioconductor
Related Projects News:
s S
Links * R version 2.10.1 has been released on 2009-12-14. The source code will first become
available in this directory, and evenmally via all of CRAN. Binaries will arrive in due course
(see download instructions above).
* The first issue of The R Journal is now available
* useR! 2010, the R user conference, will be held at NIST, Gaithersburg, Maryland, USA,
July 21-23,2010.
* We have started to collect information about local UseR Groups in the R Wiki.
This server is hosted by the Institute for Statistics and Mathematics of the WU Wien.
B S

[201

Chapter 2

Under the Download, Packages heading on the left-hand side of the screen, click on

the CRAN link.

Download,

CRAN

Packages

A page with several CRAN (Comprehensive R Archive Network) servers located
across the world will be displayed. Click on the link for the CRAN server located

nearest to you.

About R
What is R?
Contributors
Screenshots
What's new?

Download, Packages

CRAN

R Project
Foundation
Members & Donors
Mailing Lists

Bug Tracking
Developer Page
Conferences
Search

Documentation
Manuals

FAQs

The R Journal
Wiki

Books
Certification
Other

Misc
Bioconductor
Related Projects

User Groups
Links

CRAN Mirrors

The Comprehensive R Archive Network is available at the following URLSs, please choose a

location close to you. Some statistics on the status of the mirrors can be found here.

Argentina

http:iferan.patan.com.ar/
Australia

htp:/feran.ms.unimelb.edu.au/
Austria

http:/feran.at r-project.ol
Belgium

httpufwww freestatistics.org/cran/
Brazil

http:/feran br.r-project.o;

http:/feran fiocruz br/

Patan.com.ar, Buenos Aires

University of Melbourne

Wirtschaftsuniversitact Wien

K.U.Leuven Association

Universidade Federal do Parana
Oswaldo Cruz Foundation, Rio de Janeiro

httpuiwww vps.fmvz usp br/CRAN/ University of Sao Paulo, Sao Paulo

http:ibrieger.esalg.usp br/CRAN/
Canada

httpuifcran stat.sfu.ca/
hittp:fprobability .ca/cran/
http:iferan skazkaforyou.com/
httpiiferan.parentinginformed .com/
Chile
http:/dirichlet.mat.puc.cl/
China
httpu/ftp.ctex.org/mirrors/CRAN/

http:iferan.csdb.cn/

http:/fmirrors.peoexpat.com/cran/
Colombia

University of Sao Paulo, Piracicaba

Simon Fraser University, Burnaby
University of Toronto

iWeb, Montreal

iWeb, Montreal

Pontificia Universidad Catolica de Chile,
Santiago

CTEX.ORG

Computer Network Information Center,
CAS, Beijing
GeoExpat.Com

httpeiiwww lagee.unal.edu co/CRAN/ National University of Colombia

Denmark

http:iferan. dk r-project.or
France

htp:iferan frr-project.o

http:/feran.univ-lyon1 fr/
hittp:/feran miroir-francais fr/
R ———

dotsrc.org, Aalborg

CICT, Toulouse

Dept. of Biometry & Evol. Biology,
University of Lyon
Miroir-Francais, Paris

21

Preparing R for Battle

4. A page with frequently used CRAN links will be displayed. In the Download and
Install R section, click on the link that corresponds to your operating system
(Linux, Mac OS X, or Windows).

CRAN
Mirrors
What's new?
Task Views
Search

About R

R Homepage
The R Journal

Software
R Sources
R Binaries
Packages
Other

Documentation

Manuals
FAQs
Contributed

The Comprehensive R Archive Network

Frequently used pages

Download and Install R

Precompiled binary distributions of the base system and contributed
packages, Windows and Mac users most likely want one of these versions
of R:

o Linux
s MacOS X
e Windows

Source Code for all Platforms

‘Windows and Mac users most likely want the precompiled binaries listed in
the upper box, not the source code. The sources have to be compiled before
you can use them. If you do not know what this means, you probably do not
want to do it!

e The latest release (2009-12-14): R-2.10.1 .tar.gz (read what's new in
the latest version).

e Sources of R alpha and beta releases (daily snapshots, created only in
time periods before a planned release).

e Daily snapshots of current patched and development versions are
available here. Please read about new features and bug fixes before
filing corresponding feature requests or bug reports.

« Source code of older versions of R is available here.

« Contributed extension packages

Questions About R

« If you have questions about R like how to download and install the
software, or what the license terms are, please read our answers to
frequently asked questions before you send an email.

[22]

Download from Wow! eBook <www.wowebook.com>

Chapter 2

5. Use the provided link to download the latest version of R for your operating system

and version.

For demonstration purposes, the Mac OS X page is shown here.
As of this writing, a user on Mac OS X 10.5 or higher would click
on the R-2.11.1.pkg link to download the installation package.
Similarly, you should download the appropriate installation file
for your operating system and version.

CRAN found in the old directory.

Mirrors

M Note: CRAN does not have Mac OS X systems and cannot check these

Task Views binaries for viruses. Altough we take precautions when assembling

Search binaries, please use the normal precautions with downloaded
executables.

About R

R Homepage Universal R 2.11.1 released on 2010/05/31
The R Journal

Is;;t"““ and Intel (32-bit and 64-bit) based Macs on Mac OS X 10.5 (Leopard)
£ o0urces and 10.6 (Snow Leopard).

R Binaries

Packages Please check the MD35 checksum of the downloaded image to ensure
Other that it has not been tampered with or corrupted during the mirroring
;;cumclnhﬂhion ﬁzmgsz?ic’;m;ﬁglc type

ﬁ in the Terminal application to print the MDS5 checksum for the R-
Contributed 2.11.1.pkg image.

R for Mac 0S X

This directory contains binaries for a base distribution and packages to
run on Mac OS X (release 10.5 and above). Mac OS 8.6 to 9.2 (and
Mac OS X 10.1) are no longer supported but you can find the last
supported release of R for these systems (which is R 1.7.1) here.
Releases for old Mac OS X systems (through Mac OS X 10.4) can be

This binary distribution of R and the GUI supports PowerPC (32-bit)

Files:

R-2.11.1.pkg (latest Three-way universal binary of R
version) 2.11.1 for Mac OS X 10.5

MDs- (Leopard) and higher. Contains R
hash: codded Te5 Befb@ab057 Ib86balch5b3d

{ca. 38MB) 2.11.1 framework, R.app GUI

1.34 in 32-bit and 64-bit. The
above file is an Installer package
which can be installed by double-
clicking. Depending on your
browser, you may need to press
the control key and click on this
link to download the file.

[231

Preparing R for Battle

6. Double-click on the file that you downloaded in step 5. Then follow the prompts to
install R on your computer.

For assistance with your specific operating system, see section 2.5 How
can R be installed? of the official R FAQ at http://cran.r-project.
org/doc/FAQ/R-FAQ.html. This section provides documentation for
installing R on the most frequently used operating systems:

Macintosh: http://cran.r-project.org/doc/FAQ/R-FAQ.
html#How-can-R-be-installed- 0028Macintosh 0029

Unix-based: http://cran.r-project.org/doc/FAQ/R-FAQ.
html#How-can-R-be-installed- 0028Unix 002dlike
0029

Windows: http://cran.r-project.org/doc/FAQ/R-FAQ.
html#How-can-R-be-installed-_ 0028Windows_0029

Example: R 2.11.1Mac 0S X 10.5+ installation wizard demonstration

For demonstration purposes only, the installation process for R-2.11.1.pkg on Mac OS X
10.5 and higher is shown here. The exact installation process will differ between operating
systems and versions. Therefore, it is likely that your installation process will differ from the
one shown here, although it may also bear some similarities. The process goes as follows:

1. Locate and double-click the R-2.11 .1 package file that you downloaded earlier.

o

R-2.11.1.pkg

[24]

Chapter 2

2.

3.

The Install R 2.11.1 wizard will open in a new window. From this Introduction page,
click on the Continue button.

fano

« Install R 2.11.1 for Mac OS X 10.5 or higher (Leopard build)

License

® Destinati

® Summary

Welcome to the R 2.11.1 for Mac 05 X 10.5 or higher (Leopard build)
Installer

This installer will guide you through the steps necessary to
setup R 2.11.1 (2010-05-31) for Mac OS X 10.5 (Leopard)
or higher on your machine.

® Installatidn Type

® Installatian

an Select

|

—— Go Back [Continue |

The wizard will advance to the Read Me page. Click on the Continue button.

800

‘w Install R 2.11.1 for Mac 05 X 10.5 or higher (Leopard build)

License

Important Information

R 2.11.1

Version 2.11.1 (2010-05-31)
for Mac OS X 10.5 (Leopard) and higher
Universal (32-bit and 64-bit)

® Destinati
® Installatid
® Installatid

® Summany

In Select
n Type

n

|

This multi-package contains following main components:
- R Framework 2.11.1
- Rapp GUI 1.34

Requirements:
- Mac 05 X 10.5 (Leopard) or 10.6 (Snow Leopard)

Note: By default the installer upgrades previous Leopard build of R
if present. If you want to keep the previous Leopard build, use
pkgutil --forget org.r-project.R.Leopard.fw.pkg

The Cocoa GUI called R.app (32-bit) and R64.app (64-bit) will be
installed by default in your Applications folder, R framework will
be installed in /Library/Frameworks.

(" Print... x Save...) (" GoBack) [Continue)

1251

Preparing R for Battle

4. The wizard will advance to the License page. Click on the Continue button.

e no o Install R 2.11.1 for Mac OS X 10.5 or higher (Leopard build)

Software License Agreement

This software is distributed under the terms of the GNU GENERAL

O Introduction PUBLIC LICENSE Version 2, June 1991. The terms of this license
are in a file called COPYING which you should have received with
O Read Me this software.
License

If you have not received a copy of this file, you can obtain one via
Destinati@n Select WWW at http:/ /www.gnu.org fcopyleft/gpl.html, or by writing to:
Installatidn Type The Free Software Foundation, Inc.,
Install&tidh 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
Summany] A small number of files (the APl header files and export files, listed
in R_HOME/COPYRIGHTS) are distributed under the LESSER GNU
GENERAL PUBLIC LICENSE version 2.1. This can be obtained via
WWW at http:/ f'www.gnu.org/copyleft/lgpl.html, or by writing to
the address above

The above licenses govern distribution, not use.

" “Share and Enjoy."

(print.. W Save..) (GoBack) [Continue

e /

5. A window will pop up asking you to agree to the license terms. Click on the
Agree button.

To continue installing the software you must agree to the terms
of the software license agreement.

Click Agree to continue or click Disagree to cancel the installation
and quit the Installer.

H \ N
| Read License { Disagree { Agree

1261

Chapter 2

6. The wizard will advance to the Destination Select page. Change the installation
location, only if you have an explicit reason to do so. Otherwise, click on the
Install button.

N YeYe) « Install R 2.11.1 for Mac OS X 10.5 or higher (Leopard build)

Standard Install on “Macintosh HD”

& Introduction

£ Read Me This will take 97.9 MB of space on your computer.
O License Click Install to perform a standard installation of
@ DestinatibniSalact this software for all users of this computer. All
users of this computer will be able to use this

© Installation Type software.

Installatidin

Summary|

¥

'a . Y
[Change Install Location...)

- - r'd Y '
[Customize) [GoBack) (Install

7. The wizard will advance to the Installation page. It will automatically install the
necessary files on your computer. This process will take approximately five minutes.

MO « Install R 2.11.1 for Mac OS X 10.5 or higher (Leopard build)

Installing R 2.11.1 for Mac OS X 10.5 or higher (Leopard build)

© Introduction

© Read Me

O License

© Destination Select

O Installation Type Running package scripts...

Binstallation @ | ——————————————————————

Summary]

Install time remaining: About a minute

Go Back Continue

A!

[21]

Preparing R for Battle

8. Once theinstallation is complete, the wizard will advance to the Summary page.
Here, you will receive a message indicating that R was installed successfully. Click
on the Close button to exit the wizard.

an0n '« Install R 2.11.1 for Mac 0S5 X 10.5 or higher {Leopard build)

The installation was completed successfully.

License

© Destination Select
© Installation Type The installation was successful.
@ Installation

O Summary The software was installed.

A Go Back

%

9. You can launch R at any time by browsing to its location on your hard drive and
double-clicking on its icon.

1281

Chapter 2

10. After completing the installation process, double-click the R icon to launch the
R console.

®@NoO R Console

=10

~/Desktop Q

R version 2.108.0 (2009-10-26)
Copyright (L) 2809 The R Foundation for Statistical Computing
ISEN 3-990051-97-2

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute i1t under certain conditions.

Type 'license()' or 'licence{)' for distribution details.
Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors(}' for more information and

"citation{)' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help(}' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'g()' to guit R.

[R.app GUI 1.38 (5511) x86_64-apple-darwind.&.8]

What just happened?

You just finished installing R and launched it for the first time. Next, we will learn how to use
R by issuing our first command.

Time for action - issuing your first R command

Time may have escaped you amidst your sudden change in position and hustle in preparing
R. Conveniently, R provides us with a simple command to retrieve the current date and time:

1. Inthe R console, next to the greater than sign (), type the following comments and
then press the Return (or Enter) key:

> #use the date() command to get the current date and time

2. Similarly, issue the date () command and press the Return key:
> date ()

3. Afterissuing the date () command, a message similar to
[1] "SunAug 31 08:00:00 234" will appear in the R console. In this case, the
message indicates that it is 8:00 AM on Sunday, August 31 in the year 234.

Congratulations, you have successfully issued your first R command (and reminded yourself
of the current date and time in the process).

1291

Preparing R for Battle

What just happened?

As you may have noticed, R commands, or functions, take on a similar form as in other
programming languages. In the date () command, for example, the word date specifies
the name of the function, while the parentheses () contain the function's arguments. In this
case, it was not necessary to use any arguments in the date () command. However, other
functions, such as setwd (dir) receive one or more arguments.

Time for action - setting your R working directory

To demonstrate how to use the setwd (dir) and getwd () functions, we will set our
working directory to the desktop:

1. Determine the file path to your desktop. Note that this path will vary depending on
your operating system and the structure of your hard drive. An example, which you
should replace with your computer's path, is shown here:
> #set the R working directory
> #this should be the first thing you do every time you open R
> #I am going to set the R working directory to my desktop
at "/Users/johnmguick/Desktop"
> #you should replace the sample location with the path to
your desktop

2. Usethe setwd (dir) command to set your working directory to the path identified
in step 1:
> #use setwd(dir) to set the R working directory
> setwd(dir = "/Users/johnmquick/Desktop")

3. Verify that your working directory was set appropriately using the getwd ()
command:

> #use getwd () to display the current R working directory
> getwd ()
[1] "/Users/johnmquick/Desktop"

What just happened?

The working directory is the default location on your computer where R assumes all of your
work is being conducted at a given time. For example, if you were to import data from an
external file, R would automatically look for it in your working directory. Furthermore, all file
path arguments in functions are evaluated relative to the working directory. Therefore, it is
important to set your working directory each time you use R.

Chapter 2

We set our R working directory using the setwd (dir) function and then verified its location
using the getwd () command.

In setwd(dir), the dir argument accepts a path to the folder that is to become the
working directory. For example, the path " /Users/johnmgquick/Desktop" tells the
setwd (dir) function to locate the Desktop folder within the johnmquick folder

of the Users folder. It then sets this destination as the working directory.

After submitting the setwd (dir) command, R will drop down to the next line without
providing any output:

> setwd(dir = "/Users/johnmquick/Desktop")
>

In one sense, this is good, because you would have received an error if the command failed.
However, R can also be confusing at times, because it does not always provide you with
feedback indicating the result of your commands.

Note that in our setwd (dir) function, the dir = portion can be
. optionally omitted. In R, so long as a function's arguments occur in the
% default order, they do not have to be explicitly stated in the code. However,
A if only certain arguments are used, or if they are used in a different order,
they must be stated explicitly. We will encountered several examples of
both cases throughout this book.

Thankfully, we can use the getwd () command to verify the current working directory:

> getwd ()
[1] "/Users/johnmquick/Desktop"

By using getwd () after setwd (dir), you can verify that your working directory has been
defined appropriately. Remember that setting your working directory is the first thing you
should do every time you launch R.

1. Which of the following is not true of the R working directory?
a. ltissetusing the setwd (dir) command.
b. Itis displayed using the getwd () command.
c. Itisthe default location where R assumes your work is being conducted.

d. It only needs to be set once.

[311

Preparing R for Battle

2. Which of the following is true of the R console?
a. It returns output for no functions entered by the user.
b. It returns output for some functions entered by the user.
c. It returns output for all functions entered by the user.

d. It returns output for all functions, but not comments, entered by the user.

3. Insetwd(dir), dir is which of the following?
a. Avariable.
b. A function.
¢c. Anargument.

d. Anelement.

Set your R working directory to a location of your choice using the setwd (dir) function.
Then verify the location of your working directory using the getwd () command. It may be
useful to designate a specific folder for all of your R work or for each individual project that
you engage in. For example, you may want to create a specific folder on your computer for
all of the activities that we will complete in this book. You could then set that location as
your R working directory. Remember that your working directory should be set each time
you open R.

In this chapter, we downloaded, installed, and ran R for the first time. Then, you issued
your first R command (of very many to come) and learned how to set and verify the
R working directory.

We will begin to explore the mysterious data tool in the following chapter by using it to
solve a challenging puzzle. Meanwhile, we will learn about the anatomy of the R console
in greater detail.

[321

Exploring the Mysterious Data
Analysis Tool

With R prepared for use, you are primed to begin your initial status assessment
of the Shu army. However, you have realized that the documents that you
received make no mention of your own or your enemies' resources. Without
this critical data, you will not be able to conduct your analyses.

You decide to pay a visit to Zhuge Liang's assistant to see if the great strategist had
mistakenly misplaced the much needed information. Upon your arrival, the assistant
silently hands you a written letter. It reads:

My true successor will be a person of sharp intellect and patient wisdom. Yet, it is
not sufficient to merely choose a replacement. Rather, this person's character must
be tested under the harshest of circumstances. | have hidden my records of the Shu
and Wei armies. | predicted that you would come for them shortly after my death.
My assistant has been instructed to share this letter with you. Further, if you are
able to solve the puzzle that | have presented here within one hour, then you will
receive what you seek. However, if you cannot complete this task within the given
time, the documents will be destroyed and my assistant will promptly travel to the
capital. There, my assistant will give the emperor my recommendation that the Shu
forces surrender to the Weij kingdom.

Zhuge Liang

Exploring the Mysterious Data Analysis Tool

1 61 28 57
62 [35 2 a7
34 59 |38 7
33 60
24 13
43 19] 14
55 1151 [48 15
21141 | 66 17

The mother is 260. Her four children and four grandchildren are 130. The family is in perfect harmony.

You have been challenged by the legendary strategist, in his letter, to prove yourself as a
capable leader of the Shu forces. In order to accomplish this feat, you must be able to:
Use proper syntax within the R console

Comment your R code

Make calculations using formulas

* & o o

Distinguish between different types of input and output in the R console

Time is running out. If you aim to prove yourself a worthy leader of the Shu army, then you
will need to begin solving Zhuge Liang's puzzle!

Deciphering Zhuge Liang's magic square

Zhuge Liang's puzzle is an 8x8 magic square. In a magic square, all rows, columns, and
diagonals add up to the same number. For an 8x8 puzzle like this one, that number is 260.
Hence, the mother refers to the entire puzzle. Knowing this, take a moment to think about
what the children and grandchildren might refer to.

Continuing, each of the cells in the puzzle hold a number between 1 and 64. Each number
appears in one and only one cell. A useful technique for solving a large puzzle is to break it
down into smaller components. For example, an 8x8 magic square can be broken down into
four 4x4 puzzles (children). Furthermore, each 4x4 puzzle can be broken down into four 2x2
squares (grandchildren). In this case of perfect harmony, each 2x2 and 4x4 puzzle is also a
magic square whose number is 130.

Now that we have deciphered Zhuge Liang's puzzle, we can begin solving it with the help
of R.

341

Chapter 3

Time for action - solving the first 4x4 magic square

While this puzzle could be solved by hand, it would take a considerable amount of
time to do so. Since our deadline is approaching, we will use R to quickly make the
necessary calculations.

To simplify our problem, let us first focus on the 4x4 square located in the top-left corner
of the puzzle:

62 | 35 2
34

33

The top-left corner of Zhuge Liang's puzzle
Then follow these simple steps:

1. OpenR.

2. On the first line in the R console, next to the greater than sign (>), type the
following comment:

> #first we will solve the top-left corner of the puzzle

3. Onthe next line in the R console, type the following comment:

> #by breaking it down into 2x2 squares and making sure that the
sum of all rows, columns, and diagonals equals 130

4. Inthe upper left-hand corner of the 4x4 square are three numbers. Since we know
from Zhuge Liang's note that all 2x2 squares sum to 130, we can calculate the
missing value at B1 as follows:
> #the value for Bl is:
> 130 - 1 - 62 - 35

5. R will display the text [1] 32, which indicates that the value of your calculation is
32. Having solved for B1, you can now solve for the missing value in row B, B4. The
calculation is as follows:

> #the value for B4 is:
> 130 - 32 - 35 - 34

Download from Wow! eBook <www.wowebook.com>

Exploring the Mysterious Data Analysis Tool

6. By working your way through each row, column, and diagonal of the 4x4 puzzle, you
can solve the remaining cells in this section, as follows:

> #the value for C2 is:
> 130 - 62 - 35 - 2

[1] 31

> #the value for C1l is:
> 130 - 31 - 61 - 2

[1] 36

> #the value for C3 is:
> 130 - 36 - 31 - 33
[1] 30

> #the value for D4 is:
> 130 - 1 - 35 - 30

[1] 64

> #the value for D3 is:
> 130 - 61 - 2 - 64

(1] 3

> #the value for A3 is:
> 130 - 34 - 30 - 3

[1] 63

> #the value for A4 is:
> 130 - 1 - 62 - 63

[1] 4

The completed puzzle section is pictured in the following diagram. All calculated cells have
been highlighted:

1 |32 [36 |61
G2 |35 [31] 2
63|34 (30 3

4 |29 |33 [64

Solution to the top-left corner of Zhuge Liang's puzzle

What just happened?

While solving the first quadrant of Zhuge Liang's puzzle, you encountered a number of R's
fundamental elements.

Chapter 3

Lines

Activity that takes place in the R console is divided into one line statements. Long statements
will automatically wrap to fit the size of the R window, although they still occur on a single
line in the console. For instance, the formulas:

> 1 + 1

and

>1+ 1+ 2+ 3 +4+5+ 6+ 7+ 8+ 9+ 10+ 11 + 12 + 13 + 14 + 15
+ 16 + 17 + 18 + 19 + 20 + 21 + 22 + 23 + 24 + 25

both occupy a single console line, in spite of the fact that the latter formula is wrapped to
display on more than one line.

Lines that accept user input begin with a greater than sign (>), whereas static console-
generated output lines do not. For example:

> date ()
[1] "Sun Aug 31 08:00:00 234"

The first line accepted user input, whereas the second returned output from the R console.

You can press the Return (or Enter) key to move from one line to the next, or to commit your
code, in the R console. R will always drop down a single line when the Return key is pressed.
Previous lines will remain displayed in the console, however they will not be editable.

Each line that begins with a pound sign (#) in the R console is designated as a comment. We
have used several comments thus far. For example, in the following code:

> #the value for A4 is:
> 130 - 1 - 62 - 63
[1] 4

The first line is a comment. As is customary in most programming languages, a comment
can display any variety of text, code, or other allowable input. Since they are ignored by

the console, comments are a useful and necessary tool for documenting and organizing

your work.

We inserted several comments into our code in the previous activity. Without them, our
console would have been filled with seemingly arbitrary calculations. Instead, our comments
provided the context necessary for both others and ourselves to understand what we

were calculating and why. It is recommended that you use comments at every relevant
opportunity to make your code readable and easy to remember.

[311

Exploring the Mysterious Data Analysis Tool

Note that no mechanism for multiline comments currently exists in R. However,
long comments will automatically wrap to the size of the R console window.

> #this is an exceptionally long comment that takes
up the entire width of the R console, so it is
automatically wrapped to display on a second line

Alternatively, lengthy explanations can be separated manually by splitting the
% text into several one line comments, like so:

> #this is an exceptionally long comment
> #that has been manually split
> #into several one line comments

Note that everything following the pound sign (#) on a given line is ignored by
the R console. Therefore, it is possible to combine a comment and other code on
the same line, so long as the comment comes last.

Calculations

At its core, R is a sophisticated calculator. We found the value of each missing cell in the 4x4
square using simple mathematical formulas. For instance, we used the following formula to
find out the value of cell B1:

> 130 - 1 - 62 - 35

R can, of course, handle an endless variety of calculations. The most commonly used
calculations, along with their symbols, are addition (+), subtraction (-), multiplication (*),
and division (/). Using R to derive values in this fashion was just our first small step towards
becoming familiar and comfortable with the R console.

You may have noticed that some console lines do not begin with the greater than (>) sign. In
our preceding activity, these lines contained the results generated by R. The output that R
returned to our formula for cell B1 is just one example:

[1] 32

Any time that R displays information to us, it will not be editable and it will not begin with a
special prefix. In contrast, all lines that we can edit will begin with the greater than sign (>).

Chapter 3

Note also that a [1] that appeared before each of our calculated values in the R
. console output. This is merely R's way of telling us that the result of our formula
% was contained in a single cell. R likes to think of data in terms of matrices with
rows, columns, and cells, and will often prefix its output with such information.
You can typically ignore this and only pay attention to the value(s) that you
specifically requested.

The following diagram contains a segment of the source code that we created while solving
the initial 4x4 puzzle segment. Each comment, calculation, and output has been labeled to
demonstrate the visual differences between these types of lines:

#first we will solve the top-left corner of the puzzle
#by breaking it down into 2xZ2 squares and making sure
COMMents that the sum of all rows, columns, and diagonals equal
138
= #the wvalue for Bl is:
> 130 - 1 - 62 - 35

=
=

calculations _[1] 32
> #the walue for B4 is:
output = 138 - 32 - 35 - 34
[1] 29

Remember that all editable lines begin with a greater than sign (>). Of these, comments
begin with a pound sign (#) and are used to document our code. Calculations consist of
mathematical operations that we are conducting on our data. Output lines are generated
by the R console, are not editable, and lack a leading greater than sign.

1. Which of the following characters appears at the beginning of each user editable
line in the R console?

a. =
b. >
c. -
d #

Exploring the Mysterious Data Analysis Tool

2. Which of the following characters is used to begin a comment line in the R console?

a.
b.
c.
d.

>

#

3. Which of the following actions submits a line of user input to the R console?

a
b.
C.
d.

Pressing the Tab key
Pressing the Shift key
Pressing the Return key
Pressing the Escape key

Using the techniques that we employed to solve the top-left quadrant of the puzzle, solve
for the remaining cells of Zhuge Liang's 8x8 magic square. You should be able to accomplish
this task in a short while as you get accustomed to the R console. Along the way, be sure to
identify which console lines are comments, calculations, and outputs. Once finished, check
that your row, column, and diagonal values add up to 260. Then, verify your solution with
the completed puzzle in the following figure:

1 |32 |36 (61| 5 |28|40| 57
G2 |35 (31| 2 |58 (30|27 6
63 (34 |30) 3 |59 (38|26 7
4 (29|33 |64 | 8 (25|37 | B0
9 (24|44 |53 |13 (20 |48 | 49
54143 |23 (10 |50 |47 |19 | 14
55 |42 |22 [11 |51 |46 18 | 15
12121 |41 |56 |16 |17 | 45 | &2

Solution to Zhuge Liang's 8x8 magic square

[401

Chapter 3

You have now been introduced to the basic operations of R. The R console is composed of
lines, which can take the form of comments, calculations, or outputs. You encountered all of
these features while solving Zhuge Liang's magic square. In the process, you also gained the
skills to:

Use proper syntax within the R console

Comment your R code

Make calculations using formulas

* 6 o o

Distinguish between different types of input and output in the R console

Congratulations, you have earned the late strategist's respect and proven yourself a worthy
successor. Zhuge Liang's assistant has provided you with documents containing detailed data
about the resources of the Shu and Wei kingdoms. Now it is time for you to organize this
information and prepare it for analysis, which will be the focus of Chapter 4.

[al

After demonstrating your talents by solving Zhuge Liang's puzzle, his assistant
provided you with documents summarizing the resources of the Shu army.
These documents contain data on gold, equipment, and soldiers. Prior to
analyzing these data in R, it is critical that you prepare and organize them.
This process will make your subsequent work more clear and efficient.

In this chapter, we will focus on collecting and organizing the information that is available to
us. You will encounter several new techniques in R along the way. By the end of this chapter,
you will be able to:

¢ Import external data into R

¢ Use variables to organize and manipulate your data

¢ Manage the R workspace

Time for action - importing external data

Our first task is to pull external resource data into R, so we can begin to examine it. To
accomplish this, open the R console and proceed through the following steps:

1. Setyour R working directory using the setwd (dir) function. The path used in
the following code acts as an example. Your working directory should be set to a
relevant location on your own computer:

> #set the R working directory

> f#ireplace the sample location with one that is relevant to you
> setwd (" /Users/johnmgquick/rBeginnersGuide/")

Collecting and Organizing Information

2. Copy the hanzhongResources. csv file into your R working directory. This file
contains resource information for the Shu forces that are currently recuperating
in Hanzhong.

3. Read the resource file into R using the read.csv (file) command:

> #use read.csv(file) to read an external data file into R
> #Shu resources located in Hanzhong, China
> read.csv("hanzhongResources.csv")

4. Rwill read and display the contents of the file, and the result is shown in the
following screenshot:

= hanzhongResources
Gold Provisions Soldiers EguipmentCondition
1 1808008 1000000 100004 1

These data indicate that your forces in Hanzhong currently have 1,000,000 each of gold and
provisions, 100,000 soldiers, and equipment that is in mint condition.

What just happened?

After setting your working directory, you encountered a new function. Its syntax differs from
the commands that we have previously used.

In read.csv(file), a period is placed between the function name read and the

csv attribute. The term csv told the read function that the data in our file contained
comma-separated values. It is important to distinguish which read function we want to use,
because it can take on a number of alternative forms, such as read. s and read. SPSS.

The £ile portion of the read.csv (file) function is similarto dir in setwd (dir). Since
we placed our data file in our working directory, the £ile argument needed only to contain
a file name and extension. Had the data been placed elsewhere, a complete file path would
have been necessary.

comma-separated values [csv] files

Throughout this book, we will use comma-separated values, or CSV, data files. This is the
recommended file type for importing data into R. However, you should be aware that R
can accept data from a wide variety of sources. Therefore, you can typically import from
whichever sources you may use.

[a4]

Chapter 4

1.

What is the key difference between the function arguments dir and file?

a. The dir argument contains a path, whereas the £i1le argument contains a
filename.

b. The dir argument contains a path to a directory folder, whereas the file
argument contains a path to afile.

¢. Functions beginning with read receive the £ile argument, whereas functions
beginning with set receive the dir argument.

d. There is no difference between the dir and £ile arguments.

Time for action - creating and calling variables

Although reading your data into R allows you to visualize it in the console and use it to make
hand-typed calculations (as we did in Chapter 3), you generally need a more organized and
flexible method for manipulating your data. R variables are well suited to accomplish this
aim. Instead of only reading our resource data into R, let us this time read and store our
data in a variable:

1.

Use the following code to store the data from our resource file in a variable
named hanzhongResources:

> #iread the data from hanzhongResources.csv into a variable
named hanzhongResources
> hanzhongResources <- read.csv("hanzhongResources.csv")

Note that R did not display any output after step 1 and simply dropped down to the
next line in the console. To verify the contents of our new variable, we must call it
by typing its name in the R console.

> #display the contents of the hanzhongResources variable
> #Shu resources located in Hanzhong, China
> hanzhongResources

R will display the contents of the variable.

> hanzhongResources
Gold Provisions Soldiers EquipmentCondition
1 1800809 1000000 100000 1

You may have noticed that calling your hanzhongResources variable yields the exact same
output as reading the original CSV file into R. However, the variable is much more efficient,
because we do not have to type the entire read.csv (dir) code each time we want to
display its data. Instead, we may simply refer to it by name.

451

Collecting and Organizing Information

What just happened?

You have created and called your first variable in R. Variables are essential for storing and
manipulating data. Each time you create a variable in R, you will follow a similar process to
the one we just exercised. The four steps in the variable creation process are as follows:

1. Start with the variable name

In our preceding example, hanzhongResources was the name of our
variable. A name should be the first thing that appears on a new console
line when creating an R variable.

2. Add less than minus (<-)

After the variable name, the less than minus symbol, or <-, should

be added. The <- symbol can be thought of as meaning "is set equal

to the contents of." These characters have the effect of assigning the
information on their right to the variable name on their left. For example,
theline > A <- Bcan be read as "the variable named A is set equal

to the contents of B." Therefore, in our previous example, we set the
variable named hanzhongResources equal to the contents of the file
hanzhongResources.csv.

3. Add the data source

The data source hanzhongResources . csv was used in our example. A
data source should be the last thing that appears on the console line when
creating an R variable. Data sources typically take on the form of datasets
that are read into R, numeric values, or previously created variables.

4. Verify the variable's contents

When executing a line of R code does not yield visible output, as is the

case when creating a new variable, it is wise to verify the results of our
actions. To display the contents of a variable, type its name in the R console
and press the Return key. In our case, entering hanzhongResources

will yield a console output containing the Shu army's resources located

in Hanzhong, China.

1. Which of the following is not an advantage of storing the output of the
read.csv (file) function as a variable?

a. The variable name is more efficient to type.
b. The variable name is easier to remember.
c. Thevariable's data is preserved even if the original CSV file is moved or deleted.

d. The variable explicitly states its data source.

1461

Chapter 4

2. Interpret the following R console line in words:

> myVariable <- myData

a. Thevariable myVariable is set equal to the contents of myData.
b. The variable myData is set equal to the contents of myvariable.
¢c. Thevariable myvariable is less than negative myData.

d. Thevariable myvariable is greater than zero and less than negative myData.

You are now familiar with the process behind creating a new data variable in R. The
soldiersByCity.csv file contains the total number of soldiers located in each major city
within Shu and Wei territory. Copy this file into your R working directory. Then use the four
step process to create and verify the contents of a new variable called soldiersByCity.
This variable should contain all of the data in the soldiersByCity.csv file.

Time for action — accessing data within variables

Both our hanzhongResources and soldiersByCity variables contain a complete set of
values (as opposed to a single value). We already know that typing a variable's name into R

will output all of its contents in the console. However, we often need to access the columns,
rows, and cells within a dataset to perform calculations.

We will start by exploring two methods for accessing the columns in our
soldiersByCity variable:

1. First, we will access the Soldiers column from our soldiersByCity variable
through R's variable$column notation:

> #isolate a single column within a dataset using the
variableScolumn notation.

> #display the contents of the Soldiers column from the
soldiersByCity variable

> soldiersByCity$Soldiers

2. Rwill display the contents of the Soldiers column, and the result is shown in the
following screenshot:

= soldiersByCity$Soldiers
[1] 106060 25006 15000 15000 10000 10000
[7] SO0 S0pG S000 SPB8 S00D 200000
[13] ©G0aea 25000 20000 15000 15000 15004
[19] 15000 15000 15000 10000

[a11

Collecting and Organizing Information

3.

4.

This time, let us use the attach (variable) function to simplify our operation.

> #isolate a single column within a dataset using the
attach(variable) function and simplified notation

> #attach the soldiersByCity variable

> attach(soldiersByCity)

> #display the contents of the Soldiers column from the
soldiersByCity variable

> Soldiers

R will display the contents of the Soldiers column:

= Soldiers
[1] 100000 25000 15004 15008 10000 10000
[7] a8 La0a SaRa La0a SA09 200000
[13] G0ee@ 25000 20000 15000 15000 15000
[147 15668 15884 15008 10008

Next, we will access a single row within the soldiersByCity variable:

5.

Use the variable [row, column] matrix notation to display the contents of the
tenth row in our soldiersByCity variable:

> #isolate a single row within a dataset using the
variable[row, column] matrix notation.

> #display the contents of the tenth row in the soldiersByCity
variable

> soldiersByCity[10,]

R will display the contents of the tenth row in our soldiersByCity dataset:

= soldiersByCity[18,]
Kingdom City Soldiers
14 Shu Yunnan 5004

Similarly, we can use matrix notation to access a single cell within our dataset.

Use matrix notation to display the contents of cell [5, 3] in our
soldiersByCity variable:

> #isolate a single cell within a dataset using the
variable[row, column] matrix notation.

> #display the contents of cell [5,3] in the soldiersByCity
variable

> soldiersByCity[5, 3]

[481

Chapter 4

8. Rwill display the contents of cell [5, 3], as shown:

= soldiersByCity[5,3]
[1] 10008

What just happened?

You have just practiced accessing data within a variable from each possible angle, that is,
by columns, rows, and individual cells. Let us take a closer look at how variable data is
accessed in R.

variableScolumn notation

Individual columns within a dataset can be accessed via the variable$column notation. Think
of the dollar sign ($) as the letter S, as in the word "select." In this way, the notation can be
read in words. For example, the line > A$B can be read as "from variable A, select column B."
During our activity, we selected the Soldiers column from the soldiersByCity variable
by typing the following code in the R console:

> soldiersByCity$Soldiers

The attach (variable) function is a convenient way to relieve ourselves of lengthy
notation in some, but not all, cases. When a variable is attached in the R console, its columns
can be referred to by name, without the need to identify the variable. For example, after

we attached soldiersByCity, we could display the contents of the Soldiers column by
simply typing > Soldiers in the console.

A caveat with the attach (variable) function is that often only a single variable can

be attached to the R console at a given time. For instance, if we were to attach both our
hanzhongResources and soldiersByCity variables at the same time, we would run
into a problem regarding the Soldiers column. Since both of these variables contain

such a column, R can only refer to the most recently attached version. Accessing the other
would require the use of variable$column notation. In fact, R will warn you if you attach
two variables that share a common column name. The following error occurs when the
soldiersByCity variable is attached, followed by hanzhongResources

The following object(s) are masked from soldiersByCity :

Soldiers

1491

Download from Wow! eBook <www.wowebook.com>

Collecting and Organizing Information

On the other hand, attaching a variable can be useful and efficient when you are working
with a single, large dataset. If you are only manipulating data from one variable, then you
will not run into the demonstrated error. Furthermore, you can always have one variable
attached, even if you are working with datasets that have identical column names. Of course,
if your variables do not have columns in common, then attaching them all is an option. In any
case, you can always refer to columns using variable$column notation, which we will do
throughout the remainder of this book.

Note that should you ever need to detach a variable, you can use the detach (variable)
function. This will return the variable to its prior status in the console, as if it had never been
attached in the first place.

variablelrow, columni notation

When referring to row data or individual cells, the variable[row, column] notation should
be used. For rows, such as when we accessed the tenth row in soldiersByCity via >
soldiersByCity[10,] the column portion of the notation is omitted. This tells R to
retrieve all of the columns in the row.

To isolate an individual cell, both a row and column value must be specified. When
we accessed cell [5,2] from soldiersByCity via > soldiersByCity[5,2] thes
represented the cell's row, whereas the 2 defined the cell's column. This is similar to
selecting a single point from a graph using its x-y coordinates, except the graph in our
case is a matrix of data values.

On a side note, you may have noticed that variable [row, column] notation can also
be used to refer to columns. This can be accomplished by leaving the row portion of the
notation blank. For example, to access the City columnin soldiersByCity, we could
use the code soldiersByCity[, 1], this tells R to retrieve every row within the
City column.

1. Interpret the following R console line in words:

> myVariable$myColumn

a. Multiply the data within myvariable by the data within myColumn.
b. Divide the data within myvariable by the data within myColumn.

o

In variable myColumn, select column myVariable.

d. Invariable myvariable, select column myColumn.

Chapter 4

2. Under which of the following circumstances is it best not to attach dataset variables
in the R console?

a.
b.

C.

You are working with a single dataset.
You are working with multiple datasets that contain identical column names.

You are working with multiple datasets that contain identical column names,
but want to attach only one of them.

You are working with multiple datasets that do not contain identical
column names.

3. Thevariable[row, column] notation can be used to access data from which of
the following locations?

a
b.

C.

Rows.

Columns.

Cells.

All of the above.

Time for action — manipulating variahle data

Being able to access the information stored in a variable is the initial step towards
manipulating its data. Variables and their data can be used in the same way that we used
numbers to perform calculations in Chapter 2. They can be used in mathematical formulas as
well as in function arguments.

1. Useyour hanzhongResources variable to calculate the amount of resources that
the Shu army would have remaining if a flood were to destroy 75% of each resource:

> #if a flood destroyed 75% of the Shu resources at Hanzhong,

how much of each resource would remain?

> #fmultiply the hanzhongResources variable by 0.25 to represent
the remaining 25% of the original resources

> hanzhongResources * 0.25

2. Rwill display the result of the calculation:

= hanzhongResources * @.25
Gold Provisions Soldiers EquipmentCondition
1 250000 250004 25008 @.25

[51]

Collecting and Organizing Information

3.

9.

Now assume that the hypothetical flood only affected the provisions at Hanzhong,
while all of the other resources remained unharmed. Here, you must perform a
calculation only on the Provisions column of the hanzhongResources variable:
> #if a flood destroyed 75% of the Provisions at Hanzhong,

how much would remain?

> #multiply the Provisions column by 0.25 to represent the

remaining 25% of the original resources
> hanzhongResources$Provisions * 0.25

R will display the results of the calculation. Note that calculations can be applied in
the same fashion to rows, columns, and cells.

> hanzhongResources$Provisions * @8.25
[1] 252088

Variable data can also be used in function arguments. On a less disastrous note, use
your soldiersByCity variable to calculate the mean (average) number of soldiers
stationed in a Shu city:

> #use the mean(data) function to calculate the average number

of soldiers stationed in a Shu city

> #on average, a Shu city has this many soldiers:
> mean (soldiersByCity$Soldiers)

R will display the results of the calculation. Note that functions can be applied in the
same fashion to row, column, or cell data, or entire datasets.

= mean(soldiersByCity$Soldiers)
[1] 27@45.45

Moreover, calculation results can be saved into new variables for use at a later
time. This time, save the calculation from step 5 into a new variable named
meanSoldiersByCity:

> #save the mean number of soldiers per city into a new

variable named meanSoldiersByCity
> meanSoldiersByCity <- mean(soldiersByCity$Soldiers)

R will not return any output. Verify the contents of meanSoldiersByCity by
entering it into the R console:

> #display the contents of meanSoldiersByCity
> meanSoldiersByCity

R will display the contents of the meanSoldiersByCity variable:

= meanSoldiersByCity
[1] 27@d45.45

521

Chapter 4

What just happened?

In just a few lines of code, you have experienced the range of variable manipulations that
you will use on a regular basis in R. Let us explore each one individually.

Performing a calculation on an entire dataset

When you used your hanzhongResources variable to calculate the consequences of
a flood across each resource, you discovered that when a variable is manipulated in this
manner, so is all of its underlying data.

For demonstration, consider the following table with the cell values of 1, 2, 3, and 4 in
columns a, b, ¢, and d respectively:

Suppose that this table is saved in a R variable named lettersAndNumbers. If we were
to add one to the lettersAndNumbers variable in R, by the following command:

> lettersAndNumbers + 1

Our resulting table would contain the addition of each cell's value and one, as follows:

As you can see, R will attempt to perform any calculation made on a dataset to each of
its values. However, it is worth noting that R will not always be able to make a successful
calculation on every cell in a dataset.

For instance, if we tried to make a numeric calculation on the Kingdom and City columns of
our soldiersByCity variable, R would return a warning along with an NA or not applicable
values. This is due to the fact that our Kingdom and City columns contain text and therefore
it does not make sense to manipulate them numerically. To see this warning in action, enter
the following lines into the R console:

> #iwhat happens if we try to make a numeric calculation on
nonnumeric data?

> #we receive a warning, because it does not make sense to
manipulate text mathematically

> soldiersByCity * 5

Collecting and Organizing Information

This would result in the following screen:

> soldiersByCity * 5
Kingdom City Soldiers

1 NA NA 500000
2 NA NA 125000
3 NA NA 75009
4 NA NA 75008
5 NA NA 50008
6 NA NA 50008
7 NA NA 25009
8 NA NA 25009
9 NA NA 25008
10 NA NA 25000
11 NA NA 25009
12 NA NA 1000800
13 NA NA 250800
14 NA NA 125000
15 NA NA 100000
16 NA NA 75009
17 NA NA 75008
18 NA NA 75008
19 NA NA 75000
20 NA NA 75009
21 NA NA 75009
22 NA NA 50008

Warning messages:
1: In Ops.factor{left, right) : * not meaningful for factors

2: In Ops.factor{left, riﬁhti 1 ¥ not meaninﬁFul for factors
I

Here, the Soldiers columns contain numeric values and therefore each value within it is
successfully multiplied by five. However, the text in the Kingdom and City columns cannot
be multiplied. Hence, a warning message is returned. To avoid deriving meaningless values
and upsetting the R console, it is important to be aware of your data and apply appropriate
calculations to them.

Performing a calculation on a row, column, or cell

Manipulating row, column, or cell data is identical to manipulating an entire dataset
contained within a variable. The difference is not in the calculation, but rather in what you
choose to perform the calculation on. Depending on whether you aim to manipulate row,
column, or cell data, you will need to access the values in the appropriate manner. See the
Accessing data within variables section of this chapter for a review of these methods.

A variable's data, be it from the entire set or a specific subset (row, column, or cell),

can be used in function arguments. Our preceding activity used the mean (data)
function to calculate the average number of soldiers among the Shu cities listed in

our soldiersByCity variable. We could have easily done the same with the entire
soldiersByCity dataset, a single row, or an individual cell. The best method for using
variable data in arguments will depend on the goal of the manipulation and the specific
function being employed.

[541

Chapter 4

Saving a variable calculation into a new variahle

Do not forget that a variable's purpose is to store and organize your information. Quite
often, we will need to store the results of a calculation or function into a new variable

for subsequent manipulation. The body of variables and other objects that we amass
throughout our work are stored in the R workspace, which is the topic of our next section.

The table myTable contains two rows, three columns, and six cells with the numbers one
through six. Use this table to answer questions 1 and 2.

myTable
1 2
4 5 6

1. Consider the following line of code:
> myTable * 10

If this code were applied to myTable, what would be the result? Write the
appropriate values in the blank cells of myTableAfterManipulationil:

myTableAfterManipulationl

2. Consider the following line of code:
> myTable[1,2] + 10

If this code were applied to myTable, what would be the result? Write the
appropriate values in the blank cells of myTableAfterManipulation2:

myTableAfterManipulation2

[551

Collecting and Organizing Information

3. Interpret the following R console line in words:

> myVariable <- mean (myData$SmyColumn)

a. Calculate the mean of myColumn and then set myVariable equal to the result.
b. Calculate the mean of myData and then set myvVariable equal to the result.

c. InmyData, select myColumn, calculate its mean, and then set myvariable
equal to the result.

d. SetmyvVariable equal to the contents of myData and then calculate its mean.

To practice the variety of methods that we have covered for manipulating variables, use your
resource data and knowledge of R to complete the following tasks:

1. Suppose you are concerned with the potential of flooding to damage your
resources. Calculate the amount of resources that would remain if a flood destroyed
half of each resource stored in your hanzhongResources variable. Save the results
into a single variable named hanzhongResourcesAfterFlood.

2. To account for a recent relocation of 5000 soldiers from Guanghan to Baxi, subtract
5000 from the cell representing the number of Guanghan soldiers and add 5000 to
the cell representing the number of Baxi soldiers in the soldiersByCity variable.
Save each of these calculations into a new variable. The variables should be named
guanghanSoldiersAfterRelocation and baxiSoldiersAfterRelocation
respectively.

3. Usethemin(data) and max (data) functions and your soldiersByCity
variable to calculate minimum and maximum number of soldiers in either
army by city. Save the results as variables named minSoldiersByCity and
maxSoldiersByCity respectively.

4. Usethe sum(data) function and your soldiersByCity variable to calculate
the total number of soldiers in the Shu and Wei armies. Then, save the result as
a variable named totalSoldiers.

If you encounter a warning or error during any of these tasks, think about how you can
be more specific about which data you want to apply your calculation or function to.
For detailed information on handling these occurrences, refer back to the Performing a
calculation on an entire dataset section of this chapter.

Chapter 4

Time for action — managing the R workspace

The R workspace stores all user-generated objects (variables in our case) that are created
during a session. Its contents can be saved and loaded for future use.

1.

Use the 1s () function to display a list of your R workspace contents:

> #list the current contents of the R workspace
> 1s()

R will display a list of the objects in your workspace:

= 1s()

[1] "baxiSoldiersAfterRelocation”

[2] "guanghanSoldiersAfterRelocation™
[3] "hanzhongResources"

[4] "hanzhongResourcesAfterFlood”

[5] "maxSoldiersByCity"

[6] "meanSoldiersByCity"

[7] "minSoldiersByCity"

[8] "soldiersByCity"

[9] "totalSoldiers”

Use the save.image (£ile) function to save your R workspace to your working
directory. The £ile argument should contain a meaningful filename and the
.RData extension:

> #save the R workspace to the working directory using
save.image (file)
> save.image ("rBeginnersGuide Ch 04 .RData")

R will save your workspace file. Browse to the working directory on your hard drive
to verify that this file has been created.

Use the g () command to quit R. Ignore or decline any messages that you receive.
> #quit an R session
> g()

R will close.

[571

Collecting and Organizing Information

7. Relaunch R by double-clicking on its icon. Then use the 1s () command to verify
that the current workspace is empty:

> #list the current contents of the R workspace
> 1s ()

You will be presented with the following result:

= 1s()
character{®)

8. Usethe load (file) function to load your saved workspace file. The file
argument should be identical to what you used in step 3:

> #load a previously saved R workspace using load(file)
> load("rBeginnersGuide Ch 04.RData")

9. Usethe 1s() command to verify that the saved contents are now contained in
the R workspace:

> #list the current contents of the R workspace

> 1s()

= 1s()
[1] "baxiSoldiersAfterRelocation™
[2] "guanghanSoldiersAfterRelocation”
[3] "hanzhongResources”
[4] "hanzhongResourcesAfterFlood"
[5] "maxSoldiersByCity"
[6] "meanSoldiersByCity”
[7] "minSoldiersByCity"
[8] "soldiersByCity"
[9] "totalSoldiers"

What just happened?

You just exercised the primary workspace management functions that you will need to
carry your work through multiple R sessions. These included listing, saving, and loading
the contents of your R workspace.

Listing the contents of the R workspace

The R workspace contains every object that you have created during an R session. Up to
this point, our objects have taken the form of variables that either read data from CSV files
or store the results of calculations. The 1s () function can be called at any time to list the
contents of your R workspace.

Chapter 4

Saving the contents of the R workspace

To save the R workspace, use the save.image (file) function. Since we were operating
within our R working directory, the £i1e argument needed only to contain our desired
filename and the .Rdata extension. Alternatively, if you were to save your workspace to
a different location on your hard drive, then you would need to enter a complete path in
the £ile argument. Be sure to always include the .Rdata extension when saving your
workspace, as it is necessary for R to be able to recognize the file when loaded.

Loading the contents of the R workspace

To load an R workspace file, use the 1oad (file) function. Here, the £ile argument is
identical to the one received by the save.image (file) function. Hence, if the file you
want to load is contained within your working directory, you need only to use the file name
and .RData extension. If it is housed elsewhere, then you will need to use a complete

file path.

Note that, depending on your version of R, saving and loading of the R workspace can be
automated on launch or quit, or accomplished by clicking through the menu options. You
may want to explore the available menu choices and preference settings available to you.
This will let you configure R to best suit your workflow. Nevertheless, it is recommended that
you continue to use the R console to manage your workspace, because it gives you complete
control over your work.

As you have witnessed, the g () command can be used to exit R. You can, of course, use
menu options, keyboard commands, or other methods available on your computer to quit R.

Unless you have specifically told R to save your workspace on exit, all of its contents will be
lost. Remember to save your workspace before quitting R.

When you relaunched R and loaded your saved workspace file in the preceding activity,
you may have noticed that the contents of your R console were not retrieved. This reveals
an important distinction between the R console and the R workspace. Essentially, the
workspace stores all of your objects, whereas the console contains a log of everything
that has been done to and with those objects.

1591

Collecting and Organizing Information

Consider the act of watching a movie in a theater as an analogy to demonstrate the
relationship between the workspace and console. The audience members, movie screen, and
chairs are all located within the same room (the workspace). Everything that these entities
do—sneeze, laugh, chomp, display the movie, get chewing gum stuck to them—is recorded
in the history of the movie experience (the console).

Thus, the workspace contains objects (such as the people in a movie theater) and the
console logs the interactions between them (such as one patron spilling popcorn on the
head of another).

Since the console is not saved along with the workspace, you may be wondering how you
can preserve the information logged in the R console during a session. While there is no
function available in R that allows us to save its contents, we do have other options.

One is to copy and paste the R console into a text editor. Another, depending on your version
of R, may be to use the menu to save a copy of your console as a text file. These are the
preferred techniques for capturing the R console, although you may be able to think of
alternative methods.

In any event, it is highly recommended that you save the R console at the end of every
session. Having the log of your previous work can be invaluable to the prevention of rework
and to informing your future work. It can also help you organize and remember everything
about your current project, especially when you have a large amount of data and many
objects to manage.

1. When saving the R workspace, which of the following extensions should
you include?

a. .txt
b. .R
C. .RData

d. No extension is necessary

Download from Wow! eBook <www.wowebook.com>

Chapter 4

2. Which of the following best describes the relationship between the R console and
the R workspace?

a. The R workspace and R console can both be saved using the
save.image (file) function.

b. The contents of the R workspace and R console can both be displayed using the
1s () function.

c. The R console stores objects, whereas the R workspace logs the actions related
to those objects.

d. The R workspace stores objects, whereas the R console logs the actions related
to those objects.
3. Which of the following is not an option for saving the R console?
a. Using a built-in R function.
b. Copying the console contents into a text editor.
c. Using the R menu options to save the console as a text file.

d. Taking a screenshot of the R console.

Your final challenge for this chapter will be to collect and organize the remaining portions of
Zhuge Liang's resource data. This will entail reading CSV data into R, creating new variables,
accessing and manipulating variable data, and saving your R workspace and console.
Demonstrate your mastery of these concepts by preparing historic battle data for analysis
through the following actions:

1. ThebattleHistory.csv file contains data from 120 previous battles between the
Shu and Wei forces. Read these data into an R variable named battleHistory.

2. Use the data imported in step 1 to answer the following question. What is the
average number of soldiers to engage in combat for both the Shu and Wei
forces? Save your results into separate variables, named meanSoldiersShu and
meanSoldiersWei respectively.

3. Save the contents of your R workspace into a new file named
rBeginnersGuide ch 04 hero.RData.

4. Save the contents of your R console into a new text file named

rBeginnersGuide ch 04 hero.txt.

Feel free to refer back to the previous sections in this chapter for assistance with collecting
and organizing this information.

611

Collecting and Organizing Information

Throughout this chapter, you deeply explored methods for collecting and organizing your
data in R. These techniques are critical to your success as a strategist and an analyst. Being
able to manage your data efficiently and effectively is key to simplifying your workflow and
making your results intelligible to others. While collecting and organizing your data, you
acquired the skills necessary to:

¢ Import external data into R
¢ Use variables to organize and manipulate your data
¢ Manage your R workspace
Now that your data are prepared, you can begin to assess the military challenges that await

the Shu forces. In Chapter 5, we will weigh the potential combat options available to the Shu
army. It is up to you to set forth a prudent course of action.

[621

With our data prepared for analysis, we can now consider the potential combat
options available to the Shu army. Ultimately, you have the responsibility to use
these data to make practical and meaningful decisions about future courses of

action. To achieve success, you will need to fully consider the situation and form
a sound basis for reasoned decision-making. This requires you to build upon the
techniques that we practiced in Chapter 4 and to explore new ones in R.

In this chapter, we will focus on assessing the information that is available to us and using it
to weigh potential decisions. By the end of this chapter, you will be able to:

¢ Use multi-argument and variable-argument functions to perform calculations

¢ Create predictive models using regression analysis

¢ Consider the statistical and practical significance of your analyses

Time for action — making an initial inference from our data

In Chapter 4, we saved our R workspace for the first time. As you saw in the previous chapter,
we can use the 1oad (file) function to continue where we left off.

You also created variables to hold the mean number of soldiers engaged for the Shu and
Wei forces, based on historical data from 120 battles between the kingdoms. Let us make an
initial inference about these values:

1. Open R and set your working directory, as follows:

> #set the R working directory
> #replace the sample location with one that is relevant to you
> setwd (" /Users/johnmquick/rBeginnersGuide/")

Assessing the Situation

2. Load the Chapter 5 workspace. It contains the information that we generated in
Chapter 4 and will continue to work on in this chapter:
> #load the chapter 5 workspace
> load ("rBeginnersGuide Ch 05 ReadersCopy.RData")
> #verify the contents of the workspace
>1s()

3. Display the mean number of Shu and Wei soldiers engaged in past battles. We saved
these values into variables in the previous chapter.
> #mean number of Shu soldiers engaged in battle
> meanSoldiersShu
[1] 21035.83
> #mean number of Wei soldiers engaged in battle
> meanSoldiersWei
[1] 21937.5

4. Calculate the ratio of mean Wei soldiers to Shu soldiers and save it to a new variable
named meanSoldierRatioWeiShu. Then display the result:
> #ratio of mean Wei soldiers to Shu soldiers
> meanSoldierRatioWeiShu <- meanSoldiersWei / meanSoldiersShu
> #display the contents of meanSoldierRatioWeiShu
> meanSoldierRatioWeiShu
[1] 1.042863

5. Predict the number of Wei soldiers that would engage in combat if the Shu prepared
100,000 soldiers for battle:
> #how many Wei soldiers would we expect to engage in battle if
our Shu forces numbered 100,000°?
> 100000 * meanSoldierRatioWeiShu
[1] 104286.3

What just happened?

After preparing R, we used our historic battle data to calculate the ratio of the mean Wei
soldiers engaged in past conflicts to the mean number of Shu soldiers. The ratio value of 1.04
suggests that the Wei army brings roughly 4% more soldiers into battle than Shu does on
average. We can use this ratio in our predictions and plans for future battles. In general, we
expect the Shu army to be outnumbered regardless of the conflict. Inferences like this one
may have implications for the combat strategies that we choose to employ.

1641

Chapter 5

Before we move into deeper analyses, let us take a moment to examine our battle history
data. This will help us better understand the information that we are working with. Display
the contents of your battleHistory variable by entering its name into the R console:

> #display all of our battle history data
> battleHistory

» battleHistory
Method Rating SuccessfullyExecuted Result ShuSoldiersEngoged WeiSoldiersEngoged DurationInDays

1 headToHead 15 Y Defeat 5902 15000 116
2 headToHead 25 Y Defeat 5902 19000 96
3 headToHead 58 Y Defeat 5902 19000 76
4 headToHead 55 Y Defeat 5902 19000 b1
5 headToHead 68 Y Defeat 7502 15008 52
6 headToHead 25 Y Defeat 5000 190009 04
7 headToHead 38 Y Defeat 1900092 200009 87
a headToHead a8 ¥ Victory 10008 Se08a 36
aq headToHead a8 ¥ Victory 100000 Sa08 44
18 headToHead 20 ¥ Victory 10008 15008 49

Note that only the first 10 of the total 120 rows are shown here

As you can see, our dataset is composed of seven columns, each containing valuable
information about past battles between the Shu and Wei forces:

¢ Method: contains the type of battle technique employed. These are headToHead,
surround, ambush, and fire.

¢ Rating: contains a measure of the Shu army's performance on a scale from 0
to 100. After each battle, Zhuge Liang rated the Shu army to keep a record of its
performance under diverse combat conditions.

¢ SuccessfullyExecuted: contains a yes (Y) or no (N) value indicating whether the
battle method was executed successfully.

Result: tells us whether the battle ended in Victory or Defeat.

ShuSoldiersEngaged: presents the number of soldiers who engaged in combat
for the Shu army during each battle.

¢ WeiSoldiersEngaged: is identical to ShuSoldiersEngaged, but for the
Wei forces.

¢ DurationInDays: indicates how long each battle lasted, in days.

Overall, data from 120 battles are included, with each combat method represented 30 times.
Now that we are more aware of our data, let us begin analyzing it in more detail.

Assessing the Situation

Time for action - creating a suhset from a large dataset

We will start by assessing the feasibility of head to head combat with the Wei army. Since
we have past data related directly to head to head battles, we should specifically target this
information in order to best address the method's prospects. Currently, those data are part
of a large set that also contains information on other methods. However, we can use the
multi-argument function subset (data, ...) toisolate our head to head combat data and
simplify our analysis of this strategy:

1. Create a subset of data using the subset (data, ...) function and saveittoa
new variable named subsetHeadToHead:
> #use the subset (data, ...) function to create a subset from a
larger dataset
> #fcreate a subset that isolates our head to head combat data
> subsetHeadToHead <- subset (battleHistory, battleHistory$Method

== "headToHead")
2. Verify the contents of the new subset. Note that the console should return thirty
rows, all of which contain headTohead in the Method column:

> #display the contents of the head to head subset
> subsetHeadToHead

> subsetHeadToHead

Method Rating SuccessfullyExecuted Result ShuSoldiersEngaged WeiSoldiersEngoged DurationInDays
1 headToHead 5 Y Defeat 5000 15000 116
2 headToHead 15 Y Defeat 5000 10000 a6
3 headToHead 25 Y Defeat ceea 10000 76
4 headToHead 25 Y Defeat & 10000 61
5 headToHead 35 Y Defeat 7500 15000 52
& headToHead 20 Y Defeat 50209 102000 a4
7 headToHead 39 Y Defeat 190000 202000 a7
8 headToHead &5 ¥ Victory 1@ 5000 36
9 headToHead a5 ¥ Victory 104 50008 44
18 headToHead &5 ¥ Victory 30008 15008 449
11 headToHead 19 Y Defeat 2509 oo 112
12 headToHead 15 Y Defeat 2000 2500 ap
13 headToHead 15 Y Defeat 250 500 111
14 headToHead 20 Y Defeat 1004 2000 a3
15 headToHead 19 Y Defeat 7009 7500 129
16 headToHead 10 Y Defeat 000 7500 100
17 headToHead 99 Y Victory 15000 10000 35
18 headToHead 20 ¥ Victory 15008 10000 45
19 headToHead &5 ¥ Victory 25000 10000 40
20 headToHead &5 ¥ Victory 25000 20000 45
21 headToHead 35 Y Defeat 35000 a5
22 headToHead 45 Y Defeat 35000 105
23 headToHead 50 Y Defeat 45008 108
24 headToHead a5 Y Defeat 45009 a1
25 headToHead 25 Y Defeat 75000 120
26 headToHead 20 Y Defeat 75000 ag
27 headToHead E] Y Defeat 75000 1a2
28 headToHead a9 ¥ Victory 40008 44
29 headToHead 99 Y Victory 50209 25000 Bt}
39 headToHead a5 Y Victory 190209 60000 el

Chapter 5

What just happened?

In the one console line that it took to create a subset of our data, you encountered your first
multi-argument (and variable-argument) function in the R language.

Multi-argument functions

You were first introduced to functions in Chapter 2. There, the date () function received no
arguments and output the current date and time in the R console. Shortly after, you used
setwd (dir) and getwd (dir) to set and retrieve your R working directory. Both of these
functions received a single argument. With subset (data, ...) you have used your first
multi-argument function. Further, subset (data, ...) represents a variable-argument
function, meaning that the exact number of arguments it receives can be different depending
the circumstance. In our example, we used two arguments. However, we could have used
more arguments to further specify our subset. For instance, we could have added an
additional argument to our subset (data, ...) function that told R to include only

certain columns in its output.

Variable-argument functions

Any time that you see ellipsis (. . .) in an R function, you know that it accepts a variable
number of arguments. In contrast, some multi-argument functions, such as cor (x, y, use,
method) for correlations, accept no more and no less than a specific number of arguments.
However many others, such as plot (x, y, ...) for scatterplots, can accept relatively few
or many arguments, depending on the situation.

Equivalency operators

In the second argument of our subset (data, ...) function, we employed the
equivalency operator. It is formed by two consecutive equals signs (==). This operator
evaluates the equivalency of two statements, the one to its left and the one to its right. If the
statements are equal, then the argument is deemed True. If not, it is considered False.

Conversely, the non-equivalency operator, which is formed by an exclamation point joined
with a single equals sign (! =), tests to see if two statements are not equal. If they indeed are
not, then the argument is deemed True, otherwise False.

subset(data, ..])

Our implementation of the subset (data, ...) function made use of two arguments. The
first referred to our data source, the battleHistory variable. The second specified the
exact data that we wanted to pull from that source.

> subsetHeadToHead <- subset (battleHistory, battleHistory$Method
== "headToHead")

1611

Assessing the Situation

In our case, we wanted to include battles only if they employed the head to head combat
method. To clarify this operation, let us dissect the second argument.

battleHistory$Method == "headToHead"

You should already be familiar with the left-hand segment, which selects the Method
column from the battleHistory dataset. By using the equivalency operator (==) and
"headToHead", we are telling our function to select only the rows in the Method column
that contain a value of headToHead. In words, this argument can be read as "in the
battleHistory dataset, select rows from the Method column only if they have a value
of headTohead." Hence, our resulting subset yielded only the 30 rows from our original
dataset that contained the head to head combat method.

1. What does an ellipsis (. . .) mean when encountered inside an R function definition?
a. The function accepts a single argument.
b. The function accepts multiple arguments.
c. The function accepts a specific number of arguments.
d. The function accepts a variable number of arguments.

2. Interpret the following argument of the subset (data, ...) function in words:
battleHistory$Result != "Victory"

a. Inthe battleHistory dataset, select rows from column Result only if they
do not have a value of victory.

b. InthebattleHistory dataset, select rows from column Result only if they
have a value of Victory.

c. InthebattleHistory dataset, select cells from column Result only if they
do not have a value of victory.

d. Inthe battleHistory dataset, select cells from column Result only if they
have a value of Victory.

Now that you are familiar with extracting information from large datasets, use the
subset (data, ...) function to create subsets for each of the remaining battle
methods—surround, ambush, and fire. Save each of these subsets into new variables,
named subsetSurround, subsetAmbush, and subsetFire respectively.

Chapter 5

Time for action - deriving summary statistics

A sound way to initiate a deep data analysis is by deriving summary, or descriptive,
statistics. These include simple, although highly informative, calculations such as means,
standard deviations, and ranges, amongst others. Summary statistics are excellent for
revealing overarching trends and patterns in a dataset. They provide us with a global
understanding of our data.

For all calculations, we will store our summary statistics in new variables. For the time being,
we will continue to focus on our head to head combat data.

1. Calculate the means, as shown in the following example:

> #use mean(data) to calculate the mean of a given dataset

> #what was the mean number of Shu soldiers engaged in past
head to head conflicts?

> meanShuSoldiersHeadToHead <-

mean (subsetHeadToHead$ShuSoldiersEngaged)

> #what was the mean number of Wei soldiers engaged in past
head to head conflicts?

> meanWeiSoldiersHeadToHead <-

mean (subsetHeadToHead$WeiSoldiersEngaged)

> #what was the mean duration (in days) of past head to head
conflicts?

> meanDurationHeadToHead <- mean (subsetHeadToHead$DurationInDays)

2. Display each of your mean variables in the R console:

> #display the calculated means
> meanShuSoldiersHeadToHead

[1] 31341.67

> meanWeiSoldiersHeadToHead

[1] 33833.33

> meanDurationHeadToHead

[1] 77.93333

3. Calculate the standard deviations, and consider the following:

> #use sd(data) to calculate the standard deviation of a

given dataset

> #what was the standard deviation of Shu soldiers engaged in past
head to head conflicts?

> sdShuSoldiersHeadToHead <-

sd (subsetHeadToHead$ShuSoldiersEngaged)

> #what was the standard deviation of Wei soldiers engaged in

past head to head conflicts?

Assessing the Situation

> sdWeiSoldiersHeadToHead <-

sd (subsetHeadToHead$WeiSoldiersEngaged)

> #what was the standard deviation of duration (in days)

in past head to head conflicts?

> sdDurationHeadToHead <- mean (subsetHeadToHead$DurationInDays)

Display each of your standard deviation variables in the R console:

> #display the calculated standard deviations
> sdShuSoldiersHeadToHead

[1] 31320.13

> sdWeiSoldiersHeadToHead

[1] 41192.22

> sdDurationHeadToHead

[1] 77.93333

Calculate the ranges, as shown in the following:

> #use range(data, ...) to calculate the range of a given dataset
> #fiwhat was the range of Shu soldiers engaged in past head to
head conflicts?

> rangeShuSoldiersHeadToHead <-

range (subsetHeadToHead$ShuSoldiersEngaged)

> #fwhat was the range of Wei soldiers engaged in past head to
head conflicts?

> rangeWeiSoldiersHeadToHead <-

range (subsetHeadToHead$WeiSoldiersEngaged)

> #what was the range of duration (in days) of past head to
head conflicts?

> rangeDurationHeadToHead <-

range (subsetHeadToHead$DurationInDays)

Display each of your range variables in the R console:

> #display the calculated ranges
> rangeShuSoldiersHeadToHead

[1] 250 100000

> rangeWeiSoldiersHeadToHead

[1] 500 200000

> rangeDurationHeadToHead

[1] 30 120

701

Chapter 5

7. Display a general summary of the data:

> #use the summary (object) function to generate a summary
of a given object

> #general summary of our head to head combat data

> summaryHeadToHead <- summary (subsetHeadToHead)

8. Display your summary variable in the R console. Your values should match the ones
pictured in the following screenshot:
> #display the head to head subset summary
> summaryHeadToHead

> summaryHeadToHead

Method Rating SuccessfullyExecuted Result ShuSoldiersEngaged WeiSoldiersEngaged DurationInDays

ambush @ Min. 118 N: @ Defeat :20 Min. : 250 Min. : 500 Min. 1 30.00
fire : 8 1st Qu.:28 ¥:38 Victory:10 lst Qu.: 5008 1st Qu.: 19000 1st Qu.: 46.00
headToHead:3® Median :25 Median : 25000 Median : 15009 Median : 90.58
surround : @ Mean 146 Mean 1 31342 Mean 1 33833 Mean : 77.93
Ird Qu.:80 Ird Qu.: 50000 Ird Qu.: 45000 Ird Qu.:100.00

Max. 195 Max. 1109009 Max. 1209009 Max . :129.99

What just happened?

Through summary statistics, we have gained insights on the overall patterns in our data. Let
us take a moment to discuss each one individually.

You are already familiar with calculating means from our previous chapter. Here, we looked
specifically at the mean soldier engagement and battle durations for past head to head
conflicts. Again we see that the Wei forces tend to outnumber the Shu in battle. The average
head to head battle has lasted 78 days.

Standard deviations

A standard deviation helps to depict the amount of variability present in a collection of data.
The sd (data) function can be used to calculate the standard deviation of a given dataset.
In our soldier engagement data, the Wei army had a higher standard deviation than the Shu
army. This indicates that the Wei forces tended to enter battle with a more variable number
of soldiers than the Shu forces. Since the Wei army usually outnumbered the Shu in past
battles, it is expected that its standard deviation would be larger.

ni

Assessing the Situation

The range of a dataset is composed of its minimum and maximum values. By using the
range (data) function in R, we can list the minimum and maximum values of our data in a
single command. Similar to the standard deviations, the Wei have a wider range of soldiers
engaged than the Shu. This is a predictable outcome considering the Wei forces' larger
numbers. The duration of past head to head conflicts ranged from 30 to a 120 days.

& Note that individual minimums and maximums can also be calculated
A using the min (data) and max (data) functions.

summary(ohject)

You also employed one of the most useful and versatile functions available to the R language.
The summary (object) function generates descriptive statistics and other relevant
calculations for an object automatically. In our case, the object was a dataset and our
descriptive statistics included means, sums, medians, quartiles, minimums, and maximums.
The wonderful thing about R's summary function is that it can be used on nearly any object.
Depending on the type of object, the summary function will yield output that is relevant to
that object. Therefore, it is not only a fast way to get an overall picture of your data, but it
can be used in numerous situations. You should use summary (object) often, especially
when you are beginning to analyze a dataset or want to inspect a newly created object.

Why use summary statistics?

You probably noticed that some of our summary statistic calculations yielded unsurprising
and predictable results. This is not, however, reason to discount their value or an argument
for abandoning them. In fact, using summary statistics to confirm that our data are normal
is an essential early step in the data analysis process. In contrast, any value that stands out
as peculiar in our summary statistics warrants further inspection. When this occurs, we
may have discovered erroneous or outlying data points, or possibly counterintuitive

or unforeseen trends and patterns.

For instance, the median duration of head to head battles (91 days) is noticeably higher than
the mean duration (78 days). This may indicate that most battles tend to last on the longer
side of our 30 to 120 day duration range and that our mean is being skewed downward by a
small number of brief battles. By looking back at our head to head subset, we can confirm or
deny this observation.

121

Chapter 5

1. What is the major purpose of the summary (object) function in R?

a. To provide summary statistics relevant to a given variable.
b. To provide summary statistics relevant to a given dataset.
To provide summary statistics relevant to a given object.

d. To provide summary statistics relevant to a given subset.

2. Which of the following is not a benefit of summary statistics?
a. Summary statistics help provide overview information on a dataset.
b. Summary statistics help answer very detailed questions about a dataset.

Summary statistics help to validate a dataset.

o

Summary statistics help to expose potential areas of concern and interest within
a dataset.

Now that you are familiar with deriving summary statistics, calculate the means, standard
deviations, and ranges for each of the remaining battle methods—surround, ambush, and
fire. Also generate a summary of each subset. Follow a similar console structure and naming
convention that we used with our head to head combat data. For example, you should create
the following variables using your ambush data:

& meanShuSoldiersAmbush, meanWeiSoldiersAmbush, meanDurationAmbush

¢ sdShuSoldiersAmbush, sdWeiSoldiersAmbush, sdDurationAmbush

¢ rangeShuSoldiersAmbush, rangeWeiSoldiersAmbush,
rangeDurationAmbush

¢ summaryAmbush

Time for action — quantifying categorical variables

Categorical or nominal data is information that is classified into nonnumeric levels. Two
pertinent columns in our battle history dataset, and subsequently our head to head combat
subset, are represented by categorical data. These are the SuccessfullyExecuted
(categorized as Y or N) and Result (categorized as Victory or Defeat) columns. A

major benefit of categorical data is that it represents information in a very practical and
understandable manner. However, categorical data is not well-suited for quantitative data
analysis. Fortunately, R is able to recode categorical data in numeric form, thus allowing us
to analyze it quantitatively.

7131

Download from Wow! eBook <www.wowebook.com>

Assessing the Situation

Let us proceed through the steps required to recode our SuccessfullyExecuted and
Result columns and save them as numeric variables:

1.

Recode the SuccessfullyExecuted column using as.numeric (data), as can
be seen in the following:

> f#irepresent categorical data numerically using as.numeric(data)
> #recode the SuccessfullyExecuted column into N = 1 and Y = 2
> numericExecutionHeadToHead <-

as.numeric (subsetHeadToHead$SuccessfullyExecuted)

Display the contents of your numeric variable in the R console.

> #display the contents of numericSuccessfullyExecutedHeadToHead
> numericExecutionHeadToHead
11 222 222222222222222222222222222

* Note that if you prefer your categorical variables to begin with
%j%‘\ a value of zero, as inN = 0 and Y = 1, then you should subtract
’ one from our statement in step 1.

Recode the SuccessfullyExecuted column so it begins with a value of zero.

> #recode the SuccessfullyExecuted column into N = 0 and Y =1
> #by default, R recodes variables alphabetically from 1 to n,
so subtract one to offset the coding from 0 to n

> numericExecutionHeadToHead <-

as.numeric (subsetHeadToHead$SuccessfullyExecuted) - 1

Display the contents of your revised variable in the R console:

> #display the contents of numericExecutionHeadToHead
> numericExecutionHeadToHead
(1 »11111111111111111111111111111

Recode the Result column using as.numeric (data):

> #recode the Result column into Defeat = 0 and Victory = 1
> numericResultHeadToHead <- as.numeric (subsetHeadToHead$Result)
-1

Display the contents of your numeric variable in the R console:

> #display the contents of numericResultHeadToHead
> numericResultHeadToHead
[1l] 0o0OO0O0O00O011100000011110000000111

nl

Chapter 5

What just happened?

You have represented your categorical columns (SuccessfullyExecuted and Result)
from the head to head combat dataset as numeric variables, thereby preparing them for
guantitative analysis. During this process, you encountered the as.numeric (data)
function and exercised your ability to overwrite variables.

The as.numeric (data) function is used to represent nonnumeric data in numeric
terms. For example, we used as.numeric (data) to convert our N and Y text values
from the SuccessfullyExecuted column into the numbers 0 and 1 respectively,
using the following:

> numericExecutionHeadToHead <-
as.numeric (subsetHeadToHead$SuccessfullyExecuted) - 1

Similarly, we used as.numeric (data) to code our Result column text of Defeat and
Victory into the numbers 0 and 1:

> numericResultHeadToHead <- as.numeric (subsetHeadToHeadSResult) - 1

. Although our data contained only two categories, note that the
% as.numeric (data) function is capable of handling any number
A of levels. For instance, it would be able to code a variable containing
levels for low, medium, and high as 0, 1, and 2.

In step 1 of our activity, we originally recoded our SuccessfullyExecuted
column using values of N as 1 and Y as 2 and saved the results into a variable called
numericExecutionHeadToHead, this was done by the following command:

> numericExecutionHeadToHead <-
as.numeric (subsetHeadToHead$SuccessfullyExecuted)

Then, in step 3, we recoded the column using values of N as 0 and Y as 1 and then saved the
results into a variable with the same name of numericExecutionHeadToHead:

> numericExecutionHeadToHead <-
as.numeric (subsetHeadToHead$SuccessfullyExecuted) - 1

1751

Assessing the Situation

While this was a seamless process that occurred without interruption, it demonstrates an
important property of R variables. That is, R variables can be reassigned to new values.
When a variable is overwritten in this manner, it assumes a new value and abandons its
previous one. So, after step 3, our numericSuccessfullyExecutedHeadToHead variable
represented N and Y as 0 and 1 and ceased to depict the values as we had defined them

in step 1.

To demonstrate this point, consider variable &, which has yet to be assigned a value. Once
we execute the line:

> A <- 1

Variable A will take on a value of 1 in the preceding line. If we were then to enter the line:

> A <- 2

Variable & would take on a value of 2 in the preceding line. Its previous contents would be
overwritten and therefore forgotten.

1. What values would represent N and Y in the SuccessfullyExecuted column if it
were recoded using the following line?

> as.numeric (as.numeric (subsetHeadToHead$SuccessfullyExecuted) + 5
a. N=0andy=1

b. N=1landy=2
N=5andy=6
d. N=6andy=7

o

2. What would be the value of variable A after the following lines were executed in the
R console?

> A <-
> A <-
> A <-
> A <-

w N B O

a
b.

o
O B N W

1761

Chapter 5

Now that you have quantified your first categorical variables, proceed to recode the
SuccessfullyExecuted and Result columns for each of the remaining battle
methods—surround, ambush, and fire. Follow a similar console structure and naming
convention that we used with our head to head combat data. For example, you should
create the following variables with your ambush data:

¢ numericExecutionAmbush

& numericResultAmbush

Time for action - correlating variahles

Correlations tell us how well two variables relate to each other. As with summary statistics,
calculating the correlations between variables in our dataset is a fast and easy way to acquire
an initial understanding of our data.

Let us use correlations to investigate a few of the relationships in our head to head
battle data:

1. Calculate the correlation between Rating and Result. Be sure to use the numeric
version of the Result column in your calculation:

> #use cor(x,y) to calculate the correlation between two variables
> f#iremember only to use numeric values when calculating
correlations

> #How is the performance rating of the Shu army related to the
outcome of a head to head battle?

> corRatingResultHeadToHead <- cor (subsetHeadToHead$Rating,
numericResultHeadToHead)

2. Display the value of your correlation in the R console:

> #display the value of the correlation
> corRatingResultHeadToHead
[1] 0.9495232

3. Calculate the correlation between shuSoldiersEngaged and
WeiSoldiersEngaged:

> #How is the number of Shu soldiers engaged in a head to head
battle correlated with the number of Wei soldiers engaged?

> corShuWeiSoldiersHeadToHead <-

cor (subsetHeadToHead$ShuSoldiersEngaged,
subsetHeadToHeadsWeiSoldiersEngaged)

¥1]]

Assessing the Situation

4. Display the value of your correlation in the R console:

> #display the value of the correlation
> corShuWeiSoldiersHeadToHead
[1] 0.7653596

5. Calculate the correlations between (almost) all of the variables in the dataset:

> use cor (data) to calculate the correlation between all
numeric variables in a dataset

> #How are all of our numeric battle data correlated with
one another?

> corHeadToHead <- cor (subsetHeadToHead)

6. Display the values of your correlations in the R console, by using the following:

> #display the correlations
> corHeadToHead

= corHeadToHead

Method Rating SuccessfullyExecuted Result ShuSoldiersEngaged WeiSoldiersEngaged DurationInDays
Method 1 NA NA NA NA NA NA
Rating NA 1.00000000 NA NA 0.4222706 -0.04668125 -0.8785341
SuccessfullyExecuted NA NA 1 NA NA NA NA
Result NA NA NA 1 NA NA NA
ShuSoldiersEngaged NA 0.42227061 NA NA 1.0000000 0.76535063 -0.2356156
WeiSoldiersEngaged NA -0.04668125 NA NA 0.7653596 1.00000000 9.1378893
DurationlnDays NA -@.87853412 NA NA -0.2356156 9.13788032 1.0000000

What just happened?

We calculated just a few correlations to get an idea of how they can be derived in R. This
entailed using the cor () function in two different ways.

Interpreting correlations

Correlations range in value from negative one (-1) to positive one (1). A value of negative
one means that two variables are perfectly negatively correlated. That is, a high value in one
is associated with a low value in the other, and vice versa. On the other hand, a correlation
of positive one indicates that two variables are perfectly positively correlated. As such,

high values in one are associated with high values in the other, and vice versa. Further, a
correlation of zero indicates that two variables are perfectly uncorrelated. This means that
their values do not associate with one another. Of course, these extreme correlational values
are rare. Most correlations will fall somewhere between negative one and zero or zero and
positive one.

7181

Chapter 5

Here are a few examples that demonstrate how to interpret correlations:

¢ A correlation of 0.12 between A and B suggests a relatively weak positive
relationship exists between the variables. If A were to decrease by a certain
amount, we would only expect a small decrease in B.

¢ A correlation of -0.87 between A and B suggests a relatively strong negative
relationship exists between the variables. If A were to increase, we would
expect a B to decrease by proportionally similar amount.

¢ Acorrelation of 0.00001 between A and B suggests that the variables are
uncorrelated. Therefore, movements in 2 would not be expected to associate
with movements in B.

An important final note on correlation is that it should never be
interpreted as causation. Correlation merely tells us that our variables
’ tend to move with each other in a certain way. Yet, we cannot
determine which, if either, of the correlated variables causes the
change in the other. Therefore, correlations inform us about what is
occurring between our variables, but cannot tell us why it is happening.

The cor (x,y) function is used to calculate the correlation between two variables, x and y.
For instance, to calculate the correlation between variable A and variable B, we would use
the following code:

> cor (A, B)

We looked directly at two correlations. First, we found the correlation between the
performance rating of the Shu army and the outcome of head to head battles to be 0.95. This
correlation suggests that victory or defeat in a given head to head battle had a large impact
on Zhuge Liang's rating of the army's performance in that conflict.

Next, we calculated the correlation between the number of Shu and Wei soldiers engaged
in head to head battles. Here, we found a relatively strong positive correlation of 0.77. This
suggests that the number of soldiers that one army engages in combat is highly related to
the size of the opposing army. This is logical, because we would expect an army's size in a
given battle to be closely related to (but not necessarily determined by or equal to) the size
of the opposing army.

17191

Assessing the Situation

cor(datal

The same correlation function can be used in a different way. Instead of providing x and y
variables to calculate a single correlation via cor (x, y), we can calculate all of the possible
correlations in a dataset using cor (data) . For example, to find the correlations for all of the
numeric variables in dataset &, we would use the following code:

> cor (A)

This use of the cor () function yields a correlation table, similar to the one that we
generated for our head to head dataset.

> corHeadToHead

Method Rating SuccessfullyExecuted Result ShuSoldiersEngaged WeiSoldiersEngaged DurationInDays
Method 1 NA NA NA NA NA NA
Rating NA 1.00000200 NA NA 0.4222796 -0.946p8125 -0.8785341
SuccessfullyExecuted NA NA 1 NA NA NA NA
Result A NA NA NA 1 NA NA NA
ShuSoldiersEngaged iR TeET e hi + 2 [0.76535963 -0.2356156
WeiSoldiersEngaged NA -0.04668125 NA NA 0.7653596 1.00000000 9.1378893
DurationlnDays NA -0.87853412 NA NA -8.2356156 9.13788932 1.0000000

To read a value from this table, match a row name on the left-hand side with a column
name across the top. At the intersection, you will find the correlation between the
two variables. For instance, if you traced from ShuSoldiersEngaged on the left to
WeiSoldiersEngaged on the top, you would encounter the correlation of 0.77 that
we had previously calculated using cor (x,y) .

A critical limitation of the cor (data) technique is that only numeric variables in a
dataset can be correlated. You probably noticed that several NA values were reported

in the correlation table of our head to head dataset. These occur because our
SuccessfullyExecuted and Result columns consisted of nonnumeric data. Therefore
they could not be correlated and R returned NA values. To correlate nonnumeric values, as
we did with Result in step 1, they must first be recoded as numeric.

% See the Quantifying categorical variables section of this chapter for a
A demonstration of how to recode nonnumeric data in numeric form.

You may run into N2 values in other aspects of your R work. When these occurs, it is a good
idea to check your data to make sure that they are in the proper format for the function or
calculation that you wish to employ.

Chapter 5

1. What s the key difference between cor (x,y) and cor (data)?

a.

The cor (x, y) variation calculates all of the correlations in a dataset, whereas
cor (data) calculates a single correlation between two variables.

The cor (x, y) variation calculates a single correlation between two variables,
whereas cor (data) calculates all of the correlations in a dataset.

The cor (x, y) variation calculates all of the correlations between two
datasets, whereas cor (data) calculates all of the correlations in a
given dataset.

The cor (x, y) variation calculates all correlations between two variables,
whereas cor (data) calculates all correlations for a given variable.

2. Interpret a correlation of -0.25 between the variables A and B.

a.

A and B are negatively correlated. For every one unit increase in &, B will
decrease by 0.25 units.

A and B are negatively correlated. For every one unit decrease in &, B will
decrease by 0.25 units

A and B are negatively correlated. We would expect an increase in A to be
accompanied by a proportionally small increase in B.

A and B are negatively correlated. We would expect an increase in A to be
accompanied by a proportionally small decrease in B.

You may have noticed that all of the points in our head to head combat dataset have a
value of Y for SuccessfullyExecuted, which prevents us from correlating it with other
variables. This is because the Shu forces can engage in head to head combat at will and
without some variation in the values for execution, a correlation is incalculable.

In contrast, our surround, ambush, and fire attack methods greatly depend on successful
execution. Try correlating the Rat ing column with the SuccessfullyExecuted column
in each of these battle methods. Then, interpret your findings.

Afterwards, use cor (data) to visualize all of the correlations in your datasets. Interpret
these correlations and take note of any that stand out as expected or unexpected. By
investigating correlations, you are becoming ever more aware of you data.

811

Assessing the Situation

We can use regression analysis to inform our predictions. Regression analysis is a data
modeling technique that helps us understand how different variables change with one
another. A regression model must incorporate at least one dependent (or outcome) and
independent (or predictor) variable, although several of both can be included. We can use
regression models to predict outcomes based on the data that is available to us. As the Shu
strategist, you will be predicting your army's performance in battle across different courses
of action, based on what you know about past conflicts.

Note that the regression models we create will predict the Shu army's future
performance rating based on several conditions of battle. Recall that the past
battle ratings were recorded by Zhuge Liang, who was an expert in assessing the
army's combat performance. Therefore, Zhuge Liang's ratings can be considered
. avalid measure for predicting future performance, since they are equivalent to
% the actual performance of the Shu forces.
L

While it is technically possible to directly predict the result of battle (victory or
defeat) from our dataset, this would require the use of advanced regression
techniques that are beyond the scope of this book. Thus, we will focus on
predicting outcomes based on performance ratings via the most common
regression methods.

Time for action — modelling with simple linear regression

Simple linear regression is the most basic form of regression analysis. It uses a single
independent variable to predict the outcome of a single dependent variable.

To begin experimenting with regression analysis in R, let us create a simple linear model from
our head to head combat data:

1. Usethe 1m(formula, data) function to create a linear regression model where
Rating is the dependent variable and shuSoldiersEngaged is the independent
variable. This is done as follows:

> #fcreate a linear regression model using the 1lm(formula, data)

> #predict the rating of a head to head battle using the number

of Shu soldiers engaged

> lmHeadToHeadRating ShuSoldiers <- lm(subsetHeadToHead$Rating ~
subsetHeadToHead$ShuSoldiersEngaged, subsetHeadToHead)

1821

Chapter 5

2. Display the contents of your linear model variable in the R console:

> #display the contents of the model
> lmHeadToHeadRating ShuSoldiers

> lmHeadToHeadRating_ShuSoldiers
Call:
Coefficients:

{Intercept) subsetHeadToHead$ShuSoldiersEngaged
3.146e401 4.374e-04

Im{formula = subsetHeadToHead$Rating ~ subsetHeadToHead$ShuSoldiersEngaged, data = subsetHeadToHead)

3. Create a summary of the model, as follows:

> #icreate the model summary
> lmHeadToHeadRating ShuSoldiers Summary <-
summary (1lmHeadToHeadRating ShuSoldiers)

4. Display the contents of your linear model summary in the R console:

> #display the model summary
> lmHeadToHeadRating ShuSoldiers Summary

= ImHeadToHeadRating_ShuSoldiers_Summary

Call:
Im{formula = subsetHeadToHead3Rating ~ subsetHeadToHead$5huSoldiersEngaged,
data = subsetHeadToHead)

Residugls:
Min 10 Median 30 Max
-45,199 -23.371 -9.112 24.253 51.981
Coefficients:
Estimate Std. Error t wvalue Pr{=1tl)}
{Intercept) 3.146e4@1 7.79724+00 4.035 0.000383 *xx

subsetHeadToHead$5huSoldiersEngaged 4.374e-084 1.774e-04 2.465 9.020008 *

Signif. codes: @ “%%*' 3. B@1 “**' 3,81 “*' @.85 . 0.1 * ' 1

Residual standard error: 29.93 on 28 degrees of freedom
Multiple R-squared: @.1783, Adjusted R-squared: @.149
F-statistic: 6.876 on 1 and 28 DF, p-value: B.8281

What just happened?

Your first linear regression model yielded quite a bit of information. Let us look at how to
use the Im (formula, data) function as well as how to interpret the information that it

provides to us.

Assessing the Situation

The 1m (formula, data) function is used to create a linear regression model. The
formula argument takes on the following structure:

dvar ~ ivarl + ivar2 + ... + iVarn

Here, dvar is the dependent variable and ivari1 through ivarn are independent variables.
While our initial model used a single independent variable, the linear model function is
capable of accepting as many as we need. The data argument contains the dataset from
which our variables are taken. Hence, the basic composition of the 1m (formula, data)
function resembles the following:

Im(dvar ~ iVarl + iVar2 + ... + iVarn, data)

In our simple linear regression model, Rating acted as the dependent variable and
ShuSoldiersEngaged took on the role of the independent variable, as shown:

> lmHeadToHeadRating ShuSoldiers <- lm(subsetHeadToHead$Rating ~
subsetHeadToHead$ShuSoldiersEngaged, subsetHeadToHead)

Linear model output

Together, we formed a linear model that regressed the Shu army's head to head combat
performance rating (the dependent or predicted variable) on the number of Shu soldiers
engaged in battle (the independent or predictor variable). When we called our linear model
variable, we received the following output from the R console:

» lmHeadToHeadRating_ShuSoldiers

Call:
Im{formula = subsetHeadToHead$Rating ~ subsetHeadToHead$ShuSoldiersEngaged, data = subsetHeadToHead)

Coefficients:

{Intercept) subsetHeadToHead3ShuSoldiersEngaged
3.146e+@1 4.374e-04

This output consists of two sections. In Call:, we see a reiteration of the console line that R
used to create the model. In Coefficients:, we see both an intercept and a coefficient for
the number of Shu soldiers engaged. The latter two items help us to create a regression
equation. Typically, a regression equation takes on the following form:

Y = b0 + blX1 + b2X2 + ... + bnXn

In this equation, Y is the dependent variable, bo is the intercept, and b1x1 through bnxn are
independent variables. Thus, the equation for our model is as follows:

Rating = 31 + 0.00044 * number of Shu soldiers

[8a1

Chapter 5

Linear model summary

After displaying the model output, you also created a more detailed summary using the
summary (object) function

> lmHeadToHeadRating ShuSoldiers Summary <-
summary (1lmHeadToHeadRating ShuSoldiers)

% For a discussion of the summary (object) function, revisit the
=" Deriving summary statistics section of this chapter.

> ImHeadToHeadRating_ShuSoldiers_Summary

Call:
Im{formula = subsetHeadToHead$Rating ~ subsetHeadToHead$ShuSoldiersEngaged,
data = subsetHeadToHead)

Residuals:
Min 10 Median 3Q Max
-45,199 -23.371 -9.112 24.253 51.981|

Coefficients:

Estimate Std. Error t wvalue Pr{=1tl)
(Intercept) 3.146e+B1 7.797e+08 4.035 D.000383 w*
subsetHeadToHead$ShuSoldiersEngoged 4.374e-84 1.774e-284 2.465 @.820008 *

Signif. codes: @ “***' 9,281 ***' 9.81 “*' 9.5 *." 4.1 * ' 1

Residual standard error: 29.93 on 28 degrees of freedom
Multiple R-squared: @.1783, Adjusted R-squared: @.149
F-statistic: 6.876 on 1 and 28 DF, p-value: @.8201

Again, you have witnessed the value and versatility of the summary (object) function, as
it adapted itself to generate output relevant to our regression model. In the output, you
can see the same intercept and independent variable coefficients (Estimate column) that
we derived from the default model output. However, you are also exposed to a wealth of
additional information about the model. In fact, nearly everything you would need to know
for a data analysis is included. For our interpretations, we will focus on the Coefficients:,
Multiple R-squared, and p-value/Pr(>|t]) portions of the output.

Assessing the Situation

In case you need to be refreshed on the meaning of R-squared and p-values, we will briefly
review them here:

¢ R-squared (Multiple R-squared in the summary output) tells us how well our
linear model fits our data, and thus, how much predictive power our model has.
Technically, it is the percentage of variance in the dependent variable that is
accounted for by a regression model. For example, the R-squared of our linear
model tells us how much of the variance in the performance rating of a head
to head conflict can be accounted for by the number of Shu soldiers engaged
in that battle.

¢ A p-value (Pr(>|t]) and p-value in the summary output) is an indicator of statistical
significance. In common practice, a cutoff 0.05 is used to determine statistical
significance. Both individual coefficients and the overall linear model have p-values.
In general, it is better to have significant coefficients and models, because statistical
significance indicates that our results are more likely to be genuine and unlikely to
have occurred by random chance. Yet, statistical significance is not the be all and
end all of data analysis. Since data do not think nor act, one must always remember
to consider the practical implications of statistical findings. We will also remain
diligent in assessing the practical significance of our work throughout this book.

Interpreting a linear regression model

Sound interpretation is essential to understanding the practical ramifications of our data
analyses. Recall that our linear regression analysis yielded the following equation:

Y =31 + 0.00044 * X1

Or in words:

Rating = 31 + 0.00044 * number of Shu soldiers

Look back at the Rat ing column of our original battle history dataset. Rating can take on a
value between 0 and 100. Since we are interested in predicting the Shu army's performance,
the closer our equation comes to 100, the more confident we will be that our battle plans
will lead to victory. Conversely, the lower our predicted performance, the less confident we
can be that our strategy is going to lead to beneficial outcomes.

In fact, it is clear from our data that Zhuge Liang rated the army's performance at or above
80 in victorious battles, whereas he rated the army lower in conflicts that resulted in defeat.
Therefore, 80 is a good rating threshold to keep in mind when predicting future battle
performance. In general, we want to devise strategies that will predict a performance of

80 or higher.

Chapter 5

A model's intercept is interpreted as the value of the dependent variable when all independent
variables are equal to zero. The intercept of a linear regression model often does not have an
intuitive meaning. In our case, the intercept of 31 suggests that our performance will somehow
be greater than zero even if we do not send soldiers into battle. Nevertheless, the intercept
impacts our overall model and is important for making predictions.

Our coefficient for the number of Shu soldiers engaged is 0.00044. As you can imagine, it
would take quite a large force to predict a sufficient performance rating for victory using
our model. This notion is demonstrated by the following calculation, which solves for the
number of soldiers necessary to predict a rating of 80:

80 = 31 + 0.00044 * X1
49 = 0.00044 * X1
X1 = 111,364 soldiers needed to predict victory!

This suggests that over half of the entire Shu army of 200,000 would need to participate in a
single battle just to reach our minimum rating threshold. Yet, recall that our current model
only deals with head to head combat performance and only uses the number of Shu soldiers
engaged to predict it.

While both our coefficient and overall model are statistically significant with p-values of
0.02, there is much that is left unexplained. This is evident when considering our R-squared
value of 0.18. This value means that only 18% of the variance in performance rating can be
explained by our model. In a practical sense, this can be interpreted as saying that only
18% of the rating of a head to head battle can be accounted for by the number of

Shu soldiers engaged.

Allin all, our interpretations indicate that the current model is not effective enough at
predicting the Shu army's performance. Clearly, there are many other factors that account
for performance besides the number of soldiers that we send into battle. Thankfully, we have
a dataset that contains rich battle history information and the ability to form more complex
multiple linear regression models. Thus, the analysis of our battle data has just begun.

1. Which of the following represents proper syntax for use in the formula argument of
the 1m (formula, data) function?

a. ¥ ~ X1 - X2
b. ¥ ~ X1 + X2
c. X ~ Y1l + Y2
d. X ~ Y1 - Y2

1811

Download from Wow! eBook <www.wowebook.com>

Assessing the Situation

2. Inthe following linear regression equation, identify the dependent variable,
independent variable, intercept, and coefficient: Y=0.5 + 3 * X

a. Yisthe dependent variable, X is the independent variable, 0.5 is the intercept,
and 3 is the coefficient.

b. Xisthe dependent variable, Y is the independent variable, 0. 5 is the intercept,
and 3 is the coefficient.

c. Yisthe dependent variable, X is the independent variable, 3 is the intercept,
and 0.5 is the coefficient.

d. Yisthe dependent variable, 3 is the independent variable, 0.5 is the intercept,
and X is the coefficient.
3. Interpret the following linear regression equation: Y =5 - 10 * X
a. The predicted value of Y is equal to 5 plus 10 times X.
b. The value of Y is equal to 5 plus 10 times X.
c. The predicted value of Y is equal to 5 minus 10 times X.

d. The value of Y is equal to 5 minus 10 times X.

Time for action — modelling with multiple linear regression

Multiple linear regression is one step removed from simple linear regression. It adheres
to the sample principles, but makes use of additional independent variables to predict the
outcome of a dependent variable.

Let us build upon our previous head to head combat model using multiple regression.
This time, we will include both the number of Shu and Wei soldiers engaged as predictors
of battle performance:

1. Create a multiple regression model that predicts Rat ing using both the number of
Shu and Wei soldiers engaged:

> #create a multiple linear regression model using the
Im(formula, data) function

> #fpredict the rating of a head to head battle using the number
of Shu and Wei soldiers engaged

> lmHeadToHeadRating ShuWeiSoldiers <- 1lm(subsetHeadToHead$Rating
~ subsetHeadToHeadsShuSoldiersEngaged +
subsetHeadToHeadSWeiSoldiersEngaged, subsetHeadToHead)

Chapter 5

2. Create a summary of the model:

> #model summary
> lmHeadToHeadRating ShuWeiSoldiers_ Summary <-
summary (lmHeadToHeadRating ShuWeiSoldiers)

3. Display your linear model summary in the R console:

> #display the summary
> lmHeadToHeadRating ShuWeiSoldiers Summary

= ImHeadToHeadRating_ShuWeiSoldiers_Summary

Call:
lm{formula = subsetHendToHead$Rating ~ subsetHeadToHead3$S5huSoldiersEngaged +
subsetHeadToHead$WeiSoldiersEngoged, data = subsetHeadToHead)

Residuals:
Min 10 Median £l Max
-29.765 -17.896 -6.758 14.91&% 46.789

Coefficients:

Estimate Std. Error t value Pri=1tl)}
(Intercept) 33.0642804 H.1518218 5.375 1.11e-@5 ***
subsetHeadToHead$ShuSoldiersEngaged @.0011453 @.0002171 5.275 1.4G6e-@5 ***
subsetHeadToHead$WeiSoldiersEngoged -@.0007033 0.0001651 -4.260 0.000222 ***

Signif. codes: @ “**¥' B @1 ***' @.@1 *' @.@5 .7 .1 ¢ 1

Residual standard error: 23.57 on 27 degrees of freedom
Multiple R-squared: @.5086, Adjusted R-squared: @.4722
F-stotistic: 13.97 on 2 and 27 DF, p-value: 6.833e-05

What just happened?

We used multiple linear regression to create a second model for predicting the performance
rating of the Shu army in a head to head conflict. This model incorporated both the number
of Shu and number of Wei soldiers engaged in combat as predictors. We can interpret a
multiple linear regression model in a similar manner to a simple linear regression model.
We can also compare our new model to the one that we previously created.

Assessing the Situation

Interpreting the summary output

Review the summary output for our multiple regression model. The summary should be
similar to the following screenshot:

> lmHeadToHeadRating_ShuWeiSoldiers_Summary

Call:
Im{formula = subsetHeadToHead3Rating ~ subsetHeadToHead3S5huSoldiersEngaged +
subsetHeadToHead$WelSoldiersEngoged, data = subsetHeadToHead)

Residuals:
Min 10 Median k] Max
-29.765 -17.896 -6.758 14.918 46.789

Coefficients:

Estimate Std. Error t value Pr{=1tl)
(Intercept) 33.0642804 6.1518218 5.375 1.11e-05 *+**
subsetHeadToHead$ShuSoldiersEngaged @.80811453 8.0082171 G.275 1.46e-05 ***
subsetHeadToHead$WeiSoldiersEngaged -@.0007033 0.00081651 -4.260 0.00Q222 *+*

Signif. codes: @ “***' 3.@@1 “**' @.@1 *' 9.@5 . 4.1 ¢ ' 1

Residual standard error: 23.57 on 27 degrees of freedom
Multiple R-squared: @.5086, Adjusted R-squared: @.4722
F-stotistic: 13.97 on 2 and 27 DF, p-value: 6.833e-05

From the Estimate column, we can derive our regression equation:

Rating = 33 + 0.0011 * ShuSoldiersEngaged - 0.00007 *
WeiSoldiersEngaged

Again, both our overall model (p <.001) and our independent variable coefficients (p < .001)
are statistically significant. Moreover, the R-squared increased compared to our previous
model to explain 51% of the variance in the Shu army's performance rating.

Let us use our multiple regression model to predict the performance of a 25,000 soldier Shu
army against a 25,000 soldier Wei army, as follows:

Rating = 33 + 0.0011 * 25000 - 0.00007 * 25000
Rating = 33 + 27.5 - 1.75
Rating = 58.75

Recall that our Rating variable ranges from 0 to 100 and that our past victories have
achieved ratings of 80 or higher. Our predicted rating of 59 suggests that the Shu army
would likely not be victorious in this hypothetical conflict. However, also recall that our
model only contains 51% of the ingredients that account for changes in head to head battle
performance. Furthermore, our initial inference at the beginning of this chapter revealed
that the Wei forces tend to enter a given battle with many more soldiers than the Shu. For
these reasons, our model, as well as our hypothetical example, may not have sufficient
practical relevance.

Chapter 5

The increase in R-squared from our simple regression model to our multiple regression
model can be attributed to the fact that our new model included more information that

is relevant to predicting head to head battle performance. Our multiple regression model
factors in the size of both armies when determining the Shu army's rating. Since the ability of
the Shu army to perform well is dependent to some extent on the opposing forces, including
both armies yields a much stronger basis for prediction than the single army approach that
our original model took.

The key to developing useful predictive regression models is to include only the most
relevant data. While 51% is a large improvement in predictive power over our preceding
model, it still may not be enough to make us confident in making critical strategy decisions
for the Shu army. Certainly, we are encouraged to explore the full range of our data before
settling on a particular model.

1. Which of the following is most likely to increase the statistical significance of a
multiple regression model?

a. Including more independent variables.
b. Including fewer independent variables.
c. Including more relevant and fewer irrelevant independent variables.
d. Including more irrelevant and fewer relevant independent variables.
2. Which of the following is most likely to increase the practical significance of a
multiple regression model?
a. Including more independent variables.
b. Including fewer independent variables.
c. Including more relevant and fewer irrelevant independent variables.

d. Including more irrelevant and fewer relevant independent variables.

911

Assessing the Situation

Create a new simple linear regression model that uses burationInDays alone to
predict the Shu army's performance in a head to head conflict. Then create two new
multiple linear regression models that expand upon the previous model by incorporating
ShuSoldiersEngaged and WeiSoldiersEngaged respectively. Generate and interpret
the model summaries. Once complete, you should have three new regression models:

¢ lmHeadToHeadRating Duration
¢ lmHeadToHeadRating DurationShuSoldiers
¢ lmHeadToHeadRating DurationSoldiers
Also there should be three accompanying summaries saved in your R workspace. What

do these models tell you about the importance of the duration of battle in predicting the
outcome of head to head conflicts?

Time for action — modelling interactions

One other way that we can explore the relationships in our data is by looking at interaction
effects. An interaction spawns from an interplay between variables whereby the interaction
effect is different from either of the variables alone. Interaction variables can be created in
R, although a specific procedure must be followed to use them properly.

Let us look at how an interaction variable can be created and incorporated into a regression
model in R. We will accomplish this by including the interaction between Shu and Wei
soldiers engaged as a variable in our multiple regression model:

1. Center the two variables that you plan to interact:

> #before creating an interaction variable, the component
variables must first be centered

> #center a variable by subtracting its mean from each of its
values

> #center the number of Shu soldiers engaged

> centeredShuSoldiersHeadToHead <-
subsetHeadToHead$ShuSoldiersEngaged -

mean (subsetHeadToHead$ShuSoldiersEngaged)

> #center the number of Wei soldiers engaged

> centeredWeiSoldiersHeadToHead <-
subsetHeadToHead$WeiSoldiersEngaged -

mean (subsetHeadToHead$WeiSoldiersEngaged)

1921

Chapter 5

Multiply the two centered variables to create the interaction variable:

> f#fcreate an interaction variable by multiplying two or more
centered variables

> interactionSoldiersHeadToHead <-
centeredShuSoldiersHeadToHead * centeredWeiSoldiersHeadToHead

Create an interaction model that predicts Rat ing using the duration, Shu soldiers
engaged, Wei soldiers engaged, and the interaction between the number of Shu and
Wei soldiers engaged:

> #predict the rating of a battle using the duration, number of
Shu and Wei soldiers engaged, and the interaction between the
number of Shu and Wei soldiers engaged

> lmHeadToHeadRating DurationSoldiersShuWeilInteraction <-
lm(subsetHeadToHead$SRating ~ subsetHeadToHeads$DurationInDays +
subsetHeadToHead$ShuSoldiersEngaged +
subsetHeadToHeadSWeiSoldiersEngaged +
interactionSoldiersHeadToHead, subsetHeadToHead)

Create a summary of the model:

> #model summary
> lmHeadToHeadRating DurationSoldiersShuWeiInteraction Summary
<-

summary (lmHeadToHeadRating DurationSoldiersShuWeiInteraction)

Display your interaction model summary in the R console:

> #display the summary
> lmHeadToHeadRating DurationSoldiersShuWeiInteraction Summary

» ImHeadToHeadRating_DurationSoldiersShuleilnteraction_Summary

Call:

Im{formula = subsetHeadToHead3Rating ~ subsetHeadToHead3DurationInDays +
subsetHeadToHead$ShuSoldiersEngaged + subsetHeadToHead3WeiSoldiersEngaged +
interactionSoldiersHeadToHead, data = subsetHeadToHead)

Residuals:
Min 10 Median 30 Max
-25.3749 -8.0428 @.6675 9.3580 22,2165

Coefficients:

Estimate Std. Error t value Pr(=1tl)
{Intercept) G.956e+01 B.871e+Bd 11.222 2.08e-11 ***
subsetHeadToHead$DurationInDays -7.977e-01 9.890e-02 -8.066 2.02e-Q8 *¥*

subsetHeadToHead$ShuSoldiersEngoged 4.661le-84 1.553e-84 3.000 0.00603 **
subsetHeadToHead$WeiSoldiersEngoged -1.338e-84 1.635e-84 -0.819 9.42078
interactionSoldiersHeadToHead -2.413e-089 2.143e-89 -1.126 9.2720Q

Signif. codes: @ '***' 9,981 ***' 9,91 ‘*' @.85 *." 9.1 * ' 1

Residual standard error: 12.83 on 25 degrees of freedom
Multiple R-squared: @.8653, Adjusted R-squared: @.8437
F-statistic: 408.14 on 4 and 25 DF, p-value: 1.549e-18

Assessing the Situation

What just happened?

You have completed the process of creating and implementing an interaction variable. The
resulting interaction model expanded upon our multiple regression model by factoring in the
the interplay between the number of Shu and Wei soldiers on the performance rating of the
Shu army. Let us review the two-step interaction variable creation process and discuss how
such variables can be interpreted:

1. Center the input variables:

The initial step in creating an interaction variable is to center the input variables
that you wish to interact. This is accomplished by subtracting the mean of all of the
values from each data point. For example, in:

centeredA <- A - mean(A)

The centered version of variable A is created by subtracting the mean of A from each
value of A.

Centering is necessary because it mitigates the threat of multicollinearity, which
occurs when two or more independent variables are highly correlated with one
another. For instance, our interaction variable was composed of the number of Shu
and Wei soldiers engaged in head to head combat. At the same time, our regression
model used these variables as separate predictors. Naturally, multicollinearity

is a threat in this situation, because our interaction variable is composed of the
same data as our other predictors. Thankfully, the centering process is effective in
mitigating most of the ill-effects that can be attributed to multicollinearity.

2. Multiply the input variables:

The second step in creating an interaction variable is to multiply the centered
versions of the input variables, like so:

interactionAB <- centeredA * centeredB

Afterwards, your interaction variable can be used in the same manner as any other
variable within a regression model.

Interpreting interaction variahles

The statistical significance of the interaction coefficient is an indication of whether or not an
interaction is present in the data. When present, an interaction suggests that the relationship
between the dependent variable and a predictor varies as the value of the interacting predictor
(Wei soldiers) changes. This phenomenon is sometimes referred to as a moderation effect,
because it describes how one predictor moderates, or affects the strength or direction of, the
relationship between another predictor and the dependent variable. When an interaction is
absent, the relationship between the dependent variable and a given predictor is not believed
to alter as the value of the interacting predictor changes.

[9a1

Chapter 5

The interaction term in our latest model was not statistically significant and did not

increase the predictive power of the model. This is logical in our situation. If there were an
interaction, then we would expect the number of soldiers that one side engaged to differ
across the range of soldiers that the other side deployed. For example, if the Shu engaged
1000 soldiers in battle, then the Wei might deploy 10000 (ten times), but if the Shu engaged
10000, the Wei might deploy 500000 (fifty times). In contrast, without the interaction, we
would not expect the number of soldiers engaged by one side to vary across the range of
soldiers that the other side deployed. Furthermore, the number of soldiers deployed may
be better explained by situational attributes, such as the number of soldiers that happen to
be available at a given place or time when a battle occurs. The latter explanations have more
practical meaning than the interaction interpretation and help to verify the absence of an
interaction effect.

1. How is avariable centered in R?
a. By adding its mean to each of its values.
b. By subtracting its mean from each of its values.
c. By multiplying its mean by each of its values.

d. By dividing its mean by each of its values.

2. How is an interaction variable created in R?
a. By adding the two variables that are believed to interact.
b. By multiplying the two variables that are believed to interact.

c. By adding the centered versions of the two variables that are believed
to interact.

d. By multiplying the centered versions of the two variables that are believed
to interact.
3. Which of the following would be a viable interpretation of a statistically significant
interaction between the variables 2 and B?

a. The relationship between B and the dependent variable fluctuates based on the
value of A.

b. The relationship between 2 and B fluctuates based on the value of the
dependent variable.

c. The value of the dependent variable fluctuates based on the relationship
between 2 and B.

d. The value of the dependent variable fluctuates based on the values of A and B.

Assessing the Situation

Consider the data in one of your remaining battle method subsets (surround, ambush,
or fire). Use the techniques that we have employed in this chapter to create a multiple
regression model that incorporates an interaction variable. Then interpret the model. Be
sure to address the meaning and significance of the interaction that you explored.

Time for action - comparing and choosing models

At the moment, we have several models that attempt to predict the performance rating of
the Shu army in head to head battles based on the duration and number of soldiers engaged
in that battle. Yet, we do not have answers regarding which model is best and the relative
contribution that each model makes above and beyond the preceding models.

We can use the process of hierarchical linear regression (HLR) to compare our models. Let
us look at how HLR can be used to compare the three models that we have made thus far:

1. Display a summary of each model:

> #fuse HLR to compare different models

> #first consider the models individually

> #simple regression model using duration to predict battle
rating

> lmHeadToHeadRating Duration Summary

This should produce a result as shown in the following screenshot:

> ImHeadToHeadRating_Duration_Summary

Call:
Im{formula = subsetHeadToHead$Rating ~ subsetHeadToHead$DurationInDays,
dota = subsetHeadToHead)

Residuals:
Min 10 Median E]1] Max
-36.328 -9.803 2,853 B.252 25.804

Coefficients:

Estimate Std. Error t value Pri>l1tl)
{Intercept) 119 . 54682 8.16731 14.637 1.20e-14 ***
subsetHeadToHead$DurationlnDays -0.95441 0.09807 -0.732 1.75e-10 ***

Signif. codes: @ "#*¥*' 3.9@1 ***' @.81 “*' @.85 *.' Q.1 F ' 1

Residual standard error: 15.77 on 28 degrees of freedom
Multiple R-squared: @.7718, Adjusted R-squared: @.7637
F-statistic: 94.71 on 1 and 28 DF, p-value: 1.747e-10

> #fmultiple regression model using duration, Shu soldiers, and Wei
soldiers to predict battle rating

> lmHeadToHeadRating DurationSoldiers_Summary

Chapter 5

This should give a summary similar to the following:

= lmHeadToHeadRating_DurationSoldiers_Summary

Call:

Im{formula = subsetHeadToHead$Rating ~ subsetHeadToHead3DurationInDays +
subsetHeadToHead$ShuSoldiersEngoged + subsetHeadToHead$WeiSoldiersEngaged,
data = subsetHeadToHead)

Residuals:
Min 10 Median an Max
-25.4568 -8.3716 -9.2642 18.8152 24.3812

Coefficients:

Estimate Std. Error t value Pr{=1tl)
(Intercept) 07.3500156 8.6961401 11.195 1.92e-11 ***
subsetHeadToHead$DurationInDays -@.7680305 0.0958033 -8.017 1.70e-Q8 ***
subsetHeadToHead$ShuSoldiersEngaged @.0005422 0.00081406 3.857 0.00QG7E *+**
subsetHeadToHead$WeiSoldiersEngaged -9.0002755 0.0001040 -2.627 0.014258 *

Signif. codes: @ ****' @.Q@1 “**' 2,01 **' 9.05 . 0.1 F ' 1

Residual standard error: 12.89 on 26 degrees of freedom
Multiple R-sguared: @.8585, Adjusted R-squared: @.8421
F-statistic: 52.56 on 3 and 26 DF, p-value: 3.57e-11

> #interaction model using duration, Shu soldiers, Wei
soldiers, and the interaction between Shu and Wei soldiers to
predict battle rating

> lmHeadToHeadRating DurationSoldiersShuWeilInteraction Summary

Produces the following summary:

> 1lmHeadToHeadRating_DurationSoldiersShuleilnteraction_Summary

Call:

Im{formula = subsetHeadToHead$Rating ~ subsetHeadToHead$DurationlnDays +
subsetHeadToHead$ShuSoldiersEngaged + subsetHeadToHead$WeiSoldiersEngaged -
interactionSoldiersHeadToHead, data = subsetHeadToHead)

Residuals:
Min 10 Median ED] Max
-25.3749 -8.09428 B.B6V5 O.3580 22.2165
Coefficients:
Estimate Std. Error t wvalue Pr{=Itl)
(Intercept) §.056e+@81 8. 871e+d@ 11.222 2 08g-11 *+**
subsetHeadToHead$DurationInDays -7.977e-01 0.890e-02 -8.066 2.02e-08 %

subsetHeadToHead$ShuSoldiersEngoged 4.66le-84 1.553e-94 3.000 0.00603 **
subsetHeadToHead$WeiSoldiersEngaged -1.338e-084 1.635e-04 -0.819 0.420878
interactionSoldiersHeadToHead -2.4132-09 2.143e-00 -1.126 @.27000

Signif. codes: @ “***' Q. @81 “**' §.@1 “*' @.@5 *.' @1 F 1

Residual standard error: 12.83 on 25 degrees of freedom
Multiple R-squared: B.8653, Adjusted R-squared: @.8437
F-statistic: 48.14 on 4 and 25 DF, p-value: 1.54%9e-10

1971

Assessing the Situation

2. Use anova (object, ...) to compare the relative contribution of each model:

> #use anova(object, ...) to compare the relative contribution
of multiple models

> #fcompare the three head to head combat models using ANOVA

> anovaHeadToHeadRatingModelComparison <-

anova (lmHeadToHeadRating Duration,

lmHeadToHeadRating DurationSoldiers,

lmHeadToHeadRating DurationSoldiersShuWeilInteraction)

3. Display the anova results in the R console:

> display the anova results
> anovaHeadToHeadRatingModelComparison

» anovaHeadToHeadRatingModelComparison
Analysis of Variance Table

Model 1: subsetHeadToHead%Raoting ~ subsetHeadToHead3DurationInDays

Model 2: subsetHeadToHead$Rating ~ subsetHeadToHead$DurationInDays

+ subsetHeadToHeod$5huSoldiersEngaged +
subsetHeadToHead$WeiSoldiersEngaged

Model 3: subsetHeadToHead$Rating ~ subsetHeadToHead$DurationInDays

+ subsetHeadToHead$ShuSoldiersEngaged +
subsetHeadToHead$WelSoldiersEngaged +

interactionSoldiersHeadToHead

Res.Df RSS Df Sum of Sq F Pr(=F)
1 28 ©%64.9
2 26 4320.5 2 2644.4 8.0386 0.002015 **
3 25 4112.8 1 208.5 1.2676 @.270903
Signif. codes: @ “**%' @ Q@1 ‘**' A @1 ‘¥ @.@5 *.' @1 ¢ 1
What just happened?

You have the data that you need to complete a hierarchical linear regression (HLR) analysis.
To be thorough, you should consider both the individual models (summaries) and the
relative contribution of each model (ANOVA).

You are already familiar with interpreting model summaries. These are the best places to
start when conducting an HLR analysis. You can check the summaries to see if each overall
model and its coefficients are statistically significant. You should also take note of each
model's R-squared value.

Chapter 5

Our simple regression model is statistically significant on all accounts and has an amiable R-
squared value of 77%. Likewise, all of the variables in our multiple regression model, as well
as the model itself, are statistically significant. The model has an R-squared value of 86%.
Furthermore, while our interaction model is also statistically significant, with an R-squared of
87%, two of its predictor variables are not statistically significant. Although these summaries
provide us with a wealth of knowledge on the individual merits of each model, it is best to
make a decision after considering the results of an anova test.

Generally, analysis of variance (ANOVA) is a statistical procedure that compares the means
of multiple groups and determines if they are significantly different from one another. In

our case, ANOVA can be used in HLR to compare multiple regression models. Here, ANOVA
determines if the coefficient(s) that each successive model brings to the overall regression
equation makes a statistically significant contribution above and beyond the coefficients that
preceded it.

Consider the following three models:

= X1
X1 + X2
= X1 + X2 + X3

QW P
KKK
I

The difference between each model is that a new predictor is contributed to the regression
equation. Model B contributes X2 in addition to model &, whereas model C contributes

X3 in addition to model B. ANOVA succeeds in determining whether these successive
contributions are statistically significant. For instance, if model B was found to be statistically
significant through ANOVA, then including X2 in the regression model is likely to add value.
Continuing, if model ¢ were not found to be statistically significant, then including X3 in

the regression model probably does not add much value and therefore should be removed.
By comparing successive models in this manner, we are able to determine, in a statistical
sense, whether our coefficients are or are not adding value to the overall model. Thus, our
decisions to include valuable coefficients and eliminate excess ones are informed.

Of course, we have to be mindful of practical significance at all times. When selecting
independent variables for our model, we should use our understanding of the data and

the situation to select only the best predictors. Although we could, it is inappropriate to
haphazardly test numerous arbitrary combinations of variables in an attempt to find the
supposed best statistical model. In fact, partaking in such practice is likely to lead to a model
that is both meaningless in a practical sense and incapable of predicting valid answers to the
guestions that motivated the use of regression modeling in the first place. Therefore, always
keep in mind the practical implications of every statistical analysis.

Assessing the Situation

R's anova (object, ...) isavariable-argument function that can be used to conduct
ANOVA on several objects. Each object of comparison can be entered into the function
as its own argument. For example, in:

anova (A, B, Q)
Here we are telling R to compare three objects (2, B, and) using ANOVA.

The anova (object, ...) function yields an ANOVA table, which details the results of

the analysis. For the purposes of comparing successive models using HLR, we are only
concerned with the p-values (the Pr(>}|t]|) column). The p-value beside each model indicates
whether or not it is statistically significant above and beyond its preceding model. It does not
however, indicate the individual statistical significance of the model, which is why we also
considered the individual model summaries.

> anovaHeadToHeadRatingModelComparison
Analysis of Variance Table

Model 1: subsetHeodToHead$Roting ~ subsetHeadToHead$DurationInDays

Model 2: subsetHeadToHead$Rating ~ subsetHeadToHead$}DurationInDays

+ subsetHeadToHead3$ShuSoldiersEngaged +
subsetHeadToHeadiWeiSoldiersEngaged

Model 3: subsetHeodToHead$Roting ~ subsetHeadToHead$DurationInDays

+ subsetHeadToHead3$ShuSoldiersEngaged +
subsetHeadToHeadiWeiSoldiersEngaged +

interactionSoldiersHeadToHead

Res.DF R55 Df Sum of Sq F Pri{=F2)
1 28 6964.9
2 26 4328.5 2 2644.4 8.0386 9.902015 **
3 25 4112.8 1 208.5 1.2676 0.2700a3
Signif. codes: @ “***' § @@l “**' @.@1 “*' @.@5 *.* Q.1 ¢ ' 1

The ANOVA table from our activity indicates that our multiple regression model is statistically
significant above and beyond our simple regression model. However, our interaction

model does not make a statistically significant contribution above and beyond our multiple
regression model. This suggests, from a statistical standpoint, that our interaction coefficient
should be removed. Recall that we did not formulate a logical basis for the interaction
between the number of Shu and Wei soldiers engaged in head to head combat. Without

a statistical or practical reason to include the interaction coefficient, it is best removed

from the model. In other words, our HLR analysis suggests that, out of the models that

we analyzed, the multiple regression model is best.

[100]

Chapter 5

1. Which of the following best explains the meaning of a statistically significant result
in an ANOVA table generated during an HLR analysis?

a. The regression models' coefficients are statistically significant.
b. The overall regression model is statistically significant.

The contribution that the model makes is statistically significant.

o

The contribution that the model makes above and beyond the preceding model
is statistically significant.

Using the techniques that we explored in this chapter, analyze the remaining battle
methods— surround, ambush, and fire— and create regression models for each that predict
the performance rating of the Shu army. Be sure to use your practical knowledge of the
combat strategies to choose appropriate coefficients for your regression models. Once

you have found a few reasonably predictive models for each method, use HLR to compare
them. Ultimately, come to a statistically and practically justifiable conclusion about the best
regression model to use for each battle method. Remember to save your R workspace and
console text to preserve the content that you created during this chapter.

Summary

Throughout this chapter, you explored your data for the purpose of weighing potential
options. En route, you have considered both the practical and statistical significance of your
decisions. You have derived four predictive regression models, one for each battle method,
that you can use to develop and assess potential battle strategies for the Shu forces. At this
point, you should be able to:

¢ Use multi-argument and variable-argument functions to make calculations
¢ Create predictive models using regression analysis
¢ Consider the statistical and practical significance of your analyses

Our next chapter will focus on using the models that we have developed, as well as our
logistical constraints, to decide on an ultimate course of action for the Shu army.

1011

Download from Wow! eBook <www.wowebook.com>

In the preceding chapter, you developed four regression models to predict
the outcomes of battles in which the Shu army uses head to head, surround,
ambush, and fire attack methods. A sample regression model for each of
the battle methods is provided to you in this chapter. For demonstration and
consistency, these models will be used throughout the chapter. However,
you are encouraged to substitute your own models from Chapter 5 into the
calculations and activities in this chapter.

For the duration of this chapter, we will focus on employing our regression models to predict
outcomes and to determine the feasibility of different attack strategies. Ultimately, you will
need to decide on the best course of action for the Shu army. By the end of this chapter, you
will be able to:

¢ Use regression models to predict outcomes

¢ Create your own custom functions to address specific needs

¢ Assess the viability of achieving the outcomes predicted by regression models

In this section, we will review each of the four regression models created in Chapter 5. This
will refresh our memory and prepare us to use our models in developing and assessing
potential strategies. Again, while these sample models will appear throughout this chapter,
feel free to substitute your own models into any or all activities.

Planning the Attack

The following is a summary of the head to head model:

> modelHeadToHead_Summary

Call:

Im{formula = subsetHeodToHead$Rating ~ subsetHeadToHead$DurationInDays +
subsetHeadToHead}5huSoldiersEngaged + subsetHeadToHead$WeiSoldiersEngaged,
data = subsetHeadToHead)

Residuals:

Min 10 Median Elu] Max
-25.4560 -8.3716 -@.2642 10.0152 24,3812
Coefficients:

Estimate Std. Error t walue Pr{=1tl)

(Intercept) 07.35@0156 £.6961401 11.195 1.92e-11 ***
subsetHeadToHead$DurationInDays -@.7680305 ©.0958033 -8.017 1.70c-0Q8 ***
subsetHeadToHead$ShuSoldiersEngoged @.0005422 0.0001406 3,857 0.000678 *xx

subsetHeadToHead$WeiSoldiersEngaged -@.0092755 O.0001049 -2.627 @.014258 *

Signif. codes: @ "*¥*' p.9Q1 f**' Q.01 **' Q.05 ', @1 ¢ 1

Residual standard error: 12.89 on 26 degrees of freedom
Multiple R-squared: @.8585, Adjusted R-squared: @.8421
F-stotistic: 52.56 on 3 aqﬂ 26 DF, p-value: 3.57e-11

Our head to head regression model predicts the Shu army's performance rating based on the
duration of battle and the number of Shu and Wei soldiers engaged. All of these coefficients,
as well as the overall model, are statistically significant. The model explains 86% of the
variance in performance rating. Therefore, 14% of the rating remains unaccounted for

and unpredicted. Our head to head regression equation is:

Rating = 97 - 0.77 * duration + 0.00054 * Shu soldiers - 0.00028
* Wel soldiers

Recall that our dependent variable of Rat ing is represented numerically on a scale from
0 to 100. Consequently, the higher the value predicted by our regression model, the more
confident we can be that our strategy will lead to victory. Conversely, a lower value would
make us more certain that our strategy would lead to defeat. For instance, a value of 90
would indicate a higher likelihood of victory, while a value of 10 would indicate a higher
likelihood of defeat. Keeping this in mind, let us analyze the coefficients in our head to
head combat model.

In our equation, the duration coefficient of -0.77 indicates that the Shu army's chances

of victory decrease rapidly as the length of a head to head conflict increases. The positive
coefficient for Shu soldiers engaged implies that deploying more Shu soldiers leads to a higher
prospect of victory. In contrast, the negative coefficient for Wei soldiers engaged suggests
that the more Wei soldiers deployed, the lower the chances of victory for the Shu army. The
intercept of 97 does not have a logical practical interpretation, but it is essential to making
predictions with the model. This is true of the intercept in each of our sample models.

(1041

Chapter 6

The following is a summary of the surround model:

= modelSurround_Summary

Call:

Im{formula = subsetSurround$Rating ~ numericExecutionSurround +
subsetSurround$burationInDays + subsetSurround$ShuSoldiersEngaged +
subsetSurround$WeiSoldiersEngaged, dota = subsetSurround)

Residuals:
Min 10 Median Eli] Max
-11.6306 -3.2089 -@.4548 3.5028 15.4747

Coefficients:

Estimate Std. Error t walue Pr(=1+tl)
(Intercept) 3.470e4B1 7.278e400 4.76E 6.80e-@5 ***
numericExecutionSurround 5.765e401 3.641le+@ 15.832 1.54e-14 ***
subsetSurroundiDurationInDays -1.488e-01 5.90@e-92 -2.522 0.9184090 *

subsetSurround$ShuScoldiersEngaged 1.758e-84 3.817e-85 4.606 0.000184 ***
subsetSurroundiWeiSoldiersEngaged -1.935e-84 5.587e-05 -3.463 0.001930 **

Signif. codes: @ “***' 9 9@1 “*** 9.01 **' 9.05 *.' 4.1 * ' 1

Residual standard error: 5.769 on 25 degrees of freedom
Multiple R-squared: 8.9791, Adjusted R-squared: @.9758
F-statistic: 293.4 on 4 and 25 OF, p-value: < 2.7e-16

Our surround method regression model predicts the Shu army's performance rating based
on execution (successful or unsuccessful), the duration of battle, and the number of Shu and
Wei soldiers engaged. All of these coefficients, as well as the overall model, are statistically
significant. This model contains a remarkable 98% of the elements that predict the variance
in performance rating when the surround strategy is employed. Our surround regression
equation is:

Rating = 35 + 58 * execution - 0.15 * duration + 0.18 *
Shu soldiers - 0.19 * Wei soldiers

Here, the 58 coefficient suggests that successful execution is not only critical, but likely
necessary to predict victory. Recall that our SuccessfullyExecuted variable was
categorical. It has been represented as 0 for no and 1 for yes. Accordingly, successful
execution of the surround method will add 58 to our final rating prediction, whereas
unsuccessful execution will contribute 0. Therefore, our predicted outcome weighs
tremendously on whether or not we expect our forces to successfully execute the surround
technique. Again, a shorter duration of battle is better. The coefficients for Shu and Wei
soldiers engaged can be interpreted in similar fashion to our head to head model.

[1051

Planning the Attack

The following is a summary of the ambush model:

> modelAmbush_Summary

Call:

Im{formula = subsetAmbush$Rating ~ numericExecutionAmbush + subsetAmbush%$DurationInDays +
subsetAmbush$ShuSoldiersEngoged + subsetAmbushiWeiSoldiersEngaged,
dota = subsetAmbush)

Residuals:
Min 10 Median Eli] Max
-20.019 -3.648 2.530 E.941 13.981

Coefficients:
Estimate Std. Error t value Pr{=1tl)

(Intercept) 55.7023022 11.3@52112 4.035 4.41e-@5 ***
numericExecutionAmbush 443273148 5.0280503 7.478 V.87Ve-DE w»
subsetAmbush$DurationInDays -1.9748222 0.6454942 -3 .050 0.9@5233 *=*

subsetAmbush$ShuSoldiersEngoged @.0017928 @.0004770 3.752 D.0QA0OI5 **+
subsetAmbushieiSoldiersEngoged -9.0008191 @.0002641 -3.1901 @.004731 **

Signif. codes: @ “%**' Q. Q@1 ***' p.01 “*' .05 . 9.1 ¢ ' 1

Residual standard error: 18.53 on 25 degrees of freedom
Multiple R-squared: 9.9165, Adjusted R-squared: @.9@31
F-statistic: BB.57 on 4 and 25 DF, p-value: 4.154e-13

Our ambush method regression model predicts the Shu army's performance rating based
on execution, duration, and the number of Shu and Wei soldiers engaged. All of these
coefficients, as well as the overall model, are statistically significant. This model explains
a formidable 92% of the variance in performance rating when the ambush strategy is
employed. Our ambush regression equation is:

Rating = 56 + 44 * execution - 1.97 * duration + 0.0018 *
Shu soldiers - 0.00082 * Wei soldiers

In this case, the rating prediction is also tied strongly to successful execution. Once again,
the duration and number of Shu and Wei soldiers engaged can be interpreted in the same
manner as our preceding models.

[1061]

Chapter 6

The following is a summary of the fire model:

> modelFire_Summary

Call:
lm(formula = subsetFire$Roting ~ numericExecutionFire + subsetFire}DurationInDays +
interactionSoldiersFire, data = subsetFire)

Residuals:
Min 10 Median ETi] Max
-18.233 -7.248 1.466 6.452 18.535

Coefficients:

Estimate Std. Error t wvalue Pr=ltl)
(Intercept) 3.737e+01 3.467e+00 10.780 4, 34e-11 ***
numericExecutionFire 5.602e+01 486e+88 16.871 5.@8e-15 ***

3.
subsetFire$DurationInDays -1.237e+0@ 3.960e-01 -3.125 0.00434 **
interactionSoldiersFire -1.273e-987 3.717e-08 -3.424 0.00206 **

Signif. codes: @ “¥**' 5 Q@1 “**' @.Q1 **' @.@5 . @.1 ' 1

Residual standard error: &.386 on 26 degrees of freedom
Multiple R-squared: ©.928, Adjusted R-squared: 9.9197
F-statistic: 111.7 on 3 and 26 DF, p-value: 5.638e-15

Our fire attack regression model predicts the Shu army's performance rating based on
execution, duration, and the interaction between the number of Shu and Wei soldiers
engaged in battle. Here, it is not the raw number of soldiers for each side that impacts our
prediction, but rather the relationship between them. All of the coefficients, as well as the
overall model, are statistically significant. This model explains a solid 93% of the variance
in performance rating when the fire attack strategy is employed. Our fire attack regression
equation is:

Rating = 37 + 56 * execution - 1.24 * duration - 0.00000013 *

soldiers interaction

In this equation, successful execution plays a critical role in explaining the battle rating, as
does duration. Our interaction term suggests that the more soldiers involved in the battle,
regardless of affiliation, the less likely our fire attack is to lead to victory. This makes sense
considering that the fire attack, unlike our other methods, is a risky surprise tactic. Having
too many Shu soldiers increases the visibility of our attack and the likelihood that our plans
would be discovered. A similar condition arises from launching a fire attack on too many
Wei soldiers. There would be more eyes to discover and arms to quash the surprise attack.
Therefore, the interaction between the number of Shu and Wei soldiers involved in a fire
attack must be balanced to optimize our impact and chances of success.

11071

Planning the Attack

Predicting outcomes using regression models

Having reviewed each of our models, let us now look at how to use them to predict
outcomes in R. Before we do so, we must address a few assumptions about our models.

In order to decide whether a strategy is sufficient or not, we must determine an acceptable
Rating value. Assume for the remainder of this book that we consider a Rating value

of 80 to be sufficient for predicting victory. After all, Zhuge Liang's rating of the Shu army's
performance in each victorious campaign was 80 or higher. As such, a Rating of 80 or above
makes us reasonably confident that our strategy will lead to victory. A Rat ing below 80 will
be considered too risky and should be avoided.

Feel free to experiment with your own Rat ing values. The higher the
threshold, the more certain you can be of victory, but the less likely you

%@‘ are to have the resources to achieve it. The lower the required value, the
more resource allocation options you will have, but the higher risk your
strategy has of failure.

The outcomes of our surround, ambush, and fire attack regression models depend to a large
extent on the successful execution of these battle methods. Yet, successful execution is not
something that we can predict with certainty before a battle takes place. One way to handle
this conundrum is to use our past battle data to calculate the probability that our battle
methods will be successfully executed. Once obtained, we can enter our probability value
into our regression equations to make more accurate predictions than we would by merely
assuming that our methods were successfully or unsuccessfully executed.

To calculate our probability values, we need to look at the number of times that our methods
were successfully executed in the past and divide them by the total number of battles that
we have on record. For instance, we know that the Shu army successfully executed a fire
attack in 10 out of 30 battles. Therefore, our probability value for successful execution of

the fire attack method would be 0.33 (10 divided by 30). Identical steps can be taken to
derive probability values for each of the battle methods. These values are displayed in the
following table:

[108]

Chapter 6

Method Variable Name Probability
Head to head probabilitySuccessHeadToHead 1.00
Surround probabilitySuccessSurround 0.53
Ambush probabilitySuccessAmbush 0.50
Fire probabilitySuccessFire 0.33

We will use these probability values for the SuccessfullyExecuted variable when
making predictions with our regression models. However, do not hesitate to experiment with
hypothetical scenarios. For instance, suppose you feel that your soldiers are better trained
today than they have ever been in the past. Perhaps then they are more likely to successfully
execute battle plans and deserve a higher probability value.

Similarly, we cannot always determine how many soldiers the opposing army will bring into
a given battle. However, we do have the history of 120 prior battles that can give us an idea
of how many soldiers the Wei army tends to engage in relation to our own. From our past
data, we can predict the ratio of Wei soldiers to Shu soldiers for each method by summing
the total soldiers engaged for both sides and then dividing them. For example, in previous
battles where the surround method was employed, the Wei army engaged a total of 820,000
soldiers, while the Shu army engaged 1,287,000. Accordingly, the ratio of Wei to Shu soldiers
engaged was 0.64 (820,000 divided by 1,287,000). When the number of Wei soldiers is
unknown, we will assume the following ratios of Wei to Shu soldiers for each type of battle:

Method Variable name Ratio
Head to head ratioWeiShuSoldiersHeadToHead 1.08
Surround ratioWeiShuSoldiersSurround 0.64
Ambush ratioWeiShuSoldiersAmbush 1.82
Fire ratioWeiShuSoldiersFire 6.01

Yet at times, we can indeed predict the number of soldiers that the Wei army will engage in
battle. Imagine an ambush attack where we specifically target an enemy city with a known
number of soldiers. In this case, it would be better to use the known value than the ratio
estimate. When devising your final strategy, the appropriate assumptions will be determined
by the particular situation at hand.

(1091

Planning the Attack

Duration of hattle

Yet again, the duration of battle is something that is predictable in some cases and
unpredictable in others. Our past data show that, on average, surround attacks last for a
relatively long time, whereas fire attacks tend to be brief. We can derive the average duration
of battle for each of our combat methods for use in instances where a battle's length cannot
be predicted beforehand.

Method Variable name Average
Head to head meanDurationHeadToHead 77.9
Surround meanDurationSurround 105.5
Ambush meanDurationAmbush 13.6
Fire meanDurationFire 6.9

Whenever possible, it is best to determine the duration of battle. For example, when issuing
a fire attack, you may explicitly set a small window of time in which the army is expected to
execute its plans. Should the mission not be completed in time, it may be aborted, thereby
remaining within the determined time frame.

A word about assumptions

As noted, these assumptions are not set in stone. In fact, they are our best effort to

make the most reasoned and valid predictions in a situation where we cannot control or
determine every possible variable. As you progress through this chapter and begin making
your own battle predictions and plans, you may want to alter these assumptions to better
fit your interpretation of a situation. Along the way, always remain conscious that the
assumptions that you choose have important implications for the validity and riskiness of
your predictions.

Time for action - calculating outcomes from regression models

With our necessary assumptions decided upon, the simplest way to predict the outcome of
a particular scenario is to plug relevant numbers into a regression model and calculate the
result. Suppose we want to estimate the rating of an ambush attack when we know only the
number of Shu soldiers that we will engage.

1. Open R and set your working directory, as follows:

> #set the R working directory
> f#ireplace the sample location with one that is relevant to you
> setwd (" /Users/johnmgquick/rBeginnersGuide/")

(1101

Chapter 6

2. Load the Chapter 6 workspace. It contains the sample models, as well as our
assumed variables:

> #load the chapter six workspace
> load("rBeginnersGuide Ch 06 ReadersCopy.RData")

3. Calculate the rating of an ambush attack in which the Shu forces engage 5,000
soldiers:

> #what is the predicted rating of an ambush attack in which
the Shu forces engage 5000 soldiers?

>fambush model: Rating = 56 + 44 * execution - 1.97 * duration
+ 0.0018 * Shu soldiers - 0.00082 * Wei soldiers

> 56 + 44 * probabilitySuccessAmbush - 1.97 *
meanDurationAmbush + 0.0018 * 5000 - 0.00082 * (5000 *
ratioWeiShuSoldiersAmbush)

[1] 52.746

Our calculated rating of 53 falls well below our threshold of 80 and suggests that the Shu
army would have roughly an equal chance of winning or losing in this battle scenario.

What just happened?

We just employed the simplest, but most time consuming, method for predicting outcomes
from our regression models. Let us make this process more efficient by creating a custom
function in R that automatically calculates a solution when we provide the known values.

Time for action - creating custom functions

In R, function () can be used to define a custom function, along with its arguments. This
allows us to extend the capabilities of R by creating functions that meet our specific needs.

1. Use function() to define a custom function with arguments:

> #use function() to define custom function

> #define our ambush regression model as a custom function in R
> functionAmbushRating <- function (execution, duration,
ShuSoldiers, WeiSoldiers) {

56 + 44 * execution -

1.97 * duration +

0.0018 * ShuSoldiers - 0.00082 *
WeiSoldiers

}

+ o+ o+ +

[l

Planning the Attack

2.

Test and verify the function:

> #fwhat is the predicted rating of an ambush attack in which
the Shu forces engage 5000 soldiers?

> functionAmbushRating (probabilitySuccessAmbush,
meanDurationAmbush, 5000, 5000 * ratioWeiShuSoldiersAmbush)
[1] 52.746

As you can see, our custom function resulted in the same value as our previous
calculation. Conveniently, deriving this rating only required us to input the variable
values, rather than solving each piece of the equation mathematically.

To further demonstrate our function, suppose instead that our 5,000 Shu soldiers
are going to ambush a vulnerable unit of 1,000 Wei soldiers. Calculate the rating of
an ambush attack by 5,000 Shu soldiers against 1,000 Wei soldiers:

> #what is the predicted rating of an ambush attack by 5000 Shu
soldiers against 1000 Wei soldiers?

> functionAmbushRating (probabilitySuccessAmbush,
meanDurationAmbush, 5000, 1000)

[1] 59.388

Under a more predictable and favorable circumstance, our Rating value increased
a small amount to 59. Here, we are a little more confident in victory than in our
previous scenario, but still far from comfortable.

For a final test, let us examine the performance rating if we are completely
certain that our forces will successfully execute the proposed ambush attack.
Calculate the rating of a successful ambush attack by 5,000 Shu soldiers against
1,000 Wei soldiers:

> #what is the predicted rating of a successful ambush attack
by 5000 Shu soldiers against 1000 Wei soldiers?

> functionAmbushRating (1, meanDurationAmbush, 5000, 1000)

[1] 81.388

At 81, we are feeling pretty good about our chances for victory. But we must ask ourselves
just how likely the proposed circumstances are to occur in an authentic battle situation.
Naturally, our prediction is only valid to the extent that we believe that our estimates will
reflect actual battle conditions.

What just happened?

We just explored the creation and use of custom functions in R. The ability to create custom
functions is a powerful feature that allows you to expand the capabilities of the software
to meet your personal needs. Let us discuss the details of custom functions.

[n2]

Chapter 6

In R, the function () command can be used to create custom functions. These can take
many shapes and forms. They can also have anywhere from zero to several arguments.
The basic format of the function () command is as follows:

function (argumentl, argument2,... argumenti) { contents }
Here are some examples of custom functions:

¢ Noarguments:

function() { setwd("/Users/johnmguick/Desktop") }
This function sets the working directory to the desktop.

¢ Oneargument:

function(path) { setwd(path) }
This function sets the working directory to a specified path.

¢ Multiple arguments:

function (path, verify) {
setwd (path)
if (verify == TRUE)
getwd ()
}
}

This function sets the working directory to a specified path and then optionally
reports that path in the R console.

As we demonstrated in the preceding activity, it is often useful to save a custom function
into an R variable. This saves you the effort of retyping the entire command each time you
want to execute the function. Furthermore, it allows you to call the function, complete
with arguments, using the variable name. These benefits are demonstrated in the following
sample code:

#save a custom function into an R variable

\%

\%

customFunction <- function(x,y) { 5 * x + 2 * y }

#call the function by its variable name and solve for x = 1 and
= 2

customFunction (1, 2)

11 9

— VvV NV

131

Planning the Attack

Note that the parenthesis () are required when you want to execute a function that has
been saved into a variable. Without them, the contents of the variable will be displayed in
the R console. These differences are demonstrated in the following:

> #without parenthesis, the contents of the function are displayed
> customFunction
function(x,y) { 5 * x + 2 * y }

> #with parenthesis, the function is executed
> customFunction (1, 2)
[1] o

When we created our custom function in step 1 of the previous activity, you may have
noticed a new type of console line. These extended lines begin with a plus (+) sign. Unlike
input lines that begin with a greater than sign (>) and output lines that have no leading
character, extended lines are purely cosmetic. Extended lines are used to format long
segments of code so that they are more readable and aesthetically pleasing. The plus sign
lets you know that your previous line is being continued. In effect, an extended line is similar
to using a hard return in a word processor. The previous line is cut off immediately, while the
text continues at the start of the next line. The formatting value of extended lines is clarified
by the following sample code:

> #using a single line to define a long function

> functionAmbushRating <- function (execution, duration,
ShuSoldiers, WeiSoldiers) { 56 + 44 * success - 1.97 * duration +
0.0018 * ShuSoldiers - 0.00082 * WeiSoldiers }

> #fusing multiple lines to define a long function
> functionAmbushRating <- function (execution, duration,
ShuSoldiers, WeiSoldiers) {

+ 56 + 44 * execution -

+ 1.97 * duration +

+ 0.0018 * ShuSoldiers - 0.00082 *
+ WeiSoldiers

+ }

[1al

Download from Wow! eBook <www.wowebook.com>

Chapter 6

1. Which of the following elements is not required when creating a custom function?

function (argument,;, argument,,... argument;) { contents }
a. function

b. ()

C. argument,, argument,, ... argument;

d. contents

2. Which of the following is not true of a variable that contains a custom function?
a. Itcan be redefined to store a new custom function or other data.
b. Its function can be called by typing the variable name in the R console.
c. Its contents can be displayed by typing the variable name in the R console.
d. Its function can be called by typing the variable name, along with the function's
arguments in parenthesis, in the R console.
3. What does a plus sign (+) at the beginning of an R console line indicate?
a. The mathematical addition operator.
b. Aline of code that is contained within a custom function.
c. Asingle line of code that is being extended across multiple console lines.

d. Multiple lines of code that are being extended across multiple console lines.

Now that you are familiar with generating custom functions, use the function () command
to recreate the regression equations for each of the remaining battle methods—head

to head, surround, and fire—as R functions. Save each of these custom functions into

new variables, named functionHeadToHeadRating, functionSurroundRating,

and functionOFireRating respectively. Then test each of your functions using the
hypothetical battle data.

Time for action - creating resource-focused custom functions

Rather than plugging in values to calculate the outcome of a specific scenario, suppose that
we instead choose to determine the resources necessary to realize a desired result. In other
words, a different way to approach the challenge of developing a successful battle plan is to
set our required outcome, say a Rating of 80, and then solve for the number of soldiers or
other resources needed to achieve that outcome. We can make this process possible through
the use of custom functions.

(1151

Planning the Attack

The following procedure describes how to determine the amount of resources needed
to achieve a Rating of 80 in our ambush regression model:

1. Solve the regression equation for the variable of interest:

> #irearrange the ambush model to solve for the number of Shu
soldiers engaged

> #original ambush model: Rating = 56 + 44 * execution - 1.97 *
duration + 0.0018 * Shu soldiers - 0.00082 * Wei soldiers

> #ambush model solved for Shu soldiers: (Rating - 56 - 44 *
execution + 1.97 * duration + .0.00082 * Wei soldiers) / 0.0018

2. Create a custom function for the rearranged model and save it into an R variable:

> #fconvert the rearranged ambush model equation into a custom
function

> functionAmbushShuSoldiers <- function(rating, execution,
duration, WeiSoldiers) {

+ (rating - 56 - 44 * execution +

1.97 * duration +

0.00082 * WeiSoldiers) /

0.0018

}

+ o+ o+ o+

3. Test the function:

> #how many Shu soldiers must be engaged in an ambush attack
against 10,000 Wei soldiers to bring our rating to 807?

> functionAmbushShuSoldiers (80, probabilitySuccessAmbush,
meanDurationAmbush, 10000)

[1] 20551.11

> #how many Shu soldiers must be engaged in an ambush attack
against 10,000 Wei soldiers to bring our rating to 80 if we are
certain of successful execution?

> functionAmbushShuSoldiers (80, 1, meanDurationAmbush, 10000)
[1] 8328.889

Each of our regression equations can be rearranged in the same manner as our ambush
model. By solving for the number of Shu soldiers in our combat models, we can calculate
the amount of resources that our army must expend in specific situations. This approach
allows us to focus on determining the amount of resources required to achieve our
desired outcomes.

What just happened?

We again employed the function () command to create a custom function based on one of
our regression models. This activity represented a resource-focused approach to predicting
the outcomes of potential battle situations.

(1161

Chapter 6

Use the function () command to create resource-focused custom functions for each of the
remaining battle methods—head to head, surround, and fire. Save these custom functions
into new R variables, named appropriately for the data variable that you focused on. For
example, our ambush function in the previous activity solved for the number of Shu soldiers
engaged and thus was named functionAmbushShuSoldiers. Afterwards, test each of
your functions using hypothetical battle data.

Logistical considerations

Up to this point, we have paid little attention to resource constraints. Instead, we explored
the range of possibilities to obtain the most optimal prediction models and outcomes.

Yet, as the time to make a decision rapidly approaches, we must pay heed to the practical
limitations of the Shu army. When considered within the context of our predictive models,
logistical constraints will reveal our realistic set of available opportunities. From these, we
can determine the risks and rewards of our potential actions with increased confidence.
Taking our resources into account will lead us towards a sound and relevant decision.

The following sections outline the specific resource allotments available to the Shu army
and the costs associated with the current campaign. Since we will use this information
throughout the chapter, you may want to bookmark this segment for future reference.
We will use four resources to determine the viability of our battle plans. These are gold,
provisions, equipment, and soldiers.

Gold is our form of currency. Most actions have some kind of monetary cost associated with
them. The emperor has allotted the army 1,000,000 gold. This can be used however you
wish in devising a strategy for the Shu forces.

Provisions are needed to sustain the human component of the Shu army. You have 1,000,000
in provisions available. The amount required per month (30 days) depends on the number

of soldiers that you take into battle. Therefore, more soldiers equates to a faster rate of
consumption. Since each soldier needs one unit of provisions per 30 days to survive, the
daily consumption rate for the Shu army is equal to the number of soldiers engaged in battle
divided by 30 and the cost of purchasing new provisions is one gold per unit. Thus, an army
of 100,000 soldiers would require 100,000 provisions to sustain itself for 30 days (100, 000
soldiers * (30 /30) =100,000 provisions).

1111

Planning the Attack

Equipment refers to the manufactured component of the Shu army. This includes items
such as weapons, armor, chariots, tents, and so on. The army's equipment depreciates at
a rate of 0.1 (10%) per month (30 days). You need to pay one gold per soldier engaged in
battle to keep your equipment in prime condition. For instance, the equipment upkeep
for an army of 100,000 would cost 100,000 gold per 30 days. Without maintained
equipment, the Shu forces stand no chance against the Wei, who have greater human
and manufactured resources.

Soldiers are the human resource of the Shu army. The number of soldiers that you take into
battle has a tremendous impact on the expenses incurred, as well as the outcome of the
conflict. Therefore, it is a matter of delicate balance. Hanzhong, the site from which you will
launch your upcoming attack, currently has 100,000 soldiers. You have the option to relocate
soldiers to different cities within your kingdom. All things considered, the cost to move
soldiers between cities is one gold per soldier per 100 miles. Keep in mind that strengthening
one location is equivalent to weakening another. It is best to make sure that all critical cities
within your kingdom are sufficiently staffed to protect against invasion. The resource map
(see the Resource map section of this chapter) depicts the current distribution of soldiers

in various cities within the Shu and Wei kingdoms. From this, we can see that moving 1,000
soldiers from Baxi to Hanzhong, a distance of 100 miles, would cost 1,000 gold.

Resource and cost summary

The following table summarizes the logistical considerations that you will need to attend to
while devising a strategy for the Shu forces:

Resource Quantity Cost

Gold 1,000,000

Provisions 1,000,000 1 gold per soldier per 30 days to sustain
Equipment 1.0 1 gold per soldier per 30 days to maintain
Soldiers 100,000 1 gold per soldier per 100 miles to relocate

With these resources and costs in mind, you can predict the outcomes and assess the
feasibility of potential battle plans.

The following map details the locations of cities and the distribution of soldiers within the
Shu and Wei kingdoms. You should use this information to predict outcomes and determine
the feasibility of your proposed strategies.

(1181

Chapter 6

Shu and wel Soldiers bH Gi,tﬂ G.MWQSMW
15,000
wel
o
Xiping Anding £5:600
15,000 . 16,000
Longxi e
\{m 202?;126

Nanwyang Runan

25"9”0. . 20,000

_ Hawnzhowg
g
Iﬁ;‘:@o 0 100,000

Guanghan 0 s

10,000 Eadong
Ch&v\@du*

10,000 10,000

25,000 =1
05,090
Shu
wu
Zhuti
puen(®
Jianti
Yunnidn 05)090
o>
O\rom-gehnwg
5,000

Time for action - incorporating resource constraints

into predictions

Since we have added resource constraints as an additional factor in our decision process, let
us create a custom function to calculate the gold cost for a given battle plan:

1. Define a custom function that calculates the gold cost of a battle when its distance,
duration, and number of Shu soldiers engaged are known:
> #custom function that calculates the gold cost of a battle
> #cost formula: travel cost + (provision cost +

equipment cost) * battle duration
> functionGoldCost <- function (ShuSoldiers, distance, duration)

+ {

+ ShuSoldiers * ((distance / 100) + 2 * (duration / 30))

+ }

(19l

Planning the Attack

2. Test the function:

> #fiwhat is the predicted cost of an attack by 25,000 Shu
soldiers that takes place 100 miles away and lasts for 90 days?
> functionGoldCost (25000, 100, 90)

[1] 175000

We now have a way to calculate the gold cost of our potential strategies. Alternatively, you
could also choose to create functions solving for other combat constraints, such as soldiers,
distance, or duration.

What just happened?

We created a custom function that tells us how much gold we would need to execute our
plans when the number of Shu soldiers, the distance to the attack site, and the proposed
duration of the battle are known.

Gold cost function explanation

The formula that we used in our gold cost function may seem unfamiliar. This is because it
was coded in its simplest, and therefore easiest to read, form. The expanded formula for
calculating our gold cost is detailed as follows:

ShuSoldiers * distance / 100 + ShuSoldiers * provision cost *
duration + ShuSoldiers * equipment cost * duration

Once simplified, we are left with the formula used in our gold cost function:

ShuSoldiers * ((distance / 100) + 2 * (duration / 30))

The shuSoldiers term has been extracted and placed at the front of the equation.
The distance is divided by 100, because the cost of moving one soldier is one gold per
100 miles. The duration is multiplied by two and divided by 30, because the cost of
provisions and equipment are both one gold per soldier per 30 days of battle. In the end,
we have the same output as with our expanded formula, but using much less space.

1. Which of the following is not a reason to carefully consider the logistics of
predicted outcomes?

a. Considering logistics helps us to account for resource constraints.
b. Considering logistics helps us to identify a realistic set of opportunities.
Predicted outcomes are not always logistically viable.

d. Predicted outcomes present the most logistically sound course of action.

1201

Chapter 6

Create a custom function that tells us how many miles our army can travel given the
proposed amount of gold, number of soldiers, and duration of the attack. Save it into a
variable named functionMaxDistance. This function will prove useful in assessing the
viability of the strategies predicted by our regression models.

Our last major step in choosing a battle strategy is to assess its viability in light of the
resource constraints imposed upon our forces. We can accomplish this by taking our best
plans, calculating the costs associated with executing them, and then comparing those costs
to the resources that we have available.

For the time being, suppose we have decided to explore the possibilities of a 7-day fire attack
on the 10,000 strong Wei army 255 miles away at Anding. Also assume that we have already
predicted the conditions necessary for a rating of 80, as demonstrated:

> #custom function that calculates the number of Shu soldiers
needed to execute a given fire attack

> functionFireShuSoldiers <- function(rating, execution, duration,
WeiSoldiers) ({

+ (rating - 37 - 56 * execution +
+ 1.24 * duration) /
+ (0.00000013 * - WeiSoldiers)

+

}
> #assuming successful execution, how many Shu soldiers would be
needed to lead a fire attack against the 10,000 Wei soldiers
stationed 225 miles away at Anding?
> functionFireShuSoldiers (80, 1, 7, 15000)
[1] 2215.385

Through this process, we determined that 2,215 Shu soldiers must successfully launch the
7-day fire attack to meet our Rating threshold of 80.

Our next step is to take this information and examine its viability in terms of the resources
that have been allotted to us.

[1211

Planning the Attack

Time for action — assessing the viahility of potential strategies

Thus far, we have looked at two ways to factor resources into our predictions. One focuses
on calculating the gold cost of a mission, whereas the other searches for the maximum
distance over which our proposed campaign could take place. We will demonstrate both
approaches here:

1. Calculate the gold cost of the planned mission:

> #how much would it cost to launch a 7 day fire attack with
2,215 soldiers, 225 miles away in Anding?

> functionGoldCost (2215, 225, 7)

[1] 6017.417

2. Calculate the distance over which the proposed attack could take place:

> #custom function that calculates the the maximum distance the
Shu army can travel given our resources

> functionMaxDistance <- function(gold, ShuSoldiers, duration)
+ {

+ 100 * ((gold / ShuSoldiers) + (duration / 15))

+ }

> #how many miles can a Shu force of 2215 travel to execute a 7
day fire attack, given our allotment of 1,000,000 gold?

> functionMaxDistance (1000000, 2215, 7)

[1] 45193.39

In our first calculation, we derived a cost of 6,017 gold for the attack. This is well under our
budget of 1,000,000 and therefore is completely practical. Our second calculation found the
maximum possible distance that our army could travel, given our resources. The distance
of 45,193 miles is well beyond the distance to the target city. Therefore, we have also
determined the distance of our attack to be feasible.

What just happened?

We looked at assessing the viability of a potential fire attack in terms of gold cost and travel
distance. These are just a pair of the numerous possible ways that the practicality of our
plans could be tested and confirmed. Be sure to explore every angle necessary to make
yourself confident that your plans are the best ones available. After all, the welfare of
many people depends upon your decisions.

Remember your assumptions

One final reminder is that we must be wary of the assumptions that we make in formulating

plans. If you look back at our calculation that lead to a requirement of 2,215 soldiers, you will
notice that we assumed our fire attack would be successful. We must ask ourselves if this, as
well as any, assumption is a sound one.

11221

Chapter 6

According to our past battle data, fire attacks have only been executed successfully 33% of
the time. Let us look at how our viability would change if we were to use this probability
value, rather than assuming total success:

> #based on past battle data, how many Shu soldiers would be
needed to lead a victorious 7 day fire attack against the 10,000
Wei soldiers at Anding?

> functionFireShuSoldiers (80, probabilitySuccessFire, 7, 10000)
[1] -25538.46

Our recommended number of soldiers has suddenly turned negative! Considering that
engaging a negative number of soldiers is an obvious impossibility, this indicates that our fire
attack plans are completely impractical. This example has demonstrated how changing one
simple assumption can have a dramatic impact on our predictions and subsequent decisions.

You may be wondering which assumption, 1.0 or 0.33, is the better one in our case. As with
all assumptions, the truth is that there is no absolute answer. Since our work deals with
predicting the future, there will always be uncertainties about the assumptions that we
make. The best that we can do is to thoughtfully consider all of the information available to
us. In doing so, we can derive predictions that most accurately reflect the conditions present
in the world.

1. Which of the following is not a reason to carefully consider assumptions when
making logistical considerations?

a. Assumptions rarely have an absolute best answer.
b. Assumptions often have an impact on calculated results.
Assumptions may affect the validity of predicted outcomes.

d. Assumptions can be altered to achieve desirable real-world results.

You have worked long and hard to learn the techniques of master strategist Zhuge Liang.
Furthermore, you have become deeply aware of and involved in the circumstances
surrounding the Shu army. The time has come for you to determine which course of action
the Shu forces will take. Use the knowledge and skills that you have acquired throughout
this journey to predict and assess the optimal strategy for your army's upcoming attack.

It is recommended that you explore all four methods available—head to head, surround,
ambush, and fire—before making a final decision.

11231

Planning the Attack

The following table has been provided to aid you in this process. One scenario has been
calculated in the head to head column as an example. By the end of this activity, you should
decide on the strategy that your forces will execute in the upcoming battle:

Potential battle strategies

Method Head to head Surround Ambush Fire
Shu Soldiers 87,376
Wei Soldiers 15,000
Predicted Execution 1.0
Predicted Rating 80
Location of Attack Guangling
Distance 700
Duration 78
Provisions 227,178
Gold Cost 1,065,987
Viable No

During this chapter, you used several custom functions to predict outcomes and then
evaluated your predictions from a practical perspective. Ultimately, you determined the
best strategy available for the Shu army's next attack. While coming to this conclusion,
you acquired the knowledge and skills necessary to:

¢ Use regression models to predict outcomes
¢ Create your own custom functions to address specific needs

¢ Assess the viability of achieving the outcomes predicted by regression models

While you may have decided on a course of action for the Shu forces, your job is far from
over. The major challenge at this point is to convey your ideas to others in such a way that
they can be easily understood.

The next section of our book deals with the challenge of communicating the results of our
data analyses. In Chapter 7, we will focus on conducting a complete, organized analysis

in R. In Chapter 8, we will seek support from the emperor by presenting our battle plans
graphically. In Chapter 9, we will use detailed custom visuals to educate our generals on
the strategy that they will execute.

[124]

In the previous chapter, you completed your data analysis and selected the
optimal course of action for the Shu army. With this decision in place, the time
has come for you to share your strategy with the Shu forces. The initial step
towards communicating your vision to the masses is to revisit the work that
you have done up to this point.

In this chapter, we will focus on reorganizing and clarifying our prior analyses
such that they can be easily followed by and communicated to others. This
will render our work intelligible to a large audience, even if it is composed of
members who do not have the exceptional level of expertise in data analysis,
military strategy, statistics, and R that you do. Along the way, you will learn
the common steps that you can apply to all of your future analyses in R.

By the end of this chapter, you will be able to:

¢ Organize and clarify your raw R data analyses
¢ Communicate your raw R data analyses effectively

¢ Apply the steps common to all well-conducted R analyses

For demonstration purposes, it will be assumed that a fire attack was chosen as the
optimal battle strategy. Throughout this segment, we will retrace the steps that lead us
to this decision. Meanwhile, we will make sure to organize and clarify our analyses so
they can be easily communicated to others.

Organizing the Battle Plans

Note that at the end of this chapter, you will be challenged to repeat

these steps with the strategy that you devised in Chapter 6. However,
L if you feel comfortable using your own battle plans from the start, you

are encouraged to do so.

Suppose we determined our fire attack will take place 225 miles away in Anding, which
houses 10,000 Wei soldiers. We will deploy 2,500 soldiers for a period of 7 days and assume
that they are able to successfully execute the plans. Let us return to the beginning to develop
this strategy with R in a clear and concise manner.

To begin our analysis, we must first launch R and set our working directory:

1. LaunchR.
2. The R console will be displayed.

3. Setyour R working directory using the setwd (dir) function. The following code
is a hypothetical example. Your working directory should be a relevant location on
your own computer.
> #set the R working directory using setwd(dir)
> setwd (" /Users/johnmquick/rBeginnersGuide/")

4. Verify that your working directory has been set to the proper location using the
getwd () command:

> #verify the location of your working directory
> getwd ()
[1] "/Users/johnmquick/rBeginnersGuide/"

What just happened?

We prepared R to begin our analysis by launching the software and setting our working
directory. At this point, you should be very comfortable completing these steps.

Next, we need to import our battle data into R and isolate the portion pertaining to past
fire attacks:

1. CopythebattleHistory.csv file into your R working directory. This file contains
data from 120 previous battles between the Shu and Wei forces.

11261

Chapter 7

Read the contents of battleHistory.csv into an R variable named
battleHistory using the read.table(...) command:

> #iread the contents of battleHistory.csv into an R variable
> #{battleHistory contains data from 120 previous battles
between the Shu and Wei forces

> battleHistory <- read.table("battleHistory.csv", TRUE, ",")

Create a subset using the subset (data, ...) function and save it to a new
variable named subsetFire:

> #use the subset (data, ...) function to create a subset of
the battleHistory dataset that contains data only from battles
in which the fire attack strategy was employed

> subsetFire <- subset (battleHistory, battleHistory$Method ==
"fire")

Verify the contents of the new subset. Note that the console should return 30 rows,
all of which contain £ire in the Method column:

> #display the fire attack data subset
> subsetFire

> subsetFire
Method Raoting SuccessfullyExecuted Result ShuSoldiersEngaged WeiSoldiersEngaged DurationInDays

a1 fire 39 N Defeat 109 1509 4
92 fire 109 ¥ VMictory 102 1502 1
93 fire 25 N Defeat 108 2508 2
a4 fire 19 N Defeat 250 2509 14
95 fire as ¥ Mictory 258 2002 4
96 fire 38 N Defeat 258 2002 18
a7 fire 39 N Defeat 509 4009 13
98 fire 29 N Defeat 509 4909 13
99 fire 78 ¥ Defeat 509 5002 3
188 fire 99 ¥ VWictory Saa Soea 6
121 fire 39 N Defeat 509 5009 12
182 fire 4@ N Defeat 1202 5002 3
183 fire 45 N Defeat 1008 Soea 1
194 fire 15 N Defeat 1909 10009 12
185 fire L] ¥ VMictory 1202 10900 3
186 fire 15 N Defeat 1002 10909 18
197 fire 29 N Defeat 1509 25009 2
128 fire 25 N Defeat 1502 10909 4
1849 fire 85 ¥ VWictory 1502 10900 18
118 fire 85 ¥ VWictory 2008 7508 9
111 fire 39 N Defeat 2009 7509 7
112 fire 4@ N Defeat 2002 25008 2
113 fire 4@ N Defeat 2508 20000 3
114 fire 39 N Defeat 2509 18009 7
115 fire 82 ¥ VWictory 2509 12008 4
116 fire 15 N Defeat So0a 10000 11
117 fire 19 N Defeat 5909 50009 13
118 fire 82 ¥ VMictory 7502 25000 4
119 fire 58 ¥ Defeat 7509 50000 9
128 fire 15 N Defeat 10009 25009 18

1211

Organizing the Battle Plans

What just happened?

As we have in previous chapters, we imported our dataset and then created a subset
containing our fire attack data. However, this time we used a slightly different function,
called read.table (.. .), to import our external data into R.

read.tablel.)

Up to this point, we have always used the read.csv () function to import data into

R. However, you should know that there are often many ways to accomplish the same
objectives in R. For instance, read.table (.. .) is a generic data import function that can
handle a variety of file types. While it accepts several arguments, the following three are
required to properly import a CSV file, like the one containing our battle history data:

file: the name of the file to be imported, along with its extension, in quotes

header: whether or not the file contains column headings; TRUE for yes, FALSE
(default) for no

¢ sep: the character used to separate values in the file, in quotes
Using these arguments, we were able to import the data in our battleHistory.csv into

R. Since our file contained headings, we used a value of TRUE for the header argument and
because it is a comma-separated values file, we used ", " for our sep argument:

> battleHistory <- read.table("battleHistory.csv", TRUE, ",")

This is just one example of how a different technique can be used to achieve a similar
outcome in R. We will continue to explore new methods in our upcoming activities.

1. Suppose you wanted to import the following dataset, named newData into R. Which
of the following read.table (.. .) functions would be best to use?

4,5
5,9
6,12
read.table ("newData", FALSE, ", ")

a
b. read.table("newData", TRUE, ",")

o

read.table ("newData.csv", FALSE, ", ")

d. read.table("newData.csv", TRUE, ", ")

11281

Chapter 7

Time for action - data exploration

To begin our analysis, we will examine the summary statistics and correlations of our data.
These will give us an overview of the data and inform our subsequent analyses:

1.

Generate a summary of the fire attack subset using summary (object):

> #fgenerate a summary of the fire subset
> summaryFire <- summary (subsetFire)

> #display the summary

> summaryFire

> summaryFire

Method Rating SuccessfullyExecuted Result ShuSoldiersEngaged WeiSoldiersEngaged DurationInDays
ambush @ Min. : 19.9 N:2@ Defeat :22 Min. : 108 Min. 1 1508 Min. 1 1.000
fire 130 1st Qu.: 25.9 ¥:18 Victory: 8 1st Qu.: 508 1st Qu.: 4258 1st Qu.: 3.000
headToHead: @ Median : 55.9 Median : 1008 Median : B75@ Median : 6.500
surround : @ Mean 1 52.9 Mean 1 2852 Mean 112333 Mean 1 6.867

3rd Qu.: 77.5 3rd Qu.: 2375 3rd Qu.:16508 3rd Qu.:10.000
Max . :100.9 Max . 110008 Max. 150000 Max. 114,000
Before calculating correlations, we will have to convert our nonnumeric data from
the Method, SuccessfullyExecuted, and Result columns into numeric form.
% For a discussion on converting nonnumeric data, refer to the
=" Quantifying Categorical Variables section of Chapter 4.
2. Recode the Method column using as.numeric (data):
> #irepresent categorical data numerically using
as.numeric (data)
> #recode the Method column into Fire = 1
> numericMethodFire <- as.numeric (subsetFires$Method) - 1
3. Recode the SuccessfullyExecuted column using as.numeric (data)
> #irecode the SuccessfullyExecuted column into N = 0 and Y = 1
> numericExecutionFire <-
as.numeric (subsetFire$SuccessfullyExecuted) - 1
4. Recode the Result column using as.numeric (data):

> #irecode the Result column into Defeat = 0 and Victory =1
> numericResultFire <- as.numeric (subsetFire$Result) - 1

With the Method, SuccessfullyExecuted, and Result columns coded into
numeric form, let us now add them back into our fire dataset.

11291

Organizing the Battle Plans

5. save the data in our recoded variables back into the original dataset:

> #save the data in the numeric Method, SuccessfullyExecuted,

and Result columns back into the fire attack dataset

> gubsetFire$Method <- numericMethodFire

> subsetFire$SuccessfullyExecuted <- numericExecutionFire

> gsubsetFire$Result <- numericResultFire

6. Display the numeric version of the fire attack subset. Notice that all of the columns

now contain numeric data; it will look like the following:

> 5

ubsetFire

Method Rating SuccessfullyExecuted Result ShuSoldiersEngoged WeiSoldiersEngaged DurationInDays

1 3a

PRRPPPRPRRPRPRPRPPRPRPRPRERPRRPRERRRPRERRRRERRE
=
i

PP, SRR, PR, R ®

TERP OSSPSR, R, R, ®

100
189
100
258
258
250
500
589
500

1599
1509
2592
2509
2099
2009
4009

12

e

e
[T- N PR S N L TE I CRCN Ty -~y ¥

i
=

7. Having replaced our original text values in the SuccessfullyExecuted and

Result columns with numeric data, we can now calculate all of the correlations in

the dataset using the cor (data) function:

> #use cor(data) to calculate all of the correlations in the

fire attack dataset
> cor (subsetFire)

[130]

Chapter 7

> cor{subsetFire}

Method Rating SuccessfullyExecuted
Method 1 NA NA NA
Rating NA 1.0000000 $.01945796 @.9006976
SuccessfullyExecuted NA ©.9194589 1.00000000 0.8528029
Result NA ©.9806976 9.85280287 1.0000000
ShuSoldiersEngaged NA -8.1145212 8.08174874 -0.0327048
WeiSoldiersEngaged NA -8.1768208 9.02636586 -0.1545836
DurationInDays NA -8.4597561 -0.26528256 -@.2514287

Warning message:
In cor{subsetFire) : the standard deviation is zero

8.
.B8174874
.B3270480
. 00000000
. 73850610
.16298783

TR e

NA
11452122

-@.
a.
-8.
a.

-

8.

Result ShuSoldiersEngaged WeiSoldiersEngaged DurationInDays

NA
17682082
@2636586
15458357
73850619

. 20900002

18700973

NA
-0.4597561
-8.2652826
-0.2514287

@.1629878
8.1070097
1.2200022

* Note that the error message and NA values in our correlation output

result from the fact that our Method column contains only a single

value. This is irrelevant to our analysis and can be ignored.

What just happened?

Initially, we calculated summary statistics for our fire attack dataset using the
summary (object) function. From this information, we can derive the following

useful insights about our past battles:

¢ The rating of the Shu army's performance in fire attacks has ranged from 10 to 100,

with a mean of 45

Fire attack plans have been successfully executed 10 out of 30 times (33%)

Fire attacks have resulted in victory 8 out of 30 times (27%)

Successfully executed fire attacks have resulted in victory 8 out of 10 times (80%),
while unsuccessful attacks have never resulted in victory

¢ The number of Shu soldiers engaged in fire attacks has ranged from 100 to 10,000

with a mean of 2,052

¢ The number of Wei soldiers engaged in fire attacks has ranged from 1,500 to 50,000

with a mean of 12,333

¢ The duration of fire attacks has ranged from 1 to 14 days with a mean of 7

Next, we recoded the text values in our dataset's Method, SuccessfullyExecuted, and
Result columns into numeric form. After adding the data from these variables back into our
our original dataset, we were able to calculate all of its correlations. This allowed us to learn

even more about our past battle data:

¢ The performance rating of a fire attack has been highly correlated with successful
execution of the battle plans (0.92) and the battle's result (0.90), but not strongly
correlated with the other variables.

11311

Download from Wow! eBook <www.wowebook.com>

Organizing the Battle Plans

¢ The execution of a fire attack has been moderately negatively correlated with
the duration of the attack, such that a longer attack leads to a lesser chance
of success (-0.46).

¢ The numbers of Shu and Wei soldiers engaged are highly correlated with each other
(0.74), but not strongly correlated with the other variables.

The insights gleaned from our summary statistics and correlations put us in a prime position
to begin developing our regression model.

1. Which of the following is a benefit of adding a text variable back into its original
dataset after it has been recoded into numeric form?

a. Calculation functions can be executed on the recoded variable.
b. Calculation functions can be executed on the other variables in the dataset.

Calculation functions can be executed on the entire dataset.

o

There is no benefit.

Time for action — model development

Let us continue to the most extensive phase of our data analysis, which consists of
developing the optimal regression model for our situation. Ultimately, we want to predict
the performance rating of the Shu army under potential fire attack strategies. From our
previous exploration of the data, we have reason to believe that successful execution greatly
influences the outcome of battle. We can also infer that the duration of a battle has some
impact on its outcome. At the same time, it appears that the number of soldiers engaged in
battle does not have a large impact on the result. However, since the numbers of Shu and
Wei soldiers themselves are highly correlated, there is a potential interaction effect between
the two that is worth investigating. We will start by using our insights to create a set of
potentially useful models:

1. Usetheglm(formula, data) function to create a series of potential linear models
that predict the Rat ing of battle (dependent variable) using one or more of the
independent variables in our dataset. Then, use the summary (object) command
to assess the statistical significance of each model:

> #fcreate a linear regression model using the
glm(formula, data) function
> #fpredict the rating of battle using execution

11321

Chapter 7

> lmFireRating Execution <- glm(Rating ~ SuccessfullyExecuted,

data

= gubsetFire)

> #fgenerate a summary of the model

> lmFireRating Execution Summary <-

summary (lmFireRating Execution)

> #display the model summary

> lmFireRating Execution Summary

> #keep execution in the model as an independent variable

= lmFireRating_Execution_Summary

Call:
glm{formula = Rating ~ SuccessfullyExecuted, data = subsetFire)

Deviance Residuals:
Min 10 Median Eli] Max
-32.500 -9.500 2.500 6.687 19.250

Coefficients:
Estimate Std. Error t value Pr(=1tl)

(Intercept) 25.750 2.648 9,725 1.78e-1@ ***
SuccessfullyExecuted 56.750 4,586 12.374 7.20e-13 ***
Signif. codes: @ “***' @ Q@1 ***' H.01 *' 9.@5 ‘. @.1 ¢ ' 1

{Dispersion parameter for gaussian family taken to be 148.2232)

Null deviance: 25396.7 on 29 degrees of freedom
Residual deviance: 3926.2 on 28 degrees of freedom
AIC: 237.36

Number of Fisher Scoring iterations: 2
.

Our first model used only the successful (or unsuccessful) execution of battle plans
to predict the performance of the Shu army in a fire attack. Our summary tells us
that execution is an important factor to include in the model.

% For a review of regression model interpretation, refer to the
S

Regression section of Chapter 5.

Now, let us examine the impact that the duration of battle has on our model:

> #fpredict the rating of battle using execution and duration

> ImFireRating ExecutionDuration <-

glm(Rating ~ SuccessfullyExecuted + DurationInDays,

data

= subsetFire)

> #generate a summary of the model

> IlmFireRating ExecutionDuration_ Summary <-

summary (lmFireRating ExecutionDuration)

[1331

Organizing the Battle Plans

> #display the model summary
> lmFireRating ExecutionDuration Summary
>#keep duration in the model as independent variable

= lmFireRoting_ExecutionDuration_Summary

Call:
glm{formula = Rating ~ SuccessfullyExecuted + DurationInDays,
data = subsetFire)

Deviance Residuals:
Min 10 Median an Max
-26.515 -6.36@ 3.852 8.377 12.9@5

Coefficients:

Estimate Std. Error t value Pr(=1tl)
(Intercept) 38.1253 4.0899 9.322 6.27e-1@ ***
SuccessfullyExecuted 52.9484 3.9815 13.299 2. 28e-13 *%*
DurationInDays -1.6177 9.4493 -3.600 0.00126 **

Signif. codes: @ “**¥' @ @@1 ***' @.01 ‘*' 4.A5 *." @.1 ¢ * 1

(Dispersion parameter for goussian family taken to be 98.24895)
Null deviance: 25396.7 on 29 degrees of freedom

Residual deviance: 2652.7 on 27 degrees of freedom

AIC: 227.6

Number of Fisher Scoring iterations: 2

This model added the duration of battle to execution as a predictor of the Shu
army's rating. Here, we found that duration is also an important predictor that
should be included in the model.

Next, we will inspect the prospects of including the number of Shu and Wei soldiers
as predictors in our model:

> #fpredict the rating of battle using execution, duration,
and the number of Shu and Wei soldiers engaged

> lmFireRating ExecutionDurationSoldiers <-

glm(Rating ~ SuccessfullyExecuted + DurationInDays +
ShuSoldiersEngaged + WeiSoldiersEngaged, data = subsetFire)
> #generate a summary of the model

> lmFireRating ExecutionDurationSoldiers Summary <-
summary (lmFireRating ExecutionDurationSoldiers)

> #display the model summary

> lmFireRating ExecutionDurationSoldiers Summary

> #drop the number of Shu and Wei soldiers from model

as independent variables

(1341

Chapter 7

> lmFireRoting_ExecutionDurationSoldiers_Summary

Call:
glm{formula = Rating ~ SuccessfullyExecuted + DurationInDays +
ShuSoldiersEngaged + WeiSoldiersEngaged, data = subsetFire)

Deviance Residuals:
Min 10 Median qQ Max
-19.484 -5.672 2.546 6.168 18.559

Coefficients:

Estimate Std. Error t wvalue Pr{=1tl)
(Intercept) 41.7874992 3,7429832 11.164 3.32e-11 ***
SuccessfullyExecuted 53.8544374 4852025 15.452 2 .6Be-14 ***

3
DurationInDays -1.4309681 0.3968799 -3.606 @.00135 **
ShuSoldiersEngaoged -0.0085402 0. 0089647 -0.560 @.57426
WelSoldiersEngoged -9.0083349 0.9001861 -1.795 @.98483 .

Signif. codes: @ “**¥' @ Q@1 “**' 9.1 *' @.05 *." P.1 ¢ 1

{Dispersion parameter for gaussian family taken to be 73.72798)
Null deviance: 25396.7 on 29 degrees of freedom

Residual deviance: 1843.2 on 25 degrees of freedom

AIC: 220.68

Number of Fisher Scoring iterations: 2

This time, we added the number of Shu and Wei soldiers into our model, but

determined that they were not significant enough predictors of the Shu army's

performance. Therefore, we elected to exclude them from our model.

Lastly, let us investigate the potential interaction effect between the number of

Shu and Wei soldiers:

> #investigate a potential interaction effect between the
number of Shu and Wei soldiers

> #fcenter each variable by subtracting its mean from each
of its values

> centeredShuSoldiersFire <- subsetFire$ShuSoldiersEngaged
- mean (subsetFires$ShuSoldiersEngaged)

> centeredWeiSoldiersFire <- subsetFire$WeiSoldiersEngaged
- mean (subsetFiresWeiSoldiersEngaged)

> #fmultiply the two centered variables to create the
interaction variable

> interactionSoldiersFire <- centeredShuSoldiersFire

* centeredWeiSoldiersFire

> #fpredict the rating of battle using execution, duration,
and the interaction between the number of Shu and Wei
soldiers engaged

> lmFireRating ExecutionDurationShuWeiInteraction <-
glm(Rating ~ SuccessfullyExecuted + DurationInDays +
interactionSoldiersFire, data = subsetFire)

> #fgenerate a summary of the model

[1351]

Organizing the Battle Plans

lmFireRating ExecutionDurationShuWeiInteraction Summary

<- summary (lmFireRating ExecutionDurationShuWeiInteraction)
> #display the model summary

> lmFireRating ExecutionDurationShuWeiInteraction Summary
> #{keep the interaction between the number of Shu and Wei
soldiers engaged in the model as an independent variable

= lmFireRoting_ExecutionDurationShuleilnteraction_Summary

Call:
glm{formula = Rating ~ SuccessfullyExecuted + DurationInDays +
interactionSoldiersFire, dota = subsetFire)

Deviance Residuals:
Min 10 Median 3Q Max
-18.233 -7.248 1.466 6.452 18.535

Coefficients:

Estimate Std. Error t wvalue Pr{=1tl)
(Intercept) 3.737e401 3.467e+00 10.780 4.34e-11 ***
SuccessfullyExecuted 5.602e+B1 3.486e+00 16.071 5.08e-15 **+
DurationInDays -1.237e4+00 3.960e-81 -3.125 0.00434 **

interactionSoldiersFire -1.273e-87 3.717e-08 -3.424 0.00206 **

Signif. codes: @ ¥#%*%' 9 Q@1 “**' @ @1 **' §.B5 .7 @1 ¢ 1
(Dispersion parameter for gaussian family taken to be 78.319)
Null deviance: 25396.7 on 29 degrees of freedom

Residual deviance: 1828.3 on 26 degrees of freedom
AIC: 218.43

Number of Fisher Scoring iterations: 2

We can see that the interaction effect between the number of Shu and Wei
soldiers does have a meaningful impact on our model and should be included
as an independent variable.

Note that some statisticians may argue that it is inappropriate to include
an interaction variable between the Shu and Wei soldiers in this model,
without also including the number of Shu and Wei soldiers alone as

* variables in the model. In this fictitious example, there is no practically

%‘\ significant difference between these two options, and therefore, the

interaction term has been included alone for the sake of simplicity and
clarity. However, were you to incorporate interaction effects into your
own regression models, you are advised to thoroughly investigate the
implications of including or excluding certain variables.

[1361

Chapter 7

We have identified four potential models. To determine which of these is most appropriate
for predicting the outcome of our fire attack, we will use an approach known as Akaike
Information Criterion, or AIC:

> #use the AIC(object, ...) function to compare the models
and choose the most appropriate one

> #when comparing via AIC, the lowest value indicates the
best statistical model

> AIC(lmFireRating Execution, lmFireRating ExecutionDuration,
lmFireRating ExecutionDurationSoldiers,

lmFireRating ExecutionDurationShuWeiInteraction)

> #according to AIC, our model that includes execution, duration, and
the interaction effect is best

= AIC{ImFireRating_Execution, ImFireRating_ExecutionDuration,
ImFireRating_ExecutionDurationSoldiers, lmFireRoting_ExecutionDurationShuWeilnteraction)

df AIC
ImFireRating_Execution 3 237.3636
ImFireRating_ExecutionDuration 4 227.6006
ImFireRating_ExecutionDurationSoldiers b 220.6781

ImFireRating_ExecutionDurationShuleiInteraction 5 218.4345

The AIC procedure revealed that our model containing execution, duration, and the
interaction between the number of Shu and Wei soldiers is the best choice for predicting
the performance of the Shu army.

What just happened?

We just completed the process of developing potential regression models and comparing
them in order to choose the best one for our analysis. Through this process, we determined
that the successful execution, duration, and the interaction between the number of Shu
and Wei soldiers engaged were statistically significant independent variables, whereas

the number of Shu and Wei soldiers alone were not. By using an AIC test, we were able to
determine that the model containing all three statistically significant variables was best

for predicting the Shu army's performance in fire attacks. Therefore, our final regression
equation is as follows:

Rating = 37 + 56 * execution - 1.24 * duration - 0.00000013 *
soldiers interaction

For a more detailed discussion of model development, refer
s to the Regression section of Chapter 5.

11311

Organizing the Battle Plans

Each of our models in this chapter were created using the glm (formula, data) function.
For our purposes, this function is identical in structure and very similar in effect to the
1m(formula, data) function that we are already familiar with from Chapter 5. We used
glm(formula, data) here to demonstrate an alternative R function for creating regression
models. In your own work, the appropriate function will be determined by the requirements
of your analysis.

You may also have noticed that our 1m (formula, data) functions listed only the variable
names in the formula argument. This is a short-hand method for referring to our dataset's
column names, as demonstrated by the following code:

lmFireRating ExecutionDuration <- glm(Rating ~
SuccessfullyExecuted + DurationInDays, data = subsetFire)

Notice that the subsetFires prefix is absent from each variable name and that the data
argument has been defined as subsetFire. When the data argument is used, and the
independent variables in the formula argument are unique, the dataset$ prefix may be
omitted. This technique has the effect of keeping our code more readable, without changing
the results of our calculations.

AiClohject,..]

AIC can be used to compare regression models. It yields a series of AIC values, which indicate
how well our models fit our data. AIC is used to compare multiple models relative to each
other, whereby the model with the lowest AIC value best represents our data.

Similar in structure to the anova (object, ...) function, the AIC (object, ...)
function accepts a series of objects (regression models in our case) as input. For example, in
AIC(A, B, C) we are telling R to compare three objects (3, B, and C) using A1C. Thus, our
AIC function compared the four regression models that we created:

> AIC(lmFireRating Execution, lmFireRating ExecutionDuration,
lmFireRating ExecutionDurationSoldiers,
lmFireRating ExecutionDurationShuWeiInteraction)

As output, AIC (object, ...) returned a series of AIC values used to compare our models.

Recall that we compared our regression models in Chapter 5 using anova (object,
...).To demonstrate an alternative R function that can be used to compare models, we
used AIC (object, ...) inthis activity. The glm(...) function coordinates well with
AIC(object, ...), hence our decision to use them together in this example. Again, the
appropriate techniques to use in your future analyses should be determined by the specific
conditions surrounding your work.

11381

Chapter 7

1. When can the datasets prefix be omitted from the variables in the formula
argument of Im (formula, data) and glm(formula, data)?

a. When the data argument is defined.

b. When the data argument is defined and all of the variables come from
different datasets.

When the data argument is defined and all of the variables have unique names.

d. When the data argument is defined, all of the variables come from different
datasets, and all of the variables have unique names.

2. Which of the following is not true of the anova (object, ...) and
AIC (object, ...) functions?

a. Both can be used to compare regression models.
b. Both receive the same arguments.
c. Both represent different statistical methods.

d. Both yield identical mathematical results.

Time for action — model deployment

Having selected the optimal model for predicting the outcome of our fire attack strategy, it

is time to put that model to practical use. We can use it to predict the outcomes of various
fire attack strategies and to identify one or more strategies that are likely to lead to victory.
Subsequently, we need to ensure that our winning strategies are logistically sound and
viable. Once we strike a balance between our designed strategy and our practical constraints,
we will arrive at the best course of action for the Shu forces.

Recall from Chapter 6 that we set a rating value of 80 as our minimum threshold. As such,
we will only consider a strategy adequate if it yields a rating of 80 or higher when all
variables have been entered into our model.

In the case of our fire attack regression model, we know that to achieve our desired rating
value, we must assume successful execution. We also know the number of Wei soldiers
housed at the target city. Consequently, our major constraints are the number of Shu
soldiers that we choose to engage in battle and the duration of the attack. We will assume
a moderate attack duration.

[1391

Organizing the Battle Plans

Subsequently, we can rearrange our regression equation to solve for the number of Shu
soldiers engaged and then represent it as a custom function in R:

1. Usethe coef (object) function to isolate the independent variables in our
regression model:

> #use the coef (object) function to extract the coefficients
from a regression model

> #this will make it easier to rearrange our equation by
allowing us to focus only on these values

> coef (ImFireRating_ ExecutionDurationShuWeiInteraction)

= coef{ImFireRoting_ExecutionDurationShufeiInteraction)
(Intercept) SuccessfullyExecuted DurationInDays interactionSoldiersFire
3.737354e401 5.601947e4+01 -1.237476e400 -1.272603e-07

2. Rewrite the fire attack regression equation to solve for the number of Shu soldiers
engaged in battle:

> f#irewrite the regression equation to solve for the number of
Shu soldiers engaged in battle

> #foriginal equation: rating = 37 + 56 * execution - 1.24 *
duration - 0.00000013 * soldiers interaction

> #rearranged equation: Shu soldiers = (rating - 37 + 56 *
execution + 1.24 * duration) / (0.00000013 * -

Wei soldiers engaged)

3. Usethe function () command to create a custom R function to solve for the
number of Shu soldiers engaged in battle, given the desired rating, execution,
duration, and number of WeiSoldiers:

> #use function() to create a custom function in R

> #the function() command follows this basic format:

+ function (argumentl, argument2,... argumenti) { equation }
> #custom function that solves for the maximum number of Shu
soldiers that can be deployed, given the desired rating,
execution, duration, and number of Wei soldiers

> functionFireShuSoldiers <- function(rating, execution,
duration, WeiSoldiers) {

+ (rating - 37 - 56 * execution +
+ 1.24 * duration) /

+ (0.00000013 * - WeiSoldiers)

+ }

(1101

Chapter 7

Use the custom function to solve for the number of Shu soldiers that can be deployed,
given a rating of 80, duration of 7, success of 1.0, and 10,000 WeiSoldiers:

> #solve for the number of Shu soldiers that can be deployed
given a result of 80, duration of 7, success of 1.0, and
15,000 WeiSoldiers

> functionFireShuSoldiers (80, 1.0, 7, 10000)

[1] 3323.077

Our regression model suggests that to achieve a rating of 80, our minimum threshold,

we should deploy 3,323 Shu soldiers. However, from looking at the data in our fire attack
subset, a force between 2,500 and 5,000 soldiers has not been previously used to launch

a fire attack. Further, four past successful fire attacks on 7,500 to 12,000 Wei soldiers have
deployed only 1,000 to 2,500 Shu soldiers. What would happen to our predicted rating value
if we were to deploy 2,500 Shu soldiers instead of 3,323?

1.

Create a custom function to solve for the rating of battle when execution,
duration, and number of ShuSoldiers and WeiSoldiers are known:

> #custom function that solves for rating of battle, given the
execution, duration, number of Shu soldiers, and number of Wei
soldiers

> functionFireRating <- function(execution, duration,
ShuSoldiers, WeiSoldiers) {

+ 37 + 56 * execution -

+ 1.24 * duration -

+ 0.00000013 * (ShuSoldiers * WeiSoldiers)
+)

Use the custom function to solve for the rating of battle, given successful execution,
a 7-day duration, 2,500 Shu soldiers, and 10,000 Wei soldiers:

> What would happen to our rating value if we were to deploy
2,500 Shu soldiers instead of 3,323?

> functionFireRating (1.0, 7, 2500, 10000)

[1] 81.07

> #Is the 1.07 increase in our predicted chances for victory
worth the practical benefits derived from deploying 2,500
soldiers?

(a1l

Download from Wow! eBook <www.wowebook.com>

Organizing the Battle Plans

By using 2,500 soldiers, our rating value increased to 81, which is slightly above our threshold
of confidence for victory. Here, we have encountered a classic dilemma for the data analyst.
On one hand, our data model tells us that it is safe to use 3,323 soldiers. On the other, our
knowledge of war strategy and past outcomes tells us that a number between 1,000 and 2,500
would be sufficient. Essentially, we have to identify the practical benefits or detriments from
deploying a certain number of soldiers. In this case, we are inclined to think that it is beneficial
to deploy fewer than 3,323, but more than 1,000. The exact number is a matter of debate and
uncertainty that deserves serious consideration. It is always the strategist's challenge to weigh
both the practical and statistical benefits of potential decisions. On that note, let us consider
the logistics of our proposed fire attack. Our plan is to deploy 2,500 Shu soldiers over a period
of 7 days to attack 10,000 Wei soldiers who are stationed 225 miles away.

1. Create a custom function that calculates the gold cost of our fire attack strategy:
> #custom function that calculates the gold cost of our
strategy, given the number of Shu soldiers deployed, the
distance of the target city, and the proposed duration of

battle.

> functionGoldCost <- function (ShuSoldiers, distance, duration)
+ {

+ ShuSoldiers * (distance / 100 + 2 * (duration / 30))

+}

2. Use the custom function to calculate the gold cost of our fire attack strategy:

> #gold cost of fire attack that deploys 2,500 Shu soldiers
a distance of 225 miles for a period of 7 days

> functionGoldCost (2500, 225, 7)

[1] 6791.667

3. Calculate the number of provisions needed for our fire attack strategy:

> #provisions required by our fire attack strategy

> #fconsumption per 30 days is equal to the number of soldiers
deployed

> 2500 * (7/30)

[1] 583.3333

4. Determine whether the fire attack strategy is viable given our resource limitations:

> #our gold cost of 6,792 is well below our allotment of 1,000,000
> #our required provisions of 583 are well below our allotment of
1,000,000

> #our 2,500 soldiers account for only 1.25% of our total army
personnel

> #yes, the fire attack strategy is viable given our resource
constraints

[142]

Chapter 7

What just happened?

We successfully used our optimal regression model to refine our battle strategy and test
its viability in light of our practical resource constraints. Custom functions were used to
calculate the number of soldiers necessary to yield our desired outcome, the performance
rating given the parameters of our plan, and the overall gold cost of our strategy. In
determining the number of soldiers to engage in our fire attack, we encountered a
common occurrence whereby our data models conflicted with our practical understanding
of the world. Subsequently, we had to use our expertise as data analysts to balance the
consequences between the two and arrive at a sound conclusion. We then assessed the
overall viability of our strategy and determined it to be sufficient in consideration of our
resource allotments.

% For a more detailed discussion of the techniques used in this segment,
—"refer to the Logistical Considerations section of Chapter 6.

Prior to rewriting our regression equation and converting it into a custom function, we
executed the coef (object) command on our model. The coef (object) function, when
executed on a regression model, has the effect of extracting and displaying its independent
variables (or coefficients). By isolating these components, we were able to easily visualize
our model's equation:

> coef (ImFireRating_ExecutionDurationShuWeiInteraction)

> coef{IlmFireRoting_ExecutionDurationShulWeiInteraction)
(Intercept) SuccessfullyExecuted DurationInDays interactionSoldiersFire
3.737354e401 5.601947e+01 -1.237476e4+00 -1.272603e-07

(1431

Organizing the Battle Plans

In contrast, the summary (object) function contains much more information than we need
for this purpose, thus making it potentially confusing and difficult to locate our variables.

This can be seen in the following:

> lmFireRating ExecutionDurationShuWeiInteraction Summary

Hence, in circumstances where we only care to see the independent variables in our model,
the coef (object) function can be more effective than summary (object).

1. Under which of the following circumstances might you use the coef (object)

> lmFireRoting_ExecutionDurationShulWeilnteraction_Summary

Call:

glm{formula = Rating ~ SuccessfullyExecuted + DurationInDays +

interactionSoldiersFire, data = subsetFire)
Deviance Residuals:

Min 1Q Median 3Q Max
-18.233 -7.248 1.466 6.452 1@.535
Coefficients:

Estimate Std. Error t walue Pri{=1tl)

(Intercept) 3.737e401 3.467e+@0 10.7ED 4.34e-11
SuccessfullyExecuted 5.602e4+81 3.486e+9® 16.871 5.08e-15
DurationInDays -1.237e408 3.960e-01 -3.125 @.00434

interactionSoldiersFire -1.273e-07

3.717e-08 -3.424 9.00206

Signif. codes: @ “***' 3. 2@1 “**' §.81 **' @.85 *." Q.1 ' 1

(Dispersion parameter for goussian family token to be 7@0.319)

Null deviance: 25396.7 on 29 degrees of freedom
Residual deviance: 1828.3 on 26 degrees of freedom

AIC: 218.43

Number of Fisher Scoring iterations:

2

ook
W
L33
*ok

function instead of summary (object)?

a.
b.

o

You want to know the practical significance of the model's variables.

You want to know the statistical significance of the model's variables.

You want to know the model's regression equation.

You want to know the formula used to generate the model.

[114]

Chapter 7

Time for action - last steps

Lastly, we need to save the workspace and console text associated with our fire
attack analysis:

1. Usethe save.image (file) function to save your R workspace to your working
directory. The £ile argument should contain a meaningful filename and the
.RData extension:

> #save the R workspace to your working directory
> save.image ("rBeginnersGuide Ch 07 fireAttackAnalysis.RData")

2. R will save your workspace file. Browse to the working directory on your hard drive
to verify that this file has been created.

3. Manually save your R console log by copying and pasting it into a text file. You may
then format the console text to improve its readability.

We have now completed an entire data analysis of the fire attack strategy from beginning
to end using R.

The common steps to all R analyses

While retracing the development process behind our fire attack strategy, we encountered a
key series of steps that are common to every analysis that you will conduct in R. Regardless
of the exact situation or the statistical techniques used, there are certain things that must be
done to yield an organized and thorough R analysis. Each of these steps is detailed.

Perhaps it goes without saying that the thing to do before beginning any R analysis is to
launch R itself. Nevertheless, it is mentioned here for completeness and transparency.

Step 1: Set your working directory

Once Ris launched, the first common step is to set your working directory. This can be done
using the setwd (dir) function and subsequently verified using the getwd () command:

> #Step 1: set your working directory
> #set your working directory using setwd(dir)

> #replace the sample location with one that is relevant to you
> setwd (" /Users/johnmquick/rBeginnersGuide/")

> #once set, you can verify your new working directory using getwd/()

> getwd ()
[1] "/Users/johnmquick/rBeginnersGuide/"

(1451

Organizing the Battle Plans

Comment your work

Note that commented lines, which are prefixed with the pound sign (#), appeared before
each of our functions in step one. It is vital that you comment all of the actions that you take
within the R console. This allows you to refer back to your work later and also makes your
code accessible to others.

This is an opportune time to point out that you can draft your code in other
places besides the R console. For example, R has a built in editor that can be
. opened by going to the File | New Document/Script menu or simultaneously
pressing the Command + N or Ctrl + N keys. Other free editors can also be
A found online. The advantages of using an editor are that you can easily modify
your code and see different types of code in different colors, which helps you to
verify that it is properly constructed. Note however, that to execute your code, it
must be placed in the R console.

Step 2: Import your data (or load an existing workspace)

After you set the working directory, it is time to pull your data into R. This can be achieved
by creating a new variable in tandem with the read.csv (file) command:

> #Step 2: Import data (or load an existing workspace)

> #read a dataset from a csv file into R using read.csv(file) and save
it into a new variable

> dataset <- read.csv("datafile.csv")

Alternatively, if you were continuing a prior data analysis, rather than starting a new one, you
would instead load a previously saved workspace using 1oad.image (file). You can then
verify the contents of your loaded workspace using the 1s () command.

> #load an existing workspace using load.image (file)
> load.image ("existingWorkspace.RData")

> #verify the contents of your workspace using ls()
> 1s()

[1] "myVariable 1"

[2] "myVariable 2"

[3] "myVariable 3"

(1461

Chapter 7

Regardless of the type or amount of data that you have, summary statistics should be
generated to explore your data. Summary statistics provide you with a general overview
of your data and can reveal overarching patterns, trends, and tendencies across a dataset.
Summary statistics include calculations such as means, standard deviations, and ranges,
amongst others:

> #Step 3: Explore your data

> #calculate a mean using mean (data)
> mean (myData)
[1] 1000

> #calculate a standard deviation using sd(data)
> sd(myData)
[1] 100

> #calculate a range (minimum and maximum) using range (data)
> range (myData)
> [1] 500 2000

Also recall R's summary (object) function, which provides summary statistics along
with additional vital information. It can be used with almost any object in R and will offer
information specifically catered to that object:

> #generate a detailed summary for a given object using
summary (object)
> summary (object)

Note that there are often other ways to make an initial examination of your
data in addition to using summary statistics. When appropriate, graphing
. yourdata is an excellent way to gain a visual perspective on what it has to
% say (data visualization is the primary topic of Chapter 8 and Chapter 9 of
- this book). Furthermore, before conducting an analysis, you will want to

ensure that your data are consistent with the assumptions necessitated by
your statistical methods. This will prevent you from expending energy on
inappropriate techniques and from making invalid conclusions.

(1411

Organizing the Battle Plans

Step 4: Conduct your analysis

Here is where your work will differ from project to project. Depending on the type of analysis
that you are conducting, you will use a variety of different techniques. For example, in this
book we have primarily used regression analysis. Regression is but one of an endless number
of potential methods. The correct techniques to use will be determined by the circumstances
surrounding your work.

> #Step 4: Conduct your analysis
> #The appropriate methods for this step will vary between analyses.

At the conclusion of your analysis, you will always want to save your work. To have the
option to revisit and manipulate your R objects from session to session, you will need
to save your R workspace using the save.image (file) command, as follows:

> #Step 5: Save your workspace and console files

> #save your R workspace using save.image (file)
> #remember to include the .RData file extension
> save.image ("myWorkspace.RData")

To save your R console text, which contains the log of every action that you took during a
given session, you will need to copy and paste it into a text file. Once copied, the console
text can be formatted to improve its readability. For instance, a text file containing the five
common steps of every R analysis could take the following form:

> #There are five steps that are common to every data analysis
conducted in R

> #Step 1: set your working directory

> #fset your working directory using setwd(dir)
> #replace the sample location with one that is relevant to you
> setwd (" /Users/johnmquick/rBeginnersGuide/")

> #once set, you can verify your new working directory using getwd/()
> getwd ()
[1] "/Users/johnmguick/rBeginnersGuide/"

> #Step 2: Import data (or load an existing workspace)
> #read a dataset from a csv file into R using read.csv(file) and save

it into a new variable
> dataset <- read.csv("datafile.csv")

(181

Chapter 7

> #OR

> #load an existing workspace using load.image (file)
load. image ("existingWorkspace.RData")

\%

#verify the contents of your workspace using 1ls()
1s()
1] "myVariable 1"
2] "myVariable 2"
3] "myVariable 3"

— — — VvV V

> #Step 3: Explore your data

> #calculate a mean using mean (data)
> mean (myData)
[1] 1000

> #calculate a standard deviation using sd(data)
> sd(myData)
[1] 100

> #calculate a range (minimum and maximum) using range (data)
> range (myData)
> [1] 500 2000

> #fgenerate a detailed summary for a given object using
summary (object)

> summary (object)

> #Step 4: Conduct your analysis
> #The appropriate methods for this step will vary between analyses.

> #Step 5: Save your workspace and console files
> #save your R workspace using save.image(file)
> #remember to include the .RData file extension

> save.image ("myWorkspace.RData")

> #save your R console text by copying it and pasting it into a text
file.

See the rBeginnersGuide CommonSteps.txt file
i that is provided with this book.

(1491

Organizing the Battle Plans

1. Which of the following is not a benefit of commenting your code?

a. It makes your code readable and organized.
b. It makes your code accessible to others.
c. It makes it easier for you to return to and recall your past work.

d. It makes the analysis process faster.

Conduct a complete end to end analysis using the strategy that you decided upon at the
conclusion of Chapter 6. Be sure to employ each of the five common steps to all R analyses.
Along the way, refer to the Retracing and Refining a Complete Analysis section of this
chapter, as well as the previous chapters of this book. Once your analysis is complete,

you should have the following items:

¢ A workspace file containing all of the objects used in your analysis

¢ A commented console text file detailing all of the actions that occurred during
your analysis

¢ Asound, viable battle strategy for the Shu army

In this chapter, we conducted an entire data analysis in R from beginning to end. While doing
so, we ensured that our work was as organized and transparent as possible, thereby making
it more accessible to others. Afterwards, we identified the five steps that are common to all
well-executed data analyses in R. You then used these steps to conduct, organize, and refine
a battle strategy for the Shu army. Having completed this chapter, you should now be able to:

¢ Organize and clarify your raw R data analyses

¢ Communicate your raw R data analyses effectively

¢ Apply the steps common to all well-conducted R analyses
Now that we have a complete, organized, and clear plan for the Shu army, our challenge is
to communicate it to others. Next, we will visit the Emperor, who has the power to accept

or reject our battle plans. In order to communicate our ideas simply and effectively, we will
focus on using graphical techniques in Chapter 8.

[1501

You revisited and reorganized a complete data analysis in Chapter 7 to prepare
your strategy for presentation. The next step towards executing your plans for
the Shu forces is to visit the emperor and propose your strategy. The emperor
is unconcerned with the minute details of the attack, but rather needs to be
convinced that your proposed attack is a sound one that will be beneficial for
the Shu kingdom. It is important to convey your plans with clarity, because the
emperor has the power accept or reject your strategy.

To provide the emperor with the clear and concise information that he needs, we will focus
on R's graphical features. We will convey our strategy through the use of several charts,
graphs, and plots. We will also explore our options for customizing these visuals. Through
the use of R's rich graphical features, we make the benefits of our combat strategy readily
apparent and win the support of the emperor. By the end of this chapter, you will be able to:
¢ Create six different charts, graphs, and plots in R
¢ Customize your R visuals using text, colors, axes, and legends

¢ Save and export your graphics for use outside of R

R features several options for creating charts, graphs, and plots. In this chapter, we will
explore the generation and customization of these visuals, as well as methods for saving and
exporting them for use outside of R. The following visuals will be covered in this chapter:

¢ Bargraphs

¢ Scatterplots

Briefing the Emperor

Line charts
Box plots

Histograms

* & o o

Pie charts

For demonstration purposes, all of our visuals will communicate information about the

fire attack strategy that was used in Chapter 7. This strategy entailed deploying 2,500 Shu
soldiers for 7 days to execute a fire attack 225 miles away on 10,000 Wei soldiers in And. If
desired, you are encouraged to substitute your own battle plans into any or all activities for
this chapter.

Time for action - creating a har chart

A bar chart or bar graph is a common visual that uses rectangles to depict the values
of different items. Bar graphs are especially useful when comparing data over time or
between diverse groups. Let us create a bar chart in R:

1. Open R and set your working directory:

> #set the R working directory
> #replace the sample location with one that is relevant to you
> setwd (" /Users/johnmquick/rBeginnersGuide/")

2. Load the Chapter 8 workspace. It contains the necessary information for this
chapter.

> #load the chapter 8 workspace
> load ("rBeginnersGuide Ch 08 ReadersCopy.RData")

3. Usethebarplot (...) function to create a bar chart:

> #create a bar chart that compares the mean durations of
the battle methods

> #calculate the mean duration of each battle method

> meanDurationFire <- mean (subsetFire$DurationInDays)

> meanDurationAmbush <- mean (subsetAmbush$DurationInDays)
> meanDurationHeadToHead <-

mean (subsetHeadToHead$DurationInDays)

> meanDurationSurround <- mean (subsetSurround$DurationInDays)
> #use a vector to define the chart's bar values

> barAllMethodsDurationBars <- c(meanDurationFire,
meanDurationAmbush, meanDurationHeadToHead,
meanDurationSurround)

> #use barplot(...) to create and display the bar chart

> barplot (height = barAllMethodsDurationBars)

[1521

Download from Wow! eBook <www.wowebook.com>

Chapter 8

4. Your chart will be displayed in the graphic window, similar to the following:

anNne Quartz 2 [*]

100
|

60

40

20

ol

What just happened?

You created your first graphic in R. Let us examine the barplot (. ..) function that we used
to generate our bar chart, along with the new R components that we encountered.

We created a bar chart that compared the mean durations of battles between the different
combat methods. As it turns out, there is only one required argument in the barplot (...)
function. This height argument receives a series of values that specify the length of each
bar. Therefore, the barplot (. ..) function, at its simplest, takes on the following form:

barplot (height = heightValues)

Accordingly, our bar chart function reflected this same format:

> barplot (height = barAllMethodsDurationBars)

[1531

Briefing the Emperor

Vectors
We stored the heights of our chart's bars in a vector variable. In R, a vector is a series of
data.R'sc (.. .) function can be used to create a vector from one or more data points.

For example, the numbers 1, 2, 3, 4, and 5 can be arranged into a vector like so:

> #arrange the numbers 1, 2, 3, 4, and 5 into a vector
> numberVector <- c(1, 2, 3, 4, 5)

Similarly, text data can also be placed into vector form, so long as the values are contained
within quotation marks:

> #arrange the letters a, b, ¢, d, and e into a vector
> teXtVeCtOr < - C("a", Ilbll, "C", Ildll, llell)

Our vector defined the values for our bars:

> #use a vector to define the chart's bar values
> barAllMethodsDurationBars <- ¢ (meanDurationFire,
meanDurationAmbush, meanDurationHeadToHead, meanDurationSurround)

Many function arguments in R require vector input. Hence, it is very common to use and
encounter the c (.. .) function when working in R.

When you executed your barplot (. ..) function in the R console, the graphic window
opened to display it. The graphic window will have different names across different operating
systems, but its purpose and function remain the same. For example, in Mac OS X, the
graphic window is named Quartz.

(1541

Chapter 8

80
1

60
1

40
|

20
|

For the remainder of this book, all R graphics will be displayed without the graphics window
frame, which will allow us to focus on the visuals themselves.

60 80 100
]

40

20

[1551]

Briefing the Emperor

1. When entering text into a vector using the c (.. .) function, what characters must
surround each text value?

a. quotation marks
b. parenthesis
c. asterisks

d. percentsigns

2. What is the purpose of the R graphic window?
to debug graphics functions

a
b. to execute graphics functions

o

to edit graphics

o

to display graphics

Time for action — customizing graphics

Although the barplot (.. .) function only requires the height of each bar to be specified,
creating a chart in this manner leaves us with a bland and difficult to decipher visual. In most
cases, you will want to customize your R graphics by incorporating additional arguments into
your functions. Let us explore how to use graphic customization arguments by expanding our
bar chart:

1. Expand your bar chart using graphic customization arguments:

> #fuse additional arguments to customize a graphic
> #define a title for the bar chart

> barAllMethodsDurationLabelMain <-

"Average Duration by Battle Method"

#define x and y axis labels for the bar chart
barAllMethodsDurationLabelX <- "Battle Method"
barAllMethodsDurationLabelY <- "Duration in Days"
#set the x and y axis scales
barAllMethodsDurationLimX <- c(0, 5)
barAllMethodsDurationLimY <- ¢ (0, 120)

#define rainbow colors for the bars
barAllMethodsDurationRainbowColors <-

rainbow (length (barAllMethodsDurationBars))

V V. VvV vV VvV V V V

> #incorporate customizations into the graphic function using
the main, xlab, ylab, xlim, ylim, names, and col arguments
> #use barplot(...) to create and display the bar chart

[1561

Chapter 8

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelX,

ylab = barAllMethodsDurationLabely,

xlim = barAllMethodsDurationLimX,

ylim = barAllMethodsDurationLimY,

col = barAllMethodsDurationRainbowColors)

Your chart will be displayed in the graphic window, as shown in the
following screenshot:

Average Duration by Battle Method

120
J

80
1

Duration in Days
40 60
l

20

Battle Method

Add a legend to the chart, using the following snippet:

> #add a legend to the bar chart

> #the x and y arguments position the legend

> #x and y can be defined using words or numerical coordinates
> #ithe legend argument receives a vector containing the labels
for the legend

> barAllMethodsDurationLegendLabels <- c("Fire", "Ambush",
"Head to Head", "Surround")

1571

Briefing the Emperor

> #ithe fill argument contains the colors for the legend
> legend(x = 0, y = 120,

legend = barAllMethodsDurationLegendLabels,

fill = barAllMethodsDurationRainbowColors)

4. Your legend will be added to the existing chart.

Average Duration by Battle Method

[=]
o —
B Fire
O Ambush
@ Head to Head
g | B Surround
b= _
[+2]

Duration in Days
40 60
L

20

Battle Method

What just happened?

The barplot (.. .) function, as well as the other graphic functions that we will use in

this book, accept a variable number of arguments. In fact, R graphics functions have many
customizable options and therefore tend to accept several arguments. We expanded our bar
chart using a collection of the most common customization arguments, which apply to nearly
all R graphics functions.

[158]

Chapter 8

We used six arguments to customize our bar chart:

¢ main: atext title for the graphic

xlab: a text label for the x axis

ylab: a text label for the y axis

x1im: a vector containing the lower and upper limits for the x axis

ylim: a vector containing the lower and upper limits for the y axis

* 6 6 o o

col: a vector containing the colors to be used in the graphic

The general format for these arguments is as follows:

argument = value

When incorporated into a graphics function, these arguments take on the following form:

graphicsFunction (..., argument = value)

Recognize that these six arguments can be applied to nearly every R graphics function.
Each one can be used alone or they can be used in tandem. We will use these arguments
throughout the chapter to refine and improve our visuals.

main, xiab, and ylah

The main, x1ab, and ylab arguments are all used to add clarifying text to graphics. A
primary title for a graphic is defined by main, while labels for the x and y axes are specified
using x1ab and ylab, respectively.

Our barplot (.. .) function made use of the main, x1ab, and ylab arguments. We saved
our argument values into variables prior to incorporating them into the barplot (...)
function. First, we defined our text values as variables.

> #define a title for the bar chart

> barAllMethodsDurationLabelMain <-

"Average Duration by Battle Method"

> #define x and y axis labels for the bar chart

> barAllMethodsDurationLabelX <- "Battle Method"

> barAllMethodsDurationLabelY <- "Duration in Days"

[1591]

Briefing the Emperor

Then, we used our variables in the final barplot (.. .) function:

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelX,

ylab = barAllMethodsDurationLabelY,

xlim = barAllMethodsDurationLimX,
barAllMethodsDurationLimY,

col = barAllMethodsDurationRainbowColors)

ylim

This variable technique has the advantages of rendering our code more decipherable and
making it easier for us to return to and reuse our data in future graphics. We will continue
to use this method throughout the chapter.

The x1imand ylim arguments receive a vector containing the minimum and maximum
values for the x and y axes respectively. Thus, in:

xlim = c (50, 250)

A graphic's x axis is told to present the data that fall between 50 and 250. The y1im
argument operates in identical fashion to x1im, with the exception that it acts upon
the y axis. These arguments are useful for rescaling a graphic's axes to improve its visual
presentation. They can also have the effect of emphasizing or deemphasizing certain
data ranges.

In our chart, we used x1im to set a minimum of 0 and a maximum of 5 for the x axis. This
evenly and comfortably spaced our bars within the graphic window. We used y1im to set
a minimum of 0 and maximum of 120 for the y axis. This ensured that all of our data were
represented and that our bars were displayed at a reasonable height.

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelX,

ylab = barAllMethodsDurationLabely,
barAllMethodsDurationLimX,

ylim = barAllMethodsDurationLimy,

col = barAllMethodsDurationRainbowColors)

x1lim

[160]

Chapter 8

R can generate colors in two different forms using Col; they can be rainbow colors which are
automatic, or you can specify colors of your choice.

R can generate an automatic sequence of colors for a chart with the rainbow (.. .)
function. For our purposes, we simply identified the number of colors that we wished

to generate for our chart. To obtain the appropriate number of colors, we used the

length (ocbject) command. This function tells us the number of items contained in a given
object. In our case, using 1length (object) on the barAl1MethodsDurationBars Yielded
a result of 4, which represents each of our chart's bars:

> barAllMethodsDurationSpecificColors <-
rainbow (length (barAllMethodsDurationBars))

Consequently, the rainbow (. . .) function generated four colors. These colors were applied
to the chart's bars when we included the barAl1MethodsDurationRainbowColors
variable in the col argument of our barplot (. ..) function.

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelX,

ylab = barAllMethodsDurationLabely,

x1lim = barAllMethodsDurationLimX,

ylim = barAllMethodsDurationLimY,

col = barAllMethodsDurationRainbowColors)

Specific colors

Alternatively, specific colors can be defined using the col argument in tandem with a vector
list of color names. Common color names such as red, green, blue, and yellow are valid
inputs. In this situation, the col argument takes on the following form:

col = colorVector
Where colorVector is a variable storing a vector of color values like the following:

c("red", "green", "blue", "yellow")

% You can see a complete list of the colors available in R by executing
I the colors () function.

11611

Briefing the Emperor

Had we wanted to use specific colors in our bar chart, we could have employed the
following code:

> #define specific colors for the bars

> barAllMethodsDurationSpecificColors <- c("red", "green", "blue",
"yellow")
> #use barplot(...) to create and display the bar chart

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelX,

ylab = barAllMethodsDurationLabely,

x1lim = barAllMethodsDurationLimX,

ylim = barAllMethodsDurationLimY,

col = barAllMethodsDurationSpecificColors)

The finishing touch to our bar chart was a legend, or key, that indicated what our bars
represented. In R, the 1egend (. ..) function employs the following arguments:

¢ x:the x position of the chart in numeric terms; alternatively you can set the overall
position of the legend using one of the text values topleft, top, topright, left,
center, right, bottomleft, bottomcenter, or bottomright

¢ y:they position of the chart in numeric terms; if text is used for x, omit
this argument

legend: a vector containing the labels to be used in the legend
£111: a vector containing the colors to be used in the legend
The basic format for the legend function is as follows:

legend(x = xPosition, y = yPosition, legend = labelVector,
fill = colorVector)

For instance, the following code:
> legend(x = "topleft", legend = c("a", "b"), f£ill = rainbow(2))

This would yield a legend placed at the top-left position with labels for a and b whose colors
were generated by the rainbow (. . .) function. Note that the x argument used a text value
and y was omitted as an alternative to defining the exact numerical position

of the legend.

11621

Chapter 8

Our function used the x and y coordinates from our chart to position the legend in the upper
left-hand corner. When using numbers to define the x and y arguments, the values will
always depend on the limits of the x and y axes. For instance, a position of (0, 120) specified
the upper left-hand corner in our chart, but a graphic with a maximum y value of 50 would
have an upper left-hand corner position of (0, 50). Our 1egend and £i11 arguments
incorporated the same labels and colors that were used to generate our bar chart. Thus,

our legend was matched to the information depicted in our chart:

> legend(x = 0, y = 120,
legend = barAllMethodsDurationLegendLabels,
fill = barAllMethodsDurationRainbowColors)

Notice the peculiar implementation of the 1egend (. . .) function, which we have not
previously encountered. As we will see with other graphics functions, legend (. ..)
does not stand alone. To be properly employed, a compatible graphic must already exist
for legend (. ..) to act upon. In this situation, legend (. . .) adds a new legend on top
of the visual that is displayed in the graphic window. However, if no graphic is currently
displayed when the 1egend (. ..) function is executed, an error message is returned.
This is demonstrated in the following code:

> #using the legend(...) function when no graphic already exists
results in the following error

> legend(x = "topleft", legend = c("a", "b"), fill = rainbow(2))
Error in strwidth(legend, units = "user", cex = cex) :

plot.new has not been called yet

Therefore, to add a legend to your graphics in R, be sure to always create the graphic first,
then apply the 1egend (. . .) function.

1. Anxlimvalueof c (100, 300) means which of the following?
a. Present the data that are not equal to 100 or 300 on the x axis.
b. Present the data that are equal to 100 or 300 on the x axis.
c. Present the data that are less than 100 or greater than 300 on the x axis.

c. Present the data that are between 100 and 300 on the x axis.

2. When should the 1egend (.. .) function be called?
a. Before a graphic function is called.
b. During a graphic function, included as an argument.
c. After a graphic function.

d. When a compatible graphic is displayed in the graphic window.

11631

Briefing the Emperor

Time for action - creating a scatterplot

A scatterplot is a fundamental statistics graphic that can be used to better understand the
relationships underlying a dataset. Like descriptive statistics and correlations, scatterplots are
especially useful as a precursor to more extensive data analyses, such as linear regression
modeling. We can use R to generate scatterplots that depict a single relationship between
two variables or the relationships between all of the variables in a dataset. We will practice
both of these methods:

1. Usetheplot(...) function to create a scatterplot depicting a single relationship
between two variables:

> #create a scatterplot that depicts the relationship between
the number of Shu and Wei soldiers engaged in past fire attacks
> #get the data to be used in the plot

> scatterplotFireWeiSoldiersData <- subsetFire$WeiSoldiers

> scatterplotFireShuSoldiersData <- subsetFire$ShuSoldiers

> #fcustomize the plot

> scatterplotFireSoldiersLabelMain <-

"Soldiers Engaged in Past Fire Attacks"

> scatterplotFireSoldiersLabelX <- "Wei"

> scatterplotFireSoldiersLabelY <- "Shu"

> #use plot(...) to create and display the scatterplot

> plot (x = scatterplotFireWeiSoldiersData,

y = scatterplotFireShuSoldiersData,

main = scatterplotFireSoldiersLabelMain,

xlab = scatterplotFireSoldiersLabelX,

ylab = scatterplotFireSoldiersLabelY)

11641

Download from Wow! eBook <www.wowebook.com>

Chapter 8

2.

Your plot will be displayed in the graphic window, as shown in the following:

8000 10000

Shu
6000

4000

2000

Soldiers Engaged in Past Fire Attacks

o o0

o o

o o
o o
oo
é8

T T T T T T
0 10000 20000 30000 40000 50000

Use the plot (.. .) function to simultaneously depict the relationships between all
of the variables in the dataset:

> #icreate a scatterplot that depicts the relationships between

all of the variables in our fire attack dataset

> plot (x

subsetFire)

11651

Briefing the Emperor

4. A grouping of several plots will be displayed in the graphic window:

2 8

20 B8O 100 1.0 14 18 1] 30000
I I | I I I |
Methad pEeoD oOmE B g p g EED O O O ER®O d pox oo ooooogd
g2 4
e H g &E'b o o ogo w
o o 4] o
2B Realifig o d o
- g Ho B go %H o om
2] 1 E @D A = ﬁ 8 8
o T OO0 [N o O O [y Ty
ccessfullyE xecul
CND [il] mEn oo O o o oo
@ =1 o] =111 o O O oo o
+ | Result
=2 o bomaon o mER 0 0 o mEmomo d boo o ooooon
o o o 1= o
o o o g d o o o
o)] uSaldiarsEngage a a0
@ g
Bt % : P .
- o =) o L o o o
=
=
= -] w o a 3 [a @ o ¢ [feSodiesEngad (oo [+
R a ol E [2] o n
- o s]
ol B | E§e o B Fid @ Bl
o d
E i 4B
@ 8 E @ 9 DuralicninDays
g 1] o =3 = d la® Ho ¥
[] o o o
g 2p 0| B § o2
L | L LI I N I | TT T 1Tl
1.5 2.5 10 14 18 0 4000 10000 2 6 10

2.5

15

18

1.4

1.0

10000

0 4000

10

What just happened?

We created two scatterplots using R's plot (. ..) function, one portraying a single

relationship and one displaying all of the relationships in our dataset.

(1661

Chapter 8

Single scatterplot

To plot a single relationship between two variables, use R's plot (.. .) function. The
primary arguments for plot (. ..) are:

¢ x:the variable to be plotted on the x axis
¢ v:the variable to be plotted on the y axis

Thus, the simplest form of plot (.. .) contains arguments only for the x and y variables,
and is as shown:

plot (x = xVariable, y = yVariable)

We used the plot (.. .) function to visualize the relationship between the number of Shu
and Wei soldiers involved in past fire attacks. To add relevant text to our graphic, we included
the main, xlab, and ylab arguments:

> plot (scatterplotFireWeiSoldiersData,
scatterplotFireShuSoldiersData,

main = scatterplotFireSoldiersLabelMain,
xlab = scatterplotFireSoldiersLabelX,
ylab = scatterplotFireSoldiersLabelY)

We also used the plot (.. .) function to simultaneously explore all of the relationships
within our dataset. This yielded a graphic that contained a scatterplot for every variable
pair. The format for creating this type of scatterplot is:

plot (x = dataset)

Where dataset is a set of data containing multiple variables. For us, the dataset argument
contained our fire attack data.

> plot (x = subsetFire)

The resulting plot allowed us to visualize all of the relationships between our variables in a
single graphic.

11671

Briefing the Emperor

1. Assume that a and b are data variables. Which of the following best describes the
graphic that would result from the following line of code?

> plot(x = a, y = b)

a. Ascatterplot with a on the x axis and b on the y axis.

b. A scatterplot with b on the x axis and a on the y axis.

c. A scatterplot containing all of the relationships in the dataset.

d. A scatterplot containing none of the relationships in the dataset.

2. Assume that a is a dataset. Which of the following best describes the graphic that
would result from the following line of code?

> plot(x = a)

A scatterplot with a on the x axis.

a
b. A scatterplot with a on the y axis.

o

A scatterplot containing all of the relationships in the dataset.

d. A scatterplot containing none of the relationships in the dataset.

Time for action - creating a line chart

The ever popular line chart, or line graph, depicts relationships as continuous series of
connected data points. Line charts are particularly useful for visualizing specific values and
trends over time. Just as a line chart is an extension of a scatterplot in the non-digital realm,
a line chart is created using an extended form of the plot (. ..) function in R. Let us explore
how to extend the plot (...) function to create line charts in R:

1. Usethe type argument within the plot (.. .) function to create a line chart that
depicts a single relationship between two variables:
> #create a line chart that depicts the durations of past fire
attacks

#get the data to be used in the chart

lineFireDurationDataX <- c(1:30)

lineFireDurationDataY <- subsetFire$DurationInDays

#customize the chart

lineFireDurationMain <- "Duration of Past Fire Attacks"

lineFireDurationLabX <- "Battle Number"

lineFireDurationLab¥Y <- "Duration in Days"

vV V. VvV vV V Vv V V

#use the type argument to connect the data points with a line

[168]

Chapter 8

> lineFireDurationType <- "o"

> #use plot(...) to create and display the line chart

> plot (x = lineFireDurationDataX, y = lineFireDurationDataY,
main = lineFireDurationMain, xlab = lineFireDurationLabX,
ylab = lineFireDurationLaby¥, type = lineFireDurationType)

2. Your chart will be displayed in the graphic window, as follows:

Duration of Past Fire Attacks

12 14
|
<)

10

Duration in Days

0 5 10 15 20 25 30

Battle Number

What just happened?

We expanded our use of the plot (.. .) function to generate a line chart and encountered
a new data notation in the process. Let us review these features.

(1691

Briefing the Emperor

type

Inthe plot (...) function, the type argument determines what kind of line, if any,
should be used to connect a chart's data points. The type argument receives one of
several character values, all of which are listed as follows:

p: only points are plotted; this is the default value when type is undefined
1: only lines are drawn, without any points

o: both lines and points are drawn, with the lines overlapping the points

* 6 o o

b: both lines and points are drawn, with the lines broken where they intersect
with points

c: only lines are drawn, but they are broken where points would occur

*

s: only the lines are drawn in step formation; the initial step begins at zero

S: (uppercase) only the lines are drawn in step formation; the final step tails off at
the last point

h: vertical lines are drawn to represent each point
¢ n:no points nor lines are drawn

Our chart, which represented the duration of past fire attacks, featured a line that
overlapped the plotted points. First, we defined our desired line type in an R variable:

> lineFireDurationType <- "o"

Then the type argument was placed within our plot (.. .) function to generate the
line chart:

> plot (lineFireDurationDataX, lineFireDurationDataY,

main = lineFireDurationMain, xlab = lineFireDurationLabX,
ylab = lineFireDurationLaby,

type = lineFireDurationType)

Numher-colon-number notation

You may have noticed that we specified a vector for the x-axis data in our plot (.. .) function.

> lineFireDurationDataX <- c(1:30)

This vector used number-colon-number notation. Essentially, this notation has the effect of
enumerating a range of values that lie between the number that precedes the colon and the
number that follows it. To do so, it adds one to the beginning value until it reaches a final value
that is equal to or less than the number that comes after the colon. For example, the code >
14 :21 would yield eight whole numbers, beginning with 14 and ending with 21, as follows:

[1] 14 15 16 17 18 19 20 21

(1701

Chapter 8

Furthermore, the code > 14.2:21 would yield seven values, beginning with 14.2 and
ending with 20.2, as follows:

[1] 14.2 15.2 16.2 17.2 18.2 19.2 20.2

Number-colon-number notation is a useful way to enumerate a series of values without
having to type each one individually. It can be used in any circumstance where a series of
values is acceptable input into an R function.

Number-colon-number notation can also enumerate values from high to

low. For instance, 21 : 14 would yield a list of values beginning with 21

and ending with 14.

Since we do not have exact dates or other identifying information for our 30 past battles, we
simply enumerated the numbers 1 through 30 on the x-axis. This had the effect of assigning
a generic identification number to each of our past battles, which in turn allowed us to plot
the duration of each battle on the y axis.

1. Which of the following is the type argument capable of?
a. Drawing a line to connect or replace the points on a scatterplot.
b. Drawing vertical or step lines.
c. Drawing no points or lines.
d. All of the above.

2. What would the following line of code yield in the R console?
> 1:50
a. Asequence of 50 whole numbers, in order from 1 to 50.

b. A sequence of 50 whole numbers, in order from 50 to 1.
A sequence of 50 random numbers, in order from 1 to 50.

d. Asequence of 50 random numbers, in order from 50 to 1.

1l

Briefing the Emperor

Time for action - creating a hox plot

A useful way to convey a collection of summary statistics in a dataset is through the use of a
box plot. This type of graph depicts a dataset's minimum and maximum, as well as its lower,
median, and upper quartiles in a single diagram. Let us look at how box plots are created in R:

1. Usetheboxplot (...) function to create a box plot.

> #icreate a box plot that depicts the number of soldiers
required to launch a fire attack

> #get the data to be used in the plot

> boxplotFireShuSoldiersData <- subsetFire$ShuSoldiers

> #fcustomize the plot

> boxPlotFireShuSoldiersLabelMain <- "Number of Soldiers
Required to Launch a Fire Attack"

> boxPlotFireShuSoldiersLabelX <- "Fire Attack Method"

> boxPlotFireShuSoldiersLabelY <- "Number of Soldiers"

> #use boxplot(...) to create and display the box plot

> boxplot (x = boxplotFireShuSoldiersData,

main = boxPlotFireShuSoldiersLabelMain,

xlab boxPlotFireShuSoldiersLabelX,

ylab boxPlotFireShuSoldiersLabelY)

2. Your plot will be displayed in the graphic window, as shown in the following:

Number of Soldiers Required te Launch a Fire Attack

10000
|
o

8000

Number of Soldiers
6000
]

4000
1

2000
1

Fire Attack Method

[1721

Chapter 8

Use the boxplot (.. .) function to create a box plot that compares
multiple datasets.

> #ficreate a box plot that compares the number of soldiers
required across the battle methods

> #get the data formula to be used in the plot

> boxplotAllMethodsShuSoldiersData <- battleHistory$ShuSoldiers
~ battleHistoryS$Method

> #customize the plot

> boxPlotAllMethodsShuSoldiersLabelMain <- "Number of Soldiers
Required by Battle Method"

> boxPlotAllMethodsShuSoldiersLabelX <- "Battle Method"

> boxPlotAllMethodsShuSoldiersLabelY <- "Number of Soldiers"

> #use boxplot(...) to create and display the box plot

> boxplot (formula = boxplotAllMethodsShuSoldiersData,

main = boxPlotAllMethodsShuSoldiersLabelMain,

xlab boxPlotAllMethodsShuSoldiersLabelX,

ylab boxPlotAllMethodsShuSoldiersLabelY)

Your plot will be displayed in the graphic window, as shown in the following:

Number of Soldiers Required by Battle Method
o
(=]
S 4 o
w
J—
I
I
]
o |
g |
o — T !
wn [=] | |
o — 1 !
2 |)
@ ! !
5 i |
—] I
3 | |
E | i
Z g |
s |
o
wn
o
—
—] 8 . :
o L] e —_— —_—
I I I I
ambush fire headToHead surround
Battle Method

(1131

Briefing the Emperor

What just happened?

We just created two box plots using R's boxplot (.. .) function, one with a single box and
one with multiple boxes.

We started by generating a single box plot that was composed of a dataset, main title, and x
and y labels. The basic format for a single box plot is as follows:

boxplot (x = dataset)

The x argument contains the data to be plotted. Technically, only x is required to create a
box plot, although you will often include additional arguments. Our boxplot (.. .) function
used the main, x1ab, and ylab arguments to display text on the plot, as shown:

> boxplot (x = boxplotFireShuSoldiersData,
main = boxPlotFireShuSoldiersLabelMain,
xlab = boxPlotFireShuSoldiersLabelX,

ylab = boxPlotFireShuSoldiersLabelY)

Next, we created a multiple box plot that compared the number of Shu soldiers deployed by
each battle method. The main, x1ab, and ylab arguments remained from our single box
plot, however our multiple box plot used the formula argument instead of x. Here, a formula
allows us to break a dataset down into separate groups, thus yielding multiple boxes.

The basic format for a multiple box plot is as follows:
boxplot (formula = dataset ~ group)

In our case, we took our entire Shu soldier dataset (battleHistory$ShuSoldiers) and
separated it by battle method (battleHistory$Method):

> boxplotAllMethodsShuSoldiersData <- battleHistory$ShuSoldiers ~
battleHistorys$Method

Once incorporated into the boxplot (.. .) function, this formula resulted in a plot that
contained four distinct boxes—ambush, fire, head to head, and surround:

> boxplot (formula = boxplotAllMethodsShuSoldiersData,
main = boxPlotAllMethodsShuSoldiersLabelMain,

xlab boxPlotAllMethodsShuSoldiersLabelX,

ylab boxPlotAllMethodsShuSoldiersLabelY)

1l

Chapter 8

1. Which of the following best describes the result of the following code?

> boxplot (x = a)

a. Asingle box plot of the a dataset.
b. Asingle box plot of the x dataset.
c. A multiple box plot of the a dataset that is grouped by x.

d. A multiple box plot of the x dataset that is grouped by a.

2. Which of the following best describes the result of the following code?.

> boxplot (formula = a ~ b)

a. Asingle box plot of the a dataset.
b. Asingle box plot of the b dataset.
c. A multiple box plot of the a dataset that is grouped by b.

d. A multiple box plot of the b dataset that is grouped by a.

Time for action - creating a histogram

A histogram displays the frequency with which certain values occur in a dataset. Visually, a
histogram looks similar to a bar chart, but it conveys different information. Histograms help
us to get an idea of how varied and distributed our data are. Let us begin the histogram
making process in R:

1. Usethehist(...) function to create a histogram:

> #create a histogram that depicts the frequency distribution
of past fire attack durations

#get the histogram data

histFireDurationData <- subsetFire$DurationInDays
#customize the histogram

histFireDurationDataMain <- "Duration of Past Fire Attacks"
histFireDurationLabX <- "Duration in Days"
histFireDurationLimY <- c (0, 10)

vV V. V V VvV V V

histFireDurationRainbowColor <-

rainbow (max (histFireDurationData))

> #use hist(...) to create and display the histogram

> hist(x = histFireDurationData,

main = histFireDurationDataMain, xlab = histFireDurationLabX,
ylim = histFireDurationLimY,

col = histFireDurationRainbowColor)

(1151

Briefing the Emperor

2. Your histogram will be displayed in the graphic window, as shown in the following:

Duration of Past Fire Attacks

10
|

Frequency

Duration in Days

What just happened?

We used the hist (...) function to generate a histogram that depicted the frequency
distribution of our fire attack duration data.

In its simplest form, the hist (.. .) function is very similar to boxplot (...).Ata
minimum, it requires only that the data for the chart's columns be defined. A simple
function looks like the following:

hist (x = dataset)

(1761

Chapter 8

As is true with our other graphics, the hist (.. .) function also receives graphic
customization arguments. We rescaled our y-axis with y1im, colored our bars with col, and
added text to our histogram with main and x1ab. Also note that we used the max (data)
function within the rainbow (. ..) component of our col argument to ensure that our
histogram would have enough colors to represent each unique value in our dataset:

hist (x = histFireDurationData, main = histFireDurationDataMain,
xlab = histFireDurationLabX, ylim = histFireDurationLimY,
col = histFireDurationRainbowColor)

1. Which of the following information are we not capable of deriving from
a histogram?

a. The most and least frequently occurring values in the dataset.
b. The total number of data points in the dataset.

The minimum and maximum values in the dataset.

o

d. The exact value of each data point in the dataset.

Time for action - creating a pie chart

Pie charts are a fast and easy way to visualize a single relationship within a dataset. Let us
look at how to create a pie chartin R:

1. Usethepie(...) function to create a pie chart:

> #create a pie chart that depicts the gold cost of the fire
attack in relation to the total funds allotted to the Shu army
> #get the data to be used in the chart

> #what is the cost of the proposed fire attack?

> functionGoldCost (2500, 225, 7)

[1] 6791.667

> #we already know that 1,000,000 gold has been allotted to
the Shu army

> #itherefore our remaining funds after the fire attack would
be 993,208

> #create a vector to hold the values for the chart's slices

> pieFireGoldCostSlices <- c (6792, 993208)

> #use the labels argument to specify the text associated with
each of the chart's slices

> pieFireGoldCostLabels <- c("mission cost", "remaining funds")
> #fcustomize the chart

[l

Download from Wow! eBook <www.wowebook.com>

Briefing the Emperor

3.

> pieFireGoldCostMain <- "Gold Cost of Fire Attack"

> pieFireGoldCostSpecificColors <- c("green", "blue")

> #use pie(...) to create and display the pie chart

> pie(x = pieFireGoldCostSlices,

labels = pieFireGoldCostLabels, main = pieFireGoldCostMain,
col = pieFireGoldCostSpecificColors)

Your chart will be displayed in the graphic window, similar to the following:

Gold Cost of Fire Attack

remaining funds mission cost

Add a legend to the chart, using the following code:

> #use the legend(...) function to add a legend to the chart
> legend(x = "bottom", legend = pieFireGoldCostLabels,
fill = pieFireGoldCostSpecificColors)

(1181

Chapter 8

4. Your legend will be added to the existing chart, which will look like the following:

Gold Cost of Fire Attack

remaining funds mission cost

E mission cost
B remaining funds

What just happened
We created a pie chart using R's pie (.. .) function and then appended it with a legend. Let
us review how pie charts are generated in R.

The primary arguments used in the pie (.. .) function are x and labels:

¢ x:the numerical values for the pie's slices. These must be nonnegative and input in
vector form.
& labels: the text labels for the pie's slices. These must be input in vector form.

Consequently, the pie chart function takes on the following basic form:

pie(x = sliceData, labels = sliceText)

(191

Briefing the Emperor

Where sliceData and sliceText are in vector form.

To create our pie chart, we first calculated the cost information that we wished to display
and stored it in a vector variable, like so:

> pieFireGoldCostSlices <- c (6792, 993208)
Next, we created a vector to hold the text labels for our pie's slices:
> pieFireGoldCostLabels <- c("mission cost", "remaining funds")

Then we customized our chart with a main title and specific colors, before executing our
complete pie (. ..) function:

> pie(x = pieFireGoldCostSlices, labels = pieFireGoldCostLabels,
main = pieFireGoldCostMain, col = pieFireGoldCostSpecificColors)

Lastly, we added a legend to our chart to further clarify its components:

> legend(x = "bottom", legend = pieFireGoldCostLabels,
fill = pieFireGoldCostSpecificColors)

1. Inthepie(...) function, what do the x and 1abels arguments represent?

a. labels represents the slice's numerical values, whereas x represents the slice's

text labels.

b. xrepresents the slice's numerical values, whereas 1abels represents the slice's

text labels.

c. labels represents the slice's text values, whereas x represents the slice's
numerical labels.

d. xrepresents the slice's text values, whereas 1abels represents the slice's
numerical labels.

At this point, you have practiced generating six fundamental R graphics that are critical to

data analysis, visualization, and presentation. Use your new R skills to create at least three
graphics that will convince the emperor that your battle plan is logistically viable, of benefit
the Shu kingdom, and the best choice amongst the competing options. Be sure to employ
the customization arguments that we explored in this chapter. Refer back to the individual
sections of this chapter for assistance with creating graphics of particular types.

[1801]

Chapter 8

Time for action — exporting graphics

Now that we have created all of these informative graphics, it would be nice to be able to
use them for presentations, reports, desktop wallpapers, or a variety of other purposes.
Fortunately, R is capable of turning its graphics into digital images that can be used in other
applications. Let us look at how to export our graphics for use outside of R:

1. Useone of R's several export functions to convert a graphic into a digital image, it
can be done as follows:

> #use an export function to save a graphic as a digital image
> #fprepare R to export your graphic in one of the following
formats: pdf, png, jpg, tiff, or bmp

> #note that your image will be saved into your R working
directory by default if only a filename is provided

> f#fotherwise, your image will be saved to the full provided
path

> #optionally, the width and height, in pixels, of the
resulting image can be specified

> #fexport as pdf

> pdf ("myGraphic.pdf", width = 500, height = 500)
> #OR

> #fexport as png

> png ("myGraphic.png", width = 500, height = 500)

> #OR

> #fexport as jpg

> jpeg ("myGraphic.jpg", width = 500, height = 500)
> #OR

> #export as tiff

> tiff ("myGraphic.tiff", width = 500, height = 500)
> #OR

> #fexport as bmp

> bmp ("myGraphic.bmp", width = 500, height = 500)

2. Create the graphic, as follows:

> #fcreate the graphic in R

> #note that your graphic may NOT be displayed in the graphic
window during this process

> #we will use our original fire cost pie chart as an example
> #use pie(...) to create the pie chart

> pie(x = pieFireGoldCostSlices,

11811

Briefing the Emperor

5.

labels = pieFireGoldCostLabels, main = pieFireGoldCostMain,
col = pieFireGoldCostSpecificColors)

> #use the legend(...) function to add a legend to the chart
> legend(x = "bottom", legend = pieFireGoldCostLabels,

fill = pieFireGoldCostSpecificColors)

Use dev.off () to close the current device and export your graphic as a
digital image:

> #use dev.off () to close the current device and export the
graphic as a digital image

> dev.off ()

Your graphic will be exported. Verify that your digital image has been created.

What just happened?

We just completed the process of exporting an R graphic as a digital image file. Let us detail
the three major steps involved in this procedure.

1.

Prepare the graphic device

The first step in exporting an R graphic is to prepare the graphic device, which is the
entity that handles graphics in R. This step requires that a file type for our exported
graphic be defined. Optionally, a width and height for the resulting image can also
be specified. These can be accomplished through the use of one of several similar
functions. These are:

o pdf(filename, width, height)

o png(filename, width, height)

o Jjpeg(filename, width, height)

a tiff(filename, width, height)

o bmp(filename, width, height)
Each of these functions prepares the graphic device to export an image associated
with its name. For example, the pdf (filename, width, height) function will
export an image to PDF format. The £i1ename argument can contain either a
complete path specifying where the image is to be saved or just a filename and
extension. If only a name and extension are included, the image will be saved to the

R working directory. The width and height parameters are measured in pixels and
receive a single numeric value. For instance, see the following:

> pdf ("/Users/johnmguick/Desktop/myGraphic.pdf", width = 500,
height = 500)

11821

Chapter 8

This would export a 500 by 500 pixel PDF image named myGraphic.pdf to the
given user's desktop. Whereas, look at the following:

> pdf ("myGraphic.pdf", width = 300, height = 200)

This would export a 300 by 200 pixel PDF image named myGraphic.pdf to the
current working directory.

2. Create the graphic

The second step is to create the graphic in R. This can be done using any of the
techniques that we have explored in this chapter. The only difference between this
scenario and our previous activities is that we prepared our graphic device prior to
creating our graphic. Note that the graphic must be created after executing one of
the functions provided in the previous step in order to be exported. Also, unlike our
other experiences with R visuals, your graphic may not be displayed in the graphic
window when its function is executed.

3. Close the graphic device

The third and final step is to close the graphics device via the dev.off () command.
Once dev.off () is executed, the graphic will be exported and saved on your
computer as a digital image. Afterwards, be sure to check the location that you
specified in the first step to verify that your digital image is present and that it was
exported properly.

Remembering these three simple steps will allow you to export your R graphics as digital
images, thereby allowing them to be used in other applications.

1. In what order must the three steps of the graphic exportation process proceed?
a. Create the graphic, prepare the graphic device, close the graphic device.
b. Close the graphic device, prepare the graphic device, create the graphic.
c. Prepare the graphic device, close the graphic device, create the graphic.

d. Prepare the graphic device, create the graphic, close the graphic device.

[1831]

Briefing the Emperor

Create a custom function named exportGraphic that will allow you to save an R graphic
as a digital image. Your function should receive five inputs—a filename, a filetype, a width, a
height, and a graphics function. For instance, exportGraphic should be able to receive the
arguments of test .png, png, 500, 500, and barplot (c(1:10)), and yield a PNG image
of the specified R graphic. Your function should also be able to export an image of any other
valid type. Make sure that your custom function follows the process that we used to export
our graphics as digital images. Once created, test your exportGraphic function to ensure
that it works as intended.

In this chapter, you created several charts, graphs, and plots to communicate your vision
and win the approval of the Shu emperor. This process entailed using R's graphical prowess
to generate, customize, and export visual representations of your data. At this point, you
should be able to:

¢ Use R to create various charts, graphs, and plots

¢ Customize your R visuals using colors, lines, and symbols

¢ Save and export your R visuals
The final stage in preparing for battle is to communicate your strategy to the members of the
Shu forces who will execute it. This step requires the simple and clear presentation of precise

details. In Chapter 9, we will explore the use of detailed custom data visualizations to brief
the generals of the Shu army.

(1841

In Chapter 8, we explored several graphics that can be generated in R. Using
these visualizations, you were able to win the favor of the Shu Emperor and
receive his approval to carry out your battle plans. Now your focus has turned
to the Shu generals, who must be convinced that your plan is worthy of their
services. The generals will need to know the details of the attack and how it
compares with alternative combat strategies. Recruiting the top generals in the
Shu army is critical to the success of your strategy. This challenge calls for clean,
detailed, and informative graphics.

We will revisit the charts, graphs, and plots that were created in Chapter 8.
To improve their informativeness, clarity, and aesthetics, we will employ new
graphics arguments and functions. Specific customization arguments for the
different graphics types will be deployed. New graphics functions that add
information to visuals will also be explored. We will even work to create our
own custom graphics from scratch.

By the end of this chapter, you will be able to do the following:

¢ Customize several charts, graphs, and plots using arguments specific to each
¢ Use graphics functions to add information to any visual

¢ Create custom graphics by building them from the ground up

Briefing the Generals

In Chapter 8, we customized our graphics using universal arguments that applied to all
visuals. However, R graphics often have arguments that apply only to themselves as well.
These can be used to make type-specific customizations. We will build upon the graphics
that were covered in Chapter 8 by examining the arguments that are specific to each visual.
R also provides graphics functions that can be used to add information to any visual. We will
use these to expand our graphics and to experiment with building our own graphics from
scratch. The following visuals will be covered in this chapter:

Bar graphs
Scatterplots
Line charts
Box plots
Histograms

Pie charts

® 6 ¢ 6 6 o o

Custom graphics

For demonstration purposes, all of our visuals will communicate information about the

fire attack strategy that was used in Chapter 7. This strategy entailed deploying 2,500 Shu
soldiers for 7 days to execute a fire attack 225 miles away on 10,000 Wei soldiers in Anding.
If desired, you are encouraged to substitute your own battle plans into any or all activities
for this chapter.

Throughout this chapter, we will modify and build upon the graphics that we created in
the previous chapter. All of the necessary variables from that chapter are provided in the
rBeginnersGuide Ch 09 ReadersCopy.RData workspace file.

Time for action — customizing a har chart

To begin, we will expand our Chapter 8 bar chart using arguments specifically designed
for the barplot (.. .) function. We will also become familiar with two different types
of bar charts.

1. Open R and set your working directory:

> #set the R working directory
> #ireplace the sample location with one that is relevant to you
> setwd (" /Users/johnmquick/rBeginnersGuide/")

1861

Chapter 9

Load the Chapter 9 workspace. It contains the necessary information for
this chapter:

> #load the chapter 9 workspace
> load ("rBeginnersGuide Ch 09 ReadersCopy.RData")

Use the names, width, and space arguments to customize a chart's bars:

> #fmodify the chapter 8 bar chart that compared the mean durations
of the battle methods

> #use the names argument to assign a text label to each bar

> #the names argument receives a vector containing text labels for
each of the chart's bars

> barAllMethodsDurationNames <- c("Fire", "Ambush",
"Head to Head", "Surround")
> #fuse the width argument to change the width of each bar

> #note that width can be set using a single value for all bars or
by creating a vector to hold a unique value for each bar

> #fnote that the xlim argument must be defined in order to use the
single value approach

> barAllMethodsDurationLimX <- c (0, 4)

> barAllMethodsDurationWidth <- 0.25

> #use the space argument to change the distance between each bar
> #ithe space value is a ratio of the average bar width; it
defaults to 0.2

> #note that space can be set using a single value for all bars or
by creating a vector to hold a unique value for each bar

> barAllMethodsDurationSpace <- 2

> #use barplot(...) to create and display the bar chart
> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelX,

ylab = barAllMethodsDurationLabely,

x1lim = barAllMethodsDurationLimX,

ylim = barAllMethodsDurationLimY,

col = barAllMethodsDurationRainbowColors,
names = barAllMethodsDurationNames,

width = barAllMethodsDurationWidth,

space = barAllMethodsDurationSpace)

11871

Briefing the Generals

Your chart will be displayed in the graphic window, as shown in the following:

Average Duration by Battle Method

Duration in Days
40 60 100 120
1 |

20

Jom OB

Fire Ambush Headto Head Surround

Battle Method

4. Use the horiz argument to change the chart's orientation:

> #set a bar chart's orientation using the horiz argument
> #if TRUE, the bars will display horizontally

> #if FALSE (default), the bars will display vertically

> barAllMethodsDurationHoriz <- TRUE

> #note that you must reorient the chart for it to display
properly

> #this can be accomplished by switching the values of all
arguments related to the x and y axes

> #use barplot(...) to create and display the bar chart

> barplot (height = barAllMethodsDurationBars,

main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelyY,

[1881]

Chapter 9

ylab = barAllMethodsDurationLabelX,
xlim = barAllMethodsDurationLimY,
ylim = barAllMethodsDurationLimX,

col = barAllMethodsDurationRainbowColors,
names = barAllMethodsDurationNames,
width = barAllMethodsDurationWidth,
space = barAllMethodsDurationSpace,
horiz = barAllMethodsDurationHoriz)

Your chart will be displayed in the graphic window, as shown in the following:

Average Duration by Battle Method

Battle Method

1

Ambush Head to Head Surround

Fire

I T T T T I 1
0 20 40 60 80 100 120

Duration in Days

Note that if your bar labels do not all appear along the y-axis, you may want

to resize the graphic window. Making your window larger will provide it with
’ enough space to display all of the chart's labels.

(1891

Briefing the Generals

5.

Use the beside argument to create a stacked bar chart:

> #create a new bar chart to demonstrate the stacking feature

> #create a bar chart that depicts the average number of soldiers
involved in each battle method with stacked bars for the Shu and
Wei forces

> #set the stacking of a chart's bars using the beside argument

> #if TRUE (default), the bars will display next to one another

> #if FALSE, the bars will display atop one another

> barAllMethodsSoldiersBeside <- FALSE

> #note that the bar values must be in matrix form for the beside
argument to take effect

> #calculate the bar values for each method

> #fire
> meanShuSoldiersFire <- mean (subsetFire$ShuSoldiers)
> meanWeiSoldiersFire <- mean (subsetFire$WeiSoldiers)

> #ambush
> meanShuSoldiersAmbush <- mean (subsetAmbush$ShuSoldiers)
> meanWeiSoldiersAmbush <- mean (subsetAmbushsWeiSoldiers)

> #head to head

> meanShuSoldiersHeadToHead <-
mean (subsetHeadToHead$ShuSoldiers)
> meanWeiSoldiersHeadToHead <-
mean (subsetHeadToHead$WeiSoldiers)

> #surround
> meanShuSoldiersSurround <- mean (subsetSurround$ShuSoldiers)
> meanWeiSoldiersSurround <- mean (subsetSurround$WeiSoldiers)

> #fput the bar values into matrix form using the matrix(...)
function

> #the matrix should have four columns (one for each method) and
two rows (one for each kingdom)

> #when the chart is created, the rows will be stacked within each
column

> barAllMethodsSoldiersBars <- matrix(c(meanShuSoldiersFire,
meanWeiSoldiersFire, meanShuSoldiersAmbush,

meanWeiSoldiersAmbush, meanShuSoldiersHeadToHead,
meanWeiSoldiersHeadToHead, meanShuSoldiersSurround,
meanWeiSoldiersSurround), 2, 4)

> #fcustomize the chart

> barAllMethodsSoldiersMain <- "Average Number of Soldiers Engaged

[1901]

Chapter 9

in Battle by Kingdom"
> barAllMethodsSoldiersLabX <- "Battle Method"
> barAllMethodsSoldiersLabY <- "Number of Soldiers"

> barAllMethodsSoldiersNames <- c("Fire", "Ambush",
"Head to Head", "Surround")
> #use barplot(...) to create and display the bar chart

> barplot (height = barAllMethodsSoldiersBars,
main = barAllMethodsSoldiersMain,

xlab barAllMethodsSoldiersLabX,

ylab barAllMethodsSoldiersLaby,

names = barAllMethodsSoldiersNames,

beside = barAllMethodsSoldiersBeside)

Your chart will be displayed in the graphic window, as follows:

Average Number of Soldiers Engaged in Battle by Kingdom
8
S 4
=
~
=
(=]
[=
[=]
w
[=]
(=]
' B
[=]
[Te]
w
] (=3
S 8-
a =
5
b (=]
g 8
£ 8
=z
(=]
(=]
&
(=]
(o]
0 E E
(=]
o 9 —
(=]
o
Fire Ambush Head to Head Surround
Battle Method

11911

Briefing the Generals

6. Usethe density and angle arguments to change the shading of the chart's bars:

> #fuse the density argument to define the thickness of the shaded
lines

> #density receives either a single nonnegative value for all
matrix rows or a vector containing a value for each row

> #density is measured in lines per inch with a default value of
NULL

> barAllMethodsSoldiersDensity <- c (10, 25)

> #angle modifies the angle of the shaded lines

> #angle receives either a single value for all matrix rows or a
vector containing a value for each row

> #fangle is measured in degrees

> barAllMethodsSoldiersAngle <- c (45, -45)

> #use barplot(...) to create and display the bar chart

> barplot (height = barAllMethodsSoldiersBars,

main = barAllMethodsSoldiersMain,

xlab = barAllMethodsSoldiersLabX,

ylab = barAllMethodsSoldiersLaby,

names = barAllMethodsSoldiersNames,

beside = barAllMethodsSoldiersBeside,

density = barAllMethodsSoldiersDensity,

angle = barAllMethodsSoldiersAngle)

Your chart will be displayed in the graphic window, as shown in the following:

Average Number of Soldiers Engaged in Battle by Kingdom

70000
|

60000
1

50000
|

40000
|

Number of Soldiers
30000
]

20000
1

10000
|

0
L

Fire Ambush Head to Head Surround

Battle Method

11921

Download from Wow! eBook <www.wowebook.com>

Add a legend to the chart:
> #add a legend to the stacked bar chart

> #use the x and y arguments to specify the exact location of the

legend

> #note that the possible x and y values are determined by the

limits of your axes

> #add labels for the Shu and Wei armies

> #incorporate the density and angle arguments from our
barplot (...) function

> #fuse cex to increase the size of the legend

> legend(x = 0.2, y = 70000, legend = c("Shu", "Wei"),
density = barAllMethodsSoldiersDensity,

angle = barAllMethodsSoldiersAngle, cex = 2)

Your legend will be added to the existing chart. The final chart looks like
the following:

Average Number of Soldiers Engaged in Battle by Kingdom

70000
|

74 Shu
Y Wei

60000
]

50000
|

40000
|

Number of Soldiers
30000
I

20000
|

10000
|

0
|

Fire Ambush Head to Head Surround

Battle Method

[1931

Briefing the Generals

What just happened?
We created vertical, horizontal, and stacked bar charts using the barplot (.. .) function
and its custom arguments. We also expanded upon the 1legend (. . .) function to gain more

control over its appearance. Let us reflect upon each of these steps.

We started by adding text labels to our bars via the names argument. This argument
receives a vector containing the text label to be appended to each bar. In our case,
the labels consisted of the four battle methods that follow:

barAllMethodsSoldiersNames <- c("Fire", "Ambush", "Head to Head",
"Surround")
Then, we looked at two arguments that are unique to the barplot (. ..) function. The

width argument specifies the thickness of a chart's bars. It can be defined as a single value
for all bars or a vector that contains unique values for each bar. Note that if a single value

is used, the x1im argument must be defined for the width argument to take effect. In
coordination with width, we also employed the space argument, which determines the
distance between a chart's bars. Like width, space can be defined as a single value or a
vector containing values for each bar. It is measured as a ratio of the average bar width and
defaults to a value of 0.2. For example, if the average width of the bars was 5 and the space
was set to 0.5, then the distance between each bar would be 2.5. For our chart, we chose a
width of 0.25 and a space of 2, which had the visual effect of making our bars skinnier and
spread farther apart:

> barAllMethodsDurationWidth <- 0.25
> barAllMethodsDurationSpace <- 2

We chose uniform width and space values for our bars. Had we wanted to set unique values
for each bar, such as when weighting the bars according to the number of data points they
include, we could have used the following code:

> barAllMethodsDurationWidth <- <¢(0.1, 0.25, 0.5, 0.75)
> barAllMethodsDurationSpace <- c¢(0.5, 1, 1.5, 2)

Lastly, the names, width, and space arguments were incorporated into our overall
barplot (...) function:

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab barAllMethodsDurationLabelX,

ylab barAllMethodsDurationLabelY,

11941

Chapter 9

xlim = barAllMethodsDurationLimX,

ylim = barAllMethodsDurationLimY,

col = barAllMethodsDurationRainbowColors,
names = barAllMethodsDurationNames,
width = barAllMethodsDurationWidth,

space = barAllMethodsDurationSpace)

To further expand our bar chart, we incorporated the horiz argument. This argument allows
us to reorient our bars such that they extend horizontally, rather than vertically, across the
chart. The horiz argument receives either a TRUE or FALSE value indicating whether the
bars should be oriented horizontally. By default, horiz is set to FALSE and the bars are
drawn vertically. We chose to reorient our bars by setting our horiz variable to TRUE:

barAllMethodsDurationHoriz <- TRUE

We then included it into our barplot (.. .) function:

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelY,

ylab = barAllMethodsDurationLabelX,

xlim = barAllMethodsDurationLimY,

ylim = barAllMethodsDurationLimX,

col = barAllMethodsDurationRainbowColors,

names = barAllMethodsDurationNames,
width = barAllMethodsDurationWidth,
space = barAllMethodsDurationSpace,
horiz = barAllMethodsDurationHoriz)

Note that reorienting the bars of a chart is similar in effect to rotating it by 90 degrees.
Therefore, to prevent a misshapen and unreadable graphic, we must also swap all arguments
related to the x and y-axes. In our case, that meant exchanging our x-axis and y-axis limits
and labels:

> barplot (height = barAllMethodsDurationBars,
main = barAllMethodsDurationLabelMain,

xlab = barAllMethodsDurationLabelY,

ylab = barAllMethodsDurationLabelX,

xlim = barAllMethodsDurationLimY,

ylim = barAllMethodsDurationLimX,

col = barAllMethodsDurationRainbowColors,

names = barAllMethodsDurationNames,
width = barAllMethodsDurationWidth,
space = barAllMethodsDurationSpace,
horiz = barAllMethodsDurationHoriz)

(1951

Briefing the Generals

After swapping these values, the chart displays appropriately. Had we forgotten to make this
exchange, we would have ended up with the following graphic:

Average Duration by Battle Method

Duration in Days

Fire

(=
N
-
[
-

Battle Method

% Remember to swap your x-axis and y-axis arguments when making
i horizontal bar charts.

We then turned to developing a new chart that would make use of the beside argument.
This argument tells a chart's bars to stack atop one another, rather than stand side by side.
Like horiz, beside accepts a TRUE or FALSE value. If TRUE, the default setting, the bars
will display side by side. If FALSE, the bars will be stacked. We chose to stack our bars by
setting beside to FALSE.

barAllMethodsSoldiersBeside <- FALSE

[1961]

Chapter 9

Note that for the beside argument to take effect, the height argument must be in matrix
form. To organize our data into a matrix, we used the matrix (...) function, whose basic
format is as follows:

matrix(values, rows, columns)

Here, values is a vector containing the relevant data points, rows is the number of rows,
and columns is the number of columns. Our matrix consisted of eight data points that were
organized into two rows (Shu and Weij) and four columns (Fire, Ambush, Head to Head, and
Surround). In the final chart, the four bars are formed by stacking the two rows within each
column; the following is the code:

> barAllMethodsSoldiersBars <- matrix(c(meanShuSoldiersFire,
meanWeiSoldiersFire, meanShuSoldiersAmbush, meanWeiSoldiersAmbush,
meanShuSoldiersHeadToHead, meanWeiSoldiersHeadToHead,
meanShuSoldiersSurround, meanWeiSoldiersSurround), 2, 4)

Our stacked bar chart depicted the average number of soldiers that are engaged in each type
of battle. By stacking our bars, we were able to specify what proportion of the soldiers came
from the Shu and Wei armies. Thus, our chart was able to include more information in the
same amount of space:

> barplot (height = barAllMethodsSoldiersBars,
main = barAllMethodsSoldiersMain,

xlab = barAllMethodsSoldiersLabX,

ylab = barAllMethodsSoldiersLaby,

names = barAllMethodsSoldiersNames,

beside = barAllMethodsSoldiersBeside)

After beside, we used the density and angle arguments to define the shading of our
bars. The density argument defines the closeness of the shaded lines. It receives either a
single non-negative value for all matrix rows or a vector that contains values for each row.
The angle argument specifies the angle at which the shaded lines are to be drawn. It also
accepts a single value for all matrix rows or a vector containing values for each row.

Our stacked bar chart used a density of 10 for the Shu row and 25 for the Wei row:

> barAllMethodsSoldiersDensity <- c (10, 25)

It also featured an angle of 45 for the Shu and -45 for the Wei:

> barAllMethodsSoldiersAngle <- c (45, -45)

11971

Briefing the Generals

Hence, you will notice that the shading in the Shu portions of our bars is spread thinner and
rises to the upper-right of the chart, whereas the shading in the Wei portions of the chart is
thicker and declines towards the lower-right of the chart:

> barplot (height = barAllMethodsSoldiersBars,
main = barAllMethodsSoldiersMain,

xlab = barAllMethodsSoldiersLabX,

ylab = barAllMethodsSoldiersLaby,

names = barAllMethodsSoldiersNames,

beside = barAllMethodsSoldiersBeside,

density = barAllMethodsSoldiersDensity,

angle = barAllMethodsSoldiersAngle)

legend(..) with density, angle, and cex

In the final step, we added a legend to our chart. A legend is critical to a stacked bar chart,
because it indicates the difference between its grouped regions. Our legend (. . .) function
expanded upon the legends that we created in the previous chapter. We positioned the
legend towards the upper-left side of the chart using the x and y arguments. We also
specified the labels that we wanted to show in the legend (Shu and Wej). By default, the
legend would have displayed the bar names (Fire, Ambush, Head to Head, and Surround).
Since we needed to display the stacked segments of each bar instead, we had to specifically
define them as a vector in the 1egend argument. Next, we incorporated the exact density
and angle arguments from our barplot (.. .) function. This matched the legend's shading
to that of our chart. To complete our legend, we used the cex argument to multiply its size
by 2 times. The cex argument accepts a numeric value that indicates how much a legend
should be scaled by. Increasing the size of our legend made it easier to read, thus enabling
viewers to quickly distinguish between our chart's stacked regions:

> legend(x = 0.2, y = 70000, legend = c("Shu", "Wei"),
density = barAllMethodsSoldiersDensity,
angle = barAllMethodsSoldiersAngle, cex = 2)

1. Inthebarplot(...) function, what is the relationship between the width and
space arguments?

a. width sets the distance between the bars, while space sets the thickness of
the bars.

b. width sets the thickness of the bars, while space sets the distance between
the bars.

[198]

Chapter 9

c. space sets the range of the bars on the x-axis, while width sets the length of

the bars.
d. space sets the length of the bars, while width sets the range of the bars on
the x-axis.
2. Inthebarplot (...) function, which of the following is not critical to note when

using the horiz argument?
a. It accepts either a TRUE (for horizontal bars) or FALSE (for vertical bars) value.
b. It defaults to FALSE.

¢. When TRUE, all arguments related to the x and y axes must be swapped for the
chart to display properly.

d. When undefined, the barplot (.. .) function will draw horizontal bars.

3. Inthebarplot (...) function, which of the following is not critical to note when
using the beside argument?
a. It accepts either a TRUE (for adjacent bars) or FALSE (for stacked bars) value.
b. It defaults to FALSE.
c. To take effect, the chart's height data must be in matrix form.

d. When FALSE, it is advisable to include a legend with the chart.

Use your soldiersByCity dataset to create a chart that depicts the total number of
soldiers in the Shu and Wei armies as two separate bars. Then create a stacked bar chart
with the same data, but separate the Shu and Wei bars into distinct sections for each city.
Compare these two charts and reflect upon the pros and cons of using each.

Time for action — customizing a scatterplot

Our second look at scatterplots will revolve around customizing data point markers, adding
new information to a plot, and creating best fit lines:

1. Customize a scatterplot's point markers using the pch and cex arguments:

> #modify the chapter 8 single scatterplot that depicted the
relationship between the number of Shu and Wei soldiers engaged in
past fire attacks

> #use the pch argument to change the style of the data point
markers

> #fpch accepts a whole number value between 0 and 25

> scatterplotFireSoldiersPch <- 2

[199]

Briefing the Generals

> #fuse the cex argument to change the size of the data point
markers

> #fcex accepts a numeric value indicating by how much to scale the
markers

> #fcex defaults to value of 1

> scatterplotFireSoldiersCex <- 3

> plot (x = scatterplotFireWeiSoldiersData,

y = scatterplotFireShuSoldiersData,

main = scatterplotFireSoldiersLabelMain,

xlab = scatterplotFireSoldiersLabelX,

ylab = scatterplotFireSoldiersLabelY,

pch = scatterplotFireSoldiersPch,

cex = scatterplotFireSoldiersCex)

Your plot will be displayed in the graphic window, as shown in the following:

Soldiers Engaged in Past Fire Attacks

10000
|

>
>

6000
|

VAN JAN

Shu

4000
1

JA'AN

2000

AA %
18

0 10000 20000 30000 40000 50000

2. Prepare the scatterplot to incorporate additional data:
> #fprepare the line chart to incorporate data from the other
battle methods
> #fmodify the chart title
> scatterplotAllMethodsSoldiersMain <-
"Soldiers Engaged by Battle Method"
> #rescale the axes to handle the new data
> scatterplotAllMethodsSoldiersLimX <- ¢ (0, 200000)

[200]

Chapter 9

> scatterplotAllMethodsSoldiersLimY <- c (0, 150000)

> #incorporate the col argument to distinguish between the
different battle methods

> scatterplotAllMethodsSoldiersFireCol <- "red"
> #use plot(...) to create and display the revised line chart
> plot (x = scatterplotFireWeiSoldiersData,

y = scatterplotFireShuSoldiersData,

main = scatterplotAllMethodsSoldiersMain,

xlab = scatterplotFireSoldiersLabelX,

ylab scatterplotFireSoldiersLabelY,

xlim = scatterplotAllMethodsSoldiersLimX,

ylim = scatterplotAllMethodsSoldiersLimY,

col = scatterplotAllMethodsSoldiersFireCol,

pch = scatterplotFireSoldiersPch,

cex = scatterplotFireSoldiersCex)

Your scatterplot will be displayed in the graphic window; it will look like
the following:

Soldiers Engaged by Battle Method

[=]
(=]
L=
(=]
u
3
(=]
[=]
[=
[=]
[=]
S
=
-
(7]
(=]
[=]
g |
(=]
[Te]
A
Fa \
JAN
Y
o

T T T T T
0 50000 100000 150000 200000

Wei

2011

Briefing the Generals

3.

Use the points (.. .) function to add new relationships to the scatterplot:

#use points(...) to add new relationships to a scatterplot
#add points representing the three remaining battle methods
#note that after entering each subsequent function into the
console, it will be immediately drawn atop your existing
scatterplot

2y VAR VARY]

#ambush

pointsAmbushDataX <- subsetAmbush$WeiSoldiersEngaged
pointsAmbushDataY <- subsetAmbush$ShuSoldiersEngaged
pointsAmbushType <- "p"

pointsAmbushPch <- 1

pointsAmbushCex <- 1

pointsAmbushCol <- "blue"

vV V. VvV V VvV V V V

points(x = pointsAmbushDataX, y = pointsAmbushDataY,
type = pointsAmbushType, col = pointsAmbushCol,
pch = pointsAmbushPch, cex = pointsAmbushCex)

#head to head

pointsHeadToHeadDataX <- subsetHeadToHead$WeiSoldiersEngaged
pointsHeadToHeadDataY <- subsetHeadToHead$ShuSoldiersEngaged
pointsHeadToHeadType <- "p"

pointsHeadToHeadPch <- 3

pointsHeadToHeadCex <- 1

pointsHeadToHeadCol <- "darkorange2"

vV V. V V VvV V V V

points (x = pointsHeadToHeadDataX, y = pointsHeadToHeadDatay,
type = pointsHeadToHeadType, col = pointsHeadToHeadCol,
pch = pointsHeadToHeadPch, cex = pointsHeadToHeadCex)

#surround

pointsSurroundDataX <- subsetSurrounds$WeiSoldiersEngaged
pointsSurroundDataY <- subsetSurround$ShuSoldiersEngaged
pointsSurroundType <- "p"

pointsSurroundPch <- 4

pointsSurroundCex <- 1

pointsSurroundCol <- "forestgreen"

vV V. VvV V VvV V V V

points (x = pointsSurroundDataX, y = pointsSurroundDataY,
type = pointsSurroundType, col = pointsSurroundCol,
pch = pointsSurroundPch, cex = pointsSurroundCex)

12021

Chapter 9

Your points will be added to the existing scatterplot. The scatterplot will look like
the following:

150000

Shu
100000

50000

Soldiers Engaged by Battle Method

-1 KA x

T T T T T
0 50000 100000 150000 200000

Wei

Add a legend to the scatterplot.

> #add a legend

> #use the x and y arguments to specify the exact location of the
legend

> #add labels for the battle methods

> #add fill colors to match the scatterplot's points

> legend(x = 145000, y = 65000, legend = c("Fire", "Ambush",
"Head to Head", "Surround"), fill = c("red", "blue",
"darkorange2", "forestgreen"))

[2031

Briefing the Generals

Your legend will be added to the existing scatterplot, which should like like
the following:

Soldiers Engaged by Battle Method
(=]
(=]
g - %
[T2]
®
(=]
(=]
2 S KX X x
(=]
3
=
7]
|
|)
o ® W Fire
g — } ® * o) W Ambush
2 % B Head to Head
f B Surround
t t
[
T T T T T
0 50000 100000 150000 200000
Wei
5. Usetheabline(...) function to add a best fit line to each relationship in

the scatterplot.

> #add a best fit line using abline(...)

> #the reg argument represents a regression equation

> #reg is defined using the 1lm(...) function

> #the 1ty argument defines the style of line to be used

> #as with other graphic functions, the col argument defines a
color for the line

> #note that after entering each subsequent function into the
R console, it will be immediately drawn atop your existing
scatterplot

12041

Chapter 9

> #fire

> scatterplotAllMethodsSoldiersFireLineReg <-
lm(scatterplotFireShuSoldiersData ~
scatterplotFireWeiSoldiersData)

> scatterplotAllMethodsSoldiersFireLty <- "solid"

> #abline(...) will draw a best fit line atop a preexisting plot

> abline(reg = scatterplotAllMethodsSoldiersFireLineReg,
lty = scatterplotAllMethodsSoldiersFireLty,
col = scatterplotAllMethodsSoldiersFireCol)

> #fambush

> scatterplotAllMethodsSoldiersAmbushLineReg <-
lm(pointsAmbushData¥Y ~ pointsAmbushDataX)

> scatterplotAllMethodsSoldiersAmbushLty <- "dotted"

> #abline(...) will draw a best fit line atop a preexisting plot

> abline(reg = scatterplotAllMethodsSoldiersAmbushLineReg,
lty = scatterplotAllMethodsSoldiersAmbushLty,
col = pointsAmbushCol)

> #fhead to head

> scatterplotAllMethodsSoldiersHeadToHeadLineReg <-
lm(pointsHeadToHeadDataY ~ pointsHeadToHeadDataX)

> scatterplotAllMethodsSoldiersHeadToHeadLty <- "dotdash"

> #abline(...) will draw a best fit line atop a preexisting plot

> abline(reg = scatterplotAllMethodsSoldiersHeadToHeadLineReg,

lty = scatterplotAllMethodsSoldiersHeadToHeadLty,
col = pointsHeadToHeadCol)

> #surround

> scatterplotAllMethodsSoldiersSurroundLineReg <-
lm(pointsSurroundData¥Y ~ pointsSurroundDataX)

> scatterplotAllMethodsSoldiersSurroundLty <- "dashed"

> #abline(...) will draw a best fit line atop a preexisting plot

> abline(reg = scatterplotAllMethodsSoldiersSurroundLineReg,
lty = scatterplotAllMethodsSoldiersSurroundLty,
col = pointsSurroundCol)

[2051]

Briefing the Generals

Your best fit lines will be added to the existing scatterplot. The final scatterplot looks
like the following:

Soldiers Engaged by Battle Method
[=]
[=]
S - x »
2 .
» s
o .
o -
2 XXX 7 b
=] P
3
2 -
w -
}
o * ' ® Fire
§ - b x " * B Ambush
B X . - B Head to Head
- B Surround
- % >< K éo ls:r _________-——-""__-______
[=]
T T T T T
0 50000 100000 150000 200000
Wei
What just happened?

We customized our scatterplot's point markers, then expanded it to include additional data,
before adding best fit lines to our graphic. Let us examine these items in greater detail.

We customized the data point markers in our fire attack scatterplot using the plot (.. .)
function's pch and cex arguments. These are defined as follows:

*

pch: a whole number between 0 and 25, with each value representing a different
style of marker, such as a circle, triangle, or square.

cex: a numeric value indicating how much to scale the size of data point markers;
1 by default.

[2061]

Chapter 9

In our case, we used pch with the value 2 to apply triangle markers to our data points and
then scaled them by three times with cex equal to 3:

> scatterplotFireSoldiersPch <- 2
> scatterplotFireSoldiersCex <- 3

Thus, we arrived at a plot with large, triangular point markers:

> plot (x = scatterplotFireWeiSoldiersData,
y = scatterplotFireShuSoldiersData,

main = scatterplotFireSoldiersLabelMain,
xlab = scatterplotFireSoldiersLabelX,

ylab = scatterplotFireSoldiersLabelY,

pch = scatterplotFireSoldiersPch,

cex = scatterplotFireSoldiersCex)

The primary purpose of the pch and cex arguments is to improve the visual aspects of
scatterplots. In tandem, these arguments can generate a wide array of potential data
point markers.

You can see a complete list of the markers available for use in the pch
s argument by plotting them with plot (0:25, pch=0:25).

To add new relationships to our scatterplot, we executed the points (. ..) function. This
function incorporates additional data points into a plot that is displayed in the graphic
window. The primary arguments of the points (.. .) function are:

¢ x:the values to be plotted on the x-axis

¢ v:the values to be plotted on the y-axis

¢ type: the point type; identical to the type argument in the plot (.. .) function

¢ col: the point color; identical to the col argument in other graphics functions
Thus, the general format for the points (. ..) function is as follows:

points(x = xPosition, y = yPosition, type = "type",

col = "colorName")

2071

Briefing the Generals

In tandem with these, we also used the pch and cex arguments in our points (...)
functions to customize the style and size of our data markers. The x and y arguments
featured the Wei and Shu soldier data for each method:

> #ambush
> pointsAmbushDataX <- subsetAmbush$WeiSoldiersEngaged
> pointsAmbushData¥Y <- subsetAmbush$ShuSoldiersEngaged
> pointsAmbushType <- "p"
> pointsAmbushPch <- 1
> pointsAmbushCex <- 1
> pointsAmbushCol <- "blue"
> #head to head
> pointsHeadToHeadDataX <- subsetHeadToHead$WeiSoldiersEngaged
> pointsHeadToHeadDataY <- subsetHeadToHead$ShuSoldiersEngaged
> pointsHeadToHeadType <- "p"
> pointsHeadToHeadPch <- 3
> pointsHeadToHeadCex <- 1
> pointsHeadToHeadCol <- "darkorange2"
> #surround
> pointsSurroundDataX <- subsetSurround$WeiSoldiersEngaged
> pointsSurroundData¥Y <- subsetSurround$ShuSoldiersEngaged
> pointsSurroundType <- "p"
> pointsSurroundPch <- 4
> pointsSurroundCex <- 1
> pointsSurroundCol <- "forestgreen"
After beginning our scatterplot with fire attack data, we used points (.. .) to plot the

soldier data for our ambush, head to head, and surround methods:

> #ambush

> points(x = pointsAmbushDataX, y = pointsAmbushDatay,
type = pointsAmbushType, col = pointsAmbushCol,

pch = pointsAmbushPch, cex = pointsAmbushCex)

> #head to head

> points(x = pointsHeadToHeadDataX, y = pointsHeadToHeadDatayY,
type = pointsHeadToHeadType, col = pointsHeadToHeadCol,

pch = pointsHeadToHeadPch, cex = pointsHeadToHeadCex)

> #surround

> points(x = pointsSurroundDataX, y = pointsSurroundDatay,
type = pointsSurroundType, col = pointsSurroundCol,

pch = pointsSurroundPch, cex = pointsSurroundCex)

[208]

Chapter 9

Note that we also redefined the x-axis and y-axis scales with x1imand ylim
prior to adding our new points. This allowed all of our values to display within

%‘ the bounds of our chart. If we did not rescale the axes, most of our points would
fall outside the upper limit of our graph, because the fire attack soldier values
are much smaller than in our other battle methods.

We used our familiar 1egend (. . .) function to add a key that identified the points from
each of our battle method datasets. Its title and colors were matched to those of the points
in our scatterplot:

> legend(x = 145000, y = 65000, legend = c("Fire", "Ambush",
"Head to Head", "Surround"), £fill = c("red", "blue", "darkorange2",
"forestgreen"))

After completing our scatterplot setup, we added best fit lines. Also known as a regression
line, a best fit line expresses the relationship in a scatterplot as a single, straight line. To
accomplish this, the line attempts to orient itself as close as possible to all of the data points.
The result is a line that approximates a linear relationship between the variables. In R, we can
use the abline (.. .) function to add a best fit line to an existing graphic. In addition to the
col argument, which we already know about, the primary arguments for abline (.. .) are:

¢ reg:alinear model formula generated by the Im (. . .) function

¢ 1ty:atextvalue representing the line style; one of blank, solid, dashed,
dotted, dotdash, longdash, or twodash

The basic structure of the abline (.. .) function is as follows:
abline(reg = 1lm(y ~ x), lty = "lineType")

Inour abline (.. .) functions, we used 1ty to define unique line types for each of our
battle methods. We also matched our lines' colors to those of our scatterplot's points. Our
reg arguments used the 1m (. . .) function to specify the number of Shu soldiers as our y
variable and the number of Wei soldiers as our x variable:

> #fire

> scatterplotAllMethodsSoldiersFireLineReg <-
lm(scatterplotFireShuSoldiersData ~
scatterplotFireWeiSoldiersData)

> scatterplotAllMethodsSoldiersFireLty <- "solid"

[2091]

Briefing the Generals

> #fambush

> scatterplotAllMethodsSoldiersAmbushLineReg <-
lm(pointsAmbushData¥Y ~ pointsAmbushDataX)

> scatterplotAllMethodsSoldiersAmbushLty <- "dotted"

> #fhead to head

> scatterplotAllMethodsSoldiersHeadToHeadLineReg <-
lm(pointsHeadToHeadDataY ~ pointsHeadToHeadDataX)

> scatterplotAllMethodsSoldiersHeadToHeadLty <- "dotdash"

> #surround

> scatterplotAllMethodsSoldiersSurroundLineReg <-
lm(pointsSurroundData¥Y ~ pointsSurroundDataX)

> scatterplotAllMethodsSoldiersSurroundLty <- "dashed"

The complete abline (.. .) functions incorporated our reg, 1ty, and col arguments
to draw best fit lines for our battle method data:

> #fire

> abline(reg = scatterplotAllMethodsSoldiersFireLineReg,
lty = scatterplotAllMethodsSoldiersFireLty,

col = scatterplotAllMethodsSoldiersFireCol)

> #fambush

> abline(reg = scatterplotAllMethodsSoldiersAmbushLineReg,
lty = scatterplotAllMethodsSoldiersAmbushLty,

col = pointsAmbushCol)

> #fhead to head

> abline(reg = scatterplotAllMethodsSoldiersHeadToHeadLineReg,
lty = scatterplotAllMethodsSoldiersHeadToHeadLty,

col = pointsHeadToHeadCol)

> #surround

> abline(reg = scatterplotAllMethodsSoldiersSurroundLineReg,
lty = scatterplotAllMethodsSoldiersSurroundLty,

col = pointsSurroundCol)

A best fit line is useful in gauging whether or not the relationship between two variables is
indeed linear. Therefore, it is beneficial to apply when exploring a new dataset. We can also
use best fit lines to compare the relationships between related datasets.

[210]

Chapter 9

In our plot, it is quite clear that the relationship between the numbers of Shu and Wei soldiers
engaged is different for different battle methods. For instance, the best fit lines help us to see
that in the surround method, the number of Shu soldiers tends to be relatively high compared
to the number of Wei soldiers. In contrast, with the fire attack method, the number of Wei
soldiers tends to be relatively high compared to the number of Shu soldiers. Using a scatterplot
such as this one, along with one or more best fit lines, is still another way to inform our
interpretations and understanding of the relationships between our variables. Moreover,

using a graphic often helps us to discover things that we cannot see in the raw data alone.

1. Intheplot(...) function, whatis the relationship between the pch and
cex arguments?

a. pch sets the type of data point marker, while cex sets the size of the marker.
b. cex sets the type of data point marker, while pch sets the size of the marker.

c. pch sets the number of data point markers, while cex sets the style of
the markers.

d. cex sets the number of data point markers, while pch sets the style of
the markers.

2. Which of the following is not a benefit of using a scatterplot and best fit line useful
to explore the relationship between two variables?
a. They help us to understand the relationship between the variables.
b. They inform our interpretation of the relationship between the variables.
c. They tell us whether the variables will have an interaction effect.
d. They indicate the linearity of the relationship between the variables.

Create a scatterplot that depicts the relationship between the execution and rating of past
fire attacks. Be sure to use the numeric version of the successful execution variable. Note
that since execution is dichotomous (containing only two possible values), the resulting
plot will look different from the ones we created with our soldier data. Try to interpret the
meaning of this graphic. Does it make sense to add a best fit line in this situation?

Now use the sunflowerplot (. ..) function with the same arguments that you just
used in the plot (...) argument. Try to interpret the meaning of this graphic. Refer
back to the raw fire data for help recalling the data contained in the Rating and
SuccessfullyExecuted variables.

Consider the graphics generated by your plot (.. .) and sunflowerplot (.. .) functions.
How do these functions differ in the way they portray data?

[21]

Briefing the Generals

Time for action — customizing a line chart

To further explore line charts, we will experiment with modifying line widths and adding
multiple custom lines to our graphics:

1. Usethe 1wd argument to set the line width:
> #modify the chapter 8 single line chart that depicted the
durations of past fire attacks
> #use the lwd argument to set the line width
> #lwd accepts a nonnegative value and defaults to 1
> lineFireDurationWidth <- 3
#use plot(...) to create and display the line chart

\

> #recall that a line chart uses the same plot(...) function as a
scatterplot, but with a different type argument

> plot (x = lineFireDurationDataX, y = lineFireDurationDataY,

main = lineFireDurationMain, xlab = lineFireDurationLabX,

ylab = lineFireDurationLaby¥, type = lineFireDurationType,

lwd = lineFireDurationWidth)

Your chart will be displayed in the graphic window, as shown in the following:

Soldiers Engaged by Battle Method

o
o
8 4 X
('r]
-
x
o
(=]
s XK K X
[=]
=
3
=
[7]
x
o
o
8 — x * *
o X
EXXEX o @
o M
AN
i
o

T T T T T
0 50000 100000 150000 200000

Wei

[212]

Download from Wow! eBook <www.wowebook.com>

Chapter 9

Prepare the line chart to incorporate additional data:

> #fprepare the line chart to incorporate data from the other
battle methods

> #fmodify the chart title

> lineFireDurationMain = "Duration by Battle Method"

> #rescale the y axis to handle the new data

> lineFireDurationLimY <- c (0, 200)

>

#incorporate the col argument to distinguish between the
different battle methods

> lineFireDurationCol <- "red"

> #use plot(...) to create and display the line chart

> plot (x = lineFireDurationDataX, y = lineFireDurationDataY,
main = lineFireDurationMain, xlab = lineFireDurationLabX,
ylab = lineFireDurationLabY, ylim = lineFireDurationLimY,
type = lineFireDurationType, lwd = lineFireDurationWidth,
col = lineFireDurationCol)

Your chart will be displayed in the graphic window as shown:

Duration by Battle Method

Duration in Days
100 150 200
L | |

50
l

Battle Number

[2131

Briefing the Generals

3.

Use the 1ines (.. .) function to add new relationships to the line chart:

> #use lines(...) to add new relationships to a line chart

> #add lines representing the three remaining battle methods to
the chart

> #note that after entering each subsequent function into the R
console, it will be immediately drawn atop your existing line
chart

#ambush

lineAmbushDataY <- subsetAmbush$DurationInDays
lineAmbushWidth <- 1

lineAmbushCol <- "blue"

lines(x = lineFireDurationDataX, y = lineAmbushDataY,
type = lineFireDurationType, 1lwd = lineAmbushWidth,

col = lineAmbushCol)

vV V. VvV V VvV

#head to head

lineHeadToHeadDataY <- subsetHeadToHead$DurationInDays
lineHeadToHeadWidth <- 1

lineHeadToHeadCol <- "darkorange2"

vV V. VvV V VvV

lines(x = lineFireDurationDataX, y = lineHeadToHeadDataY,
type = lineFireDurationType, lwd = lineHeadToHeadWidth,
col = lineHeadToHeadCol)

#surround

lineSurroundDataY <- subsetSurround$DurationInDays
lineSurroundwWidth <- 1

lineSurroundCol <- "forestgreen"

vV V. V V V

lines(x = lineFireDurationDataX, y = lineSurroundDatay,
type = lineFireDurationType, lwd = lineSurroundWidth,
col = lineSurroundCol)

[214]

Chapter 9

Your lines will be added to the existing chart, as shown in the following:

Duration by Battle Method

150 200
]

Duration in Days
100
L

50
l

Battle Number

Add a legend to the chart in the following way:

> #add a legend to our line chart

> #use the x and y arguments to specify the exact location of the
legend

> #add labels for the battle methods
> #add fill colors to match the chart's lines

> legend(x = 23, y = 210, legend = c("Fire", "Ambush",
"Head to Head", "Surround"), fill = c("red", "blue",
"darkorange2", "forestgreen"))

[215]

Briefing the Generals

5. Your legend will be added to the existing chart; the final chart looks like
the following:

Duration by Battle Method

=g B Fire
o B Ambush
@ Head to Head
® W Surround
o R * i it
0 - \ A A I (1
- o/ | I'. ,'I \ /1
\/ | a
m© l f \ /NG | . ool
8 n, Eog B | A\
£ o | [l \ /
= o II II. | (E" =, | &
s - | /| ! f (I
® \ I,- .>-.{Q_‘ I I‘ | P
=] | a I \ { (I
a | / f Y
o | |
uw
o
T T T T T T T
0 5 10 15 20 25 30
Battle Number
What just happened?

We expanded our use of the plot (.. .) function to generate a line chart with a specific line
width. Then, we worked to add additional lines to our chart for the purpose of portraying

multiple relationships. We also incorporated a legend to make our chart more legible.
Let us review these techniques.

We specified the width of our chart's line using the 1wd argument. This argument has a
default value of 1 and can receive any number greater than zero. In most cases, you will want

to use values between 1 and 3. Both our one-line and multiline charts used a 1wd value of 3
to emphasize the fire attack duration data by thickening its line.

> lineFireDurationWidth <- 3

(2161

Chapter 9

The 1wd argument was seamlessly integrated into our plot (.. .) function:

> plot (x = lineFireDurationDataX, y = lineFireDurationDataY,
main = lineFireDurationMain, xlab = lineFireDurationLabX,
ylab = lineFireDurationLaby¥Y, type = lineFireDurationType,
lwd = lineFireDurationWidth)

Note that the 1wd argument can be used to modify the line thickness of data

markers. For example, using a 1wd of 3 in a scatterplot would yield points with
A thicker markers. The 1wd argument can also be used within the abline (.. .)
function to alter a best fit line.

To add new relationships to our multiline chart, we employed the 1ines (.. .) function.
This function is used to draw additional lines on the chart that is displayed in the graphic

window. The primary arguments of the 1ines (. ..) function are:
¢ x:the values to be plotted on the x-axis
¢ vy:the values to be plotted on the y-axis
¢ type:theline type; identical to the type argument in the plot (.. .) function
¢ col:theline color; identical to the col argument in other graphics functions

Thus, the general format for the 1ines (.. .) functionis as follows:

lines(x = xPosition, y = yPosition, type = "type",
col = "colorName")
After generating our chart with only fire attack data, we used 1ines (.. .) to graph the

duration values for our ambush, head to head, and surround methods. For these lines, we
used a more subtle 1wd value of 1 and custom colors to differentiate them from one another.

> #ambush
> lineAmbushWidth <- 1
> lineAmbushCol <- "blue"

> #head to head
> lineHeadToHeadWidth <- 1
> lineHeadToHeadCol <- "darkorange2"

> #surround

> lineSurroundWidth <- 1
> lineSurroundCol <- "forestgreen"

[2111

Briefing the Generals

A unique 1ine (.. .) function for battle method was executed to add its data to the
line chart:

> #ambush

> lines(x = lineFireDurationDataX, y = lineAmbushDatayY,
type = lineFireDurationType, 1lwd = lineAmbushWidth,
col = lineAmbushCol)

> #head to head

> lines(x = lineFireDurationDataX, y = lineHeadToHeadDataY,
type = lineFireDurationType, lwd = lineHeadToHeadWidth,
col = lineHeadToHeadCol)

> #surround

> lines(x = lineFireDurationDataX, y = lineSurroundDatay,
type = lineFireDurationType, lwd = lineSurroundWidth,
col = lineSurroundCol)

Note that we also redefined the y-axis scale with y1im prior to adding our new
4 lines. This is necessary, because it allows all of our values to display within the
% bounds of our chart. If we did not rescale the y-axis, most of our points would
g fall outside the upper limit of our graph. This is because the fire attack duration
values are much smaller than in our other battle methods.

Duration by Battle Method
= i
o~
o _|
»
=
©
[
c @ 4
=
I
®
5
a ©
<
~
T T T T T T T
0 5 10 15 20 25 30
Battle Number

[218]

Chapter 9

When adding new relationships to a graphic, remember to adjust your axes accordingly to
ensure that all data are represented.

Once again, we added a legend to our chart in order to identify each line. We used the
already familiar 1egend (. . .) function to do so, making sure to match the legend's title and
colors to those of the lines on our chart:

> legend(x = 23, y = 210, legend = c("Fire", "Ambush",
"Head to Head", "Surround"), fill = c("red", "blue", "darkorange2",
"forestgreen"))
Pop quiz
1. Intheplot(...) function, which of the following is not true of the 1wd argument?

a. One or more of a chart's lines can have a unique 1wd value.
b. The 1wd argument defaults to a value of 1.
c. The 1wd argument accepts a nonnegative numeric value.
d. To take effect, the 1ty argument must be defined.
2. When using the 1ines (.. .) function to add new lines to a chart, which of the
following is not a true statement?
a. One or more lines can be added to a single chart.
b. The widths of a chart's lines can be different.
c. Todisplay a new line, the chart's data must be in matrix form.

d. The x or y axis may need to be rescaled to properly portray a new line.

Create a multiline chart that portrays the number of Shu soldiers engaged in all instances of
each battle method. You should have a line for each battle method. Be sure to experiment
with the type and 1wd arguments, as well as the 1ines (.. .) function, to witness

the different line chart styles that can be generated in R. Once your graph is complete,
remember to add a legend that identifies each line.

[219]

Briefing the Generals

Time for action — customizing a hox plot

In learning to customize box plots, we will alter whisker lengths and create custom axes for
our graphics.

1. Usethe range argument to alter the whisker length of each box:

> #modify the chapter 8 multiple box plot that that compares the
number of Shu soldiers required across the battle methods

> #rescale the y axis to best display the new range

> boxPlotAllMethodsShuSoldiersLimY <- c (0, 100000)

> #use the range argument to alter the whisker length of each box
> #use range = 0 to extend the whiskers to the most extreme points
> #use range > 0 to extend the whisker to a value of n times the
interquartile range

> #here, limit the whisker range to 1 times the interquartile

range
> boxPlotAllMethodsShuSoldiersRange <- 1
> #use boxplot(...) to create and display the revised line chart

> boxplot (formula = boxplotAllMethodsShuSoldiersData,
main = boxPlotAllMethodsShuSoldiersLabelMain,

xlab = boxPlotAllMethodsShuSoldiersLabelX,

ylab = boxPlotAllMethodsShuSoldiersLabely,

ylim = boxPlotAllMethodsShuSoldiersLimY,

range = boxPlotAllMethodsShuSoldiersRange)

Your plot will be displayed in the graphic window. Note the rescaling of the y-axis
and the change in whisker length for the boxes:

Number of Soldiers Required by Battle Method
wn
¢] o —
] I
- I
i
|
I
=8 |
g I
[|
@ I
I — I
I
i |
2 2 | !
s g | I !
z @ I
[<} o 1
7] |
= i
)
a2 =
E T -
z 3
< o
o
g 4
@
o~
—
| o ‘
o I
I I | |
+ - L -
@
e T T T T
ambush fire headToHead surround
Battle Method

12201

Chapter 9

Prepare to create custom axes by hiding your box plot's default axes:

> #hide the box plot's default axes
> #redraw the box plot using the xaxt and yaxt arguments to hide
the axes

> boxplotAllMethodsShuSoldiersAxtX = "n"
> boxplotAllMethodsShuSoldiersAxtY = "n"
> #use boxplot(...) to create a display the box plot

> #fyour box plot will have no labels or tick marks on the x and y
axes

> boxplot (formula = boxplotAllMethodsShuSoldiersData,

main = boxPlotAllMethodsShuSoldiersLabelMain,

xlab = boxPlotAllMethodsShuSoldiersLabelX,

ylab = boxPlotAllMethodsShuSoldiersLabely,

ylim = boxPlotAllMethodsShuSoldiersLimY,

range = boxPlotAllMethodsShuSoldiersRange,

xaxt = boxplotAllMethodsShuSoldiersAxtX,

yaxt = boxplotAllMethodsShuSoldiersAxtY)

Your plot will be displayed in the graphic window. Note the lack of x-axis and y-axis
labels and tick marks:

Number of Soldiers Required by Battle Method
e} R
|
|
- 1
| |
3 : |
= |
[=] |
0w 1
!5 I
2
£
3
=z
o
-
] o ‘
o I
o I
— T —_
Battle Method

[221]

Briefing the Generals

3.

Use axis(...) tocreate custom axes for the box plot:

> #use axis(...) to add custom x and y axes to the box plot

> #your custom axes will be drawn atop the plot that is displayed
in the graphic window

> #your axes will be displayed when the axis(...) function is
executed in the R console

> #fcustom x axis

> axis(side = 1, at = c(1, 2, 3, 4), labels = c("Ambush",
"Fire", "Head to Head", "Surround"), las = 0)

> #fcustom y axis

> axis(side = 2, at = ¢ (1000, 25000, 50000, 75000, 100000),
las = 0)

Your custom axes will be added to the existing plot:

Number of Soldiers Required by Battle Method
(=]
(=]
S] —_—
(=] |
-]
I
]
I
|
I
8 1
o - P !
w]
~ : 1
i I
W ! |
5 ! .
= 1
® g |
5 8 - '
— (=]
o w
e}
E
=]
b4
(=]
(=]
2 [}
o™
R
] g I
g o | |
S — R —
I I I I
Ambush Fire Head to Head Surround
Battle Method

12221

Chapter 9

What just happened?

We customized our box plot to make it more presentable. Let us review the customization
options offered by the boxplot (.. .) function.

We used the boxplot (.. .) function's range argument to alter the length of each box's
whiskers. In general, range will take on a positive value between 0 and 1.5. At 0, a box's
whiskers will extend all the way to the most extreme data points. At a value greater than O,
the boxes' whiskers will reach data points within one interquartile range times the range
value. An interquartile range is the distance between the top (third quartile) and bottom
(first quartile) of a given box. This measure gives us an idea of how spread out the data are.
By using a range value closer to 0, we are shortening our boxes' whiskers and excluding more
extreme data points. On the other hand, a higher range value will include more extreme
points and lengthen each box's whiskers. In our case, we used a range value of 1:

> boxPlotAllMethodsShuSoldiersRange <- 1

This shortened our whiskers by extending them to points no more than one interquartile
range beyond their boxes. Note that we also revised our y1im argument to better display
our boxes, given the new range:

> boxplot (formula = boxplotAllMethodsShuSoldiersData,
main = boxPlotAllMethodsShuSoldiersLabelMain,

xlab boxPlotAllMethodsShuSoldiersLabelX,

ylab boxPlotAllMethodsShuSoldiersLabely,

ylim = boxPlotAllMethodsShuSoldiersLimY,

range = boxPlotAllMethodsShuSoldiersRange)

To further improve our plot's aesthetics, we revised its x-axis and y-axis labels. Before adding
our own axes, we had to eliminate the default ones generated by R. This entailed giving the
xaxt and yaxt arguments an n value:

> boxplotAllMethodsShuSoldiersAxtX = "n"
> boxplotAllMethodsShuSoldiersAxtY = "n"

Subsequently, we redrew our box plot without x-axis and y-axis:

> boxplot (formula = boxplotAllMethodsShuSoldiersData,
main = boxPlotAllMethodsShuSoldiersLabelMain,

xlab = boxPlotAllMethodsShuSoldiersLabelX,
ylab = boxPlotAllMethodsShuSoldiersLabelY,
ylim = boxPlotAllMethodsShuSoldiersLimY,

12231

Download from Wow! eBook <www.wowebook.com>

Briefing the Generals

range = boxPlotAllMethodsShuSoldiersRange,
xaxt = boxplotAllMethodsShuSoldiersAxtX,
yaxt = boxplotAllMethodsShuSoldiersAxtY)

We then used the axis (. ..) function twice, once for the x-axis and once for y-axis,
to customize our plot's axis labels. The axis (.. .) function accepts several optional
arguments, a number of which were employed in the creation of our plot:

¢ side refers to the placement of the axis, where:

o 1l=left

o 2 =bottom
o 3=top

o 4 -=right

at contains a vector that holds the tick mark values for the axis

labels contains a vector of text items that will be paired with the at values; if
undefined, the at values will be displayed on the axis

¢ las positions the 1abels either parallel (0) or perpendicular (1) to the axis; note
that 1as refers to the label style of the axis

When executed, the axis (...) function draws a new axis atop the visual currently
displayed in the graphic window. For instance:

> axis(side = 2, at = c(10, 20, 30), labels = c("a", "b", "c"),
las = 1)

The code would draw a new x-axis on the bottom of the chart with tick marks at 10, 20, and
30 paired with the labels a, b, and c, that have been oriented vertically. Similarly, we used
the following code to customize our x and y axes:

> #custom x axis

> axis(side = 1, at = ¢(1, 2, 3, 4), labels = c("Ambush", "Fire",
"Head to Head", "Surround"), las = 0)

> #custom y axis

> axis(side = 2, at = ¢ (1000, 25000, 50000, 75000, 100000),

las = 0)

Our custom x-axis was placed at the bottom of the plot and effectively renamed our four
boxes to Ambush, Fire, Head to head, and Surround. Our custom y-axis was placed on the
left side of the plot and incorporated more meaningful soldier values than were present in
the default axis.

[224]

Chapter 9

1.

2.

In boxplot (...), arange argument of 0 would have what effect?
a. It would eliminate the whiskers.

b. It would extend the whiskers to the most extreme data points.
c. Itwould eliminate the boxes.

d. It would extend the boxes to the most extreme data points.

Which of the following is not true of the axis (...) function?
a. It accepts several optional arguments.
b. It allows for the creation of axes in four different positions.
It will use the 1abels argument by default when the at argument is undefined.

d. It draws atop the visual that is currently displayed in the graphic window.

Create a box plot that depicts the relationship between the number of Wei soldiers targeted
by each of the four battle methods. Be sure to customize your plot to improve its readability
and emphasize its most important features.

Time for action — customizing a histogram

In this section, we will practice customizing the bars of a histogram and create an alternative
style of histogram:

1.

Use the breaks argument to separate the histogram's columns along the x-axis:
> #modify the chapter 8 histogram that depicted the frequency
distribution of past fire attack durations

> #use the breaks argument to divide the histogram's columns along
the x axis

> #breaks accepts a vector containing the points at which columns
should occur

> histFireDurationBreaks <- c(0:14)

> #use hist(...) to create and display the histogram
> hist(x = histFireDurationData,

main = histFireDurationDataMain,

xlab = histFireDurationLabX,

col = histFireDurationRainbowColor,

breaks = histFireDurationBreaks)

12251

Briefing the Generals

Your histogram will be displayed in the graphic window, as shown in the following:

Duration of Past Fire Attacks
w —
= -
o —
)
c
[iH]
=3
o
o
[T
o —
o
T | T | | T T 1
0 2 4 6 8 10 12 14
Duration in Days

Use the freq argument to plot densities instead of counts:

> #use the freq argument to plot densities or counts

> #if freq is TRUE (default), counts are graphed on the y axis

> #a count tells us the number of times that a data point occurred
> #if freq is FALSE, densities are graphed on the y axis

> #a density tells us what percentage a data point's count
represents out of all occurrences

> #when summed, the densities always add up to 1
> histFireDurationFreq <- FALSE

> #remember to modify the ylim argument, as our previous one
applied to counts and not to densities

> histFireDurationDensityLimY <- c(0, 0.2)

12261

Chapter 9

> #use hist(...) to create and display the histogram
> hist(x = histFireDurationData,

main = histFireDurationDataMain,

xlab = histFireDurationLabX,

ylim = histFireDurationDensityLimy,

col = histFireDurationRainbowColor,

breaks = histFireDurationBreaks,

freq = histFireDurationFreq)

Your histogram will be displayed in the graphic window, as shown in the following:

Duration of Past Fire Attacks

0.20
|

0.15
|

Density
0.10
L

I 1 T T 1 T T 1
0 2 4 6 8 10 12 14

Duration in Days

What just happened?

We set the breaks argument to add detail to our histogram, then defined the freg
argument to change the display of our graphic. Let us discuss each of these actions.

[2211

Briefing the Generals

The breaks argument is used to define where a histogram's columns are separated along
the x-axis. This argument receives a vector containing the points at which the column
divisions should occur. Within the hist (.. .) function, employing the breaks argument
may resemble using the x1im argument in other graphics. However, while x1im rescales
the x-axis of a histogram, it does not modify its columns. Therefore, the breaks argument is
necessary when we want to define the exact points at which our columns should occur.

By default, R provided us with seven bars that spanned a width of two days each. With
number-colon-number notation (0: 14) and the breaks argument, we created 14 columns
that spanned 1 day each:

histFireDurationBreaks <- c(0:14)

This had the effect of increasing the interpretability and detail of our histogram:

hist (x = histFireDurationData, main = histFireDurationDataMain,
xlab = histFireDurationLabX, col = histFireDurationRainbowColor,
breaks = histFireDurationBreaks)

The freq argument allows us to toggle our histogram between displaying counts

(or frequencies) and densities (or percentages). A count indicates how many times a value
occurs within a dataset. A density indicates the percentage that the count of a value makes
up in the entire dataset.

For instance, in the vector ¢ (1, 1, 1, 3, 5), the number 1 has a count of 3 because it
occurs 3 times. The number 1 has a a density of 0.6 (or 60%) because its count of 3 makes
up 3/5 of the overall dataset.

By default, freq is set to TRUE and displays counts. If it is set to FALSE, then densities
will be graphed instead. The sum of the densities in a histogram will always equal 1, which
represents 100% of the dataset.

We modified our original histogram to display densities by setting the the freq argument
to FALSE:

histFireDurationFreq <- FALSE

Note that we also adjusted our y1im argument to appropriately display our density values:

histFireDurationDensityLimY <- c(0, 0.2)

12281

Chapter 9

These alterations allowed us to visualize our battle durations as percentages rather
than counts:

hist (x = histFireDurationData,

main = histFireDurationDataMain,
xlab = histFireDurationLabX,

ylim = histFireDurationDensityLimY,
col = histFireDurationRainbowColor,
breaks = histFireDurationBreaks,
freq = histFireDurationFreq)

1. Whenusinghist (...), whatis the relationship between the x1imand
breaks arguments?

a. breaks sets the overall scale of the x-axis, whereas x1im divides the
histogram's columns along the x-axis.

b. xlim sets the overall scale of the x-axis, whereas breaks divides the
histogram's columns along the x-axis

c. breaks replaces the x1imargument when creating a histogram.

d. xlimreplacesthe breaks argument when creating a histogram.

2. What is the relationship between a count and a density value?

a. A countis the number of times that a value occurs in a dataset, whereas a
density is the total count of all values in a dataset.

b. Adensity is the number of times that a value occurs in a dataset, whereas a
count is the total count of all values in a dataset.

c. A countis the number of times that a value occurs in a dataset, whereas a
density is the percentage of the dataset that a value accounts for.

d. Adensity is the number of times that a value occurs in a dataset, whereas a
count is the percentage of the dataset that a value accounts for.

Create a histogram that conveys the number of Shu soldiers engaged in past fire attacks.
Improve its readability by incorporating the breaks argument into your hist (.. .)
function. Then, create a density version of the histogram using the freqg argument.
Compare your frequency and density histograms. Which do you feel is better for
displaying this particular data?

12291

Briefing the Generals

Time for action — customizing a pie chart

Moving on to pie charts, we will learn how to add custom label text to a pie's slices:

1.

Use the 1abels argument to add percentages to the pie chart.

> #modify the chapter 8 pie chart

that depicted the gold cost of

the fire attack in relation to the total funds allotted to the Shu

army
> #use the labels argument to add
> #create a vector containing the
slices

> pieFireGoldCostLabelsPercent <-
sum(pieFireGoldCostSlices) * 100,
> #use the paste(...) function to
end of each label

> pieFireGoldCostLabelsPercent <-

paste (pieFireGoldCostLabelsPercent, "%"
can be used to add any kind of text before

> #note that paste(...)
or after a label
> #use the pie(...)

function to create

percentages to a pie chart
labels to be used for the pie's

round (pieFireGoldCostSlices /

1)
add a percent sign (%)

to the

sep: nn)

and display the pie chart

> pie(x = pieFireGoldCostSlices,
labels = pieFireGoldCostLabelsPercent,
main = pieFireGoldCostMain,

col =

pieFireGoldCostSpecificColors)

Your chart will be displayed in the graphic window, as follows:

99.3%

Gold Cost of Fire Attack

0.7%

2301

Chapter 9

2. Add alegend to the chart:

> #add a legend to the pie chart
> legend(x = "bottom", legend = pieFireGoldCostLabels,
fill = pieFireGoldCostSpecificColors)

Your legend will be added to the existing chart, the final pie chart should look like
the following:

Gold Cost of Fire Attack

99.3% 0.7%

E mission cost
B remaining funds

What just happened?

We just customized our pie chart by taking advantage of a new labeling option. Let us discuss
how this feature is implemented.

We revised our pie chart's labels to display percentage values, rather than raw gold amounts.
To accomplish this, we calculated the necessary percentages using the round (x, digits)
function in tandem with some routine mathematics. In the round (x, digits) function

x is a number, and digits is the number of decimal places that x should be rounded to.

2311

Briefing the Generals

Therefore, rounding the number 1.2345 using:

> round(1.2345, 2)

The code would yield an output of:

[1] 1.23

For our chart, x contained a formula that yielded the percentage that each slice represents
out of our total. The digits argument dictated that this percentage be rounded to a single
decimal point:

> pieFireGoldCostLabelsPercent <- round(pieFireGoldCostSlices /
sum(pieFireGoldCostSlices) * 100, 1)

To improve the readability of our percentages, we then used the paste (.. .) function to
append a percent sign (%) to each of our labels. In our activity, the paste (.. .) function
included the following arguments:

¢ originalvValues: a vector containing the items that are to be appended
¢ appendText: the text to be added to the original values

¢ sep:an optional separator between the original value and the appended text;
a single space by default

Hence, the general paste (.. .) function takes on the following form:
paste (originalValues, appendText, sep = "sep")

Thus, if we were to enter the following code into the R console:
> paste(c("a", "b"), "c", sep = "/")

Our resulting output would be:
[1] "a/c" "b/C"

We used the paste (.. .) function to append a percentage sign (%) to each of our
percentage labels (pieFireGoldCostLabelsPercent) and indicated that they should not
be separated by any blank space or characters (sep = ""):

> pieFireGoldCostLabelsPercent <- paste(pieFireGoldCostLabelsPercent,
ngn s Sep:" ll)

Lastly, our pie (.. .) function incorporated our custom percentage labels:

> pie(x = pieFireGoldCostSlices,
labels = pieFireGoldCostLabelsPercent,
main = pieFireGoldCostMain,

col = pieFireGoldCostSpecificColors)

12321

Chapter 9

to a label. Its general purpose is to append text to the front and back of

> Note that the paste (.. .) function can be used to add any kind of text
! values. As such, it is applicable in many situations.

Yet again, we found it necessary to include a legend in our chart. Without a legend, our
graphic would not indicate what our percentage labels referred to. Our legend was placed
at the bottom of our graphic and reflected our chart's original text labels (rather than
percentages) and colors; the following is the code:

> legend(x = "bottom", legend = pieFireGoldCostLabels,
fill = pieFireGoldCostSpecificColors)

1. What would be the result of the following round (x, digits) function?
> round (9.876543, 3)

a. 9.877
b. 9.876
c. 9.87
d. 9.88

2. Inthepaste(originalValues, appendText, sep = "sep") function, what
does the sep argument represent?

a. Avector containing the items that are to be appended.
b. The text to be added to the original values.
c. An optional separator between the original value and the appended text.

d. A vector containing the text to be appended.

Create a pie chart that conveys the relationship between the number of soldiers engaged
in the planned fire attack and the total number of soldiers housed at Hanzhong. Be sure to
experiment with the customization options that we have covered in our previous examples.

[2331]

Briefing the Generals

Time for action - building a graphic

Having explored an extensive range of graphic types and customizations in R, our next
challenge is to build a graphic from the ground up. To accomplish this feat, we will start
with an empty foundation and use our customization arguments and functions to build a
complete graphic:

1.

Use the plot (.. .) function to create a foundation for the graphic:

> #build a custom graphic from scratch

> #step 1: create a foundation

> #create a graphic that depicts the number of Shu and Wei
soldiers engaged in past fire attacks

> #fprepare the graphic's basic parameters

> #note that this will require thinking ahead about the
information that you want to display

> buildFireSoldiersMain <- "Soldiers Engaged by Kingdom"
> buildFireSoldiersLabX <- "Battle Number"

> buildFireSoldiersLabyY <- ""

> buildFireSoldiersLimX <- c (0, 30)

> buildFireSoldiersLimY <- c (0, 50000)

> #hide the points and axes

> buildFireSoldiersType <- "n"

> buildFireSoldiersAxtX <- "n"

> buildFireSoldiersAxtY <- "n"

> #use the plot(...) function to create a foundation for the
graphic

> plot(x = 0, y = 0, main = buildFireSoldiersMain,

xlab = buildFireSoldiersLabX, ylab = buildFireSoldiersLaby,
x1lim = buildFireSoldiersLimX, ylim = buildFireSoldiersLimy,
type = buildFireSoldiersType, xaxt = buildFireSoldiersAxtX,
yaxt = buildFireSoldiersAxtY)

12341

Chapter 9

An empty foundation for our graphic will open in the graphic window, as shown:

Soldiers Engaged by Kingdom

Battle Number

Add axes to the graphic.

#step 2: add axes
#use axis(...) to add custom x and y axes to the graphic
#x axis

axis (side 1, at = c¢(0:30), las = 0)

#y axis

vV V. V VvV V VvV

axis (side 2,
at = ¢ (1000, 5000, 10000, 20000, 30000, 40000, 50000),
las = 1)

[2351]

Download from Wow! eBook <www.wowebook.com>

Briefing the Generals

Your custom axes will be added to the existing graphic, and will look like
the following:

Soldiers Engaged by Kingdom

50000 —

40000 —

30000

20000 —

10000 —

5000 —

1000

T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Battle Number

Add data to the graphic:

> #step 3: add data
> #use points(...) to add data to the graphic
> #note that lines(...) can also be used to add data to a graphic

> #add points to show the number of Shu soldiers engaged in past
fire attacks

> pointsFireShuSoldiersDataX <- c(1:30)

> pointsFireShuSoldiersDataY <- subsetAmbush$ShuSoldiersEngaged
> pointsFireShuSoldiersType <- "p"

> pointsFireShuSoldiersColor <- "forestgreen"

> points(x = pointsFireShuSoldiersDataX,

y = pointsFireShuSoldiersDatay,

type = pointsFireShuSoldiersType,

col = pointsFireShuSoldiersColor)

[2361]

Chapter 9

>

#add points to show the number of Wei soldiers engaged in past

fire attacks

>
>
>
>
>

>

Yy

pointsFireWeiSoldiersDataX <- c(1:30)
pointsFireWeiSoldiersDataY <- subsetAmbush$WeiSoldiersEngaged
pointsFireWeiSoldiersType <- "p"

pointsFireWeiSoldiersColor <- "blue"

pointsFireWeiSoldiersPch <- 0

points(x = pointsFireWeiSoldiersDataX,

= pointsFireWeiSoldiersDatay,

type = pointsFireWeiSoldiersType,

col
pch

pointsFireWeiSoldiersColor,

pointsFireWeiSoldiersPch)

Your custom points will be added to the graphic, as shown in the following:

Soldiers Engaged by Kingdom
50000 — o o
40000 o o
]
30000 —
o o 0000
20000 — o
00O
]
10000 oOooQ ODooooOo o
o
5000 — ggbfoooooooo0
oo o
1000 4 8a__ 8B8Bcoc000
T T T T T T T T T T T 1T T T T T T T T T T T T 1T T T T T T 1
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Battle Number

2311

Briefing the Generals

4. Add alegend to the graphic:

> #step 4: add a legend, if necessary

> #fuse legend(...) to add a legend to the graphic

> legend(x = 0, y = 50000, legend = c("Shu", "Wei"),
fill = c(pointsFireShuSoldiersColor,
pointsFireWeiSoldiersColor))

Your legend will be added to the graphic. The final graphic will look like
the following:

Soldiers Engaged by Kingdom
50000 — o o
B Shu
| Wei
40000 | o o
o
30000 —
o o 0000
20000 — O
000
]
10000 oOoo Ooooooo [n)
O
5000 — gplfoopoooo0o
oo QO
1000 4 88,,8800000
T T
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Battle Number

2381

Chapter 9

What just happened?

We used our custom graphics functions to build an entire graphic from scratch. Let us review
the steps involved in this process:

1.

Building the foundation

We began by using our plot (. ..) function to create a foundation for our new
graphic. The main difference when creating a foundation graphic compared to a
normal one is that we do not want to display any data. Hence, we set the x and

y values to 0, the type to n, and the xaxt and yaxt arguments to n. This yields

a blank square to which we can add custom information later. However, it is still
critical to match the x1im and y1im arguments to the bounds of the data that we
plan to use, in spite of the fact that the axes themselves are hidden. The overall title
and x and y labels can be optionally defined, if we would like them to appear on

the graphic:

> buildFireSoldiersMain <- "Soldiers Engaged by Kingdom"
> buildFireSoldiersLabX <- "Battle Number"

> buildFireSoldiersLabY <- ""

> buildFireSoldiersLimX <- c (0, 30)

> buildFireSoldiersLimY¥ <- c (0, 50000)

> buildFireSoldiersType <- "n"

> buildFireSoldiersAxtX <- "n"

> buildFireSoldiersAxtY <- "n"

Note that this step required that we think ahead about the data
that we wanted to display, especially as it pertains to the x-axis

% and y-axis limits. At times, this preparation step may also call for

experimentation with default graphics to lend us a better idea of
how the data will display when customized.

Our plot (.. .) function incorporated all of these parameters and rendered us with
a foundation graphic that was prepared to incorporate our data:

> plot(x = 0, y = 0, main = buildFireSoldiersMain,

xlab = buildFireSoldiersLabX, ylab = buildFireSoldiersLaby,
xlim = buildFireSoldiersLimX, ylim = buildFireSoldiersLimy,
type = buildFireSoldiersType, xaxt = buildFireSoldiersAxtX,
yaxt = buildFireSoldiersAxtY)

[2391]

Briefing the Generals

2.

Adding axes

Since we completely hid our axes from the foundation graphic, our next step
involves creating custom ones. We added custom axes to our graphic using the
familiar axis (. ..) function:

> #x axis

> axis (side 1, at = c(0:30), las = 0)

> #y axis

> axis(side = 2,

at = ¢(1000, 5000, 10000, 20000, 30000, 40000, 50000),

las = 1)

For a review of the axis (. ..) function, see the Customizing a box plot section
of this chapter.

Adding data

After the axes are defined, it is time to add data to the graphic. While we chose to
use the points (.. .) function to add data in this activity, note that 1ines (.. .)
could also be used, depending on the type of visual effect that you prefer. Our data
consisted of the number of Shu and Wei soldiers engaged in past fire attacks:

> #add points to show the number of Shu soldiers engaged in past
fire attacks

> pointsFireShuSoldiersDataX <- c(1:30)

> pointsFireShuSoldiersDataY <- subsetAmbush$ShuSoldiersEngaged
> pointsFireShuSoldiersType <- "p"

> pointsFireShuSoldiersColor <- "forestgreen"

> points(x = pointsFireShuSoldiersDataX, y =

pointsFireShuSoldiersDataY, type = pointsFireShuSoldiersType,
col = pointsFireShuSoldiersColor)

> #add points to show the number of Wei soldiers engaged in past
fire attacks

> pointsFireWeiSoldiersDataX <- c(1:30)

> pointsFireWeiSoldiersDataY <- subsetAmbush$WeiSoldiersEngaged
> pointsFireWeiSoldiersType <- "p"

> pointsFireWeiSoldiersColor <- "blue"

> pointsFireWeiSoldiersPch <- 0

> points(x = pointsFireWeiSoldiersDataX,

y = pointsFireWeiSoldiersDatay,

type = pointsFireWeiSoldiersType,

col = pointsFireWeiSoldiersColor,

pch = pointsFireWeiSoldiersPch)

For a review of points(...) and lines (.. .) functions, see the Customizing a
scatterplot and Customizing a line chart sections of this chapter.

[2401

Chapter 9

Add a legend, if necessary

The final step in building a custom graphic is to add a legend, if the graphic that you
have created calls for one. This can be done using the same legend (. ..) function
that we have exercised throughout our time exploring R's graphic capabilities:

> legend(x = 0, y = 50000, legend = c("Shu", "Wei"),

fill = c(pointsFireShuSoldiersColor,

pointsFireWeiSoldiersColor))

For a review of the 1egend (. . .) function, see the Customizing graphics section of
the previous chapter.

In the end, we managed to build a complete, fully customized scatterplot starting from
scratch. This development process is invaluable when you are creating graphics to present
to others, use in reports, or publish outside of R.

1.

Is it important to define the x1im and y1im arguments on a foundation graphic?
Why or why not?

a. Itisimportant, because these arguments scale our axes in preparation for data
that will be added later.

b. Itisimportant, because the plot (.. .) function will not execute if these
arguments are left undefined.

It is not important, because the default axes will automatically scale to our data.
d. Itis notimportant, because the x and y axes are hidden.
Could steps 2 (adding axes), 3 (adding data), and 4 (adding legend) of the graphic

building process occur in a different order than the one that was demonstrated in
this section?

a. No, they must be executed precisely in the order specified.
b. Yes, axes or data can occur in any order, but a legend must be added last.
c. Yes, the data or legend can occur in any order, but axes must be added first.

d. Yes, these steps merely add visual elements to our graphic and therefore can be
executed in any order.

[241]

Briefing the Generals

You have practiced generating highly customized graphics and even learned to build your
own graphic from scratch. Use your refined R talents to create at least three graphics that
will convince the top generals of the Shu army to join you in battle. Recall that the generals
are most interested in scrutinizing the details of your proposed attack and comparing it with
alternative combat strategies. Be sure to explore new combinations of graphic arguments
and functions. Refer back to the individual sections of this chapter for assistance with
creating graphics of particular types.

Time for action - building a graphic with multiple visuals

Within R, it is possible to generate graphics that are composed from two or more separate
visuals. Let us build a graphic that displays several pieces of information about our fire attack
strategy simultaneously:

1. Prepare the graphic window to display multiple graphics simultaneously:

> #use par (mfcol) to prepare the graphic window to display
multiple graphics simultaneously

> #ithe mfcol argument receives a vector indicating the number of
rows and columns to reserve for separate graphics in the graphics
window

> #here, we want 4 total graphics, so use a 2x2 vector

> par (mfcol = c(2,2))

> #fnote that a blank graphic window will open

> #if this window is closed, your graphic window will default back
to displaying a single visual

> #if it remains open, your graphic window will continue to add
visuals to the 2x2 grid as they are created

2. Create the first graphic:

> #ficreate the first graphic by duplicating the steps taken in the
Building a graphic activity

> #this scatterplot depicted the number of Shu and Wei soldiers
engaged in past fire attacks

> plot(x = 0, y = 0, main = buildFireSoldiersMain,

xlab = buildFireSoldiersLabX, ylab = buildFireSoldiersLaby,
x1lim = buildFireSoldiersLimX, ylim = buildFireSoldiersLimy,
type = buildFireSoldiersType, xaxt = buildFireSoldiersAxtX,
yaxt = buildFireSoldiersAxtY)

[242]

Chapter 9

1, at = ¢(0:30), las = 0)
> axis(side = 2,

at = ¢(1000, 5000, 10000, 20000, 30000, 40000, 50000),
las = 1)

> axis(side

> points(x = pointsFireShuSoldiersDataX,
y = pointsFireShuSoldiersDatay,

type = pointsFireShuSoldiersType,

col = pointsFireShuSoldiersColor)

> points(x = pointsFireWeiSoldiersDataX,
y = pointsFireWeiSoldiersDatay,

type = pointsFireWeiSoldiersType,

col = pointsFireWeiSoldiersColor,

pch = pointsFireWeiSoldiersPch)

> legend(x = 0, y = 50000, legend = c("Shu", "Wei"),
fill = c(pointsFireShuSoldiersColor,
pointsFireWeiSoldiersColor))

Your graphic will now have additional space surrounding it, which can be used to
incorporate new graphics, as shown in the following:

Soldiers Engaged by Kingdom

50000 H oo
W Shu

40000 o | M Wei o o

30000 H
] o 0000
20000 - o,

ooo
10000 o ooceoo Co

5000 — PO000Co0000
1000 -{ BEEEEEo0000"Y

II-HI'I'I'IHIHHHIH][I'I'IHIHI
0 3 6 9 13 17 219 25 29

Battle Number

[2431

Briefing the Generals

3.

Add a second chart to the graphic:

> #add a second chart that depicts the duration of past battles
> #create new variables where necessary

> #otherwise reuse the variables from our initial graphic

> #basic parameters

> buildFireDurationMain <- "Duration in Days"

> buildFireDurationLab¥Y <- "Days"

> buildFireDurationLimY <- c (0, 14)

> #use the plot(...) function to create a foundation for the
graphic

> plot(x = 0, y = 0, main = buildFireDurationMain,

xlab = buildFireSoldiersLabX, ylab = buildFireDurationLaby,
xlim = buildFireSoldiersLimX, ylim = buildFireDurationLimy,
type = buildFireSoldiersType, xaxt = buildFireSoldiersAxtX,
yvaxt = buildFireSoldiersAxtY)

> #axes

> #x axis

> axis(side = 1, at = ¢(0:30), las = 0)

> #y axis

> axis(side = 2, at = c¢(0:14), las = 1)

> #fuse lines(...) to add data to the graphic

> #add a line representing the duration in days for each battle
> lineFireDurationDataX <- c(1:30)

> lineFireDurationData¥Y <- subsetFire$DurationInDays

> lineFireDurationType <- "o"

> lineFireDurationWidth <- 1

> lineFireDurationColor <- "red"

> lines(x = lineFireDurationDataX, y = lineFireDurationDatay,

type = lineFireDurationType, lwd = lineFireDurationWidth,
col = lineFireDurationColor)

#use abline(...) to add a horizontal line to the chart
#add a line representing the mean duration
lineFireDurationMeanWidth <- 3
lineFireDurationMeanColor <- "blue"

vV V. V VvV V

abline(h = mean(lineFireDurationDataY),
lwd = lineFireDurationMeanWidth,
col = lineFireDurationMeanColor)

[241]

Chapter 9

Your new chart will be added to the existing graphic, as shown in the following:

Days

Soldiers Engaged by Kingdom

50000 oo
B Shu
40000 - | W Wei o o
o

30000 —

(m] o Qo000
20000 - I:ID

000

10000 = 000 0Dooo0 Bn
?ggg - 5HEBEoc000% e

II-HHHHIHHIII]]]IHI]]IHI
03 6 9 13 17 21 256 29

Battle Number

Duration in Days

O ol Cad o O =) OO 1D

[
o |
="

S

e rrrrrrrrrre e
03 6 9 13 17 21 256 29

Battle Number

Add a third chart to the graphic:

> #add a third chart that depicts the percentage of victorious
fire attacks when the strategy is executed successfully

> #basic parameters

> buildFireResultMain <- "Result When Successfully Executed"

> buildFireResultSlices <- c(length(subset (numericResultFire,
numericExecutionFire == 1 & numericResultFire == 1)),

length (subset (numericExecutionFire,

numericExecutionFire == 1 & numericResultFire == 0)))

> buildFireResultlLabels <- paste(buildFireResultSlices /
sum(buildFireResultSlices) * 100, "%", sep = "")

> buildFireResultColors <- c("red", "blue")

[2451

Briefing the Generals

> #use the pie(...)

> ple(x
labels

main

buildFireResultMain,
buildFireResultColors)

col

> #legend
> legend(x = "topright",
fill

buildFireResultColors,

legend

cex

function to create and display the pie chart
buildFireResultSlices,
buildFireResultLabels,

c("Victory", "Defeat"),

0.85)

Your new chart will be added to the existing graphic, as shown in the following:

50000

40000

30000

20000

10000

5000
1000

Days

[=FN s R AR = RN e =

Soldiers Engaged by Kingdom

o oo
B Shu
4| W Wei o O
=]
D [a) 0000
000
=1 ux:u%fna DD
— 0000
=
TTTTTTT T I T T T T T I TI T T T T T TITTT
03 6 9 13 17 21 25 29

Battle Number

Duration in Days

g T;fl) | “ﬁ
- || | | i I ﬁ \f
’ || T]I fJL | |!| Il. 'rll |'I = i 7
4 s | /% 4
a ﬁ & %l [7 ﬂ'
1y Il
c|J|||3||é||';|||1|3|||1|-Ilr|||2|1|||2|5|||2|g|

Battle Number

Result When Successfully Executed

B Victory
W Defeat

20%

[2461

Chapter 9

Add a fourth chart to the graphic:
> #add a fourth chart that compares the gold cost (in thousands)
of the fire attack with the other battle methods

> #get the raw cost of the various methods using comparable
resources

> goldCostFire <- functionGoldCost (2500, 225, 7)

> goldCostAmbush <- functionGoldCost (meanShuSoldiersAmbush,
225, meanDurationAmbush)

> goldCostHeadToHead <-

functionGoldCost (meanShuSoldiersHeadToHead, 225,
meanDurationHeadToHead)

> goldCostSurround <- functionGoldCost (meanShuSoldiersSurround,
225, meanDurationSurround)

> #basic parameters

> #note that the bar heights are divided by 1000 so they are
represented in thousands of gold

> #fpresenting larger numbers in this manner is one way to keep our
axes cleaner and our graphics more readable

> buildCostHeight <- c(goldCostFire, goldCostAmbush,
goldCostHeadToHead, goldCostSurround) / 1000

> buildCostMain <- "Cost Comparison by Method"

> buildCostLabX <- "Gold Cost (in thousands)™"

> buildCostLimX <- c (0, 400)

> buildCostLim¥ <- c(0, 5)

> buildCostNames <- c("Fire", "Amb", "Head", "Sur")

> buildCostColors <- rainbow(length (buildCostHeight))

> buildCostHoriz <- TRUE

> #fuse the barplot(...) function to create and display the bar
chart

> barplot (height = buildCostHeight, main = buildCostMain,
xlab = buildCostLabX, xlim = buildCostLimX,

ylim = buildCostLimY, names = buildCostNames,

col = buildCostColors, horiz = buildCostHoriz)

> #legend

> legend(x = 275, y = 2,

legend = round(buildCostHeight * 1000, 0),

fill = buildCostColors, title = "Exact Cost", cex = 0.75)

[247]

Briefing the Generals

Your new chart will be added to the existing graphic. The final graphic will look like
the following:

Soldiers Engaged by Kingdom Result When Successfully Executed
50000 — oo)
| shu = Deteat
40000 - | W Wei o o
o

30000 —+

O o oooo
20000 9

000
10000 oo oocooo o
5000 00

fammnnnnsalelsl
1000 | BEEEEEGC000°C
Frrrrrrrrrerrrrrrerrrrrrrrrrrey

03 6 & 13 17 21 25 29

Battle Mumber

Duration in Days Cost Comparison by Method
14
13 L
Hn 7] —
9l 4] f
i | ;
s NMTINIT R [|4 g
e 87 gy T
a 7 I Lol i | i
& ST TN t]
. A Exact Cost
i g | H | | [||:_+,. | /& & < m 6792
344 g J ('f © O 24780
24 | \ I O 233356
EP - b W 398255
TP et rrrrrrer ey I 1 1 I I
0 3 6 9 13 17 21 25 29 0 100 200 300 400
Battle Number Gold Cost (in thousands)

What just happened?

We built a custom visual that was composed from a set of four individual graphics.

X Note that this section will only highlight the new or unique features
% that were encountered during this process. You should already be
s familiar with generating individual graphics and customizing their
parameters from our previous work.

[2481

Download from Wow! eBook <www.wowebook.com>

Chapter 9

parimfcoll

The par (mfcol) command modifies the number of visuals that are displayed in the graphic
window. By default, the graphic window displays a single visual. The mfcol argument
accepts a vector indicating the number of rows and columns of visuals to be displayed

in the graphic window. For example:

> par (mfcol = c(3, 3))

The code would reserve space in the graphic window for nine visuals that would be displayed
in a 3-row by 3-column grid. Note that the mfcol vector does not have to be symmetrical.
For instance, a 5 by 1 or 2 by 10 vector would also be acceptable.

Our par (mfcol) command told our graphic window to display our visuals in a 2-row
by 2-column grid:

> par (mfcol = c(2,2))

When par (mfcol) is executed, a blank graphic window will open. It is
X important to keep this window open. As long as it remains open, all graphics
% generated by R will be added to the grid defined by par (mfcol). Once
A the graphic window is closed, it will default back to generating single visuals.
At that point, par (mfcol) can be used again to redefine the space of the
graphic window.

Once the space of our graphic window was defined, we simply added new visuals one by
one. Notice that this process is identical to creating individual graphics. The difference is
that the graphic window will continue to add new visuals to the same space, rather than
replacing the previous visual each time a new one is created. Thus, we are able to combine
multiple visuals into a single graphic.

We started by building two charts from scratch, one depicting the soldiers engaged in fire
attacks on a scatterplot, and one displaying the duration of fire attacks in a line chart. We
then generated two highly customized charts, one depicting the result of fire attacks when
successfully executed as a pie, and one comparing the cost of the battle methods on a

bar chart. Ultimately, we arrived at a single graphic containing information from four
separate visuals.

While creating the charts that composed our combined graphic, we encountered two
notable items that deserve an explanation here.

12491

Briefing the Generals

Horizontal and vertical lines

The first occurred while making our fire attack duration line chart. You may have noticed that
we drew a flat, horizontal line across the chart at the mean duration. To accomplish this, we
used the abline (.. .) function in a new way. Previously, we used abline (.. .) to draw
best fit lines on scatterplots in the Customizing a scatterplot section of this chapter. Here, we
used the h argument to define a point where a horizontal line should be drawn across our
chart. By setting h to the mean duration, we were able to visualize the average fire attack
duration amidst the fluctuations experienced across each individual battle:

> abline(h = mean(lineFireDurationDataY),
lwd = lineFireDurationMeanWidth, col = lineFireDurationMeanColor)

. Notethattheabline (. ..) function also has a v argument, which
% can be used to define a vertical line at any point along the chart. If
i h and v are defined together, an intersecting pair of horizontal and

vertical lines will be drawn.

Nested functions

A complex code segment that we encountered while making our pie chart involved a series
of nested functions:

> buildFireResultSlices <- c(length (subset (numericResultFire,
numericSuccessfullyExecutedFire == 1 & numericResultFire == 1)),
length (subset (numericSuccessfullyExecutedFire,
numericSuccessfullyExecutedFire == 1 & numericResultFire == 0)))

Here, we created our pie's slices using a combination of the c(...), length(...), and
subset (.. .) functions. Individually, these are all familiar. When combined, they can look
confusing at first glance. The key to reading nested functions is to work from the innermost
function to the outermost function. The key to creating nested functions is to remember to
close your parenthesis in the opposite order that they are opened. For example, while the
c (...) function was the first opened in our code, it was the last one that was closed. The
following example illustrates this principle:

> functionl (function2 (function3()))

In nested functions, the innermost function is always executed first, followed by its
surrounding function, and so on.

[2501]

Chapter 9

As with other programming languages, functions in R can be nested at
* virtually unlimited levels. On one hand, nesting makes our code more
compact and efficient. On the other hand, excessive nesting makes
our code unreadable and undesirably complex. Take these points into
consideration when nesting functions.

1.

Which of the following is not true when of the par (mfcol) command?
a. When executed, par (mfcol) will launch a new graphic window.

b. Closing the graphic window will cancel the effects of the most recently executed
par (mfcol) command.

The mfcol argument only accepts symmetrical vectors.

d. The par (mfcol) can be executed again to redefine the space of the
graphic window.

What impact would the following line of code have on a visual displayed in the

graphic window?

> abline(h = 4, v = 10)

a. A horizontal line would be drawn at 4 on the y-axis.

b. A vertical line would be drawn at 10 on the x-axis.

c. Ahorizontal line would be drawn at 4 on the y-axis and a vertical line would be
drawn at 10 on the x-axis.

d. Nolines would be drawn.

Which of the following code fragments demonstrates how to properly nest the

c(...) functioninside the sum(data) function inside the mean (data) function?
a. c(sum(data), mean(data))

b. mean(sum(c(...)))

C. c¢(sum(mean (data)))

d. mean(sum(data), c(...))

[2511

Briefing the Generals

Combine the visuals that you created in the previous activity into a single R graphic. Then,
hold a recruitment conference with the Shu generals and convince them that your strategy
is worthy of their services.

sSummary

In this chapter, you created several charts, graphs, and plots to convey your battle strategy
and recruit the top generals in the Shu army. To do so, you customized, added information
to, and even built graphics. You should now be able to:

¢ Customize several charts, graphs, and plots using arguments specific to each
¢ Use graphics functions to add information to any visual

¢ Create custom graphics by building them from the ground up

Armed with a sound strategy, talented and loyal generals, and the emperor's approval,

you are ready for battle. You have come a long way since the legendary Zhuge Liang's
death thrust the fate of the Shu kingdom into your hands. Your mastery of R has grown
tremendously and will continue to aid you in conducting data analyses. While the future of
the Shu kingdom may be uncertain, your talents are unquestioned and your knowledge will
continue to blossom.

In Chapter 10, we will focus on the future. We will look at the ways in which you excel
beyond the teachings of master Zhuge Liang, and the boundaries of this book, to continually
refine and expand your understanding of R.

[2521

10

Throughout this book, you have continually refined and expanded your
understanding of R. We began by examining the components of the R console
and how to use them effectively. We then used variables, functions, and models
to organize, analyze, and assess our data. We concluded by taking an in-depth
look at R's graphical capabilities.

In this, our final chapter, we will explore several ways in which we can continue
to learn about R. Just because we have completed this book and acquired the
skills of the legendary Zhuge Liang, does not mean that our journey is complete.
There are virtually an unlimited number of topics to discover in R. This list is
growing day by day, as users continually expand R's functionality. To find new

R knowledge, we will focus on the learning resources that are built into R and
those that can be found online.

By the end of this chapter, you will be able to do the following:

Use R's built-in help system
Install packages that expand R's functionality

Take advantage of electronic learning resources, such as websites, blogs, and
online communities

R has two primary built-in resources that allow us to expand our use of the software. The
first is the help () function, which can be used to learn about various R topics. The second is
R's ability to be extended through the use of user-created packages. We will explore both of
these resources in detail.

Becoming a Master Strategist

Time for action — using R's help function

R has a convenient help (.. .) command that yields overview information about nearly any
feature. Let us review this function:

1. OpenR.

2. Execute the help(...) function without any arguments:

> #learn more about the help command by using the help(...)
function without any arguments
> help()

3. The R Help window will open to display documentation on the help (. . .) function.

ann R Help
C<H (> (Primt) Q.- Help Search
help {utils} R Documentation
Documentation
Description

help is the primary interface to the help systems.
Usage

help(topic, package = NULL, lib.loc = NULL,
verbose = getOption("verbose"),
try.all.packages = getOption("help.try.all.packages"),
help type = getOption("help_type"),
chmhelp = getOption("chmhelp"},
htmlhelp = getOption{"htmlhelp"),
offline = FALSE)

Arguments

topic usually, a name or character string specifying the topic for which help is sought. A character
string (enclosed in explicit single or double quotes) is always taken as naming a topic.
If the value of topic is a length-one character vector the topic is taken to be the value of the
only element. Otherwise topic must be a name or a reserved word (if syntactically valid) or
character string.
See ‘Details’ for what happens if this is omited.

package a name or character vector giving the packages to look into for documentation, or NULL. By
default, all packages in the search path are used. To avoid a name being deparsed use e.g.
(pkg_ref).

lib.loc a character vector of directory names of R libraries, or nuLL. The default value of NuLL
corresponds to all libraries currently known. If the default is used, the loaded packages are
searched before the libraries.

verbose logical; if TruE, the file name is reported.

try.all.packages logical; see Note.

help_type character string: the type of help required. Possible values are "text", "html",
"postscript”, "ps" and "pdf". Case is ignored, and partial matching is allowed.

chmhelp a deprecated way to specify help_type = "text".

htmlhelp a deprecated way to specify help_type = "html". 4

offline a deprecated way to specify help_type = "postscript". 1

12541

Chapter 10

Execute the help (.. .) function using the topic argument:

> #learn more about a specific subject using the help(...)

function with a single argument

> #the argument should specify the name of the subject that you

are seeking help on
> help(library)

The R Help window will open to display documentation on the specified topic:

Loading and Listing of Packages
Description
library and require load add-on packages.
.First.lib is called when a package is loaded; .Tast.1ib is called when a package is detached.
Usage

library(package, help, pos = 2, lib.loc = NULL,
character.only = FALSE, logical.return = FALSE,
warn.confliects = TRUE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption({"verbose"))

require(package, lib.loc = NULL, quietly = FALSE,
warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
character.only = FALSE, save = TRUE)

.First.lib(libname, pkgname)
.Last.lib(libpath)

Arguments

package, help the name of a package, given as a name or literal character string, or a character string, depending
on whether character.only is FALSE (default) or TRUE).

pos the position on the search list at which to attach the loaded package. Note that . First.1ib may
attach other packages, and pos is computed after .First.1ib has been run. Can also be the name
of a position on the current search list as given by searchi).

lib.loc a character vector describing the location of R library trees to search through, or NuLL. The default
value of NULL comresponds to all libraries currently known. Non-existent library trees are silently
ignored.

character.only a logical indicating whether package or help can be assumed to be character strings.

logical.return logical. If it is TRUE, FALSE or TRUE is returned to indicate success.

warn.conflicts Jogical. If TRUE, warnings are printed about conflicts from attaching the new package, unless
that package contains an object .conflicts.ok. A conflict is a function masking a function, or a
non-function masking a non-function.

keep.source logical. If TruEe, functions ‘keep their source’ including comments, see argument keep . sourece o
options. This applies only to the named package, and not to any packages or name spaces which
might be loaded to satisfy dependencies or imports.

This argument does not apply to packages using lazy-loading. Whether they have kept source is
determined when they are installed (and is most likely false).

verbose a logical. If TruE, additional diagnostics are printed.
quietly a logical. If TRUE, no message confirming package loading is printed.
save logical or environment. If TRUE, a call to require from the source for a package will save the name

of the required package in the variable ".required", allowing function detach to warn if a
required package is detached. See section ‘Packages that require other packages’ below.

Libname a character string giving the library directory where the package was found.
pkgname a character string giving the name of the package.
libpath a character string giving the complete path to the package.

anon R Help I]
<) (S Pt) Q- Help Search I
library {base} R Documentation

[2551]

Becoming a Master Strategist

What just happened?

We demonstrated how to use the help (.. .) function to learn about R components using
its built-in documentation system.

Our first use of help (. ..) contained no arguments and therefore conveniently returned
documentation on the help (.. .) function itself. Most often, you will want to use the
help(...) function in coordination with a single argument that specifies the subject that
you are seeking help on. For instance, we used the help (.. .) function to learn more
about the 1ibrary (. ..) function:

> help(library)

Notice that the argument in the help (.. .) function is simply the name

of a topic. As demonstrated, when the topic is a function, no parenthesis,
’ ellipsis, or arguments should be included with the function name.

When executed, the help (. ..) function opens the R Help window to display the
documentation related to the identified subject. The R Help window will display a brief
description of the topic along with sections explaining its usage, arguments, details,
author(s), references, examples, and related subjects. All of R's help documentation
follows this format, although each individual help page may not contain every section.

The help(...) functionis a fast and easy way for experienced users to retrieve information.
It is best for users who are already familiar with specific R topics and need to be reminded of
certain arguments or features. It is not always an optimal tool for learning how to do brand
new things, but the built-in help system is the official resource for R documentation.

1. What happens when the help () function is executed without any arguments?
a. It fails to execute and returns an error.
b. The R Help window displays documentation on the specified subject.
c. The R Help window displays documentation on the help (. ..) function.
d. The R Help window displays a menu of selectable help topics.

2. What happens when the help (...) function is executed with a subject
argument specified?
a. It fails to execute and returns an error.

b. The R Help window displays documentation on the specified subject.

[2561]

Chapter 10

c. The R Help window displays documentation on the help (.. .) function.

d. The R Help window displays a menu of selectable help topics.

Review the help documentation on the chooseCRANmirror (), install.packages (),
and library (.. .) functions to prepare for the next section on packages.

Time for action — expanding R with packages

R's functionality can be easily and significantly expanded through the use of packages. A
package is a collection of functions that has been contributed by members of the R user
community. Let us look at the steps involved in acquiring, installing, loading, and using

a new package in R:

1. Open the CRAN mirror window using the chooseCRANmirror () command:

#acquiring, preparing, installing, and using a new R package
#step 1: choose a CRAN mirror

#open the CRAN mirror window using chooseCRANmirror ()

#then choose the mirror located nearest to you
chooseCRANmirror ()

vV V. V V V

A new window will open to display the available CRAN mirrors. Choose the mirror
that is located nearest to you, then click on the Ok button:

®\NO CRAN mirror

Iterm
Thailand (Bangkog)
Thailand (Hatyai)
UK (Bristol)
UK {(London)
USA (AZ)
USA (CA 1)
USA (CA 2)
USA (1A)
USA (MA)
USA (MD)
USA (MI)
USA (MO)
USA (NC)
USA (OH)
USA (PA 1)
USA (PA 2)
USA (TN)
USA (TX 1)
USA (TX 2)
USA (WA) +

[Cancel) I Ok)

//.!

2571

Becoming a Master Strategist

2. Open the packages window using the install.packages () command:

> #step 2:

> #open the packages window using install.packages
> #then choose a package to install it on your computer

Note that the appearance of the CRAN mirror window may vary
depending on the operating system and version that you use.

install the package

> install.packages ()

A new window will open to display the available packages. Choose the magic

package, then click on the Ok button.

Note that the appearance of the packages window may vary
depending on the operating system and version that you use.
Also note that R will automatically install any packages that the

anon

Packages

ltern
Iga
LS2w
Isa
Ispls
Iss
ltmn
Itsa
luca
Ivplot
maanova 0
MAclinical

magnets
MAMSE
mapdata
maplLD
mapproj
mapReduce
maps
maptools

i ~ 1
[Cancel |
— S

selected package depends upon to operate.

[2581]

Chapter 10

3. Usethe library(...) function to load the a package for use in R.

> #istep 3: load the package

> #use the library(...) function to load a package once it has
been installed

> #load the magic package
> library(magic)

. Note that R will automatically load any packages that the
% specified package depends upon to operate and notify you in
s the console. If no additional packages are necessary, R will drop
down to the next line without providing any output.

4. R will drop down to the next line. The package is now ready to be used.

5. Usethemagic (n) function from the magic package to generate a sequence of
magic squares:

> #fstep 4: use the package

> #fonce loaded, a package's functions can be used within the R
console

> #fuse the magic(n) function from the magic package to generate an
8x8 magic square

> #n is a single nonnegative number that indicates how many rows
and columns the magic square will have

> #this function generates the same type of magic square that we
encountered when solving Zhuge Liang's puzzle in chapter 3!

> magic(8)

> magic{8)

(.11 [,21 [,31 [,4]1 [,5] [,6] [L,7] [,&]
[1,] 1 56 48 25 33 24 16 57
[2,] 63 1@ 18 39 31 42 5@ 7
[3,] 62 11 19 3& 3@ 43 51 b
[4,] 4 53 45 28 36 21 13 6@
[5,] 5 52 44 29 37 20 12 61
[6,] 59 14 22 35 27 46 54 3
[7,] 58 15 23 34 26 47 55 2
[&,] 8 49 41 32 48 17 9 b4

What just happened?

We expanded the capabilities of R by downloading, installing, and loading a package in the R
console. Let us review the steps involved in this process.

[2591]

Becoming a Master Strategist

The initial step in acquiring a new R package is to choose a CRAN mirror. The acronym CRAN
stands for Comprehensive R Archive Network and refers to several worldwide servers that
store and maintain R's code and documentation. A CRAN mirror is a single server in this
network. When choosing a CRAN mirror, it is best to select the location nearest to you. Since
the data that you request will travel a shorter distance, you will be able to download more
content in less time. Using the chooseCRANmirror () function will open the CRAN mirror
window, which displays a list of all available CRAN mirrors.

Note that chooseCRANmirror () only needs to be executed
once each time that you launch R. Once a CRAN mirror is selected,
’ it will remain active until you quit R.

Next, you will need to install the desired package. Executing the install.packages ()
command in the R console will open the Packages window, which displays a list of all
available packages.

In our example, we selected the magic package. R then automatically installed the abind
package, which is required for magic to function. Whenever necessary, R will automatically
install required packages, known as dependencies, in this fashion.

A given package only needs to be installed once. It is then available to be loaded
any time that you use R.

Also note that if you already know the name of the package, you can install it
" usingasingle install .packages (name) command, such as install.
% packages ("magic").

A list of every available R package, along with a description of each, can be found
on the official R website at:

http://cran.r-project.org/web/packages

Load the package

Then, to prepare the package for use in the R console, it must be loaded via the

library (...) function. This function receives an argument that indicates the name of
the function. For instance, since we wanted to load the magic package in our activity, the
library(...) function took on the following form:

> library (magic)

[260]

Download from Wow! eBook <www.wowebook.com>

Chapter 10

As with install.packages (), the library (. ..) command will automatically load any
necessary dependencies. In our case, the abind package was loaded after executing our
library(...) function. When no dependencies are present, R will drop down to the next
line in the console without providing any output.

A given package only needs to be loaded once each time that you
launch R. Once loaded, a package will remain active until you quit R.
s

Also note that you can check for and install updates to your R packages
using the update.packages () command.

Once you have loaded a new package in R, the final step is to take advantage of its offerings.
Quite simply, once a package has been loaded, you can use any of its functions, just as we
have been using R's built-in functions throughout this book.

In our activity, we loaded the magic package, which gave us access to several functions
related to magic squares. We used the magic (n) function to generate an 8x8 magic square.

This is the same variety of magic square that we encountered when solving Zhuge Liang's
puzzle in Chapter 3. In fact, the puzzle that you solved in that chapter was generated using
R and the magic package!

> magic({8)

[,11 .27 [,3] [,47 [,5] .61 [L,71 [.8]
[1,1 1 56 48 25 33 24 1l 57
[2,] 63 18 18 39 31 42 5@ 7
[3,] 62 11 18 38 3@ 43 51 6
[4,] 4 53 45 28 3 21 13 69
[5,] 5 52 44 29 37 20 12 61
[6,] 59 14 22 35 27 46 54 3
[?,J 58 15 23 34 26 47 55 2
[&,] 8 49 41 32 48 17 9 b4

All R packages can be installed by following this same procedure. The immense value of

R packages is that they expand the capabilities of R. Thousands of packages are currently
available and new ones are continuously being created by the R user community. This means
that R is perpetually growing in scope and functionality.

12611

Becoming a Master Strategist

1. How often must the chooseCRANmirror () function be executed in R?

a
b.
C.
d.

Once.
Once each time R is launched.
Once each time a given package is installed.

Once each time a given package is loaded.

2. How often must the install.packages () function be executed in R?

a
b.
c.
d.

Once.
Once each time R is launched.
Once each time a given package is installed.

Once each time a given package is loaded.

3. How often mustthe library(...) function be executed in R?

a.
b.
C.
d.

Once.
Once each time R is launched.
Once each time a given package is installed.

Once each time a given package is loaded.

Use the R website's online package listing (http://cran.r-project.org/web/packages),
or one of the other resources presented in this chapter, to learn about the packages that are
available in R. Choose one that will be useful to your work. Then install it in R and experiment
with its functions.

A wealth of online resources are available for R. These include search engines, websites,
blogs, and online communities. Some of the most useful and informative online resources
for learning about R will be discussed here.

12621

Chapter 10

Wehsites

A few valuable R websites are highlighted here.

The R Project for Statistical Computing

The official R website is the definitive source for R updates and documentation. It offers the
most recent versions of R for each operating system. Also included are valuable documents,
such as the R FAQ, CRAN mirror listing, and contributed packages glossary. The R Project for
Statistical Computing can be found at:

http://www.r-project.org

Quick-R

Quick-R is an excellent resource for efficiently retrieving information on R topics, along
with examples of how related techniques can be executed. It covers a wealth of subjects
in R, including a wide range of statistical methods and graphics types. Its organized and
aesthetic format makes it easy to locate and decipher the desired information. Quick-R
can be found at:

http://www.statmethods.net

The R Programming wikibook shares information on general R topics, as well as references
to statistical methods. All of its content is presented in wiki format with minimal description,
making it a resource for quickly locating and indulging in code samples. The R Programming
wikibook can be found at:

http://en.wikibooks.org/wiki/R_Programming

The R Graph Gallery presents a collection of some of the most advanced and unique
graphics that have been generated using R. Images of each visualization are accompanied by
the source code used to create them and references to any required packages. The R Graph
Gallery can be found at:

http://addictedtor.free.fr/graphiques

12631

Becoming a Master Strategist

Crantastic! is a website dedicated to R packages. It features an up-to-date searchable listing
of all R packages, along with their descriptions, web addresses, version information, and
author details. Crantastic! can be found at:

http://crantastic.org

Blogs are another informative online resource for learning about R.

R bloggers is an extensive collection of over 100 blogs (and counting) that are dedicated to
sharing knowledge related to R. It is a prime resource for gaining insights on complex and
cutting edge data analysis techniques. The combined authorship of R bloggers represents
perhaps the most active and timely sharers of R content on the internet. R bloggers can be
found at:

http://www.r-bloggers.com

R Tutorial Series

The R Tutorial Series provides user-friendly guides for people who are learning about R. It
primarily focuses on providing brief statistics tutorials with detailed execution examples. This
blog was created by the author of this book and follows a similar style. The R Tutorial Series
is available at:

http://rtutorialseries.blogspot.com

Online communities are places to connect with other R users and seek and share information.

The R-help mailing list is both an ongoing resource for answers to R questions and an
archive of past conversations dating back to 1997. The odds are that any difficulty that you
encounter in R has already been queried to this list at one time or another. If not, you can
always join the list and contribute to the community by submitting your own questions.
Therefore, the R-help mailing list is one of the first places you should look when you are
having trouble with a particular facet of R. You can join the R-help mailing list at:

https://stat.ethz.ch/mailman/listinfo/r-help

12641

Chapter 10

A searchable archive of the R-help mailing list is available at:

http://tolstoy.newcastle.edu.au/R

A number of additional mailing lists are available for users seeking information about R. The
most prominent ones, which cover the major announcements, contributed packages, and
development of R can be found using the Mailing Lists link on the official website at:

http://www.r-project.org

Search engines

Endless amounts of information about R can also be found by searching the internet.

R Seek is a Google-based search engine that helps users find what they are looking for by
automatically optimizing their queries to yield relevant results. Users can search for a topic
as they normally would, but are more likely to be presented with output that is related to R
than if they had entered the same terms into a standard search engine. The R Seek search
engine is available at:

http://www.rseek.org

Google is another valuable resource for searching R, although it does take some practice to
acquire meaningful results through this engine. It can be difficult to find relevant webpages
via Google, because R's one letter name tends to be ignored or inappropriately parsed by
search engine algorithms. Thus, it is often useful to use quotations along with additional
terms when searching Google. For example, to find information on conducting multiple
regression in R, it is better to use include additional quoted keywords, such as R Project

or R statistics than just the letter R alone. The Google search engine is available at:

http://www.google.com

12651

Becoming a Master Strategist

In this chapter, you explored several resources for broadening your understanding of R.
These consisted of built-in features, such as the help (...) command and packages, and
internet resources, including websites, blogs, and online communities. You should now be
able to do the following:

Use R's built-in help system
Install packages that expand R's functionality

Take advantage of electronic learning resources, such as websites, blogs, and
online communities

Congratulations on completing this book. You have discovered much of what R has to offer
and should feel comfortable incorporating it into your everyday work. Do not cease to refine
and expand your knowledge of R. It is hoped that R will be a useful tool in your work for
many years to come.

On a final note, you have earned your place amongst a global group of analysts,
businesspeople, academics, scientists, and others with a passion for open source data
analysis software. Welcome to the R user community.

12661

Chanter 2

Chapter4

Setting your R working directory

1 d
2 b
3 d

Solving the first 4x4 Magic Square

1 b
2 d
3 c

Accessing data within variables

1 d
2 b
3 d

Pop Quiz Answer Key

Chapter 5

Manipulating variable data

1 10 20 30
40 50 60
2 112 3
45 6
3 c

Managing the R workspace

1

2

Creating a subset from a large dataset

1

d

2

a

Deriving summary statistics

1

2

Quantifying categorical variables

1

d

2

a

Correlating variables

1

b

2

d

[268]

Appendix

Chapter 6

Modeling with simple linear regression

1 b
2 a
3 C

Modeling with multiple linear regression

1

a

2

C

Modeling interactions

1 b
2 d
3 a

Comparing and choosing models

1

d

Creating custom functions

Incorporating resource constraints into predictions

1

d

Assessing the viability of potential strategies

1

d

12691

Pop Quiz Answer Key

Chapter1

Data setup

1 C

Data exploration

1 C

Model development

1 d

2 d

Model deployment

1 C

The common steps to all R analyses

1 d

Creating a bar chart

1 a

2 d

Customizing graphics

12101

Appendix

Creating a scatterplot

1

a

2

C

Creating a line chart

1 d

2 a

Creating a box plot

1 a

2 c

Creating a histogram
1 d

Creating a pie chart

1 b
Exporting graphics
1 a

Customizing a bar chart

1 b
2 d
3 b

2nl

Download from Wow! eBook <www.wowebook.com>

Pop Quiz Answer Key

Customizing a scatterplot

1

a

2

C

Customizing a line chart

1

d

2

C

Customizing a box plot

1

b

2

C

Customizing a histogram

1

b

2

C

Customizing a pie chart

1

a

2

C

Building a graphic

1

2

Building a graphic with multiple visuals

1

C

2

C

[2121

Appendix

Chapter 10

Using R's help function

1 [

2 b

Expanding R with packages

1 b
2 a
3 b

[213]

Symbols

.csv files 44
4x4 Magic Square puzzle
solving 35, 36

A

abind package 260, 261
abline(...) function
about 209
arguments 209
example 210
syntax 209
using 204, 205
abline(...) function, arguments
Ity 209
reg 209
AIC
about 137
procedure 137
using 138
AIC(object, ...) function 138
Akaike Information Criterion. See AIC
ambush model 106
analysis of variance (ANOVA)
about 99
interpreting 99
angle argument
about 197, 198
shade, changing for bar chart 192, 197
anova(object, ...) function 100, 138
as.numeric(data) function
about 75
example 75
attach(variable) function 48, 49

axis(...) function

custom axes, creating for box plot 222-224

using 223,224

bar chart
about 152
creating, in R 152, 153
customizing 186-193
legend, adding 193
text labels, adding 194
bar chart, customizing
col argument 159, 161
main argument 159, 160
xlab argument 159, 160
xlim argument 159, 160
ylab argument 159, 160
ylim argument 159, 160
bar graph. See bar chart
barplot(...) function
about 153-186
arguments 194, 195
bar chart, creating 152, 153
barplot(...) function, arguments
horiz 195, 196
names 194
space 194, 195
width 194, 195
battle data
importing, intoR 126, 127
battle plan
selecting 123
battle strategy

logistical considerations 117, 118

Index

resource map 118 coef(object) command

viability, assessing 121, 122 about 143
beside argument using 143
about 196 col argument
stacked bar chart, creating 190, 191, 197 about 159, 161
blogs rainbow colors, generating 161
about 264 specific colors, generating 161, 162
R bloggers 264 column
R Tutorial Series 264 calculations, performing on 54
box plot comma-separated values files. See .csv files
creating 172-174 comment 37, 38
customizing 220 Comprehensive R Archive Network. See CRAN
boxplot(...) function content, R workspace
about 174 listing 58
box plot, creating 172-174 loading 59
breaks argument saving 59
histogram's columns, separating 225 cor() function 78
using 228 cor(data) function
built-in resources, R about 80
about 253 limitations 80
help(...) command 254-256 using 80
packages 257-259 cor(x,y) function 79
correlations
C about 77,78

interpreting 78, 79

¢(...) function 154, 156 correlations, interpreting

caltt:)ula:'ic;r;s about 78

abou examples 79

performing, on cell 54 count zpzs
performing, on column 54 CRAN 21, 260
perform!ng, on dataset 53, 54 CRAN mirror
performing, on row 54 about 260

categorical variables

selecting 260
quantifying 73, 74 8

; Crantastic!
causation 79 about 264
cell URL 264

calculations, performing on 54 custom functions

centering creating 111, 112, 142

about 94 example 113
need for 94
cex argument D
about 198, 206
scatterplot's point markers, customizing 199 data
chooseCRANmirror() command accessing, within variables 47-50
CRAN mirror window, opening 257 analyzing 126
using 260 examining 65

exploring 129-132, 147

[276]

external data, importing 43, 44
importing 146
initial reference, making 63, 64
setting up 126
dataset
calculation, performing on 53, 54
subset, creating 66
date() command 30, 67
density 228
density argument
about 197, 198
shade, changing for bar chart 192, 197
dependencies 260
descriptive statistics. See summary statistics
detach(variable) function 50
dichotomous 211
dir argument 31

E

equivalency operator 67
extended lines

about 114

formatting value 114
external data

importing 43, 44

F

fire model 107
freq argument
densities, plotting 226, 227
using 228
function() command
about 111, 113
syntax 113
using 111, 112, 140
function arguments
variable data, using 54

G

getwd() command 31, 126
glm(formula, data) function
about 138
using 132

Google

about 265
URL 265

graphic device

creating 182

graphics

about 249

axes, adding 235, 240
creating 183, 234, 235
creating, with multiple visuals 242-247
customizing 156-158
data, adding 236, 237, 240
exporting 181, 182
horizontal lines 250
legend, adding 238, 241
nested functions 250
vertical lines 250

graphic window

about 154

graphics, customizing 156-158
multiple graphics, displaying 242
Quartz 154

working 154, 155

H

head to head model 104
height argument 153
help(...) command

about 256

executing 256

executing, topic argument used 255
features 256

using 254-256

hierarchical linear regression (HLR)

models, comparing 96-98

hist(...) function

about 176
histogram, creating 175, 176

histogram

about 175
creating 175, 176
customizing 225

horiz argument

about 195
bar chart orientation, changing 188, 189
working 195, 196

[277]

| creating 168, 169
customizing 212

initial reference displaying, in graphic window 213
making, for data 63, 64 legend, adding 215
install.packages() command lines(...) function, using 214
package window, opening 258, 260 Iwd argument, using 216
installation, R line graph. See line chart
about 20 lines 37
CRAN link, clicking 21 lines(...) function
CRAN link, displaying 22 about 217
installation, R-2.11.1.pkg arguments 217
Mac OS X 10.5, used 24-28 example 217
interaction effects 92 syntax 217
interaction variable using 214
about 92 lines(...) function, arguments
creating 92-94 col 217
incorporating, in regression model 93, 94 type 217
interpreting 94 x 217
interquartile range 223 y 217
Im(formula, data) function 84, 138
L load(file) function 58, 59, 63
logistics

labels argument
percentages, adding to pie chart 230
legend

considering 117
logistics, considering

. about 117
add!ng, to bar chart 193, 198 equipment 118
add!ng, to graphlcs 238,241 gold 117
add!ng, to pie chart 231 provisions 117
adding, to scatterplot 203, 204 soldiers 118

legend(...) function
about 162, 198
arguments 162
example 209, 233

Is() function 57, 58

lwd argument
line width, setting 212
using, in line chart 216

format 162
using 219 M
legend(...) function, arguments
fill 162 Mac OS X 10.5
legend 162 R-2.11.1.pkg, installing 24-28
X position 162 magic(n) function
y position 162 magic squares sequence, generating 259, 261
length(object) command 161 main argument 159, 160
library(...) function matrix(...) function
package, loading 259, 260 about 197
linear regression model format 197
interpreting 86, 87 mean(data) function 54
line chart meanDurationAmbush variable 110
about 168 meanDurationFire variable 110

additional data, incorporating 213

[278]

meanDurationHeadToHead variable 110
meanDurationSurround variable 110
model

deplolying 139-141

developing 132-135
model summaries

interpreting 98
moderation effect 94
multi-argument function 67
multicollinearity 94
multiple linear regression

about 88

creating 88

modelling with 89

N

names argument

text labels, adding to bar chart 194
non-equivalency operator 67
number-colon-number notation

about 170

benefits 171

(0

online communities
R-help mailing list 264
online resources, R
blogs 264
online communities 264
websites 263
output 38

P

packages
about 257
CRAN mirror, selecting 260
installing 260
loading 260
using 261
par(mfcol) command
about 249
using 249

paste(...) function

about 232

arguments 232

syntax 232
paste(...) function, arguments

appendText 232

originalValues 232

sep 232
pch argument

about 206

scatterplot's point markers, customizing 199
pie(...) function

about 179

pie chart, creating 177-179
pie chart

about 177

creating 177-179

customizing 230

legend, adding 231
plot(...) function

about 170

line chart, creating 168, 169

relationship, exploring among dataset 167

scatterplot, creating 164-166

type argument 170

using 234, 239
points(...) function

about 207

arguments 207

executing 207, 209

relationships, adding 202, 203

syntax 207
points(...) function, arguments

col 207

type 207

x 207

y 207
predictions

resource constraints, incorporating into 119
probabilitySuccessAmbush variable 109
probabilitySuccessFire variable 109
probabilitySuccessHeadToHead variable 109
probabilitySuccessSurround variable 109
probability values

calculating 108

[279]

Download from Wow! eBook <www.wowebook.com>

Q free 8

graphical 9
q() command 57 open source 8
Quartz 154 programmable 9
Quick-R R, fundamental elements
about 263 calculations 38
URL 263 comment 37, 38
lines 37
R output 38
R, installing
R about 20
4x4 Magic Square puzzle, solving 35, 36 CRAN link, clicking 21
about 8 CRAN link, displaying 22
bar chart, creating 152, 153 R-2.11.1.pkg, installing
bar chart, customizing 186-193 Mac OS X 10.5, used 24-28
battle data, importing 126, 127 R-help mailing list
benefits 8,9 about 264
commands, issuing 29 URL 264
data, accessing within variables 47-50 rainbow(...) function 161, 162

expanding, with packages 257-259

-) range(data) function 72
external data, importing 43, 44

range argument

function() command 111, 112 about 223
graphics, exporting 181, 182 whisker length, altering for box 220
help(...) command, using 254-256 Rating value 108
hqmepagE, URL 20 _ ratioWeiShuSoldiersAmbush variable 109
initial reference, making for data 63, 64 ratioWeiShuSoldiersFire variable 109
negd_ for 9 ratioWeiShuSoldiersHeadToHead variable 109
quitting 59 ratioWeiShuSoldiersSurround variable 109
regression models 82, 103 R bloggers
URL 8 about 264
variables, calling 45, 46 URL 264
variables, creating 45, 46 R command
working directory, setting 30, 63 issuing 29
workspace, managing 57, 58 R console
Zhuge Liang's magic square, deciphering 34 saving 60
R, analyzing versus R workspace 59, 60
about 145 visualizing 39
console files, saving 148, 149 read.csv(file) command
data, exploring 147 about 44

data, importing 146

) - . resource file, reading into R 44
working directory, setting up 145

read.table(...) function

workspace, saving 148, 149 about 128
R, benefits arguments 128
about 8 read.table(...) function, arguments
community-supported 9 file 128
cross-platform 8 header 128
extendable 9 sep 128

[280]

regression equation
format 84
regression line 209
regression models
about 82, 103
ambush 106
comparing 96-98
fire 107
head to head 104
outcomes, calculating from 110, 111
probability values, calculating 108
selecting 96-98
simple linear regression 82, 83
surround 105
resource-focused custom functions
creating 115, 116
resource constraints
incorporating, into predictions 119
resource map 118
R Graph Gallery
about 263
URL 263
R Help window 255
round(x, digits) function 231
row
calculations, performing on 54
R Programming wikibook
about 263
URL 263
R Project for Statistical Computing
about 263
URL 263
R Seek
about 265
URL 265
R Tutorial Series
about 264
URL 264
R workspace
contents, listing 58
contents, loading 59
contents, saving 59
managing 57, 58
saving 148, 149
versus R console 59, 60

S

save.image(file) function 57, 59, 145, 148

scatterplot
about 164, 206

additional data, incorporating 200, 201

creating 164-166
customizing 199
displaying, in graphic window 201
legend, adding 203, 204
multiple scatterplot 167
points, adding 202, 203
single scatterplot 167
sd(data) function
about 71
using 71
search engines
about 265
Google 265
R Seek 265
setwd(dir) function 31, 43, 126
simple linear regression
about 82
modelling with 82, 83
space argument 194
standard deviation 71
subset
creating, from dataset 66
subset(data, ...) function 66, 67
SuccessfullyExecuted variable 105
summary(object) function 72
about 147
using 85, 131, 132, 144
summary output
interpreting 90
p-value 86
R-squared 86
summary statistics
deriving 69-71
examining 129-132
need for 72
sunflowerplot(...) function
using 211
surround model 105

[281]

T W

topic argument websites
help(...), executing 255 Crantastic! 264
type argument 170 Quick-R 263
R Graph Gallery 263
U R Programming wikibook 263
R Project for Statistical Computing 263
update.packages() command 261 width argument 194
working directory
\' about 30

variableScolumn notation 49 setting 30, 145

variable-argument function X
about 67
anova(object, ...) 100 xlab argument 159, 160
variable[row, column] notation 50 xlim argument 159, 160, 194
variable data
manipulating 51, 52 Y
using, in function arguments 54
variables ylab argument 159, 160
calling 45, 46 ylim argument 159, 160
categorical variables, quantifying 73, 74
correlating 77, 78 Z
creating 45, 46
data, accessing within 47-50 Zhuge Liang 7
interaction variables 92 Zhuge Liang's magic square puzzle
overwriting 75, 76 about 34
variable calculation, saving 55 deciphering 34
vector variable 154
viability

assessing 121,122

[282]

open source

community experience distilled

PUBLISHING

Thank you for buying
Statistical Analysis with R Beginner's Guide

About Packt Publishing

Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www . packtpub. com.

About Packt Open Source

In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

open source

community experience distilled

PUBLISHING

BIRT 2.6 Data Analysis
and Reporting

BIRT 2.6 Data Analysis and
Reporting

ISBN: 978-1-849511-66-7 Paperback: 360 pages
Create, Design, Format, and Deploy Reports with

the world’s most popular Eclipse-based Business
Intelligence and Reporting Tool

1. Design, manage, format, and deploy
high-quality reports

2. Crosstab reports using the new BIRT cube
designer

3. Transform raw data into visual and interactive
reports

4. Includes a case study (Building Reports for
Bugzilla) at the end along with a real-world
example that runs throughout the book

Practical Data Analysis and Reporting with

PACKT

Practical Data Analysis and

Reporting with BIRT
ISBN: 978-1-847191-09-0 Paperback: 312 pages

Use the open-source Eclipse-based Business
Intelligence and Reporting Tools system to design
and create reports quickly

1. Get started with BIRT Report Designer
2. Develop the skills to get the most from it

3. Transform raw data into visual and
interactive content

4. Design, manage, format, and deploy
high-quality reports

Please check www.PacktPub.com for information on our titles

open source

community experience distilled

PUBLISHING

Catalyst 5.8: the Perl MVC

Framework
ISBN: 978-1847199-24-9 Paperback: 244 pages

Build scalable and extendable web applications using
the agile MVC framework

1. Increase reusability and empower the delivery
of more complex design patterns by extending
the MVC concept

2. Build an editable web interface
3. Extend Catalyst through plugins

4. Plenty of examples with detailed walkthroughs
to create sample applications

5. Updated for the latest version, Catalyst 5.8

Linux Thin Client Networks

Design and Deployment

A quick guide for System Administrators

Linux Thin Client Networks Design
and Deployment

ISBN: 978-1-847192-04-2 Paperback: 176 pages
A quick guide for System Administrators

1. Learn to implement the right Linux thin client
network for your requirements

2. Evaluate and choose the right hardware and
software for your deployment

3. Techniques to intelligently design and set up
your thin client network

3. Practical advice on educating users, convincing
management, and intelligent use of legacy
systems

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	Table of Contents
	Preface
	Chapter 1: Uncovering the Strategist's Data Analysis Tool
	What is R?
	What are the benefits of using R?
	Why should I use R?
	Why should I read this book?
	What topics are covered in this book?
	Chapter 2—Preparing R for Battle
	Chapter 3—Exploring the Mysterious Data Analysis Tool
	Chapter 4—Collecting and Organizing Information
	Chapter 5—Assessing the Situation
	Chapter 6—Planning the Attack
	Chapter 7—Organizing the Battle Plans
	Chapter 8—Briefing the Emperor
	Chapter 9—Briefing the Generals
	Chapter 10—Becoming a Master Strategist

	Summary

	Chapter 2: Preparing R for Battle
	Time for action – downloading and installing R
	Example: R 2.11.1 Mac OS X 10.5+ installation wizard demonstration

	Time for action – issuing your first R command
	Time for action – setting your R working directory
	Summary

	Chapter 3: Exploring the Mysterious Data Analysis Tool
	Deciphering Zhuge Liang's magic square
	Time for action – solving the first 4x4 magic square
	Lines
	Comments
	Calculations
	Output
	Visualizing the R console

	Summary

	Chapter 4: Collecting and Organizing Information
	Time for action – importing external data
	read.csv(file)
	comma-separated values (csv) files

	Time for action – creating and calling variables
	Time for action – accessing data within variables
	variable$column notation
	attach(variable) function
	variable[row, column] notation

	Time for action – manipulating variable data
	Performing a calculation on an entire dataset
	Performing a calculation on a row, column, or cell
	Using variable data in function arguments
	Saving a variable calculation into a new variable

	Time for action – managing the R workspace
	Listing the contents of the R workspace
	Saving the contents of the R workspace
	Loading the contents of the R workspace
	Quitting R
	Distinguishing between the R console and workspace
	Saving the R console

	Summary

	Chapter 5: Assessing the Situation
	Time for action – making an initial inference from our data
	Examining our data
	Time for action – creating a subset from a large dataset
	Multi-argument functions
	Variable-argument functions
	Equivalency operators
	subset(data, ...)

	Time for action – deriving summary statistics
	Means
	Standard deviations
	Ranges
	summary(object)
	Why use summary statistics?

	Time for action – quantifying categorical variables
	as.numeric(data)
	Overwriting variables

	Time for action – correlating variables
	Interpreting correlations
	cor(x, y)
	cor(data)
	NA values

	Regression
	Time for action – modelling with simple linear regression
	lm(formula, data)
	Linear model output
	Linear model summary
	Interpreting a linear regression model

	Time for action – modelling with multiple linear regression
	Interpreting the summary output
	Explaining model differences

	Time for action – modelling interactions
	Interpreting interaction variables

	Time for action – comparing and choosing models
	Interpreting the model summaries
	Interpreting the ANOVA results

	anova(object, ...)

	Summary

	Chapter 6: Planning the Attack
	Review of models
	Head to head
	Surround
	Ambush
	Fire

	Predicting outcomes using regression models
	Rating
	Successfully executed
	Number of Wei soldiers
	Duration of battle
	A word about assumptions

	Time for action – calculating outcomes from regression models
	Time for action – creating custom functions
	function()
	Extended lines

	Time for action – creating resource-focused custom functions
	Logistical considerations
	Gold
	Provisions
	Equipment
	Soldiers
	Resource and cost summary
	Resource map

	Time for action – incorporating resource constraints
	into predictions
	Gold cost function explanation

	Assessing viability
	Time for action – assessing the viability of potential strategies
	Remember your assumptions

	Summary

	Chapter 7: Organizing the Battle Plans
	Retracing and refining a complete analysis
	Time for action – first steps
	Time for action – data setup
	read.table(...)

	Time for action – data exploration
	Time for action – model development
	glm(...)
	AIC(object, ...)

	Time for action – model deployment
	coef(object)

	Time for action – last steps
	The common steps to all R analyses
	Step 1: Set your working directory
	Comment your work

	Step 2: Import your data (or load an existing workspace)
	Step 3: Explore your data
	Step 4: Conduct your analysis
	Step 5: Save your workspace and console files

	Summary

	Chapter 8: Briefing the Emperor
	Charts, graphs, and plots in R
	Time for action – creating a bar chart
	barplot(...)
	Vectors
	Graphic window

	Time for action – customizing graphics
	Graphic customization arguments
	main, xlab, and ylab
	xlim and ylim
	Col

	legend(...)

	Time for action – creating a scatterplot
	Single scatterplot
	Multiple scatterplots

	Time for action – creating a line chart
	type
	Number-colon-number notation

	Time for action – creating a box plot
	boxplot(...)

	Time for action – creating a histogram
	hist(...)

	Time for action – creating a pie chart
	pie(...)

	Time for action – exporting graphics
	Summary

	Chapter 9: Briefing the Generals
	More charts, graphs, and plots in R
	Time for action – customizing a bar chart
	names
	width and space
	horiz
	beside
	density and angle
	legend(...) with density, angle, and cex

	Time for action – customizing a scatterplot
	pch and cex
	points(...)
	legend(...)
	abline(...)

	Time for action – customizing a line chart
	lwd
	lines(...)
	legend(...)

	Time for action – customizing a box plot
	range
	axis(...)

	Time for action – customizing a histogram
	breaks
	freq

	Time for action – customizing a pie chart
	Custom labels
	legend(...)

	Time for action – building a graphic
	Time for action – building a graphic with multiple visuals
	par(mfcol)
	Graphics
	Horizontal and vertical lines
	Nested functions

	Summary

	Chapter 10: Becoming a Master Strategist
	R's built-in resources
	Time for action – using R's help function
	help(...)

	Time for action – expanding R with packages
	Choose a CRAN mirror
	Install a package
	Load the package
	Use the package

	R's online resources
	Websites
	The R Project for Statistical Computing
	Quick-R
	R Programming wikibook
	R Graph Gallery
	Crantastic!

	Blogs
	R bloggers
	R Tutorial Series

	Online communities
	R-help mailing list
	Other mailing lists

	Search engines
	R Seek
	Google

	Summary

	Appendix: Pop Quiz Answer Key
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10

	Index

