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INTRODUCTION

In early 2020, as the world struggled to
contain the spread of COVID-19, one

country succeeded where others did not: New Zealand.
There are many reasons New Zealand was able to
tackle COVID-19. One was the R programming
language (yes, really).

This humble tool for data analysis helped New Zealand fight COVID-19
by enabling a Ministry of Health team to generate daily reports on cases
throughout New Zealand. Based on the information in these reports, officials
were able to develop policies that kept the country largely free of COVID-19.
The team was small, however, so producing the reports every day with a tool
like Excel wouldn’t have been feasible. As team leader Chris Knox told me,
“Trying to do what we did in a point-and-click environment is not possible.”

Instead, a few staff members wrote R code that they could run every day
to produce updated reports. These reports did not involve any complicated
statistics; they were literally counts of COVID-19 cases. Their value came
from everything else that R can do: data analysis and visualization, report
creation, and workflow automation.

This book explores the many ways that people use R to communicate
and automate tasks. You’ll learn how to do the following:

Make professional-quality data visualizations, maps, and tables
Replace a clunky multi-tool workflow to create reports with R Markdown



Use parameterized reporting to generate multiple reports at once
Produce slideshow presentations and websites using R Markdown
Automate the process of importing online data from Google Sheets and
the US Census Bureau
Create your own functions to automate tasks you do repeatedly
Bundle your functions into a package that you can share with others

Best of all, you’ll do all of this without performing any statistical
analysis more complex than calculating averages

Isn’t R Just for Statistical Analysis?
Many people think of R as simply a tool for hardcore statistical analysis, but
it can do much more than manipulate numerical values. After all, every R
user must illuminate their findings and communicate their results somehow,
whether that’s via data visualizations, reports, websites, or presentations.
Also, the more you use R, the more you’ll find yourself wanting to automate
tasks you currently do manually.

As a qualitatively trained anthropologist without a quantitative
background, I used to feel ashamed about using R for my visualization and
communication tasks. But the fact is, R is good at these jobs. The ggplot2
package is the tool of choice for many top information designers. Users
around the world have taken advantage of R’s ability to automate reporting to
make their work more efficient. Rather than simply replacing other tools, R
can perform tasks that you’re probably already doing, like generating reports
and tables, better than your existing workflow.



Who This Book Is For
No matter your background, using R can transform your work. This book is
for you if you’re either a current R user keen to explore its uses for
visualization and communication or a non-R user wondering if R is right for
you. I’ve written R for the Rest of Us so that it should make sense whether or
not you’ve ever written a line of R code. But even if you’ve written entire R
programs, the book should help you learn plenty of new techniques to up
your game.

R is a great tool for anyone who works with data. Maybe you’re a
researcher looking for a new way to share your results. Perhaps you’re a
journalist looking to analyze public data more efficiently. Or maybe you’re a
data analyst tired of working in expensive, proprietary tools. If you have to
work with data, you will get value from R.

About This Book
Each chapter focuses on one use of the R language and includes examples of
real R projects that employ the techniques covered. I’ll dive into the project
code, breaking the programs down to help you understand how they work,
and suggest ways of going beyond the example. The book has three parts,
outlined here.

In Part I, you’ll learn how to use R to visualize data.

Chapter 1: An R Programming Crash Course Introduces the
RStudio programming environment and the foundational R syntax you’ll
need to understand the rest of the book.
Chapter 2: Principles of Data Visualization Breaks down a
visualization created for Scientific American on drought conditions in the
United States. In doing so, this chapter introduces the ggplot2 package
for data visualization and addresses important principles that can help
you make high-quality graphics.
Chapter 3: Custom Data Visualization Themes Describes how
journalists at the BBC made a custom theme for the ggplot2 data
visualization package. As the chapter walks you through the package
they created, you’ll learn how to make your own theme.



Chapter 4: Maps and Geospatial Data Explores the process of
making maps in R using simple features data. You’ll learn how to write
map-making code, find geospatial data, choose appropriate projections,
and apply data visualization principles to make your map appealing.
Chapter 5: Designing Effective Tables Shows you how to use the gt
package to make high-quality tables in R. With guidance from R table
connoisseur Tom Mock, you’ll learn the design principles to present
your table data effectively.

Part II focuses on using R Markdown to communicate efficiently. You’ll
learn how to incorporate visualizations like the ones discussed in Part I into
reports, slideshow presentations, and static websites generated entirely using
R code.

Chapter 6: R Markdown Reports Introduces R Markdown, a tool
that allows you to generate a professional report in R. This chapter
covers the structure of an R Markdown document, shows you how to use
inline code to automatically update your report’s text when data values
change, and discusses the tool’s many export options.
Chapter 7: Parameterized Reporting Covers one of the advantages
of using R Markdown: the ability to produce multiple reports at the same
time using a technique called parameterized reporting. You’ll see how
staff members at the Urban Institute used R to generate fiscal briefs for
all 50 US states. In the process, you’ll learn how parameterized reporting
works and how you can use it.
Chapter 8: Slideshow Presentations Explains how to use R
Markdown to make slides with the xaringan package. You’ll learn how
to make your own presentations, adjust your content to fit on a slide, and
add effects to your slideshow.
Chapter 9: Websites Shows you how to create your own website with
R Markdown and the distill package. By examining a website about
COVID-19 rates in Westchester County, New York, you’ll see how to
create pages on your site, add interactivity through R packages, and
deploy your website in multiple ways.
Chapter 10: Quarto Explains how to use Quarto, the next-generation
version of R Markdown. You’ll learn how to use Quarto for all of the



projects you previously used R Markdown for (reports, parameterized
reporting, slideshow presentations, and websites).

Part III focuses on ways you can use R to automate your work and share
it with others.

Chapter 11: Automatically Accessing Online Data Explores two R
packages that let you automatically import data from the internet:
googlesheets4 for working with Google Sheets and tidycensus for
working with US Census Bureau data. You’ll learn how the packages
work and how to use them to automate the process of accessing data.
Chapter 12: Creating Functions and Packages Shows you how to
create your own functions and packages and share them with others,
which is one of R’s major benefits. Bundling your custom functions into
a package can enable other R users to streamline their work, as you’ll
read about with the packages that a group of R developers built for
researchers working at the Moffitt Cancer Center.

By the end of this book, you should be able to use R for a wide range of
nonstatistical tasks. You’ll know how to effectively visualize data and
communicate your findings using maps and tables. You’ll be able to integrate
your results into reports using R Markdown, as well as efficiently generate
slideshow presentations and websites. And you’ll understand how to
automate many tedious tasks using packages others have built or ones you
develop yourself. Let’s dive in!



PART I
VISUALIZATIONS



1
AN R PROGRAMMING CRASH COURSE

R has a well-earned reputation for being
hard to learn, especially for those who

come to it without prior programming experience. This
chapter is designed to help anyone who has never used
R before. You’ll set up an R programming
environment with RStudio and learn how to use
functions, objects, packages, and projects to work with
data. You’ll also be introduced to the tidyverse
package, which contains the core data analysis and
manipulation functions used in this book.

This chapter won’t provide a complete introduction to R programming;
rather, it will focus on the knowledge you need to follow along with the rest
of the book. If you have prior experience with R, feel free to skip ahead to
Chapter 2.

Setting Up
You’ll need two pieces of software to use R effectively. The first is R itself,
which provides the underlying computational tools that make the language
work. The second is an integrated development environment (IDE) like
RStudio. This coding platform simplifies working with R. The best way to



understand the relationship between R and RStudio is with this analogy from
Chester Ismay and Albert Kim’s book Statistical Inference via Data Science:
A ModernDive into R and the Tidyverse: R is the engine that powers your
data, and RStudio is like the dashboard that provides a user-friendly interface.

Installing R and RStudio
To download R, go to https://cloud.r-project.org and choose the link for your
operating system. Once you’ve installed it, open the file. This should open an
interface, like the one shown in Figure 1-1, that lets you work with R on your
operating system’s command line. For example, enter 2 + 2, and you should
see 4.

Figure 1-1: The R console

A few brave souls work with R using only this command line, but most
opt to use RStudio, which provides a way to see your files, the output of your
code, and more. You can download RStudio at
https://posit.co/download/rstudio-desktop/. Install RStudio as you would any
other app and open it.

https://cloud.r-project.org
https://posit.co/download/rstudio-desktop/


Exploring the RStudio Interface
The first time you open RStudio, you should see the three panes shown in
Figure 1-2.

Figure 1-2: The RStudio editor

The left pane should look familiar. It’s similar to the screen you saw
when working in R on the command line. This is known as the console.
You’ll use it to enter code and see the results. This pane has several tabs,
such as Terminal and Background Jobs, for more advanced uses. For now,
you’ll stick to the default tab.

At the bottom right, the files pane shows all of the files on your
computer. You can click any file to open it within RStudio. Finally, at the top
right is the environment pane, which shows the objects that are available to
you when working in RStudio. Objects are discussed in “Saving Data as
Objects” on page 11.

There is one more pane that you’ll typically use when working in
RStudio, but to see it, first you need to create an R script file.

R Script Files



If you write all of your code in the console, you won’t have any record of it.
Say you sit down today and import your data, analyze it, and then make some
graphs. If you run these operations in the console, you’ll have to re-create
that code from scratch tomorrow. But if you write your code in files instead,
you can run it multiple times.

R script files, which use the .R extension, save your code so you can run
it later. To create an R script file, go to File4New File4R Script, and the
script file pane should appear in the top left of RStudio, as shown in Figure
1-3. Save this file in your Documents folder as sample-code.R.

Figure 1-3: The script file pane (top left)

Now you can enter R code into the new pane to add it to your script file.
For example, try entering 2 + 2 in the script file pane to perform a simple
addition operation.

To run a script file, click Run or use the keyboard shortcut COMMAND-
ENTER on macOS or CTRL-ENTER on Windows. The result (4, in this case)
should show up in the console pane.

You now have a working programming environment. Next you’ll use it
to write some simple R code.



Basic R Syntax
If you’re trying to learn R, you probably want to perform more complex
operations than 2 + 2, but understanding the fundamentals will prepare you
to do more serious data analysis tasks later in this chapter. Let’s cover some
of these basics.

Arithmetic Operators
Besides +, R supports the common arithmetic operators - for subtraction, *
for multiplication, and / for division. Try entering the following in the
console:

> 2 - 1

1

> 3 * 3

9

> 16 / 4

4

As you can see, R returns the result of each calculation you enter. You
don’t have to add the spaces around operators as shown here, but doing so
makes your code much more readable.

You can also use parentheses to perform multiple operations at once and
see their result. The parentheses specify the order in which R will evaluate
the expression. Try running the following:

> 2 * (2 + 1)

6

This code first evaluates the expression within the parentheses, 2 + 1, before
multiplying the result by 2 in order to get 6.

R also has more advanced arithmetic operators, such as ** to calculate
exponents:

> 2 ** 3

8



This is equivalent to 23, which returns 8.
To get the remainder of a division operation, you can use the %% operator:

> 10 %% 3

1

Dividing 10 by 3 produces a remainder of 1, the value R returns.
You won’t need to use these advanced arithmetic operators for the

activities in this book, but they’re good to know nonetheless.

Comparison Operators
R also uses comparison operators, which let you test how one value
compares to another. R will return either TRUE or FALSE. For example, enter 2
> 1 in the console:

> 2 > 1

TRUE

R should return TRUE, because 2 is greater than 1.
Other common comparison operators include less than (<), greater than

or equal to (>=), less than or equal to (<=), equal to (==), and not equal to (!=).
Here are some examples:

> 498 == 498

TRUE

> 2 != 2

FALSE

When you enter 498 == 498 in the console, R should return TRUE
because the two values are equal. If you run 2 != 2 in the console, R should
return FALSE because 2 does not not equal 2.

You’ll rarely use comparison operators to directly test how one value
compares to another; instead, you’ll use them to perform tasks like keeping
only data where a value is greater than a certain threshold. You’ll see
comparison operators used in this way in “tidyverse Functions” on page 15.



Functions
You can perform even more useful operations by making use of R’s many
functions, predefined sections of code that let you efficiently do specific
things. Functions have a name and a set of parentheses containing arguments,
which are values that affect the function’s behavior.

Consider the print() function, which displays information:

> print(x = 1.1)

1.1

The name of the print() function is print. Within the function’s
parentheses, you specify the argument name—x, in this case—followed by
the equal sign (=) and a value for the function to display. This code will print
the number 1.1.

To separate multiple arguments, you use commas. For example, you can
use the print() function’s digits argument to indicate how many digits of a
number to display:

> print(x = 1.1, digits = 1)

1

This code will display only one digit (in other words, a whole number).
Using these two arguments allows you to do something specific (display

results) while also giving you the flexibility to change the function’s
behavior.

NOTE
For a list of all functions built into R, see https://stat.ethz.ch/R-manual/R-
devel/library/base/html/00Index.xhtml.

A common R pattern is using a function within a function. For example,
if you wanted to calculate the mean, or average, of the values 10, 20, and 30,
you could use the mean() function to operate on the result of the c() function
like so:

> mean(x = c(10, 20, 30))

https://stat.ethz.ch/R-manual/R-devel/library/base/html/00Index.xhtml


20

The c() function combines multiple values into one, which is necessary
because the mean() function accepts only one argument. This is why the code
has two matching sets of open and close parentheses: one for mean() and a
nested one for c().

The value after the equal sign in this example, c(10, 20, 30), tells R to
use the values 10, 20, and 30 to calculate the mean. Running this code in the
console returns the value 20.

The functions median() and mode() work with c() in the same way. To
learn how to use a function and what arguments it accepts, enter ? followed
by the function’s name in the console to see the function’s help file.

Next, let’s look at how to import data for your R programs to work with.

Working with Data
R lets you do all of the same data manipulation tasks you might perform in a
tool like Excel, such as calculating averages or totals. Conceptually, however,
working with data in R is very different from working with Excel, where
your data and analysis code live in the same place: a spreadsheet. While the
data you work with in R might look similar to the data you work with in
Excel, it typically comes from some external file, so you have to run code to
import it.

Importing Data
You’ll import data from a comma-separated values (CSV) file, a text file that
holds a series of related values separated by commas. You can open CSV
files using most spreadsheet applications, which use columns rather than
commas as separators. For example, Figure 1-4 shows the population-by-
state.csv file in Excel.



Figure 1-4: The population-by-state.csv file in Excel

To work with this file in R, download it from
https://data.rfortherestofus.com/population-by-state.csv. Save it to a location
on your computer, such as your Documents folder.

Next, to import the file into R, add a line like the following to the
sample-code.R file you created earlier in this chapter, replacing my filepath
with the path to the file’s location on your system:

read.csv(file = "/Users/davidkeyes/Documents/population-by-st

ate.csv")

The file argument in the read.csv() function specifies the path to the
file to open.

The read.csv() function can accept additional optional arguments,
separated by commas. For example, the following line uses the skip
argument in addition to file to import the same file but skip the first row:

read.csv(file = "/Users/davidkeyes/Documents/population-by-st

ate.csv", skip = 1)

https://data.rfortherestofus.com/population-by-state.csv


To learn about additional arguments for this function, enter ?read.csv()
in the console to see its help file.

At this point, you can run the code to import your data (without the skip
argument). Highlight the line you want to run in the script file pane in
RStudio and click Run. You should see the following output in the console
pane:

#>    rank                State      Pop  Growth  Pop2018

#> 1     1           California 39613493  0.0038 39461588

#> 2     2                Texas 29730311  0.0385 28628666

#> 3     3              Florida 21944577  0.0330 21244317

#> 4     4             New York 19299981 -0.0118 19530351

#> 5     5         Pennsylvania 12804123  0.0003 12800922

#> 6     6             Illinois 12569321 -0.0121 12723071

#> 7     7                 Ohio 11714618  0.0033 11676341

#> 8     8              Georgia 10830007  0.0303 10511131

#> 9     9       North Carolina 10701022  0.0308 10381615

#> 10   10             Michigan  9992427  0.0008  9984072

--snip--

This is R’s way of confirming that it imported the CSV file and
understands the data within it. Four variables show each state’s rank (in terms
of population size), name, current population, population growth between the
Pop and Pop2018 variables (expressed as a percentage), and 2018 population.
Several other variables are hidden in the output, but you’ll see them if you
import this CSV file yourself.

You might think you’re ready to work with your data now, but all you’ve
really done at this point is display the result of running the code that imports
the data. To actually use the data, you need to save it to an object.

Saving Data as Objects
To save your data for reuse, you need to create an object. For the purposes of
this discussion, an object is a data structure that is stored for later use. To
create an object, update your data-importing syntax so it looks like this:

population_data <- read.csv(file = "/Users/davidkeyes/Documen

ts/population-by-state.csv")



Now this line of code contains the <- assignment operator, which takes
what follows it and assigns it to the item on the left. To the left of the
assignment operator is the population_data object. Put together, the whole
line imports the CSV file and assigns it to an object called population_data.

When you run this code, you should see population_data in your
environment pane, as shown in Figure 1-5.

Figure 1-5: The population_data object in the environment pane

This message confirms that your data import worked and that the
population_data object is ready for future use. Now, instead of having to
rerun the code to import the data, you can simply enter population_data in
an R script file or in the console to output the data.

Data imported to an object in this way is known as a data frame. You
can see that the population_data data frame has 52 observations and 9
variables. Variables are the data frame’s columns, each of which represents
some value (for example, the population of each state). As you’ll see
throughout the book, you can add new variables or modify existing ones
using R code. The 52 observations come from the 50 states, as well as the
District of Columbia and Puerto Rico.



Installing Packages
The read.csv() function you’ve been using, as well as the mean() and c()
functions you saw earlier, comes from base R, the set of built-in R functions.
To use base R functions, you simply enter their names. However, one of the
benefits of R being an open source language is that anyone can create their
own code and share it with others. R users around the world make R
packages, which provide custom functions to accomplish specific goals.

The best analogy for understanding packages also comes from the book
Statistical Inference via Data Science. The functionality in base R is like the
features built into a smartphone. A smartphone can do a lot on its own, but
you usually want to install additional apps for specific tasks. Packages are
like apps, giving you functionality beyond what’s built into base R. In
Chapter 12, you’ll create your own R package.

You can install packages using the install.packages() function.
You’ll be working with the tidyverse package, which provides a range of
functions for data import, cleaning, analysis, visualization, and more. To
install it, enter install.packages("tidyverse"). Typically, you’ll enter
package installation code in the console rather than in a script file because
you need to install a package only once on your computer to access its code
in the future.

To confirm that the tidyverse package has been installed correctly,
click the Packages tab on the bottom-right pane in RStudio. Search for
tidyverse, and you should see it pop up.

Now that you’ve installed the tidyverse, you’ll put it to use. Although
you need to install packages only once per computer, you need to load them
each time you restart RStudio. Return to the sample-code.R file and reimport
your data using a function from the tidyverse package (your filepath will
look slightly different):

library(tidyverse)

population_data_2 <- read_csv(file = "/Users/davidkeyes/Docum

ents/population-by-state.csv")

At the top of the script, the line library(tidyverse) loads the



tidyverse package. Then, the package’s read_csv() function imports the
data. Note the underscore (_) in place of the period (.) in the function’s
name; this differs from the base R function you used earlier. Using
read_csv() to import CSV files achieves the same goal of creating an object,
however—in this case, one called population_data_2. Enter
population_data_2 in the console, and you should see this output:

#> # A tibble: 52 × 9

#>     rank State               Pop  Growth  Pop2018  Pop2010

#>    <dbl> <chr>             <dbl>   <dbl>    <dbl>    <dbl>

#>  1     1 California     39613493  0.0038 39461588 37319502

#>  2     2 Texas          29730311  0.0385 28628666 25241971

#>  3     3 Florida        21944577  0.0330 21244317 18845537

#>  4     4 New York       19299981 -0.0118 19530351 19399878

#>  5     5 Pennsylvania   12804123  0.0003 12800922 12711160

#>  6     6 Illinois       12569321 -0.0121 12723071 12840503

#>  7     7 Ohio           11714618  0.0033 11676341 11539336

#>  8     8 Georgia        10830007  0.0303 10511131  9711881

#>  9     9 North Carolina 10701022  0.0308 10381615  9574323

#> 10    10 Michigan        9992427  0.0008  9984072  9877510

#> # 42 more rows

#> # 3 more variables: growthSince2010 <dbl>, Percent <dbl>,

#> #   density <dbl>

This data looks slightly different from the data you generated using the
read.csv() function. For example, R shows only the first 10 rows. This
variation occurs because read_csv() imports the data not as a data frame but
as a data type called a tibble. Both data frames and tibbles are used to
describe rectangular data like what you would see in a spreadsheet. There are
some minor differences between data frames and tibbles, the most important
of which is that tibbles print only the first 10 rows by default, while data
frames print all rows. For the purposes of this book, the two terms are used
interchangeably.

RStudio Projects
So far, you’ve imported a CSV file from your Documents folder. But because
others won’t have this exact location on their computer, your code won’t
work if they try to run it. One solution to this problem is an RStudio project.



By working in a project, you can use relative paths to your files instead
of having to write the entire filepath when calling a function to import data.
Then, if you place the CSV file in your project, anyone can open it by using
the file’s name, as in read_csv(file = "population-by-state.csv"). This
makes the path easier to write and enables others to use your code.

To create a new RStudio project, go to File4New Project. Select either
New Directory or Existing Directory and choose where to put your project.
If you choose New Directory, you’ll need to specify that you want to create a
new project. Next, choose a name for the new directory and where it should
live. (Leave the checkboxes that ask about creating a Git repository and using
renv unchecked; they’re for more advanced purposes.)

Once you’ve created this project, you should see two major differences
in RStudio’s appearance. First, the files pane no longer shows every file on
your computer. Instead, it shows only files in the example-project directory.
Right now, that’s just the example-project.Rproj file, which indicates that the
folder contains a project. Second, at the top right of RStudio, you can see the
name example-project. This label previously read Project: (None). If you
want to make sure you’re working in a project, check for its name here.
Figure 1-6 shows these changes.



Figure 1-6: RStudio with an active project

Now that you’ve created a project, copy the population-by-state.csv file
into the example-project directory. Once you’ve done so, you should see it in
the RStudio files pane.

With this CSV file in your project, you can now import it more easily.
As before, start by loading the tidyverse package. Then, remove the
reference to the Documents folder and import your data by simply using the
name of the file:

library(tidyverse)

population_data_2 <- read_csv(file = "population-by-state.csv

")

The reason you can import the population-by-state.csv file this way is
that the RStudio project sets the working directory to be the root of your
project. With the working directory set like this, all references to files are
relative to the .Rproj file at the root of the project. Now anyone can run this
code because it imports the data from a location that is guaranteed to exist on
their computer.

Data Analysis with the tidyverse
Now that you’ve imported the population data, you’re ready to do a bit of
analysis on it. Although I’ve been referring to the tidyverse as a single
package, it’s actually a collection of packages. We’ll explore several of its
functions throughout this book, but this section introduces you to its basic
workflow.

tidyverse Functions
Because you’ve loaded the tidyverse package, you can now access its
functions. For example, the package’s summarize() function takes a data
frame or tibble and calculates some piece of information for one or more of
the variables in that dataset. The following code uses summarize() to
calculate the mean population of all states:



summarize(.data = population_data_2, mean_population = mean(P

op))

First, the code passes population_data_2 to the summarize() function’s
.data argument to tell R to use that data frame to perform the calculation.
Next, it creates a new variable called mean_population and assigns it to the
output of the mean() function introduced earlier. The mean() function runs on
Pop, one of the variables in the population_data_2 data frame.

You might be wondering why you don’t need to use the c() function
within mean(), as shown earlier in this chapter. The reason is that you’re
passing the function only one argument here: Pop, which contains the set of
population data for which you’re calculating the mean. In this case, there’s no
need to use c() to combine multiple values into one.

Running this code should return a tibble with a single variable
(mean_population), as shown here:

#> # A tibble: 1 × 1

#>   mean_population

#>             <dbl>

#> 1         6433422

The variable is of type double (dbl), which is used to hold general
numeric data. Other common data types are integer (for whole numbers, such
as 4, 82, and 915), character (for text values), and logical (for the TRUE/FALSE
values returned from comparison operations). The mean_population variable
has a value of 6433422, the mean population of all states.

Notice also that the summarize() function creates a totally new tibble
from the original population_data_2 data frame. This is why the variables
from population_data_2 are no longer present in the output.

This is a basic example of data analysis, but you can do a lot more with
the tidyverse.

The tidyverse Pipe
One advantage of working with the tidyverse is that it uses the pipe for
multistep operations. The tidyverse pipe, which is written as %>%, allows



you to break steps into multiple lines. For example, you could rewrite your
code using the pipe like so:

population_data_2 %>%

  summarize(mean_population = mean(Pop))

This code says, “Start with the population_data_2 data frame, then run
the summarize() function on it, creating a variable called mean_population
by calculating the mean of the Pop variable.”

Notice that the line following the pipe is indented. To make the code
easier to read, RStudio automatically adds two spaces to the start of lines that
follow pipes.

The pipe becomes even more useful when you use multiple steps in your
data analysis. Say, for example, you want to calculate the mean population of
the five largest states. The following code adds a line that uses the filter()
function, also from the tidyverse package, to include only states where the
rank variable is less than or equal to (<=) 5. Then, it uses summarize() to
calculate the mean of those states:

population_data_2 %>%

  filter(rank <= 5) %>%

  summarize(mean_population = mean(Pop))

Running this code returns the mean population of the five largest states:

#> # A tibble: 1 × 1

#>   mean_population

#>             <dbl>

#> 1        24678497

Using the pipe to combine functions lets you refine your data in multiple
ways while keeping it readable and easy to understand. Indentation can also
make your code more readable. You’ve seen only a few functions for analysis
at this point, but the tidyverse has many more functions that enable you to
do nearly anything you could hope to do with your data. Because of how
useful the tidyverse is, it will appear in every single piece of R code you



write in this book.

NOTE
R for Data Science, 2nd edition, by Hadley Wickham, Mine Çetinkaya-
Rundel, and Garrett Grolemund is the bible of tidyverse programming and
worth reading for more details on how the package’s many functions work.

Comments
In addition to code, R script files often contain comments—lines that begin
with hash marks (#) and aren’t treated as runnable code but instead as notes
for anyone reading the script. For example, you could add a comment to the
code from the previous section, like so:

# Calculate the mean population of the five largest states

population_data_2 %>%

  filter(rank <= 5) %>%

  summarize(mean_population = mean(Pop))

This comment will help others understand what is happening in the code,
and it can also serve as a useful reminder for you if you haven’t worked on
the code in a while. R knows to ignore any lines that begin with the hash
mark instead of trying to run them.

How to Get Help
Now that you’ve learned the basics of how R works, you’re probably ready to
dive in and write some code. When you do, though, you’re going to
encounter errors. Being able to get help when you run into issues is a key part
of learning to use R successfully. There are two main strategies you can use
to get unstuck.

The first is to read the documentation for the functions you use.
Remember, to access the documentation for any function, simply enter ? and
then the name of the function in the console. In the bottom-right pane in
Figure 1-7, for example, you can see the result of running ?read.csv.



Figure 1-7: The documentation for the read.csv() function

Help files can be a bit hard to decipher, but essentially they describe
what package the function comes from, what the function does, what
arguments it accepts, and some examples of how to use it.

NOTE
For additional guidance on reading documentation, I recommend the
appendix of Kieran Healy’s book Data Visualization: A Practical
Introduction. A free online version is available at
https://socviz.co/appendix.xhtml.

The second approach is to read the documentation websites associated
with many R packages. These can be easier to read than RStudio’s help files.
In addition, they often contain longer articles, known as vignettes, that
provide an overview of how a given package works. Reading these can help
you understand how to combine individual functions in the context of a larger
project. Every package discussed in this book has a good documentation
website.

https://socviz.co/appendix.xhtml


Summary
In this chapter, you learned the basics of R programming. You saw how to
download and set up R and RStudio, what the various RStudio panes are for,
and how R script files work. You also learned how to import CSV files and
explore them in R, how to save data as objects, and how to install packages to
access additional functions. Then, to make the files used in your code more
accessible, you created an RStudio project. Finally, you experimented with
tidyverse functions and the tidyverse pipe, and you learned how to get
help when those functions don’t work as expected.

Now that you understand the basics, you’re ready to start using R to
work with your data. See you in Chapter 2!

Additional Resources
Kieran Healy, Data Visualization: A Practical Introduction (Princeton,
NJ: Princeton University Press, 2018), https://socviz.co.
Chester Ismay and Albert Y. Kim, Statistical Inference via Data Science:
A ModernDive into R and the Tidyverse (Boca Raton, FL: CRC Press,
2020), https://moderndive.com.
David Keyes, “Getting Started with R,” online course, accessed
November 10, 2023, https://rfortherestofus.com/courses/getting-started.
Hadley Wickham, Mine Çetinkaya-Rundel, and Garrett Grolemund, R for
Data Science, 2nd ed. (Sebastopol, CA: O’Reilly Media, 2023).

https://socviz.co
https://moderndive.com
https://rfortherestofus.com/courses/getting-started


2
PRINCIPLES OF DATA VISUALIZATION

In the spring of 2021, nearly all of the
American West was in a drought.

Officials in Southern California declared a water
emergency in April, citing unprecedented conditions.
This probably didn’t come as news to residents of
California and other western states. Drought conditions
like those in the West in 2021 are becoming
increasingly common, yet communicating the extent of
the problem remains difficult. How can this data be
presented in a way that is both accurate and compelling
enough to get people to take notice?

Data visualization designers Cédric Scherer and Georgios Karamanis
took on this challenge in the fall of 2021 to create a graph of US drought
conditions over the last two decades for the magazine Scientific American.
They turned to the ggplot2 package to transform dry data (pardon the pun)
from the National Drought Center into a visually arresting and impactful
visualization.

This chapter delves into why the data visualization that Scherer and
Karamanis created is effective and introduces you to the grammar of
graphics, a theory to make sense of graphs that underlies the ggplot2



package. You’ll then learn how to use ggplot2 by re-creating the drought
graph step-by-step. In the process, I’ll highlight some key principles of high-
quality data visualization that you can use to improve your own work.

The Drought Visualization
Other news organizations had relied on the same National Drought Center
data in their stories, but Scherer and Karamanis visualized it so that it both
grabs attention and communicates the scale of the phenomenon. Figure 2-1
shows a section of the final visualization (due to space constraints, I could
include only four regions). The graph makes apparent the increase in drought
conditions over the last two decades, especially in California and the
Southwest.

To understand why this visualization is effective, let’s break it down. At
the broadest level, the data visualization is notable for its minimalist
aesthetic. For example, there are no grid lines and few text labels, as well as
minimal text along the axes. Scherer and Karamanis removed what
statistician Edward Tufte, in his 1983 book The Visual Display of
Quantitative Information (Graphics Press), calls chartjunk. Tufte wrote that
extraneous elements often hinder, rather than help, our understanding of
charts (and researchers and data visualization designers have generally
agreed).

Need proof that Scherer and Karamanis’s decluttered graph is better than
the alternative? Figure 2-2 shows a version with a few tweaks to the code to
include grid lines and text labels on axes.





Figure 2-1: A section of the final drought visualization, with a few tweaks made to fit this book





Figure 2-2: The cluttered version of the drought visualization

It’s not just that this cluttered version looks worse; the clutter actively
inhibits understanding. Rather than focusing on overall drought patterns (the
point of the graph), our brains get stuck reading repetitive and unnecessary
axis text.

One of the best ways to reduce clutter is to break a single chart into a set
of component charts, as Scherer and Karamanis have done (this approach,
known as faceting, will be discussed further in “Faceting the Plot” on page
36). Each rectangle represents one region in one year. Filtering the larger
chart to show the Southwest region in 2003 produces the graph shown in
Figure 2-3, where the x-axis indicates the week and the y-axis indicates the
percentage of that region at different drought levels.

Figure 2-3: A drought visualization for the Southwest in 2003

Zooming in on a single region in a single year also makes the color
choices more obvious. The lightest orange bars (lightest gray as printed here)
show the percentage of the region that is abnormally dry, and the darkest
purple bars (darkest gray as printed) show the percentage experiencing
exceptional drought conditions. As you’ll see shortly, this range of colors was
intentionally chosen to make differences in the drought levels visible to all



readers.
Despite the graph’s complexity, the R code that Scherer and Karamanis

wrote to produce it is relatively simple, due largely to a theory called the
grammar of graphics.

The Grammar of Graphics
When working in Excel, you begin by selecting the type of graph you want to
make. Need a bar chart? Click the bar chart icon. Need a line chart? Click the
line chart icon. If you’ve only ever made charts in Excel, this first step may
seem so obvious that you’ve never even given the data visualization process
much thought, but in fact there are many ways to think about graphs. For
example, rather than thinking of graph types as distinct, we can recognize and
use their commonalities as the starting point for making them.

This approach to thinking about graphs comes from the late statistician
Leland Wilkinson. For years, Wilkinson thought deeply about what data
visualization is and how we can describe it. In 1999 he published a book
called The Grammar of Graphics (Springer) that sought to develop a
consistent way of describing all graphs. In it, Wilkinson argued that we
should think of plots not as distinct types, à la Excel, but as following a
grammar that we can use to describe any plot. Just as English grammar tells
us that a noun is typically followed by a verb (which is why “he goes” works,
while the opposite, “goes he,” does not), the grammar of graphics helps us
understand why certain graph types “work.”

Thinking about data visualization through the lens of the grammar of
graphics helps highlight, for example, that graphs typically have some data
that is plotted on the x-axis and other data that is plotted on the y-axis. This is
the case whether the graph is a bar chart or a line chart, as Figure 2-4 shows.



Figure 2-4: A bar chart and a line chart showing identical data

While the graphs look different (and would, to the Excel user, be
different types of graphs), Wilkinson’s grammar of graphics emphasizes their
similarities. (Incidentally, Wilkinson’s feelings on graph-making tools like
Excel became clear when he wrote that “most charting packages channel user
requests into a rigid array of chart types.”)

When Wilkinson wrote his book, no data visualization tool could
implement his grammar of graphics. This would change in 2010, when
Hadley Wickham announced the ggplot2 package for R in the article “A
Layered Grammar of Graphics,” published in the Journal of Computational
and Graphical Statistics. By providing the tools to implement Wilkinson’s
ideas, ggplot2 would come to revolutionize the world of data visualization.

Working with ggplot
The ggplot2 R package (which I, like nearly everyone in the data
visualization world, will refer to simply as ggplot) relies on the idea of plots
having multiple layers. This section will walk you through some of the most
important ones. You’ll begin by selecting variables to map to aesthetic
properties. Then you’ll choose a geometric object to use to represent your
data. Next, you’ll change the aesthetic properties of your chart (its color



scheme, for example) using a scale_ function. Finally, you’ll use a theme_
function to set the overall look and feel of your plot.

Mapping Data to Aesthetic Properties
To create a graph with ggplot, you begin by mapping data to aesthetic
properties. All this really means is that you use elements like the x- or y-axis,
color, and size (the so-called aesthetic properties) to represent variables.
You’ll use the data on life expectancy in Afghanistan, introduced in Figure 2-
4, to generate a plot. To access this data, enter the following code:

library(tidyverse)

gapminder_10_rows <- read_csv("https://data.rfortherestofus.c

om/data/gapminder_10_rows.csv")

This code first loads the tidyverse package, introduced in Chapter 1,
and then uses the read_csv() function to access data from the book’s website
and assign it to the gapminder_10_rows object.

The resulting gapminder_10_rows tibble looks like this:

#> # A tibble: 10 × 6

#>    country     continent  year lifeExp      pop gdpPercap

#>    <fct>       <fct>     <int>   <dbl>    <int>    <dbl>

#>  1 Afghanistan Asia       1952    28.8  8425333      779.

#>  2 Afghanistan Asia       1957    30.3  9240934      821.

#>  3 Afghanistan Asia       1962    32.0 10267083      853.

#>  4 Afghanistan Asia       1967    34.0 11537966      836.

#>  5 Afghanistan Asia       1972    36.1 13079460      740.

#>  6 Afghanistan Asia       1977    38.4 14880372      786.

#>  7 Afghanistan Asia       1982    39.9 12881816      978.

#>  8 Afghanistan Asia       1987    40.8 13867957      852.

#>  9 Afghanistan Asia       1992    41.7 16317921      649.

#> 10 Afghanistan Asia       1997    41.8 22227415      635.

This output is a shortened version of the full gapminder data frame,
which includes over 1,700 rows of data.

Before making a chart with ggplot, you need to decide which variable to
put on the x-axis and which to put on the y-axis. For data showing change



over time, it’s common to put the date (in this case, year) on the x-axis and
the changing value (in this case, lifeExp) on the y-axis. To do so, define the
ggplot() function as follows:

ggplot(

  data = gapminder_10_rows,

  mapping = aes(

    x = year,

    y = lifeExp

  )

)

This function contains numerous arguments. Each argument goes on its
own line, for the sake of readability, separated by commas. The data
argument tells R to use the data frame gapminder_10_rows, and the mapping
argument maps year to the x-axis and lifeExp to the y-axis.

Running this code produces the chart in Figure 2-5, which doesn’t look
like much yet.

Figure 2-5: A blank chart that maps year values to the x-axis and life expectancy values to the
y-axis

Notice that the x-axis corresponds to year and the y-axis corresponds to



lifeExp, and the values on both axes match the scope of the data. In the
gapminder_10_rows data frame, the first year is 1952 and the last year is
1997. The range of the x-axis has been created with this data in mind.
Likewise, the values for lifeExp, which go from about 28 to about 42, will
fit nicely on the y-axis.

Choosing the Geometric Objects
Axes are nice, but the graph is missing any type of visual representation of
the data. To get this, you need to add the next ggplot layer: geoms. Short for
geometric objects, geoms are functions that provide different ways of
representing data. For example, to add points to the graph, you use
geom_point():

ggplot(

  data = gapminder_10_rows,

  mapping = aes(

    x = year,

    y = lifeExp

  )

) +

  geom_point()

Now the graph shows that people in 1952 had a life expectancy of about
28 and that this value rose every year in the dataset (see Figure 2-6).



Figure 2-6: The life expectancy chart with points added

Say you change your mind and want to make a line chart instead. All you
have to do is replace geom_point() with geom_line() like so:

ggplot(

  data = gapminder_10_rows,

  mapping = aes(

    x = year,

    y = lifeExp

  )

) +

  geom_line()

Figure 2-7 shows the result.



Figure 2-7: The same data as a line chart

To really get fancy, you could add both geom_point() and geom_line()
as follows:

ggplot(

  data = gapminder_10_rows,

  mapping = aes(

    x = year,

    y = lifeExp

  )

) +

  geom_point() +

  geom_line()

This code generates a line chart with points, as shown in Figure 2-8.



Figure 2-8: The same data with both points and a line

You can swap in geom_col() to create a bar chart:

ggplot(

  data = gapminder_10_rows,

  mapping = aes(

    x = year,

    y = lifeExp

  )

) +

  geom_col()

Notice in Figure 2-9 that the y-axis range has been automatically
updated, going from 0 to 40 to account for the different geom.



Figure 2-9: The life expectancy data as a bar chart

As you can see, the difference between a line chart and a bar chart isn’t
as great as the Excel chart-type picker might have you believe. Both can have
the same underlying properties (namely, years on the x-axis and life
expectancies on the y-axis). They simply use different geometric objects to
visually represent the data.

Many geoms are built into ggplot. In addition to geom_bar(),
geom_point(), and geom_line(), the geoms geom_histogram(),
geom_boxplot(), and geom_area() are among the most commonly used. To
see all geoms, visit the ggplot documentation website at
https://ggplot2.tidyverse.org/reference/index.xhtml#geoms.

Altering Aesthetic Properties
Before we return to the drought data visualization, let’s look at a few
additional layers you can use to alter the bar chart. Say you want to change
the color of the bars. In the grammar of graphics approach to chart-making,
this means mapping some variable to the aesthetic property of fill. (For a
bar chart, the aesthetic property of color would change only the outline of
each bar.) In the same way that you mapped year to the x-axis and lifeExp
to the y-axis, you can map fill to a variable, such as year:

https://ggplot2.tidyverse.org/reference/index.xhtml#geoms


ggplot(

  data = gapminder_10_rows,

  mapping = aes(

    x = year,

    y = lifeExp,

    fill = year

  )

) +

  geom_col()

Figure 2-10 shows the result. Now the fill is darker for earlier years and
lighter for later years (as also indicated by the legend, added to the right of
the plot).

Figure 2-10: The same chart, now with added colors

To change the fill colors, use a new scale layer with the
scale_fill_viridis_c() function (the c at the end of the function name
refers to the fact that the data is continuous, meaning it can take any numeric
value):

ggplot(

  data = gapminder_10_rows,



  mapping = aes(

    x = year,

    y = lifeExp,

    fill = year

  )

) +

  geom_col() +

  scale_fill_viridis_c()

This function changes the default palette to one that is colorblind-
friendly and prints well in grayscale. The scale_fill_viridis_c() function
is just one of many that start with scale_ and can alter the fill scale. Chapter
11 of ggplot2: Elegant Graphics for Data Analysis, 3rd edition, discusses
various color and fill scales. You can read it online at https://ggplot2-
book.org/scales-colour.xhtml.

Setting a Theme
The final layer we’ll look at is the theme layer, which allows you to change
the overall look and feel of your plots (including their background and grid
lines). As with the scale_ functions, a number of functions also start with
theme_. Add theme_minimal() as follows:

ggplot(

  data = gapminder_10_rows,

  mapping = aes(

    x = year,

    y = lifeExp,

    fill = year

  )

) +

  geom_col() +

  scale_fill_viridis_c() +

  theme_minimal()

This theme starts to declutter the plot, as you can see in Figure 2-11.

https://ggplot2-book.org/scales-colour.xhtml


Figure 2-11: The same chart with theme_minimal() added

By now, you should see why Hadley Wickham described the ggplot2
package as using a layered grammar of graphics. It implements Wilkinson’s
theory by creating multiple layers: first, variables to map to aesthetic
properties; second, geoms to represent the data; third, the scale_ function to
adjust aesthetic properties; and finally, the theme_ function to set the plot’s
overall look and feel.

You could still improve this plot in many ways, but instead let’s return to
the drought data visualization by Scherer and Karamanis. By walking through
their code, you’ll learn about making high-quality data visualization with
ggplot and R.

Re-creating the Drought Visualization
The drought visualization code relies on a combination of ggplot
fundamentals and some lesser-known tweaks that make it really shine. To
understand how Scherer and Karamanis made their data visualization, we’ll
start with a simplified version of their code, then build it up layer by layer,
adding elements as we go.

First, you’ll import the data. Scherer and Karamanis did a bunch of data
wrangling on the raw data, but I’ve saved the simplified output for you.



Because it’s in JavaScript Object Notation (JSON) format, Scherer and
Karamanis use the import() function from the rio package, which simplifies
the process of importing JSON data:

library(rio)

dm_perc_cat_hubs <- import("https://data.rfortherestofus.com/

dm_perc_cat_hubs.json"))

JSON is a common format for data used in web applications, though it’s
far less common in R, where it can be complicated to work with. Luckily, the
rio package simplifies its import.

Plotting One Region and Year
Scherer and Karamanis’s final plot consists of many years and regions. To
see how they created it, we’ll start by looking at just the Southwest region in
2003.

First, you need to create a data frame. You’ll use the filter() function
twice: the first time to keep only data for the Southwest region, and the
second time to keep only data from 2003. In both cases, you use the
following syntax:

filter(variable_name == value)

This tells R to keep only observations where variable_name is equal to
some value. The code starts with the dm_perc_cat_hubs_raw data frame
before filtering it and then saving it as a new object called southwest_2003:

southwest_2003 <- dm_perc_cat_hubs %>%

  filter(hub == "Southwest") %>%

  filter(year == 2003)

To take a look at this object and see the variables you have to work with,
enter southwest_2003 in the console, which should return this output:

#> # A tibble: 255 × 7

#>    date       hub  category  percentage  year  week max_we



ek

#>    <date>    <fct> <fct>          <dbl> <dbl> <dbl>    <db

l>

#>  1 2003-12-30 Sout... D0           0.0718  2003    52     

  52

#>  2 2003-12-30 Sout... D1           0.0828  2003    52     

  52

#>  3 2003-12-30 Sout... D2           0.2693  2003    52     

  52

#>  4 2003-12-30 Sout... D3           0.3108  2003    52     

  52

#>  5 2003-12-30 Sout... D4           0.0796  2003    52     

  52

#>  6 2003-12-23 Sout... D0           0.0823  2003    51     

  52

#>  7 2003-12-23 Sout... D1           0.1312  2003    51     

  52

#>  8 2003-12-23 Sout... D2           0.1886  2003    51     

  52

#>  9 2003-12-23 Sout... D3           0.3822  2003    51     

  52

#> 10 2003-12-23 Sout... D4           0.0828  2003    51     

  52

#> # 245 more rows

The date variable represents the start date of the week in which the
observation took place. The hub variable is the region, and category is the
level of drought: a value of D0 indicates the lowest level of drought, while D5
indicates the highest level. The percentage variable is the percentage of that
region in that drought category, ranging from 0 to 1. The year and week
variables are the observation year and week number (beginning with week 1).
The max_week variable is the maximum number of weeks in a given year.

Now you can use this southwest_2003 object for your plot:

ggplot(

  data = southwest_2003,

  aes(

    x = week,

    y = percentage,

    fill = category

  )

) +



  geom_col()

The ggplot() function tells R to put week on the x-axis and percentage
on the y-axis, as well as to use the category variable for the fill color. The
geom_col() function creates a bar chart in which each bar’s fill color
represents the percentage of the region at each drought level for that
particular week, as shown in Figure 2-12.

Figure 2-12: One year (2003) and region (Southwest) of the drought visualization

The colors, which include bright pinks, blues, greens, and reds
(displayed in grayscale here), don’t match the final version of the plot, but
you can start to see the outlines of Scherer and Karamanis’s data
visualization.

Changing Aesthetic Properties
Scherer and Karamanis next selected different fill colors for their bars. To
do so, they used the scale_fill_viridis_d() function. The d here means
that the data to which the fill scale is being applied has discrete categories
(D0, D1, D2, D3, D4, and D5):



ggplot(

  data = southwest_2003,

  aes(

    x = week,

    y = percentage,

    fill = category

  )

) +

  geom_col() +

  scale_fill_viridis_d(

    option = "rocket",

    direction = -1

  )

They used the argument option = "rocket" to select the rocket palette,
whose colors range from cream to nearly black. You could use several other
palettes within the scale_fill_viridis_d() function; see them at
https://sjmgarnier.github.io/viridisLite/reference/viridis.xhtml.

Then they used the direction = -1 argument to reverse the order of fill
colors so that darker colors mean higher drought conditions.

Scherer and Karamanis also tweaked the appearance of the x- and y-
axes:

ggplot(

  data = southwest_2003,

  aes(

    x = week,

    y = percentage,

    fill = category

  )) +

  geom_col() +

  scale_fill_viridis_d(

    option = "rocket",

    direction = -1

  ) +

  scale_x_continuous(

    name = NULL,

    guide = "none"

  ) +

  scale_y_continuous(

    name = NULL,

    labels = NULL,

https://sjmgarnier.github.io/viridisLite/reference/viridis.xhtml


    position = "right"

  )

On the x-axis, they removed both the axis title (“week”) using name =
NULL and the axis labels (the weeks numbered 0 to 50) with guide = "none".
On the y-axis, they removed the title and text showing percentages using
labels = NULL, which functionally does the same thing as guide = "none".
They also moved the axis lines themselves to the right side using position =
"right". These axis lines are apparent only as tick marks at this point but
will become more visible later. Figure 2-13 shows the result of these tweaks.

Figure 2-13: The 2003 drought data for the Southwest with adjustments to the x- and y-axes

Up to this point, we’ve focused on one of the single plots that make up
the larger data visualization. But the final product that Scherer and Karamanis
made is actually 176 plots visualizing 22 years and 8 regions. Let’s discuss
the ggplot feature they used to create all of these plots.

Faceting the Plot
One of ggplot’s most useful capabilities is faceting (or, as it’s more
commonly known in the data visualization world, small multiples). Faceting



uses a variable to break down a single plot into multiple plots. For example,
think of a line chart showing life expectancy by country over time; instead of
multiple lines on one plot, faceting would create multiple plots with one line
per plot. To specify which variable to put in the rows and which to put in the
columns of your faceted plot, you use the facet_grid() function, as Scherer
and Karamanis did in their code:

dm_perc_cat_hubs %>%

  filter(hub %in% c(

    "Northwest",

    "California",

    "Southwest",

    "Northern Plains"

  )) %>%

  ggplot(aes(

    x = week,

    y = percentage,

    fill = category

  )) +

  geom_col() +

  scale_fill_viridis_d(

    option = "rocket",

    direction = -1

  ) +

  scale_x_continuous(

    name = NULL,

    guide = "none"

  ) +

  scale_y_continuous(

    name = NULL,

    labels = NULL,

    position = "right"

  ) +

  facet_grid(

    rows = vars(year),

    cols = vars(hub),

    switch = "y"

  )

Scherer and Karamanis put year in rows and hub (region) in columns.
The switch = "y" argument moves the year label from the right side (where
it appears by default) to the left. With this code in place, you can see the final



plot coming together in Figure 2-14.

Figure 2-14: The faceted version of the drought visualization

Incredibly, the broad outlines of the plot took just 10 lines of code to
create. The rest of the code falls into the category of small polishes. That’s
not to minimize how important small polishes are (very) or the time it takes



to create them (a lot). It does show, however, that a little bit of ggplot goes a
long way.

Adding Final Polishes
Now let’s look at a few of the small polishes that Scherer and Karamanis
made. The first is to apply a theme. They used theme_light(), which
removes the default gray background and changes the font to Roboto using
the base_family argument.

The theme_light() function is what’s known as a complete theme, one
that changes the overall look and feel of a plot. The ggplot package has
multiple complete themes that you can use (they’re listed at
https://ggplot2.tidyverse.org/reference/index.xhtml#themes). Individuals and
organizations also make their own themes, as you’ll do in Chapter 3. For a
discussion of which themes you might consider using, see my blog post at
https://rfortherestofus.com/2019/08/themes-to-improve-your-ggplot-figures.

Scherer and Karamanis didn’t stop by simply applying theme_light().
They also used the theme() function to make additional tweaks to the plot’s
design:

dm_perc_cat_hubs %>%

  filter(hub %in% c(

    "Northwest",

    "California",

    "Southwest",

    "Northern Plains"

  )) %>%

  ggplot(aes(

    x = week,

    y = percentage,

    fill = category

  )) +

  geom_rect(

    aes(

      xmin = .5,

      xmax = max_week + .5,

      ymin = -0.005,

      ymax = 1

    ),

    fill = "#f4f4f9",

    color = NA,

https://ggplot2.tidyverse.org/reference/index.xhtml#themes
https://rfortherestofus.com/2019/08/themes-to-improve-your-ggplot-figures


    size = 0.4

  ) +

  geom_col() +

  scale_fill_viridis_d(

    option = "rocket",

    direction = -1

  ) +

  scale_x_continuous(

    name = NULL,

    guide = "none"

  ) +

  scale_y_continuous(

    name = NULL,

    labels = NULL,

    position = "right"

  ) +

  facet_grid(

    rows = vars(year),

    cols = vars(hub),

    switch = "y"

  ) +

  theme_light(base_family = "Roboto") +

  theme(

    axis.title = element_text(

      size = 14,

      color = "black"

    ),

    axis.text = element_text(

      family = "Roboto Mono",

      size = 11

    ),

  ❶ axis.line.x = element_blank(),

    axis.line.y = element_line(

      color = "black",

      size = .2

    ),

    axis.ticks.y = element_line(

      color = "black",

      size = .2

    ),

    axis.ticks.length.y = unit(2, "mm"),

  ❷ legend.position = "top",

    legend.title = element_text(

      color = "#2DAADA",



      face = "bold"

    ),

    legend.text = element_text(color = "#2DAADA"),

    strip.text.x = element_text(

      hjust = .5,

      face = "plain",

      color = "black",

      margin = margin(t = 20, b = 5)

    ),

    strip.text.y.left = element_text(

    ❸ angle = 0,

      vjust = .5,

      face = "plain",

      color = "black"

    ),

    strip.background = element_rect(

      fill = "transparent",

      color = "transparent"

    ),

  ❹ panel.grid.minor = element_blank(),

    panel.grid.major = element_blank(),

    panel.spacing.x = unit(0.3, "lines"),

    panel.spacing.y = unit(0.25, "lines"),

  ❺ panel.background = element_rect(

      fill = "transparent",

      color = "transparent"

    ),

    panel.border = element_rect(

      color = "transparent",

      size = 0

    ),

    plot.background = element_rect(

      fill = "transparent",

      color = "transparent",

      size = .4

    ),

    plot.margin = margin(rep(18, 4))

  )

  )

The code in the theme() function does many different things, but let’s
look at a few of the most important. First, it moves the legend from the right
side (the default) to the top of the plot ❷. Then, the angle = 0 argument



rotates the year text in the columns from vertical to horizontal ❸. Without
this argument, the years would be much less legible.

The theme() function also makes the distinctive axis lines and ticks that
appear on the right side of the final plot ❶. Calling element_blank()
removes all grid lines ❹. Finally, this code removes the borders and gives
each individual plot a transparent background ❺.

You might be thinking, Wait. Didn’t the individual plots have a gray
background behind them? Yes, dear reader, they did. Scherer and Karamanis
made these with a separate geom, geom_rect():

geom_rect(

  aes(

    xmin = .5,

    xmax = max_week + .5,

    ymin = -0.005,

    ymax = 1

  ),

  fill = "#f4f4f9",

  color = NA,

  size = 0.4

)

They also set some additional aesthetic properties specific to this geom
—xmin, xmax, ymin, and ymax—which determine the boundaries of the
rectangle it produces. The result is a gray background behind each small
multiple, as shown in Figure 2-15.



Figure 2-15: The faceted version of the drought visualization with a gray background behind
each small multiple

Finally, Scherer and Karamanis made some tweaks to the legend.
Previously you saw a simplified version of the scale_fill_viridis_d()
function. Here’s a more complete version:



scale_fill_viridis_d(

  option = "rocket",

  direction = -1,

  name = "Category:",

  labels = c(

    "Abnormally Dry",

    "Moderate Drought",

    "Severe Drought",

    "Extreme Drought",

    "Exceptional Drought"

  )

)

The name argument sets the legend title, and the labels argument
specifies the labels that show up in the legend. Figure 2-16 shows the result
of these changes.

Figure 2-16: The drought visualization with changes to the legend text

Rather than D0, D1, D2, D3, and D4, the legend text now reads
Abnormally Dry, Moderate Drought, Severe Drought, Extreme Drought, and
Exceptional Drought—much more user-friendly categories.

The Complete Visualization Code
While I’ve shown you a nearly complete version of the code that Scherer and
Karamanis wrote, I made some small changes to make it easier to understand.
If you’re curious, the full code is here:

ggplot(dm_perc_cat_hubs, aes(week, percentage)) +

  geom_rect(

    aes(

      xmin = .5,

      xmax = max_week + .5,

      ymin = -0.005,



      ymax = 1

    ),

    fill = "#f4f4f9",

    color = NA,

    size = 0.4,

    show.legend = FALSE

  ) +

  geom_col(

    aes(

      fill = category,

      fill = after_scale(addmix(

        darken(

          fill,

          .05,

          space = "HLS"

        ),

        "#d8005a",

        .15

      )),

      color = after_scale(darken(

        fill,

        .2,

        space = "HLS"

      ))

    ),

    width = .9,

    size = 0.12

  ) +

  facet_grid(

    rows = vars(year),

    cols = vars(hub),

    switch = "y"

  ) +

  coord_cartesian(clip = "off") +

  scale_x_continuous(

    expand = c(.02, .02),

    guide = "none",

    name = NULL

  ) +

  scale_y_continuous(

    expand = c(0, 0),

    position = "right",

    labels = NULL,

    name = NULL

  ) +



  scale_fill_viridis_d(

    option = "rocket",

    name = "Category:",

    direction = -1,

    begin = .17,

    end = .97,

    labels = c(

      "Abnormally Dry",

      "Moderate Drought",

      "Severe Drought",

      "Extreme Drought",

      "Exceptional Drought"

    )

  ) +

  guides(fill = guide_legend(

    nrow = 2,

    override.aes = list(size = 1)

  )) +

  theme_light(

    base_size = 18,

    base_family = "Roboto"

  ) +

  theme(

    axis.title = element_text(

      size = 14,

      color = "black"

    ),

    axis.text = element_text(

      family = "Roboto Mono",

      size = 11

    ),

    axis.line.x = element_blank(),

    axis.line.y = element_line(

      color = "black",

      size = .2

    ),

    axis.ticks.y = element_line(

      color = "black",

      size = .2

    ),

    axis.ticks.length.y = unit(2, "mm"),

    legend.position = "top",

    legend.title = element_text(

      color = "#2DAADA",

      size = 18,



      face = "bold"

    ),

    legend.text = element_text(

      color = "#2DAADA",

      size = 16

    ),

    strip.text.x = element_text(

      size = 16,

      hjust = .5,

      face = "plain",

      color = "black",

      margin = margin(t = 20, b = 5)

    ),

    strip.text.y.left = element_text(

      size = 18,

      angle = 0,

      vjust = .5,

      face = "plain",

      color = "black"

    ),

    strip.background = element_rect(

      fill = "transparent",

      color = "transparent"

    ),

    panel.grid.minor = element_blank(),

    panel.grid.major = element_blank(),

    panel.spacing.x = unit(0.3, "lines"),

    panel.spacing.y = unit(0.25, "lines"),

    panel.background = element_rect(

      fill = "transparent",

      color = "transparent"

    ),

    panel.border = element_rect(

      color = "transparent",

      size = 0

    ),

    plot.background = element_rect(

      fill = "transparent",

      color = "transparent",

      size = .4

    ),

    plot.margin = margin(rep(18, 4))

  )



There are a few additional tweaks to color and spacing, but most of the
code reflects what you’ve seen so far.

Summary
You may be thinking that ggplot is the solution to all of your data
visualization problems. And yes, you have a new hammer, but not everything
is a nail. If you look at the version of the data visualization that appeared in
Scientific American in November 2021, you’ll see that some of its
annotations aren’t visible in our re-creation. That’s because they were added
in post-production. While you could have found ways to create them in
ggplot, it’s often not the best use of your time. Get yourself 90 percent of the
way there with ggplot and then use Illustrator, Figma, or a similar tool to
finish your work.

Even so, ggplot is a very powerful hammer, used to make plots that
you’ve seen in the New York Times, FiveThirtyEight, the BBC, and other
well-known news outlets. Although it’s not the only tool that can generate
high-quality data visualizations, it makes the process straightforward. The
graph by Scherer and Karamanis shows this in several ways:

It strips away extraneous elements, such as grid lines, to keep the focus
on the data itself. Complete themes such as theme_light() and the
theme() function allowed Scherer and Karamanis to create a decluttered
visualization that communicates effectively.
It uses well-chosen colors. The scale_fill_viridis_d() function
allowed them to create a color scheme that demonstrates differences
between groups, is colorblind-friendly, and shows up well when printed
in grayscale.
It uses faceting to break down data from two decades and eight regions
into a set of graphs that come together to create a single plot. With a
single call to the facet_grid() function, Scherer and Karamanis created
over 100 small multiples that the tool automatically combined into a
single plot.

Learning to create data visualizations in ggplot involves a significant
time investment. But the long-term payoff is even greater. Once you learn
how ggplot works, you can look at others’ code and learn how to improve



your own. By contrast, when you make a data visualization in Excel, the
series of point-and-click steps disappears into the ether. To re-create a
visualization you made last week, you’ll need to remember the exact steps
you used, and to make someone else’s data visualization, you’ll need them to
write up their process for you.

Because code-based data visualization tools allow you to keep a record
of the steps you made, you don’t have to be the most talented designer to
make high-quality data visualizations with ggplot. You can study others’
code, adapt it to your own needs, and create your own data visualization that
not only is beautiful but also communicates effectively.

Additional Resources
Will Chase, “The Glamour of Graphics,” online course, accessed
November 6, 2023, https://rfortherestofus.com/courses/glamour/.
Kieran Healy, Data Visualization: A Practical Introduction (Princeton,
NJ: Princeton University Press, 2018), https://socviz.co.
Cédric Scherer, Graphic Design with ggplot2 (Boca Raton, FL: CRC
Press, forthcoming).
Hadley Wickham, Danielle Navarro, and Thomas Lin Pedersen, ggplot2:
Elegant Graphics for Data Analysis, 3rd ed. (New York: Springer,
forthcoming), https://ggplot2-book.org.
Claus Wilke, Fundamentals of Data Visualization (Sebastopol, CA:
O’Reilly Media, 2019), https://clauswilke.com/dataviz/.

https://rfortherestofus.com/courses/glamour/
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https://ggplot2-book.org
https://clauswilke.com/dataviz/


3
CUSTOM DATA VISUALIZATION THEMES

A custom theme is nothing more than a
chunk of code that applies a set of small

tweaks to all plots. So much of the work involved in
making a professional chart consists of these kinds of
adjustments. What font should you use? Where should
the legend go? Should axes have titles? Should charts
have grid lines? These questions may seem minor, but
they have a major impact on the final product.

In 2018, BBC data journalists Nassos Stylianou and Clara Guibourg,
along with their team, developed a custom ggplot theme that matches the
BBC’s style. By introducing this bbplot package for others to use, they
changed their organization’s culture, removed bottlenecks, and allowed the
BBC to visualize data more creatively.

Rather than forcing everyone to copy the long code to tweak each plot
they make, custom themes enable everyone who uses them to follow style
guidelines and ensure that all data visualizations meet a brand’s standards.
For example, to understand the significance of the custom theme introduced
at the BBC, it’s helpful to know how things worked before bbplot. In the
mid-2010s, journalists who wanted to make data visualization had two
choices:

Use an internal tool that could create data visualizations but was limited



to the predefined charts it had been designed to generate.
Use Excel to create mockups and then work with a graphic designer to
finalize the charts. This approach led to better results and was much more
flexible, but it required extensive, time-consuming back-and-forth with a
designer.

Neither of these choices was ideal, and the BBC’s data visualization
output was limited. R freed the journalists from having to work with a
designer. It wasn’t that the designers were bad (they weren’t), but ggplot
allowed the journalists to explore different visualizations on their own. As the
team improved their ggplot skills, they realized that it might be possible to
produce more than just exploratory data visualizations and to create
production-ready charts in R that could go straight onto the BBC website.

This chapter discusses the power of custom ggplot themes, then walks
through the code in the bbplot package to demonstrate how custom themes
work. You’ll learn how to consolidate your styling code into a reusable
function and how to consistently modify your plots’ text, axes, grid lines,
background, and other elements.

Styling a Plot with a Custom Theme
The bbplot package has two functions: bbc_style() and finalise_plot().
The latter deals with tasks like adding the BBC logo and saving plots in the
correct dimensions. For now, let’s look at the bbc_style() function, which
applies a custom ggplot theme to make all the plots look consistent and
follow BBC style guidelines.

An Example Plot
To see how this function works, you’ll create a plot showing population data
about several penguin species. You’ll be using the palmerpenguins package,
which contains data about penguins living on three islands in Antarctica. For
a sense of what this data looks like, load the palmerpenguins and tidyverse
packages:

library(palmerpenguins)

library(tidyverse)



Now you have data you can work with in an object called penguins.
Here’s what the first 10 rows look like:

#> # A tibble: 344 × 8

#>    species island   bill_le... bill_...  flipp...  body_..

.    sex

#>    <fct>   <fct>         <dbl>    <dbl>     <int>     <int

>    <fct>

#>  1 Adelie  Torgersen      39.1     18.7       181      375

0    male

#>  2 Adelie  Torgersen      39.5     17.4       186      380

0    fema...

#>  3 Adelie  Torgersen      40.3       18       195      325

0    fema...

#>  4 Adelie  Torgersen        NA       NA        NA        N

A    <NA>

#>  5 Adelie  Torgersen      36.7     19.3       193      345

0    fema...

#>  6 Adelie  Torgersen      39.3     20.6       190      365

0    male

#>  7 Adelie  Torgersen      38.9     17.8       181      362

5    fema...

#>  8 Adelie  Torgersen      39.2     19.6       195      467

5    male

#>  9 Adelie  Torgersen      34.1     18.1       193      347

5    <NA>

#> 10 Adelie  Torgersen      42       20.2       190      425

0    <NA>

--snip--

To get the data in a more usable format, you’ll count how many penguins
live on each island with the count() function from the dplyr package (one of
several packages that are loaded with the tidyverse):

penguins %>%

  count(island)

This gives you some simple data that you can use for plotting:

#> # A tibble: 3 × 2



#>   island        n

#>   <fct>     <int>

#> 1 Biscoe      168

#> 2 Dream       124

#> 3 Torgersen    52

You’ll use this data multiple times in the chapter, so save it as an object
called penguins_summary like so:

penguins_summary <- penguins %>%

  count(island)

Now you’re ready to create a plot. Before you see what bbplot does,
make a plot with the ggplot defaults:

penguins_plot <- ggplot(

  data = penguins_summary,

  aes(

    x = island,

    y = n,

    fill = island

  )

) +

  geom_col() +

  labs(

    title = "Number of Penguins",

    subtitle = "Islands are in Antarctica",

    caption = "Data from palmerpenguins package"

  )

This code tells R to use the penguins_summary data frame, putting the
island on the x-axis and the count of the number of penguins (n) on the y-
axis, and making each bar a different color with the fill aesthetic property.
Since you’ll modify this plot multiple times, saving it as an object called
penguins_plot simplifies the process. Figure 3-1 shows the resulting plot.



Figure 3-1: A chart with the default theme

This isn’t the most aesthetically pleasing chart. The gray background is
ugly, the y-axis title is hard to read because it’s angled, and the text size
overall is quite small. But don’t worry, you’ll be improving it soon.

The BBC’s Custom Theme
Now that you have a basic plot to work with, you’ll start making it look like a
BBC chart. To do this, you need to install the bbplot package. First, install
the remotes package using install.packages("remotes") so that you can
access packages from remote sources. Then, run the following code to install
bbplot from the GitHub repository at https://github.com/bbc/bbplot :

library(remotes)

install_github("bbc/bbplot")

Once you’ve installed the bbplot package, load it and apply the

https://github.com/bbc/bbplot


bbc_style() function to the penguins_plot as follows:

library(bbplot)

penguins_plot +

  bbc_style()

Figure 3-2 shows the result.

Figure 3-2: The same chart with BBC style applied

Vastly different, right? The font size is larger, the legend is on top, there
are no axis titles, the grid lines are stripped down, and the background is
white. Let’s look at these changes one by one.

The BBC Theme Components
You’ve just seen the difference that the bbc_style() function makes to a
basic chart. This section walks you through the function’s code, with some



minor tweaks for readability. Functions are discussed further in Chapter 12.

Function Definition
The first line gives the function a name and indicates that what follows is, in
fact, a function definition:

bbc_style <- function() {

  font <- "Helvetica"

  ggplot2::theme(

--snip--

The code then defines a variable called font and assigns it the value
Helvetica. This allows later sections to simply use font rather than
repeating Helvetica multiple times. If the BBC team ever wanted to use a
different font, they could change Helvetica here to, say, Comic Sans and it
would update the font for all of the BBC plots (though I suspect higher-ups at
the BBC might not be on board with that choice).

Historically, working with custom fonts in R was notoriously tricky, but
recent changes have made the process much simpler. To ensure that custom
fonts such as Helvetica work in ggplot, first install the systemfonts and ragg
packages by running this code in the console:

install.packages(c("systemfonts", "ragg"))

The systemfonts package allows R to directly access fonts you’ve installed
on your computer, and ragg allows ggplot to use those fonts when generating
plots.

Next, select Tools4Global Options from RStudio’s main menu bar.
Click the Graphics menu at the top of the interface and, under the Backend
option, select AGG. This change should ensure that RStudio renders the
previews of any plots with the ragg package. With these changes in place,
you should be able to use any fonts you’d like (assuming you have them
installed) in the same way that the bbc_style() function uses Helvetica.

After specifying the font to use, the code calls ggplot’s theme() function.
Rather than first loading ggplot with library(ggplot2) and then calling its



theme() function, the ggplot2::theme() syntax indicates in one step that the
theme() function comes from the ggplot2 package. You’ll write code in this
way when making an R package in Chapter 12.

Nearly all of the code in bbc_style() exists within this theme()
function. Remember from Chapter 2 that theme() makes additional tweaks to
an existing theme; it isn’t a complete theme like theme_light(), which will
change the whole look and feel of your plot. In other words, by jumping
straight into the theme() function, bbc_style() makes adjustments to the
ggplot defaults. As you’ll see, the bbc_style() function does a lot of
tweaking.

Text
The first code section within the theme() function formats the text:

    plot.title = ggplot2::element_text(

      family = font,

      size = 28,

      face = "bold",

      color = "#222222"

    ),

    plot.subtitle = ggplot2::element_text(

      family = font,

      size = 22,

      margin = ggplot2::margin(9, 0, 9, 0)

    ),

    plot.caption = ggplot2::element_blank(),

--snip--

To make changes to the title, subtitle, and caption, it follows this pattern:

area_of_chart = element_type(

  property = value

)

For each area, this code specifies the element type: element_text(),
element_line(), element_rect(), or element_blank(). Within the element
type is where you assign values to properties—for example, setting the font
family (the property) to Helvetica (the value). The bbc_style() function uses



the various element_ functions to make tweaks, as you’ll see later in this
chapter.

NOTE
For additional ways to customize pieces of your plots, see the ggplot2
package documentation
(https://ggplot2.tidyverse.org/reference/element.xhtml), which provides a
comprehensive list.

One of the main adjustments the bbc_style() function makes is
bumping up the font size to help with legibility, especially when plots made
with the bbplot package are viewed on smaller mobile devices. The code
first formats the title (with plot.title) using Helvetica 28-point bold font in
a nearly black color (the hex code #222222). The subtitle (plot.subtitle) is
22-point Helvetica.

The bbc_style() code also adds some spacing between the title and
subtitle with the margin() function, specifying the value in points for the top
(9), right (0), bottom (9), and left (0) sides. Finally, the element_blank()
function removes the default caption (set through the caption argument in
the labs() function), “Data from palmer penguins package.” (As mentioned
earlier, the finalise_plot() function in the bbplot package adds elements,
including an updated caption and the BBC logo, to the bottom of the plots.)
Figure 3-3 shows these changes.

https://ggplot2.tidyverse.org/reference/element.xhtml


Figure 3-3: The penguin chart with the text and margin formatting changes

With these changes in place, you’re on your way to the BBC look.

Legend
Next up is formatting the legend, positioning it above the plot and left-
aligning its text:

    legend.position = "top",

    legend.text.align = 0,

    legend.background = ggplot2::element_blank(),

    legend.title = ggplot2::element_blank(),

    legend.key = ggplot2::element_blank(),

    legend.text = ggplot2::element_text(

      family = font,

      size = 18,

      color = "#222222"

    ),

This code removes the legend background (which would show up only if



the background color of the entire plot weren’t white), the title, and the
legend key (the borders on the boxes that show the island names, just barely
visible in Figure 3-3). Finally, the code sets the legend’s text to 18-point
Helvetica with the same nearly black color. Figure 3-4 shows the result.

Figure 3-4: The penguin chart with changes to the legend

The legend is looking better, but now it’s time to format the rest of the
chart so it matches.

Axes
The code first removes the axis titles because they tend to take up a lot of
chart real estate, and you can use the title and subtitle to clarify what the axes
show:

    axis.title = ggplot2::element_blank(),

    axis.text = ggplot2::element_text(

      family = font,

      size = 18,



      color = "#222222"

    ),

    axis.text.x = ggplot2::element_text(margin = ggplot2::mar

gin(5, b = 10)),

    axis.ticks = ggplot2::element_blank(),

    axis.line = ggplot2::element_blank(),

All text on the axes becomes 18-point Helvetica and nearly black. The
text on the x-axis (Biscoe, Dream, and Torgersen) gets a bit of spacing
around it. Finally, both axes’ ticks and lines are removed. Figure 3-5 shows
these changes, although the removal of the axis lines doesn’t make a
difference to the display here.

Figure 3-5: The penguin chart with axis formatting changes

The axis text matches the legend text, and the axis tick marks and lines
are gone.

Grid Lines



Now for the grid lines:

    panel.grid.minor = ggplot2::element_blank(),

    panel.grid.major.y = ggplot2::element_line(color = "#cbcb

cb"),

    panel.grid.major.x = ggplot2::element_blank(),

--snip--

The approach here is fairly straightforward: this code removes minor
grid lines for both axes, removes major grid lines on the x-axis, and keeps
major grid lines on the y-axis but makes them a light gray (the #cbcbcb hex
code). Figure 3-6 shows the result.

Figure 3-6: The penguin chart with adjustments to the grid lines

Notice that the grid lines on the x-axis have disappeared.

Background
The previous iteration of the plot still has a gray background. The



bbc_style() function removes it with the following code:

    panel.background = ggplot2::element_blank(),

Figure 3-7 shows the resulting plot.

Figure 3-7: The chart with the gray background removed

You’ve nearly re-created the penguin plot using the bbc_style()
function.

Small Multiples
The bbc_style() function contains a bit more code to modify
strip.background and strip.text. In ggplot, the strip refers to the text
above faceted charts like the ones discussed in Chapter 2. Next, you’ll turn
your penguin chart into a faceted chart to see these components of the BBC’s
theme. I’ve used the code from the bbc_style() function, minus the sections
that deal with small multiples, to make Figure 3-8.



Figure 3-8: The faceted chart with no changes to the strip text formatting

Using the facet_wrap() function to make a small multiples chart leaves
you with one chart per island, but by default, the text above each small
multiple is noticeably smaller than the rest of the chart. What’s more, the
gray background behind the text stands out because you’ve already removed
the gray background from the other parts of the chart. The consistency you’ve
worked toward is now compromised, with small text that is out of proportion
to the other chart text and a gray background that sticks out like a sore thumb.

The following code changes the strip text above each small multiple:

    strip.background = ggplot2::element_rect(fill = "white"),

    strip.text = ggplot2::element_text(size = 22, hjust = 0)

  )

  --snip--

This code removes the background (or, more accurately, colors it white).
Then it makes the text larger, bold, and left-aligned using hjust = 0. Note
that I did have to make the text size slightly smaller than in the actual chart to



fit the book, and I added code to make it bold. Figure 3-9 shows the result.

Figure 3-9: The small multiples chart in the BBC style

If you look at any chart on the BBC website, you’ll see how similar it
looks to your own. The tweaks in the bbc_style() function to the text
formatting, legends, axes, grid lines, and backgrounds show up in charts
viewed by millions of people worldwide.

Color
You might be thinking, Wait, what about the color of the bars? Doesn’t the
theme change those? This is a common point of confusion, but the answer is
that it doesn’t. The documentation for the theme() function explains why this
is the case: “Themes are a powerful way to customize the non-data
components of your plots: i.e. titles, labels, fonts, background, gridlines, and
legends.” In other words, ggplot themes change the elements of the chart that
aren’t mapped to data.

Plots, on the other hand, use color to communicate information about



data. In the faceted chart, for instance, the fill property is mapped to the
island (Biscoe is salmon, Dream is green, and Torgersen is blue). As you saw
in Chapter 2, you can change the fill using the various scale_fill_
functions. In the world of ggplot, these scale_ functions control color, while
the custom themes control the chart’s overall look and feel.

Summary
When Stylianou and Guibourg started developing a custom theme for the
BBC, they had one question: Would they be able to create graphs in R that
could go directly onto the BBC website? Using ggplot, they succeeded. The
bbplot package allowed them to make plots with a consistent look and feel
that followed BBC standards and, most important, did not require a
designer’s help.

You can see many of the principles of high-quality data visualization
discussed in Chapter 2 in this custom theme. In particular, the removal of
extraneous elements (axis titles and grid lines, for instance) helps keep the
focus on the data itself. And because applying the theme requires users to add
only a single line to their ggplot code, it was easy to get others on board.
They had only to append bbc_style() to their code to produce a BBC-style
plot.

Over time, others at the BBC noticed the data journalism team’s
production-ready graphs and wanted to make their own. The team members
set up R trainings for their colleagues and developed a “cookbook”
(https://bbc.github.io/rcookbook/) showing how to make various types of
charts. Soon, the quality and quantity of BBC’s data visualization exploded.
Stylianou told me, “I don’t think there’s been a day where someone at the
BBC hasn’t used the package to produce a graphic.”

Now that you’ve seen how custom ggplot themes work, try making one
of your own. After all, once you’ve written the code, you can apply it with
only one line of code.

Additional Resources
BBC Visual and Data Journalism Team, “BBC Visual and Data
Journalism Cookbook for R Graphics,” GitHub, January 24, 2019,

https://bbc.github.io/rcookbook/


https://bbc.github.io/rcookbook/.
BBC Visual and Data Journalism Team, “How the BBC Visual and Data
Journalism Team Works with Graphics in R,” Medium, February 1, 2019,
https://medium.com/bbc-visual-and-data-journalism/how-the-bbc-visual-
and-data-journalism-team-works-with-graphics-in-r-ed0b35693535.

https://bbc.github.io/rcookbook/
https://medium.com/bbc-visual-and-data-journalism/how-the-bbc-visual-and-data-journalism-team-works-with-graphics-in-r-ed0b35693535


4
MAPS AND GEOSPATIAL DATA

When I first started learning R, I
considered it a tool for working with

numbers, not shapes, so I was surprised when I saw
people using it to make maps. For example, developer
Abdoul Madjid used R to make a map that visualizes
rates of COVID-19 in the United States in 2021.

You might think you need specialized mapmaking software like ArcGIS
to make maps, but it’s an expensive tool. And while Excel has added support
for mapmaking in recent years, its features are limited (for example, you
can’t use it to make maps based on street addresses). Even QGIS, an open
source tool similar to ArcGIS, still requires learning new skills.

Using R for mapmaking is more flexible than using Excel, less expensive
than using ArcGIS, and based on syntax you already know. It also lets you
perform all of your data manipulation tasks with one tool and apply the
principles of high-quality data visualization discussed in Chapter 2. In this
chapter, you’ll work with simple features of geospatial data and examine
Madjid’s code to understand how he created this map. You’ll also learn
where to find geospatial data and how to use it to make your own maps.

A Brief Primer on Geospatial Data
You don’t need to be a GIS expert to make maps, but you do need to



understand a few things about how geospatial data works, starting with its
two main types: vector and raster. Vector data uses points, lines, and
polygons to represent the world. Raster data, which often comes from digital
photographs, ties each pixel in an image to a specific geographic location.
Vector data tends to be easier to work with, and you’ll be using it exclusively
in this chapter.

In the past, working with geospatial data meant mastering competing
standards, each of which required learning a different approach. Today,
though, most people use the simple features model (often abbreviated as sf)
for working with vector geospatial data, which is easier to understand. For
example, to import simple features data about the state of Wyoming, enter the
following:

library(sf)

wyoming <- read_sf("https://data.rfortherestofus.com/wyoming.

geojson")

And then you can look at the data like so:

> wyoming

#> Simple feature collection with 1 feature and 1 field

#> Geometry type: POLYGON

#> Dimension:     XY

#> Bounding box:  xmin: -111.0546 ymin: 40.99477 xmax: -104.0

522 ymax: 45.00582

#> Geodetic CRS:  WGS 84

#>   NAME    geometry

#> 1 Wyoming POLYGON ((-111.0449 43.3157...

The output has two columns, one for the state name (NAME) and another
called geometry. This data looks like the data frames you’ve seen before,
aside from two major differences.

First, there are five lines of metadata above the data frame. At the top is a
line stating that the data contains one feature and one field. A feature is a row
of data, and a field is any column containing nonspatial data. Second, the
simple features data contains geographical data in a variable called geometry.
Because the geometry column must be present for a data frame to be



geospatial data, it isn’t counted as a field. Let’s look at each part of this
simple features data.

The Geometry Type
The geometry type represents the shape of the geospatial data you’re working
with and is typically shown in all caps. In this case, the relatively simple
POLYGON type represents a single polygon. You can use ggplot to display this
data by calling geom_sf(), a special geom designed to work with simple
features data:

library(tidyverse)

wyoming %>%

  ggplot() +

  geom_sf()

Figure 4-1 shows the resulting map of Wyoming. It may not look like
much, but I wasn’t the one who made Wyoming a nearly perfect rectangle!

Figure 4-1: A map of Wyoming generated using POLYGON simple features data

Other geometry types used in simple features data include POINT, to
display elements such as a pin on a map that represents a single location. For
example, the map in Figure 4-2 uses POINT data to show a single electric



vehicle charging station in Wyoming.

Figure 4-2: A map of Wyoming containing POINT simple features data

The LINESTRING geometry type is for a set of points that can be
connected with lines and is often used to represent roads. Figure 4-3 shows a
map that uses LINESTRING data to represent a section of US Highway 30 that
runs through Wyoming.

Figure 4-3: A road represented using LINESTRING simple features data



Each of these geometry types has a MULTI variation (MULTIPOINT, MULTI
LINESTRING, and MULTIPOLYGON) that combines multiple instances of the type
in one row of data. For example, Figure 4-4 uses MULTIPOINT data to show all
electric vehicle charging stations in Wyoming.

Figure 4-4: Using MULTIPOINT data to represent multiple electric vehicle charging stations

Likewise, you can use MULTILINESTRING data to show not just one road
but all major roads in Wyoming (Figure 4-5).

Figure 4-5: Using MULTILINESTRING data to represent several roads



Finally, you could use MULTIPOLYGON data, for example, to depict a state
made up of multiple polygons. The following data represents the 23 counties
in the state of Wyoming:

#> Simple feature collection with 23 features and 1 field

#> Geometry type: MULTIPOLYGON

#> Dimension:     XY

#> Bounding box:  xmin: -111.0546 ymin: 40.99477 xmax: -104.0

522 ymax: 45.00582

#> Geodetic CRS:  WGS 84

#> First 10 features:

#>          NAME        geometry

#> 34       Lincoln     MULTIPOLYGON (((-111.0472 4...

#> 104      Fremont     MULTIPOLYGON (((-109.4582 4...

#> 121      Uinta       MULTIPOLYGON (((-110.6068 4...

#> 527      Big Horn    MULTIPOLYGON (((-108.5923 4...

#> 551      Hot Springs MULTIPOLYGON (((-109.1714 4...

#> 601      Washakie    MULTIPOLYGON (((-107.6335 4...

#> 769      Converse    MULTIPOLYGON (((-105.6985 4...

#> 970      Sweetwater  MULTIPOLYGON (((-110.0489 4...

#> 977      Crook       MULTIPOLYGON (((-105.0856 4...

#> 1097     Carbon      MULTIPOLYGON (((-106.9129 4...

As you can see on the second line, the geometry type of this data is
MULTIPOLYGON. In addition, the repeated MULTIPOLYGON text in the geometry
column indicates that each row contains a shape of type MULTIPOLYGON.
Figure 4-6 shows a map made with this data.



Figure 4-6: A map of Wyoming counties

Notice that the map is made up entirely of polygons.

The Dimensions
Next, the geospatial data frame contains the data’s dimensions, or the type of
geospatial data you’re working with. In the Wyoming example, it looks like
Dimension: XY, meaning the data is two-dimensional, as in the case of all the
geospatial data used in this chapter. There are two other dimensions (Z and M)
that you’ll see much more rarely. I’ll leave them for you to investigate
further.

The Bounding Box
The penultimate element in the metadata is the bounding box, which
represents the smallest area in which you can fit all of your geospatial data.
For the wyoming object, it looks like this:

Bounding box:  xmin: -111.0569 ymin: 40.99475 xmax: -104.0522

 ymax: 45.0059

The ymin value of 40.99475 and ymax value of 45.0059 represent the
lowest and highest latitudes, respectively, that the state’s polygon can fit into.
The x-values do the same for the longitude. Bounding boxes are calculated



automatically, and typically you don’t have to worry about altering them.

The Coordinate Reference System
The last piece of metadata specifies the coordinate reference system used to
project the data when it’s plotted. The challenge with representing any
geospatial data is that you’re displaying information about the three-
dimensional Earth on a two-dimensional map. Doing so requires choosing a
coordinate reference system that determines what type of correspondence, or
projection, to use when making the map.

The data for the Wyoming counties map includes the line Geodetic
CRS: WGS 84, indicating the use of a coordinate reference system known as
WGS84. To see a different projection, check out the same map using the
Albers equal-area conic convenience projection. While Wyoming looked
perfectly horizontal in Figure 4-6, the version in Figure 4-7 appears to be
tilted.

Figure 4-7: A map of Wyoming counties using the Albers equal-area conic convenience
projection

If you’re wondering how to change projections when making maps of
your own, fear not: you’ll see how to do this when we look at Madjid’s map
in the next section. And if you want to know how to choose appropriate



projections for your maps, check out “Using Appropriate Projections” on
page 81.

The geometry Column
In addition to the metadata, simple features data differs from traditional data
frames in another respect: its geometry column. As you might have guessed
from the name, this column holds the data needed to draw the maps.

To understand how this works, consider the connect-the-dots drawings
you probably completed as a kid. As you added lines to connect one point to
the next, the subject of your drawing became clearer. The geometry column
is similar. It has a set of numbers, each of which corresponds to a point. If
you’re using LINESTRING/MULTILINESTRING or POLYGON/MULTIPOLYGON simple
features data, ggplot uses the numbers in the geometry column to draw each
point and then adds lines to connect the points. If you’re using
POINT/MULTIPOINT data, it draws the points but doesn’t connect them.

Once again, thanks to R, you never have to worry about these details or
look in any depth at the geometry column.

Re-creating the COVID-19 Map
Now that you understand the basics of geospatial data, let’s walk through the
code Madjid used to make his COVID-19 map. Shown in Figure 4-8, it
makes use of the geometry types, dimensions, bounding boxes, projections,
and the geometry column just discussed.



Figure 4-8: Abdoul Madjid’s map of COVID-19 in the United States in 2021

I’ve made some small modifications to the code to make the final map fit
on the page. You’ll begin by loading a few packages:

library(tidyverse)

library(albersusa)

library(sf)

library(zoo)

library(colorspace)



The albersusa package will give you access to geospatial data. Install it
as follows:

remotes::install_github("hrbrmstr/albersusa")

You can install all of the other packages using the standard install
.packages() code. You’ll use the tidyverse to import data, manipulate it,
and plot it with ggplot. The sf package will enable you to change the
coordinate reference system and use an appropriate projection for the data.
The zoo package has functions for calculating rolling averages, and the
colorspace package gives you a color scale that highlights the data well.

Importing the Data
Next, you’ll import the data you need: COVID-19 rates by state over time,
state populations, and geospatial information. Madjid imported each of these
pieces of data separately and then merged them, and you’ll do the same.

The COVID-19 data comes directly from the New York Times, which
publishes daily case rates by state as a CSV file on its GitHub account. To
import it, enter the following:

covid_data <- read_csv("https://data.rfortherestofus.com/covi

d-us-states.csv") %>%

  select(-fips)

Federal Information Processing Standards (FIPS) are numeric codes used
to represent states, but you’ll reference states by their names instead, so the
line select(-fips) drops the fips variable.

Looking at this data, you can see the arrival of the first COVID-19 cases
in the United States in January 2020:

#> # A tibble: 56,006 × 4

#>    date       state      cases deaths

#>    <date>     <chr>      <dbl>  <dbl>

#>  1 2020-01-21 Washington     1      0

#>  2 2020-01-22 Washington     1      0

#>  3 2020-01-23 Washington     1      0

#>  4 2020-01-24 Illinois       1      0



#>  5 2020-01-24 Washington     1      0

#>  6 2020-01-25 California     1      0

#>  7 2020-01-25 Illinois       1      0

#>  8 2020-01-25 Washington     1      0

#>  9 2020-01-26 Arizona        1      0

#> 10 2020-01-26 California     2      0

--snip--

Madjid’s map shows per capita rates (the rates per 100,000 people)
rather than absolute rates (the rates without consideration for a state’s
population). So, to re-create his maps, you also need to obtain data on each
state’s population. Download this data as a CSV as follows:

usa_states <- read_csv("https://data.rfortherestofus.com/popu

lation-by-state.csv") %>%

  select(State, Pop)

This code imports the data, keeps the State and Pop (population)
variables, and saves the data as an object called usa_states. Here’s what
usa_states looks like:

#> # A tibble: 52 × 2

#>    State          Pop

#>    <chr>          <dbl>

#>  1 California     39613493

#>  2 Texas          29730311

#>  3 Florida        21944577

#>  4 New York       19299981

#>  5 Pennsylvania   12804123

#>  6 Illinois       12569321

#>  7 Ohio           11714618

#>  8 Georgia        10830007

#>  9 North Carolina 10701022

#> 10 Michigan        9992427

--snip--

Finally, import the geospatial data and save it as an object called
usa_states_geom like so:

usa_states_geom <- usa_sf() %>%



  select(name) %>%

  st_transform(us_laea_proj)

The usa_sf() function from the albersusa package gives you simple
features data for all US states. Conveniently, it places Alaska and Hawaii at a
position and scale that make them easy to see. This data includes multiple
variables, but because you need only the state names, this code keeps just the
name variable.

The st_transform() function from the sf package changes the
coordinate reference system. The one used here comes from the
us_laea_proj object in the albersusa package. This is the Albers equal-area
conic convenience projection you used earlier to change the appearance of
the Wyoming counties map.

Calculating Daily COVID-19 Cases
The covid_data data frame lists cumulative COVID-19 cases by state, but
not the number of cases per day, so the next step is to calculate that number:

covid_cases <- covid_data %>%

  group_by(state) %>%

  mutate(

  ❶ pd_cases = lag(cases)

  ) %>%

❷ replace_na(list(pd_cases = 0)) %>%

  mutate(

  ❸ daily_cases = case_when(

      cases > pd_cases ~ cases - pd_cases,

      TRUE ~ 0

    )

) %>%

❹ ungroup() %>%

  arrange(state, date)

The group_by() function calculates totals for each state, then creates a
new variable called pd_cases, which represents the number of cases in the
previous day (the lag() function is used to assign data to this variable) ❶.
Some days don’t have case counts for the previous day, so set this value to 0



using the replace_na() function ❷.
Next, this code creates a new variable called daily_cases ❸. To set the

value of this variable, use the case_when() function to create a condition: if
the cases variable (which holds the cases on that day) is greater than the
pd_cases variable (which holds cases from one day prior), then daily_cases
is equal to cases minus pd_cases. Otherwise, you set daily_cases to be
equal to 0.

Finally, because you grouped the data by state at the beginning of the
code, now you need to remove this grouping using the ungroup() function
before arranging the data by state and date ❹.

Here’s the resulting covid_cases data frame:

#> # A tibble: 56,006 × 6

#>    date       state   cases deaths pd_cases daily_cases

#>    <date>     <chr>   <dbl>  <dbl>    <dbl>       <dbl>

#>  1 2020-03-13 Alabama     6      0        0           6

#>  2 2020-03-14 Alabama    12      0        6           6

#>  3 2020-03-15 Alabama    23      0       12          11

#>  4 2020-03-16 Alabama    29      0       23           6

#>  5 2020-03-17 Alabama    39      0       29          10

#>  6 2020-03-18 Alabama    51      0       39          12

#>  7 2020-03-19 Alabama    78      0       51          27

#>  8 2020-03-20 Alabama   106      0       78          28

#>  9 2020-03-21 Alabama   131      0      106          25

#> 10 2020-03-22 Alabama   157      0      131          26

--snip--

In the next step, you’ll make use of the new daily_cases variable.

Calculating Incidence Rates
You’re not quite done calculating values. The data that Madjid used to make
his map didn’t include daily case counts. Instead, it contained a five-day
rolling average of cases per 100,000 people. A rolling average is the average
case rate in a certain time period. Quirks of reporting (for example, not
reporting on weekends but instead rolling Saturday and Sunday cases into
Monday) can make the value for any single day less reliable. Using a rolling
average smooths out these quirks. Generate this data as follows:



covid_cases %>%

  mutate(roll_cases = rollmean(

    daily_cases,

    k = 5,

    fill = NA

  ))

This code creates a new data frame called covid_cases_rm (where rm
stands for rolling mean). The first step in its creation is to use the rollmean()
function from the zoo package to create a roll_cases variable, which holds
the average number of cases in the five-day period surrounding a single date.
The k argument is the number of days for which you want to calculate the
rolling average (5, in this case), and the fill argument determines what
happens in cases like the first day, where you can’t calculate a five-day
rolling mean because there are no days prior to this day (Madjid set these
values to NA).

After calculating roll_cases, you need to calculate per capita case rates.
To do this, you need population data, so join the population data from the
usa_states data frame with the covid_cases data like so:

covid_cases_rm <- covid_cases %>%

  mutate(roll_cases = rollmean(

    daily_cases,

    k = 5,

    fill = NA

    )

  ) %>%

  left_join(usa_states,

            by = c("state" = "State")) %>%

  drop_na(Pop)

To drop rows with missing population data, you call the drop_na()
function with the Pop variable as an argument. In practice, this removes
several US territories (American Samoa, Guam, the Northern Mariana
Islands, and the Virgin Islands).

Next, you create a per capita case rate variable called incidence_rate
by multiplying the roll_cases variable by 100,000 and then dividing it by
the population of each state:



covid_cases_rm <- covid_cases_rm %>%

  mutate(incidence_rate = 10^5 * roll_cases / Pop) %>%

  mutate(

    incidence_rate = cut(

      incidence_rate,

      breaks = c(seq(0, 50, 5), Inf),

      include.lowest = TRUE

    ) %>%

      factor(labels = paste0(">", seq(0, 50, 5)))

  )

Rather than keeping raw values (for example, on June 29, 2021, Florida
had a rate of 57.77737 cases per 100,000 people), you use the cut() function
to convert the values into categories: values of >0 (greater than zero), values
of >5 (greater than five), and values of >50 (greater than 50).

The last step is to filter the data so it includes only 2021 data (the only
year depicted in Madjid’s map) and then select just the variables (state,
date, and incidence_rate) you’ll need to create the map:

covid_cases_rm %>%

  filter(date >= as.Date("2021-01-01")) %>%

  select(state, date, incidence_rate)

Here’s the final covid_cases_rm data frame:

#> # A tibble: 18,980 × 3

#>    state   date       incidence_rate

#>    <chr>   <date>     <fct>

#>  1 Alabama 2021-01-01 >50

#>  2 Alabama 2021-01-02 >50

#>  3 Alabama 2021-01-03 >50

#>  4 Alabama 2021-01-04 >50

#>  5 Alabama 2021-01-05 >50

#>  6 Alabama 2021-01-06 >50

#>  7 Alabama 2021-01-07 >50

#>  8 Alabama 2021-01-08 >50

#>  9 Alabama 2021-01-09 >50

#> 10 Alabama 2021-01-10 >50

--snip--



You now have a data frame that you can combine with your geospatial
data.

Adding Geospatial Data
You’ve used two of the three data sources (COVID-19 case data and state
population data) to create the covid_cases_rm data frame you’ll need to
make the map. Now it’s time to use the third data source: the geospatial data
you saved as usa_states_geom. Simple features data allows you to merge
regular data frames and geospatial data (another point in its favor):

usa_states_geom %>%

  left_join(covid_cases_rm, by = c("name" = "state"))

This code merges the covid_cases_rm data frame into the geospatial
data, matching the name variable from usa_states_geom to the state
variable in covid_cases_rm.

Next, you create a new variable called fancy_date to format the date
nicely (for example, Jan. 01 instead of 2021-01-01):

usa_states_geom_covid <- usa_states_geom %>%

  left_join(covid_cases_rm, by = c("name" = "state")) %>%

  mutate(fancy_date = fct_inorder(format(date, "%b. %d"))) %>

%

  relocate(fancy_date, .before = incidence_rate)

The format() function does the formatting, while the fct_inorder()
function makes the fancy_date variable sort data by date (rather than, say,
alphabetically, which would put August before January). Last, the
relocate() function puts the fancy_date column next to the date column.

Save this data frame as usa_states_geom_covid and take a look at the
result:

#> Simple feature collection with 18615 features and 4 fields

#> Geometry type: MULTIPOLYGON

#> Dimension:     XY

#> Bounding box:  xmin: -2100000 ymin: -2500000 xmax: 2516374

 ymax: 732103.3



#> CRS:           +proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_

0=0 +a=6370997

+b=6370997 +units=m +no_defs

#> First 10 features:

#>    name    date        fancy_date incidence_rate

#> 1  Arizona 2021-01-01  Jan. 01    >50

#> 2  Arizona 2021-01-02  Jan. 02    >50

#> 3  Arizona 2021-01-03  Jan. 03    >50

#> 4  Arizona 2021-01-04  Jan. 04    >50

#> 5  Arizona 2021-01-05  Jan. 05    >50

#> 6  Arizona 2021-01-06  Jan. 06    >50

#> 7  Arizona 2021-01-07  Jan. 07    >50

#> 8  Arizona 2021-01-08  Jan. 08    >50

#> 9  Arizona 2021-01-09  Jan. 09    >50

#> 10 Arizona 2021-01-10  Jan. 10    >50

#>    geometry

#> 1  MULTIPOLYGON (((-1111066 -8...

#> 2  MULTIPOLYGON (((-1111066 -8...

#> 3  MULTIPOLYGON (((-1111066 -8...

#> 4  MULTIPOLYGON (((-1111066 -8...

#> 5  MULTIPOLYGON (((-1111066 -8...

#> 6  MULTIPOLYGON (((-1111066 -8...

#> 7  MULTIPOLYGON (((-1111066 -8...

#> 8  MULTIPOLYGON (((-1111066 -8...

#> 9  MULTIPOLYGON (((-1111066 -8...

#> 10 MULTIPOLYGON (((-1111066 -8...

You can see the metadata and geometry columns discussed earlier in the
chapter.

Making the Map
It took a lot of work to end up with the surprisingly simple
usa_states_geom_covid data frame. While the data may be simple, the code
Madjid used to make his map is quite complex. This section walks you
through it in pieces.

The final map is actually multiple maps, one for each day in 2021.
Combining 365 days makes for a large final product, so instead of showing
the code for every single day, filter the usa_states_geom_covid to show just
the first six days in January:

usa_states_geom_covid_six_days <- usa_states_geom_covid %>%



  filter(date <= as.Date("2021-01-06"))

Save the result as a data frame called
usa_states_geom_covid_six_days. Here’s what this data looks like:

#> Simple feature collection with 306 features and 4 fields

#> Geometry type: MULTIPOLYGON

#> Dimension:     XY

#> Bounding box:  xmin: -2100000 ymin: -2500000 xmax: 2516374

 ymax: 732103.3

#> CRS:           +proj=laea +lat_0=45 +lon_0=-100 +x_0=0 +y_

0=0 +a=6370997 +b=6370997 +unit...

#> First 10 features:

#>     name    date          fancy_date incidence_rate

#> 1   Arizona 2021-01-01    Jan. 01    >50

#> 2   Arizona 2021-01-02    Jan. 02    >50

#> 3   Arizona 2021-01-03    Jan. 03    >50

#> 4   Arizona 2021-01-04    Jan. 04    >50

#> 5   Arizona 2021-01-05    Jan. 05    >50

#> 6   Arizona 2021-01-06    Jan. 06    >50

#> 7  Arkansas 2021-01-01    Jan. 01    >50

#> 8  Arkansas 2021-01-02    Jan. 02    >50

#> 9  Arkansas 2021-01-03    Jan. 03    >50

#> 10 Arkansas 2021-01-04    Jan. 04    >50

#>    geometry

#> 1  MULTIPOLYGON (((-1111066 -8...

#> 2  MULTIPOLYGON (((-1111066 -8...

#> 3  MULTIPOLYGON (((-1111066 -8...

#> 4  MULTIPOLYGON (((-1111066 -8...

#> 5  MULTIPOLYGON (((-1111066 -8...

#> 6  MULTIPOLYGON (((-1111066 -8...

#> 7  MULTIPOLYGON (((557903.1 -1...

#> 8  MULTIPOLYGON (((557903.1 -1...

#> 9  MULTIPOLYGON (((557903.1 -1...

#> 10 MULTIPOLYGON (((557903.1 -1...

Madjid’s map is giant, as it includes all 365 days. The size of a few
elements have been changed so that they fit in this book.

Generating the Basic Map
With your six days of data, you’re ready to make some maps. Madjid’s
mapmaking code has two main parts: generating the basic map, then



tweaking its appearance. First, you’ll revisit the three lines of code used to
make the Wyoming maps, with some adornments to improve the quality of
the visualization:

usa_states_geom_covid_six_days %>%

  ggplot() +

  geom_sf(

    aes(fill = incidence_rate),

    size = .05,

    color = "grey55"

  ) +

  facet_wrap(

    vars(fancy_date),

    strip.position = "bottom"

  )

The geom_sf() function plots the geospatial data, modifying a couple of
arguments: size = .05 makes the state borders less prominent and color =
"grey55" sets them to a medium-gray color. Then, the facet_wrap()
function is used for the faceting (that is, to make one map for each day). The
vars(fancy_date) code specifies that the fancy_date variable should be
used for the faceted maps, and strip.position = "bottom" moves the
labels Jan. 01, Jan. 02, and so on to the bottom of the maps. Figure 4-9 shows
the result.

Figure 4-9: A map showing the incidence rate of COVID-19 for the first six days of 2021



Having generated the basic map, now you’ll make it look good.

Applying Data Visualization Principles
From now on, all of the code that Madjid uses is to improve the appearance
of the maps. Many of the tweaks shown here should be familiar if you’ve
read Chapter 2, highlighting a benefit of making maps with ggplot: you can
apply the same data visualization principles you learned about when making
charts.

usa_states_geom_covid_six_days %>%

  ggplot() +

  geom_sf(

    aes(fill = incidence_rate),

    size = .05,

    color = "transparent"

  ) +

  facet_wrap(

    vars(fancy_date),

    strip.position = "bottom"

  ) +

  scale_fill_discrete_sequential(

    palette = "Rocket",

    name = "COVID-19 INCIDENCE RATE",

    guide = guide_legend(

      title.position = "top",

      title.hjust = .5,

      title.theme = element_text(

        family = "Times New Roman",

        size = rel(9),

        margin = margin(

          b = .1,

          unit = "cm"

        )

      ),

      nrow = 1,

      keyheight = unit(.3, "cm"),

      keywidth = unit(.3, "cm"),

      label.theme = element_text(

        family = "Times New Roman",

        size = rel(6),

        margin = margin(

          r = 5,

          unit = "pt"



        )

      )

    )

  ) +

  labs(

    title = "2021 · A pandemic year",

    caption = "Incidence rates are calculated for 100,000 peo

ple in each state.

                  Inspired from a graphic in the DIE ZEIT new

spaper of November 18, 2021.

                  Data from NY Times · Tidytuesday Week-1 202

2 · Abdoul ISSA BIDA."

  ) +

  theme_minimal() +

  theme(

    text = element_text(

      family = "Times New Roman",

      color = "#111111"

    ),

    plot.title = element_text(

      size = rel(2.5),

      face = "bold",

      hjust = 0.5,

      margin = margin(

        t = .25,

        b = .25,

        unit = "cm"

      )

    ),

    plot.caption = element_text(

      hjust = .5,

      face = "bold",

      margin = margin(

        t = .25,

        b = .25,

        unit = "cm"

      )

    ),

    strip.text = element_text(

      size = rel(0.75),

      face = "bold"

    ),

    legend.position = "top",

    legend.box.spacing = unit(.25, "cm"),

    panel.grid = element_blank(),



    axis.text = element_blank(),

    plot.margin = margin(

      t = .25,

      r = .25,

      b = .25,

      l = .25,

      unit = "cm"

    ),

    plot.background = element_rect(

      fill = "#e5e4e2",

      color = NA

    )

  )

The scale_fill_discrete_sequential() function, from the
colorspace package, sets the color scale. This code uses the rocket palette
(the same palette that Cédric Scherer and Georgios Karamanis used in
Chapter 2) and changes the legend title to “COVID-19 INCIDENCE RATE.”
The guide_legend() function adjusts the position, alignment, and text
properties of the title. The code then puts the colored squares in one row,
adjusts their height and width, and tweaks the text properties of the labels (>0,
>5, and so on).

Next, the labs() function adds a title and caption. Following theme
_minimal(), the theme() function makes some design tweaks, including
setting the font and text color; making the title and caption bold; and
adjusting their size, alignment, and margins. The code then adjusts the size of
the strip text (Jan. 01, Jan. 02, and so on) and makes it bold, puts the legend
at the top of the maps, and adds a bit of spacing around it. Grid lines, as well
as the longitude and latitude lines, are removed, and then the entire
visualization gets a bit of padding and a light gray background.

There you have it! Figure 4-10 shows the re-creation of his COVID-19
map.



Figure 4-10: The re-creation of Abdoul Madjid’s map

From data import and data cleaning to analysis and visualization, you’ve
seen how Madjid made a beautiful map in R.

Making Your Own Maps
You may now be wondering, Okay, great, but how do I actually make my
own maps? In this section you’ll learn where you can find geospatial data,
how to choose a projection, and how to prepare the data for mapping.

There are two ways to access simple features geospatial data. The first is
to import raw data, and the second is to access it with R functions.

Importing Raw Data
Geospatial data can come in various formats. While ESRI shapefiles (with the
.shp extension) are the most common, you might also encounter GeoJSON
files (.geojson) like the ones we used in the Wyoming example at the
beginning of this chapter, KML files (.kml), and others. Chapter 8 of
Geocomputation with R by Robin Lovelace, Jakub Nowosad, and Jannes
Muenchow discusses this range of formats.

The good news is that a single function can read pretty much any type of
geospatial data: read_sf() from the sf package. Say you’ve downloaded
geospatial data about US state boundaries from the website geojson.xyz in



GeoJSON format, then saved it in the data folder as states.geojson. To import
this data, use the read_sf() function like so:

us_states <- read_sf(dsn = "https://data.rfortherestofus.com/

states.geojson")

The dsn argument (which stands for data source name) tells read_sf()
where to find the file. You save the data as the object us_states.

Accessing Geospatial Data with R Functions
Sometimes you’ll have to work with raw data in this way, but not always.
That’s because certain R packages provide functions for accessing geospatial
data. Madjid used the usa_sf() function from the albersusa package to
acquire his data. Another package for accessing geospatial data related to the
United States, tigris, has a number of well-named functions for different
types of data. For example, load the tigris package and run the states()
function like so:

library(tigris)

states_tigris <- states(

  cb = TRUE,

  resolution = "20m",

  progress_bar = FALSE

)

The cb = TRUE argument opts out of using the most detailed shapefile
and sets the resolution to a more manageable 20m (1:20 million). Without
these changes, the resulting shapefile would be large and slow to work with.
Setting progress_bar = FALSE hides the messages that tigris generates as
it loads data. The result is saved as states_tigris. The tigris package has
functions to get geospatial data about counties, census tracts, roads, and
more.

If you’re looking for data outside the United States, the rnaturalearth
package provides functions for importing geospatial data from across the
world. For example, use ne_countries() to retrieve geospatial data about
various countries:



library(rnaturalearth)

africa_countries <- ne_countries(

  returnclass = "sf",

  continent = "Africa"

)

This code uses two arguments: returnclass = "sf" to get data in
simple features format, and continent = "Africa" to get only countries on
the African continent. If you save the result to an object called
africa_countries, you can plot the data on a map as follows:

africa_countries %>%

  ggplot() +

  geom_sf()

Figure 4-11 shows the resulting map.

Figure 4-11: A map of Africa made with data from the rnaturalearth package



If you can’t find an appropriate package, you can always fall back on
using read_sf() from the sf package.

Using Appropriate Projections
Once you have access to geospatial data, you need to decide which projection
to use. If you’re looking for a simple answer to this question, you’ll be
disappointed. As Geocomputation with R puts it, “The question of which CRS
[to use] is tricky, and there is rarely a ‘right’ answer.”

If you’re overwhelmed by the task of choosing a projection, the
crsuggest package from Kyle Walker can give you ideas. Its
suggest_top_crs() function returns a coordinate reference system that is
well suited for your data. Load crsuggest and try it out on your
africa_countries data:

library(crsuggest)

africa_countries %>%

  suggest_top_crs()

The suggest_top_crs() function should return projection number
28232. Pass this value to the st_transform() function to change the
projection before you plot:

africa_countries %>%

  st_transform(28232) %>%

  ggplot() +

  geom_sf()

When run, this code generates the map in Figure 4-12.



Figure 4-12: A map of Africa made with projection number 28232

As you can see, you’ve successfully mapped Africa with a different
projection.

Wrangling Geospatial Data
The ability to merge traditional data frames with geospatial data is a huge
benefit of working with simple features data. Remember that for his COVID-
19 map, Madjid analyzed traditional data frames before merging them with
geospatial data. But because simple features data acts just like traditional data
frames, you can just as easily apply the data-wrangling and analysis functions
from the tidyverse directly to a simple features object. To see how this
works, revisit the africa_countries simple features data and select two
variables (name and pop_est) to see the name and population of the countries:

africa_countries %>%

  select(name, pop_est)

The output looks like the following:



#> Simple feature collection with 51 features and 2 fields

#> Geometry type: MULTIPOLYGON

#> Dimension:     XY

#> Bounding box:  xmin: -17.62504 ymin: -34.81917 xmax: 51.13

387 ymax: 37.34999

#> CRS:           +proj=longlat +datum=WGS84 +no_defs +ellps=

WGS84 +towgs84=0,0,0

#> First 10 features:

#>    name                   pop_est

#>  1 Angola                 12799293

#> 11 Burundi                8988091

#> 13 Benin                  8791832

#> 14 Burkina Faso           15746232

#> 25 Botswana               1990876

#> 26 Central African Rep.   4511488

#> 31 Côte d'Ivoire          20617068

#> 32 Cameroon               18879301

#> 33 Dem. Rep. Congo        68692542

#> 34 Congo                  4012809

#>    geometry

#>  1 MULTIPOLYGON (((16.32653 -5...

#> 11 MULTIPOLYGON (((29.34 -4.49...

#> 13 MULTIPOLYGON (((2.691702 6....

#> 14 MULTIPOLYGON (((-2.827496 9...

#> 25 MULTIPOLYGON (((25.64916 -1...

#> 26 MULTIPOLYGON (((15.27946 7....

#> 31 MULTIPOLYGON (((-2.856125 4...

#> 32 MULTIPOLYGON (((13.07582 2....

#> 33 MULTIPOLYGON (((30.83386 3....

#> 34 MULTIPOLYGON (((12.99552 -4...

Say you want to make a map showing which African countries have
populations larger than 20 million. First, you’ll need to calculate this value
for each country. To do so, use the mutate() and if_else() functions, which
will return TRUE if a country’s population is over 20 million and FALSE
otherwise, and then store the result in a variable called
population_above_20_million:

africa_countries %>%

  select(name, pop_est) %>%

  mutate(population_above_20_million = if_else(pop_est > 2000

0000, TRUE, FALSE))



You can then take this code and pipe it into ggplot, setting the fill
aesthetic property to be equal to population_above_20_million:

africa_countries %>%

  select(name, pop_est) %>%

  mutate(population_above_20_million = if_else(pop_est > 2000

0000, TRUE, FALSE)) %>%

  ggplot(aes(fill = population_above_20_million)) +

  geom_sf()

This code generates the map shown in Figure 4-13.

Figure 4-13: A map of Africa highlighting countries with populations above 20 million people

This is a basic example of the data wrangling and analysis you can
perform on simple features data. The larger lesson is this: any skill you’ve
developed for working with data in R will serve you well when working with
geospatial data.

Summary
In this short romp through the world of mapmaking in R, you learned the
basics of simple features geospatial data, reviewed how Abdoul Madjid



applied this knowledge to make his map, explored how to get your own
geospatial data, and saw how to project it appropriately to make your own
maps.

R may very well be the best tool for making maps. It also lets you use the
skills you’ve developed for working with traditional data frames and the
ggplot code to make your visualizations look great. After all, Madjid isn’t a
GIS expert, but he combined a basic understanding of geospatial data,
fundamental R skills, and knowledge of data visualization principles to make
a beautiful map. Now it’s your turn to do the same.

Additional Resources
Kieran Healy, “Draw Maps,” in Data Visualization: A Practical
Introduction (Princeton, NJ: Princeton University Press, 2018),
https://socviz.co.
Andrew Heiss, “Lessons on Space from Data Visualization: Use R,
ggplot2, and the Principles of Graphic Design to Create Beautiful and
Truthful Visualizations of Data,” online course, last updated July 11,
2022, https://datavizs22.classes.andrewheiss.com/content/12-content/.
Robin Lovelace, Jakub Nowosad, and Jannes Muenchow,
Geocomputation with R (Boca Raton, FL: CRC Press, 2019),
https://r.geocompx.org.
Kyle Walker, Analyzing US Census Data: Methods, Maps, and Models in
R (Boca Raton, FL: CRC Press, 2013).

https://socviz.co
https://datavizs22.classes.andrewheiss.com/content/12-content/
https://r.geocompx.org


5
DESIGNING EFFECTIVE TABLES

In his book Fundamentals of Data
Visualization, Claus Wilke writes that

tables are “an important tool for visualizing data.” This
statement might seem odd. Tables are often considered
the opposite of data visualizations such as plots: a
place to dump numbers for the few nerds who care to
read them. But Wilke sees things differently.

Tables need not—and should not—be data dumps devoid of design.
While bars, lines, and points in graphs are visualizations, so are numbers in a
table, and we should care about their appearance. As an example, take a look
at the tables made by reputable news sources; data dumps these are not.
Media organizations, whose job it is to communicate effectively, pay a lot of
attention to table design. But elsewhere, because of their apparent simplicity,
Wilke writes, “[tables] may not always receive the attention they need.”

Many people use Microsoft Word to make tables, a strategy that has
potential pitfalls. Wilke found that his version of Word included 105 built-in
table styles. Of those, around 80 percent, including the default style, violated
some key principle of table design. The good news is that R is a great tool for
making high-quality tables. It has a number of packages for this purpose and,
within these packages, several functions designed to make sure your tables
follow important design principles.



Moreover, if you’re writing reports in R Markdown (which you’ll learn
about in Chapter 6), you can include code that will generate a table when you
export your document. By working with a single tool to create tables, text,
and other visualizations, you won’t have to copy and paste your data,
lowering the risk of human error.

This chapter examines table design principles and shows you how to
apply them to your tables using R’s gt package, one of the most popular
table-making packages (and, as you’ll soon see, one that uses good design
principles by default). These principles, and the code in this chapter, are
adapted from Tom Mock’s blog post “10+ Guidelines for Better Tables in R.”
Mock works at Posit, the company that makes RStudio, and has become
something of an R table connoisseur. This chapter walks you through
examples of Mock’s code to show you how small tweaks can make a big
difference.

Creating a Data Frame
You will begin by creating a data frame that you can use to make tables
throughout this chapter. First, load the packages you need (the tidyverse for
general data manipulation functions, gapminder for the data you’ll use, gt to
make the tables, and gtExtras to do some table formatting):

library(tidyverse)

library(gapminder)

library(gt)

library(gtExtras)

As you saw in Chapter 2, the gapminder package provides country-level
demographic statistics. To make a data frame for your table, you’ll use just a
few countries (the first four, in alphabetical order: Afghanistan, Albania,
Algeria, and Angola) and three years (1952, 1972, and 1992). The gapminder
data has many years, but these will suffice to demonstrate table-making
principles. The following code creates a data frame called gdp:

gdp <- gapminder %>%

  filter(country %in% c("Afghanistan", "Albania", "Algeria", 

"Angola")) %>%



  select(country, year, gdpPercap) %>%

  mutate(country = as.character(country)) %>%

  pivot_wider(

    id_cols = country,

    names_from = year,

    values_from = gdpPercap

  ) %>%

  select(country, `1952`, `1972`, `1992`) %>%

  rename(Country = country)

Here’s what gdp looks like:

#> # A tibble: 4 × 4

#>   Country     `1952` `1972` `1992`

#>   <chr>        <dbl>  <dbl>  <dbl>

#> 1 Afghanistan   779.   740.   649.

#> 2 Albania      1601.  3313.  2497.

#> 3 Algeria      2449.  4183.  5023.

#> 4 Angola       3521.  5473.  2628.

Now that you have some data, you’ll use it to make a table.

Table Design Principles
Unsurprisingly, the principles of good table design are similar to those for
data visualization more generally. This section covers six of the most
important ones.

Minimize Clutter
You can minimize clutter in your tables by removing unnecessary elements.
For example, one common source of table clutter is grid lines, as shown in
Figure 5-1.



Figure 5-1: A table with grid lines everywhere can be distracting.

Having grid lines around every single cell in your table is unnecessary
and distracts from the goal of communicating clearly. A table with minimal
or even no grid lines (Figure 5-2) is a much more effective communication
tool.

Figure 5-2: A table with only horizontal grid lines is more effective.

I mentioned that gt uses good table design principles by default, and this
is a great example. The second table, with minimal grid lines, requires just
two lines of code—piping the gdp data into the gt() function, which creates a
table:

gdp %>%

  gt()

To add grid lines to every part of the example, you’d have to add more
code. Here, the code that follows the gt() function adds grid lines:



gdp %>%

  gt() %>%

  tab_style(

    style = cell_borders(

      side = "all",

      color = "black",

      weight = px(1),

      style = "solid"

    ),

    locations = list(

      cells_body(

        everything()

      ),

      cells_column_labels(

        everything()

      )

    )

  ) %>%

  opt_table_lines(extent = "none")

Since I don’t recommend taking this approach, I won’t walk you through
this code. However, if you wanted to remove additional grid lines, you could
do so like this:

gdp %>%

  gt() %>%

  tab_style(

    style = cell_borders(color = "transparent"),

    locations = cells_body()

  )

The tab_style() function uses a two-step approach. First, it identifies
the style to modify (in this case, the borders), then it specifies where to apply
these modifications. Here, tab_style() tells R to modify the borders using
the cell_borders() function, making the borders transparent, and to apply
this transformation to the cells_body() location (versus, say, the
cells_column_labels() for only the first row).

NOTE
To see all options, check out the list of so-called helper functions on the gt



package documentation website at
https://gt.rstudio.com/reference/index.xhtml#helper-functions.

Running this code outputs a table with no grid lines at all in the body
(Figure 5-3).

Figure 5-3: A clean-looking table with grid lines only on the header row and the bottom

Save this table as an object called table_no_gridlines so that you can
add to it later.

Differentiate the Header from the Body
While reducing clutter is an important goal, going too far can have negative
consequences. A table with no grid lines at all can make it hard to
differentiate between the header row and the table body. Consider Figure 5-4,
for example.

Figure 5-4: An unclear table with all grid lines removed

By making the header row bold, you can make it stand out better:

https://gt.rstudio.com/reference/index.xhtml#helper-functions


table_no_gridlines %>%

  tab_style(

    style = cell_text(weight = "bold"),

    locations = cells_column_labels()

  )

Starting with the table_no_gridlines object, this code applies
formatting with the tab_style() function in two steps. First, it specifies that
it wants to alter the text style by using the cell_text() function to set the
weight to bold. Second, it sets the location for this transformation to the
header row using the cells_column_labels() function. Figure 5-5 shows
what the table looks like with its header row bolded.

Figure 5-5: Making the header row more obvious using bold

Save this table as table_bold_header in order to add further formatting.

Align Appropriately
A third principle of high-quality table design is appropriate alignment.
Specifically, numbers in tables should be right-aligned. Tom Mock explains
that left-aligning or center-aligning numbers “impairs the ability to clearly
compare numbers and decimal places. Right alignment lets you align decimal
places and numbers for easy parsing.”

Let’s look at this principle in action. In Figure 5-6, the 1952 column is
left-aligned, the 1972 column is center-aligned, and the 1992 column is right-
aligned.



Figure 5-6: Comparing numerical data aligned to the left (1952), center (1972), and right
(1992)

You can see how much easier it is to compare the values in the 1992
column than those in the other two columns. In both the 1952 and 1972
columns, it’s challenging to compare the values because the numbers in the
same position (the tens place, for example) aren’t aligned vertically. In the
1992 column, however, the number in the tens place in Afghanistan (4) aligns
with the number in the tens place in Albania (9) and all other countries,
making it much easier to scan the table.

As with other tables, you actually have to override the defaults to get the
gt package to misalign the columns, as demonstrated in the following code:

table_bold_header %>%

  cols_align(

    align = "left",

    columns = 2

  ) %>%

  cols_align(

    align = "center",

    columns = 3

  ) %>%

  cols_align(

    align = "right",

    columns = 4

  )

By default, gt will right-align numeric values. Don’t change anything,
and you’ll be golden.

Right alignment is best practice for numeric columns, but for text



columns, use left alignment. As Jon Schwabish points out in his article “Ten
Guidelines for Better Tables” in the Journal of Benefit-Cost Analysis, it’s
much easier to read longer text cells when they are left-aligned. To see the
benefit of left-aligning text, add a country with a long name to your table.
I’ve added Bosnia and Herzegovina and saved this as a data frame called
gdp_with_bosnia. You’ll see that I’m using nearly the same code I used
previously to create the gdp data frame:

gdp_with_bosnia <- gapminder %>%

  filter(country %in% c("Afghanistan", "Albania", "Algeria", 

"Angola",

"Bosnia and Herzegovina")) %>%

  select(country, year, gdpPercap) %>%

  mutate(country = as.character(country)) %>%

  pivot_wider(

    id_cols = country,

    names_from = year,

    values_from = gdpPercap

  ) %>%

  select(country, `1952`, `1972`, `1992`) %>%

  rename(Country = country)

Here’s what the gdp_with_bosnia data frame looks like:

#> # A tibble: 5 × 4

#>   Country                `1952` `1972` `1992`

#>   <chr>                   <dbl>  <dbl>  <dbl>

#> 1 Afghanistan              779.   740.   649.

#> 2 Albania                 1601.  3313.  2497.

#> 3 Algeria                 2449.  4183.  5023.

#> 4 Angola                  3521.  5473.  2628.

#> 5 Bosnia and Herzegovina   974.  2860.  2547.

Now take the gdp_with_bosnia data frame and create a table with the
Country column center-aligned. In the table in Figure 5-7, it’s hard to scan
the country names, and that center-aligned column just looks a bit weird.



Figure 5-7: Center-aligned text can be hard to read, especially when it includes longer values.

This is another example where you have to change the gt defaults to
mess things up. In addition to right-aligning numeric columns by default, gt
left-aligns character columns. As long as you don’t touch anything, you’ll get
the alignment you’re looking for.

If you ever do want to override the default alignments, you can use the
cols_align() function. For example, here’s how to make the table with
center-aligned country names:

gdp_with_bosnia %>%

  gt() %>%

  tab_style(

    style = cell_borders(color = "transparent"),

    locations = cells_body()

  ) %>%

  tab_style(

    style = cell_text(weight = "bold"),

    locations = cells_column_labels()

  ) %>%

  cols_align(

    columns = "Country",

    align = "center"

  )

The columns argument tells gt which columns to align, and the align
argument selects the alignment (left, right, or center).

Use the Correct Level of Precision
In all of the tables you’ve made so far, you’ve used the data exactly as it
came to you. The data in the numeric columns, for example, extends to four



decimal places—almost certainly too many. Having more decimal places
makes a table harder to read, so you should always strike a balance between
what Jon Schwabish describes as “necessary precision and a clean, spare
table.”

Here’s a good rule of thumb: if adding more decimal places would
change some action, keep them; otherwise, take them out. In my experience,
people tend to leave too many decimal places in, putting too much
importance on a very high degree of accuracy (and, in the process, reducing
the legibility of their tables).

In the GDP table, you can use the fmt_currency() function to format the
numeric values:

table_bold_header %>%

  fmt_currency(

    columns = c(`1952`, `1972`, `1992`),

    decimals = 0

  )

The gt package has a whole series of functions for formatting values in
tables, all of which start with fmt_. This code applies fmt_currency() to the
1952, 1972, and 1992 columns, then uses the decimals argument to tell
fmt_currency() to format the values with zero decimal places. After all, the
difference between a GDP of $779.4453 and $779 is unlikely to lead to
different decisions.

This produces values formatted as dollars. The fmt_currency() function
automatically adds a thousands-place comma to make the values even easier
to read (Figure 5-8).



Figure 5-8: Rounding dollar amounts to whole numbers and adding dollar signs can simplify
data.

Save your table for reuse as table_whole_numbers.

Use Color Intentionally
So far, your table hasn’t used any color, so you’ll add some now to highlight
outlier values. Doing so can help your table communicate more effectively,
especially for readers who want to scan it. To make the highest value in the
year 1952 a different color, you again use the tab_style() function:

table_whole_numbers %>%

  tab_style(

    style = cell_text(

      color = "orange",

      weight = "bold"

    ),

    locations = cells_body(

      columns = `1952`,

      rows = `1952` == max(`1952`)

    )

  )

This function uses cell_text() to change the color of the text to orange
and make it bold. Within the cells_body() function, the locations()
function specifies the columns and rows to which the changes will apply. The
columns argument is simply set to the year whose values are being changed,
but setting the rows requires a more complicated formula. The code rows =



`1952` == max(`1952`) applies the text transformation to rows whose value
is equal to the maximum value in that year.

Repeating this code for the 1972 and 1992 columns generates the result
shown in Figure 5-9 (which represents the orange values in grayscale for
print purposes).

Figure 5-9: Using color to highlight important values, such as the largest number in each year

The gt package makes it straightforward to add color to highlight outlier
values.

Add a Data Visualization Where Appropriate
Adding color to highlight outliers is one way to help guide the reader’s
attention. Another way is to incorporate graphs into tables. Tom Mock
developed an add-on package for gt called gtExtras that makes it possible to
do just this. For example, say you want to show how the GDP of each
country changes over time. To do that, you can add a new column that
visualizes this trend using a sparkline (essentially, a simple line chart):

gdp_with_trend <- gdp %>%

  group_by(Country) %>%

  mutate(Trend = list(c(`1952`, `1972`, `1992`))) %>%

  ungroup()

The gt_plt_sparkline() function requires you to provide the values
needed to make the sparkline in a single column. To accomplish this, the



code creates a variable called Trend, using group_by() and mutate(), to hold
a list of the values for each country. For Afghanistan, for example, Trend
would contain 779.4453145, 739.9811058, and 649.3413952. Save this data
as an object called gdp_with_trend.

Now you create your table as before but add the gt_plt_sparkline()
function to the end of the code. Within this function, specify which column to
use to create the sparkline (Trend) as follows:

gdp_with_trend %>%

  gt() %>%

  tab_style(

    style = cell_borders(color = "transparent"),

    locations = cells_body()

  ) %>%

  tab_style(

    style = cell_text(weight = "bold"),

    locations = cells_column_labels()

  ) %>%

  fmt_currency(

    columns = c(`1952`, `1972`, `1992`),

    decimals = 0

  ) %>%

  tab_style(

    style = cell_text(

      color = "orange",

      weight = "bold"

    ),

    locations = cells_body(

      columns = `1952`,

      rows = `1952` == max(`1952`)

    )

  ) %>%

  tab_style(

    style = cell_text(

      color = "orange",

      weight = "bold"

    ),

    locations = cells_body(

      columns = `1972`,

      rows = `1972` == max(`1972`)

    )

  ) %>%



  tab_style(

    style = cell_text(

      color = "orange",

      weight = "bold"

    ),

    locations = cells_body(

      columns = `1992`,

      rows = `1992` == max(`1992`)

    )

  ) %>%

  gt_plt_sparkline(

    column = Trend,

    label = FALSE,

    palette = c("black", "transparent", "transparent", "trans

parent", "transparent")

  )

Setting label = FALSE removes text labels that gt_plt_sparkline()
adds by default, then adds a palette argument to make the sparkline black
and all other elements of it transparent. (By default, the function will make
different parts of the sparkline different colors.) The stripped-down sparkline
in Figure 5-10 allows the reader to see the trend for each country at a glance.

Figure 5-10: A table with sparklines can show changes in data over time.

The gtExtras package can do much more than merely create sparklines.
Its set of theme functions allows you to make your tables look like those
published by FiveThirtyEight, the New York Times, the Guardian, and other
news outlets.

As an example, try removing the formatting you’ve applied so far and
instead use the gt_theme_538() function to style the table. Then take a look



at tables on the FiveThirtyEight website. You should see similarities to the
one in Figure 5-11.

Figure 5-11: A table redone in the FiveThirtyEight style

Add-on packages like gtExtras are common in the table-making
landscape. If you’re working with the reactable package to make interactive
tables, for example, you can also use the reactablefmtr to add interactive
sparklines, themes, and more. You’ll learn more about making interactive
tables in Chapter 9.

Summary
Many of the tweaks you made to your table in this chapter are quite subtle.
Changes like removing excess grid lines, bolding header text, right-aligning
numeric values, and adjusting the level of precision can often go unnoticed,
but if you skip them, your table will be far less effective. The final product
isn’t flashy, but it does communicate clearly.

You used the gt package to make your high-quality table, and as you’ve
repeatedly seen, this package has good defaults built in. Often, you don’t
need to change much in your code to make effective tables. But no matter
which package you use, it’s essential to treat tables as worthy of just as much
thought as other kinds of data visualization.

In Chapter 6, you’ll learn how to create reports using R Markdown,
which can integrate your tables directly into the final document. What’s
better than using just a few lines of code to make publication-ready tables?

Additional Resources
Thomas Mock, “10+ Guidelines for Better Tables in R,” The MockUp,



September 4, 2020, https://themockup.blog/posts/2020-09-04-10-table-
rules-in-r/.
Albert Rapp, “Creating Beautiful Tables in R with {gt},” November 27,
2022, https://gt.albert-rapp.de.
Jon Schwabish, “Ten Guidelines for Better Tables,” Journal of Benefit-
Cost Analysis 11, no. 2 (2020), https://doi.org/10.1017/bca.2020.11.

https://themockup.blog/posts/2020-09-04-10-table-rules-in-r/
https://gt.albert-rapp.de
https://doi.org/10.1017/bca.2020.11


PART II
REPORTS, PRESENTATIONS, AND WEBSITES



6
R MARKDOWN REPORTS

Imagine that you’ve collected surveys
about customer satisfaction with your

new product. Now you’re ready to analyze the data and
write up your results. First, you download your data
from Google Sheets and import it into a statistical
analysis tool like SPSS. Next, you use SPSS to clean
and analyze your data, export summaries of your data
as Excel spreadsheets, and then use Excel to make
some charts. Finally, you write your report in Word,
pasting in your charts from Excel along the way.

Sound familiar? If so, you’re not alone. Many people use this workflow
for data analysis. But what happens when, the next month, new surveys roll
in, and you have to redo your report? Yup, back through steps one through
five. This multi-tool process might work for a one-time project, but let’s be
honest: few projects are really one-time. For example, you might catch a
mistake or realize you forgot to include a couple of surveys in your original
analysis.

R Markdown combines data analysis, data visualization, and other R
code with narrative text to create a document that can be exported to many
formats, including Word, PDF, and HTML, to share with non-R users. When



you use a single tool, your workflow becomes much more efficient. If you
need to re-create that January customer satisfaction report in February, you
can rerun your code to produce a new document with the newest data, and to
fix an error in your analysis, you can simply adjust your code.

The ability to easily update reports at any time is known as
reproducibility, and it’s central to the value of R Markdown. This chapter
breaks down the pieces of an R Markdown document, then describes some
potential pitfalls and best practices. You’ll learn how to work with YAML
metadata, R code chunks, and Markdown-formatted text; create inline R code
that can change the report’s text dynamically; and run the document’s code in
various ways.

Creating an R Markdown Document
To create an R Markdown document in RStudio, go to File4New File4R
Markdown. Choose a title, author, and date, as well as your default output
format (HTML, PDF, or Word). These values can be changed later. Click
OK, and RStudio will create an R Markdown document with some
placeholder content, as shown in Figure 6-1.



Figure 6-1: The placeholder content in a new R Markdown document

The Knit menu at the top of RStudio converts an R Markdown document
to the format you selected when creating it. In this example, the output format
is set to be Word, so RStudio will create a Word document when you knit.

Delete the document’s placeholder content. In the next section, you’ll
replace it with your own.

Document Structure
To explore the structure of an R Markdown document, you’ll create a report
about penguins using data from the palmerpenguins package introduced in
Chapter 3. I’ve separated the data by year, and you’ll use just the 2007 data.
Figure 6-2 shows the complete R Markdown document, with boxes
surrounding each section.



Figure 6-2: Components of an R Markdown document

All R Markdown documents have three main parts: one YAML section,
multiple R code chunks, and sections of Markdown text.

The YAML Metadata
The YAML section is the very beginning of an R Markdown document. The
name YAML comes from the recursive acronym YAML ain’t markup
language, whose meaning isn’t important for our purposes. Three dashes
indicate its beginning and end, and the text inside of it contains metadata



about the R Markdown document:

---

title: Penguins Report

author: David Keyes

date: 2024-01-12

output: word_document

---

As you can see, the YAML provides the title, author, date, and output
format. All elements of the YAML are given in key: value syntax, where
each key is a label for a piece of metadata (for example, the title) followed by
the value.

The R Code Chunks
R Markdown documents have a different structure from the R script files you
might be familiar with (those with the .R extension). R script files treat all
content as code unless you comment out a line by putting a hash mark (#) in
front of it. In the following listing, the first line is a comment, and the second
line is code:

# Import our data

data <- read_csv("data.csv")

In R Markdown, the situation is reversed. Everything after the YAML is
treated as text unless you specify otherwise by creating code chunks. These
start with three backticks (```), followed by the lowercase letter r surrounded
by curly brackets ({}). Another three backticks indicate the end of the code
chunk:

```{r}

library(tidyverse)

```

If you’re working in RStudio, code chunks should have a light gray
background.

R Markdown treats anything in the code chunk as R code when you knit.



For example, this code chunk will produce a histogram in the final Word
document:

```{r}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

Figure 6-3 shows the resulting histogram.

Figure 6-3: A simple histogram generated by an R Markdown code chunk

A code chunk at the top of each R Markdown document, known as the
setup code chunk, gives instructions for what should happen when knitting a
document. It contains the following options:

echo Do you want to show the code itself in the knitted document?
include Do you want to show the output of the code chunk?
message Do you want to include any messages that code might
generate? For example, this message shows up when you run
library(tidyverse):



—— Attaching core tidyverse packages ————— tidyverse 1.x.x——

a dplyr     1.x.x      a readr    2.x.x

a forcats   0.x.x      a stringr  1.x.x

a ggplot2   3.x.x      a tibble   3.x.x

a lubridate 1.x.x      a tidyr    1.x.x

a purrr     1.x.x

—— Conflicts————— tidyverse_conflicts() ——

ｘ dplyr::filter() masks stats::filter()
ｘ dplyr::lag()    masks stats::lag()

warning Do you want to include any messages that the code might
generate? For example, here’s the message you get when creating a
histogram using geom_histogram():

`stat_bin()` using `bins = 30`. Pick better value with `binwi

dth`.

NOTE
To see the full list of code chunk options, visit https://yihui.org/knitr/options/.

In cases where you’re using R Markdown to generate a report for a non-
R user, you likely would want to hide the code, messages, and warnings but
show the output (which would include any visualizations you generate). The
following setup code chunk does this:

```{r setup, include = FALSE}

knitr::opts_chunk$set(include = TRUE,

                      echo = FALSE,

                      message = FALSE,

                      warning = FALSE)

```

The include = FALSE option on the first line applies to the setup code
chunk itself. It tells R Markdown not to include the output of the setup code
chunk when knitting. The options within knitr::opts_chunk$set() apply to
all future code chunks. However, you can also override these global code
chunk options on individual chunks. If you wanted your Word document to

https://yihui.org/knitr/options/


show both the plot itself and the code used to make it, for example, you could
set echo = TRUE for that code chunk only:

```{r echo = TRUE}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

Because include is already set to TRUE within
knitr::opts_chunk$set() in the setup code chunk, you don’t need to
specify it again.

Markdown Text
Markdown is a way to style text. If you were writing directly in Word, you
could just press the B button to make text bold, for example, but R doesn’t
have such a button. If you want your knitted Word document to include bold
text, you need to use Markdown to indicate this style in the document.

Markdown text sections (which have a white background in RStudio)
will be converted into formatted text in the Word document after knitting.
Figure 6-4 highlights the equivalent sections in the R Markdown and Word
documents.



Figure 6-4: Markdown text in R Markdown and its equivalent in a knitted Word document

The text # Introduction in R Markdown gets converted to a first-level
heading, while ## Bill Length becomes a second-level heading. By adding
hashes, you can create up to six levels of headings. In RStudio, headings are
easy to find because they show up in blue.

Text without anything before it becomes body text in Word. To create
italic text, add single asterisks around it (*like this*). To make text bold,
use double asterisks (**as shown here**).

You can make bulleted lists by placing a dash at the beginning of a line
and adding your text after it:

- Adelie

- Gentoo

- Chinstrap

To make ordered lists, replace the dashes with numbers. You can either
number each line consecutively or, as done below, repeat 1. In the knitted
document, the proper numbers will automatically generate.



1. Adelie

1. Gentoo

1. Chinstrap

Formatting text in Markdown might seem more complicated than doing
so in Word. But if you want to switch from a multi-tool workflow to a
reproducible R Markdown–based workflow, you need to remove all manual
actions from the process so that you can easily repeat it in the future.

Inline R Code
R Markdown documents can also include little bits of code within Markdown
text. To see how this inline code works, take a look at the following sentence
in the R Markdown document:

The average bill length is `r average_bill_length` millimeter

s.

Inline R code begins with a backtick and the lowercase letter r and ends
with another backtick. In this example, the code tells R to print the value of
the variable average_bill_length, which is defined as follows in the code
chunk before the inline code:

```{r}

average_bill_length <- penguins %>%

  summarize(avg_bill_length = mean(

    bill_length_mm,

    na.rm = TRUE

  )) %>%

  pull(avg_bill_length)

```

This code calculates the average bill length and saves it as
average_bill_length. Having created this variable, you can now use it in
the inline code. As a result, the Word document includes the sentence “The
average bill length is 43.9219298.”

One benefit of using inline R code is that you avoid having to copy and
paste values, which is error-prone. Inline R code also makes it possible to



automatically calculate values on the fly whenever you reknit the R
Markdown document with new data. To see how this works, you’ll make a
new report using data from 2008. To do this, you need to change only one
line, the one that reads the data:

penguins <- read_csv("https://data.rfortherestofus.com/pengui

ns-2008.csv")

Now that you’ve switched penguins-2007.csv to penguins-2008.csv, you
can reknit the report and produce a new Word document, complete with
updated results. Figure 6-5 shows the new document.



Figure 6-5: The knitted Word document with 2008 data

The new histogram is based on the 2008 data, as is the average bill
length of 43.5412281. These values update automatically because every time
you press Knit, the code is rerun, regenerating plots and recalculating values.
As long as the data you use has a consistent structure, updating a report
requires just a click of the Knit button.



Running Code Chunks Interactively
You can run the code in an R Markdown document in two ways. The first is
by knitting the entire document. The second is to run code chunks manually
(also known as interactively) by pressing the green play button at the top
right of a code chunk. The down arrow next to the green play button will run
all code until that point. You can see these buttons in Figure 6-6.

Figure 6-6: The buttons on code chunks in RStudio

You can also use COMMAND-ENTER on macOS or CTRL-ENTER on
Windows to run sections of code, as in an R script file. Running code
interactively is a good way to test that portions of it work before you knit the
entire document.

The one downside to running code interactively is that you can
sometimes make mistakes that cause your R Markdown document to fail to
knit. That is because, in order to knit, an R Markdown document must
contain all the code it uses. If you’re working interactively and, say, load data
from a separate file, you won’t be able to knit your document. When working
in R Markdown, always keep all your code within a single document.

The code must also appear in the right order. An R Markdown document
that looks like this, for example, will give you an error if you try to knit it:

---

title: Penguins Report

author: David Keyes

date: 2024-01-12

output: word_document

---

```{r setup, include=FALSE}

knitr::opts_chunk$set(

  include = TRUE,

  echo = FALSE,

  message = FALSE,



  warning = FALSE

)

```

```{r}

penguins <- read_csv("https://data.rfortherestofus.com/pengui

ns-2008.csv")

```

```{r}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

```{r}

library(tidyverse)

```

This error happens because you are attempting to use tidyverse
functions like read_csv(), as well as various ggplot functions, before you
load the tidyverse package.

Alison Hill, a research scientist and one of the most prolific R Markdown
educators, tells her students to knit early and often. This practice makes it
easier to isolate issues that make knitting fail. Hill describes her typical R
Markdown workflow as spending 75 percent of her time working on a new
document and 25 percent of her time knitting to check that the R Markdown
document works.

Quarto
In 2022, Posit released a publishing tool similar to R Markdown. Known as
Quarto, this tool takes what R Markdown has done for R and extends it to
other languages, including Python, Julia, and Observable JS. As I write this
book, Quarto is gaining traction. Luckily, the concepts you’ve learned in this
chapter apply to Quarto as well. Quarto documents have a YAML section,
code chunks, and Markdown text. You can export Quarto documents to
HTML, PDF, and Word. However, R Markdown and Quarto documents have
some syntactic differences, which are explored further in Chapter 10.



Summary
You started this chapter by considering the scenario of a report that needs to
be regenerated monthly. You learned how you can use R Markdown to
reproduce this report every month without changing your code. Even if you
lost the final Word document, you could quickly re-create it.

Best of all, working with R Markdown makes it possible to do in seconds
what would have previously taken hours. When making a single report
requires three tools and five steps, you may not want to work on it. But, as
Alison Hill has pointed out, with R Markdown you can even work on reports
before you receive all of the data. You could simply write code that works
with partial data and rerun it with the final data at any time.

This chapter has just scratched the surface of what R Markdown can do.
The next chapter will show you how to use it to instantly generate hundreds
of reports. Magic indeed!

Additional Resources
Yihui Xie, J. J. Allaire, and Garrett Grolemund, R Markdown: The
Definitive Guide (Boca Raton, FL: CRC Press, 2019),
https://bookdown.org/yihui/rmarkdown/.
Yihui Xie, Christophe Dervieux, and Emily Riederer, R Markdown
Cookbook (Boca Raton, FL: CRC Press, 2021),
https://bookdown.org/yihui/rmarkdown-cookbook/.

https://bookdown.org/yihui/rmarkdown/
https://bookdown.org/yihui/rmarkdown-cookbook/


7
PARAMETERIZED REPORTING

Parameterized reporting is a technique
that allows you to generate multiple

reports simultaneously. By using parameterized
reporting, you can follow the same process to make
3,000 reports as you would to make one report. The
technique also makes your work more accurate, as it
avoids copy-and-paste errors.

Staff at the Urban Institute, a think tank based in Washington, DC, used
parameterized reporting to develop fiscal briefs for all US states, as well as
the District of Columbia. Each report required extensive text and multiple
charts, so creating them by hand wasn’t feasible. Instead, employees Safia
Sayed, Livia Mucciolo, and Aaron Williams automated the process. This
chapter explains how parameterized reporting works and walks you through a
simplified version of the code that the Urban Institute used.

Report Templates in R Markdown
If you’ve ever had to create multiple reports at the same time, you know how
frustrating it can be, especially if you’re using the multi-tool workflow
described in Chapter 6. Making just one report can take a long time. Multiply
that work by 10, 20, or, in the case of the Urban Institute team, 51, and it can
quickly feel overwhelming. Fortunately, with parameterized reporting, you



can generate thousands of reports at once using the following workflow:

  1.  Make a report template in R Markdown.
  2.  Add a parameter (for example, one representing US states) in the YAML

of your R Markdown document to represent the values that will change
between reports.

  3.  Use that parameter to generate a report for one state, to make sure you
can knit your document.

  4.  Create a separate R script file that sets the value of the parameter and
then knits a report.

  5.  Run this script for all states.

You’ll begin by creating a report template for one state. I’ve taken the
code that the Urban Institute staff used to make their state fiscal briefs and
simplified it significantly. All of the packages used are ones you’ve seen in
previous chapters, with the exception of the urbnthemes package. This
package contains a custom ggplot theme. It can be installed by running
remotes::install_github("UrbanInstitute/urbnthemes") in the console.
Instead of focusing on fiscal data, I’ve used data you may be more familiar
with: COVID-19 rates from mid-2022. Here’s the R Markdown document:

---

title: "Urban Institute COVID Report"

output: html_document

params:

  state: "Alabama"

---

```{r setup, include=FALSE}

knitr::opts_chunk$set(

  echo = FALSE,

  warning = FALSE,

  message = FALSE

)

```

```{r}

library(tidyverse)

library(urbnthemes)



library(scales)

```

# `r params$state`

```{r}

cases <- tibble(state.name) %>%

  rbind(state.name = "District of Columbia") %>%

  left_join(

    read_csv(

      "https://data.rfortherestofus.com/united_states_covid19

_cases_deaths_and_testing_by_state.csv",

      skip = 2

    ),

    by = c("state.name" = "State/Territory")

  ) %>%

  select(

    total_cases = `Total Cases`,

    state.name,

    cases_per_100000 = `Case Rate per 100000`

  ) %>%

  mutate(cases_per_100000 = parse_number(cases_per_100000)) %

>%

  mutate(case_rank = rank(-cases_per_100000, ties.method = "m

in"))

```

```{r}

state_text <- if_else(params$state == "District of Columbia",

 str_glue(

"the District of Columbia"), str_glue("state of {params$state

}"))

state_cases_per_100000 <- cases %>%

  filter(state.name == params$state) %>%

  pull(cases_per_100000) %>%

  comma()

state_cases_rank <- cases %>%

  filter(state.name == params$state) %>%

  pull(case_rank)

```

In `r state_text`, there were `r state_cases_per_100000` case

s per 100,000



people in the last seven days. This puts `r params$state` at 

number

`r state_cases_rank` of 50 states and the District of Columbi

a.

```{r fig.height = 8}

set_urbn_defaults(style = "print")

cases %>%

  mutate(highlight_state = if_else(state.name == params$state

, "Y", "N")) %>%

  mutate(state.name = fct_reorder(state.name, cases_per_10000

0)) %>%

  ggplot(aes(

    x = cases_per_100000,

    y = state.name,

    fill = highlight_state

  )) +

  geom_col() +

  scale_x_continuous(labels = comma_format()) +

  theme(legend.position = "none") +

  labs(

    y = NULL,

    x = "Cases per 100,000"

  )

```

The text and charts in the report come from the cases data frame, shown
here:

#> # A tibble: 51 × 4

#>    total_cases state.name  cases_per_100000 case_rank

#>    <chr>       <chr>                  <dbl>     <int>

#>  1 1302945     Alabama                26573        18

#>  2 246345      Alaska                 33675         2

#>  3 2025435     Arizona                27827        10

#>  4 837154      Arkansas               27740        12

#>  5 9274208     California             23472        35

#>  6 1388702     Colorado               24115        33

#>  7 766172      Connecticut            21490        42

#>  8 264376      Delaware               27150        13

#>  9 5965411     Florida                27775        11

#> 10 2521664     Georgia                23750        34

#> # ... with 41 more rows



When you knit the document, you end up with the simple HTML file
shown in Figure 7-1.

Figure 7-1: The Alabama report generated via R Markdown

You should recognize the R Markdown document’s YAML, R code
chunks, inline code, and Markdown text from Chapter 6.

Defining Parameters
In R Markdown, parameters are variables that you set in the YAML to allow
you to create multiple reports. Take a look at these two lines in the YAML:

params:

  state: "Alabama"

This code defines a variable called state. You can use the state
variable throughout the rest of the R Markdown document with the
params$variable_name syntax, replacing variable_name with state or any



other name you set in the YAML. For example, consider this inline R code:

# `r params$state`

Any instance of the params$state parameter will be converted to
"Alabama" when you knit it. This parameter and several others appear in the
following code, which sets the first-level heading visible in Figure 7-1:

In `r state_text`, there were `r state_cases_per_100000` case

s per 100,000

people in the last seven days. This puts `r params$state` at 

number

`r state_cases_rank` of 50 states and the District of Columbi

a.

After knitting the document, you should see the following text:
In the state of Alabama, there were 26,573 cases per 100,000 people in the last seven days.
This puts Alabama at number 18 of 50 states and the District of Columbia.

This text is automatically generated. The inline R code `r state_text`
prints the value of the variable state_text, which is determined by a
previous call to if_else(), shown in this code chunk:

state_text <- if_else(params$state == "District of Columbia",

str_glue("the District of Columbia"), str_glue("state of {par

ams$state}"))

If the value of params$states is "District of Columbia", this code
sets state_text equal to "the District of Columbia". If params$state
isn’t "District of Columbia", then state_text gets the value "state of",
followed by the state name. This allows you to put state_text in a sentence
and have it work no matter whether the state parameter is a state or the
District of Columbia.

Generating Numbers with Parameters
You can also use parameters to generate numeric values to include in the text.
For example, to calculate the values of the state_cases_per_100000 and



state_cases_rank variables dynamically, use the state parameter, as shown
here:

state_cases_per_100000 <- cases %>%

  filter(state.name == params$state) %>%

  pull(cases_per_100000) %>%

  comma()

state_cases_rank <- cases %>%

  filter(state.name == params$state) %>%

  pull(case_rank)

First, this code filters the cases data frame (which contains data for all
states) to keep only the data for the state in params$state. Then, the pull()
function gets a single value from that data, and the comma() function from the
scales package applies formatting to make state_cases_per_100000
display as 26,573 (rather than 26573). Finally, the state_cases_per_100000
and state_case_rank variables are integrated into the inline R code.

Including Parameters in Visualization Code
The params$state parameter is used in other places as well, such as to
highlight a state in the report’s bar chart. To see how to accomplish this, look
at the following section from the last code chunk:

cases %>%

  mutate(highlight_state = if_else(state.name == params$state

, "Y", "N"))

This code creates a variable called highlight_state. Within the cases
data frame, the code checks whether state.name is equal to params$state. If
it is, highlight_state gets the value Y. If not, it gets N. Here’s what the
relevant columns look like after you run these two lines:

#> # A tibble: 51 × 2

#>    state.name  highlight_state

#>    <chr>       <chr>

#>  1 Alabama     Y

#>  2 Alaska      N



#>  3 Arizona     N

#>  4 Arkansas    N

#>  5 California  N

#>  6 Colorado    N

#>  7 Connecticut N

#>  8 Delaware    N

#>  9 Florida     N

#> 10 Georgia     N

#> #  ... with 41 more rows

Later, the ggplot code uses the highlight_state variable for the bar
chart’s fill aesthetic property, highlighting the state in params$state in
yellow and coloring the other states blue. Figure 7-2 shows the chart with
Alabama highlighted.



Figure 7-2: Highlighting data in a bar chart using parameters

As you’ve seen, setting a parameter in the YAML allows you to
dynamically generate text and charts in the knitted report. But you’ve
generated only one report so far. How can you create all 51 reports? Your



first thought might be to manually update the YAML by changing the
parameter’s value from "Alabama" to, say, "Alaska" and then knitting the
document again. While you could follow this process for all states, it would
be tedious, which is what you’re trying to avoid. Instead, you can automate
the report generation.

Creating an R Script
To automatically generate multiple reports based on the template you’ve
created, you’ll use an R script that changes the value of the parameters in the
R Markdown document and then knits it. You’ll begin by creating an R script
file named render.R.

Knitting the Document with Code
Your script needs to be able to knit an R Markdown document. While you’ve
seen how to do this using the Knit button, you can do the same thing with
code. Load the rmarkdown package and then use its render() function as
shown here:

library(rmarkdown)

render(

  input = "urban-covid-budget-report.Rmd",

  output_file = "Alaska.xhtml",

  params = list(state = "Alaska")

)

This function generates an HTML document called urban-covid-budget-
report.xhtml. By default, the generated file has the same name as the R
Markdown (.Rmd) document, with a different extension. The output_file
argument assigns the file a new name, and the params argument specifies
parameters that will override those in the R Markdown document itself. For
example, this code tells R to use Alaska for the state parameter and save the
resulting HTML file as Alaska.xhtml.

This approach to generating reports works, but to create all 51 reports,
you’d have to manually change the state name in the YAML and update the
render() function before running it for each report. In the next section,



you’ll update your code to make it more efficient.

Creating a Tibble with Parameter Data
To write code that generates all your reports automatically, first you must
create a vector (in colloquial terms, a list of items) of all the state names and
the District of Columbia. To do this, you’ll use the built-in dataset
state.name, which has all 50 state names in a vector:

state <- tibble(state.name) %>%

  rbind("District of Columbia") %>%

  pull(state.name)

This code turns state.name into a tibble and then uses the rbind()
function to add the District of Columbia to the list. The pull() function gets
one single column and saves it as state. Here’s what the state vector looks
like:

#>  [1] "Alabama"              "Alaska"

#>  [3] "Arizona"              "Arkansas"

#>  [5] "California"           "Colorado"

#>  [7] "Connecticut"          "Delaware"

#>  [9] "Florida"              "Georgia"

#> [11] "Hawaii"               "Idaho"

#> [13] "Illinois"             "Indiana"

#> [15] "Iowa"                 "Kansas"

#> [17] "Kentucky"             "Louisiana"

#> [19] "Maine"                "Maryland"

#> [21] "Massachusetts"        "Michigan"

#> [23] "Minnesota"            "Mississippi"

#> [25] "Missouri"             "Montana"

#> [27] "Nebraska"             "Nevada"

#> [29] "New Hampshire"        "New Jersey"

#> [31] "New Mexico"           "New York"

#> [33] "North Carolina"       "North Dakota"

#> [35] "Ohio"                 "Oklahoma"

#> [37] "Oregon"               "Pennsylvania"

#> [39] "Rhode Island"         "South Carolina"

#> [41] "South Dakota"         "Tennessee"

#> [43] "Texas"                "Utah"

#> [45] "Vermont"              "Virginia"

#> [47] "Washington"           "West Virginia"



#> [49] "Wisconsin"            "Wyoming"

#> [51] "District of Columbia"

Rather than use render() with the input and output_file arguments,
as you did earlier, you can pass it the params argument to give it parameters
to use when knitting. To do so, create a tibble with the information needed to
render all 51 reports and save it as an object called reports, which you’ll
pass to the render() function, as follows:

reports <- tibble(

  input = "urban-covid-budget-report.Rmd",

  output_file = str_glue("{state}.xhtml"),

  params = map(state, ~ list(state = .))

)

This code generates a tibble with 51 rows and 3 variables. In all rows,
the input variable is set to the name of the R Markdown document. The
value of output_file is set with str_glue() to be equal to the name of the
state, followed by.html (for example, Alabama.xhtml).

The params variable is the most complicated of the three. It is what’s
known as a named list. This data structure puts the data in the state:
state_name format needed for the R Markdown document’s YAML. The
map() function from the purrr package creates the named list, telling R to set
the value of each row as state = "Alabama", then state = "Alaska", and
so on, for all of the states. You can see these variables in the reports tibble:

#> # A tibble: 51 × 3

#>    input                         output_file    params

#>    <chr>                         <glue>         <list>

#>  1 urban-covid-budget-report.Rmd Alabama.xhtml   <named li

st>

#>  2 urban-covid-budget-report.Rmd Alaska.xhtml    <named li

st>

#>  3 urban-covid-budget-report.Rmd Arizona.xhtml   <named li

st>

#>  4 urban-covid-budget-report.Rmd Arkansas.xhtml  <named li

st>

#>  5 urban-covid-budget-report.Rmd California...  <named lis

t>



#>  6 urban-covid-budget-report.Rmd Colorado.xhtml  <named li

st>

#>  7 urban-covid-budget-report.Rmd Connecticut... <named lis

t>

#>  8 urban-covid-budget-report.Rmd Delaware.xhtml  <named li

st>

#>  9 urban-covid-budget-report.Rmd Florida.xhtml   <named li

st>

#> 10 urban-covid-budget-report.Rmd Georgia.xhtml   <named li

st>

#> # ... with 41 more rows

The params variable shows up as <named list>, but if you open the
tibble in the RStudio viewer (click reports in the Environment tab), you can
see the output more clearly, as shown in Figure 7-3.

Figure 7-3: The named list column in the RStudio viewer

This view allows you to see the named list in the params variable, with



the state variable equal to the name of each state.
Once you’ve created the reports tibble, you’re ready to render the

reports. The code to do so is only one line long:

pwalk(reports, render)

This pwalk() function (from the purrr package) has two arguments: a
data frame or tibble (reports, in this case) and a function that runs for each
row of this tibble, render().

NOTE
You don’t include the open and closing parentheses when passing the
render() function to pwalk().

Running this code runs the render() function for each row in reports,
passing in the values for input, output_file, and params. This is equivalent
to entering code like the following to run the render() function 51 times (for
50 states plus the District of Columbia):

render(

  input = "urban-covid-budget-report.Rmd",

  output_file = "Alabama.xhtml",

  params = list(state = "Alabama")

)

render(

  input = "urban-covid-budget-report.Rmd",

  output_file = "Alaska.xhtml",

  params = list(state = "Alaska")

)

render(

  input = "urban-covid-budget-report.Rmd",

  output_file = "Arizona.xhtml",

  params = list(state = "Arizona")

)

Here’s the full R script file:



# Load packages

library(tidyverse)

library(rmarkdown)

# Create a vector of all states and the District of Columbia

state <- tibble(state.name) %>%

  rbind("District of Columbia") %>%

  pull(state.name)

# Create a tibble with information on the:

# input R Markdown document

# output HTML file

# parameters needed to knit the document

reports <- tibble(

  input = "urban-covid-budget-report.Rmd",

  output_file = str_glue("{state}.xhtml"),

  params = map(state, ~ list(state = .))

)

# Generate all of our reports

pwalk(reports, render)

After running the pwalk(reports, render) code, you should see 51
HTML documents appear in the files pane in RStudio. Each document
consists of a report for that state, complete with a customized graph and
accompanying text.

Best Practices
While powerful, parameterized reporting can present some challenges. For
example, make sure to consider outliers in your data. In the case of the state
reports, Washington, DC, is an outlier because it isn’t technically a state. The
Urban Institute team altered the language in the report text so that it didn’t
refer to Washington, DC, as a state by using an if_else() statement, as you
saw at the beginning of this chapter.

Another best practice is to manually generate and review the reports
whose parameter values have the shortest (Iowa, Ohio, and Utah in the state
fiscal briefs) and longest (District of Columbia) text lengths. This way, you
can identify places where the text length may have unexpected results, such
as cut-off chart titles or page breaks disrupted by text running onto multiple



lines. A few minutes of manual review can make the process of
autogenerating multiple reports much smoother.

Summary
In this chapter, you re-created the Urban Institute’s state fiscal briefs using
parameterized reporting. You learned how to add a parameter to your R
Markdown document, then use an R script to set the value of that parameter
and knit the report.

Automating report production can be a huge time-saver, especially as the
number of reports you need to generate grows. Consider another project at
the Urban Institute: making county-level reports. With over 3,000 counties in
the United States, creating these reports by hand isn’t realistic. Not only that,
but if the Urban Institute employees were to make their reports using SPSS,
Excel, and Word, they would have to copy and paste values between
programs. Humans are fallible, and mistakes occur, no matter how hard we
try to avoid them. Computers, on the other hand, never make copy-and-paste
errors. Letting computers handle the tedious work of generating multiple
reports reduces the chance of error significantly.

When you’re starting out, parameterized reporting might feel like a
heavy lift, as you have to make sure that your code works for every version
of your report. But once you have your R Markdown document and
accompanying R script file, you should find it easy to produce multiple
reports at once, saving you work in the end.

Additional Resources
Data@Urban Team, “Iterated Fact Sheets with R Markdown,” Medium,
July 24, 2018, https://urban-institute.medium.com/iterated-fact-sheets-
with-r-markdown-d685eb4eafce.
Data@Urban Team, “Using R Markdown to Track and Publish State
Data,” Medium, April 21, 2021, https://urban-
institute.medium.com/using-r-markdown-to-track-and-publish-state-data-
d1291bfa1ec0.

https://urban-institute.medium.com/iterated-fact-sheets-with-r-markdown-d685eb4eafce
https://urban-institute.medium.com/using-r-markdown-to-track-and-publish-state-data-d1291bfa1ec0


8
SLIDESHOW PRESENTATIONS

If you need to create a slideshow pre-
sentation, like one you might create in

PowerPoint, R has you covered. In this chapter, you’ll
learn how to produce pre- sentations using xaringan.
This package, which uses R Markdown, is the most
widely used tool for creating slideshows in R.

You’ll use xaringan to turn the penguin report from Chapter 6 into a
slideshow. You’ll learn how to create new slides, selectively reveal content,
adjust text and image alignment, and style your presentation with CSS.

Why Use xaringan?
You might have noticed the Presentation option while creating a new R
Markdown document in RStudio. This option offers several ways to make
slides, such as knitting an R Markdown document to PowerPoint. However,
using the xaringan package provides advantages over these options.

For example, because xaringan creates slides as HTML documents, you
can post them online versus having to email them or print them out for
viewers. You can send someone the presentation simply by sharing a link.
Chapter 9 will discuss ways to publish your presentations online.

A second benefit of using xaringan is accessibility. HTML documents
are easy to manipulate, giving viewers control over their appearance. For



example, people with limited vision can access HTML documents in ways
that allow them to view the content, such as by increasing the text size or
using screen readers. Making presentations with xaringan lets more people
engage with your slides.

How xaringan Works
To get started with xaringan, run install.packages("xaringan") in
RStudio to install the package. Next, navigate to File4New File4R
Markdown to create a new project. Choose the From Template tab and
select the template called Ninja Presentation, then click OK.

You should get an R Markdown document containing some default
content. Delete this and add the penguin R report you created in Chapter 6.
Then, change the output format in the YAML to xaringan::moon_reader
like so:

title: "Penguins Report"

author: "David Keyes"

date: "2024-01-12"

output: xaringan::moon_reader

The moon_reader output format takes R Markdown documents and knits
them as slides. Try clicking Knit to see what this looks like. You should get
an HTML file with the same name as the R Markdown document (such as
xaringan-example.xhtml), as shown in Figure 8-1.



Figure 8-1: The xaringan package automatically generates a title slide.

If you scroll to the next slide with the right arrow key, you should see
familiar content. Figure 8-2 shows the second slide, which has the same text
as the report from Chapter 6 and a cut-off version of its histogram.

Figure 8-2: The second slide needs adjustment, as the histogram is cut off.

Although the syntax for making slides with xaringan is nearly identical
to that used to make reports with R Markdown, you need to make a few



tweaks so that the content can fit on the slides. When you’re working in a
document that will be knitted to Word, its length doesn’t matter, because
reports can have 1 page or 100 pages. Working with xaringan, however,
requires you to consider how much content can fit on a single slide. The cut-
off histogram demonstrates what happens if you don’t. You’ll fix it next.

Creating a New Slide
You’ll make this histogram fully visible by putting it in its own slide. To
make a new slide, add three dashes (---) where you’d like it to begin. I’ve
added them before the histogram code:

---

## Bill Length

We can make a histogram to see the distribution of bill lengt

hs.

```{r}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

When you knit the document again, what was one slide should now be
broken into two: an Introduction slide and a Bill Length slide. However, if
you look closely, you’ll notice that the bottom of the histogram is still
slightly cut off. To correct this, you’ll change its size.

Adjusting the Size of Figures
Adjust the size of the histogram using the code chunk option fig.height:

---

## Bill Length

We can make a histogram to see the distribution of bill lengt

hs.



```{r fig.height = 4}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

Doing this fits the histogram fully on the slide and also reveals the text
that was hidden below it. Keep in mind that fig.height adjusts only the
figure’s output height; sometimes you may need to adjust the output width
using fig.width in addition or instead.

Revealing Content Incrementally
When presenting a slideshow, you might want to show only a portion of the
content on each slide at a time. Say, for example, that when you’re presenting
the first slide, you want to talk a bit about each penguin species. Rather than
show all three species when you open this slide, you might prefer to have the
names come up one at a time.

You can do this using a feature xaringan calls incremental reveal. Place
two dashes (--) between any content you want to display incrementally, like
so:

# Introduction

We are writing a report about the **Palmer Penguins**. These 

penguins are

*really* amazing. There are three species:

- Adelie

--

- Gentoo

--

- Chinstrap

This code lets you show Adelie onscreen first; then Adelie and Gentoo;



and then Adelie, Gentoo, and Chinstrap.
When presenting your slides, use the right arrow to incrementally reveal

the species.

Aligning Content with Content Classes
You’ll also likely want to control how your content is aligned. To do so, you
add the content classes .left[], .right[], and .center[] to specify the
desired alignment for a piece of content. For example, to center-align the
histogram, use .center[] as follows:

.center[

```{r fig.height = 4}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

]

This code centers the chart on the slide.
Other built-in options can make two-column layouts. Adding .pull-

left[] and .pull-right[] will make two equally spaced columns. Use the
following code to display the histogram on the left side of the slide and the
accompanying text on the right:

.pull-left[

```{r fig.height = 4}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

]

.pull-right[

```{r}

average_bill_length <- penguins %>%

  summarize(avg_bill_length = mean(bill_length_mm,

                                   na.rm = TRUE)) %>%

  pull(avg_bill_length)



```

The chart shows the distribution of bill lengths. The average

 bill length is

`r average_bill_length` millimeters.

]

Figure 8-3 shows the result.

Figure 8-3: A slide with two columns of equal size

To make a narrow left column and wide right column, use the content
classes .left-column[] and .right-column[]. Figure 8-4 shows what the
slide looks like with the text on the left and the histogram on the right.



Figure 8-4: A slide with a smaller left column and a larger right column

In addition to aligning particular pieces of content on slides, you can also
horizontally align the entire content using the left, right, and center
classes. To do so, specify the class right after the three dashes that indicate a
new slide, but before any content:

---

class: center

## Bill Length

We can make a histogram to see the distribution of bill lengt

hs.

```{r fig.height = 4}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

This code produces a horizontally centered slide. To adjust the vertical
position, you can use the classes top, middle, and bottom.

Adding Background Images to Slides



Using the same syntax you just used to center the entire slide, you can also
add a background image. Create a new slide, use the classes center and
middle to horizontally and vertically align the content, and add a background
image by specifying the path to the image within the parentheses of url():

class: center, middle

background-image: url("penguins.jpg")

## Penguins

To run this code, you’ll need a file called penguins.jpg in your project
(you can download it at https://data.rfortherestofus.com/penguins.jpg).
Knitting the document should produce a slide that uses this image as a
background with the text Penguins in front of it, as shown in Figure 8-5.

Figure 8-5: A slide that uses a background image

Now you’ll add custom CSS to further improve this slide.

Applying CSS to Slides
One issue with the slide you just made is that the word Penguins is hard to
read. It would be better if you could make the text bigger and a different
color. To do this, you’ll need to use Cascading Style Sheets (CSS), the

https://data.rfortherestofus.com/penguins.jpg


language used to style HTML documents. If you’re thinking, I’m reading this
book to learn R, not CSS, don’t worry: you’ll need only a bit of CSS to make
tweaks to your slides. To apply them, you can write your own custom code,
use a CSS theme, or combine the two approaches using the xaringanthemer
package.

Custom CSS
To add custom CSS, create a new code chunk and place css between the
curly brackets:

```{css}

.remark-slide-content h2 {

  font-size: 150px;

  color: white;

}

```

This code chunk tells R Markdown to make the second-level header (h2)
150 pixels large and white. Adding .remark-slide-content before the
header targets specific elements in the presentation. The term remark comes
from remark.js, a JavaScript library for making presentations that xaringan
uses under the hood.

To change the font in addition to the text’s size and color, add this CSS:

```{css}

@import url('https://fonts.googleapis.com/css2?family=Inter:w

ght@400;700&display=swap');

.remark-slide-content h2 {

  font-size: 150px;

  color: white;

  font-family: Inter;

  font-weight: bold;

}

```

The first new line makes a font called Inter available to the slides,
because some people might not have the font installed on their computers.
Next, this code applies Inter to the header and makes it bold. You can see the



slide with bold Inter font in Figure 8-6.

Figure 8-6: The title slide with CSS changes to the font

Because xaringan slides are built as HTML documents, you can
customize them with CSS however you’d like. The sky’s the limit!

Themes
You may not care to know the ins and outs of CSS. Fortunately, you can
customize your slides in two ways without writing any CSS yourself. The
first way is to apply xaringan themes created by other R users. Run this code
to get a list of all available themes:

names(xaringan:::list_css())

The output should look something like this:

#>  [1] "chocolate-fonts"  "chocolate"

#>  [3] "default-fonts"    "default"

#>  [5] "duke-blue"        "fc-fonts"

#>  [7] "fc"               "glasgow_template"

#>  [9] "hygge-duke"       "hygge"

#> [11] "ki-fonts"         "ki"

#> [13] "kunoichi"         "lucy-fonts"



#> [15] "lucy"             "metropolis-fonts"

#> [17] "metropolis"       "middlebury-fonts"

#> [19] "middlebury"       "nhsr-fonts"

#> [21] "nhsr"             "ninjutsu"

#> [23] "rladies-fonts"    "rladies"

#> [25] "robot-fonts"      "robot"

#> [27] "rutgers-fonts"    "rutgers"

#> [29] "shinobi"          "tamu-fonts"

#> [31] "tamu"             "uio-fonts"

#> [33] "uio"              "uo-fonts"

#> [35] "uo"               "uol-fonts"

#> [37] "uol"              "useR-fonts"

#> [39] "useR"             "uwm-fonts"

#> [41] "uwm"              "wic-fonts"

#> [43] "wic"

Some CSS files change fonts only, while others change general elements,
such as text size, colors, and whether slide numbers are displayed. Using
prebuilt themes usually requires you to use both a general theme and a fonts
theme, as follows:

---

title: "Penguins Report"

author: "David Keyes"

date: "2024-01-12"

output:

  xaringan::moon_reader:

    css: [default, metropolis, metropolis-fonts]

---

This code tells xaringan to use the default CSS, as well as
customizations made in the metropolis and metropolis-fonts CSS themes.
These come bundled with xaringan, so you don’t need to install any
additional packages to access them. Figure 8-7 shows how the theme changes
the look and feel of the slides.



Figure 8-7: A slide using the metropolis theme

If writing custom CSS is the totally flexible but more challenging option
for tweaking your xaringan slides, then using a custom theme is simpler but
a lot less flexible. Custom themes allow you to easily use others’ prebuilt
CSS but not to tweak it further.

The xaringanthemer Package
A nice middle ground between writing custom CSS and applying someone
else’s theme is to use the xaringanthemer package by Garrick Aden-Buie.
This package includes several built-in themes but also allows you to easily
create your own custom theme. After installing the package, adjust the css
line in your YAML to use the xaringan-themer.css file like so:

---

title: "Penguins Report"

author: "David Keyes"

date: "2024-01-12"

output:

  xaringan::moon_reader:

    css: xaringan-themer.css

---

Now you can customize your slides by using the style_xaringan()
function. This function has over 60 arguments, enabling you to tweak nearly



any part of your xaringan slides. To replicate the custom CSS you wrote
earlier in this chapter using xaringanthemer, you’ll use just a few of the
arguments:

```{r}

library(xaringanthemer)

style_xaringan(

  header_h2_font_size = "150px",

  header_color = "white",

  header_font_weight = "bold",

  header_font_family = "Inter"

)

```

This code sets the header size to 150 pixels and makes all the headers use
the bold, white Inter font.

One particularly nice thing about the xaringanthemer package is that
you can use any font available on Google Fonts by simply adding its name to
header_font_family or another argument that sets font families (text_font
_family and code_font_family are the other two, for styling body text and
code, respectively). This means you won’t have to include the line that makes
the Inter font available.

Summary
In this chapter, you learned how to create presentations using the xaringan
package. You saw how to incrementally reveal content on slides, create
multicolumn layouts, and add background images to slides. You also changed
your slides’ appearance by applying custom themes, writing your own CSS,
and using the xaringanthemer package.

With xaringan, you can create any type of presentation you want and
then customize it to match your desired look and feel. Creating presentations
with xaringan also allows you to share your HTML slides easily and enables
greater accessibility.

Additional Resources



Garrick Aden-Buie, Silvia Canelón, and Shannon Pileggi, “Professional,
Polished, Presentable: Making Great Slides with xaringan,” workshop
materials, n.d., https://presentable-user2021.netlify.app.
Silvia Canelón, “Sharing Your Work with xaringan: An Introduction to
xaringan for Presentations: The Basics and Beyond,” workshop for the
NHS-R Community 2020 Virtual Conference, November 2, 2020,
https://spcanelon.github.io/xaringan-basics-and-beyond/index.xhtml.
Alison Hill, “Meet xaringan: Making Slides in R Markdown,” slideshow
presentation, January 16, 2019,
https://arm.rbind.io/slides/xaringan.xhtml.
Yihui Xie, J. J. Allaire, and Garrett Grolemund, “xaringan Presentations,”
in R Markdown: The Definitive Guide (Boca Raton, FL: CRC Press,
2019), https://bookdown.org/yihui/rmarkdown/.
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9
WEBSITES

During the summer of 2020, Matt
Herman’s family moved from Brooklyn

to Westchester County, New York. It was still early in
the COVID-19 pandemic, and Herman was shocked
that the county published little data about infection
rates. Vaccines weren’t yet available, and daily choices
like whether to go to the park depended on access to
good data.

At the time, Herman was deputy director of the ChildStat Data Unit in
the Office of Research and Analytics at the New York City Administration
for Children’s Services. This mouthful of a title meant he was skilled at
working with data, enabling him to create the COVID resource he needed:
the Westchester COVID-19 Tracking website.

Built entirely in R, this website uses charts, maps, tables, and text to
summarize the latest COVID data for Westchester County. The website is no
longer updated daily, but you can still view it at https://westchester-
covid.mattherman.info.

To make this website, Herman wrote a set of R Markdown files and
strung them together with the distill package. This chapter explains the
basics of the package by walking through the creation of a simple website.
You’ll learn how to produce different page layouts, navigation menus, and

https://westchester-covid.mattherman.info


interactive graphics, then explore strategies for hosting your website.

Creating a New distill Project
A website is merely a collection of HTML files like the one you produced in
Chapter 8 when you created a slideshow presentation. The distill package
uses multiple R Markdown documents to create several HTML files, then
connects them with a navigation menu and more.

To create a distill website, install the package using
install.packages ("distill"). Then start a project in RStudio by
navigating to File4New Project4New Directory and selecting Distill
Website as the project type.

Specify the directory and subdirectory where your project will live on
your computer, then give your website a title. Check the Configure for
GitHub Pages option, which provides an easy way to post your website
online (you’ll learn how it works in “GitHub Hosting” on page 154). Select it
if you’d like to use this deployment option.

The Project Files
You should now have a project with several files. In addition to the covid-
website.Rproj file indicating that you’re working in an RStudio project, you
should have two R Markdown documents, a _site.yml file, and a docs folder,
where the rendered HTML files will go. Let’s take a look at these website
files.

R Markdown Documents
Each R Markdown file represents a page of the website. By default, distill
creates a home page (index.Rmd) and an About page (about.Rmd) containing
placeholder content. If you wanted to generate additional pages, you would
simply add new R Markdown files, then list them in the _site.yml file
discussed in the next section.

If you open the index.Rmd file, you’ll notice that the YAML contains
two arguments, description and site, that didn’t appear in the R Markdown
documents from previous chapters:



---

title: "COVID Website"

description: |

  Welcome to the website. I hope you enjoy it!

site: distill::distill_website

---

The description argument specifies the text that should go below the
title of each page, as shown in Figure 9-1.

Figure 9-1: The default website description

The site: distill::distill_website line identifies the root page of a
distill website. This means that when you knit the document, R Markdown
knows to create a website rather than an individual HTML file and that the
website should display this page first. The other pages of the website don’t
require this line. As long as they’re listed in the _site.yml file, they’ll be
added to the site.

You’ll also notice the absence of an argument you’ve seen in other R
Markdown documents: output, which specifies the output format R should
use while knitting. The reason output is missing here is that you’ll specify
the output for the entire website in the _site.yml file.

The _site.yml File
The _site.yml file tells R which R Markdown documents make up the
website, what the knitted files should look like, what the website should be
called, and more. When you open it, you should see the following code:



name: "covid-website"

title: "COVID Website"

description: |

  COVID Website

output_dir: "docs"

navbar:

  right:

    - text: "Home"

      href: index.xhtml

    - text: "About"

      href: about.xhtml

output: distill::distill_article

The name argument determines the URL for your website. By default,
this should be the name of the directory where your distill project lives; in
my case, that’s the covid-website directory. The title argument creates the
title for the entire website and shows up in the top left of the navigation bar
by default. The description argument provides what’s known as a meta
description, which will show up as a couple of lines in Google search results
to give users an overview of the website content.

The output_dir argument determines where the rendered HTML files
live when you generate the website. You should see the docs directory listed
here. However, you can change the output directory to any folder you choose.

Next, the navbar section defines the website’s navigation. Here it
appears on the right side of the header, but swapping the right parameter for
left would switch its position. The navigation bar includes links to the site’s
two pages, Home and About, as shown in Figure 9-2.

Figure 9-2: The website navigation bar



Within the navbar code, the text argument specifies what text shows up
in the menu. (Try, for example, changing About to About This Website, and
then change it back.) The href argument determines which HTML file the
text in the navigation bar links to. If you want to include additional pages on
your menu, you’ll need to add both the text and href parameters.

Finally, the output argument specifies that all R Markdown documents
should be rendered using the distill_article format. This format allows
for layouts of different widths, asides (parenthetical items that live in a
sidebar next to the main content), easily customizable CSS, and more.

Building the Site
We’ve explored the project’s files but haven’t yet used them to create the
website. To do this, click Build Website in the Build tab of RStudio’s top-
right pane. (You could also run rmarkdown::render_site() in the console or
in an R script file.)

This should render all R Markdown documents and add the top
navigation bar to them with the options specified in the _site.yml file. To find
the rendered files, look in docs (or whatever output directory you specified).
Open the index.xhtml file and you’ll find your website, which should look
like Figure 9-3.

Figure 9-3: The COVID website with default content

You can open any other HTML file as well to see its rendered version.

Applying Custom CSS
Websites made with distill tend to look similar, but you can change their



design using custom CSS. The distill package even provides a function to
simplify this process. Run distill::create_theme() in the console to create
a file called theme.css, shown here:

/* base variables */

/* Edit the CSS properties in this file to create a custom

   Distill theme. Only edit values in the right column

   for each row; values shown are the CSS defaults.

   To return any property to the default,

   you may set its value to: unset

   All rows must end with a semi-colon.                      

*/

/* Optional: embed custom fonts here with `@import`          

*/

/* This must remain at the top of this file.                 

*/

html {

  /*-- Main font sizes --*/

  --title-size:      50px;

  --body-size:       1.06rem;

  --code-size:       14px;

  --aside-size:      12px;

  --fig-cap-size:    13px;

  /*-- Main font colors --*/

  --title-color:     #000000;

  --header-color:    rgba(0, 0, 0, 0.8);

  --body-color:      rgba(0, 0, 0, 0.8);

  --aside-color:     rgba(0, 0, 0, 0.6);

  --fig-cap-color:   rgba(0, 0, 0, 0.6);

  /*-- Specify custom fonts ~~~ must be imported above --*/

  --heading-font:    sans-serif;

  --mono-font:       monospace;

  --body-font:       sans-serif;

  --navbar-font:     sans-serif;  /* websites + blogs only */

}

/*-- ARTICLE METADATA --*/

d-byline {

  --heading-size:    0.6rem;

  --heading-color:   rgba(0, 0, 0, 0.5);

  --body-size:       0.8rem;



  --body-color:      rgba(0, 0, 0, 0.8);

}

/*-- ARTICLE TABLE OF CONTENTS --*/

.d-contents {

  --heading-size:    18px;

  --contents-size:   13px;

}

/*-- ARTICLE APPENDIX --*/

d-appendix {

  --heading-size:    15px;

  --heading-color:   rgba(0, 0, 0, 0.65);

  --text-size:       0.8em;

  --text-color:      rgba(0, 0, 0, 0.5);

}

/*-- WEBSITE HEADER + FOOTER --*/

/* These properties only apply to Distill sites and blogs  */

.distill-site-header {

  --title-size:       18px;

  --text-color:       rgba(255, 255, 255, 0.8);

  --text-size:        15px;

  --hover-color:      white;

  --bkgd-color:       #0F2E3D;

}

.distill-site-footer {

  --text-color:       rgba(255, 255, 255, 0.8);

  --text-size:        15px;

  --hover-color:      white;

  --bkgd-color:       #0F2E3D;

}

/*-- Additional custom styles --*/

/* Add any additional CSS rules below                      */

Within this file is a set of CSS variables that allow you to customize the
design of your website. Most of them have names that clearly show their
purpose, and you can alter their default values to whatever you’d like. For
example, the following edits to the site’s header make the title and text size
larger and change the background color to a light blue:



.distill-site-header {

  --title-size:       28px;

  --text-color:       rgba(255, 255, 255, 0.8);

  --text-size:        20px;

  --hover-color:      white;

  --bkgd-color:       #6cabdd;

}

Before you can see these changes, however, you need to add a line to the
_site.yml file to tell distill to use this custom CSS when rendering:

name: "covid-website"

title: "COVID Website"

description: |

  COVID Website

theme: theme.css

output_dir: "docs"

navbar:

--snip--

Now you can generate the site again, and you should see your changes
reflected.

There are a lot of other CSS variables in theme.css that you can change
to tweak the appearance of your website. Playing around with them and
regenerating your site is a great way to figure out what each one does.

NOTE
To learn more about customizing the look and feel of your website, check out
the distill websites made by others at https://distillery.rbind.io.

Working with Website Content
You can add content to a page on your website by creating Markdown text
and code chunks in the page’s R Markdown document. For example, to
highlight rates of COVID cases over time, you’ll replace the contents of
index.Rmd with code that displays a table, a map, and a chart on the website’s
home page. Here’s the start of the file:

https://distillery.rbind.io


---

title: "COVID Website"

description: "Information about COVID rates in the United Sta

tes over time"

site: distill::distill_website

---

```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = FALSE,

                      warning = FALSE,

                      message = FALSE)

```

```{r}

# Load packages

library(tidyverse)

library(janitor)

library(tigris)

library(gt)

library(lubridate)

```

After the YAML and setup code chunk, this code loads several
packages, most of which you’ve seen in previous chapters: the tidyverse for
data import, manipulation, and plotting (with ggplot); janitor for its
clean_names() function, which makes the variable names easier to work
with; tigris to import geospatial data about states; gt for making nice
tables; and lubridate to work with dates.

Next, to import and clean the data, add this new code chunk:

```{r}

# Import data

us_states <- states(

  cb = TRUE,

  resolution = "20m",

  progress_bar = FALSE

) %>%

  shift_geometry() %>%

  clean_names() %>%

  select(geoid, name) %>%



  rename(state = name) %>%

  filter(state %in% state.name)

covid_data <- read_csv("https://raw.githubusercontent.com/nyt

imes/covid-19-data/master/rolling-averages/us-states.csv") %>

%

  filter(state %in% state.name) %>%

  mutate(geoid = str_remove(geoid, "USA-"))

last_day <- covid_data %>%  ❶
  slice_max(

    order_by = date,

    n = 1

  ) %>%

  distinct(date) %>%

  mutate(date_nice_format = str_glue("{month(date, label = TR

UE, abbr = FALSE)} {day(date)},   {year(date)}")) %>%

  pull(date_nice_format)

```

# COVID Death Rates as of `r last_day` ❷

This code uses the slice_max() function to get the latest date in the
covid_data data frame. (Data was added until March 23, 2023, so that date is
the most recent one.) From there, it uses distinct() to get a single
observation of the most recent date (each date shows up multiple times in the
covid_data data frame). The code then creates a date_nice_format variable
using the str_glue() function to combine easy-to-read versions of the
month, day, and year. Finally, the pull() function turns the data frame into a
single variable called last_day ❶, which is referenced later in a text section.
Using inline R code, this header now displays the current date ❷.

Include the following code to make a table showing the death rates per
100,000 people in four states (using all states would create too large a table):

```{r}

covid_data %>%

  filter(state %in% c(

    "Alabama",

    "Alaska",

    "Arizona",

    "Arkansas"



  )) %>%

  slice_max(

    order_by = date,

    n = 1

  ) %>%

  select(state, deaths_avg_per_100k) %>%

  arrange(state) %>%

  set_names("State", "Death rate") %>%

  gt() %>%

  tab_style(

    style = cell_text(weight = "bold"),

    locations = cells_column_labels()

  )

```

This table resembles the code you saw in Chapter 5. First, the filter()
function filters the data down to four states, and the slice_max() function
gets the latest date. The code then selects the relevant variables (state and
deaths_avg_per_100k), arranges the data in alphabetical order by state, sets
the variable names, and pipes this output into a table made with the gt
package.

Add the following code, which uses techniques covered in Chapter 4, to
make a map of this data for all states:

We can see this same death rate data for all states on a map.

```{r}

most_recent <- us_states %>%

  left_join(covid_data, by = "state") %>%

  slice_max(order_by = date,

            n = 1)

most_recent %>%

  ggplot(aes(fill = deaths_avg_per_100k)) +

  geom_sf() +

  scale_fill_viridis_c(option = "rocket") +

  labs(fill = "Deaths per\n100,000 people") +

  theme_void()

```

This code creates a most_recent data frame by joining the us_states



geospatial data with the covid_data data frame before filtering to include
only the most recent date. Then, it uses most_recent to create a map that
shows deaths per 100,000 people.

Finally, to make a chart that shows COVID death rates over time in the
four states from the table, add the following:

# COVID Death Rates Over Time

The following chart shows COVID death rates from the start of

 COVID in early

2020 until `r last_day`.

```{r}

covid_data %>%

  filter(state %in% c(

    "Alabama",

    "Alaska",

    "Arizona",

    "Arkansas"

  )) %>%

  ggplot(aes(

    x = date,

    y = deaths_avg_per_100k,

    group = state,

    fill = deaths_avg_per_100k

  )) +

  geom_col() +

  scale_fill_viridis_c(option = "rocket") +

  theme_minimal() +

  labs(title = "Deaths per 100,000 people over time") +

  theme(

    legend.position = "none",

    plot.title.position = "plot",

    plot.title = element_text(face = "bold"),

    panel.grid.minor = element_blank(),

    axis.title = element_blank()

  ) +

  facet_wrap(

    ~state,

    nrow = 2

  )

```



Using the geom_col() function, this code creates a faceted set of bar
charts that show change over time by state (faceting was discussed in Chapter
2). Finally, it applies the rocket color palette, applies theme_minimal(), and
makes a few tweaks to that theme. Figure 9-4 shows what the website’s home
page looks like three years after the start of the pandemic.





Figure 9-4: The COVID website with a table, map, and chart

Now that you have some content in place, you can tweak it. For example,
because many states are quite small, especially in the Northeast, it’s a bit
challenging to see them. Let’s look at how to make the entire map bigger.

Applying distill Layouts
One nice feature of distill is that it includes four layouts you can apply to a
code chunk to widen its output: l-body-outset (creates output that is a bit
wider than the default), l-page (creates output that is wider still), l-screen
(creates full-screen output), and l-screen-inset (creates full-screen output
with a bit of a buffer).

Apply l-screen-inset to the map by modifying the first line of its code
chunk as follows:

```{r layout = "l-screen-inset"}

This makes the map wider and taller and, as a result, much easier to read.

Making the Content Interactive
The content you’ve added to the website so far is all static; it has none of the
interactivity typically seen in websites, which often use JavaScript to respond
to user behavior. If you’re not proficient with HTML and JavaScript, you can
use R packages like distill, plotly, and DT, which wrap JavaScript
libraries, to add interactive elements like the graphics and maps Matt Herman
uses on his Westchester County COVID website. Figure 9-5, for example,
shows a tooltip that allows the user to see results for any single day.



Figure 9-5: An interactive tooltip showing new COVID cases by day

Using the DT package, Herman also makes interactive tables that allow
the user to scroll through the data and sort the values by clicking any variable
in the header, as shown in Figure 9-6.

Figure 9-6: An interactive table made with the DT package

Next, you’ll add some interactivity to your COVID website, beginning
with your table.

Adding Pagination to a Table with reactable
Remember how you included only four states in the table to keep it from
getting too long? By creating an interactive table, you can avoid this
limitation. The reactable package is a great option for interactive tables.



First, install it with install.packages("reactable"). Then, swap out the gt
package code you used to make your static table with the reactable()
function to show all states:

library(reactable)

covid_data %>%

  slice_max(

    order_by = date,

    n = 1

  ) %>%

  select(state, deaths_avg_per_100k) %>%

  arrange(state) %>%

  set_names("State", "Death rate") %>%

  reactable()

The reactable package shows 10 rows by default and adds pagination,
as shown in Figure 9-7.

Figure 9-7: An interactive table built with reactable

The reactable() function also enables sorting by default. Although you



used the arrange() function in your code to sort the data by state name, users
can click the “Death rate” column to sort values using that variable instead.

Creating a Hovering Tooltip with plotly
Now you’ll add some interactivity to the website’s chart using the plotly
package. First, install plotly with install.packages("plotly"). Then,
create a plot with ggplot and save it as an object. Pass the object to the
ggplotly() function, which turns it into an interactive plot, and run the
following code to apply plotly to the chart of COVID death rates over time:

library(plotly)

covid_chart <- covid_data %>%

  filter(state %in% c(

    "Alabama",

    "Alaska",

    "Arizona",

    "Arkansas"

  )) %>%

  ggplot(aes(

    x = date,

    y = deaths_avg_per_100k,

    group = state,

    fill = deaths_avg_per_100k

  )) +

  geom_col() +

  scale_fill_viridis_c(option = "rocket") +

  theme_minimal() +

  labs(title = "Deaths per 100,000 people over time") +

  theme(

    legend.position = "none",

    plot.title.position = "plot",

    plot.title = element_text(face = "bold"),

    panel.grid.minor = element_blank(),

    axis.title = element_blank()

  ) +

  facet_wrap(

    ~state,

    nrow = 2

  )

ggplotly(covid_chart)



This is identical to the chart code shown earlier in this chapter, except
that now you’re saving your chart as an object called covid_chart and then
running ggplotly(covid_chart). This code produces an interactive chart
that shows the data for a particular day when a user mouses over it. But the
tooltip that pops up, shown in Figure 9-8, is cluttered and overwhelming
because the ggplotly() function shows all data by default.

Figure 9-8: The plotly default produces a messy tooltip.

To make the tooltip more informative, create a single variable containing
the data you want to display and tell ggplotly() to use it:

covid_chart <- covid_data %>%

  filter(state %in% c(

    "Alabama",

    "Alaska",

    "Arizona",

    "Arkansas"

  )) %>%

  mutate(date_nice_format = str_glue("{month(date, label = TR

UE, abbr = FALSE)} {day(date)},   {year(date)}")) %>%  ❶



  mutate(tooltip_text = str_glue("{state}<br>{date_nice_forma

t}<br>{deaths_avg_per_100k}   per 100,000 people")) %>%  ❷
  ggplot(aes(

    x = date,

    y = deaths_avg_per_100k,

    group = state,

    text = tooltip_text, ❸
    fill = deaths_avg_per_100k

  )) +

  geom_col() +

  scale_fill_viridis_c(option = "rocket") +

  theme_minimal() +

  labs(title = "Deaths per 100,000 people over time") +

  theme(

    legend.position = "none",

    plot.title.position = "plot",

    plot.title = element_text(face = "bold"),

    panel.grid.minor = element_blank(),

    axis.title = element_blank()

  ) +

  facet_wrap(

    ~state,

    nrow = 2

  )

ggplotly(

  covid_chart,

  tooltip = "tooltip_text" ❹
)

This code begins by creating a date_nice_format variable that produces
dates in the more readable format January 1, 2023, instead of 2023-01-01 ❶.
This value is then combined with the state and death rate variables, and the
result is saved as tooltip_text ❷. Next, the code adds a new aesthetic
property in the ggplot() function ❸. This property doesn’t do anything until
it’s passed to ggplotly()❹.

Figure 9-9 shows what the new tooltip looks like: it displays the name of
the state, a nicely formatted date, and that day’s death rate.



Figure 9-9: Easy-to-read interactive tooltips on the COVID-19 death rate chart

Adding interactivity is a great way to take advantage of the website
medium. Users who might feel overwhelmed looking at the static chart can
explore the interactive version, mousing over areas to see a summary of the
results on any single day.

Hosting the Website
Now that you’ve made a website, you need a way to share it. There are
various ways to do this, ranging from simple to quite complex. The easiest
solution is to compress the files in your docs folder (or whatever folder you
put your rendered website in) and email your ZIP file to your recipients. They
can unzip it and open the HTML files in their browser. This works fine if you
know you won’t want to make changes to your website’s data or styles. But,
as Chapter 5 discussed, most projects aren’t really one-time events.

Cloud Hosting
A better approach is to put your entire docs folder in a place where others can
see it. This could be an internal network, Dropbox, Google Drive, Box, or



something similar. Hosting the files in the cloud this way is simple to
implement and allows you to control who can see your website.

You can even automate the process of copying your docs folder to
various online file-sharing sites using R packages: the rdrop2 package works
with Dropbox, googledrive works with Google Drive, and boxr works with
Box. For example, code like the following would automatically upload the
project to Dropbox:

library(tidyverse)

library(rmarkdown)

library(fs)

library(rdrop2)

# Render the website

render_site()

# Upload to Dropbox

website_files <- dir_ls(

  path = "docs",

  type = "file",

  recurse = TRUE

)

walk(website_files, drop_upload, path = "COVID Website")

This code, which I typically add to a separate file called render.R,
renders the site, uses the dir_ls() function from the fs package to identify
all files in the docs directory, and then uploads these files to Dropbox. Now
you can run your entire file to generate and upload your website in one go.

GitHub Hosting
A more complicated yet powerful alternative to cloud hosting is to use a
static hosting service like GitHub Pages. Each time you commit (take a
snapshot of) your code and push (sync) it to GitHub, this service deploys the
website to a URL you’ve set up. Learning to use GitHub is an investment of
time and effort (the self-published book Happy Git and GitHub for the useR
by Jenny Bryan at https://happygitwithr.com is a great resource), but being
able to host your website for free makes it worthwhile.

Here’s how GitHub Pages works. Most of the time, when you look at a

https://happygitwithr.com


file on GitHub, you see its underlying source code, so if you looked at an
HTML file, you’d see only the HTML code. GitHub Pages, on the other
hand, shows you the rendered HTML files. To host your website on GitHub
Pages, you’ll need to first push your code to GitHub. Once you have a
repository set up there, go to it, then go to the Settings tab, which should
look like Figure 9-10.

Figure 9-10: Setting up GitHub Pages

Now choose how you want GitHub to deploy the raw HTML. The
easiest approach is to keep the default source. To do so, select Deploy from a
branch and then select your default branch (usually main or master). Next,
select the directory containing the HTML files you want to be rendered. If
you configured your website for GitHub Pages at the beginning of this
chapter, the files should be in docs. Click Save and wait a few minutes, and
GitHub should show the URL where your website now lives.

The best part about hosting your website on GitHub Pages is that any
time you update your code or data, the website will update as well. R
Markdown, distill, and GitHub Pages make building and maintaining
websites a snap.

Summary
In this chapter, you learned to use the distill package to make websites in
R. This package provides a simple way to get a website up and running with



the tool you’re already using for working with data. You’ve seen how to:

Create new pages and add them to your top navigation bar
Customize the look and feel of your website with tweaks to the CSS
Use wider layouts to make content fit better on individual pages
Convert static data visualization and tables into interactive versions
Use GitHub Pages to host an always-up-to-date version of your website

Matt Herman has continued building websites with R. He and his
colleagues at the Council of State Governments Justice Center have made a
great website using Quarto, the language-agnostic version of R Markdown.
This website, found at https://projects.csgjusticecenter.org/tools-for-states-
to-address-crime/, highlights crime trends throughout the United States using
many of the same techniques you saw in this chapter.

Whether you prefer distill or Quarto, using R is a quick way to
develop complex websites without having to be a sophisticated frontend web
developer. The websites look good and communicate well. They are one
more example of how R can help you efficiently share your work with the
world.

Additional Resources
The Distillery, “Welcome to the Distillery!,” accessed November 30,
2023, https://distillery.rbind.io.
Thomas Mock, “Building a Blog with distill,” The MockUp, August 1,
2020, https://themockup.blog/posts/2020-08-01-building-a-blog-with-
distill/.

https://projects.csgjusticecenter.org/tools-for-states-to-address-crime/
https://distillery.rbind.io
https://themockup.blog/posts/2020-08-01-building-a-blog-with-distill/


10
QUARTO

Quarto, the next-generation version of R
Markdown, offers a few advantages over

its predecessor. First, the syntax Quarto uses across
output types is more consistent. As you’ve seen in this
book, R Markdown documents might use a variety of
conventions; for example, xaringan indicates new
slides using three dashes, which would create a
horizontal line in other output formats, and the
distill package likewise has layout options that don’t
work in xaringan.

Quarto also supports more languages than R Markdown does, as well as
multiple code editors. While R Markdown is designed to work specifically in
the RStudio IDE, Quarto works not only in RStudio but also in code editors
such as Visual Studio (VS) Code and JupyterLab, making it easy to use with
multiple languages.

This chapter focuses on the benefits of using Quarto as an R user. It
explains how to set up Quarto, then covers some of the most important
differences between Quarto and R Markdown. Finally, you’ll learn how to
use Quarto to make the parameterized reports, presentations, and websites
covered in previous chapters.



Creating a Quarto Document
Versions of RStudio starting with 2022.07.1 come with Quarto installed. To
check your RStudio version, click RStudio4About RStudio in the top
menu bar. If you have an older version of RStudio, update it now by
reinstalling it, as outlined in Chapter 1. Quarto should then be installed for
you.

Once you’ve installed Quarto, create a document by clicking File4New
File4Quarto Document. You should see a menu, shown in Figure 10-1,
that looks like the one used to create an R Markdown document.

Figure 10-1: The RStudio menu for creating a new Quarto document

Give your document a title and choose an output format. The Engine
option allows you to select a different way to render documents. By default, it
uses Knitr, the same rendering tool used by R Markdown. The Use Visual
Markdown Editor option provides an interface that looks more like Microsoft
Word, but it can be finicky, so I won’t cover it here.

The resulting Quarto document should contain default content, just as R
Markdown documents do:

title: "My Report"

format: html



## Quarto

Quarto enables you to weave together content and executable c

ode into a

finished document. To learn more about Quarto see <https://qu

arto.org>.

## Running Code

When you click the **Render** button a document will be gener

ated that includes

both content and the output of embedded code. You can embed c

ode like this:

```{r}

1 + 1

```

You can add options to executable code like this:

```{r}

#| echo: false

2 * 2

```

The `echo: false` option disables the printing of code (only 

output is displayed).

Although R Markdown and Quarto have many features in common, they
also have some differences to be aware of.

Comparing R Markdown and Quarto
Quarto and R Markdown documents have the same basic structure—YAML
metadata, followed by a combination of Markdown text and code chunks—
but they have some variations in syntax.

The format and execute YAML Fields
Quarto uses slightly different options in its YAML. It replaces the output
field with the format field and uses the value html instead of html_document:

---

title: "My Report"



format: html

---

Other Quarto formats also use different names than their R Markdown
counterparts: docx instead of word_document and pdf instead of
pdf_document, for example. All of the possible formats can be found at
https://quarto.org/docs/guide/.

A second difference between R Markdown and Quarto syntax is that
Quarto doesn’t use a setup code chunk to set default options for showing
code, charts, and other elements in the rendered versions of the document. In
Quarto, these options are set in the execute field of the YAML. For example,
the following would hide code, as well as all warnings and messages, from
the rendered document:

---

title: "My Report"

format: html

execute:

  echo: false

  warning: false

  message: false

---

Quarto also allows you to write true and false in lowercase.

Individual Code Chunk Options
In R Markdown, you override options at the individual code chunk level by
adding the new option within the curly brackets that start a code chunk. For
example, the following would show both the code 2 * 2 and its output:

```{r echo = TRUE}

2 * 2

```

Quarto instead uses this syntax to set individual code chunk–level
options:

```{r}

https://quarto.org/docs/guide/


#| echo: false

2 * 2

```

The option is set within the code chunk itself. The characters #| (known
as a hash pipe) at the start of a line indicate that you are setting options.

Dashes in Option Names
Another difference you’re likely to see if you switch from R Markdown to
Quarto is that option names consisting of two words are separated by a dash
rather than a period. R Markdown, for example, uses the code chunk option
fig.height to specify the height of plots. In contrast, Quarto uses fig-
height, as follows:

```{r}

#| fig-height: 10

library(palmerpenguins)

library(tidyverse)

ggplot(

  penguins,

  aes(

    x = bill_length_mm,

    y = bill_depth_mm

  )

) +

  geom_point()

```

Helpfully for anyone coming from R Markdown, fig.height and similar
options containing periods will continue to work if you forget to make the
switch. A list of all code chunk options can be found on the Quarto website at
https://quarto.org/docs/reference/cells/cells-knitr.xhtml.

The Render Button
You can follow the same process to render your Quarto document as in R
Markdown, but in Quarto the button is called Render rather than Knit.
Clicking Render will turn the Quarto document into an HTML file, Word

https://quarto.org/docs/reference/cells/cells-knitr.xhtml


document, or any other output format you select.

Parameterized Reporting
Now that you’ve learned a bit about how Quarto works, you’ll make a few
different documents with it, starting with a parameterized report. The process
of making parameterized reports with Quarto is nearly identical to doing so
with R Markdown. In fact, you can adapt the R Markdown document you
used to make the Urban Institute COVID report in Chapter 7 for Quarto
simply by copying the .Rmd file, changing its extension to .qmd, and then
making a few other changes:

---

title: "Urban Institute COVID Report"

format: html ❶
params:

  state: "Alabama"

execute: ❷
  echo: false

  warning: false

  message: false

---

```{r}

library(tidyverse)

library(urbnthemes)

library(scales)

```

# `r params$state`

```{r}

cases <- tibble(state.name) %>%

  rbind(state.name = "District of Columbia") %>%

  left_join(

    read_csv("https://data.rfortherestofus.com/united_states_

covid19_cases_deaths

    _and_testing_by_state.csv", skip = 2),

    by = c("state.name" = "State/Territory")

  ) %>%

  select(

    total_cases = `Total Cases`,



    state.name,

    cases_per_100000 = `Case Rate per 100000`

  ) %>%

  mutate(cases_per_100000 = parse_number(cases_per_100000)) %

>%

  mutate(case_rank = rank(-cases_per_100000, ties.method = "m

in"))

```

```{r}

state_text <- if_else(params$state == "District of Columbia",

 str_glue("the District of

Columbia"), str_glue("state of {params$state}"))

state_cases_per_100000 <- cases %>%

  filter(state.name == params$state) %>%

  pull(cases_per_100000) %>%

  comma()

state_cases_rank <- cases %>%

  filter(state.name == params$state) %>%

  pull(case_rank)

```

In `r state_text`, there were `r state_cases_per_100000` case

s per 100,000 people in the last

seven days. This puts `r params$state` at number `r state_cas

es_rank` of 50 states and the

District of Columbia.

```{r}

#| fig-height: 8 ❸

set_urbn_defaults(style = "print")

cases %>%

  mutate(highlight_state = if_else(state.name == params$state

, "Y", "N")) %>%

  mutate(state.name = fct_reorder(state.name, cases_per_10000

0)) %>%

  ggplot(aes(

    x = cases_per_100000,

    y = state.name,

    fill = highlight_state

  )) +



  geom_col() +

  scale_x_continuous(labels = comma_format()) +

  theme(legend.position = "none") +

  labs(

    y = NULL,

    x = "Cases per 100,000"

  )

```

This code switches output: html_document to format: html in the
YAML ❶, then removes the setup code chunk and sets those options in the
YAML’s execute field ❷. Finally, the fig.height option in the last code
chunk is replaced with fig-height and labeled as an option with the hash
pipe ❸.

Next, to create one report for each state, you must tweak the render.R
script file you used to make parameterized reports in Chapter 7:

# Load packages

library(tidyverse)

❶ library(quarto)

# Create a vector of all states and the District of Columbia

state <- tibble(state.name) %>%

  rbind("District of Columbia") %>%

  pull(state.name)

# Create a tibble with information on the:

# input R Markdown document

# output HTML file

# parameters needed to knit the document

reports <- tibble(

❷ input = "urban-covid-budget-report.qmd",

  output_file = str_glue("{state}.xhtml"),

❸ execute_params = map(state, ~list(state = .))

)

# Generate all of our reports

reports %>%

❹ pwalk(quarto_render)



This updated render.R file loads the quarto package instead of the
rmarkdown package ❶ and changes the input file to urban-covid-budget-
report.qmd ❷. The reports tibble uses execute_params instead of params
❸ because this is the argument that the quarto_render() function expects.
To render the reports, the quarto_render() function replaces the render()
function from the markdown package ❹. As in Chapter 7, running this code
should produce a report for each state.

Making Presentations
Quarto can also produce slideshow presentations like those you made in
Chapter 8 with the xaringan package. To make a presentation with Quarto,
click File4New File4Quarto Presentation. Choose Reveal JS to make
your slides and leave the Engine and Editor options untouched.

The slides you’ll make use the reveal.js JavaScript library under the
hood, a technique similar to making slides with xaringan. The following
code updates the presentation you made in Chapter 8 so that it works with
Quarto:

---

title: "Penguins Report"

author: "David Keyes"

format: revealjs

execute:

  echo: false

  warning: false

  message: false

---

# Introduction

```{r}

library(tidyverse)

```

```{r}

penguins <- read_csv("https://raw.githubusercontent.com/rfort

herestofus/r-without-statistics/

main/data/penguins-2008.csv")

```



We are writing a report about the **Palmer Penguins**. These 

penguins are *really* amazing.

There are three species:

- Adelie

- Gentoo

- Chinstrap

## Bill Length

We can make a histogram to see the distribution of bill lengt

hs.

```{r}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

```{r}

average_bill_length <- penguins %>%

  summarize(avg_bill_length = mean(

    bill_length_mm,

    na.rm = TRUE

  )) %>%

  pull(avg_bill_length)

```

The chart shows the distribution of bill lengths. The average

 bill length is

`r average_bill_length` millimeters.

This code sets format: revealjs in the YAML to make a presentation
and adds several global code chunk options in the execute section. It then
removes the three dashes used to make slide breaks because first- or second-
level headings make new slides in Quarto (though you could still use three
dashes to manually add slide breaks). When you render this code, you should
get an HTML file with your slides. The output should look similar to the
default xaringan slides from Chapter 8.



Revealing Content Incrementally
Quarto slides can incrementally reveal content. To reveal bulleted and
numbered lists one item at a time by default, add incremental: true to the
document’s YAML like so:

---

title: "Penguins Report"

author: "David Keyes"

format:

  revealjs:

    incremental: true

execute:

  echo: false

  warning: false

  message: false

---

As a result of this code, the content in all lists in the presentation should
appear on the slide one item at a time.

You can also set just some lists to incrementally reveal using this format:

::: {.incremental}

- Adelie

- Gentoo

- Chinstrap

:::

Using ::: to start and end a segment of the document creates a section in
the resulting HTML file known as a div. The HTML <div> tag allows you to
define properties within that section. In this code, adding {.incremental}
sets a custom CSS class that displays the list incrementally.

Aligning Content and Adding Background Images
You can use a <div> tag to create columns in Quarto slides, too. Say you
want to create a slide with content in two columns, as in Figure 10-2.



Figure 10-2: Creating two columns with a <div> tag

The following code creates this two-column slide:

:::: {.columns}

::: {.column width="50%"}

```{r}

penguins %>%

  ggplot(aes(x = bill_length_mm)) +

  geom_histogram() +

  theme_minimal()

```

:::

::: {.column width="50%"}

```{r}

penguins %>%

  ggplot(aes(x = bill_depth_mm)) +

  geom_histogram() +

  theme_minimal()

```



:::

::::

Notice the :::, as well as ::::, which creates nested <div> sections. The
columns class tells the HTML that all content within the :::: should be laid
out as columns. Then, ::: {.column width="50%"} starts a <div> that takes
up half the width of the slide. The closing ::: and :::: indicate the end of
the section.

When using xaringan, you easily centered content on a slide by
surrounding it with .center[]. Alignment in Quarto is slightly more
complicated. Quarto has no built-in CSS class to center content, so you’ll
need to create one yourself. Begin a CSS code chunk and a custom class
called center-slide:

```{css}

.center-slide {

    text-align: center;

}

```

This CSS center-aligns all content. (The text-align property aligns
images, too, not just text.)

To apply the new center-slide class, put it next to the title of the slide,
as follows:

## Bill Length {.center-slide}

With the custom CSS applied, the slide should now center all content.
Finally, when working in xaringan, you added a background image to a

slide. To do the same thing in Quarto, apply the background-image attribute
to a slide, like so:

## Penguins {background-image="penguins.jpg"}

This should add a slide with the text Penguins in front of the selected



image.

Customizing Your Slides with Themes and CSS
You’ve started making some changes to the look and feel of the Quarto
slides, but you can add even more customization to your design. As with
xaringan, there are two main ways to further customize your slides in
Quarto: using existing themes and changing the CSS.

Themes are the easiest way to change your slide design. To apply a
theme in Quarto, simply add its name to your YAML:

---

title: "Penguins Report"

format:

  revealjs:

    theme: dark

---

Using this option should change the theme from light (the default) to
dark. You can see the title slide with the dark theme applied in Figure 10-3.
To see the full list of available themes, go to
https://quarto.org/docs/presentations/revealjs/themes.xhtml.

Figure 10-3: A slide with the dark theme applied

The second option to change your slide design further is to write custom
CSS. Quarto uses a type of CSS called Sass that lets you include variables in
the CSS. These variables resemble those from the xaringanthemer package,

https://quarto.org/docs/presentations/revealjs/themes.xhtml


which allowed you to set values for header formatting using
header_h2_font_size and header_color.

Go to File4New File4New Text File, create a Sass file called
theme.scss, and add the following two mandatory sections:

/*-- scss:defaults --*/

/*-- scss:rules --*/

The scss:defaults section is where you use the Quarto Sass variables.
For example, to change the color and size of first-level headers, add this
code:

/*-- scss:defaults --*/

$presentation-heading-color: red;

$presentation-h1-font-size: 150px;

/*-- scss:rules --*/

All Quarto Sass variables start with a dollar sign, followed by a name. To
apply these tweaks to your slides, adjust your YAML to tell Quarto to use the
custom theme.scss file:

---

title: "Penguins Reports"

format:

  revealjs:

    theme: theme.scss

---

Figure 10-4 shows the changes applied to the rendered slides.



Figure 10-4: A slide modified using custom CSS

All predefined variables should go in the scss:defaults section. You
can find the full list of these variables at
https://quarto.org/docs/presentations/revealjs/themes.xhtml#sass-variables.

The scss:rules section is where you can add CSS tweaks for which
there are no existing variables. For example, you could place the code you
wrote to center the slide’s content in this section:

/*-- scss:defaults --*/

$presentation-heading-color: red;

$presentation-h1-font-size: 150px;

/*-- scss:rules --*/

.center-slide {

  text-align: center;

}

Because rendered Quarto slides are HTML documents, you can tweak
them however you’d like with custom CSS. What’s more, because the slides
use reveal.js under the hood, any features built into that JavaScript library
work in Quarto. This library includes easy ways to add transitions,
animations, interactive content, and much more. The demo Quarto
presentation available at https://quarto.org/docs/presentations/revealjs/demo/
shows many of these features in action.

Making Websites
Quarto can make websites without requiring the use of an external package
like distill. To create a Quarto website, go to File4New Project. Select

https://quarto.org/docs/presentations/revealjs/themes.xhtml#sass-variables
https://quarto.org/docs/presentations/revealjs/demo/


New Directory, then Quarto Website. You’ll be prompted to choose a
directory in which to place your project. Keep the default engine (Knitr),
check Create a Git Repository (which should show up only if you’ve
already installed Git), and leave everything else unchecked.

Click Create Project, which should create a series of files: index.qmd,
about.qmd, _quarto.yml, and styles.css. These files resemble those created by
the distill package. The .qmd files are where you’ll add content, the
_quarto.yml file is where you’ll set options for the entire website, and the
styles.css file is where you’ll add CSS to customize the website’s appearance.

Building the Website
You’ll start by modifying the .qmd files. Open the home page file
(index.qmd), delete the default content after the YAML, and replace it with
the content from the website you made in Chapter 9. Remove the layout =
"l-page" element, which you used to widen the layout. I’ll discuss how to
change the page’s layout in Quarto later in this section.

To render a Quarto website, look for the Build tab in the top right of
RStudio and click Render Website. The rendered website should now appear
in the Viewer pane on the bottom-right pane of RStudio. If you navigate to
the Files pane on the same panel, you should also see that a _site folder has
been created to hold the content of the rendered site. Try opening the
index.xhtml file in your web browser. You should see the website in Figure
10-5.



Figure 10-5: The Quarto website with warnings and messages

As you can see, the web page includes many warnings and messages that
you don’t want to show. In R Markdown, you removed these in the setup
code chunk; in Quarto, you can do so in the YAML. Add the following code
to the index.qmd YAML to remove all code, warnings, and messages from
the output:

execute:

  echo: false

  warning: false

  message: false

Note, however, that these options will make changes to only one file.
Next, you’ll see how to set these options for the entire website.

Setting Options
When using distill, you modified the _site.yml file to make changes to all
files in the website. In Quarto, you use the _quarto.yml file for the same
purpose. If you open it, you should see three sections:



Project:

  type: website

website:

  title: "covid-website-quarto"

  navbar:

    left:

      - href: index.qmd

        text: Home

      - about.qmd

format:

  html:

    theme: cosmo

    css: styles.css

    toc: true

The top section sets the project type (in this case, a website). The middle
section defines the website’s title and determines the options for its
navigation bar. The bottom section modifies the site’s appearance.

You’ll start from the bottom. To remove code, warnings, and messages
for every page in the website, add the portion of the YAML you wrote earlier
to the _quarto.yml file. The bottom section should now look like this:

format:

  html:

    theme: cosmo

    css: styles.css

    toc: true

execute:

  echo: false

  warning: false

  message: false

If you build the website again, you should now see just the content, as in
Figure 10-6.



Figure 10-6: The website with warnings and messages removed

In this section of the _quarto.yml file, you can add any options you
would otherwise place in a single .qmd file to apply them across all the pages
of your website.

Changing the Website’s Appearance
The format section of the _quarto.yml file determines the appearance of
rendered files. By default, Quarto applies a theme called cosmo, but there are
many themes available. (You can see the full list at
https://quarto.org/docs/output-formats/html-themes.xhtml.) To see how a
different theme affects the output, make the following change:

format:

  html:

    theme: minty

    css: styles.css

    toc: true

The minty theme changes the website’s fonts and updates the color
scheme to gray and light green.

https://quarto.org/docs/output-formats/html-themes.xhtml


In addition to using prebuilt themes, you can customize your website
with CSS. The css: styles.css section in the _quarto.yml file indicates that
Quarto will use any CSS in the styles.css file when rendering. Try adding the
following CSS to styles.css to make first-level headers red and 50 pixels
large:

h1 {

  color: red;

  font-size: 50px;

}

The re-rendered index.xhtml now has large red headings (shown in
grayscale in Figure 10-7).

Figure 10-7: The website with custom CSS applied

An alternative approach to customizing your website is to use Sass
variables in a .scss file, as you did in your presentation. For example, create a
file called styles.scss and add a line like this one to make the body
background bright yellow:



/*-- scss:defaults --*/

$body-bg: #eeeeee;

To get Quarto to use the styles.scss file, adjust the theme line as follows:

format:

  html:

    theme: [minty, styles.scss]

    css: styles.css

    toc: true

This syntax tells Quarto to use the minty theme, then make additional
tweaks based on the styles.scss file. If you render the website again, you
should see the bright yellow background throughout (Figure 10-8, again in
grayscale for print).

Figure 10-8: The website with custom CSS applied through styles.scss

Note that when you add a .scss file, the tweaks made in styles.css no
longer apply. If you wanted to use those, you’d need to add them to the
styles.scss file.



The line toc: true creates a table of contents on the right side of the
web pages (which you can see in Figures 10-5 through 10-7, labeled On This
Page). You can remove the table of contents by changing true to false. Add
any further options, such as figure height, to the bottom section of the
_quarto.yml file.

Adjusting the Title and Navigation Bar
The middle section of the _quarto.yml file sets the website’s title and
navigation. Change the title and the text for the About page link as follows:

website:

  title: "Quarto COVID Website"

  navbar:

    left:

      - href: index.qmd

        text: Home

      - href: about.qmd

        text: About This Website

Changing the title requires adjusting the title line. The navbar section
functions nearly identically to how it does with distill. The href line lists
the files the navigation bar should link to. The optional text line specifies the
text that should show up for that link. Figure 10-9 shows these changes
applied to the website.

Figure 10-9: The changes to the navigation bar

The title on the home page is still covid-website-quarto, but you could
change this in the index.qmd file.

Creating Wider Layouts
When you created a website with distill, you used the line layout = "l-
page" to widen the map on the web page. You can accomplish the same
result with Quarto by using the ::: syntax to add HTML <div> tags:



:::{.column-screen-inset}

```{r}

#| out-width: 100%

# Make map

most_recent <- us_states %>%

  left_join(covid_data, by = "state") %>%

  slice_max(

    order_by = date,

    n = 1

  )

most_recent %>%

  ggplot(aes(fill = deaths_avg_per_100k)) +

  geom_sf() +

  scale_fill_viridis_c(option = "rocket") +

  labs(fill = "Deaths per\n100,000 people") +

  theme_void()

```

:::

This code adds :::{.column-screen-inset} to the beginning of the
mapmaking code chunk and ::: to the end of it. This code chunk now also
includes the line #| out-width: 100% to specify that the map should take up
all of the available width. Without this line, the map would take up only a
portion of the window. There are a number of different output widths you can
use; see the full list at https://quarto.org/docs/authoring/article-layout.xhtml.

Hosting Your Website on GitHub Pages and Quarto Pub
You can host your Quarto website using GitHub Pages, just as you did with
your distill website. Recall that GitHub Pages requires you to save the
website’s files in the docs folder. Change the _quarto.yml file so that the site
outputs to this folder:

project:

  type: website

  output-dir: docs

Now, when you render the site, the HTML and other files should show
up in the docs directory. At this point, you can push your repository to

https://quarto.org/docs/authoring/article-layout.xhtml


GitHub, adjust the GitHub Pages settings as you did in Chapter 9, and see the
URL at which your Quarto website will live.

As an alternative to GitHub Pages, Quarto has a free service called
Quarto Pub that makes it easy to get your materials online. If you’re not a
GitHub user, this is a great way to publish your work. To see how it works,
you’ll publish the website you just made to it. Click the Terminal tab on the
bottom-left pane of RStudio. At the prompt, enter quarto publish. This
should bring up a list of ways you can publish your website, as shown in
Figure 10-10.

Figure 10-10: The list of providers to publish your Quarto website

Press Enter to select Quarto Pub. You’ll then be asked to authorize
RStudio to publish to Quarto Pub. Enter Y to do so, which should take you to
https://quartopub.com. Sign up for an account (or sign in if you already have
one). You should see a screen indicating that you have successfully signed in
and authorized RStudio to connect with Quarto Pub. From there, you can
return to RStudio, which should prompt you to select a name for your
website. The easiest option is to use your project’s name. Once you enter the
name, Quarto Pub should publish the site and take you to it, as shown in
Figure 10-11.

https://quartopub.com


Figure 10-11: The website published on Quarto Pub

When you make updates to your site, you can republish it to Quarto Pub
using the same steps. Quarto Pub is probably the easiest way to publish
HTML files made with Quarto.

Summary
As you’ve seen in this chapter, you can do everything you did in R
Markdown using Quarto, without loading any external packages. In addition,
Quarto’s different output formats use a more consistent syntax. For example,
because you can make new slides in Quarto by adding first- or second-level
headers, the Quarto documents you use to create reports should translate
easily to presentations.

You’re probably wondering at this point whether you should use R
Markdown or Quarto. It’s a good question, and one many in the R
community are thinking about. R Markdown isn’t going away, so if you
already use it, you don’t need to switch. If you’re new to R, however, you
may be a good candidate for Quarto, as its future features may not be
backported to R Markdown.

Ultimately, the differences between R Markdown and Quarto are



relatively small, and the impact of switching between tools should be minor.
Both R Markdown and Quarto can help you become more efficient, avoid
manual errors, and share results in a wide variety of formats.

Additional Resources
Andrew Bray, Rebecca Barter, Silvia Canelón, Christophe Dervieu,
Devin Pastor, and Tatsu Shigeta, “From R Markdown to Quarto,”
workshop materials from rstudio::conf 2022, Washington, DC, July 25–
26, 2022, https://rstudio-conf-2022.github.io/rmd-to-quarto/.
Tom Mock, “Getting Started with Quarto,” online course, accessed
December 1, 2023, https://jthomasmock.github.io/quarto-in-two-hours/.

https://rstudio-conf-2022.github.io/rmd-to-quarto/
https://jthomasmock.github.io/quarto-in-two-hours/
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11
AUTOMATICALLY ACCESSING ONLINE DATA

So far, you’ve imported data into your
projects from CSV files. Many online

datasets allow you to export CSVs, but before you do
so, you should look for packages to automate your data
access. If you can eliminate the manual steps involved
in fetching data, your analysis and reporting will be
more accurate. You’ll also be able to efficiently update
your report when the data changes.

R offers many ways to automate the process of accessing online data. In
this chapter, I’ll discuss two such approaches. First, you will use the
googlesheets4 package to fetch data directly from Google Sheets. You’ll
learn how to connect your R Markdown project to Google so you can
automatically download data when a Google Sheet updates. Then, you’ll use
the tidycensus package to access data from the US Census Bureau. You’ll
work with two large census datasets, the Decennial Census and the American
Community Survey, and practice visualizing them.

Importing Data from Google Sheets with googlesheets4
By using the googlesheets4 package to access data directly from Google
Sheets, you avoid having to manually download data, copy it into your



project, and adjust your code so it imports that new data every time you want
to update a report. This package lets you write code that automatically fetches
new data directly from Google Sheets. Whenever you need to update your
report, you can simply run your code to refresh the data. In addition, if you
work with Google Forms, you can pipe your data into Google Sheets,
completely automating the workflow from data collection to data import.

Using the googlesheets4 package can help you manage complex
datasets that update frequently. For example, in her role at the Primary Care
Research Institute at the University of Buffalo, Meghan Harris used it for a
research project about people affected by opioid use disorder. The data came
from a variety of surveys, all of which fed into a jumble of Google Sheets.
Using googlesheets4, Harris was able to collect all of her data in one place
and use R to put it to use. Data that had once been largely unused because
accessing it was so complicated could now inform research on opioid use
disorder.

This section demonstrates how the googlesheets4 package works using
a fake dataset about video game preferences that Harris created to replace her
opioid survey data (which, for obvious reasons, is confidential).

Connecting to Google
To begin, install the googlesheets4 package by running
install.packages("googlesheets4"). Next, connect to your Google
account by running the gs4_auth() function in the console. If you have more
than one Google account, select the account that has access to the Google
Sheet you want to work with.

Once you do so, a screen should appear. Check the box next to See, Edit,
Create, and Delete All Your Google Sheets Spreadsheets. This will ensure
that R can access data from your Google Sheets account. Click Continue,
and you should see the message “Authentication complete. Please close this
page and return to R.” The googlesheets4 package will now save your
credentials so that you can use them in the future without having to
reauthenticate.

Reading Data from a Sheet
Now that you’ve connected R to your Google account, you can import the



fake data that Harris created about video game preferences (access it at
https://data.rfortherestofus.com/google-sheet). Figure 11-1 shows what it
looks like in Google Sheets.

Figure 11-1: The video game data in Google Sheets

The googlesheets4 package has a function called read_sheet() that
allows you to pull in data directly from a Google Sheet. Import the data by
passing the spreadsheet’s URL to the function like so:

library(googlesheets4)

survey_data_raw <- read_sheet("https://docs.google.com/spread

sheets/d/

1AR0_RcFBg8wdiY4Cj-k8vRypp_txh27MyZuiRdqScog/edit?usp=sharing

")

Take a look at the survey_data_raw object to confirm that the data was
imported. Using the glimpse() function from the dplyr package makes it
easier to read:

library(tidyverse)

survey_data_raw %>%

  glimpse()

The glimpse() function, which creates one output row per variable,
shows that you’ve successfully imported the data directly from Google

https://data.rfortherestofus.com/google-sheet


Sheets:

#> Rows: 5

#> Columns: 5

#> $ Timestamp                          <dttm> 05-16 15:20:50

#> $ `How old are you?`                 <chr> "25-34", "45-54

"...

#> $ `Do you like to play video games?` <chr> "Yes", "No", "Y

e...

#> $ `What kind of games do you like?`  <chr> "Sandbox, Role-

P...

#> $ `What's your favorite game?`       <chr> "It's hard to c

h...

Once you have the data in R, you can use the same workflow you’ve
been using to create reports with R Markdown.

Using the Data in R Markdown
The following code is taken from an R Markdown report that Harris made to
summarize the video games data. You can see the YAML, the setup code
chunk, a code chunk that loads packages, and the code to import data from
Google Sheets:

---

title: "Video Game Survey"

output: html_document

---

```{r setup, include=FALSE}

knitr::opts_chunk$set(echo = FALSE,

                      warning = FALSE,

                      message = FALSE)

```

```{r}

library(tidyverse)

library(janitor)

library(googlesheets4)

library(gt)

```



```{r}

# Import data from Google Sheets

❶ survey_data_raw <- read_sheet("https://docs.google.com/spread

sheets/d/

1AR0_RcFBg8wdiY4Cj-k8vRypp_txh27MyZuiRdqScog/edit?usp=sharing

")

```

This R Markdown document resembles those discussed in previous
chapters, except for the way you import the data ❶. Because you’re bringing
it in directly from Google Sheets, there’s no risk of, say, accidentally reading
in the wrong CSV. Automating this step reduces the risk of error.

The next code chunk cleans the survey_data_raw object, saving the
result as survey_data_clean:

```{r}

# Clean data

survey_data_clean <- survey_data_raw %>%

  clean_names() %>%

  mutate(participant_id = as.character(row_number())) %>%

  rename(

    age = how_old_are_you,

    like_games = do_you_like_to_play_video_games,

    game_types = what_kind_of_games_do_you_like,

    favorite_game = whats_your_favorite_game

  ) %>%

  relocate(participant_id, .before = age) %>%

  mutate(age = factor(age, levels = c("Under 18", "18-24", "2

5-34",

"35-44", "45-54", "55-64", "Over 65")))

```

Here, the clean_names() function from the janitor package makes the
variable names easier to work with. Defining a participant_id variable
using the row_number() function then adds a consecutively increasing
number to each row, and the as.character() function makes the number a
character. Next, the code changes several variable names with the rename()
function. The mutate() function then transforms the age variable into a data
structure known as a factor, which ensures that age will show up in the right



order in your chart. Finally, the relocate() function positions
participant_id before the age variable.

Now you can use the glimpse() function again to view your updated
survey_data_clean data frame, which looks like this:

#> Rows: 5

#> Columns: 6

#> $ timestamp      <dttm> 2024-05-16 15:20:50, 2024-05-16 15

:21:28, 2024-05...

#> $ participant_id <chr> "1", "2", "3", "4", "5"

#> $ age            <fct> 25-34, 45-54, Under 18, Over 65, Un

...

#> $ like_games     <chr> "Yes", "No", "Yes", "No", "Yes"

#> $ game_types     <chr> "Sandbox, Role-Playing (RPG), Simul

...

#> $ favorite_game  <chr> "It's hard to choose. House Flipper

...

The rest of the report uses this data to highlight various statistics:

# Respondent Demographics

```{r}

# Calculate number of respondents

number_of_respondents <- nrow(survey_data_clean) ❶
```

We received responses from `r number_of_respondents` responde

nts. Their ages are below.

```{r}

survey_data_clean %>%

  select(participant_id, age) %>%

  gt() %>% ❷
  cols_label(

    participant_id = "Participant ID",

    age = "Age"

  ) %>%

  tab_style(

    style = cell_text(weight = "bold"),

    locations = cells_column_labels()

  ) %>%



  cols_align(

    align = "left",

    columns = everything()

  ) %>%

  cols_width(

    participant_id ~ px(200),

    age ~ px(700)

  )

```

# Video Games

We asked if respondents liked video games. Their responses ar

e below.

```{r}

survey_data_clean %>%

  count(like_games) %>%

  ggplot(aes(

    x = like_games, ❸
    y = n,

    fill = like_games

  )) +

  geom_col() +

  scale_fill_manual(values = c(

    "No" = "#6cabdd",

    "Yes" = "#ff7400"

  )) +

  labs(

    title = "How Many People Like Video Games?",

    x = NULL,

    y = "Number of Participants"

  ) +

  theme_minimal(base_size = 16) +

  theme(

    legend.position = "none",

    panel.grid.minor = element_blank(),

    panel.grid.major.x = element_blank(),

    axis.title.y = element_blank(),

    plot.title = element_text(

      face = "bold",

      hjust = 0.5

    )

  )

```



These sections calculate the number of survey respondents ❶, then put
this value in the text using inline R code; create a table that breaks down the
respondents by age group ❷; and generate a graph displaying how many
respondents like video games ❸. Figure 11-2 shows the resulting report.

Figure 11-2: The rendered video game report

You can rerun the code at any point to fetch updated data. The survey
had five responses today, but if you run it again tomorrow and it has
additional responses, they will be included in the import. If you used Google
Forms to run your survey and saved the results to a Google Sheet, you could
produce this up-to-date report simply by clicking the Knit button in RStudio.

Importing Only Certain Columns
In the previous sections, you read the data of the entire Google Sheet, but you
also have the option to import only a section of a sheet. For example, the
survey data includes a timestamp column. This variable is added



automatically whenever someone submits a Google Form that pipes data into
a Google Sheet, but you don’t use it in your analysis, so you could get rid of
it.

To do so, use the range argument in the read_sheet() function when
importing the data like so:

read_sheet("https://docs.google.com/spreadsheets/d/1AR0_RcFBg

8wdiY4Cj-k8vRypp_

txh27MyZuiRdqScog/edit?usp=sharing",

          range = "Sheet1!B:E") %>%

  glimpse()

This argument lets you specify a range of data to import. It uses the same
syntax you may have used to select columns in Google Sheets. In this
example, range = "Sheet1!B:E" imports columns B through E (but not A,
which contains the timestamp). Adding glimpse() and then running this code
produces output without the timestamp variable:

#> Rows: 5

#> Columns: 4

#> $ `How old are you?`                 <chr> "25-34", "45-54

"...

#> $ `Do you like to play video games?` <chr> "Yes", "No", "Y

e...

#> $ `What kind of games do you like?`  <chr> "Sandbox, Role-

P...

#> $ `What's your favorite game?`       <chr> "It's hard to c

h...

There are a number of other useful functions in the googlesheets4
package. For example, if you ever need to write your output back to a Google
Sheet, the write_sheet() function is there to help. To explore other
functions in the package, check out its documentation website at
https://googlesheets4.tidyverse.org/index.xhtml.

Now we’ll turn our attention to another R package that allows you to
automatically fetch data, this time from the US Census Bureau.

Accessing Census Data with tidycensus

https://googlesheets4.tidyverse.org/index.xhtml


If you’ve ever worked with data from the US Census Bureau, you know what
a hassle it can be. Usually, the process involves visiting the Census Bureau
website, searching for the data you need, downloading it, and then analyzing
it in your tool of choice. This pointing and clicking gets very tedious after a
while.

Kyle Walker, a geographer at Texas Christian University, and Matt
Herman (creator of the Westchester COVID-19 website discussed in Chapter
9) developed the tidycensus package to automate the process of importing
Census Bureau data into R. With tidycensus, you can write just a few lines
of code to get data about, say, the median income in all counties in the United
States.

In this section, I’ll show you how the tidycensus package works using
examples from two datasets to which it provides access: the Decennial
Census, administered every 10 years, and the annual American Community
Survey. I’ll also show you how to use the data from these two sources to
perform additional analysis and make maps by accessing geospatial and
demographic data simultaneously.

Connecting to the Census Bureau with an API Key
Begin by installing tidycensus using install.packages("tidycensus").
To use tidycensus, you must get an application programming interface
(API) key from the Census Bureau. API keys are like passwords that online
services use to determine whether you’re authorized to access data.

To obtain this key, which is free, go to
https://api.census.gov/data/key_signup.xhtml and enter your details. Once
you receive the key by email, you need to put it in a place where tidycensus
can find it. The census_api_key() function does this for you, so after
loading the tidycensus package, run the function as follows, replacing
123456789 with your actual API key:

library(tidycensus)

census_api_key("123456789", install = TRUE)

The install = TRUE argument saves your API key in your .Renviron
file, which is designed for storing confidential information. The package will

https://api.census.gov/data/key_signup.xhtml


look for your API key there in the future so that you don’t have to reenter it
every time you use the package.

Now you can use tidycensus to access Census Bureau datasets. While
the Decennial Census and the American Community Survey are the most
common, Chapter 2 of Kyle Walker’s book Analyzing US Census Data:
Methods, Maps, and Models in R discusses others you can access.

Working with Decennial Census Data
The tidycensus packages includes several functions dedicated to specific
Census Bureau datasets, such as get_decennial() for Decennial Census
data. To access data from the 2020 Decennial Census about the Asian
population in each state, use the get_decennial() function with three
arguments as follows:

get_decennial(geography = "state",

              variables = "P1_006N",

              year = 2020)

Setting the geography argument to "state" tells get_decennial() to
access data at the state level. In addition to the 50 states, it will return data for
the District of Columbia and Puerto Rico. The variables argument specifies
the variable or variables you want to access. Here, P1_006N is the variable
name for the total Asian population. I’ll discuss how to identify other
variables you may want to use in the next section. Finally, year specifies the
year for which you want to access data—in this case, 2020.

Running this code returns the following:

#> # A tibble: 52 × 4

#>    GEOID NAME                 variable   value

#>    <chr> <chr>                <chr>      <dbl>

#>  1 42    Pennsylvania         P1_006N   510501

#>  2 06    California           P1_006N  6085947

#>  3 54    West Virginia        P1_006N    15109

#>  4 49    Utah                 P1_006N    80438

#>  5 36    New York             P1_006N  1933127

#>  6 11    District of Columbia P1_006N    33545

#>  7 02    Alaska               P1_006N    44032

#>  8 12    Florida              P1_006N   643682



#>  9 45    South Carolina       P1_006N    90466

#> 10 38    North Dakota         P1_006N    13213

--snip--

The resulting data frame has four variables. GEOID is the geographic
identifier assigned to the state by the Census Bureau. Each state has a
geographic identifier, as do all counties, census tracts, and other geographies.
NAME is the name of each state, and variable is the name of the variable you
passed to the get_decennial() function. Finally, value is the numeric value
for the state and variable in each row. In this case, it represents the total
Asian population in each state.

Identifying Census Variable Values
You’ve just seen how to retrieve the total number of Asian residents of each
state, but say you want to calculate that number instead as a percentage of all
the state’s residents. To do that, first you need to retrieve the variable for the
state’s total population.

The tidycensus package has a function called load_variables() that
shows all of the variables from a Decennial Census. Run it with the year
argument set to 2020 and dataset set to pl as follows:

load_variables(year = 2020,

               dataset = "pl")

Running this code pulls data from so-called redistricting summary data
files (which Public Law 94-171 requires the Census Bureau to produce every
10 years) and returns the name, label (description), and concept (category) of
all available variables:

#> # A tibble: 301 × 3

#>    name    label                                       con

cept

#>    <chr>   <chr>                                       <ch

r>

#>  1 H1_001N " !!Total:"                                 OCC

U...

#>  2 H1_002N " !!Total:!!Occupied"                       OCC

U...



#>  3 H1_003N " !!Total:!!Vacant"                         OCC

U...

#>  4 P1_001N " !!Total:"                                 RAC

E

#>  5 P1_002N " !!Total:!!Population of one race:"        RAC

E

#>  6 P1_003N " !!Total:!!Population of one race:!!Whi... RAC

E

#>  7 P1_004N " !!Total:!!Population of one race:!!Bla... RAC

E

#>  8 P1_005N " !!Total:!!Population of one race:!!Ame... RAC

E

#>  9 P1_006N " !!Total:!!Population of one race:!!Asi... RAC

E

#> 10 P1_007N " !!Total:!!Population of one race:!!Nat... RAC

E

--snip--

By looking at this list, you can see that the variable P1_001N returns the
total population.

Using Multiple Census Variables
Now that you know which variables you need, you can use the
get_decennial() function again with two variables at once:

get_decennial(geography = "state",

              variables = c("P1_001N", "P1_006N"),

              year = 2020) %>%

  arrange(NAME)

Adding arrange(NAME) after get_decennial() sorts the results by state
name, allowing you to easily see that the output includes both variables for
each state:

#> # A tibble: 104 × 4

#>    GEOID NAME       variable    value

#>    <chr> <chr>      <chr>       <dbl>

#>  1 01    Alabama    P1_001N   5024279

#>  2 01    Alabama    P1_006N     76660

#>  3 02    Alaska     P1_001N    733391

#>  4 02    Alaska     P1_006N     44032



#>  5 04    Arizona    P1_001N   7151502

#>  6 04    Arizona    P1_006N    257430

#>  7 05    Arkansas   P1_001N   3011524

#>  8 05    Arkansas   P1_006N     51839

#>  9 06    California P1_001N  39538223

#> 10 06    California P1_006N   6085947

--snip--

When you’re working with multiple census variables like this, you might
have trouble remembering what names like P1_001N and P1_006N mean.
Fortunately, you can adjust the code in the call to get_decennial() to give
these variables more meaningful names using the following syntax:

get_decennial(geography = "state",

              variables = c(total_population = "P1_001N",

                            asian_population = "P1_006N"),

              year = 2020) %>%

  arrange(NAME)

Within the variables argument, this code specifies the new names for
the variables, followed by the equal sign and the original variable names. The
c() function allows you to rename multiple variables at one time.

Now it’s much easier to see which variables you’re working with:

#> # A tibble: 104 × 4

#>    GEOID NAME       variable            value

#>    <chr> <chr>      <chr>               <dbl>

#>  1 01    Alabama    total_population  5024279

#>  2 01    Alabama    asian_population    76660

#>  3 02    Alaska     total_population   733391

#>  4 02    Alaska     asian_population    44032

#>  5 04    Arizona    total_population  7151502

#>  6 04    Arizona    asian_population   257430

#>  7 05    Arkansas   total_population  3011524

#>  8 05    Arkansas   asian_population    51839

#>  9 06    California total_population 39538223

#> 10 06    California asian_population  6085947

#> # ... with 94 more rows

Instead of P1_001N and P1_006N, the variables appear as



total_population and asian_population. Much better!

Analyzing Census Data
Now you have the data you need to calculate the Asian population in each
state as a percentage of the total. There are just a few functions to add to the
code from the previous section:

get_decennial(

  geography = "state",

  variables = c(

    total_population = "P1_001N",

    asian_population = "P1_006N"

  ),

  year = 2020

) %>%

  arrange(NAME) %>%

  group_by(NAME) %>%

  mutate(pct = value / sum(value)) %>%

  ungroup() %>%

  filter(variable == "asian_population")

The group_by(NAME) function creates one group for each state because
you want to calculate the Asian population percentage in each state (not for
the entire United States). Then mutate() calculates each percentage, taking
the value in each row and dividing it by the total_population and
asian_population rows for each state. The ungroup() function removes the
state-level grouping, and filter() shows only the Asian population
percentage.

When you run this code, you should see both the total Asian population
and the Asian population as a percentage of the total population in each state:

#> # A tibble: 52 × 5

#>    GEOID NAME                 variable          value     

 pct

#>    <chr> <chr>                <chr>             <dbl>    <

dbl>

#>  1 01    Alabama              asian_popula...   76660 0.01

5029

#>  2 02    Alaska               asian_popula...   44032 0.05

6638



#>  3 04    Arizona              asian_popula...  257430 0.03

4746

#>  4 05    Arkansas             asian_popula...   51839 0.01

6922

#>  5 06    California           asian_popula... 6085947 0.13

3390

#>  6 08    Colorado             asian_popula...  199827 0.03

3452

#>  7 09    Connecticut          asian_popula...  172455 0.04

5642

#>  8 10    Delaware             asian_popula...   42699 0.04

1349

#>  9 11    District of Columbia asian_popula...   33545 0.04

6391

#> 10 12    Florida              asian_popula...  643682 0.02

9018

--snip--

This is a reasonable way to calculate the Asian population as a
percentage of the total population in each state—but it’s not the only way.

Using a Summary Variable
Kyle Walker knew that calculating summaries like you’ve just done would be
a common use case for tidycensus. To calculate, say, the Asian population
as a percentage of the whole, you need to have a numerator (the Asian
population) and denominator (the total population). So, to simplify things,
Walker included the summary_var argument, which can be used within
get_decennial() to import the total population as a separate variable.
Instead of putting P1_001N (total population) in the variables argument and
renaming it, you can assign it to the summary_var argument as follows:

get_decennial(

  geography = "state",

  variables = c(asian_population = "P1_006N"),

  summary_var = "P1_001N",

  year = 2020

) %>%

  arrange(NAME)

This returns a nearly identical data frame to what you just got, except



that the total population is now a separate variable, rather than additional
rows for each state:

#> # A tibble: 52 × 5

#>    GEOID NAME                 variable         value summa

r...

#>    <chr> <chr>                <chr>             <dbl>    <

dbl>

#>  1 01    Alabama              asian_popula...   76660  502

4279

#>  2 02    Alaska               asian_popula...   44032   73

3391

#>  3 04    Arizona              asian_popula...  257430  715

1502

#>  4 05    Arkansas             asian_popula...   51839  301

1524

#>  5 06    California           asian_popula... 6085947 3953

8223

#>  6 08    Colorado             asian_popula...  199827  577

3714

#>  7 09    Connecticut          asian_popula...  172455  360

5944

#>  8 10    Delaware             asian_popula...   42699   98

9948

#>  9 11    District of Columbia asian_popula...   33545   68

9545

#> 10 12    Florida              asian_popula...  643682 2153

8187

--snip--

#> #   summary_value

With the data in this new format, now you can calculate the Asian
population as a percentage of the whole by dividing the value variable by the
summary_value variable. Then you drop the summary_value variable because
you no longer need it after doing this calculation:

get_decennial(

  geography = "state",

  variables = c(asian_population = "P1_006N"),

  summary_var = "P1_001N",

  year = 2020

) %>%



  arrange(NAME) %>%

  mutate(pct = value / summary_value) %>%

  select(-summary_value)

The resulting output is identical to the output of the previous section:

#> # A tibble: 52 × 5

#>    GEOID NAME                 variable          value     

 pct

#>    <chr> <chr>                <chr>             <dbl>    <

dbl>

#>  1 01    Alabama              asian_popula...   76660 0.01

5258

#>  2 02    Alaska               asian_popula...   44032 0.06

0039

#>  3 04    Arizona              asian_popula...  257430 0.03

5997

#>  4 05    Arkansas             asian_popula...   51839 0.01

7214

#>  5 06    California           asian_popula... 6085947 0.15

3930

#>  6 08    Colorado             asian_popula...  199827 0.03

4610

#>  7 09    Connecticut          asian_popula...  172455 0.04

7825

#>  8 10    Delaware             asian_popula...   42699 0.04

3133

#>  9 11    District of Columbia asian_popula...   33545 0.04

8648

#> 10 12    Florida              asian_popula...  643682 0.02

9886

#> # 42 more rows

How you choose to calculate summary statistics is up to you;
tidycensus makes it easy to do either way.

Visualizing American Community Survey Data
Once you’ve accessed data using the tidycensus package, you can do
whatever you want with it. In this section, you’ll practice analyzing and
visualizing survey data using the American Community Survey. This survey,
which is conducted every year, differs from the Decennial Census in two



major ways: it is given to a sample of people rather than the entire
population, and it includes a wider range of questions.

Despite these differences, you can access data from the American
Community Survey nearly identically to how you access Decennial Census
data. Instead of get_decennial(), you use the get_acs() function, but the
arguments you pass to it are the same:

get_acs(

  geography = "state",

  variables = "B01002_001",

  year = 2020

)

This code uses the B01002_001 variable to get median age data from
2020 for each state. Here’s what the output looks like:

#> # A tibble: 52 × 5

#>    GEOID NAME                 variable   estimate   moe

#>    <chr> <chr>                <chr>         <dbl> <dbl>

#>  1 01    Alabama              B01002_001     39.2   0.1

#>  2 02    Alaska               B01002_001     34.6   0.2

#>  3 04    Arizona              B01002_001     37.9   0.2

#>  4 05    Arkansas             B01002_001     38.3   0.2

#>  5 06    California           B01002_001     36.7   0.1

#>  6 08    Colorado             B01002_001     36.9   0.1

#>  7 09    Connecticut          B01002_001     41.1   0.2

#>  8 10    Delaware             B01002_001     41.0   0.2

#>  9 11    District of Columbia B01002_001     34.1   0.1

#> 10 12    Florida              B01002_001     42.2   0.2

--snip--

You should notice two differences in the output from get_acs()
compared to that from get_decennial(). First, instead of the value column,
get_acs() produces a column called estimate. Second, it adds a column
called moe, for the margin of error. These changes are the result of American
Community Survey being given only to a sample of the population, since
extrapolating values from that sample to produce an estimate for the
population as a whole introduces a margin of error.

In the state-level data, the margins of error are relatively low, but in



smaller geographies, they tend to be higher. Cases in which your margins of
error are high relative to your estimates indicate a greater level of uncertainty
about how well the data represents the population as a whole, so you should
interpret such results with caution.

Making Charts
To pipe your data on median age into ggplot to create a bar chart, add the
following lines:

get_acs(

  geography = "state",

  variables = "B01002_001",

  year = 2020

) %>%

  ggplot(aes(

    x = estimate,

    y = NAME

  )) +

  geom_col()

After importing the data with the get_acs() function, the ggplot()
function pipes it directly into ggplot. States (which use the variable NAME) will
go on the y-axis, and median age (estimate) will go on the x-axis. A simple
geom_col() creates the bar chart shown in Figure 11-3.



Figure 11-3: A bar chart generated using data acquired with the get_asc() function

This chart is nothing special, but the fact that it takes just six lines of
code to create most definitely is!

Making Population Maps with the geometry Argument
In addition to co-creating tidycensus, Kyle Walker created the tigris
package for working with geospatial data. As a result, these packages are
tightly integrated. Within the get_acs() function, you can set the geometry
argument to TRUE to receive both demographic data from the Census Bureau
and geospatial data from tigris:

get_acs(

  geography = "state",

  variables = "B01002_001",

  year = 2020,



  geometry = TRUE

)

In the resulting data, you can see that it has the metadata and geometry
column of the simple features objects that you saw in Chapter 4:

#> Simple feature collection with 52 features and 5 fields

#> Geometry type: MULTIPOLYGON

#> Dimension:     XY

#> Bounding box:  xmin: -179.1489 ymin: 17.88328 xmax: 179.77

85 ymax: 71.36516

#> Geodetic CRS:  NAD83

#> First 10 features:

#>    GEOID  NAME         variable   estimate  moe

#> 1  35     New Mexico   B01002_001     38.1  0.1

#> 2  72     Puerto Rico  B01002_001     42.4  0.2

#> 3  06     California   B01002_001     36.7  0.1

#> 4  01     Alabama      B01002_001     39.2  0.1

#> 5  13     Georgia      B01002_001     36.9  0.1

#> 6  05     Arkansas     B01002_001     38.3  0.2

#> 7  41     Oregon       B01002_001     39.5  0.1

#> 8  28     Mississippi  B01002_001     37.7  0.2

#> 9  08     Colorado     B01002_001     36.9  0.1

#> 10 49     Utah         B01002_001     31.1  0.1

#>    geometry

#> 1  MULTIPOLYGON (((-109.0502 3...

#> 2  MULTIPOLYGON (((-65.23805 1...

#> 3  MULTIPOLYGON (((-118.6044 3...

#> 4  MULTIPOLYGON (((-88.05338 3...

#> 5  MULTIPOLYGON (((-81.27939 3...

#> 6  MULTIPOLYGON (((-94.61792 3...

#> 7  MULTIPOLYGON (((-123.6647 4...

#> 8  MULTIPOLYGON (((-88.50297 3...

#> 9  MULTIPOLYGON (((-109.0603 3...

#> 10 MULTIPOLYGON (((-114.053 37...

The geometry type is MULTIPOLYGON, which you learned about in Chapter
4. To pipe this data into ggplot to make a map, add the following code:

get_acs(

  geography = "state",

  variables = "B01002_001",



  year = 2020,

  geometry = TRUE

) %>%

  ggplot(aes(fill = estimate)) +

  geom_sf() +

  scale_fill_viridis_c()

After importing the data with get_acs() and piping it into the ggplot()
function, this code sets the estimate variable to use for the fill aesthetic
property; that is, the fill color of each state will vary depending on the median
age of its residents. Then geom_sf() draws the map, and the
scale_fill_viridis_c() function gives it a colorblind-friendly palette.

The resulting map, shown in Figure 11-4, is less than ideal because the
Aleutian Islands in Alaska cross the 180-degree line of longitude, or the
International Date Line. As a result, most of Alaska appears on one side of
the map and a small part appears on the other side. What’s more, both Hawaii
and Puerto Rico are hard to see.

Figure 11-4: A hard-to-read map showing median age by state

To fix these problems, load the tigris package, then use the
shift_geometry() function to move Alaska, Hawaii, and Puerto Rico into
places where they’ll be more easily visible:

library(tigris)

get_acs(

  geography = "state",



  variables = "B01002_001",

  year = 2020,

  geometry = TRUE

) %>%

  shift_geometry(preserve_area = FALSE) %>%

  ggplot(aes(fill = estimate)) +

  geom_sf() +

  scale_fill_viridis_c()

Setting the preserve_area argument to FALSE shrinks the giant state of
Alaska and makes Hawaii and Puerto Rico larger. Although the state sizes in
the map won’t be precise, the map will be easier to read, as you can see in
Figure 11-5.

Figure 11-5: An easier-to-read map tweaked using tigris functions

Now try making the same map for all 3,000 counties by changing the
geography argument to "county". Other geographies include region, tract
(for census tracts), place (for census-designated places, more commonly
known as towns and cities), and congressional district. There are also
many more arguments in both the get_decennial() and get_acs()
functions; I’ve shown you only a few of the most common. If you want to
learn more, Walker’s book Analyzing US Census Data: Methods, Maps, and



Models in R is a great resource.

Summary
This chapter explored two packages that use APIs to access data directly from
its source. The googlesheets4 package lets you import data from a Google
Sheet. It’s particularly useful when you’re working with survey data, as it
makes it easy to update your reports when new results come in. If you don’t
work with Google Sheets, you could use similar packages to fetch data from
Excel365 (Microsoft365R), Qualtrics (qualtRics), Survey Monkey
(svmkrR), and other sources.

If you work with US Census Bureau data, the tidycensus package is a
huge time-saver. Rather than having to manually download data from the
Census Bureau website, you can use tidycensus to write R code that
accesses the data automatically, making it ready for analysis and reporting.
Because of the package’s integration with tigris, you can also easily map
this demographic data.

If you’re looking for census data from other countries, there are also R
packages to bring data from Canada (cancensus), Kenya (rKenyaCensus),
Mexico (mxmaps and inegiR), Europe (eurostat), and other regions. Before
hitting that download button in your data collection tool to get a CSV file, it’s
worth looking for a package that can import that data directly into R.

Additional Resources
Isabella Velásquez and Curtis Kephart, “Automated Survey Reporting
with googlesheets4, pins, and R Markdown,” Posit, June 15, 2022,
https://posit.co/blog/automated-survey-reporting/.
Kyle Walker, Analyzing US Census Data: Methods, Maps, and Models in
R (Boca Raton, FL: CRC Press, 2023), https://walker-data.com/census-r/.

https://posit.co/blog/automated-survey-reporting/
https://walker-data.com/census-r/
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CREATING FUNCTIONS AND PACKAGES

In this chapter, you will learn how to
define your own R functions, including

the parameters they should accept. Then, you’ll create
a package to distribute those functions, add your code
and dependencies to it, write its documentation, and
choose the license under which to release it.

Saving your code as custom functions and then distributing them in
packages can have numerous benefits. First, packages make your code easier
for others to use. For example, when researchers at the Moffitt Cancer Center
needed to access code from a database, data scientists Travis Gerke and
Garrick Aden-Buie used to write R code for each researcher, but they quickly
realized they were reusing the same code over and over. Instead, they made a
package with functions for accessing databases. Now researchers no longer
had to ask for help; they could simply install the package Gerke and Aden-
Buie had made and use its functions themselves.

What’s more, developing packages allows you to shape how others
work. Say you make a ggplot theme that follows the principles of high-
quality data visualization discussed in Chapter 3. If you put this theme in a
package, you can give others an easy way to follow these design principles.
In short, functions and packages help you work with others using shared
code.



Creating Your Own Functions
Hadley Wickham, developer of the tidyverse set of packages, recommends
creating a function once you’ve copied some code three times. Functions
have three pieces: a name, a body, and arguments.

Writing a Simple Function
You’ll begin by writing an example of a relatively simple function. This
function, called show_in_excel_penguins(), opens the penguin data from
Chapter 7 in Microsoft Excel:

❶ penguins <- read_csv("https://data.rfortherestofus.com/pengui

ns-2007.csv")

❷ show_in_excel_penguins <- function() {

  csv_file <- str_glue("{tempfile()}.csv")

  write_csv(

    x = penguins,

    file = csv_file,

    na = ""

  )

  file_show(path = csv_file)

}

This code first loads the tidyverse and fs packages. You’ll use
tidyverse to create a filename for the CSV file and save it, and fs to open
the CSV file in Excel (or whichever program your computer uses to open
CSV files by default).

Next, the read_csv() function imports the penguin data and names the
data frame penguins ❶. Then it creates the new show_in_excel_penguins
function, using the assignment operator (<-) and function() to specify that
show_in_excel_penguins isn’t a variable name but a function name ❷. The
open curly bracket ({) at the end of the line indicates the start of the function
body, where the “meat” of the function can be found. In this case, the body
does three things:



Creates a location for a CSV file to be saved using the str_glue()
function combined with the tempfile() function. This creates a file at a
temporary location with the .csv extension and saves it as csv_file.
Writes penguins to the location set in csv_file. The x argument in write
_csv() refers to the data frame to be saved. It also specifies that all NA
values should show up as blanks. (By default, they would display the text
NA.)
Uses the file_show() function from the fs package to open the
temporary CSV file in Excel.

To use the show_in_excel_penguins() function, highlight the lines that
define the function and then press COMMAND-ENTER on macOS or CTRL-ENTER
on Windows. You should now see the function in your global environment,
as shown in Figure 12-1.

Figure 12-1: The new function in the global environment

From now on, any time you run the code show_in_excel_penguins(), R
will open the penguins data frame in Excel.

Adding Arguments
You’re probably thinking that this function doesn’t seem very useful. All it
does is open the penguins data frame. Why would you want to keep doing
that? A more practical function would let you open any data in Excel so you
can use it in a variety of contexts.

The show_in_excel() function does just that: it takes any data frame
from R, saves it as a CSV file, and opens the CSV file in Excel. Bruno



Rodrigues, head of the Department of Statistics and Data Strategy at the
Ministry of Higher Education and Research in Luxembourg, wrote
show_in_excel() to easily share data with his non-R-user colleagues.
Whenever he needed data in a CSV file, he could run this function.

Replace your show_in_excel_penguins() function definition with this
slightly simplified version of the code that Rodrigues used:

show_in_excel <- function(data) {

  csv_file <- str_glue("{tempfile()}.csv")

  write_csv(

    x = data,

    file = csv_file,

    na = ""

  )

  file_show(path = csv_file)

}

This code looks the same as show_in_excel_penguins(), with two
exceptions. Notice that the first line now says function(data). Items listed
within the parentheses of the function definition are arguments. If you look
farther down, you’ll see the second change. Within write_csv(), instead of x
= penguins, it now says x = data. This allows you to use the function with
any data, not just penguins.

To use this function, you simply tell show_in_excel() what data to use,
and the function opens the data in Excel. For example, tell it to open the
penguins data frame as follows:

show_in_excel(data = penguins)

Having created the function with the data argument, now you can run it
with any data you want to. This code, for example, imports the COVID case
data from Chapter 10 and opens it in Excel:

covid_data <- read_csv("https://data.rfortherestofus.com/

us-states-covid-rolling-average.csv")

show_in_excel(data = covid_data)



You can also use show_in_excel() at the end of a pipeline. This code
filters the covid_data data frame to include only data from California before
opening it in Excel:

covid_data %>%

  filter(state == "California") %>%

  show_in_excel()

Rodrigues could have copied the code within the show_in_excel()
function and rerun it every time he wanted to view his data in Excel. But, by
creating a function, he was able to write the code just once and then run it as
many times as necessary.

Creating a Function to Format Race and Ethnicity Data
Hopefully now you better understand how functions work, so let’s walk
through an example function you could use to simplify some of the activities
from previous chapters.

In Chapter 11, when you used the tidycensus package to automatically
import data from the US Census Bureau, you learned that the census data has
many variables with nonintuitive names. Say you regularly want to access
data about race and ethnicity from the American Community Survey, but you
can never remember which variables enable you to do so. To make your task
more efficient, you’ll create a get_acs_race_ethnicity() function step-by-
step in this section, learning some important concepts about custom functions
along the way.

A first version of the get_acs_race_ethnicity() function might look
like this:

library(tidycensus)

get_acs_race_ethnicity <- function() {

  race_ethnicity_data <-

    get_acs(

      geography = "state",

      variables = c(

        "White" = "B03002_003",

        "Black/African American" = "B03002_004",

        "American Indian/Alaska Native" = "B03002_005",



        "Asian" = "B03002_006",

        "Native Hawaiian/Pacific Islander" = "B03002_007",

        "Other race" = "B03002_008",

        "Multi-Race" = "B03002_009",

        "Hispanic/Latino" = "B03002_012"

      )

    )

  race_ethnicity_data

}

Within the function body, this code calls the get_acs() function from
tidycensus to retrieve population data at the state level. But instead of
returning the function’s default output, it updates the hard-to-remember
variable names to human-readable names, such as White and Black/African
American, and saves them as an object called race_ethnicity_data. The
code then uses the race_ethnicity_data object to return that data when the
get_acs_race_ethnicity() function is run.

To run this function, enter the following:

get_acs_race_ethnicity()

Doing so should return data with easy-to-read race and ethnicity group
names:

#> # A tibble: 416 × 5

#>    GEOID NAME    variable                     estimate   m

oe

#>    <chr> <chr>   <chr>                           <dbl> <db

l>

#>  1 01    Alabama White                         3241003  20

76

#>  2 01    Alabama Black/African American        1316314  30

18

#>  3 01    Alabama American Indian/Alaska Na...    17417   9

41

#>  4 01    Alabama Asian                           69331  15

59

#>  5 01    Alabama Native Hawaiian/Pacific I...     1594   3

76

#>  6 01    Alabama Other race                      12504  18



67

#>  7 01    Alabama Multi-Race                     114853  38

35

#>  8 01    Alabama Hispanic/Latino                224659   4

13

#>  9 02    Alaska  White                          434515  10

67

#> 10 02    Alaska  Black/African American          22787   7

69

#> # 406 more rows

You could improve this function in a few ways. You might want the
resulting variable names to follow a consistent syntax, for example, so you
could use the clean_names() function from the janitor package to format
them in snake case (in which all words are lowercase and separated by
underscores). However, you might also want to have the option of keeping
the original variable names. To accomplish this, add the
clean_variable_names argument to the function definition as follows:

get_acs_race_ethnicity <- function(clean_variable_names = FAL

SE) {

  race_ethnicity_data <-

    get_acs(

      geography = "state",

      variables = c(

        "White" = "B03002_003",

        "Black/African American" = "B03002_004",

        "American Indian/Alaska Native" = "B03002_005",

        "Asian" = "B03002_006",

        "Native Hawaiian/Pacific Islander" = "B03002_007",

        "Other race" = "B03002_008",

        "Multi-Race" = "B03002_009",

        "Hispanic/Latino" = "B03002_012"

      )

    )

  if (clean_variable_names == TRUE) {

  ❶ race_ethnicity_data <- clean_names(race_ethnicity_data)

  }

  race_ethnicity_data

}



This code adds the clean_variable_names argument to get_acs_race
_ethnicity() and specifies that its value should be FALSE by default. Then,
in the function body, an if statement says that if the argument is TRUE, the
variable names should be overwritten by versions formatted in snake case ❶.
If the argument is FALSE, the variable names remain unchanged.

If you run the function now, nothing should change, because the new
argument is set to FALSE by default. Try setting clean_variable_names to
TRUE as follows:

get_acs_race_ethnicity(clean_variable_names = TRUE)

This function call should return data with consistent variable names:

#> # A tibble: 416 × 5

#>    geoid name    variable                     estimate   m

oe

#>    <chr> <chr>   <chr>                           <dbl> <db

l>

#>  1 01    Alabama White                         3241003  20

76

#>  2 01    Alabama Black/African American        1316314  30

18

#>  3 01    Alabama American Indian/Alaska Na...    17417   9

41

#>  4 01    Alabama Asian                           69331  15

59

#>  5 01    Alabama Native Hawaiian/Pacific I...     1594   3

76

#>  6 01    Alabama Other race                      12504  18

67

#>  7 01    Alabama Multi-Race                     114853  38

35

#>  8 01    Alabama Hispanic/Latino                224659   4

13

#>  9 02    Alaska  White                          434515  10

67

#> 10 02    Alaska  Black/African American          22787   7

69

#> # 406 more rows



Notice that GEOID and NAME now appear as geoid and name.
Now that you’ve seen how to add arguments to two separate functions,

you’ll learn how to pass arguments from one function to another.

Using ... to Pass Arguments to Another Function
The get_acs_race_ethnicity() function you’ve created retrieves
population data at the state level by passing the geography = "state"
argument to the get_acs() function. But what if you wanted to obtain
county-level or census tract data? You could do so using get_acs(), but
get_acs_race_ethnicity() isn’t currently written in a way that would allow
this. How could you modify the function to make it more flexible?

Your first idea might be to add a new argument for the level of data to
retrieve. You could edit the first two lines of the function as follows to add a
my_geography argument and then use it in the get_acs() function like so:

get_acs_race_ethnicity <- function(clean_variable_names = FAL

SE, my_geography) {

  race_ethnicity_data <- get_acs(geography = my_geography,

--snip--

But what if you also want to select the year for which to retrieve data?
Well, you could add an argument for that as well. However, as you saw in
Chapter 11, the get_acs() function has many arguments, and repeating them
all in your code would quickly become cumbersome.

The ... syntax gives you a more efficient option. Placing ... in the
get_acs_race_ethnicity() function allows you to automatically pass any of
its arguments to get_acs() by including ... in that function as well:

get_acs_race_ethnicity <- function(

  clean_variable_names = FALSE,

  ...

) {

  race_ethnicity_data <-

    get_acs(

      ...,

      variables = c(

        "White" = "B03002_003",

        "Black/African American" = "B03002_004",



        "American Indian/Alaska Native" = "B03002_005",

        "Asian" = "B03002_006",

        "Native Hawaiian/Pacific Islander" = "B03002_007",

        "Other race" = "B03002_008",

        "Multi-Race" = "B03002_009",

        "Hispanic/Latino" = "B03002_012"

      )

    )

  if (clean_variable_names == TRUE) {

    race_ethnicity_data <- clean_names(race_ethnicity_data)

  }

  race_ethnicity_data

}

Try running your function by passing it the geography argument set to
"state":

get_acs_race_ethnicity(geography = "state")

This should return the following:

#> # A tibble: 416 × 5

#>    GEOID NAME    variable                     estimate   m

oe

#>    <chr> <chr>   <chr>                           <dbl> <db

l>

#>  1 01    Alabama White                         3241003  20

76

#>  2 01    Alabama Black/African American        1316314  30

18

#>  3 01    Alabama American Indian/Alaska Na...    17417   9

41

#>  4 01    Alabama Asian                           69331  15

59

#>  5 01    Alabama Native Hawaiian/Pacific I...     1594   3

76

#>  6 01    Alabama Other race                      12504  18

67

#>  7 01    Alabama Multi-Race                     114853  38

35

#>  8 01    Alabama Hispanic/Latino                224659   4



13

#>  9 02    Alaska  White                          434515  10

67

#> 10 02    Alaska  Black/African American          22787   7

69

#> # 406 more rows

You’ll see that the GEOID and NAME variables are uppercase because the
clean_variable_names argument is set to FALSE by default, and we didn’t
change it when using the get_acs_race_ethnicity() function.

Alternatively, you could change the value of the argument to get data by
county:

get_acs_race_ethnicity(geography = "county")

You could also run the function with the geometry = TRUE argument to
return geospatial data alongside demographic data:

get_acs_race_ethnicity(geography = "county", geometry = TRUE)

The function should return data like the following:

#> Simple feature collection with 416 features and 5 fields

#> Geometry type: MULTIPOLYGON

#> Dimension:     XY

#> Bounding box:  xmin: -179.1489 ymin: 17.88328 xmax: 179.77

85 ymax: 71.36516

#> Geodetic CRS:  NAD83

#> First 10 features:

#>    GEOID NAME    variable                   estimate

#>  1 56    Wyoming White                        478508

#>  2 56    Wyoming Black/African American         4811

#>  3 56    Wyoming American Indian/Alaska Na...  11330

#>  4 56    Wyoming Asian                          4907

#>  5 56    Wyoming Native Hawaiian/Pacific I...    397

#>  6 56    Wyoming Other race                     1582

#>  7 56    Wyoming Multi-Race                    15921

#>  8 56    Wyoming Hispanic/Latino               59185

#>  9 02    Alaska  White                        434515

#> 10 02    Alaska  Black/African American        22787



#>     moe geometry

#> 1   959 MULTIPOLYGON (((-111.0546 4...

#> 2   544 MULTIPOLYGON (((-111.0546 4...

#> 3   458 MULTIPOLYGON (((-111.0546 4...

#> 4   409 MULTIPOLYGON (((-111.0546 4...

#> 5   158 MULTIPOLYGON (((-111.0546 4...

#> 6   545 MULTIPOLYGON (((-111.0546 4...

#> 7  1098 MULTIPOLYGON (((-111.0546 4...

#> 8   167 MULTIPOLYGON (((-111.0546 4...

#> 9  1067 MULTIPOLYGON (((179.4825 51...

#> 10  769 MULTIPOLYGON (((179.4825 51...

The ... syntax allows you to create your own function and pass
arguments from it to another function without repeating all of that function’s
arguments in your own code. This approach gives you flexibility while
keeping your code concise.

Now let’s look at how to put your custom functions into a package.

Creating a Package
Packages bundle your functions so you can use them in multiple projects. If
you find yourself copying functions from one project to another, or from a
functions.R file into each new project, that’s a good indication that you
should make a package.

While you can run the functions from a functions.R file in your own
environment, this code might not work on someone else’s computer. Other
users may not have the necessary packages installed, or they may be confused
about how your functions’ arguments work and not know where to go for
help. Putting your functions in a package makes them more likely to work for
everyone, as they include the necessary dependencies as well as built-in
documentation to help others use the functions on their own.

Starting the Package
To create a package in RStudio, go to File4New Project4New Directory.
Select R Package from the list of options and give your package a name. In
Figure 12-2, I’ve called mine dk. Also decide where you want your package
to live on your computer. You can leave everything else as is.



Figure 12-2: The RStudio menu for creating your own package

RStudio will now create and open the package. It should already contain
a few files, including hello.R, which has a prebuilt function called hello()
that, when run, prints the text Hello, world! in the console. You’ll get rid of
this and a few other default files so you can start with a clean slate. Delete
hello.R, NAMESPACE, and hello.Rd in the man directory.

Adding Functions with use_r()
All of the functions in a package should go in separate files in the R folder.
To add these files to the package automatically and test that they work
correctly, you’ll use the usethis and devtools packages. Install them using
install.packages() like so:

install.packages("usethis")

install.packages("devtools")

To add a function to the package, run the use_r() function from the
usethis package in the console:

usethis::use_r("acs")

The package::function() syntax allows you to use a function without
loading the associated package. The use_r() function should create a file in



the R directory with the argument name you provide—in this case, the file is
called acs.R. The name itself doesn’t really matter, but it’s a good practice to
choose something that gives an indication of the functions the file contains.
Now you can open the file and add code to it. Copy the
get_acs_race_ethnicity() function to the package.

Checking the Package with devtools
You need to change the get_acs_race_ethnicity() function in a few ways
to make it work in a package. The easiest way to figure out what changes you
need to make is to use built-in tools to check that your package is built
correctly. Run the function devtools::check() in the console to perform
what is known as an R CMD check, a command that runs under the hood to
ensure others can install your package on their system. Running R CMD check
on the dk package outputs this long message:

—— R CMD check results ——————————————— dk ————

Duration: 4s

> checking DESCRIPTION meta-information ... WARNING

Non-standard license specification:

What license is it under?

Standardizable: FALSE

> checking for missing documentation entries ... WARNING

Undocumented code objects:

'get_acs_race_ethnicity'

All user-level objects in a package should have documentation

 entries.

See chapter 'Writing R documentation files' in the 'Writing R

Extensions' manual.

❶ > checking R code for possible problems ... NOTE

get_acs_race_ethnicity: no visible global function definition

 for

'get_acs'

get_acs_race_ethnicity: no visible global function definition

 for

'clean_names'

Undefined global functions or variables:



clean_names get_acs

0 errors a | 2 warnings ｘ | 1 note ｘ

The last part is the most important, so let’s review the output from
bottom to top. The line 0 errors a | 2 warnings ｘ | 1 note ｘ highlights
three levels of issues identified in the package. Errors are the most severe, as
they mean others won’t be able to install your package, while warnings and
notes may cause problems for others. It’s best practice to eliminate all errors,
warnings, and notes.

We’ll start by addressing the note at ❶. To help you understand what R
CMD check is saying here, I need to explain a bit about how packages work.
When you install a package using the install.packages() function, it often
takes a while. That’s because the package you’re telling R to install likely
uses functions from other packages. To access these functions, R must install
these packages (known as dependencies) for you; after all, it would be a pain
if you had to manually install a whole set of dependencies every time you
installed a new package. But to make sure that the appropriate packages are
installed for any user of the dk package, you still have to make a few changes.

R CMD check is saying this package includes several “undefined global
functions or variables” and “no visible global function definition” for various
functions. This is because you’re trying to use functions from the tidycensus
and janitor packages, but you haven’t specified where these functions come
from. I can run this code in my environment because I have tidycensus and
janitor installed, but you can’t assume the same of everyone.

Adding Dependency Packages
To ensure the package’s code will work, you need to install tidycensus and
janitor for users when they install the dk package. To do this, run the
use_package() function from the usethis package in the console, first
specifying "tidycensus" for the package argument:

usethis::use_package(package = "tidycensus")

You should get the following message:



a Setting active project to '/Users/davidkeyes/Documents/Wor

k/R for the Rest of Us/dk'

a Adding 'tidycensus' to Imports field in DESCRIPTION

• Refer to functions with `tidycensus::fun()`

The Setting active project... line indicates that you’re working in
the dk project. The second line indicates that the DESCRIPTION file has been
edited. This file provides metadata about the package you’re developing.

Next, add the janitor package the same way you added tidyverse

usethis::use_package(package = "janitor")

which should give you the following output:

a Adding 'janitor' to Imports field in DESCRIPTION

• Refer to functions with `janitor::fun()`

If you open the DESCRIPTION file in the root directory of your project,
you should see the following:

Package: dk

Type: Package

Title: What the Package Does (Title Case)

Version: 0.1.0

Author: Who wrote it

Maintainer: The package maintainer <yourself@somewhere.net>

Description: More about what it does (maybe more than one lin

e)

    Use four spaces when indenting paragraphs within the Desc

ription.

License: What license is it under?

Encoding: UTF-8

LazyData: true

Imports:

    janitor,

    tidycensus

The Imports section at the bottom of the file indicates that when a user



installs the dk package, the tidycensus and janitor packages will also be
imported.

Referring to Functions Correctly
The output from running usethis::use_package(package = "janitor")
also included the line Refer to functions with tidycensus::fun()
(where fun() stands for function name). This tells you that in order to use
functions from other packages in the dk package, you need to specify both the
package name and the function name to ensure that the correct function is
used at all times. On rare occasions, you’ll find functions with identical
names used across multiple packages, and this syntax avoids ambiguity.
Remember this line from the R CMD check?

Undefined global functions or variables:

clean_names get_acs

It appeared because you were using functions without saying what package
they came from. The clean_names() function comes from the janitor
package, and get_acs() comes from tidycensus, so you will need to add
these package names before each function:

get_acs_race_ethnicity <- function(

  clean_variable_names = FALSE,

  ...

) {

  race_ethnicity_data <- tidycensus::get_acs(

    ...,

    variables = c(

      "White" = "B03002_003",

      "Black/African American" = "B03002_004",

      "American Indian/Alaska Native" = "B03002_005",

      "Asian" = "B03002_006",

      "Native Hawaiian/Pacific Islander" = "B03002_007",

      "Other race" = "B03002_008",

      "Multi-Race" = "B03002_009",

      "Hispanic/Latino" = "B03002_012"

    )

  )



  if (clean_variable_names == TRUE) {

    race_ethnicity_data <- janitor::clean_names(race_ethnicit

y_data)

  }

  race_ethnicity_data

}

Now you can run devtools::check() again, and you should see that the
notes have gone away:

> checking DESCRIPTION meta-information ... WARNING

Non-standard license specification:

What license is it under?

Standardizable: FALSE

> checking for missing documentation entries ... WARNING

Undocumented code objects:

'get_acs_race_ethnicity'

All user-level objects in a package should have documentation

 entries.

See chapter 'Writing R documentation files' in the 'Writing R

Extensions' manual.

0 errors a | 2 warnings ｘ | 0 notes a

However, there are still two warnings to deal with. You’ll do that next.

Creating Documentation with Roxygen
The checking for missing documentation entries warning indicates that
you need to document your get_acs_race_ethnicity() function. One of the
benefits of creating a package is that you can add documentation to help
others use your code. In the same way that users can enter ?get_acs() and
see documentation about that function, you want them to be able to enter ?
get_acs_race_ethnicity() to learn how your function works.

To create documentation for get_acs_race_ethnicity(), you’ll use
Roxygen, a documentation tool that uses a package called roxygen2. To get
started, place your cursor anywhere in your function. Then, in RStudio go to
Code4 Insert Roxygen Skeleton. This should add the following text before



the get _acs_race_ethnicity() function:

#' Title

#'

#' @param clean_variable_names

#' @param ...

#'

#' @return

#' @export

#'

#' @examples

This text is the documentation’s skeleton. Each line starts with the
special characters #', which indicate that you’re working with Roxygen. Now
you can edit the text to create your documentation. Begin by replacing Title
with a sentence that describes the function:

#' Access race and ethnicity data from the American Community

 Survey

Next, turn your attention to the lines beginning with @param. Roxygen
automatically creates one of these lines for each function argument, but it’s
up to you to fill them in with a description. Begin by describing what the
clean_variable_names argument does. Next, specify that the ... will pass
additional arguments to the tidycensus::get_acs() function:

#' @param clean_variable_names Should variable names be clean

ed (i.e. snake case)

#' @param ... Other arguments passed to tidycensus::get_acs()

The @return line should tell the user what the
get_acs_race_ethnicity() function returns. In this case, it returns data,
which you document as follows:

#' @return A tibble with five variables: GEOID, NAME, variabl

e, estimate, and moe

After @return is @export. You don’t need to change anything here. Most



functions in a package are known as exported functions, meaning they’re
available to users of the package. In contrast, internal functions, which are
used only by the package developers, don’t have @export in the Roxygen
skeleton.

The last section is @examples. This is where you can give examples of
code that users can run to learn how the function works. Doing this
introduces some complexity and isn’t required, so you can skip it here and
delete the line with @examples on it.

NOTE
If you want to learn more about adding examples to your documentation, the
second edition of Hadley Wickham and Jenny Bryan’s book R Packages is a
great resource.

Now that you’ve added documentation with Roxygen, run
devtools::document() in the console. This should create a
get_acs_race_ethnicity.Rd documentation file in the man directory using the
very specific format that R packages require. You’re welcome to look at it,
but you can’t change it; it’s read-only.

Running the function should also create a NAMESPACE file, which lists
the functions that your package makes available to users. It should look like
this:

# Generated by roxygen2: do not edit by hand

export(get_acs_race_ethnicity)

Your get_acs_race_ethnicity() function is now almost ready for
users.

Adding a License and Metadata
Run devtools::check() again to see if you’ve fixed the issues that led to the
warnings. The warning about missing documentation should no longer be
there. However, you do still get one warning:

> checking DESCRIPTION meta-information ... WARNING



Non-standard license specification:

What license is it under?

Standardizable: FALSE

0 errors a | 1 warning ｘ | 0 notes a

This warning reminds you that you have not given your package a
license. If you plan to make your package publicly available, choosing a
license is important because it tells other people what they can and cannot do
with your code. For information about how to choose the right license for
your package, see https://choosealicense.com.

In this example, you’ll use the MIT license, which allows users to do
essentially whatever they want with your code, by running
usethis::use_mit_license(). The usethis package has similar functions
for other common licenses. You should get the following output:

a Setting active project to '/Users/davidkeyes/Documents/Wor

k/R for the Rest of Us/dk'

a Setting License field in DESCRIPTION to 'MIT + file LICENS

E'

a Writing 'LICENSE'

a Writing 'LICENSE.md'

a Adding '^LICENSE\\.md$' to '.Rbuildignore'

The use_mit_license() function handles a lot of the tedious parts of
adding a license to your package. Most importantly for our purposes, it
specifies the license in the DESCRIPTION file. If you open it, you should see
this confirmation that you’ve added the MIT license:

License: MIT + file LICENSE

In addition to the license, the DESCRIPTION file contains metadata
about the package. You can make a few changes to identify its title and add
an author, a maintainer, and a description. The final DESCRIPTION file
might look something like this:

Package: dk

https://choosealicense.com


Type: Package

Title: David Keyes's Personal Package

Version: 0.1.0

Author: David Keyes

Maintainer: David Keyes <david@rfortherestofus.com>

    Description: A package with functions that David Keyes ma

y find

    useful.

License: MIT + file LICENSE

Encoding: UTF-8

LazyData: true

Imports:

    janitor,

    tidycensus

Having made these changes, run devtools::check() one more time to
make sure everything is in order:

0 errors a | 0 warnings a | 0 notes a

This is exactly what you want to see!

Writing Additional Functions
You’ve now got a package with one working function in it. If you wanted to
add more functions, you would follow the same procedure:

  1.  Create a new .R file with usethis::use_r() or copy another function to
the existing .R file.

  2.  Develop your function using the package::function() syntax to refer to
functions from other packages.

  3.  Add any dependency packages with use_package().
  4.  Add documentation for your function.
  5.  Run devtools::check() to make sure you did everything correctly.

Your package can contain a single function, like dk, or as many functions
as you want.

Installing the Package



Now you’re ready to install and use the new package. When you’re
developing your own package, installing it for your own use is relatively
straightforward. Simply run devtools::install(), and the package will be
ready for you to use in any project.

Of course, if you’re developing a package, you’re likely doing it not just
for yourself but for others as well. The most common way to make your
package available to others is with the code-sharing website GitHub. The
details of how to put your code on GitHub are beyond what I can cover here,
but the book Happy Git and GitHub for the useR by Jenny Bryan (self-
published at https://happygitwithr.com) is a great place to start.

I’ve pushed the dk package to GitHub, and you can find it at
https://github.com/dgkeyes/dk. If you’d like to install it, first make sure you
have the remotes package installed, then run the code
remotes::install_github("dgkeyes/dk") in the console.

Summary
In this chapter, you saw that packages are useful because they let you bundle
several elements needed to reliably run your code: a set of functions,
instructions to automatically install dependency packages, and code
documentation.

Creating your own R package is especially beneficial when you’re
working for an organization, as packages can allow advanced R users to help
colleagues with less experience. When Travis Gerke and Garrick Aden-Buie
provided researchers at the Moffitt Cancer Center with a package that
contained functions for easily accessing their databases, the researchers began
to use R more creatively.

If you create a package, you can also guide people to use R in the way
you think is best. Packages are a way to ensure that others follow best
practices (without even being aware they are doing so). They make it easy to
reuse functions across projects, help others, and adhere to a consistent style.

Additional Resources
Malcolm Barrett, “Package Development with R,” online course,
accessed December 2, 2023, https://rfortherestofus.com/courses/package-

https://happygitwithr.com
https://github.com/dgkeyes/dk
https://rfortherestofus.com/courses/package-development


development.
Hadley Wickham and Jennifer Bryan, R Packages, 2nd ed. (Sebastopol,
CA: O’Reilly Media, 2023), https://r-pkgs.org.

Wrapping Up
R was invented in 1993 as a tool for statistics, and in the years since, it has
been used for plenty of statistical analysis. But over the last three decades, R
has also become a tool that can do much more than statistics.

As you’ve seen in this book, R is great for making visualizations. You
can use it to create high-quality graphics and maps, make your own theme to
keep your visuals consistent and on-brand, and generate tables that look good
and communicate well. Using R Markdown or Quarto, you can create reports,
presentations, and websites. And best of all, these documents are all
reproducible, meaning that updating them is as easy as rerunning your code.
Finally, you’ve seen that R can help you automate how you access data, as
well as assist you in collaborating with others through the functions and
packages you create.

If R was new to you when you started this book, I hope you now feel
inspired to use it. If you’re an experienced R user, I hope this book has shown
you some ways to use R that you hadn’t previously considered. No matter
your background, my hope is that you now understand how to use R like a
pro. Because it isn’t just a tool for statisticians—R is a tool for the rest of us
too.

https://r-pkgs.org
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Build Website option, RStudio, 140

C
Cascading Style Sheets (CSS)

applying to slides, 131–135
custom CSS

applying to slides, 132–133, 167, 168–169
applying to website, 141–143, 172–174

case_when() function, 71
cells_body() function, 94
cells_column_labels() function, 90
cell_text() function, 90
census_api_key() function, 188–189
Census Bureau data

accessing, 188
American Community Survey data, 194–199
connecting to with API key, 188–189
Decennial Census data, 189–194

center alignment
in slides, 129, 167
in tables, 90–91, 92

.center[] content class, 129–131
Çetinkaya-Rundel, Mine, 16



c() function, 8–9, 15, 191
chartjunk, 20, 23
charts. See data visualization
clean_names() function, 144, 184, 206, 213
cloud hosting, 153–154
clutter

chartjunk, 20, 23
in graphs, 22–23
minimizing in tables, 87–89

code chunks
in Quarto, 160–161
in R Markdown documents, 104–106, 109–111, 144

color
bbplot package, 58–59
fill in data visualizations, 30–31, 45
intentional use in tables, 94

colorspace package, 68–69, 78
cols_align() function, 92
columns, importing from Google Sheets, 187–188
comma() function, 118
command line, working with R on, 4
comma-separated values (CSV) files, 9–10, 13–14
comments, 16–17, 104
comparison operators, 7–8
console, RStudio, 5
content, website

adding, 143–148
applying distill layouts to, 148
interactive, 148–153

coordinate reference systems (CRSs), 66–67, 70, 81–82
Council of State Governments Justice Center website, 155
count() function, 49
COVID-19 map, 61, 68

adding geospatial data, 73–74
calculating daily COVID-19 cases, 70–71
calculating incidence rates, 71–73
importing data, 69–70
importing packages, 68–69
making, 74–79
in New Zealand, xix–xx

create_theme() function, 141
CRSs (coordinate reference systems), 66–67, 70, 81–82
crsuggest package, 81
CSS. See Cascading Style Sheets
CSV (comma-separated values) files, 9–10, 13, 14
custom data visualization themes, xxi, 47–48, 59. See also BBC custom theme

styling plots with, 48–51
custom fonts, 52



custom functions, 201. See also packages
adding arguments, 203–204
formatting race and ethnicity data, 204–207
passing arguments to another function (... syntax), 207–209
writing simple functions, 202–203

custom themes, 134
cut() function, 72

D
data. See also automatically accessing online data; geospatial data

analyzing with tidyverse, 14–16
importing to create map, 69–70
working with in R, 9–13

data frames, 11
for creating drought visualization, 32
for creating tables, 86–87
vs. tibbles, 13
wrangling geospatial data, 82–83

data visualization, xxi, 19–20, 45–46. See also custom data visualization themes; maps; programming
with R; tables

complete drought visualization code, 42–45
drought visualization effectiveness, 20–23
grammar of graphics, 23–25
including parameters in code for, 118–119
interactive, on websites, 150–153
re-creating drought visualization, 32–42
with tidycensus package, 195–196
in website, 146–147
working with ggplot2 package, 25–32

Data Visualization (Healy), 17
Decennial Census data, 189–194
dependencies, package, 211–213
DESCRIPTION file, 216
devtools package, 210–211, 214–217
dimensions, geospatial data, 66
dir_ls() function, 154
distill_article format, 140
distill package, 138, 155, 157

adding website content, 143–148
applying custom CSS, 141–143
applying layouts, 148
building website, 140–141
creating new project, 138
hosting website, 153–155
interactive content, 148–153
project files, 138–140

distinct() function, 144



div tags, 165–167, 175
dk package, 209, 211–213, 217
documentation

accessing, 17–18
for creating packages, 214–215

dplyr package, 49, 183
Dropbox, sharing website through, 153–154
drop_na() function, 72
drought data visualization, 19–20, 45

adding final polishes, 38–42
altering aesthetic properties, 34–36
effectiveness of, 20–23
faceting, 36–38
plotting one region and year, 32–34
re-creating, 32–42

DT package, 148, 149

E
element_ functions, 53
environment pane, RStudio, 5
examples, adding to documentation, 215
execute field, Quarto YAML section, 159–160
exported functions, 215

F
facet_grid() function, 36
faceting data visualizations

drought data visualization, 36–38, 41, 45
in maps, 76
reducing clutter by, 23
in websites, 146

facet_wrap() function, 58, 76
fct_inorder() function, 74
fig-height option, Quarto, 160–161, 163
fig.height option, R Markdown, 128
file_show() function, 203
files pane, RStudio, 5
fill aesthetic property, 29–31, 34, 59, 83, 198
filter() function, 16, 32, 145, 192
finalise_plot() function, 48, 53
FiveThirtyEight website, tables on, 96–97
fmt_currency() function, 93
fonts

custom, 52–53
in slides, 132–133, 135

format field, Quarto YAML section, 159
format() function, 74



format section, 172
fs package, 154, 202–203
functions. See also packages

accessing documentation for, 17
accessing geospatial data with, 79–81
adding to arguments, 203–204
adding to packages, 210, 217
basic R syntax, 8–9
creating, xxii, 201–209
definition of in bbplot package, 51–52
exported, 215
internal, 215
referring to correctly in packages, 213–214
tidyverse package, 15–16
writing simple, 202–203

Fundamentals of Data Visualization (Wilke), 85–86

G
gapminder package, 25, 86
gdp data frame, 86–87
Geocomputation with R (Lovelace, Nowosad, and Muenchow), 79, 81–82
GeoJSON files, 79
geom_col() function, 29, 33–34, 146
geometric objects (geoms), 26–29, 40
geom_line() function, 27–28
geom_point() function, 27
geom_rect() function, 40–42
geom_sf() function, 62–63, 76, 198
geospatial data, 62

accessing, 79–81
adding to COVID-19 map, 73–74
bounding box, 66
coordinate reference system, 66–67
dimensions, 66
geometry column, 62, 67
geometry type, 62–66
wrangling, 82–83

Gerke, Travis, 201, 218
get_acs() function, 194–199, 207, 213
get_decennial() function, 189–191, 193–194, 199
ggplot2 package, 20, 25. See also custom data visualization themes

altering aesthetic properties, 29–31
choosing geometric objects, 26–29
complete themes, 38
documentation for, 53
entry themes, 31–32
faceting, 36–38



and grammar of graphics, 24–25
mapping data to aesthetic properties, 25–26, 33–34
and tidycensus package, 195–198

ggplot() function, 26, 33, 195, 198
ggplotly() function, 150–153
GitHub, sharing packages on, 217
GitHub Pages hosting, 138, 154–155, 175–176
glimpse() function, 183
googledrive package, 153
googlesheets4 package, 181–182, 199

connecting to Google, 182
importing only certain columns, 187–188
reading data from sheet, 182–183
using data in R Markdown, 183–187

grammar of graphics, 20, 23–25, 31–32. See also data visualization
Grammar of Graphics, The (Wilkinson), 24
grid lines, 56, 87–89
Grolemund, Garrett, 16
group_by() function, 71
group_by(NAME) function, 192
gs4_auth() function, 182
gtExtras package, 86, 95–97
gt() function, 88
gt package, 86, 88–94, 97, 145
gt_plt_sparkline() function, 95–96
gt_theme_538() function, 96–97
Guibourg, Clara, 47, 59
guide_legend() function, 78

H
Happy Git and GitHub for the useR (Bryan), 154, 217
Harris, Meghan, 182–187
hash pipe (#|), 160
Healy, Kieran, 17
hello.R file, 210
help resources, 17–18
Herman, Matt, 137–138, 148–149, 155, 188
Hill, Alison, 110–111
hosting, website, 153–155, 175–177
HTML documents

div tags, 165–167, 175
slides as, 126
for websites, 138, 154–155

I
IDE (integrated development environment), 4–5
if_else() function, 82–83



import() function, 32
importing data

to create map, 69–70
from CSV file, 9–10
with googlesheets4 package, 182–188
raw geospatial, 79

importing files into projects, 14
incidence rates, calculating, 71–73
incremental reveal in slideshows, 128–129, 165
index.qmd file, 170–171
inline R code, in R Markdown, 108–109, 117
install.packages() function, 12, 211
integrated development environment (IDE), 4–5
interactive tables, 97
interactive tooltip, 148, 150–153
interactive website content, 148–153
internal functions, 215
Ismay, Chester, 4, 12

J
janitor package, 144, 184, 206, 212–213
JavaScript, 148
JavaScript Object Notation (JSON) format, 32

K
Karamanis, Georgios, 19–20, 32, 34–42
Kim, Albert, 4, 12
Knitr package, 158, 169
knitr::opts_chunk$set() function, 106
knitting, 103–107, 109–111, 120

L
labs() function, 78
lag() function, 71
layouts, distill package, 148
left alignment in tables, 90–92
.left-column[] content class, 130
legends

bbplot package, 54
drought data visualization, 42

license for packages, 215–217
line charts, 27–28
LINESTRING geometry type, 64
lists

revealing incrementally in slideshows, 165
in R Markdown documents, 107



load_variables() function, 190
Lovelace, Robin, 79, 81–82
l-screen-inset layout, 148
lubridate package, 144

M
Madjid, Abdoul, 61, 68–69, 83–84
map() function, 121
mapping data to aesthetic properties, 25–26, 33–34
maps, xxi, 61, 83–84

geospatial data
accessing simple features, 79–81
primer, 62–67
wrangling, 82–83

making, 79–83
re-creating COVID-19 map, 68–79
with tidycensus package, 196–199
using appropriate projections, 81–82
in website, 145–147

margin() function, 53
markdown text, 106–108
mean() function, 8–9, 15
metadata, package, 215–217
meta descriptions, 139
middle content class, 131
Mock, Tom, 86, 90, 95
Moffitt Cancer Center, 201, 218
moon_reader output format, R Markdown, 126
Mucciolo, Livia, 113
Muenchow, Jannes, 79, 81–82
MULTILINESTRING geometry type, 65
multiple reports, generating simultaneously. See parameterized reporting
MULTIPOINT geometry type, 64
MULTIPOLYGON geometry type, 65–66
multi-tool workflow for reports, 101–102, 114
mutate() function, 82–83, 185, 192

N
named lists, 121–122
NAMESPACE file, 215
ne_countries() function, 80
Nowosad, Jakub, 79, 81–82

O
objects, saving data as, 11
online data. See automatically accessing online data



options in Quarto, 160–161
output directory for website, 140
output widths in Quarto websites, 175

P
packages

adding functions, 210, 217
adding license and metadata, 215–217
checking with devtools, 211–212
creating, xxii, 201–202, 209–218
creating documentation, 214–215
dependencies, 211, 212–213
documentation websites associated with, 18
importing to create COVID-19 map, 68–69
installing, 12–13, 217
loading, 12
referring to functions correctly, 213–214

palmerpenguins package, 48–49, 103
parameterized reporting, xxi–xxii, 113, 124

best practices, 124
creating R script, 119–123
with Quarto, 161–163
report templates in R Markdown, 114–119

params variable, 121–122
parentheses (())

in functions, 8
using with arithmetic operators, 7

plotly package, 148, 150–153
plots. See data visualization
POINT geometry type, 63
points, adding to graphs, 27
POLYGON geometry type, 62–63
precision, 93
presentations. See slideshow presentations
print() function, 8
programming with R, xxi, 3, 18, 218

basic syntax, 6–9
comments, 16–17
help resources, 17–18
installing, 4
R script files, 5–6, 104, 119–123
RStudio projects, 13–14
setting up, 4–5
working with data, 9–13

analysis with tidyverse, 14–16
projections, 66–67, 81–82
projects, RStudio, 13–14



pull() function, 118, 120, 144–145
.pull-left[] content class, 129–130
.pull-right[] content class, 129–130
purrr package, 121–123
pwalk() function, 122–123

Q
.qmd files, 169–171
Quarto, xxii, 157–158, 177

creating document, 158–159
making slideshows, 163–169
making websites, 169–177
parameterized reporting, 161–163
Quarto Pub, 176–177
vs. R Markdown, 111, 157, 159–161, 177

_quarto.yml file, 169, 171–172, 174

R
ragg package, 52
raster data, 62
rbind() function, 120
R CMD check, 211–213
rdrop2 package, 153
reactable package, 97, 149–150
read_csv() function, 12–13, 202
read.csv() function, 10, 17
read_sf() function, 79, 81
read_sheet() function, 183, 187–188
rectangular data, 13
reknitting R Markdown documents, 108–109
relative paths, 13
relocate() function, 74, 185
.remark-slide-content, 132
remotes package, 50
rename() function, 185
Render button, Quarto, 161
render() function, 120–123, 163
Render Website option, RStudio, 170
replace_na() function, 71
reports, xxi–xxii. See also parameterized reporting; R Markdown

and googlesheets4 package, 183–187
multi-tool workflow for, 101–102, 114
templates for, 114–119

reproducibility, 102
revealing content incrementally in slideshows, 128–129, 165
reveal.js JavaScript library, 163, 169
R for Data Science (Wickham, Çetinkaya-Rundel, and Grolemund), 16



right alignment in tables, 90–91
.right-column[] content class, 130
rio package, 32
R Markdown, xxi–xxii, 102, 111

code chunks in documents, 104–106
creating document, 102–103
creating R script, 119–123
creating tables, 86
formatting text, 107
generating numbers with parameters, 117–118
and googlesheets4 package, 183–187
headings, 107
inline R code, 108–109
markdown text, 106–108
vs. Quarto, 111, 157, 159–161, 177
report templates in, 114–119
running code chunks interactively, 109–111
setup code chunk, 105–106
website project files, 138–139
xaringan package, working with, 126–127
YAML section in documents, 104

rmarkdown package, 120–123
rnaturalearth package, 80
Rodrigues, Bruno, 203–204
rolling averages, 71–73
rollmean() function, 72
row_number() function, 184–185
Roxygen, 214–215
R Packages (Wickham and Bryan), 215
R programming language, xx, 3, 18, 218

basic syntax, 6–9
comments, 16–17
help resources, 17–18
installing, 4
R script files, 5–6, 104, 119–123
RStudio projects, 13–14
setting up, 4–5
working with data, 9–13

analysis with tidyverse, 14–16
R script files, 5–6, 104, 119–123
RStudio

building websites, 140, 170
creating documents

Quarto, 158–159
R Markdown, 102–103

exploring interface, 4–5
installing, 4
packages



creating, 209–210
installing, 12–13

projects in, 13–14
creating new distill project, 138

publishing Quarto website, 176
R script files, 5–6
script file pane, 5–6
working with custom fonts, 52
working with data, 9–13

S
Sass (style sheet language), 168–169, 173–174

scss:defaults section, 168–169
scss:rules section, 169

Sayed, Safia, 113
scale_fill_discrete_sequential() function, 78
scale_fill_viridis_c() function, 30–31, 198
scale_fill_viridis_d() function, 34, 42
scales package, 118
Scherer, Cédric, 19–20, 32, 34–42
Schwabish, Jon, 91, 93
Scientific American. See drought data visualization
sf package, 68–70, 79, 81
shift_geometry() function, 198–199
show_in_excel() function, 203–204
show_in_excel_penguins() function, 202–203
simple features (sf) data, 62

accessing geospatial data, 79–81
bounding box, 66
coordinate reference system, 66–67
dimensions, 66
fields, 62
geometry column, 62, 67
geometry type, 62–66
wrangling geospatial data, 82–83

_site.yml file, 139–140, 143
slice_max() function, 144, 145
slideshow presentations, xxii, 125, 135

adding background images, 131
adjusting size of figures, 128
aligning content with content classes, 129–131
applying CSS to slides, 131–135
creating new slides, 127–128
getting started, 126–127
with Quarto, 163–169
revealing content incrementally, 128–129
two-column layouts, 129–130, 165–167



xaringan package, advantages of, 125–126
small multiples charts, 57–58. See also faceting data visualizations
snake case, 206
sparklines, 95–96
states() function, 79–80
statistical analysis, xx
Statistical Inference via Data Science (Ismay and Kim), 4, 12
str_glue() function, 144, 202
strip text, modifying with bbplot package, 57–58
st_transform() function, 70, 81
styles.css file, 169, 172
styles.scss file, 173–174
style_xaringan() function, 135
Stylianou, Nassos, 47, 59
suggest_top_crs() function, 81
summarize() function, 15–16
syntax, R, 6–9
systemfonts package, 52

T
tables, xxi, 85–86, 97

adding data visualizations, 95–97
alignment in, 90–92
creating data frames, 86–87
differentiating header from body, 89–90
intentional use of color, 94
interactive, on websites, 149–150
minimizing clutter, 87–89
using correct level of precision, 93
in website, 145, 147

tab_style() function, 89–90, 94
tempfile() function, 202
templates, report, 114–119
text

aligning in tables, 91–92
formatting, with bbplot package, 52–54

theme.css file, 141–143
themes, BBC. See BBC custom themes
themes, ggplot2 package, 38

theme() function, 38–40, 52, 58–59, 78
theme_light() function, 38
theme_minimal() function, 31, 146

themes, Quarto, 167–168, 172
themes, xaringan package, 133–134
tibbles, 13, 120–123
tidycensus package, 181, 188, 199

adding dependency packages, 212–213



connecting to Census Bureau with API key, 188–189
custom functions, 204–205, 207
visualizing American Community Survey data, 194–199
working with Decennial Census data, 189–194

tidyverse package, 3, 12
and bbplot package, 48–49
creating maps, 68–69
data analysis with, 14–16
functions, 15–16
loading, 14
pipe, 15–16
R Markdown documents, errors when knitting, 110
tables, 86
websites, 144
wrangling geospatial data, 82–83
writing simple functions, 202

tigris package, 79–80, 144, 196–199
tooltip, interactive, 148, 150–153
Tufte, Edward, 20

U
ungroup() function, 71, 192
Urban Institute parameterized reporting, 113, 124, 161–163

county-level reports, 124
fiscal briefs, 113, 124

urbnthemes package, 114
url() function, 131
usa_sf() function, 70, 79
US Census Bureau data, 188

American Community Survey data, 194–199
connecting to with API key, 188–189
Decennial Census data, 189–194

use_mit_license() function, 216
use_package() function, 212
use_r() function, 210
usethis package, 210, 216

V
variables

data frame, 11
Decennial Census data, working with, 189–194
mapping to aesthetic properties, 25–26, 33–34
Sass, 168–169, 173–174

vector geospatial data, 62
vectors, creating, 120–121
Visual Display of Quantitative Information, The (Tufte), 20
visualization of data. See data visualization
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Walker, Kyle, 188, 189, 193, 196, 199
websites, xxii, 137–138, 155

applying custom CSS, 141–143
applying layouts, 148
building, 140–141
creating new distill project, 138
hosting, 153–155
interactive content, 148–153
making with Quarto, 169–177
navigation bars, 140, 174–175
pagination, 149–150
project files, 138–140
table of contents, 174
titles, 174
vignettes on documentation sites, 18
working with content, 143–148

Westchester County COVID-19 website project, 137–138, 148–149
Wickham, Hadley, 16, 24–25, 202, 215
Wilke, Claus, 85–86
Wilkinson, Leland, 24
Williams, Aaron, 113
write_csv() function, 204
write_sheet() function, 188
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xaringan package, 125, 135, 157

adding background images to slides, 131
adjusting size of figures, 128
advantages of, 125–126
aligning content with content classes, 129–131
applying CSS to slides, 131–135
creating new slides, 127–128
getting started with, 126–127
revealing content incrementally, 128–129

xaringanthemer package, 134–135
x-axis

mapping data to aesthetic properties, 25–26
tweaking appearance of, 35
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YAML section

Quarto documents, 159–160, 163, 165, 167–168, 170–171
R Markdown documents, 104, 117–119, 138–139
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tweaking appearance of, 35
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zoo package, 68–69, 72
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