O'REILLY &

R for Data
Science

Import, Tidy, Transform, Visualize,
and Model Data

Hadley Wickham,
Mine Cetinkaya-Rundel
& Garrett Grolemund

O'REILLY"

R for Data Science

Use R to turn data into insight, knowledge, and understanding.

With this practical book, aspiring data scientists will learn
how to do data science with R and RStudio, along with the
tidyverse—a collection of R packages designed to work
together to make data science fast, fluent, and fun. Even if
you have no programming experience, this updated edition
will have you doing data science quickly.

You'll learn how to import, transform, and visualize your data
and communicate the results. And you'll get a complete,
big-picture understanding of the data science cycle and
the basic tools you need to manage the details. Updated
for the latest tidyverse features and best practices, new
chapters show you how to get data from spreadsheets,
databases, and websites. Exercises help you practice what
you've learned along the way.

You'll understand how to:

¢ Visualize: Create plots for data exploration and
communication of results

¢ Transform: Discover variable types and the tools
to work with them

¢ Import: Get data into R and in a form convenient
for analysis

e Program: Learn R tools for solving data problems
with greater clarity and ease

e Communicate: Integrate prose, code, and results
with Quarto

“This is an astonishingly
good update to a
world-leading guide
to doing data science
with R. Everyone who
works with data should
read it!"

—EmmaRand
University of York, UK

Hadley Wickham is chief scientist at Posit
and a member of the R Foundation. He
builds computational and cognitive tools
that make data science easier, faster,
and more fun.

Mine Cetinkaya-Rundel is professor of
the practice and director of undergraduate
studies at the Department of Statistical
Science at Duke University. She's also a
developer educator at Posit.

Garrett Grolemund is the author of
Hands-On Programming with R and
director of learning at Posit.

DATA

US $79.99 CAN $99.99
ISBN: 978-1-492-09740-2

7814921097402

57999

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

2ND EDITION

R for Data Science

Import, Tidy, Transform, Visualize,
and Model Data

Hadley Wickham, Mine Cetinkaya-Rundel,
and Garrett Grolemund

Beijing « Boston « Farnham - Sebastopol - Tokyo KON{={|HAE

R for Data Science
by Hadley Wickham, Mine Cetinkaya-Rundel, and Garrett Grolemund

Copyright © 2023 Hadley Wickham, Mine Cetinkaya-Rundel, and Garrett Grolemund. All rights
reserved.

Printed in the United States of America.
Published by O’'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Aaron Black Indexer: WordCo Indexing Services, Inc.
Development Editor: Melissa Potter Interior Designer: David Futato

Production Editor: Ashley Stussy Cover Designer: Karen Montgomery
Copyeditor: Kim Wimpsett lllustrator: Kate Dullea

Proofreader: Charles Roumeliotis
June 2023: First Edition

Revision History for the Second Edition
2023-06-07: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492097402 for release details.

The O’Reilly logo is a registered trademark of O'Reilly Media, Inc. R for Data Science, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-09740-2
[LSI]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781492097402

Table of Contents

INEPOUCTION. v ettt ettt ettt ettt ettt e eeeeneeeensneansnsnsensnennes Xi

Partl. Whole Game

1. DataVisualization.c.ovuiiiiiiiiiii ittt ittt cie e eanas 3
Introduction 3
First Steps 4
ggplot2 Calls 16
Visualizing Distributions 16
Visualizing Relationships 21
Saving Your Plots 30
Common Problems 30
Summary 31

2. Workflow: Basics. ... ouvereeneenn it ittt e i etieeieeneenaeneeananns 33
Coding Basics 33
Comments 34
What’s in a Name? 35
Calling Functions 36
Exercises 37
Summary 37

3. DataTransformation.coouiiiiiiiiiniii it it eieeeenaeanaas 39
Introduction 39
Rows 42
Columns 47

The Pipe 51

Groups 53

Case Study: Aggregates and Sample Size 60
Summary 62
4, Workflow: Code Style.ovurineriit it it iieriieeieenereneeenanns 63
Names 64
Spaces 65
Pipes 65
ggplot2 67
Sectioning Comments 67
Exercises 68
Summary 68
S DaAtaTidyYing. ..ooveit et i i i e e 69
Introduction 69
Tidy Data 70
Lengthening Data 73
Widening Data 81
Summary 85
6. Workflow: Scripts and Projects.ovvineiiniiiiiiiiiiiiiiieennannns 87
Scripts 87
Projects 91
Exercises 96
Summary 96
7. Datalmport. . ..ottt i i i i i aas 97
Introduction 97
Reading Data from a File 97
Controlling Column Types 104
Reading Data from Multiple Files 107
Writing to a File 108
Data Entry 109
Summary 110
8. Workflow: Getting Help.ovvirrniiriiiii i iiiieeeennnns m
Google Is Your Friend 111
Making a reprex 111
Investing in Yourself 113
Summary 114

iv | Tableof Contents

Partll. Visualize

L I) - £ 117
Introduction 117
Aesthetic Mappings 118
Geometric Objects 122
Facets 128
Statistical Transformations 131
Position Adjustments 136
Coordinate Systems 141
The Layered Grammar of Graphics 143
Summary 144

10. Exploratory Data Analysis.covuueiiniiineriiieiiieriiereneeennnns 145
Introduction 145
Questions 146
Variation 146
Unusual Values 151
Covariation 154
Patterns and Models 164
Summary 167

11, CommMUNICATION. .. ettt ittt e ii e eneneenreeenanecnsnenans 169
Introduction 169
Labels 170
Annotations 172
Scales 177
Themes 193
Layout 196
Summary 201

Partlll. Transform

7R T T 1T (] £ 205
Introduction 205
Comparisons 206
Boolean Algebra 210
Summaries 213
Conditional Transformations 216
Summary 219

Table of Contents | v

1 J 1T 11 = £ 221

Introduction 221
Making Numbers 221
Counts 222
Numeric Transformations 224
General Transformations 231
Numeric Summaries 235
Summary 241
T €1 17T 243
Introduction 243
Creating a String 244
Creating Many Strings from Data 246
Extracting Data from Strings 249
Letters 254
Non-English Text 256
Summary 259
15. Reqular EXpressions.ooeuneeueeueeinnrenneenneennesenesenneennnns 261
Introduction 261
Pattern Basics 262
Key Functions 264
Pattern Details 268
Pattern Control 275
Practice 277
Regular Expressions in Other Places 282
Summary 283
16, FaCOrs. ..oovviii i 285
Introduction 285
Factor Basics 285
General Social Survey 287
Moditying Factor Order 288
Modifying Factor Levels 293
Ordered Factors 295
Summary 296
17. Datesand Times.uvvuuuiiniiiiiiiiiiiiiiiiiiiiiiiias 297
Introduction 297
Creating Date/Times 298
Date-Time Components 305
Time Spans 313

vi | Tableof Contents

Time Zones 317
Summary 319
18. MissingValues.oovuniinniiiiiiiiit ittt ittt eneennes 321
Introduction 321
Explicit Missing Values 321
Implicit Missing Values 323
Factors and Empty Groups 326
Summary 328
19, JOINS. oo v e 329
Introduction 329
Keys 330
Basic Joins 334
How Do Joins Work? 341
Non-Equi Joins 346
Summary 353
PartlV. Import
20. Spreadsheets.ovvueviuiiiiieiiieriii ittt 357
Introduction 357
Excel 357
Google Sheets 371
Summary 375
21. Databases............vvuiiiiiiiii 377
Introduction 377
Database Basics 378
Connecting to a Database 378
dbplyr Basics 381
SQL 383
Function Translations 391
Summary 394
D (1 395
Introduction 395
Getting the Data 396
Opening a Dataset 396
The Parquet Format 398
Using dplyr with Arrow 400

Table of Contents | vii

Summary 402

. Hierarchical Data...............cooiiiiiiiiiiiii 403
Introduction 403
Lists 404
Unnesting 408
Case Studies 412
JSON 420
Summary 423

. Web Saraping. .. c.oeene e 425
Introduction 425
Scraping Ethics and Legalities 426
HTML Basics 427
Extracting Data 429
Finding the Right Selectors 433
Putting It All Together 434
Dynamic Sites 439
Summary 440

PartV. Program

25, FUNCliONS. ...ooiieiiiiii e 443
Introduction 443
Vector Functions 444
Data Frame Functions 449
Plot Functions 456
Style 463
Summary 464
Cdteration. ... 465
Introduction 465
Modifying Multiple Columns 466
Reading Multiple Files 475
Saving Multiple Outputs 483
Summary 488

. AFieldGuidetoBaseR...............ooiiiiiiiiiii 489
Introduction 489
Selecting Multiple Elements with [490
Selecting a Single Element with $ and [[494

Table of Contents

Apply Family 497
for Loops 499
Plots 500
Summary 501
PartVl. Communicate
D N 01T {1 S 505
Introduction 505
Quarto Basics 506
Visual Editor 509
Source Editor 511
Code Chunks 513
Figures 517
Tables 521
Caching 522
Troubleshooting 523
YAML Header 524
Workflow 527
Summary 528
29. QUarto FOrmats.cvvvviii ettt it ittt ie e e 531
Introduction 531
Output Options 531
Documents 532
Presentations 533
Interactivity 533
Websites and Books 536
Other Formats 537
Summary 537
] 539
Table of Contents | ix

Introduction

Data science is an exciting discipline that allows you to transform raw data into
understanding, insight, and knowledge. The goals of R for Data Science are to help
you learn the most important tools in R that will allow you to do data science
efficiently and reproducibly and to have some fun along the way! After reading this
book, you'll have the tools to tackle a wide variety of data science challenges using the
best parts of R.

Preface to the Second Edition

Welcome to the second edition of R for Data Science (R4DS)! This is a major rework-
ing of the first edition, removing material we no longer think is useful, adding
material we wish we included in the first edition, and generally updating the text
and code to reflect changes in best practices. We're also very excited to welcome a
new co-author: Mine Cetinkaya-Rundel, a noted data science educator and one of our
colleagues at Posit (the company formerly known as RStudio).

A brief summary of the biggest changes follows:

o The first part of the book has been renamed to “Whole Game.” The goal of this
section is to give you the rough details of the “whole game” of data science before
we dive into the details.

o The second part of the book is “Visualize” This part gives data visualization tools
and best practices a more thorough coverage compared to the first edition. The
best place to get all the details is still the ggplot2 book, but now R4DS covers
more of the most important techniques.

o The third part of the book is now called “Transform” and gains new chapters on
numbers, logical vectors, and missing values. These were previously parts of the
data transformation chapter but needed much more room to cover all the details.

Xi

https://oreil.ly/HNIie

o The fourth part of the book is called “Import” It’s a new set of chapters that goes
beyond reading flat text files to working with spreadsheets, getting data out of
databases, working with big data, rectangling hierarchical data, and scraping data
from websites.

o The “Program” part remains but has been rewritten from top to bottom to
focus on the most important parts of function writing and iteration. Function
writing now includes details on how to wrap tidyverse functions (dealing with
the challenges of tidy evaluation), since this has become much easier and more
important over the last few years. We've added a new chapter on important base
R functions that you're likely to see in wild-caught R code.

o The “Modeling” part has been removed. We never had enough room to fully
do modeling justice, and there are now much better resources available. We
generally recommend using the tidymodels packages and reading Tidy Modeling
with R by Max Kuhn and Julia Silge (O’Reilly).

o The “Communicate” part remains but has been thoroughly updated to feature
Quarto instead of R Markdown. This edition of the book has been written in
Quarto, and it’s clearly the tool of the future.

What You Will Learn

Data science is a vast field, and there’s no way you can master it all by reading a single
book. This book aims to give you a solid foundation in the most important tools and
enough knowledge to find the resources to learn more when necessary. Our model of
the steps of a typical data science project looks something like Figure I-1.

' 1

Visualize

Understand

\. J

Program

Figure I-1. In our model of the data science process, you start with data import and tidy-
ing. Next, you understand your data with an iterative cycle of transforming, visualizing,
and modeling. You finish the process by communicating your results to other humans.

First, you must import your data into R. This typically means that you take data
stored in a file, database, or web application programming interface (API) and load

xii | Introduction

https://oreil.ly/0giAa
https://oreil.ly/9Op9s
https://oreil.ly/9Op9s
https://oreil.ly/_6LNH

it into a data frame in R. If you can't get your data into R, you can’t do data science
on it!

Once you've imported your data, it is a good idea to tidy it. Tidying your data means
storing it in a consistent form that matches the semantics of the dataset with how it
is stored. In brief, when your data is tidy, each column is a variable and each row is
an observation. Tidy data is important because the consistent structure lets you focus
your efforts on answering questions about the data, not fighting to get the data into
the right form for different functions.

Once you have tidy data, a common next step is to transform it. Transformation
includes narrowing in on observations of interest (such as all people in one city or all
data from the last year), creating new variables that are functions of existing variables
(such as computing speed from distance and time), and calculating a set of summary
statistics (such as counts or means). Together, tidying and transforming are called
wrangling because getting your data in a form thats natural to work with often feels
like a fight!

Once you have tidy data with the variables you need, there are two main engines
of knowledge generation: visualization and modeling. They have complementary
strengths and weaknesses, so any real data analysis will iterate between them many
times.

Visualization is a fundamentally human activity. A good visualization will show you
things you did not expect or raise new questions about the data. A good visualization
might also hint that you're asking the wrong question or that you need to collect
different data. Visualizations can surprise you, but they don’t scale particularly well
because they require a human to interpret them.

Models are complementary tools to visualization. Once you have made your questions
sufficiently precise, you can use a model to answer them. Models are fundamentally
mathematical or computational tools, so they generally scale well. Even when they
don’t, it’s usually cheaper to buy more computers than it is to buy more brains! But
every model makes assumptions, and by its very nature a model cannot question its
own assumptions. That means a model cannot fundamentally surprise you.

The last step of data science is communication, an absolutely critical part of any data
analysis project. It doesn’t matter how well your models and visualization have led
you to understand the data unless you can also communicate your results to others.

Surrounding all these tools is programming. Programming is a cross-cutting tool that
you use in nearly every part of a data science project. You don't need to be an expert
programmer to be a successful data scientist, but learning more about programming
pays off because becoming a better programmer allows you to automate common
tasks and solve new problems with greater ease.

Introduction | xiii

You'll use these tools in every data science project, but theyre not enough for most
projects. There’s a rough 80/20 rule at play: you can tackle about 80% of every project
using the tools you'll learn in this book, but you’ll need other tools to tackle the
remaining 20%. Throughout this book, well point you to resources where you can
learn more.

How This Book Is Organized

The previous description of the tools of data science is organized roughly according
to the order in which you use them in an analysis (although, of course, you’ll iterate
through them multiple times). In our experience, however, learning data importing
and tidying first is suboptimal because, 80% of the time, its routine and boring,
and the other 20% of the time, it’s weird and frustrating. Thats a bad place to start
learning a new subject! Instead, we'll start with visualization and transformation of
data that’s already been imported and tidied. That way, when you ingest and tidy your
own data, your motivation will stay high because you know the pain is worth the
effort.

Within each chapter, we try to adhere to a consistent pattern: start with some moti-
vating examples so you can see the bigger picture and then dive into the details. Each
section of the book is paired with exercises to help you practice what you've learned.
Although it can be tempting to skip the exercises, there’s no better way to learn than
by practicing on real problems.

What You Won't Learn

There are several important topics that this book doesn’t cover. We believe it’s impor-
tant to stay ruthlessly focused on the essentials so you can get up and running as
quickly as possible. That means this book can't cover every important topic.

Modeling

Modeling is super important for data science, but it’s a big topic, and unfortunately,
we just don’t have the space to give it the coverage it deserves here. To learn more
about modeling, we highly recommend Tidy Modeling with R by our colleagues Max
Kuhn and Julia Silge (O'Reilly). This book will teach you the tidymodels family of
packages, which, as you might guess from the name, share many conventions with the
tidyverse packages we use in this book.

Big Data

This book proudly and primarily focuses on small, in-memory datasets. This is the
right place to start because you can’t tackle big data unless you have experience
with small data. The tools you learn in the majority of this book will easily handle

xiv | Introduction

https://oreil.ly/9Op9s

hundreds of megabytes of data, and with a bit of care, you can typically use them
to work with a few gigabytes of data. We'll also show you how to get data out of
databases and parquet files, both of which are often used to store big data. You won’t
necessarily be able to work with the entire dataset, but that’s not a problem because
you need only a subset or subsample to answer the question you're interested in.

If youre routinely working with larger data (10-100 GB, say), we recommend learn-
ing more about data.table. We don’t teach it here because it uses a different interface
than the tidyverse and requires you to learn some different conventions. However,
it is incredibly faster, and the performance payoff is worth investing some time in
learning it if you're working with large data.

Python, Julia, and Friends

In this book, you won’t learn anything about Python, Julia, or any other program-
ming language useful for data science. This isn't because we think these tools are bad.
They’re not! And in practice, most data science teams use a mix of languages, often at
least R and Python. But we strongly believe that it’s best to master one tool at a time,
and R is a great place to start.

Prerequisites

We've made a few assumptions about what you already know to get the most out of
this book. You should be generally numerically literate, and it’s helpful if you have
some basic programming experience already. If you've never programmed before,
you might find Hands-On Programming with R by Garrett Grolemund (O’Reilly) to
be a valuable adjunct to this book.

You need four things to run the code in this book: R, RStudio, a collection of R
packages called the tidyverse, and a handful of other packages. Packages are the
fundamental units of reproducible R code. They include reusable functions, docu-
mentation that describes how to use them, and sample data.

Introduction | xv

https://oreil.ly/GG4Et
https://oreil.ly/8uiH5

R

To download R, go to CRAN, the comprehensive R archive network. A new major
version of R comes out once a year, and there are two to three minor releases each
year. It’s a good idea to update regularly. Upgrading can be a bit of a hassle, especially
for major versions that require you to re-install all your packages, but putting it off
only makes it worse. We recommend R 4.2.0 or later for this book.

RStudio

RStudio is an integrated development environment (IDE) for R programming, which
you can download from the RStudio download page. RStudio is updated a couple of
times a year, and it will automatically let you know when a new version is out, so
there’s no need to check back. It’s a good idea to upgrade regularly to take advantage
of the latest and greatest features. For this book, make sure you have at least RStudio
2022.02.0.

When you start RStudio, Figure I-2, you'll see two key regions in the interface: the
console pane and the output pane. For now, all you need to know is that you type
the R code in the console pane and press Enter to run it. You'll learn more as we go
along!!

1 If youd like a comprehensive overview of all of RStudio’s features, see the RStudio User Guide.

xvi | Introduction

https://oreil.ly/pRhEK
https://oreil.ly/p3_RG
https://oreil.ly/pxF-k

O - - (=} A Go to file/function 5 -/ B2 - Addins - [®) rstudio-screenshots ~
Console Terminal x Background Jobs x = Environment History Connections Build _ ™
@R R4.1.2 . ~/Documents/r4ds/r4ds/diagrams/rstudio-scr ho| € B |2~ 257MmiB - | =Slst~ | @~
> library(ggplot2) R ~ | i} Global Environment ~ | Q

> ggplot(mpg, aes(displ, hwy)) +
+ geom_point(aes(colour = class))

> Environment is empty

Files Plots Packages Help Viewer P _ ™
& P zoom | Hexport - O | F 5. CE
40~ class
2seater
. compact
>30- 2° ® midsize
= ° L1
- Co> @ ® minivan
- o []
o ® picku
oo ?’ pickup
20~ O subcompact
Loty suv
- e
I S B
2 3 4 5 6 7
Console displ Output

Figure I-2. The RStudio IDE has two key regions: type R code in the console pane on the
left, and look for plots in the output pane on the right.

The Tidyverse

You'll also need to install some R packages. An R package is a collection of functions,
data, and documentation that extends the capabilities of base R. Using packages is key
to the successful use of R. The majority of the packages that you will learn in this
book are part of the so-called tidyverse. All packages in the tidyverse share a common
philosophy of data and R programming and are designed to work together.

You can install the complete tidyverse with a single line of code:
install.packages("tidyverse")
On your computer, type that line of code in the console, and then press Enter to run

it. R will download the packages from CRAN and install them on your computer.

You will not be able to use the functions, objects, or help files in a package until
you load it. Once you have installed a package, you can load it using the library()
function:

Introduction | xvii

https://rdrr.io/r/base/library.html

library(tidyverse)

#> — Attaching core tidyverse packages tidyverse 2.0.0 —
#> dplyr 1.1.0.9000 v’ readr 2.1.4

#> o forcats 1.0.0 v stringr 1.5.0

#> « ggplot2 3.4.1 v tibble 3.1.8

#> « lubridate 1.9.2 v tidyr 1.3.0

#> « purrr 1.0.1

#> — Conflicts tidyverse_conflicts() —

#> X dplyr::filter() masks stats::filter()

#> % dplyr::lag() masks stats::lag()

#> 7 Use the conflicted package (<http://conflicted.r-lib.org/>) to force all

#> conflicts to become errors
This tells you that tidyverse loads nine packages: dplyr, forcats, ggplot2, lubridate,
purrr, readr, stringr, tibble, and tidyr. These are considered the core of the tidyverse
because you’ll use them in almost every analysis.

Packages in the tidyverse change fairly frequently. You can see if updates are available
by running tidyverse_update().

Other Packages

There are many other excellent packages that are not part of the tidyverse because
they solve problems in a different domain or are designed with a different set of
underlying principles. This doesn’t make them better or worse; it just makes them
different. In other words, the complement to the tidyverse is not the messyverse
but many other universes of interrelated packages. As you tackle more data science
projects with R, you'll learn new packages and new ways of thinking about data.

We'll use many packages from outside the tidyverse in this book. For example, we'll
use the following packages because they provide interesting data sets for us to work
with in the process of learning R:
install.packages(c("arrow", "babynames", "curl", "duckdb", "gapminder", "ggrepel",
"ggridges", "ggthemes", "hexbin", "janitor", "Lahman", "leaflet", "maps",

"nycflights13", "openxlsx", "palmerpenguins", "repurrrsive", "tidymodels", "writexl"))

We'll also use a selection of other packages for one-off examples. You don’t need to
install them now, just remember that whenever you see an error like this:

library(ggrepel)
#> Error in library(ggrepel) : there is no package called ‘ggrepel’

it means you need to run install.packages("ggrepel") to install the package.

Running R Code

The previous section showed you several examples of running R code. The code in
the book looks like this:

1+2
#> [1] 3

xvii | Introduction

https://tidyverse.tidyverse.org/reference/tidyverse_update.html

If you run the same code in your local console, it will look like this:

>1+ 2

[1] 3
There are two main differences. In your console, you type after the >, called the
prompt; we don’t show the prompt in the book. In the book, the output is commented
out with #>; in your console, it appears directly after your code. These two differences
mean that if youre working with an electronic version of the book, you can easily
copy code out of the book and paste it into the console.

Throughout the book, we use a consistent set of conventions to refer to code:

« Functions are displayed in a code font and followed by parentheses, like sum() or
mean().

+ Other R objects (such as data or function arguments) are in a code font, without
parentheses, like flights or x.

o Sometimes, to make it clear which package an object comes from, well
use the package name followed by two colons, like dplyr::mutate() or nyc
flights13::flights. This is also valid R code.

Other Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates URLs and email addresses.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, keywords, and filenames.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a general note.

Introduction | xix

https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/mean.html
https://dplyr.tidyverse.org/reference/mutate.html
https://rdrr.io/pkg/nycflights13/man/flights.html
https://rdrr.io/pkg/nycflights13/man/flights.html

This element indicates a warning or caution.

\

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O'Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/r-for-data-science-2e.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media
Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://www.youtube.com/oreillymedia

xx | Introduction

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/r-for-data-science-2e
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

Acknowledgments

This book isn't just the product of Hadley, Mine, and Garrett but is the result of
many conversations (in person and online) that we've had with many people in the
R community. We're incredibly grateful for all the conversations we've had with yall;
thank you so much!

Wed like to thank our technical reviewers for their valuable feedback: Ben
Baumer, Lorna Barclay, Richard Cotton, Emma Rand, and Kelly Bodwin.

This book was written in the open, and many people contributed via pull
requests. A special thanks to all 259 of you who contributed improvements via
GitHub pull requests (in alphabetical order by username): @a-rosenberg, Tim
Becker (@a2800276), Abinash Satapathy (@Abinashbunty), Adam Gruer (@adam-
gruer), adi pradhan (@adidoit), A. s. (@Adrianzo), Aep Hidyatuloh (@aephidaya-
tuloh), Andrea Gilardi (@agila5), Ajay Deonarine (@ajay-d), @AlanFeder, Daihe
Sui (@alansuidaihe), @alberto-agudo, @AlbertRapp, @aleloi, pete (@alonzi), Alex
(@ALShum), Andrew M. (@amacfarland), Andrew Landgraf (@andland), @andy-
huynh92, Angela Li (@angela-li), Antti Rask (@AnttiRask), LOU Xun (@aquarhead),
@ariespirgel, @august-18, Michael Henry (@aviast), Azza Ahmed (@azzaea), Steven
Moran (@bambooforest), Brian G. Barkley (@BarkleyBG), Mara Averick (@batpi-
gandme), Oluwafemi OYEDELE (@BB1464), Brent Brewington (@bbrewington), Bill
Behrman (@behrman), Ben Herbertson (@benherbertson), Ben Marwick (@benmar-
wick), Ben Steinberg (@bensteinberg), Benjamin Yeh (@bentyeh), Betul Turkoglu
(@betulturkoglu), Brandon Greenwell (@bgreenwell), Bianca Peterson (@BinxiePe-
terson), Birger Niklas (@BirgerNi), Brett Klamer (@bklamer), @boardtc, Christian
(@c-hoh), Caddy (@caddycarine), Camille V Leonard (@camillevleonard), @cano-
vasjm, Cedric Batailler (@cedricbatailler), Christina Wei (@christina-wei), Christian
Mongeau (@chrMongeau), Cooper Morris (@coopermor), Colin Gillespie (@csgil-
lespie), Rademeyer Vermaak (@csrvermaak), Chloe Thierstein (@cthierst), Chris
Saunders (@ctsa), Abhinav Singh (@curious-abhinav), Curtis Alexander (@curtisa-
lexander), Christian G. Warden (@cwarden), Charlotte Wickham (@cwickham),
Kenny Darrell (@darrkj), David Kane (@davidkane9), David (@davidrsch), David
Rubinger (@davidrubinger), David Clark (@DDClark), Derwin McGeary (@der-
winmcgeary), Daniel Gromer (@dgromer), @Divider85, @djbirke, Danielle Nav-
arro (@djnavarro), Russell Shean (@DOH-RPS1303), Zhuoer Dong (@dongzhuoer),
Devin Pastoor (@dpastoor), @DSGeoff, Devarshi Thakkar (@dthakkar09), Julian
During (@duju211), Dylan Cashman (@dylancashman), Dirk Eddelbuettel (@eddel-
buettel), Edwin Thoen (@EdwinTh), Ahmed El-Gabbas (@elgabbas), Henry Webel
(@enryH), Ercan Karadas (@ercan?), Eric Kitaif (@EricKit), Eric Watt (@ericwatt),
Erik Erhardt (@erikerhardt), Etienne B. Racine (@etiennebr), Everett Robinson
(@evjrob), @fellennert, Flemming Miguel (@flemmingmiguel), Floris Vanderhaeghe
(@florisvdh), @funkybluehen, @gabrivera, Garrick Aden-Buie (@gadenbuie), Peter

Introduction | xxi

Ganong (@ganongl23), Gerome Meyer (@GeroVanMi), Gleb Ebert (@gl-eb), Josh
Goldberg (@GoldbergData), bahadir cankardes (@gridgrad), Gustav W Delius
(@gustavdelius), Hao Chen (@hao-trivago), Harris McGehee (@harrismcgehee),
@hendrikweisser, Hengni Cai (@hengnicai), lain (@lain-S), Ian Sealy (@iansealy),
Ian Lyttle (@ijlyttle), Ivan Krukov (@ivan-krukov), Jacob Kaplan (@jacobkap), Jazz
Weisman (@jazzlw), John Blischak (@jdblischak), John D. Storey (@jdstorey), Greg-
ory Jefferis (@jefferis), Jeffrey Stevens (@JeffreyRStevens), T M HK (@JeldorPKU),
Jennifer (Jenny) Bryan (@jennybc), Jen Ren (@jenren), Jeroen Janssens (@jeroenjans-
sens), @jeromecholewa, Janet Wesner (@jilmun), Jim Hester (@jimhester), JJ] Chen
(@jjchern), Jacek Kolacz (@jkolacz), Joanne Jang (@joannejang), @johannes4998,
John Sears (@johnsears), @jonathanflint, Jon Calder (@jonmcalder), Jonathan Page
(@jonpage), Jon Harmon (@jonthegeek), JooYoung Seo (@jooyoungseo), Justinas
Petuchovas (@jpetuchovas), Jordan (@jrdnbradford), Jeffrey Arnold (@jrnold),
Jose Roberto Ayala Solares (@jroberayalas), Joyce Robbins (@jtrl13), @juandering,
Julia Stewart Lowndes (@jules32), Sonja (@kaetschap), Kara Woo (@karawoo),
Katrin Leinweber (@katrinleinweber), Karandeep Singh (@kdpsingh), Kevin Perese
(@kevinxperese), Kevin Ferris (@kferris10), Kirill Sevastyanenko (@kirillseva), Jon-
athan Kitt (@KittJonathan), @koalabearski, Kirill Miller (@krlmlr), Rafal Kuchar-
ski (@kucharsky), Kevin Wright (@kwstat), Noah Landesberg (@landesbergn),
Lawrence Wu (@lawwu), @lindbrook, Luke W Johnston (@lwjohnst86), Kara
de la Marck (@MarckK), Kunal Marwaha (@marwahaha), Matan Hakim (@mat-
anhakim), Matthias Liew (@MatthiasLiew), Matt Wittbrodt (@MattWittbrodt),
Mauro Lepore (@maurolepore), Mark Beveridge (@mbeveridge), @mcewenkhundi,
mcsnowface, PhD (@mcsnowface), Matt Herman (@mfherman), Michael Boerman
(@michaelboerman), Mitsuo Shiota (@mitsuoxv), Matthew Hendrickson (@mjhen-
drickson), @MJMarshall, Misty Knight-Finley (@mkfin7), Mohammed Hamdy
(@mmhamdy), Maxim Nazarov (@mnazarov), Maria Paula Caldas (@mpaulacal-
das), Mustafa Ascha (@mustafaascha), Nelson Areal (@nareal), Nate Olson (@nate-
d-olson), Nathanael (@nateaff), @nattalides, Ned Western (@Ned]JWestern), Nick
Clark (@nickclark1000), @nickelas, Nirmal Patel (@nirmalpatel), Nischal Shrestha
(@nischalshrestha), Nicholas Tierney (@njtierney), Jakub Nowosad (@Nowosad),
Nick Pullen (@nstjhp), @olivier6088, Olivier Cailloux (@oliviercailloux), Robin
Penfold (@pObs), Pablo E. Garcia (@pabloedug), Paul Adamson (@padamson),
Penelope Y (@penelopeysm), Peter Hurford (@peterhurford), Peter Baumgartner
(@petzi53), Patrick Kennedy (@pkq), Pooya Taherkhani (@pooyataher), Y. Yu (@Pur-
suitOfDataScience), Radu Grosu (@radugrosu), Ranae Dietzel (@Ranae), Ralph
Straumann (@rastrau), Rayna M Harris (@raynambharris), @ReeceGoding, Robin
Gertenbach (@rgertenbach), Jajo (@RIngyao), Riva Quiroga (@rivaquiroga), Richard
Knight (@RJHKnight), Richard Zijdeman (@rlzijdeman), @robertchu03, Robin
Kohrs (@RobinKohrs), Robin (@Robinlovelace), Emily Robinson (@robinsones),
Rob Tenorio (@robtenorio), Rod Mazloomi (@RodAli), Rohan Alexander (@Roha-
nAlexander), Romero Morais (@RomeroBarata), Albert Y. Kim (@rudeboybert),

xxii | Introduction

Saghir (@saghirb), Hojjat Salmasian (@salmasian), Jonas (@sauercrowd), Vebash
Naidoo (@sciencificity), Seamus McKinsey (@seamus-mckinsey), @seanpwilliams,
Luke Smith (@seasmith), Matthew Sedaghatfar (@sedaghatfar), Sebastian Kraus
(@sekR4), Sam Firke (@sfirke), Shannon Ellis (@ShanEllis), @shoili, Christian Hein-
rich (@Shurakai), S’busiso Mkhondwane (@sibusiso16), SM Raiyyan (@sm-raiyyan),
Jakob Krigovsky (@sonicdoe), Stephan Koenig (@stephan-koenig), Stephen Balogun
(@stephenbalogun), Steven M. Mortimer (@StevenMMortimer), Stéphane Guillou
(@stragu), Sulgi Kim (@sulgik), Sergiusz Bleja (@svenski), Tal Galili (@talgalili), Alec
Fisher (@Taurenamo), Todd Gerarden (@tgerarden), Tom Godfrey (@thomasggod-
frey), Tim Broderick (@timbroderick), Tim Waterhouse (@timwaterhouse), T] Mahr
(@tjmahr), Thomas Klebel (@tklebel), Tom Prior (@tomjamesprior), Terence Teo
(@tteo), @twgardner2, Ulrik Lyngs (@ulyngs), Shinya Uryu (@uribo), Martin Van
der Linden (@vanderlindenma), Walter Somerville (@waltersom), @werkstattcodes,
Will Beasley (@wibeasley), Yihui Xie (@yihui), Yiming (Paul) Li (@yimingli), @ying-
xingwu, Hiroaki Yutani (@yutannihilation), Yu Yu Aung (@yuyu-aung), Zach Bogart
(@zachbogart), @zeal626, and Zeki Akyol (@zekiakyol).

Online Edition

An online version of this book is available at the book’s GitHub repository. It will
continue to evolve in between reprints of the physical book. The source of the book
is available at https://oreil.ly/Q8z_O. The book is powered by Quarto, which makes it
easy to write books that combine text and executable code.

Introduction | xxiii

https://oreil.ly/8GLe7
https://oreil.ly/Q8z_O
https://oreil.ly/_6LNH

PART |
Whole Game

Our goal in this part of the book is to give you a rapid overview of the main tools
of data science: importing, tidying, transforming, and visualizing data, as shown in
Figure I-1. We want to show you the “whole game” of data science, giving you just
enough of all the major pieces so that you can tackle real, if simple, datasets. The later
parts of the book will hit each of these topics in more depth, increasing the range of
data science challenges that you can tackle.

/v Visualize
Import — Tidy — Transform) —» Communicate
\ Model

Understand

Program

Figure I-1. In this section of the book, you'll learn how to import, tidy, transform, and
visualize data.

Four chapters focus on the tools of data science:

o Visualization is a great place to start with R programming, because the payoff is
so clear: you get to make elegant and informative plots that help you understand
data. In Chapter 1 you'll dive into visualization, learning the basic structure of a
ggplot2 plot and powerful techniques for turning data into plots.

o Visualization alone is typically not enough, so in Chapter 3, you'll learn the key
verbs that allow you to select important variables, filter out key observations,
create new variables, and compute summaries.

o In Chapter 5, you'll learn about tidy data, a consistent way of storing your data
that makes transformation, visualization, and modeling easier. You'll learn the
underlying principles and how to get your data into a tidy form.

o Before you can transform and visualize your data, you need to first get your data
into R. In Chapter 7 you’ll learn the basics of getting .csv files into R.

Nestled among these chapters are four other chapters that focus on your R workflow.
In Chapter 2, Chapter 4, and Chapter 6 you'll learn good workflow practices for
writing and organizing your R code. These will set you up for success in the long run,
as they’ll give you the tools to stay organized when you tackle real projects. Finally,
Chapter 8 will teach you how to get help and keep learning.

CHAPTER1
Data Visualization

Introduction

“The simple graph has brought more information to the data analyst's mind than any
other device” —John Tukey

R has several systems for making graphs, but ggplot2 is one of the most elegant and
most versatile. ggplot2 implements the grammar of graphics, a coherent system for
describing and building graphs. With ggplot2, you can do more faster by learning one
system and applying it in many places.

This chapter will teach you how to visualize your data using ggplot2. We will start
by creating a simple scatterplot and use it to introduce aesthetic mappings and
geometric objects—the fundamental building blocks of ggplot2. We will then walk
you through visualizing distributions of single variables as well as visualizing rela-
tionships between two or more variables. We'll finish off with saving your plots and
troubleshooting tips.

Prerequisites

This chapter focuses on ggplot2, one of the core packages in the tidyverse. To access
the datasets, help pages, and functions used in this chapter, load the tidyverse by
running;:

library(tidyverse)

#> — Attaching core tidyverse packages tidyverse 2.0.0 —
o dplyr 1.1.0.9000 v’ readr 2.1.4

#> o forcats 1.0.0 v stringr 1.5.0

#> o ggplot2 3.4.1 v tibble 3.1.8

#> o lubridate 1.9.2 v tidyr 1.3.0

purrr 1.0.1

#> — Conflicts tidyverse_conflicts() —

#> X dplyr::filter() masks stats::filter()

#> X dplyr::lag() masks stats::lag()

#> 7 Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all

#> conflicts to become errors
That one line of code loads the core tidyverse, the packages that you will use in
almost every data analysis. It also tells you which functions from the tidyverse conflict
with functions in base R (or from other packages you might have loaded).!

If you run this code and get the error message there is no package called
"tidyverse', you'll need to first install it, and then run library() once again:
install.packages("tidyverse")
library(tidyverse)
You need to install a package only once, but you need to load it every time you start a
new session.

In addition to tidyverse, we will use the palmerpenguins package, which includes the
penguins dataset containing body measurements for penguins on three islands in the
Palmer Archipelago, and the ggthemes package, which offers a colorblind safe color
palette.

library(palmerpenguins)
library(ggthemes)

First Steps

Do penguins with longer flippers weigh more or less than penguins with shorter
flippers? You probably already have an answer, but try to make your answer precise.
What does the relationship between flipper length and body mass look like? Is it pos-
itive? Negative? Linear? Nonlinear? Does the relationship vary by the species of the
penguin? How about by the island where the penguin lives? Let’s create visualizations
that we can use to answer these questions.

The penguins Data Frame

You can test your answers to these questions with the penguins data frame found
in palmerpenguins (aka palmerpenguins::penguins). A data frame is a rectangular
collection of variables (in the columns) and observations (in the rows). penguins
contains 344 observations collected and made available by Dr. Kristen Gorman and
the Palmer Station, Antarctica LTER.2

1 You can eliminate that message and force conflict resolution to happen on demand by using the conflicted
package, which becomes more important as you load more packages. You can learn more about conflicted on
the package website.

2 Horst AM, Hill AP, Gorman KB (2020). palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R
package version 0.1.0. https://oreil.ly/ncwc5. doi: 10.5281/zenodo.3960218.

4 | Chapter 1: Data Visualization

https://oreil.ly/01bKz
https://oreil.ly/ncwc5
https://rdrr.io/r/base/library.html
https://allisonhorst.github.io/palmerpenguins/reference/penguins.html

To make the discussion easier, let’s define some terms:

Variable
A quantity, quality, or property that you can measure.

Value
The state of a variable when you measure it. The value of a variable may change
from measurement to measurement.

Observation
A set of measurements made under similar conditions (you usually make all of
the measurements in an observation at the same time and on the same object).
An observation will contain several values, each associated with a different vari-
able. We'll sometimes refer to an observation as a data point.

Tabular data
A set of values, each associated with a variable and an observation. Tabular data
is tidy if each value is placed in its own “cell,” each variable in its own column,
and each observation in its own row.

In this context, a variable refers to an attribute of all the penguins, and an observation
refers to all the attributes of a single penguin.

Type the name of the data frame in the console, and R will print a preview of its
contents. Note that it says tibble on top of this preview. In the tidyverse, we use
special data frames called tibbles that you will learn about soon.

penguins

#> # A tibble: 344 x 8

#> species island bill_length_mm bill_depth_mm flipper_length_mm
#> <fct> <fct> <dbl> <dbl> <int>
#> 1 Adelie Torgersen 39.1 18.7 181
#> 2 Adelie Torgersen 39.5 17.4 186
#> 3 Adelie Torgersen 40.3 18 195
#> 4 Adelie Torgersen NA NA NA
#> 5 Adelie Torgersen 36.7 19.3 193
#> 6 Adelie Torgersen 39.3 20.6 190
#> # .. with 338 more rows, and 3 more variables: body_mass_g <int>, sex <fct>,
#> # year <int>

This data frame contains eight columns. For an alternative view, where you can see all
variables and the first few observations of each variable, use glimpse(). Or, if you're
in RStudio, run View(penguins) to open an interactive data viewer.

glimpse(penguins)

#> Rows: 344
#> Columns: 8

#> S species <fct> Adelie, Adelie, Adelie, Adelie, Adelie, Adelie, A.
#> S island <fct> Torgersen, Torgersen, Torgersen, Torgersen, Torge..
#> S bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3, 38.9, 39.2, 34...

#> S bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6, 17.8, 19.6, 18...
#> S flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181, 195, 193, 190, ..
#> $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650, 3625, 4675, 347..

FirstSteps | 5

https://pillar.r-lib.org/reference/glimpse.html

#> $ sex <fct> male, female, female, NA, female, male, female, n..
#> S year <int> 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2..

Among the variables in penguins are:

species
A penguin’s species (Adelie, Chinstrap, or Gentoo)

flipper_length_mm
The length of a penguin’s flipper, in millimeters

body_mass_g
The body mass of a penguin, in grams

To learn more about penguins, open its help page by running ?penguins.

Ultimate Goal

Our ultimate goal in this chapter is to re-create the following visualization displaying
the relationship between flipper lengths and body masses of these penguins, taking
into consideration the species of the penguin.

Body mass and flipper length

Dimensions for Adelie, Chinstrap, and Gentoo Penguins

5500 -
- .
RS Species
[}
o * Adelie
e 4500 -
- Chinstrap
-8 = Gentoo
m

3500 -

2500 = 1 1 [1 [1

170 180 190 200 210 220 230

Flipper length (mm)

6 | Chapter 1: Data Visualization

https://allisonhorst.github.io/palmerpenguins/reference/penguins.html

Creating a ggplot
Let’s re-create this plot step by step.

With ggplot2, you begin a plot with the function ggplot(), defining a plot object that
you then add layers to. The first argument of ggplot() is the dataset to use in the
graph, so ggplot(data = penguins) creates an empty graph that is primed to display
the penguins data, but since we haven't told it how to visualize it yet, for now its
empty. This is not a very exciting plot, but you can think of it like an empty canvas
where you’ll paint the remaining layers of your plot.

ggplot(data = penguins)

Next, we need to tell ggplot() how the information from our data will be visually
represented. The mapping argument of the ggplot() function defines how variables
in your dataset are mapped to visual properties (aesthetics) of your plot. The mapping
argument is always defined in the aes() function, and the x and y arguments of
aes() specify which variables to map to the x- and y-axes. For now, we will map only
the flipper length to the x aesthetic and body mass to the y aesthetic. ggplot2 looks for
the mapped variables in the data argument, in this case, penguins.

The following plot shows the result of adding these mappings.

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)
)

FirstSteps | 7

https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/aes.html
https://ggplot2.tidyverse.org/reference/aes.html

6000 -

D 5000 -

body_mass

4000 -

3000 -

170 180 190 200 210 220 230
flipper_length_mm

Our empty canvas now has more structure—it’s clear where flipper lengths will be
displayed (on the x-axis) and where body masses will be displayed (on the y-axis).
But the penguins themselves are not yet on the plot. This is because we have not yet
articulated, in our code, how to represent the observations from our data frame on
our plot.

To do so, we need to define a geom: the geometrical object that a plot uses to
represent data. These geometric objects are made available in ggplot2 with functions
that start with geom_. People often describe plots by the type of geom that the plot
uses. For example, bar charts use bar geoms (geom_bar()), line charts use line geoms
(geom_line()), boxplots use boxplot geoms (geom_boxplot()), scatterplots use point
geoms (geom_point()), and so on.

The function geom_point() adds a layer of points to your plot, which creates a
scatterplot. ggplot2 comes with many geom functions, and each adds a different
type of layer to a plot. You'll learn a whole bunch of geoms throughout the book,
particularly in Chapter 9.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
geom_point()
#> Warning: Removed 2 rows containing missing values (“geom_point()").

8 | Chapter 1: Data Visualization

https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_path.html
https://ggplot2.tidyverse.org/reference/geom_boxplot.html
https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/geom_point.html

6000' . o L] .. ®
e ® % o0 .!.
o e® o® %00 0 3
O o0 . .
0 o.l:.° o
D 5000 - = - " o.
ml a ...:.:::... .
w ° 1 ' = .:= See 0 oo
E o og’t® © *.8° oo
>~| '.. [] o S o ©
3 o %% %% a8 ' .
£ 4000 - e ® o eg.® :. 0:3' % 8

8% o ° ° .
°® 3.. : °g%0se)
e ® ° ofe |
° Y .. [] []
- o o0
3000 T T "
.
170 180 190 200 210 220 230

flipper_length_mm

Now we have something that looks like what we might think of as a “scatterplot” It
doesn’t yet match our “ultimate goal” plot, but using this plot we can start answering
the question that motivated our exploration: “What does the relationship between
flipper length and body mass look like?” The relationship appears to be positive (as
flipper length increases, so does body mass), fairly linear (the points are clustered
around a line instead of a curve), and moderately strong (there isn't too much scatter
around such a line). Penguins with longer flippers are generally larger in terms of
their body mass.

Before we add more layers to this plot, let’s pause for a moment and review the
warning message we got:

Removed 2 rows containing missing values (geom_point()).

We're seeing this message because there are two penguins in our dataset with missing
body mass and/or flipper length values and ggplot2 has no way of representing them
on the plot without both of these values. Like R, ggplot2 subscribes to the philosophy
that missing values should never silently go missing. This type of warning is probably
one of the most common types of warnings you will see when working with real data
—missing values are a common issue, and you’ll learn more about them throughout
the book, particularly in Chapter 18. For the remaining plots in this chapter we will
suppress this warning so it’s not printed alongside every single plot we make.

FirstSteps | 9

https://ggplot2.tidyverse.org/reference/geom_point.html

Adding Aesthetics and Layers

Scatterplots are useful for displaying the relationship between two numerical vari-
ables, but it’s always a good idea to be skeptical of any apparent relationship between
two variables and ask if there may be other variables that explain or change the nature
of this apparent relationship. For example, does the relationship between flipper
length and body mass differ by species? Let’s incorporate species into our plot and
see if this reveals any additional insights into the apparent relationship between these
variables. We will do this by representing species with different colored points.

To achieve this, will we need to modify the aesthetic or the geom? If you guessed “in
the aesthetic mapping, inside of aes(),” youre already getting the hang of creating
data visualizations with ggplot2! And if not, don’t worry. Throughout the book you
will make many more ggplots and have many more opportunities to check your
intuition as you make them.
ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species)

) +

geom_point()

6000 - .o, ®

. o
e ® o _o
° ® % %° 03
., ol..‘ %
] 5000- R, T species
2 e o Mete o
= e U el g ° Adelie
I .. A : ! ;’! o’ * ® Chinstrap
% e !o. b |
® ® Gentoo
_84000' .: .o“x! ;..:3!3 % 8§
18 s s
o ® ;!..3.'.’:!. o880 :
e |® "i‘ §eor
RN o 2
3000 - o* O.:“o.
e o
[]
170 180 190 200 210 220 230

flipper_length_mm

When a categorical variable is mapped to an aesthetic, ggplot2 will automatically
assign a unique value of the aesthetic (here a unique color) to each unique level of the

10 | Chapter 1: Data Visualization

https://ggplot2.tidyverse.org/reference/aes.html

variable (each of the three species), a process known as scaling. ggplot2 will also add a
legend that explains which values correspond to which levels.

Now let’s add one more layer: a smooth curve displaying the relationship between
body mass and flipper length. Before you proceed, refer to the previous code, and
think about how we can add this to our existing plot.

Since this is a new geometric object representing our data, we will add a new geom as
a layer on top of our point geom: geom_smooth(). And we will specify that we want to
draw the line of best fit based on a linear model with method = "lm".
ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g, color = species)
) +
geom_point() +
geom_smooth(method = "1lm")

species
=o= Adelie
== Chinstrap

== Gentoo

170 180 190 200 210 220 230
flipper_length_mm

We have successfully added lines, but this plot doesn’t look like the plot from “Ulti-
mate Goal” on page 6, which has only one line for the entire dataset as opposed to
separate lines for each of the penguin species.

When aesthetic mappings are defined in ggplot(), at the global level, they’re passed
down to each of the subsequent geom layers of the plot. However, each geom
function in ggplot2 can also take a mapping argument, which allows for aesthetic
mappings at the local level that are added to those inherited from the global level.

FirstSteps | 11

https://ggplot2.tidyverse.org/reference/geom_smooth.html
https://ggplot2.tidyverse.org/reference/ggplot.html

Since we want points to be colored based on species but don't want the lines to be
separated out for them, we should specify color = species for geom_point() only.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
geom_point(mapping
geom_smooth(method

aes(color = species)) +
"'y

5500 -

o)} .

m| species

%] .
o] ¢ Adelie
£ 4500-

>J ® Chinstrap
-8 ® Gentoo
s}

3500 -

2500'| 1 1 [] 1 1 1

170 180 190 200 210 220 230

flipper_length_mm

Voilal We have something that looks very much like our ultimate goal, though its
not yet perfect. We still need to use different shapes for each species of penguins and
improve labels.

It’s generally not a good idea to represent information using only colors on a plot, as
people perceive colors differently due to color blindness or other color vision differ-
ences. Therefore, in addition to color, we can map species to the shape aesthetic.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
geom_point(mapping
geom_smooth(method

aes(color = species, shape = species)) +
"Tm"y

12 | Chapter 1: Data Visualization

https://ggplot2.tidyverse.org/reference/geom_point.html

species

* Adelie
4 Chinstrap
= Gentoo

170 180 190 200 210 220 230
flipper_length_mm

Note that the legend is automatically updated to reflect the different shapes of the
points as well.

Finally, we can improve the labels of our plot using the labs() function in a new
layer. Some of the arguments to labs() might be self-explanatory: title adds a
title, and subtitle adds a subtitle to the plot. Other arguments match the aesthetic
mappings: x is the x-axis label, y is the y-axis label, and color and shape define the
label for the legend. In addition, we can improve the color palette to be color-blind
safe with the scale_color_colorblind() function from the ggthemes package.

ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)
)+
geom_point(aes(color = species, shape = species)) +
geom_smooth(method = "lm") +
labs(
title = "Body mass and flipper length",
subtitle = "Dimensions for Adelie, Chinstrap, and Gentoo Penguins",
x = "Flipper length (mm)", y = "Body mass (g)",
color = "Species", shape = "Species"
) +

scale_color_colorblind()

FirstSteps | 13

https://ggplot2.tidyverse.org/reference/labs.html
https://ggplot2.tidyverse.org/reference/labs.html
https://rdrr.io/pkg/ggthemes/man/colorblind.html

Body mass and flipper length
Dimensions for Adelie, Chinstrap, and Gentoo Penguins

5500 -
fpy .
RS Species
0]
2 * Adelie
e 4500 -
- Chinstrap
-8 Gentoo
o

3500 -

2500 = 1 1 [l 1 1 1

170 180 190 200 210 220 230

Flipper length (mm)

We finally have a plot that perfectly matches our “ultimate goal”!

Exercises

1. How many rows are in penguins? How many columns?

2. What does the bill_depth_mm variable in the penguins data frame describe?
Read the help for ?penguins to find out.

3. Make a scatterplot of bill_depth_mm versus bill_length_mm. That is, make a
scatterplot with bill_depth_mm on the y-axis and bill_length_mm on the x-axis.
Describe the relationship between these two variables.

4. What happens if you make a scatterplot of species versus bill_depth_mm? What
might be a better choice of geom?

5. Why does the following give an error, and how would you fix it?
ggplot(data = penguins) +
geom_point()

14 | Chapter 1: Data Visualization

https://allisonhorst.github.io/palmerpenguins/reference/penguins.html

6. What does the na.rm argument do in geom_point()? What is the default value of
the argument? Create a scatterplot where you successfully use this argument set
to TRUE.

7. Add the following caption to the plot you made in the previous exercise: “Data
come from the palmerpenguins package” Hint: Take a look at the documentation
for labs().

8. Re-create the following visualization. What aesthetic should bill_depth_mm be
mapped to? And should it be mapped at the global level or at the geom level?

6000 -

170 180 190 200 210 220 230
flipper_length_mm

9. Run this code in your head and predict what the output will look like. Then, run
the code in R and check your predictions.

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g, color = island)
) +

geom_point() +

geom_smooth(se = FALSE)

10. Will these two graphs look different? Why/why not?

ggplot(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +

geom_point() +

geom_smooth()

ggplot() +
geom_point(
data = penguins,

FirstSteps | 15

https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/labs.html

mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
geom_smooth(

data = penguins,

mapping = aes(x = flipper_length_mm, y = body_mass_g)
)

ggplot2 Calls

As we move on from these introductory sections, we’ll transition to a more concise
expression of ggplot2 code. So far we've been very explicit, which is helpful when you
are learning:
ggplot(
data = penguins,
mapping = aes(x = flipper_length_mm, y = body_mass_g)
) +
geom_point()
Typically, the first one or two arguments to a function are so important that you
should know them by heart. The first two arguments to ggplot() are data and
mapping; in the remainder of the book, we won't supply those names. That saves
typing and, by reducing the amount of extra text, makes it easier to see what’s
different between plots. That’s a really important programming concern that we'll
come back to in Chapter 25.

Rewriting the previous plot more concisely yields:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point()

In the future, you'll also learn about the pipe, |>, which will allow you to create that
plot with:
penguins |>

ggplot(aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point()

Visualizing Distributions

How you visualize the distribution of a variable depends on the type of variable:
categorical or numerical.

16 | Chapter 1: Data Visualization

https://ggplot2.tidyverse.org/reference/ggplot.html

A Categorical Variable

A variable is categorical if it can take only one of a small set of values. To examine the
distribution of a categorical variable, you can use a bar chart. The height of the bars
displays how many observations occurred with each x value.

ggplot(penguins, aes(x = species)) +
geom_bar ()

150 -

100 -
—
c
S
o]
o

50 -

0 -

Adelie Chinstrap Gentoo
species

In bar plots of categorical variables with nonordered levels, like the previous penguin
spectes, it’s often preferable to reorder the bars based on their frequencies. Doing so

requires transforming the variable to a factor (how R handles categorical data) and
then reordering the levels of that factor.

ggplot(penguins, aes(x = fct_infreq(species))) +
geom_bar ()

Visualizing Distributions | 17

150 -

100 -

count

0_

Adelie Gentoo Chinstrap
fct_infreq(species)

You will learn more about factors and functions for dealing with factors (such as
fct_infreq()) in Chapter 16.

A Numerical Variable

A variable is numerical (or quantitative) if it can take on a wide range of numerical
values and it is sensible to add, subtract, or take averages with those values. Numeri-
cal variables can be continuous or discrete.

One commonly used visualization for distributions of continuous variables is a
histogram.

aggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 200)

18 | Chapter 1: Data Visualization

https://forcats.tidyverse.org/reference/fct_inorder.html

40 -

30-

count
N
o

10 -

1 L] 1 L]
3000 4000 5000 6000
body mass g

A histogram divides the x-axis into equally spaced bins and then uses the height of a
bar to display the number of observations that fall in each bin. In the previous graph,
the tallest bar shows that 39 observations have a body_mass_g value between 3,500
and 3,700 grams, which are the left and right edges of the bar.

You can set the width of the intervals in a histogram with the binwidth argument,
which is measured in the units of the x variable. You should always explore a variety
of binwidth values when working with histograms, as different binwidth values can
reveal different patterns. In the following plots, a binwidth of 20 is too narrow, result-
ing in too many bars, making it difficult to determine the shape of the distribution.
Similarly, a binwidth of 2,000 is too high, resulting in all data being binned into only
three bars and also making it difficult to determine the shape of the distribution. A
binwidth of 200 provides a sensible balance.
ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 20)

ggplot(penguins, aes(x = body_mass_g)) +
geom_histogram(binwidth = 2000)

Visualizing Distributions | 19

12.5+

10.0 - 200-
B 7.5- ‘g‘
§ 5.0- 8 100 -
UM
a1 D T ———
3500 4500 5500 2000 4000 6000
body mass_g body_mass_g

An alternative visualization for distributions of numerical variables is a density plot.
A density plot is a smoothed-out version of a histogram and a practical alternative,
particularly for continuous data that comes from an underlying smooth distribution.
We won't go into how geom_density() estimates the density (you can read more
about that in the function documentation), but let’s explain how the density curve
is drawn with an analogy. Imagine a histogram made out of wooden blocks. Then,
imagine that you drop a cooked spaghetti string over it. The shape the spaghetti will
take draped over blocks can be thought of as the shape of the density curve. It shows
fewer details than a histogram but can make it easier to quickly glean the shape of the
distribution, particularly with respect to modes and skewness.
ggplot(penguins, aes(x = body_mass_g)) +

geom_density()
#> Warning: Removed 2 rows containing non-finite values (“stat_density()").

20 | Chapter 1: Data Visualization

https://ggplot2.tidyverse.org/reference/geom_density.html

4e-04 -

density

2e-04 -

0e+00 -

3000 4000 5000 6000
body_mass_g

Exercises

1. Make a bar plot of species of penguins, where you assign species to the y
aesthetic. How is this plot different?
2. How are the following two plots different? Which aesthetic, color or fill, is

more useful for changing the color of bars?
ggplot(penguins, aes(x = species)) +
geom_bar(color = "red")

ggplot(penguins, aes(x = species)) +
geom_bar(fill = "red")

3. What does the bins argument in geom_histogram() do?
4. Make a histogram of the carat variable in the diamonds dataset that is available

when you load the tidyverse package. Experiment with different binwidth values.
What value reveals the most interesting patterns?

Visualizing Relationships

To visualize a relationship we need to have at least two variables mapped to aesthetics
of a plot. In the following sections you will learn about commonly used plots for
visualizing relationships between two or more variables and the geoms used for

creating them.

Visualizing Relationships | 21

https://ggplot2.tidyverse.org/reference/geom_histogram.html

A Numerical and a Categorical Variable

To visualize the relationship between a numerical and a categorical variable we can
use side-by-side box plots. A boxplot is a type of visual shorthand for measures of
position (percentiles) that describe a distribution. It is also useful for identifying
potential outliers. As shown in Figure 1-1, each boxplot consists of:

A box that indicates the range of the middle half of the data, a distance known
as the interquartile range (IQR), stretching from the 25th percentile of the distri-
bution to the 75th percentile. In the middle of the box is a line that displays
the median, i.e., 50th percentile, of the distribution. These three lines give you a
sense of the spread of the distribution and whether the distribution is symmetric
about the median or skewed to one side.

« Visual points that display observations that fall more than 1.5 times the IQR from
either edge of the box. These outlying points are unusual so they are plotted
individually.

o Aline (or whisker) that extends from each end of the box and goes to the farthest
nonoutlier point in the distribution.

How a histogram How a boxplot
The actual values would display the would display
in a distribution values (rotated) the values
I Outliers
. 1.5xIQR
| Whisker to farthest >
- nonoutlier point ’
75th percentile ——fp

: Interquartile
i 50th percentile ——p» range (IQR)
' 25th percentile =——> ’
]

Figure 1-1. Diagram depicting how a boxplot is created.

Let’s take a look at the distribution of body mass by species using geom_boxplot():

ggplot(penguins, aes(x = species, y = body_mass_g)) +
geom_boxplot()

22 | Chapter 1: Data Visualization

https://ggplot2.tidyverse.org/reference/geom_boxplot.html

6000

©) 5000
w
[22]
©
EI
>
o
8 4000
Adelie Chinstrap Gentoo
species

Alternatively, we can make density plots with geom_density():

ggplot(penguins, aes(x = body_mass_g, color = species)) +
geom_density(linewidth = 0.75)

species
Adelie
Chinstrap
Gentoo

3000 4000 5000 6000
body mass g

Visualizing Relationships | 23

https://ggplot2.tidyverse.org/reference/geom_density.html

We've also customized the thickness of the lines using the linewidth argument to
make them stand out a bit more against the background.

Additionally, we can map species to both color and fill aesthetics and use the
alpha aesthetic to add transparency to the filled density curves. This aesthetic takes
values between 0 (completely transparent) and 1 (completely opaque). In the follow-
ing plot it’s set to 0.5:

ggplot(penguins, aes(x = body_mass_g, color = species, fill = species)) +
geom_density(alpha = 0.5)

9e-04 -
species
>
ré 6e-04 - | Adelie
[Chinstrap
©
Gentoo
3e-04 -
0e+00 -
L] 1] 1
3000 4000 5000 6000
body mass g

Note the terminology we have used here:
o We map variables to aesthetics if we want the visual attribute represented by that
aesthetic to vary based on the values of that variable.

o Otherwise, we set the value of an aesthetic.

Two Categorical Variables

We can use stacked bar plots to visualize the relationship between two categorical
variables. For example, the following two stacked bar plots both display the rela-
tionship between island and species, or, specifically, visualize the distribution of

species within each island.

24 | Chapter1: Data Visualization

The first plot shows the frequencies of each species of penguins on each island. The
plot of frequencies shows that there are equal numbers of Adelies on each island, but
we don’t have a good sense of the percentage balance within each island.

ggplot(penguins, aes(x = island, fill = species)) +
geom_bar()

150 -
100- species
- ,
= . Adelie
8 . Chinstrap
. Gentoo
50 -
0 .
1 1 !
Biscoe Dream Torgersen
island
The second plot is a relative frequency plot, created by setting position = "fill" in

the geom, and is more useful for comparing species distributions across islands since
it’s not affected by the unequal numbers of penguins across the islands. Using this
plot we can see that Gentoo penguins all live on Biscoe island and make up roughly
75% of the penguins on that island, Chinstrap all live on Dream island and make up
roughly 50% of the penguins on that island, and Adelie live on all three islands and
make up all of the penguins on Torgersen.

ggplot(penguins, aes(x = island, fill = species)) +
geom_bar(position = "fill")

Visualizing Relationships | 25

1.00 -

0.75-
species
€ I Adelie
g 0.50 -)
o . Chinstrap
. Gentoo
0.25-
0.00-
1 1 1
Biscoe Dream Torgersen
island

In creating these bar charts, we map the variable that will be separated into bars to
the x aesthetic, and the variable that will change the colors inside the bars to the fill
aesthetic.

Two Numerical Variables

So far you've learned about scatterplots (created with geom_point()) and smooth
curves (created with geom_smooth()) for visualizing the relationship between two
numerical variables. A scatterplot is probably the most commonly used plot for
visualizing the relationship between two numerical variables.

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +
geom_point()

26 | Chapter 1: Data Visualization

https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/geom_smooth.html

6000 - ° o, .

e ® % o0 o,
o e® o® %00 0 3
- 0 . H
o egoes %
™ 5000 . e -
" ° olo..:::..‘ *
é ° 1 ' = .:= :.. 0 oo
° Sqe o o 8°
R i
e %g %cce A
.8 4000 - . e o 2 '3 o038 s % 8
® oy * oo oce gt 800
IR T
o ¥ 0278%0e] ogt 850 °
® 'Y ! ()
o © ofe® ! |
. 'O. ° Sl |ORe
- o o0
3000 S e [0
°
170 180 190 200 210 220 230

flipper_length_mm

Three or More Variables

As we saw in “Adding Aesthetics and Layers” on page 10, we can incorporate more
variables into a plot by mapping them to additional aesthetics. For example, in the
following scatterplot the colors of points represent species, and the shapes of points
represent islands:

flipper_length_mm, y = body_mass_g)) +
species, shape = island))

ggplot(penguins, aes(x
geom_point(aes(color

Visualizing Relationships | 27

6000

species

® Adelie
015000 ® Chinstrap
% I ® Gentoo
EI
gmoo ...I island

e Biscoe
4 Dream
.....I "

190 200 210
flipper_length_mm

3000

170 180 220 230

However, adding too many aesthetic mappings to a plot makes it cluttered and
difficult to make sense of. Another option, which is particularly useful for categorical
variables, is to split your plot into facets, subplots that each display one subset of the
data.

To facet your plot by a single variable, use facet_wrap(). The first argument of
facet_wrap() is a formula,® which you create with ~ followed by a variable name.
The variable that you pass to facet_wrap() should be categorical.

flipper_length_mm, y = body_mass_g)) +
species, shape = species)) +

ggplot(penguins, aes(x
geom_point(aes(color
facet_wrap(~island)

3 Here “formula” is the name of the thing created by ~, not a synonym for “equation.”

28 | Chapter 1: Data Visualization

https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_wrap.html

body_mass_g

Biscoe Dream Torgersen

6000 - .a i'
. 'i',iil species

5000 - (T Ll .
o8 r o 4 ! 1 - * Adelie
o % (L R N eI * N)
4000 = SurpaTy et K Va4 Lot Chinstrap
. .
N | 2 o < '-.; ._'. = Gentoo
il i N 5y BRI S
° (] 3 ° ..‘-
3000 - FATD & A ° °

170 180 190 200 210 220 230170 180 190 200 210 220 230170 180 190 200 210 220 230
flipper_length_mm

You will learn about many other geoms for visualizing distributions of variables and
relationships between them in Chapter 9.

Exercises

. The mpg data frame that is bundled with the ggplot2 package contains 234

observations collected by the US Environmental Protection Agency on 38 car
models. Which variables in mpg are categorical? Which variables are numerical?
(Hint: Type ?mpg to read the documentation for the dataset.) How can you see
this information when you run mpg?

. Make a scatterplot of hwy versus displ using the mpg data frame. Next, map a

third, numerical variable to color, then size, then both color and size, and
then shape. How do these aesthetics behave differently for categorical versus
numerical variables?

. In the scatterplot of hwy versus displ, what happens if you map a third variable

to linewidth?
What happens if you map the same variable to multiple aesthetics?

Make a scatterplot of bill_depth_mm versus bill_length_mm and color the
points by species. What does adding coloring by species reveal about the rela-
tionship between these two variables? What about faceting by species?

Why does the following yield two separate legends? How would you fix it to
combine the two legends?
ggplot(
data = penguins,
mapping = aes(
x = bill_length_mm, y = bill_depth_mm,
color = species, shape = species
)
) +
geom_point() +
labs(color = "Species")

Visualizing Relationships | 29

https://ggplot2.tidyverse.org/reference/mpg.html

7. Create the two following stacked bar plots. Which question can you answer with

the first one? Which question can you answer with the second one?
ggplot(penguins, aes(x = island, fill = species)) +
geom_bar(position = "fill")
ggplot(penguins, aes(x = species, fill = island)) +
geom_bar(position = "fill")

Saving Your Plots

Once you've made a plot, you might want to get it out of R by saving it as an image
that you can use elsewhere. That’s the job of ggsave(), which will save the plot most
recently created to disk:

ggplot(penguins, aes(x = flipper_length_mm, y = body_mass_g)) +

geom_point()

ggsave(filename = "penguin-plot.png")
This will save your plot to your working directory, a concept you’ll learn more about
in Chapter 6.

If you don't specify the width and height, they will be taken from the dimensions of
the current plotting device. For reproducible code, you'll want to specify them. You
can learn more about ggsave() in the documentation.

Generally, however, we recommend that you assemble your final reports using
Quarto, a reproducible authoring system that allows you to interleave your code
and your prose and automatically include your plots in your write-ups. You will learn
more about Quarto in Chapter 28.

Exercises

1. Run the following lines of code. Which of the two plots is saved as
mpg-plot.png? Why?
ggplot(mpg, aes(x = class)) +
geom_bar ()
ggplot(mpg, aes(x = cty, y = hwy)) +
geom_point()
ggsave("mpg-plot.png")
2. What do you need to change in the previous code to save the plot as a PDF
instead of a PNG? How could you find out what types of image files would work

in ggsave()?

Common Problems

As you start to run R code, youre likely to run into problems. Don't worry—it
happens to everyone. We have all been writing R code for years, but every day we still
write code that doesn’t work on the first try!

30 | Chapter1:Data Visualization

https://ggplot2.tidyverse.org/reference/ggsave.html
https://ggplot2.tidyverse.org/reference/ggsave.html
https://ggplot2.tidyverse.org/reference/ggsave.html

Start by carefully comparing the code that you're running to the code in the book. R
is extremely picky, and a misplaced character can make all the difference. Make sure
that every (is matched with a) and every " is paired with another ". Sometimes
you’ll run the code and nothing happens. Check the left side of your console: if it’s a
+, it means that R doesn’t think you've typed a complete expression and it’s waiting for
you to finish it. In this case, it's usually easy to start from scratch again by pressing
Escape to abort processing the current command.

One common problem when creating ggplot2 graphics is to put the + in the wrong
place: it has to come at the end of the line, not the start. In other words, make sure
you haven’t accidentally written code like this:

ggplot(data = mpg)

+ geom_point(mapping = aes(x = displ, y = hwy))
If you're still stuck, try the help. You can get help about any R function by running ?
function_name in the console or highlighting the function name and pressing F1 in
RStudio. Don’t worry if the help doesn’t seem that helpful; instead, skip down to the
examples and look for code that matches what you're trying to do.

If that doesn't help, carefully read the error message. Sometimes the answer will be
buried there! But when youre new to R, even if the answer is in the error message,
you might not yet know how to understand it. Another great tool is Google: try
googling the error message, as it’s likely someone else has had the same problem and
has gotten help online.

Summary

In this chapter, you've learned the basics of data visualization with ggplot2. We started
with the basic idea that underpins ggplot2: a visualization is a mapping from variables
in your data to aesthetic properties such as position, color, size, and shape. You then
learned about increasing the complexity and improving the presentation of your
plots layer by layer. You also learned about commonly used plots for visualizing the
distribution of a single variable, as well as for visualizing relationships between two or
more variables, by levering additional aesthetic mappings and/or splitting your plot
into small multiples using faceting.

We'll use visualizations again and again throughout this book, introducing new
techniques as we need them, as well as do a deeper dive into creating visualizations
with ggplot2 in Chapter 9 through Chapter 11.

Now that you understand the basics of visualization, in the next chapter we're going
to switch gears a little and give you some practical workflow advice. We intersperse
workflow advice with data science tools throughout this part of the book because it’ll
help you stay organized as you write increasing amounts of R code.

Summary | 31

CHAPTER 2
Workflow: Basics

You now have some experience running R code. We didn't give you many details,
but you've obviously figured out the basics or you would’ve thrown this book away
in frustration! Frustration is natural when you start programming in R because it is
such a stickler for punctuation, and even one character out of place can cause it to
complain. But while you should expect to be a little frustrated, take comfort in that
this experience is typical and temporary: it happens to everyone, and the only way to
get over it is to keep trying.

Before we go any further, let’s ensure you've got a solid foundation in running R code
and that you know some of the most helpful RStudio features.

Coding Basics
Let’s review some basics we've omitted so far in the interest of getting you plotting as
quickly as possible. You can use R to do basic math calculations:
1/ 200 * 30
#> [1] 0.15
(59 +73+2) /3
#> [1] 44.66667
sin(pi / 2)
[1] 1
You can create new objects with the assignment operator <-:
X < 3 %4
Note that the value of x is not printed, it’s just stored. If you want to view the value,
type x in the console.
You can combine multiple elements into a vector with c():

primes <- c(2, 3, 5, 7, 11, 13)

33

https://rdrr.io/r/base/c.html

And basic arithmetic on vectors is applied to every element of the vector:

primes * 2
#> [1] 4 6 10 14 22 26
primes - 1

[1] 1 2 4 610 12

All R statements where you create objects, assignment statements, have the same
form:

object_name <- value

When reading that code, say “object name gets value” in your head.

You will make lots of assignments, and <- is a pain to type. You can save time with
RStudio’s keyboard shortcut: Alt+- (the minus sign). Notice that RStudio automati-
cally surrounds <- with spaces, which is a good code formatting practice. Code can be
miserable to read on a good day, so giveyoureyesabreak and use spaces.

Comments

R will ignore any text after # for that line. This allows you to write comments, text that
is ignored by R but read by humans. We'll sometimes include comments in examples
to explain what’s happening with the code.

Comments can be helpful for briefly describing what the code does:

create vector of primes
primes <- c(2, 3, 5, 7, 11, 13)

multiply primes by 2

primes * 2

#> [1] 4 610 14 22 26
With short pieces of code like this, leaving a comment for every single line of code
might not be necessary. But as the code youre writing gets more complex, comments
can save you (and your collaborators) a lot of time figuring out what was done in the
code.

Use comments to explain the why of your code, not the how or the what. The what
and how of your code are always possible to figure out, even if it might be tedious,
by carefully reading it. If you describe every step in the comments and then change
the code, you will have to remember to update the comments as well or it will be
confusing when you return to your code in the future.

Figuring out why something was done is much more difficult, if not impossible. For
example, geom_smooth() has an argument called span, which controls the smooth-
ness of the curve, with larger values yielding a smoother curve. Suppose you decide to
change the value of span from its default of 0.75 to 0.9: it’s easy for a future reader to

34 | Chapter2: Workflow: Basics

understand what is happening, but unless you note your thinking in a comment, no
one will understand why you changed the default.

For data analysis code, use comments to explain your overall plan of attack and
record important insights as you encounter them. There’s no way to re-capture this
knowledge from the code itself.

What's in a Name?

Object names must start with a letter and can contain only letters, numbers, _, and ..
You want your object names to be descriptive, so you'll need to adopt a convention
for multiple words. We recommend snake_case, where you separate lowercase words
with _.

1_use_snake_case

otherPeopleUseCamelCase

some.people.use.periods
And_aFew.People_RENOUNCEconvention

We'll return to names again when we discuss code style in Chapter 4.

You can inspect an object by typing its name:

X
[1] 12

Make another assignment:
this_1is_a_really_long_name <- 2.5

To inspect this object, try RStudios completion facility: type this, press Tab, add
characters until you have a unique prefix, and then press Return.

Let’s assume you made a mistake and that the value of this_is_a_really_long_name
should be 3.5, not 2.5. You can use another keyboard shortcut to help you fix it.
For example, you can press 1 to bring the last command you typed and edit it. Or,
type this and then press Cmd/Ctrl+1 to list all the commands you’ve typed that start
with those letters. Use the arrow keys to navigate and then press Enter to retype the
command. Change 2.5 to 3.5 and rerun.

Make yet another assignment:
r_rocks <- 273
Let’s try to inspect it:

r_rock
#> Error: object 'r_rock' not found
R_rocks
#> Error: object 'R_rocks' not found

This illustrates the implied contract between you and R: R will do the tedious compu-
tations for you, but in exchange, you must be completely precise in your instructions.

What'sinaName? | 35

If not, youre likely to get an error that says the object you're looking for was not
found. Typos matter; R can’t read your mind and say, “Oh, they probably meant
r_rocks when they typed r_rock” Case matters; similarly, R can’t read your mind
and say, “Oh, they probably meant r_rocks when they typed R_rocks”

Calling Functions

R has a large collection of built-in functions that are called like this:
function_name(argumentl = valuel, argument2 = value2, ...)

Let’s try using seq(), which makes regular sequences of numbers and, while were
at it, learn more helpful features of RStudio. Type se and hit Tab. A pop-up shows
you possible completions. Specify seq() by typing more (a q) to disambiguate or by
using 1/{ arrows to select. Notice the floating tooltip that pops up, reminding you of
the function’s arguments and purpose. If you want more help, press F1 to get all the
details on the help tab in the lower-right pane.

When you've selected the function you want, press Tab again. RStudio will add
matching opening (() and closing ()) parentheses for you. Type the name of the first
argument, from, and set it equal to 1. Then, type the name of the second argument,
to, and set it equal to 10. Finally, hit Return.

seq(from = 1, to = 10)

#> [1] 1 2 3 4 5 6 7 8 910
We often omit the names of the first several arguments in function calls, so we can
rewrite this as follows:

seq(1, 10)

#> [1] 1 2 3 4 5 6 7 8 910
Type the following code and notice that RStudio provides similar assistance with the
paired quotation marks:

x <- "hello world"

Quotation marks and parentheses must always come in a pair. RStudio does its best
to help you, but its still possible to mess up and end up with a mismatch. If this
happens, R will show you the continuation character, +:

> x <- "hello

+
The + tells you that R is waiting for more input; it doesn’t think youre done yet.
Usually, this means you've forgotten either a " or a). Either add the missing pair, or
press Esc to abort the expression and try again.

Note that the Environment tab in the upper-right pane displays all of the objects that
you've created:

36 | Chapter2: Workflow: Basics

https://rdrr.io/r/base/seq.html
https://rdrr.io/r/base/seq.html

Environment | History Connections Build Git Tutorial =

& |3 | £ Import Dataset - | ‘% 216 MiB ~ | & =Sst- |G~
R - | fk Global Environment ~ Q
Values
primes num [1:6] 2 3 5 7 11 13
r_rocks 8
this_is_a_really_long_name 2.5
X 12
Exercises

1. Why does this code not work?

my_variable <- 10
my_vartiable
#> Error in eval(expr, envir, enclos): object 'my_variable' not found

Look carefully! (This may seem like an exercise in pointlessness, but training
your brain to notice even the tiniest difference will pay off when programming.)

2. Tweak each of the following R commands so that they run correctly:
libary(todyverse)

ggplot(dTA = mpg) +
geom_point(maping = aes(x = displ y = hwy)) +
geom_smooth(method = "1m)

3. Press Option+Shift+K/Alt+Shift+K. What happens? How can you get to the
same place using the menus?

4. Lets revisit an exercise from “Saving Your Plots” on page 30. Run the following

lines of code. Which of the two plots is saved as mpg-plot.png? Why?

my_bar_plot <- ggplot(mpg, aes(x = class)) +
geom_bar ()

my_scatter_plot <- ggplot(mpg, aes(x = cty, y = hwy)) +
geom_point()

ggsave(filename = "mpg-plot.png", plot = my_bar_plot)

Summary

Now that you've learned a little more about how R code works and gotten some tips
to help you understand your code when you come back to it in the future, in the
next chapter, we'll continue your data science journey by teaching you about dplyr,
the tidyverse package that helps you transform data, whether it’s selecting important
variables, filtering down to rows of interest, or computing summary statistics.

Summary | 37

CHAPTER 3
Data Transformation

Introduction

Visualization is an important tool for generating insight, but it’s rare that you get the
data in exactly the right form you need to make the graph you want. Often you’ll need
to create some new variables or summaries to answer your questions with your data,
or maybe you just want to rename the variables or reorder the observations to make
the data a little easier to work with. You’ll learn how to do all that (and more!) in this
chapter, which will introduce you to data transformation using the dplyr package and
a new dataset on flights that departed New York City in 2013.

The goal of this chapter is to give you an overview of all the key tools for transform-
ing a data frame. We'll start with functions that operate on rows and then columns
of a data frame, and then well circle back to talk more about the pipe, an important
tool that you use to combine verbs. We will then introduce the ability to work with
groups. We will end the chapter with a case study that showcases these functions in
action, and we’ll come back to the functions in more detail in later chapters, as we
start to dig into specific types of data (e.g., numbers, strings, dates).

Prerequisites

In this chapter we'll focus on the dplyr package, another core member of the tidy-
verse. We'll illustrate the key ideas using data from the nycflights13 package and use
ggplot2 to help us understand the data.

39

library(nycflights13)

library(tidyverse)

#> — Attaching core tidyverse packages tidyverse 2.0.0 —
#> dplyr 1.1.0.9000 v’ readr 2.1.4

#> o forcats 1.0.0 v stringr 1.5.0

#> o ggplot2 3.4.1 v tibble 3.1.8

#> o lubridate 1.9.2 v tidyr 1.3.0

#> o purrr 1.0.1

#> — Conflicts tidyverse_conflicts() —

#> X dplyr::filter() masks stats::filter()

#> X dplyr::lag() masks stats::lag()

#> 7 Use the conflicted package (<http://conflicted.r-1lib.org/>) to force all

#> conflicts to become errors
Take careful note of the conflicts message that’s printed when you load the tidyverse.
It tells you that dplyr overwrites some functions in base R. If you want to use the
base version of these functions after loading dplyr, you'll need to use their full names:
stats::filter() and stats::lag(). So far we've mostly ignored which package a
function comes from because most of the time it doesn't matter. However, knowing
the package can facilitate finding help as well as related functions, so when we need to
be precise about which function a package comes from, we’ll use the same syntax as
R: packagename: : functionname().

nycflights13

To explore the basic dplyr verbs, were going to use nycflightsi13::flights. This
dataset contains all 336,776 flights that departed from New York City in 2013. The
data comes from the US Bureau of Transportation Statistics and is documented
in ?flights.

flights

#> # A tibble: 336,776 x 19
#> year month day dep_time sched dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

flights is a tibble, a special type of data frame used by the tidyverse to avoid some
common gotchas. The most important difference between tibbles and data frames is
the way tibbles print; they are designed for large datasets, so they show only the first
few rows and only the columns that fit on one screen. There are a few options to see
everything. If youre using RStudio, the most convenient is probably View(flights),
which will open an interactive scrollable and filterable view. Otherwise, you can use
print(flights, width = Inf) to show all columns or use glimpse():

40 | Chapter3: Data Transformation

https://rdrr.io/r/stats/filter.html
https://rdrr.io/r/stats/lag.html
https://rdrr.io/pkg/nycflights13/man/flights.html
https://rdrr.io/pkg/nycflights13/man/flights.html
https://pillar.r-lib.org/reference/glimpse.html

glimpse(flights)
#> Rows: 336,776
#> Columns: 19

#> S year <int> 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013, 2013..
#> S month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.
#> S day <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1.
#> S dep_time <int> 517, 533, 542, 544, 554, 554, 555, 557, 557, 558, 55..
#> S sched_dep_time <int> 515, 529, 540, 545, 600, 558, 600, 600, 600, 600, 60..
#> S dep_delay <dbl> 2, 4, 2, -1, -6, -4, -5, -3, -3, -2, -2, -2, -2, -2,..
#> S arr_time <int> 830, 850, 923, 1004, 812, 740, 913, 709, 838, 753, 8.
#> $ sched_arr_time <int> 819, 830, 850, 1022, 837, 728, 854, 723, 846, 745, 8..
#> S arr_delay <dbl> 11, 20, 33, -18, -25, 12, 19, -14, -8, 8, -2, -3, 7,..
#> S carrier <chr> "UA", "UA", "AA", "B6", "DL", "UA", "B6", "EV", "B6"..
#> S flight <int> 1545, 1714, 1141, 725, 461, 1696, 507, 5708, 79, 301.
#> $ tailnum <chr> "N14228", "N24211", "N619AA", "N804JB", "N668DN", "N..
#> $ origin <chr> "EWR", "LGA", "JFK", "JFK", "LGA", "EWR", "EWR", "LG..
#> $ dest <chr> "IAH", "IAH", "MIA", "BQN", "ATL", "ORD", "FLL", "IA..
#> S air_time <dbl> 227, 227, 160, 183, 116, 150, 158, 53, 140, 138, 149..
#> $§ distance <dbl> 1400, 1416, 1089, 1576, 762, 719, 1065, 229, 944, 73..
#> S hour <dbl> 5, 5, 5, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 6, 6.
#> S minute <dbl> 15, 29, 40, 45, 0, 58, 0, 0, 0, 0, 0, 0, 0, 0, 0, 59.

#> S time_hour <dttm> 2013-01-01 05:00:00, 2013-01-01 05:00:00, 2013-01-0..

In both views, the variables names are followed by abbreviations that tell you the
type of each variable: <int> is short for integer, <dbl> is short for double (aka real
numbers), <chr> for character (aka strings), and <dttm> for date-time. These are
important because the operations you can perform on a column depend so much on

its “type”

dplyr Basics

You're about to learn the primary dplyr verbs (functions), which will allow you to
solve the vast majority of your data manipulation challenges. But before we discuss
their individual differences, it’s worth stating what they have in common:

o The first argument is always a data frame.

o+ The subsequent arguments typically describe which columns to operate on, using
the variable names (without quotes).

o The output is always a new data frame.

Because each verb does one thing well, solving complex problems will usually require
combining multiple verbs, and we’ll do so with the pipe, |>. We'll discuss the pipe
more in “The Pipe” on page 51, but in brief, the pipe takes the thing on its left
and passes it along to the function on its right so that x |> f(y) is equivalent to
f(x, y),and x |> f(y) |> g(z) is equivalent to g(f(x, y), z). The easiest way
to pronounce the pipe is “then” That makes it possible to get a sense of the following
code even though you haven't yet learned the details:

Introduction | 41

flights |>

filter(dest == "IAH") |>
group_by(year, month, day) |>
summarize(

arr_delay = mean(arr_delay, na.rm = TRUE)
)
dplyr’s verbs are organized into four groups based on what they operate on: rows,
columns, groups, and tables. In the following sections, you'll learn the most important
verbs for rows, columns, and groups; then we'll come back to the join verbs that work
on tables in Chapter 19. Let’s dive in!

Rows

The most important verbs that operate on rows of a dataset are filter(), which
changes which rows are present without changing their order, and arrange(),
which changes the order of the rows without changing which are present. Both
functions affect only the rows, and the columns are left unchanged. We'll also dis-
cuss distinct(), which finds rows with unique values, but unlike arrange() and
filter(), it can also optionally modify the columns.

filter()

filter() allows you to keep rows based on the values of the columns.! The first
argument is the data frame. The second and subsequent arguments are the conditions
that must be true to keep the row. For example, we could find all flights that departed
more than 120 minutes (two hours) late:
flights |>
filter(dep_delay > 120)

#> # A tibble: 9,723 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 848 1835 853 1001 1950
#> 2 2013 1 1 957 733 144 1056 853
#> 3 2013 1 1 1114 900 134 1447 1222
#> 4 2013 1 1 1540 1338 122 2020 1825
#> 5 2013 1 1 1815 1325 290 2120 1542
#> 6 2013 1 1 1842 1422 260 1958 1535
#> # .. with 9,717 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

As well as > (greater than), you can use >= (greater than or equal to), < (less than),
<= (less than or equal to), == (equal to), and != (not equal to). You can also combine
conditions with & or , to indicate “and” (check for both conditions) or with | to
indicate “or” (check for either condition):

1 Later, you'll learn about the slice_*() family, which allows you to choose rows based on their positions.

42 | Chapter3: Data Transformation

https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/distinct.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/filter.html

Flights that departed on January 1
flights |>
filter(month == 1 & day == 1)
#> # A tibble: 842 x 19
#> year month day dep_time sched _dep_time dep_delay arr_time sched_arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 836 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

Flights that departed in January or February
flights |>
filter(month == 1 | month == 2)
#> # A tibble: 51,955 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 51,949 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

There’s a useful shortcut when youre combining | and ==: %in%. It keeps rows where
the variable equals one of the values on the right:

A shorter way to select flights that departed in January or February
flights |>
filter(month %in% c(1, 2))
#> # A tibble: 51,955 x 19
#> year month day dep_time sched _dep_time dep_delay arr_time sched_arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 51,949 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

We'll come back to these comparisons and logical operators in more detail in
Chapter 12.

When you run filter(), dplyr executes the filtering operation, creating a new data
frame, and then prints it. It doesn’t modify the existing flights dataset because
dplyr functions never modify their inputs. To save the result, you need to use the
assignment operator, <-:

janl <- flights |>
filter(month == 1 & day == 1)

Rows | 43

https://dplyr.tidyverse.org/reference/filter.html

Common Mistakes

When you're starting out with R, the easiest mistake to make is to use = instead of ==
when testing for equality. filter() will let you know when this happens:
flights |>
filter(month = 1)
#> Error in “filter()":
#> ! We detected a named input.

#> 7 This usually means that you've used ‘=" instead of ‘==".
#> 7 Did you mean ‘month == 1'?

Another mistake is writing “or” statements like you would in English:

flights |>
filter(month == 1 | 2)
This “works” in the sense that it doesn’t throw an error, but it doesn’t do what you
want because | first checks the condition month == 1 and then checks the condition
2, which is not a sensible condition to check. We'll learn more about what's happening
here and why in “Boolean Operations” on page 279.

arrange()

arrange() changes the order of the rows based on the value of the columns. It takes a
data frame and a set of column names (or more complicated expressions) to order by.
If you provide more than one column name, each additional column will be used to
break ties in the values of preceding columns. For example, the following code sorts
by the departure time, which is spread over four columns. We get the earliest years
first, then within a year the earliest months, etc.
flights |>
arrange(year, month, day, dep_time)

#> # A tibble: 336,776 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

You can use desc() on a column inside of arrange() to reorder the data frame based
on that column in descending (big-to-small) order. For example, this code orders
flights from most to least delayed:

44 | Chapter 3: Data Transformation

https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/desc.html
https://dplyr.tidyverse.org/reference/arrange.html

flights |>
arrange(desc(dep_delay))
#> # A tibble: 336,776 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 9 641 900 1301 1242 1530
#> 2 2013 6 15 1432 1935 1137 1607 2120
#> 3 2013 1 10 1121 1635 1126 1239 1810
#> 4 2013 9 20 1139 1845 1014 1457 2210
#> 5 2013 7 22 845 1600 1005 1044 1815
#> 6 2013 4 10 1100 1900 960 1342 2211
#> # .. with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

Note that the number of rows has not changed. We’re only arranging the data; were
not filtering it.

distinct()

distinct() finds all the unique rows in a dataset, so in a technical sense, it primarily
operates on the rows. Most of the time, however, you'll want the distinct combination
of some variables, so you can also optionally supply column names:

Remove duplicate rows, if any
flights |>
distinct()
#> # A tibble: 336,776 x 19
#> year month day dep_time sched dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

Find all unique origin and destination pairs
flights |>
distinct(origin, dest)
#> # A tibble: 224 x 2
#> origin dest
#> <chr> <chr>

#> 1 EWR IAH
#> 2 LGA TAH
#> 3 JFK MIA
#> 4 JFK BON
#> 5 LGA ATL
#> 6 EWR ORD
#> # .. with 218 more rows

Alternatively, if you want to keep the other columns when filtering for unique rows,
you can use the .keep_all = TRUE option:

Rows | 45

https://dplyr.tidyverse.org/reference/distinct.html

flights |>
distinct(origin, dest, .keep_all = TRUE)
#> # A tibble: 224 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 218 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

It’s not a coincidence that all of these distinct flights are on January 1: distinct() will
find the first occurrence of a unique row in the dataset and discard the rest.

If you want to find the number of occurrences instead, youre better off swapping
distinct() for count(), and with the sort = TRUE argument you can arrange them
in descending order of number of occurrences. You'll learn more about count in
<« »
Counts” on page 222.
flights |>
count(origin, dest, sort = TRUE)
#> # A tibble: 224 x 3
#> origin dest n
#> <chr> <chr> <int>
1 JFK LAX 11262
#> 2 LGA ATL 10263
#> 3LGA ORD 8857
#> 4 JFK SFO 8204
5 LGA (LT 6168
6
#

#> EWR ORD 6100
#> . with 218 more rows

Exercises

1. In a single pipeline for each condition, find all flights that meet the condition:
» Had an arrival delay of two or more hours
» Flew to Houston (IAH or HOU)
o Were operated by United, American, or Delta
o Departed in summer (July, August, and September)
+ Arrived more than two hours late, but didn't leave late
o Were delayed by at least an hour, but made up more than 30 minutes in flight

2. Sort flights to find the flights with the longest departure delays. Find the flights
that left earliest in the morning.

46 | Chapter3: Data Transformation

https://dplyr.tidyverse.org/reference/distinct.html
https://dplyr.tidyverse.org/reference/distinct.html
https://dplyr.tidyverse.org/reference/count.html

3. Sort flights to find the fastest flights. (Hint: Try including a math calculation
inside of your function.)

4. Was there a flight on every day of 2013?
5. Which flights traveled the farthest distance? Which traveled the least distance?

6. Does it matter what order you used filter() and arrange() if youre using
both? Why/why not? Think about the results and how much work the functions
would have to do.

Columns

There are four important verbs that affect the columns without changing the rows:
mutate() creates new columns that are derived from the existing columns, select()
changes which columns are present, rename() changes the names of the columns,
and relocate() changes the positions of the columns.

mutate()

The job of mutate() is to add new columns that are calculated from the existing
columns. In the transform chapters, you'll learn a large set of functions that you can
use to manipulate different types of variables. For now, well stick with basic algebra,
which allows us to compute the gain, how much time a delayed flight made up in the
air, and the speed in miles per hour:

flights |>
mutate(
gain = dep_delay - arr_delay,
speed = distance / air_time * 60
)
#> # A tibble: 336,776 x 21
#> year month day dep_time sched_dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 336,770 more rows, and 13 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

By default, mutate() adds new columns on the right side of your dataset, which
makes it difficult to see what’s happening here. We can use the .before argument to
instead add the variables to the left side:?

2 Remember that in RStudio, the easiest way to see a dataset with many columns is View().

Columns | 47

https://rdrr.io/r/utils/View.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/relocate.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html

flights |>
mutate(
gain = dep_delay - arr_delay,
speed = distance / air_time * 60,
.before = 1
)
#> # A tibble: 336,776 x 21
#> gain speed year month day dep_time sched _dep_time dep_delay arr_time

#> <dbl> <dbl> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 -9 370. 2013 1 1 517 515 2 830
2 -16 374. 2013 1 1 533 529 4 850
#> 3 -31 408. 2013 1 1 542 540 2 923
#> 4 17 517. 2013 1 1 544 545 -1 1004
#> 5 19 394. 2013 1 1 554 600 -6 812
6 -16 288. 2013 1 1 554 558 -4 740
#> # .. with 336,770 more rows, and 12 more variables: sched_arr_time <int>,
#> # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ..

The . is a sign that .before is an argument to the function, not the name of a third
new variable we are creating. You can also use .after to add after a variable, and in
both .before and .after you can use the variable name instead of a position. For
example, we could add the new variables after day:
flights |>
mutate(
gain = dep_delay - arr_delay,
speed = distance / air_time * 60,
.after = day
)
Alternatively, you can control which variables are kept with the .keep argument. A
particularly useful argument is "used", which specifies that we keep only the columns
that were involved or created in the mutate() step. For example, the following output
will contain only the variables dep_delay, arr_delay, air_time, gain, hours, and
gain_per_hour:
flights [>
mutate(
gain = dep_delay - arr_delay,
hours = air_time / 60,
gain_per_hour = gain / hours,
.keep = "used"
)
Note that since we haven't assigned the result of the previous computation back to
flights, the new variables gain, hours, and gain_per_hour will be printed only and
will not be stored in a data frame. And if we want them to be available in a data
frame for future use, we should think carefully about whether we want the result to
be assigned back to flights, overwriting the original data frame with many more
variables, or to a new object. Often, the right answer is a new object that is named
informatively to indicate its contents, e.g., delay_gain, but you might also have good
reasons for overwriting flights.

48 | Chapter3: Data Transformation

https://dplyr.tidyverse.org/reference/mutate.html

select()

It's not uncommon to get datasets with hundreds or even thousands of variables.
In this situation, the first challenge is often just focusing on the variables youre
interested in. select() allows you to rapidly zoom in on a useful subset using
operations based on the names of the variables:

o Select columns by name:
flights |>
select(year, month, day)

o Select all columns between year and day (inclusive):
flights |>
select(year:day)

o Select all columns except those from year to day (inclusive):
flights |>
select(!year:day)
You can also use - instead of ! (and you're likely to see that in the wild); we
recommend ! because it reads as “not” and combines well with & and |.
o Select all columns that are characters:

flights |>
select(where(is.character))

There are a number of helper functions you can use within select():

starts_with("abc")
Matches names that begin with “abc”

ends_with("xyz")
Matches names that end with “xyz”

contains("ijk")
Matches names that contain “ijk”

num_range("x", 1:3)
Matches x1, x2, and x3

See ?select for more details. Once you know regular expressions (the topic of
Chapter 15), you'll also be able to use matches() to select variables that match a
pattern.

You can rename variables as you select() them by using =. The new name appears
on the left side of the =, and the old variable appears on the right side:

flights |>

select(tail_num = tailnum)
#> # A tibble: 336,776 x 1
#> tail_num
#> <chr>

Columns | 49

https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/select.html
https://tidyselect.r-lib.org/reference/starts_with.html
https://dplyr.tidyverse.org/reference/select.html

#> 1 N14228
#> 2 N24211
#> 3 N619AA
#> 4 N804IB
#> 5 N668DN
#> 6 N39463
#> # .. with 336,770 more rows

rename()

If you want to keep all the existing variables and just want to rename a few, you can

use rename() instead of select():

flights |>
rename(tail_num = tailnum)
#> # A tibble: 336,776 x 19

#> year month day dep_time sched _dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int>
#> 1 2013 1 1 517
#> 2 2013 1 1 533
#> 3 2013 1 1 542
#> 4 2013 1 1 544
5 2013 1 1 554
#> 6 2013 1 1 554
#

<int>
515
529
540
545
600
558

. with 336,770 more rows, and 11 more variables:

<dbl>
2

4

2

-1

-6

-4

<int> <int>
830 819
850 830
923 850
1004 1022
812 837
740 728

arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tail_num <chr>, origin <chr>, dest <chr>, ..

If you have a bunch of inconsistently named columns and it would be painful to fix
them all by hand, check out janitor::clean_names(), which provides some useful

automated cleaning.

relocate()

Use relocate() to move variables around. You might want to collect related variables
together or move important variables to the front. By default relocate() moves

variables to the front:

flights |>
relocate(time_hour, air_time)
#> # A tibble: 336,776 x 19

#> time_hour air_time

#> <dttm> <dbl>

#> 1 2013-01-01 05:00:00 227

#> 2 2013-01-01 05:00:00 227

#> 3 2013-01-01 05:00:00 160

#> 4 2013-01-01 05:00:00 183

#> 5 2013-01-01 06:00:00 116

#> 6 2013-01-01 05:00:00 150

#> # .. with 336,770 more rows, and
#> #

year month
<int> <int> <int>

2013
2013
2013
2013
2013
2013

1

[A Y

1

day dep_time sched _dep_time

L A Y

1

<int>

517
533
542
544
554
554

<int>
515
529
540
545
600
558

12 more variables: dep_delay <dbl>,

arr_time <int>, sched_arr_time <int>, arr_delay <dbl>, carrier <chr>, ..

50 | Chapter3:Data Transformation

https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/select.html
https://rdrr.io/pkg/janitor/man/clean_names.html
https://dplyr.tidyverse.org/reference/relocate.html
https://dplyr.tidyverse.org/reference/relocate.html

You can also specify where to put them using the .before and .after arguments, just
like in mutate():
flights |>
relocate(year:dep_time, .after = time_hour)

flights |>
relocate(starts_with("arr"), .before = dep_time)

Exercises

1. Compare dep_time, sched_dep_time, and dep_delay. How would you expect
those three numbers to be related?

2. Brainstorm as many ways as possible to select dep_time, dep_delay, arr_time,
and arr_delay from flights.

3. What happens if you specify the name of the same variable multiple times in a
select() call?

4. What does the any_of() function do? Why might it be helpful in conjunction

with this vector?
variables <- c("year", "month", "day", "dep_delay", "arr_delay")

5. Does the result of running the following code surprise you? How do the select
helpers deal with upper- and lowercase by default? How can you change that

default?
flights |> select(contains("TIME"))

6. Rename air_time to air_time_min to indicate units of measurement and move
it to the beginning of the data frame.

7. Why doesn't the following work, and what does the error mean?
flights |>
select(tailnum) |>
arrange(arr_delay)
#> Error in ‘“arrange()’:
#> 7 In argument: '..1 = arr_delay".
#> Caused by error:
#> ! object 'arr_delay' not found

The Pipe

We've shown you simple examples of the pipe, but its real power arises when you start
to combine multiple verbs.

For example, imagine that you wanted to find the fast flights to Houstons IAH
airport: you need to combine filter(), mutate(), select(), and arrange():

ThePipe | 51

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/select.html
https://tidyselect.r-lib.org/reference/all_of.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/arrange.html

flights |>
filter(dest == "IAH") |>
mutate(speed = distance / air_time * 60) |>
select(year:day, dep_time, carrier, flight, speed) |>
arrange(desc(speed))

#> # A tibble: 7,198 x 7

#> year month day dep_time carrier flight speed

#> <int> <int> <int> <int> <chr> <int> <dbl>
#> 1 2013 7 9 707 UA 226 522.
#> 2 2013 8 27 1850 UA 1128 521.
#> 3 2013 8 28 902 UA 1711 519.
#> 4 2013 8 28 2122 UA 1022 519.
#> 5 2013 6 11 1628 UA 1178 515.
#> 6 2013 8 27 1017 UA 333 515.

#> # .. with 7,192 more rows

Even though this pipeline has four steps, it’s easy to skim because the verbs come at
the start of each line: start with the flights data, then filter, then mutate, then select,
and then arrange.

What would happen if we didn’t have the pipe? We could nest each function call
inside the previous call:

arrange(
select(
mutate(
filter(
flights,
dest == "IAH"
),
speed = distance / air_time * 60
),
year:day, dep_time, carrier, flight, speed
)s
desc(speed)
)

Or we could use a bunch of intermediate objects:

flights1l <- filter(flights, dest == "IAH")

flights2 <- mutate(flightsl, speed = distance / air_time * 60)

flights3 <- select(flights2, year:day, dep_time, carrier, flight, speed)

arrange(flights3, desc(speed))
While both forms have their time and place, the pipe generally produces data analysis
code that is easier to write and read.

To add the pipe to your code, we recommend using the built-in keyboard shortcut
Ctrl/Cmd+Shift+M. You'll need to make one change to your RStudio options to use
| > instead of %>%, as shown in Figure 3-1; more on %>% shortly.

52 | Chapter3:Data Transformation

Options

R General —m Display ‘ Saving ‘ Completion Diagnostics]—

E Gode General
Insert spaces for tab
>
2 Console Tab width 2
9 Appearance () Auto-detect code indentation

Insert matching parens/quotes
. Pane Layout . . .
o Use native pipe operator, |> (requires R 4.1+)
L Packages (J Auto-indent code after paste

(¥) Vertically align arguments in auto-indent

R Markdown

Figure 3-1. To insert [>, make sure the “Use native pipe operator” option is checked.

magrittr

If you've been using the tidyverse for a while, you might be familiar
with the %>% pipe provided by the magrittr package. The magrittr
package is included in the core tidyverse, so you can use %>%
whenever you load the tidyverse:

library(tidyverse)

mtcars %>%

group_by(cyl) %>%

summarize(n = n())
For simple cases, |> and %>% behave identically. So why do we
recommend the base pipe? First, because it’s part of base R, it’s
always available for you to use, even when youre not using the
tidyverse. Second, |> is quite a bit simpler than %>%: in the time
between the invention of %>% in 2014 and the inclusion of |> in R
4.1.0 in 2021, we gained a better understanding of the pipe. This
allowed the base implementation to jettison infrequently used and
less important features.

Groups

So far you've learned about functions that work with rows and columns. dplyr gets
even more powerful when you add in the ability to work with groups. In this section,
we'll focus on the most important functions: group_by(), summarize(), and the slice
family of functions.

Groups | 53

https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/summarise.html

group_by()

Use group_by() to divide your dataset into groups meaningful for your analysis:

flights |>

group_by(month)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

day dep_time sched dep_time dep_delay arr_time sched arr_time

<int>
515
529
540
545
600
558

<dbl> <int> <int>
2 830 819

4 850 830

2 923 850

-1 1004 1022

-6 812 837

-4 740 728

. with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

A tibble: 336,776 x 19
Groups: month [12]

year month

<int> <int> <int> <int>
1 2013 1 1 517
2 2013 1 1 533
3 2013 1 1 542
4 2013 1 1 544
5 2013 1 1 554
6 2013 1 1 554
#
#

carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

group_by() doesn’t change the data, but if you look closely at the output, you'll
notice that the output indicates that it is “grouped by” month (Groups: month [12]).
This means subsequent operations will now work “by month?” group_by() adds this
grouped feature (referred to as class) to the data frame, which changes the behavior of

the subsequent verbs applied to the data.

summatrize()

The most important grouped operation is a summary, which, if being used to cal-
culate a single summary statistic, reduces the data frame to have a single row for
each group. In dplyr, this operation is performed by summarize(),® as shown by the
following example, which computes the average departure delay by month:

flights |>
group_by(month) |>

summarize(

)

avg_delay = mean(dep_delay)

A tibble: 12 x 2

month avg_delay
<dbl>

<int>
1 1
2 2
3 3
4 4
5 5
6 6

.. with 6 more rows

NA
NA
NA
NA
NA
NA

Uh-oh! Something has gone wrong, and all of our results are NAs (pronounced “N-
A”), R’s symbol for missing value. This happened because some of the observed flights

3 Or summarise() if you prefer British English.

54 | Chapter3:Data Transformation

https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/summarise.html

had missing data in the delay column, so when we calculated the mean including
those values, we got an NA result. We'll come back to discuss missing values in detail
in Chapter 18, but for now we'll tell the mean() function to ignore all missing values
by setting the argument na.rm to TRUE:

flights |>
group_by(month) |>
summarize(
delay = mean(dep_delay, na.rm = TRUE)
)
#> # A tibble: 12 x 2
#> month delay
#> <int> <dbl>

1 1 10.0
2 2 10.8
#> 3 3 13.2
#> 4 4 13.9
5 5 13.0
6 6 20.8
#> # .. with 6 more rows

You can create any number of summaries in a single call to summarize(). You'll learn
various useful summaries in the upcoming chapters, but one useful summary is n(),
which returns the number of rows in each group:

flights |>
group_by(month) |>
summarize(
delay = mean(dep_delay, na.rm = TRUE),
n=n()
)
#> # A tibble: 12 x 3
#> month delay n
#> <int> <dbl> <int>
#> 1 1 10.0 27004
#> 2 2 10.8 24951
#> 3 3 13.2 28834
#> 4 4 13.9 28330
#> 5 5 13.0 28796
#> 6 6 20.8 28243
#> # .. with 6 more rows

Means and counts can get you a surprisingly long way in data science!

The slice_ Functions

There are five handy functions that allow you extract specific rows within each group:

df |> slice_head(n = 1)
Takes the first row from each group

df |> slice_tail(n = 1)
Takes the last row in each group

Groups | 55

https://rdrr.io/r/base/mean.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/context.html

df |> slice_min(x, n = 1)
Takes the row with the smallest value of column x

df |> slice_max(x, n = 1)
Takes the row with the largest value of column x

df |> slice_sample(n = 1)
takes one random row.

You can vary n to select more than one row, or instead of n =, you can use prop =
0.1 to select, say, 10% of the rows in each group. For example, the following code
finds the flights that are most delayed upon arrival at each destination:

flights |>
group_by(dest) |>
slice_max(arr_delay, n = 1) |>
relocate(dest)
#> # A tibble: 108 x 19
#> # Groups: dest [105]
#> dest year month day dep_time sched dep_time dep_delay arr_time

#> <chr> <int> <int> <int> <int> <int> <dbl> <int>
#> 1 ABQ 2013 7 22 2145 2007 98 132
#> 2 ACK 2013 7 23 1139 800 219 1250
#> 3 ALB 2013 1 25 123 2000 323 229
#> 4 ANC 2013 8 17 1740 1625 75 2042
#> 5 ATL 2013 7 22 2257 759 898 121
#> 6 AUS 2013 7 10 2056 1505 351 2347

#> # .. with 102 more rows, and 11 more variables: sched_arr_time <int>,

#> # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ..
Note that there are 105 destinations but we get 108 rows here. Whats up?
slice_min() and slice_max() keep tied values, so n = 1 means give us all rows
with the highest value. If you want exactly one row per group, you can set with_ties
= FALSE.

This is similar to computing the max delay with summarize(), but you get the whole
corresponding row (or rows if there’s a tie) instead of the single summary statistic.

Grouping by Multiple Variables

You can create groups using more than one variable. For example, we could make a
group for each date:

daily <- flights |>
group_by(year, month, day)
daily
#> # A tibble: 336,776 x 19
#> # Groups: year, month, day [365]
#> year month day dep_time sched _dep_time dep_delay arr_time sched_arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850

56 | Chapter3:Data Transformation

https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/summarise.html

#>4 2013 1 1 544 545 -1 1004 1022
5 2013 1 1 554 660 -6 812 837
#6 2013 1 1 554 558 -4 740 728
#> # .. with 336,770 more rows, and 11 more variables: arr_delay <dbl>,
#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..
When you summarize a tibble grouped by more than one variable, each summary
peels off the last group. In hindsight, this wasn’t a great way to make this function
work, but it’s difficult to change without breaking existing code. To make it obvious
what’s happening, dplyr displays a message that tells you how you can change this
behavior:
daily_flights <- daily |>
summarize(n = n())
#> ‘summarise()" has grouped output by 'year', 'month'. You can override using
#> the “.groups" argument.
If youre happy with this behavior, you can explicitly request it to suppress the
message:
daily_flights <- daily |>
summarize(
n=nQ,
.groups = "drop_last"
)
Alternatively, change the default behavior by setting a different value, e.g., "drop" to
drop all grouping or "keep" to preserve the same groups.

Ungrouping

You might also want to remove grouping from a data frame without using summa
rize(). You can do this with ungroup():

daily |>
ungroup()
#> # A tibble: 336,776 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 -1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

Now let’s see what happens when you summarize an ungrouped data frame:

daily |>
ungroup() |>
summarize(
avg_delay = mean(dep_delay, na.rm = TRUE),
flights = n()
)

Groups | 57

https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/group_by.html

#> # A tibble: 1 x 2
#> avg_delay flights
#> <dbl> <int>
1 12.6 336776
You get a single row back because dplyr treats all the rows in an ungrouped data

frame as belonging to one group.

Dby

dplyr 1.1.0 includes a new, experimental syntax for per-operation grouping, the .by
argument. group_by() and ungroup() aren’t going away, but you can now also use
the .by argument to group within a single operation:
flights |>
summarize(
delay = mean(dep_delay, na.rm = TRUE),
n=n(),

.by = month
)

Or if you want to group by multiple variables:

flights |>
summarize(
delay = mean(dep_delay, na.rm = TRUE),
n=n(),
.by = c(origin, dest)
)
.by works with all verbs and has the advantage that you don’t need to use the .groups

argument to suppress the grouping message or ungroup() when you’re done.

We didn't focus on this syntax in this chapter because it was very new when we wrote
the book. We did want to mention it because we think it has a lot of promise and it’s
likely to be quite popular. You can learn more about it in the dplyr 1.1.0 blog post.

Exercises

1. Which carrier has the worst average delays? Challenge: Can you disentangle the
effects of bad airports versus bad carriers? Why/why not? (Hint: Think about
flights |> group_by(carrier, dest) |> summarize(n()).)

Find the flights that are most delayed upon departure from each destination.
How do delays vary over the course of the day. Illustrate your answer with a plot.

What happens if you supply a negative n to slice_min() and friends?

DA

Explain what count() does in terms of the dplyr verbs you just learned. What
does the sort argument to count() do?

6. Suppose we have the following tiny data frame:

58 | Chapter3:Data Transformation

https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/group_by.html
https://oreil.ly/ySpmy
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/count.html

df <- tibble(
X 1:5,
y = c("a", "b", "a", "a", "b"
z = c("K", "K", "L", "L", "K"
)

),
)

. Write down what you think the output will look like; then check if you were

correct and describe what group_by() does.
df |>
group_by(y)

. Write down what you think the output will look like; then check if you
were correct and describe what arrange() does. Also comment on how it’s

different from the group_by() in part (a).
df |>
arrange(y)

. Write down what you think the output will look like; then check if you were

correct and describe what the pipeline does.
df |>

group_by(y) |>
summarize(mean_x = mean(x))

. Write down what you think the output will look like; then check if you were
correct and describe what the pipeline does. Then, comment on what the
message says.
df |>
group_by(y, z) |>
summarize(mean_x = mean(x))
. Write down what you think the output will look like; then check if you were
correct and describe what the pipeline does. How is the output different from
the one in part (d)?
df |>
group_by(y, z) |>
summarize(mean_x = mean(x), .groups = "drop")
. Write down what you think the outputs will look like; then check if you were
correct and describe what each pipeline does. How are the outputs of the two
pipelines different?
df |>

group_by(y, z) |>
summarize(mean_x = mean(x))

df |>
group_by(y, z) [>
mutate(mean_x = mean(x))

Groups | 59

https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/group_by.html

Case Study: Aggregates and Sample Size

Whenever you do any aggregation, it’s always a good idea to include a count (n()).
That way, you can ensure that youre not drawing conclusions based on very small
amounts of data. We'll demonstrate this with some baseball data from the Lahman
package. Specifically, we will compare what proportion of times a player gets a hit (H)
versus the number of times they try to put the ball in play (AB):
batters <- Lahman::Batting |>
group_by(playerID) |>
summarize(
performance = sum(H, na.rm = TRUE) / sum(AB, na.rm = TRUE),

n = sum(AB, na.rm = TRUE)
)

batters

#> # A tibble: 20,166 x 3

#> playerID performance n
#> <chr> <dbl> <int>
#> 1 aardsda01 %] 4
#> 2 aaronha@1 0.305 12364
#> 3 aaronto01 0.229 944
#> 4 aasedo01 [¢] 5
#> 5 abadan61 0.0952 21
#> 6 abadfe01 0.111 9

#> # .. with 20,160 more rows

When we plot the skill of the batter (measured by the batting average, performance)
against the number of opportunities to hit the ball (measured by times at bat, n), we
see two patterns:

o The variation in performance is larger among players with fewer at-bats. The
shape of this plot is very characteristic: whenever you plot a mean (or other
summary statistics) versus group size, you'll see that the variation decreases as
the sample size increases.*

o There’s a positive correlation between skill (performance) and opportunities to
hit the ball (n) because teams want to give their best batters the most opportuni-
ties to hit the ball.

batters |>
filter(n > 100) |>
ggplot(aes(x = n, y = performance)) +
geom_point(alpha = 1 / 10) +
geom_smooth(se = FALSE)

4 *cough* the law of large numbers *cough*

60 | Chapter3:Data Transformation

https://dplyr.tidyverse.org/reference/context.html

performance

0 5000 10000

Note the handy pattern for combining ggplot2 and dplyr. You just have to remember
to switch from |>, for dataset processing, to + for adding layers to your plot.

This also has important implications for ranking. If you naively sort on desc(perfor
mance), the people with the best batting averages are clearly the ones who tried to put
the ball in play very few times and happened to get a hit; they’re not necessarily the
most skilled players:

batters |>

arrange(desc(performance))
#> # A tibble: 20,166 x 3

#> playerID performance n
#> <chr> <dbl> <int>
#> 1 abramge01 1 1
#> 2 alberanodi 1
#> 3 banisje01 1 1
#> 4 bartoclo1 1 1
#> 5 bassdo01 1 1
#> 6 birassto1 1 2

#> # .. with 20,160 more rows

You can find a good explanation of this problem and how to overcome it on a blog
posts by David Robinson and Evan Miller.

Case Study: Aggregates and Sample Size | 61

https://oreil.ly/OjOwY
https://oreil.ly/wgS7U

Summary

In this chapter, you've learned the tools that dplyr provides for working with data
frames. The tools are roughly grouped into three categories: those that manipulate the
rows (such as filter() and arrange()), those that manipulate the columns (such as
select() and mutate()), and those that manipulate groups (such as group_by() and
summarize()). In this chapter, we focused on these “whole data frame” tools, but you
haven't yet learned much about what you can do with the individual variable. We'll
come back to that in Part III, where each chapter will give you tools for a specific type
of variable.

In the next chapter, we'll pivot back to workflow to discuss the importance of code
style, keeping your code well organized to make it easy for you and others to read and
understand your code.

62 | Chapter3:Data Transformation

https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/summarise.html

CHAPTER 4

Workflow: Code Style

Good coding style is like correct punctuation: you can manage without it, butitsure-
makesthingseasiertoread. Even as a very new programmer, it’s a good idea to work on
your code style. Using a consistent style makes it easier for others (including future
you!) to read your work and is particularly important if you need to get help from
someone else. This chapter will introduce the most important points of the tidyverse
style guide, which is used throughout this book.

Styling your code will feel a bit tedious to start with, but if you practice it, it will
soon become second nature. Additionally, there are some great tools to quickly restyle
existing code, like the styler package by Lorenz Walthert. Once you've installed it with
install.packages("styler"), an easy way to use it is via RStudio’s command palette.
The command palette lets you use any built-in RStudio command and many addins
provided by packages. Open the palette by pressing Cmd/Ctrl+Shift+P and then type
styler to see all the shortcuts offered by styler. Figure 4-1 shows the results.

63

https://oreil.ly/LykON
https://oreil.ly/LykON
https://oreil.ly/8_Z1c

~3 workflow-style.Rmd | Environment Histg

ac

& styler Set style
& styler Style active file
& styler Style active package

& styler Style selection

Figure 4-1. RStudio’s command palette makes it easy to access every RStudio command
using only the keyboard.

We'll use the tidyverse and nycflights13 packages for code examples in this chapter.

library(tidyverse)
library(nycflightsi13)

Names

We talked briefly about names in “What’s in a Name?” on page 35. Remember that
variable names (those created by <- and those created by mutate()) should use only
lowercase letters, numbers, and _. Use _ to separate words within a name.

Strive for:
short_flights <- flights |> filter(air_time < 60)

Avoid:

SHORTFLIGHTS <- flights |> filter(air_time < 60)
As a general rule of thumb, it’s better to prefer long, descriptive names that are easy
to understand rather than concise names that are fast to type. Short names save
relatively little time when writing code (especially since autocomplete will help you
finish typing them), but it can be time-consuming when you come back to old code
and are forced to puzzle out a cryptic abbreviation.

If you have a bunch of names for related things, do your best to be consistent. It’s easy
for inconsistencies to arise when you forget a previous convention, so don't feel bad if
you have to go back and rename things. In general, if you have a bunch of variables
that are a variation on a theme, you're better off giving them a common prefix rather
than a common suffix because autocomplete works best on the start of a variable.

64 | Chapter4: Workflow: Code Style

https://dplyr.tidyverse.org/reference/mutate.html

Spaces

Put spaces on either side of mathematical operators apart from » (i.e., +, -, ==, <, ...)
and around the assignment operator (<-).

Strive for
z<-(a+b)2/d

Avoid

z<-(a+b)~ 2/
Don’t put spaces inside or outside parentheses for regular function calls. Always put a
space after a comma, just like in standard English.

Strive for
mean(x, na.rm = TRUE)

Avoid

mean (X ,na.rm=TRUE)
It's OK to add extra spaces if it improves alignment. For example, if you're creating
multiple variables in mutate(), you might want to add spaces so that all the = line up.’
This makes it easier to skim the code.

flights |>
mutate(
speed = distance / air_time,
dep_hour = dep_time %/% 100,
dep_minute = dep_time %% 100

)

Pipes

|> should always have a space before it and should typically be the last thing on a
line. This makes it easier to add new steps, rearrange existing steps, modify elements
within a step, and get a 10,000-foot view by skimming the verbs on the left side.

Strive for

flights |>

filter(!is.na(arr_delay), !is.na(tailnum)) |>
count(dest)

Avoid

flights|>filter(!is.na(arr_delay), !is.na(tailnum))|>count(dest)
If the function youre piping into has named arguments (like mutate() or summa
rize()), put each argument on a new line. If the function doesn’t have named
arguments (like select() or filter()), keep everything on one line unless it doesn’t
fit, in which case you should put each argument on its own line.

1 Since dep_time is in HMM or HHMM format, we use integer division (%/%) to get hour and remainder (also known
as modulo, %%) to get minute.

Pipes | 65

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/filter.html

Strive for
flights |>
group_by(tailnum) |>
summarize(
delay = mean(arr_delay, na.rm = TRUE),
n = n()
)

Avoid
flights |>
group_by(
tailnum

) 1>

summarize(delay = mean(arr_delay, na.rm = TRUE), n = n())
After the first step of the pipeline, indent each line by two spaces. RStudio automati-
cally puts the spaces in for you after a line break following a |>. If you're putting each
argument on its own line, indent by an extra two spaces. Make sure) is on its own
line and unindented to match the horizontal position of the function name.

Strive for

flights |>
group_by(tailnum) |>
summarize(
delay = mean(arr_delay, na.rm = TRUE),
n =n()
)
Avoid
flights|>
group_by(tailnum) |>
summarize(
delay = mean(arr_delay, na.rm = TRUE),
n = n()
)
Avoid
flights|>
group_by(tailnum) |>
summarize(
delay = mean(arr_delay, na.rm = TRUE),
n = n()
)

It's OK to shirk some of these rules if your pipeline fits easily on one line. But in our
collective experience, it's common for short snippets to grow longer, so you'll usually
save time in the long run by starting with all the vertical space you need.

This fits compactly on one line
df |> mutate(y = x + 1)

While this takes up 4x as many lines, it's easily extended to
more variables and more steps in the future

df |>
mutate(
y=x+ 1
)

66 | Chapter4: Workflow: Code Style

Finally, be wary of writing very long pipes, say longer than 10-15 lines. Try to break
them up into smaller subtasks, giving each task an informative name. The names
will help cue the reader into what’s happening and makes it easier to check that inter-
mediate results are as expected. Whenever you can give something an informative
name, you should, for example when you fundamentally change the structure of the
data, e.g., after pivoting or summarizing. Don’t expect to get it right the first time!
This means breaking up long pipelines if there are intermediate states that can get
good names.

ggplot2

The same basic rules that apply to the pipe also apply to ggplot2; just treat + the same
way as |>:

flights |>
group_by(month) |>
summarize(
delay = mean(arr_delay, na.rm = TRUE)
) |>
ggplot(aes(x = month, y = delay)) +
geom_point() +
geom_line()

Again, if you can't fit all of the arguments to a function onto a single line, put each
argument on its own line:

flights |>
group_by(dest) |>
summarize(
distance = mean(distance),
speed = mean(distance / air_time, na.rm = TRUE)
) I>
ggplot(aes(x = distance, y = speed)) +
geom_smooth(
method = "loess",
span = 0.5,
se = FALSE,
color = "white",
linewidth = 4
) +

geom_point()

Watch for the transition from |> to +. We wish this transition wasn’t necessary, but
unfortunately, ggplot2 was written before the pipe was discovered.

Sectioning Comments

As your scripts get longer, you can use sectioning comments to break up your file into
manageable pieces:

Sectioning Comments | 67

load dat@ ---------==="~="=“~“c~“c"qemmeeeeeaaan

Plot dat@ ---------c-cmmm e

RStudio provides a keyboard shortcut to create these headers (Cmd/Ctrl+Shift+R)
and will display them in the code navigation drop-down at the bottom left of the
editor, as shown in Figure 4-2.

Load data
Plot data

E3 Load data *

Figure 4-2. After adding sectioning comments to your script, you can easily navigate to
them using the code navigation tool in the bottom left of the script editor.

Exercises

1. Restyle the following pipelines following the previous guidelines:

flights|>filter(dest=="IAH")|>group_by(year,month,day)|>summarize(n=n(),
delay=mean(arr_delay,na.rm=TRUE)) [>filter(n>10)

flights|>filter(carrier=="UA",,dest%in%c("IAH","HOU"),sched_dep_time>
0900,sched_arr_time<2000) |>group_by(flight)|>summarize(delay=mean(
arr_delay,na.rm=TRUE),cancelled=sum(is.na(arr_delay)),n=n())|>filter(n>10)

Summary

In this chapter, you learned the most important principles of code style. These may
feel like a set of arbitrary rules to start with (because they are!), but over time, as
you write more code and share code with more people, you'll see how important a
consistent style is. And don't forget about the styler package: it’s a great way to quickly
improve the quality of poorly styled code.

In the next chapter, we switch back to data science tools, learning about tidy data.
Tidy data is a consistent way of organizing your data frames that is used throughout
the tidyverse. This consistency makes your life easier because once you have tidy data,
it just works with the vast majority of tidyverse functions. Of course, life is never easy,
and most datasets you encounter in the wild will not already be tidy. So we’ll also
teach you how to use the tidyr package to tidy your untidy data.

68 | Chapter4: Workflow: Code Style

CHAPTER 5
Data Tidying

Introduction

“Happy families are all alike; every unhappy family is unhappy in its own way”
—Leo Tolstoy

“Tidy datasets are all alike, but every messy dataset is messy in its own way”’
—Hadley Wickham

In this chapter, you will learn a consistent way to organize your data in R using a
system called tidy data. Getting your data into this format requires some work up
front, but that work pays off in the long term. Once you have tidy data and the tidy
tools provided by packages in the tidyverse, you will spend much less time munging
data from one representation to another, allowing you to spend more time on the
data questions you care about.

In this chapter, you'll first learn the definition of tidy data and see it applied to a
simple toy dataset. Then we'll dive into the primary tool you'll use for tidying data:
pivoting. Pivoting allows you to change the form of your data without changing any
of the values.

Prerequisites

In this chapter, we'll focus on tidyr, a package that provides a bunch of tools to help
tidy up your messy datasets. tidyr is a member of the core tidyverse.

library(tidyverse)

From this chapter on, we'll suppress the loading message from library(tidyverse).

69

https://tidyverse.tidyverse.org

Tidy Data

You can represent the same underlying data in multiple ways. The following example
shows the same data organized in three different ways. Each dataset shows the same
values of four variables: country, year, population, and number of documented cases
of tuberculosis (TB), but each dataset organizes the values in a different way.

tablel

#> # A tibble: 6 x 4

#> country year cases population

#> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan 1999 745 19987071

#> 2 Afghanistan 2000 2666 20595360
#> 3 Brazil 1999 37737 172006362
#> 4 Brazil 2000 80488 174504898
#> 5 China 1999 212258 1272915272

#> 6 China 2000 213766 1280428583
table2

#> # A tibble: 12 x 4

#> country year type count
#> <chr> <dbl> <chr> <dbl>
#> 1 Afghanistan 1999 cases 745
#> 2 Afghanistan 1999 population 19987071
#> 3 Afghanistan 2000 cases 2666
#> 4 Afghanistan 2000 population 20595360
#> 5 Brazil 1999 cases 37737
#> 6 Brazil 1999 population 172006362

#> # .. with 6 more rows

table3

#> # A tibble: 6 x 3

#> country year rate
#> <chr> <dbl> <chr>

#> 1 Afghanistan 1999 745/19987071
#> 2 Afghanistan 2000 2666/20595360

#> 3 Brazil 1999 37737/172006362
#> 4 Brazil 2000 80488/174504898
#> 5 China 1999 212258/1272915272
#> 6 China 2000 213766/1280428583

These are all representations of the same underlying data, but they are not equally
easy to use. One of them, tablel, will be much easier to work with inside the
tidyverse because it’s tidy.

There are three interrelated rules that make a dataset tidy:
1. Each variable is a column; each column is a variable.

2. Each observation is a row; each row is an observation.

3. Each value is a cell; each cell is a single value.

70 | Chapter5:Data Tidying

Figure 5-1 shows the rules visually.

Aig#Mtan 5 10T A ——- nean € @ 1€Dor
agnfiisian 2fo Fes 20fbsic0 emmemmerm—— D50 D) Ao
Brazi e ofsr 7o d——————) @ O e
Brazi oo sfss 174fpicos Apm—y o)) 1740)e98
Chin 1o 21fss 12725272 fpe—p ChiZ) ® &)
Chin oNYfo6 126096583 ﬁ—mm@ cm@ @ 21@5 128(@583

Variables Observations Values

Figure 5-1. Three rules make a dataset tidy: variables are columns, observations are
rows, and values are cells.

Why ensure that your data is tidy? There are two main advantages:

1. There’s a general advantage to picking one consistent way of storing data. If you
have a consistent data structure, it’s easier to learn the tools that work with it
because they have an underlying uniformity.

2. There’s a specific advantage to placing variables in columns because it allows
R’s vectorized nature to shine. As you learned in “mutate()” on page 47 and
“summarize()” on page 54, most built-in R functions work with vectors of values.
That makes transforming tidy data feel particularly natural.

dplyr, ggplot2, and all the other packages in the tidyverse are designed to work with
tidy data.

Here are a few small examples showing how you might work with table1:

Compute rate per 10,000
tablel |>

mutate(rate = cases / population * 10000)
#> # A tibble: 6 x 5
#> country year cases population rate
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 1999 745 19987071 0.373
#> 2 Afghanistan 2000 2666 20595360 1.29

#> 3 Brazil 1999 37737 172006362 2.19
#> 4 Brazil 2000 80488 174504898 4.61
#> 5 China 1999 212258 1272915272 1.67
#> 6 China 2000 213766 1280428583 1.67

Compute total cases per year
tablel |>
group_by(year) |>
summarize(total_cases = sum(cases))
#> # A tibble: 2 x 2

#> year total_cases
#> <dbl> <dbl>
#> 1 1999 250740
#> 2 2000 296920

TidyData | 71

Visualize changes over time

ggplot(tablel, aes(x = year, y = cases)) +
geom_line(aes(group = country), color = "grey50") +
geom_point(aes(color = country, shape = country)) +
scale_x_continuous(breaks = c(1999, 2000)) # x-axis breaks at 1999 and 2000

| I
200000 -
150000 -
country
3 * Afghanistan
w
& 100000 - 4 Brazil
= China
50000 -
0- L .]
1999 2000
year
Exercises

1. For each of the sample tables, describe what each observation and each column
represents.

2. Sketch out the process youd use to calculate the rate for table2 and table3. You
will need to perform four operations:

a. Extract the number of TB cases per country per year.
b. Extract the matching population per country per year.
c. Divide cases by population, and multiply by 10,000.
d. Store back in the appropriate place.

You haven't yet learned all the functions youd need to actually perform these
operations, but you should still be able to think through the transformations
youd need.

72 | (Chapter5:Data Tidying

Lengthening Data

The principles of tidy data might seem so obvious that you wonder if you’ll ever
encounter a dataset that isn’'t tidy. Unfortunately, however, most real data is untidy.

There are two main reasons:

1. Data is often organized to facilitate some goal other than analysis. For example,
it's common for data to be structured to make data entry, not analysis, easy.

2. Most people aren’t familiar with the principles of tidy data, and it’s hard to derive

them yourself unless you spend a lot of time working with data.

This means that most real analyses will require at least a little tidying. You'll begin
by figuring out what the underlying variables and observations are. Sometimes this is
easy; other times you'll need to consult with the people who originally generated the
data. Next, you'll pivot your data into a tidy form, with variables in the columns and

observations in the rows.

tidyr provides two functions for pivoting data: pivot_longer() and pivot_wider().
We'll first start with pivot_longer() because it’s the most common case. Let’s dive

into some examples.

Data in Column Names

The billboard dataset records the Billboard rank of songs in the year 2000:

wk2
<dbl>
82

87

70

76

34

39

wk3
<dbl>
72

92

68

72

25

34

wk4 wk5
<dbl> <dbl>
77 87

NA NA

67 66

69 67

17 17

26 26

billboard

#> # A tibble: 317 x 79

#> artist track date.entered wk1

#> <chr> <chr> <date> <dbl>

#> 1 2 Pac Baby Don't Cry (Ke.. 2000-02-26 87

#> 2 2Ge+her The Hardest Part 0.. 2000-09-02 91

#> 3 3 Doors Down Kryptonite 2000-04-08 81

#> 4 3 Doors Down Loser 2000-10-21 76

#> 5 504 Boyz Wobble Wobble 2000-04-15 57

#> 6 9870 Give Me Just One N.. 2000-08-19 51

#> # .. with 311 more rows, and 71 more variables: wké <dbl>, wk7 <dbl>,
#> # wk8 <dbl>, wk9 <dbl>, wki10 <dbl>, wki11l <dbl>, wk12 <dbl>, wk13 <dbl>, ..

In this dataset, each observation is a song. The first three columns (artist, track
and date.entered) are variables that describe the song. Then we have 76 columns
(wk1-wk76) that describe the rank of the song in each week.! Here, the column names

are one variable (the week), and the cell values are another (the rank).

To tidy this data, we’ll use pivot_longer():

1 The song will be included as long as it was in the top 100 at some point in 2000 and is tracked for up to 72

weeks after it appears.

Lengthening Data

https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_longer.html

billboard |>
pivot_longer(
cols = starts_with("wk"),
names_to = "week",
values_to = "rank"
)
#> # A tibble: 24,092 x 5

#> artist track date.entered week rank
#> <chr> <chr> <date> <chr> <dbl>
#> 1 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk1 87
#> 2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82
#> 3 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk3 72
#> 4 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk4 77
#> 5 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk5 87
#> 6 2 Pac Baby Don't Cry (Keep... 2000-02-26 wké6 94
#> 7 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk7 99
#> 8 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk8 NA
#> 9 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk9 NA
#> 10 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk10 NA

#> # .. with 24,082 more rows

After the data, there are three key arguments:

cols
Specifies which columns need to be pivoted (i.e., which columns aren't vari-
ables). This argument uses the same syntax as select(), so here we could
use !c(artist, track, date.entered) or starts_with("wk").

names_to
Names the variable stored in the column names; we named that variable week.

values_to
Names the variable stored in the cell values; we named that variable rank.

Note that in the code "week" and "rank" are quoted because those are new variables
we're creating; they don’t yet exist in the data when we run the pivot_longer() call.

Now let’s turn our attention to the resulting longer data frame. What happens if a
song is in the top 100 for less than 76 weeks? Take 2 Pac’s “Baby Don't Cry, for
example. The previous output suggests that it was only in the top 100 for 7 weeks,
and all the remaining weeks are filled in with missing values. These NAs don't really
represent unknown observations; they were forced to exist by the structure of the
dataset,” so we can ask pivot_longer() to get rid of them by setting values_drop_na
= TRUE:

2 We'll come back to this idea in Chapter 18.

74 | (Chapter5:Data Tidying

https://dplyr.tidyverse.org/reference/select.html
https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_longer.html

billboard |>
pivot_longer(
cols = starts_with("wk"),
names_to = "week",
values_to = "rank",
values_drop_na = TRUE
)
#> # A tibble: 5,307 x 5

#> artist track date.entered week rank
#> <chr> <chr> <date> <chr> <dbl>
#> 1 2 Pac Baby Don't Cry (Keep... 2000-02-26 wkl1 87
#> 2 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk2 82
#> 3 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk3 72
#> 4 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk4 77
#> 5 2 Pac Baby Don't Cry (Keep... 2000-02-26 wk5 87
#> 6 2 Pac Baby Don't Cry (Keep... 2000-02-26 wké6 94
#> # .. with 5,301 more rows

The number of rows is now much lower, indicating that many rows with NAs were
dropped.

You might also wonder what happens if a song is in the top 100 for more than 76
weeks. We can't tell from this data, but you might guess that additional columns such
as wk77, wk78, ... would be added to the dataset.

This data is now tidy, but we could make future computation a bit easier by
converting values of week from character strings to numbers using mutate() and
readr::parse_number(). parse_number() is a handy function that will extract the
first number from a string, ignoring all other text.

billboard_longer <- billboard |>

pivot_longer(
cols = starts_with("wk"),

names_to = "week",
values_to = "rank",
values_drop_na = TRUE
) |>
mutate(

week = parse_number(week)
)
billboard_longer
#> # A tibble: 5,307 x 5

#> artist track date.entered week rank
#> <chr> <chr> <date> <dbl> <dbl>
#> 1 2 Pac Baby Don't Cry (Keep... 2000-02-26 1 87
#> 2 2 Pac Baby Don't Cry (Keep... 2000-02-26 2 82
#> 3 2 Pac Baby Don't Cry (Keep... 2000-02-26 3 72
#> 4 2 Pac Baby Don't Cry (Keep... 2000-02-26 4 77
#> 5 2 Pac Baby Don't Cry (Keep... 2000-02-26 5 87
#> 6 2 Pac Baby Don't Cry (Keep... 2000-02-26 6 94

#> # .. with 5,301 more rows

Now that we have all the week numbers in one variable and all the rank values in
another, we're in a good position to visualize how song ranks vary over time. The
code is shown here and the result is in Figure 5-2. We can see that very few songs stay
in the top 100 for more than 20 weeks.

LengtheningData | 75

https://dplyr.tidyverse.org/reference/mutate.html
https://readr.tidyverse.org/reference/parse_number.html
https://readr.tidyverse.org/reference/parse_number.html

billboard_longer |>
ggplot(aes(x = week, y = rank, group = track)) +
geom_line(alpha = 0.25) +
scale_y_reverse()

0 -

25 = \

=
S 50-

j -
75-
100 -
0 20 40 60
week

Figure 5-2. A line plot showing how the rank of a song changes over time.

How Does Pivoting Work?

Now that you've seen how we can use pivoting to reshape our data, let’s take a little
time to gain some intuition about what pivoting does to the data. Lets start with
a simple dataset to make it easier to see what’s happening. Suppose we have three
patients with ids A, B, and C, and we take two blood pressure measurements on each
patient. We'll create the data with tribble(), a handy function for constructing small

tibbles by hand:

df <- tribble(
~id, ~bp1l, ~bp2,
"A", 100, 120,
"B", 140, 115,
"c", 120, 125
)

We want our new dataset to have three variables: id (already exists), measurement
(the column names), and value (the cell values). To achieve this, we need to pivot df

longer:

76 | Chapter5:Data Tidying

https://tibble.tidyverse.org/reference/tribble.html

df

|>

pivot_longer(

cols = bpl:bp2,
names_to = "measurement”,

values_to = "value"

#> # A tibble: 6 x 3
measurement value

#>
#>
#>
#>
#>
#>
#>
#>

id
<chr> <chr>

1A
2 A
3B
4B
5C
6 C

bp1
bp2
bp1
bp2
bp1
bp2

<dbl>

100
120
140
115
120
125

How does the reshaping work? It's easier to see if we think about it column by
column. As shown in Figure 5-3, the values in the column that was already a variable
in the original dataset (id) need to be repeated, once for each column that is pivoted.

id bp1l | bp2
A 100 | 120
B 140 | 115
C 120 | 125

id name | value
A bp1 100
A bp2 120
| > B bp1 140
B bp2 115
C bp1 120
C bp2 125

Figure 5-3. Columns that are already variables need to be repeated, once for each
column that is pivoted.

The column names become values in a new variable, whose name is defined by
names_to, as shown in Figure 5-4. They need to be repeated once for each row in the
original dataset.

LengtheningData | 77

id name | value
A bp1 100

id bp1 bp2
P P A bp2 | 120

A | 100 | 120
:> 5 | b1 | 100

B 140 | 115
B bp2 115

C 120 125
C bp1 120
C bp2 125

Figure 5-4. The column names of pivoted columns become values in a new column. The
values need to be repeated once for each row of the original dataset.

The cell values also become values in a new variable, with a name defined by val
ues_to. They are unwound row by row. Figure 5-5 illustrates the process.

id name | value
A bp1 100

id bpl | bp2
P P A bp2 120

A 100 120
B bp1 140

B 140 115
B bp2 115

C 120 125
C bp1 120
C bp2 125

Figure 5-5. The number of values is preserved (not repeated) but unwound row by row.

Many Variables in Column Names

A more challenging situation occurs when you have multiple pieces of information
crammed into the column names and you would like to store these in separate new
variables. For example, take the who2 dataset, the source of tablel, and friends that
you saw earlier:

78 | Chapter5:Data Tidying

who2
#> # A tibble: 7,240 x 58

#> country year sp_m_014 sp_m_1524 sp_m_2534 sp_m_3544 sp_m_4554
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan 1980 NA NA NA NA NA
#> 2 Afghanistan 1981 NA NA NA NA NA
#> 3 Afghanistan 1982 NA NA NA NA NA
#> 4 Afghanistan 1983 NA NA NA NA NA
#> 5 Afghanistan 1984 NA NA NA NA NA
#> 6 Afghanistan 1985 NA NA NA NA NA

#> # .. with 7,234 more rows, and 51 more variables: sp_m_5564 <dbl>,

#> # sp_m_65 <dbl>, sp_f 014 <dbl>, sp_f 1524 <dbl>, sp_f 2534 <dbl>, ..
This dataset, collected by the World Health Organization, records information about
tuberculosis diagnoses. There are two columns that are already variables and are
easy to interpret: country and year. They are followed by 56 columns like sp_m_014,
ep_m_4554, and rel_m_3544. If you stare at these columns for long enough, you’ll
notice there’s a pattern. Each column name is made up of three pieces separated
by _. The first piece, sp/rel/ep, describes the method used for the diagnosis; the
second piece, m/f, is the gender (coded as a binary variable in this dataset); and the
third piece, 014/1524/2534/3544/4554/65, is the age range (014 represents 0-14, for
example).

So in this case we have six pieces of information recorded in who2: the country and
the year (already columns); the method of diagnosis, the gender category, and the age
range category (contained in the other column names); and the count of patients in
that category (cell values). To organize these six pieces of information in six separate
columns, we use pivot_longer() with a vector of column names for names_to and
instructors for splitting the original variable names into pieces for names_sep as well
as a column name for values_to:
who2 |>

pivot_longer(
cols = !(country:year),

names_to = c("diagnosis", "gender", "age"),
names_sep = "_",
values_to = "count"

)
#> # A tibble: 405,440 x 6

#> country year diagnosis gender age count
#> <chr> <dbl> <chr> <chr> <chr> <dbl>
#> 1 Afghanistan 1980 sp m 014 NA
#> 2 Afghanistan 1980 sp n 1524 NA
#> 3 Afghanistan 1980 sp m 2534 NA
#> 4 Afghanistan 1980 sp n 3544 NA
#> 5 Afghanistan 1980 sp m 4554 NA
#> 6 Afghanistan 1980 sp n 5564 NA

#> # .. with 405,434 more rows

An alternative to names_sep is names_pattern, which you can use to extract variables
from more complicated naming scenarios, once you've learned about regular expres-
sions in Chapter 15.

LengtheningData | 79

https://tidyr.tidyverse.org/reference/pivot_longer.html

Conceptually, this is only a minor variation on the simpler case you've already seen.
Figure 5-6 shows the basic idea: now, instead of the column names pivoting into a
single column, they pivot into multiple columns. You can imagine this happening in
two steps (first pivoting and then separating), but under the hood it happens in a
single step because that’s faster.

id name |number | value

A X 1 1
id x1|y?2

A y 2 2
A 1 2

B X 1 3
B 3 4

B y 2 4
C 5 6

C X 1

C y 2 6

Figure 5-6. Pivoting columns with multiple pieces of information in the names means
that each column name now fills in values in multiple output columns.

Data and Variable Names in the Column Headers

The next step up in complexity is when the column names include a mix of variable
values and variable names. For example, take the household dataset:
household

#> # A tibble: 5 x 5
#> family dob_child1l dob_child2 name_child1l name_child2

#> <int> <date> <date> <chr> <chr>
#> 1 1 1998-11-26 2000-01-29 Susan Jose
#> 2 2 1996-06-22 NA Mark <NA>
#> 3 3 2002-07-11 2004-04-05 Sam Seth
#> 4 4 2004-10-10 2009-08-27 Craig Khat
#> 5 5 2000-12-05 2005-02-28 Parker Gracie

This dataset contains data about five families, with the names and dates of birth of up
to two children. The new challenge in this dataset is that the column names contain
the names of two variables (dob, name) and the values of another (child, with values
1 or 2). To solve this problem we again need to supply a vector to names_to but
this time we use the special ".value" sentinel; this isn’t the name of a variable but a
unique value that tells pivot_longer() to do something different. This overrides the
usual values_to argument to use the first component of the pivoted column name as
a variable name in the output.
household |>

pivot_longer(
cols = !family,

80 | Chapter5:Data Tidying

https://tidyr.tidyverse.org/reference/pivot_longer.html

names_to = c(".value", "child"),
names_sep = "_'

values_drop_na = TRUE

)
#> # A tibble: 9 x 4

#> family child dob name
#> <int> <chr> <date> <chr>
1 1 child1l 1998-11-26 Susan
2 1 child2 2000-01-29 Jose
#> 3 2 child1 1996-06-22 Mark
#> 4 3 child1 2002-07-11 Sam

#> 5 3 child2 2004-04-05 Seth
#> 6 4 child1l 2004-10-10 Craig
#> # .. with 3 more rows

We again use values_drop_na = TRUE, since the shape of the input forces the

creation of explicit missing variables (e.g., for families with only one child).

Figure 5-7 illustrates the basic idea with a simpler example. When you use ".value"
in names_to, the column names in the input contribute to both values and variable
names in the output.

id| x|y |num
id [x 1|x 2|y 1|y 2 A|1]3 1
A 1 2 3 4 A 2| 4 2
B 5 6 7 8 B 517 1
B 6|8 2

Figure 5-7. Pivoting with names_to = c(".value", "num") splits the column names
into two components: the first part determines the output column name (x or y), and the
second part determines the value of the num column.

Widening Data

So far we've used pivot_longer() to solve the common class of problems where
values have ended up in column names. Next we'll pivot (HA HA) to pivot_wider(),
which makes datasets wider by increasing columns and reducing rows and helps
when one observation is spread across multiple rows. This seems to arise less com-
monly in the wild, but it does seem to crop up a lot when dealing with governmental
data.

We'll start by looking at cms_patient_experience, a dataset from the Centers of
Medicare and Medicaid services that collects data about patient experiences:

WideningData | 81

https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_wider.html

cms_patient_experience
#> # A tibble: 500 x 5

#> org_pac_id org_nm measure_cd measure_title prf_rate
#> <chr> <chr> <chr> <chr> <dbl>
#> 1 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_1 CAHPS for MIPS.. 63
#> 2 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_2 CAHPS for MIPS.. 87
#> 3 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_3 CAHPS for MIPS.. 86
#> 4 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_5 CAHPS for MIPS.. 57
#> 5 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_8 CAHPS for MIPS.. 85
#> 6 0446157747 USC CARE MEDICAL GROUP INC CAHPS_GRP_12 CAHPS for MIPS.. 24
#> # .. with 494 more rows

The core unit being studied is an organization, but each organization is spread across
six rows, with one row for each measurement taken in the survey organization.
We can see the complete set of values for measure_cd and measure_title by using
distinct():

cms_patient_experience |>
distinct(measure_cd, measure_title)
#> # A tibble: 6 x 2
#> measure_cd measure_title
#> <chr> <chr>
#> 1 CAHPS_GRP_1 CAHPS for MIPS SSM: Getting Timely Care, Appointments, and In.
#> 2 CAHPS_GRP_2 CAHPS for MIPS SSM: How Well Providers Communicate
#> 3 CAHPS_GRP_3 CAHPS for MIPS SSM: Patient's Rating of Provider
#> 4 CAHPS_GRP_5 CAHPS for MIPS SSM: Health Promotion and Education
#> 5 CAHPS_GRP_8 CAHPS for MIPS SSM: Courteous and Helpful Office Staff
#> 6 CAHPS_GRP_12 CAHPS for MIPS SSM: Stewardship of Patient Resources

Neither of these columns will make particularly great variable names: measure_cd
doesn’t hint at the meaning of the variable, and measure_title is a long sentence
containing spaces. We'll use measure_cd as the source for our new column names for

now, but in a real analysis you might want to create your own variable names that are
both short and meaningful.

pivot_wider() has the opposite interface to pivot_longer(): instead of choosing
new column names, we need to provide the existing columns that define the values
(values_from) and the column name (names_from):

cms_patient_experience |>
pivot_wider(
names_from = measure_cd,
values_from = prf_rate

)
#> # A tibble: 500 x 9

#> org_pac_id org_nm measure_title CAHPS_GRP_1 CAHPS_GRP_2
#> <chr> <chr> <chr> <dbl> <dbl>
#> 1 0446157747 USC CARE MEDICAL GROUP .. CAHPS for MIPS.. 63 NA
#> 2 0446157747 USC CARE MEDICAL GROUP .. CAHPS for MIPS.. NA 87
#> 3 0446157747 USC CARE MEDICAL GROUP .. CAHPS for MIPS.. NA NA
#> 4 0446157747 USC CARE MEDICAL GROUP .. CAHPS for MIPS.. NA NA
#> 5 0446157747 USC CARE MEDICAL GROUP .. CAHPS for MIPS.. NA NA
#> 6 0446157747 USC CARE MEDICAL GROUP .. CAHPS for MIPS.. NA NA
#> # .. with 494 more rows, and 4 more variables: CAHPS_GRP_3 <dbl>,

#> # CAHPS_GRP_5 <dbl>, CAHPS_GRP_8 <dbl>, CAHPS_GRP_12 <dbl>

82 | (Chapter5:Data Tidying

https://dplyr.tidyverse.org/reference/distinct.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://tidyr.tidyverse.org/reference/pivot_longer.html

The output doesn’t look quite right; we still seem to have multiple rows for each
organization. That’s because we also need to tell pivot_wider() which column or
columns have values that uniquely identify each row; in this case those are the
variables starting with "org":

cms_patient_experience |>
pivot_wider(
id_cols = starts_with("org"),
names_from = measure_cd,
values_from = prf_rate
)
#> # A tibble: 95 x 8

#> org_pac_id org_nm CAHPS_GRP_1 CAHPS_GRP_2 CAHPS_GRP_3 CAHPS_GRP_5
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 0446157747 USC CARE MEDICA.. 63 87 86 57
#> 2 0446162697 ASSOCIATION OF .. 59 85 83 63
#> 3 0547164295 BEAVER MEDICAL .. 49 NA 75 44
#> 4 (0749333730 CAPE PHYSICIANS.. 67 84 85 65
#> 5 0840104360 ALLIANCE PHYSIC.. 66 87 87 64
#> 6 0840109864 REX HOSPITAL INC 73 87 84 67
#> # .. with 89 more rows, and 2 more variables: CAHPS_GRP_8 <dbl>,

#> # CAHPS_GRP_12 <dbl>

This gives us the output that were looking for.

How Does pivot_wider() Work?

To understand how pivot_wider() works, lets again start with a simple dataset.
This time we have two patients with ids A and B; we have three blood pressure
measurements on patient A and two on patient B:

df <- tribble(
~id, ~measurement, ~value,

"A", "bp1", 100,
"B", "bp1", 140,
"B", "bp2", 115,
"A", "bp2", 120,
"A", "bp3", 105

)

We'll take the values from the value column and the names from the measurement
column:

df |>
pivot_wider(
names_from = measurement,
values_from = value

)
#> # A tibble: 2 x 4

#> id bpl1 bp2 bp3
#> <chr> <dbl> <dbl> <dbl>
#> 1A 100 120 1605
#> 2 B 140 115 NA

WideningData | 83

https://tidyr.tidyverse.org/reference/pivot_wider.html
https://tidyr.tidyverse.org/reference/pivot_wider.html

To begin the process, pivot_wider() needs to first figure out what will go in the rows
and columns. The new column names will be the unique values of measurement:

df |>
distinct(measurement) |>
pull()

#> [1] "bp1" "bp2" "bp3"

By default, the rows in the output are determined by all the variables that aren’t going
into the new names or values. These are called the id_cols. Here there is only one
column, but in general there can be any number:

df |>
select(-measurement, -value) |>
distinct()

#> # A tibble: 2 x 1

#> id

#> <chr>

#> 1A

#> 2 B

pivot_wider() then combines these results to generate an empty data frame:

df |>
select(-measurement, -value) |[>
distinct() |>
mutate(x = NA, y = NA, z = NA)
#> # A tibble: 2 x 4

#> id X y z
#> <chr> <lgl> <lgl> <lgl>
#> 1A NA NA NA

#> 2 B NA NA NA

It then fills in all the missing values using the data in the input. In this case, not every
cell in the output has a corresponding value in the input as there’s no third blood
pressure measurement for patient B, so that cell remains missing. We'll come back to
this idea that pivot_wider() can “make” missing values in Chapter 18.

You might also wonder what happens if there are multiple rows in the input that
correspond to one cell in the output. The following example has two rows that
correspond to id A and measurement bp1:

df <- tribble(
~id, ~measurement, ~value,

A", "bp1", 100,
A, "bp1", 102,
AT, "bp2", 120,
"B", "bp1", 140,
"B", "bp2", 115

84 | Chapter5:Data Tidying

https://tidyr.tidyverse.org/reference/pivot_wider.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://tidyr.tidyverse.org/reference/pivot_wider.html

If we attempt to pivot this, we get an output that contains list-columns, which you’ll
learn more about in Chapter 23:

df |>
pivot_wider(
names_from = measurement,
values_from = value
)
#> Warning: Values from ‘value' are not uniquely identified; output will contain
#> list-cols.
#> o Use ‘values_fn = list" to suppress this warning.
#> o Use ‘values_fn = {summary_fun}' to summarise duplicates.
#> o Use the following dplyr code to identify duplicates.
#> {data} %>%
#> dplyr::group_by(id, measurement) %>%
#> dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
#> dplyr::filter(n > 1L)
#> # A tibble: 2 x 3
#> id bp1 bp2
#> <chr> <list> <list>
#> 1A <dbl [2]> <dbl [1]>
#> 2 B <dbl [1]> <dbl [1]>

Since you don’t know how to work with this sort of data yet, you’ll want to follow the
hint in the warning to figure out where the problem is:

df |>
group_by(id, measurement) |>
summarize(n = n(), .groups = "drop") |>

filter(n > 1)
#> # A tibble: 1 x 3

id measurement n
#> <chr> <chr> <int>
1A bp1 2

It’s then up to you to figure out what’s gone wrong with your data and either repair
the underlying damage or use your grouping and summarizing skills to ensure that
each combination of row and column values has only a single row.

Summary

In this chapter you learned about tidy data: data that has variables in columns and
observations in rows. Tidy data makes working in the tidyverse easier, because its a
consistent structure understood by most functions; the main challenge is transform-
ing the data from whatever structure you receive it in to a tidy format. To that end,
you learned about pivot_longer() and pivot_wider(), which allow you to tidy up
many untidy datasets. The examples we presented here are a selection of those from
vignette("pivot", package = "tidyr"), so if you encounter a problem that this
chapter doesn’t help you with, that vignette is a good place to try next.

Another challenge is that, for a given dataset, it can be impossible to label the longer
or the wider version as the “tidy” one. This is partly a reflection of our definition
of tidy data, where we said tidy data has one variable in each column, but we didn’t

Summary | 85

https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://tidyr.tidyverse.org/articles/pivot.html

actually define what a variable is (and it’s surprisingly hard to do so). It’s totally fine
to be pragmatic and to say a variable is whatever makes your analysis easiest. So if
youre stuck figuring out how to do some computation, consider switching up the
organization of your data; don’t be afraid to untidy, transform, and re-tidy as needed!

If you enjoyed this chapter and want to learn more about the underlying theory, you
can learn more about the history and theoretical underpinnings in the “Tidy Data”
paper published in the Journal of Statistical Software.

Now that you're writing a substantial amount of R code, it’s time to learn more about
organizing your code into files and directories. In the next chapter, you'll learn all
about the advantages of scripts and projects and some of the many tools that they
provide to make your life easier.

86 | Chapter5:Data Tidying

https://oreil.ly/86uxw
https://oreil.ly/86uxw

CHAPTER 6
Workflow: Scripts and Projects

This chapter will introduce you to two essential tools for organizing your code:
scripts and projects.

Scripts

So far, you have used the console to run code. That’s a great place to start, but you'll
find it gets cramped pretty quickly as you create more complex ggplot2 graphics and
longer dplyr pipelines. To give yourself more room to work, use the script editor.
Open it by clicking the File menu, selecting New File, and then selecting R script,
or using the keyboard shortcut Cmd/Ctrl+Shift+N. Now you’ll see four panes, as in
Figure 6-1. The script editor is a great place to experiment with your code. When you
want to change something, you don't have to retype the whole thing; you can just edit
the script and rerun it. And once you have written code that works and does what
you want, you can save it as a script file to easily return to later.

87

O - plea-BE S

Go to file/function

i |

=5 v Addins ~

x rstudio-screenshots ~

@) Untitled1* x = Environment History Connections Build _ ™
& Ol XA | 5| P~ @H 2 ts7Mme. | ¢ =lst- |G-

1 library(ggplot2) R - | @l Global Environment ~ | Q

2 ggplot(mpg, aes(displ, hwy)) +

3 geom_point(aes(colour = class))

Environment is empty
Files Plots Packages Help Viewer P _ ™

Editor @ | Prom | Bepon- 0 | &% G

3:34 (Top Level) = R Script +
Console Terminal x Background Jobs x = 40- class
@R R4.1.2 . ~/Documents/r4ds/r4ds/diagrams/rstudio-screensho 2seater
> library(ggplot2) . compact
> ggplot(mpg, aes(displ, hwy)) + . - .
+ geom_point(aes(colour = class))) B
N = - Ld minivan

® pickup
subcompact
a's’ suv
- e
2 3 4 5 6 7

Console displ Output

Figure 6-1. Opening the script editor adds a new pane at the top left of the IDE.

Running Code

The script editor is an excellent place for building complex ggplot2 plots or long
sequences of dplyr manipulations. The key to using the script editor effectively is
to memorize one of the most important keyboard shortcuts: Cmd/Ctrl+Enter. This
executes the current R expression in the console. For example, take the following
code:

library(dplyr)
library(nycflights13)

not_cancelled <- flights |[>
filter(!is.na(dep_delay)l, !is.na(arr_delay))

not_cancelled |>
group_by(year, month, day) |>
summarize(mean = mean(dep_delay))

If your cursor is at [! pressing Cmd/Ctrl+Enter will run the complete command
that generates not_cancelled. It will also move the cursor to the following statement

88

| Chapter 6: Workflow: Scripts and Projects

(beginning with not_cancelled |>). That makes it easy to step through your com-
plete script by repeatedly pressing Cmd/Ctrl+Enter.

Instead of running your code expression by expression, you can execute the complete
script in one step with Cmd/Ctrl+Shift+S. Doing this regularly is a great way to
ensure that you've captured all the important parts of your code in the script.

We recommend you always start your script with the packages you need. That way,
if you share your code with others, they can easily see which packages they need to
install. Note, however, that you should never include install.packages() in a script
you share. It’s inconsiderate to hand off a script that will install something on their
computer if they’re not being careful!

When working through future chapters, we highly recommend starting in the script
editor and practicing your keyboard shortcuts. Over time, sending code to the con-
sole in this way will become so natural that you won't even think about it.

RStudio Diagnostics

In the script editor, RStudio will highlight syntax errors with a red squiggly line and a
cross in the sidebar:

2
D3 xy ¢« 10
4

Hover over the cross to see what the problem is:

O 3 xy <« 10

unexpected token 'y
unexpected token '¢'
v

RStudio will also let you know about potential problems:

a 8 3 = NA

use 'is.na' to check whether expression
evaluates to NA

Scripts | 89

https://rdrr.io/r/utils/install.packages.html

Saving and Naming

RStudio automatically saves the contents of the script editor when you quit and
automatically reloads it when you re-open. Nevertheless, it's a good idea to avoid
Untitled1, Untitled2, Untitled3, and so on, and instead save your scripts with infor-
mative names.

It might be tempting to name your files code.R or myscript.R, but you should think
a bit harder before choosing a name for your file. Three important principles for file
naming are as follows:

1. Filenames should be machine readable: avoid spaces, symbols, and special char-
acters. Don't rely on case sensitivity to distinguish files.

2. Filenames should be human readable: use filenames to describe what’s in the file.

3. Filenames should play well with default ordering: start filenames with numbers
so that alphabetical sorting puts them in the order they get used.

For example, suppose you have the following files in a project folder:

alternative model.R

code for exploratory analysis.r
finalreport.qmd

FinalReport.qmd

fig 1.png

Figure_02.png
model_first_try.R

run-first.r

temp. txt

There are a variety of problems here: it’s hard to find which file to run first, filenames
contain spaces, there are two files with the same name but different capitalization
(finalreport versus FinalReport!), and some names don’t describe their contents
(run-first and temp).

Here’s a better way of naming and organizing the same set of files:

01-load-data.R
02-exploratory-analysis.R
03-model-approach-1.R
04-model-approach-2.R
fig-01.png

fig-02.png
report-2022-03-20.qmd
report-2022-04-02.qmd
report-draft-notes.txt

1 Not to mention that youre tempting fate by using “final” in the name. The comic Piled Higher and Deeper
has a fun strip on this.

90 | Chapter6: Workflow: Scripts and Projects

https://oreil.ly/L9ip0

Numbering the key scripts makes it obvious in which order to run them, and a
consistent naming scheme makes it easier to see what varies. Additionally, the figures
are labeled similarly, the reports are distinguished by dates included in the filenames,
and temp is renamed to report-draft-notes to better describe its contents. If you
have a lot of files in a directory, taking organization one step further and placing
different types of files (scripts, figures, etc.) in different directories is recommended.

Projects

One day, you will need to quit R, go do something else, and return to your analysis
later. One day, you will be working on multiple analyses simultaneously and want to
keep them separate. One day, you will need to bring data from the outside world into
R and send numerical results and figures from R back out into the world.

To handle these real-life situations, you need to make two decisions:

o What is the source of truth? What will you save as your lasting record of what
happened?

o Where does your analysis live?

What Is the Source of Truth?

As a beginner, it's OK to rely on your current environment to contain all the objects
you have created throughout your analysis. However, to make it easier to work on
larger projects or collaborate with others, your source of truth should be the R scripts.
With your R scripts (and your data files), you can re-create the environment. With
only your environment, it's much harder to re-create your R scripts: either you'll have
to retype a lot of code from memory (inevitably making mistakes along the way) or
you'll have to carefully mine your R history.

To help keep your R scripts as the source of truth for your analysis, we highly recom-
mend that you instruct RStudio not to preserve your workspace between sessions.
You can do this either by running usethis::use_blank_slate()? or by mimicking
the options shown in Figure 6-2. This will cause you some short-term pain, because
now when you restart RStudio, it will no longer remember the code that you ran last
time nor will the objects you created or the datasets you read be available to use.
But this short-term pain saves you long-term agony because it forces you to capture
all important procedures in your code. There’s nothing worse than discovering three
months after the fact that you've stored only the results of an important calculation in
your environment, not the calculation itself in your code.

2 If you don't have this installed, you can install it with install.packages("usethis").

Projects | 91

https://usethis.r-lib.org/reference/use_blank_slate.html

Options :

i 5
R R GaerEl —m Graphics ‘ Advanced]— [

Code R Sessions

it !

m
i

Default working directory (when not in a project):

2] ot || [[souse..
g Appearance Restore most recently opened project at startup
i:} Pane Layout Restore previously open source documents at startup
Workspace
] Packages

() Restore .RData into workspace at startup

Rmd
‘ R Markdown Save workspace to .RData on exit:

f’ Python History
@ Sweave () Always save history (even when not saving .RData)
() Remove duplicate entries in history
asg .
i v Spelling S
i ‘ Git/SVN (v)Wrap around when navigating to previous/next tab

[v] Automatically notify me of updates to RStudio

e

":0, Publishing
1 () Send automated crash reports to RStudio |
] - Terminal

@ Accessibility 1

[ok |[cancel |[apply |

Figure 6-2. Copy these selections in your RStudio options to always start your RStudio
session with a clean slate.

There is a great pair of keyboard shortcuts that will work together to make sure
you've captured the important parts of your code in the editor:

1. Press Cmd/Ctrl+Shift+0/F10 to restart R.
2. Press Cmd/Ctrl+Shift+S to rerun the current script.

We collectively use this pattern hundreds of times a week.

Alternatively, if you don’t use keyboard shortcuts, you can select Session > Restart R
and then highlight and rerun your current script.

92 | Chapter6: Workflow: Scripts and Projects

RStudio Server

If youre using RStudio Server, your R session is never restarted
by default. When you close your RStudio Server tab, it might feel
like youre closing R, but the server actually keeps it running in
the background. The next time you return, you'll be in exactly the
same place you left. This makes it even more important to regularly
restart R so that you're starting with a clean slate.

Where Does Your Analysis Live?

R has a powerful notion of the working directory. This is where R looks for files that
you ask it to load and where it will put any files that you ask it to save. RStudio shows
your current working directory at the top of the console:

Console Terminal x Find in Files x

(R R4.1.2 - ~/Documents/rads/ >

You can print this out in R code by running getwd():

getwd()

#> [1] "/Users/hadley/Documents/r4ds"
In this R session, the current working directory (think of it as “home”) is in Hadley’s
Documents folder, in a subfolder called r4ds. This code will return a different result
when you run it, because your computer has a different directory structure than
Hadley’s!

As a beginning R user, it’s OK to let your working directory be your home directory,
documents directory, or any other weird directory on your computer. But youre
seven chapters into this book, and youre no longer a beginner. Soon you should
evolve to organizing your projects into directories and, when working on a project,
set R’s working directory to the associated directory.

You can set the working directory from within R, but we do not recommend it:
setwd("/path/to/my/CoolProject")

There’s a better way—a way that also puts you on the path to managing your R work
like an expert. That way is the RStudio project.

RStudio Projects

Keeping all the files associated with a given project (input data, R scripts, analytical
results, and figures) in one directory is such a wise and common practice that

Projects | 93

https://rdrr.io/r/base/getwd.html

RStudio has built-in support for this via projects. Let’s make a project for you to use
while youre working through the rest of this book. Select File > New Project, and
then follow the steps shown in Figure 6-3.

New Project Wizard
Create Project
New Directory
Start a project in a brand new working directory >
New Project Wizard
~ Exist
Assoc A
— <_ Back Project Type
N
Vers| B New Project >
Check
@ R Package >
R) Shiny Application
v ApP New Project Wizard
[® Quarto Project -
- < Back \ Create New Project
& Quarto Website ’
<@ Quarto Blog Directory name:
i | rads| |
! Quarto Book
Create project as subdirectory of:
| ~/Desktop |[Browse...)
() Create a git repository

(D Use renv with this project

(J Open in new session (Creale Project] [Cancel J

Figure 6-3. To create new project: (top) first click New Directory, then (middle) click New
Project, then (bottom) fill in the directory (project) name, choose a good subdirectory for
its home, and click Create Project.

Call your project r4ads and think carefully about which subdirectory you put the
project in. If you don't store it somewhere sensible, it will be hard to find it in the
future!

Once this process is complete, you'll get a new RStudio project just for this book.
Check that the “home” of your project is the current working directory:

getwd()
#> [1] /Users/hadley/Documents/rdds

94 | Chapter6: Workflow: Scripts and Projects

Now enter the following commands in the script editor and save the file, calling it
diamonds.R. Then, create a new folder called data. You can do this by clicking the
New Folder button in the Files pane in RStudio. Finally, run the complete script,
which will save a PNG and CSV file into your project directory. Don’t worry about
the details; you'll learn them later in the book.

library(tidyverse)

ggplot(diamonds, aes(x = carat, y = price)) +
geom_hex()
ggsave("diamonds.png")

write_csv(diamonds, "data/diamonds.csv")

Quit RStudio. Inspect the folder associated with your project—notice the .Rproj file.
Double-click that file to re-open the project. Notice you get back to where you left
off: it’s the same working directory and command history, and all the files you were
working on are still open. Because you followed our instructions, you will, however,
have a completely fresh environment, guaranteeing that you're starting with a clean
slate.

In your favorite OS-specific way, search your computer for diamonds.png, and you
will find the PNG (no surprise) but also the script that created it (diamonds.R). This
is a huge win! One day, you will want to remake a figure or just understand where
it came from. If you rigorously save figures to files with R code and never with the
mouse or the clipboard, you will be able to reproduce old work with ease!

Relative and Absolute Paths

Once youre inside a project, you should only ever use relative paths, not abso-
lute paths. What’s the difference? A relative path is relative to the working direc-
tory, ie., the projects home. When Hadley wrote data/diamonds.csv earlier, it
was a shortcut for /Users/hadley/Documents/r4ds/data/diamonds.csv. But impor-
tantly, if Mine ran this code on her computer, it would point to /Users/Mine/Docu
ments/r4ds/data/diamonds.csv. This is why relative paths are important: they’ll
work regardless of where the R project folder ends up.

Absolute paths point to the same place regardless of your working directory. They
look a little different depending on your operating system. On Windows they start
with a drive letter (e.g., C:) or two backslashes (e.g., \\servername) and on Mac/
Linux they start with a slash, / (e.g., /users/hadley). You should never use absolute
paths in your scripts, because they hinder sharing: no one else will have exactly the
same directory configuration as you.

There’s another important difference between operating systems: how you separate
the components of the path. Mac and Linux uses slashes (e.g., data/diamonds.csv),
and Windows uses backslashes (e.g., data\diamonds.csv). R can work with either

Projects | 95

type (no matter what platform you’re currently using), but unfortunately, backslashes
mean something special to R, and to get a single backslash in the path, you need to
type two backslashes! That makes life frustrating, so we recommend always using the
Linux/Mac style with forward slashes.

Exercises

1. Go to the RStudio Tips Twitter account and find one tip that looks interesting.
Practice using it!

2. What other common mistakes will RStudio diagnostics report? Read this article
on code diagnostics to find out.

Summary

In this chapter, you learned how to organize your R code in scripts (files) and projects
(directories). Much like code style, this may feel like busywork at first. But as you
accumulate more code across multiple projects, you'll learn to appreciate how a little
up-front organization can save you a bunch of time later.

In summary, scripts and projects give you a solid workflow that will serve you well in
the future:

« Create one RStudio project for each data analysis project.

« Save your scripts (with informative names) in the project, edit them, and run
them in bits or as a whole. Restart R frequently to make sure you've captured
everything in your scripts.

o Only ever use relative paths, not absolute paths.

Then everything you need is in one place and cleanly separated from all the other
projects you are working on.

So far, we've worked with datasets bundled in R packages. This makes it easier to get
some practice on preprepared data, but obviously your data won't be available in this
way. So in the next chapter, you're going to learn how load data from disk into your R
session using the readr package.

96 | Chapter6: Workflow: Scripts and Projects

https://twitter.com/rstudiotips
https://oreil.ly/coili
https://oreil.ly/coili

CHAPTER7
Data Import

Introduction

Working with data provided by R packages is a great way to learn data science tools,
but you want to apply what you've learned to your own data at some point. In this
chapter, you'll learn the basics of reading data files into R.

Specifically, this chapter will focus on reading plain-text rectangular files. We'll start
with practical advice for handling features such as column names, types, and missing
data. You will then learn about reading data from multiple files at once and writing
data from R to a file. Finally, you'll learn how to handcraft data frames in R.

Prerequisites

In this chapter, you’ll learn how to load flat files in R with the readr package, which is
part of the core tidyverse:

library(tidyverse)

Reading Data from a File

To begin, we'll focus on the most common rectangular data file type: CSV, which is
short for “comma-separated values” Here is what a simple CSV file looks like. The
first row, commonly called the header row, gives the column names, and the following
six rows provide the data. The columns are separated, aka delimited, by commas.

97

Student ID,Full Name,favourite.food,mealPlan,AGE
1,Sunil Huffmann,Strawberry yoghurt,Lunch only,4
2,Barclay Lynn,French fries,Lunch only,5
3,Jayendra Lyne,N/A,Breakfast and lunch,7

4,Leon Rossini,Anchovies,Lunch only,

5,Chidiegwu Dunkel,Pizza,Breakfast and lunch,five
6,Glivenc Attila,Ice cream,Lunch only,6

Table 7-1 represents of the same data as a table.

Table 7-1. Data from the students.csv file as a table

Student ID Full Name favourite.food mealPlan AGE
1 Sunil Huffmann Strawberry yoghurt Lunch only 4
2 Barclay Lynn French fries Lunch only 5
3 Jayendra Lyne N/A Breakfast and lunch 7
4 Leon Rossini Anchovies Lunch only NA
5 Chidiegwu Dunkel Pizza Breakfast and lunch five
6 Giiveng Attila Ice cream Lunch only 6

We can read this file into R using read_csv(). The first argument is the most
important: the path to the file. You can think about the path as the address of the file:
the file is called students.csv, and it lives in the data folder.

students <- read_csv("data/students.csv")
#> Rows: 6 Columns: 5

#> — Column specification
#> Delimiter: ","

#> chr (4): Full Name, favourite.food, mealPlan, AGE

#> dbl (1): Student ID

#>

#> 7 Use ‘spec()’ to retrieve the full column specification for this data.

#> 7 Specify the column types or set ‘show_col_types = FALSE' to quiet this message.

The previous code will work if you have the students.csv file in a data folder in
your project. You can download the students.csv file or you can read it directly
from that URL with this:

students <- read_csv("https://pos.it/r4ds-students-csv")

When you run read_csv(), it prints out a message telling you the number of rows
and columns of data, the delimiter that was used, and the column specifications
(names of columns organized by the type of data the column contains). It also prints
out some information about retrieving the full column specification and how to quiet
this message. This message is an integral part of readr, and we'll return to it in
“Controlling Column Types” on page 104.

98 | Chapter7:Data Import

https://readr.tidyverse.org/reference/read_delim.html
https://oreil.ly/GDubb
https://readr.tidyverse.org/reference/read_delim.html

Practical Advice

Once you read data in, the first step usually involves transforming it in some way to
make it easier to work with in the rest of your analysis. Let’s take another look at the
students data with that in mind:

students

#> # A tibble: 6 x 5

#> ‘Student ID' ‘Full Name® favourite. food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

2 2 Barclay Lynn French fries Lunch only 5

#> 3 3 Jayendra Lyne N/A Breakfast and lunch 7

#> 4 4 Leon Rossini Anchovies Lunch only <NA>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Gliveng Attila Ice cream Lunch only 6

In the favourite.food column, there are a bunch of food items, and then the
character string N/A, which should have been a real NA that R will recognize as
“not available” This is something we can address using the na argument. By default
read_csv() recognizes only empty strings ("") in this dataset as NAs; we want it to
also recognize the character string "N/A":

students <- read_csv("data/students.csv", na = c("N/A", ""))

students

#> # A tibble: 6 x 5

#> ‘Student ID' ‘Full Name' favourite. food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

#> 2 2 Barclay Lynn French fries Lunch only 5

3 3 Jayendra Lyne <NA> Breakfast and lunch 7

#> 4 4 Leon Rossini Anchovies Lunch only <NA>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
6 6 Glveng Attila Ice cream Lunch only 6

You might also notice that the Student ID and Full Name columns are surrounded
by backticks. Thats because they contain spaces, breaking R’s usual rules for variable
names; they’re nonsyntactic names. To refer to these variables, you need to surround
them with backticks, *:

students |>
rename(
student_id = "Student ID",
full_name = “Full Name'

)
#> # A tibble: 6 x 5

#> student_id full_name favourite. food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

2 2 Barclay Lynn French fries Lunch only 5

#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

#> 4 4 Leon Rossini Anchovies Lunch only <NA>
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Gluveng Attila Ice cream Lunch only 6

Reading DatafromafFile | 99

https://readr.tidyverse.org/reference/read_delim.html

students |> janitor::clean_names()
#> # A tibble: 6 x 5

#> student_id full_name favourite_food

#> <dbl> <chr> <chr>

#> 1 1 Sunil Huffmann Strawberry yoghurt
#> 2 2 Barclay Lynn French fries

#> 3 3 Jayendra Lyne <NA>

#> 4 4 Leon Rossini Anchovies

#> 5 5 Chidiegwu Dunkel Pizza

#> 6 6 Gliveng Attila Ice cream

An alternative approach is to use janitor::clean_names() to use some heuristics to
turn them all into snake case at once:!

meal_plan age
<chr> <chr>
Lunch only 4
Lunch only 5
Breakfast and lunch 7
Lunch only <NA>
Breakfast and lunch five
Lunch only 6

Another common task after reading in data is to consider variable types. For example,
meal_plan is a categorical variable with a known set of possible values, which in R

should be represented as a factor:

students |>
janitor::clean_names() |>
mutate(meal_plan = factor(meal_plan))
#> # A tibble: 6 x 5

#> student_id full_name favourite_food

#> <dbl> <chr> <chr>

#> 1 1 Sunil Huffmann Strawberry yoghurt
#> 2 2 Barclay Lynn French fries

#> 3 3 Jayendra Lyne <NA>

#> 4 4 Leon Rossini Anchovies

5 5 Chidiegwu Dunkel Pizza

#> 6 6 Gliveng Attila Ice cream

meal_plan age
<fct> <chr>
Lunch only 4
Lunch only 5
Breakfast and lunch 7
Lunch only <NA>
Breakfast and lunch five
Lunch only 6

Note that the values in the meal_plan variable have stayed the same, but the type of
variable denoted underneath the variable name has changed from character (<chr>)
to factor (<fct>). You'll learn more about factors in Chapter 16.

Before you analyze these data, you'll probably want to fix the age and id columns.
Currently, age is a character variable because one of the observations is typed out as
five instead of a numeric 5. We discuss the details of fixing this issue in Chapter 20.

students <- students |>
janitor::clean_names() |>
mutate(
meal_plan = factor(meal_plan),

age = parse_number(if_else(age == "five", "5", age))
)
students
#> # A tibble: 6 x 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fct> <dbl>
1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

1 The janitor package is not part of the tidyverse, but it offers handy functions for data cleaning and works well

within data pipelines that use |>.

100 | Chapter7: DataImport

https://oreil.ly/-J8GX
https://rdrr.io/pkg/janitor/man/clean_names.html

#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Gliveng Attila Ice cream Lunch only 6

A new function here is if_else(), which has three arguments. The first argument
test should be a logical vector. The result will contain the value of the second
argument, yes, when test is TRUE, and the value of the third argument, no, when
it is FALSE. Here we're saying if age is the character string "five", make it "5", and
if not, leave it as age. You will learn more about i1f_else() and logical vectors in
Chapter 12.

Other Arguments

There are a couple of other important arguments that we need to mention, and they’ll
be easier to demonstrate if we first show you a handy trick: read_csv() can read text
strings that you've created and formatted like a CSV file:
read_csv(
"a,b,c

1,2,3
4,5,6"

#> # A tibble: 2 x 3

#> a b c
#> <dbl> <dbl> <dbl>
1 1 2 3

#> 2 4 5 6

Usually, read_csv() uses the first line of the data for the column names, which is
a common convention. But it's not uncommon for a few lines of metadata to be
included at the top of the file. You can use skip = n to skip the first n lines or use
comment = "#" to drop all lines that start with, for example, #:

read_csv(
"The first line of metadata
The second line of metadata
X,Y,Z
1,2,3",
skip = 2

)

#> # A tibble: 1 x 3

#> X y z
#> <dbl> <dbl> <dbl>
1 1 2 3
read_csv(
"# A comment I want to skip
X,Y,Z
1,2,3",
comment = "#"

)
#> # A tibble: 1 x 3

Reading DatafromafFile | 101

https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/if_else.html
https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_delim.html

#> X % z
#> <dbl> <dbl> <dbl>
1 1 2 3

In other cases, the data might not have column names. You can use col_names =
FALSE to tell read_csv() not to treat the first row as headings and instead label them
sequentially from X1 to Xn:

read_csv(
"1,2,3
4,5,6",
col_names = FALSE

)
#> # A tibble: 2 x 3

#> X1 X2 X3
#> <dbl> <dbl> <dbl>
#> 1 1 2 3

#> 2 4 5 6

Alternatively, you can pass col_names a character vector, which will be used as the
column names:
read_csv(
"1,2,3

4,5,6",
col_names = c("x", "y", "z")

#> # A tibble: 2 x 3

#> X v 4
#> <dbl> <dbl> <dbl>
1 1 2 3

2 4 5 6

These arguments are all you need to know to read the majority of CSV files that you'll
encounter in practice. (For the rest, you’ll need to carefully inspect your .csv file and
read the documentation for read_csv()’s many other arguments.)

Other File Types

Once you've mastered read_csv(), using readr’s other functions is straightforward;
it’s just a matter of knowing which function to reach for:

read_csv2()
Reads semicolon-separated files. These use ; instead of , to separate fields and
are common in countries that use , as the decimal marker.

read_tsv()
Reads tab-delimited files.

read_delim()
Reads in files with any delimiter, attempting to automatically guess the delimiter
if you don't specity it.

102 | Chapter7: DataImport

https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_delim.html

read_fwf()
Reads fixed-width files. You can specify fields by their widths with fwf_widths()
or by their positions with fwf_positions().

read_table()
Reads a common variation of fixed-width files where columns are separated by
whitespace.

read_log()
Reads Apache-style log files.

Exercises

1. What function would you use to read a file where fields were separated with |?

2. Apart from file, skip, and comment, what other arguments do read_csv() and
read_tsv() have in common?

3. What are the most important arguments to read_fwf()?

4. Sometimes strings in a CSV file contain commas. To prevent them from causing
problems, they need to be surrounded by a quoting character, like " or '. By
default, read_csv() assumes that the quoting character will be ". To read the
following text into a data frame, what argument to read_csv() do you need to
specify?

"x,y\n1,"'a,b""

5. Identify what is wrong with each of the following inline CSV files. What happens
when you run the code?

read_csv("a,b\n1,2,3\n4,5,6")
read_csv("a,b,c\n1,2\n1,2,3,4")
read_csv("a,b\n\"1")

read_csv("a,b\n1,2\na,b")
read_csv("a;b\n1;3")

6. Practice referring to nonsyntactic names in the following data frame by:
a. Extracting the variable called 1.
b. Plotting a scatterplot of 1 versus 2.
¢. Creating a new column called 3, which is 2 divided by 1.

d. Renaming the columns to one, two, and three:
annoying <- tibble(
‘1" = 1:10,
20 =1 * 2 + rnorm(length("1%))

Reading DatafromafFile | 103

https://readr.tidyverse.org/reference/read_fwf.html
https://readr.tidyverse.org/reference/read_fwf.html
https://readr.tidyverse.org/reference/read_fwf.html
https://readr.tidyverse.org/reference/read_table.html
https://readr.tidyverse.org/reference/read_log.html
https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_fwf.html
https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_delim.html

Controlling Column Types

A CSV file doesn't contain any information about the type of each variable
(i.e., whether it’s a logical, number, string, etc.), so readr will try to guess the type.
This section describes how the guessing process works, how to resolve some common
problems that cause it to fail, and, if needed, how to supply the column types
yourself. Finally, we'll mention a few general strategies that are useful if readr is failing
catastrophically and you need to get more insight into the structure of your file.

Guessing Types

readr uses a heuristic to figure out the column types. For each column, it pulls the
values of 1,000° rows spaced evenly from the first row to the last, ignoring missing
values. It then works through the following questions:

« Does it contain only F, T, FALSE, or TRUE (ignoring case)? If so, it’s a logical.
o Does it contain only numbers (e.g., 1, -4.5, 5e6, Inf)? If so, it’s a number.

o Does it match the ISO8601 standard? If so, it’s a date or date-time. (We'll return
to date-times in more detail in “Creating Date/Times” on page 298.)

o Otherwise, it must be a string.

You can see that behavior in action in this simple example:

read_csv("
logical,numeric,date,string
TRUE,1,2021-01-15,abc
false,4.5,2021-02-15,def
T,Inf,2021-02-16,ghi

")

#> # A tibble: 3 x 4

#> logical numeric date string
#> <lgl> <dbl> <date> <chr>
#> 1 TRUE 1 2021-01-15 abc
#> 2 FALSE 4.5 2021-02-15 def
#> 3 TRUE Inf 26021-02-16 ghi

This heuristic works well if you have a clean dataset, but in real life, you'll encounter a
selection of weird and beautiful failures.

Missing Values, Column Types, and Problems

The most common way column detection fails is that a column contains unexpected
values, and you get a character column instead of a more specific type. One of the

2 You can override the default of 1,000 with the guess_max argument.

104 | Chapter7: DataImport

most common causes for this is a missing value, recorded using something other than
the NA that readr expects.

Take this simple one-column CSV file as an example:

simple_csv <-
X
10
20
30"
If we read it without any additional arguments, x becomes a character column:

read_csv(simple_csv)
#> # A tibble: 4 x 1
#> X

#> <chr>

#> 1 10

#> 2 .

#> 3 20

#> 4 30

In this small case, you can easily see the missing value .. But what happens if you
have thousands of rows with only a few missing values represented by .s sprinkled
among them? One approach is to tell readr that x is a numeric column and then see
where it fails. You can do that with the col_types argument, which takes a named list
where the names match the column names in the CSV file:

df <- read_csv(

simple_csv,
col_types = list(x = col_double())

#> Warning: One or more parsing issues, call ‘problems()’ on your data frame for
#> details, e.g.:

#> dat <- vroom(...)

#> problems(dat)

Now read_csv() reports that there was a problem and tells us we can find out more
with problems():

problems(df)

#> # A tibble: 1 x 5

#> row col expected actual file

#> <int> <int> <chr> <chr> <chr>

1 3 1 a double . /private/tmp/RtmpAY1Sop/file392d445cf269
This tells us that there was a problem in row 3, column 1 where readr expected a
double but got a .. That suggests this dataset uses . for missing values. So then we set
na = ".", and the automatic guessing succeeds, giving us the numeric column that
we want:

read_csv(simple_csv, na = ".")

#> # A tibble: 4 x 1

#> X
#> <dbl>

Controlling Column Types | 105

https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/problems.html

#> 1 10

#> 2 NA

#> 3 20

#> 4 30
Column Types

readr provides a total of nine column types for you to use:

col_logical() and col_double() read logicals and real numbers. They’re rela-
tively rarely needed (except as shown previously), since readr will usually guess
them for you.

col_integer() reads integers. We seldom distinguish integers and doubles in
this book because they’re functionally equivalent, but reading integers explicitly
can occasionally be useful because they occupy half the memory of doubles.

col_character() reads strings. This can be useful to specify explicitly when
you have a column that is a numeric identifier, i.e., long series of digits that
identifies an object but doesn’t make sense to apply mathematical operations to.
Examples include phone numbers, Social Security numbers, credit card numbers,
and so on.

col_factor(), col_date(), and col_datetime() create factors, dates, and date-
times, respectively; you'll learn more about those when we get to those data types
in Chapter 16 and Chapter 17.

col_number() is a permissive numeric parser that will ignore non-numeric com-
ponents and is particularly useful for currencies. You’ll learn more about it in
Chapter 13.

col_skip() skips a column so it’s not included in the result, which can be useful
for speeding up reading the data if you have a large CSV file and you want to use
only some of the columns.

It's also possible to override the default column by switching from 1ist() to cols()
and specifying .default:

another_csv <- "
X,y,Z
1,2,3"

read_csv(
another_csv,

col_types = cols(.default = col_character())

#> # A tibble: 1 x 3

#> X v z
#> <chr> <chr> <chr>
11 2 3

106

| Chapter7: Data Import

https://readr.tidyverse.org/reference/parse_atomic.html
https://readr.tidyverse.org/reference/parse_atomic.html
https://readr.tidyverse.org/reference/parse_atomic.html
https://readr.tidyverse.org/reference/parse_atomic.html
https://readr.tidyverse.org/reference/parse_factor.html
https://readr.tidyverse.org/reference/parse_datetime.html
https://readr.tidyverse.org/reference/parse_datetime.html
https://readr.tidyverse.org/reference/parse_number.html
https://readr.tidyverse.org/reference/col_skip.html
https://rdrr.io/r/base/list.html
https://readr.tidyverse.org/reference/cols.html

Another useful helper is cols_only(), which will read in only the columns you
specify:

read_csv(
another_csv,
col_types = cols_only(x = col_character())

#> # A tibble: 1 x 1

#> X
#> <chr>
11

Reading Data from Multiple Files

Sometimes your data is split across multiple files instead of being contained in a
single file. For example, you might have sales data for multiple months, with each
month’s data in a separate file: 01-sales.csv for January, 02-sales.csv for February,
and 03-sales.csv for March. With read_csv() you can read these data in at once
and stack them on top of each other in a single data frame.

sales_files <- c("data/01-sales.csv", "data/02-sales.csv", "data/03-sales.csv")

read_csv(sales_files, id = "file")
#> # A tibble: 19 x 6

#> file month year brand 1item n
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 data/01-sales.csv January 2019 1 1234 3
#> 2 data/01-sales.csv January 2019 1 8721 9
#> 3 data/01-sales.csv January 2019 1 1822 2
#> 4 data/01-sales.csv January 2019 2 3333 1
#> 5 data/01-sales.csv January 2019 2 2156 9
#> 6 data/01-sales.csv January 2019 2 3987 6
#> # .. with 13 more rows

Once again, the previous code will work if you have the CSV files in a data folder in
your project. You can download these files from https://oreil.ly/jVd8o, https://oreil.ly/
RYsgM, and https://oreil.ly/4uZOm or you can read them directly with:
sales_files <- c(
"https://pos.it/r4ds-01-sales",
"https://pos.it/r4ds-02-sales",

"https://pos.it/r4ds-03-sales"
)

read_csv(sales_files, id = "file")

The 1d argument adds a new column called file to the resulting data frame that
identifies the file the data come from. This is especially helpful in circumstances
where the files you're reading in do not have an identifying column that can help you
trace the observations back to their original sources.

If you have many files you want to read in, it can get cumbersome to write out their
names as a list. Instead, you can use the base 1ist.files() function to find the files
for you by matching a pattern in the filenames. You'll learn more about these patterns
in Chapter 15.

Reading Data from Multiple Files | 107

https://readr.tidyverse.org/reference/cols.html
https://readr.tidyverse.org/reference/read_delim.html
https://oreil.ly/jVd8o
https://oreil.ly/RYsgM
https://oreil.ly/RYsgM
https://oreil.ly/4uZOm
https://rdrr.io/r/base/list.files.html

sales_files <- list.files("data", pattern = "sales\\.csv$", full.names = TRUE)
sales_files
#> [1] "data/01-sales.csv" "data/02-sales.csv" "data/03-sales.csv”

Writing to a File

readr also comes with two useful functions for writing data to disk: write_csv() and
write_tsv(). The most important arguments to these functions are x (the data frame
to save) and file (the location to save it). You can also specify how missing values are
written with na, as well as whether you want to append to an existing file.

write_csv(students, "students.csv")

Now let’s read that CSV file back in. Note that the variable type information that you
just set up is lost when you save to CSV because youre starting over with reading
from a plain-text file again:

students

#> # A tibble: 6 x 5

#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fct> <dbl>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
4 4 Leon Rossini Anchovies Lunch only NA
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
6 6 Gluveng Attila Ice cream Lunch only 6

write_csv(students, "students-2.csv")
read_csv("students-2.csv")
#> # A tibble: 6 x 5

#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <chr> <dbl>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
2 2 Barclay Lynn French fries Lunch only 5
3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Gliveng Attila Ice cream Lunch only 6

This makes CSVs a little unreliable for caching interim results—you need to re-create
the column specification every time you load in. There are two main alternatives:

o write_rds() and read_rds() are uniform wrappers around the base functions
readRDS() and saveRDS(). These store data in R’s custom binary format called
RDS. This means that when you reload the object, you are loading the exact same
R object that you stored.

write_rds(students, "students.rds")
read_rds("students.rds")
#> # A tibble: 6 x 5

#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fct> <dbl>
1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

108 | Chapter7: DataImport

https://readr.tidyverse.org/reference/write_delim.html
https://readr.tidyverse.org/reference/write_delim.html
https://readr.tidyverse.org/reference/read_rds.html
https://readr.tidyverse.org/reference/read_rds.html
https://rdrr.io/r/base/readRDS.html
https://rdrr.io/r/base/readRDS.html

#> 4 4 Leon Rossini Anchovies Lunch only NA
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Gliveng Attila Ice cream Lunch only 6

o The arrow package allows you to read and write parquet files, a fast binary file
format that can be shared across programming languages. We'll return to arrow
in more depth in Chapter 22.

library(arrow)

write_parquet(students, "students.parquet")
read_parquet("students.parquet")

#> # A tibble: 6 x 5

#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <fct> <dbl>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne NA Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Glveng Attila Ice cream Lunch only 6

Parquet tends to be much faster than RDS and is usable outside of R but does require
the arrow package.

Data Entry

Sometimes you’ll need to assemble a tibble “by hand” doing a little data entry in your
R script. There are two useful functions to help you do this, which differ in whether
you lay out the tibble by columns or by rows. tibble() works by column:

tibble(
x =c(1, 2, 5),

wenoow_w

y = c("h", "m", "g"),
z = c(0.08, 0.83, 0.60)

#> # A tibble: 3 x 3

#> Xy z
#> <dbl> <chr> <dbl>
#> 1 1h 0.08
#> 2 2m 0.83
3 5¢g 0.6

Laying out the data by column can make it hard to see how the rows are related, so an
alternative is tribble(), short for transposed tibble, which lets you lay out your data
row by row. tribble() is customized for data entry in code: column headings start
with ~ and entries are separated by commas. This makes it possible to lay out small
amounts of data in an easy-to-read form:

tribble(
~X, ~Y, ~Z,
1, "h", 0.08,
2, "m", 0.83,
5, "g", 0.60
)
#> # A tibble: 3 x 3

DataEntry | 109

https://tibble.tidyverse.org/reference/tibble.html
https://tibble.tidyverse.org/reference/tribble.html
https://tibble.tidyverse.org/reference/tribble.html

X y z
#> <chr> <dbl> <dbl>

1 1h 0.08

2 2m 0.83

3 59 0.6
Summary

In this chapter, you learned how to load CSV files with read_csv() and to do your
own data entry with tibble() and tribble(). You've learned how CSV files work,
some of the problems you might encounter, and how to overcome them. We’ll come
to data import a few times in this book: Chapter 20 will show you how to load data
from Excel and Google Sheets, Chapter 21 from databases, Chapter 22 from parquet
files, Chapter 23 from JSON, and Chapter 24 from websites.

We're just about at the end of this section of the book, but there’s one important last
topic to cover: how to get help. So in the next chapter, you'll learn some good places
to look for help, how to create a reprex to maximize your chances of getting good
help, and some general advice on keeping up with the world of R.

110 | Chapter7: DataImport

https://readr.tidyverse.org/reference/read_delim.html
https://tibble.tidyverse.org/reference/tibble.html
https://tibble.tidyverse.org/reference/tribble.html

CHAPTER 8
Workflow: Getting Help

This book is not an island; there is no single resource that will allow you to master
R. As you begin to apply the techniques described in this book to your own data, you
will soon find questions that we do not answer. This section describes a few tips on
how to get help and to help you keep learning.

Google Is Your Friend

If you get stuck, start with Google. Typically adding “R” to a query is enough to
restrict it to relevant results: if the search isn't useful, it often means that there aren't
any R-specific results available. Additionally, adding package names like “tidyverse”
or “ggplot2” will help narrow down the results to code that will feel more familiar
to you as well, e.g., “how to make a boxplot in R” versus “how to make a boxplot
in R with ggplot2” Google is particularly useful for error messages. If you get an
error message and you have no idea what it means, try googling it! Chances are that
someone else has been confused by it in the past, and there will be help somewhere
on the web. (If the error message isn't in English, run Sys.setenv(LANGUAGE = "en")
and rerun the code; youre more likely to find help for English error messages.)

If Google doesn’t help, try Stack Overflow. Start by spending a little time searching
for an existing answer, including [R], to restrict your search to questions and answers
that use R.

Making a reprex

If your googling doesn’t find anything useful, it'’s a really good idea to prepare a
reprex, short for minimal reproducible example. A good reprex makes it easier for
other people to help you, and often you’ll figure out the problem yourself in the
course of making it. There are two parts to creating a reprex:

m

https://oreil.ly/RxSNB

o First, you need to make your code reproducible. This means you need to capture
everything, i.e., include any library() calls and create all necessary objects. The
easiest way to make sure you've done this is using the reprex package.

o Second, you need to make it minimal. Strip away everything that is not directly
related to your problem. This usually involves creating a much smaller and
simpler R object than the one you're facing in real life or even using built-in data.

That sounds like a lot of work! And it can be, but it has a great payoff:

+ 80% of the time, creating an excellent reprex reveals the source of your problem.
It's amazing how often the process of writing up a self-contained and minimal
example allows you to answer your own question.

o The other 20% of the time, you will have captured the essence of your problem
in a way that is easy for others to play with. This substantially improves your
chances of getting help!

When creating a reprex by hand, its easy to accidentally miss something, meaning
your code can’t be run on someone else’s computer. Avoid this problem by using the
reprex package, which is installed as part of the tidyverse. Let’s say you copy this code
onto your clipboard (or, on RStudio Server or Cloud, select it):

y <- 1:4
mean(y)

Then call reprex(), where the default output is formatted for GitHub:
reprex::reprex()

A nicely rendered HTML preview will display in RStudio’s Viewer (if youre in
RStudio) or your default browser otherwise. The reprex is automatically copied to
your clipboard (on RStudio Server or Cloud, you will need to copy this yourself):
tr
y <- 1:4

mean(y)
#> [1] 2.5

This text is formatted in a special way, called Markdown, which can be pasted to sites
like StackOverflow or GitHub, which will automatically render it to look like code.
Here’s what that Markdown would look like rendered on GitHub:

y <- 1:4

mean(y)

#> [1] 2.5

Anyone else can copy, paste, and run this immediately.

12 | Chapter8: Workflow: Getting Help

https://rdrr.io/r/base/library.html

There are three things you need to include to make your example reproducible:
required packages, data, and code.

o Packages should be loaded at the top of the script so it’s easy to see which ones the
example needs. This is a good time to check that you're using the latest version of
each package; you may have discovered a bug that’s been fixed since you installed
or last updated the package. For packages in the tidyverse, the easiest way to
check is to run tidyverse_update().

+ The easiest way to include data is to use dput() to generate the R code needed
to re-create it. For example, to re-create the mtcars dataset in R, perform the
following steps:

— Run dput(mtcars) in R.
— Copy the output.
— Inreprex, type mtcars <-, and then paste.
Try to use the smallest subset of your data that still reveals the problem.
o Spend a little bit of time ensuring that your code is easy for others to read:

— Make sure you've used spaces and your variable names are concise yet
informative.

— Use comments to indicate where your problem lies.
— Do your best to remove everything that is not related to the problem.

The shorter your code is, the easier it is to understand and the easier it is to fix.

Finish by checking that you have actually made a reproducible example by starting a
fresh R session and copying and pasting your script.

Creating reprexes is not trivial, and it will take some practice to learn to create good,
truly minimal reprexes. However, learning to ask questions that include the code and
investing the time to make it reproducible will continue to pay off as you learn and
master R.

Investing in Yourself

You should also spend some time preparing yourself to solve problems before they
occur. Investing a little time in learning R each day will pay off handsomely in the
long run. One way is to follow what the tidyverse team is doing on the tidyverse blog.
To keep up with the R community more broadly, we recommend reading R Weekly:
it's a community effort to aggregate the most interesting news in the R community
each week.

Investing in Yourself | 113

https://rdrr.io/r/base/dput.html
https://oreil.ly/KS82J
https://oreil.ly/uhknU

Summary

This chapter concludes the “Whole Game” part of the book. You've now seen the
most important parts of the data science process: visualization, transformation, tidy-
ing, and importing. Now that you've gotten a holistic view of the whole process, we
can start to get into the details of small pieces.

The next part of the book, “Visualize,” does a deeper dive into the grammar of
graphics and creating data visualizations with ggplot2, showcases how to use the
tools you've learned so far to conduct exploratory data analysis, and introduces good
practices for creating plots for communication.

114 | Chapter 8: Workflow: Getting Help

PARTII
Visualize

After reading the first part of the book, you understand (at least superficially) the
most important tools for doing data science. Now it’s time to start diving into the
details. In this part of the book, you'll learn about visualizing data in further depth in
Figure II-1.

s N

Visualize

Understand

.
Program

Figure II-1. Data visualization is often the first step in data exploration.

Each chapter addresses one to a few aspects of creating a data visualization:

+ In Chapter 9 you will learn about the layered grammar of graphics.

o In Chapter 10, you'll combine visualization with your curiosity and skepticism to
ask and answer interesting questions about data.

o Finally, in Chapter 11 you will learn how to take your exploratory graphics,
elevate them, and turn them into expository graphics, graphics that help the
newcomer to your analysis understand whats going on as quickly and easily as
possible.

These three chapters get you started in the world of visualization, but there is much
more to learn. The absolute best place to learn more is the ggplot2 book: ggplot2: Ele-
gant Graphics for Data Analysis (Springer). It goes into much more depth about the
underlying theory and has many more examples of how to combine the individual
pieces to solve practical problems. Another great resource is the ggplot2 extensions
gallery. This site lists many of the packages that extend ggplot2 with new geoms and
scales. It’s a great place to start if you're trying to do something that seems hard with

ggplot2.

https://oreil.ly/SO1yG
https://oreil.ly/SO1yG
https://oreil.ly/m0OW5
https://oreil.ly/m0OW5

CHAPTER 9
Layers

Introduction

In Chapter 1, you learned much more than just how to make scatterplots, bar charts,
and boxplots. You learned a foundation that you can use to make any type of plot
with ggplot2.

In this chapter, you'll expand on that foundation as you learn about the layered
grammar of graphics. We'll start with a deeper dive into aesthetic mappings, geomet-
ric objects, and facets. Then, you will learn about statistical transformations ggplot2
makes under the hood when creating a plot. These transformations are used to
calculate new values to plot, such as the heights of bars in a bar plot or medians in
a box plot. You will also learn about position adjustments, which modify how geoms
are displayed in your plots. Finally, we'll briefly introduce coordinate systems.

We will not cover every single function and option for each of these layers, but
we will walk you through the most important and commonly used functionality
provided by ggplot2 as well as introduce you to packages that extend ggplot2.

Prerequisites

This chapter focuses on ggplot2. To access the datasets, help pages, and functions
used in this chapter, load the tidyverse by running this code:

library(tidyverse)

117

Aesthetic Mappings

“The greatest value of a picture is when it forces us to notice what we never expected to
see” —John Tukey

Remember that the mpg data frame bundled with the ggplot2 package contains 234
observations on 38 car models.

mpg

#> # A tibble: 234 x 11

#> manufacturer model displ year «cyl trans drv cty hwy fl
#> <chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr>
#> 1 audi a4 1.8 1999 4 auto(l5) f 18 29 p
#> 2 audi a4 1.8 1999 4 manual(m5) f 21 29 p
#> 3 audi a4 2 2008 4 manual(m6) f 20 31p
#> 4 audi a4 2 2008 4 auto(av) f 21 30 p
#> 5 audi a4 2.8 1999 6 auto(l5) f 16 26 p
#> 6 audi a4 2.8 1999 6 manual(m5) f 18 26 p
#> # .. with 228 more rows, and 1 more variable: class <chr>

Among the variables in mpg are:

displ
A car’s engine size, in liters. A numerical variable.

hwy
A car’s fuel efficiency on the highway, in miles per gallon (mpg). A car with a low
fuel efficiency consumes more fuel than a car with a high fuel efficiency when
they travel the same distance. A numerical variable.

class
Type of car. A categorical variable.

Let’s start by visualizing the relationship between displ and hwy for various classes
of cars. We can do this with a scatterplot where the numerical variables are mapped to
the x and y aesthetics and the categorical variable is mapped to an aesthetic like color
or shape.

Left
aggplot(mpg, aes(x = displ, y = hwy, color = class)) +
geom_point()

Right
aggplot(mpg, aes(x = displ, y = hwy, shape = class)) +
geom_point()
#> Warning: The shape palette can deal with a maximum of 6 discrete values
#> because more than 6 becomes difficult to discriminate; you have 7.
#> Consider specifying shapes manually if you must have them.
#> Warning: Removed 62 rows containing missing values ('geom_point()").

118 | Chapter9: Layers

class

*
*
® 2seater
® compact g
® midsize ; 30~
® minivan <
+
® pickup +
® subcompact :

® suv

When class is mapped to shape, we get two warnings:

class
® 2seater
A compact
= midsize
minivan

pickup

* B +

subcompact

suv

1: The shape palette can deal with a maximum of 6 discrete values because more than
6 becomes difficult to discriminate; you have 7. Consider specifying shapes manually if

you must have them.

2: Removed 62 rows containing missing values (geom_point()).

Since ggplot2 will use only six shapes at a time, by default, additional groups will go
unplotted when you use the shape aesthetic. The second warning is related—there are
62 SUVs in the dataset and they’re not plotted.

Similarly, we can map class to size or alpha aesthetics as well, which control the
shape and the transparency of the points, respectively.

Left

ggplot(mpg, aes(x = displ, y = hwy, size = class)) +

geom_point()

#> Warning: Using size for a discrete variable is not advised.

Right

ggplot(mpg, aes(x = displ,

geom_point()

y = hwy, alpha = class)) +

#> Warning: Using alpha for a discrete variable is not advised.

class | class
40-

® 2seater 2seater

@ compact :g compact

@ midsize 2 30- o868 ° midsize

@ minivan £ 3; Si;. . © minivan

. pickup 20 0 oo i'. ® pickup

‘ subcompact 4 313 ’ .ﬁ‘ PP ® subcompact
. suv (] suv

2 3 4 5
displ

6 7

Aesthetic Mappings | 119

https://ggplot2.tidyverse.org/reference/geom_point.html

Both of these produce warnings as well:
Using alpha for a discrete variable is not advised.

Mapping an unordered discrete (categorical) variable (class) to an ordered aesthetic
(size or alpha) is generally not a good idea because it implies a ranking that does not
in fact exist.

Once you map an aesthetic, ggplot2 takes care of the rest. It selects a reasonable
scale to use with the aesthetic, and it constructs a legend that explains the mapping
between levels and values. For x and y aesthetics, ggplot2 does not create a legend,
but it creates an axis line with tick marks and a label. The axis line provides the same
information as a legend; it explains the mapping between locations and values.

You can also set the visual properties of your geom manually as an argument of
your geom function (outside of aes()) instead of relying on a variable mapping to
determine the appearance. For example, we can make all of the points in our plot
blue:

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(color = "blue")
°
]
40 -
°
°
°
°
L
° °
30 e oo
- . °
> ° e (Y) [
2 ° ° e o o
- o o oo o e o
e o 0 00 o o0 ee o o ° °
. e o o e o °]
ee o0 o [} °
e o o o o ° °
e e ° °
® ®
20 - } o0
e o o oo e
e e o o e oo
(1] e o e® e o o o o °
o0 o o
(] e eee o o
° °
°
2 3 5 6 7
displ

Here, the color doesn't convey information about a variable; it changes only the
appearance of the plot. You'll need to pick a value that makes sense for that aesthetic:

120 | Chapter9: Layers

https://ggplot2.tidyverse.org/reference/aes.html

« The name of a color as a character string, e.g., color = "blue"

o The size of a point in mm, e.g., size = 1

o The shape of a point as a number, e.g, shape = 1, as shown in Figure 9-1

[(Jo X4 G110 W15 W 22
O1 V6 XX11 @16 @ 21
N2 X7 Hi1z &A17 A 2
Os5 Ke K13 @ 18 @23
+3 o W14 @19 @ 20

Figure 9-1. R has 25 built-in shapes that are identified by numbers. There are some
seeming duplicates: for example, 0, 15, and 22 are all squares. The difference comes from
the interaction of the color and fill aesthetics. The hollow shapes (0-14) have a border
determined by color; the solid shapes (15-20) are filled with color; and the filled
shapes (21-24) have a border of color and are filled with fill. Shapes are arranged to
keep similar shapes next to each other.

So far we have discussed aesthetics that we can map or set in a scatterplot, when
using a point geom. You can learn more about all possible aesthetic mappings in the
aesthetic specifications vignette.

The specific aesthetics you can use for a plot depend on the geom you use to
represent the data. In the next section we dive deeper into geoms.

Exercises

1.

Create a scatterplot of hwy versus displ where the points are pink filled-in
triangles.

Why did the following code not result in a plot with blue points?

ggplot(mpg) +
geom_point(aes(x = displ, y = hwy, color = "blue"))

. What does the stroke aesthetic do? What shapes does it work with? (Hint:

Use ?geom_point.)

What happens if you map an aesthetic to something other than a variable name,
like aes(color = displ < 5)? Note, you'll also need to specify x and y.

Aesthetic Mappings | 121

https://oreil.ly/SP6zV
https://ggplot2.tidyverse.org/reference/geom_point.html

Geometric Objects

How are these two plots similar?

. 35+
40- ®
' 30 -
> 30- >
g3 oofe |
- .|'l- do s | Z2
'lo . . L
20 -
.'ao Be o 20-
oo,
2 3 4 7 2 3 4 5 6 7
dlspl displ

Both plots contain the same x variable and the same y variable, and both describe the
same data. But the plots are not identical. Each plot uses a different geometric object,
geom, to represent the data. The plot on the left uses the point geom, and the plot on
the right uses the smooth geom, a smooth line fitted to the data.

To change the geom in your plot, change the geom function that you add to
ggplot(). For instance, to make the previous plot, you can use the following code:
Left

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point()

Right
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_smooth()

#> ‘geom_smooth()"' using method = 'loess' and formula = 'y ~ x'
Every geom function in ggplot2 takes a mapping argument, either defined locally
in the geom layer or globally in the ggplot() layer. However, not every aesthetic
works with every geom. You could set the shape of a point, but you couldn't set the
“shape” of a line. If you try, ggplot2 will silently ignore that aesthetic mapping. On the
other hand, you could set the linetype of a line. geom_smooth() will draw a different
line, with a different linetype, for each unique value of the variable that you map to
linetype.

Left

ggplot(mpg, aes(x = displ, y = hwy, shape = drv)) +
geom_smooth()

Right
ggplot(mpg, aes(x = displ, y = hwy, linetype = drv)) +
geom_smooth()

122 | Chapter9: Layers

https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/ggplot.html
https://ggplot2.tidyverse.org/reference/geom_smooth.html

Here, geom_smooth() separates the cars into three lines based on their drv value,
which describes a car’s drivetrain. One line describes all of the points that have a 4
value, one line describes all of the points that have an f value, and one line describes
all of the points that have an r value. Here, 4 stands for four-wheel drive, f for
front-wheel drive, and r for rear-wheel drive.

If this sounds strange, we can make it clearer by overlaying the lines on top of the raw
data and then coloring everything according to drv.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
geom_point() +
geom_smooth(aes(linetype = drv))
I R _—_—_i

2 3

Notice that this plot contains two geoms in the same graph.

4
displ

Geometric Objects | 123

https://ggplot2.tidyverse.org/reference/geom_smooth.html

Many geoms, like geom_smooth(), use a single geometric object to display multiple
rows of data. For these geoms, you can set the group aesthetic to a categorical variable
to draw multiple objects. ggplot2 will draw a separate object for each unique value
of the grouping variable. In practice, ggplot2 will automatically group the data for
these geoms whenever you map an aesthetic to a discrete variable (as in the linetype
example). It is convenient to rely on this feature because the group aesthetic by itself
does not add a legend or distinguishing features to the geoms.
Left

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_smooth()

Middle
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_smooth(aes(group = drv))

Right
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_smooth(aes(color = drv), show.legend = FALSE)

35-

35- 35-
30- 30~ 30~
> >25- >25-
. s s
ey ey ey
20 20
20-
15 15
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7
displ displ disp

If you place mappings in a geom function, ggplot2 will treat them as local mappings

for the layer. It will use these mappings to extend or overwrite the global mappings for

that layer only. This makes it possible to display different aesthetics in different layers.
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +
geom_smooth()

124 | Chapter9: Layers

https://ggplot2.tidyverse.org/reference/geom_smooth.html

class

® 2seater
® compact
® midsize
® minivan
® pickup

® subcompact

® suv

You can use the same idea to specify different data for each layer. Here, we use red

points as well as open circles to highlight two-seater cars. The local data argument in

geom_point() overrides the global data argument in ggplot() for that layer only.
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +
geom_point(

data = mpg |> filter(class == "2seater"),
color = "red"

) +

geom_point(
data = mpg |> filter(class == "2seater"),
shape = "circle open", size = 3, color = "red"

)

Geometric Objects | 125

https://ggplot2.tidyverse.org/reference/geom_point.html
https://ggplot2.tidyverse.org/reference/ggplot.html

displ

Geoms are the fundamental building blocks of ggplot2. You can completely transform
the look of your plot by changing its geom, and different geoms can reveal different
features of your data. For example, the following histogram and density plot reveal
that the distribution of highway mileage is bimodal and right skewed, while the
boxplot reveals two potential outliers:

Left

ggplot(mpg, aes(x = hwy)) +
geom_histogram(binwidth = 2)

Middle

ggplot(mpg, aes(x
geom_density()

hwy)) +

Right

ggplot(mpg, aes(x = hwy)) +
geom_boxplot()

126 | Chapter9: Layers

ggplot2 provides more than 40 geoms, but these geoms don’t cover all the possible
plots one could make. If you need a different geom, look into extension packages first
to see if someone else has already implemented it. For example, the ggridges package
is useful for making ridgeline plots, which can be useful for visualizing the density of
a numerical variable for different levels of a categorical variable. In the following plot,
not only did we use a new geom (geom_density_ridges()), but we have also mapped
the same variable to multiple aesthetics (drv to y, fill, and color) as well as set an
aesthetic (alpha = 0.5) to make the density curves transparent.

library(ggridges)

ggplot(mpg, aes(x = hwy, y = drv, fill = drv, color = drv)) +

geom_density_ridges(alpha = 0.5, show.legend = FALSE)
#> Picking joint bandwidth of 1.28

10 20 30 40

The best place to get a comprehensive overview of all of the geoms ggplot2 offers, as
well as all functions in the package, is the reference page. To learn more about any
single geom, use the help (e.g., ?2geom_smooth).

Exercises

1. What geom would you use to draw a line chart? A boxplot? A histogram? An
area chart?

2. Earlier in this chapter we used show. legend without explaining it:
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_smooth(aes(color = drv), show.legend = FALSE)

What does show.legend = FALSE do here? What happens if you remove it? Why
do you think we used it earlier?

3. What does the se argument to geom_smooth() do?

4. Re-create the R code necessary to generate the following graphs. Note that
wherever a categorical variable is used in the plot, it’s drv.

Geometric Objects | 127

https://oreil.ly/ARL_4
https://oreil.ly/pPIuL
https://wilkelab.org/ggridges/reference/geom_density_ridges.html
https://oreil.ly/cIFgm
https://ggplot2.tidyverse.org/reference/geom_smooth.html
https://ggplot2.tidyverse.org/reference/geom_smooth.html

Facets

In Chapter 1 you learned about faceting with facet_wrap(), which splits a plot into
subplots that each display one subset of the data based on a categorical variable.
ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +
facet_wrap(~cyl)

LJAEEEEN
T

hwy

40{ [L[]] HEEE |
L]] |
30{ HEEEEEE HEEE |
HEEN HEN |
20{ HEEN NN 1
ot

iIEEEEEEEEEEl InEnn -
2 3 4 5 6 7 2 3 4 5 6 7

displ

128 | Chapter9: Layers

https://ggplot2.tidyverse.org/reference/facet_wrap.html

To facet your plot with the combination of two variables, switch from facet_wrap()
to facet_grid(). The first argument of facet_grid() is also a formula, but now it’s a
double-sided formula: rows ~ cols.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +
facet_grid(drv ~ cyl)

40 -

40~

30- -
td

3

23 45 67 234567 234567 234567

20-

By default each of the facets share the same scale and range for x and y axes. This
is useful when you want to compare data across facets, but it can be limiting when
you want to visualize the relationship within each facet better. Setting the scales
argument in a faceting function to "free" will allow for different axis scales across
both rows and columns, "free_x" will allow for different scales across rows, and
"free_y" will allow for different scales across columns.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point() +
facet_grid(drv ~ cyl, scales = "free_y")

Facets | 129

https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_grid.html
https://ggplot2.tidyverse.org/reference/facet_grid.html

5
ot
(R

[]
20- [] s IS
ad T
15 -] =
[]
45- o
40- ®
>\35'
204 : »)
- . .
20 - r
L]
[] o0
24 - % *e.
: L]
21 - T -
18 - H E"
15 -]

Exercises

1. What happens if you facet on a continuous variable?

2. What do the empty cells in the plot with facet_grid(drv ~ cyl) mean? Run the
following code. How do the cells relate to the resulting plot?
ggplot(mpg) +
geom_point(aes(x = drv, y = cyl))
3. What plots does the following code make? What does . do?

ggplot(mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)

ggplot(mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_grid(. ~ cyl)
4. Take the first faceted plot in this section:
ggplot(mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_wrap(~ class, nrow = 2)
What are the advantages to using faceting instead of the color aesthetic? What
are the disadvantages? How might the balance change if you had a larger dataset?

130 | Chapter9:Layers

5. Read ?facet_wrap. What does nrow do? What does ncol do? What other options
control the layout of the individual panels? Why doesn’t facet_grid() have nrow
and ncol arguments?

6. Which of the following plots makes it easier to compare engine size (displ)
across cars with different drivetrains? What does this say about when to place a

faceting variable across rows or columns?
ggplot(mpg, aes(x = displ)) +
geom_histogram() +
facet_grid(drv ~ .)

ggplot(mpg, aes(x = displ)) +
geom_histogram() +
facet_grid(. ~ drv)
7. Re-create the following plot using facet_wrap() instead of facet_grid(). How
do the positions of the facet labels change?

ggplot(mpg) +
geom_point(aes(x = displ, y = hwy)) +
facet_grid(drv ~ .)

Statistical Transformations

Consider a basic bar chart drawn with geom_bar() or geom_col(). The following
chart displays the total number of diamonds in the diamonds dataset, grouped by
cut. The diamonds dataset is in the ggplot2 package and contains information on
about 54,000 diamonds, including the price, carat, color, clarity, and cut of each
diamond. The chart shows that more diamonds are available with high-quality cuts
than with low-quality cuts.

ggplot(diamonds, aes(x = cut)) +
geom_bar ()

Statistical Transformations | 131

https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_grid.html
https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_grid.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html

20000 -

15000 -

10000 -
5000 -
.. I

] 1]] 1
Fair Good Very Good Premium Ideal
cut

count

On the x-axis, the chart displays cut, a variable from diamonds. On the y-axis, it
displays count, but count is not a variable in diamonds! Where does count come
from? Many graphs, like scatterplots, plot the raw values of your dataset. Other
graphs, like bar charts, calculate new values to plot:

o Bar charts, histograms, and frequency polygons bin your data and then plot bin
counts, the number of points that fall in each bin.

» Smoothers fit a model to your data and then plot predictions from the model.

 Boxplots compute the five-number summary of the distribution and then display

that summary as a specially formatted box.

The algorithm used to calculate new values for a graph is called a stat, short for
statistical transformation. Figure 9-2 shows how this process works with geom_bar ().

132 | Chapter9:Layers

https://ggplot2.tidyverse.org/reference/geom_bar.html

1. geom_bar () begins with 2.geom_bar () transforms the 3.geom_bar () uses the

the diamonds data set. data with the "count” stat, which transformed data to build
returns a data set of cut values the plot. Cut is mapped to
and counts. the x axis, count is mapped

tothey axis.

20000-

15000 -
el o EesEarded = o] m@

023 Ideal 395 398 243 Fair 1610 =
021 Premum E SH 598 61 326 389 384 231 Good 4908 2 10000~
023 Good E VS1 569 65 327 405 407 231 Very Good 12082 S
029 Premum | VS2 624 58 334 420 423 263 Premium 13791
031 Good J Sl2 633 58 335 434 435 275 Ideal 21551
.. I .

Fair Good VeryGocd Premium Ideal

Figure 9-2. When creating a bar chart, we first start with the raw data, then aggregate
it to count the number of observations in each bar, and finally map those computed
variables to plot aesthetics.

You can learn which stat a geom uses by inspecting the default value for the stat
argument. For example, ?geom_bar shows that the default value for stat is “count,’
which means that geom_bar () uses stat_count(). stat_count() is documented on
the same page as geom_bar(). If you scroll down, the section called “Computed
variables” explains that it computes two new variables: count and prop.

Every geom has a default stat, and every stat has a default geom. This means you can
typically use geoms without worrying about the underlying statistical transformation.
However, there are three reasons why you might need to use a stat explicitly:

1. You might want to override the default stat. In the following code, we change
the stat of geom_bar() from count (the default) to identity. This lets us map the

height of the bars to the raw values of a y variable.
diamonds |>
count(cut) |>
ggplot(aes(x = cut, y = n)) +
geom_bar(stat = "identity")

Statistical Transformations | 133

https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html

20000 -

15000 -

c
10000 -
5000 -
.. I

Fair Good Very Good Premium Ideal
cut

2. You might want to override the default mapping from transformed variables to
aesthetics. For example, you might want to display a bar chart of proportions,
rather than counts:

ggplot(diamonds, aes(x = cut, y = after_stat(prop), group = 1)) +
0.1-

geom_bar()
.. NN - I I I

Fair Good Very Good Premium Ideal
cut

0.4-

134 | Chapter9: Layers

To find the possible variables that can be computed by the stat, look for the
section titled “Computed variables” in the help for geom_bar ().

3. You might want to draw greater attention to the statistical transformation in
your code. For example, you might use stat_summary(), which summarizes the

y values for each unique x value, to draw attention to the summary that you're
computing:
ggplot(diamonds) +
stat_summary(
aes(x = cut, y = depth),
fun.min = min,
fun.max = max,
fun = median

)

depth

Fair Good Very Good Premium Ideal
cut

ggplot2 provides more than 20 stats for you to use. Each stat is a function, so you can
get help in the usual way, e.g., ?stat_bin.

Exercises

1. What is the default geom associated with stat_summary()? How could you
rewrite the previous plot to use that geom function instead of the stat function?

2. What does geom_col() do? How is it different from geom_bar()?

Statistical Transformations | 135

https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/stat_summary.html
https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/stat_summary.html
https://ggplot2.tidyverse.org/reference/geom_bar.html
https://ggplot2.tidyverse.org/reference/geom_bar.html

3. Most geoms and stats come in pairs that are almost always used in concert. Make
a list of all the pairs. What do they have in common? (Hint: Read through the
documentation.)

4. What variables does stat_smooth() compute? What arguments control its
behavior?

5. In our proportion bar chart, we need to set group = 1. Why? In other words,
what is the problem with these two graphs?

ggplot(diamonds, aes(x = cut, y = after_stat(prop))) +
geom_bar()

ggplot(diamonds, aes(x = cut, fill = color, y = after_stat(prop))) +
geom_bar()

Position Adjustments

There’s one more piece of magic associated with bar charts. You can color a bar chart

using either the color aesthetic or, more usefully, the fill aesthetic:
Left
ggplot(mpg, aes(x = drv, color = drv)) +
geom_bar()

Right
ggplot(mpg, aes(x = drv, fill = drv)) +

geom_bar()
100 -
75- drv
-
4§ N M-
8 | K
r r
IIIIIIII i IIIIIIII III
0-
f r

drv drv

100 -

count

NN :

Note what happens if you map the fill aesthetic to another variable, like class: the
bars are automatically stacked. Each colored rectangle represents a combination of
drv and class.

ggplot(mpg, aes(x = drv, fill = class)) +
geom_bar()

136 | Chapter9:Layers

https://ggplot2.tidyverse.org/reference/geom_smooth.html

100 -

class
75+ 2seater
compact
€ midsize
S
g8 50- minivan
pickup
subcompact
25- suv
0 -
4 f r
drv

The stacking is performed automatically using the position adjustment specified by
the position argument. If you don’t want a stacked bar chart, you can use one of
three other options: "identity", "dodge", or "fill".

o position = "identity" will place each object exactly where it falls in the
context of the graph. This is not very useful for bars, because it overlaps them.
To see that overlapping, we need to make the bars either slightly transparent by

setting alpha to a small value or completely transparent by setting fill = NA.
Left
ggplot(mpg, aes(x = drv, fill = class)) +
geom_bar(alpha = 1/5, position = "identity")

Right
ggplot(mpg, aes(x = drv, color = class)) +
geom_bar(fill = NA, position = "identity")
class 50 class
2seater 40 - I:I 2seater
compact D compact
midsize § 30+ midsize
minivan 8 204 minivan
pickup pickup
subcompact 10 - I:I subcompact
suv 0- D suv
4 f r
drv

Position Adjustments | 137

The identity position adjustment is more useful for 2D geoms, like points, where
it is the default.

o position = "fill" works like stacking but makes each set of stacked bars the
same height. This makes it easier to compare proportions across groups.

» position = "dodge" places overlapping objects directly beside one another. This
makes it easier to compare individual values.
Left

ggplot(mpg, aes(x = drv, fill = class)) +
geom_bar(position = "fill")

Right
ggplot(mpg, aes(x = drv, fill = class)) +
geom_bar(position = "dodge")

1.007 class 501 class
0754 . 2seater 40 - . 2seater
. compact . compact
g 0.50 . midsize g 30~ . midsize
2 Y - ° -
3 . minivan 3 - . minivan
0254 . pickup . pickup
. subcompact 10~ ‘ . subcompact
suv suv
000 O o O
4 f r 4 f r
drv drv

There’s one other type of adjustment that’s not useful for bar charts but can be
very useful for scatterplots. Recall our first scatterplot. Did you notice that the plot
displays only 126 points, even though there are 234 observations in the dataset?

138 | Chapter9: Layers

40~

[

3

°

°

L)
° °
20 . e
- (= 3

> e o 0 o oo .
2 . ° e e o
< ° o oo e 00 o

e o 0 00 o oo ee o o . .

. s o oo e o . .

e 00 0 o . .
o o e o o . .
e o o 3 .
3 3
20 - 0 . oo
e o o oo .
e o o o e oo
oo oo o e e e 0 o o .
oo e o
. e eee o o
. .
3
2 3 5 6 7

displ

The underlying values of hwy and displ are rounded so the points appear on a grid,
and many points overlap each other. This problem is known as overplotting. This
arrangement makes it difficult to see the distribution of the data. Are the data points
spread equally throughout the graph, or is there one special combination of hwy and
displ that contains 109 values?

You can avoid this gridding by setting the position adjustment to “jitter”. Using
position = "jitter" adds a small amount of random noise to each point. This
spreads the points out because no two points are likely to receive the same amount of
random noise.

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(position = "jitter")

Position Adjustments | 139

40- ¢
é
S
s
3 o
30- °% ’.
2 od"'.! % .
< ., t't {.’.f‘:- . .
B s :Io * . g
.o L) ° <
20- - . o 2 ;. Fe
° o e ® $ 1 I
b '. ? .sf’. * e
-
1o > 3 i 5 6 :
displ

Adding randomness seems like a strange way to improve your plot, but while it
makes your graph less accurate at small scales, it makes your graph more revealing at
large scales. Because this is such a useful operation, ggplot2 comes with a shorthand
for geom_point(position = "jitter"): geom_jitter().

To learn more about a position adjustment, look up the help page associated with
each adjustment:

e ?position_dodge

e ?position_fill

e ?position_1identity

e ?position_jitter

e ?position_stack

Exercises

1. What is the problem with the following plot? How could you improve it?

ggplot(mpg, aes(x = cty, y = hwy)) +
geom_point()

140 | Chapter9: Layers

https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/position_dodge.html
https://ggplot2.tidyverse.org/reference/position_stack.html
https://ggplot2.tidyverse.org/reference/position_identity.html
https://ggplot2.tidyverse.org/reference/position_jitter.html
https://ggplot2.tidyverse.org/reference/position_stack.html

2. What, if anything, is the difference between the two plots? Why?
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point()
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(position = "identity")

3. What parameters to geom_jitter() control the amount of jittering?
4. Compare and contrast geom_jitter () with geom_count().

5. What’s the default position adjustment for geom_boxplot()? Create a visualiza-
tion of the mpg dataset that demonstrates it.

Coordinate Systems

Coordinate systems are probably the most complicated part of ggplot2. The default
coordinate system is the Cartesian coordinate system where the x and y positions
act independently to determine the location of each point. There are two other
coordinate systems that are occasionally helpful.

o coord_quickmap() sets the aspect ratio correctly for geographic maps. This is
important if you're plotting spatial data with ggplot2. We don’t have the space to
discuss maps in this book, but you can learn more in the Maps chapter of ggplot2:
Elegant Graphics for Data Analysis (Springer).

nz <- map_data("nz")

ggplot(nz, aes(x = long, y = lat, group = group)) +
geom_polygon(fill = "white", color = "black")

ggplot(nz, aes(x = long, y = lat, group = group)) +
geom_polygon(fill = "white", color = "black") +
coord_quickmap()

-36 - -
- -‘1() 5
©

-44 -

Pz)
-48 - - -
170 175
long

Coordinate Systems | 141

https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/geom_count.html
https://ggplot2.tidyverse.org/reference/geom_boxplot.html
https://ggplot2.tidyverse.org/reference/coord_map.html
https://oreil.ly/45GHE

-36 -

w -40-
o
-44 -
-48 - 1 1
170 175
long

o coord_polar() uses polar coordinates. Polar coordinates reveal an interesting
connection between a bar chart and a Coxcomb chart.

bar <- ggplot(data = diamonds) +
geom_bar(
mapping = aes(x = clarity, fill = clarity),
show.legend = FALSE,
width = 1
) +

theme(aspect.ratio = 1)

bar + coord_flip()
bar + coord_polar()

12500 - iy 1
10000 -
7500 -
2500 -

D -

count

VVS2

VS1 VS2

1])
0 5000 10000 _
count clarity

142 | Chapter9: Layers

https://ggplot2.tidyverse.org/reference/coord_polar.html

Exercises

1. Turn a stacked bar chart into a pie chart using coord_polar().
2. What’s the difference between coord_quickmap() and coord_map()?

3. What does the following plot tell you about the relationship between city and

highway mpg? Why is coord_fixed() important? What does geom_abline() do?
ggplot(data = mpg, mapping = aes(x = cty, y = hwy)) +
geom_point() +
geom_abline() +
coord_fixed()

The Layered Grammar of Graphics

We can expand on the graphing template you learned in “ggplot2 Calls” on page 16 by
adding position adjustments, stats, coordinate systems, and faceting:
ggplot(data = <DATA>) +
<GEOM_FUNCTION>(
mapping = aes(<MAPPINGS>),
stat = <STAT>,
position = <POSITION>
) +
<COORDINATE_FUNCTION> +
<FACET_FUNCTION>
Our new template takes seven parameters, the bracketed words that appear in the
template. In practice, you rarely need to supply all seven parameters to make a
graph because ggplot2 will provide useful defaults for everything except the data, the

mappings, and the geom function.

The seven parameters in the template compose the grammar of graphics, a formal
system for building plots. The grammar of graphics is based on the insight that
you can uniquely describe any plot as a combination of a dataset, a geom, a set of
mappings, a stat, a position adjustment, a coordinate system, a faceting scheme, and a
theme.

To see how this works, consider how you could build a basic plot from scratch: you
could start with a dataset and then transform it into the information that you want
to display (with a stat). Next, you could choose a geometric object to represent each
observation in the transformed data. You could then use the aesthetic properties
of the geoms to represent variables in the data. You would map the values of each
variable to the levels of an aesthetic. These steps are illustrated in Figure 9-3. Youd
then select a coordinate system to place the geoms into, using the location of the
objects (which is itself an aesthetic property) to display the values of the x and y
variables.

The Layered Grammar of Graphics | 143

https://ggplot2.tidyverse.org/reference/coord_polar.html
https://ggplot2.tidyverse.org/reference/coord_map.html
https://ggplot2.tidyverse.org/reference/coord_map.html
https://ggplot2.tidyverse.org/reference/coord_fixed.html
https://ggplot2.tidyverse.org/reference/geom_abline.html

20000 -

15000 -

/

oot |_cut | coor| clrty | dopth]abloprice | x | v |
023 Ideal E SI2 615 55 326 3.95 3.98 243 Fair 1610
021 Premum E Si 598 61 326 389 384 231 Good 4906
023 Good E VS1 569 65 327 405 407 231 Very Good 12082
|
J

count

10000~

029 Premium vs2 624 58 420 423 263 Premium 13791
031 Good Sl2 633 58 434 435 275 Ideal 21551
w | ol ol oo 5000 -

oJ I S

Fair Good Very Good Premium Ideal
’ cut

2222

Figure 9-3. These are the steps for going from raw data to a table of frequencies to a bar
plot where the heights of the bar represent the frequencies.

At this point, you would have a complete graph, but you could further adjust the
positions of the geoms within the coordinate system (a position adjustment) or split
the graph into subplots (faceting). You could also extend the plot by adding one or
more additional layers, where each additional layer uses a dataset, a geom, a set of
mappings, a stat, and a position adjustment.

You could use this method to build any plot that you imagine. In other words, you
can use the code template that you've learned in this chapter to build hundreds of
thousands of unique plots.

If youd like to learn more about the theoretical underpinnings of ggplot2, you might
enjoy reading “A Layered Grammar of Graphics”, the scientific paper that describes
the theory of ggplot2 in detail.

Summary

In this chapter you learned about the layered grammar of graphics starting with
aesthetics and geometries to build a simple plot, facets for splitting the plot into
subsets, statistics for understanding how geoms are calculated, position adjustments
for controlling the fine details of position when geoms might otherwise overlap, and
coordinate systems that allow you to fundamentally change what x and y mean. One
layer we have not yet touched on is theme, which we will introduce in “Themes” on
page 193.

Two very useful resources for getting an overview of the complete ggplot2 functional-
ity are the ggplot2 cheatsheet and the ggplot2 package website.

An important lesson you should take from this chapter is that when you feel the
need for a geom that is not provided by ggplot2, it's always a good idea to look
into whether someone else has already solved your problem by creating a ggplot2
extension package that offers that geom.

144 | Chapter9: Layers

https://oreil.ly/8fZzE
https://oreil.ly/NlKZF
https://oreil.ly/W6ci8

CHAPTER 10
Exploratory Data Analysis

Introduction

This chapter will show you how to use visualization and transformation to explore
your data in a systematic way, a task that statisticians call exploratory data analysis, or
EDA for short. EDA is an iterative cycle. You:

1. Generate questions about your data.
2. Search for answers by visualizing, transforming, and modeling your data.

3. Use what you learn to refine your questions and/or generate new questions.

EDA is not a formal process with a strict set of rules. More than anything, EDA is
a state of mind. During the initial phases of EDA you should feel free to investigate
every idea that occurs to you. Some of these ideas will pan out, and some will be
dead ends. As your exploration continues, you will home in on a few particularly
productive insights that you’ll eventually write up and communicate to others.

EDA is an important part of any data analysis, even if the primary research questions
are handed to you on a platter, because you always need to investigate the quality
of your data. Data cleaning is just one application of EDA: you ask questions about
whether your data meets your expectations. To do data cleaning, you'll need to deploy
all the tools of EDA: visualization, transformation, and modeling.

Prerequisites

In this chapter we’ll combine what you've learned about dplyr and ggplot2 to interac-
tively ask questions, answer them with data, and then ask new questions.

library(tidyverse)

145

Questions

“There are no routine statistical questions, only questionable statistical routines”
—Sir David Cox

“Far better an approximate answer to the right question, which is often vague, than an
exact answer to the wrong question, which can always be made precise” —John Tukey

Your goal during EDA is to develop an understanding of your data. The easiest way
to do this is to use questions as tools to guide your investigation. When you ask a
question, the question focuses your attention on a specific part of your dataset and
helps you decide which graphs, models, or transformations to make.

EDA is fundamentally a creative process. And like most creative processes, the key to
asking quality questions is to generate a large quantity of questions. It is difficult to
ask revealing questions at the start of your analysis because you do not know what
insights can be gleaned from your dataset. On the other hand, each new question
that you ask will expose you to a new aspect of your data and increase your chance
of making a discovery. You can quickly drill down into the most interesting parts of
your data—and develop a set of thought-provoking questions—if you follow up each
question with a new question based on what you find.

There is no rule about which questions you should ask to guide your research.
However, two types of questions will always be useful for making discoveries within
your data. You can loosely word these questions as:

1. What type of variation occurs within my variables?

2. What type of covariation occurs between my variables?

The rest of this chapter will look at these two questions. We'll explain what variation
and covariation are, and we'll show you several ways to answer each question.

Variation

Variation is the tendency of the values of a variable to change from measurement to
measurement. You can see variation easily in real life; if you measure any continuous
variable twice, you will get two different results. This is true even if you measure
quantities that are constant, like the speed of light. Each of your measurements will
include a small amount of error that varies from measurement to measurement.
Variables can also vary if you measure across different subjects (e.g., the eye colors
of different people) or at different times (e.g., the energy levels of an electron at
different moments). Every variable has its own pattern of variation, which can reveal
interesting information about how it varies between measurements on the same
observation as well as across observations. The best way to understand that pattern

146 | Chapter 10: Exploratory Data Analysis

is to visualize the distribution of the variable’s values, which you've learned about in
Chapter 1.

We'll start our exploration by visualizing the distribution of weights (carat) of about
54,000 diamonds from the diamonds dataset. Since carat is a numerical variable, we
can use a histogram:

ggplot(diamonds, aes(x = carat)) +
geom_histogram(binwidth = 0.5)

30000 -

20000 -

count

10000 -

carat

Now that you can visualize variation, what should you look for in your plots? And
what type of follow-up questions should you ask? We've put together a list in the
next section of the most useful types of information that you will find in your graphs,
along with some follow-up questions for each type of information. The key to asking
good follow-up questions will be to rely on your curiosity (what do you want to learn
more about?) as well as your skepticism (how could this be misleading?).

Typical Values

In both bar charts and histograms, tall bars show the common values of a variable,
and shorter bars show less-common values. Places that do not have bars reveal values
that were not seen in your data. To turn this information into useful questions, look
for anything unexpected:

o Which values are the most common? Why?

Variation | 147

o Which values are rare? Why? Does that match your expectations?

« Can you see any unusual patterns? What might explain them?

Let’s take a look at the distribution of carat for smaller diamonds:

smaller <- diamonds |>
filter(carat < 3)

ggplot(smaller, aes(x = carat)) +
geom_histogram(binwidth = 0.01)

2000 -

count

1000 =

1 2
carat

This histogram suggests several interesting questions:

o Why are there more diamonds at whole carats and common fractions of carats?
o Why are there more diamonds slightly to the right of each peak than there are
slightly to the left of each peak?

Visualizations can also reveal clusters, which suggest that subgroups exist in your
data. To understand the subgroups, ask:

« How are the observations within each subgroup similar to each other?

» How are the observations in separate clusters different from each other?

148 | Chapter 10: Exploratory Data Analysis

» How can you explain or describe the clusters?

o Why might the appearance of clusters be misleading?

Some of these questions can be answered with the data, while some will require
domain expertise about the data. Many of them will prompt you to explore a relation-
ship between variables, for example, to see if the values of one variable can explain the
behavior of another variable. We'll get to that shortly.

Unusual Values

Outliers are observations that are unusual, in other words, data points that don’t seem
to fit the pattern. Sometimes outliers are data entry errors, sometimes they are simply
values at the extremes that happened to be observed in this data collection, and other
times they suggest important new discoveries. When you have a lot of data, outliers
are sometimes difficult to see in a histogram. For example, take the distribution of the
y variable from the diamonds dataset. The only evidence of outliers is the unusually
wide limits on the x-axis.

ggplot(diamonds, aes(x = y)) +
geom_histogram(binwidth = 0.5)

12000 -

8000 -

count

4000 -

Variation | 149

There are so many observations in the common bins that the rare bins are very short,
making it difficult to see them (although maybe if you stare intently at 0, you’ll spot
something). To make it easy to see the unusual values, we need to zoom to small
values of the y-axis with coord_cartesian():

ggplot(diamonds, aes(x = y)) +
geom_histogram(binwidth = 0.5) +
coord_cartesian(ylim = c(0, 50))

50 -

40 -

30-

count

20-

10 -

coord_cartesian() also has an xlim() argument for when you need to zoom into
the x-axis. ggplot2 also has xlim() and ylim() functions that work slightly differ-
ently: they throw away the data outside the limits.

This allows us to see that there are three unusual values: 0, ~30, and ~60. We pluck
them out with dplyr:
unusual <- diamonds |>

filter(y <3 | y > 20) |>
select(price, x, y, z) |>

arrange(y)
unusual
#> # A tibble: 9 x 4
#> price X y z
#> <int> <dbl> <dbl> <dbl>
#> 1 5139 0 0 (0]
#> 2 6381 0 0 (0]
#> 3 12800 0 0 (0]
#> 4 15686 0 0 0
#> 5 18034 0 0 (0]

150 | Chapter 10: Exploratory Data Analysis

https://ggplot2.tidyverse.org/reference/coord_cartesian.html
https://ggplot2.tidyverse.org/reference/coord_cartesian.html
https://ggplot2.tidyverse.org/reference/lims.html
https://ggplot2.tidyverse.org/reference/lims.html
https://ggplot2.tidyverse.org/reference/lims.html

6 2130 0 o o

#>7 2130 0 o o

#> 8 2075 5.15 31.8 5.12

#> 9 12210 8.09 58.9 8.06
The y variable measures one of the three dimensions of these diamonds, in mm. We
know that diamonds can’t have a width of 0Omm, so these values must be incorrect. By
doing EDA, we have discovered missing data that were coded as 0, which we never
would have found by simply searching for NAs. Going forward we might choose to
re-code these values as NAs to prevent misleading calculations. We might also suspect
that measurements of 32mm and 59mm are implausible: those diamonds are more
than an inch long but don’t cost hundreds of thousands of dollars!

It’s good practice to repeat your analysis with and without the outliers. If they have
minimal effect on the results and you can’t figure out why they're there, it’s reasonable
to omit them and move on. However, if they have a substantial effect on your results,
you shouldn’t drop them without justification. You'll need to figure out what caused
them (e.g., a data entry error) and disclose that you removed them in your write-up.

Exercises

1. Explore the distribution of each of the x, y, and z variables in diamonds. What do
you learn? Think about a diamond and how you might decide which dimension
is the length, width, and depth.

2. Explore the distribution of price. Do you discover anything unusual or surpris-
ing? (Hint: Carefully think about the binwidth and make sure you try a wide
range of values.)

3. How many diamonds are 0.99 carat? How many are 1 carat? What do you think
is the cause of the difference?

4. Compare and contrast coord_cartesian() and x1lim() or ylim() when zooming
in on a histogram. What happens if you leave binwidth unset? What happens if
you try to zoom so only half a bar shows?

Unusual Values

If you've encountered unusual values in your dataset and simply want to move on to
the rest of your analysis, you have two options:

1. Drop the entire row with the strange values:

diamonds2 <- diamonds |>
filter(between(y, 3, 20))

We don’t recommend this option because one invalid value doesn’t imply that all
the other values for that observation are also invalid. Additionally, if you have

Unusual Values | 151

https://ggplot2.tidyverse.org/reference/coord_cartesian.html
https://ggplot2.tidyverse.org/reference/lims.html
https://ggplot2.tidyverse.org/reference/lims.html

low-quality data, by the time that you've applied this approach to every variable
you might find that you don’t have any data left!

2. Instead, we recommend replacing the unusual values with missing values. The
easiest way to do this is to use mutate() to replace the variable with a modified

copy. You can use the 1f_else() function to replace unusual values with NA:
diamonds2 <- diamonds |>
mutate(y = if_else(y < | 'y > 20, NA, y))

It's not obvious where you should plot missing values, so ggplot2 doesn’t include
them in the plot, but it does warn that they’ve been removed:
ggplot(diamonds2, aes(x = x, y = y)) +

geom_point()
#> Warning: Removed 9 rows containing missing values ('geom_point()").

9-
> 7.
[]
5-
0 3 6 ¢

To suppress that warning, set na.rm = TRUE:

ggplot(diamonds2, aes(x = x, y = y)) +
geom_point(na.rm = TRUE)
Other times you want to understand what makes observations with missing
values different to observations with recorded values. For example, in nyc
flights13::flights,' missing values in the dep_time variable indicate that the

1 Remember that when we need to be explicit about where a function (or dataset) comes from, we'll use the
special form package: : function() or package: :dataset.

152 | Chapter 10: Exploratory Data Analysis

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/if_else.html
https://rdrr.io/pkg/nycflights13/man/flights.html
https://rdrr.io/pkg/nycflights13/man/flights.html

flight was cancelled. So you might want to compare the scheduled departure times for
cancelled and noncancelled times. You can do this by making a new variable, using
is.na() to check whether dep_time is missing.

nycflights13::flights |>
mutate(
cancelled = is.na(dep_time),
sched_hour = sched_dep_time %/% 100,
sched_min = sched_dep_time %% 100,
sched_dep_time = sched_hour + (sched_min / 60)
) >
ggplot(aes(x = sched_dep_time)) +
geom_fregpoly(aes(color = cancelled), binwidth = 1/4)

7500

- cancelled

C

§ 5000 — FALSE
— TRUE

2500

sched_dep_time

However, this plot isn’t great because there are many more noncancelled flights than
cancelled flights. In the next section, we'll explore some techniques for improving this
comparison.

Exercises

1. What happens to missing values in a histogram? What happens to missing values
in a bar chart? Why is there a difference in how missing values are handled in
histograms and bar charts?

2. What does na.rm = TRUE do in mean() and sum()?

Unusual Values | 153

https://rdrr.io/r/base/NA.html
https://rdrr.io/r/base/mean.html
https://rdrr.io/r/base/sum.html

3. Re-create the frequency plot of scheduled_dep_time colored by whether the
flight was cancelled or not. Also facet by the cancelled variable. Experiment
with different values of the scales variable in the faceting function to mitigate
the effect of more noncancelled flights than cancelled flights.

Covariation

If variation describes the behavior within a variable, covariation describes the behav-
ior between variables. Covariation is the tendency for the values of two or more
variables to vary together in a related way. The best way to spot covariation is to
visualize the relationship between two or more variables.

A Categorical and a Numerical Variable

For example, let’s explore how the price of a diamond varies with its quality (meas-
ured by cut) using geom_freqpoly():

ggplot(diamonds, aes(x = price)) +
geom_fregpoly(aes(color = cut), binwidth = 500, linewidth = 0.75)

5000 -
4000 -
cut
= Fair
. 3000-
c — Good
=1
8 — Very Good
2000 - Premium
Ideal
1000 -
M
0 -
0 5000 10000 15000 20000
price

Note that ggplot2 uses an ordered color scale for cut because its defined as an
ordered factor variable in the data. You'll learn more about these in “Ordered Factors”
on page 295.

154 | Chapter 10: Exploratory Data Analysis

https://ggplot2.tidyverse.org/reference/geom_histogram.html

The default appearance of geom_fregpoly() is not that useful here because the
height, determined by the overall count, differs so much across cuts, making it hard
to see the differences in the shapes of their distributions.

To make the comparison easier, we need to swap what is displayed on the y-axis.
Instead of displaying count, we’ll display the density, which is the count standardized
so that the area under each frequency polygon is 1:

ggplot(diamonds, aes(x = price, y = after_stat(density))) +
geom_fregpoly(aes(color = cut), binwidth = 500, linewidth = 0.75)

5e-04 -
4e-04 -
‘ cut

3e-04 - — Fair
>
E — Good
[} — Very Good
T 26-04-)

Premium

k Ideal
1e-04 -
.

e
%_‘—‘ ~—
0e+00 - ——
5000 10000 15000 20000

price

o -

Note that were mapping the density the y, but since density is not a variable in the
diamonds dataset, we need to first calculate it. We use the after_stat() function to
do so.

There’s something rather surprising about this plot: it appears that fair diamonds (the
lowest quality) have the highest average price! But maybe that’s because frequency
polygons are a little hard to interpret; there’s a lot going on in this plot.

A visually simpler plot for exploring this relationship is using side-by-side boxplots:

ggplot(diamonds, aes(x = cut, y = price)) +
geom_boxplot()

Covariation | 155

https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/aes_eval.html

15000 -

8 10000 -
—
o

5000 -

[T I |
O -
Fair Good Very Good Premium Ideal
cut

We see much less information about the distribution, but the boxplots are much
more compact so we can more easily compare them (and fit more on one plot).
It supports the counterintuitive finding that better-quality diamonds are typically
cheaper! In the exercises, you'll be challenged to figure out why.

cut is an ordered factor: fair is worse than good, which is worse than very good and
so on. Many categorical variables don’t have such an intrinsic order, so you might
want to reorder them to make a more informative display. One way to do that is with
fct_reorder(). You'll learn more about that function in “Modifying Factor Order”
on page 288, but we wanted to give you a quick preview here because it’s so useful.
For example, take the class variable in the mpg dataset. You might be interested to
know how highway mileage varies across classes:

ggplot(mpg, aes(x = class, y = hwy)) +
geom_boxplot()

156 | Chapter 10: Exploratory Data Analysis

https://forcats.tidyverse.org/reference/fct_reorder.html

20

2seater compact midsize minivan pickup
class

subcompact suv

To make the trend easier to see, we can reorder class based on the median value of
hwy:

ggplot(mpg, aes(x = fct_reorder(class, hwy, median), y = hwy)) +
geom_boxplot()

20

pickup minivan 2seater subcompact
fct_reorder(class, hwy, median)

compact midsize

If you have long variable names, geom_boxplot() will work better if you flip it 90°.
You can do that by exchanging the x and y aesthetic mappings:

ggplot(mpg, aes(x = hwy, y = fct_reorder(class, hwy, median))) +
geom_boxplot()

Covariation | 157

https://ggplot2.tidyverse.org/reference/geom_boxplot.html

midsize =
=
O compact - 1 .
o]
@
E
<> subcompact - — 1 L] L]
2
Ny
2 2seater - {
o
S
_
% minivan = L] m
—_
o
o
ol suv- ® 4|]:'7 ses oo
L
pickup - @ ~|]:|7 (]
20 30 40
hwy
Exercises
1. Use what you've learned to improve the visualization of the departure times of

cancelled versus noncancelled flights.

. Based on EDA, what variable in the diamonds dataset appears to be most impor-

tant for predicting the price of a diamond? How is that variable correlated with
cut? Why does the combination of those two relationships lead to lower-quality
diamonds being more expensive?

. Instead of exchanging the x and y variables, add coord_flip() as a new layer

to the vertical boxplot to create a horizontal one. How does this compare to
exchanging the variables?

One problem with boxplots is that they were developed in an era of much smaller
datasets and tend to display a prohibitively large number of “outlying values.”
One approach to remedy this problem is the letter value plot. Install the Ivplot
package, and try using geom_lv() to display the distribution of price versus cut.
What do you learn? How do you interpret the plots?

. Create a visualization of diamond prices versus a categorical variable from the

diamonds dataset using geom_violin(), then a faceted geom_histogram(), then
a colored geom_fregpoly(), and then a colored geom_density(). Compare and
contrast the four plots. What are the pros and cons of each method of visualizing

158

| Chapter 10: Exploratory Data Analysis

https://ggplot2.tidyverse.org/reference/coord_flip.html
https://ggplot2.tidyverse.org/reference/geom_violin.html
https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/geom_density.html

the distribution of a numerical variable based on the levels of a categorical
variable?

6. If you have a small dataset, it's sometimes useful to use geom_jitter() to avoid
overplotting to more easily see the relationship between a continuous and catego-
rical variable. The ggbeeswarm package provides a number of methods similar to
geom_jitter(). List them and briefly describe what each one does.

Two Categorical Variables

To visualize the covariation between categorical variables, you'll need to count the
number of observations for each combination of levels of these categorical variables.
One way to do that is to rely on the built-in geom_count():

ggplot(diamonds, aes(x = cut, y = color)) +
geom_count()

J- . [] o [[]
4 ° e o o o
H - [} ® o o o n

. @® 1000

%G' ° L] [o o @ 2000

@ 3000

F- ° o ® ® o @ 400
E- .) o o ()
D- (] [[] o "
Féir Golod Very IGood F’renlﬂum Idéal

cut

The size of each circle in the plot displays how many observations occurred at
each combination of values. Covariation will appear as a strong correlation between
specific x values and specific y values.

Another approach for exploring the relationship between these variables is comput-
ing the counts with dplyr:
diamonds |>

count(color, cut)
#> # A tibble: 35 x 3

Covariation | 159

https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/geom_jitter.html
https://ggplot2.tidyverse.org/reference/geom_count.html

#> color cut n

#> <ord> <ord> <int>
1D Fair 163
#> 2D Good 662
#> 3D Very Good 1513
#> 4D Premium 1603
#> 5D Ideal 2834
#> 6 E Fair 224

#> # .. with 29 more rows
Then visualize with geom_tile() and the fill aesthetic:

diamonds |>
count(color, cut) |>
ggplot(aes(x = color, y = cut)) +
geom_tile(aes(fill = n))

Ideal -

Premium -

4000
3000
2000
1000

-
3 Very Good -

Good -

Fair -

D E F G H | J
color

If the categorical variables are unordered, you might want to use the seriation
package to simultaneously reorder the rows and columns to more clearly reveal
interesting patterns. For larger plots, you might want to try the heatmaply package,
which creates interactive plots.

Exercises

1. How could you rescale the previous count dataset to more clearly show the
distribution of cut within color, or color within cut?

160 | Chapter 10: Exploratory Data Analysis

https://ggplot2.tidyverse.org/reference/geom_tile.html

2. What different data insights do you get with a segmented bar chart if color is
mapped to the x aesthetic and cut is mapped to the fill aesthetic? Calculate the
counts that fall into each of the segments.

3. Use geom_tile() together with dplyr to explore how average flight departure
delays vary by destination and month of year. What makes the plot difficult to
read? How could you improve it?

Two Numerical Variables

You've already seen one great way to visualize the covariation between two numerical
variables: draw a scatterplot with geom_point(). You can see covariation as a pattern
in the points. For example, you can see a positive relationship between the carat
size and price of a diamond: diamonds with more carats have a higher price. The
relationship is exponential.

ggplot(smaller, aes(x = carat, y = price)) +
geom_point()

15000 -

10000 -

price

5000 -

1 2
carat

(In this section we'll use the smaller dataset to stay focused on the bulk of the
diamonds that are smaller than 3 carats.)

Scatterplots become less useful as the size of your dataset grows, because points
begin to overplot and pile up into areas of uniform black, making it hard to judge
differences in the density of the data across the two-dimensional space as well as

Covariation | 161

https://ggplot2.tidyverse.org/reference/geom_tile.html
https://ggplot2.tidyverse.org/reference/geom_point.html

making it hard to spot the trend. You've already seen one way to fix the problem:
using the alpha aesthetic to add transparency.

ggplot(smaller, aes(x = carat, y = price)) +
geom_point(alpha = 1 / 100)

15000

10000

price

5000

carat

But using transparency can be challenging for very large datasets. Another solution is
to use bins. Previously you used geom_histogram() and geom_fregpoly() to bin in
one dimension. Now you’ll learn how to use geom_bin2d() and geom_hex() to bin in
two dimensions.

geom_bin2d() and geom_hex() divide the coordinate plane into 2D bins and then
use a fill color to display how many points fall into each bin. geom_bin2d() creates
rectangular bins. geom_hex() creates hexagonal bins. You will need to install the
hexbin package to use geom_hex().

ggplot(smaller, aes(x = carat, y = price)) +
geom_bin2d()

install.packages("hexbin")
ggplot(smaller, aes(x = carat, y = price)) +
geom_hex()

162 | Chapter 10: Exploratory Data Analysis

https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/geom_histogram.html
https://ggplot2.tidyverse.org/reference/geom_bin_2d.html
https://ggplot2.tidyverse.org/reference/geom_hex.html
https://ggplot2.tidyverse.org/reference/geom_bin_2d.html
https://ggplot2.tidyverse.org/reference/geom_hex.html
https://ggplot2.tidyverse.org/reference/geom_bin_2d.html
https://ggplot2.tidyverse.org/reference/geom_hex.html
https://ggplot2.tidyverse.org/reference/geom_hex.html

20000 count count
15000 - 6000 15000~ 5000
] Qo i
.© 10000- 4000 .2 10000 2000
o] o
o
5000 - 2000 5000 - 2000
O- 1 1 0-
1 2
carat carat

Another option is to bin one continuous variable so it acts like a categorical variable.
Then you can use one of the techniques for visualizing the combination of a catego-
rical and a continuous variable that you learned about. For example, you could bin
carat and then for each group display a boxplot:

ggplot(smaller, aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_width(carat, 0.1)))

° ' s °
s3gly
HIY
15000 - H I 1
.
o) []
8 10000 - o .
&
e ° - s
[] - L] ®
° QH i (R 1
s °°
5000 - g .

JAeTTin

carat

cut_width(x, width), as used here, divides x into bins of width width. By default,
boxplots look roughly the same (apart from the number of outliers) regardless of how
many observations there are, so it’s difficult to tell that each boxplot summarizes a
different number of points. One way to show that is to make the width of the boxplot
proportional to the number of points with varwidth = TRUE.

Covariation | 163

Exercises

1. Instead of summarizing the conditional distribution with a boxplot, you could
use a frequency polygon. What do you need to consider when using cut_width()
versus cut_number()? How does that impact a visualization of the 2D distribu-
tion of carat and price?

2. Visualize the distribution of carat, partitioned by price.

3. How does the price distribution of very large diamonds compare to small dia-
monds? Is it as you expect, or does it surprise you?

4. Combine two of the techniques you've learned to visualize the combined distri-
bution of cut, carat, and price.

5. Two-dimensional plots reveal outliers that are not visible in one-dimensional
plots. For example, some points in the following plot have an unusual combina-
tion of x and y values, which makes the points outliers even though their x and
y values appear normal when examined separately. Why is a scatterplot a better
display than a binned plot for this case?

diamonds |>
filter(x >= 4) |>
ggplot(aes(x = x, y = y)) +
geom_point() +
coord_cartesian(xlim = c(4, 11), ylim = c(4, 11))

6. Instead of creating boxes of equal width with cut_width(), we could create boxes
that contain roughly equal number of points with cut_number(). What are the
advantages and disadvantages of this approach?

ggplot(smaller, aes(x = carat, y = price)) +
geom_boxplot(aes(group = cut_number(carat, 20)))
Patterns and Models

If a systematic relationship exists between two variables, it will appear as a pattern in
the data. If you spot a pattern, ask yourself:

Could this pattern be due to coincidence (i.e., random chance)?
How can you describe the relationship implied by the pattern?
How strong is the relationship implied by the pattern?

What other variables might affect the relationship?

Does the relationship change if you look at individual subgroups of the data?

164

| Chapter 10: Exploratory Data Analysis

https://ggplot2.tidyverse.org/reference/cut_interval.html
https://ggplot2.tidyverse.org/reference/cut_interval.html
https://ggplot2.tidyverse.org/reference/cut_interval.html
https://ggplot2.tidyverse.org/reference/cut_interval.html

Patterns in your data provide clues about relationships; i.e., they reveal covariation.
If you think of variation as a phenomenon that creates uncertainty, covariation is a
phenomenon that reduces it. If two variables covary, you can use the values of one
variable to make better predictions about the values of the second. If the covariation
is due to a causal relationship (a special case), then you can use the value of one
variable to control the value of the second.

Models are a tool for extracting patterns out of data. For example, consider the dia-
monds data. It's hard to understand the relationship between cut and price, because
cut and carat, and carat and price, are tightly related. It’s possible to use a model to
remove the very strong relationship between price and carat to explore the subtleties
that remain. The following code fits a model that predicts price from carat and then
computes the residuals (the difference between the predicted value and the actual
value). The residuals give us a view of the price of the diamond, once the effect of
carat has been removed. Note that instead of using the raw values of price and carat,
we log transform them first and fit a model to the log-transformed values. Then, we
exponentiate the residuals to put them back in the scale of raw prices.

library(tidymodels)

diamonds <- diamonds |>

mutate(
log_price = log(price),
log_carat = log(carat)

)

diamonds_fit <- linear_reg() |>
fit(log_price ~ log_carat, data = diamonds)

diamonds_aug <- augment(diamonds_fit, new_data = diamonds) |>
mutate(.resid = exp(.resid))

ggplot(diamonds_aug, aes(x = carat, y = .resid)) +
geom_point()

Patterns and Models | 165

carat

Once you've removed the strong relationship between carat and price, you can see
what you expect in the relationship between cut and price: relative to their size,
better-quality diamonds are more expensive.

ggplot(diamonds_aug, aes(x = cut, y = .resid)) +
geom_boxplot()

{

! ' i 1 '
Fair Good Very Good Premium Ideal
cut

We're not discussing modeling in this book because understanding what models are

and how they work is easiest once you have tools for data wrangling and program-
ming in hand.

166 | Chapter 10: Exploratory Data Analysis

Summary

In this chapter you learned a variety of tools to help you understand the variation
within your data. You saw a technique that works with a single variable at a time
and with a pair of variables. This might seem painfully restrictive if you have tens or
hundreds of variables in your data, but they’re the foundation upon which all other
techniques are built.

In the next chapter, we'll focus on the tools we can use to communicate our results.

Summary | 167

CHAPTER 11
Communication

Introduction

In Chapter 10, you learned how to use plots as tools for exploration. When you
make exploratory plots, you know—even before looking—which variables the plot
will display. You made each plot for a purpose, could quickly look at it, and could
then move on to the next plot. In the course of most analyses, you’ll produce tens or
hundreds of plots, most of which are immediately thrown away.

Now that you understand your data, you need to communicate your understanding
to others. Your audience will likely not share your background knowledge and will
not be deeply invested in the data. To help others quickly build up a good mental
model of the data, you will need to invest considerable effort in making your plots as
self-explanatory as possible. In this chapter, you'll learn some of the tools that ggplot2
provides to do so.

This chapter focuses on the tools you need to create good graphics. We assume that
you know what you want and just need to know how to do it. For that reason, we
highly recommend pairing this chapter with a good general visualization book. We
particularly like The Truthful Art by Albert Cairo (New Riders). It doesn't teach the
mechanics of creating visualizations but instead focuses on what you need to think
about to create effective graphics.

Prerequisites

In this chapter, we'll focus once again on ggplot2. We'll also use a little dplyr for
data manipulation; scales to override the default breaks, labels, transformations and
palettes; and a few ggplot2 extension packages, including ggrepel by Kamil Slowikow-
ski and patchwork by Thomas Lin Pedersen. Don't forget that you'll need to install
those packages with install.packages() if you don't already have them.

169

https://oreil.ly/QIr_w
https://oreil.ly/IVSL4
https://oreil.ly/xWxVV
https://rdrr.io/r/utils/install.packages.html

library(tidyverse)
library(scales)
library(ggrepel)
library(patchwork)

Labels

The easiest place to start when turning an exploratory graphic into an expository
graphic is with good labels. You add labels with the labs() function:

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = class)) +
geom_smooth(se = FALSE) +
labs(

x = "Engine displacement (L)",
y = "Highway fuel economy (mpg)",
color = "Car type",

title = "Fuel efficiency generally decreases with engine size",
subtitle = "Two seaters (sports cars) are an exception because of their light weight",
caption = "Data from fueleconomy.gov"

Fuel efficiency generally decreases with engine size
Two seaters (sports cars) are an exception because of their light weight

[]
‘ES] °
g 40 Car type
E .
- H ® 2seater
[]
g S ® compact
c
3 30~ e midsize
o ® minivan
©
2 ® pickup
>
ggo- ® subcompact
.-E” ® suv
I

Engine displacement (L)
Data from fueleconomy.gov

The purpose of a plot title is to summarize the main finding. Avoid titles that just
describe what the plot is, e.g., “A scatterplot of engine displacement vs. fuel economy.”

If you need to add more text, there are two other useful labels: subtitle adds
additional detail in a smaller font beneath the title, and caption adds text at the
bottom right of the plot, often used to describe the source of the data. You can also

170 | Chapter 11: Communication

https://ggplot2.tidyverse.org/reference/labs.html

use labs() to replace the axis and legend titles. It’s usually a good idea to replace
short variable names with more detailed descriptions and to include the units.

It’s possible to use mathematical equations instead of text strings. Just switch "" out
for quote() and read about the available options in ?plotmath:
df <- tibble(

1:10,
cumsum(x”2)

y
)

ggplot(df, aes(x, y)) +
geom_point() +
labs(
X
y
)

quote(x[i]),
quote(sum(x[i] ~ 2, 1 == 1, n))

400 -
[]
300 -
L]
[-
X 200- .
S\
[]
100 - —
®
[]
0-e © *
25 50 75 100
X

Exercises

1. Create one plot on the fuel economy data with customized title, subtitle,
caption, x, y, and color labels.

2. Re-create the following plot using the fuel economy data. Note that both the
colors and shapes of points vary by type of drivetrain.

Labels | 171

https://ggplot2.tidyverse.org/reference/labs.html
https://rdrr.io/r/base/substitute.html
https://rdrr.io/r/grDevices/plotmath.html

40 -
A
A A
A
A
U] | A Type of
o AAaa drive train
= 30- A A A
A A A
ﬁ; : A A “s ¢ 4
= A A A4 A
= A A K A& e o A f
o N Ao E A
O EAA
T n A ° =
hAe
n
20 - | = =
* O @
" e 0o e
A EE O
. e
n
L]
L]
10 15 20 25 30 35
City MPG

3. Take an exploratory graphic that you've created in the last month, and add
informative titles to make it easier for others to understand.

Annotations

In addition to labeling major components of your plot, it’s often useful to label indi-
vidual observations or groups of observations. The first tool you have at your disposal
is geom_text(). geom_text() is similar to geom_point(), but it has an additional
aesthetic: label. This makes it possible to add textual labels to your plots.

There are two possible sources of labels. First, you might have a tibble that provides
labels. In the following plot we pull out the cars with the highest engine size in each
drive type and save their information as a new data frame called label_info:
label_info <- mpg |>
group_by(drv) |>

arrange(desc(displ)) |>
slice_head(n = 1) [>

mutate(
drive_type = case_when(
drv == "f" ~ "front-wheel drive",
drv == "r" ~ "rear-wheel drive",
drv == "4" ~ "4-wheel drive"
)
) I>

select(displ, hwy, drv, drive_type)

label_info

172 | Chapter 11: Communication

https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_point.html

#> # A tibble: 3 x 4

#> # Groups: drv [3]

#> displ hwy drv drive_type

#> <dbl> <int> <chr> <chr>

1 6.5 17 4 4-wheel drive

#> 2 5.3 25 f front-wheel drive
3 7 24 r rear-wheel drive

Then, we use this new data frame to directly label the three groups to replace the leg-
end with labels placed directly on the plot. Using the fontface and size arguments
we can customize the look of the text labels. Theyre larger than the rest of the text
on the plot and bolded. (theme(legend.position = "none") turns all the legends
off —we’ll talk about it more shortly.)

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
geom_point(alpha = 0.3) +
geom_smooth(se = FALSE) +
geom_text(
data = label_info,
aes(x = displ, y = hwy, label = drive_type),
fontface = "bold", size = 5, hjust = "right", vjust = "bottom"
)+
theme(legend.position = "none")
#> ‘geom_smooth()' using method = 'loess' and formula = 'y ~ x'

Note the use of hjust (horizontal justification) and vjust (vertical justification) to
control the alignment of the label.

Annotations | 173

However, the annotated plot we just made is hard to read because the labels overlap
with each other and with the points. We can use the geom_label_repel() function
from the ggrepel package to address both of these issues. This useful package will
automatically adjust labels so that they don't overlap:

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
geom_point(alpha = 0.3) +
geom_smooth(se = FALSE) +
geom_label_repel(
data = label_info,
aes(x = displ, y = hwy, label = drive_type),
fontface = "bold", size = 5, nudge_y = 2
) +
theme(legend.position = "none")
#> “geom_smooth()" using method = 'loess' and formula = 'y ~ x'

7 front-wheel drive
HE S U

| NEE
| |
—"|‘

You can also use the same idea to highlight certain points on a plot with
geom_text_repel() from the ggrepel package. Note another handy technique used
here: we added a second layer of large, hollow points to further highlight the labeled
points.

potential_outliers <- mpg |>
filter(hwy > 40 | (hwy > 20 & displ > 5))

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
geom_text_repel(data = potential_outliers, aes(label = model)) +
geom_point(data = potential_outliers, color = "red") +
geom_point(

174 | Chapter 11: Communication

https://rdrr.io/pkg/ggrepel/man/geom_text_repel.html
https://rdrr.io/pkg/ggrepel/man/geom_text_repel.html

data = potential_outliers,
color = "red", size = 3, shape = "circle open"

)

@new beetle

jetta
@
40- new beetle
°
[]
°
°
e o
. .
[] (X}
>~.30- ° : . :o)
= e . o e o
e e o oo e o0 o corvette corvette
® 06 0 00 o o0 e o o @®
. : .: :o . e o 1) ®
2 2 o o o and prix @orvette corvette
S : : corvette
20 - (] '} (13
L L] L o9 []
[] e & o e o6
(1) e o e o 0o 0 o o 3
[1] e e
L] [X] [X 1] o @
[] []
[}
2 3 : 5 6 7
displ

Remember, in addition to geom_text() and geom_label(), you have many other

geoms in ggplot2 available to help annotate your plot. A couple ideas:

e Use geom_hline() and geom_vline() to add reference lines. We often make
them thick (linewidth = 2) and white (color = white) and draw them under-
neath the primary data layer. That makes them easy to see, without drawing

attention away from the data.

o Use geom_rect() to draw a rectangle around points of interest. The boundaries
of the rectangle are defined by aesthetics xmin, xmax, ymin, and ymax. Alterna-
tively, look into the ggforce package, specifically geom_mark_hull(), which allows

you to annotate subsets of points with hulls.

o Use geom_segment() with the arrow argument to draw attention to a point with
an arrow. Use aesthetics x and y to define the starting location, and use xend and

yend to define the end location.

Another handy function for adding annotations to plots is annotate(). As a rule
of thumb, geoms are generally useful for highlighting a subset of the data, while

annotate() is useful for adding one or a few annotation elements to a plot.

Annotations |

https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_abline.html
https://ggplot2.tidyverse.org/reference/geom_abline.html
https://ggplot2.tidyverse.org/reference/geom_tile.html
https://oreil.ly/DZtL1
https://ggforce.data-imaginist.com/reference/geom_mark_hull.html
https://ggplot2.tidyverse.org/reference/geom_segment.html
https://ggplot2.tidyverse.org/reference/annotate.html
https://ggplot2.tidyverse.org/reference/annotate.html

To demonstrate using annotate(), let’s create some text to add to our plot. The text
is a bit long, so we'll use stringr::str_wrap() to automatically add line breaks to it
given the number of characters you want per line:

trend_text <- "Larger engine sizes tend to\nhave lower fuel economy." |>
str_wrap(width = 30)
trend_text

#> [1] "Larger engine sizes tend to\nhave lower fuel economy."

Then, we add two layers of annotation: one with a label geom and the other with a
segment geom. The x and y aesthetics in both define where the annotation should
start, and the xend and yend aesthetics in the segment annotation define the starting
location of the end location of the segment. Note also that the segment is styled as an
arrow.
ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
annotate(
geom = "label", x = 3.5, y = 38,

label = trend_text,
hjust = "left", color = "red"

)+
annotate(
geom = "segment",
x =3,y =235, xend = 5, yend = 25, color = "red",
arrow = arrow(type = "closed")
)
o
(]
40 - ; .
Larger engine sizes tend to
. have lower fuel economy.
°
.
[
o [
30 . oo
- o 0
> . e O
2 . .
- e o oo
e o o o0 o .
. . .
(X .
. °
20 -
()
e e o
e o
o
°
1 1 1 1 1 1
2 3 5 6 7

176 | Chapter 11: Communication

https://ggplot2.tidyverse.org/reference/annotate.html
https://stringr.tidyverse.org/reference/str_wrap.html

Annotation is a powerful tool for communicating main takeaways and interesting
features of your visualizations. The only limit is your imagination (and your patience
with positioning annotations to be aesthetically pleasing)!

Exercises

1. Use geom_text() with infinite positions to place text at the four corners of the
plot.

2. Use annotate() to add a point geom in the middle of your last plot without
having to create a tibble. Customize the shape, size, or color of the point.

3. How do labels with geom_text() interact with faceting? How can you add a label
to a single facet? How can you put a different label in each facet? (Hint: Think
about the dataset that is being passed to geom_text().)

4. What arguments to geom_label() control the appearance of the background
box?

5. What are the four arguments to arrow()? How do they work? Create a series of
plots that demonstrate the most important options.

Scales

The third way you can make your plot better for communication is to adjust the
scales. Scales control how the aesthetic mappings manifest visually.

Default Scales
Normally, ggplot2 automatically adds scales for you. For example, when you type:

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = class))

ggplot2 automatically adds default scales behind the scenes:

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +

scale_x_continuous() +

scale_y_continuous() +

scale_color_discrete()
Note the naming scheme for scales: scale_ followed by the name of the aesthetic,
then _, and then the name of the scale. The default scales are named according to the
type of variable they align with: continuous, discrete, date-time, or date. scale_x_con
tinuous() puts the numeric values from displ on a continuous number line on the
x-axis, scale_color_discrete() chooses colors for each class of car, etc. There are
lots of nondefault scales, which you’ll learn about next.

Scales | 177

https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/annotate.html
https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_text.html
https://ggplot2.tidyverse.org/reference/geom_text.html
https://rdrr.io/r/grid/arrow.html
https://ggplot2.tidyverse.org/reference/scale_continuous.html
https://ggplot2.tidyverse.org/reference/scale_continuous.html
https://ggplot2.tidyverse.org/reference/scale_colour_discrete.html

The default scales have been carefully chosen to do a good job for a wide range of
inputs. Nevertheless, you might want to override the defaults for two reasons:

» You might want to tweak some of the parameters of the default scale. This allows
you to do things like change the breaks on the axes, or the key labels on the
legend.

» You might want to replace the scale altogether and use a completely different
algorithm. Often you can do better than the default because you know more
about the data.

Axis Ticks and Legend Keys

Collectively axes and legends are called guides. Axes are used for x and y aesthetics;
legends are used for everything else.

There are two primary arguments that affect the appearance of the ticks on the axes
and the keys on the legend: breaks and labels. The breaks argument controls the
position of the ticks or the values associated with the keys. The labels argument
controls the text label associated with each tick/key. The most common use of breaks
is to override the default choice:

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +

geom_point() +
scale_y_continuous(breaks = seq(15, 40, by = 5))

°
°
40 -
°
°
35- [
°
)
. . drv
° o0
>~30-c::-:o ° e 4
= ° ° o e o
c ® o oo oo e o e
e ® 0 00 o 00 oo o L) °
25 -] { == =] | = (] o
e e0 0 o . L
e o o0 0 °)
e e o L] L]
° ™
20- . (] o0
e o &= oo °
e e oo e eo
oo o0 o e e o0 o o .
oo)
15 - ° se ses. o o
® ®
[}
2 3 4 5 6 7

displ

178 | Chapter 11: Communication

You can use labels in the same way (a character vector the same length as breaks),
but you can also set it to NULL to suppress the labels altogether. This can be useful
for maps or for publishing plots where you can't share the absolute numbers. You can
also use breaks and labels to control the appearance of legends. For discrete scales
for categorical variables, labels can be a named list of the existing levels names and
the desired labels for them.
ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +
geom_point() +

scale_x_continuous(labels = NULL) +
scale_y_continuous(labels = NULL) +

scale_color_discrete(labels = c("4" = "4-wheel", "f" = "front", "r" = "rear"))
]
°
°
°
e
°
o0
° °
° [1) drv
- (] (]
> e e o o o0 [® 4-wheel
= ° ° oo o
c e o o0 oo e o °
oo 0o 00 o 00 oo o ° ° front
. e o as e o °)
e0 o0 o o ° ° ® rear
o o e e o ° ®
e o o] °
° ™
- . (] (1
e o o [1) ®
L] L N BN o o9
o0 e o e @ o0 o o e
(1) o e
(] oo eees o o
° °
°
displ

The labels argument coupled with labeling functions from the scales package is also
useful for formatting numbers as currency, percent, etc. The plot on the left shows
default labeling with label_dollar(), which adds a dollar sign as well as a thousand
separator comma. The plot on the right adds further customization by dividing dollar
values by 1,000 and adding a suffix “K” (for “thousands”) as well as adding custom
breaks. Note that breaks is in the original scale of the data.

Left

ggplot(diamonds, aes(x = price, y = cut)) +

geom_boxplot(alpha = 0.05) +
scale_x_continuous(labels = label_dollar())

Right
ggplot(diamonds, aes(x = price, y = cut)) +

Scales | 179

https://scales.r-lib.org/reference/label_dollar.html

geom_boxplot(alpha = 0.05) +

scale_x_continuous(
labels = label_dollar(scale = 1/1000, suffix = "K"),
breaks = seq(1000, 19000, by = 6000)

)

Ideal - Ideal -

Premium - Premium -

-
3 Very Good -

-
3 Very Good -

HHHE

alag

Good - Good -
Fair = —D]—-:-:n:::z: e Fair - —[D—‘:ama: ===
$0 $5,000 $10,000 $15,000 $1K §7TK $13K $19K
price price

Another handy label function is label_percent():

ggplot(diamonds, aes(x = cut, fill = clarity)) +

geom_bar(position = "fill") +
scale_y_continuous(name = "Percentage", labels = label_percent())
100% =
clarity
75% - B
o B s
= B s
=
§ 50%- B vs2
[&]
E B s
B wvs2
259 - VVS1
IF
0% -
Fair Good Very Good Premium Ideal
cut

Another use of breaks is when you have relatively few data points and want to
highlight exactly where the observations occur. For example, take this plot that shows
when each US president started and ended their term:

180 | Chapter 11: Communication

https://scales.r-lib.org/reference/label_percent.html

presidential |>
mutate(id = 33 + row_number()) |>
ggplot(aes(x = start, y = id)) +
geom_point() +
geom_segment(aes(xend = end, yend = id)) +

scale_x_date(name = NULL, breaks = presidential$start, date_labels = "'%y")
45 - ~—
> ——
>~—
42 - ~—————
*—
L]
o
39 - ~—
.—
>
36 - ~—
.—

>

1 1 1 1 1 1 1) 1 1 1 1

'563 '61'63 '69 7477 81 '89 '93 '01 '09 17

Note that for the breaks argument we pulled out the start variable as a vector with
presidential$start because we can’t do an aesthetic mapping for this argument.
Also note that the specification of breaks and labels for date and date-time scales is a
little different:

o date_labels takes a format specification, in the same form as parse_date
time().

o date_breaks (not shown here) takes a string like “2 days” or “1 month.”

Legend Layout

You will most often use breaks and labels to tweak the axes. While they both also
work for legends, there are a few other techniques you are more likely to use.

To control the overall position of the legend, you need to use a theme() setting. We'll
come back to themes at the end of the chapter, but in brief, they control the nondata
parts of the plot. The theme setting legend.position controls where the legend is
drawn:

Scales | 181

https://readr.tidyverse.org/reference/parse_datetime.html
https://readr.tidyverse.org/reference/parse_datetime.html
https://ggplot2.tidyverse.org/reference/theme.html

base <- ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = class))

base + theme(legend.position = "right") # the default
base + theme(legend.position = "left")
base +
theme(legend.position = "top") +
guides(col = guide_legend(nrow = 3))
base +
theme(legend.position = "bottom") +
guides(col = guide_legend(nrow = 3))

| class class |
40- 40 -
® 2seater ® 2seater
® compact ® compact ‘i
> 30~ ® midsize ® midsize >30-
. po it
< ® minivan ® minivan < 3 LI}
L] () L]
. e i‘. ° ® pickup ® pickup cee i" ! O
201 B 3}: . b . b 201 T}
! 3 L subcompact subcompact 5 ' Te o
° oo
® suv ® suv O
.
2 3 4 5 6 7 2 3 4 5 6 7
displ displ
© 2seater ® minivan ® suv 40 -
class ® compact e pickup - . '
. s 3008 ' ; ° '.
® midsize ® subcompact Z . ” H " - 1 1
20~ ° * se k T
L)
M) v))
40~ i 2 3 4 5 6 7
> [displ
2 30 el
z M i f - ; [S . e 2 0 1
201 C i 4 (K4 h . a T, ° ® 2seater ® minivan ® suv
.)
5 3 4 5 5 7 class ® compact @ pickup
displ ® midsizz ® subcompact

If your plot is short and wide, place the legend at the top or bottom, and if it’s tall
and narrow, place the legend at the left or right. You can also use legend.position =
"none" to suppress the display of the legend altogether.

To control the display of individual legends, use guides() along with guide_leg
end() or guide_colorbar(). The following example shows two important settings:
controlling the number of rows the legend uses with nrow, and overriding one of the
aesthetics to make the points bigger. This is particularly useful if you have used a low
alpha to display many points on a plot.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = class)) +
geom_smooth(se = FALSE) +

theme(legend.position = "bottom") +
guides(color = guide_legend(nrow = 2, override.aes = list(size = 4)))
#> “geom_smooth()" using method = 'loess' and formula = 'y ~ x'

182 | Chapter 11: Communication

https://ggplot2.tidyverse.org/reference/guides.html
https://ggplot2.tidyverse.org/reference/guide_legend.html
https://ggplot2.tidyverse.org/reference/guide_legend.html
https://ggplot2.tidyverse.org/reference/guide_colourbar.html

® 2seater @ midsize @ pickup ® suv
® compact @ minivan @ subcompact

class

Note that the name of the argument in guides() matches the name of the aesthetic,
just like in labs().

Replacing a Scale

Instead of just tweaking the details a little, you can instead replace the scale alto-
gether. There are two types of scales youre most likely to want to switch out:
continuous position scales and color scales. Fortunately, the same principles apply
to all the other aesthetics, so once you've mastered position and color, you’ll be able
to quickly pick up other scale replacements.

It’s useful to plot transformations of your variable. For example, it’s easier to see the
precise relationship between carat and price if we log transform them:

Left
ggplot(diamonds, aes(x = carat, y = price)) +
geom_bin2d()

Right
ggplot(diamonds, aes(x = logl@(carat), y = logl0(price))) +
geom_bin2d()

Scales | 183

https://ggplot2.tidyverse.org/reference/guides.html
https://ggplot2.tidyverse.org/reference/labs.html

20000 -

Ro N A count count
15000 - “n =407
r 6000 .Q
Q i 8 35- 1000
2 10000~ 835
a 4000 ©
. 1 S 3.0- 500
5000 2000 8
O -I 1 I 1 1 1 25 L 1 1 1 1
01 2 3 4 5 04 00 04 08
carat log10(carat)

However, the disadvantage of this transformation is that the axes are now labeled
with the transformed values, making it hard to interpret the plot. Instead of doing the
transformation in the aesthetic mapping, we can instead do it with the scale. This is
visually identical, except the axes are labeled on the original data scale.
ggplot(diamonds, aes(x = carat, y = price)) +
geom_bin2d() +

scale_x_log10() +
scale_y_log10()

10000 -
count
8 3000 - 1000
=
(o}
500
1000 -
300 -
0.3 1.0 3.0
carat

184 | Chapter 11: Communication

Another scale that is frequently customized is color. The default categorical scale
picks colors that are evenly spaced around the color wheel. Useful alternatives are
the ColorBrewer scales, which have been hand tuned to work better for people with
common types of color blindness. The following two plots look similar, but there is
enough difference in the shades of red and green that the dots on the right can be
distinguished even by people with red-green color blindness."

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = drv))

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = drv)) +

scale_color_brewer(palette = "Setl1")
® ®
°)

40~

Jd " d

> 30 - ® 4 > e 4

S 30 s 30

= i e f £ «* 8 . e f

® : DI

r [

[

sp- L Sgee BEE [0S 20- e
ogl..® ° o r
[) '*. [] *. []
. . .. [] “.
1 1 1 é é

40 -

2 3 4 5 7 2 3 4 5
displ displ

Don't forget simpler techniques for improving accessibility. If there are just a few
colors, you can add a redundant shape mapping. This will also help ensure your plot
is interpretable in black and white.

ggplot(mpg, aes(x = displ, y = hwy)) +

geom_point(aes(color = drv, shape = drv)) +
scale_color_brewer(palette = "Setl")

1 You can use a tool like SimDaltonism to simulate color blindness to test these images.

Scales | 185

https://oreil.ly/i11yd

The ColorBrewer scales are documented online and made available in R via the
RColorBrewer package, by Erich Neuwirth. Figure 11-1 shows the complete list of all
palettes. The sequential (top) and diverging (bottom) palettes are particularly useful if
your categorical values are ordered or have a “middle” This often arises if you've used
cut() to make a continuous variable into a categorical variable.

186 | Chapter 11: Communication

https://oreil.ly/LNHAy
https://rdrr.io/r/base/cut.html

o . EE.

viorer .
viGngu - .
vien .
Reds .
RdPu - .
Purples - .
PuRd W
PuBUGn M EEE.
PuBy .
OrRg - M.
Oranges - .
Greys - Wi
Greens - NN
GBu .
BuPy I NNE.
Bucn - .

Blues - W

sor T
soc [N
=T N

Pastel2

Pastel1

carca [OO EOOEE
oarc R O
oo [

spectr! [N |
ravien [IEINN .
ravieu [I | |
recy [N |
roc. [N | |
puor [N .
pron [N |
pive [.
| |

oo N

Figure 11-1. All ColorBrewer scales.

Scales

187

When you have a predefined mapping between values and colors, use
scale_color_manual(). For example, if we map presidential party to color, we want
to use the standard mapping of red for Republicans and blue for Democrats. One
approach for assigning these colors is using hex color codes:

presidential |>
mutate(id = 33 + row_number()) |>
ggplot(aes(x = start, y = id, color = party)) +
geom_point() +
geom_segment(aes(xend = end, yend = id)) +
scale_color_manual(values = c(Republican = "#E81B23", Democratic = "#OOAEF3"))

45 = *~—
-—
>
42 - -
[—
party
-—
o —-e— Democratic
39- *~— .
—e— Republican
*—
*———
36 - —
-—
> —
1960 1980 2000 2020
start

For continuous color, you can use the built-in scale_color_gradient() or
scale_fill_gradient(). If you have a diverging scale, you can use scale_color_gra
dient2(). That allows you to give, for example, positive and negative values different
colors. That’s sometimes also useful if you want to distinguish points above or below
the mean.

Another option is to use the viridis color scales. The designers, Nathaniel Smith and
Stéfan van der Walt, carefully tailored continuous color schemes that are perceptible
to people with various forms of color blindness as well as perceptually uniform in
both color and black and white. These scales are available as continuous (c), discrete
(d), and binned (b) palettes in ggplot2.

188 | Chapter 11: Communication

https://ggplot2.tidyverse.org/reference/scale_manual.html
https://ggplot2.tidyverse.org/reference/scale_gradient.html
https://ggplot2.tidyverse.org/reference/scale_gradient.html
https://ggplot2.tidyverse.org/reference/scale_gradient.html
https://ggplot2.tidyverse.org/reference/scale_gradient.html

df <- tibble(
X = rnorm(10000),
y = rnorm(10000)
)

ggplot(df, aes(x, y)) +
geom_hex() +
coord_fixed() +
labs(title = "Default, continuous", x

NULL, y = NULL)

aggplot(df, aes(x, y)) +
geom_hex() +
coord_fixed() +
scale_fill_viridis_c() +
labs(title = "viridis, continuous", x

NULL, y = NULL)

aggplot(df, aes(x, y)) +
geom_hex() +
coord_fixed() +
scale_fill_viridis_b() +
labs(title = "viridis, binned", x = NULL, y = NULL)

Default, continuous Viridis, continuous Viridis, binned

count

Note that all color scales come in two varieties: scale_color_*() and
scale_fill_*() for the color and fill aesthetics, respectively (the color scales are
available in both UK and US spellings).

Zooming

There are three ways to control the plot limits:

o Adjusting what data are plotted
o Setting the limits in each scale

o Setting x1im and ylim in coord_cartesian()

We'll demonstrate these options in a series of plots. The plot on the left shows the
relationship between engine size and fuel efficiency, colored by type of drivetrain.
The plot on the right shows the same variables but subsets the data plotted. Subset-
ting the data has affected the x and y scales as well as the smooth curve.

Left
ggplot(mpg, aes(x = displ, y = hwy)) +

Scales | 189

https://ggplot2.tidyverse.org/reference/coord_cartesian.html

geom_point(aes(color = drv)) +
geom_smooth()

Right
mpg |>
filter(displ >= 5 & displ <= 6 & hwy >= 10 & hwy <= 25) |>
ggplot(aes(x = displ, y = hwy)) +
geom_point(aes(color = drv)) +
geom_smooth()

drv drv
20
e 4 e 4
o f E o f
e r e r

5.00 5.25 5.50

displ

5.75 6.00

Lets compare these to the two following plots where the plot on the left sets
the limits on individual scales and the plot on the right sets them in coord_car
tesian(). We can see that reducing the limits is equivalent to subsetting the
data. Therefore, to zoom in on a region of the plot, it's generally best to use
coord_cartesian().

Left

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = drv)) +
geom_smooth() +
scale_x_continuous(limits = c(5, 6)) +

scale_y_continuous(limits = c(10, 25))

Right

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = drv)) +
geom_smooth() +
coord_cartesian(xlim = c(5, 6), ylim = c(10, 25))

25 | [| I I N N N 25 | | I I N N

[T 1 i inRRRRRREi
20 .. I drv 20 drv
B g B
1 "IN EREE

INNEEREEE]]

I S S S S S S N S S S S S

5.25 d5|558| 5.75 6.00 5.00 5.25 d5|558| 5.75 6.00

190 | Chapter 11: Communication

https://ggplot2.tidyverse.org/reference/coord_cartesian.html
https://ggplot2.tidyverse.org/reference/coord_cartesian.html
https://ggplot2.tidyverse.org/reference/coord_cartesian.html

On the other hand, setting the limits on individual scales is generally more useful
if you want to expand the limits, e.g., to match scales across different plots. For
example, if we extract two classes of cars and plot them separately, it’s difficult
to compare the plots because all three scales (the x-axis, the y-axis, and the color
aesthetic) have different ranges.

suv <- mpg |> filter(class == "suv"
compact <- mpg |> filter(class == "compact")
Left

ggplot(suv, aes(x = displ, y = hwy, color = drv)) +
geom_point()

Right
ggplot(compact, aes(x = displ, y = hwy, color = drv)) +
geom_point()

u 45y
L]
[]
24--8 40 -
L]
o °
drv drv
> o0 - 358
20 ° L) >
E e o o [] L] O 4 E L] ° 4
LN] o o0 ° r ° O f
o L) e o o o o o 30-. e 4
16 - s (3 o °
L] (_J [] L N] : ° Y ° °
L] [] [] [] [] []
25,8 { } :)
12 - . °
3 4 5 6 2.0 2.5 3.0
displ displ

One way to overcome this problem is to share scales across multiple plots, training
the scales with the limits of the full data.

x_scale <- scale_x_continuous(limits = range(mpgSdispl))
y_scale <- scale_y_continuous(limits = range(mpgShwy))
col_scale <- scale_color_discrete(limits = unique(mpgsdrv))

Left
ggplot(suv, aes(x = displ, y = hwy, color = drv)) +
geom_point() +
x_scale +
y_scale +
col_scale

Right
ggplot(compact, aes(x = displ, y = hwy, color = drv)) +
geom_point() +
x_scale +
y_scale +
col_scale

Scales | 191

40 - 40 -

L]
drv ° drv
[]
>30- o f >30- gi.o o f
3 3 o® 20
< ! e 4 <£ [.50. e 4
° e r e r
20~) eeld o 20~
® 0w $To o
L] - : ...
[]
2 3 4 5 6 7 2 3 4 5 6 7
displ displ

In this particular case, you could have simply used faceting, but this technique is
useful more generally, if, for instance, you want to spread plots over multiple pages of
a report.

Exercises

1. Why doesn’t the following code override the default scale?
df <- tibble(
X = rnorm(10000),
y = rnorm(10000)
)

ggplot(df, aes(x, y)) +
geom_hex() +
scale_color_gradient(low = "white", high = "red") +
coord_fixed()
2. What is the first argument to every scale? How does it compare to labs()?
3. Change the display of the presidential terms by:
a. Combining the two variants that customize colors and x-axis breaks
b. Improving the display of the y-axis
c. Labeling each term with the name of the president
d. Adding informative plot labels
e. Placing breaks every four years (this is trickier than it seems!)

4. First, create the following plot. Then, modify the code using override.aes to

make the legend easier to see.

ggplot(diamonds, aes(x = carat, y = price)) +
geom_point(aes(color = cut), alpha = 1/20)

192 | Chapter 11: Communication

https://ggplot2.tidyverse.org/reference/labs.html

Themes

Finally, you can customize the nondata elements of your plot with a theme:

ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point(aes(color = class)) +
geom_smooth(se = FALSE) +

theme_bw()
[]
]
40 1
°
: class
[]
° ® 2seater
.
® compact
5. 307 o midsize
2 -
= ® minivan
® pickup
® subcompact
204

® suv

displ

ggplot2 includes the eight themes shown in Figure 11-2, with theme_gray() as
the default> Many more are included in add-on packages like ggthemes, by Jeffrey
Arnold. You can also create your own themes, if you are trying to match a particular
corporate or journal style.

2 Many people wonder why the default theme has a gray background. This was a deliberate choice because
it puts the data forward while still making the grid lines visible. The white grid lines are visible (which is
important because they significantly aid position judgments), but they have little visual impact, and we can
easily tune them out. The gray background gives the plot a similar typographic color to the text, ensuring that
the graphics fit in with the flow of a document without jumping out with a bright white background. Finally,
the gray background creates a continuous field of color, which ensures that the plot is perceived as a single
visual entity.

Themes | 193

https://ggplot2.tidyverse.org/reference/ggtheme.html
https://oreil.ly/F1nga

Theme functions change the appearance of your plot.

theme_bw() theme_Llight()
White background Light axes and grid
with grid lines . lines

theme_classic()
Classic theme,
axes but no grid
lines

theme_linedraw()
Only black lines

theme_dark() theme_minimal()

Dark background Minimal theme, no
for contrast background
1504 theme_gray() theme_void()
Grey background Empty theme, only
100- (default theme) geoms are visible

N l
0- — —
o
c d e p
fl e — —

Figure 11-2. The eight themes built in to ggplot2.

It’s also possible to control individual components of each theme, such as the size
and color of the font used for the y-axis. We've already seen that legend.position
controls where the legend is drawn. There are many other aspects of the legend that
can be customized with theme(). For example, in the following plot we change the
direction of the legend as well as put a black border around it. Note that customiza-
tion of the legend box and plot title elements of the theme are done with element_*()
functions. These functions specify the styling of nondata components; e.g., the title
text is bolded in the face argument of element_text(), and the legend border
color is defined in the color argument of element_rect(). The theme elements
that control the position of the title and the caption are plot.title.position and
plot.caption.position, respectively. In the following plot these are set to "plot"

194 | Chapter 11: Communication

https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/element.html
https://ggplot2.tidyverse.org/reference/element.html

to indicate these elements are aligned to the entire plot area, instead of the plot
panel (the default). A few other helpful theme() components are used to change the
placement for formatting the title and caption text.

ggplot(mpg, aes(x = displ, y = hwy, color = drv)) +

geom_point() +

labs(
title = "Larger engine sizes tend to have lower fuel economy",
caption = "Source: https://fueleconomy.gov."

)+

theme(
legend.position = c(0.6, 0.7),
legend.direction = "horizontal",
legend.box.background = element_rect(color = "black"),
plot.title = element_text(face = "bold"),
plot.title.position = "plot",
plot.caption.position = "plot",
plot.caption = element_text(hjust = 0)

)

Larger engine sizes tend to have lower fuel economy

Source: https://fueleconomy.gov.

For an overview of all theme() components, see the help with ?theme. The ggplot2
book is also a great place to go for the full details on theming.

Themes | 195

https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://oreil.ly/T4Jxn
https://oreil.ly/T4Jxn

Exercises

1. Pick a theme offered by the ggthemes package and apply it to the last plot you
made.

2. Make the axis labels of your plot blue and bold.

Layout

So far we talked about how to create and modify a single plot. What if you have
multiple plots you want to lay out in a certain way? The patchwork package allows
you to combine separate plots into the same graphic. We loaded this package earlier
in the chapter.

To place two plots next to each other, you can simply add them to each other. Note
that you first need to create the plots and save them as objects (in the following
example theyre called p1 and p2). Then, you place them next to each other with +.

pl <- ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
labs(title = "Plot 1")

p2 <- ggplot(mpg, aes(x = drv, y = hwy)) +
geom_boxplot() +
labs(title = "Plot 2")

pl + p2
Plot 1 Plot 2
L] []
40- - *° 40 - +

>30- >30-
2 "’ss ‘“ NEE 2 | |
g !80
20- 28 1 20- *
‘.’ 6‘ e @ | [] I
2 3 4 5 & 7 4 f r
displ drv

It's important to note that in the previous code chunk we did not use a new function
from the patchwork package. Instead, the package added a new functionality to the +
operator.

196 | Chapter11: Communication

You can also create complex plot layouts with patchwork. In the following, | places
the p1 and p3 next to each other, and / moves p2 to the next line:

p3 <- ggplot(mpg, aes(x = cty, y = hwy)) +
geom_point() +
labs(title = "Plot 3")

(p1 | p3) / p2

Plot 1 Plot 3
([] e e
40- ® 40 - °
ee, *
L]
.' g8
230 o8 2 30- sitee
£, li o} 2 i
gis 'o ° 3]
B 20 - .’.'8 ol e . 20- '!!
-. .‘..'i 06‘.: ° ".'
1 1 1 . 1 I. 1 .I 1 1 1 1 1
2 3 4 5 6 7 10 15 20 25 30 35
displ cty
Plot 2
[]
40~ ;
> 30- |
2 | i | | !
20 - | | ®
v T
4 f r
drv

Additionally, patchwork allows you to collect legends from multiple plots into one
common legend, customize the placement of the legend as well as dimensions of the
plots, and add a common title, subtitle, caption, etc., to your plots. Here we created
five plots. We turned off the legends on the box plots and the scatterplot and collected
the legends for the density plots at the top of the plot with & theme(legend.position
= "top"). Note the use of the & operator here instead of the usual +. This is because
were modifying the theme for the patchwork plot as opposed to the individual
ggplots. The legend is placed on top, inside the guide_area(). Finally, we have also
customized the heights of the various components of our patchwork—the guide has
a height of 1, the box plots 3, the density plots 2, and the faceted scatterplot 4.
Patchwork divides up the area you have allotted for your plot using this scale and
places the components accordingly.

Layout | 197

https://patchwork.data-imaginist.com/reference/guide_area.html

pl <- ggplot(mpg, aes(x = drv, y = cty, color = drv)) +
geom_boxplot(show.legend = FALSE) +
labs(title = "Plot 1")

p2 <- ggplot(mpg, aes(x = drv, y = hwy, color = drv)) +
geom_boxplot(show.legend = FALSE) +
labs(title = "Plot 2")

p3 <- ggplot(mpg, aes(x = cty, color = drv, fill = drv)) +
geom_density(alpha = 0.5) +
labs(title = "Plot 3")

p4 <- ggplot(mpg, aes(x = hwy, color = drv, fill = drv)) +
geom_density(alpha = 0.5) +
labs(title = "Plot 4")

p5 <- ggplot(mpg, aes(x = cty, y = hwy, color = drv)) +
geom_point(show.legend = FALSE) +
facet_wrap(~drv) +
labs(title = "Plot 5")

(guide_area() / (p1 + p2) / (p3 + p4) / p5) +
plot_annotation(

title = "City and highway mileage for cars with different drivetrains",
caption = "Source: https://fueleconomy.gov."
)+
plot_layout(
guides = "collect",
heights = c(1, 3, 2, 4)
) &

theme(legend.position = "top")

198 | Chapter 11: Communication

City and highway mileage for cars with different drivetrains

drv.4.f.r

Plot 2

20 25 30

Source: https://fueleconomy.gov.

If youd like to learn more about combining and laying out multiple plots with
patchwork, we recommend looking through the guides on the package website.

Layout | 199

https://oreil.ly/xWxVV

Exercises

1. What happens if you omit the parentheses in the following plot layout. Can you
explain why this happens?

pl <- ggplot(mpg, aes(x = displ, y = hwy)) +
geom_point() +
labs(title = "Plot 1")

p2 <- ggplot(mpg, aes(x = drv, y = hwy)) +
geom_boxplot() +
labs(title = "Plot 2")

p3 <- ggplot(mpg, aes(x = cty, y = hwy)) +
geom_point() +
labs(title = "Plot 3")

(p1 | p2) / p3

Using the three plots from the previous exercise, re-create the following patchwork:

Fig. A:
Plot 1
L]
40 - .
3 ! s
>30-
S H - B
£ s L L B « * 3
*3 3% o o ' [IS ’ . .
20-
HRIRCIE PR TP PP
o .
2 3 5 6 7
displ
Fig Fig. C:
Plot 2 Plot 3
[] LN}
40~ ® 40- o
e, *
i 1T
> 30- 230~ 88
]] l“.
£ | £ l'
20 - ® 20 - ﬂl o
[] T '
[
4 ' B 10 15 20 25 30 35
drv cty

200 | Chapter 11: Communication

Summary

In this chapter you learned about adding plot labels such as title, subtitle, and caption
as well as modifying default axis labels, using annotation to add informational text
to your plot or to highlight specific data points, customizing the axis scales, and
changing the theme of your plot. You also learned about combining multiple plots in
a single graph using both simple and complex plot layouts.

While you've so far learned about how to make many different types of plots and
how to customize them using a variety of techniques, we've barely scratched the
surface of what you can create with ggplot2. If you want to get a comprehensive
understanding of ggplot2, we recommend reading the book ggplot2: Elegant Graphics
for Data Analysis (Springer). Other useful resources are the R Graphics Cookbook by
Winston Chang (O’Reilly) and Fundamentals of Data Visualization by Claus Wilke
(O’Reilly).

Summary | 201

https://oreil.ly/T4Jxn
https://oreil.ly/T4Jxn
https://oreil.ly/CK_sd
https://oreil.ly/uJRYK

PARTIII
Transform

The second part of the book was a deep dive into data visualization. In this part of the
book, you'll learn about the most important types of variables that you'll encounter
inside a data frame and learn the tools you can use to work with them.

Visualize

Understand

L
Program

Figure III-1. The options for data transformation depend heavily on the type of data
involved, the subject of this part of the book.

You can read these chapters as you need them; they’re designed to be largely stand-
alone so that they can be read out of order.

o Chapter 12 teaches you about logical vectors. These are the simplest types of
vectors, but they are extremely powerful. You'll learn how to create them with
numeric comparisons, how to combine them with Boolean algebra, how to use
them in summaries, and how to use them for condition transformations.

Chapter 13 dives into tools for vectors of numbers, the powerhouse of data sci-
ence. You'll learn more about counting and a bunch of important transformation
and summary functions.

Chapter 14 gives you the tools to work with strings: you'll slice them, you’ll dice
them, and you’ll stick them back together again. This chapter mostly focuses on
the stringr package, but you’ll also learn some more tidyr functions devoted to
extracting data from character strings.

Chapter 15 introduces you to regular expressions, a powerful tool for manipulat-
ing strings. This chapter will take you from thinking that a cat walked over your
keyboard to reading and writing complex string patterns.

Chapter 16 introduces factors: the data type that R uses to store categorical data.
You use a factor when a variable has a fixed set of possible values, or when you
want to use a nonalphabetical ordering of a string.

Chapter 17 gives you the key tools for working with dates and date-times.
Unfortunately, the more you learn about date-times, the more complicated they
seem to get, but with the help of the lubridate package, you'll learn to how to
overcome the most common challenges.

Chapter 18 discusses missing values in depth. We've discussed them a couple of
times in isolation, but now it’s time to discuss them holistically, helping you come
to grips with the difference between implicit and explicit missing values and how
and why you might convert between them.

Chapter 19 finishes up this part of the book by giving you the tools to join two
(or more) data frames together. Learning about joins will force you to grapple
with the idea of keys and think about how you identify each row in a dataset.

CHAPTER 12
Logical Vectors

Introduction

In this chapter, you'll learn tools for working with logical vectors. Logical vectors are
the simplest type of vector because each element can be only one of three possible
values: TRUE, FALSE, and NA. It’s relatively rare to find logical vectors in your raw data,
but you'll create and manipulate them in the course of almost every analysis.

We'll begin by discussing the most common way of creating logical vectors: with
numeric comparisons. Then you’ll learn about how you can use Boolean algebra
to combine different logical vectors, as well as some useful summaries. We'll finish
off with if_else() and case_when(), two useful functions for making conditional
changes powered by logical vectors.

Prerequisites

Most of the functions you’ll learn about in this chapter are provided by base R, so
we don’t need the tidyverse, but we'll still load it so we can use mutate(), filter(),
and friends to work with data frames. We'll also continue to draw examples from the
nycflights13::flights dataset.

library(tidyverse)

library(nycflights13)
However, as we start to cover more tools, there won’t always be a perfect real example.
So we'll start making up some dummy data with c():

x <= (1, 2, 3, 5, 7, 11, 13)

X * 2
#> [1] 2 4 610 14 22 26

205

https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/case_when.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/filter.html
https://rdrr.io/pkg/nycflights13/man/flights.html
https://rdrr.io/r/base/c.html

This makes it easier to explain individual functions at the cost of making it harder to
see how it might apply to your data problems. Just remember that any manipulation
we do to a free-floating vector, you can do to a variable inside a data frame with
mutate() and friends.

df <- tibble(x)

df |>

mutate(y = x * 2)
#> # A tibble: 7 x 2

#> X y

#> <dbl> <dbl>

#1 1 2

#> 2 2 4

#> 3 3 6

#4 5 10

#5 7 14

#6 11 22

#> # .. with 1 more row
Comparisons
A common way to create a logical vector is via a numeric comparison with <, <=,
>, >=, !=, and ==. So far, we've mostly created logical variables transiently within

filter ()—they are computed, used, and then thrown away. For example, the follow-
ing filter finds all daytime departures that arrive roughly on time:

flights |>
filter(dep_time > 600 & dep_time < 2000 & abs(arr_delay) < 20)
#> # A tibble: 172,286 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 601 600 1 844 850
#> 2 2013 1 1 602 610 -8 812 820
#> 3 2013 1 1 602 605 -3 821 805
#> 4 2013 1 1 606 610 -4 858 910
#> 5 2013 1 1 606 610 -4 837 845
#> 6 2013 1 1 607 607 0 858 915
#> # .. with 172,280 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

It’s useful to know that this is a shortcut and you can explicitly create the underlying
logical variables with mutate():

flights |>
mutate(
daytime = dep_time > 600 & dep_time < 2000,
approx_ontime = abs(arr_delay) < 20,
.keep = "used"
)
#> # A tibble: 336,776 x 4
#> dep_time arr_delay daytime approx_ontime

#> <int> <dbl> <lgl> <lgl>
#> 1 517 11 FALSE TRUE
#> 2 533 20 FALSE FALSE
#> 3 542 33 FALSE FALSE

206 | Chapter12:Logical Vectors

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/mutate.html

#> 4 544 -18 FALSE TRUE
#> 5 554 -25 FALSE FALSE
6 554 12 FALSE TRUE
#> # .. with 336,770 more rows

This is particularly useful for more complicated logic because naming the intermedi-
ate steps makes it easier to both read your code and check that each step has been
computed correctly.

All told, the initial filter is equivalent to the following:

flights |>
mutate(
daytime = dep_time > 600 & dep_time < 2000,
approx_ontime = abs(arr_delay) < 20,
) |>

filter(daytime & approx_ontime)

Floating-Point Comparison

Beware of using == with numbers. For example, it looks like this vector contains the
numbers 1 and 2:
x <- c(1 / 49 * 49, sqrt(2) » 2)

X
[1] 1 2

But if you test them for equality, you get FALSE:

x == c(1, 2)

#> [1] FALSE FALSE
What’s going on? Computers store numbers with a fixed number of decimal places,
so there’s no way to exactly represent 1/49 or sqrt(2), and subsequent computations
will be very slightly oft. We can see the exact values by calling print() with the
digits' argument:

print(x, digits = 16)

#> [1] 0.9999999999999999 2.0000000000000004
You can see why R defaults to rounding these numbers; they really are very close to
what you expect.

Now that you've seen why == is failing, what can you do about it? One option is to use
dplyr::near(), which ignores small differences:

near(x, c(1, 2))
#> [1] TRUE TRUE

1 R normally calls print for you (i.e., x is a shortcut for print(x)), but calling it explicitly is useful if you want to
provide other arguments.

Comparisons | 207

https://rdrr.io/r/base/print.html
https://dplyr.tidyverse.org/reference/near.html

Missing Values

Missing values represent the unknown, so they are “contagious”: almost any opera-
tion involving an unknown value will also be unknown:

NA > 5

#> [1] NA
10 == NA
#> [1] NA

The most confusing result is this one:

NA == NA
#> [1] NA

It’s easiest to understand why this is true if we artificially supply a little more context:

We don't know how old Mary 1is
age_mary <- NA

We don't know how old John 1is
age_john <- NA

Are Mary and John the same age?
age_mary == age_john

#> [1] NA

We don't know!

So if you want to find all flights where dep_time is missing, the following code doesn’t
work because dep_time == NA will yield NA for every single row, and filter()
automatically drops missing values:
flights |>
filter(dep_time == NA)
#> # A tibble: 0 x 19

#> # .. with 19 variables: year <int>, month <int>, day <int>, dep_time <int>,
#> # sched_dep_time <int>, dep_delay <dbl>, arr_time <int>, ..

Instead we'll need a new tool: is.na().

is.na()

is.na(x) works with any type of vector and returns TRUE for missing values and
FALSE for everything else:

is.na(c(TRUE, NA, FALSE))
#> [1] FALSE TRUE FALSE
is.na(c(1, NA, 3))

#> [1] FALSE TRUE FALSE
is.na(c("a", NA, "b"))

#> [1] FALSE TRUE FALSE

208 | Chapter 12: Logical Vectors

https://dplyr.tidyverse.org/reference/filter.html
https://rdrr.io/r/base/NA.html

We can use is.na() to find all the rows with a missing dep_time:

flights |>

filter(is.na(dep_time))
#> # A tibble: 8,255 x 19

#> year month
#> <int> <int> <int>

#> 1 2013
#> 2 2013
#> 3 2013
#> 4 2013
#> 5 2013
#> 6 2013
#> #

1

Mok Rk

1

day dep_time sched dep_time dep_delay arr_time sched arr_time

N R RKRRR

2

<int>
NA
NA
NA
NA
NA
NA

<int>
1630
1935
1500
600
1540
1620

<dbl>
NA
NA
NA
NA
NA
NA

<int>
NA
NA
NA
NA
NA
NA

. with 8,249 more rows, and 11 more variables: arr_delay <dbl>,

<int>
1815
2240
1825
901
1747
1746

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

is.na() can also be useful in arrange(). arrange() usually puts all the missing
values at the end, but you can override this default by first sorting by is.na():

flights |>

filter(month == 1, day == 1) |>
arrange(dep_time)
#> # A tibble: 842 x 19

#> year month
#> <int> <int> <int>

#> 1 2013
#> 2 2013
#> 3 2013
#> 4 2013
#> 5 2013
#> 6 2013
#> #

#> #

flights |>

filter(month == 1, day

1

L A Y

day dep_time sched dep_time dep_delay arr_time sched arr_time

L L

1

<int>
517
533
542
544
554
554

1) |>

<int>
515
529
540
545
600
558

. with 836 more rows, and 11 more variables: arr_
carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

arrange(desc(is.na(dep_time)), dep_time)

#> # A tibble: 842 x 19

#> year month
#> <int> <int> <int>

#> 1 2013
#> 2 2013
#> 3 2013
#> 4 2013
#> 5 2013
#> 6 2013
#> #

#> #

1

L N Y

<dbl>
2

4

2

-1

-6

-4

<int>
830
850
923
1004
812
740

delay <dbl>,

<int>
819
830
8560
1022
837
728

day dep_time sched dep_time dep_delay arr_time sched arr_time

1
1
1
1
1

1

<int>
NA
NA
NA
NA
517
533

<int>
1630
1935
1500
600
515
529

<dbl>
NA
NA
NA
NA

2

4

<int>
NA
NA
NA
NA

830
850
. with 836 more rows, and 11 more variables: arr_delay <dbl>,

carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

<int>
1815
2240
1825
901
819
830

We'll come back to cover missing values in more depth in Chapter 18.

Comparisons

209

https://rdrr.io/r/base/NA.html
https://rdrr.io/r/base/NA.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/arrange.html
https://rdrr.io/r/base/NA.html

Exercises

—_

How does dplyr: :near() work? Type near to see the source code. Is sqrt(2)2
near 2?

\S)

. Use mutate(), ts.na(), and count() together to describe how the missing values
in dep_time, sched_dep_time, and dep_delay are connected.

Boolean Algebra

Once you have multiple logical vectors, you can combine them using Boolean alge-
bra. In R, & is “and,” | is “or;” ! is “not,” and xor() is exclusive or.* For example, df
|> filter(!is.na(x)) finds all rows where x is not missing, and df |> filter(x <
-10 | x > 0) finds all rows where x is smaller than -10 or bigger than 0. Figure 12-1
shows the complete set of Boolean operations and how they work.

X & ly X x|y

xor(x, y)

X &y

IXx &y

SSiS
SeS

Figure 12-1. The complete set of Boolean operations. x is the left circle, y is the right
circle, and the shaded region show which parts each operator selects.

As well as & and |, R also has & and | |. Don’t use them in dplyr functions! These are
called short-circuiting operators and only ever return a single TRUE or FALSE. They’re
important for programming, not data science.

2 That is, xor (x, y) is true if x is true or y is true, but not both. This is how we usually use “or” in English.
“Both” is not usually an acceptable answer to the question “Would you like ice cream or cake?”

210 | Chapter 12: Logical Vectors

https://dplyr.tidyverse.org/reference/near.html
https://dplyr.tidyverse.org/reference/mutate.html
https://rdrr.io/r/base/NA.html
https://dplyr.tidyverse.org/reference/count.html
https://rdrr.io/r/base/Logic.html

Missing Values

The rules for missing values in Boolean algebra are a little tricky to explain because
they seem inconsistent at first glance:

df <- tibble(x = c(TRUE, FALSE, NA))

df |>
mutate(
and = x & NA,
or = x | NA
)
#> # A tibble: 3 x 3
X and or
#> <lgl> <lgl> <lgl>
#> 1 TRUE NA TRUE
#> 2 FALSE FALSE NA
#> 3 NA NA NA

To understand what’s going on, think about NA | TRUE. A missing value in a logical
vector means that the value could be either TRUE or FALSE. TRUE | TRUE and FALSE |
TRUE are both TRUE because at least one of them is TRUE. So NA | TRUE must also be
TRUE because NA can either be TRUE or FALSE. However, NA | FALSE is NA because we
don’t know if NA is TRUE or FALSE. Similar reasoning applies with NA & FALSE.

Order of Operations

Note that the order of operations doesn’t work like English. Take the following code
that finds all flights that departed in November or December:
flights |>
filter(month == 11 | month == 12)
You might be tempted to write it like youd say in English: “Find all flights that
departed in November or December”:
flights |>
filter(month == 11 | 12)

#> # A tibble: 336,776 x 19
#> year month day dep_time sched _dep_time dep_delay arr_time sched_arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 533 529 4 850 830
#> 3 2013 1 1 542 540 2 923 850
#> 4 2013 1 1 544 545 1 1004 1022
#> 5 2013 1 1 554 600 -6 812 837
#> 6 2013 1 1 554 558 -4 740 728
#> # .. with 336,770 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

This code doesn't error, but it also doesn’t seem to have worked. What’s going on?
Here, R first evaluates month == 11 creating a logical vector, which we call nov. It
computes nov | 12. When you use a number with a logical operator, it converts

Boolean Algebra | 211

everything apart from 0 to TRUE, so this is equivalent to nov | TRUE, which will
always be TRUE, so every row will be selected:

flights |>
mutate(
nov = month == 11,
final = nov | 12,
.keep = "used"

)
#> # A tibble: 336,776 x 3
#> month nov final
#> <int> <lgl> <lgl>

#> 1 1 FALSE TRUE
2 1 FALSE TRUE
#> 3 1 FALSE TRUE
#> 4 1 FALSE TRUE
#> 5 1 FALSE TRUE
6 1 FALSE TRUE
#> # .. with 336,770 more rows
.
%in%

An easy way to avoid the problem of getting your ==s and |s in the right order is to
use %in%. x %in% y returns a logical vector the same length as x that is TRUE whenever
a value in x is anywhere in y.

1:12 %in% c(1, 5, 11)

#> [1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
letters[1:10] %in% c("a", "e", "i", "o", "u")

#> [1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE

So to find all flights in November and December, we could write:

flights |>
filter(month %in% c(11, 12))

Note that %in% obeys different rules for NA to ==, as NA %in% NA is TRUE.

c(1, 2, NA) == NA

#> [1] NA NA NA

c(1, 2, NA) %in% NA

#> [1] FALSE FALSE TRUE

This can make for a useful shortcut:

flights |>
filter(dep_time %in% c(NA, 0800))
#> # A tibble: 8,803 x 19
#> year month day dep_time sched dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 800 800 0 1022 1014
#> 2 2013 1 1 800 810 -10 949 955
#> 3 2013 1 1 NA 1630 NA NA 1815
#> 4 2013 1 1 NA 1935 NA NA 2240
#> 5 2013 1 1 NA 1500 NA NA 1825
#> 6 2013 1 1 NA 600 NA NA 901
#> # .. with 8,797 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

212 | Chapter 12: Logical Vectors

Exercises

1. Find all flights where arr_delay is missing but dep_delay is not. Find all flights
where neither arr_time nor sched_arr_time is missing, but arr_delay is.

2. How many flights have a missing dep_time? What other variables are missing in
these rows? What might these rows represent?

3. Assuming that a missing dep_time implies that a flight is cancelled, look at
the number of cancelled flights per day. Is there a pattern? Is there a connec-
tion between the proportion of canceled flights and the average delay of non-
cancelled flights?

Summaries

The following sections describe some useful techniques for summarizing logical
vectors. As well as functions that only work specifically with logical vectors, you can
also use functions that work with numeric vectors.

Logical Summaries

There are two main logical summaries: any() and all(). any(x) is the equivalent of
|; it'll return TRUE if there are any TRUEs in x. all(x) is equivalent of &; it'll return
TRUE only if all values of x are TRUEs. Like all summary functions, they’ll return NA if
there are any missing values present, and as usual you can make the missing values go
away with na.rm = TRUE.

For example, we could use all() and any() to find out if every flight was delayed on
departure by at most an hour or if any flights were delayed on arrival by five hours or
more. And using group_by () allows us to do that by day:

flights |>
group_by(year, month, day) |>
summarize(
all_delayed = all(dep_delay <= 60, na.rm = TRUE),
any_long_delay = any(arr_delay >= 300, na.rm = TRUE),
.groups = "drop"
)
#> # A tibble: 365 x 5
#> year month day all_delayed any_long_delay

#> <int> <int> <int> <lgl> <lgl>
#> 1 2013 1 1 FALSE TRUE
#> 2 2013 1 2 FALSE TRUE
#> 3 2013 1 3 FALSE FALSE
#> 4 2013 1 4 FALSE FALSE
#> 5 2013 1 5 FALSE TRUE
#> 6 2013 1 6 FALSE FALSE
#> # .. with 359 more rows

Summaries | 213

https://rdrr.io/r/base/any.html
https://rdrr.io/r/base/all.html
https://rdrr.io/r/base/all.html
https://rdrr.io/r/base/any.html
https://dplyr.tidyverse.org/reference/group_by.html

In most cases, however, any() and all() are a little too crude, and it would be nice to
be able to get a little more detail about how many values are TRUE or FALSE. That leads
us to the numeric summaries.

Numeric Summaries of Logical Vectors

When you use a logical vector in a numeric context, TRUE becomes 1, and FALSE
becomes 0. This makes sum() and mean() useful with logical vectors because sum(x)
gives the number of TRUEs and mean(x) gives the proportion of TRUEs (because
mean() is just sum() divided by length()).

That, for example, allows us to see the proportion of flights that were delayed on
departure by at most an hour and the number of flights that were delayed on arrival
by five hours or more:

flights |>
group_by(year, month, day) |>
summarize(
all_delayed = mean(dep_delay <= 60, na.rm = TRUE),
any_long_delay = sum(arr_delay >= 300, na.rm = TRUE),
.groups = "drop"
)
#> # A tibble: 365 x 5
#> year month day all_delayed any_long_delay

#> <int> <int> <int> <dbl> <int>
#> 1 2013 1 1 0.939 3
#> 2 2013 1 2 0.914 3
#> 3 2013 1 3 0.941 (0]
#> 4 2013 1 4 0.953 0
#> 5 2013 1 5 0.964 1
#> 6 2013 1 6 0.959 0
#> # .. with 359 more rows

Logical Subsetting

There’s one final use for logical vectors in summaries: you can use a logical vector
to filter a single variable to a subset of interest. This makes use of the base [(pro-
nounced subset) operator, which you’ll learn more about in “Selecting Multiple
Elements with [” on page 490.

Imagine we wanted to look at the average delay just for flights that were actually
delayed. One way to do so would be to first filter the flights and then calculate the
average delay:

flights |>

filter(arr_delay > 0) |>
group_by(year, month, day) |>

summarize(
behind = mean(arr_delay),
n=n(),
.groups = "drop"

)

214 | Chapter 12: Logical Vectors

https://rdrr.io/r/base/any.html
https://rdrr.io/r/base/all.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/mean.html
https://rdrr.io/r/base/mean.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/length.html

#> # A tibble: 365 x 5
#> year month day behind n
#> <int> <int> <int> <dbl> <int>

#> 1 2013 1 1 32.5 461
#> 2 2013 1 2 32.0 535
#> 3 2013 1 3 27.7 460
#> 4 2013 1 4 28.3 297
#> 5 2013 1 5 22.6 238
#> 6 2013 1 6 24.4 381
#> # .. with 359 more rows

This works, but what if we wanted to also compute the average delay for flights that
arrived early? Wed need to perform a separate filter step and then figure out how to
combine the two data frames together.” Instead, you could use [to perform an inline
filtering: arr_delay[arr_delay > 0] will yield only the positive arrival delays.

This leads to:

flights |>
group_by(year, month, day) |>
summarize(
behind = mean(arr_delay[arr_delay > 0], na.rm = TRUE),
ahead = mean(arr_delay[arr_delay < 0], na.rm = TRUE),
n=n(),
.groups = "drop"
)
#> # A tibble: 365 x 6
#> year month day behind ahead n
#> <int> <int> <int> <dbl> <dbl> <int>

#> 1 2013 1 1 32.5 -12.5 842
#> 2 2013 1 2 32.0 -14.3 943
#> 3 2013 1 3 27.7 -18.2 914
#> 4 2013 1 4 28.3 -17.0 915
#> 5 2013 1 5 22.6 -14.0 720
#> 6 2013 1 6 24.4 -13.6 832
#> # .. with 359 more rows

Also note the difference in the group size: in the first chunk, n() gives the number of
delayed flights per day; in the second, n() gives the total number of flights.

Exercises

1. What will sum(is.na(x)) tell you? How about mean(is.na(x))?

2. What does prod() return when applied to a logical vector? What logical sum-
mary function is it equivalent to? What does min() return when applied to
a logical vector? What logical summary function is it equivalent to? Read the
documentation and perform a few experiments.

3 We'll cover this in Chapter 19.

Summaries | 215

https://dplyr.tidyverse.org/reference/context.html
https://dplyr.tidyverse.org/reference/context.html
https://rdrr.io/r/base/prod.html
https://rdrr.io/r/base/Extremes.html

Conditional Transformations

One of the most powerful features of logical vectors are their use for conditional
transformations, i.e., doing one thing for condition x and doing something different
for condition y. There are two important tools for this: 1f_else() and case_when().

if else()

If you want to use one value when a condition is TRUE and another value when its
FALSE, you can use dplyr::if_else().* You'll always use the first three argument of
if_else(). The first argument, condition, is a logical vector; the second, true, gives
the output when the condition is true; and the third, false, gives the output if the
condition is false.

Let’s begin with a simple example of labeling a numeric vector as either “+ve” (posi-
tive) or “-ve” (negative):
x <- c(-3:3, NA)

if_else(x > 0, "+ve", "-ve")
[1] "-ve" "-ve" "-ve" "-ve

won non

+ve" "+ve" "+ve" NA

There’s an optional fourth argument, missing, which will be used if the input is NA:

if_else(x > 0, "+ve", "-ve", "222")

B [1] "ove" ve” "ve" "ve" "ive' "ve" "ive" "227"
You can also use vectors for the true and false arguments. For example, this allows
us to create a minimal implementation of abs():

if_else(x < 0, -x, X)

#[1] 3 2 1 0 1 2 3N
So far all the arguments have used the same vectors, but you can of course mix and
match. For example, you could implement a simple version of coalesce() like this:

x1 < c(NA, 1, 2, NA)

yl <- c(3, NA, 4, 6)

if_else(is.na(x1), y1, x1)

#>[1] 3126
You might have noticed a small infelicity in our previous labeling example: zero
is neither positive nor negative. We could resolve this by adding an additional
if_else():

if_else(x == 0, "0", if_else(x < 0, "-ve", "+ve"), "222")

#> [1] "_ye" "-ye" "-ye" "9" "sve" "rve +ve’ "2272"

4 dplyr’s if_else() is similar to base R’s ifelse(). There are two main advantages of if_else() over
ifelse(): you can choose what should happen to missing values, and 1f_else() is much more likely to
give you a meaningful error if your variables have incompatible types.

216 | Chapter 12: Logical Vectors

https://dplyr.tidyverse.org/reference/if_else.html
https://rdrr.io/r/base/ifelse.html
https://dplyr.tidyverse.org/reference/if_else.html
https://rdrr.io/r/base/ifelse.html
https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/case_when.html
https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/if_else.html
https://rdrr.io/r/base/MathFun.html
https://dplyr.tidyverse.org/reference/coalesce.html
https://dplyr.tidyverse.org/reference/if_else.html

This is already a little hard to read, and you can imagine it would only get harder if
you have more conditions. Instead, you can switch to dplyr: :case_when().

case_when()

dplyr’s case_when() is inspired by SQLs CASE statement and provides a flexible way
of performing different computations for different conditions. It has a special syntax
that unfortunately looks like nothing else you'll use in the tidyverse. It takes pairs that
look like condition ~ output. condition must be a logical vector; when it’s TRUE,
output will be used.

This means we could re-create our previous nested if_else() as follows:

x <- c(-3:3, NA)

case_when(
X == ~"o",
X <0 ~ "-ve",
X > 0 ~ "+ve",
is.na(x) ~ "22?2"
;> [1] "-ve" "-ve" "-ve" "@" "+ve" "+ve" "+ve" "222"

This is more code, but it’s also more explicit.

To explain how case_when() works, let’s explore some simpler cases. If none of the
cases matches, the output gets an NA:
case_when(
X <0~ "-ve",

X >0 ~ "+ve"

#> [1] "_ye" "-ye" "-ve" NA "ive" "rve" "+ve" NA

If you want to create a “default”/catchall value, use TRUE on the left side:

case_when(

X <0~ "-ve",
X >0 ~ "+ve",
TRUE ~ "2722"

#> [1] "-ve" "-ve" "-ve" "2722" "sve" "sve" "+ve" "7227"

Note that if multiple conditions match, only the first will be used:

case_when(
X >0 ~ "+ve",
x > 2 ~ "big"
)
#> [1] NA NA NA NA "+ve" "+ve" "+ve" NA

Just like with if_else() you can use variables on both sides of the ~, and you can
mix and match variables as needed for your problem. For example, we could use
case_when() to provide some human-readable labels for the arrival delay:

Conditional Transformations | 217

https://dplyr.tidyverse.org/reference/case_when.html
https://dplyr.tidyverse.org/reference/case_when.html
https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/case_when.html
https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/case_when.html

flights |>

mutate(

status = case_when(
is.na(arr_delay) ~ "cancelled",
arr_delay < -30 ~ "very early",
arr_delay < -15 ~ "early",
abs(arr_delay) <= 15 ~ "on time",
arr_delay < 60 ~ "late",
arr_delay < Inf ~ "very late",

),

.keep = "used"

)
#> # A tibble: 336,776 x 2
#> arr_delay status

#> <dbl> <chr>

#> 1 11 on time

#> 2 20 late

#> 3 33 late

#> 4 -18 early

5 -25 early

#> 6 12 on time

#> # .. with 336,770 more rows

Be wary when writing this sort of complex case_when() statement; my first two
attempts used a mix of < and >, and I kept accidentally creating overlapping
conditions.

Compatible Types

Note that both i1f_else() and case_when() require compatible types in the output. If
they’re not compatible, you'll see errors like this:
if_else(TRUE, "a", 1)

#> Error in ‘if_else() :
#> ! Can't combine ‘true' <character> and ‘false' <double>.

case_when(
x < -1 ~ TRUE,
x >0 ~ now()

)

#> Error in ‘case_when() " :

#> ! Can't combine *..1 (right)" <logical> and '..2 (right)" <datetime<local>>.
Overall, relatively few types are compatible, because automatically converting one
type of vector to another is a common source of errors. Here are the most important
cases that are compatible:

o Numeric and logical vectors are compatible, as we discussed in “Numeric Sum-
maries of Logical Vectors” on page 214.

o Strings and factors (Chapter 16) are compatible, because you can think of a factor
as a string with a restricted set of values.

218 | Chapter 12: Logical Vectors

https://dplyr.tidyverse.org/reference/case_when.html
https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/case_when.html

o Dates and date-times, which we'll discuss in Chapter 17, are compatible because
you can think of a date as a special case of date-time.

« NA, which is technically a logical vector, is compatible with everything because
every vector has some way of representing a missing value.

We don’t expect you to memorize these rules, but they should become second nature
over time because they are applied consistently throughout the tidyverse.

Exercises

1. A number is even if it’s divisible by two, which in R you can find out with x %% 2
== 0. Use this fact and 1f_else() to determine whether each number between 0
and 20 is even or odd.

2. Given a vector of days like x <- c("Monday", "Saturday", "Wednesday"), use
an ifelse() statement to label them as weekends or weekdays.

3. Use ifelse() to compute the absolute value of a numeric vector called x.

4. Write a case_when() statement that uses the month and day columns from
flights to label a selection of important US holidays (e.g., New Years Day,
Fourth of July, Thanksgiving, and Christmas). First create a logical column that
is either TRUE or FALSE, and then create a character column that either gives the
name of the holiday or is NA.

Summary

The definition of a logical vector is simple because each value must be either TRUE,
FALSE, or NA. But logical vectors provide a huge amount of power. In this chapter,
you learned how to create logical vectors with >, <, <=, =>, ==, !=, and is.na();
how to combine them with !, & and |; and how to summarize them with any(),
all(), sum(), and mean(). You also learned the powerful if_else() and case_when()
functions that allow you to return values depending on the value of a logical vector.

We'll see logical vectors again and again in the following chapters. For example, in
Chapter 14, you’ll learn about str_detect(x, pattern), which returns a logical
vector that’s TRUE for the elements of x that match the pattern, and in Chapter 17,
you'll create logical vectors from the comparison of dates and times. But for now,
were going to move onto the next most important type of vector: numeric vectors.

Summary | 219

https://dplyr.tidyverse.org/reference/if_else.html
https://rdrr.io/r/base/ifelse.html
https://rdrr.io/r/base/ifelse.html
https://dplyr.tidyverse.org/reference/case_when.html
https://rdrr.io/r/base/NA.html
https://rdrr.io/r/base/any.html
https://rdrr.io/r/base/all.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/mean.html
https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/case_when.html

CHAPTER 13
Numbers

Introduction

Numeric vectors are the backbone of data science, and you've already used them a
bunch of times earlier in the book. Now it’s time to systematically survey what you
can do with them in R, ensuring that you're well situated to tackle any future problem
involving numeric vectors.

We'll start by giving you a couple of tools to make numbers if you have strings and
then go into a little more detail on count(). Then we'll dive into various numeric
transformations that pair well with mutate(), including more general transforma-
tions that can be applied to other types of vectors but are often used with numeric
vectors. We'll finish off by covering the summary functions that pair well with
summarize() and show you how they can also be used with mutate().

Prerequisites

This chapter mostly uses functions from base R, which are available without loading
any packages. But we still need the tidyverse because we'll use these base R functions
inside of tidyverse functions such as mutate() and filter(). Like in the previous
chapter, we'll use real examples from nycflights13, as well as toy examples made with
c() and tribble().

library(tidyverse)
library(nycflights13)

Making Numbers

In most cases, youwll get numbers already recorded in one of Rs numeric types:
integer or double. In some cases, however, you'll encounter them as strings, possibly

221

https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/filter.html
https://rdrr.io/r/base/c.html
https://tibble.tidyverse.org/reference/tribble.html

because you've created them by pivoting from column headers or because something
has gone wrong in your data import process.

readr provides two useful functions for parsing strings into numbers: parse_dou
ble() and parse_number (). Use parse_double() when you have numbers that have
been written as strings:

x <= c("1.2", "5.6", "1le3")
parse_double(x)
#> [1] 1.2 5.6 1000.0

Use parse_number() when the string contains non-numeric text that you want to
ignore. This is particularly useful for currency data and percentages:

x <- c("$1,234", "USD 3,513", "59%")
parse_number(x)
#> [1] 1234 3513 59

Counts

It’s surprising how much data science you can do with just counts and a little basic
arithmetic, so dplyr strives to make counting as easy as possible with count(). This
function is great for quick exploration and checks during analysis:

flights |> count(dest)
#> # A tibble: 105 x 2
#> dest n

#> <chr> <int>

#> 1 ABQ 254

#> 2 ACK 265

#> 3 ALB 439

#> 4 ANC 8

#> 5 ATL 17215

#> 6 AUS 2439

#> # .. with 99 more rows

(Despite the advice in Chapter 4, we usually put count() on a single line because
it's usually used at the console for a quick check that a calculation is working as
expected.)

If you want to see the most common values, add sort = TRUE:

flights |> count(dest, sort = TRUE)
#> # A tibble: 105 x 2
#> dest n

#> <chr> <int>

#> 1 ORD 17283

#> 2 ATL 17215

#> 3 LAX 16174

#> 4 BOS 15508

#> 5 MCO 14082

#> 6 CLT 14064

#> # .. with 99 more rows

222 | Chapter 13: Numbers

https://readr.tidyverse.org/reference/parse_atomic.html
https://readr.tidyverse.org/reference/parse_atomic.html
https://readr.tidyverse.org/reference/parse_number.html
https://readr.tidyverse.org/reference/parse_atomic.html
https://readr.tidyverse.org/reference/parse_number.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/count.html

And remember that if you want to see all the values, you can use |> View() or |>
print(n = Inf).

You can perform the same computation “by hand” with group_by(), summarize(),
and n(). This is useful because it allows you to compute other summaries at the same
time:

flights |>
group_by(dest) |>
summarize(
n=n(),
delay = mean(arr_delay, na.rm = TRUE)
)
#> # A tibble: 105 x 3
#> dest n delay
#> <chr> <int> <dbl>
#> 1 ABQ 254 4.38
#> 2 ACK 265 4.85
#> 3 ALB 439 14.4
#> 4 ANC 8 -2.5
#> 5 ATL 17215 11.3
#> 6 AUS 2439 6.02
#> # .. with 99 more rows

n() is a special summary function that doesn't take any arguments and instead
accesses information about the “current” group. This means that it works only inside
dplyr verbs:

n()

#> Error in ‘n()’:

#> ! Must only be used inside data-masking verbs like ‘mutate()’,
#> ‘filter()', and “group_by()".

There are a couple of variants of n() and count() that you might find useful:

o n_distinct(x) counts the number of distinct (unique) values of one or more
variables. For example, we could figure out which destinations are served by the

most carriers:
flights |>
group_by(dest) |>
summarize(carriers = n_distinct(carrier)) |>
arrange(desc(carriers))
#> # A tibble: 105 x 2
#> dest «carriers

#> <chr> <int>
#> 1 ATL 7
#> 2 BOS 7
#> 3 CLT 7
#> 4 ORD 7
#> 5 TPA 7
#> 6 AUS 6

#> # .. with 99 more rows

o A weighted count is a sum. For example, you could “count” the number of miles
each plane flew:

Counts | 223

https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/context.html
https://dplyr.tidyverse.org/reference/context.html
https://dplyr.tidyverse.org/reference/context.html
https://dplyr.tidyverse.org/reference/count.html

flights |>
group_by(tailnum) |>
summarize(miles = sum(distance))

#> # A tibble: 4,044 x 2

#> tailnum miles

#> <chr> <dbl>

#> 1 D942DN 3418

#> 2 NOEGMQ 250866

#> 3 N10156 115966

#> 4 N102UW 25722

#> 5 N103US 24619

#> 6 N104UW 25157

#> # .. with 4,038 more rows

Weighted counts are a common problem, so count() has a wt argument that does

the same thing:
flights |> count(tailnum, wt = distance)

 You can count missing values by combining sum() and is.na(). In the flights

dataset this represents flights that are cancelled:
flights |>
group_by(dest) |>
summarize(n_cancelled = sum(is.na(dep_time)))
#> # A tibble: 105 x 2
#> dest n_cancelled

#> <chr> <int>
1 ABQ 0
#> 2 ACK (4]
#> 3 ALB 20
#> 4 ANC (4]
#> 5 ATL 317
#> 6 AUS 21

#> # .. with 99 more rows

Exercises

1. How can you use count() to count the number rows with a missing value for a
given variable?

2. Expand the following calls to count() to instead use group_by(), summarize(),
and arrange():

a. flights |> count(dest, sort = TRUE)
b. flights |> count(tailnum, wt = distance)

Numeric Transformations

Transformation functions work well with mutate() because their output is the same
length as the input. The vast majority of transformation functions are already built
into base R. It’s impractical to list them all, so this section will show the most useful

224 | Chapter 13: Numbers

https://dplyr.tidyverse.org/reference/count.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/NA.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/mutate.html

ones. As an example, while R provides all the trigonometric functions that you might
dream of, we don’t list them here because they’re rarely needed for data science.

Arithmetic and Recycling Rules

We introduced the basics of arithmetic (+, -, *, /, #) in Chapter 2 and have used them
a bunch since. These functions don’t need a huge amount of explanation because
they do what you learned in grade school. But we need to briefly talk about the
recycling rules, which determine what happens when the left and right sides have
different lengths. This is important for operations like flights |> mutate(air_time
= ailr_time / 60) because there are 336,776 numbers on the left of / but only one
on the right.

R handles mismatched lengths by recycling, or repeating, the short vector. We can see
this in operation more easily if we create some vectors outside of a data frame:

x <- c(1, 2, 10, 20)
x /5

#> [1] 0.2 0.4 2.0 4.0
1s shorthand for

x / c(5, 5, 5, 5)

#> [1] 0.2 0.4 2.0 4.0

Generally, you want to recycle only single numbers (i.e., vectors of length 1), but R
will recycle any shorter length vector. It usually (but not always) gives you a warning
if the longer vector isn’t a multiple of the shorter:

x * c(1, 2)

#> [1] 1 4 10 40

x * c(1, 2, 3)

#> Warning in x * c(1, 2, 3): longer object length is not a multiple of shorter

#> object length

#> [1] 1 430 20
These recycling rules are also applied to logical comparisons (==, <, <=, >, >=, =)
and can lead to a surprising result if you accidentally use == instead of %in% and the
data frame has an unfortunate number of rows. For example, take this code, which
attempts to find all flights in January and February:

flights |>

filter(month == c(1, 2))

#> # A tibble: 25,977 x 19
#> year month day dep_time sched_dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl> <int> <int>
#> 1 2013 1 1 517 515 2 830 819
#> 2 2013 1 1 542 540 2 923 850
#> 3 2013 1 1 554 600 -6 812 837
#> 4 2013 1 1 555 600 -5 913 854
#> 5 2013 1 1 557 600 -3 838 846
#> 6 2013 1 1 558 600 -2 849 851
#> # .. with 25,971 more rows, and 11 more variables: arr_delay <dbl>,

#> # carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

Numeric Transformations | 225

The code runs without error, but it doesn’t return what you want. Because of the
recycling rules, it finds flights in odd-numbered rows that departed in January and
flights in even numbered rows that departed in February. Unfortunately, there’s no
warning because flights has an even number of rows.

To protect you from this type of silent failure, most tidyverse functions use a stricter
form of recycling that recycles only single values. Unfortunately, that doesn’t help
here, or in many other cases, because the key computation is performed by the base R
function ==, not filter().

Minimum and Maximum

The arithmetic functions work with pairs of variables. Two closely related functions

are pmin() and pmax(), which when given two or more variables will return the
smallest or largest value in each row:

df <- tribble(
~X, ~Y,

mutate(
in = pmin(x, y, na.rm = TRUE),
= pmax(x, y, na.rm = TRUE)

#> # A tibble: 3 x 4

#> X y min max
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3 1 3
#> 2 5 2 2 5
#> 3 7 NA 7 7

Note that these are different from the summary functions min() and max(), which
take multiple observations and return a single value. You can tell that you've used the
wrong form when all the minimums and all the maximums have the same value:

df |>
mutate(
min = min(x, y, na.rm = TRUE),
max = max(x, y, na.rm = TRUE)
)
#> # A tibble: 3 x 4
#> X y min max
#> <dbl> <dbl> <dbl> <dbl>
#> 1 1 3 1 7
#> 2 5 2 1 7
#> 3 7 NA 1 7

226 | Chapter 13: Numbers

https://dplyr.tidyverse.org/reference/filter.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/Extremes.html

Modular Arithmetic

Modular arithmetic is the technical name for the type of math you did before you
learned about decimal places, i.e., division that yields a whole number and a remain-
der. In R, %/% does integer division, and %% computes the remainder:

1:10 %/% 3
[1] 0011122233
1:10 %% 3
[1] 12012601201

Modular arithmetic is handy for the flights dataset, because we can use it to unpack
the sched_dep_time variable into hour and minute:

flights |>
mutate(
hour = sched_dep_time %/% 100,
minute = sched_dep_time %% 100,
.keep = "used"
)
#> # A tibble: 336,776 x 3
#> sched_dep_time hour minute

#> <int> <dbl> <dbl>
#> 1 515 5 15
#> 2 529 5 29
#> 3 540 5 40
#> 4 545 5 45
#> 5 600 6 0
#> 6 558 5 58
#> # .. with 336,770 more rows

We can combine that with the mean(is.na(x)) trick from “Summaries” on page 213
to see how the proportion of cancelled flights varies over the course of the day. The
results are shown in Figure 13-1.

flights |>
group_by(hour = sched_dep_time %/% 100) |>
summarize(prop_cancelled = mean(is.na(dep_time)), n = n()) |>
filter(hour > 1) |>
ggplot(aes(x = hour, y = prop_cancelled)) +
geom_Lline(color = "grey50") +
geom_point(aes(size = n))

Numeric Transformations | 227

0.04 -

0.03-
©
Q
g n
§ @ 10000
ol 0.02- @ 20000
o
(o}
0.01-

5 10 15 20
hour

Figure 13-1. A line plot with scheduled departure hour on the x-axis, and proportion of
cancelled flights on the y-axis. Cancellations seem to accumulate over the course of the
day until 8 p.m., and very late flights are much less likely to be cancelled.

Logarithms

Logarithms are an incredibly useful transformation for dealing with data that ranges
across multiple orders of magnitude and for converting exponential growth to linear
growth. In R, you have a choice of three logarithms: log() (the natural log, base e),
log2() (base 2), and log10() (base 10). We recommend using log2() or log10().
log2() is easy to interpret because a difference of 1 on the log scale corresponds to
doubling on the original scale, and a difference of -1 corresponds to halving, whereas
log10() is easy to back-transform because, for example, 3 is 1023 = 1000. The inverse
of log() is exp(); to compute the inverse of log2() or log10(), you’ll need to use 27
or 107,

Rounding

Use round(x) to round a number to the nearest integer:
round()
[1] 123

You can control the precision of the rounding with the second argument, digits.
round(x, digits) rounds to the nearest 10~-n, so digits = 2 will round to the

228 | Chapter 13: Numbers

https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html
https://rdrr.io/r/base/Log.html

nearest 0.01. This definition is useful because it implies round(x, -3) will round to
the nearest thousand, which indeed it does:

round(123.456, 2) # two digits

#> [1] 123.46

round(123.456, 1) # one digit

#> [1] 123.5

round(123.456, -1) # round to nearest ten

[1] 120

round(123.456, -2) # round to nearest hundred
#> [1] 100

There’s one weirdness with round() that seems surprising at first glance:

round(c(1.5, 2.5))

[1] 2 2
round() uses what’s known as “round half to even” or Banker’s rounding: if a number
is halfway between two integers, it will be rounded to the even integer. This is a good
strategy because it keeps the rounding unbiased: half of all 0.5s are rounded up, and
half are rounded down.

round() is paired with floor(), which always rounds down, and ceiling(), which
always rounds up:

X <- 123.456

floor(x)

#> [1] 123
ceiling(x)
#> [1] 124

These functions don’t have a digits argument, so you can instead scale down, round,
and then scale back up:

Round down to nearest two digits
floor(x / 0.01) * 0.01

#> [1] 123.45

Round up to nearest two digits
ceiling(x / 0.01) * 0.01

#> [1] 123.46

You can use the same technique if you want to round() to a multiple of some other
number:
Round to nearest multiple of 4

round(x / 4) * 4
[1] 124

Round to nearest 0.25
round(x / 0.25) * 0.25
#> [1] 123.5

Numeric Transformations | 229

https://rdrr.io/r/base/Round.html
https://rdrr.io/r/base/Round.html
https://rdrr.io/r/base/Round.html
https://rdrr.io/r/base/Round.html
https://rdrr.io/r/base/Round.html
https://oreil.ly/YcbwN

Cutting Numbers into Ranges

Use cut()' to break up (aka bin) a numeric vector into discrete buckets:

x <- (1, 2, 5, 10, 15, 20)

cut(x, breaks = c(0, 5, 10, 15, 20))

#> [1] (0,5] (0,5] (0,5] (5,10] (16,15] (15,20]
#> Levels: (0,5] (5,10] (10,15] (15,20]

The breaks don’t need to be evenly spaced:
cut(x, breaks = c(0, 5, 10, 100))
#> [1] (0,5] (0,5] (8,5] (5,18] (10,100] (18,100]
#> Levels: (0,5] (5,10] (10,100]

You can optionally supply your own labels. Note that there should be one less
labels than breaks.

cut(x,
breaks = c(0, 5, 10, 15, 20),
labels = c("sn", "md", "lg", "x1")

)
#> [1] sm sm sm md lg x1
#> Levels: sm md lg xl

Any values outside of the range of the breaks will become NA:

y <- c(NA, -10, 5, 10, 30)

cut(y, breaks = c(0, 5, 10, 15, 20))

#> [1] <NA> <NA> (0,5] (5,10] <NA>

#> Levels: (0,5] (5,10] (10,15] (15,20]
See the documentation for other useful arguments such as right and include. low
est, which control if the intervals are [a, b) or (a, b] and if the lowest interval

should be [a, b].

Cumulative and Rolling Aggregates

Base R provides cumsum(), cumprod(), cummin(), and cummax() for running, or
cumulative, sums, products, and mins and maxes. dplyr provides cummean() for
cumulative means. Cumulative sums tend to come up the most in practice:

X <- 1:10

cumsum(x)
#> [1] 1 3 6 10 15 21 28 36 45 55

If you need more complex rolling or sliding aggregates, try the slider package.

1 ggplot2 provides some helpers for common cases in cut_interval(), cut_number(), and cut_width().
ggplot2 is an admittedly weird place for these functions to live, but they are useful as part of histogram
computation and were written before any other parts of the tidyverse existed.

230 | Chapter 13: Numbers

https://ggplot2.tidyverse.org/reference/cut_interval.html
https://ggplot2.tidyverse.org/reference/cut_interval.html
https://ggplot2.tidyverse.org/reference/cut_interval.html
https://rdrr.io/r/base/cut.html
https://rdrr.io/r/base/cumsum.html
https://rdrr.io/r/base/cumsum.html
https://rdrr.io/r/base/cumsum.html
https://rdrr.io/r/base/cumsum.html
https://dplyr.tidyverse.org/reference/cumall.html
https://oreil.ly/XPnjF

Exercises

1. Explain in words what each line of the code used to generate Figure 13-1 does.

2. What trigonometric functions does R provide? Guess some names and look up
the documentation. Do they use degrees or radians?

3. Currently dep_time and sched_dep_time are convenient to look at but hard to
compute with because theyre not really continuous numbers. You can see the

basic problem by running the following code; there’s a gap between each hour:
flights |>
filter(month == 1, day == 1) |>
ggplot(aes(x = sched_dep_time, y = dep_delay)) +
geom_point()
Convert them to a more truthful representation of time (either fractional hours
or minutes since midnight).

4. Round dep_time and arr_time to the nearest five minutes.

General Transformations

The following sections describe some general transformations that are often used
with numeric vectors but can be applied to all other column types.

Ranks

dplyr provides a number of ranking functions inspired by SQL, but you should
always start with dplyr: :min_rank(). It uses the typical method for dealing with ties,
e.g., Ist, 2nd, 2nd, 4th.

x <- c(1, 2, 2, 3, 4, NA)

min_rank(x)

#>[1] 1 2 2 4 5NA
Note that the smallest values get the lowest ranks; use desc(x) to give the largest
values the smallest ranks:

min_rank(desc(x))

#>[1] 5 3 3 2 1NA
If min_rank() doesn’t do what you need, look at the variants dplyr::row_number(),
dplyr::dense_rank(), dplyr::percent_rank(), and dplyr::cume_dist(). See the
documentation for details.

df <- tibble(x = x)

df |>
mutate(
row_number = row_number(x),
dense_rank = dense_rank(x),

percent_rank = percent_rank(x),
cume_dist = cume_dist(x)

General Transformations | 231

https://dplyr.tidyverse.org/reference/row_number.html
https://dplyr.tidyverse.org/reference/row_number.html
https://dplyr.tidyverse.org/reference/row_number.html
https://dplyr.tidyverse.org/reference/row_number.html
https://dplyr.tidyverse.org/reference/percent_rank.html
https://dplyr.tidyverse.org/reference/percent_rank.html

)
#> # A tibble: 6 x 5

#> x row_number dense_rank percent_rank cume_dist
#> <dbl> <int> <int> <dbl> <dbl>
1 1 1 1 0 0.2
#> 2 2 2 2 0.25 0.6
3 2 3 2 0.25 0.6
#> 4 3 4 3 0.75 0.8
5 4 5 4 1 1

#> 6 NA NA NA NA NA

You can achieve many of the same results by picking the appropriate ties.method
argument to base R’s rank(); you'll probably also want to set na.last = "keep" to
keep NAs as NA.

row_number () can also be used without any arguments when inside a dplyr verb. In
this case, it'll give the number of the “current” row. When combined with %% or %/%,
this can be a useful tool for dividing data into similarly sized groups:

df <- tibble(id = 1:10)

df |>
mutate(
rowd = row_number() - 1,
three_groups = rowd® %% 3,
three_1in_each_group = rowd %/% 3
)
#> # A tibble: 10 x 4

#> id row@ three_groups three_in_each_group
#> <int> <dbl> <dbl> <dbl>
#> 1 1 0 0 (0]
#> 2 2 1 1 0
#> 3 3 2 2 (0]
#> 4 4 3 0 1
5 5 4 1 1
#> 6 6 5 2 1
#> # .. with 4 more rows

Offsets

dplyr::lead() and dplyr::lag() allow you to refer the values just before or just
after the “current” value. They return a vector of the same length as the input, padded
with NAs at the start or end:

x <- c(2, 5, 11, 11, 19, 35)
lag(x)

[1] VA 2 5 11 11 19
lead(x)

#> [1] 5 11 11 19 35 NA

o x - lag(x) gives you the difference between the current and previous value:
x - lag(x)
#> [1]JNA 3 6 0 816

o x == lag(x) tells you when the current value changes:

232 | Chapter 13: Numbers

https://rdrr.io/r/base/rank.html
https://dplyr.tidyverse.org/reference/row_number.html
https://dplyr.tidyverse.org/reference/lead-lag.html
https://dplyr.tidyverse.org/reference/lead-lag.html

x == lag(x)
#> [1] NA FALSE FALSE TRUE FALSE FALSE

You can lead or lag by more than one position by using the second argument, n.

Consecutive Identifiers

Sometimes you want to start a new group every time some event occurs. For example,
when youre looking at website data, its common to want to break up events into
sessions, where you begin a new session after a gap of more than x minutes since
the last activity. For example, imagine you have the times when someone visited a
website:

events <- tibble(
time = c(0, 1, 2, 3, 5, 10, 12, 15, 17, 19, 20, 27, 28, 30)
)

You've computed the time between each event and figured out if there’s a gap that’s
big enough to qualify:

events <- events |[>
mutate(
diff = time - lag(time, default = first(time)),
has_gap = diff >= 5
)
events
#> # A tibble: 14 x 3
#> time diff has_gap
#> <dbl> <dbl> <lgl>

#> 1 0 0 FALSE
#> 2 1 1 FALSE
#> 3 2 1 FALSE
#> 4 3 1 FALSE
5 5 2 FALSE
6 10 5 TRUE

#> # .. with 8 more rows

But how do we go from that logical vector to something that we can group_by()?
cumsum(), from “Cumulative and Rolling Aggregates” on page 230, comes to the res-
cue as gap, i.e., has_gap is TRUE, will increment group by one (“Numeric Summaries
of Logical Vectors” on page 214):

events |> mutate(
group = cumsum(has_gap)
)
#> # A tibble: 14 x 4
#> time diff has_gap group
#> <dbl> <dbl> <lgl> <int>

#> 1 0 0 FALSE 0
2 1 1 FALSE (0]
#> 3 2 1 FALSE 0
#> 4 3 1 FALSE (0]
5 5 2 FALSE 0
6 10 5 TRUE 1
#> # .. with 8 more rows

General Transformations | 233

https://dplyr.tidyverse.org/reference/group_by.html
https://rdrr.io/r/base/cumsum.html

Another approach for creating grouping variables is consecutive_id(), which starts
a new group every time one of its arguments changes. For example, inspired by this
StackOverflow question, imagine you have a data frame with a bunch of repeated
values:

df <- tibble(
c("a", "a", "av, "b, "ch, et ndr, ten, "al, a', "b, "puy,
(1, 2, 3, 2, 4, 1, 3, 9, 4, 8, 10, 199)

y
)

If you want to keep the first row from each repeated x, you could use group_by(),
consecutive_1id(), and slice_head():

df |>
group_by(id = consecutive_id(x)) |>
slice_head(n = 1)

#> # A tibble: 7 x 3

#> # Groups: id [7]

X y id
#> <chr> <dbl> <int>
1 a 1 1
2 b 2 2
#> 3 cC 4 3
#> 4 d 3 4
5 e 9 5
#> 6 a 4 6

#> # .. with 1 more row

Exercises

1.

Find the 10 most delayed flights using a ranking function. How do you want to
handle ties? Carefully read the documentation for min_rank().

. Which plane (tailnum) has the worst on-time record?

3. What time of day should you fly if you want to avoid delays as much as possible?

4. What does flights |> group_by(dest) |> filter(row_number() < 4) do?
What does flights |> group_by(dest) |> filter(row_number(dep_delay)
< 4) do?

5. For each destination, compute the total minutes of delay. For each flight, com-
pute the proportion of the total delay for its destination.

6. Delays are typically temporally correlated: even once the problem that caused the
initial delay has been resolved, later flights are delayed to allow earlier flights to
leave. Using lag(), explore how the average flight delay for an hour is related to
the average delay for the previous hour.

flights |>
mutate(hour = dep_time %/% 100) |>
group_by(year, month, day, hour) |>
summarize(
dep_delay = mean(dep_delay, na.rm = TRUE),
n=n0),
234 | Chapter 13: Numbers

https://dplyr.tidyverse.org/reference/consecutive_id.html
https://oreil.ly/swerV
https://oreil.ly/swerV
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/consecutive_id.html
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/row_number.html
https://dplyr.tidyverse.org/reference/lead-lag.html

.groups = "drop"
) 1>
filter(n > 5)

7. Look at each destination. Can you find flights that are suspiciously fast (i.e.,
flights that represent a potential data entry error)? Compute the air time of a
flight relative to the shortest flight to that destination. Which flights were most
delayed in the air?

8. Find all destinations that are flown by at least two carriers. Use those destinations
to come up with a relative ranking of the carriers based on their performance for
the same destination.

Numeric Summaries

Just using the counts, means, and sums that we've introduced already can get you a
long way, but R provides many other useful summary functions. Here is a selection
that you might find useful.

Center

So far, we've mostly used mean() to summarize the center of a vector of values. As
we've seen in “Case Study: Aggregates and Sample Size” on page 60, because the mean
is the sum divided by the count, it is sensitive to even just a few unusually high or
low values. An alternative is to use the median(), which finds a value that lies in
the “middle” of the vector, i.e., 50% of the values are above it and 50% are below
it. Depending on the shape of the distribution of the variable youre interested in,
mean or median might be a better measure of center. For example, for symmetric
distributions we generally report the mean, while for skewed distributions we usually
report the median.

Figure 13-2 compares the mean to the median departure delay (in minutes) for each
destination. The median delay is always smaller than the mean delay because flights
sometimes leave multiple hours late, but they never leave multiple hours early.

flights |>

group_by(year, month, day) |>

summarize(
mean = mean(dep_delay, na.rm = TRUE),
median = median(dep_delay, na.rm = TRUE),
n=n(),
.groups = "drop"

) I>

ggplot(aes(x = mean, y = median)) +

geom_abline(slope = 1, intercept = 0, color = "white", linewidth = 2) +

geom_point()

Numeric Summaries | 235

https://rdrr.io/r/base/mean.html
https://rdrr.io/r/stats/median.html

60 -
[]
40-
5 .
§
]
£
20 - —
'.
[]
———
L)
capnfaf w5
" RS
(I) 2I0 4l0 6I0 8IO
mean

Figure 13-2. A scatterplot showing the differences of summarizing hourly departure
delay with median instead of mean.

You might also wonder about the mode, or the most common value. This is a
summary that works well only for very simple cases (which is why you might have
learned about it in high school), but it doesn’t work well for many real datasets. If
the data is discrete, there may be multiple most common values, and if the data is
continuous, there might be no most common value because every value is ever so
slightly different. For these reasons, the mode tends not to be used by statisticians,
and there’s no mode function included in base R.?

Minimum, Maximum, and Quantiles

What if you're interested in locations other than the center? min() and max() will give
you the largest and smallest values. Another powerful tool is quantile(), which is
a generalization of the median: quantile(x, ©.25) will find the value of x that is
greater than 25% of the values, quantile(x, 0.5) is equivalent to the median, and
quantile(x, 0.95) will find the value that’s greater than 95% of the values.

2 The mode() function does something quite different!

236 | Chapter 13: Numbers

https://rdrr.io/r/base/mode.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/stats/quantile.html

For the flights data, you might want to look at the 95% quantile of delays rather
than the maximum, because it will ignore the 5% of most delayed flights, which can
be quite extreme.

flights |>
group_by(year, month, day) |>
summarize(
max = max(dep_delay, na.rm = TRUE),
q95 = quantile(dep_delay, 0.95, na.rm = TRUE),
.groups = "drop"
)
#> # A tibble: 365 x 5
#> year month day max q95
#> <int> <int> <int> <dbl> <dbl>

#> 1 2013 1 1 853 70.1
#> 2 2013 1 2 379 85
#> 3 2013 1 3 291 68
#> 4 2013 1 4 288 60
#> 5 2013 1 5 327 41
#> 6 2013 1 6 202 51
#> # .. with 359 more rows

Spread

Sometimes youre not so interested in where the bulk of the data lies, but in how
it is spread out. Two commonly used summaries are the standard deviation, sd(x),
and the inter-quartile range, IQR(). We won't explain sd() here since you're probably
already familiar with it, but IQR() might be new—its quantile(x, 0.75) - quan
tile(x, 0.25) and gives you the range that contains the middle 50% of the data.

We can use this to reveal a small oddity in the flights data. You might expect the
spread of the distance between origin and destination to be zero, since airports are
always in the same place. But the following code reveals a data oddity for airport
EGE:

flights |>
group_by(origin, dest) |>
summarize(
distance_sd = IQR(distance),
n=n(),
.groups = "drop"
) |>
filter(distance_sd > 0)
#> # A tibble: 2 x 4

#> origin dest distance_sd n
#> <chr> <chr> <dbl> <int>
#> 1 EWR EGE 1 110
#> 2 JFK EGE 1 103

Numeric Summaries | 237

https://rdrr.io/r/stats/IQR.html
https://rdrr.io/r/stats/sd.html
https://rdrr.io/r/stats/IQR.html
https://oreil.ly/Zse1Q

Distributions

It's worth remembering that all of the summary statistics described earlier are a way
of reducing the distribution to a single number. This means they’re fundamentally
reductive, and if you pick the wrong summary, you can easily miss important differ-
ences between groups. That’s why it’s always a good idea to visualize the distribution
before committing to your summary statistics.

Figure 13-3 shows the overall distribution of departure delays. The distribution is so
skewed that we have to zoom in to see the bulk of the data. This suggests that the
mean is unlikely to be a good summary, and we might prefer the median instead.

200000 -
90000 -
150000 -
E £ 60000~
=)
3 100000 - 3
o]
50000 - 30000~
0 500 1000 -50 0 50 100
dep_delay dep_delay

Figure 13-3. (Left) The histogram of the full data is extremely skewed, making it hard to
get any details. (Right) Zooming into delays of less than two hours makes it possible to
see what’s happening with the bulk of the observations.

It’s also a good idea to check that distributions for subgroups resemble the whole.
In the following plot, 365 frequency polygons of dep_delay, one for each day, are
overlaid. The distributions seem to follow a common pattern, suggesting it’s fine to
use the same summary for each day.
flights |>
filter(dep_delay < 120) |>

ggplot(aes(x = dep_delay, group = interaction(day, month))) +
geom_fregpoly(binwidth = 5, alpha = 1/5)

238 | Chapter 13: Numbers

400 -

300~
1=
>
8

200 -

100 -

0 E.

]]]]
-50 0 50 100
dep_delay

Don’t be afraid to explore your own custom summaries specifically tailored for the
data that you're working with. In this case, that might mean separately summarizing
the flights that left early versus the flights that left late, or given that the values are
so heavily skewed, you might try a log transformation. Finally, don't forget what you
learned in “Case Study: Aggregates and Sample Size” on page 60: whenever creating
numerical summaries, it’s a good idea to include the number of observations in each

group.

Positions

There’s one final type of summary that’s useful for numeric vectors but also works
with every other type of value: extracting a value at a specific position: first(x),
last(x), and nth(x, n).

For example, we can find the first and last departure for each day:

flights |>
group_by(year, month, day) |>
summarize(
first_dep = first(dep_time, na_rm = TRUE),
fifth_dep = nth(dep_time, 5, na_rm = TRUE),
last_dep = last(dep_time, na_rm = TRUE)
)
#> “summarise()' has grouped output by 'vear', 'month'. You can override using
#> the “.groups' argument
#> # A tibble: 365 x 6
#> # Groups: year, month [12]

Numeric Summaries | 239

#> year month day first_dep fifth_dep las
#> <int> <int> <int> <int> <int>

#> 1 2013 1 1 517 554

#> 2 2013 1 2 42 535

#> 3 2013 1 3 32 520

#> 4 2013 1 4 25 531

#> 5 2013 1 5 14 534

#> 6 2013 1 6 16 555

#> # .. with 359 more rows

(Note that because dplyr functions use _ to separate components of function and
arguments names, these functions use na_rm instead of na.rm.)

If you're familiar with [, which we’ll come back to in “Selecting Multiple Elements
with [” on page 490, you might wonder if you ever need these functions. There are
three reasons: the default argument allows you to provide a default if the specified
position doesn't exist, the order_by argument allows you to locally override the order

t_dep
<int>
2356
2354
2349
2358
2357
2355

of the rows, and the na_rm argument allows you to drop missing values.

Extracting values at positions is complementary to filtering on ranks. Filtering gives
you all variables, with each observation in a separate row:

flights |>
group_by(year, month, day) |>
mutate(r = min_rank(sched_dep_time)) |>
filter(r %in% c(1, max(r)))

#> # A tibble: 1,195 x 20

#> # Groups: year, month, day [365]

#> year month day dep_time sched_dep_time dep_delay arr_time sched arr_time

#> <int> <int> <int> <int> <int> <dbl>

#> 1 2013 1 1 517 515 2

#> 2 2013 1 1 2353 2359 -6

#> 3 2013 1 1 2353 2359 -6

#> 4 2013 1 1 2356 2359 -3

#> 5 2013 1 2 42 2359 43

#> 6 2013 1 2 458 500 -2

#> # .. with 1,189 more rows, and 12 more variables: arr_delay <dbl>,
#> #

With mutate()

As the names suggest, the summary functions are typically paired with summarize().
However, because of the recycling rules we discussed in “Arithmetic and Recycling
Rules” on page 225, they can also be usefully paired with mutate(), particularly when

<int>
830
425
418
425
518
703

you want do some sort of group standardization. For example:

x [sum(x)
Calculates the proportion of a total.

(x - mean(x)) / sd(x)

<int>
819
445
442
437
442
650

carrier <chr>, flight <int>, tailnum <chr>, origin <chr>, dest <chr>, ..

Computes a Z-score (standardized to mean 0 and standard deviation 1).

240 | Chapter 13: Numbers

https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/mutate.html

(x - min(x)) / (max(x) - min(x))
Standardizes to range [0, 1].

x [first(x)
Computes an index based on the first observation.

Exercises

1. Brainstorm at least five ways to assess the typical delay characteristics of a group
of flights. When is mean() useful? When is median() useful? When might you
want to use something else? Should you use arrival delay or departure delay?
Why might you want to use data from planes?

2. Which destinations show the greatest variation in air speed?

3. Create a plot to further explore the adventures of EGE. Can you find any evi-
dence that the airport moved locations? Can you find another variable that might
explain the difference?

Summary

You're already familiar with many tools for working with numbers, and after reading
this chapter you now know how to use them in R. You also learned a handful of
useful general transformations that are commonly, but not exclusively, applied to
numeric vectors such as ranks and offsets. Finally, you worked through a number of
numeric summaries and discussed a few of the statistical challenges that you should
consider.

Over the next two chapters, we'll dive into working with strings with the stringr
package. Strings are a big topic, so they get two chapters, one on the fundamentals of
strings and one on regular expressions.

Summary | 241

https://rdrr.io/r/base/mean.html
https://rdrr.io/r/stats/median.html

CHAPTER 14
Strings

Introduction

So far, you've used a bunch of strings without learning much about the details. Now
it's time to dive into them, learn what makes strings tick, and master some of the
powerful string manipulation tools you have at your disposal.

We'll begin with the details of creating strings and character vectors. You’'ll then dive
into creating strings from data, then the opposite: extracting strings from data. We'll
then discuss tools that work with individual letters. The chapter finishes with func-
tions that work with individual letters and a brief discussion of where your expecta-
tions from English might steer you wrong when working with other languages.

We'll keep working with strings in the next chapter, where you’ll learn more about the
power of regular expressions.

Prerequisites

In this chapter, we'll use functions from the stringr package, which is part of the core
tidyverse. We'll also use the babynames data since it provides some fun strings to
manipulate.

library(tidyverse)

library(babynames)
You can quickly tell when you're using a stringr function because all stringr functions
start with str_. This is particularly useful if you use RStudio because typing str_ will
trigger autocomplete, allowing you to jog your memory of the available functions.

243

o str_c str_c(..., sep = "", collapse = NULL)

» str_conv To understand how str_c works, you need to imagine that you are
building up a matrix of strings. Each input argument forms a
column, and is expanded to the length of the longest argument,

» str_detect using the usual recyling rules. The sep string is inserted between
each column. If collapse is NULL each row is collapsed into a single

» str_count

» str_dup

VVVVVVVVYVY

string. If non-NULL that string is inserted at the end of each row,
» str_extract and the entire matrix collapsed to a single string.
& str_extract_all Press F1 for additional help
str_|

Creating a String

We created strings in passing earlier in the book but didn’t discuss the details. First,
you can create a string using either single quotes (') or double quotes ("). There’s no
difference in behavior between the two, so in the interest of consistency, the tidyverse
style guide recommends using ", unless the string contains multiple ".

stringl <- "This is a string"
string2 <- 'If I want to include a "quote" inside a string, I use single quotes'

If you forget to close a quote, you'll see +, the continuation prompt:
> "This is a string without a closing quote
+
+
+ HELP I'M STUCK IN A STRING

If this happens to you and you can't figure out which quote to close, press Escape to
cancel and try again.

Escapes

To include a literal single or double quote in a string, you can use \ to “escape” it:

double_quote <- "\"" # or '""
single_quote <- '\'' #or "'"

So if you want to include a literal backslash in your string, you’ll need to escape it:
ll\\ll;
backslash <- "\\"

Beware that the printed representation of a string is not the same as the string itself
because the printed representation shows the escapes (in other words, when you print
a string, you can copy and paste the output to re-create that string). To see the raw
contents of the string, use str_view():!

1 Or use the base R function writeLines().

244 | Chapter 14: Strings

https://rdrr.io/r/base/writeLines.html
https://oreil.ly/_zF3d
https://oreil.ly/_zF3d
https://stringr.tidyverse.org/reference/str_view.html

x <- c(single_quote, double_quote, backslash)

X
[1] win N‘Nn uHu

str_view(x)
#> [1] |
#>[2] | "
[3] | |

Raw Strings

Creating a string with multiple quotes or backslashes gets confusing quickly. To
illustrate the problem, let’s create a string that contains the contents of the code block
where we define the double_quote and single_quote variables:

tricky <- "double_quote <- \"\\\"\" # or "\"'

single_quote <- "\\'' # or \"'\""

str_view(tricky)

#> [1] | double_quote <- "\"" # or '"'

#> | single_quote <- '\'' # or "'"
That’s a lot of backslashes! (This is sometimes called leaning toothpick syndrome.) To
eliminate the escaping, you can instead use a raw string:>

tricky <- r'"(double_quote <- "\"" # or '"'

single_quote <- '\'' # or "'")"

str_view(tricky)

#> [1] | double_quote <- "\"" # or '"'

#> | single_quote <- '\'' # or "'"
A raw string usually starts with r"(and finishes with)". But if your string con-
tains)", you can instead use r"[]" or r"{}", and if that’s still not enough, you can
insert any number of dashes to make the opening and closing pairs unique, e.g.,

r'--()--",'r"---()---", etc. Raw strings are flexible enough to handle any text.

Other Special Characters

As well as \", \', and \\, there are a handful of other special characters that may
come in handy. The most common are \n, a new line, and \t, tab. Youll also
sometimes see strings containing Unicode escapes that start with \u or \U. This is
a way of writing non-English characters that work on all systems. You can see the
complete list of other special characters in ?Quotes.

x <- c("one\ntwo", "one\ttwo", "\ubOb5", "\UOOO1f604")
X

#> [1] "one|\ntwo" "one|ttwo" "u" "0L7 str_view(x)
#> [1] | one
#> | two

#> [2] | one{|t}two

2 Available in R 4.0.0 and newer.

CreatingaString | 245

https://oreil.ly/Fs-YL
https://rdrr.io/r/base/Quotes.html

[3] | u

#> [4] | OH
Note that str_view() uses a blue background for tabs to make them easier to spot.
One of the challenges of working with text is that there’s a variety of ways that
whitespace can end up in the text, so this background helps you recognize that
something strange is going on.

Exercises

1. Create strings that contain the following values:
a. He said "That's amazing!"
b. \a\b\c\d

¢ \\\\W

2. Create the following string in your R session and print it. What happens to the
special “\u00a0”? How does str_view() display it? Can you do a little Googling

to figure out what this special character is?
X <- "This\u@0a®is\uOOadtricky"

Creating Many Strings from Data

Now that you've learned the basics of creating a string or two by “hand,” well go into
the details of creating strings from other strings. This will help you solve the common
problem where you have some text you wrote that you want to combine with strings
from a data frame. For example, you might combine “Hello” with a name variable
to create a greeting. We'll show you how to do this with str_c() and str_glue()
and how you can use them with mutate(). That naturally raises the question of what
stringr functions you might use with summarize(), so well finish this section with a
discussion of str_flatten(), which is a summary function for strings.

str_c()

str_c() takes any number of vectors as arguments and returns a character vector:

str_c("x", "y")

#> [1] "xy"

str_c("x", "y", "z")

#> [1] "xyz"

str_c("Hello ", c("John", "Susan"))
#> [1] "Hello John" "Hello Susan"

str_c() is similar to the base paste@() but is designed to be used with mutate() by
obeying the usual tidyverse rules for recycling and propagating missing values:

df <- tibble(name = c("Flora", "David", "Terra", NA))
df |> mutate(greeting = str_c("Hi ", name, "!"))

246 | Chapter 14: Strings

https://stringr.tidyverse.org/reference/str_view.html
https://stringr.tidyverse.org/reference/str_view.html
https://stringr.tidyverse.org/reference/str_c.html
https://stringr.tidyverse.org/reference/str_glue.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/summarise.html
https://stringr.tidyverse.org/reference/str_flatten.html
https://stringr.tidyverse.org/reference/str_c.html
https://stringr.tidyverse.org/reference/str_c.html
https://rdrr.io/r/base/paste.html
https://dplyr.tidyverse.org/reference/mutate.html

#> # A tibble: 4 x 2
#> pame greeting
#> <chr> <chr>
1 Flora Hi Flora!
2 David Hi David!
#> 3 Terra Hi Terra!
4 <NA> <NA>

If you want missing values to display in another way, use coalesce() to replace them.
Depending on what you want, you might use it either inside or outside of str_c():

df |>
mutate(
greetingl = str_c("HiL ", coalesce(name, "you"), "!"),
greeting2 = coalesce(str_c("HiL ", name, "!"), "Hi!")

)
#> # A tibble: 4 x 3
#> name greetingl greeting2
#> <chr> <chr> <chr>
1 Flora Hi Flora! Hi Flora!
2 David Hi David! Hi David!
#> 3 Terra Hi Terra! Hi Terra!
4 <NA> Hi you! Hi!

str_glue()

If you are mixing many fixed and variable strings with str_c(), you’ll notice that
you type a lot of "s, making it hard to see the overall goal of the code. An alternative
approach is provided by the glue package via str_glue().® You give it a single string
that has a special feature: anything inside {} will be evaluated like it’s outside of the
quotes:

df |> mutate(greeting = str_glue("Hi {name}!"))

#> # A tibble: 4 x 2

#> pame greeting

#> <chr> <glue>

#> 1 Flora Hi Flora!

#> 2 David Hi1 David!

#> 3 Terra Hi Terra!

#> 4 <NA> Hi1 NA!
As you can see, str_glue() currently converts missing values to the string "NA",

unfortunately making it inconsistent with str_c().

You also might wonder what happens if you need to include a regular { or } in your
string. Youre on the right track if you guess you'll need to escape it somehow. The
trick is that glue uses a slightly different escaping technique: instead of prefixing with
a special character like \, you double up the special characters:

df |> mutate(greeting = str_glue("{{H1T {name}'}}"))
#> # A tibble: 4 x 2

3 If youre not using stringr, you can also access it directly with glue: :glue().

Creating Many Strings from Data | 247

https://glue.tidyverse.org/reference/glue.html
https://dplyr.tidyverse.org/reference/coalesce.html
https://stringr.tidyverse.org/reference/str_c.html
https://stringr.tidyverse.org/reference/str_c.html
https://oreil.ly/NHBNe
https://stringr.tidyverse.org/reference/str_glue.html
https://rdrr.io/r/base/Paren.html
https://stringr.tidyverse.org/reference/str_glue.html
https://stringr.tidyverse.org/reference/str_c.html

#> name greeting
#> <chr> <glue>
Flora {Hi Flora!}
David {Hi David!}
Terra {Hi Terra!}
<NA> {Hi NA!}

str_flatten()

H*
\
A WN R

str_c() and str_glue() work well with mutate() because their output is the same
length as their inputs. What if you want a function that works well with summarize(),
i.e., something that always returns a single string? That’s the job of str_flatten():*it
takes a character vector and combines each element of the vector into a single string:

str_flatten(c("x", "y", "z"))

#> [1] "xyz"

str_flatten(c("x", "y", "z"), ", ")
#> [1] "x, y, z"

str_flatten(c("x", "y", "z"), ", ", last = ", and ")

#> [1] "x, y, and z"

df <- tribble(
~ name, ~ fruit,
"Carmen", "banana",
"Carmen", "apple",
"Marvin", "nectarine",
"Terence", "cantaloupe",
"Terence", "papaya",
"Terence", "mandarin"

)

df |>
group_by(name) |>

summarize(fruits = str_flatten(fruit, ",

#> # A tibble: 3 x 2

#> name fruits

#> <chr> <chr>

#> 1 Carmen banana, apple

#> 2 Marvin nectarine

#> 3 Terence cantaloupe, papaya, mandarin

Exercises

This makes it work well with summarize():

"))

. Compare and contrast the results of paste@() with str_c() for the following

inputs:
str_c("hi ", NA)
str_c(letters[1:2], letters[1:3])

. What’s the difference between paste() and paste0()? How can you re-create the

equivalent of paste() with str_c()?

4 The base R equivalent is paste() used with the collapse argument.

| Chapter 14: Strings

https://rdrr.io/r/base/paste.html
https://stringr.tidyverse.org/reference/str_c.html
https://stringr.tidyverse.org/reference/str_glue.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/summarise.html
https://stringr.tidyverse.org/reference/str_flatten.html
https://dplyr.tidyverse.org/reference/summarise.html
https://rdrr.io/r/base/paste.html
https://stringr.tidyverse.org/reference/str_c.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html
https://rdrr.io/r/base/paste.html
https://stringr.tidyverse.org/reference/str_c.html

3. Convert the following expressions from str_c() to str_glue() or vice versa:

a. str_c("The price of ", food, " is ", price)
b. str_glue("I'm {age} years old and live in {country}")
c. str_c("\\section{", title, "}")

Extracting Data from Strings

It's common for multiple variables to be crammed together into a single string. In this
section, you'll learn how to use four tidyr functions to extract them:

o df |> separate_longer_delim(col, delim)
o df |> separate_longer_position(col, width)
e df |> separate_wider_delim(col, delim, names)

e df |> separate_wider_position(col, widths)

If you look closely, you can see there’s a common pattern here: separate_, then
longer or wider, then _, then delim or position. That’s because these four functions
are composed of two simpler primitives:

o Just like with pivot_longer() and pivot_wider(), _longer functions make the
input data frame longer by creating new rows, and _wider functions make the
input data frame wider by generating new columns.

o delim splits up a string with a delimiter like ", " or " "; position splits at
specified widths, like c(3, 5, 2).

We'll return to the last member of this family, separate_wider_regex(), in Chap-
ter 15. It's the most flexible of the wider functions, but you need to know something
about regular expressions before you can use it.

The following two sections will give you the basic idea behind these separate func-
tions, first separating into rows (which is a little simpler) and then separating into
columns. We'll finish off by discussing the tools that the wider functions give you to
diagnose problems.

Separating into Rows

Separating a string into rows tends to be most useful when the number of
components varies from row to row. The most common case is requiring sepa
rate_longer_delim() to split based on a delimiter:

dfl <- tibble(x = c("a,b,c", "d,e", "f"))
df1l |>

Extracting Data from Strings | 249

https://stringr.tidyverse.org/reference/str_c.html
https://stringr.tidyverse.org/reference/str_glue.html
https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://tidyr.tidyverse.org/reference/separate_longer_delim.html
https://tidyr.tidyverse.org/reference/separate_longer_delim.html

separate_longer_delim(x, delim = ",")
#> # A tibble: 6 x 1

#> X
#> <chr>
1 a
#> 2 b
#> 3 C
#> 4 d
5 e
#> 6 f

It’s rarer to see separate_longer_position() in the wild, but some older datasets do
use a compact format where each character is used to record a value:

df2 <- tibble(x = c("1211", "131", "21"))
df2 |>

separate_longer_position(x, width = 1)
#> # A tibble: 9 x 1
#> X
#> <chr>
#> 1
#> 2
#> 3
#> 4
#> 5
#> 6
#> #

Wk RKkRNR

. with 3 more rows

Separating into Columns

Separating a string into columns tends to be most useful when there are a fixed
number of components in each string, and you want to spread them into columns.
They are slightly more complicated than their longer equivalents because you need
to name the columns. For example, in the following dataset, x is made up of a code,
an edition number, and a year, separated by ".". To use separate_wider_delim(), we
supply the delimiter and the names in two arguments:

df3 <- tibble(x = c("al0.1.2022", "b10.2.2011", "e15.1.2015"))
df3 |>
separate_wider_delim(
X,
delim = ".",
names = c("code", "edition", "year")
)
#> # A tibble: 3 x 3
#> code edition year
#> <chr> <chr> <chr>

#> 1 a10 1 2022
#> 2 b1o 2 2011
#> 3 el5 1 2015

If a specific piece is not useful, you can use an NA name to omit it from the results:

df3 |>
separate_wider_delim(
X,

250 | Chapter 14: Strings

https://tidyr.tidyverse.org/reference/separate_longer_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html

delim = ,
names = c('"code", NA, "year")
)

#> # A tibble: 3 x 2

#> code year

#> <chr> <chr>

#> 1 a10 2022

#> 2 b10o 2011

#> 3 el5 2015

separate_wider_position() works a little differently because you typically want to
specify the width of each column. So you give it a named integer vector, where the
name gives the name of the new column, and the value is the number of characters it
occupies. You can omit values from the output by not naming them:

df4 <- tibble(x = c("202215TX", "202122LA", "202325CA"))
df4 |>
separate_wider_position(
X,
widths = c(year = 4, age = 2, state = 2)
)
#> # A tibble: 3 x 3
#> year age state
#> <chr> <chr> <chr>
#> 1 2022 15 X
#> 2 2021 22 LA
#> 3 2023 25 CA

Diagnosing Widening Problems

separate_wider_delim()® requires a fixed and known set of columns. What happens
if some of the rows don’t have the expected number of pieces? There are two possible
problems, too few or too many pieces, so separate_wider_delim() provides two
arguments to help: too_few and too_many. Let’s first look at the too_few case with the
following sample dataset:

df <- tibble(x = c("1-1-1", "1-1-2", "1-3", "1-3-2", "1"))

df |>
separate_wider_delim(
X,
delim =
names = c("x", "y", "z")
)
#> Error in ‘separate_wider_delim()":
#> | Expected 3 pieces in each element of ‘x'.
#> ! 2 values were too short.
#> 7 Use ‘too_few = "debug"' to diagnose the problem.
#> 7 Use ‘too_few = "align_start"/"align_end"" to silence this message.

5 The same principles apply to separate_wider_position() and separate_wider_regex().

Extracting Data from Strings | 251

https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html

You'll notice that we get an error, but the error gives us some suggestions on how you
might proceed. Let’s start by debugging the problem:

debug <- df |>
separate_wider_delim(
X,
delim = "-"

s
names = c("x", "y", "z"),
too_few = "debug"
)
#> Warning: Debug mode activated: adding variables ‘x_ok', ‘x_pieces', and
#> ‘x_remainder .

debug

#> # A tibble: 5 x 6

x y z x_ok x_pieces x_remainder
#> <chr> <chr> <chr> <lgl> <int> <chr>

#> 1 1-1-1 1 1 TRUE 3"

#> 2 1-1-2 1 2 TRUE 3"

#> 3 1-3 3 <NA> FALSE 2"

#> 4 1-3-2 3 2 TRUE 3"

#> 51 <NA> <NA> FALSE 1"

When you use the debug mode, you get three extra columns added to the output:
x_ok, x_pleces, and x_remainder (if you separate a variable with a different name,
you'll get a different prefix). Here, x_ok lets you quickly find the inputs that failed:

debug |> filter(!x_ok)
#> # A tibble: 2 x 6

X 3% z x_ok x_pieces x_remainder
#> <chr> <chr> <chr> <lgl> <int> <chr>

#> 1 1-3 3 <NA> FALSE 2"

21 <NA> <NA> FALSE 1"

x_pieces tells us how many pieces were found, compared to the expected three (the
length of names). x_remainder isn't useful when there are too few pieces, but we’ll see
it again shortly.

Sometimes looking at this debugging information will reveal a problem with your
delimiter strategy or suggest that you need to do more preprocessing before separat-
ing. In that case, fix the problem upstream and make sure to remove too_few =
"debug" to ensure that new problems become errors.

In other cases, you may want to fill in the missing pieces with NAs and move on. That’s
the job of too_few = "align_start" and too_few = "align_end", which allow you
to control where the NAs should go:

df |>
separate_wider_delim(
X,
delim = "-",

names = c("x", "y", "z"),
too_few = "align_start"
)
#> # A tibble: 5 x 3
#> X y z

252 | Chapter 14: Strings

#>
#>
#>
#>
#>
#>

<chr> <chr> <chr>
11 1 1
21 1 2
31 3 <NA>
4 1 3 2
51 <NA> <NA>

The same principles apply if you have too many pieces:

df <- tibble(x = c("1-1-1", "1-1-2", "1-3-5-6", "1-3-2", "1-3-5-7-9"))

df |>

#>
#>
#>
#>
#>

separate_wider_delim(

)

X,
delim ,
names = c("x", "y"

n_n

,"z")

Error in ‘separate_wider_delim() " :

! Expected 3 pieces in each element of ‘x°.

! 2 values were too long.

7 Use “too_many = "debug"' to diagnose the problenm.

7 Use ‘too_many = "drop"/"merge"' to silence this message.

But now, when we debug the result, you can see the purpose of x_remainder:

debug <- df |>
separate_wider_delim(
X,
delim = "-",
names = c("x", "y"
too_many = "debug"

)

. "z"),

#> Warning: Debug mode activated: adding variables ‘x_ok', ‘x_pieces’, and
#> ‘x_remainder .
debug |> filter(!x_ok)

#>

A tibble: 2 x 6

X y z x_ok x_pleces x_remainder
<chr> <chr> <chr> <lgl> <int> <chr>
11-3-5-6 3 5 FALSE 4 -6
2 1-3-5-7-9 3 5 FALSE 5 -7-9

You have a slightly different set of options for handling too many pieces: you can
either silently “drop” any additional pieces or “merge” them all into the final column:

df |>

separate_wider_delim(
X,
delim = "-",
names = c("x", "y",
too_many = "drop"

)

A tibble: 5 x 3
X y z
<chr> <chr> <chr>

11 1 1

21 1 2

31 3 5

4 1 3 2

51 3 5

"z"y
s

Extracting Data from Strings

253

df |>
separate_wider_delim(

X,

delim = "-",

names = c("x", "y", "z"),
too_many = "merge"

)
#> # A tibble: 5 x 3

#> X y z

#> <chr> <chr> <chr>
#> 11 1 1

#> 21 1 2

#> 31 3 5-6
41 3 2

#> 51 3 5-7-9

Letters

In this section, we'll introduce you to functions that allow you to work with the
individual letters within a string. You'll learn how to find the length of a string,
extract substrings, and handle long strings in plots and tables.

Length

str_length() tells you the number of letters in the string:

str_length(c("a", "R for data science", NA))

#> [1] 118 NA
You could use this with count() to find the distribution of lengths of US baby names
and then with filter() to look at the longest names, which happen to have 15
letters:®

babynames |>

count(length = str_length(name), wt = n)
#> # A tibble: 14 x 2

#> length n
#> <int> <int>
1 2 338150
#> 2 3 8589596
3 4 48506739
#> 4 5 87011607
5 6 90749404
#> 6 7 72120767
#> # .. with 8 more rows

babynames |>
filter(str_length(name) == 15) |[>
count(name, wt = n, sort = TRUE)
#> # A tibble: 34 x 2

6 Looking at these entries, wed guess that the babynames data drops spaces or hyphens and truncates after 15
letters.

254 | Chapter 14: Strings

https://stringr.tidyverse.org/reference/str_length.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/filter.html

#> name n
#> <chr> <int>

#> 1 Franciscojavier 123
#> 2 Christopherjohn 118
#> 3 Johnchristopher 118

Christophermich 52
Ryanchristopher 45

1
2
3
#> 4 Christopherjame 108
5
6
.. with 28 more rows

Subsetting

You can extract parts of a string using str_sub(string, start, end), where start
and end are the positions where the substring should start and end. The start and
end arguments are inclusive, so the length of the returned string will be end - start
+ 1:

x <- c("Apple", "Banana", "Pear")

str_sub(x, 1, 3)

[1] "App" "Ban" "Pea”
You can use negative values to count back from the end of the string: -1 is the last
character, -2 is the second to last character, etc.

str_sub(x, -3, -1)
#> [1] "ple" "ana" "ear

"

Note that str_sub() won't fail if the string is too short: it will just return as much as
possible:

str_sub("a", 1, 5)
[1] "a"

We could use str_sub() with mutate() to find the first and last letters of each name:

babynames |>
mutate(
first = str_sub(name, 1, 1),
last = str_sub(name, -1, -1)
)
#> # A tibble: 1,924,665 x 7

#> year sex name n prop first last
#> <dbl> <chr> <chr> <int> <dbl> <chr> <chr>
#> 1 1880 F Mary 7065 0.0724 M y

#> 2 1880 F Anna 2604 0.0267 A a

#> 3 1880 F Emma 2003 0.0205 E a

#> 4 1880 F Elizabeth 1939 0.0199 E h

#> 5 1880 F Minnie 1746 0.0179 M e

#> 6 1880 F Margaret 1578 0.0162 M t

#> # .. with 1,924,659 more rows

Exercises

1. When computing the distribution of the length of baby names, why did we use
wt = n?

Letters | 255

https://stringr.tidyverse.org/reference/str_sub.html
https://stringr.tidyverse.org/reference/str_sub.html
https://dplyr.tidyverse.org/reference/mutate.html

2. Use str_length() and str_sub() to extract the middle letter from each baby
name. What will you do if the string has an even number of characters?

3. Are there any major trends in the length of baby names over time? What about
the popularity of first and last letters?

Non-English Text

So far, we've focused on English language text, which is particularly easy to work
with for two reasons. First, the English alphabet is relatively simple: there are just
26 letters. Second (and maybe more important), the computing infrastructure we use
today was predominantly designed by English speakers. Unfortunately, we don’t have
room for a full treatment of non-English languages. Still, we wanted to draw your
attention to some of the biggest challenges you might encounter: encoding, letter
variations, and locale-dependent functions.

Encoding

When working with non-English text, the first challenge is often the encoding. To
understand what’s going on, we need to dive into how computers represent strings. In
R, we can get at the underlying representation of a string using charToRaw():
charToRaw("Hadley")
#> [1] 48 61 64 6¢ 65 79
Each of these six hexadecimal numbers represents one letter: 48 is H, 61 is a, and
so on. The mapping from hexadecimal number to character is the encoding, and in
this case, the encoding is called ASCII. ASCII does a great job of representing English
characters because it’s the American Standard Code for Information Interchange.

Things aren’t so easy for languages other than English. In the early days of comput-
ing, there were many competing standards for encoding non-English characters. For
example, there were two different encodings for Europe: Latinl (aka ISO-8859-1)
was used for Western European languages, and Latin2 (aka ISO-8859-2) was used
for Central European languages. In Latinl, the byte b1 is +, but in Latin2, its 3!
Fortunately, today there is one standard that is supported almost everywhere: UTF-8.
UTEF-8 can encode just about every character used by humans today and many extra
symbols like emojis.

readr uses UTF-8 everywhere. This is a good default but will fail for data produced
by older systems that don't use UTF-8. If this happens, your strings will look weird
when you print them. Sometimes just one or two characters might be messed up;

256 | Chapter 14: Strings

https://stringr.tidyverse.org/reference/str_length.html
https://stringr.tidyverse.org/reference/str_sub.html
https://rdrr.io/r/base/rawConversion.html

other times, youll get complete gibberish. For example, here are two inline CSVs
with unusual encodings:”

x1 <- "text\nEl Ni\xflo was particularly bad this year"
read_csv(x1)

#> # A tibble: 1 x 1

#> text

#> <chr>

#> 1 "El Ni\xflo was particularly bad this year"

x2 <- "text\n\x82\xb1\x82\xf1\x82\xc9\x82\xbf\x82\xcd"
read_csv(x2)

#> # A tibble: 1 x 1

#> text

#> <chr>

#> 1 "|x82\xb1\x82\xf1\x82|xc9\x82\xbf|x82\xcd"

To read these correctly, you specify the encoding via the locale argument:

read_csv(x1, locale = locale(encoding = "Latinl"))
#> # A tibble: 1 x 1

#> text

#> <chr>

#> 1 El Nino was particularly bad this year

read_csv(x2, locale = locale(encoding = "Shift-JIS"))
#> # A tibble: 1 x 1

#> text
#> <chr>
#> 1 CAICEIE

How do you find the correct encoding? If youre lucky, it'll be included somewhere
in the data documentation. Unfortunately, that’s rarely the case, so readr provides
guess_encoding() to help you figure it out. It's not foolproof and works better when
you have lots of text (unlike here), but it’s a reasonable place to start. Expect to try a
few different encodings before you find the right one.

Encodings are a rich and complex topic; we've only scratched the surface here. If
youd like to learn more, we recommend reading the detailed explanation.

Letter Variations

Working in languages with accents poses a significant challenge when determining
the position of letters (e.g., with str_length() and str_sub()) as accented letters
might be encoded as a single individual character (e.g., 1) or as two characters by
combining an unaccented letter (e.g., u) with a diacritic mark (e.g., 7). For example,
this code shows two ways of representing ii that look identical:

7 Here I'm using the special \x to encode binary data directly into a string.

Non-English Text | 257

https://readr.tidyverse.org/reference/encoding.html
https://oreil.ly/v8ZQf
https://stringr.tidyverse.org/reference/str_length.html
https://stringr.tidyverse.org/reference/str_sub.html

u <- c("\uoefc", "u\ud308")
str_view(u)
[1] |
[2] | i

But both strings differ in length, and their first characters are different:

str_length(u)

[1] 1 2

str_sub(u, 1, 1)

#> [1] "a" "u”
Finally, note that a comparison of these strings with == interprets these strings as
different, while the handy str_equal() function in stringr recognizes that both have
the same appearance:

u[[111 == u[[2]]
#> [1] FALSE

str_equal(u[[1]], u[[2]1])
#> [1] TRUE

Locale-Dependent Functions

Finally, there are a handful of stringr functions whose behavior depends on your
locale. A locale is similar to a language but includes an optional region specifier
to handle regional variations within a language. A locale is specified by a lower-
case language abbreviation, optionally followed by a _ and an uppercase region
identifier. For example, “en” is English, “en_GB” is British English, and “en_US”
is American English. If you don’t already know the code for your language, Wikipe-
dia has a good list, and you can see which are supported in stringr by looking at
stringi::stri_locale_list().

Base R string functions automatically use the locale set by your operating system.
This means that base R string functions do what you expect for your language, but
your code might work differently if you share it with someone who lives in a different
country. To avoid this problem, stringr defaults to English rules by using the “en”
locale and requires you to specify the locale argument to override it. Fortunately,
there are two sets of functions where the locale really matters: changing case and
sorting.

The rules for changing cases differ among languages. For example, Turkish has
two is: with and without a dot. Since they’re two distinct letters, they’re capitalized
differently:

str_to_upper(c("i", "1"))

#> [1] "I" "I"

str_to_upper(c("i", "1"), locale = "tr")
#> [1] nl‘—u HIH

258 | Chapter 14: Strings

https://stringr.tidyverse.org/reference/str_equal.html
https://oreil.ly/c1P2g
https://oreil.ly/c1P2g
https://rdrr.io/pkg/stringi/man/stri_locale_list.html

Sorting strings depends on the order of the alphabet, and the order of the alphabet
is not the same in every language!®* Here’s an example: in Czech, “ch” is a compound
letter that appears after h in the alphabet.

str_sort(c("a”, "C”, ”Ch", "h”, "Z”))

#> [1] "a" "c" "ch" "h" "z

str_sort(c("a”, "c", "ch", "h", "Z”), locale = ”CS”)
#> [1] "a" "c" "h" "ch" "z"

This also comes up when sorting strings with dplyr: :arrange(), which is why it also
has a locale argument.

Summary

In this chapter, you learned about some of the power of the stringr package such as
how to create, combine, and extract strings, and about some of the challenges you
might face with non-English strings. Now it’s time to learn one of the most important
and powerful tools for working with strings: regular expressions. Regular expressions
are a concise but expressive language for describing patterns within strings and are
the topic of the next chapter.

8 Sorting in languages that don’t have an alphabet, like Chinese, is more complicated still.

Summary | 259

https://dplyr.tidyverse.org/reference/arrange.html

CHAPTER 15
Reqular Expressions

Introduction

In Chapter 14, you learned a whole bunch of useful functions for working with
strings. This chapter will focus on functions that use regular expressions, a concise and
powerful language for describing patterns within strings. The term regular expression
is a bit of a mouthful, so most people abbreviate it to regex' or regexp.

The chapter starts with the basics of regular expressions and the most useful stringr
functions for data analysis. We'll then expand your knowledge of patterns and
cover seven important new topics (escaping, anchoring, character classes, shorthand
classes, quantifiers, precedence, and grouping). Next, well talk about some of the
other types of patterns that stringr functions can work with and the various “flags”
that allow you to tweak the operation of regular expressions. We'll finish with a
survey of other places in the tidyverse and base R where you might use regexes.

Prerequisites

In this chapter, we'll use regular expression functions from stringr and tidyr, both
core members of the tidyverse, as well as data from the babynames package:

library(tidyverse)
library(babynames)

Through this chapter, we'll use a mix of simple inline examples so you can get the
basic idea, the baby names data, and three character vectors from stringr:

o fruit contains the names of 80 fruits.

1 You can pronounce it with either a hard-g (“reg-x”) or a soft-g (“rej-x”).

261

 words contains 980 common English words.

« sentences contains 720 short sentences.

Pattern Basics

We'll use str_view() to learn how regex patterns work. We used str_view() in
the previous chapter to better understand a string versus its printed representation,
and now we'll use it with its second argument, a regular expression. When this is
supplied, str_view() will show only the elements of the string vector that match,
surrounding each match with <> and, where possible, highlighting the match in blue.

The simplest patterns consist of letters and numbers that match those characters
exactly:

str_view(fruit, "berry")
#> [6] | bil<berry>

#> [7] | black<berry>
#> [10] | blue<berry>
#> [11] | boysen<berry>
#> [19] | cloud<berry>
#> [21] | cran<berry>
#> ... and 8 more

Letters and numbers match exactly and are called literal characters. Most punctuation
characters, like ., +, *, [,], and ?, have special meanings® and are called metacharac-
ters. For example, . will match any character,® so "a." will match any string that

« »

contains an “a” followed by another character:

str_view(c("a", "ab", "ae", "bd", "ea", "eab"), "a.")
#> [2] | <ab>
#> [3] | <ae>
#> [6] | e<ab>

Or we could find all the fruits that contain an “a,” followed by three letters, followed

« »,

by an “e”:

str_view(fruit, "a...e")
#> [1] | <apple>

#> [7] | bl<ackbe>rry
#> [48] | mand<arine>
#> [51] | nect<arine>

#> [62] | pine<apple>
#> [64] | pomegr<anate>
#> ... and 2 more

Quantifiers control how many times a pattern can match:

2 You'll learn how to escape these special meanings in “Escaping” on page 269.

3 Well, any character apart from \n.

262 | Chapter 15: Regular Expressions

https://stringr.tidyverse.org/reference/str_view.html
https://stringr.tidyverse.org/reference/str_view.html
https://stringr.tidyverse.org/reference/str_view.html

« ? makes a pattern optional (i.e., it matches 0 or 1 times).
o +lets a pattern repeat (i.e., it matches at least once).

o * lets a pattern be optional or repeat (ie., it matches any number of times,
including 0).

ab? matches an "a", optionally followed by a "b".
str_view(c("a", "ab", "abb"), "ab?")

[1] | <a>

#> [2] | <ab>

#> [3] | <ab>b

ab+ matches an "a", followed by at least one "b".
str_view(c("a", "ab", "abb"), "ab+")

#> [2] | <ab>

#> [3] | <abb>

ab* matches an "a", followed by any number of "b'"s.
str_view(c("a", "ab", "abb"), "ab*")

#> [1] | <a>

#> [2] | <ab>

#> [3] | <abb>

Character classes are defined by [] and let you match a set of characters; e.g., [abcd]
matches “@”, “D”, “c”, or “d” You can also invert the match by starting with ~: [*abcd]
matches anything except “a”, “b’, “c”, or “d” We can use this idea to find the words
containing an “x” surrounded by vowels or a “y” surrounded by consonants:

str_view(words, "[aelou]x[aeiou]")
#> [284] | <exa>ct

#> [285] | <exa>mple

#> [288] | <exe>rcise

#> [289] | <exi>st

str_view(words, "[”aelou]y[”aeilou]")
#> [836] | <sys>tem

#> [901] | <typ>e

You can use alternation, |, to pick between one or more alternative patterns. For
» «

example, the following patterns look for fruits containing “apple,” “melon,” or “nut” or
a repeated vowel:

str_view(fruit, "apple|melon|nut")
#> [1] | <apple>

#> [13] | canary <melon>

#> [20] | coco<nut>

#> [52] | <nut>

#> [62] | pine<apple>

#> [72] | rock <melon>

#> ... and 1 more

str_view(fruit, "aalee|ii|oo|uu")
#> [9] | bl<oo>d orange

#> [33] | g<oo>seberry

#> [47] | lych<ee>

#> [66] | purple mangost<ee>n

Pattern Basics | 263

Regular expressions are very compact and use a lot of punctuation characters, so
they can seem overwhelming and hard to read at first. Don’t worry: you’ll get better
with practice, and simple patterns will soon become second nature. Let’s kick off that
process by practicing with some useful stringr functions.

Key Functions

Now that you understand the basics of regular expressions, let’s use them with some
stringr and tidyr functions. In the following section, you’ll learn how to detect the
presence or absence of a match, how to count the number of matches, how to replace
a match with fixed text, and how to extract text using a pattern.

Detect Matches

str_detect() returns a logical vector that is TRUE if the pattern matches an element
of the character vector and FALSE otherwise:

str_detect(c("a", "b", "c"), "[aeilou]")
#> [1] TRUE FALSE FALSE

Since str_detect() returns a logical vector of the same length as the initial vector,
it pairs well with filter(). For example, this code finds all the most popular names
containing a lowercase “x”:

babynames |>
filter(str_detect(name, "x")) |>
count(name, wt = n, sort = TRUE)

#> # A tibble: 974 x 2

#> name n

#> <chr> <int>

#> 1 Alexander 665492

#> 2 Alexis 399551

#> 3 Alex 278705
#> 4 Alexandra 232223
#> 5 Max 148787
#> 6 Alexa 123032

#> # .. with 968 more rows

We can also use str_detect() with summarize() by pairing it with sum() or mean():
sum(str_detect(x, pattern)) tells you the number of observations that match, and
mean(str_detect(x, pattern)) tells you the proportion that match. For example,
the following snippet computes and visualizes the proportion of baby names* that
contain “x,” broken down by year. It looks like they’ve radically increased in popular-
ity lately!

4 This gives us the proportion of names that contain an “x”; if you wanted the proportion of babies with a name
containing an X, youd need to perform a weighted mean.

264 | Chapter 15: Regular Expressions

https://stringr.tidyverse.org/reference/str_detect.html
https://stringr.tidyverse.org/reference/str_detect.html
https://dplyr.tidyverse.org/reference/filter.html
https://stringr.tidyverse.org/reference/str_detect.html
https://dplyr.tidyverse.org/reference/summarise.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/mean.html

babynames |>
group_by(year) |>
summarize(prop_x = mean(str_detect(name, "x"))) |>
ggplot(aes(x = year, y = prop_x)) +
geom_line()

0_mi------

0.012 I
“ I
o
o
) I

0.008 I

0.004 e !

1880 1920 1960 2000
year

There are two functions that are closely related to str_detect(): str_subset() and
str_which(). str_subset() returns a character vector containing only the strings
that match. str_which() returns an integer vector giving the positions of the strings
that match.

Count Matches

The next step up in complexity from str_detect() is str_count(): rather than a
true or false, it tells you how many matches there are in each string.

X <- c("apple", "banana", "pear")

str_count(x, "p")

[1] 20 1
Note that each match starts at the end of the previous match; i.e., regex matches never
overlap. For example, in "abababa", how many times will the pattern "aba" match?
Regular expressions say two, not three:

str_count("abababa", "aba")

#> [1] 2

str_view("abababa", "aba")
#> [1] | <aba>b<aba>

Key Functions | 265

https://stringr.tidyverse.org/reference/str_detect.html
https://stringr.tidyverse.org/reference/str_subset.html
https://stringr.tidyverse.org/reference/str_which.html
https://stringr.tidyverse.org/reference/str_subset.html
https://stringr.tidyverse.org/reference/str_which.html
https://stringr.tidyverse.org/reference/str_detect.html
https://stringr.tidyverse.org/reference/str_count.html

Its natural to use str_count() with mutate(). The following example uses
str_count() with character classes to count the number of vowels and consonants in
each name:

babynames |>
count(name) |>
mutate(
vowels = str_count(name, "[aeilou]l"),
consonants = str_count(name, "[”aelou]")
)
#> # A tibble: 97,310 x 4

#> name n vowels consonants
#> <chr> <int> <int> <int>
#> 1 Aaban 10 2 3
#> 2 Aabha 5 2 3
#> 3 Aabid 2 2 3
#> 4 Aabir 1 2 3
#> 5 Aabriella 5 4 5
#> 6 Aada 1 2 2

#> # .. with 97,304 more rows

If you look closely, you'll notice that there’s something off with our calculations:
“Aaban” contains three a’s, but our summary reports only two vowels. That’s because
regular expressions are case sensitive. There are three ways we could fix this:

o Add the wuppercase vowels to the character class: str_count(name,
"[aeiouAEIOU]").

o Tell the regular expression to ignore case: str_count(name, regex("[aeiou]",
ignore_case = TRUE)). We'll talk about more in “Regex Flags” on page 275.

o Use str_to_lower() to convert the names to lowercase:
str_count(str_to_lower(name), "[aeiou]").

This variety of approaches is pretty typical when working with strings—there are
often multiple ways to reach your goal, either by making your pattern more compli-
cated or by doing some preprocessing on your string. If you get stuck trying one
approach, it can often be useful to switch gears and tackle the problem from a
different perspective.

Since were applying two functions to the name, I think it’s easier to transform it first:

babynames |>
count(name) |>
mutate(
name = str_to_lower(name),
vowels = str_count(name, "[aeiou]"),
consonants = str_count(name, "[”aeilou]")
)
#> # A tibble: 97,310 x 4

#> name n vowels consonants
#> <chr> <int> <int> <int>
#> 1 aaban 10 3 2
#> 2 aabha 5 3 2

266 | Chapter 15: Regular Expressions

https://stringr.tidyverse.org/reference/str_count.html
https://dplyr.tidyverse.org/reference/mutate.html
https://stringr.tidyverse.org/reference/str_count.html
https://stringr.tidyverse.org/reference/case.html

#> 3 aabid 2 3 2
#> 4 aabir 1 3 2
#> 5 aabriella 5 5 4
#> 6 aada 1 3 1

#> # .. with 97,304 more rows

Replace Values

As well as detecting and counting matches, we can also modify them with
str_replace() and str_replace_all(). str_replace() replaces the first match,
and as the name suggests, str_replace_all() replaces all matches:

x <- c("apple", "pear", "banana")

str_replace_all(x, "[aeiou]", "-")

#> [1] "-ppl-" "p--r" "b-n-n-"
str_remove() and str_remove_all() are handy shortcuts for str_replace(x, pat
tern, ""):

x <- c("apple", "pear", "banana")

str_remove_all(x, "[aeiou]")

#> [1] "ppl" "pr" "bnn"
These functions are naturally paired with mutate() when doing data cleaning, and
you’ll often apply them repeatedly to peel off layers of inconsistent formatting.

Extract Variables

The last function we'll discuss uses regular expressions to extract data out of one
column into one or more new columns: separate_wider_regex(). It's a peer of
the separate_wider_position() and separate_wider_delim() functions that you
learned about in “Separating into Columns” on page 250. These functions live in tidyr
because they operate on (columns of) data frames, rather than individual vectors.

Let’s create a simple dataset to show how it works. Here we have some data derived
from babynames where we have the name, gender, and age of a bunch of people in a
rather weird format:

df <- tribble(

~str,
"<Sheryl>-F_34",
"<Kisha>-F_45",
"<Brandon>-N_33",
"<Sharon>-F_38",
"<Penny>-F_58",
"<Justin>-M_41",
"<Patricia>-F_84",

5 We wish we could reassure you that youd never see something this weird in real life, but unfortunately over
the course of your career you're likely to see much weirder!

Key Functions | 267

https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/reference/str_remove.html
https://stringr.tidyverse.org/reference/str_remove.html
https://dplyr.tidyverse.org/reference/mutate.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html

To extract this data using separate_wider_regex() we just need to construct a
sequence of regular expressions that match each piece. If we want the contents of that
piece to appear in the output, we give it a name:

df |>
separate_wider_regex(
str,
patterns = c(
e
name = "[A-Za-z]+",
et
gender = ".", "_",
age = "[0-9]+"
)
)
#> # A tibble: 7 x 3
#> name gender age
#> <chr> <chr> <chr>

#> 1 Sheryl F 34
#> 2 Kisha F 45
#> 3 Brandon N 33
#> 4 Sharon F 38
#> 5 Penny F 58
#> 6 Justin M 41

#> # .. with 1 more row

If the match fails, you can use too_short = "debug" to figure out what went wrong,
just like separate_wider_delim() and separate_wider_position().

Exercises

1. What baby name has the most vowels? What name has the highest proportion of
vowels? (Hint: What is the denominator?)

2. Replace all forward slashes in "a/b/c/d/e" with backslashes. What happens
if you attempt to undo the transformation by replacing all backslashes with
forward slashes? (We'll discuss the problem very soon.)

3. Implement a simple version of str_to_lower() using str_replace_all().

4. Create a regular expression that will match telephone numbers as commonly
written in your country.

Pattern Details

Now that you understand the basics of the pattern language and how to use it with
some stringr and tidyr functions, it’s time to dig into more of the details. First, we'll
start with escaping, which allows you to match metacharacters that would otherwise
be treated specially. Next, you'll learn about anchors, which allow you to match the
start or end of the string. Then, you'll more learn about character classes and their
shortcuts, which allow you to match any character from a set. Next, you'll learn

268 | Chapter 15: Regular Expressions

https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://stringr.tidyverse.org/reference/case.html
https://stringr.tidyverse.org/reference/str_replace.html

the final details of quantifiers, which control how many times a pattern can match.
Then, we have to cover the important (but complex) topic of operator precedence and
parentheses. And we'll finish off with some details of grouping components of the
pattern.

The terms we use here are the technical names for each component. Theyre not
always the most evocative of their purpose, but it’s helpful to know the correct terms
if you later want to google for more details.

Escaping

To match a literal ., you need an escape, which tells the regular expression to match
metacharacters® literally. Like strings, regexps use the backslash for escaping. So, to
match a ., you need the regexp \.. Unfortunately, this creates a problem. We use
strings to represent regular expressions, and \ is also used as an escape symbol in
strings. So to create the regular expression \., we need the string "\\.", as the
following example shows:

To create the regular expression |., we need to use ||.
dot <- "\\."

But the expression itself only contains one |
str_view(dot)

#> [1] | .

And this tells R to look for an explicit .

str_view(c("abc", "a.c", "bef"), "a\\.c")

#> [2] | <a.c>
In this book, we'll usually write regular expression without quotes, like \.. If we need
to emphasize what you’ll actually type, we'll surround it with quotes and add extra
escapes, like "\\.".

If \ is used as an escape character in regular expressions, how do you match a literal
\? Well, you need to escape it, creating the regular expression \\. To create that
regular expression, you need to use a string, which also needs to escape \. That means
to match a literal \ you need to write "\\\\"—you need four backslashes to match
one!

x <- "a\\b"

str_view(x)

#> [1] | a\b

str_view(x, "\\\\")

#> [1] | a<\>b
Alternatively, you might find it easier to use the raw strings you learned about in
“Raw Strings” on page 245. That lets you avoid one layer of escaping:

6 The complete set of metacharacters is . ~$\ | *+2{}[1().

Pattern Details | 269

str_view(x, r"{\\}")
#> [1] | a<|>b

If you're trying to match a literal ., $, |, *,+, 2, {, }, (,), theré’s an alternative to using

a backslash escape. You can use a character class: [.], [$], [|], ... all match the literal
values:

" woon

str_view(c("abc", "a.c", "a*c
#> [2] | <a.c>
str_view(c("abc", "a.c", "a*c", "a c"), ".[*]c")
#> [3] | <a*c>

", a), "alde)

Anchors

By default, regular expressions will match any part of a string. If you want to match at
the start or end you need to anchor the regular expression using » to match the start
or $ to match the end:

str_view(fruit, "~a")
#> [1] | <a>pple

#> [2] | <a>pricot
#> [3] | <a>vocado
str_view(fruit, "as")
#> [4] | banan<a>
#> [15] | cherimoy<a>
#> [30] | feijo<a>
#> [36] | guav<a>

#> [56] | papay<a>
#> [74] | satsum<a>

It’s tempting to think that $ should match the start of a string, because that’s how we
write dollar amounts, but that’s not what regular expressions want.

To force a regular expression to match only the full string, anchor it with both »

and $:

str_view(fruit, "apple")
#> [1] | <apple>

#> [62] | pine<apple>
str_view(fruit, "~apples")
#> [1] | <apple>

You can also match the boundary between words (i.e., the start or end of a word)
with \b. This can be particularly useful when using RStudios find and replace tool.
For example, to find all uses of sum(), you can search for \bsum\b to avoid matching
summarize, summary, rowsum, and so on:

x <- c("summary(x)", "summarize(df)", "rowsum(x)", "sum(x)")
str_view(x, "sum")

#> [1] | <sum>mary(x)

#> [2] | <sum>marize(df)

#> [3] | row<sum>(x)

#> [4] | <sum>(x)

str_view(x, "\\bsum\\b")

#> [4] | <sum>(x)

270 | Chapter 15: Regular Expressions

https://rdrr.io/r/base/sum.html

When used alone, anchors will produce a zero-width match:

str_view("abc", c("$", "~", "\\b"))
#> [1] | abc<>

#> [2] | <>abc

#> [3] | <>abc<>

This helps you understand what happens when you replace a standalone anchor:

str_replace_all("abc", c("$", "~", "\\b"), "--")
#> [1] "abc--" "--abc" "--abc--"
Character Classes

A character class, or character set, allows you to match any character in a set. As we

«_ » «p »

discussed, you can construct your own sets with [], where [abc] matches “a,” “b,” or

« » «_» o« » «_»

¢” and [~abc] matches any character except “a,” “b,” or “c” Apart from ~ there are
two other characters that have special meaning inside []:

o - defines a range; e.g., [a-z] matches any lowercase letter, and [0-9] matches
any number.

« \ escapes special characters, so [*\-\]] matches #, -, or].

Here are a few examples:

X <- "abcd ABCD 12345 -!@#%."
str_view(x, "[abc]+")

#> [1] | <abc>d ABCD 12345 -!@#%.
str_view(x, "[a-z]+")

#> [1] | <abcd> ABCD 12345 -!@#%.
str_view(x, "[*a-z0-9]+")

#> [1] | abcd< ABCD >12345< -!1@#%.>

You need an escape to match characters that are otherwise

special inside of []

str_view("a-b-c", "[a-c]")

#> [1] | <a>--<c>

str_view("a-b-c", "[a\\-c]")

#> [1] | <a><->b<-><c>
Some character classes are used so commonly that they get their own shortcut. You've
already seen ., which matches any character apart from a newline. There are three

other particularly useful pairs:”

« \d matches any digit.
\D matches anything that isn’t a digit.

7 Remember, to create a regular expression containing \d or \s, you’ll need to escape the \ for the string, so
you'll type "\\d" or "\\s".

Pattern Details | 271

« \s matches any whitespace (e.g., space, tab, newline).
\S matches anything that isn't whitespace.

« \w matches any “word” character, i.e., letters and numbers.
\W matches any “nonword” character.

The following code demonstrates the six shortcuts with a selection of letters, num-
bers, and punctuation characters:
X <- "abcd ABCD 12345 -!@#%."
str_view(x, "\\d+")
#> [1] | abcd ABCD <12345> -!@#%.
str_view(x, "\\D+")
#> [1] | <abcd ABCD >12345< -1@#%.>
str_view(x, "\\s+")
#> [1] | abcd< >ABCD< >12345< >-!1@#%.
str_view(x, "\\S+")
#> [1] | <abcd> <ABCD> <12345> <-!@#%.>
str_view(x, "\\w+")
#> [1] | <abcd> <ABCD> <12345> -!@#%.
str_view(x, "\\W+")
#> [1] | abcd< >ABCD< >12345< -!@#%.>

Quantifiers

Quantifiers control how many times a pattern matches. In “Pattern Basics” on page
262 you learned about ? (0 or 1 matches), + (1 or more matches), and * (0 or more
matches). For example, colou?r will match American or British spelling, \d+ will
match one or more digits, and \s? will optionally match a single item of whitespace.
You can also specify the number of matches precisely with {}:

« {n} matches exactly n times.
o {n,} matches at least n times.

o {n,m} matches between n and m times.

Operator Precedence and Parentheses

« » «]»

What does ab+ match? Does it match “a” followed by one or more “b’s, or does it
match “ab” repeated any number of times? What does ~a|b$ match? Does it match
the complete string a or the complete string b, or does it match a string starting with a
or a string ending with b?

The answer to these questions is determined by operator precedence, similar to the
PEMDAS or BEDMAS rules you might have learned in school. You know thata + b
* cisequivalenttoa + (b * c) not (a + b) * c because * has higher precedence
and + has lower precedence: you compute * before +.

272 | Chapter 15: Regular Expressions

https://rdrr.io/r/base/Paren.html

Similarly, regular expressions have their own precedence rules: quantifiers have high
precedence, and alternation has low precedence, which means that ab+ is equivalent
to a(b+), and 7a|b$ is equivalent to (~a)|(b$). Just like with algebra, you can
use parentheses to override the usual order. But unlike algebra, youre unlikely to
remember the precedence rules for regexes, so feel free to use parentheses liberally.

Grouping and Capturing

As well as overriding operator precedence, parentheses have another important effect:
they create capturing groups that allow you to use subcomponents of the match.

The first way to use a capturing group is to refer to it within a match with a back
reference: \1 refers to the match contained in the first parenthesis, \2 in the second
parenthesis, and so on. For example, the following pattern finds all fruits that have a
repeated pair of letters:

str_view(fruit, "(..)\\1")
#> [4] | b<anan>a

#> [20] | <coco>nut

#> [22] | <cucusmber
#> [41] | <jujusbe

#> [56] | <papa>ya

#> [73] | s<alal> berry

This one finds all words that start and end with the same pair of letters:

str_view(words, "~(..).*\\1$")
#> [152] | <church>

#> [217] | <decide>

#> [617] | <photograph>

#> [699] | <require>

#> [739] | <sense>

You can also use back references in str_replace(). For example, this code switches
the order of the second and third words in sentences:

sentences |>
str_replace("(\\w+) (\\w+) (\\w+)", "\\1 \\3 \\2") |>
str_view()

#> [1] | The canoe birch slid on the smooth planks.

#> [2] | Glue sheet the to the dark blue background.

#> [3] | It's to easy tell the depth of a well.

#> [4] | These a days chicken leg is a rare dish.

#> [5] | Rice often is served in round bowls.

#> [6] | The of juice lemons makes fine punch.

#> ... and 714 more

If you want to extract the matches for each group, you can use str_match(). But
str_match() returns a matrix, so it’s not particularly easy to work with:®

8 Mostly because we never discuss matrices in this book!

Pattern Details | 273

https://stringr.tidyverse.org/reference/str_replace.html
https://stringr.tidyverse.org/reference/str_match.html
https://stringr.tidyverse.org/reference/str_match.html

sentences |>
str_match("the (\\w+) (\\w+)") [>

head()

#> [,1] [.2] [,3]

#> [1,] "the smooth planks" "smooth" "planks"
#> [2,] "the sheet to" "sheet" "to"

#> [3,] "the depth of" "depth" "of"

#> [4,] NA NA NA

[5,] NA NA NA

#> [6,] NA NA NA

You could convert to a tibble and name the columns:

sentences |>
str_match("the (\\w+) (\\w+)") |>
as_tibble(.name_repair = "minimal") |>
set_names("match", "word1", "word2")
#> # A tibble: 720 x 3

#> match wordl word2
#> <chr> <chr> <chr>
#> 1 the smooth planks smooth planks
#> 2 the sheet to sheet to

#> 3 the depth of depth of

#> 4 <NA> <NA> <NA>
#> 5 <NA> <NA> <NA>
#> 6 <NA> <NA> <NA>
#> # .. with 714 more rows

But then you've basically re-created your own version of separate_wider_regex().
Indeed, behind the scenes, separate_wider_regex() converts your vector of patterns
to a single regex that uses grouping to capture the named components.

Occasionally, you’ll want to use parentheses without creating matching groups. You
can create a noncapturing group with (?:).

x <- c("a gray cat", "a grey dog")
str_match(x, "gr(ela)y")

#> [,1] [,2]

#> [1,] "gray" "a"

#> [2,] "grey" "e
str_match(x, "gr(?:ela)y")
#> [,1]

#> [1,] "gray"

[2,] "grey"

"

Exercises

1. How would you match the literal string " '\? How about "$$"?
2. Explain why each of these patterns don't match a \: "\", "\\", "\\\".

3. Given the corpus of common words in stringr::words, create regular expres-
sions that find all words that:

«_ »

a. Start with “y’

«_ »

b. Don't start with “y:

274 | Chapter 15: Regular Expressions

https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://stringr.tidyverse.org/reference/stringr-data.html

End with “x”

oo

Are exactly three letters long. (Don’t cheat by using str_length()!)
Have seven letters or more.

Contain a vowel-consonant pair.

Q -~ o

Contain at least two vowel-consonant pairs in a row.
h. Only consist of repeated vowel-consonant pairs.

4. Create 11 regular expressions that match the British or American spellings
for each of the following words: airplane/aeroplane, aluminum/aluminium,
analog/analogue, ass/arse, center/centre, defense/defence, donut/doughnut, gray/
grey, modeling/modelling, skeptic/sceptic, summarize/summarise. Try to make
the shortest possible regex!

5. Switch the first and last letters in words. Which of those strings are still words?

6. Describe in words what these regular expressions match (read carefully to see if
each entry is a regular expression or a string that defines a regular expression):

a. ~*S$

“\\{ N\

c. \d{4}-\d{2}-\d{2}
d. "\\\\{4}"

e. \..\..\..

f. (.)\1\1

g "o\

7. Solve the beginner regexp crosswords.

o

Pattern Control

It’s possible to exercise extra control over the details of the match by using a pattern
object instead of just a string. This allows you to control the so-called regex flags and
match various types of fixed strings, as described next.

Regex Flags

A number of settings can be used to control the details of the regexp. These settings
are often called flags in other programming languages. In stringr, you can use them
by wrapping the pattern in a call to regex(). The most useful flag is probably
ignore_case = TRUE because it allows characters to match either their uppercase or
lowercase forms:

Pattern Control | 275

https://stringr.tidyverse.org/reference/str_length.html
https://oreil.ly/Db3NF
https://stringr.tidyverse.org/reference/modifiers.html

bananas <- c("banana", "Banana", "BANANA")
str_view(bananas, "banana")

#> [1] | <banana>

str_view(bananas, regex("banana", ignore_case = TRUE))
#> [1] | <banana>

#> [2] | <Banana>

#> [3] | <BANANA>

If youre doing a lot of work with multiline strings (i.e., strings that contain \n),
dotall and multiline may also be useful:

o dotall = TRUE lets . match everything, including \n:
x <- "Line 1\nLine 2\nLine 3"
str_view(x, ".Line")
str_view(x, regex(".Line", dotall = TRUE))
#> [1] | Line 1<
#> | Line> 2<
#> | Line> 3

o multiline = TRUE makes » and $ match the start and end of each line rather
than the start and end of the complete string:

x <- "Line 1\nLine 2\nLine 3"

str_view(x, "ALine")

#> [1] | <Line> 1

#> | Line 2

#> | Line 3

str_view(x, regex("~Line", multiline = TRUE))
#> [1] | <Line> 1

#> | <Line> 2

#> | <Line> 3

Finally, if youre writing a complicated regular expression and youre worried you
might not understand it in the future, you might try comments = TRUE. It tweaks the
pattern language to ignore spaces and new lines, as well as everything after #. This
allows you to use comments and whitespace to make complex regular expressions
more understandable,’ as in the following example:

phone <- regex(

r(
\(? # optional opening parens
(\d{3}) # area code
[D\-1? # optional closing parens or dash
\ ? # optional space
(\d{3}) # another three numbers
[\ -1? # optional space or dash
(\d{4}) # four more numbers
",

comments = TRUE

)

str_extract(c("514-791-8141", "(123) 456 7890", "123456"), phone)
#> [1] "514-791-8141" "(123) 456 7890" NA

9 comments = TRUE is particularly effective in combination with a raw string, as we use here.

276 | Chapter 15: Regular Expressions

If youre using comments and want to match a space, newline, or #, you'll need to
escape it with \.

Fixed Matches

You can opt out of the regular expression rules by using fixed():

str_view(c("", "a", "."), fixed("."))
#> [3] | <.>

fixed() also gives you the ability to ignore case:

str_view("x X", "X")

[1] | x <X>

str_view("x X", fixed("X", ignore_case = TRUE))

[1] | <x> <x>
If youre working with non-English text, you will probably want coll() instead of
fixed(), as it implements the full rules for capitalization as used by the locale you
specity. See “Non-English Text” on page 256 for more details on locales.

str_view("i I 1 I", fixed("I", ignore_case = TRUE))

#>[1] | i <> 1 I

str_view("i I 1 I", coll("I", ignore_case = TRUE, locale = "tr"))
#> [1] | <i> <I> 1 I

Practice

To put these ideas into practice, we'll solve a few semi-authentic problems next. We'll
discuss three general techniques:

o Checking your work by creating simple positive and negative controls
« Combining regular expressions with Boolean algebra

« Creating complex patterns using string manipulation

Check Your Work

First, lets find all sentences that start with “The” Using the ~ anchor alone is not
enough:

str_view(sentences, "~The")

#> [1] | <The> birch canoe slid on the smooth planks.
#> [4] | <The>se days a chicken leg is a rare dish.
#> [6] | <The> juice of lemons makes fine punch.

#> [7] | <The> box was thrown beside the parked truck.
#> [8] | <The> hogs were fed chopped corn and garbage.
#> [11] | <The> boy was there when the sun rose.

#> ... and 271 more

Practice | 277

https://stringr.tidyverse.org/reference/modifiers.html
https://stringr.tidyverse.org/reference/modifiers.html
https://stringr.tidyverse.org/reference/modifiers.html
https://stringr.tidyverse.org/reference/modifiers.html

That pattern also matches sentences starting with words like They or These. We need

« »

to make sure that the “e” is the last letter in the word, which we can do by adding a
word boundary:

str_view(sentences, "~The\\b")

#> [1] | <The> birch canoe slid on the smooth planks.

#> [6] | <The> juice of lemons makes fine punch.

#> [7] | <The> box was thrown beside the parked truck.

#> [8] | <The> hogs were fed chopped corn and garbage.

#> [11] | <The> boy was there when the sun rose.

#> [13] | <The> source of the huge river is the clear spring.
#> ... and 250 more

What about finding all sentences that begin with a pronoun?

str_view(sentences, "~She|He|It|They\\b")

#> [3] | <It>'s easy to tell the depth of a well.

#> [15] | <He>lp the woman get back to her feet.

#> [27] | <He>r purse was full of useless trash.

#> [29] | <It> snowed, rained, and hailed the same morning.
#> [63] | <He> ran half way to the hardware store.

#> [90] | <He> lay prone and hardly moved a limb.

#> ... and 57 more

A quick inspection of the results shows that were getting some spurious matches.
That’s because we've forgotten to use parentheses:

str_view(sentences, "~(She|He|It|They)\\b")

#> [3] | <It>'s easy to tell the depth of a well.

#> [29] | <It> snowed, rained, and hailed the same morning.

#> [63] | <He> ran half way to the hardware store.

#> [90] | <He> lay prone and hardly moved a limb.

#> [116] | <He> ordered peach pie with ice cream.

#> [127] | <It> caught its hind paw in a rusty trap.

#> ... and 51 more
You might wonder how you might spot such a mistake if it didn’t occur in the first
few matches. A good technique is to create a few positive and negative matches and
use them to test that your pattern works as expected:

pos <- c("He is a boy", "She had a good time")
neg <- c("Shells come from the sea", "Hadley said 'It's a great day'")

pattern <- "~(She|He|It|They)\\b"

str_detect(pos, pattern)

#> [1] TRUE TRUE

str_detect(neg, pattern)

#> [1] FALSE FALSE
Its typically much easier to come up with good positive examples than negative
examples, because it takes a while before you're good enough with regular expressions
to predict where your weaknesses are. Nevertheless, they're still useful: as you work
on the problem, you can slowly accumulate a collection of your mistakes, ensuring

that you never make the same mistake twice.

278 | Chapter 15: Regular Expressions

Boolean Operations

Imagine we want to find words that contain only consonants. One technique is to
create a character class that contains all letters except for the vowels ([*aeiou]), then
allow that to match any number of letters ([~aeiou]+), and then force it to match the
whole string by anchoring to the beginning and the end (*[*aetou]+$):

str_view(words, "~[“aeilou]+$")

#> [123] | <by>

#> [249] | <dry>

#> [328] | <fly>

#> [538] | <mrs>

#> [895] | <try>

#> [952] | <why>
But you can make this problem a bit easier by flipping the problem around. Instead
of looking for words that contain only consonants, we could look for words that don’t
contain any vowels:

str_view(words[!str_detect(words, "[aeilou]")])

#> [1] | by
#> [2] | dry
#> [3] | fly
#> [4] | mrs
#> [5] | try
#> [6] | why

This is a useful technique whenever youre dealing with logical combinations, par-
ticularly those involving “and” or “not” For example, imagine if you want to find

« »

all words that contain “a” and “b” There’s no “and” operator built in to regular

« »

expressions, so we have to tackle it by looking for all words that contain an “a

« »

followed by a “b,” or a “b” followed by an “a”:

str_view(words, "a.*b|b.*a")
#> [2] | <ab>le

#> [3] | <ab>out

#> [4] | <ab>solute

#> [62] | <availab>le

#> [66] | <ba>by

#> [67] | <ba>ck

#> ... and 24 more

It’s simpler to combine the results of two calls to str_detect():

words[str_detect(words, "a") & str_detect(words, "b")]

#> [1] "able" "about" "absolute" "available" "baby" "back"

#> [7] "bad" "bag" "balance" "ball" "bank" "bar"

#> [13] "base" "basis" "bear" "beat" "beauty" "because”
#> [19] "black" "board" "boat" "break" "brilliant" "britain"
#> [25] "debate" "husband" "labour" "maybe" "probable" "table"

What if we wanted to see if there was a word that contains all vowels? If we did it with
patterns, wed need to generate 5! (120) different patterns:

Practice | 279

https://stringr.tidyverse.org/reference/str_detect.html

words[str_detect(words, "a.*e.*1.*0.*u")]
...
words[str_detect(words, "u.*o.*i.*e.*a")]

It's much simpler to combine five calls to str_detect():

words[
str_detect(words, "a'
str_detect(words, "e'
str_detect(words, "i'
str_detect(words, "o'
str_detect(words, "u'

]
#> character(0)

c o &0 o
[N NN
2 @0 o o

In general, if you get stuck trying to create a single regexp that solves your problem,
take a step back and think if you could break the problem down into smaller pieces,
solving each challenge before moving onto the next one.

Creating a Pattern with Code

What if we wanted to find all sentences that mention a color? The basic idea is
simple: we just combine alternation with word boundaries:

str_view(sentences, "\\b(red|green|blue)\\b")

#> [2] | Glue the sheet to the dark <blue> background.

#> [26] | Two <blue> fish swam in the tank.

#> [92] | A wisp of cloud hung in the <blue> air.

#> [148] | The spot on the blotter was made by <green> ink.
#> [160] | The sofa cushion is <red> and of light weight.

#> [174] | The sky that morning was clear and bright <blue>.
#> ... and 20 more

But as the number of colors grows, it would quickly get tedious to construct this
pattern by hand. Wouldn't it be nice if we could store the colors in a vector?

rgb <- c("red", "green", "blue")

Well, we can! Wed just need to create the pattern from the vector using str_c() and
str_flatten():

str_c("\\b(", str_flatten(rgb, "|"), ")\\b")
#> [1] "\\b(red/green[blue)\\b"

We could make this pattern more comprehensive if we had a good list of colors. One
place we could start from is the list of built-in colors that R can use for plots:

str_view(colors())

#> [1] | white

#> [2] | aliceblue

#> [3] | antiquewhite
#> [4] | antiquewhitel
#> [5] | antiquewhite2
#> [6] | antiquewhite3
#> ... and 651 more

But let’s first eliminate the numbered variants:

280 | Chapter 15: Regular Expressions

https://stringr.tidyverse.org/reference/str_detect.html
https://stringr.tidyverse.org/reference/str_c.html
https://stringr.tidyverse.org/reference/str_flatten.html

cols <- colors()

cols <- cols[!str_detect(cols, "\\d")]
str_view(cols)

#> [1] | white

#> [2] | aliceblue

#> [3] | antiquewhite
#> [4] | aquamarine
#> [5] | azure

#> [6] | beige

#> ... and 137 more

Then we can turn this into one giant pattern. We won’t show the pattern here because
it’s huge, but you can see it working:

pattern <- str_c("\\b(", str_flatten(cols, "|"), ")\\b")

str_view(sentences, pattern)

#> [2] | Glue the sheet to the dark <blue> background.

#> [12] | A rod is used to catch <pink> <salmon>.

#> [26] | Two <blue> fish swam in the tank.

#> [66] | Cars and busses stalled in <snow> drifts.

#> [92] | A wisp of cloud hung in the <blue> air.

#> [112] | Leaves turn <brown> and <yellow> in the fall.

#> ... and 57 more
In this example, cols contains only numbers and letters, so you don’t need to worry
about metacharacters. But in general, whenever you create patterns from existing

strings, it'’s wise to run them through str_escape() to ensure they match literally.

Exercises

1. For each of the following challenges, try solving them by using both a single
regular expression and a combination of multiple str_detect() calls:

a. Find all words that start or end with x.
b. Find all words that start with a vowel and end with a consonant.
c. Are there any words that contain at least one of each different vowel?

2. Construct patterns to find evidence for and against the rule “i before e except
after ¢”

3. colors() contains a number of modifiers like “lightgray” and “darkblue” How
could you automatically identify these modifiers? (Think about how you might
detect and then remove the colors that are modified.)

4. Create a regular expression that finds any base R dataset. You can get a list of
these datasets via a special use of the data() function: data(package = "data
sets")Sresults[, "Item"]. Note that a number of old datasets are individual
vectors; these contain the name of the grouping “data frame” in parentheses, so
you’ll need to strip them off.

Practice | 281

https://stringr.tidyverse.org/reference/str_escape.html
https://stringr.tidyverse.org/reference/str_detect.html
https://rdrr.io/r/grDevices/colors.html
https://rdrr.io/r/utils/data.html

Regular Expressions in Other Places

Just like in the stringr and tidyr functions, there are many other places in R where
you can use regular expressions. The following sections describe some other useful
functions in the wider tidyverse and base R.

Tidyverse

There are three other particularly useful places where you might want to use regular
expressions:

o matches(pattern) will select all variables whose name matches the supplied
pattern. It’s a “tidyselect” function that you can use anywhere in any tidyverse
function that selects variables (e.g., select(), rename_with(), and across()).

o+ pilvot_longer()’s names_pattern argument takes a vector of regular expressions,
just like separate_wider_regex(). It’s useful when extracting data from variable
names with a complex structure.

o The delim argument in separate_longer_delim() and separate_
wider_delim() usually matches a fixed string, but you can use regex() to make
it match a pattern. This is useful, for example, if you want to match a comma that
is optionally followed by a space, i.e., regex(", ?").

Base R

apropos(pattern) searches all objects available from the global environment that
match the given pattern. This is useful if you can’t quite remember the name of a
function:

apropos("replace")

#> [1] "%+replace%” "replace” "replace_na"
#> [4] "setReplaceMethod" "str_replace"” "str_replace_all"
#> [7] "str_replace_na" "theme_replace"

list.files(path, pattern) lists all files in path that match a regular expression
pattern. For example, you can find all the R Markdown files in the current directory
with:

head(list.files(pattern = "\\.Rmd$"))

#> character(0)
It's worth noting that the pattern language used by base R is slightly different from
that used by stringr. That’s because stringr is built on top of the stringi package,
which is in turn built on top of the ICU engine, whereas base R functions use
either the TRE engine or the PCRE engine, depending on whether you've set perl =
TRUE. Fortunately, the basics of regular expressions are so well established that you'll
encounter few variations when working with the patterns you'll learn in this book.

282 | Chapter 15: Regular Expressions

https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/across.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_longer_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://stringr.tidyverse.org/reference/modifiers.html
https://oreil.ly/abQNx
https://oreil.ly/A9Gbl
https://oreil.ly/yGQ5U
https://oreil.ly/VhVuy

You only need to be aware of the difference when you start to rely on advanced
features like complex Unicode character ranges or special features that use the (?..)
syntax.

Summary

With every punctuation character potentially overloaded with meaning, regular
expressions are one of the most compact languages out there. They’re definitely con-
fusing at first, but as you train your eyes to read them and your brain to understand
them, you unlock a powerful skill that you can use in R and in many other places.

In this chapter, you've started your journey to become a regular expression master by
learning the most useful stringr functions and the most important components of the
regular expression language. And there are plenty of resources to learn more.

A good place to start is vignette("regular-expressions", package =
"stringr"): it documents the full set of syntax supported by stringr. Another useful
reference is https://oreil.ly/MVwoC. It's not R specific, but you can use it to learn
about the most advanced features of regexes and how they work under the hood.

It’s also good to know that stringr is implemented on top of the stringi package by
Marek Gagolewski. If you're struggling to find a function that does what you need in
stringr, don’t be afraid to look in stringi. You’ll find stringi easy to pick up because it
follows many of the same conventions as stringr.

In the next chapter, we'll talk about a data structure closely related to strings: factors.
Factors are used to represent categorical data in R, i.e., data with a fixed and known
set of possible values identified by a vector of strings.

Summary | 283

https://stringr.tidyverse.org/articles/regular-expressions.html
https://stringr.tidyverse.org/articles/regular-expressions.html
https://oreil.ly/MVwoC

CHAPTER 16
Factors

Introduction

Factors are used for categorical variables, variables that have a fixed and known set of
possible values. They are also useful when you want to display character vectors in a
nonalphabetical order.

We'll start by motivating why factors are needed for data analysis' and how you can
create them with factor(). We'll then introduce you to the gss_cat dataset, which
contains a bunch of categorical variables to experiment with. You'll then use that
dataset to practice modifying the order and values of factors, before we finish up with
a discussion of ordered factors.

Prerequisites

Base R provides some basic tools for creating and manipulating factors. We'll supple-
ment these with the forcats package, which is part of the core tidyverse. It provides
tools for dealing with categorical variables (and it’s an anagram of factors!) using a
wide range of helpers for working with factors.

library(tidyverse)

Factor Basics

Imagine that you have a variable that records the month:
x1 <- c("Dec", "Apr", "Jan", "Mar")

Using a string to record this variable has two problems:

1 They're also really important for modeling.

285

https://rdrr.io/r/base/factor.html

1. There are only 12 possible months, and there’s nothing saving you from typos:
x2 <- c("Dec", "Apr", "Jam", "Mar")

2. It doesn’t sort in a useful way:
sort(x1)
[1] "Apr" "Dec” "Jan" "Mar"

You can fix both of these problems with a factor. To create a factor, you must start by
creating a list of the valid levels:

month_levels <- c(
"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Ju1", "Aug", "Sep", "Oct", "Nov", "Dec"
)

Now you can create a factor:

yl <- factor(x1l, levels = month_levels)

vyl

#> [1] Dec Apr Jan Mar

#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

sort(yl)
#> [1] Jan Mar Apr Dec
#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Any values not in the level will be silently converted to NA:

y2 <- factor(x2, levels = month_levels)

y2

#> [1] Dec Apr <NA> Mar

#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

This seems risky, so you might want to use forcats::fct() instead:

y2 <- fct(x2, levels = month_levels)

#> Error in “fct() :

#> ! All values of ‘x' must appear in ‘levels' or ‘na’
#> 7 Missing level: "Jam"

If you omit the levels, they’ll be taken from the data in alphabetical order:

factor(x1)

#> [1] Dec Apr Jan Mar

#> Levels: Apr Dec Jan Mar
Sorting alphabetically is slightly risky because not every computer will sort strings in
the same way. So forcats::fct() orders by first appearance:

fet(x1)

#> [1] Dec Apr Jan Mar
#> Levels: Dec Apr Jan Mar

If you ever need to access the set of valid levels directly, you can do so with levels():

levels(y2)
[1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep” "Oct” "Nov" "Dec”

286 | Chapter 16: Factors

https://forcats.tidyverse.org/reference/fct.html
https://forcats.tidyverse.org/reference/fct.html
https://rdrr.io/r/base/levels.html

You can also create a factor when reading your data with readr with col_factor():

"

csv <-
month,value
Jan,12
Feb,56
Mar,12"

df <- read_csv(csv, col_types = cols(month = col_factor(month_levels)))
df$month

#> [1] Jan Feb Mar

#> Levels: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

General Social Survey

For the rest of this chapter, were going to use forcats::gss_cat. It's a sample of
data from the General Social Survey, a long-running US survey conducted by the
independent research organization NORC at the University of Chicago. The survey
has thousands of questions, so in gss_cat Hadley selected a handful that will illus-
trate some common challenges you'll encounter when working with factors.

gss_cat

#> # A tibble: 21,483 x 9

#> year marital age race rincome partyid

#> <int> <fct> <int> <fct> <fct> <fct>

#> 1 2000 Never married 26 White $8000 to 9999 Ind,near rep

#> 2 2000 Divorced 48 White $8000 to 9999 Not str republican
#> 3 2000 Widowed 67 White Not applicable Independent

#> 4 2000 Never married 39 wWhite Not applicable Ind,near rep

#> 5 2000 Divorced 25 White Not applicable Not str democrat
#> 6 2000 Married 25 White $20000 - 24999 Strong democrat

#> # .. with 21,477 more rows, and 3 more variables: relig <fct>, denom <fct>,
#> # tvhours <int>

(Remember, since this dataset is provided by a package, you can get more informa-
tion about the variables with ?gss_cat.)

When factors are stored in a tibble, you can’t see their levels so easily. One way to
view them is with count():

gss_cat |>
count(race)

#> # A tibble: 3 x 2
#> race n

#> <fct> <int>

#> 1 Other 1959

#> 2 Black 3129

#> 3 White 16395

When working with factors, the two most common operations are changing the
order of the levels and changing the values of the levels. Those operations are
described in the following sections.

General Social Survey | 287

https://readr.tidyverse.org/reference/parse_factor.html
https://forcats.tidyverse.org/reference/gss_cat.html
https://oreil.ly/3qBI5
https://forcats.tidyverse.org/reference/gss_cat.html
https://dplyr.tidyverse.org/reference/count.html

Exercise

1. Explore the distribution of rincome (reported income). What makes the default
bar chart hard to understand? How could you improve the plot?

2. What is the most common relig in this survey? What's the most common
partyid?

3. Which relig does denom (denomination) apply to? How can you find out with a
table? How can you find out with a visualization?

Modifying Factor Order

It's often useful to change the order of the factor levels in a visualization. For example,
imagine you want to explore the average number of hours spent watching TV per day
across religions:
relig_summary <- gss_cat |>
group_by(relig) [>
summarize(
tvhours = mean(tvhours, na.rm = TRUE),
n=n()
)

ggplot(relig_summary, aes(x = tvhours, y = relig)) +
geom_point()
Protestant = (]
Catholic - L]
Jewish = o
None - L]
Other - .
Buddhism - (]
Hinduism = (]

Other eastern-_ @

relig

Moslem/islam - L]
Orthodox-christian = L]
Christian - L]
Native american - L]
Inter-nondenominational = L]
Don't know - L]

No answer = L]

2 3 4
tvhours

288 | Chapter 16: Factors

It is hard to read this plot because there’s no overall pattern. We can improve it
by reordering the levels of relig using fct_reorder(). fct_reorder() takes three

arguments:

« f, the factor whose levels you want to modify.

* X, a numeric vector that you want to use to reorder the levels.

« Optionally, fun, a function that’s used if there are multiple values of x for each

value of f. The default value is median.

ggplot(relig_summary, aes(x = tvhours, y = fct_reorder(relig, tvhours))) +

geom_point()

Don't know -
Native american -
Protestant - (]
Catholic - .
Inter-nondenominational - (]
Christian - [
Other - .

No answer = L]

(relig, tvhours)

None - L]
Jewish = .
Moslem/islam - L]
Orthodox-christian = L]

Buddhism - L]

fct_reorder|

Hinduism = (]

Other eastern- ®

2 3
tvhours

Reordering religion makes it much easier to see that people in the “Don’t know”
category watch much more TV, and Hinduism and other Eastern religions watch

much less.

As you start making more complicated transformations, we recommend moving
them out of aes() and into a separate mutate() step. For example, you could rewrite

the previous plot as:

relig_summary |>
mutate(
relig = fct_reorder(relig, tvhours)
) I>
ggplot(aes(x = tvhours, y = relig)) +
geom_point()

Modifying Factor Order | 289

https://forcats.tidyverse.org/reference/fct_reorder.html
https://forcats.tidyverse.org/reference/fct_reorder.html
https://ggplot2.tidyverse.org/reference/aes.html
https://dplyr.tidyverse.org/reference/mutate.html

What if we create a similar plot looking at how average age varies across reported
income level?
rincome_summary <- gss_cat |>
group_by(rincome) |>
summarize(
age = mean(age, na.rm = TRUE),
n=nQ)
)

ggplot(rincome_summary, aes(x = age, y = fct_reorder(rincome, age))) +
geom_point()

Not applicable
Refused

Don't know

No answer
$25000 or more
; $20000 - 24999
$10000 - 14999
$8000 to 9999
Lt $1000

$6000 to 6999
$15000 - 19999
I $4000 to 4999
$7000 to 7999
$3000 to 3999
$5000 to 5999
$1000 to 2999

(rincome, age)

fct_reorder

Here, arbitrarily reordering the levels isn't a good idea! That's because rincome
already has a principled order that we shouldn’t mess with. Reserve fct_reorder()
for factors whose levels are arbitrarily ordered.

However, it does make sense to pull “Not applicable” to the front with the other
special levels. You can use fct_relevel(). It takes a factor, f, and then any number of
levels that you want to move to the front of the line.

ggplot(rincome_summary, aes(x = age, y = fct_relevel(rincome, "Not applicable"))) +
geom_point()

290 | Chapter16: Factors

https://forcats.tidyverse.org/reference/fct_reorder.html
https://forcats.tidyverse.org/reference/fct_relevel.html

Lt $1000
$1000 to 2999
$3000 to 3999
$4000 to 4999
$5000 to 5999
$6000 to 6999
$7000 to 7999
$8000 to 9999
£ $10000 - 14999
S $15000 - 19999
£ 520000 - 24999
g $25000 or more

Refused
Don't know

"Not applicable")

e

fct_rele

No answer
Not applicable

Why do you think the average age for “Not applicable” is so high?

Another type of reordering is useful when you are coloring the lines on a plot.
fct_reorder2(f, x, y) reorders the factor f by the y values associated with the
largest x values. This makes the plot easier to read because the colors of the line at the
far right of the plot will line up with the legend.

by_age <- gss_cat |>
filter(!is.na(age)) |>
count(age, marital) |>
group_by(age) |>
mutate(
prop = n / sum(n)

)

ggplot(by_age, aes(x = age, y = prop, color = marital)) +
geom_line(linewidth = 1) +
scale_color_brewer(palette = "Set1")

ggplot(by_age, aes(x = age, y = prop, color = fct_reorder2(marital, age, prop))) +
geom_line(linewidth = 1) +
scale_color_brewer(palette = "Set1") +
labs(color = "marital")

Modifying Factor Order | 291

1.00 marital

== No answer

0.75- .
=== Never married
Q
© 0.50- === Separated
D- .
025 - == Divorced
=== Widowed
0.00- 1 1 1 1 Married
20 40 60 8

age

1.00 -

0.75 -

0.50 -

prop

0.25-

0.00 - I-I‘—.-.‘

marital

20 40 60 8
age

Widowed
Married
Divorced
Never married
No answer

Separated

Finally, for bar plots, you can use fct_infreq() to order levels in decreasing fre-
quency: this is the simplest type of reordering because it doesn’t need any extra
variables. Combine it with fct_rev() if you want them in increasing frequency so
that in the bar plot the largest values are on the right, not the left.

gss_cat |>

mutate(marital = marital |> fct_infreq() |> fct_rev()) |>

ggplot(aes(x = marital)) +
geom_bar()

10000 -

7500 -

count

No answer Separated Widowed Divorced

marital

5000 -
- .
.. 1IN -

1
Never married

Married

292 | Chapter16: Factors

https://forcats.tidyverse.org/reference/fct_inorder.html
https://forcats.tidyverse.org/reference/fct_rev.html

Exercises

1. There are some suspiciously high numbers in tvhours. Is the mean a good
summary?

2. For each factor in gss_cat identify whether the order of the levels is arbitrary or
principled.

3. Why did moving “Not applicable” to the front of the levels move it to the bottom
of the plot?

Modifying Factor Levels

More powerful than changing the orders of the levels is changing their values. This
allows you to clarify labels for publication and collapse levels for high-level displays.
The most general and powerful tool is fct_recode(). It allows you to recode, or
change, the value of each level. For example, take the partyid variable from the
gss_cat data frame:

gss_cat |> count(partyid)
#> # A tibble: 10 x 2

#> partyid n
#> <fct> <int>
#> 1 No answer 154

1

2 Don't know 1

3 Other party 393
#> 4 Strong republican 2314

5 Not str republican 3032

6 Ind,near rep 1791

.. with 4 more rows

The levels are terse and inconsistent. Let’s tweak them to be longer and use a parallel
construction. Like most rename and recoding functions in the tidyverse, the new
values go on the left, and the old values go on the right:

gss_cat |>
mutate(
partyid = fct_recode(partyid,
"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat"
)
) I>
count(partyid)
#> # A tibble: 10 x 2
#> partyid n
#> <fct> <int>
#> 1 No answer 154
#> 2 Don't know 1
#> 3 Other party 393
#> 4 Republican, strong 2314

Modifying Factor Levels | 293

https://forcats.tidyverse.org/reference/fct_recode.html

#> 5 Republican, weak 3032
#> 6 Independent, near rep 1791
#> # .. with 4 more rows

fct_recode() will leave the levels that aren’t explicitly mentioned as is and will warn
you if you accidentally refer to a level that doesn’t exist.

To combine groups, you can assign multiple old levels to the same new level:

gss_cat |>
mutate(
partyid = fct_recode(partyid,
"Republican, strong" = "Strong republican",
"Republican, weak" = "Not str republican",
"Independent, near rep" = "Ind,near rep",
"Independent, near dem" = "Ind,near dem",
"Democrat, weak" = "Not str democrat",
"Democrat, strong" = "Strong democrat",
"Other" = "No answer",
"Other" = "Don't know",
"Other" = "Other party"
)
)

Use this technique with care: if you group levels that are truly different, you will end
up with misleading results.

If you want to collapse a lot of levels, fct_collapse() is a useful variant of
fct_recode(). For each new variable, you can provide a vector of old levels:

gss_cat |>
mutate(
partyid = fct_collapse(partyid,
"other" = c("No answer", "Don't know", "Other party"),
"rep" = c("Strong republican", "Not str republican"),
"ind" = c("Ind,near rep", "Independent", "Ind,near dem"),
"dem" = c("Not str democrat", "Strong democrat")
)
) |>
count(partyid)
#> # A tibble: 4 x 2
#> partyid n
#> <fct> <int>
#> 1 other 548
#> 2 rep 5346
#> 3 ind 8409
#> 4 dem 7180

Sometimes you just want to lump together the small groups to make a plot or table
simpler. That's the job of the fct_lump_*() family of functions. fct_lump_lowfreq()
is a simple starting point that progressively lumps the smallest group’s categories into
“Other;” always keeping “Other” as the smallest category.
gss_cat |>
mutate(relig = fct_lump_lowfreq(relig)) |>

count(relig)
#> # A tibble: 2 x 2

294 | Chapter 16: Factors

https://forcats.tidyverse.org/reference/fct_recode.html
https://forcats.tidyverse.org/reference/fct_collapse.html
https://forcats.tidyverse.org/reference/fct_recode.html
https://forcats.tidyverse.org/reference/fct_lump.html

#> relig n

#> <fct> <int>
#> 1 Protestant 10846
#> 2 Other 10637

In this case it’s not very helpful: it is true that the majority of Americans in this survey
are Protestant, but wed probably like to see some more details! Instead, we can use
fct_lump_n() to specify that we want exactly 10 groups:
gss_cat |>
mutate(relig = fct_lump_n(relig, n = 10)) |>

count(relig, sort = TRUE)
#> # A tibble: 10 x 2

#> relig n
#> <fct> <int>
#> 1 Protestant 10846
#> 2 Catholic 5124
#> 3 None 3523
#> 4 Christian 689
#> 5 Other 458
#> 6 Jewish 388

#> # .. with 4 more rows

Read the documentation to learn about fct_lump_min() and fct_lump_prop(),
which are useful in other cases.

Exercises

1. How have the proportions of people identifying as Democrat, Republican, and
Independent changed over time?

2. How could you collapse rincome into a small set of categories?

3. Notice there are 9 groups (excluding other) in the previous fct_lump example.
Why not 10? (Hint: Type ?fct_lump, and find the default for the argument
other_level is “Other”)

Ordered Factors

Before we go on, there’s a special type of factor that needs to be mentioned briefly:
ordered factors. Ordered factors, created with ordered(), imply a strict ordering and
equal distance between levels: the first level is “less than” the second level by the
same amount that the second level is “less than” the third level, and so on. You can
recognize them when printing because they use < between the factor levels:

ordered(c("a", "b", "c"))

#> [1] a b ¢

#> Levels: a < b <c
In practice, ordered() factors behave similarly to regular factors. There are only two
places where you might notice different behavior:

Ordered Factors | 295

https://forcats.tidyverse.org/reference/fct_lump.html
https://forcats.tidyverse.org/reference/fct_lump.html
https://forcats.tidyverse.org/reference/fct_lump.html
https://forcats.tidyverse.org/reference/fct_lump.html
https://rdrr.io/r/base/factor.html
https://rdrr.io/r/base/factor.html

o If you map an ordered factor to color or fill in ggplot2, it will default to
scale_color_viridis()/scale_fill_viridis(), a color scale that implies a
ranking.

« If you use an ordered function in a linear model, it will use “polygonal contrasts.”
These are mildly useful, but you are unlikely to have heard of them unless you
have a PhD in statistics, and even then you probably don’t routinely interpret
them. If you want to learn more, we recommend vignette("contrasts", pack
age = "faux") by Lisa DeBruine.

Given the arguable utility of these differences, we don’t generally recommend using
ordered factors.

Summary

This chapter introduced you to the handy forcats package for working with factors,
explaining the most commonly used functions. forcats contains a wide range of
other helpers that we didn't have space to discuss here, so whenever you're facing a
factor analysis challenge that you havent encountered before, I highly recommend
skimming the reference index to see if there’s a canned function that can help solve
your problem.

If you want to learn more about factors after reading this chapter, we recommend
reading Amelia McNamara and Nicholas Horton’s paper, “Wrangling categorical data
in R”. This paper lays out some of the history discussed in “stringsAsFactors: An
unauthorized biography” and “stringsAsFactors = <sigh>”, and compares the tidy
approaches to categorical data outlined in this book with base R methods. An early
version of the paper helped motivate and scope the forcats package; thanks, Amelia
and Nick!

In the next chapter we'll switch gears to start learning about dates and times in R.
Dates and times seem deceptively simple, but as you'll soon see, the more you learn
about them, the more complex they seem to get!

296 | Chapter 16: Factors

https://oreil.ly/J_IIg
https://oreil.ly/zPh8E
https://oreil.ly/zPh8E
https://oreil.ly/Z9mkP
https://oreil.ly/Z9mkP
https://oreil.ly/phWQo

CHAPTER 17
Dates and Times

Introduction

This chapter will show you how to work with dates and times in R. At first glance,
dates and times seem simple. You use them all the time in your regular life, and they
don’t seem to cause much confusion. However, the more you learn about dates and
times, the more complicated they seem to get!

To warm up, think about how many days there are in a year and how many hours
there are in a day. You probably remembered that most years have 365 days, but leap
years have 366. Do you know the full rule for determining if a year is a leap year?'
The number of hours in a day is a little less obvious: most days have 24 hours, but
in places that use daylight saving time (DST), one day each year has 23 hours and
another has 25.

Dates and times are hard because they have to reconcile two physical phenomena
(the rotation of Earth and its orbit around the sun) with a whole raft of geopolitical
phenomena including months, time zones, and DST. This chapter won't teach you
every last detail about dates and times, but it will give you a solid grounding of
practical skills that will help you with common data analysis challenges.

We'll begin by showing you how to create date-times from various inputs, and then
once you've got a date-time, you'll learn how you can extract components such as
year, month, and day. We'll then dive into the tricky topic of working with time
spans, which come in a variety of flavors depending on what you’re trying to do. We'll
conclude with a brief discussion of the additional challenges posed by time zones.

1 A year is a leap year if it’s divisible by 4, unless it’s also divisible by 100, except if it’s also divisible by 400. In
other words, in every set of 400 years, there’s 97 leap years.

297

Prerequisites

This chapter will focus on the lubridate package, which makes it easier to work
with dates and times in R. As of the latest tidyverse release, lubridate is part of core
tidyverse. We will also need nycflights13 for practice data.

library(tidyverse)
library(nycflights13)

Creating Date/Times

There are three types of date/time data that refer to an instant in time:

o A date. Tibbles print this as <date>.
o A time within a day. Tibbles print this as <time>.

o A date-time is a date plus a time: it uniquely identifies an instant in time (typ-
ically to the nearest second). Tibbles print this as <dttm>. Base R calls these
POSIXct, but that doesn’t exactly trip off the tongue.

In this chapter we are going to focus on dates and date-times as R doesn’t have a
native class for storing times. If you need one, you can use the hms package.

You should always use the simplest possible data type that works for your needs.
That means if you can use a date instead of a date-time, you should. Date-times are
substantially more complicated because of the need to handle time zones, which we'll
come back to at the end of the chapter.
To get the current date or date-time, you can use today() or now():

today()

#> [1] "2023-03-12"

now()

#> [1] "2023-03-12 13:07:31 CDT"

Otherwise, the following sections describe the four ways youre likely to create a
date/time:

« While reading a file with readr
o From a string
o From individual date-time components

 From an existing date/time object

298 | Chapter 17: Dates and Times

https://lubridate.tidyverse.org/reference/now.html
https://lubridate.tidyverse.org/reference/now.html

During Import

If your CSV contains an ISO8601 date or date-time, you don't need to do anything;
readr will automatically recognize it:

"

csv <-
date,datetime
2022-01-02,2022-01-02 05:12

read_csv(csv)

#> # A tibble: 1 x 2

#> date datetime

#> <date> <dttm>

#> 1 2022-01-02 2022-01-62 05:12:00
If you haven’t heard of ISO8601 before, it’s an international standard for writing dates
where the components of a date are organized from biggest to smallest separated by -.
For example, in ISO8601 May 3, 2022, is 2022-05-03. ISO8601 dates can also include
times, where hour, minute, and second are separated by :, and the date and time
components are separated by either a T or a space. For example, you could write 4:26

p.m. on May 3, 2022, as either 2022-05-03 16:26 or 2022-05-03T16: 26.

For other date-time formats, you’ll need to use col_types plus col_date() or
col_datetime() along with a date-time format. The date-time format used by readr
is a standard used across many programming languages, describing a date compo-
nent with a % followed by a single character. For example, %Y-%m-%d specifies a date
that’s a year, -, month (as number) -, day. Table 17-1 lists all the options.

Table 17-1. All date formats understood by readr

Type Code Meaning Example
Year %Y 4-digit year 2021

%y 2-digit year 21
Month %m Number 2

%b Abbreviated name Feb

%8 Full name February
Day %d Twodigits 02

%e One or two digits 2
Time %H 24-hour hour 13

%I 12-hour hour 1

% am./p.m. pm

%M Minutes 35

%S Seconds 45

%0S Seconds with decimal component 45.35

%Z Time zone name America/Chicago

%z Offset from UTC +0800

(reating Date/Times | 299

https://oreil.ly/19K7t
https://readr.tidyverse.org/reference/parse_datetime.html
https://readr.tidyverse.org/reference/parse_datetime.html

Type Code Meaning Example
Other %. Skip one nondigit :
%* Skip any number of nondigits

This code shows a few options applied to a very ambiguous date:

csv <- "
date
01/02/15

read_csv(csv, col_types = cols(date = col_date("%m/%d/%y")))
#> # A tibble: 1 x 1

#> date

#> <date>

#> 1 2015-01-02

read_csv(csv, col_types = cols(date = col_date("%d/%m/%y")))
#> # A tibble: 1 x 1

#> date

#> <date>

#> 1 2015-02-01

read_csv(csv, col_types = cols(date = col_date("%y/%m/%d")))
#> # A tibble: 1 x 1
#> date
#> <date>
#> 1 2001-02-15
Note that no matter how you specify the date format, it’s always displayed the same

way once you get it into R.

If youre using %b or %B and working with non-English dates, you'll also need to
provide a locale(). See the list of built-in languages in date_names_langs(), or
create your own with date_names().

From Strings

The date-time specification language is powerful but requires careful analysis of the
date format. An alternative approach is to use lubridate’s helpers, which attempt to
automatically determine the format once you specify the order of the component. To
use them, identify the order in which year, month, and day appear in your dates; then
arrange “y; “m,” and “d” in the same order. That gives you the name of the lubridate
function that will parse your date. For example:

ynd("2017-01-31")

#> [1] "2017-01-31"

mdy("January 31st, 2017")

#> [1] "2017-01-31"

dmy("31-Jan-2017")
#> [1] "2017-01-31"

300 | Chapter 17:Dates and Times

https://readr.tidyverse.org/reference/locale.html
https://readr.tidyverse.org/reference/date_names.html
https://readr.tidyverse.org/reference/date_names.html

ymd() and friends create dates. To create a date-time, add an underscore and one or

« »

more of “h”, “m”, and “s” to the name of the parsing function:

ymd_hms("2017-01-31 20:11:59")
#> [1] "2017-01-31 20:11:59 UTC"
mdy_hm("01/31/2017 08:01")

#> [1] "2017-01-31 08:01:00 UTC"

You can also force the creation of a date-time from a date by supplying a time zone:

ynd("2017-01-31", tz = "UTC")

#> [1] "2017-01-31 UTC"
Here I use the UTC? timezone, which you might also know as GMT, or Greenwich
Mean Time, the time at 0° longitude.’ It doesn’t use daylight saving time, making it a
bit easier to compute with.

From Individual Components

Instead of a single string, sometimes you’ll have the individual components of the
date-time spread across multiple columns. This is what we have in the flights data:

flights |>
select(year, month, day, hour, minute)
#> # A tibble: 336,776 x 5
#> year month day hour minute
#> <int> <int> <int> <dbl> <dbl>

#> 1 2013 1 1 5 15
#> 2 2013 1 1 5 29
#> 3 2013 1 1 5 40
#> 4 2013 1 1 5 45
#> 5 2013 1 1 6 0
#> 6 2013 1 1 5 58
#> # .. with 336,770 more rows

To create a date/time from this sort of input, use make_date() for dates, or use
make_datetime() for date-times:

flights |>
select(year, month, day, hour, minute) |>
mutate(departure = make_datetime(year, month, day, hour, minute))
#> # A tibble: 336,776 x 6
#> year month day hour minute departure
#> <int> <int> <int> <dbl> <dbl> <dttm>

#> 1 2013 1 1 5 15 2013-01-01 05:15:00
#> 2 2013 1 1 5 29 2013-01-01 05:29:00
#> 3 2013 1 1 5 40 2013-01-01 05:40:00
#> 4 2013 1 1 5 45 2013-01-01 05:45:00
#> 5 2013 1 1 6 0 2013-01-01 06:00:00

2 You might wonder what UTC stands for. It's a compromise between the English “Coordinated Universal
Time” and French “Temps Universel Coordonné”

3 No prizes for guessing which country came up with the longitude system.

Creating Date/Times | 301

https://lubridate.tidyverse.org/reference/ymd.html
https://lubridate.tidyverse.org/reference/make_datetime.html
https://lubridate.tidyverse.org/reference/make_datetime.html

#> 6 2013 1 1 5 58 2013-01-01 05:58:00
#> # .. with 336,770 more rows

Let’s do the same thing for each of the four time columns in flights. The times are
represented in a slightly odd format, so we use modulus arithmetic to pull out the
hour and minute components. Once we've created the date-time variables, we focus
in on the variables we’ll explore in the rest of the chapter.

make_datetime_100 <- function(year, month, day, time) {
make_datetime(year, month, day, time %/% 100, time %% 100)

}

flights_dt <- flights |>

filter(!is.na(dep_time), !is.na(arr_time)) |>

mutate(
dep_time = make_datetime_100(year, month, day, dep_time),
arr_time = make_datetime_100(year, month, day, arr_time),
sched_dep_time = make_datetime_100(year, month, day, sched_dep_time),
sched_arr_time = make_datetime_100(year, month, day, sched_arr_time)

) |>

select(origin, dest, ends_with("delay"), ends_with("time"))

flights_dt

#> # A tibble: 328,063 x 9

#> origin dest dep_delay arr_delay dep_time sched_dep_time

#> <chr> <chr> <dbl> <dbl> <dttm> <dttm>

#> 1 EWR IAH 2 11 2013-01-01 05:17:00 2013-01-01 05:15:00
#> 2 LGA IAH 4 20 2013-01-01 05:33:00 2013-01-01 05:29:00
#> 3 JFK MIA 2 33 2013-01-01 05:42:00 2013-01-01 05:40:00
#> 4 JFK BON -1 -18 2013-01-01 05:44:00 2013-01-01 05:45:00
#> 5 LGA ATL -6 -25 2013-01-01 05:54:00 2013-01-01 06:00:00
#> 6 EWR ORD -4 12 2013-01-01 05:54:00 2013-01-01 05:58:00
#> # .. with 328,057 more rows, and 3 more variables: arr_time <dttm>,

#> # sched_arr_time <dttm>, air_time <dbl>
With this data, we can visualize the distribution of departure times across the year:
flights_dt |>

ggplot(aes(x = dep_time)) +
geom_fregpoly(binwidth = 86400) # 86400 seconds = 1 day

302 | Chapter 17: Dates and Times

1000

750

E
3 500
(]
250- |
0
Jan 2013 Apr 2013 Jul 2013 Oct 2013 Jan 2014
dep_time
Or within a single day:

flights_dt |>
filter(dep_time < ymd(20130102)) |>
ggplot(aes(x = dep_time)) +
geom_freqpoly(binwidth = 600) # 600 s = 10 minutes

Creating Date/Times | 303

15-

- 10 -
c
=
o]
O

5-

O -

Jan 01 06:00 Jan 01 12:00 Jan 01 18:00 Jan 02 00:00
dep_time

Note that when you use date-times in a numeric context (like in a histogram), 1
means 1 second, so a binwidth of 86400 means one day. For dates, 1 means 1 day.

From Other Types

You may want to switch between a date-time and a date. That’s the job of as_date
time() and as_date():

as_datetime(today())

#> [1] "2023-03-12 UTC"
as_date(now())

#> [1] "2023-03-12"

Sometimes youll get date/times as numeric offsets from the “Unix epoch,

1970-01-01. If the offset is in seconds, use as_datetime(); if it's in days, use
as_date().

as_datetime(60 * 60 * 10)

#> [1] "1970-01-01 10:00:00 UTC"
as_date(365 * 10 + 2)

#> [1] "1980-01-01"

Exercises

1. What happens if you parse a string that contains invalid dates?
ymd(c("2010-10-10", "bananas"))

2. What does the tzone argument to today() do? Why is it important?

304 | Chapter 17: Dates and Times

https://lubridate.tidyverse.org/reference/as_date.html
https://lubridate.tidyverse.org/reference/as_date.html
https://lubridate.tidyverse.org/reference/as_date.html
https://lubridate.tidyverse.org/reference/as_date.html
https://lubridate.tidyverse.org/reference/as_date.html
https://lubridate.tidyverse.org/reference/now.html

3. For each of the following date-times, show how youd parse it using a readr

column specification and a lubridate function.
dl <- "January 1, 2010"
d2 <- "2015-Mar-07"
d3 <- "06-Jun-2017"
d4 <- c("August 19 (2015)", "July 1 (2015)")
d5 <- "12/30/14" # Dec 30, 2014
t1 <- "1705"
t2 <- "11:15:10.12 PM"

Date-Time Components

Now that you know how to get date-time data into Rs date-time data structures, lets
explore what you can do with them. This section will focus on the accessor functions
that let you get and set individual components. The next section will look at how
arithmetic works with date-times.

Getting Components

You can pull out individual parts of the date with the accessor functions year(),
month(), mday() (day of the month), yday() (day of the year), wday() (day of
the week), hour(), minute(), and second(). These are effectively the opposites of
make_datetime().

datetime <- ymd_hms("2026-07-08 12:34:56")

year(datetime)
#> [1] 2026
month(datetime)
[1] 7
mday(datetime)
#> [1] 8

yday(datetime)
#> [1] 189
wday(datetime)
[1] 4

For month() and wday() you can set label = TRUE to return the abbreviated name of
the month or day of the week. Set abbr = FALSE to return the full name.

month(datetime, label = TRUE)

#> [1] Jul

#> 12 Levels: Jan < Feb < Mar < Apr < May < Jun < Jul < Aug < Sep < ... < Dec
wday(datetime, label = TRUE, abbr = FALSE)

#> [1] Wednesday

#> 7 Levels: Sunday < Monday < Tuesday < Wednesday < Thursday < ... < Saturday

Date-Time Components | 305

https://lubridate.tidyverse.org/reference/year.html
https://lubridate.tidyverse.org/reference/month.html
https://lubridate.tidyverse.org/reference/day.html
https://lubridate.tidyverse.org/reference/day.html
https://lubridate.tidyverse.org/reference/day.html
https://lubridate.tidyverse.org/reference/hour.html
https://lubridate.tidyverse.org/reference/minute.html
https://lubridate.tidyverse.org/reference/second.html
https://lubridate.tidyverse.org/reference/make_datetime.html
https://lubridate.tidyverse.org/reference/month.html
https://lubridate.tidyverse.org/reference/day.html

We can use wday() to see that more flights depart during the week than on the
weekend:

flights_dt |>
mutate(wday = wday(dep_time, label = TRUE)) |>
ggplot(aes(x = wday)) +

geom_bar()

50000 -

40000 -

30000 -
—
c
S
Qo
o

20000 -

10000 -

Sun Mon Tue Wed Thu Fri Sat
wday

We can also look at the average departure delay by minute within the hour. There’s
an interesting pattern: flights leaving in minutes 20-30 and 50-60 have much lower
delays than the rest of the hour!

flights_dt |>

mutate(minute = minute(dep_time)) |>

group_by(minute) |>

summarize(
avg_delay = mean(dep_delay, na.rm = TRUE),
n=n()

) I>

ggplot(aes(x = minute, y = avg_delay)) +

geom_line()

306 | Chapter 17:Dates and Times

https://lubridate.tidyverse.org/reference/day.html

16= -I
T

8l 12 I
[#2]
>

m I

8= I

4 .I 1 1 I

0 20 40 60

minute

Interestingly, if we look at the scheduled departure time, we don't see such a strong
pattern:

sched_dep <- flights_dt |>
mutate(minute = minute(sched_dep_time)) |>
group_by(minute) |>
summarize(
avg_delay = mean(arr_delay, na.rm = TRUE),
n = n()
)

ggplot(sched_dep, aes(x = minute, y = avg_delay)) +
geom_line()

Date-Time Components | 307

So why do we see that pattern with the actual departure times? Well, like much data
collected by humans, there’s a strong bias toward flights leaving at “nice” departure
times, as Figure 17-1 shows. Always be alert for this sort of pattern whenever you
work with data that involves human judgment!

308 | Chapter 17: Dates and Times

60000

40000

20000

— T

0 20 40 60
minute

Figure 17-1. A frequency polygon showing the number of flights scheduled to depart each
hour. You can see a strong preference for round numbers like 0 and 30 and generally for
numbers that are a multiple of five.

Rounding

An alternative approach to plotting individual components is to round the date to a
nearby unit of time, with floor_date(), round_date(), and ceiling_date(). Each
function takes a vector of dates to adjust and then the name of the unit to round
down (floor), round up (ceiling), or round to. This, for example, allows us to plot the
number of flights per week:
flights_dt [>
count(week = floor_date(dep_time, "week")) |>
ggplot(aes(x = week, y = n)) +

geom_line() +
geom_point()

Date-Time Components | 309

https://lubridate.tidyverse.org/reference/round_date.html
https://lubridate.tidyverse.org/reference/round_date.html
https://lubridate.tidyverse.org/reference/round_date.html

6000

5000

4000

3000

—_

Jan 2013 Apr 2013 Jul 2013 Oct 2013 Jan 2014
week

You can use rounding to show the distribution of flights across the course of a day by
computing the difference between dep_time and the earliest instant of that day:

flights_dt |>

mutate(dep_hour = dep_time - floor_date(dep_time, "day")) |>

ggplot(aes(x = dep_hour)) +

geom_fregpoly(binwidth = 60 * 30)
#> Don't know how to automatically pick scale for object of type <difftime>.
#> Defaulting to continuous.

310 | Chapter 17: Dates and Times

15000

10000

count

5000

Computing the difference between a pair of date-times yields a difftime (more on that
in “Intervals” on page 316). We can convert that to an hms object to get a more useful
X-axis:

flights_dt |>

mutate(dep_hour = hms::as_hms(dep_time - floor_date(dep_time, "day"))) |>
ggplot(aes(x = dep_hour)) +

geom_fregpoly(binwidth = 60 * 30)

Date-Time Components | 311

15000

10000
€
>
8

5000

0

00:00:00 10:00:00 20:00:00
dep_hour
Modifying Components

You can also use each accessor function to modify the components of a date/time.
This doesn’t come up much in data analysis but can be useful when cleaning data that
has clearly incorrect dates.

(datetime <- ymd_hms("2026-07-08 12:34:56"))
#> [1] "2026-07-08 12:34:56 UTC"

year(datetime) <- 2030

datetime

#> [1] "2030-07-08 12:34:56 UTC"
month(datetime) <- 01

datetime

#> [1] "2030-01-08 12:34:56 UTC"
hour(datetime) <- hour(datetime) + 1
datetime

#> [1] "2030-01-08 13:34:56 UTC"

Alternatively, rather than modifying an existing variable, you can create a new date-
time with update(). This also allows you to set multiple values in one step:

update(datetime, year = 2030, month = 2, mday = 2, hour = 2)
#> [1] "2030-02-02 02:34:56 UTC"

If values are too big, they will roll over:

update(ymd("2023-02-01"), mday = 30)
#> [1] "2023-03-02"

312 | Chapter17: Dates and Times

https://rdrr.io/r/stats/update.html

update(ymd("2023-02-01"), hour = 400)
#> [1] "2023-02-17 16:00:00 UTC"

Exercises

1. How does the distribution of flight times within a day change over the course of
the year?

2. Compare dep_time, sched_dep_time, and dep_delay. Are they consistent?
Explain your findings.

3. Compare air_time with the duration between the departure and arrival. Explain
your findings. (Hint: Consider the location of the airport.)

4. How does the average delay time change over the course of a day? Should you use
dep_time or sched_dep_time? Why?

5. On what day of the week should you leave if you want to minimize the chance of
a delay?

6. What makes the distribution of diamonds$carat and flights$sched_dep_time
similar?

7. Confirm our hypothesis that the early departures of flights in minutes 20-30
and 50-60 are caused by scheduled flights that leave early. Hint: Create a binary
variable that tells you whether a flight was delayed.

Time Spans

Next you’ll learn about how arithmetic with dates works, including subtraction,
addition, and division. Along the way, you'll learn about three important classes that
represent time spans:

Durations
Represent an exact number of seconds

Periods
Represent human units like weeks and months

Intervals
Represent a starting and ending point

How do you pick between duration, periods, and intervals? As always, pick the
simplest data structure that solves your problem. If you care only about physical time,
use a duration; if you need to add human times, use a period; and if you need to
figure out how long a span is in human units, use an interval.

TimeSpans | 313

Durations

In R, when you subtract two dates, you get a difftime object:

How old 1s Hadley?

h_age <- today() - ymd("1979-10-14")

h_age

#> Time difference of 15855 days
A difftime class object records a time span of seconds, minutes, hours, days, or
weeks. This ambiguity can make difftimes a little painful to work with, so lubridate
provides an alternative that always uses seconds: the duration.

as.duration(h_age)
#> [1] "1369872000s (~43.41 years)"

Durations come with a bunch of convenient constructors:

dseconds(15)

#> [1] "15s"

dminutes(10)

#> [1] "600s (~10 minutes)"

dhours(c(12, 24))

#> [1] "43200s (~12 hours)" "86400s (~1 days)"

ddays(0:5)

#> [1] "0s" "86400s (~1 days)" "172800s (~2 days)"
#> [4] "259200s (~3 days)" "345600s (~4 days)" "432000s (~5 days)"
dweeks(3)

#> [1] "1814400s (~3 weeks)"

dyears(1)

#> [1] "31557600s (~1 years)"

Durations always record the time span in seconds. Larger units are created by con-
verting minutes, hours, days, weeks, and years to seconds: 60 seconds in a minute, 60
minutes in an hour, 24 hours in a day, and 7 days in a week. Larger time units are
more problematic. A year uses the “average” number of days in a year, i.e., 365.25.
There’s no way to convert a month to a duration, because theres just too much
variation.
You can add and multiply durations:

2 * dyears(1)

#> [1] "63115200s (~2 years)"

dyears(1) + dweeks(12) + dhours(15)

#> [1] "38869200s (~1.23 years)"
You can add and subtract durations to and from days:

tomorrow <- today() + ddays(1)
last_year <- today() - dyears(1)

However, because durations represent an exact number of seconds, sometimes you
might get an unexpected result:

one_am <- ymd_hms("2026-03-08 01:00:00", tz = "America/New_York")

one_am

314 | Chapter 17: Dates and Times

#> [1] "2026-03-08 01:00:00 EST"
one_am + ddays(1)
#> [1] "2026-03-09 02:00:00 EDT"

Why is one day after 1 a.m. March 8, returning as 2 a.m. on March 97 If you look
carefully at the date, you might also notice that the time zones have changed. March
8 has only 23 hours because it's when DST starts, so if we add a full day’s worth of
seconds, we end up with a different time.

Periods

To solve this problem, lubridate provides periods. Periods are time spans but don’t
have a fixed length in seconds; instead, they work with “human” times, like days and
months. That allows them to work in a more intuitive way:

one_am
#> [1] "2026-03-08 01:00:00 EST"
one_am + days(1)

#> [1] "2026-03-09 01:00:00 EDT"

Like durations, periods can be created with a number of friendly constructor
functions:

hours(c(12, 24))

#> [1] "12H OM 6S" "24H OM 6S"

days(7)

#> [1] "7d OH OM 0S"

months(1:6)

#> [1] "1m 0d OH OM 0S" "2m Od OH OM @S" "3m Od OH OM 0S" "4m Od OH OM 0S"
#> [5] "5m 0d OH OM 0S" "6m Od OH OM OS"

You can add and multiply periods:

10 * (months(6) + days(1))

#> [1] "66m 10d OH OM 0S"
days(50) + hours(25) + minutes(2)
#> [1] "50d 25H 2M 6S"

And of course, add them to dates. Compared to durations, periods are more likely to
do what you expect:

A leap year

ymd("2024-01-01") + dyears(1)

#> [1] "2024-12-31 06:00:00 UTC"
ymd("2024-01-01") + years(1)

#> [1] "2025-01-01"

Daylight savings time

one_am + ddays(1)

#> [1] "2026-03-09 02:00:00 EDT"
one_am + days(1)

#> [1] "2026-03-09 01:00:00 EDT"

Let’s use periods to fix an oddity related to our flight dates. Some planes appear to
have arrived at their destination before they departed from New York City:

TimeSpans | 315

flights_dt |>
filter(arr_time < dep_time)
#> # A tibble: 10,633 x 9

#> origin dest dep_delay arr_delay dep_time sched_dep_time

#> <chr> <chr> <dbl> <dbl> <dttm> <dttm>

#> 1 EWR BON 9 -4 2013-01-01 19:29:00 2013-01-01 19:20:00
#> 2 JFK DFW 59 NA 2013-01-01 19:39:00 2013-01-01 18:40:00
#> 3 EWR TPA -2 9 2013-01-01 20:58:00 2013-01-01 21:00:00
#> 4 EWR SJu -6 -12 2013-01-01 21:02:00 2013-01-01 21:08:00
#> 5 EWR SFO 11 -14 2013-01-01 21:08:00 2013-01-01 20:57:00
#> 6 LGA FLL -10 -2 2013-01-01 21:20:00 2013-01-01 21:30:00
#> # .. with 10,627 more rows, and 3 more variables: arr_time <dttm>,

#> # sched_arr_time <dttm>, air_time <dbl>

These are overnight flights. We used the same date information for both the depar-
ture and the arrival times, but these flights arrived on the following day. We can fix
this by adding days(1) to the arrival time of each overnight flight:
flights_dt <- flights_dt |>
mutate(
overnight = arr_time < dep_time,
arr_time = arr_time + days(overnight),

sched_arr_time = sched_arr_time + days(overnight)

)
Now all of our flights obey the laws of physics:

flights_dt |>
filter(arr_time < dep_time)
#> # A tibble: 0 x 10
.. with 10 variables: origin <chr>, dest <chr>, dep_delay <dbl>,
arr_delay <dbl>, dep_time <dttm>, sched _dep_time <dttm>, ..
7 Use ‘colnames()" to see all variable names
#> # .. with 10,627 more rows, and 4 more variables:

Intervals

What does dyears(1) / ddays(365) return? It’s not quite 1, because dyears() is
defined as the number of seconds per average year, which is 365.25 days.

What does years(1) / days(1) return? Well, if the year is 2015, it should return
365, but if it is 2016, it should return 366! There’s not quite enough information for
lubridate to give a single clear answer. What it does instead is give an estimate:

years(1) / days(1)

#> [1] 365.25
If you want a more accurate measurement, you'll have to use an interval. An interval
is a pair of starting and ending date times, or you can think of it as a duration with a
starting point.

316 | Chapter 17: Dates and Times

You can create an interval by writing start %--% end:

y2023 <- ymd("2023-01-01") %--% ymd("2024-01-01")
y2024 <- ymd("2024-01-01") %--% ymd("2025-01-01")

y2023
#> [1] 2023-01-01 UTC--2024-01-01 UTC
y2024
#> [1] 2024-01-01 UTC--2025-01-01 UTC

You could then divide it by days() to find out how many days fit in the year:

y2023 / days(1)
#> [1] 365
y2024 / days(1)
#> [1] 366

Exercises

1. Explain days(!overnight) and days(overnight) to someone who has just
started learning R. What is the key fact you need to know?

2. Create a vector of dates giving the first day of every month in 2015. Create a
vector of dates giving the first day of every month in the current year.

3. Write a function that, given your birthday (as a date), returns how old you are in
years.

4. Why can’t (today() %--% (today() + years(1))) / months(1) work?

Time Zones

Time zones are an enormously complicated topic because of their interaction with
geopolitical entities. Fortunately we don’t need to dig into all the details as theyre
not all important for data analysis, but there are a few challenges we'll need to tackle
head on.

The first challenge is that everyday names of time zones tend to be ambiguous.
For example, if youre American, youre probably familiar with Eastern Standard
Time (EST). However, both Australia and Canada also have EST! To avoid confu-
sion, R uses the international standard IANA time zones. These use a consistent
naming scheme {area}/{location}, typically in the form {continent}/{city}
or {ocean}/{city}. Examples include “America/New_York, “Europe/Paris,” and
“Pacific/Auckland.”

You might wonder why the time zone uses a city when typically you think of time
zones as associated with a country or region within a country. This is because the
IANA database has to record decades worth of time zone rules. Over the course of
decades, countries change names (or break apart) fairly frequently, but city names
tend to stay the same. Another problem is that the name needs to reflect not only

TimeZones | 317

https://lubridate.tidyverse.org/reference/period.html

the current behavior but also the complete history. For example, there are time zones
for both “America/New_York” and “America/Detroit” These cities both currently use
Eastern Standard Time, but in 1969-1972 Michigan (the state in which Detroit is
located) did not follow DST, so it needs a different name. It's worth reading the raw
time zone database just to read some of these stories!

You can find out what R thinks your current time zone is with Sys. timezone():

Sys.timezone()
#> [1] "America/Chicago”

(If R doesn’t know, you’ll get an NA.)

And see the complete list of all time zone names with OlsonNames():

length(OlsonNames())

#> [1] 597

head(OlsonNames())

#> [1] "Africa/Abidjan" "Africa/Accra” "Africa/Addis_Ababa"
#> [4] "Africa/Algiers"” "Africa/Asmara” "Africa/Asmera"

In R, the time zone is an attribute of the date-time that only controls printing. For
example, these three objects represent the same instant in time:

x1 <- ymd_hms("2024-06-01 12:00:00", tz = "America/New_York")
x1
#> [1] "2024-06-01 12:00:00 EDT"

x2 <- ymd_hms("2024-06-01 18:00:00", tz = "Europe/Copenhagen")
x2
#> [1] "2024-06-01 18:00:00 CEST"

x3 <- ymd_hms("2024-06-02 04:00:00", tz = "Pacific/Auckland")
x3
#> [1] "2024-06-02 04:00:00 NZST"

You can verify that they’re the same time using subtraction:

x1 - x2
#> Time difference of 0 secs
x1 - x3

#> Time difference of 0 secs

Unless otherwise specified, lubridate always uses UTC. UTC is the standard time
zone used by the scientific community and is roughly equivalent to GMT. It does
not have DST, which makes a convenient representation for computation. Operations
that combine date-times, like c(), will often drop the time zone. In that case, the
date-times will display in the time zone of the first element:

x4 <- c(x1, x2, x3)

x4

#> [1] "2024-06-01 12:00:00 EDT" "2024-06-01 12:00:00 EDT"
#> [3] "2024-06-01 12:00:00 EDT"

318 | Chapter 17: Dates and Times

https://oreil.ly/NwvsT
https://oreil.ly/NwvsT
https://rdrr.io/r/base/timezones.html
https://rdrr.io/r/base/timezones.html
https://rdrr.io/r/base/c.html

You can change the time zone in two ways:

o Keep the instant in time the same, and change how it’s displayed. Use this when

the instant is correct but you want a more natural display.
x4a <- with_tz(x4, tzone = "Australia/Lord_Howe")
x4a
#> [1] "2024-06-02 02:30:00 +1030" "2024-06-02 02:30:00 +1030"
#> [3] "2024-06-02 02:30:00 +1030"
x4a - x4
#> Time differences in secs
[1] 606
(This also illustrates another challenge of time zones: theyre not all integer hour

offsets!)

o Change the underlying instant in time. Use this when you have an instant that

has been labeled with the incorrect time zone and you need to fix it.

x4b <- force_tz(x4, tzone = "Australia/Lord_Howe")

x4b

#> [1] "2024-06-01 12:00:00 +1030" "2024-06-01 12:00:00 +1030"
#> [3] "2024-06-01 12:00:00 +1030"

x4b - x4

#> Time differences in hours

#> [1] -14.5 -14.5 -14.5

Summary

This chapter introduced you to the tools that lubridate provides to help you work
with date-time data. Working with dates and times can seem harder than necessary,
but we hope this chapter has helped you see why—date-times are more complex than
they seem at first glance, and handling every possible situation adds complexity. Even
if your data never crosses a DST boundary or involves a leap year, the functions need
to be able to handle it.

The next chapter gives a roundup of missing values. You've seen them in a few places
and have no doubt encountered them in your own analysis, and it's now time to
provide a grab bag of useful techniques for dealing with them.

Summary | 319

CHAPTER 18
Missing Values

Introduction

You've already learned the basics of missing values earlier in the book. You first saw
them in Chapter 1 where they resulted in a warning when making a plot as well as in
“summarize()” on page 54 where they interfered with computing summary statistics,
and you learned about their infectious nature and how to check for their presence in
“Missing Values” on page 208. Now we'll come back to them in more depth so you
can learn more of the details.

We'll start by discussing some general tools for working with missing values recorded
as NAs. We'll then explore the idea of implicitly missing values, values are that are
simply absent from your data, and show some tools you can use to make them
explicit. We'll finish off with a related discussion of empty groups, caused by factor
levels that don’t appear in the data.

Prerequisites

The functions for working with missing data mostly come from dplyr and tidyr,
which are core members of the tidyverse.

library(tidyverse)

Explicit Missing Values

To begin, let’s explore a few handy tools for creating or eliminating missing explicit
values, i.e., cells where you see an NA.

321

Last Observation Carried Forward

A common use for missing values is as a data entry convenience. When data is
entered by hand, missing values sometimes indicate that the value in the previous
row has been repeated (or carried forward):

treatment <- tribble(

~person, ~treatment, ~response,
"Derrick Whitmore", 1, 7,

NA, 2, 10,

NA, 3, NA,
"Katherine Burke", 1, 4

)

You can fill in these missing values with tidyr::fill(). It works like select(),
taking a set of columns:

treatment |>

fill(everything())
#> # A tibble: 4 x 3
#> person treatment response
#> <chr> <dbl> <dbl>
#> 1 Derrick Whitmore 1 7
#> 2 Derrick Whitmore 2 10
#> 3 Derrick Whitmore 3 10
#> 4 Katherine Burke 1 4

This treatment is sometimes called “last observation carried forward,” or locf for
short. You can use the .direction argument to fill in missing values that have been
generated in more exotic ways.

Fixed Values

Sometimes missing values represent some fixed and known value, most commonly 0.
You can use dplyr: :coalesce() to replace them:

x <- c(1, 4, 5, 7, NA)

coalesce(x, 0)

#[1] 14570
Sometimes you’ll hit the opposite problem where some concrete value actually repre-
sents a missing value. This typically arises in data generated by older software that
doesn’t have a proper way to represent missing values, so it must instead use some
special value like 99 or -999.

If possible, handle this when reading in the data, for example, by using the na
argument to readr::read_csv(), e.g., read_csv(path, na = "99"). If you discover
the problem later or your data source doesn’t provide a way to handle it on read, you
can use dplyr::na_1if():

x <- c(1, 4, 5, 7, -99)

na_if(x, -99)
[1] 1 4 5 7 NA

322 | Chapter 18: Missing Values

https://tidyr.tidyverse.org/reference/fill.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/coalesce.html
https://readr.tidyverse.org/reference/read_delim.html
https://dplyr.tidyverse.org/reference/na_if.html

NaN

Before we continue, there’s one special type of missing value that you’ll encounter
from time to time: a NaN (pronounced “nan”), or not a number. It’s not that important
to know about because it generally behaves just like NA:

x <- c(NA, NaN)
X * 10

#> [1] NA NaN
X == 1

#> [1] NA NA
is.na(x)

#> [1] TRUE TRUE

In the rare case you need to distinguish an NA from a NaN, you can use is.nan(x).

You'll generally encounter a NaN when you perform a mathematical operation that has
an indeterminate result:

0/0

#> [1] NaN

0 * Inf

#> [1] NaN

Inf - Inf

#> [1] NaN

sqrt(-1)

#> Warning in sqrt(-1): NaNs produced

#> [1] NaN

Implicit Missing Values

So far we've talked about missing values that are explicitly missing; i.e., you can see an
NA in your data. But missing values can also be implicitly missing, if an entire row of
data is simply absent from the data. Let’s illustrate the difference with a simple dataset
that records the price of some stock each quarter:

stocks <- tibble(

year = c(2020, 2020, 2020, 2020, 2021, 2021, 2021),
qtr =c(1, 2, 3, 4, 2, 3, 4),
price = c(1.88, 0.59, 0.35, NA, 0.92, 0.17, 2.66)

)

This dataset has two missing observations:
+ The price in the fourth quarter of 2020 is explicitly missing, because its value is
NA.

o The price for the first quarter of 2021 is implicitly missing, because it simply
does not appear in the dataset.

Implicit Missing Values | 323

One way to think about the difference is with this Zen-like koan:

An explicit missing value is the presence of an absence.

An implicit missing value is the absence of a presence.

Sometimes you want to make implicit missings explicit to have something physical to
work with. In other cases, explicit missings are forced upon you by the structure of
the data, and you want to get rid of them. The following sections discuss some tools
for moving between implicit and explicit missingness.

Pivoting

You've already seen one tool that can make implicit missings explicit, and vice versa:
pivoting. Making data wider can make implicit missing values explicit because every
combination of the rows and new columns must have some value. For example, if we
pivot stocks to put the quarter in the columns, both missing values become explicit:
stocks |>
pivot_wider(
names_from = qtr,

values_from = price

)
#> # A tibble: 2 x 5

o year 1 20 3 a4
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2020 1.88 0.59 0.35 NA
#>2 2021 A 0.92 0.17 2.66
By default, making data longer preserves explicit missing values, but if they are
structurally missing values that exist only because the data is not tidy, you can drop
them (make them implicit) by setting values_drop_na = TRUE. See the examples in
“Tidy Data” on page 70 for more details.

Complete

tidyr::complete() allows you to generate explicit missing values by providing a set
of variables that define the combination of rows that should exist. For example, we
know that all combinations of year and qtr should exist in the stocks data:

stocks |>
complete(year, qtr)
#> # A tibble: 8 x 3
#> year qtr price
#> <dbl> <dbl> <dbl>

#> 1 2020 1 1.88

#> 2 2020 2 0.59

#> 3 2020 3 0.35

#> 4 2020 4 NA

#> 5 2021 1 NA

#> 6 2021 2 0.92
#

#> # .. with 2 more rows

324 | Chapter 18: Missing Values

https://tidyr.tidyverse.org/reference/complete.html

Typically, you'll call complete() with names of existing variables, filling in the
missing combinations. However, sometimes the individual variables are themselves
incomplete, so you can instead provide your own data. For example, you might know
that the stocks dataset is supposed to run from 2019 to 2021, so you could explicitly
supply those values for year:
stocks |>
complete(year = 2019:2021, qtr)
#> # A tibble: 12 x 3
#> year qtr price
#> <dbl> <dbl> <dbl>
1 2019 1 MA
2 2019 2 MA
3 2019 3 MA
#>4 2019 4 MA
5 2020 1 1.88
6 2020 2 0.59
.. with 6 more rows

If the range of a variable is correct but not all values are present, you could use
full_seq(x, 1) to generate all values from min(x) to max(x) spaced out by 1.

In some cases, the complete set of observations can’t be generated by a simple com-
bination of variables. In that case, you can do manually what complete() does for
you: create a data frame that contains all the rows that should exist (using whatever
combination of techniques you need) and then combine it with your original dataset
with dplyr::full_join().

Joins

This brings us to another important way of revealing implicitly missing observations:
joins. You'll learn more about joins in Chapter 19, but we wanted to quickly mention
them to you here since you can often know that values are missing from one dataset
only when you compare it another.

dplyr::anti_join(x, y) is a useful tool here because it selects only the rows in x
that don’t have a match in y. For example, we can use two anti_join()s to reveal that
we're missing information for 4 airports and 722 planes mentioned in flights:

library(nycflights13)

flights |>
distinct(faa = dest) |>
anti_join(airports)

#> Joining with by = join_by(faa)"

#> # A tibble: 4 x 1

#> faa

#> <chr>

#> 1 BON

#> 2 SJU

#> 3 STT

#> 4 PSE

Implicit Missing Values | 325

https://tidyr.tidyverse.org/reference/complete.html
https://tidyr.tidyverse.org/reference/complete.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/filter-joins.html

flights |>
distinct(tailnum) |>
anti_join(planes)
#> Joining with ‘by = join_by(tailnum)"
#> # A tibble: 722 x 1
#> tailnum
#> <chr>
1 N3ALAA
2 N3DUAA
3 N542MQ
#> 4 N730MQ
5 NOEAMQ
6 N532UA
.. with 716 more rows

Exercises

1. Can you find any relationship between the carrier and the rows that appear to be
missing from planes?

Factors and Empty Groups

A final type of missingness is the empty group, a group that doesn’t contain any
observations, which can arise when working with factors. For example, imagine we
have a dataset that contains some health information about people:

health <- tibble(

name = c("Ikaila", "Oletta", "Leriah", "Dashay", "Tresaun"),
smoker = factor(c("no", "no", "no", "no", "no"), levels = c("yes", "no")),
age = c(34, 88, 75, 47, 56),

)
And say we want to count the number of smokers with dplyr: :count():

health |> count(smoker)
#> # A tibble: 1 x 2

#> smoker n
#> <fct> <int>
#> 1 no 5

This dataset contains only nonsmokers, but we know that smokers exist; the group of
nonsmoker is empty. We can request count() to keep all the groups, even those not
seen in the data, by using .drop = FALSE:

health |> count(smoker, .drop = FALSE)
#> # A tibble: 2 x 2

#> smoker n
#> <fct> <int>
#> 1 yes 0
#> 2 no 5

326 | Chapter 18: Missing Values

https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/count.html

The same principle applies to ggplot2’s discrete axes, which will also drop levels that
don’t have any values. You can force them to display by supplying drop = FALSE to
the appropriate discrete axis:

aggplot(health, aes(x = smoker)) +

geom_bar() +
scale_x_discrete()

aggplot(health, aes(x = smoker)) +
geom_bar() +
scale_x_discrete(drop = FALSE)

5- 5-
4 - 4 -
8 2- 8 2-
1- 1-
0- T 0- | ;
no yes no
smoker smoker

The same problem comes up more generally with dplyr::group_by(). And again
you can use .drop = FALSE to preserve all factor levels:

health |[>
group_by(smoker, .drop = FALSE) |>
summarize(
n=n(),
mean_age = mean(age),
min_age = min(age),
max_age = max(age),
sd_age = sd(age)
)
#> # A tibble: 2 x 6

#> smoker n mean_age min_age max_age sd_age
#> <fct> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 yes 0 NaN Inf -Inf NA

#> 2 no 5 60 34 88 21.6

We get some interesting results here because when summarizing an empty group,
the summary functions are applied to zero-length vectors. There’s an important
distinction between empty vectors, which have length 0, and missing values, each of
which has length 1.

A vector containing two missing values
x1 <- c(NA, NA)

length(x1)

#> [1] 2

A vector containing nothing
x2 <- numeric()

Factors and Empty Groups | 327

https://dplyr.tidyverse.org/reference/group_by.html

length(x2)
#> [1] 0

All summary functions work with zero-length vectors, but they may return results
that are surprising at first glance. Here we see mean(age) returning NaN because
mean(age) = sum(age)/length(age), which here is 0/0. max() and min() return -Inf

and Inf for empty vectors, so if you combine the results with a nonempty vector of
new data and recompute, you'll get the minimum or maximum of the new data.!

Sometimes a simpler approach is to perform the summary and then make the
implicit missings explicit with complete():

health |>
group_by(smoker) |>
summarize(
n=n(),
mean_age = mean(age),
min_age = min(age),
max_age = max(age),
sd_age = sd(age)
) |>

complete(smoker)
#> # A tibble: 2 x 6
#> smoker n mean_age min_age max_age sd_age
#> <fct> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 yes NA NA NA NA NA
#> 2 no 5 60 34 88 21.6

The main drawback of this approach is that you get an NA for the count, even though
you know that it should be zero.

Summary

Missing values are weird! Sometimes theyre recorded as an explicit NA, but other
times you notice them only by their absence. This chapter has given you some tools
for working with explicit missing values and some tools for uncovering implicit
missing values, and we discussed some of the ways that implicit can become explicit,
and vice versa.

In the next chapter, we tackle the final chapter in this part of the book: joins. This is a
bit of a change from the chapters so far because were going to discuss tools that work
with data frames as a whole, not something that you put inside a data frame.

1 In other words, min(c(x, y)) is always equal to min(min(x), min(y)).

328 | (Chapter 18: Missing Values

https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/Extremes.html
https://tidyr.tidyverse.org/reference/complete.html

CHAPTER 19
Joins

Introduction

It’s rare that a data analysis involves only a single data frame. Typically you have many
data frames, and you must join them together to answer the questions that youre
interested in. This chapter will introduce you to two important types of joins:

o Mutating joins, which add new variables to one data frame from matching
observations in another.

« Filtering joins, which filter observations from one data frame based on whether
they match an observation in another.

We'll begin by discussing keys, the variables used to connect a pair of data frames in
a join. We cement the theory with an examination of the keys in the datasets from
the nycflights13 package and then use that knowledge to start joining data frames
together. Next well discuss how joins work, focusing on their action on the rows.
We'll finish up with a discussion of non-equi joins, a family of joins that provide a
more flexible way of matching keys than the default equality relationship.

Prerequisites

In this chapter, we'll explore the five related datasets from nycflights13 using the join
functions from dplyr.

library(tidyverse)
library(nycflights13)

329

Keys

To understand joins, you need to first understand how two tables can be connected
through a pair of keys, within each table. In this section, you'll learn about the two
types of key and see examples of both in the datasets of the nycflights13 package.
You'll also learn how to check that your keys are valid and what to do if your table
lacks a key.

Primary and Foreign Keys

Every join involves a pair of keys: a primary key and a foreign key. A primary key is a
variable or set of variables that uniquely identifies each observation. When more than
one variable is needed, the key is called a compound key. For example, in nycflights13:

o airlines records two pieces of data about each airline: its carrier code and its
full name. You can identify an airline with its two-letter carrier code, making

carrier the primary key.
atrlines
#> # A tibble: 16 x 2
#> carrier name
#> <chr> <chr>

#> 1 9F Endeavor Air Inc.

#> 2 AA American Airlines Inc.
#> 3 AS Alaska Airlines Inc.

#> 4 B6 JetBlue Airways

#> 5 DL Delta Air Lines Inc.

#> 6 EV ExpressJet Airlines Inc.

#> # .. with 10 more rows

« airports records data about each airport. You can identify each airport by its
three-letter airport code, making faa the primary key.

airports

#> # A tibble: 1,458 x 8

#> faa name lat lon alt tz dst
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 04G Lansdowne Airport 41.1 -80.6 1044 -5 A
#> 2 O6A Moton Field Municipal Airport 32.5 -85.7 264 -6 A
#> 3 06C Schaumburg Regional 42.0 -88.1 801 -6 A
#> 4 06N Randall Airport 41.4 -74.4 523 -5 A
#> 5 097 Jekyll Island Airport 31.1 -81.4 11 -5 A
#> 6 OA9 Elizabethton Municipal Airpo.. 36.4 -82.2 1593 -5 A
#> # .. with 1,452 more rows, and 1 more variable: tzone <chr>

« planes records data about each plane. You can identify a plane by its tail number,
making tailnum the primary key.

330 | Chapter19:Joins

planes
#> # A tibble: 3,322 x 9

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

1
2
3
4
5
6
#
#

tailnum year type
<chr> <int> <chr>

N10156 2004 Fixed wing
N162UW 1998 Fixed wing
N163US 1999 Fixed wing
N164UW 1999 Fixed wing
N160575 2002 Fixed wing
N105UW 1999 Fixed wing

multi..
multi..
multi..
multi..
multi..
multi..

manufacturer
<chr>
EMBRAER

AIRBUS INDUSTR..
AIRBUS INDUSTR..
AIRBUS INDUSTR..

EMBRAER

AIRBUS INDUSTR..

model engines
<chr> <int>
EMB-145XR 2
A320-214 2
A320-214 2
A320-214 2
EMB-145LR 2
A320-214 2

.. with 3,316 more rows, and 3 more variables: seats <int>,
speed <int>, engine <chr>

o weather records data about the weather at the origin airports. You can identify
each observation by the combination of location and time, making origin and

time_hour the compound primary key.

weather
A tibble: 26,115 x 15

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

1
2
3
4
5
6
#
#

origin year month
<chr> <int> <int>

EWR 2013 1
EWR 2013 1
EWR 2013 1
EWR 2013 1
EWR 2013 1
EWR 2013 1

. with 26,109 more
wind_gust <dbl>,

day hour
<int> <int>

1

[A N Y

1
rows,

LA WN R

6

temp dewp humid wind_dir
<dbl> <dbl> <dbl> <dbl>

39.0 26.1 59.
39.0 27.0 e61.
39.0 28.0 64.
39.9 28.0 62.
39.0 28.0 64.
37.9 28.0 67.

and 6 more variables:
precip <dbl>, pressure <dbl>, visib <dbl>, ..

4 270
6 250
4 240
2 250
4 260
2 240

wind_speed <dbl>,

A foreign key is a variable (or set of variables) that corresponds to a primary key in
another table. For example:

o flights$tailnum is a foreign key that corresponds to the primary key
planes$tailnum.

o flights$carrier is a foreign key that corresponds to the primary key
airlines$carrier.

o flights$origin is a foreign key that corresponds to the primary key
airportsS$faa.

o flights$dest is a foreign key that corresponds to the primary key
airportsS$faa.

o flights$origin-flights$time_hour is a compound foreign key that corre-
sponds to the compound primary key weather$origin-weather$time_hour.

These relationships are summarized visually in Figure 19-1.

Keys | 331

flights weather
time_hour D_._C time_hour
airports origin origin
faa flight
dest
- planes
tailnum <ﬁ—(-
- tailnum
carrier
airlines
carrier
names

Figure 19-1. Connections between all five data frames in the nycflights13 package.
Variables making up a primary key are gray and are connected to their corresponding
foreign keys with arrows.

You'll notice a nice feature in the design of these keys: the primary and foreign
keys almost always have the same names, which, as you’ll see shortly, will make
your joining life much easier. It’s also worth noting the opposite relationship: almost
every variable name used in multiple tables has the same meaning in each place.
There’s only one exception: year means year of departure in flights and year of
manufacturer in planes. This will become important when we start actually joining
tables together.

Checking Primary Keys

Now that that we've identified the primary keys in each table, it’s good practice to
verify that they do indeed uniquely identify each observation. One way to do that is
to count() the primary keys and look for entries where n is greater than one. This
reveals that planes and weather both look good:

planes |>
count(tailnum) |>
filter(n > 1)
#> # A tibble: 0 x 2
#> # .. with 2 variables: tailnum <chr>, n <int>

weather |>
count(time_hour, origin) |>
filter(n > 1)
#> # A tibble: 0 x 3
#> # .. with 3 variables: time_hour <dttm>, origin <chr>, n <int>

332 | Chapter19:Joins

https://dplyr.tidyverse.org/reference/count.html

You should also check for missing values in your primary keys—if a value is missing,
then it can’t identify an observation!
planes |>
filter(is.na(tailnum))
#> # A tibble: 0 x 9

#> # .. with 9 variables: tailnum <chr>, year <int>, type <chr>,
#> # manufacturer <chr>, model <chr>, engines <int>, seats <int>, ..

weather |>
filter(is.na(time_hour) | is.na(origin))
#> # A tibble: 0 x 15
#> # .. with 15 variables: origin <chr>, year <int>, month <int>, day <int>,
#> # hour <int>, temp <dbl>, dewp <dbl>, humid <dbl>, wind_dir <dbl>, ..

Surrogate Keys

So far we haven't talked about the primary key for flights. It's not super important
here, because there are no data frames that use it as a foreign key, but it’s still useful to
consider because it’s easier to work with observations if we have some way to describe
them to others.

After a little thinking and experimentation, we determined that there are three
variables that together uniquely identify each flight:

flights |>
count(time_hour, carrier, flight) |[>
filter(n > 1)
#> # A tibble: 0 x 4
#> # .. with 4 variables: time_hour <dttm>, carrier <chr>, flight <int>, n <int>

Does the absence of duplicates automatically make time_hour-carrier-flight a
primary key? It’s certainly a good start, but it doesn’t guarantee it. For example, are
altitude and latitude a good primary key for airports?
airports |>
count(alt, lat) |>

filter(n > 1)
#> # A tibble: 1 x 3

#> alt lat n
#> <dbl> <dbl> <int>
1 13 40.6 2

Identifying an airport by its altitude and latitude is clearly a bad idea, and in general
it's not possible to know from the data alone whether a combination of variables
makes a good primary key. But for flights, the combination of time_hour, carrier,
and flight seems reasonable because it would be really confusing for an airline and
its customers if there were multiple flights with the same flight number in the air at
the same time.

That said, we might be better off introducing a simple numeric surrogate key using
the row number:

Keys | 333

flights2 <- flights |>
mutate(id = row_number(), .before = 1)

flights2

#> # A tibble: 336,776 x 20

#> id year month day dep_time sched dep_time dep_delay arr_time
#> <int> <int> <int> <int> <int> <int> <dbl> <int>
1 1 2013 1 1 517 515 2 830
#> 2 2 2013 1 1 533 529 4 850
3 3 2013 1 1 542 540 2 923
#> 4 4 2013 1 1 544 545 -1 1004
5 5 2013 1 1 554 600 -6 812
#> 6 6 2013 1 1 554 558 -4 740
#> # .. with 336,770 more rows, and 12 more variables: sched_arr_time <int>,
#> # arr_delay <dbl>, carrier <chr>, flight <int>, tailnum <chr>, ..

Surrogate keys can be particularly useful when communicating to other humans: it’s
much easier to tell someone to take a look at flight 2001 than to say look at UA430,
which departed at 9 a.m. on January 3, 2013.

Exercises

. We forgot to draw the relationship between weather and atirports in Fig-

ure 19-1. What is the relationship, and how should it appear in the diagram?

. weather contains information for only the three origin airports in NYC. If it

contained weather records for all airports in the US, what additional connection
would it make to flights?

. The year, month, day, hour, and origin variables almost form a compound key

for weather, but there’s one hour that has duplicate observations. Can you figure
out what’s special about that hour?

We know that some days of the year are special and fewer people than usual fly
on them (e.g., Christmas Eve and Christmas Day). How might you represent that
data as a data frame? What would be the primary key? How would it connect to
the existing data frames?

. Draw a diagram illustrating the connections between the Batting, People, and

Salaries data frames in the Lahman package. Draw another diagram that shows
the relationship between People, Managers, and AwardsManagers. How would
you characterize the relationship between the Batting, Pitching, and Fielding
data frames?

Basic Joins

Now that you understand how data frames are connected via keys, we can start using
joins to better understand the flights dataset. dplyr provides six join functions:

e left_join()

334

| Chapter 19: Joins

https://dplyr.tidyverse.org/reference/mutate-joins.html

e inner_join()
e right_join()
e full_join()
e semi_join()

e anti_join()

They all have the same interface: they take a pair of data frames (x and y) and return a
data frame. The order of the rows and columns in the output is primarily determined

by x.

In this section, you’ll learn how to use one mutating join, left_join(), and two
filtering joins, semi_join() and anti_join(). In the next section, you’ll learn exactly
how these functions work and about the remaining inner_join(), right_join(),
and full_join().

Mutating Joins

A mutating join allows you to combine variables from two data frames: it first
matches observations by their keys and then copies across variables from one data
frame to the other. Like mutate(), the join functions add variables to the right, so
if your dataset has many variables, you won't see the new ones. For these examples,
we'll make it easier to see what’s going on by creating a narrower dataset with just six
variables:'

flights2 <- flights |>
select(year, time_hour, origin, dest, tailnum, carrier)

flights2
#> # A tibble: 336,776 x 6
#> year time_hour origin dest tailnum carrier
#> <int> <dttm> <chr> <chr> <chr> <chr>
#> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA
#> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA
#> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA
#> 4 2013 2013-01-01 05:00:00 JFK BON N804JB B6
#> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL
#> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA

#

.. with 336,770 more rows

There are four types of mutating join, but there’s one that you’ll use almost all of the
time: left_join(). It’s special because the output will always have the same rows as
x.2 The primary use of left_join() is to add additional metadata. For example, we
can use left_join() to add the full airline name to the flights2 data:

1 Remember that in RStudio you can also use View() to avoid this problem.

2 That’s not 100% true, but yow’ll get a warning whenever it isn’t.

BasicJoins | 335

https://rdrr.io/r/utils/View.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/filter-joins.html
https://dplyr.tidyverse.org/reference/filter-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/filter-joins.html
https://dplyr.tidyverse.org/reference/filter-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html

flights2 |>

left_join(airlines)
#> Joining with ‘by = join_by(carrier)’
#> # A tibble: 336,776 x 7

#> year time_hour origin dest tailnum carrier name

#> <int> <dttm> <chr> <chr> <chr> <chr> <chr>

#> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA United Air Lines In.
#> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA United Air Lines In.
#> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA American Airlines I.
#> 4 2013 2013-01-01 05:00:00 JFK BQN N804IB B6 JetBlue Airways

#> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL Delta Air Lines Inc.
#> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA United Air Lines In.
#> # .. with 336,770 more rows

Or we could find out the temperature and wind speed when each plane departed:

flights2 |>

left_join(weather |> select(origin, time_hour, temp, wind_speed))
#> Joining with ‘by = join_by(time_hour, origin)’
#> # A tibble: 336,776 x 8

#> year time_hour origin dest tailnum carrier temp wind_speed
#> <int> <dttm> <chr> <chr> <chr> <chr> <dbl> <dbl>
#> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA 39.0 12.7
#> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA 39.9 15.0
#> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA 39.0 15.0
#> 4 2013 2013-01-01 05:00:00 JFK BON N804JB B6 39.0 15.0
#> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL 39.9 16.1
#> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA 39.0 12.7
#> # .. with 336,770 more rows

Or what size of plane was flying:

flights2 |>

left_join(planes |> select(tailnum, type, engines, seats))
#> Joining with ‘by = join_by(tailnum)"
#> # A tibble: 336,776 x 9

#> year time_hour origin dest tailnum carrier type

#> <int> <dttm> <chr> <chr> <chr> <chr> <chr>

#> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA Fixed wing multi en..
#> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA Fixed wing multi en.
#> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA Fixed wing multi en..
#> 4 2013 2013-01-01 05:00:00 JFK BON N804JB B6 Fixed wing multi en.
#> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL Fixed wing multi en..
#> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA Fixed wing multi en.

#> # .. with 336,770 more rows, and 2 more variables: engines <int>, seats <int>

When left_join() fails to find a match for a row in x, it fills in the new variables
with missing values. For example, there’s no information about the plane with tail
number N3ALAA so the type, engines, and seats will be missing:

flights2 |>

filter(tailnum == "N3ALAA") |>

left_join(planes |> select(tailnum, type, engines, seats))
#> Joining with ‘by = join_by(tailnum)"’
#> # A tibble: 63 x 9

#> year time_hour origin dest tailnum carrier type engines seats
#> <int> <dttm> <chr> <chr> <chr> <chr> <chr> <int> <int>
#> 1 2013 2013-01-01 06:00:00 LGA ORD N3ALAA AA <NA> NA NA
#> 2 2013 2013-01-02 18:00:00 LGA ORD N3ALAA AA <NA> NA NA

336 | Chapter19:Joins

https://dplyr.tidyverse.org/reference/mutate-joins.html

#> 3 2013 2013-01-03 06:00:00 LGA ORD N3ALAA AA <NA>
#> 4 2013 2013-01-07 19:00:00 LGA ORD N3ALAA AA <NA>
#> 5 2013 2013-01-08 17:00:00 JFK ORD N3ALAA AA <NA>
#> 6 2013 2013-01-16 06:00:00 LGA ORD N3ALAA AA <NA>
#> # .. with 57 more rows

NA
NA
NA
NA

WEell come back to this problem a few times in the rest of the chapter.

Specifying Join Keys

NA
NA
NA
NA

By default, left_join() will use all variables that appear in both data frames as the
join key, the so-called natural join. This is a useful heuristic, but it doesn’t always
work. For example, what happens if we try to join flights2 with the complete

planes dataset?

flights2 |>

left_join(planes)
#> Joining with ‘by = join_by(year, tailnum)’
#> # A tibble: 336,776 x 13

#> year time_hour origin dest tailnum carrier type manufacturer
#> <int> <dttm> <chr> <chr> <chr> <chr> <chr> <chr>

#> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA <NA> <NA>

#> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA <NA> <NA>

#> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA <NA> <NA>

#> 4 2013 2013-01-01 05:00:00 JFK BON N804JB B6 <NA> <NA>

#> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL <NA> <NA>

#> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA <NA> <NA>

#> # .. with 336,770 more rows, and 5 more variables: model <chr>,

#> # engines <int>, seats <int>, speed <int>, engine <chr>

We get a lot of missing matches because our join is trying to use tailnum and year
as a compound key. Both flights and planes have a year column, but they mean
different things: flights$year is the year the flight occurred, and planes$year is the
year the plane was built. We only want to join on tailnum, so we need to provide an

explicit specification with join_by():

flights2 |>
left_join(planes, join_by(tailnum))
#> # A tibble: 336,776 x 14

#> year.x time_hour origin dest tailnum carrier year.y
#> <int> <dttm> <chr> <chr> <chr> <chr> <int>
#> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA 1999
#> 2 2013 2013-01-01 05:00:00 LCGA IAH N24211 UA 1998
#> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA 1990
#> 4 2013 2013-01-01 05:00:00 JFK BON N804JB B6 2012
#> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL 1991
#> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA 2012
#> # .. with 336,770 more rows, and 7 more variables: type <chr>,

#> # manufacturer <chr>, model <chr>, engines <int>, seats <int>, ..

Note that the year variables are disambiguated in the output with a suffix (year.x
and year.y), which tells you whether the variable came from the x or y argument.

You can override the default suffixes with the suffix argument.

Basic Joins

337

https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/join_by.html

join_by(tailnum) is short for join_by(tailnum == tailnum). It's important to
know about this fuller form for two reasons. First, it describes the relationship
between the two tables: the keys must be equal. That’s why this type of join is often
called an equi join. You'll learn about non-equi joins in “Filtering Joins” on page 346.

Second, it’s how you specify different join keys in each table. For example, there are
two ways to join the flight2 and airports table: either by dest or by origin:
flights2 |>

left_join(airports, join_by(dest == faa))
#> # A tibble: 336,776 x 13

#> year time_hour origin dest tailnum carrier name

#> <int> <dttm> <chr> <chr> <chr> <chr> <chr>

#> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA George Bush Interco..
#> 2 2013 2013-01-01 05:00:00 LGA IAH N24211 UA George Bush Interco..
#> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA Miami Intl

#> 4 2013 2013-01-01 05:00:00 JFK BON N804JB B6 <NA>

#> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL Hartsfield Jackson ..
#> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA Chicago Ohare Intl
#> # .. with 336,770 more rows, and 6 more variables: lat <dbl>, lon <dbl>,

#> # alt <dbl>, tz <dbl>, dst <chr>, tzone <chr>

flights2 |>

left_join(airports, join_by(origin == faa))
#> # A tibble: 336,776 x 13

#> year time_hour origin dest tailnum carrier name

#> <int> <dttm> <chr> <chr> <chr> <chr> <chr>

#> 1 2013 2013-01-01 05:00:00 EWR IAH N14228 UA Newark Liberty Intl
#> 2 2013 2013-01-01 05:00:00 LCA IAH N24211 UA La Guardia

#> 3 2013 2013-01-01 05:00:00 JFK MIA N619AA AA John F Kennedy Intl
#> 4 2013 2013-01-01 05:00:00 JFK BON N804JB B6 John F Kennedy Intl
#> 5 2013 2013-01-01 06:00:00 LGA ATL N668DN DL La Guardia

#> 6 2013 2013-01-01 05:00:00 EWR ORD N39463 UA Newark Liberty Intl
#> # .. with 336,770 more rows, and 6 more variables: lat <dbl>, lon <dbl>,

#> # alt <dbl>, tz <dbl>, dst <chr>, tzone <chr>

In older code you might see a different way of specifying the join keys, using a
character vector:

o by = "x" corresponds to join_by(x).

o by = c("a" = "x") corresponds to join_by(a == x).

Now that it exists, we prefer join_by() since it provides a clearer and more flexible
specification.

inner_join(), right_join(), and full_join() have the same interface as
left_join(). The difference is which rows they keep: left join keeps all the rows
in x, the right join keeps all rows in y, the full join keeps all rows in either x or y, and
the inner join keeps only those rows that occur in both x and y. We'll come back to
these in more detail later.

338 | Chapter19:Joins

https://dplyr.tidyverse.org/reference/join_by.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html

Filtering Joins

As you might guess, the primary action of a filtering join is to filter the rows. There
are two types: semi-joins and anti-joins. Semi-joins keep all rows in x that have a

match in y. For example, we could
show just the origin airports:

airports |>

use a semi-join to filter the airports dataset to

semi_join(flights2, join_by(faa == origin))
#> # A tibble: 3 x 8
#> faa name lat lon alt tz dst tzone
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 EWR Newark Liberty Intl 40.7 -74.2 18 -5 A America/New_York
#> 2 JFK John F Kennedy Intl 40.6 -73.8 13 -5 A America/New_York
#> 3 LGA La Guardia 40.8 -73.9 22 -5 A America/New_York

Or just the destinations:

airports |>

semi_join(flights2, join_by(faa == dest))
#> # A tibble: 101 x 8
#> faa name lat lon alt tz dst tzone
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 ABQ Albuquerque Internati.. 35.0 -107. 5355 -7 A America/Denver
#> 2 ACK Nantucket Mem 41.3 -70.1 48 -5 A America/New_Yo..
#> 3 ALB Albany Intl 42.7 -73.8 285 -5 A America/New_Yo..
#> 4 ANC Ted Stevens Anchorage.. 61.2 -150. 152 -9 A America/Anchor...
#> 5 ATL Hartsfield Jackson At.. 33.6 -84.4 1026 -5 A America/New_Yo..
#> 6 AUS Austin Bergstrom Intl 30.2 -97.7 542 -6 A America/Chicago
#> # .. with 95 more rows

Anti-joins are the opposite: they return all rows in x that don’t have a match in y.
They'’re useful for finding missing values that are implicit in the data, the topic of
“Implicit Missing Values” on page 323. Implicitly missing values don’t show up as NAs

but instead exist only as an absence

. For example, we can find rows that are missing

from airports by looking for flights that don’t have a matching destination airport:

flights2 |>
anti_join(atirports, join_by(dest =
distinct(dest)
A tibble: 4 x 1
dest
<chr>
1 BON
2 SJU
3 STT
4 PSE

= faa)) [>

Or we can find which tailnums are missing from planes:

flights2 |>
anti_join(planes, join_by(tailnum)
distinct(tailnum)
A tibble: 722 x 1
tailnum
<chr>
1 N3ALAA

) >

BasicJoins | 339

#> 2 N3DUAA
#> 3 N542MQ
#> 4 N730MQ
#> 5 NOEAMQ
#> 6 N532UA
#> # .. with 716 more rows

Exercises

1. Find the 48 hours (over the course of the whole year) that have the worst delays.
Cross-reference it with the weather data. Can you see any patterns?

2. Imagine you've found the top 10 most popular destinations using this code:

top_dest <- flights2 |>
count(dest, sort = TRUE) |>
head(10)
How can you find all flights to those destinations?

3. Does every departing flight have corresponding weather data for that hour?

4. What do the tail numbers that don’t have a matching record in planes have in
common? (Hint: One variable explains about 90% of the problems.)

5. Add a column to planes that lists every carrier that has flown that plane.
You might expect that there’s an implicit relationship between plane and airline,
because each plane is flown by a single airline. Confirm or reject this hypothesis
using the tools you've learned in previous chapters.

6. Add the latitude and the longitude of the origin and destination airport to
flights. Is it easier to rename the columns before or after the join?

7. Compute the average delay by destination and then join on the airports data
frame so you can show the spatial distribution of delays. Here’s an easy way to
draw a map of the United States:

airports |[>
semi_join(flights, join_by(faa == dest)) |>
ggplot(aes(x = lon, y = lat)) +
borders("state") +
geom_point() +
coord_quickmap()
You might want to use the size or color of the points to display the average
delay for each airport.

8. What happened on June 13, 2013? Draw a map of the delays, and then use

Google to cross-reference with the weather.
340 | Chapter19:Joins

How Do Joins Work?

Now that you've used joins a few times, it’s time to learn more about how they work,
focusing on how each row in x matches rows in y. We'll begin by introducing a
visual representation of joins, using the simple tibbles defined next and shown in
Figure 19-2. In these examples we'll use a single key called key and a single value
column (val_x and val_y), but the ideas all generalize to multiple keys and multiple
values.

x <- tribble(
~key, ~val_x,
1, "x1",
2, "x2",
3, "x3"
)
y <- tribble(
~key, ~val_y,
1, "y1",
2, "y2",
4, "y3"

X y
x1 1| y1

2| x2 2| y2

3| x3 4 y3

Figure 19-2. Graphical representation of two simple tables. The colored key columns
map background color to key value. The gray columns represent the “value” columns that
are carried along for the ride.

Figure 19-3 introduces the foundation for our visual representation. It shows all
potential matches between x and y as the intersection between lines drawn from
each row of x and each row of y. The rows and columns in the output are primarily
determined by x, so the x table is horizontal and lines up with the output.

How Do Joins Work? | 341

x1
X2
x3 |3

HIN|—=

< I |I<
WIN|k-

Figure 19-3. To understand how joins work, it’s useful to think of every possible match.
Here we show that with a grid of connecting lines.

To describe a specific type of join, we indicate matches with dots. The matches
determine the rows in the output, a new data frame that contains the key, the x
values, and the y values. For example, Figure 19-4 shows an inner join, where rows
are retained if and only if the keys are equal.

inner_join(x, y)

X >

>,.—»I .—»I

Q| © (]

x| > >

x1 1| x1 |yl

X2 |2 — 2| x2 | y2

x3 |3

NN VO
< I I
WIN |-

Figure 19-4. An inner join matches each row in x to the row in y that has the same value
of key. Each match becomes a row in the output.

We can apply the same principles to explain the outer joins, which keep observations
that appear in at least one of the data frames. These joins work by adding an
additional “virtual” observation to each data frame. This observation has a key that
matches if no other key matches, as well as values filled with NA. There are three types
of outer joins:

o A left join keeps all observations in X, as shown in Figure 19-5. Every row of x is
preserved in the output because it can fall back to matching a row of NAs in y.

342 | Chapter19:Joins

left_join(x, y) x >
> .—»I .—»I
(U] (L) (]
V4 > >
x1 11 x1 | y1
X2 2| x2 | y2
x3 |3 3| x3 [NA
&=
=z IV IK I
>IWIN|-

Figure 19-5. A visual representation of the left join where every row in x appears in
the output.

o A right join keeps all observations in y, as shown in Figure 19-6. Every row of y
is preserved in the output because it can fall back to matching a row of NAs in x.
The output still matches x as much as possible; any extra rows from y are added

to the end.

right_join(x, vy) x >
S o J
()] (] (]
Y > >
X1 1] x1 | y1
X2 |2 — 2| x2 | y2
x3 |3 4] NA | Y3
Y &
ENGY [N P
<K I I
WIN|-

Figure 19-6. A visual representation of the right join where every row of y appears
in the output.

* A full join keeps all observations that appear in x or y, as shown in Figure 19-7.
Every row of x and y is included in the output because both x and y have a
fallback row of NAs. Again, the output starts with all rows from x, followed by the

remaining unmatched y rows.

How Do Joins Work? | 343

full_join(x, y)

X >
> .—JI .—JI
(U] n n
V4 > >
x1 |1 1| x1 | y1
X2 |2 — 2| x2 | y2
x3 |3 F 3| x3 | NA
NA : 4| NA | y3
I NS (S
=Z 1K IK I
D|IW|IN |-

Figure 19-7. A visual representation of the full join where every row in x and y
appears in the output.

Another way to show how the types of outer join differ is with a Venn diagram, as
in Figure 19-8. However, this is not a great representation because while it might jog
your memory about which rows are preserved, it fails to illustrate what’s happening
with the columns.

@ inner_join(x, y) @ left_join(x, y)

full_join(x, y) right_join(x, y)

Figure 19-8. Venn diagrams showing the difference between inner, left, right, and full
joins.

The joins shown here are the so-called equi joins, where rows match if the keys are
equal. Equi joins are the most common type of join, so we'll typically omit the equi
prefix and just say “inner join” rather than “equi inner join” We'll come back to
non-equi joins in “Filtering Joins” on page 346.

Row Matching

So far we've explored what happens if a row in x matches zero or one rows in y. What
happens if it matches more than one row? To understand what’s going on, let’s first
narrow our focus to inner_join() and then draw a picture, as shown in Figure 19-9.

344 | Chapter19:Joins

https://dplyr.tidyverse.org/reference/mutate-joins.html

x1 o >
x2 |2 F9— g 7| o
Y4 > >
x3 |3 | |
1] x1 | y1
NN |—
2| x2 | y2
PRI 2| x2 | y3

Figure

19-9. The three ways a row in x can match. x1 matches one row in y, x2 matches

two rows in y, and x3 matches zero rows in y. Note that while there are three rows in x
and three rows in the output, there isn't a direct correspondence between the rows.

There are three possible outcomes for a row in x:

o Ifit doesn’t match anything, it’s dropped.

« Ifit matches one row in y, it’s preserved.

o If it matches more than one row in y, it’s duplicated once for each match.

In principle, this means there’s no guaranteed correspondence between the rows in
the output and the rows in x, but in practice, this rarely causes problems. There is,
however, one particularly dangerous case that can cause a combinatorial explosion of
rows. Imagine joining the following two tables:

df1 <- tibble(key = c(1, 2, 2), val_x = c("x1", "x2", "x3"))
df2 <- tibble(key = C(l, 2, 2), val_y = C(nylu’ uyzvl, vly3u))

While

the first row in df1 matches only one row in df2, the second and third rows

both match two rows. This is sometimes called a many-to-many join and will cause
dplyr to emit a warning:

df1 |>
inner_join(df2, join_by(key))

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Warning in inner_join(df1, df2, join_by(key)):

Detected an unexpected many-to-many relationship between ‘x' and ‘y'.

7 Row 2 of “x' matches multiple rows in ‘y" .

7 Row 2 of 'y matches multiple rows in ‘x'.

7 If a many-to-many relationship is expected, set ‘relationship =
"many-to-many"" to silence this warning.

A tibble: 5 x 3

key val_x val_y
<dbl> <chr> <chr>
1 1 x1 y1
2 2 x2 y2
3 2 x2 y3
4 2 x3 y2
5 2 x3 v3

How Do Joins Work? | 345

If you are doing this deliberately, you can set relationship = "many-to-many", as
the warning suggests.

Filtering Joins

The number of matches also determines the behavior of the filtering joins. The
semi-join keeps rows in x that have one or more matches in y, as in Figure 19-10.
The anti-join keeps rows in x that match zero rows in y, as in Figure 19-11. In both
cases, only the existence of a match is important; it doesn’t matter how many times it
matches. This means that filtering joins never duplicate rows like mutating joins do.

semi_join(x, y)
x1 |1 »
x2 (21— i
x3 |3 =| >
N 1] x1
2| x2

<K IK <

WIN |-

Figure 19-10. In a semi-join it only matters that there is a match; otherwise, values in y
don’t affect the output.

anti_join(x, y)

*x—-1 x|
v 1A 2 o~
| Z vl m
x| >
x3 |3
31| x3
NN =
< |« |«
WIN|-

Figure 19-11. An anti-join is the inverse of a semi-join, dropping rows from x that have

a match in y.

Non-Equi Joins

So far you've seen only equi joins, joins where the rows match if the x key equals the y
key. Now were going to relax that restriction and discuss other ways of determining if
a pair of rows match.

346 | Chapter19:Joins

But before we can do that, we need to revisit a simplification we made previously.
In equi joins the x keys and y are always equal, so we need to show only one in the
output. We can request that dplyr keep both keys with keep = TRUE, leading to the
following code and the redrawn inner_join() in Figure 19-12.

x |> left_join(y, by = "key", keep = TRUE)

#> # A tibble: 3 x 4

#> key.x val_x key.y val_y
#> <dbl> <chr> <dbl> <chr>

1 1 x1 1y1
#> 2 2 x2 2 y2
#> 3 3 x3 NA <NA>
join_by(key == key)
x| x | > >
x1 |1 S Y
[J] [[J] (]
x2 |2 x| > |x| >
x3 |3 | 1| x1 | 1] y1
N = 2| x2 [2] y2
< |« |<
WIN | =

Figure 19-12. An inner join showing both x and y keys in the output.

When we move away from equi joins, we'll always show the keys, because the key
values will often be different. For example, instead of matching only when the x$key
and y$key are equal, we could match whenever the x$key is greater than or equal to
the ySkey, leading to Figure 19-13. dplyr’s join functions understand this distinction
between equi and non-equi joins so will always show both keys when you perform a

non-equi join.

join_by(key >= key)

52
x1 ARG
X2 V4 > | X >
x3 |3 1] x1 1]yl

I — 2 x2 [1]y1l
2| x2 2] y2

I <

WinN = 3|1 x3 1]yl
3| x3|[2]y2

Figure 19-13. A non-equi join where the x key must be greater than or equal to the y key.
Many rows generate multiple matches.

Non-EquiJoins | 347

https://dplyr.tidyverse.org/reference/mutate-joins.html

Non-equi join isn’t a particularly useful term because it only tells you what the join
is not, not what it is. dplyr helps by identifying four particularly useful types of
non-equi join:

Cross joins
Match every pair of rows.

Inequality joins
Use <, <=, >, and >= instead of ==.

Rolling joins
Similar to inequality joins but only find the closest match.

Overlap joins
A special type of inequality join designed to work with ranges.

Each of these is described in more detail in the following sections.

Cross Joins

A cross join matches everything, as in Figure 19-14, generating the Cartesian product
of rows. This means the output will have nrow(x) * nrow(y) rows.

join_by()
x1 { B B
x2 |20 @ @
x3 |30 @@
WIN | —
x | > |
WIN |-

Figure 19-14. A cross join matches each row in x with every row in y.

Cross joins are useful when generating permutations. For example, the following
code generates every possible pair of names. Since we're joining df to itself, this is
sometimes called a self-join. Cross joins use a different join function because there’s
no distinction between inner/left/right/full when you’re matching every row.

df <- tibble(name = c("John", "Simon", "Tracy", "Max"))
df |> cross_join(df)

#> # A tibble: 16 x 2

#> name.x name.y

#> <chr> <chr>

#> 1 John John

#> 2 John Simon

#> 3 John Tracy

348 | Chapter19:Joins

#> 4 John Max

#> 5 Simon John

#> 6 Simon Simon

#> # .. with 10 more rows

Inequality Joins

Inequality joins use <, <=, >=, or > to restrict the set of possible matches, as in
Figure 19-13 and Figure 19-15.

join_by(key < key)

x1]11/0 @

x2 |2 |@®

x3 |3
WIN|—
> [x [
WIN | =

Figure 19-15. An inequality join where x is joined to y on rows where the key of x is less
than the key of y. This makes a triangular shape in the top-left corner.

Inequality joins are extremely general, so general that it's hard to come up with
meaningful specific use cases. One small useful technique is to use them to restrict
the cross join so that instead of generating all permutations, we generate all
combinations:

df <- tibble(id = 1:4, name = c("John", "Simon", "Tracy", "Max"))

df |> left_join(df, join_by(id < id))
#> # A tibble: 7 x 4

#> id.x name.x 1id.y name.y
#> <int> <chr> <int> <chr>
#> 1 1 John 2 Simon
2 1 John 3 Tracy
#> 3 1 John 4 Max
#> 4 2 Simon 3 Tracy
#> 5 2 Simon 4 Max
#> 6 3 Tracy 4 Max
#> # .. with 1 more row

Rolling Joins

Rolling joins are a special type of inequality join where instead of getting every row
that satisfies the inequality, you get just the closest row, as in Figure 19-16. You
can turn any inequality join into a rolling join by adding closest(). For example,
join_by(closest(x <= y)) matches the smallest y that’s greater than or equal to x,
and join_by(closest(x > y)) matches the biggest y thats less than x.

Non-EquiJoins | 349

join_by(closest(key <= key))
x1 |1 @
x2 |2 {
x3 |3 {
AN |—
< I |I<
WIN|-

Figure 19-16. A rolling join is similar to a greater-than-or-equal inequality join but
matches only the first value.

Rolling joins are particularly useful when you have two tables of dates that don’t
perfectly line up and you want to find, for example, the closest date in table 1 that
comes before (or after) some date in table 2.

For example, imagine that youre in charge of the party planning commission for
your office. Your company is rather cheap so instead of having individual parties, you
have a party only once each quarter. The rules for determining when a party will be
held are a little complex: parties are always on a Monday, you skip the first week of
January since a lot of people are on holiday, and the first Monday of Q3 2022 is July 4,
so that has to be pushed back a week. That leads to the following party days:

parties <- tibble(

q=1:4,

party = ymd(c("2022-01-10", "2022-04-04", "2022-07-11", "2022-10-03"))
)

Now imagine that you have a table of employee birthdays:

employees <- tibble(
name = sample(babynames::babynamesSname, 100),
birthday = ymd("2022-01-01") + (sample(365, 100, replace = TRUE) - 1)

)

employees

#> # A tibble: 100 x 2

#> name birthday

#> <chr> <date>

#> 1 Case 2022-09-13

#> 2 Shonnie 2022-03-30

#> 3 Burnard 2022-01-10

#> 4 Omer 2022-11-25

#> 5 Hillel 2022-07-30

#> 6 Curlie 2022-12-11

#> # .. with 94 more rows

And for each employee we want to find the first party date that comes after (or on)
their birthday. We can express that with a rolling join:

employees |>
left_join(parties, join_by(closest(birthday >= party)))

350 | Chapter19:Joins

#> # A tibble: 100 x 4

#> name birthday q party
#> <chr> <date> <int> <date>
#> Case 2022-09-13 2022-07-11
#> 2 Shonnie 2022-03-30 2022-01-10

1 3
2 1
3 Burnard 2022-01-10 1 2022-01-10
#> 4 Omer 2022-11-25 4 2022-10-03
5 Hillel 2022-07-30 3 2022-07-11
6 Curlie 2022-12-11 4 2022-10-03
.. with 94 more rows
There is, however, one problem with this approach: the folks with birthdays before
January 10 don’t get a party:
employees |>
anti_join(parties, join_by(closest(birthday >= party)))
#> # A tibble: 0 x 2
#> # .. with 2 variables: name <chr>, birthday <date>
To resolve that issue we'll need to tackle the problem a different way, with overlap
joins.

Overlap Joins

Overlap joins provide three helpers that use inequality joins to make it easier to work
with intervals:

o between(x, y_lower, y_upper) isshort for x >= y_lower, x <= y_upper.

o within(x_lower, x_upper, vy lower, y upper) is short for x_lower >=
y_lower, x_upper <= y_upper.

o overlaps(x_lower, x_upper, y_lower, y_upper) is short for x_lower <=
y_upper, x_upper >=y_lower.

Let’s continue the birthday example to see how you might use them. There’s one
problem with the strategy we used earlier: there’s no party preceding the birthdays
from January 1 to 9. So it might be better to to be explicit about the date ranges that
each party span, and make a special case for those early birthdays:

parties <- tibble(
q = 1:4,
party = ymd(c("2022-01-10", "2022-04-04", "2022-07-11", "2022-10-03")),
start = ynd(c("2022-01-01", "2022-04-04", "2022-07-11", "2022-10-03")),
end = ymd(c("2022-04-03", "2022-07-11", "2022-10-02", "2022-12-31"))

)

parties

#> # A tibble: 4 x 4

#> q party start end

#> <int> <date> <date> <date>

#> 1 1 2022-01-10 2022-01-01 2022-04-03
#> 2 2 2022-04-04 2022-04-04 2022-07-11
#> 3 3 2022-07-11 2022-07-11 2022-10-02
#> 4 4 2022-10-03 2022-10-03 2022-12-31

Non-EquiJoins | 351

Hadley is hopelessly bad at data entry, so he also wanted to check that the party
periods don't overlap. One way to do this is by using a self-join to check whether any
start-end interval overlaps with another:

parties |>

inner_join(parties, join_by(overlaps(start, end, start, end), q < q)) |>
select(start.x, end.x, start.y, end.y)

#> # A tibble: 1 x 4

#> start.x end. x start.y end.y

#> <date> <date> <date> <date>

#> 1 2022-04-04 2022-07-11 2022-07-11 2022-10-02

Oops, there is an overlap, so let’s fix that problem and continue:

<- tibble(
14,

parties
q=1
party
start
end =

)

Now we can match each employee to their party. This is a good place to use

ymd(c("2022-01-10", "2022-04-04", "2022-07-11", "2022-10-03")),
ynd(c("2022-01-01", "2022-04-04", "2022-07-11", "2022-10-03")),
ymd(c("2022-04-03", "2022-07-10", "2022-10-02", "2022-12-31"))

unmatched = "error" because we want to quickly find out if any employees didn’t
get assigned a party:

employees |>

inner_join(parties, join_by(between(birthday, start, end)), unmatched = "error"

#> # A tibble: 100 x 6

#> name birthday q party start end

#> <chr> <date> <int> <date> <date> <date>

#> 1 Case 2022-09-13 3 2022-07-11 2022-07-11 2022-10-02

#> 2 Shonnie 2022-03-30 1 2022-01-10 2022-01-01 2022-04-03

#> 3 Burnard 2022-01-10 1 2022-01-10 2022-01-01 2022-04-03

#> 4 Omer 2022-11-25 4 2022-10-03 2022-10-03 2022-12-31

#> 5 Hillel 2022-07-30 3 2022-07-11 2022-07-11 2022-10-02

#> 6 Curlie 2022-12-11 4 2022-10-03 2022-10-03 2022-12-31

#> # .. with 94 more rows
Exercises

1. Can you explain what’s happening with the keys in this equi join? Why are they

different?
x |> full_join(y, by = "key")

#> # A tibble: 4 x 3
#> key val_x val_y
#> <dbl> <chr> <chr>
#> 1 1 x1 yi

#> 2 2 x2 y2
#> 3 3 x3 <NA>
#> 4 4 <NA> y3

|> full_join(y, by = "key", keep = TRUE)
A tibble: 4 x 4

key.x val_x key.y val_y

<dbl> <chr> <dbl> <chr>

1 1 x1 1y1

352 | Chapter19:Joins

#> 2 2 x2 2 y2
#3 3x3 NA <NA>
#> 4 NA <NA> 4 y3
2. When finding if any party period overlapped with another party period, we used
q < qin the join_by()? Why? What happens if you remove this inequality?

Summary

In this chapter, you learned how to use mutating and filtering joins to combine data
from a pair of data frames. Along the way you learned how to identify keys, and you
learned the difference between primary and foreign keys. You also understand how
joins work and how to figure out how many rows the output will have. Finally, you
gained a glimpse into the power of non-equi joins and saw a few interesting use cases.

This chapter concludes the “Transform” part of the book where the focus was on the
tools you could use with individual columns and tibbles. You learned about dplyr and
base functions for working with logical vectors, numbers, and complete tables; stringr
functions for working strings; lubridate functions for working with date-times; and
forcats functions for working with factors.

In the next part of the book, you’ll learn more about getting various types of data into
Rin a tidy form.

Summary | 353

https://dplyr.tidyverse.org/reference/join_by.html

PART IV
Import

In this part of the book, you’ll learn how to import a wider range of data into R, as
well as how to get it into a form useful form for analysis. Sometimes this is just a
matter of calling a function from the appropriate data import package. But in more
complex cases it might require both tidying and transformation to get to the tidy
rectangle that youd prefer to work with.

Visualize

Understand

L
Program

Figure IV-1. Data import is the beginning of the data science process; without data you
can’t do data science!

In this part of the book you’ll learn how to access data stored in the following ways:

o In Chapter 20, you'll learn how to import data from Excel spreadsheets and
Google Sheets.

o In Chapter 21, you'll learn about getting data out of a database and into R (and
you'll also learn a little about how to get data out of R and into a database).

« In Chapter 22, you'll learn about Arrow, a powerful tool for working with out-of-
memory data, particularly when it’s stored in the parquet format.

o In Chapter 23, you'll learn how to work with hierarchical data, including the
deeply nested lists produced by data stored in the JSON format.

o In Chapter 24, you'll learn web “scraping,” the art and science of extracting data
from web pages.

There are two important tidyverse packages that we don’t discuss here: haven and
xml2. If you are working with data from SPSS, Stata, and SAS files, check out the
haven package. If youre working with XML data, check out the xml2 package.
Otherwise, you'll need to do some research to figure out which package you’ll need to
use; Google is your friend here.

https://oreil.ly/cymF4
https://oreil.ly/lQNBa

CHAPTER 20
Spreadsheets

Introduction

In Chapter 7 you learned about importing data from plain-text files like .csv
and .tsv. Now it’s time to learn how to get data out of a spreadsheet, either an
Excel spreadsheet or a Google Sheet. This will build on much of what you've learned
in Chapter 7, but we will also discuss additional considerations and complexities
when working with data from spreadsheets.

If you or your collaborators are using spreadsheets for organizing data, we strongly
recommend reading the paper “Data Organization in Spreadsheets” by Karl Broman
and Kara Woo. The best practices presented in this paper will save you much head-
ache when you import data from a spreadsheet into R to analyze and visualize.

Excel

Microsoft Excel is a widely used spreadsheet software program where data are organ-
ized in worksheets inside of spreadsheet files.

Prerequisites

In this section, you’ll learn how to load data from Excel spreadsheets in R with the

readx] package. This package is noncore tidyverse, so you need to load it explicitly,

but it is installed automatically when you install the tidyverse package. Later, we'll

also use the writexl package, which allows us to create Excel spreadsheets.
library(readxl)

library(tidyverse)
library(writexl)

357

https://oreil.ly/Ejuen

Getting Started

Most of readxl’s functions allow you to load Excel spreadsheets into R:

e read_x1s() reads Excel files with the XLS format.

o read_x1sx() reads Excel files with the XLSX format.

o read_excel() can read files with both the XLS and XLSX formats. It guesses the

file type based on the input.

These functions all have similar syntax just like other functions we have previously
introduced for reading other types of files, e.g., read_csv(), read_table(), etc. For
the rest of the chapter we will focus on using read_excel().

Reading Excel Spreadsheets

Figure 20-1 shows what the spreadsheet we're going to read into R looks like in Excel.

@ M A v~ & @ students — Saved to my Mac ©-
Insert Page Layout Formulas Data Review View |2 Share A
- % Comice e ada =, B costrmassr | Boer | 2 2y
Paste &9 - z | ul)EN&EAL 2% > % % (7 Cell Styles ~ W Formats | @ e
AL :‘ X+ fx | studentID v
A B C D E
1 [Student ID |Full Name favourite.food mealPlan AGE
2 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
3 2 Barclay Lynn French fries Lunch only 5
4 3/Jayendra Lyne N/A Breakfast and lunch 7
5 4 Leon Rossini Anchovies Lunch only
6 5 Chidiegwu Dunkel |Pizza Breakfast and lunch [five
7 6 Glivenc Attila Ice cream Lunch only 6
Q
4 » Sheet1 +
" Ready 0] - —— e+ 250%

Figure 20-1. Spreadsheet called students.x1sx in Excel.

The first argument to read_excel() is the path to the file to read.

students <- read_excel("data/students.xlsx")

read_excel() will read the file in as a tibble.

students

#> # A tibble: 6 x 5

#> ‘Student ID' “Full Name'® favourite. food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

2 2 Barclay Lynn French fries Lunch only 5

358 | Chapter20: Spreadsheets

https://readxl.tidyverse.org/reference/read_excel.html
https://readxl.tidyverse.org/reference/read_excel.html
https://readxl.tidyverse.org/reference/read_excel.html
https://readr.tidyverse.org/reference/read_delim.html
https://readr.tidyverse.org/reference/read_table.html
https://readxl.tidyverse.org/reference/read_excel.html
https://readxl.tidyverse.org/reference/read_excel.html
https://readxl.tidyverse.org/reference/read_excel.html

3 3 Jayendra Lyne N/A Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only <NA>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Glveng Attila Ice cream Lunch only 6

We have six students in the data and five variables on each student. However, there
are a few things we might want to address in this dataset:

1. The column names are all over the place. You can provide column names that
follow a consistent format; we recommend snake_case using the col_names

argument.

read_excel(
"data/students.xlsx",
col_names = c(
"student_1id", "full_name", "favourite_food", "meal_plan", "age")

)

#> # A tibble: 7 x 5

#> student_id full_name favourite_food meal_plan age
#> <chr> <chr> <chr> <chr> <chr>
#> 1 Student ID Full Name favourite. food mealPlan AGE
21 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 32 Barclay Lynn French fries Lunch only 5
#> 4 3 Jayendra Lyne N/A Breakfast and lunch 7
#> 54 Leon Rossini Anchovies Lunch only <NA>
#> 65 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 76 Giveng Attila Ice cream Lunch only 6

Unfortunately, this didn’t quite do the trick. We now have the variable names
we want, but what was previously the header row now shows up as the first

observation in the data. You can explicitly skip that row using the skip argument.

read_excel(
"data/students.xlsx",
col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"),
skip = 1

#> # A tibble: 6 x 5

#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <chr> <chr>
1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

#> 2 2 Barclay Lynn French fries Lunch only 5

#> 3 3 Jayendra Lyne N/A Breakfast and lunch 7

#> 4 4 Leon Rossini Anchovies Lunch only <NA>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Glveng Attila Ice cream Lunch only 6

2. In the favourite_food column, one of the observations is N/A, which stands
for “not available,” but it’s currently not recognized as an NA (note the contrast
between this N/A and the age of the fourth student in the list). You can specify
which character strings should be recognized as NAs with the na argument. By
default, only "" (empty string, or, in the case of reading from a spreadsheet, an

empty cell or a cell with the formula =NA()) is recognized as an NA.
read_excel(
"data/students.xlsx",
col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"),

Excel | 359

skip = 1,
na = (", "N/A")

)
#> # A tibble: 6 x 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only <NA>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Glveng Attila Ice cream Lunch only 6
3. One other remaining issue is that age is read in as a character variable, but
it really should be numeric. Just like with read_csv() and friends for reading
data from flat files, you can supply a col_types argument to read_excel()
and specify the column types for the variables you read in. The syntax is a
bit different, though. Your options are "skip", "guess", "logical”, "numeric",
"date", "text", or "list".
read_excel(
"data/students.xlsx",
col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"),
skip = 1,
na = (", "N/A"),
col_types = c("numeric", "text", "text", "text", "numeric"
)
#> Warning: Expecting numeric in E6 / R6C5: got 'five'
#> # A tibble: 6 x 5
#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <chr> <dbl>
1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
2 2 Barclay Lynn French fries Lunch only 5
3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch NA
#> 6 6 Glveng Attila Ice cream Lunch only 6
However, this didn't quite produce the desired result either. By specifying that
age should be numeric, we have turned the one cell with the non-numeric entry
(which had the value five) into an NA. In this case, we should read age in as
"text" and then make the change once the data is loaded in R.
students <- read_excel(
"data/students.xlsx",
col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"),
skip = 1,
na = c("", "N/A"),
col_types = c("numeric", "text", "text", "text", "text")
)
students <- students |>
mutate(
age = if_else(age == "five", "5", age),
age = parse_number(age)
)
students
360 | Chapter20: Spreadsheets

https://readr.tidyverse.org/reference/read_delim.html
https://readxl.tidyverse.org/reference/read_excel.html

#> # A tibble: 6 x 5

#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <chr> <dbl>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4
#> 2 2 Barclay Lynn French fries Lunch only 5
#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7
#> 4 4 Leon Rossini Anchovies Lunch only NA
#> 5 5 Chidiegwu Dunkel Pizza Breakfast and lunch 5
#> 6 6 Gliveng Attila Ice cream Lunch only 6

It took us multiple steps and trial and error to load the data in exactly the format
we want, and this is not unexpected. Data science is an iterative process, and the
process of iteration can be even more tedious when reading data in from spreadsheets
compared to other plain-text, rectangular data files because humans tend to input
data into spreadsheets and use them not just for data storage but also for sharing and
communication.

There is no way to know exactly what the data will look like until you load it and take
a look at it. Well, there is one way, actually. You can open the file in Excel and take a
peek. If you're going to do so, we recommend making a copy of the Excel file to open
and browse interactively while leaving the original data file untouched and reading
into R from the untouched file. This will ensure you don’t accidentally overwrite
anything in the spreadsheet while inspecting it. You should also not be afraid of doing
what we did here: load the data, take a peek, make adjustments to your code, load it
again, and repeat until you're happy with the result.

Reading Worksheets

An important feature that distinguishes spreadsheets from flat files is the notion of
multiple sheets, called worksheets. Figure 20-2 shows an Excel spreadsheet with multi-
ple worksheets. The data come from the palmerpenguins package. Each worksheet
contains information on penguins from a different island where data were collected.

You can read a single worksheet from a spreadsheet with the sheet argument in
read_excel(). The default, which we’ve been relying on up until now, is the first
sheet.

read_excel("data/penguins.xlsx", sheet = "Torgersen Island")

#> # A tibble: 52 x 8

#> species island bill_length_mm bill_depth_mm flipper_length_mm
#> <chr> <chr> <chr> <chr> <chr>

#> 1 Adelie Torgersen 39.1 18.7 181

#> 2 Adelie Torgersen 39.5 17.399999999999999 186

#> 3 Adelie Torgersen 40.299999999999997 18 195

#> 4 Adelie Torgersen NA NA NA

#> 5 Adelie Torgersen 36.700000000000003 19.3 193

#> 6 Adelie Torgersen 39.299999999999997 20.6 190

#> # .. with 46 more rows, and 3 more variables: body_mass_g <chr>, sex <chr>,
#> # year <dbl>

Excel | 361

https://readxl.tidyverse.org/reference/read_excel.html

e M E w6 ~

Data

B penguins — Saved to my Mac

Insert PageLayout Formulas Review View

©-

12 Share A

N gz:’y [catori @oa ~[12 -] As/av | = 59 Wap e [Generst) I e E é:“jm' Ay~
e Gromn BIL 8 AY (= = = emom) Ewesomee (S0 % | (88 grme g wen e e ol s
Al T X v fx species
A B c D E F G H 1 J
1 |sp Jisland bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year
2 |Adelie Torgersen 39.1 18.7 181 3750 male 2007
3 |Adelie Torgersen 39.5 17.4 186 3800 female | 2007
4 |Adelie Torgersen 403 18 195 3250 female | 2007
5 |Adelie Torgersen NA NA NA NA NA 2007
6 |Adelie Torgersen 36.7 19.3 193 3450 female | 2007
7 |Adelie Torgersen 39.3 20.6 190 3650 male 2007
8 |Adelie Torgersen 389 17.8 181 3625 female | 2007
9 |Adelie Torgersen 39.2 19.6 195 4675 male 2007
10 Adelie |Torgersen 34.1 18.1 193 3475 NA 2007
11 Adelie |Torgersen 42 20.2 190 4250 NA 2007
12 |Adelie Torgersen 37.8 17.1 186 3300 NA 2007
13 |Adelie Torgersen 37.8 17.3 180 3700 NA 2007
14 |Adelie Torgersen 41.1 17.6 182 3200 female | 2007
15 |Adelie Torgersen 38.6 21.2 191 3800 male 2007
16 |Adelie Torgersen 34.6 21.1 198 4400 male 2007
17 |Adelie Torgersen 36.6 17.8 185 3700 female | 2007
18 |Adelie Torgersen 38.7 19 195 3450 female | 2007
PP PO P an o prey aran s ~nnm ‘

< bl Torgersenisland | Biscoe Island
———

_ Ready

Dream Isiand] +

Elo g -——+ 2%

Figure 20-2. Spreadsheet called penguins. xUsx in Excel containing three worksheets.

Some variables that appear to contain numerical data are read in as characters due to
the character string "NA" not being recognized as a true NA.

penguins_torgersen <- read_excel(
"data/penguins.xlsx", sheet = "Torgersen Island", na = "NA"

)

penguins_torgersen

#> # A tibble: 52 x 8

#> species island bill_length_mm bill_depth_mm flipper_length_mm
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Adelie Torgersen 39.1 18.7 181
#> 2 Adelie Torgersen 39.5 17.4 186
#> 3 Adelie Torgersen 40.3 18 195
#> 4 Adelie Torgersen NA NA NA
#> 5 Adelie Torgersen 36.7 19.3 193
#> 6 Adelie Torgersen 39.3 20.6 190
#> # .. with 46 more rows, and 3 more variables: body_mass_g <dbl>, sex <chr>,
#> # year <dbl>

Alternatively, you can use excel_sheets() to get information on all worksheets in an
Excel spreadsheet and then read the one(s) you're interested in.

excel_sheets("data/penguins.xlsx")

#> [1] "Torgersen Island" "Biscoe Island" "Dream Island"

362 | Chapter20: Spreadsheets

https://readxl.tidyverse.org/reference/excel_sheets.html

Once you know the names of the worksheets, you can read them in individually with
read_excel().

penguins_biscoe <- read_excel("data/penguins.xlsx", sheet = "Biscoe Island", na = "NA")
penguins_dream <- read_excel("data/penguins.xlsx", sheet = "Dream Island", na = "NA")

In this case, the full penguins dataset is spread across three worksheets in the spread-
sheet. Each worksheet has the same number of columns but different numbers of
rOWS.

dim(penguins_torgersen)
#> [1] 52 8
dim(penguins_biscoe)
#> [1] 168 8
dim(penguins_dream)

#> [1] 124 8

We can put them together with bind_rows():

penguins <- bind_rows(penguins_torgersen, penguins_biscoe, penguins_dream)
penguins

#> # A tibble: 344 x 8

#> species island bill_length_mm bill_depth_mm flipper_length_mm

#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Adelie Torgersen 39.1 18.7 181
#> 2 Adelie Torgersen 39.5 17.4 186
#> 3 Adelie Torgersen 40.3 18 195
#> 4 Adelie Torgersen NA NA NA
#> 5 Adelie Torgersen 36.7 19.3 193
#> 6 Adelie Torgersen 39.3 20.6 190

#> # .. with 338 more rows, and 3 more variables: body mass_g <dbl>, sex <chr>,
#> # year <dbl>

In Chapter 26 we'll talk about ways of doing this sort of task without repetitive code.

Reading Part of a Sheet

Since many use Excel spreadsheets for presentation as well as for data storage, it’s
quite common to find cell entries in a spreadsheet that are not part of the data you
want to read into R. Figure 20-3 shows such a spreadsheet: in the middle of the sheet
is what looks like a data frame, but there is extraneous text in cells above and below
the data.

Excel | 363

https://readxl.tidyverse.org/reference/read_excel.html
https://dplyr.tidyverse.org/reference/bind_rows.html

° bdw- <

Insert

Page Layout

Formulas Data Review

@ deaths

|2 Share ~

<« »

arts

n e 33::; Caiibri (Body) ~|[12 +|[A= av| [= =[2] & 50 wrep Text General UK g g e = é::‘n:sm- 4y
Poe o cormue | (BLL[Y I (EHI S A = = = 4= o=| [“]Megescenter B % I (% % ?Z“"‘.‘.‘?{,‘.‘,' B sfﬁ.'; baet Delte Fomet | g 0\, sonts
M 4 X v fe Forthesake

A B D E F G H |
1 |Forthesake |
2 of consistency in the data layout,
3 |which is really a beautiful thing,
4 1 will keep making notes up here.
5 g Profession
6 |Vera Rubin scientist 88 TRUE 23/07/1928 25/12/2016
7 |Mohamed Ali athlete 74 TRUE 17/01/1942 03/06/2016)
8 |Morley Safer journalist 84 TRUE 08/11/1931 19/05/2016
9 [Fidel Castro politician 90 TRUE 13/08/1926 25/11/2016
10 JAntonin Scalia lawyer 79 TRUE 11/03/1936 13/02/2016
11 jJo Cox politician 41 TRUE 22/06/1974 16/06/2016
12 |Janet Reno lawyer 78 FALSE 21/07/1938 07/11/2016
13 |Gwen Ifill journalist 61 FALSE 29/09/1955 14/11/2016
14 jJohn Glenn astronaut 95 TRUE 28/07/1921 08/12/2016
15 | Pat Summit coach 64 TRUE 14/06/1952 28/06/2016,
16 |This
17 has been really fun, but
18 \we're signing

off now!

Ready

B 5 ———+ o

Figure 20-3. Spreadsheet called deaths.xlsx in Excel.

This spreadsheet is one of the example spreadsheets provided in the readxl package.
You can use the readx1_example() function to locate the spreadsheet on your system
in the directory where the package is installed. This function returns the path to the
spreadsheet, which you can use in read_excel() as usual.

deaths_path <- readxl_example("deaths.xlsx")
deaths <- read_excel(deaths_path)

#> New names:

#> o -> L2

#> o > "3

#> o -> ..4°

#> o > L5

#> o -> ..6°

deaths

#> # A tibble: 18 x 6

#> ‘Lots of people’ 2 .3 ...4 .5 .6

#> <chr> <chr> <chr> <chr> <chr> <chr>

#> 1 simply cannot resi.. <NA> <NA> <NA> <NA> some notes
#> 2 at the top <NA> of their spreadsh..
#> 3 or merging <NA> <NA> <NA> cells

#> 4 Name Profession Age Has kids Date of birth Date of death
#> 5 David Bowie musician 69 TRUE 17175 42379

#> 6 Carrie Fisher actor 60 TRUE 20749 42731

#> # .. with 12 more rows

The top three rows and the bottom four rows are not part of the data frame. Its
possible to eliminate these extraneous rows using the skip and n_max arguments, but
we recommend using cell ranges. In Excel, the top-left cell is A1. As you move across

364 | Chapter20: Spreadsheets

https://readxl.tidyverse.org/reference/readxl_example.html
https://readxl.tidyverse.org/reference/read_excel.html

columns to the right, the cell label moves down the alphabet, i.e., B1, C1, etc. And as
you move down a column, the number in the cell label increases, i.e., A2, A3, etc.

Here the data we want to read in starts in cell A5 and ends in cell F15. In spreadsheet
notation, this is A5:F15, which we supply to the range argument:

read_excel(deaths_path, range = "A5:F15")
#> # A tibble: 10 x 6

#> Name Profession Age ‘Has kids' ‘Date of birth®

#> <chr> <chr> <dbl> <lgl> <dttm>

#> 1 David Bowie musician 69 TRUE 1947-01-08 00:00:00
#> 2 Carrie Fisher actor 60 TRUE 1956-10-21 00:00:00
#> 3 Chuck Berry musician 90 TRUE 1926-10-18 00:00:00
#> 4 Bill Paxton actor 61 TRUE 1955-05-17 00:00:00
#> 5 Prince musician 57 TRUE 1958-06-07 00:00:00
#> 6 Alan Rickman actor 69 FALSE 1946-02-21 00:00:00

#> # .. with 4 more rows, and 1 more variable: ‘Date of death' <dttm>

Data Types

In CSV files, all values are strings. This is not particularly true to the data, but it is
simple: everything is a string.

The underlying data in Excel spreadsheets is more complex. A cell can be one of four
things:

o A Boolean, like TRUE, FALSE, or NA
e A number, like “10” or “10.5”
o A datetime, which can also include time like “11/1/21” or “11/1/21 3:00 PM”

o A text string, like “ten”

When working with spreadsheet data, it’s important to keep in mind that the underly-
ing data can be very different than what you see in the cell. For example, Excel has
no notion of an integer. All numbers are stored as floating points, but you can choose
to display the data with a customizable number of decimal points. Similarly, dates
are actually stored as numbers, specifically the number of seconds since January 1,
1970. You can customize how you display the date by applying formatting in Excel.
Confusingly, it’s also possible to have something that looks like a number but is
actually a string (e.g., type '10 into a cell in Excel).

These differences between how the underlying data are stored versus how they’re
displayed can cause surprises when the data are loaded into R. By default readx] will
guess the data type in a given column. A recommended workflow is to let readxl
guess the column types, confirm that youre happy with the guessed column types,
and if not, go back and re-import specifying col_types, as shown in “Reading Excel
Spreadsheets” on page 358.

Excel | 365

Another challenge is when you have a column in your Excel spreadsheet that has
a mix of these types, e.g., some cells are numeric, others text, others dates. When
importing the data into R, readxl has to make some decisions. In these cases you can
set the type for this column to "list", which will load the column as a list of length 1
vectors, where the type of each element of the vector is guessed.

Sometimes data is stored in more exotic ways, like the color of
the cell background or whether the text is bold. In such cases, you
might find the tidyxl package useful. See https://oreil.ly/iNskS for
more on strategies for working with nontabular data from Excel.

Writing to Excel

Let’s create a small data frame that we can then write out. Note that item is a factor
and quantity is an integer.

bake_sale <- tibble(

item = factor(c("brownie", "cupcake", "cookie")),
quantity = c(10, 5, 8)

)

bake_sale

#> # A tibble: 3 x 2
#> item quantity

#> <fct> <dbl>
#> 1 brownie 10
#> 2 cupcake 5
#> 3 cookie 8

You can write data back to disk as an Excel file using write_x1sx() from the writexl
package:

write_xlsx(bake_sale, path = "data/bake-sale.xlsx")

Figure 20-4 shows what the data looks like in Excel. Note that column names are
included and bold. These names can be turned off by setting the col_names and
format_headers arguments to FALSE.

366 | Chapter20: Spreadsheets

https://oreil.ly/CU5XP
https://oreil.ly/jNskS
https://docs.ropensci.org/writexl/reference/write_xlsx.html
https://oreil.ly/Gzphe
https://oreil.ly/Gzphe

(X H v 3 + B bake.. —SavedtomyMac Q- O~

Insert Page Layout Formulas Data Review View |2 Share A
(}s Calibri P — [Conditional Formatting ¥ 141
< (Body) v||11 v|/|A~ Av =. o/ ., . .

E [i:‘,ﬁ v [[7 ‘ ‘ - A) WFormat as Table v E’ Q

Paste & B I U vH_ 'J\& A vJ Alignment Number [Cel stytes + Cells Editing

a7 dx v s v
A B C D E F G

1 item quantity

2 |brownie 10

3 |cupcake 5

4 |cookie 8

5

6

7

o

4 > Sheet1 +
Ready EI - e—— —t 200%

Figure 20-4. Spreadsheet called bake_sale.x1lsx in Excel.

Just like reading from a CSV, information on data type is lost when we read the data
back in. This makes Excel files unreliable for caching interim results as well. For
alternatives, see “Writing to a File” on page 108.

read_excel("data/bake-sale.xlsx")

#> # A tibble: 3 x 2
#> item quantity

#> <chr> <dbl>
#> 1 brownie 10
#> 2 cupcake 5
#> 3 cookie 8
Formatted Output

The writexl package is a lightweight solution for writing a simple Excel spreadsheet,
but if youre interested in additional features such as writing to sheets within a
spreadsheet and styling, you will want to use the openxlsx package. We won't go into
the details of using this package here, but we recommend reading https://oreil.ly/cIwtE
for an extensive discussion on further formatting functionality for data written from
R to Excel with openxlsx.

Note that this package is not part of the tidyverse, so the functions and workflows
may feel unfamiliar. For example, function names are camelCase, multiple functions
can’'t be composed in pipelines, and arguments are in a different order than they
tend to be in the tidyverse. However, this is OK. As your R learning and usage
expands outside of this book, you will encounter lots of different styles used in

Excel | 367

https://oreil.ly/JtHOt
https://oreil.ly/clwtE

various R packages that you might use to accomplish specific goals in R. A good way
of familiarizing yourself with the coding style used in a new package is to run the
examples provided in the function documentation to get a feel for the syntax and the
output formats as well as reading any vignettes that might come with the package.

Exercises

1. In an Excel file, create the following dataset and save it as survey.xlsx. Alterna-
tively, you can download it as an Excel file.

A B
1 |survey_id n_pets
2 1 0
3 2 1
4 3/N/A
5 4/two
6 5 2
7 6

Then, read it into R, with survey_1id as a character variable and n_pets as a

numerical variable.

#> # A tibble: 6 x 2
#> survey_1id n_pets
#> <chr> <dbl>
#> 0

#> 1

#> NA

#> 2

#> 2

#> NA

AUV h WN R
AUV h WN R

2. In another Excel file, create the following dataset and save it as roster.xlsx.
Alternatively, you can download it as an Excel file.

368 | Chapter20: Spreadsheets

https://oreil.ly/03oQy
https://oreil.ly/E4dIi

A B

1 |group subgroup id

2 [1 A 1
3 2
4 3
5 B 4
6 5
7 6
8 7
9 |2 A 8
10 9
11 B 10
12 11
13 12

Then, read it into R. The resulting data frame should be called roster and should

look like the following:
#> # A tibble: 12 x 3
#> group subgroup id
#> <dbl> <chr> <dbl>

#t 1 1A 1
#t> 2 1A 2
#> 3 1A 3
4 1B 4
#> 5 18 5
#> 6 18 6
#> 7 18 7
#> 8 2 A 8
#> 9 2 A 9
#> 10 2 B 10
#> 11 2 B 11
#> 12 2 B 12

3. In a new Excel file, create the following dataset and save it as sales.xlsx.

Alternatively, you can download it as an Excel file.

Excel

369

https://oreil.ly/m6q7i

A B

1 |This file contains information on sales.

Data are organized by brand name,
and for each brand, we have the ID
number for the item sold, and how

2 |many are sold.

3

4

5 |Brand 1 n

6 1234 8
7 8721 2
8 1822 3
9 Brand 2 n

10 3333 1
11 2156 3
12 3987 6
13 3216 5

a. Read sales.xlsx in and save as sales. The data frame should look like the

following, with id and n as column names and nine rows:
#> # A tibble: 9 x 2

#> id n
#> <chr> <chr>
#> 1 Brand 1 n
#> 2 1234 8
#> 3 8721 2
#> 4 1822 3
#> 5 Brand 2 n
#> 6 3333 1
#> 7 2156 3
#> 8 3987 6
#> 9 3216 5

b. Modify sales further to get it into the following tidy format with three
columns (brand, id, and n) and seven rows of data. Note that id and n are

numeric, and brand is a character variable.
#> # A tibble: 7 x 3

#> brand id n
#> <chr> <dbl> <dbl>
#> 1 Brand 1 1234 8
#> 2 Brand 1 8721 2
#> 3 Brand 1 1822 3
#> 4 Brand 2 3333 1
#> 5 Brand 2 2156 3
#> 6 Brand 2 3987 6
#> 7 Brand 2 3216 5

370 | Chapter20: Spreadsheets

4. Re-create the bake_sale data frame, and write it out to an Excel file using the
write.xlsx() function from the openxlsx package.

5. In Chapter 7 you learned about the janitor::clean_names() function to turn
column names into snake case. Read the students.x1sx file that we introduced
earlier in this section and use this function to “clean” the column names.

6. What happens if you try to read in a file with an .xlsx extension with
read_x1s()?

Google Sheets

Google Sheets is another widely used spreadsheet program. It’s free and web-based.
Just like with Excel, in Google Sheets data are organized in worksheets (also called
sheets) inside of spreadsheet files.

Prerequisites

This section will also focus on spreadsheets, but this time you’ll be loading data from
a Google Sheet with the googlesheets4 package. This package is noncore tidyverse as
well, so you need to load it explicitly:

library(googlesheets4)

library(tidyverse)
A quick note about the name of the package: googlesheets4 uses v4 of the Sheets API
v4 to provide an R interface to Google Sheets.

Getting Started

The main function of the googlesheets4 package is read_sheet(), which reads a Goo-
gle Sheet from a URL or a file ID. This function also goes by the name range_read().

You can also create a new sheet with gs4_create() or write to an existing sheet with
sheet_write() and friends.

In this section we’ll work with the same datasets as the ones in the Excel section
to highlight similarities and differences between workflows for reading data from
Excel and Google Sheets. The readxl and googlesheets4 packages are both designed
to mimic the functionality of the readr package, which provides the read_csv()
function you saw in Chapter 7. Therefore, many of the tasks can be accomplished
with simply swapping out read_excel() for read_sheet(). However you'll also see
that Excel and Google Sheets don’t behave in the same way; therefore, other tasks may
require further updates to the function calls.

Google Sheets | 371

https://rdrr.io/pkg/janitor/man/clean_names.html
https://readxl.tidyverse.org/reference/read_excel.html
https://oreil.ly/VMlBY
https://oreil.ly/VMlBY
https://googlesheets4.tidyverse.org/reference/range_read.html
https://googlesheets4.tidyverse.org/reference/range_read.html
https://googlesheets4.tidyverse.org/reference/gs4_create.html
https://googlesheets4.tidyverse.org/reference/sheet_write.html
https://readr.tidyverse.org/reference/read_delim.html
https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html

Reading Google Sheets

Figure 20-5 shows what the spreadsheet were going to read into R looks like in
Google Sheets. This is the same dataset as in Figure 20-1, except it’s stored in a Google
Sheet instead of Excel.

T students - Google Sheets

@ docs.google.com|

E students ®
File Edit View Insert Format Data Tools Extensions Help

& Y~ 100% - N
Al ~| fx | studentiD
A B c D E F G
1 |Student ID | Full Name favourite.food mealPlan AGE
2 1/ Sunil Huffmann | Strawberry yoghurt Lunch only 4
3 2|Barclay Lynn French fries Lunch only 5
4 3| Jayendra Lyne N/A Breakfast and lunch 7
5 4 Leon Rossini Anchovies Lunch only
6 5| Chidiegwu Dunkel Pizza Breakfast and lunch five
7 6 Giiveng Attila Ice cream Lunch only 6
8 -
9 -

= Sheet1 ~

Figure 20-5. Google Sheet called students in a browser window.

The first argument to read_sheet() is the URL of the file to read, and it returns a
tibble.

These URLs are not pleasant to work with, so you’ll often want to identify a sheet by
its ID.

students_sheet_1id <- "1V1nPp1tzOuutXFLb3G9Eyxi3gxeEhnOXUzL5_BcCQOw"
students <- read_sheet(students_sheet_1id)

#> o Reading from students.

#> ¢ Range Sheetl1.

students

#> # A tibble: 6 x 5

#> ‘Student ID' “Full Name'® favourite. food mealPlan AGE
#> <dbl> <chr> <chr> <chr> <list>
#> 1 1 Sunil Huffmann Strawberry yoghurt Lunch only <dbl>
#> 2 2 Barclay Lynn French fries Lunch only <dbl>
#> 3 3 Jayendra Lyne N/A Breakfast and lunch <dbl>
#> 4 4 Leon Rossini Anchovies Lunch only <NULL>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch <chr>
#> 6 6 Gliveng Attila Ice cream Lunch only <dbl>

Just like we did with read_excel(), we can supply column names, NA strings, and
column types to read_sheet().

372 | Chapter20: Spreadsheets

https://googlesheets4.tidyverse.org/reference/range_read.html
https://oreil.ly/c7DEP
https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html

students <- read_sheet(
students_sheet_1id,
col_names = c("student_id", "full_name", "favourite_food", "meal_plan", "age"),

skip = 1,
na = c("", "N/A"),
col_types = "dcccc"

)
#> o Reading from students.
#> ¢ Range 2:10000000.

students

#> # A tibble: 6 x 5

#> student_id full_name favourite_food meal_plan age
#> <dbl> <chr> <chr> <chr> <chr>
1 1 Sunil Huffmann Strawberry yoghurt Lunch only 4

2 2 Barclay Lynn French fries Lunch only 5

#> 3 3 Jayendra Lyne <NA> Breakfast and lunch 7

#> 4 4 Leon Rossini Anchovies Lunch only <NA>
5 5 Chidiegwu Dunkel Pizza Breakfast and lunch five
#> 6 6 Glveng Attila Ice cream Lunch only 6

Note that we defined column types a bit differently here, using short codes. For
example, “dccec” stands for “double, character, character, character, character”

Its also possible to read individual sheets from Google Sheets. Lets read the “Tor-
gersen Island” sheet from the penguins Google Sheet:

penguins_sheet_1id <- "1aFu81lnD_gOyjF50-K6SFgSEWiHPpgvFCFONYOD6ELXNY"
read_sheet(penguins_sheet_id, sheet = "Torgersen Island")

#> o Reading from penguins.

#> o Range ''Torgersen Island''.

#> # A tibble: 52 x 8

#> species island bill_length_mm bill_depth_mm flipper_length_mm

#> <chr> <chr> <list> <list> <list>

#> 1 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>
#> 2 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>
#> 3 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>
#> 4 Adelie Torgersen <chr [1]> <chr [1]> <chr [1]>
#> 5 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>
#> 6 Adelie Torgersen <dbl [1]> <dbl [1]> <dbl [1]>

#> # .. with 46 more rows, and 3 more variables: body_mass_g <list>, sex <chr>,
#> # year <dbl>

You can obtain a list of all sheets within a Google Sheet with sheet_names():

sheet_names(penguins_sheet_1id)

#> [1] "Torgersen Island" "Biscoe Island" "Dream Island”
Finally, just like with read_excel(), we can read in a portion of a Google Sheet by
defining a range in read_sheet(). Note that were also using the gs4_example()
function to locate an example Google Sheet that comes with the following google-
sheets4 package:

deaths_url <- gs4_example("deaths")

deaths <- read_sheet(deaths_url, range = "A5:F15")

#> Reading from deaths.

#> o Range A5:F15.
deaths

Google Sheets | 373

https://oreil.ly/qgKTY
https://googlesheets4.tidyverse.org/reference/sheet_properties.html
https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html
https://googlesheets4.tidyverse.org/reference/gs4_examples.html

#> # A tibble: 10 x 6

#> Name Profession Age ‘Has kids' ‘Date of birth®

#> <chr> <chr> <dbl> <lgl> <dttm>

#> 1 David Bowie musician 69 TRUE 1947-01-08 00:00:00
#> 2 Carrie Fisher actor 60 TRUE 1956-10-21 00:00:00
#> 3 Chuck Berry musician 90 TRUE 1926-10-18 00:00:00
#> 4 Bill Paxton actor 61 TRUE 1955-05-17 00:00:00
#> 5 Prince musician 57 TRUE 1958-06-07 00:00:00
#> 6 Alan Rickman actor 69 FALSE 1946-02-21 00:00:00

#> # .. with 4 more rows, and 1 more variable: ‘Date of death' <dttm>

Writing to Google Sheets

You can write from R to Google Sheets with write_sheet(). The first argument is the
data frame to write, and the second argument is the name (or other identifier) of the
Google Sheet to write to:

write_sheet(bake_sale, ss = "bake-sale")

If youd like to write your data to a specific (work)sheet inside a Google Sheet, you
can specify that with the sheet argument as well:

write_sheet(bake_sale, ss = "bake-sale", sheet = "Sales")

Authentication

While you can read from a public Google Sheet without authenticating with your
Google account, reading a private sheet or writing to a sheet requires authentication
so that googlesheets4 can view and manage your Google Sheets.

When you attempt to read in a sheet that requires authentication, googlesheets4 will
direct you to a web browser with a prompt to sign in to your Google account and
grant permission to operate on your behalf with Google Sheets. However, if you want
to specify a specific Google account, authentication scope, etc., you can do so with
gs4_auth(), e.g., gs4_auth(email = "mine@example.com"), which will force the use
of a token associated with a specific email. For further authentication details, we
recommend reading the googlesheets4 auth vignette.

Exercises

1. Read the students dataset from earlier in the chapter from Excel and also from
Google Sheets, with no additional arguments supplied to the read_excel() and
read_sheet() functions. Are the resulting data frames in R exactly the same? If
not, how are they different?

2. Read the Google Sheet titled survey, with survey_id as a character variable and
n_pets as a numerical variable.

3. Read the Google Sheet titled roster. The resulting data frame should be called
roster and should look like the following:

374 | Chapter20: Spreadsheets

https://googlesheets4.tidyverse.org/reference/sheet_write.html
https://googlesheets4.tidyverse.org/reference/gs4_auth.html
https://oreil.ly/G28nV
https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html
https://oreil.ly/PYENq
https://oreil.ly/sAjBM

#> # A tibble: 12 x 3

#> group subgroup id
#> <dbl> <chr> <dbl>
#> 1
#>
#>
#>
#>
#>
#>
#>
#> 9
#> 10
#> 11
#> 12

0NV A WN R
O NOUV A WN

=
@ O

WO W>D>WWo®E > > >
=
[

NNNNNRRRBRRRBR

[y
N

Summary

Microsoft Excel and Google Sheets are two of the most popular spreadsheet systems.
Being able to interact with data stored in Excel and Google Sheets files directly
from R is a superpower! In this chapter, you learned how to read data into R
from spreadsheets from Excel with read_excel() from the readxl package and from
Google Sheets with read_sheet() from the googlesheets4 package. These functions
work very similarly to each other and have similar arguments for specifying column
names, NA strings, rows to skip on top of the file youre reading in, etc. Additionally,
both functions make it possible to read a single sheet from a spreadsheet.

On the other hand, writing to an Excel file requires a different package and function
(writexl::write_x1sx()), while you can write to a Google Sheet with the google-
sheets4 package, with write_sheet().

In the next chapter, you'll learn about a different data source, databases, and how to
read data from that source into R.

Summary | 375

https://readxl.tidyverse.org/reference/read_excel.html
https://googlesheets4.tidyverse.org/reference/range_read.html
https://docs.ropensci.org/writexl/reference/write_xlsx.html
https://googlesheets4.tidyverse.org/reference/sheet_write.html

CHAPTER 21
Databases

Introduction

A huge amount of data lives in databases, so it’s essential that you know how to access
it. Sometimes you can ask someone to download a snapshot into a .csv file for you,
but this gets painful quickly: every time you need to make a change, you'll have to
communicate with another human. You want to be able to reach into the database
directly to get the data you need, when you need it.

In this chapter, you'll first learn the basics of the DBI package: how to use it to
connect to a database and then retrieve data with a SQL' query. SQL, short for
Structured Query Language, is the lingua franca of databases and is an important
language for all data scientists to learn. That said, we’re not going to start with SQL,
but instead well teach you dbplyr, which can translate your dplyr code to SQL. We'll
use that as a way to teach you some of the most important features of SQL. You won't
become a SQL master by the end of the chapter, but you will be able to identify the
most important components and understand what they do.

Prerequisites

In this chapter, we'll introduce DBI and dbplyr. DBI is a low-level interface that con-
nects to databases and executes SQL; dbplyr is a high-level interface that translates
your dplyr code to SQL queries and then executes them with DBI.

library(DBI)

library(dbplyr)
library(tidyverse)

»

1 SQL is either pronounced “s”-“q”-“I” or “sequel”

377

Database Basics

At the simplest level, you can think about a database as a collection of data frames,
called tables in database terminology. Like a data.frame, a database table is a collec-
tion of named columns, where every value in the column is the same type. There are
three high-level differences between data frames and database tables:

« Database tables are stored on disk and can be arbitrarily large. Data frames are
stored in memory and are fundamentally limited (although that limit is still
plenty large for many problems).

o Database tables almost always have indexes. Much like the index of a book, a
database index makes it possible to quickly find rows of interest without having
to look at every single row. Data frames and tibbles don’t have indexes, but data
tables do, which is one of the reasons that they’re so fast.

» Most classical databases are optimized for rapidly collecting data, not analyzing
existing data. These databases are called row-oriented because the data is stored
row by row, rather than column by column like R. More recently, there’s been
much development of column-oriented databases that make analyzing the existing
data much faster.

Databases are run by database management systems (DBMS for short), which come
in three basic forms:

o Client-server DBMS run on a powerful central server, which you connect from
your computer (the client). They are great for sharing data with multiple people
in an organization. Popular client-server DBMS include PostgreSQL, MariaDB,
SQL Server, and Oracle.

o Cloud DBMS, like Snowflake, Amazon’s RedShift, and Google’s BigQuery, are
similar to client-server DBMS, but they run in the cloud. This means they
can easily handle extremely large datasets and can automatically provide more
compute resources as needed.

« In-process DBMS, like SQLite or duckdb, run entirely on your computer. They’re
great for working with large datasets where you're the primary user.

Connecting to a Database

To connect to the database from R, you'll use a pair of packages:

o You'll always use DBI (database interface) because it provides a set of generic
functions that connect to the database, upload data, run SQL queries, etc.

» You'll also use a package tailored for the DBMS youre connecting to. This
package translates the generic DBI commands into the specifics needed for a

378 | Chapter21: Databases

given DBMS. There’s usually one package for each DBMS, e.g., RPostgres for
PostgreSQL and RMariaDB for MySQL.

If you can't find a specific package for your DBMS, you can usually use the odbc
package instead. This uses the ODBC protocol supported by many DBMS. odbc
requires a little more setup because you’ll also need to install an ODBC driver and tell
the odbc package where to find it.

Concretely, you create a database connection using DBI::dbConnect(). The first
argument selects the DBMS,”> and then the second and subsequent arguments
describe how to connect to it (i.e., where it lives and the credentials that you need to
access it). The following code shows a couple of typical examples:
con <- DBI::dbConnect(
RMariaDB: :MariaDB(),

username = "foo"

)
con <- DBI::dbConnect(
RPostgres: :Postgres(),
hostname = "databases.mycompany.com",
port = 1234
)
The precise details of the connection vary a lot from DBMS to DBMS, so unfortu-
nately we can't cover all the details here. This means you’ll need to do a little research
on your own. Typically you can ask the other data scientists in your team or talk to
your DBA (database administrator). The initial setup will often take a little fiddling

(and maybe some googling) to get it right, but you'll generally need to do it only once.

In This Book

Setting up a client-server or cloud DBMS would be a pain for this book, so we'll
instead use an in-process DBMS that lives entirely in an R package: duckdb. Thanks
to the magic of DBI, the only difference between using duckdb and any other DBMS
is how you’ll connect to the database. This makes it great to teach with because you
can easily run this code as well as easily take what you learn and apply it elsewhere.

Connecting to duckdb is particularly simple because the defaults create a temporary
database that is deleted when you quit R. That’s great for learning because it guaran-
tees that you’ll start from a clean slate every time you restart R:

con <- DBI::dbConnect(duckdb::duckdb())

duckdb is a high-performance database that’s designed very much for the needs of a
data scientist. We use it here because it’s easy to get started with, but it’s also capable

2 Typically, this is the only function you’ll use from the client package, so we recommend using : : to pull out
that one function, rather than loading the complete package with library().

Connecting to a Database | 379

https://rdrr.io/r/base/library.html
https://dbi.r-dbi.org/reference/dbConnect.html

of handling gigabytes of data with great speed. If you want to use duckdb for a
real data analysis project, you'll also need to supply the dbdir argument to make a
persistent database and tell duckdb where to save it. Assuming you're using a project
(Chapter 6), it’s reasonable to store it in the duckdb directory of the current project:

con <- DBI::dbConnect(duckdb::duckdb(), dbdir = "duckdb")

Load Some Data

Since this is a new database, we need to start by adding some data. Here we'll add the
mpg and diamonds datasets from ggplot2 using DBI::dbWriteTable(). The simplest
usage of dbWriteTable() needs three arguments: a database connection, the name of
the table to create in the database, and a data frame of data.

dblriteTable(con, "mpg", ggplot2::mpg)

dblriteTable(con, "diamonds", ggplot2::diamonds)
If youre using duckdb in a real project, we highly recommend learning about
duckdb_read_csv() and duckdb_register_arrow(). These give you powerful and
performant ways to quickly load data directly into duckdb, without having to first
load it into R. We'll also show off a useful technique for loading multiple files into a
database in “Writing to a Database” on page 483.

DBI Basics

You can check that the data is loaded correctly by using a couple of other DBI func-
tions: dbListTable() lists all tables in the database,* and dbReadTable() retrieves the
contents of a table.

dbListTables(con)

#> [1] "diamonds" "mpg"

con |>
dbReadTable("diamonds") |>
as_tibble()

#> # A tibble: 53,940 x 10

#> carat cut color clarity depth table price X y z
#> <dbl> <fct> <fct> <fct> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.23 Ideal E SI12 61.5 55 326 3.95 3.98 2.43
#> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
#> 3 0.23 Good E Vs1 56.9 65 327 4.05 4.07 2.31
#> 4 0.29 Premium I vs2 62.4 58 334 4.2 4.23 2.63
#> 5 0.31 Good J SI12 63.3 58 335 4.34 4.35 2.75
#> 6 0.24 Very Good J ws2 62.8 57 336 3.94 3.96 2.48
#> # .. with 53,934 more rows

dbReadTable() returns a data.frame, so we use as_tibble() to convert it into a
tibble so that it prints nicely.

3 Atleast, all the tables that you have permission to see.

380 | Chapter21:Databases

https://dbi.r-dbi.org/reference/dbWriteTable.html
https://dbi.r-dbi.org/reference/dbWriteTable.html
https://dbi.r-dbi.org/reference/dbReadTable.html
https://dbi.r-dbi.org/reference/dbReadTable.html
https://tibble.tidyverse.org/reference/as_tibble.html

If you already know SQL, you can use dbGetQuery() to get the results of running a
query on the database:

"

sql <-
SELECT carat, cut, clarity, color, price
FROM diamonds
WHERE price > 15000

as_tibble(dbGetQuery(con, sql))

#> # A tibble: 1,655 x 5

#> carat cut clarity color price
#> <dbl> <fct> <fct> <fct> <int>
#> 1 1.54 Premium VS2 E 15002
#> 2 1.19 Ideal Vs1 F 15005
#> 3 2.1 Premium SI1 I 15007
#> 4 1.69 Ideal SI1 D 15011
#> 5 1.5 Very Good WS2 G 15013
#> 6 1.73 Very Good VS1 G 15014
#> # .. with 1,649 more rows

If you've never seen SQL before, don’t worry! You'll learn more about it shortly. But
if you read it carefully, you might guess that it selects five columns of the diamonds
dataset and all the rows where price is greater than 15,000.

dbplyr Basics

Now that we've connected to a database and loaded up some data, we can start
to learn about dbplyr. dbplyr is a dplyr backend, which means you keep writing
dplyr code but the backend executes it differently. In this, dbplyr translates to SQL;
other backends include dtplyr, which translates to data.table, and multidplyr, which
executes your code on multiple cores.

To use dbplyr, you must first use tb1() to create an object that represents a database
table:

diamonds_db <- tbl(con, "diamonds")

diamonds_db

#> # Source: table<diamonds> [?? x 10]

#> # Database: DuckDB 0.6.1 [root@arwin 22.3.0:R 4.2.1/:memory:]

#> carat cut color clarity depth table price X y z
#> <dbl> <fct> <fct> <fct> <dbl> <dbl> <int> <dbl> <dbl> <dbl>
#> 1 0.23 Ideal E SI12 61.5 55 326 3.95 3.98 2.43
#> 2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
#> 3 0.23 Good E Vs1 56.9 65 327 4.05 4.07 2.31
#> 4 0.29 Premium I vs2 62.4 58 334 4.2 4.23 2.63
#> 5 0.31 Good J SI12 63.3 58 335 4.34 4.35 2.75
#> 6 0.24 Very Good J vws2 62.8 57 336 3.94 3.96 2.48
#> # .. with more rows

dbplyrBasics | 381

https://dbi.r-dbi.org/reference/dbGetQuery.html
https://oreil.ly/9Dq5p
https://oreil.ly/k3EaP
https://oreil.ly/gmDpk
https://dplyr.tidyverse.org/reference/tbl.html

There are two other common ways to interact with a database.
First, many corporate databases are very large so you need some
hierarchy to keep all the tables organized. In that case you might
need to supply a schema, or a catalog and a schema, to pick the
table you're interested in:
diamonds_db <- tbl(con, in_schema("sales", "diamonds"))
diamonds_db <- tb1(
con, in_catalog("north_america", "sales", "diamonds")
)
Other times you might want to use your own SQL query as a
starting point:

diamonds_db <- tbl(con, sql("SELECT * FROM diamonds"))

This object is lazy; when you use dplyr verbs on it, dplyr doesn't do any work: it just
records the sequence of operations that you want to perform and performs them only
when needed. For example, take the following pipeline:

big_diamonds_db <- diamonds_db |>

filter(price > 15000) |>
select(carat:clarity, price)

big_diamonds_db

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

Source: SQL [?? x 5]
Database: DuckDB 0.6.1 [root@arwin 22.3.0:R 4.2.1/:memory:]

carat cut color clarity price

<dbl> <fct> <fct> <fct> <int>
1 1.54 Premium E vs2 15002
2 1.19 Ideal F ws1 15005
3 2.1 Premium I SI1 15007
4 1.69 Ideal D SI1 15011
5 1.5 Very Good G ws2 15013
6 1.73 Very Good G Vs1 15014
.. with more rows

You can tell this object represents a database query because it prints the DBMS name
at the top, and while it tells you the number of columns, it typically doesn’t know the
number of rows. This is because finding the total number of rows usually requires
executing the complete query, something we’re trying to avoid.

You can see the SQL code generated by dplyr with the show_query() function. If you
know dplyr, this is a great way to learn SQL! Write some dplyr code, get dbplyr to
translate it to SQL and then try to figure out how the two languages match up.

big_diamonds_db |>

#>
#>
#>
#>

show_query()

<SQL>

SELECT carat, cut, color, clarity, price
FROM diamonds

WHERE (price > 15000.0)

382 |

Chapter 21: Databases

https://dplyr.tidyverse.org/reference/explain.html

To get all the data back into R, you call collect(). Behind the scenes, this generates
the SQL, calls dbGetQuery() to get the data, and then turns the result into a tibble:

big_diamonds <- big_diamonds_db |>
collect()

big_diamonds

#> # A tibble: 1,655 x 5

#> carat cut color clarity price
#> <dbl> <fct> <fct> <fct> <int>
#> 1 1.54 Premium E vs2 15002
#> 2 1.19 Ideal F ws1 15005
#> 3 2.1 Premium I SI1 15007
#> 4 1.69 Ideal D SI1 15011
#> 5 1.5 Very Good G ws2 15013
#> 6 1.73 Very Good G Vs1 15014

#> # .. with 1,649 more rows

Typically, you'll use dbplyr to select the data you want from the database, performing
basic filtering and aggregation using the translations described next. Then, once
you're ready to analyze the data with functions that are unique to R, you’ll collect the
data using collect() to get an in-memory tibble and continue your work with pure
R code.

saL

The rest of the chapter will teach you a little SQL through the lens of dbplyr. Its a
rather nontraditional introduction to SQL, but we hope it will get you quickly up
to speed with the basics. Luckily, if you understand dplyr, youre in a great place to
quickly pick up SQL because so many of the concepts are the same.

We'll explore the relationship between dplyr and SQL using a couple of old friends
from the nycflights13 package: flights and planes. These datasets are easy to get
into our learning database because dbplyr comes with a function that copies the
tables from nycflights13 to our database:

dbplyr::copy_nycflights13(con)

#> Creating table: airlines

#> Creating table: airports

#> Creating table: flights

#> Creating table: planes

#> Creating table: weather

flights <- tbl(con, "flights")
planes <- tbl(con, "planes")

SQL Basics

The top-level components of SQL are called statements. Common statements include
CREATE for defining new tables, INSERT for adding data, and SELECT for retrieving

saL | 383

https://dplyr.tidyverse.org/reference/compute.html
https://dbi.r-dbi.org/reference/dbGetQuery.html
https://dplyr.tidyverse.org/reference/compute.html

data. We will on focus on SELECT statements, also called queries, because they are
almost exclusively what you’ll use as a data scientist.

A query is made up of clauses. There are five important clauses: SELECT, FROM, WHERE,
ORDER BY, and GROUP BY. Every query must have the SELECT* and FROM® clauses, and
the simplest query is SELECT * FROM table, which selects all columns from the
specified table. This is what dbplyr generates for an unadulterated table:

flights |> show_query()
#> <SQL>

#> SELECT *

#> FROM flights

planes |> show_query()
#> <SQL>

#> SELECT *

#> FROM planes

WHERE and ORDER BY control which rows are included and how they are ordered:

flights |>
filter(dest == "IAH") |>
arrange(dep_delay) |>
show_query()

#> <SQL>

#> SELECT *

#> FROM flights

#> WHERE (dest = 'IAH')

#> ORDER BY dep_delay

GROUP BY converts the query to a summary, causing aggregation to happen:

flights |>
group_by(dest) |>
summarize(dep_delay = mean(dep_delay, na.rm = TRUE)) |>
show_query()

#> <SQL>

#> SELECT dest, AVG(dep_delay) AS dep_delay

#> FROM flights

#> GROUP BY dest

There are two important differences between dplyr verbs and SELECT clauses:

o In SQL, case doesn’t matter: you can write select, SELECT, or even SelLeCt. In
this book we'll stick with the common convention of writing SQL keywords in
uppercase to distinguish them from table or variables names.

 In SQL, order matters: you must always write the clauses in the order SELECT,
FROM, WHERE, GROUP BY, and ORDER BY. Confusingly, this order doesn't match how

4 Confusingly, depending on the context, SELECT is either a statement or a clause. To avoid this confusion, we’ll
generally use SELECT query instead of SELECT statement.

5 Technically, only the SELECT is required, since you can write queries like SELECT 1+1 to perform basic
calculations. But if you want to work with data (as you always do!), you’ll also need a FROM clause.

384 | Chapter21:Databases

the clauses are actually evaluated, which is first FROM and then WHERE, GROUP BY,
SELECT, and ORDER BY.

The following sections explore each clause in more detail.

Note that while SQL is a standard, it is extremely complex, and no
database follows the standard exactly. While the main components
that we'll focus on in this book are similar between DBMSs, there
are many minor variations. Fortunately, dbplyr is designed to han-
dle this problem and generates different translations for different
databases. It's not perfect, but it’s continually improving, and if you
hit a problem, you can file an issue on GitHub to help us do better.

SELECT

The SELECT clause is the workhorse of queries and performs the same job as
select(), mutate(), rename(), relocate(), and, as you'll learn in the next section,
summarize().

select(), rename(), and relocate() have very direct translations to SELECT as they
just affect where a column appears (if at all) along with its name:

planes |>
select(tailnum, type, manufacturer, model, year) |>
show_query()
#> <SQL>
#> SELECT tailnum, "type", manufacturer, model, "year"
#> FROM planes

planes |>
select(tailnum, type, manufacturer, model, year) |>
rename(year_built = year) |>
show_query()
#> <SQL>
#> SELECT tailnum, "type", manufacturer, model, "year" AS year_built
#> FROM planes

planes |>
select(tailnum, type, manufacturer, model, year) |>
relocate(manufacturer, model, .before = type) |>
show_query()

#> <SQL>

#> SELECT tailnum, manufacturer, model, "type", "year"

#> FROM planes

This example also shows you how SQL does renaming. In SQL terminology, renam-
ing is called aliasing and is done with AS. Note that unlike mutate(), the old name is
on the left, and the new name is on the right.

sQL | 385

https://oreil.ly/xgmg8
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/relocate.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/relocate.html
https://dplyr.tidyverse.org/reference/mutate.html

In the previous examples, note that "year" and "type" are wrap-
ped in double quotes. That’s because these are reserved words in
duckdb, so dbplyr quotes them to avoid any potential confusion
between column/table names and SQL operators.

When working with other databases, youre likely to see every
variable name quoted because only a handful of client packages,
like duckdb, know what all the reserved words are, so they quote
everything to be safe:

SELECT "tailnum", "type", "manufacturer", "model", "year"
FROM "planes"

Some other database systems use backticks instead of quotes:

SELECT ‘tailnum’, ‘type’, ‘manufacturer’, ‘model’, ‘year’
FROM “planes’

The translations for mutate() are similarly straightforward: each variable becomes a
new expression in SELECT:
flights |>
mutate(
speed = distance / (air_time / 60)
) |>
show_query()
#> <SQL>
#> SELECT *, distance / (air_time / 60.0) AS speed
#> FROM flights
We'll come back to the translation of individual components (like /) in “Function

Translations” on page 391.

FROM

The FROM clause defines the data source. It’s going to be rather uninteresting for a little
while, because we're just using single tables. You'll see more complex examples once
we hit the join functions.

GROUP BY

group_by() is translated to the GROUP BY® clause, and summarize() is translated to the
SELECT clause:

diamonds_db |>
group_by(cut) |>
summarize(
n=n(Q),

avg_price = mean(price, na.rm = TRUE)

6 This is no coincidence: the dplyr function name was inspired by the SQL clause.

386 | Chapter21:Databases

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/summarise.html

) |>
show_query()
#> <SQL>
#> SELECT cut, COUNT(*) AS n, AVG(price) AS avg_price
#> FROM diamonds
#> GROUP BY cut

We'll come back to what’s happening with translating n() and mean() in “Function
Translations” on page 391.

WHERE

filter() is translated to the WHERE clause:

flights |>
filter(dest == "IAH" | dest == "HOU") |>
show_query()

#> <SQL>

#> SELECT *

#> FROM flights

#> WHERE (dest = 'IAH' OR dest = 'HOU')

flights |>
filter(arr_delay > 0 & arr_delay < 20) |>
show_query()

#> <SQL>

#> SELECT *

#> FROM flights

#> WHERE (arr_delay > 0.0 AND arr_delay < 20.0)

There are a few important details to note here:

e | becomes OR, and & becomes AND.

o SQL uses = for comparison, not ==. SQL doesn’t have assignment, so there’s no
potential for confusion there.

o SQL uses only '' for strings, not "". In SQL, "" is used to identify variables,
like Rs **.

Another useful SQL operator is IN, which is close to R’s %in%:

flights |>
filter(dest %in% c("IAH", "HOU")) |>
show_query()

#> <SQL>

#> SELECT *

#> FROM flights

#> WHERE (dest IN ('IAH', 'HOU'))

SQL uses NULL instead of NA. NULLs behave similarly to NAs. The main difference
is that while theyre “infectious” in comparisons and arithmetic, they are silently
dropped when summarizing. dbplyr will remind you about this behavior the first
time you hit it:

saL | 387

https://dplyr.tidyverse.org/reference/context.html
https://rdrr.io/r/base/mean.html
https://dplyr.tidyverse.org/reference/filter.html

flights |>
group_by(dest) |>
summarize(delay = mean(arr_delay))
#> Warning: Missing values are always removed in SQL aggregation functions.
#> Use ‘na.rm = TRUE' to silence this warning
#> This warning is displayed once every 8 hours.
#> # Source: SQL [?? x 2]
#> # Database: DuckDB 0.6.1 [root@arwin 22.3.0:R 4.2.1/:memory:]
#> dest delay
#> <chr> <dbl>

#> 1 ATL 11.3
#> 2 ORD 5.88
#> 3 RDU 10.1
#> 4 IAD 13.9
#> 5 DTW 5.43

#> 6 LAX 0.547
#> # .. with more rows

If you want to learn more about how NULLs work, you might enjoy “The Three-
Valued Logic of SQL” by Markus Winand.

In general, you can work with NULLs using the functions youd use for NAs in R:

flights |>
filter(!is.na(dep_delay)) |>
show_query()

#> <SQL>

#> SELECT *

#> FROM flights

#> WHERE (NOT((dep_delay IS NULL)))

This SQL query illustrates one of the drawbacks of dbplyr: while the SQL is correct,

it isn’t as simple as you might write by hand. In this case, you could drop the
parentheses and use a special operator that’s easier to read:

WHERE "dep_delay" IS NOT NULL

Note that if you filter() a variable that you created using a summarize, dbplyr
will generate a HAVING clause, rather than a WHERE clause. This is a one of the
idiosyncrasies of SQL: WHERE is evaluated before SELECT and GROUP BY, so SQL needs
another clause that’s evaluated afterward.

diamonds_db |>
group_by(cut) |>
summarize(n = n()) |>
filter(n > 100) |>
show_query()

#> <SQL>

#> SELECT cut, COUNT(*) AS n

#> FROM diamonds

#> GROUP BY cut

#> HAVING (COUNT(*) > 100.0)

388 | Chapter21: Databases

https://oreil.ly/PTwQz
https://oreil.ly/PTwQz
https://dplyr.tidyverse.org/reference/filter.html

ORDER BY

Ordering rows involves a straightforward translation from arrange() to the ORDER
BY clause:
flights |>
arrange(year, month, day, desc(dep_delay)) |>
show_query()
#> <SQL>
#> SELECT *
#> FROM flights
#> ORDER BY "year", "month", "day", dep_delay DESC
Notice how desc() is translated to DESC: this is one of the many dplyr functions
whose name was directly inspired by SQL.

Subqueries

Sometimes it’s not possible to translate a dplyr pipeline into a single SELECT statement
and you need to use a subquery. A subquery is just a query used as a data source in
the FROM clause, instead of the usual table.

dbplyr typically uses subqueries to work around the limitations of SQL. For example,
expressions in the SELECT clause can’t refer to columns that were just created. That
means that the following (silly) dplyr pipeline needs to happen in two steps: the
first (inner) query computes yeari, and then the second (outer) query can compute
yearz:

flights |>
mutate(
yearl = year + 1,
year2 = yearl + 1

) I>

show_query()
#> <SQL>
#> SELECT *, yearl + 1.0 AS year?2
#> FROM (
#> SELECT *, "year" + 1.0 AS yearl
#> FROM flights
#>) qo1

You'll also see this if you attempted to filter() a variable that you just created.
Remember, even though WHERE is written after SELECT, it’s evaluated before it, so we
need a subquery in this (silly) example:

flights |>
mutate(yearl = year + 1) |>
filter(yearl == 2014) |>
show_query()

#> <SQL>

#> SELECT *

#> FROM (

#> SELECT *, "year" + 1.0 AS yearl

#> FROM flights

sQL | 389

https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/desc.html
https://dplyr.tidyverse.org/reference/filter.html

#>) qo1
#> WHERE (yearl = 2014.0)

Sometimes dbplyr will create a subquery where it’s not needed because it doesn't yet
know how to optimize that translation. As dbplyr improves over time, these cases will
get rarer but will probably never go away.

Joins
If you're familiar with dplyr’s joins, SQL joins are similar. Here’s a simple example:

flights |>
left_join(planes |> rename(year_built = year), by = "tailnum") |>
show_query()

#> <SQL>

#> SELECT

#> flights.*,

#> planes. "year" AS year_built,

#> "type",

#> manufacturer,

#> model,

#> engines,

#> seats,

#> speed,

#> engine

#> FROM flights

#> LEFT JOIN planes

#> ON (flights.tailnum = planes.tailnum)

The main thing to notice here is the syntax: SQL joins use subclauses of the FROM
clause to bring in additional tables, using ON to define how the tables are related.

dplyr’s names for these functions are so closely connected to SQL that you can easily
guess the equivalent SQL for inner_join(), right_join(), and full_join():
SELECT flights.*, "type", manufacturer, model, engines, seats, speed

FROM flights
INNER JOIN planes ON (flights.tailnum = planes.tailnum)

SELECT flights.*, "type", manufacturer, model, engines, seats, speed
FROM flights
RIGHT JOIN planes ON (flights.tailnum = planes.tailnum)

SELECT flights.*, "type", manufacturer, model, engines, seats, speed

FROM flights

FULL JOIN planes ON (flights.tailnum = planes.tailnum)
You're likely to need many joins when working with data from a database. That’s
because database tables are often stored in a highly normalized form, where each
“fact” is stored in a single place, and to keep a complete dataset for analysis, you need
to navigate a complex network of tables connected by primary and foreign keys. If
you hit this scenario, the dm package, by Tobias Schieferdecker, Kirill Miiller, and
Darko Bergant, is a lifesaver. It can automatically determine the connections between
tables using the constraints that DBAs often supply, visualize the connections so you

390 | Chapter21:Databases

https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://dplyr.tidyverse.org/reference/mutate-joins.html
https://oreil.ly/tVS8h

can see what’s going on, and generate the joins you need to connect one table to
another.

Other Verbs

dbplyr also translates other verbs such as distinct(), slice_*(), and intersect(),
as well as a growing selection of tidyr functions such as pivot_longer() and
pivot_wider(). The easiest way to see the full set of what's currently available is
to visit the dbplyr website.

Exercises

1. What is distinct() translated to? How about head()?

2. Explain what each of the following SQL queries do and try to re-create them
using dbplyr:
SELECT *

FROM flights
WHERE dep_delay < arr_delay

SELECT *, distance / (airtime / 60) AS speed
FROM flights

Function Translations

So far we've focused on the big picture of how dplyr verbs are translated to the clauses
of a query. Now we’re going to zoom in a little and talk about the translation of the
R functions that work with individual columns; e.g., what happens when you use
mean(x) in summarize()?

To help see whats going on, we'll use a couple of little helper functions that run a
summarize() or mutate() and show the generated SQL. That will make it a little

easier to explore a few variations and see how summaries and transformations can
differ.

summarize_query <- function(df, ...) {
df |>
summarize(...) |>
show_query()

}
mutate_query <- function(df, ...) {
df |>
mutate(..., .keep = "none") |>
show_query()
}

Lets dive in with some summaries! Looking at the following code, you'll notice that
some summary functions, such as mean(), have a relatively simple translation, while

Function Translations | 391

https://dplyr.tidyverse.org/reference/distinct.html
https://generics.r-lib.org/reference/setops.html
https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://oreil.ly/A8OGW
https://dplyr.tidyverse.org/reference/distinct.html
https://rdrr.io/r/utils/head.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/mutate.html
https://rdrr.io/r/base/mean.html

others like median() are much more complex. The complexity is typically higher for
operations that are common in statistics but less common in databases.

flights |>
group_by(year, month, day) |>
summarize_query(
mean = mean(arr_delay, na.rm =
median = median(arr_delay, na.rm =

)

TRUE),
TRUE)

using the “.groups’ argument.
<SQL>
SELECT

"year",

"month",

"day”,

AVG(arr_delay) AS mean,

FROM flights

GROUP BY "year", "month", "day"

‘summarise()" has grouped output by "year" and "month". You can override

PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY arr_delay) AS median

The translation of summary functions becomes more complicated when you use
them inside a mutate() because they have to turn into so-called window functions. In
SQL, you turn an ordinary aggregation function into a window function by adding

OVER after it:

flights |>
group_by(year, month, day) |>
mutate_query(

mean = mean(arr_delay, na.rm = TRUE),

)
#> <SQL>
#> SELECT
#> "year",
#> "month",
#> "day",
#> AVG(arr_delay) OVER (PARTITION BY "year", "month",

#> FROM flights

"day") AS mean

In SQL, the GROUP BY clause is used exclusively for summaries, so here you can see
that the grouping has moved from the PARTITION BY argument to OVER.

Window functions include all functions that look forward or backward, such as
lead() and lag(), which look at the “previous” or “next” value, respectively:

flights |>
group_by(dest) |>
arrange(time_hour) |>
mutate_query(
lead = lead(arr_delay),
lag = lag(arr_delay)
)
#> <SQL>
#> SELECT
dest,

LEAD(arr_delay, 1, NULL) OVER (PARTITION BY dest ORDER BY time_hour) AS lead,
LAG(arr_delay, 1, NULL) OVER (PARTITION BY dest ORDER BY time_hour) AS lag

392 | Chapter21: Databases

https://rdrr.io/r/stats/median.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/lead-lag.html
https://dplyr.tidyverse.org/reference/lead-lag.html

#> FROM flights
#> ORDER BY time_hour

Here it's important to arrange() the data, because SQL tables have no intrinsic order.
In fact, if you don’t use arrange(), you might get the rows back in a different order
every time! Notice for window functions, the ordering information is repeated: the
ORDER BY clause of the main query doesn’t automatically apply to window functions.

Another important SQL function is CASE WHEN. It's used as the translation of
if_else() and case_when(), the dplyr function that it directly inspired. Here are
a couple of simple examples:

flights |>
mutate_query(
description = if_else(arr_delay > 0, "delayed", "on-time")
)
#> <SQL>
#> SELECT CASE WHEN
#> (arr_delay > 0.0) THEN 'delayed'
#> WHEN NOT (arr_delay > 0.0) THEN 'on-time' END AS description
#> FROM flights
flights |>
mutate_query(
description =
case_when(
arr_delay < -5 ~ "early",
arr_delay < 5 ~ "on-time",
arr_delay >= 5 ~ "late"

)

#> <SQL>

#> SELECT CASE

#> WHEN (arr_delay < -5.0) THEN 'early'’
#> WHEN (arr_delay < 5.0) THEN 'on-time'
#> WHEN (arr_delay >= 5.0) THEN 'late’
#> END AS description

#> FROM flights

CASE WHEN is also used for some other functions that don’t have a direct translation
from R to SQL. A good example of this is cut():

flights |>
mutate_query(
description = cut(
arr_delay,
breaks = c(-Inf, -5, 5, Inf),
labels = c("early", "on-time", "late")
)
)
#> <SQL>
#> SELECT CASE
#> WHEN (arr_delay <= -5.0) THEN 'early'
#> WHEN (arr_delay <= 5.0) THEN 'on-time'
#> WHEN (arr_delay > 5.0) THEN 'late'
#> END AS description
#> FROM flights

Function Translations | 393

https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/if_else.html
https://dplyr.tidyverse.org/reference/case_when.html
https://rdrr.io/r/base/cut.html

dbplyr also translates common string and date-time manipulation functions, which
you can learn about in vignette("translation-function", package = "dbplyr").
dbplyr’s translations are certainly not perfect, and there are many R functions that
aren’t translated yet, but dbplyr does a surprisingly good job covering the functions
that you’ll use most of the time.

Summary

In this chapter you learned how to access data from databases. We focused on dbplyr,
a dplyr “backend” that allows you to write the dplyr code youre familiar with and
have it be automatically translated to SQL. We used that translation to teach you a
little SQL; it’s important to learn some SQL because it’s the most commonly used
language for working with data and knowing some will make it easier for you to
communicate with other data folks who don’t use R. If you've finished this chapter
and would like to learn more about SQL, we have two recommendations:

o SQL for Data Scientists by Renée M. P. Teate is an introduction to SQL designed
specifically for the needs of data scientists and includes examples of the sort of
highly interconnected data you're likely to encounter in real organizations.

o Practical SQL by Anthony DeBarros is written from the perspective of a data
journalist (a data scientist specialized in telling compelling stories) and goes
into more detail about getting your data into a database and running your own
DBMS.

In the next chapter, we'll learn about another dplyr backend for working with large
data: arrow. The arrow package is designed for working with large files on disk and is
a natural complement to databases.

394 | Chapter21: Databases

https://dbplyr.tidyverse.org/articles/translation-function.html
https://oreil.ly/QfAat
https://oreil.ly/-0Usp

CHAPTER 22
Arrow

Introduction

CSV files are designed to be easily read by humans. Theyre a good interchange
format because they’re simple and they can be read by every tool under the sun. But
CSV files aren't efficient: you have to do quite a lot of work to read the data into R.
In this chapter, you'll learn about a powerful alternative: the parquet format, an open
standards-based format widely used by big data systems.

We'll pair parquet files with Apache Arrow, a multilanguage toolbox designed for
efficient analysis and transport of large datasets. We'll use Apache Arrow via the
arrow package, which provides a dplyr backend allowing you to analyze larger-than-
memory datasets using familiar dplyr syntax. As an additional benefit, arrow is
extremely fast; you’ll see some examples later in the chapter.

Both arrow and dbplyr provide dplyr backends, so you might wonder when to use
each. In many cases, the choice is made for you, as in the data is already in a database
or in parquet files, and you’ll want to work with it as is. But if you’re starting with
your own data (perhaps CSV files), you can either load it into a database or convert
it to parquet. In general, it's hard to know what will work best, so in the early stages
of your analysis, we encourage you to try both and pick the one that works the best
for you.

(A big thanks to Danielle Navarro who contributed the initial version of this chapter.)

Prerequisites

In this chapter, we'll continue to use the tidyverse, particularly dplyr, but we'll pair it
with the arrow package, which was designed specifically for working with large data:

395

https://oreil.ly/ClE7D
https://oreil.ly/TGrH5
https://oreil.ly/g60F8

library(tidyverse)
library(arrow)

Later in the chapter, we'll also see some connections between arrow and duckdb, so
we'll also need dbplyr and duckdb:

library(dbplyr, warn.conflicts = FALSE)
library(duckdb)
#> Loading required package: DBI

Getting the Data

We begin by getting a dataset worthy of these tools: a dataset of item checkouts from
Seattle public libraries, available online at Seattle Open Data. This dataset contains
41,389,465 rows that tell you how many times each book was checked out each
month from April 2005 to October 2022.

The following code will get you a cached copy of the data. The data is a 9 GB CSV
file, so it will take some time to download. I highly recommend using curl: :multi
download() to get very large files as it’s built for exactly this purpose: it gives you a
progress bar, and it can resume the download if it’s interrupted.

dir.create("data", showWarnings = FALSE)

curl::multi_download(
"https://r4ds.s3.us-west-2.amazonaws.com/seattle-library-checkouts.csv",
"data/seattle-library-checkouts.csv",
resume = TRUE

)

Opening a Dataset

Lets start by taking a look at the data. At 9 GB, this file is large enough that we
probably don’t want to load the whole thing into memory. A good rule of thumb is
that you usually want at least twice as much memory as the size of the data, and many
laptops top out at 16 GB. This means we want to avoid read_csv() and instead use
arrow: :open_dataset():
seattle_csv <- open_dataset(
sources = "data/seattle-library-checkouts.csv",
format = "csv"
)
What happens when this code is run? open_dataset() will scan a few thousand rows
to figure out the structure of the dataset. Then it records what it’s found and stops; it
will only read further rows as you specifically request them. This metadata is what we
see if we print seattle_csv:
seattle_csv

#> FileSystemDataset with 1 csv file
#> UsageClass: string

396 | Chapter22: Arrow

https://oreil.ly/u56DR
https://readr.tidyverse.org/reference/read_delim.html
https://arrow.apache.org/docs/r/reference/open_dataset.html
https://arrow.apache.org/docs/r/reference/open_dataset.html

#> CheckoutType: string
#> MaterialType: string
#> CheckoutVYear: inté64
#> CheckoutMonth: inté4
#> Checkouts: int64

#> Title: string

#> ISBN: null

#> Creator: string

#> Subjects: string

#> Publisher: string
#> PublicationYear: string

The first line in the output tells you that seattle_csv is stored locally on disk as a
single CSV file; it will be loaded into memory only as needed. The remainder of the
output tells you the column type that arrow has imputed for each column.

We can see what’s actually in with glimpse(). This reveals that there are ~41 million
rows and 12 columns and shows us a few values.

seattle_csv |> glimpse()

#> FileSystemDataset with 1 csv file

#> 41,389,465 rows x 12 columns

#> $ UsageClass <string> "Physical"”, "Physical”, "Digital", "Physical”, "Ph..
#> $ CheckoutType <string> "Horizon", "Horizon", "OverDrive", "Horizon", "Hor..
#> S MaterialType <string> "BOOK", "BOOK", "EBOOK", "BOOK", "SOUNDDISC", "BOO..
#> $ CheckoutYear <int64> 2016, 2016, 2016, 2016, 2016, 2016, 2016, 2016, 20..
#> S CheckoutMonth <int64> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,..

#> $ Checkouts <int64> 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 2, 3, 2, 1, 3, 2,..
#> S Title <string> "Super rich : a guide to having it all / Russell S..
#> S ISBN <stripgs ", MU, ML
#> S Creator <string> "Simmons, Russell"”, "Barclay, James, 1965-", "Tim ..
#> S Subjects <string> "Self realization, Conduct of life, Attitude Psych..
#> S Publisher <string> "Gotham Books,", "Pyr,", "Random House, Inc.", "Di..

#> $ PublicationYear <string> "c2011.", "2010.", "2015", "2005.", "c2004.", "c20..

We can start to use this dataset with dplyr verbs, using collect() to force arrow to
perform the computation and return some data. For example, this code tells us the
total number of checkouts per year:

seattle_csv |>
count(CheckoutYear, wt = Checkouts) |>
arrange(CheckoutYear) |>
collect()

#> # A tibble: 18 x 2

#> CheckoutYear n

#> <int> <int>
1 2005 3798685
2 2006 6599318
3 2007 7126627

#> 4 2008 8438486
5 2009 9135167
6 2010 8608966
.. with 12 more rows

Thanks to arrow, this code will work regardless of how large the underlying dataset
is. But it’s currently rather slow: on Hadley’s computer, it took ~10s to run. Thats not

Opening a Dataset | 397

https://pillar.r-lib.org/reference/glimpse.html
https://dplyr.tidyverse.org/reference/compute.html

terrible given how much data we have, but we can make it much faster by switching
to a better format.

The Parquet Format

To make this data easier to work with, let’s switch to the parquet file format and split
it up into multiple files. The following sections will first introduce you to parquet and
partitioning and then apply what we learned to the Seattle library data.

Advantages of Parquet

Like CSV, parquet is used for rectangular data, but instead of being a text format that
you can read with any file editor, it's a custom binary format designed specifically for
the needs of big data. This means that:

o Parquet files are usually smaller than the equivalent CSV file. Parquet relies on
efficient encodings to keep file size down and supports file compression. This
helps make parquet files fast because theres less data to move from disk to
memory.

o Parquet files have a rich type system. As we talked about in “Controlling Column
Types” on page 104, a CSV file does not provide any information about column
types. For example, a CSV reader has to guess whether "08-10-2022" should be
parsed as a string or a date. In contrast, parquet files store data in a way that
records the type along with the data.

o Parquet files are “column-oriented” This means theyre organized column by
column, much like R’s data frame. This typically leads to better performance for
data analysis tasks compared to CSV files, which are organized row by row.

o Parquet files are “chunked,” which makes it possible to work on different parts of
the file at the same time and, if you're lucky, to skip some chunks altogether.

Partitioning

As datasets get larger and larger, storing all the data in a single file gets increasingly
painful, and its often useful to split large datasets across many files. When this
structuring is done intelligently, this strategy can lead to significant improvements in
performance because many analyses will require only a subset of the files.

There are no hard and fast rules about how to partition your dataset: the results will
depend on your data, access patterns, and the systems that read the data. You're likely
to need to do some experimentation before you find the ideal partitioning for your
situation. As a rough guide, arrow suggests that you avoid files smaller than 20 MB
and larger than 2 GB and avoid partitions that produce more than 10,000 files. You

398 | Chapter22: Arrow

https://oreil.ly/OzpFo

should also try to partition by variables that you filter by; as you'll see shortly, that
allows arrow to skip a lot of work by reading only the relevant files.

Rewriting the Seattle Library Data

Let’s apply these ideas to the Seattle library data to see how they play out in practice.
We're going to partition by CheckoutYear, since it’s likely some analyses will want to
look at only recent data and partitioning by year yields 18 chunks of a reasonable size.

To rewrite the data, we define the partition using dplyr::group_by() and then save
the partitions to a directory with arrow: :write_dataset(). write_dataset() has
two important arguments: a directory where we'll create the files and the format we'll
use.

pq_path <- "data/seattle-library-checkouts"

seattle_csv |>
group_by(CheckoutYear) |>
write_dataset(path = pg_path, format = "parquet")

This takes about a minute to run; as we'll see shortly this is an initial investment that
pays off by making future operations much much faster.

Let’s take a look at what we just produced:

tibble(
files = list.files(pq_path, recursive = TRUE),
size_MB = file.size(file.path(pq_path, files)) / 102472

)
#> # A tibble: 18 x 2

#> files size_MB
#> <chr> <dbl>
#> 1 CheckoutYear=2005/part-0.parquet 109.
#> 2 CheckoutYear=2006/part-0.parquet 164.
#> 3 CheckoutYear=2007/part-0.parquet 178.
#> 4 CheckoutYear=2008/part-0.parquet 195.
#> 5 CheckoutYear=2009/part-0.parquet 214.
#> 6 CheckoutYear=2010/part-0.parquet 222.
#

#> # .. with 12 more rows

Our single 9 GB CSV file has been rewritten into 18 parquet files. The filenames use
a “self-describing” convention used by the Apache Hive project. Hive-style partitions
name folders with a “key=value” convention, so as you might guess, the Checkout
Year=2005 directory contains all the data where CheckoutYear is 2005. Each file is
between 100 and 300 MB and the total size is now around 4 GB, a little more than
half the size of the original CSV file. This is as we expect since parquet is a much
more efficient format.

The Parquet Format | 399

https://dplyr.tidyverse.org/reference/group_by.html
https://arrow.apache.org/docs/r/reference/write_dataset.html
https://arrow.apache.org/docs/r/reference/write_dataset.html
https://oreil.ly/kACzC

Using dplyr with Arrow

Now that we've created these parquet files, we'll need to read them in again. We use
open_dataset() again, but this time we give it a directory:

seattle_pq <- open_dataset(pq_path)

Now we can write our dplyr pipeline. For example, we could count the total number
of books checked out in each month for the last five years:

query <- seattle_pq |>
filter(CheckoutYear >= 2018, MaterialType == "BOOK") |>
group_by(CheckoutYear, CheckoutMonth) |>
summarize(TotalCheckouts = sum(Checkouts)) |>
arrange(CheckoutYear, CheckoutMonth)

Writing dplyr code for arrow data is conceptually similar to dbplyr, as discussed in
Chapter 21: you write dplyr code, which is automatically transformed into a query
that the Apache Arrow C++ library understands, which is then executed when you
call collect(). If we print out the query object, we can see a little information about
what we expect Arrow to return when the execution takes place:

query

#> FileSystemDataset (query)

#> CheckoutYear: int32

#> CheckoutMonth: int64
#> TotalCheckouts: int64

#> * Grouped by CheckoutYear
#> * Sorted by CheckoutYear [asc], CheckoutMonth [asc]
#> See S.data for the source Arrow object

And we can get the results by calling collect():

query |> collect()

#> # A tibble: 58 x 3

#> # Groups: CheckoutYear [5]

#> CheckoutYear CheckoutMonth TotalCheckouts

#> <int> <int> <int>
1 2018 1 355101
2 2018 2 309813
#> 3 2018 3 344487
#> 4 2018 4 330988
5 2018 5 318049
6 2018 6 341825

#> # .. with 52 more rows

Like dbplyr, arrow understands only some R expressions, so you may not be able to
write exactly the same code you usually would. However, the list of operations and
functions supported is fairly extensive and continues to grow; find a complete list of
currently supported functions in ?acero.

400 | Chapter22:Arrow

https://arrow.apache.org/docs/r/reference/open_dataset.html
https://dplyr.tidyverse.org/reference/compute.html
https://dplyr.tidyverse.org/reference/compute.html
https://arrow.apache.org/docs/r/reference/acero.html

Performance

Let’s take a quick look at the performance impact of switching from CSV to parquet.
First, let’s time how long it takes to calculate the number of books checked out in each
month of 2021, when the data is stored as a single large CSV file:
seattle_csv |>
filter(CheckoutYear == 2021, MaterialType == "BOOK") |>
group_by(CheckoutMonth) |>
summarize(TotalCheckouts = sum(Checkouts)) |>
arrange(desc(CheckoutMonth)) |>
collect() |>
system. time()
#> user system elapsed
#> 11.997 1.189 11.343
Now let’s use our new version of the dataset in which the Seattle library checkout data
has been partitioned into 18 smaller parquet files:
seattle_pq |>
filter(CheckoutYear == 2021, MaterialType == "BOOK") |>
group_by(CheckoutMonth) |>
summarize(TotalCheckouts = sum(Checkouts)) |>
arrange(desc(CheckoutMonth)) |>
collect() [>
system. time()
#> user system elapsed
#> 0.272 0.063 0.063
The ~100x speedup in performance is attributable to two factors: the multifile parti-

tioning and the format of individual files:

o Partitioning improves performance because this query uses CheckoutYear ==
2021 to filter the data, and arrow is smart enough to recognize that it needs to
read only 1 of the 18 parquet files.

o The parquet format improves performance by storing data in a binary format
that can be read more directly into memory. The column-wise format and rich
metadata means that arrow needs to read only the four columns actually used in
the query (CheckoutYear, MaterialType, CheckoutMonth, and Checkouts).

This massive difference in performance is why it pays off to convert large CSVs to
parquet!

Using dplyr with Arrow | 401

Using dbplyr with Arrow

There’s one last advantage of parquet and arrow—it’s easy to turn an arrow dataset
into a DuckDB database (Chapter 21) by calling arrow: : to_duckdb():

seattle_pq |>
to_duckdb() |>
filter(CheckoutYear >= 2018, MaterialType == "BOOK") |[>
group_by(CheckoutYear) |>
summarize(TotalCheckouts = sum(Checkouts)) |>
arrange(desc(CheckoutYear)) |>
collect()
#> Warning: Missing values are always removed in SQL aggregation functions.
#> Use ‘na.rm = TRUE® to silence this warning
#> This warning is displayed once every 8 hours.
#> # A tibble: 5 x 2
#> CheckoutYear TotalCheckouts

#> <int> <dbl>
#> 1 2022 2431502
#> 2 2021 2266438
#> 3 2020 1241999
#> 4 2019 3931688
#> 5 2018 3987569

The neat thing about to_duckdb() is that the transfer doesn’t involve any memory
copying and speaks to the goals of the arrow ecosystem: enabling seamless transitions
from one computing environment to another.

Summary

In this chapter, you got a taste of the arrow package, which provides a dplyr backend
for working with large on-disk datasets. It can work with CSV files, and it's much
much faster if you convert your data to parquet. Parquet is a binary data format
that’s designed specifically for data analysis on modern computers. Far fewer tools
can work with parquet files compared to CSV, but its partitioned, compressed, and
columnar structure makes it much more efficient to analyze.

Next up you’ll learn about your first nonrectangular data source, which you’ll handle
using tools provided by the tidyr package. We'll focus on data that comes from JSON
files, but the general principles apply to tree-like data regardless of its source.

402 | Chapter22: Arrow

https://arrow.apache.org/docs/r/reference/to_duckdb.html
https://arrow.apache.org/docs/r/reference/to_duckdb.html

CHAPTER 23
Hierarchical Data

Introduction

In this chapter, you'll learn the art of data rectangling, taking data that is fundamen-
tally hierarchical, or tree-like, and converting it into a rectangular data frame made
up of rows and columns. This is important because hierarchical data is surprisingly
common, especially when working with data that comes from the web.

To learn about rectangling, you’ll need to first learn about lists, the data structure that
makes hierarchical data possible. Then you'll learn about two crucial tidyr functions:
tidyr::unnest_longer() and tidyr::unnest_wider(). Well then show you a few
case studies, applying these simple functions again and again to solve real problems.
We'll finish off by talking about JSON, the most frequent source of hierarchical
datasets and a common format for data exchange on the web.

Prerequisites

In this chapter, we’ll use many functions from tidyr, a core member of the tidyverse.
We'll also use repurrrsive to provide some interesting datasets for rectangling practice,
and we'll finish by using jsonlite to read JSON files into R lists.

library(tidyverse)

library(repurrrsive)
library(jsonlite)

403

https://tidyr.tidyverse.org/reference/unnest_longer.html
https://tidyr.tidyverse.org/reference/unnest_wider.html

Lists

So far you've worked with data frames that contain simple vectors such as integers,
numbers, characters, date-times, and factors. These vectors are simple because they’re
homogeneous: every element is of the same data type. If you want to store elements of
different types in the same vector, you'll need a list, which you create with 1ist():

x1 <- list(1:4, "a", TRUE)
x1

#> [[1]]

[1] 123 4

#>

[[2]]

#> [1] "a"

#>

#> [[3]]

#> [1] TRUE

It’s often convenient to name the components, or children, of a list, which you can do
in the same way as naming the columns of a tibble:

x2 <- list(a = 1:2, b = 1:3, c = 1:4)
X2

#> Sa

[1] 1 2

#>

#> Sb

[1] 12 3

#>

#> Sc

[1] 12 3 4

Even for these simple lists, printing takes up quite a lot of space. A useful alternative
is str(), which generates a compact display of the structure, de-emphasizing the
contents:

str(x1)

#> List of 3

#> $:int [1:4] 12 3 4
#> S : chr "a"

#> S : logi TRUE

str(x2)

#> List of 3

#> S a: int [1:2] 12

#> S b: int [1:3] 1 2 3
#> S c:int [1:4] 12 3 4

As you can see, str() displays each child of the list on its own line. It displays the
name, if present; then an abbreviation of the type; and then the first few values.

404 | Chapter 23: Hierarchical Data

https://rdrr.io/r/base/list.html
https://rdrr.io/r/utils/str.html
https://rdrr.io/r/utils/str.html

Hierarchy

Lists can contain any type of object, including other lists. This makes them suitable
for representing hierarchical (tree-like) structures:

x3 <- list(list(1, 2), list(3, 4))

str(x3)

#> List of 2

#> S :List of 2
#> ..S : num 1
#> ..S : num 2
#> S :List of 2
#> ..S : num 3
#> ..S : num 4

This is notably different from c(), which generates a flat vector:

c(c(1, 2), (3, 4))
[1] 1234

x4 <- c(list(1, 2), list(3, 4))

str(x4)

#> List of 4
#> S : num 1
#> S : num 2
#> S : num 3
#> S : num 4

As lists get more complex, str() gets more useful, as it lets you see the hierarchy at a
glance:

x5 <- Tlist(1, Tist(2, list(3, list(4, list(5)))))
str(x5)

#> List of 2

#> S : num 1

#> S :List of 2

#> ..S : num 2

#> ..S :List of 2

#>$: num 3

#>S :List of 2
#>S :num 4
#>S :List of 1
#>S :num 5

As lists get even larger and more complex, str() eventually starts to fail, and you'll
need to switch to View()." Figure 23-1 shows the result of calling View(x5). The
viewer starts by showing just the top level of the list, but you can interactively expand
any of the components to see more, as in Figure 23-2. RStudio will also show you the
code you need to access that element, as in Figure 23-3. We'll come back to how this
code works in “Selecting a Single Element with $ and [[” on page 494.

1 This is an RStudio feature.

Lists | 405

https://rdrr.io/r/base/c.html
https://rdrr.io/r/utils/str.html
https://rdrr.io/r/utils/str.html
https://rdrr.io/r/utils/View.html

Q x5 x
<3 | 99 | (O show Attributes Q c
Name Type Value
© x5 list [2] List of length 2
[1jj double [1] 1
O 217 list [2] List of length 2
(x5

Figure 23-1. The RStudio view lets you interactively explore a complex list. The viewer
opens showing only the top level of the list.

Q x5 x
<3 | 9 | (O Show Attributes Q @
Name Type Value
| © x5 list [2] List of length 2
1jj double [1] 1
© 217 list [2] List of length 2
[1jj double [1] 2
O 125 list [2] List of length 2 &
X5)

Figure 23-2. Clicking the right-facing triangle expands that component of the list so that
you can also see its children.

406 | Chapter23: Hierarchical Data

r4ds - main - RStudio Source Editor

Q x5 x
<3 | 0 | (JShow Attributes
Name Type
© x5 list [2]
iy double [1]
© 121 list [2]
1j double [1]
© 211 list [2]
1j] double [1]
O [1211 list [2]
x5

Q

Value

List of length 2
1

List of length 2
2

List of length 2
3

List of length 2

|

Figure 23-3. You can repeat this operation as many times as needed to get to the data

you're interested in. Note the bottom-left corner: if you click an element of the list,
RStudio will give you the subsetting code needed to access it, in this case x5[[2]][[2]]

[r2ji

List Columns

Lists can also live inside a tibble, where we call them list columns. List columns
are useful because they allow you to place objects in a tibble that wouldn't usually
belong in there. In particular, list columns are used a lot in the tidymodels ecosystem,
because they allow you to store things like model outputs or resamples in a data

frame

Here’s a simple example of a list column:

df <-

y
z

)
df

tibble(

1:2,

c("a", "b"),

list(list(1, 2), Llist(3, 4, 5))

#> # A tibble: 2 x 3

#>
#>

#> 1
#> 2

There’s nothing special about lists in a tibble; they behave like any other column:

df |>
filter(x == 1)
A tibble: 1 x 3

1

Xy z
<int> <chr> <list>
1a <list [2]>

2b <list [3]>

Xy z
<int> <chr> <list>
1a <list [2]>

Lists

407

https://oreil.ly/0giAa

Computing with list columns is harder, but that's because computing with lists is
harder in general; we’ll come back to that in Chapter 26. In this chapter, we'll focus
on unnesting list columns into regular variables so you can use your existing tools on
them.

The default print method just displays a rough summary of the contents. The list
column could be arbitrarily complex, so there’s no good way to print it. If you want to
see it, you'll need to pull out just the one list column and apply one of the techniques
that you've learned previously, like df |> pull(z) |> str() ordf [> pull(z) |>
View().

BaseR

It’s possible to put a list in a column of a data.frame, but it’s a lot
fiddlier because data.frame() treats a list as a list of columns:

data.frame(x = list(1:3, 3:5))
#> x.1.3 x.3.5

1 1 3
#> 2 2 4
#> 3 3 5

You can force data.frame() to treat a list as a list of rows by
wrapping it in list I(), but the result doesn't print particularly well:

data.frame(
x = I(list(1:2, 3:5)),
y =c("1, 2", "3, 4, 5")
)
#> X y
#1 1,2 1,2
#> 2 3, 4, 53, 4, 5

It’s easier to use list columns with tibbles because tibble() treats
lists like vectors and the print method has been designed with lists
in mind.

Unnesting

Now that you've learned the basics of lists and list columns, let’s explore how you can
turn them back into regular rows and columns. Here we’ll use simple sample data so
you can get the basic idea; in the next section we'll switch to real data.

List columns tend to come in two basic forms: named and unnamed. When the
children are named, they tend to have the same names in every row. For example,
in df1, every element of list column y has two elements named a and b. Named list
columns naturally unnest into columns: each named element becomes a new named
column.

df1 <- tribble(
~X, ~Y,

408 | Chapter23: Hierarchical Data

https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/base/data.frame.html
https://rdrr.io/r/base/AsIs.html
https://tibble.tidyverse.org/reference/tibble.html

1, list(a = 11, b = 12),
2, list(a = 21, b = 22),
3, list(a = 31, b = 32),

)

When the children are unnamed, the number of elements tends to vary from row to
row. For example, in df2, the elements of list column y are unnamed and vary in
length from one to three. Unnamed list columns naturally unnest into rows: you’ll get
one row for each child.
df2 <- tribble
X, ~Y,
1, list(11, 12, 13),
2, list(21),
3, list(31, 32),
)
tidyr provides two functions for these two cases: unnest_wider() and

unnest_longer (). The following sections explain how they work.

unnest_wider()

When each row has the same number of elements with the same names, like df1, it’s
natural to put each component into its own column with unnest_wider():
df1 |>

unnest_wider(y)
#> # A tibble: 3 x 3

#> X a b
#> <dbl> <dbl> <dbl>
#> 1 1 11 12
2 2 21 22

#> 3 3 31 32

By default, the names of the new columns come exclusively from the names of the
list elements, but you can use the names_sep argument to request that they combine
the column name and the element name. This is useful for disambiguating repeated
names.

df1l |>
unnest_wider(y, names_sep = "_")

#> # A tibble: 3 x 3

#> X ya yb

#> <dbl> <dbl> <dbl>

1 1 11 12

#> 2 2 21 22

3 3 31 32

unnest_longer()

When each row contains an unnamed list, it'’s most natural to put each element into
its own row with unnest_longer():

Unnesting | 409

https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_longer.html
https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_longer.html

df2 |>
unnest_longer(y)
#> # A tibble: 6 x 2

#> X

#> <dbl> <dbl>
#> 1 1 11
2 1 12
#> 3 1 13
#> 4 2 21
#> 5 3 31
6 3 32

Note how x is duplicated for each element inside of y: we get one row of output for
each element inside the list column. But what happens if one of the elements is empty,
as in the following example?

dfé <- tribble(

~X, ~Y,

"a", list(1, 2),
"b", list(3),
"c", list()

)
df6 |> unnest_longer(y)

#> # A tibble: 3 x 2

#> X v
#> <chr> <dbl>
#> 1 a 1
#> 2 a 2
#> 3 b 3

We get zero rows in the output, so the row effectively disappears. If you want to
preserve that row, add NA in y, set keep_empty = TRUE.

Inconsistent Types

What happens if you unnest a list column that contains different types of vectors?
For example, take the following dataset where list column y contains two numbers, a
character, and a logical, which can’t normally be mixed in a single column:

df4 <- tribble(

~X, ~Y,

"a", list(1),

"b", list("a", TRUE, 5)
)

unnest_longer() always keeps the set of columns unchanged, while changing the
number of rows. So what happens? How does unnest_longer() produce five rows
while keeping everything in y?

df4 |>
unnest_longer(y)

#> # A tibble: 4 x 2

#> X y

#> <chr> <list>

#> 1 a <dbl [1]>

#> 2 b <chr [1]>

410 | Chapter 23: Hierarchical Data

https://tidyr.tidyverse.org/reference/unnest_longer.html
https://tidyr.tidyverse.org/reference/unnest_longer.html

#3b <lgl [1]>

#> 4 b <dbl [1]>
As you can see, the output contains a list column, but every element of the list
column contains a single element. Because unnest_longer() can't find a common
type of vector, it keeps the original types in a list column. You might wonder if this
breaks the commandment that every element of a column must be the same type. It
doesn’t: every element is a list, even though the contents are of different types.

Dealing with inconsistent types is challenging and the details depend on the pre-
cise nature of the problem and your goals, but you’ll most likely need tools from
Chapter 26.

Other Functions

tidyr has a few other useful rectangling functions that we’re not going to cover in this
book:

o unnest_auto() automatically picks between unnest_longer() and unn
est_wider() based on the structure of the list column. It’s great for rapid explo-
ration, but ultimately it’s a bad idea because it doesn't force you to understand
how your data is structured and makes your code harder to understand.

o unnest() expands both rows and columns. It’s useful when you have a list
column that contains a 2D structure like a data frame, which you don't see in this
book, but you might encounter if you use the tidymodels ecosystem.

These functions are good to know about as you might encounter them when reading
other people’s code or tackling rarer rectangling challenges yourself.

Exercises

1. What happens when you use unnest_wider() with unnamed list columns like
df2? What argument is now necessary? What happens to missing values?

2. What happens when you use unnest_longer() with named list columns like
df1? What additional information do you get in the output? How can you
suppress that extra detail?

3. From time to time you encounter data frames with multiple list columns with
aligned values. For example, in the following data frame, the values of y and z
are aligned (i.e., y and z will always have the same length within a row, and the
first value of y corresponds to the first value of z). What happens if you apply two
unnest_longer () calls to this data frame? How can you preserve the relationship
between x and y? (Hint: Carefully read the docs.)

Unnesting | 411

https://tidyr.tidyverse.org/reference/unnest_longer.html
https://tidyr.tidyverse.org/reference/unnest_auto.html
https://tidyr.tidyverse.org/reference/unnest_longer.html
https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest.html
https://oreil.ly/ytJvP
https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_longer.html
https://tidyr.tidyverse.org/reference/unnest_longer.html

df4 <- tribble(

~X, ~Y, ~Z,
a", list("y-a-1", "y-a-2"), list("z-a-1", "z-a-2"),
b", list("y-b-1", "y-b-2", "y-b-3"), list("z-b-1", "z-b-2", "z-b-3")

Case Studies

The main difference between the simple examples we used earlier and real data is
that real data typically contains multiple levels of nesting that require multiple calls to
unnest_longer() and/or unnest_wider(). To show that in action, this section works
through three real rectangling challenges using datasets from the repurrrsive package.

Very Wide Data

We'll start with gh_repos. This is a list that contains data about a collection of GitHub
repositories retrieved using the GitHub API. It’s a deeply nested list, so it’s difficult to
show the structure in this book; we recommend exploring a little on your own with
View(gh_repos) before we continue.

gh_repos is a list, but our tools work with list columns, so we'll begin by putting it
into a tibble. We call this column json for reasons we'll get to later.

repos <- tibble(json = gh_repos)
repos

#> # A tibble: 6 x 1

#> json

#> <list>

#> 1 <list [30]>
#> 2 <list [30]>
#> 3 <list [30]>
#> 4 <list [26]>
#> 5 <list [30]>
#> 6 <list [30]>

This tibble contains six rows, one row for each child of gh_repos. Each row contains
a unnamed list with either 26 or 30 rows. Since these are unnamed, we'll start with
unnest_longer () to put each child in its own row:

repos |>
unnest_longer(json)
#> # A tibble: 176 x 1
#> json
#> <list>
#> 1 <named list [68]>
#> 2 <named list [68]>
#> 3 <named list [68]>
#> 4 <named list [68]>
#> 5 <named list [68]>
#> 6 <named list [68]>
#> # .. with 170 more rows

412 | Chapter 23: Hierarchical Data

https://tidyr.tidyverse.org/reference/unnest_longer.html
https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_longer.html

At first glance, it might seem like we haven't improved the situation: while we
have more rows (176 instead of 6), each element of json is still a list. However,
there’s an important difference: now each element is a named list, so we can use
unnest_wider() to put each element into its own column:
repos |>
unnest_longer(json) |>

unnest_wider(json)
#> # A tibble: 176 x 68

#> id name full_name owner private html_url

#> <int> <chr> <chr> <list> <lgl> <chr>

#> 1 61160198 after gaborcsardi/after <named list> FALSE https://github..
#> 2 40500181 argufy gaborcsardi/argu.. <named list> FALSE https://github..
#> 3 36442442 ask gaborcsardi/ask <named list> FALSE https://github..
#> 4 34924886 baseimports gaborcsardi/base.. <named list> FALSE https://github..
#> 5 61620661 citest gaborcsardi/cite.. <named list> FALSE https://github..
#> 6 33907457 clisymbols gaborcsardi/clis.. <named list> FALSE https://github..
#> # .. with 170 more rows, and 62 more variables: description <chr>,

#> # fork <lgl>, url <chr>, forks_url <chr>, keys_url <chr>, ..

This has worked, but the result is a little overwhelming: there are so many columns
that tibble doesn’t even print all of them! We can see them all with names() and here
we look at the first 10:

repos |>
unnest_longer(json) |>
unnest_wider(json) |>
names() |>

head(10)
#> [1] "id" "name" "full_name" "owner" "private”
#> [6] "html_url" "description” "fork" "url” "forks_url"

Let’s pull out a few that look interesting:

repos |>
unnest_longer(json) |>
unnest_wider(json) |>
select(id, full_name, owner, description)
#> # A tibble: 176 x 4

#> id full_name owner description

#> <int> <chr> <list> <chr>

#> 1 61160198 gaborcsardi/after <named list [17]> Run Code in the Backgro..
#> 2 40500181 gaborcsardi/argufy <named list [17]> Declarative function ar..
#> 3 36442442 gaborcsardi/ask <named list [17]> Friendly CLI interactio..
#> 4 34924886 gaborcsardi/baseimports <named list [17]> Do we get warnings for ..
#> 5 61620661 gaborcsardi/citest <named list [17]> Test R package and repo..
#> 6 33907457 gaborcsardi/clisymbols <named list [17]> Unicode symbols for CLI..
#> # .. with 170 more rows

You can use this to work back to understand how gh_repos was structured: each
child was a GitHub user containing a list of up to 30 GitHub repositories that they
created.

owner is another list column, and since it contains a named list, we can use
unnest_wider() to get at the values:

Case Studies | 413

https://tidyr.tidyverse.org/reference/unnest_wider.html
https://rdrr.io/r/base/names.html
https://tidyr.tidyverse.org/reference/unnest_wider.html

re

pos |>
unnest_longer(json) |>
unnest_wider(json) |>
select(id, full_name, owner, description) |[>
unnest_wider(owner)
Error in ‘unnest_wider() " :
! Can't duplicate names between the affected columns and the original
data.
X These names are duplicated:
7 'id’, from ‘owner.
7 Use ‘names_sep’ to disambiguate using the column name.
7 Or use ‘names_repair’ to specify a repair strategy.

Uh-oh, this list column also contains an id column, and we can’t have two id
columns in the same data frame. As suggested, let’s use names_sep to resolve the
problem:

re

pos |>

unnest_longer(json) |>

unnest_wider(json) |>

select(id, full_name, owner, description) |[>

unnest_wider(owner, names_sep = "_")

A tibble: 176 x 20

id full_name owner_login owner_id owner_avatar_url
<int> <chr> <chr> <int> <chr>

1 61160198 gaborcsardi/after gaborcsardi 660288 https://avatars.gith..
2 40500181 gaborcsardi/argufy gaborcsardi 660288 https://avatars.gith..
3 36442442 gaborcsardi/ask gaborcsardi 660288 https://avatars.gith..
4 34924886 gaborcsardi/baseimports gaborcsardi 660288 https://avatars.gith..
5 61620661 gaborcsardi/citest gaborcsardi 660288 https://avatars.gith..
6 33907457 gaborcsardi/clisymbols gaborcsardi 660288 https://avatars.gith..
.. with 170 more rows, and 15 more variables: owner_gravatar_id <chr>,

owner_url <chr>, owner_html_url <chr>, owner_followers_url <chr>, ..

This gives another wide dataset, but you can get the sense that owner appears to
contain a lot of additional data about the person who “owns” the repository.

Relational Data

Nested data is sometimes used to represent data that wed usually spread across multi-
ple data frames. For example, take got_chars, which contains data about characters
that appear in the Game of Thrones books and TV series. Like gh_repos, it’s a list, so
we start by turning it into a list column of a tibble:

ch
ch
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

ars <- tibble(json = got_chars)
ars
A tibble: 30 x 1
Jjson
<list>
1 <named list [18]>
2 <named list [18]>
3 <named list [18]>
4 <named list [18]>
5 <named list [18]>
6 <named list [18]>
.. with 24 more rows

414 |

Chapter 23: Hierarchical Data

The json column contains named elements, so we'll start by widening it:

chars |>
unnest_wider(json)
#> # A tibble: 30 x 18

#> url id name gender culture born

#> <chr> <int> <chr> <chr> <chr> <chr>

#> 1 https://www.anapio.. 1022 Theon Greyjoy Male "Ironborn" "In 278 AC or ..
#> 2 https://www.anapio.. 1052 Tyrion Lannist.. Male "" "In 273 AC, at..
#> 3 https://www.anapio.. 1074 Victarion Grey.. Male "Ironborn" "In 268 AC or ..
#> 4 https://www.anapio.. 1109 Will Male """ "

#> 5 https://www.anapio.. 1166 Areo Hotah Male "Norvoshi" "In 257 AC or ..
#> 6 https://www.anapio.. 1267 Chett Male """ "At Hag's Mire"

#> # .. with 24 more rows, and 12 more variables: died <chr>, alive <lgl>,
#> # titles <list>, aliases <list>, father <chr>, mother <chr>, ..

Then we select a few columns to make it easier to read:

characters <- chars |>
unnest_wider(json) |>
select(id, name, gender, culture, born, died, alive)

characters

#> # A tibble: 30 x 7

#> id name gender culture born died

#> <int> <chr> <chr> <chr> <chr> <chr>

#> 1 1022 Theon Greyjoy Male "Ironborn" "In 278 AC or 27.. ""

#> 2 1052 Tyrion Lannister Male " "In 273 AC, at C.. ""

#> 3 1074 Victarion Greyjoy Male "Ironborn" "In 268 AC or be.. ""

#> 4 1109 Will Male " " "In 297 AC, at..
#> 5 1166 Areo Hotah Male "Norvoshi" "In 257 AC or be.. ""

#> 6 1267 Chett Male " "At Hag's Mire" "In 299 AC, at..
#> # .. with 24 more rows, and 1 more variable: alive <lgl>

This dataset also contains many list columns:

chars |>
unnest_wider(json) |>
select(id, where(is.list))
#> # A tibble: 30 x 8

#> id titles aliases allegiances books povBooks tvSeries playedBy
#> <int> <list> <list> <list> <list> <list> <list> <list>
#> 1 1022 <chr [2]> <chr [4]> <chr [1]> <chr [3]> <chr> <chr> <chr>

#> 2 1052 <chr [2]> <chr [11]> <chr [1]> <chr [2]> <chr> <chr> <chr>

#> 3 1074 <chr [2]> <chr [1]> <chr [1]> <chr [3]> <chr> <chr> <chr>

#> 4 1109 <chr [1]> <chr [1]> <NULL> <chr [1]> <chr> <chr> <chr>

#> 5 1166 <chr [1]> <chr [1]> <chr [1]> <chr [3]> <chr> <chr> <chr>

#> 6 1267 <chr [1]> <chr [1]> <NULL> <chr [2]> <chr> <chr> <chr>

#> # .. with 24 more rows

Let’s explore the titles column. It's an unnamed list column, so we'll unnest it into
TrOWS:

chars |>
unnest_wider(json) |>
select(id, titles) |>
unnest_longer(titles)

#> # A tibble: 59 x 2

#> id titles

#> <int> <chr>

#> 1 1022 Prince of Winterfell

Case Studies | 415

#> 1022 Lord of the Iron Islands (by law of the green lands)
#> 1052 Acting Hand of the King (former)
#> 1052 Master of Coin (former)

#> 1074 Master of the Iron Victory

2
3
4
#> 5 1074 Lord Captain of the Iron Fleet
6
#> # .. with 53 more rows

You might expect to see this data in its own table because it would be easy to join to
the characters data as needed. Let’s do that, which requires a little cleaning: removing
the rows containing empty strings and renaming titles to title since each row now
contains only a single title.

titles <- chars |>
unnest_wider(json) |>
select(id, titles) |>
unnest_longer(titles) |>
filter(titles != "") |>
rename(title = titles)
titles
#> # A tibble: 52 x 2
#> id title
#> <int> <chr>
1 1022 Prince of Winterfell
2 1022 Lord of the Iron Islands (by law of the green lands)
3 1052 Acting Hand of the King (former)
#> 4 1052 Master of Coin (former)
5 1074 Lord Captain of the Iron Fleet
6 1074 Master of the Iron Victory
.. with 46 more rows

You could imagine creating a table like this for each of the list columns and then
using joins to combine them with the character data as you need it.

Deeply Nested

We'll finish off these case studies with a list column thats very deeply nested
and requires repeated rounds of unnest_wider() and unnest_longer() to unravel:
gmaps_cities. This is a two-column tibble containing five city names and the results
of using Google’s geocoding API to determine their location:

gmaps_cities
#> # A tibble: 5 x 2

#> city json
#> <chr> <list>
#> 1 Houston <named list [2]>

1
#> 2 Washington <named list [2]>
#> 3 New York <named list [2]>
#> 4 Chicago <named list [2]>
#> 5 Arlington <named list [2]>

json is a list column with internal names, so we start with an unnest_wider():

gmaps_cities |>
unnest_wider(json)

#> # A tibble: 5 x 3

#> city results status

416 | Chapter23: Hierarchical Data

https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_longer.html
https://oreil.ly/cdBWZ
https://tidyr.tidyverse.org/reference/unnest_wider.html

#> <chr> <list> <chr>
#> 1 Houston <list [1]> OK
#> 2 Washington <list [2]> OK
#> 3 New York <list [1]> OK
#> 4 Chicago <list [1]> 0K
#> 5 Arlington <list [2]> OK

This gives us the status and the results. We'll drop the status column since
theyre all OK; in a real analysis, youd also want to capture all the rows where
status != "OK" and figure out what went wrong. results is an unnamed list, with
either one or two elements (we'll see why shortly), so we'll unnest it into rows:
gmaps_cities |>
unnest_wider(json) |>
select(-status) |>

unnest_longer(results)
#> # A tibble: 7 x 2

#> city results
#> <chr> <list>
#> 1 Houston <named list [5]>

1

2 Washington <named list [5]>
#> 3 Washington <named list [5]>
#> 4 New York <named list [5]>
#> 5 Chicago <named list [5]>
#> 6 Arlington <named list [5]>
#> # .. with 1 more row

Now results is a named list, so we'll use unnest_wider():

locations <- gmaps_cities |>
unnest_wider(json) |>
select(-status) |>
unnest_longer(results) |>
unnest_wider(results)

locations

#> # A tibble: 7 x 6

#> city address_compone..* formatted_address geometry place_id

#> <chr> <list> <chr> <list> <chr>

#> 1 Houston <list [4]> Houston, TX, USA <named list> ChIJAYWNSLS4QI..
#> 2 Washington <list [2]> Washington, USA <named list> ChIJ-bDD5__1hV..
#> 3 Washington <list [4]> Washington, DC, .. <named list> ChIJW-T2Wt7GtA4..
#> 4 New York <list [3]> New York, NY, USA <named list> ChIJOwg_06VPwo..
#> 5 Chicago <list [4]> Chicago, IL, USA <named list> ChIJ7cv@@DwsDo..
#> 6 Arlington <list [4]> Arlington, TX, U. <named list> ChIJO5gI5NJiTo..

#> # .. with 1 more row, 1 more variable: types <list>, and abbreviated variable

#> # name *address_components
Now we can see why two cities got two results: Washington matched both Washing-
ton state and Washington, DC, and Arlington matched Arlington, Virginia, and
Arlington, Texas.

There are a few different places we could go from here. We might want to determine
the exact location of the match, which is stored in the geometry list column:
locations |>

select(city, formatted_address, geometry) |[>
unnest_wider(geometry)

Case Studies | 417

https://tidyr.tidyverse.org/reference/unnest_wider.html

#> # A tibble: 7 x 6

#> city formatted_address bounds location location_type
#> <chr> <chr> <list> <list> <chr>

#> 1 Houston Houston, TX, USA <named list [2]> <named list> APPROXIMATE
#> 2 Washington Washington, USA <named list [2]> <named list> APPROXIMATE
#> 3 Washington Washington, DC, USA <named list [2]> <named list> APPROXIMATE

#> 4 New York New York, NY, USA <named list [2]> <named list> APPROXIMATE
#> 5 Chicago Chicago, IL, USA <named list [2]> <named list> APPROXIMATE
#> 6 Arlington Arlington, TX, USA <named list [2]> <named list> APPROXIMATE
#> # .. with 1 more row, and 1 more variable: viewport <list>

That gives us new bounds (a rectangular region) and location (a point). We can
unnest location to see the latitude (lat) and longitude (1ng):

locations |>
select(city, formatted_address, geometry) |[>
unnest_wider(geometry) |>
unnest_wider(location)

#> # A tibble: 7 x 7

#> city formatted_address bounds lat lng location_type
#> <chr> <chr> <list> <dbl> <dbl> <chr>

#> 1 Houston Houston, TX, USA <named list [2]> 29.8 -95.4 APPROXIMATE
#> 2 Washington Washington, USA <named list [2]> 47.8 -121. APPROXIMATE
#> 3 Washington Washington, DC, USA <named list [2]> 38.9 -77.0 APPROXIMATE

#> 4 New York New York, NY, USA <named list [2]> 40.7 -74.0 APPROXIMATE
#> 5 Chicago Chicago, IL, USA <named list [2]> 41.9 -87.6 APPROXIMATE
#> 6 Arlington Arlington, TX, USA <named list [2]> 32.7 -97.1 APPROXIMATE
#> # .. with 1 more row, and 1 more variable: viewport <list>

Extracting the bounds requires a few more steps:

locations |>
select(city, formatted_address, geometry) |>
unnest_wider(geometry) |>
focus on the variables of interest
select(!location:viewport) |>
unnest_wider(bounds)

#> # A tibble: 7 x 4

#> city formatted_address northeast southwest
#> <chr> <chr> <list> <list>
#> 1 Houston Houston, TX, USA <named list [2]> <named list [2]>

1

2 Washington Washington, USA <named list [2]> <named list [2]>
#> 3 Washington Washington, DC, USA <named list [2]> <named list [2]>

4 New York New York, NY, USA <named list [2]> <named list [2]>

5 Chicago Chicago, IL, USA <named list [2]> <named list [2]>
#> 6 Arlington Arlington, TX, USA <named list [2]> <named list [2]>
#> # .. with 1 more row

We then rename southwest and northeast (the corners of the rectangle) so we can
use names_sep to create short but evocative names:

locations |>
select(city, formatted_address, geometry) |>
unnest_wider(geometry) |[>
select(!location:viewport) |>
unnest_wider(bounds) |>
rename(ne = northeast, sw = southwest) |>
unnest_wider(c(ne, sw), names_sep = "_")

#> # A tibble: 7 x 6

M18 | Chapter23: Hierarchical Data

#> city formatted_address ne_lat ne_lng sw_lat sw_lng

#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Houston Houston, TX, USA 30.1 -95.0 29.5 -95.8
#> 2 Washington Washington, USA 49.0 -117. 45.5 -125.

#> 3 Washington Washington, DC, USA 39.0 -76.9 38.8 -77.1
#> 4 New York New York, NY, USA 40.9 -73.7 40.5 -74.3
#> 5 Chicago Chicago, IL, USA 42.0 -87.5 41.6 -87.9

#> 6 Arlington Arlington, TX, USA 32.8 -97.0 32.6 -97.2

#> # .. with 1 more row
Note how we unnest two columns simultaneously by supplying a vector of variable
names to unnest_wider().

Once you've discovered the path to get to the components youre interested in, you
can extract them directly using another tidyr function, hoist():
locations |>
select(city, formatted_address, geometry) |>
hoist(
geometry,
ne_lat = c("bounds", "northeast", "lat"),
sw_lat = c("bounds", "southwest", "lat"),
ne_lng = c("bounds", "northeast", "lng"),
sw_lng = c("bounds", "southwest", "lng"),
)
If these case studies have whetted your appetite for more real-life rectangling, you can

see a few more examples in vignette("rectangling", package = "tidyr").

Exercises

1. Roughly estimate when gh_repos was created. Why can you only roughly esti-
mate the date?

2. The owner column of gh_repo contains a lot of duplicated information because
each owner can have many repos. Can you construct an owners data frame
that contains one row for each owner? (Hint: Does distinct() work with
list-cols?)

3. Follow the steps used for titles to create similar tables for the aliases, allegian-
ces, books, and TV series for the Game of Thrones characters.

4. Explain the following code line by line. Why is it interesting? Why does it work

for got_chars but might not work in general?
tibble(json = got_chars) |>
unnest_wider(json) |>
select(id, where(is.list)) |>
pivot_longer(
where(is.list),

names_to = "name",
values_to = "value"
) |>

unnest_longer(value)

Case Studies | 419

https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/hoist.html
https://dplyr.tidyverse.org/reference/distinct.html

5. In gmaps_cities, what does address_components contain? Why does the length
vary between rows? Unnest it appropriately to figure it out. (Hint: types always
appears to contain two elements. Does unnest_wider() make it easier to work
with than unnest_longer()?)

JSON

All of the case studies in the previous section were sourced from wild-caught JSON.
JSON is short for JavaScript Object Notation and is the way that most web APIs
return data. It's important to understand it because while JSON and R’s data types are
pretty similar, there isn't a perfect one-to-one mapping, so it's good to understand a
bit about JSON if things go wrong.

Data Types

JSON is a simple format designed to be easily read and written by machines, not
humans. It has six key data types. Four of them are scalars:

o The simplest type is a null (null), which plays the same role as NA in R. It
represents the absence of data.

o A string is much like a string in R but must always use double quotes.

o A number is similar to Rs numbers: they can use integer (e.g., 123), decimal
(e.g., 123.45), or scientific (e.g., 1.23e3) notation. JSON doesn’t support Inf, -Inf,
or NaN.

o A boolean is similar to R’s TRUE and FALSE but uses lowercase true and false.

JSON’s strings, numbers, and Booleans are pretty similar to R’s character, numeric,
and logical vectors. The main difference is that JSON’s scalars can represent only a
single value. To represent multiple values you need to use one of the two remaining
types: arrays and objects.

Both arrays and objects are similar to lists in R; the difference is whether theyre
named. An array is like an unnamed list and is written with []. For example, [1,
2, 3] is an array containing three numbers, and [null, 1, "string", false] is
an array that contains a null, a number, a string, and a Boolean. An object is like a
named list and is written with {}. The names (keys in JSON terminology) are strings,
so they must be surrounded by quotes. For example, {"x": 1, "y": 2} is an object
that maps x to 1 and y to 2.

Note that JSON doesn't have any native way to represent dates or date-times, so
they’re often stored as strings, and you’ll need to use readr::parse_date() or
readr::parse_datetime() to turn them into the correct data structure. Similarly,

420 | Chapter23: Hierarchical Data

https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_longer.html
https://rdrr.io/r/base/Paren.html
https://readr.tidyverse.org/reference/parse_datetime.html
https://readr.tidyverse.org/reference/parse_datetime.html

JSON’s rules for representing floating-point numbers in JSON are a little imprecise,
so you'll also sometimes find numbers stored in strings. Apply readr::parse_dou
ble() as needed to get the correct variable type.

jsonlite

To convert JSON into R data structures, we recommend the jsonlite package, by
Jeroen Ooms. We'll use only two jsonlite functions: read_json() and parse_json().
In real life, you'll use read_json() to read a JSON file from disk. For example, the
repurrsive package also provides the source for gh_user as a JSON file, and you can
read it with read_json():

A path to a json file inside the package:

gh_users_json()
#> [1] "/Users/hadley/Library/R/arm64/4.2/library/repurrrsive/extdata/gh_users.json"

Read it with read_json()
gh_users2 <- read_json(gh_users_json())

Check it's the same as the data we were using previously
identical(gh_users, gh_users2)
#> [1] TRUE

In this book, we'll also use parse_json(), since it takes a string containing JSON,
which makes it good for generating simple examples. To get started, here are three
simple JSON datasets, starting with a number, then putting a few numbers in an
array, and then putting that array in an object:

str(parse_json('1'))

#> int 1
str(parse_json('[1, 2, 3]'))
#> List of 3

S :int 1

#> S : int 2

#> S :int 3
str(parse_json('{"x": [1, 2, 31}'))
#> List of 1

#> S x:List of 3

#> .S int 1

.S int 2

#> ..S : int 3

jsonlite has another important function called fromJSON(). We don’t use it here
because it performs automatic simplification (simplifyVector = TRUE). This often
works well, particularly in simple cases, but we think youre better off doing the
rectangling yourself so you know exactly what’s happening and can more easily
handle the most complicated nested structures.

JSON | 421

https://readr.tidyverse.org/reference/parse_atomic.html
https://readr.tidyverse.org/reference/parse_atomic.html
https://rdrr.io/pkg/jsonlite/man/read_json.html
https://rdrr.io/pkg/jsonlite/man/read_json.html
https://rdrr.io/pkg/jsonlite/man/read_json.html
https://rdrr.io/pkg/jsonlite/man/read_json.html
https://rdrr.io/pkg/jsonlite/man/read_json.html
https://rdrr.io/pkg/jsonlite/man/fromJSON.html

Starting the Rectangling Process

In most cases, JSON files contain a single top-level array, because theyre designed
to provide data about multiple “things,” e.g., multiple pages, multiple records, or
multiple results. In this case, you'll start your rectangling with tibble(json) so that
each element becomes a row:

json <- '[
{"name": "John", "age": 343},
"name": "Susan", "age": 27}

1"
df <- tibble(json = parse_json(json))

df
#> # A tibble: 2 x 1
#> json

#> <list>
#> 1 <named list [2]>
#> 2 <named list [2]>

df |>
unnest_wider(json)
#> # A tibble: 2 x 2

#> name age
#> <chr> <int>
#> 1 John 34

#> 2 Susan 27

In rarer cases, the JSON file consists of a single top-level JSON object, representing
one “thing” In this case, you'll need to kick off the rectangling process by wrapping it
in a list, before you put it in a tibble:
json <- '{
"status": "OK",

"results": [
{"name": "John", "age": 34},

"name": "Susan", "age": 27}
1
}
df <- tibble(json = list(parse_json(json)))
df
#> # A tibble: 1 x 1
#> json

#> <list>
#> 1 <named list [2]>

df |>
unnest_wider(json) |>
unnest_longer(results) |[>
unnest_wider(results)

#> # A tibble: 2 x 3

#> status name age

#> <chr> <chr> <int>

#> 1 0K John 34

#> 2 OK Susan 27

422 | (Chapter23: Hierarchical Data

Alternatively, you can reach inside the parsed JSON and start with the bit that you
actually care about:

df <- tibble(results = parse_json(json)Sresults)
df |>

unnest_wider(results)
#> # A tibble: 2 x 2

#> name age
#> <chr> <int>
#> 1 John 34

#> 2 Susan 27

Exercises

1. Rectangle the following df_col and df_row. They represent the two ways of

encoding a data frame in JSON.
json_col <- parse_json(
{
"x": [”a”, ”X”, ”Z”] N
"y": [10, null, 3]

}
D)
json_row <- parse_json(
[
{"x": "a", "y": 10},
{"x": "x", "y": null},
{"x": "z", "y": 3}

]
"

df_col <- tibble(json
df_row <- tibble(json

list(json_col))
json_row)

Summary

In this chapter, you learned what lists are, how you can generate them from JSON
files, and how to turn them into rectangular data frames. Surprisingly we need
only two new functions: unnest_longer() to put list elements into rows and unn
est_wider() to put list elements into columns. It doesn’t matter how deeply nested
the list column is; all you need to do is repeatedly call these two functions.

JSON is the most common data format returned by web APIs. What happens if the
website doesn’t have an API but you can see data you want on the website? That’s the
topic of the next chapter: web scraping, extracting data from HTML web pages.

Summary | 423

https://tidyr.tidyverse.org/reference/unnest_longer.html
https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_wider.html

CHAPTER 24

Web Scraping

Introduction

This chapter introduces you to the basics of web scraping with rvest. Web scraping
is a useful tool for extracting data from web pages. Some websites will offer an API,
a set of structured HTTP requests that return data as JSON, which you handle using
the techniques from Chapter 23. Where possible, you should use the APL' because
typically it will give you more reliable data. Unfortunately, however, programming
with web APIs is out of scope for this book. Instead, we are teaching scraping, a
technique that works whether or not a site provides an API.

In this chapter, we'll first discuss the ethics and legalities of scraping before we dive
into the basics of HTML. You’ll then learn the basics of CSS selectors to locate specific
elements on the page and how to use rvest functions to get data from text and
attributes out of HTML and into R. We'll then discuss some techniques to figure out
what CSS selector you need for the page youre scraping, before finishing up with a
couple of case studies and a brief discussion of dynamic websites.

Prerequisites

In this chapter, we'll focus on tools provided by rvest. rvest is a member of the
tidyverse but is not a core member, so youll need to load it explicitly. We'll also
load the full tidyverse since we'll find it generally useful working with the data we've
scraped.

library(tidyverse)
library(rvest)

1 Many popular APIs already have CRAN packages that wrap them, so start with a little research first!

425

https://oreil.ly/lUNa6

Scraping Ethics and Legalities

Before we get started discussing the code you’ll need to perform web scraping, we
need to talk about whether it’s legal and ethical for you to do so. Overall, the situation
is complicated with regard to both of these.

Legalities depend a lot on where you live. However, as a general principle, if the data
is public, nonpersonal, and factual, you're likely to be OK.> These three factors are
important because theyre connected to the site’s terms and conditions, personally
identifiable information, and copyright, as we'll discuss.

If the data isn't public, nonpersonal, or factual or if you're scraping the data specifi-
cally to make money with it, you’ll need to talk to a lawyer. In any case, you should
be respectful of the resources of the server hosting the pages you are scraping. Most
important, this means that if youre scraping many pages, you should make sure to
wait a little between each request. One easy way to do so is to use the polite package
by Dmytro Perepolkin. It will automatically pause between requests and cache the
results so you never ask for the same page twice.

Terms of Service

If you look closely, you'll find many websites include a “terms and conditions” or
“terms of service” link somewhere on the page, and if you read that page closely,
you'll often discover that the site specifically prohibits web scraping. These pages tend
to be a legal land grab where companies make very broad claims. It’s polite to respect
these terms of service where possible, but take any claims with a grain of salt.

US courts have generally found that simply putting the terms of service in the footer
of the website isn’t sufficient for you to be bound by them, e.g., HiQ Labs v. LinkedIn.
Generally, to be bound to the terms of service, you must have taken some explicit
action such as creating an account or checking a box. This is why whether or not the
data is public is important; if you don’t need an account to access them, it is unlikely
that you are bound to the terms of service. Note, however, the situation is rather
different in Europe where courts have found that terms of service are enforceable
even if you don't explicitly agree to them.

Personally Identifiable Information

Even if the data is public, you should be extremely careful about scraping personally
identifiable information such as names, email addresses, phone numbers, dates of
birth, etc. Europe has particularly strict laws about the collection of storage of

2 Obviously we're not lawyers, and this is not legal advice. But this is the best summary we can give having read
a bunch about this topic.

426 | Chapter 24: Web Scraping

https://oreil.ly/rlujg
https://oreil.ly/mDAin

such data (GDPR), and regardless of where you live, youre likely to be entering
an ethical quagmire. For example, in 2016, a group of researchers scraped public
profile information (e.g., username, age, gender, location, etc.) about 70,000 people
on the dating site OkCupid and publicly released these data without any attempts
for anonymization. While the researchers felt that there was nothing wrong with
this since the data were already public, this work was widely condemned due to
ethics concerns around identifiability of users whose information was released in
the dataset. If your work involves scraping personally identifiable information, we
strongly recommend reading about the OkCupid study® as well as similar studies
with questionable research ethics involving the acquisition and release of personally
identifiable information.

Copyright

Finally, you also need to worry about copyright law. Copyright law is complicated,
but it’s worth taking a look at the US law, which describes exactly what’s protected:
“[...] original works of authorship fixed in any tangible medium of expression, [...]”
It then goes on to describe specific categories that it applies to such as literary works,
musical works, motion pictures, and more. Notably absent from copyright protection
are data. This means that as long as you limit your scraping to facts, copyright
protection does not apply. (But note that Europe has a separate “sui generis” right that

protects databases.)

As a brief example, in the US, lists of ingredients and instructions are not copyright-
able, so copyright cannot be used to protect a recipe. But if that list of recipes is
accompanied by substantial novel literary content, that is copyrightable. This is why
when you're looking for a recipe on the internet, there’s always so much content
beforehand.

If you do need to scrape original content (like text or images), you may still be
protected under the doctrine of fair use. Fair use is not a hard and fast rule but weighs
up a number of factors. It's more likely to apply if you are collecting the data for
research or noncommercial purposes and if you limit what you scrape to just what
you need.

HTML Basics

To scrape web pages, you need to first understand a little bit about HTML, the
language that describes web pages. HTML stands for HyperText Markup Language
and looks something like this:

3 One example of an article on the OkCupid study was published by Wired.

HTMLBasics | 427

https://oreil.ly/rzd7z
https://oreil.ly/nzJwO
https://oreil.ly/OqUgO
https://oreil.ly/0ewJe
https://oreil.ly/oFh0-

<html>

<head>
<title>Page title</title>
</head>
<body>
<h1l id='first'>A heading</h1>
<p>Some text some bold text.</p>

</body>

HTML has a hierarchical structure formed by elements, which consist of a start tag
(e.g., <tag>), optional attributes (id="first'), an end tag* (like </tag>), and contents
(everything in between the start and end tags).

Since < and > are used for start and end tags, you can’t write them directly. Instead,
you have to use the HTML escapes > (greater than) and < (less than). And
since those escapes use &, if you want a literal ampersand, you have to escape it as
&. There are a wide range of possible HTML escapes, but you don’t need to worry
about them too much because rvest automatically handles them for you.

Web scraping is possible because most pages that contain data that you want to scrape
generally have a consistent structure.

Elements

There are more than 100 HTML elements. Some of the most important are:

» Every HTML page must be in an <html> element, and it must have two children:
<head>, which contains document metadata like the page title, and <body>, which
contains the content you see in the browser.

o Block tags like <h1> (heading 1), <section> (section), <p> (paragraph), and
(ordered list) form the overall structure of the page.

o Inline tags like (bold), <i> (italics), and <a> (link) format text inside block
tags.

If you encounter a tag that you've never seen before, you can find out what it does
with a little googling. Another good place to start is the MDN Web Docs, which
describe just about every aspect of web programming.

Most elements can have content in between their start and end tags. This content
can be either text or more elements. For example, the following HTML contains a
paragraph of text, with one word in bold:

4 A number of tags (including <p> and <11>) don’t require end tags, but we think it’s best to include them
because it makes seeing the structure of the HTML a little easier.

428 | Chapter 24: Web Scraping

https://oreil.ly/qIgHp

<p>
Hi! My name is Hadley.
</p>
The children are the elements it contains, so the previous <p> element has one child,
the element. The element has no children, but it does have contents (the text
“name”).

Attributes

Tags can have named attributes, which look like namel="valuel' name2='value2'.
Two of the most important attributes are id and class, which are used in conjunc-
tion with Cascading Style Sheets (CSS) to control the visual appearance of the page.
These are often useful when scraping data off a page. Attributes are also used to
record the destination of links (the href attribute of <a> elements) and the source of
images (the src attribute of the element).

Extracting Data

To get started scraping, you'll need the URL of the page you want to scrape, which
you can usually copy from your web browser. You'll then need to read the HTML
for that page into R with read_html(). This returns an xml_document® object, which
you’ll then manipulate using rvest functions:

html <- read_html("http://rvest.tidyverse.org/")

html

#> {html_document}

#> <html lang="en">

#> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UT ...
#> [2] <body>\n Ski ...

rvest also includes a function that lets you write HTML inline. We'll use this a
bunch in this chapter as we teach how the various rvest functions work with simple
examples.

html <- minimal_html("

<p>This is a paragraph</p>

This is a bulleted list</1li>

")
html
#> {html_document}
#> <html>
#> [1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UT ...
#> [2] <body>\n<p>This is a paragraph</p>\n<p>\n </p>\n\nThis is a b ...

5 This class comes from the xml2 package. xml2 is a low-level package that rvest builds on top of.

ExtractingData | 429

https://oreil.ly/lQNBa
http://xml2.r-lib.org/reference/read_xml.html

Now that you have the HTML in R, it’s time to extract the data of interest. You'll
first learn about the CSS selectors that allow you to identify the elements of interest
and the rvest functions that you can use to extract data from them. Then we'll briefly
cover HTML tables, which have some special tools.

Find Elements

CSS is a tool for defining the visual styling of HTML documents. CSS includes a
miniature language for selecting elements on a page called CSS selectors. CSS selectors
define patterns for locating HTML elements and are useful for scraping because they
provide a concise way of describing which elements you want to extract.

We'll come back to CSS selectors in more detail in “Finding the Right Selectors” on
page 433, but luckily you can get a long way with just three:

p
Selects all <p> elements.

.title
Selects all elements with class “title”

#title
Selects the element with the id attribute that equals “title” id attributes must be
unique within a document, so this will only ever select a single element.

Let’s try these selectors with a simple example:

html <- minimal_html("
<h1>This is a heading</h1>
<p id='first'>This is a paragraph</p>
<p class='important'>This is an important paragraph</p>

")
Use html_elements() to find all elements that match the selector:

html |> html_elements("p")

#> {xml_nodeset (2)}

#> [1] <p 1d="first">This is a paragraph</p>

#> [2] <p class="important">This is an important paragraph</p>
html |> html_elements(".important")

#> {xml_nodeset (1)}

#> [1] <p class="important">This is an important paragraph</p>
html |> html_elements("#first")

#> {xml_nodeset (1)}

#> [1] <p id="first">This is a paragraph</p>

Another important function is html_element(), which always returns the same num-
ber of outputs as inputs. If you apply it to a whole document, it’ll give you the first
match:

430 | Chapter 24: Web Scraping

https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html

html |> html_element("p")
#> {html_node}
#> <p 1d="first">

There’s an important difference between html_element() and html_elements()
when you use a selector that doesn’t match any elements. html_elements() returns
a vector of length 0, where html_element() returns a missing value. This will be
important shortly.

html |> html_elements("b")
#> {xml_nodeset (0)}

html |> html_element("b")
#> {xml_missing}

#> <NA>

Nesting Selections

In most cases, you'll use html_elements() and html_element() together, typically
using html_elements() to identify elements that will become observations and then
using html_element() to find elements that will become variables. Let’s see this in
action using a simple example. Here we have an unordered list () where each list
item (<1i>) contains some information about four characters from Star Wars:

html <- minimal_html("

C-3P0 is a <i>droid</i> that weighs 167 kg
R4-P17 is a <i>droid</i></1i>
R2-D2 is a <i>droid</i> that weighs 96 kg
Yoda weighs 66 kg

")

We can use html_elements() to make a vector where each element corresponds to a
different character:

characters <- html |> html_elements("1i")

characters

#> {xml_nodeset (4)}

#> [1] \nC-3P0 i1s a <i>droid</i> that weighs ...
#> [2] \nR4-P17 is a <i>droid</i>\n

#> [3] \nR2-D2 is a <i>droid</i> that weighs ...
#> [4] |nYoda weighs 66 kg\n

To extract the name of each character, we use html_element(), because when applied
to the output of html_elements(), it’s guaranteed to return one response per element:

characters |> html_element("b")
#> {xml_nodeset (4)}

#> [1] C-3P0

#> [2] R4-P17

#> [3] R2-D2

#> [4] Yoda

ExtractingData | 431

https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html

The distinction between html_element() and html_elements() isn’t important for
the name, but it is important for the weight. We want to get one weight for each
character, even if there’s no weight . That’s what html_element() does:

characters |> html_element(".weight")

#> {xml_nodeset (4)}

#> [1] 167 kg
#> [2] <NA>

#> [3] 96 kg
#> [4] 66 kg

html_elements() finds all weight s that are children of characters. There’s
only three of these, so we lose the connection between names and weights:

characters |> html_elements(".weight")

#> {xml_nodeset (3)}

#> [1] 167 kg
#> [2] 96 kg
#> [3] 66 kg

Now that you've selected the elements of interest, you'll need to extract the data,
either from the text contents or from some attributes.

Text and Attributes

html_text2()¢ extracts the plain-text contents of an HTML element:

characters |>
html_element("b") |[>
html_text2()
#> [1] "C-3P0" "R4-P17" "R2-D2" "Yoda"

characters |>
html_element(".weight") |>
html_text2()
#> [1] "167 kg" NA "96 kg" "66 kg"

Note that any escapes will be automatically handled; you’ll only ever see HTML
escapes in the source HTML, not in the data returned by rvest.

html_attr() extracts data from attributes:

html <- minimal_html("
<p>cats</p>
<p>dogs</p>
"y

html |>
html_elements("p") |>
html_element("a") |>
html_attr("href")
#> [1] "https://en.wikipedia.org/wiki/Cat" "https://en.wikipedia.org/wiki/Dog"

6 rvest also provides html_text(), but you should almost always use html_text2() since it does a better job of
converting nested HTML to text.

432 | Chapter 24: Web Scraping

https://rvest.tidyverse.org/reference/html_text.html
https://rvest.tidyverse.org/reference/html_text.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_text.html
https://rvest.tidyverse.org/reference/html_attr.html

html_attr() always returns a string, so if you're extracting numbers or dates, you'll
need to do some post-processing.

Tables

If you're lucky, your data will be already stored in an HTML table, and it'll be a matter
of just reading it from that table. It's usually straightforward to recognize a table in
your browser: it'll have a rectangular structure of rows and columns, and you can
copy and paste it into a tool like Excel.

HTML tables are built up from four main elements: <table>, <tr> (table row), <th>
(table heading), and <td> (table data). Here’s a simple HTML table with two columns
and three rows:
html <- minimal_html("
<table class='mytable'>
<tr><th>x</th> <th>y</th></tr>
<tr><td>1.5</td> <td>2.7</td></tr>
<tr><td>4.9</td> <td>1.3</td></tr>
<tr><td>7.2</td> <td>8.1</td></tr>
</table>
")
rvest provides a function that knows how to read this sort of data: html_table().
It returns a list containing one tibble for each table found on the page. Use html_ele
ment() to identify the table you want to extract:
html |>
html_element(".mytable") |>
html_table()
#> # A tibble: 3 x 2
#> X v
#> <dbl> <dbl>
1 1.5 2.7

2 4.9 1.3
#3 7.2 8.1

Note that x and y have automatically been converted to numbers. This automatic

conversion doesn’t always work, so in more complex scenarios you may want to turn
it off with convert = FALSE and then do your own conversion.

Finding the Right Selectors

Figuring out the selector you need for your data is typically the hardest part of the
problem. You'll often need to do some experimenting to find a selector that is both
specific (i.e., it doesn't select things you don't care about) and sensitive (i.e., it does
select everything you care about). Lots of trial and error is a normal part of the
process! Two main tools are available to help you with this process: SelectorGadget
and your browser’s developer tools.

Finding the Right Selectors | 433

https://rvest.tidyverse.org/reference/html_attr.html
https://rvest.tidyverse.org/reference/html_table.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html

SelectorGadget is a JavaScript bookmarklet that automatically generates CSS selectors
based on the positive and negative examples that you provide. It doesn't always work,
but when it does, it's magic! You can learn how to install and use SelectorGadget
either by reading the vignette or by watching Mine’s video.

Every modern browser comes with some toolkit for developers, but we recommend
Chrome, even if it isn’t your regular browser: its web developer tools are some of the
best, and they’re immediately available. Right-click an element on the page and click
Inspect. This will open an expandable view of the complete HTML page, centered on
the element that you just clicked. You can use this to explore the page and get a sense
of what selectors might work. Pay particular attention to the class and 1id attributes,
since these are often used to form the visual structure of the page and hence make for
good tools to extract the data that you’re looking for.

Inside the Elements view, you can also right-click an element and choose Copy as
Selector to generate a selector that will uniquely identify the element of interest.

If either SelectorGadget or Chrome DevTools has generated a CSS selector that you
don’t understand, try Selectors Explained, which translates CSS selectors into plain
English. If you find yourself doing this a lot, you might want to learn more about CSS
selectors generally. We recommend starting with the fun CSS dinner tutorial and then
referring to the MDN web docs.

Putting It All Together

Lets put this all together to scrape some websites. There’s some risk that these
examples may no longer work when you run them—that’s the fundamental challenge
of web scraping; if the structure of the site changes, then you’ll have to change your
scraping code.

Star Wars

rvest includes a very simple example in vignette("starwars"). This is a simple page
with minimal HTML, so it’s a good place to start. We encourage you to navigate to
that page now and use Inspect Element to inspect one of the headings that’s the title
of a Star Wars movie. Use the keyboard or mouse to explore the hierarchy of the
HTML and see if you can get a sense of the shared structure used by each movie.

434 | Chapter 24: Web Scraping

https://oreil.ly/qui0z
https://oreil.ly/qui0z
https://oreil.ly/qNv6l
https://oreil.ly/eD6eC
https://oreil.ly/McJtu
https://oreil.ly/mpfMF
https://rvest.tidyverse.org/articles/starwars.html

You should be able to see that each movie has a shared structure that looks like this:

<section>
<h2 data-id="1">The Phantom Menace</h2>
<p>Released: 1999-05-19</p>
<p>Director: George Lucas</p>

<div class="crawl">
<p>...</p>
<p>...</p>
<p>...</p>
</div>
</section>

Our goal is to turn this data into a seven-row data frame with the variables title,
year, director, and intro. We'll start by reading the HTML and extracting all the
<section> elements:

url <- "https://rvest.tidyverse.org/articles/starwars.html"
html <- read_html(url)

section <- html |> html_elements("section")

section

#> {xml_nodeset (7)}

#> [1] <section><h2 data-id="1">\nThe Phantom Menace\n</h2>\n<p>\nReleased: 1 ...
#> [2] <section><h2 data-id="2">\pAttack of the Clones\n</h2>\n<p>|nReleased: ...
#> [3] <section><h2 data-id="3">|\nRevenge of the Sith|\n</h2>\n<p>|nReleased:

#> [4] <section><h2 data-id="4">\nA New Hope\n</h2>\n<p>|nReleased: 1977-05-2 ...
#> [5] <section><h2 data-id="5">\nThe Empire Strikes Back\n</h2>\n<p>\nReleas ...
#> [6] <section><h2 data-id="6">\nReturn of the Jedi\n</h2>\n<p>\nReleased: 1 ...
#> [7] <section><h2 data-id="7">\nThe Force Awakens\n</h2>\n<p>|\nReleased: 20 ...

This retrieves seven elements matching the seven movies found on that page, suggest-
ing that using section as a selector is good. Extracting the individual elements is
straightforward since the data is always found in the text. It’s just a matter of finding
the right selector:

section |> html_element("h2") [> html_text2()

#> [1] "The Phantom Menace" "Attack of the Clones"”
#> [3] "Revenge of the Sith" "A New Hope"

#> [5] "The Empire Strikes Back" "Return of the Jedi"
#> [7] "The Force Awakens"

section |> html_element(".director") |> html_text2()

#> [1] "George Lucas" "George Lucas" "George Lucas"

#> [4] "George Lucas" "Irvin Kershner" "Richard Marquand”
#> [7] "J. J. Abrams"

Putting It All Together | 435

Once we've done that for each component, we can wrap up all the results into a tibble:

tibble(

title = section |>
html_element("h2") |>
html_text2(),

released = section |>
html_element("p") |>
html_text2() |>
str_remove("Released: ") |>
parse_date(),

director = section |>
html_element(".director") |>
html_text2(),

intro = section |>
html_element(".crawl") |>
html_text2()

)

#> # A tibble: 7 x 4

#> title released director intro

#> <chr> <date> <chr> <chr>

#> 1 The Phantom Menace 1999-05-19 George Lucas "Turmoil has engulfed ..
#> 2 Attack of the Clones 2002-05-16 George Lucas "There is unrest in th..
#> 3 Revenge of the Sith 2005-05-19 George Lucas "War! The Republic 1is ..
#> 4 A New Hope 1977-05-25 George Lucas "It is a period of civ..
#> 5 The Empire Strikes Back 1980-05-17 Irvin Kershner "It is a dark time for..
#> 6 Return of the Jedi 1983-05-25 Richard Marquand "Luke Skywalker has re..

#> # .. with 1 more row

We did a little more processing of released to get a variable that will be easy to use
later in our analysis.

IMDb Top Films

For our next task we'll tackle something a little trickier, extracting the top 250 movies
from IMDb. At the time we wrote this chapter, the page looked like Figure 24-1.

436 | Chapter 24: Web Scraping

IMDb Charts
IMDb Top 250 Movies <

IMDb Top 250 as rated by regular IMDb voters. SHARE
Showing 250 Titles Sort by: Ranking e (it
IMDb Your

Rank & Title Rating Rating

1. The Shawshank Redemption (1994) 9.2

2. The Godfather (1972) w9.2

3. The Dark Knight (2008) ¥r9.0

4. The Godfather: Part II (1974) ¥r 9.0

5. 12 Angry Men (1957) 9.0

6. Schindler's List (1993) 8.9

7. The Lord of the Rings: The Return of the King (2003) ¥ 8.9

H =N

8. Pulp Fiction (1994) 8.8

Figure 24-1. IMDb top movies web page taken on 2022-12-05.

This data has a clear tabular structure, so it’s worth starting with html_table():

url <- "https://www.imdb.com/chart/top"
html <- read_html(url)

table <- html |>
html_element("table") |>
html_table()

table
#> # A tibble: 250 x 5
#> o ‘Rank & Title" ‘IMDb Rating® ‘Your Rating®

Putting It All Together | 437

https://rvest.tidyverse.org/reference/html_table.html

#> <lgl> <chr> <dbl> <chr> <lgl>

#> 1 NA "1.\n The Shawshank Rederpt.. 9.2 "12345678910\n.. NA
#> 2 NA "2.\n The Godfather\n 9.2 "12345678910\n.. NA
#> 3 NA "3.\n The Dark Knight\n 9 "12345678910\n.. NA
#> 4 NA "4.\n The Godfather Part II. 9 "12345678910\n.. NA
#> 5 NA "5.\n 12 Angry Men\n 9 "12345678910\n.. NA
#> 6 NA "6.\n Schindler's List|n 8.9 "12345678910\n.. NA

#> # .. with 244 more rows

This includes a few empty columns but overall does a good job of capturing the
information from the table. However, we need to do some more processing to make
it easier to use. First, welll rename the columns to be easier to work with and
remove the extraneous whitespace in rank and title. We will do this with select()
(instead of rename()) to do the renaming and selecting of just these two columns
in one step. Then we'll remove the new lines and extra spaces and then apply
separate_wider_regex() (from “Extract Variables” on page 267) to pull out the title,
year, and rank into their own variables.

ratings <- table |[>
select(
rank_title_year = ‘Rank & Title",
rating = "IMDb Rating’
) |>
mutate(
rank_title_year = str_replace_all(rank_title_year, "\n +", " ")
) |>
separate_wider_regex(
rank_title_year,
patterns = c(
rank = "\\d+", "\\. ",
title = ".+", " +\\(",
year = "\\d+", "\\)"
)
)

ratings

#> # A tibble: 250 x 4

#> rank title year rating
#> <chr> <chr> <chr> <dbl>
11 The Shawshank Redemption 1994 9.2
#> 2 2 The Godfather 1972 9.2
#> 3 3 The Dark Knight 2008 9
#> 4 4 The Godfather Part II 1974 9
#> 55 12 Angry Men 1957 9
#> 6 6 Schindler's List 1993 8.9
#> # .. with 244 more rows

Even in this case where most of the data comes from table cells, it’s still worth looking
at the raw HTML. If you do so, you'll discover that we can add a little extra data by
using one of the attributes. This is one of the reasons it’s worth spending a little time
spelunking the source of the page; you might find extra data or a parsing route that’s
slightly easier.

438 | Chapter 24: Web Scraping

https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/rename.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html

html |>

html_elements("td strong") |>

head() |>

html_attr("title")
#> [1] "9.2 based on 2,712,990 user ratings"
#> [2] "9.2 based on 1,884,423 user ratings"
#> [3] "9.0 based on 2,685,826 user ratings"
#> [4] "9.0 based on 1,286,204 user ratings"
#> [5] "9.0 based on 801,579 user ratings"
#> [6] "8.9 based on 1,370,458 user ratings"

We can combine this with the tabular data and again apply separate_wider_regex()
to extract the bit of data we care about:

ratings |>
mutate(
rating_n = html |> html_elements("td strong") |> html_attr("title")
) |>
separate_wider_regex(
rating_n,
patterns = c(
"[0-9.]+ based on ",
number = "[0-9,]+",
" user ratings"
)
) |>
mutate(
number = parse_number(number)
)
#> # A tibble: 250 x 5

#> rank title year rating number
#> <chr> <chr> <chr> <dbl> <dbl>
#> 11 The Shawshank Redemption 1994 9.2 2712990
#> 2 2 The Godfather 1972 9.2 1884423
#> 3 3 The Dark Knight 2008 9 2685826
#> 4 4 The Godfather Part II 1974 9 1286204
#> 55 12 Angry Men 1957 9 801579
#> 6 6 Schindler's List 1993 8.9 1370458
#> # .. with 244 more rows

Dynamic Sites

So far we focused on websites where html_elements() returns what you see in
the browser and discussed how to parse what it returns and how to organize that
information in tidy data frames. From time to time, however, you'll hit a site where
html_elements() and friends don't return anything like what you see in the browser.
In many cases, that's because youre trying to scrape a website that dynamically
generates the content of the page with JavaScript. This doesn’t currently work with
rvest, because rvest downloads the raw HTML and doesn’t run any JavaScript.

It’s still possible to scrape these types of sites, but rvest needs to use a more expensive
process: fully simulating the web browser including running all JavaScript. This
functionality is not available at the time of writing, but it's something we're actively
working on and might be available by the time you read this. It uses the chromote

DynamicSites | 439

https://tidyr.tidyverse.org/reference/separate_wider_delim.html
https://rvest.tidyverse.org/reference/html_element.html
https://rvest.tidyverse.org/reference/html_element.html
https://oreil.ly/xaHTf

package, which actually runs the Chrome browser in the background, and gives
you additional tools to interact with the site, like a human typing text and clicking
buttons. Check out the rvest website for more details.

Summary

In this chapter, you learned about the why, the why not, and the how of scraping data
from web pages. First, you learned about the basics of HTML and using CSS selectors
to refer to specific elements, and then you learned about using the rvest package to
get data out of HTML into R. We then demonstrated web scraping with two case
studies: a simpler scenario on scraping data on Star Wars films from the rvest package
website and a more complex scenario on scraping the top 250 films from IMDb.

Technical details of scraping data off the web can be complex, particularly when deal-
ing with sites; however, legal and ethical considerations can be even more complex.
It's important for you to educate yourself about both of these before setting out to
scrape data.

This brings us to the end of the import part of the book where you've learned
techniques to get data from where it lives (spreadsheets, databases, JSON files, and
websites) into a tidy form in R. Now it’s time to turn our sights to a new topic:
making the most of R as a programming language.

440 | Chapter 24: Web Scraping

https://oreil.ly/xaHTf
https://oreil.ly/YoxV7

PARTV
Program

In this part of the book, you'll improve your programming skills. Programming is a
cross-cutting skill needed for all data science work: you must use a computer to do
data science; you cannot do it in your head or with pencil and paper.

Visualize
Import — Tidy — Transform 4) — Communicate
\ Model
Understand
l;rogram ’

Figure V-1. Programming is the water in which all the other components swim.

Programming produces code, and code is a tool of communication. Obviously code
tells the computer what you want it to do. But it also communicates meaning to other
humans. Thinking about code as a vehicle for communication is important because
every project you do is fundamentally collaborative. Even if youre not working
with other people, you'll definitely be working with future-you! Writing clear code
is important so that others (like future-you) can understand why you tackled an
analysis in the way you did. That means getting better at programming also involves
getting better at communicating. Over time, you want your code to become not just
easier to write but easier for others to read.

In the following three chapters, you'll learn skills to improve your programming
skills:

+ Copy and paste is a powerful tool, but you should avoid doing it more than twice.
Repeating yourself in code is dangerous because it can easily lead to errors and
inconsistencies. Instead, in Chapter 25, you'll learn how to write functions, which
let you extract repeated tidyverse code so that it can be easily reused.

« Functions extract repeated code, but you often need to repeat the same actions
on different inputs. You need tools for iteration that let you do similar things
again and again. These tools include for loops and functional programming,
which you’ll learn about in Chapter 26.

o As you read more code written by others, you’ll see more code that doesn’t use
the tidyverse. In Chapter 27, you'll learn some of the most important base R
functions that you’ll see in the wild.

The goal of these chapters is to teach you the minimum about programming that you
need for data science. Once you have mastered the material here, we strongly recom-
mend you continue to invest in your programming skills. We've written two books
that you might find helpful. Hands on Programming with R by Garrett Grolemund
(O'Reilly) is an introduction to R as a programming language and is a great place
to start if R is your first programming language. Advanced R by Hadley Wickham
(CRC Press) dives into the details of R the programming language; it’s a great place to
start if you have existing programming experience and a great next step once you've
internalized the ideas in these chapters.

https://oreil.ly/LBFUN
https://oreil.ly/I2wE0

CHAPTER 25
Functions

Introduction

One of the best ways to improve your reach as a data scientist is to write functions.
Functions allow you to automate common tasks in a more powerful and general way
than copy and pasting. Writing a function has three big advantages over using copy
and paste:

o You can give a function an evocative name that makes your code easier to
understand.

o As requirements change, you need to update code only in one place, instead of
many.

 You eliminate the chance of making incidental mistakes when you copy and paste
(i.e., updating a variable name in one place but not in another).

o It makes it easier to reuse work from project to project, increasing your produc-
tivity over time.

A good rule of thumb is to consider writing a function whenever you've copied and
pasted a block of code more than twice (i.e., you now have three copies of the same
code). In this chapter, you’ll learn about three useful types of functions:

« Vector functions take one or more vectors as input and return a vector as output.

 Data frame functions take a data frame as input and return a data frame as
output.

« Plot functions take a data frame as input and return a plot as output.

Each of these sections includes many examples to help you generalize the patterns
that you see. These examples wouldn’t be possible without the help of the folks of

443

Twitter, and we encourage you to follow the links in the comment to see original
inspirations. You might also want to read the original motivating tweets for general
functions and plotting functions to see even more functions.

Prerequisites

We'll wrap up a variety of functions from around the tidyverse. We'll also use nyc-
flights13 as a source of familiar data to use our functions with:

library(tidyverse)
library(nycflights13)

Vector Functions

We'll begin with vector functions: functions that take one or more vectors and return
a vector result. For example, take a look at this code. What does it do?

df <- tibble(

rnorm(5),
rnorm(5),
rnorm(5),
rnorm(5),

an oow

)

df |> mutate(
a = (a - min(a, na.rm = TRUE)) /

(max(a, na.rm = TRUE) - min(a, na.rm = TRUE)),
b = (b - min(b, na.rm = TRUE)) /

(max(b, na.rm = TRUE) - min(a, na.rm = TRUE)),
c = (c - min(c, na.rm = TRUE)) /

(max(c, na.rm = TRUE) - min(c, na.rm = TRUE)),
d = (d - min(d, na.rm = TRUE)) /

(max(d, na.rm = TRUE) - min(d, na.rm = TRUE)),

#> # A tibble: 5 x 4
#> a b c d
#> <dbl> <dbl> <dbl> <dbl>

#> 1 0.339 2.59 0.291 0
#> 2 0.880 0 0.611 0.557
#> 30 1.37 1 0.752
#> 4 0.795 1.37 0 1
#> 51 1.34 0.580 0.394

You might be able to puzzle out that this rescales each column to have a range from 0
to 1. But did you spot the mistake? When Hadley wrote this code, he made an error
when copying and pasting and forgot to change an a to a b. Preventing this type of
mistake is one good reason to learn how to write functions.

444 | Chapter 25: Functions

https://oreil.ly/Ymcmk
https://oreil.ly/Ymcmk
https://oreil.ly/mXy2q

Writing a Function

To write a function, you need to first analyze your repeated code to figure what parts
are constant and what parts vary. If we take the preceding code and pull it outside of
mutate(), it’s a little easier to see the pattern because each repetition is now one line:

(a - min(a, na.rm = TRUE)) / (max(a, na.rm = TRUE) - min(a, na.rm = TRUE))
(b - min(b, na.rm = TRUE)) / (max(b, na.rm = TRUE) - min(b, na.rm = TRUE))
(c - min(c, na.rm = TRUE)) / (max(c, na.rm = TRUE) - min(c, na.rm = TRUE))
(d - min(d, na.rm = TRUE)) / (max(d, na.rm = TRUE) - min(d, na.rm = TRUE))

To make this a bit clearer, we can replace the bit that varies with I
(l - min(l, na.rm = TRUE)) / (max(l, na.rm = TRUE) - min(l, na.rm = TRUE))

To turn this into a function, you need three things:

o A name. Here we'll use rescale01 because this function rescales a vector to sit
between 0 and 1.

o The arguments. The arguments are things that vary across calls and our analysis
tells us that we have just one. We'll call it x because this is the conventional name
for a numeric vector.

o The body. The body is the code that’s repeated across all the calls.

Then you create a function by following the template:

name <- function(arguments) {
body
}

For this case that leads to:

rescaledl <- function(x) {
(x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))
}

At this point you might test with a few simple inputs to make sure you've captured
the logic correctly:

rescale01(c(-10, 0, 10))

#> [1] 0.0 0.5 1.0

rescale01(c(1, 2, 3, NA, 5))
#> [1] 0.00 0.25 0.50 NA 1.00

Then you can rewrite the call to mutate() as:

df |> mutate(
a = rescale0dl(a),
b = rescaled1(b),
c = rescaledi(c),
d = rescale0i(d),
)
#> # A tibble: 5 x 4
#> a b c d

#> <dbl> <dbl> <dbl> <dbl>

Vector Functions | 445

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html

#> 1 0.339 1 0.291 0
#> 2 0.880 0 0.611 0.557

#> 30 0.530 1 0.752
#> 4 0.795 0.531 0 1
#> 51 0.518 0.580 0.394

(In Chapter 26, you'll learn how to use across() to reduce the duplication even
further so all you need is df |> mutate(across(a:d, rescale01l)).)

Improving Our Function

You might notice that the rescale@1() function does some unnecessary work—
instead of computing min() twice and max() once, we could compute both the
minimum and maximum in one step with range():
rescaledl <- function(x) {
rng <- range(x, na.rm = TRUE)

(x - rng[1]) / (rng[2] - rng[1])
}

Or you might try this function on a vector that includes an infinite value:

X <- c(1:10, Inf)
rescale01(x)
#> [1] e 6 o0 0 06 66 0 0 06 0 NN

That result is not particularly useful, so we could ask range() to ignore infinite
values:
rescaledl <- function(x) {

rng <- range(x, na.rm = TRUE, finite = TRUE)
(x - rng[1]) / (rng[2] - rng[1])

}

rescale01(x)

#> [1] 0.0000000 0.1111111 0.2222222 0.3333333 0.4444444 0.5555556 0.6666667
#> [8] 0.7777778 0.8888889 1.0000000 Inf

These changes illustrate an important benefit of functions: because we've moved the
repeated code into a function, we need to make the change in only one place.

Mutate Functions

Now that you understand the basic idea of functions, let’s take a look at a whole
bunch of examples. We'll start by looking at “mutate” functions, i.e., functions that
work well inside of mutate() and filter() because they return an output of the
same length as the input.

Let’s start with a simple variation of rescale01(). Maybe you want to compute the
Z-score, rescaling a vector to have a mean of 0 and a standard deviation of 1:
z_score <- function(x) {

(x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE)
}

446 | Chapter25: Functions

https://dplyr.tidyverse.org/reference/across.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/Extremes.html
https://rdrr.io/r/base/range.html
https://rdrr.io/r/base/range.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/filter.html

Or maybe you want to wrap up a straightforward case_when() and give it a useful
name. For example, this clamp() function ensures all values of a vector lie in between
a minimum or a maximum:

clamp <- function(x, min, max) {
case_when(
x < min ~ min,
X > max ~ max,
.default = x
)
}

clamp(1:10, min = 3, max = 7)
[1] 3334567777

Of course, functions don’t just need to work with numeric variables. You might want
to do some repeated string manipulation. Maybe you need to make the first character
uppercase:

first_upper <- function(x) {
str_sub(x, 1, 1) <- str_to_upper(str_sub(x, 1, 1))
X

}

first_upper("hello")
[1] "Hello"

Or maybe you want to strip percent signs, commas, and dollar signs from a string
before converting it into a number:

https://twitter.com/NVlabormarket/status/15719398519221985360
clean_number <- function(x) {
is_pct <- str_detect(x, "%")
num <- x |>
str_remove_all("%") |>
str_remove_all(",") |>
str_remove_all(fixed("$")) |>
as.numeric(x)
if_else(is_pct, num / 100, num)

}

clean_number("$12,300")

#> [1] 12300

clean_number("45%")

#> [1] 0.45
Sometimes your functions will be highly specialized for one data analysis step. For
example, if you have a bunch of variables that record missing values as 997, 998, or
999, you might want to write a function to replace them with NA:

fix_na <- function(x) {

if_else(x %in% c(997, 998, 999), NA, x)

}
We've focused on examples that take a single vector because we think they’re the most
common. But there’s no reason that your function can’t take multiple vector inputs.

Vector Functions | 447

https://dplyr.tidyverse.org/reference/case_when.html

Summary Functions

Another important family of vector functions is summary functions, functions that
return a single value for use in summarize(). Sometimes this can just be a matter of
setting a default argument or two:

commas <- function(x) {

str_flatten(x, collapse = ", ", last = " and ")
}

commas(c("cat", "dog", "pigeon"))

#> [1] "cat, dog and pigeon"
Or you might wrap up a simple computation, like for the coefficient of variation,
which divides the standard deviation by the mean:

cv <- function(x, na.rm = FALSE) {

sd(x, na.rm = pa.rm) / mean(x, na.rm = na.rm)

}

cv(runif(100, min = 0, max = 50))
#> [1] 0.5196276
cv(runif (100, min = 0, max = 500))
#> [1] 0.5652554

Or maybe you just want to make a common pattern easier to remember by giving it a
memorable name:

https://twitter.com/gbganalyst/status/1571619641390252033

n_missing <- function(x) {

sum(is.na(x))

}
You can also write functions with multiple vector inputs. For example, maybe you
want to compute the mean absolute prediction error to help you compare model
predictions with actual values:

https://twitter.com/neilgcurrie/status/1571607727255834625

mape <- function(actual, predicted) {
sum(abs((actual - predicted) / actual)) / length(actual)

}

RStudio

Once you start writing functions, there are two RStudio shortcuts
that are super useful:

o To find the definition of a function that you've written, place
the cursor on the name of the function and press F2.

o To quickly jump to a function, press Ctrl+. to open the fuzzy
file and function finder and type the first few letters of your
function name. You can also navigate to files, Quarto sections,
and more, making it a handy navigation tool.

448 | Chapter25: Functions

https://dplyr.tidyverse.org/reference/summarise.html

Exercises

1. Practice turning the following code snippets into functions. Think about what

each function does. What would you call it? How many arguments does it need?
mean(is.na(x))
mean(is.na(y))
mean(is.na(z))

x / sum(x, na.rm = TRUE)
y / sum(y, na.rm = TRUE)
z / sum(z, na.rm = TRUE)

round(x / sum(x, na.rm
round(y / sum(y, na.rm
round(z / sum(z, na.rm

TRUE) * 100, 1)
TRUE) * 100, 1)
TRUE) * 100, 1)

2. In the second variant of rescale@1(), infinite values are left unchanged. Can you
rewrite rescale01() so that -Inf is mapped to 0, and Inf is mapped to 1?

3. Given a vector of birthdates, write a function to compute the age in years.

4. Write your own functions to compute the variance and skewness of a numeric
vector. You can look up the definitions on Wikipedia or elsewhere.

5. Write both_na(), a summary function that takes two vectors of the same length
and returns the number of positions that have an NA in both vectors.

6. Read the documentation to figure out what the following functions do. Why are
they useful even though they are so short?

is_directory <- function(x) {
file.info(x)Sisdir

is_readable <- function(x) {
file.access(x, 4) ==

}

Data Frame Functions

Vector functions are useful for pulling out code thats repeated within a dplyr verb.
But you’'ll often also repeat the verbs themselves, particularly within a large pipeline.
When you notice yourself copying and pasting multiple verbs multiple times, you
might think about writing a data frame function. Data frame functions work like
dplyr verbs: they take a data frame as the first argument and some extra arguments
that say what to do with it and return a data frame or vector.

To let you write a function that uses dplyr verbs, we'll first introduce you to the
challenge of indirection and how you can overcome it with embracing, {{ }}. We'll
then show you a bunch of examples to illustrate what you might do with it.

Data Frame Functions | 449

Indirection and Tidy Evaluation

When you start writing functions that use dplyr verbs, you rapidly hit the problem of
indirection. Let’s illustrate the problem with a simple function: grouped_mean(). The
goal of this function is to compute the mean of mean_var grouped by group_var:

grouped_mean <- function(df, group_var, mean_var) {
df |>
group_by(group_var) |>
summarize(mean(mean_var))

}
If we try and use it, we get an error:

diamonds |> grouped_mean(cut, carat)

#> Error in “group_by()':

#> ! Must group by variables found in ‘.data’.
#> % Column ‘group_var' is not found.

To make the problem a bit clearer, we can use a made-up data frame:

df <- tibble(
mean_var = 1,
group_var = "g",
group = 1,
x = 10,
y = 100

)

df |> grouped_mean(group, X)

#> # A tibble: 1 x 2

#> group_var ‘mean(mean_var)"

#> <chr> <dbl>

#1g 1

df |> grouped_mean(group, y)

#> # A tibble: 1 x 2

#> group_var ‘mean(mean_var)’

#> <chr> <dbl>

#1g 1
Regardless of how we «call grouped_mean() it always does df |[>
group_by(group_var) |> summarize(mean(mean_var)), instead of df |>
group_by(group) |> summarize(mean(x)) or df |> group_by(group) |> summa
rize(mean(y)). This is a problem of indirection, and it arises because dplyr uses
tidy evaluation to allow you to refer to the names of variables inside your data frame

without any special treatment.

Tidy evaluation is great 95% of the time because it makes your data analyses very
concise as you never have to say which data frame a variable comes from; it's obvious
from the context. The downside of tidy evaluation comes when we want to wrap up
repeated tidyverse code into a function. Here we need some way to tell group_mean()
and summarize() not to treat group_var and mean_var as the name of the variables
but instead look inside them for the variable we actually want to use.

450 | Chapter25: Functions

https://dplyr.tidyverse.org/reference/summarise.html

Tidy evaluation includes a solution to this problem called embracing. Embracing
a variable means to wrap it in braces, so, for example, var becomes {{ var }}.
Embracing a variable tells dplyr to use the value stored inside the argument, not the
argument as the literal variable name. One way to remember what’s happening is to
think of {{ }} aslooking down a tunnel—{{ var }} will make a dplyr function look
inside of var rather than looking for a variable called var.

So to make grouped_mean() work, we need to surround group_var and mean_var

with {{ }}:

grouped_mean <- function(df, group_var, mean_var) {
df |>
group_by({{ group_var }}) |>
summarize(mean({{ mean_var }}))

df |> grouped_mean(group, X)
#> # A tibble: 1 x 2
#> group ‘mean(x)’
#> <dbl> <dbl>

#> 1 1 10
Success!
When to Embrace?

The key challenge in writing data frame functions is figuring out which arguments
need to be embraced. Fortunately, this is easy because you can look it up in the
documentation. There are two terms to look for in the docs that correspond to the
two most common subtypes of tidy evaluation:

Data masking
This is used in functions such as arrange(), filter(), and summarize() that
compute with variables.

Tidy selection
This is used for functions such as select(), relocate(), and rename() that
select variables.

Your intuition about which arguments use tidy evaluation should be good for many
common functions—just think about whether you can compute (e.g., x + 1) or select

(e.g.,a:x).

In the following sections, we'll explore the sorts of handy functions you might write
once you understand embracing.

Data Frame Functions | 451

https://dplyr.tidyverse.org/reference/arrange.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/relocate.html
https://dplyr.tidyverse.org/reference/rename.html

Common Use Cases

If you commonly perform the same set of summaries when doing initial data explora-
tion, you might consider wrapping them up in a helper function:

summary6 <- function(data, var) {
data |> summarize(
min = min({{ var }}, na.rm = TRUE),
mean = mean({{ var }}, na.rm = TRUE),
median = median({{ var }}, na.rm = TRUE),
max = max({{ var }}, na.rm = TRUE),

n=n(),
n_miss = sum(is.na({{ var }})),
.groups = "drop"

)
}

diamonds |> summary6(carat)
#> # A tibble: 1 x 6

#> min mean median max n n_miss
#> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.2 0.798 0.7 5.01 53940 4]

(Whenever you wrap summarize() in a helper, we think its good practice to
set .groups = "drop" to both avoid the message and leave the data in an ungrouped
state.)

The nice thing about this function is that because it wraps summarize(), you can use
it on grouped data:

diamonds |>
group_by(cut) |>

summary6(carat)
#> # A tibble: 5 x 7
#> cut min mean median max n n_miss
#> <ord> <dbl> <dbl> <dbl> <dbl> <int> «<int>
#> Fair 0.22 1.05 1 5.01 1610

1

2 Good 0.23 0.849 0.82 3.01 4906
#> 3 Very Good 0.2 0.806 0.71 4 12082

4 Premium 0.2 0.892 0.86 4.01 13791

5 Ideal 0.2 0.703 0.54 3.5 21551

DO OO

Furthermore, since the arguments to summarize are data masking, the var argument
to summary6() is also data masking. That means you can also summarize computed
variables:
diamonds |>
group_by(cut) |>

summary6(logl0(carat))
#> # A tibble: 5 x 7

#> cut min mean median max n n_miss
#> <ord> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 Fair -0.658 -0.0273 0 0.700 1610 0
#> 2 Good -0.638 -0.133 -0.0862 0.479 4906 [
#> 3 Very Good -0.699 -0.164 -0.149 0.602 12082 0
#> 4 Premium -0.699 -0.125 -0.0655 0.603 13791 [
#> 5 Ideal -0.699 -0.225 -0.268 0.544 21551 0

452 |

Chapter 25: Functions

https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/summarise.html

To summarize multiple variables, you’ll need to wait until “Modifying Multiple Col-
umns” on page 466, where you’ll learn how to use across().

Another popular summarize() helper function is a version of count() that also
computes proportions:

https://twitter.com/Diabb6/status/1571635146658402309
count_prop <- function(df, var, sort = FALSE) {
df |>
count({{ var }}, sort = sort) |>
mutate(prop = n / sum(n))
}

diamonds |> count_prop(clarity)
#> # A tibble: 8 x 3

#> clarity n prop
#> <ord> <int> <dbl>
#> 1 I1 741 0.0137
#> 2 SI2 9194 0.170
#> 3 SI1 13065 0.242
#> 4 VS2 12258 0.227
#> 5 VS1 8171 0.151
#> 6 WS2 5066 0.0939
#> # .. with 2 more rows

This function has three arguments: df, var, and sort. Only var needs to be embraced
because it’s passed to count(), which uses data masking for all variables. Note that we
use a default value for sort so that if the user doesn’t supply their own value, it will
default to FALSE.

Or maybe you want to find the sorted unique values of a variable for a subset of the
data. Rather than supplying a variable and a value to do the filtering, we'll allow the
user to supply a condition:

unique_where <- function(df, condition, var) {
df |>
filter({{ condition }}) |>
distinct({{ var }}) |>
arrange({{ var 1}})
}

Find all the destinations in December
flights |> unique_where(month == 12, dest)
#> # A tibble: 96 x 1

#> dest

#> <chr>

1 ABQ

#> 2 ALB

#> 3 ATL

#> 4 AUS

#> 5 AVL

#> 6 BDL

#> # .. with 90 more rows

Here we embrace condition because it's passed to filter() and var because its
passed to distinct() and arrange().

Data Frame Functions | 453

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/distinct.html
https://dplyr.tidyverse.org/reference/arrange.html

We've made all these examples to take a data frame as the first argument, but if
youre working repeatedly with the same data, it can make sense to hardcode it. For
example, the following function always works with the flights dataset and always
selects time_hour, carrier, and flight since they form the compound primary key
that allows you to identify a row:

subset_flights <- function(rows, cols) {
flights |>
filter({{ rows }}) |>
select(time_hour, carrier, flight, {{ cols }})
}

Data Masking Versus Tidy Selection

Sometimes you want to select variables inside a function that uses data masking.
For example, imagine you want to write a count_missing() method that counts the
number of missing observations in rows. You might try writing something like:

count_missing <- function(df, group_vars, x_var) {
df |>
group_by({{ group_vars }}) |>
summarize(
n_miss = sum(is.na({{ x_var }})),
.groups = "drop"
)
}

flights |>
count_missing(c(year, month, day), dep_time)
#> Error in “group_by()':
#> 7 In argument: ‘c(year, month, day)".
#> Caused by error:
#> ! ‘c(year, month, day)' must be size 336776 or 1, not 1010328.

This doesn’t work because group_by() uses data masking, not tidy selection. We can
work around that problem by using the handy pick() function, which allows you to
use tidy selection inside data-masking functions:

count_missing <- function(df, group_vars, x_var) {
df |>
group_by(pick({{ group_vars }})) [>
summarize(
n_miss = sum(is.na({{ x_var }})),
.groups = "drop"
)
}

flights |>
count_missing(c(year, month, day), dep_time)
#> # A tibble: 365 x 4
#> year month day n_miss
#> <int> <int> <int> <int>

#> 1 2013 1 1 4
#> 2 2013 1 2 8
#> 3 2013 1 3 10

454 | Chapter 25: Functions

https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/pick.html

#> 4 2013 1 4 6
#> 5 2013 1 5 3
#> 6 2013 1 6 1
#> # .. with 359 more rows

Another convenient use of pick() is to make a 2D table of counts. Here we count
using all the variables in the rows and columns and then use pivot_wider() to
rearrange the counts into a grid:

https://twitter.com/pollicipes/status/1571606508944719876
count_wide <- function(data, rows, cols) {
data |>
count(pick(c({{ rows }}, {{ cols }}))) |>
pivot_wider(
names_from = {{ cols }},
values_from = n,
names_sort = TRUE,
values_fill = 0

}

diamonds |> count_wide(c(clarity, color), cut)
#> # A tibble: 56 x 7
#> clarity color Fair Good ‘Very Good' Premium Ideal

#> <ord> <ord> <int> <int> <int> <int> <int>
#> 1 I1 D 4 8 5 12 13
#> 2 I1 E 9 23 22 30 18
#> 3 I1 F 35 19 13 34 42
#> 4 I1 q 53 19 16 46 16
#> 5 11 H 52 14 12 46 38
#> 6 I1 I 34 9 8 24 17
#> # .. with 50 more rows

While our examples have mostly focused on dplyr, tidy evaluation also underpins
tidyr, and if you look at the pivot_wider() docs, you can see that names_from uses
tidy selection.

Exercises

1. Using the datasets from nycflights13, write a function that:

a. Finds all flights that were cancelled (i.e., is.na(arr_time)) or delayed by

more than an hour:
flights |> filter_severe()

b. Counts the number of cancelled flights and the number of flights delayed by

more than an hour:
flights |> group_by(dest) |> summarize_severe()

c. Finds all flights that were cancelled or delayed by more than a user-supplied

number of hours:
flights |> filter_severe(hours = 2)

Data Frame Functions | 455

https://dplyr.tidyverse.org/reference/pick.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://tidyr.tidyverse.org/reference/pivot_wider.html

d. Summarizes the weather to compute the minimum, mean, and maximum of a

user-supplied variable:
weather |> summarize_weather(temp)

e. Converts the user-supplied variable that uses clock time (e.g., dep_time,
arr_time, etc.) into a decimal time (i.e., hours + [minutes / 60]):
weather |> standardize_time(sched_dep_time)
2. For each of the following functions, list all arguments that use tidy evaluation and
describe whether they use data masking or tidy selection: distinct(), count(),
group_by(), rename_with(), slice_min(), slice_sample().

3. Generalize the following function so that you can supply any number of variables

to count:

count_prop <- function(df, var, sort = FALSE) {
df |>
count({{ var }}, sort = sort) |>
mutate(prop = n / sum(n))
}

Plot Functions

Instead of returning a data frame, you might want to return a plot. Fortunately, you
can use the same techniques with ggplot2, because aes() is a data-masking function.
For example, imagine that youre making a lot of histograms:

diamonds |>

ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.1)

diamonds |>
ggplot(aes(x = carat)) +
geom_histogram(binwidth = 0.05)
Wouldn't it be nice if you could wrap this up into a histogram function? This is
easy as pie once you know that aes() is a data-masking function and you need to
embrace:

histogram <- function(df, var, binwidth = NULL) {
df |>
ggplot(aes(x = {{ var }})) +
geom_histogram(binwidth = binwidth)
}

diamonds |> histogram(carat, 0.1)

456 | Chapter 25: Functions

https://dplyr.tidyverse.org/reference/distinct.html
https://dplyr.tidyverse.org/reference/count.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/rename.html
https://dplyr.tidyverse.org/reference/slice.html
https://dplyr.tidyverse.org/reference/slice.html
https://ggplot2.tidyverse.org/reference/aes.html
https://ggplot2.tidyverse.org/reference/aes.html

10000 -

7500 -

5000 -

count

2500 -

carat

Note that histogram() returns a ggplot2 plot, meaning you can still add components
if you want. Just remember to switch from |> to +:

diamonds |>
histogram(carat, 0.1) +
labs(x = "Size (in carats)", y = "Number of diamonds")

More Variables

It’s straightforward to add more variables to the mix. For example, maybe you want

an easy way to eyeball whether a dataset is linear by overlaying a smooth line and a
straight line:

https://twitter.com/tyler_js_smith/status/1574377116988104704
linearity_check <- function(df, x, y) {
df |>
ggplot(aes(x = {{ x }}, y = {{ y }})) +
geom_point() +
geom_smooth(method = "loess", formula =y ~ x, color = "red", se = FALSE) +
geom_smooth(method = "lm", formula = y ~ x, color = "blue", se = FALSE)

}

starwars |>
filter(mass < 1000) |[>
linearity_check(mass, height)

Plot Functions | 457

B ii
b ==

100

height

N
o
o]
o
s
N
o
—
(2]
o

Or maybe you want an alternative to colored scatterplots for very large datasets where
overplotting is a problem:

https://twitter.com/ppaxisa/status/1574398423175921665
hex_plot <- function(df, x, y, z, bins = 20, fun = "mean") {
df |>
ggplot(aes(x = {{ x }}, y={{y 3}, z={{ z I +
stat_summary_hex(
aes(color = after_scale(fill)), # make border same color as fill
bins = bins,
fun = fun,
)
}

diamonds |> hex_plot(carat, price, depth)

458 | Chapter 25: Functions

20000 -

15000 -
value
68
66
8 10000- o
8
62
60
5000 -
0 -
0 1 2 3 4 5
carat

Combining with Other Tidyverse Packages

Some of the most useful helpers combine a dash of data manipulation with ggplot2.
For example, you might want to do a vertical bar chart where you automatically sort
the bars in frequency order using fct_infreq(). Since the bar chart is vertical, we
also need to reverse the usual order to get the highest values at the top:
sorted_bars <- function(df, var) {
df |>
mutate({{ var }} := fct_rev(fct_infreq({{ var }}))) |[>

ggplot(aes(y = {{ var }})) +
geom_bar ()

}

diamonds |> sorted_bars(clarity)

Plot Functions | 459

https://forcats.tidyverse.org/reference/fct_inorder.html

Si1-

V82 -

SI2-

clarity
<
@

VVS2 -

VVS1 -

I.I
|

s
(]

5000 10000
count

O -

We have to use a new operator here, :=, because we are generating the variable name
based on user-supplied data. Variable names go on the left of =, but R’s syntax doesn't
allow anything to the left of = except for a single literal name. To work around this
problem, we use the special operator :=, which tidy evaluation treats in the same way
as =.

Or maybe you want to make it easy to draw a bar plot just for a subset of the data:

conditional_bars <- function(df, condition, var) {
df |>
filter({{ condition }}) |>
ggplot(aes(x = {{ var }})) +
geom_bar ()

}

diamonds |> conditional_bars(cut == "Good", clarity)

460 | Chapter25: Functions

15600 =

1000 -

count

500 -

¥ si2 sit VS2 VS1 wWs2 st IF
clarity

You can also get creative and display data summaries in other ways. You can find a
cool application at https://oreil.ly/MV4kQ; it uses the axis labels to display the highest
value. As you learn more about ggplot2, the power of your functions will continue to
increase.

We'll finish with a more complicated case: labeling the plots you create.

Labeling

Remember the histogram function we showed you earlier?

histogram <- function(df, var, binwidth = NULL) {
df |>
ggplot(aes(x = {{ var }})) +
geom_histogram(binwidth = binwidth)
}
Wouldn't it be nice if we could label the output with the variable and the bin width
that was used? To do so, were going to have to go under the covers of tidy evaluation
and use a function from the package we haven't talked about yet: rlang. rlang is
a low-level package that’s used by just about every other package in the tidyverse
because it implements tidy evaluation (as well as many other useful tools).

To solve the labeling problem, we can use rlang::englue(). This works similarly to
str_glue(), so any value wrapped in { } will be inserted into the string. But it also
understands {{ }}, which automatically inserts the appropriate variable name:

Plot Functions | 461

https://oreil.ly/MV4kQ
https://rlang.r-lib.org/reference/englue.html
https://stringr.tidyverse.org/reference/str_glue.html
https://rdrr.io/r/base/Paren.html

histogram <- function(df, var, binwidth) {
label <- rlang::englue("A histogram of {{var}} with binwidth {binwidth}")

df |>
ggplot(aes(x = {{ var }})) +
geom_histogram(binwidth = binwidth) +
labs(title = label)
}

diamonds |> histogram(carat, 0.1)
A histogram of carat with binwidth 0.1

10000 -

7500 -

5000 -

count

2500 -

carat

You can use the same approach in any other place where you want to supply a string
in a ggplot2 plot.

Exercises
Build up a rich plotting function by incrementally implementing each of these steps:

1. Draw a scatterplot given a dataset and x and y variables.

2. Add aline of best fit (i.e., a linear model with no standard errors).
3. Add a title.

462 | Chapter25: Functions

Style

R doesn’t care what your function or arguments are called, but the names make a big
difference for humans. Ideally, the name of your function will be short but clearly
evoke what the function does. That’s hard! But it’s better to be clear than short, as
RStudio’s autocomplete makes it easy to type long names.

Generally, function names should be verbs, and arguments should be nouns. There
are some exceptions: nouns are OK if the function computes a well-known noun (i.e.,
mean() is better than compute_mean()) or accesses some property of an object (i.e.,
coef() is better than get_coefficients()). Use your best judgment and don't be
afraid to rename a function if you figure out a better name later.

Too short
O

Not a verb, or descriptive
my_awesome_function()

Long, but clear
impute_missing()
collapse_years()

R also doesn’t care about how you use whitespace in your functions, but future
readers will. Continue to follow the rules from Chapter 4. Additionally, function()
should always be followed by squiggly brackets ({}), and the contents should be
indented by an additional two spaces. This makes it easier to see the hierarchy in your
code by skimming the left margin.

Missing extra two spaces

density <- function(color, facets, binwidth = 0.1) {

diamonds |>
ggplot(aes(x = carat, y = after_stat(density), color = {{ color }})) +
geom_fregpoly(binwidth = binwidth) +
facet_wrap(vars({{ facets }}))

}

Pipe indented incorrectly
density <- function(color, facets, binwidth = 0.1) {
diamonds |>
ggplot(aes(x = carat, y = after_stat(density), color = {{ color }})) +
geom_fregpoly(binwidth = binwidth) +
facet_wrap(vars({{ facets }}))
}

As you can see, we recommend putting extra spaces inside {{ }}. This makes it
obvious that something unusual is happening.

Style | 463

https://rdrr.io/r/base/mean.html
https://rdrr.io/r/stats/coef.html
https://rdrr.io/r/base/Paren.html

Exercises

1. Read the source code for each of the following two functions, puzzle out what

they do, and then brainstorm better names:

f1 <- function(string, prefix) {
str_sub(string, 1, str_length(prefix)) == prefix
}

f3 <- function(x, y) {
rep(y, length.out = length(x))
}
2. Take a function that you've written recently and spend five minutes brainstorm-
ing a better name for it and its arguments.

3. Make a case for why norm_r(), norm_d(), etc., would be better than rnorm() and
dnorm(). Make a case for the opposite. How could you make the names even
clearer?

Summary

In this chapter, you learned how to write functions for three useful scenarios: creating
a vector, creating a data frame, or creating a plot. Along the way you saw many
examples, which ideally started to get your creative juices flowing, and gave you some
ideas for where functions might help your analysis code.

We have shown you only the bare minimum to get started with functions and there’s
much more to learn. A few places to learn more are:

 To learn more about programming with tidy evaluation, see useful recipes in
programming with dplyr and programming with tidyr and learn more about the
theory in “What is data masking and why do I need {{?”.

+ To learn more about reducing duplication in your ggplot2 code, read the “Pro-
gramming with ggplot2” chapter of the ggplot2 book.

« For more advice on function style, see the tidyverse style guide.

In the next chapter, well dive into iteration which gives you further tools for reducing
code duplication.

464 | Chapter25: Functions

https://rdrr.io/r/stats/Normal.html
https://rdrr.io/r/stats/Normal.html
https://oreil.ly/8xygI
https://oreil.ly/QGH9n
https://oreil.ly/eecUd
https://oreil.ly/Vvt6k
https://oreil.ly/Vvt6k
https://oreil.ly/rLKSn

CHAPTER 26
Iteration

Introduction

In this chapter, you'll learn tools for iteration, repeatedly performing the same action
on different objects. Iteration in R generally tends to look rather different from other
programming languages because so much of it is implicit and we get it for free. For
example, if you want to double a numeric vector x in R, you can just write 2 * x.In
most other languages, youd need to explicitly double each element of x using some
sort of for loop.

This book has already given you a small but powerful number of tools that perform
the same action for multiple “things™:

o facet_wrap() and facet_grid() draw a plot for each subset.

o group_by() plus summarize() computes a summary statistics for each subset.

e unnest_wider() and unnest_longer() create new rows and columns for each

element of a list column.

Now it’s time to learn some more general tools, often called functional programming
tools because they are built around functions that take other functions as inputs.
Learning functional programming can easily veer into the abstract, but in this chapter
we'll keep things concrete by focusing on three common tasks: modifying multiple
columns, reading multiple files, and saving multiple objects.

Prerequisites

In this chapter, we'll focus on tools provided by dplyr and purrr, both core members
of the tidyverse. You've seen dplyr before, but purrr is new. We're just going to use

465

https://ggplot2.tidyverse.org/reference/facet_wrap.html
https://ggplot2.tidyverse.org/reference/facet_grid.html
https://dplyr.tidyverse.org/reference/group_by.html
https://dplyr.tidyverse.org/reference/summarise.html
https://tidyr.tidyverse.org/reference/unnest_wider.html
https://tidyr.tidyverse.org/reference/unnest_longer.html
https://oreil.ly/f0HWP

a couple of purrr functions in this chapter, but it’s a great package to explore as you
improve your programming skills:

library(tidyverse)

Modifying Multiple Columns

Imagine you have this simple tibble and you want to count the number of observa-
tions and compute the median of every column:

df <- tibble(

rnorm(10),
rnorm(10),
rnorm(10),
rnorm(10)

an oow

)
You could do it with copy and paste:

df |> summarize(
nQ,

median(a),
median(b),
median(c),
median(d),

an oow 3
nw o nn

#> # A tibble: 1 x 5

#> n a b c d

#> <int> <dbl> <dbl> <dbl> <dbl>

#>1 10 -0.246 -0.287 -0.0567 0.144
That breaks our rule of thumb to never copy and paste more than twice, and you
can imagine that this will get tedious if you have tens or even hundreds of columns.
Instead, you can use across():

df |> summarize(

n=n(),
across(a:d, median),

#> # A tibble: 1 x 5

#> n a b c d

#> <int> <dbl> <dbl> <dbl> <dbl>

#> 1 10 -0.246 -0.287 -0.0567 0.144
across() has three particularly important arguments, which we’ll discuss in detail in
the following sections. You'll use the first two every time you use across(): the first
argument, .cols, specifies which columns you want to iterate over, and the second
argument, . fns, specifies what to do with each column. You can use the .names argu-
ment when you need additional control over the names of output columns, which is
particularly important when you use across() with mutate(). We'll also discuss two
important variations, if_any() and if_all(), which work with filter().

466 | Chapter 26: Iteration

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/filter.html

Selecting Columns with .cols

The first argument to across(), .cols, selects the columns to transform. This uses
the same specifications as select(), “select()” on page 49, so you can use functions
such as starts_with() and ends_with() to select columns based on their name.

There are two additional selection techniques that are particularly useful for
across(): everything() and where(). everything() is straightforward: it selects
every (nongrouping) column:

df <- tibble(

rp = sample(2, 10, replace = TRUE),
rnorm(10),

rnorm(10),

rnorm(10),

rnorm(10)

LI | B | B | N =)

anNn oowwuv

)

df |>
group_by(grp) |>
summarize(across(everything(), median))
#> # A tibble: 2 x 5

#> grp a b c d
#> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 -0.0935 -0.0163 0.363 0.364

#> 2 2 0.312 -0.0576 0.208 0.565

Note grouping columns (grp here) are not included in across(), because theyre
automatically preserved by summarize().

where() allows you to select columns based on their type:

where(is.numeric)
Selects all numeric columns.

where(is.character)
Selects all string columns.

where(is.Date)
Selects all date columns.

where(is.POSIXct)
Selects all date-time columns.

where(is.logical)
selects all logical columns.

Just like other selectors, you can combine these with Boolean algebra. For exam-
ple, 'where(is.numeric) selects all non-numeric columns, and starts_with("a") &

«_»

where(is.logical) selects all logical columns whose name starts with “a’

Modifying Multiple Columns | 467

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/select.html
https://tidyselect.r-lib.org/reference/starts_with.html
https://tidyselect.r-lib.org/reference/starts_with.html
https://dplyr.tidyverse.org/reference/across.html
https://tidyselect.r-lib.org/reference/everything.html
https://tidyselect.r-lib.org/reference/where.html
https://tidyselect.r-lib.org/reference/everything.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/summarise.html
https://tidyselect.r-lib.org/reference/where.html

Calling a Single Function

The second argument to across() defines how each column will be transformed. In
simple cases, as shown, this will be a single existing function. This is a pretty special
feature of R: were passing one function (median, mean, str_flatten, ...) to another
function (across). This is one of the features that makes R a functional programming
language.

It's important to note that we're passing this function to across(), so across() can
call it; we're not calling it ourselves. That means the function name should never be
followed by (). If you forget, you'll get an error:
df |>
group_by(grp) |>
summarize(across(everything(), median()))
#> Error in “summarize()":
#> 7 In argument: ‘across(everything(), median())".

#> Caused by error in ‘is.factor()":
#> ! argument "x" is missing, with no default

This error arises because you're calling the function with no input, e.g.:

median()
won

#> Error in 1is.factor(x): argument "x" is missing, with no default

Calling Multiple Functions

In more complex cases, you might want to supply additional arguments or perform
multiple transformations. Let's motivate this problem with a simple example: what
happens if we have some missing values in our data? median() propagates those
missing values, giving us a suboptimal output:

1o
sd), rep(NA, n_na)))

rnorm_na <- function(n, n_na, mean = 0, sd
sample(c(rnorm(n - n_na, mean = mean, sd

}

df_miss <- tibble(

a = rnorm_na(5, 1),
b = rnorm_na(5, 1),
c = rnorm_na(5, 2),
d = rnorm(5)
)
df_miss |>
summarize(
across(a:d, median),
n =n()
)
#> # A tibble: 1 x 5
#> a b c d n
#> <dbl> <dbl> <dbl> <dbl> <int>
1 NA NA NA 1.15 5

468 | Chapter 26: Iteration

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://rdrr.io/r/stats/median.html

It would be nice if we could pass along na.rm = TRUE to median() to remove these
missing values. To do so, instead of calling median() directly, we need to create a new
function that calls median() with the desired arguments:

df_miss |>
summarize(
across(a:d, function(x) median(x, na.rm = TRUE)),
n=n()
)
#> # A tibble: 1 x 5
#> a b c d n
#> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 0.139 -1.11 -0.387 1.15 5

This is a little verbose, so R comes with a handy shortcut: for this sort of throwaway
(or anonymous)' function, you can replace function with \:?

df_miss |>
summarize(
across(a:d, \(x) median(x, na.rm = TRUE)),
n =n()
)

In either case, across() effectively expands to the following code:

df_miss |>
summarize(

a = median(a, na.rm = TRUE),
= median(b, na.rm = TRUE),
= median(c, na.rm = TRUE),
= median(d, na.rm = TRUE),
=n()

SO n o

)

When we remove the missing values from the median(), it would be nice to know
just how many values were removed. We can find that out by supplying two functions
to across(): one to compute the median and the other to count the missing values.
You supply multiple functions by using a named list to . fns:

df_miss |>
summarize(
across(a:d, list(
median = \(x) median(x, na.rm = TRUE),
n_miss = \(x) sum(is.na(x))
),
n = n()
)
#> # A tibble: 1 x 9

1 Anonymous, because we never explicitly gave it a name with <-. Another term programmers use for this is
lambda function.

2 In older code you might see syntax that looks like ~ .x + 1. This is another way to write anonymous
functions, but it works only inside tidyverse functions and always uses the variable name .x. We now
recommend the base syntax, \(x) x + 1.

Modifying Multiple Columns | 469

https://rdrr.io/r/stats/median.html
https://rdrr.io/r/stats/median.html
https://rdrr.io/r/stats/median.html
https://dplyr.tidyverse.org/reference/across.html
https://rdrr.io/r/stats/median.html
https://dplyr.tidyverse.org/reference/across.html

#> a_median a_n_miss b_median b_n_miss c_median c_n_miss d_median d_n_miss
#> <dbl> <int> <dbl> <int> <dbl> <int> <dbl> <int>
1 0.139 1 -1.11 1 -0.387 2 1.15 0
#> # .. with 1 more variable: n <int>

If you look carefully, you might intuit that the columns are named using a glue
specification (“str_glue()” on page 247) like {.col}_{.fn} where .col is the name of
the original column and . fn is the name of the function. That’s not a coincidence! As
you'll learn in the next section, you can use the .names argument to supply your own
glue spec.

Column Names

The result of across() is named according to the specification provided in
the .names argument. We could specify our own if we wanted the name of the
function to come first:*

df_miss |>
summarize(
across(
a:d,
Tist(
median = \(x) median(x, na.rm = TRUE),
n_miss = \(x) sum(is.na(x))
),
.names = "{.fn}_{.col}"
),
n=n(),
)
#> # A tibble: 1 x 9
#> median_a n_miss_a median_b n_miss_b median_c n_miss_c median_d n_miss_d
#> <dbl> <int> <dbl> <int> <dbl> <int> <dbl> <int>
#> 1 0.139 1 -1.11 1 -0.387 2 1.15 0
#> # .. with 1 more variable: n <int>

The .names argument is particularly important when you use across() with
mutate(). By default, the output of across() is given the same names as the inputs.
This means that across() in mutate() will replace existing columns. For example,
here we use coalesce() to replace NAs with 0:

df_miss |>
mutate(
across(a:d, \(x) coalesce(x, 0))
)
#> # A tibble: 5 x 4
#> a b c d
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.434 -1.25 0 1.60
#> 2 0 -1.43 -0.297 0.776
#> 3 -0.156 -0.980 0 1.15

3 You can’t currently change the order of the columns, but you could reorder them after the fact using
relocate() or similar.

470 | Chapter 26: Iteration

https://dplyr.tidyverse.org/reference/relocate.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/coalesce.html

#> 4 -2.61 -0.683 -0.785 2.13
#> 5 1.11 0 -0.387 0.704

If youd like to instead create new columns, you can use the .names argument to give
the output new names:

df_miss |>

mutate(

across(a:d, \(x) abs(x), .names = "{.col}_abs")

)
#> # A tibble: 5 x 8
#> a b c d a_abs b_abs c_abs d_abs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.434 -1.25 NA 1.60 0.434 1.25 NA 1.60
#> 2 NA -1.43 -0.297 0.776 NA 1.43 0.297 0.776
#> 3 -0.156 -0.980 NA 1.15 0.156 0.980 NA 1.15
#> 4 -2.61 -0.683 -0.785 2.13 2.61 0.683 0.785 2.13
5 1.11 NA -0.387 0.704 1.11 NA 0.387 0.704

Filtering

across() is a great match for summarize() and mutate(), but it's more awkward to
use with filter(), because you usually combine multiple conditions with either | or
&. It’s clear that across() can help to create multiple logical columns, but then what?
So dplyr provides two variants of across() called 1f_any() and if_all():

same as df_miss [> filter(is.na(a) | is.na(b) | is.na(c) | is.na(d))
df_miss |> filter(if_any(a:d, is.na))

#> # A tibble: 4 x 4

#> a b c d

#> <dbl> <dbl> <dbl> <dbl>

#> 1 0.434 -1.25 NA 1.60

#> 2 NA -1.43 -0.297 0.776

#> 3 -0.156 -0.980 NA 1.15

4 1.11 NA -0.387 0.704

same as df_miss [> filter(is.na(a) & is.na(b) & is.na(c) & is.na(d))
df_miss |> filter(if_all(a:d, is.na))

#> # A tibble: 0 x 4

#> # .. with 4 variables: a <dbl>, b <dbl>, c <dbl>, d <dbl>

across() in Functions

across() is particularly useful to program with because it allows you to operate on
multiple columns. For example, Jacob Scott uses this little helper that wraps a bunch
of lubridate functions to expand all date columns into year, month, and day columns:

expand_dates <- function(df) {
df |>
mutate(
across(where(is.Date), list(year = year, month = month, day = mday))
)
}

df_date <- tibble(

Modifying Multiple Columns | 471

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/summarise.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://oreil.ly/6vVc4

name = c("Amy", "Bob"),
date = ymd(c("2009-08-03", "2010-01-16"))
)

df_date |>
expand_dates()
#> # A tibble: 2 x 5

#> npame date date_year date_month date_day
#> <chr> <date> <dbl> <dbl> <int>
#> 1 Amy 2009-08-03 2009 8 3
#> 2 Bob 2010-01-16 2010 1 16

across() also makes it easy to supply multiple columns in a single argument because
the first argument uses tidy-select; you just need to remember to embrace that
argument, as we discussed in “When to Embrace?” on page 451. For example, this
function will compute the means of numeric columns by default. But by supplying
the second argument you can choose to summarize just selected columns:

summarize_means <- function(df, summary_vars = where(is.numeric)) {
df |>
summarize(
across({{ summary_vars }}, \(x) mean(x, na.rm = TRUE)),
n =n()
)
}
diamonds |>
group_by(cut) |>
summarize_means()
#> # A tibble: 5 x 9

#> cut carat depth table price X y z n
#> <ord> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> Fair 1.05 64.0 59.1 4359. 6.25 6.18 3.98 1610

1

2 Good 0.849 62.4 58.7 3929. 5.84 5.85 3.64 4906
#> 3 Very Good 0.806 61.8 58.0 3982. 5.74 5.77 3.56 12082

4 Premium 0.892 61.3 58.7 4584. 5.97 5.94 3.65 13791

5 Ideal 0.703 61.7 56.0 3458. 5.51 5.52 3.40 21551

diamonds |>
group_by(cut) |>
summarize_means(c(carat, x:z))
#> # A tibble: 5 x 6

#> cut carat X v z n
#> <ord> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 Fair 1.05 6.25 6.18 3.98 1610
#> 2 Good 0.849 5.84 5.85 3.64 4906
#> 3 Very Good 0.806 5.74 5.77 3.56 12082
#> 4 Premium 0.892 5.97 5.94 3.65 13791
#> 5 Ideal 0.703 5.51 5.52 3.40 21551

Versus pivot_longer()

Before we go on, it’s worth pointing out an interesting connection between across()
and pivot_longer() (“Lengthening Data” on page 73). In many cases, you perform
the same calculations by first pivoting the data and then performing the operations by
group rather than by column. For example, take this multifunction summary:

472 | (Chapter 26: Iteration

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html
https://tidyr.tidyverse.org/reference/pivot_longer.html

df |>

summarize(across(a:d, list(median = median, mean = mean)))
#> # A tibble: 1 x 8
#> a_median a_mean b_median b_mean c_median c_mean d_median d_mean
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.0380 0.205 -0.0163 0.0910 0.260 0.0716 0.540 0.508

We could compute the same values by pivoting longer and then summarizing:

long <- df |>
pivot_longer(a:d) |>
group_by(name) |[>
summarize(
median = median(value),
mean = mean(value)
)
long
#> # A tibble: 4 x 3
#> name median mean
#> <chr> <dbl> <dbl>

#> 1 a 0.0380 0.205
#>2b -0.0163 0.0910
#> 3 cC 0.260 0.0716
#> 4 d 0.540 0.508

And if you wanted the same structure as across(), you could pivot again:

long |>
pivot_wider(
names_from = name,
values_from = c(median, mean),
names_vary = "slowest",
names_glue = "{name}_{.value}"
)
#> # A tibble: 1 x 8
#> a_median a_mean b_median b_mean c_median c_mean d_median d_mean
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.0380 0.205 -0.0163 0.0910 0.260 0.0716 0.540 0.508

This is a useful technique to know about because sometimes you’ll hit a problem
that’s not currently possible to solve with across(): when you have groups of col-
umns that you want to compute with simultaneously. For example, imagine that our
data frame contains both values and weights and we want to compute a weighted
mean:

df_paired <- tibble(
a_val = rnorm(10),
a_wts = runif(10),
b_val = rnorm(10),
b_wts = runif(10),
c_val = rnorm(10),
c_wts = runif(10),
d_val = rnorm(10),
d_wts = runif(10)

Modifying Multiple Columns | 473

https://dplyr.tidyverse.org/reference/across.html
https://dplyr.tidyverse.org/reference/across.html

There’s currently no way to do this with across(),* but it’s relatively straightforward
with pivot_longer():

df_long <- df_paired |>
pivot_longer(

everything(),

names_to = c("group", ".value"),

names_sep = "_"

)

df_long
#> # A tibble: 40 x 3
#> group val wts
#> <chr> <dbl> <dbl>
1 a 0.715 0.518
#> 2 b -0.709 0.691
#> 3 c 0.718 0.216
#> 4 d -0.217 0.733
#> 5 a -1.09 0.979
#> 6 b -0.209 0.675
#> # .. with 34 more rows
df_long |>

group_by(group) |>

summarize(mean = weighted.mean(val, wts))
#> # A tibble: 4 x 2
#> group mean
#> <chr> <dbl>

#> 1 a 0.126
#> 2 b -0.0704
#> 3 cC -0.360
#> 4 d -0.248

If needed, you could pivot_wider() this back to the original form.

Exercises

1. Practice your across() skills by:

a. Computing the number of unique values in each column of palmerpen
guins::penguins.

b. Computing the mean of every column in mtcars.

c. Grouping diamonds by cut, clarity, and color and then counting the num-
ber of observations and computing the mean of each numeric column.

2. What happens if you use a list of functions in across(), but don’t name them?
How is the output named?

3. Adjust expand_dates() to automatically remove the date columns after they’ve
been expanded. Do you need to embrace any arguments?

4 Maybe there will be one day, but currently we don’t see how.

474 | Chapter 26: Iteration

https://dplyr.tidyverse.org/reference/across.html
https://tidyr.tidyverse.org/reference/pivot_longer.html
https://tidyr.tidyverse.org/reference/pivot_wider.html
https://dplyr.tidyverse.org/reference/across.html
https://allisonhorst.github.io/palmerpenguins/reference/penguins.html
https://allisonhorst.github.io/palmerpenguins/reference/penguins.html
https://dplyr.tidyverse.org/reference/across.html

4. Explain what each step of the pipeline in this function does. What special feature

of where() are we taking advantage of?

show_missing <- function(df, group_vars, summary_vars = everything()) {
df |>
group_by(pick({{ group_vars 1}})) |>
summarize(
across({{ summary_vars }}, \(x) sum(is.na(x))),
.groups = "drop"
) |>
select(where(\(x) any(x > 0)))

nycflights13::flights |> show_missing(c(year, month, day))

Reading Multiple Files

In the previous section, you learned how to use dplyr::across() to repeat a trans-
formation on multiple columns. In this section, you’ll learn how to use purrr::map()
to do something to every file in a directory. Let’s start with a little motivation: imagine
you have a directory full of Excel spreadsheets® you want to read. You could do it with
copy and paste:

data2019 <- readxl::read_excel("data/y2019.x1lsx")

data2020 <- readxl::read_excel("data/y2020.x1lsx")

data2021 <- readxl::read_excel("data/y2021.x1lsx")
data2022 <- readxl::read_excel("data/y2022.x1lsx")

Then use dplyr: :bind_rows() to combine them all together:
data <- bind_rows(data2019, data2020, data2021, data2022)

You can imagine that this would get tedious quickly, especially if you had hundreds
of files, not just four. The following sections show you how to automate this sort
of task. There are three basic steps: use list.files() to list all the files in a
directory, then use purrr::map() to read each of them into a list, and then use
purrr::list_rbind() to combine them into a single data frame. We'll then discuss
how you can handle situations of increasing heterogeneity, where you can’t do the
same thing to every file.

Listing Files in a Directory

As the name suggests, 1ist.files() lists the files in a directory. You'll almost always
use three arguments:

o The first argument, path, is the directory to look in.

5 If you instead had a directory of CSV files with the same format, you can use the technique from “Reading
Data from Multiple Files” on page 107.

Reading Multiple Files | 475

https://tidyselect.r-lib.org/reference/where.html
https://dplyr.tidyverse.org/reference/across.html
https://purrr.tidyverse.org/reference/map.html
https://dplyr.tidyverse.org/reference/bind_rows.html
https://rdrr.io/r/base/list.files.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/list_c.html
https://rdrr.io/r/base/list.files.html

o pattern is a regular expression used to filter the filenames. The most common
pattern is something like [.]x1sx$ or [.]csv$ to find all files with a specified
extension.

o full.names determines whether the directory name should be included in the
output. You almost always want this to be TRUE.

To make our motivating example concrete, this book contains a folder with 12 Excel
spreadsheets containing data from the gapminder package. Each file contains one
year’s worth of data for 142 countries. We can list them all with the appropriate call to
list.files():

paths <- list.files("data/gapminder", pattern = "[.]xlsx$", full.names = TRUE)
paths

#> [1] "data/gapminder/1952.x1sx" "data/gapminder/1957.x1lsx"

#> [3] "data/gapminder/1962.x1sx" "data/gapminder/1967.xlsx"

#> [5] "data/gapminder/1972.x1sx" "data/gapminder/1977.x1lsx"

#> [7] "data/gapminder/1982.x1sx" "data/gapminder/1987.x1sx"

#> [9] "data/gapminder/1992.x1sx" "data/gapminder/1997.x1lsx"

#> [11] "data/gapminder/2002.x1lsx" "data/gapminder/2007.x1sx"

Lists

Now that we have these 12 paths, we could call read_excel() 12 times to get 12 data
frames:
gapminder_1952 <- readxl::read_excel("data/gapminder/1952.x1sx")

gapminder_1957 <- readxl::read_excel("data/gapminder/1957.x1lsx")
gapminder_1962 <- readxl::read_excel("data/gapminder/1962.x1sx")

gapminder_2007 <- readxl::read_excel("data/gapminder/2007.x1sx")

But putting each sheet into its own variable is going to make it hard to work with
them a few steps down the road. Instead, they’ll be easier to work with if we put them
into a single object. A list is the perfect tool for this job:
files <- list(
readxl::read_excel("data/gapminder/1952.x1lsx"),

readxl::read_excel("data/gapminder/1957.x1lsx"),
readxl::read_excel("data/gapminder/1962.x1sx"),

readxl::read_excel("data/gapminder/2007.x1sx")
)

Now that you have these data frames in a list, how do you get one out? You can use
files[[1]] to extract the ith element:

files[[3]]

#> # A tibble: 142 x 5

#> country continent lifeExp pop gdpPercap
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 32.0 10267083 853.
#> 2 Albania Europe 64.8 1728137 2313.
#> 3 Algeria Africa 48.3 11000948 2551.

476 | Chapter 26: Iteration

https://rdrr.io/r/base/list.files.html

#> 4 Angola Africa 34 4826015 4269.
#> 5 Argentina Americas 65.1 21283783 7133.
#> 6 Australia Oceania 70.9 10794968 12217.
#> # .. with 136 more rows
We'll come back to [[in more detail in “Selecting a Single Element with $ and [[” on

page 494.

purrr::map() and list_rbind()

The code to collect those data frames in a list “by hand” is basically just as tedious
to type as code that reads the files one by one. Happily, we can use purrr::map() to
make even better use of our paths vector. map() is similar to across(), but instead of
doing something to each column in a data frame, it does something to each element
of a vector. map(x, f) is shorthand for:
list(
Fx[I11D),
f(x[[211),
F(xLInID)
)
So we can use map() to get a list of 12 data frames:

files <- map(paths, readxl::read_excel)

length(files)

[1] 12

files[[1]]

#> # A tibble: 142 x 5

#> country continent lifeExp pop gdpPercap
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 28.8 8425333 779.
#> 2 Albania Europe 55.2 1282697 1601.
#> 3 Algeria Africa 43.1 9279525 2449.
#> 4 Angola Africa 30.0 4232095 3521.
#> 5 Argentina Americas 62.5 17876956 5911.
#> 6 Australia Oceania 69.1 8691212 10040.

#> # .. with 136 more rows
(This is another data structure that doesn't display particularly compactly with str(),
so you might want to load it into RStudio and inspect it with View()).
Now we can use purrr::list_rbind() to combine that list of data frames into a
single data frame:

list_rbind(files)
#> # A tibble: 1,704 x 5

#> country continent lifeExp pop gdpPercap
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 28.8 8425333 779.
#> 2 Albania Europe 55.2 1282697 1601.
#> 3 Algeria Africa 43.1 9279525 2449.
#> 4 Angola Africa 30.0 4232095 3521.
#> 5 Argentina Americas 62.5 17876956 5911.

Reading Multiple Files | 477

https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://dplyr.tidyverse.org/reference/across.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/utils/str.html
https://rdrr.io/r/utils/View.html
https://purrr.tidyverse.org/reference/list_c.html

#> 6 Australia Oceania 69.1 8691212 10040.

#> # .. with 1,698 more rows
Or we could do both steps at once in a pipeline:

paths |>
map(readxl::read_excel) |>
list_rbind()
What if we want to pass in extra arguments to read_excel()? We use the same
technique that we used with across(). For example, it’s often useful to peak at the
first few rows of the data with n_max = 1:
paths |>

map(\(path) readxl::read_excel(path, n_max =
list_rbind()

0 1>

#> # A tibble: 12 x 5

#> country continent lifeExp pop gdpPercap
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 28.8 8425333 779.
#> 2 Afghanistan Asia 30.3 9240934 821.
#> 3 Afghanistan Asia 32.0 10267083 853.
#> 4 Afghanistan Asia 34.0 11537966 836.
#> 5 Afghanistan Asia 36.1 13079460 740.
#> 6 Afghanistan Asia 38.4 14880372 786.
#> # .. with 6 more rows

This makes it clear that something is missing: there’s no year column because that
value is recorded in the path, not the individual files. We'll tackle that problem next.

Data in the Path

Sometimes the name of the file is data itself. In this example, the filename contains
the year, which is not otherwise recorded in the individual files. To get that column
into the final data frame, we need to do two things.

First, we name the vector of paths. The easiest way to do this is with the set_names()
function, which can take a function. Here we use basename() to extract just the file
name from the full path:

paths |> set_names(basename)

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

1952.x1sx
"data/gapminder/1952.x1sx"
1962.x1sx
"data/gapminder/1962.x1sx"
1972.x1lsx
"data/gapminder/1972.x1sx"
1982. x1lsx
"data/gapminder/1982.x1sx"
1992. x1lsx
"data/gapminder/1992.x1sx"
2002. x1sx
"data/gapminder/2002.x1sx"

1957.x1lsx
"data/gapminder/1957.x1sx"
1967.x1lsx
"data/gapminder/1967.x1sx"
1977.x1lsx
"data/gapminder/1977.x1sx"
1987.x1lsx
"data/gapminder/1987.x1sx"
1997.x1lsx
"data/gapminder/1997.x1sx"
2007.x1lsx
"data/gapminder/2007.x1sx"

478 |

Chapter 26: Iteration

https://dplyr.tidyverse.org/reference/across.html
https://rlang.r-lib.org/reference/set_names.html
https://rdrr.io/r/base/basename.html

Those names are automatically carried along by all the map functions, so the list of
data frames will have those same names:
files <- paths |>

set_names(basename) |>
map(readxl::read_excel)

That makes this call to map() shorthand for:
files <- list(
"1952.x1sx" = readxl::read_excel("data/gapminder/1952.x1sx"),

"1957.x1sx" = readxl::read_excel("data/gapminder/1957.x1lsx"),
"1962.x1sx" = readxl::read_excel("data/gapminder/1962.x1sx"),

"2007.x1lsx" = readxl::read_excel("data/gapminder/2007.x1lsx")
)

You can also use [[to extract elements by name:

files[["1962.x1sx"]]
#> # A tibble: 142 x 5

#> country continent lifeExp pop gdpPercap
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 32.0 10267083 853.
#> 2 Albania Europe 64.8 1728137 2313.
#> 3 Algeria Africa 48.3 11000948 2551.
#> 4 Angola Africa 34 4826015 4269.
#> 5 Argentina Americas 65.1 21283783 7133.
#> 6 Australia Oceania 70.9 10794968 12217.

#> # .. with 136 more rows

Then we use the names_to argument to list_rbind() to tell it to save the names
into a new column called year and then use readr: :parse_number() to extract the
number from the string:

paths |>
set_names(basename) |>
map(readxl::read_excel) |>
list_rbind(names_to = "year") |>
mutate(year = parse_number(year))
#> # A tibble: 1,704 x 6

#> year country continent lifeExp pop gdpPercap
#> <dbl> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 1952 Afghanistan Asia 28.8 8425333 779.
#> 2 1952 Albania Europe 55.2 1282697 1601.
#> 3 1952 Algeria Africa 43.1 9279525 2449.
#> 4 1952 Angola Africa 30.0 4232095 3521.
#> 5 1952 Argentina Americas 62.5 17876956 5911.
#> 6 1952 Australia Oceania 69.1 8691212 10040.
#> # .. with 1,698 more rows

In more complicated cases, there might be other variables stored in the direc-
tory name, or maybe the filename contains multiple bits of data. In that case,
use set_names() (without any arguments) to record the full path and then use
tidyr::separate_wider_delim() and friends to turn them into useful columns:

Reading Multiple Files | 479

https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/list_c.html
https://readr.tidyverse.org/reference/parse_number.html
https://rlang.r-lib.org/reference/set_names.html
https://tidyr.tidyverse.org/reference/separate_wider_delim.html

paths |>
set_names() |>
map(readxl::read_excel) |>

list_rbind(names_to = "year") |>

separate_wider_delim(year, delim = "/", names = c(NA, "dir", "file")) |>

separate_wider_delim(file, delim = ".", names = c("file", "ext"))
#> # A tibble: 1,704 x 8
#> dir file ext country continent lifeExp pop gdpPercap
#> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 gapminder 1952 xlsx Afghanistan Asia 28.8 8425333 779.
#> 2 gapminder 1952 xlsx Albania Europe 55.2 1282697 1601.
#> 3 gapminder 1952 xlsx Algeria Africa 43.1 9279525 2449,
#> 4 gapminder 1952 xlsx Angola Africa 30.0 4232095 3521.
#> 5 gapminder 1952 xlsx Argentina Americas 62.5 17876956 5911.
#> 6 gapminder 1952 xlsx Australia Oceania 69.1 8691212 10040.

#> # .. with 1,698 more rows

Save Your Work

Now that you've done all this hard work to get to a nice tidy data frame, it’s a great
time to save your work:
gapminder <- paths |>
set_names(basename) |>
map(readxl::read_excel) |>

list_rbind(names_to = "year") |>
mutate(year = parse_number(year))

write_csv(gapminder, "gapminder.csv")

Now when you come back to this problem in the future, you can read in a single CSV
file. For large and richer datasets, using parquet might be a better choice than .csv, as
discussed in “The Parquet Format” on page 398.

If youre working in a project, we suggest calling the file that does this sort of data
prep work, something like 0-cleanup.R. The 0 in the filename suggests that this
should be run before anything else.

If your input data files change over time, you might consider learning a tool like
targets to set up your data cleaning code to automatically rerun whenever one of the
input files is modified.

Many Simple Iterations

Here we loaded the data directly from disk and were lucky enough to get a tidy
dataset. In most cases, you'll need to do some additional tidying, and you have two
basic options: you can do one round of iteration with a complex function or do
multiple rounds of iteration with simple functions. In our experience, most folks
reach first for one complex iteration, but you're often better off doing multiple simple
iterations.

480 | Chapter 26: Iteration

https://oreil.ly/oJsOo

For example, imagine that you want to read in a bunch of files, filter out missing
values, pivot, and then combine. One way to approach the problem is to write a
function that takes a file and does all those steps and then call map() once:

process_file <- function(path) {
df <- read_csv(path)

df |>
filter(!is.na(id)) |>
mutate(id = tolower(id)) |>
pivot_longer(jan:dec, names_to = "month")

}

paths |>
map(process_file) |>
Tist_rbind()

Alternatively, you could perform each step of process_file() for every file:

paths |>

map(read_csv) |>

map(\(df) df |> filter(!is.na(id))) |>

map(\(df) df |> mutate(id = tolower(id))) |>

map(\(df) df |> pivot_longer(jan:dec, names_to = "month")) |>

Tist_rbind()
We recommend this approach because it stops you from getting fixated on getting
the first file right before moving on to the rest. By considering all of the data when
doing tidying and cleaning, youre more likely to think holistically and end up with a

higher-quality result.

In this particular example, there’s another optimization you could make, by binding
all the data frames together earlier. Then you can rely on regular dplyr behavior:
paths |>

map(read_csv) |>

list_rbind() |>

filter(!is.na(id)) |>

mutate(id = tolower(id)) |[>

pivot_longer(jan:dec, names_to = "month")

Heterogeneous Data

Unfortunately, sometimes it’s not possible to go from map() straight to list_rbind()
because the data frames are so heterogeneous that list_rbind() either fails or yields

a data frame that’s not useful. In that case, it’s still useful to start by loading all of the
files:

files <- paths |>
map(readxl::read_excel)

Reading Multiple Files | 481

https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/list_c.html
https://purrr.tidyverse.org/reference/list_c.html

Then a useful strategy is to capture the structure of the data frames so that you can
explore it using your data science skills. One way to do so is with this handy df_types
function® that returns a tibble with one row for each column:

df_types <- function(df) {
tibble(
col_name = names(df),
col_type = map_chr(df, vctrs::vec_ptype_full),
n_miss = map_int(df, \(x) sum(is.na(x)))
)
}

df_types(gapminder)
#> # A tibble: 6 x 3
#> col_name col_type n_miss
#> <chr> <chr> <int>
1 year double
#> 2 country character
3 continent character
#> 4 lifeExp double
#> 5 pop double
#> 6 gdpPercap double

DO

You can then apply this function to all of the files and maybe do some pivoting to
make it easier to see where the differences are. For example, this makes it easy to
verify that the gapminder spreadsheets that we've been working with are all quite
homogeneous:

files |>

map(df_types) |>

list_rbind(names_to = "file_name") |>

select(-n_miss) |>

pivot_wider(names_from = col_name, values_from = col_type)
#> # A tibble: 12 x 6
#> file_name country continent lifeExp pop gdpPercap
#> <chr> <chr> <chr> <chr> <chr> <chr>

#> 1 1952.xlsx character character double double double
#> 2 1957.xlsx character character double double double
#> 3 1962.xlsx character character double double double

#> 5 1972.xlsx character character double double double
#> 6 1977.xlsx character character double double double

1
2
3
#> 4 1967.xlsx character character double double double
5
6
#> # .. with 6 more rows

If the files have heterogeneous formats, you might need to do more processing
before you can successfully merge them. Unfortunately, were now going to leave you
to figure that out on your own, but you might want to read about map_if() and
map_at(). map_if() allows you to selectively modify elements of a list based on their
values; map_at() allows you to selectively modify elements based on their names.

6 We're not going to explain how it works, but if you look at the docs for the functions used, you should be able
to puzzle it out.

482 | (Chapter 26: Iteration

https://purrr.tidyverse.org/reference/map_if.html
https://purrr.tidyverse.org/reference/map_if.html
https://purrr.tidyverse.org/reference/map_if.html
https://purrr.tidyverse.org/reference/map_if.html

Handling Failures

Sometimes the structure of your data might be sufficiently wild that you can't even
read all the files with a single command. And then youll encounter one of the
downsides of map(): it succeeds or fails as a whole. map() will either successfully read
all of the files in a directory or fail with an error, reading zero files. This is annoying:
why does one failure prevent you from accessing all the other successes?

Luckily, purrr comes with a helper to tackle this problem: possibly(). possibly() is
whats known as a function operator: it takes a function and returns a function with
modified behavior. In particular, possibly() changes a function from erroring to
returning a value that you specify:

files <- paths |>
map(possibly(\(path) readxl::read_excel(path), NULL))

data <- files |> list_rbind()

This works particularly well here because l1ist_rbind(), like many tidyverse func-
tions, automatically ignores NULLs.

Now you have all the data that can be read easily, and it’s time to tackle the hard part
of figuring out why some files failed to load and what to do about it. Start by getting
the paths that failed:

failed <- map_vec(files, is.null)

paths[failed]

#> character(0)

Then call the import function again for each failure and figure out what went wrong.

Saving Multiple Outputs

In the previous section, you learned about map(), which is useful for reading multiple
files into a single object. In this section, we’ll now explore sort of the opposite
problem: how can you take one or more R objects and save it to one or more files?
We'll explore this challenge using three examples:

« Saving multiple data frames into one database

o Saving multiple data frames into multiple . csv files

o Saving multiple plots to multiple . png files

Writing to a Database

Sometimes when working with many files at once, it’s not possible to fit all your data
into memory at once, and you can’t do map(files, read_csv). One approach to deal

Saving Multiple OQutputs | 483

https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/possibly.html
https://purrr.tidyverse.org/reference/possibly.html
https://purrr.tidyverse.org/reference/possibly.html
https://purrr.tidyverse.org/reference/list_c.html
https://purrr.tidyverse.org/reference/map.html

with this problem is to load your data into a database so you can access just the bits
you need with dbplyr.

If youre lucky, the database package you’re using will provide a handy function that
takes a vector of paths and loads them all into the database. This is the case with
duckdb’s duckdb_read_csv():

con <- DBI::dbConnect(duckdb::duckdb())

duckdb: :duckdb_read_csv(con, "gapminder", paths)
This would work well here, but we dont have CSV files; instead, we have Excel
spreadsheets. So were going to have to do it “by hand” Learning to do it by hand
will also help you when you have a bunch of CSV files and the database that you're
working with doesn’t have one function that will load them all in.

We need to start by creating a table that will fill in with data. The easiest way to do
this is by creating a template, a dummy data frame that contains all the columns we
want, but only a sampling of the data. For the gapminder data, we can make that
template by reading a single file and adding the year to it:

template <- readxl::read_excel(paths[[1]])
templateSyear <- 1952

template

#> # A tibble: 142 x 6

#> country continent lifeExp pop gdpPercap year
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 28.8 8425333 779. 1952
#> 2 Albania Europe 55.2 1282697 1601. 1952
#> 3 Algeria Africa 43.1 9279525 2449. 1952
#> 4 Angola Africa 30.0 4232095 3521. 1952
#> 5 Argentina Americas 62.5 17876956 5911. 1952
#> 6 Australia Oceania 69.1 8691212 10040. 1952

#> # .. with 136 more rows

Now we can connect to the database and use DBI::dbCreateTable() to turn our
template into a database table:

con <- DBI::dbConnect(duckdb::duckdb())

DBI::dbCreateTable(con, "gapminder", template)
dbCreateTable() doesn't use the data in template, just the variable names and types.
So if we inspect the gapminder table now, you'll see that it’s empty, but it has the
variables we need with the types we expect:

con |> tbl("gapminder")

#> # Source: table<gapminder> [0 x 6]

#> # Database: DuckDB 0.6.1 [root@larwin 22.3.0:R 4.2.1/:memory:]

#> # .. with 6 variables: country <chr>, continent <chr>, lifeExp <dbl>,

#> # pop <dbl>, gdpPercap <dbl>, year <dbl>
Next, we need a function that takes a single file path, reads it into R, and adds
the result to the gapminder table. We can do that by combining read_excel() with
DBI: :dbAppendTable():

484 | Chapter 26: Iteration

https://dbi.r-dbi.org/reference/dbCreateTable.html
https://dbi.r-dbi.org/reference/dbAppendTable.html

append_file <- function(path) {
df <- readxl::read_excel(path)
dfSyear <- parse_number(basename(path))

DBI::dbAppendTable(con, "gapminder", df)
}
Now we need to call append_file() once for each element of paths. Thats certainly
possible with map():

paths |> map(append_file)

But we don’t care about the output of append_file(), so instead of map(), it’s slightly
nicer to use walk(). walk() does exactly the same thing as map() but throws the
output away:

paths |> walk(append_file)
Now we can see if we have all the data in our table:

con |>
tbl("gapminder") |>
count(year)
#> # Source: SQL [?? x 2]
#> # Database: DuckDB 0.6.1 [root@arwin 22.3.0:R 4.2.1/:memory:]

#> year n
#> <dbl> <dbl>
#> 1 1952 142
#> 2 1957 142
#> 3 1962 142
#> 4 1967 142
#> 5 1972 142
#> 6 1977 142
#> # .. with more rows

Writing CSV Files

The same basic principle applies if we want to write multiple CSV files, one for each
group. Let’s imagine that we want to take the ggplot2: :diamonds data and save one
CSV file for each clarity. First we need to make those individual datasets. There are
many ways you could do that, but there’s one way we particularly like: group_nest().

by_clarity <- diamonds |>
group_nest(clarity)

by_clarity

#> # A tibble: 8 x 2

#> clarity data
#> <ord> <list<tibble[,9]>>
#> 1 11 [741 x 9]
2 SI2 [9,194 x 9]
#> 3 SI1 [13,065 x 9]
4 VS2 [12,258 x 9]
#> 5 VS1 [8,171 x 9]
6 WS2 [5,066 x 9]
#> # .. with 2 more rows

Saving Multiple Qutputs | 485

https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://ggplot2.tidyverse.org/reference/diamonds.html
https://dplyr.tidyverse.org/reference/group_nest.html

This gives us a new tibble with eight rows and two columns. clarity is our grouping
variable, and data is a list column containing one tibble for each unique value of
clarity:

by_clarity$data[[1]]

#>
#>
#>
#>
#>
#>
#>
#>
#>
#>

While were here, let’s create a

#

1
2
3
4
5
6
#

A tibble: 741 x 9

carat cut color depth table price
<dbl> <ord> <ord> <dbl> <dbl> <int>
0.32 Premium E 60.9 58 345
1.17 Very Good J 60.2 61 2774
1.01 Premium F 61.8 60 2781
1.01 Fair E 64.5 58 2788
0.96 Ideal F 60.7 55 2801
1.04 Premium G 62.2 58 2801

. with 735 more rows

mutate() and str_glue():

by_clarity <- by_clarity |>
mutate(path = str_glue("diamonds-{clarity}.csv"))

by_clarity

#> # A tibble: 8 x 3

#> clarity

#> <ord> <list<tibble[,
#> 1 11 [741
#> 2 SI2 [9,194
#> 3 SI1 [13,065
#> 4 VS2 [12,258
#> 5 VS1 [8,171
#> 6 WS2 [5,066
#> # .. with 2 more rows

data path
9]>> <glue>

X

y

z

<dbl> <dbl> <dbl>

4.38
6.83
6.39
6.29
6.37
6.46

x 9] diamonds-I1.csv
x 9] diamonds-SI2.csv

9] diamonds-SI1.csv
9] diamonds-VS2.csv
9] diamonds-VS1.csv
9] diamonds-VWVS2.csv

4.42
6.9

6.36
6.21
6.41
6.41

2.

A WA WA

68
13
94
03
88

column that gives the name of the output file, using

So if we were going to save these data frames by hand, we might write something like:

write_csv(by_claritySdata[[1]], by_claritySpath[[1]])
write_csv(by_clarity$data[[2]], by_claritySpath[[2]])
write_csv(by_clarity$data[[3]], by_clarity$path[[3]])

write_csv(by_claritySby_clarity[[8]], by_claritySpath[[8]])

This is a little different from our previous uses of map() because there are two
arguments that are changing, not just one. That means we need a new function:
map2(), which varies both the first and second arguments. And because we again
don’t care about the output, we want walk2() rather than map2(). That gives us:

walk2(by_claritySdata, by_clarity$path, write_csv)

486 |

Chapter 26: Iteration

https://dplyr.tidyverse.org/reference/mutate.html
https://stringr.tidyverse.org/reference/str_glue.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map2.html
https://purrr.tidyverse.org/reference/map2.html
https://purrr.tidyverse.org/reference/map2.html

Saving Plots

We can take the same basic approach to create many plots. Let’s first make a function
that draws the plot we want:

carat_histogram <- function(df) {
ggplot(df, aes(x = carat)) + geom_histogram(binwidth = 0.1)
}

carat_histogram(by_clarity$data[[1]])

count

Now we can use map() to create a list of many plots’ and their eventual file paths

by_clarity <- by_clarity |>
mutate(
plot = map(data, carat_histogram),

path = str_glue("clarity-{clarity}.png")
)

Then use walk2() with ggsave() to save each plot:

walk2(
by_clarity$path,
by_claritys$plot,

\(path, plot) ggsave(path, plot, width = 6, height = 6)
)

7 You can print by_clarity$plot to get a crude animation—you’ll get one plot for each element of plots

Saving Multiple Outputs | 487

https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map2.html
https://ggplot2.tidyverse.org/reference/ggsave.html

This is shorthand for:

ggsave(by_clarity$path[[1]], by_claritySplot[[1]], width = 6, height = 6)
ggsave(by_claritySpath[[2]], by_claritySplot[[2]], width = 6, height = 6)
ggsave(by_clarity$path[[3]], by_claritySplot[[3]], width = 6, height = 6)
ggsave(by_clarity$path[[8]], by_claritySplot[[8]], width = 6, height = 6)

Summary

In this chapter, you saw how to use explicit iteration to solve three problems
that come up frequently when doing data science: manipulating multiple columns,
reading multiple files, and saving multiple outputs. But in general, iteration is a
superpower: if you know the right iteration technique, you can easily go from fixing
one problem to fixing all the problems. Once you’ve mastered the techniques in this
chapter, we highly recommend learning more by reading the “Functionals” chapter of
Advanced R and consulting the purrr website.

If you know much about iteration in other languages, you might be surprised that
we didn't discuss the for loop. That’s because R’s orientation toward data analysis
changes how we iterate: in most cases you can rely on an existing idiom to do
something to each column or each group. And when you can’t, you can often use a
functional programming tool like map() that does something to each element of a list.
However, you will see for loops in wild-caught code, so you’ll learn about them in the
next chapter where we’ll discuss some important base R tools.

488 | Chapter 26: Iteration

https://oreil.ly/VmXg4
https://oreil.ly/f0HWP
https://purrr.tidyverse.org/reference/map.html

CHAPTER 27

A Field Guide to Base R

Introduction

To finish off the programming section, were going to give you a quick tour of the
most important base R functions that we don’t otherwise discuss in the book. These
tools are particularly useful as you do more programming and will help you read
code you encounter in the wild.

This is a good place to remind you that the tidyverse is not the only way to solve
data science problems. We teach the tidyverse in this book because tidyverse packages
share a common design philosophy, increasing the consistency across functions, and
making each new function or package a little easier to learn and use. It’s not possible
to use the tidyverse without using base R, so we've actually already taught you a lot
of base R functions, including library() to load packages; sum() and mean() for
numeric summaries; the factor, date, and POSIXct data types; and of course all the
basic operators such as +, -, /, *, |, & and !. What we haven't focused on so far is base
R workflows, so we will highlight a few of those in this chapter.

After you read this book, you'll learn other approaches to the same problems using
base R, data.table, and other packages. You'll undoubtedly encounter these other
approaches when you start reading R code written by others, particularly if you're
using StackOverflow. It's 100% OK to write code that uses a mix of approaches, and
don’t let anyone tell you otherwise!

In this chapter, we'll focus on four big topics: subsetting with [, subsetting with
[[and $, using the apply family of functions, and using for loops. To finish off, well
briefly discuss two essential plotting functions.

489

https://rdrr.io/r/base/library.html
https://rdrr.io/r/base/sum.html
https://rdrr.io/r/base/mean.html

Prerequisites

This package focuses on base R so it doesn’t have any real prerequisites, but we'll load
the tidyverse to explain some of the differences:

library(tidyverse)

Selecting Multiple Elements with [

[is used to extract subcomponents from vectors and data frames and is called like
x[1] or x[1, 3j]. In this section, we'll introduce you to the power of [, first showing
you how you can use it with vectors, and then showing how the same principles
extend in a straightforward way to 2D structures like data frames. We'll then help you
cement that knowledge by showing how various dplyr verbs are special cases of [.

Subsetting Vectors

There are five main types of things that you can subset a vector with, i.e., that can be
the 1 in x[1]:

o A vector of positive integers. Subsetting with positive integers keeps the elements
at those positions:
x <- c("one", "two", "three", "four", "five")
x[c(3, 2, 5)]
#> [1] "three" "two" "five"
By repeating a position, you can actually make a longer output than input,
making the term “subsetting” a bit of a misnomer:
x[c(1, 1, 5, 5, 5, 2)]
#> [1] "one" "one" "five" "five" "five" "two"
o A vector of negative integers. Negative values drop the elements at the specified
positions:
x[c(-1, -3, -5)]
#> [1] "two" "four"
o A logical vector. Subsetting with a logical vector keeps all values corresponding
to a TRUE value. This is most often useful in conjunction with the comparison

functions:
x <- c(10, 3, NA, 5, 8, 1, NA)

ALl non-missing values of x
x[!is.na(x)]
#> [1] 16 3 5 8 1

All even (or missing!) values of x
x[x %% 2 == 0]
#> [1] 106 NA 8 NA

Unlike filter(), NA indices will be included in the output as NAs.

490 | Chapter 27:AField Guide to Base R

https://dplyr.tidyverse.org/reference/filter.html

o A character vector. If you have a named vector, you can subset it with a character

vector:
x <- c(abc = 1, def = 2, xyz = 5)
x[c("xyz", "def")]
#> xyz def
#> 5 2

As with subsetting with positive integers, you can use a character vector to

duplicate individual entries.

o Nothing. The final type of subsetting is nothing, x[], which returns the complete
x. This is not useful for subsetting vectors, but as well see shortly, it is useful

when subsetting 2D structures like tibbles.

Subsetting Data Frames

There are quite a few different ways' that you can use [with a data frame, but the
most important way is to select rows and columns independently with df[rows,
cols]. Here rows and cols are vectors as described earlier. For example, df[rows,]
and df[, cols] select just rows or just columns, using the empty subset to preserve

the other dimension.

Here are a couple of examples:

df <- tibble(

X = 1:3,
y = c("a", "e", "f"),
z = runif(3)

)

Select first row and second column
df[1, 2]

#> # A tibble: 1 x 1

y

#> <chr>

1 a

Select all rows and columns x and y
dfL, cC'x" , "y")]
#> # A tibble: 3 x 2

#> Xy
#> <int> <chr>
#> 1 1a
#> 2 2 e
3 3f

Select rows where ‘x' 1s greater than 1 and all columns
df[df$x > 1,]

#> # A tibble: 2 x 3

#> Xy z

1 Read the Selecting multiple elements section in Advanced R to see how you can also subset a data frame like it

is a 1D object and how you can subset it with a matrix.

Selecting Multiple Elements with [

91

https://oreil.ly/VF0sY

#> <int> <chr> <dbl>

#1 2e 0.8%4

#2 3f 0.601
We'll come back to $ shortly, but you should be able to guess what df$x does from the
context: it extracts the x variable from df. We need to use it here because [doesn’t use
tidy evaluation, so you need to be explicit about the source of the x variable.

There’s an important difference between tibbles and data frames when it comes to [.
In this book, we've mainly used tibbles, which are data frames, but they tweak some
behaviors to make your life a little easier. In most places, you can use “tibble” and
“data frame” interchangeably, so when we want to draw particular attention to R’s
built-in data frame, we’ll write data.frame. If df is a data.frame, then df[, cols]
will return a vector if col selects a single column and will return a data frame if it
selects more than one column. If df is a tibble, then [will always return a tibble.
df1l <- data.frame(x = 1:3)

df1l, "x"]
[1] 12 3

df2 <- tibble(x = 1:3)

df2[, "x"]
#> # A tibble: 3 x 1
#> X
#> <int>
#> 1 1
#> 2 2
#> 3 3

One way to avoid this ambiguity with data.frames is to explicitly specify drop =
FALSE:

df1[, "x" , drop = FALSE]

dplyr Equivalents

Several dplyr verbs are special cases of [:

o filter() is equivalent to subsetting the rows with a logical vector, taking care to

exclude missing values:
df <- tibble(
x = c(2, 3, 1, 1, NA),
y = letters[1:5],
z runif(5s)
)
df [> filter(x > 1)

same as
df[!is.na(df$x) & dfsx > 1,]

492 | Chapter 27: AField Guide to Base R

https://dplyr.tidyverse.org/reference/filter.html

Another common technique in the wild is to use which() for its side effect of
dropping missing values: df [which(df$x > 1), 1.

o arrange() is equivalent to subsetting the rows with an integer vector, usually
created with order():
df |> arrange(x, y)

same as

df[order(dfsx, dfsy),]
You can use order(decreasing = TRUE) to sort all columns in descending order
or -rank(col) to sort columns in decreasing order individually.

o Both select() and relocate() are similar to subsetting the columns with a

character vector:
df |> select(x, z)

same as
df[, <("x", "zM)]

Base R also provides a function that combines the features of filter() and
select()?called subset():

df |>
filter(x > 1) |>
select(y, z)
#> # A tibble: 2 x 2
#> y z
#> <chr> <dbl>
#> 1 a 0.157
2 b 0.00740

same as
df |> subset(x > 1, c(y, z))

This function was the inspiration for much of dplyr’s syntax.

Exercises

1. Create functions that take a vector as input and return:
a. The elements at even-numbered positions
b. Every element except the last value
¢. Only even values (and no missing values)

2. Why is x[-which(x > 0)] not the same as x[x <= 0]? Read the documentation
for which() and do some experiments to figure it out.

2 But it doesn’t handle grouped data frames differently, and it doesn’t support selection helper functions like
starts_with().

Selecting Multiple Elementswith [| 493

https://tidyselect.r-lib.org/reference/starts_with.html
https://rdrr.io/r/base/which.html
https://dplyr.tidyverse.org/reference/arrange.html
https://rdrr.io/r/base/order.html
https://dplyr.tidyverse.org/reference/select.html
https://dplyr.tidyverse.org/reference/relocate.html
https://dplyr.tidyverse.org/reference/filter.html
https://dplyr.tidyverse.org/reference/select.html
https://rdrr.io/r/base/subset.html
https://rdrr.io/r/base/which.html

Selecting a Single Element with $ and [[

[, which selects many elements, is paired with [[and $, which extract a single
element. In this section, we’ll show you how to use [[and $ to pull columns out of
data frames, discuss a couple more differences between data.frames and tibbles, and
emphasize some important differences between [and [[when used with lists.

Data Frames

[[and $ can be used to extract columns out of a data frame. [[can access by position
or by name, and $ is specialized for access by name:

tb <- tibble(

X 1:4,

y = c(10, 4, 1, 21)
)

by position

tb[[1]]
[1] 1234

by name
tb[["x"]]

[1] 12 3 4
tbsx

[1] 12 3 4

They can also be used to create new columns, the base R equivalent of mutate():

tb$z <- tbSx + tbSy

tb

#> # A tibble: 4 x 3
#> X y z
#> <int> <dbl> <dbl>
1 1 10 11
#> 2 2 4 6
3 3 1 4
#> 4 4 21 25

There are several other base R approaches to creating new columns including with
transform(), with(), and within(). Hadley collected a few examples.

Using $ directly is convenient when performing quick summaries. For example, if you
just want to find the size of the biggest diamond or the possible values of cut, there’s
no need to use summarize():

max(diamonds$carat)
[1] 5.01

levels(diamondsScut)
#> [1] "Fair" "Good" "Very Good" "Premium" "Ideal"

494 | Chapter 27: AField Guide to Base R

https://dplyr.tidyverse.org/reference/mutate.html
https://rdrr.io/r/base/transform.html
https://rdrr.io/r/base/with.html
https://rdrr.io/r/base/with.html
https://oreil.ly/z6vyT
https://dplyr.tidyverse.org/reference/summarise.html

dplyr also provides an equivalent to [[/$ that we didn’t mention in Chapter 3: pull().
pull() takes either a variable name or a variable position and returns just that
column. That means we could rewrite the previous code to use the pipe:

diamonds |> pull(carat) |> mean()
#> [1] 0.7979397

diamonds |> pull(cut) |> levels()
#> [1] "Fair" "Good" "Very Good" "Premium" "Ideal"

Tibbles

There are a couple of important differences between tibbles and base data.frames
when it comes to $. Data frames match the prefix of any variable names (so-called
partial matching) and don’t complain if a column doesn’t exist:

df <- data.frame(x1 = 1)

df$x

#> Warning in dfS$x: partial match of 'x' to 'x1'
[1] 1

dfsz

#> NULL

Tibbles are more strict: they only ever match variable names exactly and they will
generate a warning if the column you are trying to access doesn’t exist:

th <- tibble(xl = 1)

tb$x

#> Warning: Unknown or uninitialised column: ‘x'.
#> NULL

tbs$z

#> Warning: Unknown or uninitialised column: ‘z°.
#> NULL

For this reason we sometimes joke that tibbles are lazy and surly: they do less and
complain more.

Lists

[[and $ are also really important for working with lists, and it’s important to
understand how they differ from [. Let’s illustrate the differences with a list named 1:

1 Tist(

1:3,

"3 string",
pi,

list(-1, -5)

<-
a
b
d
d

Selecting a Single Elementwith Sand [[| 495

https://dplyr.tidyverse.org/reference/pull.html
https://dplyr.tidyverse.org/reference/pull.html

o [extracts a sublist. It doesn’t matter how many elements you extract, the result

will always be a list.
str(l[1:2])
#> List of 2
#> S a: int [1:3] 1 2 3
#> S b: chr "a string”

str(l[1])
#> List of 1
#> S a: int [1:3] 1 2 3

str(l[4])

#> List of 1

#> S d:List of 2
#> .5 num -1
#> ..$5 : num -5

Like with vectors, you can subset with a logical, integer, or character vector.

o [[and $ extract a single component from a list. They remove a level of hierarchy
from the list.
str(U[11D)
#> int [1:3] 1 2 3

str(1[[41D)
#> List of 2
S : num -1
#> S : num -5

str(lsa)
#> int [1:3] 1 2 3

The difference between [and [[is particularly important for lists because [[drills
down into the list, while [returns a new, smaller list. To help you remember the
difference, take a look at the unusual pepper shaker shown in Figure 27-1. If this pep-
per shaker is your list pepper, then pepper[1] is a pepper shaker containing a single
pepper packet. pepper[2] would look the same but would contain the second packet.
pepper[1:2] would be a pepper shaker containing two pepper packets. pepper[[1]]
would extract the pepper packet itself.

496 | Chapter 27:AField Guide to Base R

Figure 27-1. (Left) A pepper shaker that Hadley once found in his hotel room. (Middle)
pepper|[1]. (Right) pepper[[1]].

This same principle applies when you use 1D [with a data frame: df["x"] returns a
one-column data frame, and df[["x"]] returns a vector.

Exercises

1. What happens when you use [[with a positive integer that’s bigger than the
length of the vector? What happens when you subset with a name that doesn’t
exist?

2. What would pepper[[1]][1] be? What about pepper[[1]1]1[[1]]?

Apply Family

In Chapter 26, you learned tidyverse techniques for iteration like dplyr::across()
and the map family of functions. In this section, you’ll learn about their base equiva-
lents, the apply family. In this context, apply and map are synonyms because another
way of saying “map a function over each element of a vector” is “apply a function over
each element of a vector” Here we'll give you a quick overview of this family so you
can recognize them in the wild.

Apply Family | 497

https://dplyr.tidyverse.org/reference/across.html

The most important member of this family is lapply(), which is similar to
purrr::map().’ In fact, because we haven’t used any of map()’s more advanced fea-
tures, you can replace every map() call in Chapter 26 with lapply().

There’s no exact base R equivalent to across(), but you can get close by using [with
lapply(). This works because under the hood, data frames are lists of columns, so
calling lapply() on a data frame applies the function to each column.

df <- tibble(a =1, b =2, c="a", d="b", e =4)

First find numeric columns
num_cols <- sapply(df, is.numeric)
num_cols

#> a b c d e
#> TRUE TRUE FALSE FALSE TRUE

Then transform each column with lapply() then replace the original values
df[, num_cols] <- lapply(df[, num_cols, drop = FALSE], \(x) x * 2)

df

#> # A tibble: 1 x 5

#> a b c d e
#> <dbl> <dbl> <chr> <chr> <dbl>
#> 1 2 4 a b 8

The previous code uses a new function, sapply(). It's similar to lapply(), but
it always tries to simplify the result, which is the reason for the s in its name,
here producing a logical vector instead of a list. We don’t recommend using it for
programming, because the simplification can fail and give you an unexpected type,
but it’s usually fine for interactive use. purrr has a similar function called map_vec()
that we didn’t mention in Chapter 26.

Base R provides a stricter version of sapply() called vapply(), short for vector
apply. It takes an additional argument that specifies the expected type, ensuring that
simplification occurs the same way regardless of the input. For example, we could
replace the previous sapply() call with this vapply() where we specify that we
expect is.numeric() to return a logical vector of length 1:

vapply(df, is.numeric, logical(1l))

#> a b c d e

#> TRUE TRUE FALSE FALSE TRUE
The distinction between sapply() and vapply() is really important when theyre
inside a function (because it makes a big difference to the function’s robustness to
unusual inputs), but it doesn’t usually matter in data analysis.

Another important member of the apply family is tapply(), which computes a single
grouped summary:

3 It just lacks convenient features such as progress bars and reporting which element caused the problem if
there’s an error.

498 | Chapter 27:AField Guide to Base R

https://rdrr.io/r/base/lapply.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/lapply.html
https://dplyr.tidyverse.org/reference/across.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://purrr.tidyverse.org/reference/map.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/numeric.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/lapply.html
https://rdrr.io/r/base/tapply.html

diamonds |>
group_by(cut) |>
summarize(price = mean(price))
#> # A tibble: 5 x 2

#> cut price
#> <ord> <dbl>
#> 1 Fair 4359.

1

2 Good 3929.
#> 3 Very Good 3982.

4 Premium 4584.
#> 5 Ideal 3458.

tapply(diamondsSprice, diamondsS$Scut, mean)

#> Fair Good Very Good Premium Ideal

#> 4358.758 3928.864 3981.760 4584.258 3457.542
Unfortunately, tapply() returns its results in a named vector, which requires some
gymnastics if you want to collect multiple summaries and grouping variables into
a data frame (it’s certainly possible to not do this and just work with free-floating
vectors, but in our experience that just delays the work). If you want to see how you
might use tapply() or other base techniques to perform other grouped summaries,
Hadley has collected a few techniques in a gist.

The final member of the apply family is the titular apply(), which works with
matrices and arrays. In particular, watch out for apply(df, 2, something), which is
a slow and potentially dangerous way of doing lapply(df, something). This rarely
comes up in data science because we usually work with data frames and not matrices.

for Loops

for loops are the fundamental building block of iteration that both the apply and
map families use under the hood. for loops are powerful and general tools that are
important to learn as you become a more experienced R programmer. The basic
structure of a for loop looks like this:

for (element in vector) {

do something with element

}
The most straightforward use of for loops is to achieve the same effect as walk(): call
some function with a side effect on each element of a list. For example, in “Writing to
a Database” on page 483, instead of using walk():

paths |> walk(append_file)
we could have used a for loop:
for (path in paths) {

append_file(path)
}

forLoops | 499

https://rdrr.io/r/base/tapply.html
https://rdrr.io/r/base/tapply.html
https://oreil.ly/evpcw
https://rdrr.io/r/base/apply.html
https://purrr.tidyverse.org/reference/map.html

Things get a little trickier if you want to save the output of the for loop, for example
reading all of the Excel files in a directory like we did in Chapter 26:

paths <- dir("data/gapminder", pattern = "\\.x1lsx$", full.names = TRUE)
files <- map(paths, readxl::read_excel)

There are a few different techniques that you can use, but we recommend being
explicit about what the output is going to look like up front. In this case, we're going
to want a list the same length as paths, which we can create with vector():

files <- vector("list", length(paths))

Then instead of iterating over the elements of paths, we'll iterate over their indices,
using seq_along() to generate one index for each element of paths:

seq_along(paths)
#> [1] 1 2 3 4 5 6 7 8 910 11 12

Using the indices is important because it allows us to link to each position in the
input with the corresponding position in the output:

for (1 in seq_along(paths)) {
files[[1]] <- readxl::read_excel(paths[[1]])
}

To combine the list of tibbles into a single tibble, you can use do.call() + rbind():

do.call(rbind, files)
#> # A tibble: 1,704 x 5

#> country continent lifeExp pop gdpPercap
#> <chr> <chr> <dbl> <dbl> <dbl>
#> 1 Afghanistan Asia 28.8 8425333 779.
#> 2 Albania Europe 55.2 1282697 1601.
#> 3 Algeria Africa 43.1 9279525 2449.
#> 4 Angola Africa 30.0 4232095 3521.
#> 5 Argentina Americas 62.5 17876956 5911.
#> 6 Australia Oceania 69.1 8691212 10040.

#> # .. with 1,698 more rows

Rather than making a list and saving the results as we go, a simpler approach is to
build up the data frame piece by piece:

out <- NULL

for (path in paths) {

out <- rbind(out, readxl::read_excel(path))

}
We recommend avoiding this pattern because it can become slow when the vector is
long. This is the source of the persistent canard that for loops are slow: theyre not,
but iteratively growing a vector is.

Plots

Many R users who don’t otherwise use the tidyverse prefer ggplot2 for plotting due
to helpful features such as sensible defaults, automatic legends, and a modern look.

500 | Chapter27:AField Guide to Base R

https://rdrr.io/r/base/vector.html
https://rdrr.io/r/base/seq.html
https://rdrr.io/r/base/do.call.html
https://rdrr.io/r/base/cbind.html

However, base R plotting functions can still be useful because they’re so concise—it
takes very little typing to do a basic exploratory plot.

There are two main types of base plot you'll see in the wild: scatterplots and histo-
grams, produced with plot() and hist(), respectively. Here’s a quick example from
the diamonds dataset:

Left
hist(diamonds$carat)

Right
plot(diamonds$carat, diamondsSprice)

Histogram of diamonds$carat ° o
o
S
] g ®
— P
(=] Q
S _ 23
2 2
2]
2 £
9] — g 8
= ° Q
o 0
2
L o
S A o
B |
1 2 3 4 5
o

diamonds$carat
diamonds$carat

Note that base plotting functions work with vectors, so you need to pull columns out
of the data frame using $ or some other technique.

Summary

In this chapter, we showed you a selection of base R functions useful for subsetting
and iteration. Compared to approaches discussed elsewhere in the book, these func-
tions tend to have more of a “vector” flavor than a “data frame” flavor because base R
functions tend to take individual vectors, rather than a data frame and some column
specification. This often makes life easier for programming and so becomes more
important as you write more functions and begin to write your own packages.

This chapter concludes the programming section of the book. You made a solid
start on your journey to becoming not just a data scientist who uses R, but a data
scientist who can program in R. We hope these chapters have sparked your interest in
programming and that you're looking forward to learning more outside of this book.

Summary | 501

https://rdrr.io/r/graphics/plot.default.html
https://rdrr.io/r/graphics/hist.html

PART VI
Communicate

So far, you've learned the tools to get your data into R, tidy it into a form convenient
for analysis, and then understand your data through transformation and visualiza-
tion. However, it doesn’t matter how great your analysis is unless you can explain it to
others: you need to communicate your results.

s N

Visualize

Understand

.
Program

Figure VI-1. Communication is the final part of the data science process; if you can’t
communicate your results to other humans, it doesn’t matter how great your analysis is.

Communication is the theme of the following two chapters:

o In Chapter 28, you will learn about Quarto, a tool for integrating prose, code,
and results. You can use Quarto for analyst-to-analyst communication as well
as analyst-to-decision-maker communication. Thanks to the power of Quarto
formats, you can even use the same document for both purposes.

o In Chapter 29, you'll learn a little about the many other varieties of outputs you
can produce using Quarto, including dashboards, websites, and books.

These chapters focus mostly on the technical mechanics of communication, not the
really hard problems of communicating your thoughts to other humans. However,
there are lot of other great books about communication, which we’ll point you to at
the end of each chapter.

CHAPTER 28
Quarto

Introduction

Quarto provides a unified authoring framework for data science, combining your
code, its results, and your prose. Quarto documents are fully reproducible and sup-
port dozens of output formats, such as PDFs, Word files, presentations, and more.

Quarto files are designed to be used in three ways:

o For communicating to decision-makers, who want to focus on the conclusions,
not the code behind the analysis

« For collaborating with other data scientists (including future you!), who are
interested in both your conclusions and how you reached them (i.e., the code)

o As an environment in which to do data science, as a modern-day lab notebook
where you can capture not only what you did but also what you were thinking

Quarto is a command-line interface tool, not an R package. This means that help is,
by and large, not available through ?. Instead, as you work through this chapter and
use Quarto in the future, you should refer to the Quarto documentation.

If youre an R Markdown user, you might be thinking, “Quarto sounds a lot like R
Markdown?” Youre not wrong! Quarto unifies the functionality of many packages
from the R Markdown ecosystem (rmarkdown, bookdown, distill, xaringan, etc.)
into a single consistent system as well as extends it with native support for multiple
programming languages such as Python and Julia in addition to R. In a way, Quarto
reflects everything that was learned from expanding and supporting the R Markdown
ecosystem for a decade.

505

https://oreil.ly/_6LNH

Prerequisites

You need the Quarto command-line interface (Quarto CLI), but you don’t need to
explicitly install it or load it, as RStudio automatically does both when needed.

Quarto Basics

This is a Quarto file—a plain-text file that has the extension .qmd:

title: "Diamond sizes"
date: 2022-09-12
format: html

)
#| label: setup
#| include: false

library(tidyverse)

smaller <- diamonds |>
filter(carat <= 2.5)

We have data about 'r nrow(diamonds)’ diamonds.
Only 'r nrow(diamonds) - nrow(smaller)' are larger than 2.5 carats.
The distribution of the remainder is shown below:

)
#| label: plot-smaller-diamonds
#| echo: false

smaller |>

ggplot(aes(x = carat)) +
geom_freqpoly(binwidth = 0.01)

It contains three important types of content:

o An (optional) YAML header surrounded by - - -
o Chunks of R code surrounded by " **

o Text mixed with simple text formatting like # heading and _italics_

Figure 28-1 shows a .gqmd document in RStudio with a notebook interface where
code and output are interleaved. You can run each code chunk by clicking the
Run icon (it looks like a play button at the top of the chunk) or by pressing Cmd/
Ctrl+Shift+Enter. RStudio executes the code and displays the results inline with the
code.

506 | Chapter28:Quarto

B rads-quarto -
Environment | History | Connections | Tutoral C1=]
a ar s
"~ Fles | Plots | Packages | Help | Viewer | Presentation =5
- | inser - | Table - = Outline L
n | Sepon - |0
smaller <- diamonds |>
filter(carat <= 2.5)
We have data about r nrow(diamonds) diamonds. Only r nrow(diamonds) -
nrow(smaller) are larger than 2.5 carats. The distribution of the remainder is shown
below:
i F
#| label: plot-smaller-diamonds
#] echo: false
smaller |>
geplot (aes(carat)) +
geom_fregpoly (binwidth = 0.01)
000~
8
1000~
o
os o s 2o 25
carat
op eve = Qurto &
Console &0

Figure 28-1. A Quarto document in RStudio. Code and output are interleaved in the
document, with the plot output appearing right underneath the code.

If you don't like seeing your plots and output in your document and would rather
make use of RStudio’s Console and Plots panes, you can click the gear icon next to
Render and switch to Chunk Output in Console, as shown in Figure 28-2.

©- 1@) | &[4 cowimion g - B rads-auarto -
) damond-sizes.amd x =5 Environment | History | Connections | Tutoria

O Renderonsave | 7 Q| b render - - a -n < dousms - | £ Sun- G
source [Visal] | © Normal - | 1= 1= | | y Use VisualEdtor oxra = outine a

n Data
- ©Osmaller 53814 obs. of 10 variables
title: "Diamond sizes"
date: 2022-09-12 Chunk Output Inline
format: html v Chunk Output in Console

P

{r}
#] label: setup
#| include: false

Library (tidyverse)

smaller <- diamonds |>
filter(carat <= 2.5) Files Plots Packages Help Viewer Presentation
A z00m | B - |0 |

% publish ~
We have data about r nrow(diamonds) diamonds. Only r nrow(diamonds) -

nrow(smaller) are larger than 2.5 carats. The distribution of the remainder is shown
below:
{r} = 2000
#| label: plot-smaller-diamonds
#] echo: false
smaller |> -
ggplot(aes(carat)) + 3
geon_fregpoly (binwidth = 6.01)
1000+
o —r\
CFop Leve = Quarto & | !) ; !
ds o s 2 25
Consale &0 carat

Figure 28-2. A Quarto document in RStudio with the plot output in the Plots pane.

QuartoBasics | 507

To produce a complete report containing all text, code, and results, click Ren-
der or press Cmd/Ctrl+Shift+K. You can also do this programmatically with
quarto: :quarto_render("diamond-sizes.qmd"). This will display the report in the
viewer pane as shown in Figure 28-3 and create an HTML file.

+ adain - B racs-quaro -
=5 Enironment | History | Connections | Tutoral &0
a W - | -
— - s e | plots | packages | lp | Viewsr | rasenaton -5
| omar - | wsen - | Table S T o
title: "Diamond sizes" Diamond sizes
date: 2022-09-12
format: html PUBLISHED
o September 12, 2022
We have data about 53940 diamonds. Only 126 are larger than 2.5 carats. The
{r} = distribution of the remainder is shown below:
#| label: setup
#| include: false
library(tidyverse)
smaller <- diamonds |> 2000
filter(carat <= 2.5)
We have data about r nrow(diamonds) diamonds. Only r nrow(diamonds) -
nrow(smaller) are larger than 2.5 carats. The distribution of the remainder is shown H
below.
To00-
r} =
#| label: plot-smaller-diamonds
#] echo: false
smaller |> JV\
ggplot (aes(carat)) + o-
geom_fregpoly (binwidth = 0.01) 20 25
carat
op Leve £ quarto ©
Consoe 50

Figure 28-3. A Quarto document in RStudio with the rendered document in the Viewer
pane.

When you render the document, Quarto sends the .qmd file to knitr, which executes
all of the code chunks and creates a new Markdown (.md) document that includes
the code and its output. The Markdown file generated by knitr is then processed by
pandoc, which is responsible for creating the finished file. Figure 28-4 shows this
process. The advantage of this two-step workflow is that you can create a very wide
range of output formats, as you’ll learn about in Chapter 29.

L
gmd knitr md pandoc m /- &

Figure 28-4. Diagram of Quarto workflow from qmd, to knitt, to md, to pandoc, to
output in PDF, MS Word, or HTML formats.

To get started with your own .qmd file, select File > New File > Quarto Document...
in the menu bar. RStudio will launch a wizard that you can use to prepopulate your
file with useful content that reminds you how the key features of Quarto work.

508 | Chapter28:Quarto

https://oreil.ly/HvFDz
https://oreil.ly/QxUsn

The following sections dive into the three components of a Quarto document in more
details: the Markdown text, the code chunks, and the YAML header.

Exercises

1. Create a new Quarto document by selecting File > New File > Quarto Document.
Read the instructions. Practice running the chunks individually. Then render the
document by clicking the appropriate button and then by using the appropriate
keyboard shortcut. Verify that you can modify the code, rerun it, and see modi-
fied output.

2. Create one new Quarto document for each of the three built-in formats: HTML,
PDF, and Word. Render each of the three documents. How do the outputs differ?
How do the inputs differ? (You may need to install LaTeX to build the PDF
output—RStudio will prompt you if this is necessary.)

Visual Editor

The visual editor in RStudio provides a WYSIWYM interface for authoring Quarto
documents. Under the hood, prose in Quarto documents (.qmd files) is written
in Markdown, a lightweight set of conventions for formatting plain-text files. In
fact, Quarto uses Pandoc markdown (a slightly extended version of Markdown that
Quarto understands), including tables, citations, cross-references, footnotes, divs/
spans, definition lists, attributes, raw HTML/TeX, and more, as well as support for
executing code cells and viewing their output inline. While Markdown is designed
to be easy to read and write, as you will see in “Source Editor” on page 511, it still
requires learning new syntax. Therefore, if youre new to computational documents
like .qmd files but have experience using tools like Google Docs or MS Word, the
easiest way to get started with Quarto in RStudio is the visual editor.

In the visual editor either you can use the buttons on the menu bar to insert images,
tables, cross-references, etc., or you can use the catch-all Cmd/Ctrl+/ shortcut to
insert just about anything. If you are at the beginning of a line (as shown in Fig-
ure 28-5), you can also enter just / to invoke the shortcut.

Visual Editor | 509

https://oreil.ly/nEiGf

®') markdown.qmd —
& ORenderonSave *7 Q= Render - - k<] ~#Run - 5~
Source [Visual B I « | Normal ~ | i= i= ¢ @ Format - | Insert ~ Table ~ = Outline

Text formatting

italic bold underline strikeett sMALL cAPs code superscript? and subscript,
Headings

1st Level Header

2nd Level Header

3rd Level Header

Lists

e Bulleted list item 1

e Item 2

o Item 2a
o Item 2b

1. Numbered list item 1

2. Item 2. The numbers are incremented automatically in the output.

Figure
Links and images BN Acribuces | Advanced |
http://example.com nage (Fls oc (R)
LR R [buarto.ong | srowse...
linked phrase Width: 320 Height: 77 (2 Lock ratio
. ® © Alignment:
’ http://example.com & @ ‘ [@ Default © Left © Center © Right ‘
‘. ® Caption:
—— q uag rto [otomi oo]
Alternative text:
loptional caption text [@uarto logo and the word quarto spelled in smal case letters |
w: (320 @ Lock ratio i'""k L l
Co)
First Header ‘Second Header
Content Cell Content Cell
Content Cell Content Cell
[l type to search...
o R Code Chunk
Executable R chunk
& Python Code Chunk
Executable Python chunk
= Div..
Block containing other con...
Bullet List
List using bullets for items
Numbered List
List using numbers for items
Hi Heading 1
Part heading
@ Tables ¢ Quarto 3

Figure 28-5. Quarto visual editor.

510 | Chapter28:Quarto

Inserting images and customizing how they are displayed is also facilitated with the
visual editor. Either you can paste an image from your clipboard directly into the
visual editor (and RStudio will place a copy of that image in the project directory and
link to it) or you can use the visual editor’s Insert > Figure/Image menu to browse to
the image you want to insert or paste its URL. In addition, using the same menu you
can resize the image as well as add a caption, alternative text, and a link.

The visual editor has many more features that we haven't enumerated here that you
might find useful as you gain experience authoring with it.

Most importantly, while the visual editor displays your content with formatting,
under the hood, it saves your content in plain Markdown, and you can switch back
and forth between the visual and source editors to view and edit your content using
either tool.

Exercises

1. Re-create the document in Figure 28-5 using the visual editor.

2. Using the visual editor, insert a code chunk using the Insert menu and then the
insert anything tool.

3. Using the visual editor, figure out how to:
a. Add a footnote.
b. Add a horizontal rule.
c. Add a block quote.

4. In the visual editor, select Insert > Citation and insert a citation to the paper
titled “Welcome to the Tidyverse” using its digital object identifier (DOI), which
is 10.21105/joss.01686. Render the document and observe how the reference
shows up in the document. What change do you observe in the YAML of your
document?

Source Editor

You can also edit Quarto documents using the source editor in RStudio, without
the assist of the visual editor. While the visual editor will feel familiar to those with
experience writing in tools like Google Docs, the source editor will feel familiar
to those with experience writing R scripts or R Markdown documents. The source
editor can also be useful for debugging any Quarto syntax errors since it’s often easier
to catch these in plain text.

The following guide shows how to use Pandoc’s Markdown for authoring Quarto
documents in the source editor:

Source Editor | 511

https://oreil.ly/I9_I7
https://oreil.ly/H_Xn-

Text formatting
{talic **bold** ~~strikeout~~ ‘code’
superscript”2” subscript~2~
[underline]{.underline} [small caps]{.smallcaps}
Headings
1st Level Header
2nd Level Header
3rd Level Header
##t Lists
- Bulleted list item 1
- Item 2
- Item 2a
- Item 2b
1. Numbered list item 1

2. Item 2.
The numbers are incremented automatically in the output.

Links and images
<http://example.com>
[linked phrase](http://example.com)

![optional caption text](quarto.png){
fig-alt="Quarto logo and the word quarto spelled in small case letters"}

Tables

| First Header | Second Header

[EERRRRER EEEEREERETT !

| Content Cell | Content Cell |

| Content Cell | Content Cell |
The best way to learn these is simply to try them. It will take a few days, but soon they
will become second nature, and you won't need to think about them. If you forget,
you can get to a handy reference sheet with Help > Markdown Quick Reference.

512 | Chapter28: Quarto

Exercises

1. Practice what you've learned by creating a brief résumé. The title should be your
name, and you should include headings for (at least) education or employment.
Each of the sections should include a bulleted list of jobs/degrees. Highlight the
year in bold.

2. Using the source editor and the Markdown quick reference, figure out how to:
a. Add a footnote.
b. Add a horizontal rule.
c. Add a block quote.

3. Copy and paste the contents of diamond-sizes.gmd into a local R Quarto docu-
ment. Check that you can run it, and then add text after the frequency polygon
that describes its most striking features.

4. Create a document in Google Docs or MS Word (or locate a document you
have created previously) with some content in it such as headings, hyperlinks,
formatted text, etc. Copy the contents of this document and paste it into a Quarto
document in the visual editor. Then, switch to the source editor and inspect the
source code.

Code Chunks

To run code inside a Quarto document, you need to insert a chunk. There are three
ways to do so:

o Pressing the keyboard shortcut Cmd+Option+I/Ctrl+Alt+I
o Clicking the insert button icon in the editor toolbar

o Manually typing the chunk delimiters ***{r}and """

Wed recommend you learn the keyboard shortcut. It will save you a lot of time in the
long run!

You can continue to run the code using the keyboard shortcut that by now (we hope!)
you know and love: Cmd/Ctrl+Enter. However, chunks get a new keyboard shortcut,
Cmd/Ctrl+Shift+Enter, which runs all the code in the chunk. Think of a chunk like
a function. A chunk should be relatively self-contained and focused around a single
task.

The following sections describe the chunk header that consists of ***{r}, followed
by an optional chunk label and various other chunk options, each on their own line,
marked by #].

Code Chunks | 513

https://oreil.ly/Auuh2

Chunk Label

Chunks can be given an optional label:

e
#| label: simple-addition

1+1

#> [1] 2

This has three advantages:

e You can more easily navigate to specific chunks using the drop-down code
navigator in the bottom left of the script editor:

Chunk 1: setup
Quarto

Chunk 2: cars
Including plots

Chunk 3: pressure

[@ Chunk 3: pressure =

o Graphics produced by the chunks will have useful names that make them easier
to use elsewhere. More on that in “Figures” on page 517.

o You can set up networks of cached chunks to avoid re-performing expensive
computations on every run. More on that in “Caching” on page 522.

Your chunk labels should be short but evocative and should not contain spaces.
We recommend using dashes (-) to separate words (instead of underscores, _) and
avoiding other special characters in chunk labels.

You are generally free to label your chunk however you like, but there is one chunk
name that imbues special behavior: setup. When youre in a notebook mode, the
chunk named setup will be run automatically once, before any other code is run.

Additionally, chunk labels cannot be duplicated. Each chunk label must be unique.

Chunk Options

Chunk output can be customized with options, fields supplied to the chunk header.
Knitr provides almost 60 options that you can use to customize your code chunks.
Here we'll cover the most important chunk options that you'll use frequently. You can
see the full list here.

514 | Chapter28: Quarto

https://oreil.ly/38bld

The most important set of options controls if your code block is executed and what
results are inserted in the finished report:

eval: false
Prevents code from being evaluated. (And obviously if the code is not run, no
results will be generated.) This is useful for displaying example code, or for
disabling a large block of code without commenting each line.

include: false
Runs the code but doesn't show the code or results in the final document. Use
this for setup code that you don't want cluttering your report.

echo: false
Prevents code, but not the results, from appearing in the finished file. Use this
when writing reports aimed at people who don’t want to see the underlying R
code.

message: false orwarning: false
Prevents messages or warnings from appearing in the finished file.

results: hide
Hides printed output.

fig-show: hide
Hides plots.

error: true
Causes the render to continue even if code returns an error. This is rarely
something you’ll want to include in the final version of your report, but can be
useful if you need to debug exactly what is going on inside your .qmd. It’s also
useful if youre teaching R and want to deliberately include an error. The default,
error: false, causes rendering to fail if there is a single error in the document.

Each of these chunk options gets added to the header of the chunk, following #|. For

example, in the following chunk, the result is not printed since eval is set to false:
-
#| label: simple-multiplication
#| eval: false

2 %2

Code Chunks | 515

The following table summarizes which types of output each option suppresses:

Option Run Code Show Code Output Plots Messages Warnings
eval: false X X X X X
include: false X X X X X
echo: false X

results: hide X

fig-show: hide X

message: false X

warning: false X

Global Options

As you work more with knitr, you will discover that some of the default chunk
options don'’t fit your needs and you want to change them.

You can do this by adding the preferred options in the document YAML, under
execute. For example, if you are preparing a report for an audience who does not
need to see your code but only your results and narrative, you might set echo:
false at the document level. That will hide the code by default and show only the
chunks you deliberately choose to show (with echo: true). You might consider
setting message: false and warning: false, but that would make it harder to
debug problems because you wouldn't see any messages in the final document.

title: "My report”

execute:

echo: false

Since Quarto is designed to be multilingual (it works with R as well as other
languages like Python, Julia, etc.), all of the knitr options are not available at the
document execution level since some of them work only with knitr and not other
engines Quarto uses for running code in other languages (e.g., Jupyter). You can,
however, still set these as global options for your document under the knitr field,
under opts_chunk. For example, when writing books and tutorials we set:

title: "Tutorial”

knitr:

opts_chunk:
comment: "#>"
collapse: true

This uses our preferred comment formatting and ensures that the code and output
are kept closely entwined.

516 | Chapter28: Quarto

Inline Code

There is one other way to embed R code into a Quarto document: directly into the
text, with 'r . This can be useful if you mention properties of your data in the text.
For example, the example document used at the start of the chapter had:

We have data about 'r nrow(diamonds)' diamonds. Only ‘r nrow(diamonds) -
nrow(smaller)" are larger than 2.5 carats. The distribution of the remainder is shown
below:

When the report is rendered, the results of these computations are inserted into the
text:

We have data about 53940 diamonds. Only 126 are larger than 2.5 carats. The distribu-
tion of the remainder is shown below:

When inserting numbers into text, format() is your friend. It allows you to set the
number of digits so you don't print to a ridiculous degree of accuracy, and you can
use big.mark to make numbers easier to read. You might combine these into a helper
function:

comma <- function(x) format(x, digits = 2, big.mark = ",")

comma(3452345)

#> [1] "3,452,345"

comma(.12358124331)
[1] "0.12"

Exercises

1. Add a section that explores how diamond sizes vary by cut, color, and clarity.
Assume you're writing a report for someone who doesn’t know R, and instead of
setting echo: false on each chunk, set a global option.

2. Download diamond-sizes.qmd. Add a section that describes the largest 20 dia-
monds, including a table that displays their most important attributes.

3. Modify diamonds-sizes.qmd to use label_comma() to produce nicely formatted
output. Also include the percentage of diamonds that are larger than 2.5 carats.

Figures

The figures in a Quarto document can be embedded (e.g., a PNG or JPEG file) or
generated as a result of a code chunk.

To embed an image from an external file, you can use the Insert menu in the Visual
Editor RStudio and select Figure/Image. This will pop open a menu where you can
browse to the image you want to insert as well as add alternative text or a caption to it
and adjust its size. In the visual editor you can also simply paste an image from your

Figures | 517

https://rdrr.io/r/base/format.html
https://oreil.ly/Auuh2

clipboard into your document and RStudio will place a copy of that image in your
project folder.

If you include a code chunk that generates a figure (e.g., includes a ggplot() call), the
resulting figure will be automatically included in your Quarto document.

Figure Sizing

The biggest challenge of graphics in Quarto is getting your figures the right size and
shape. There are five main options that control figure sizing: fig-width, fig-height,
fig-asp, out-width, and out-height. Image sizing is challenging because there are
two sizes (the size of the figure created by R and the size at which it is inserted in
the output document) and multiple ways of specifying the size (i.e., height, width, and
aspect ratio: pick two of three).

We recommend three of the five options:

o Plots tend to be more aesthetically pleasing if they have consistent width. To
enforce this, set fig-width: 6 (6”) and fig-asp: 0.618 (the golden ratio) in the
defaults. Then in individual chunks, adjust only fig-asp.

« Control the output size with out-width and set it to a percentage of the body
width of the output document. We suggest out-width: "70%" and fig-align:
center. That gives plots room to breathe, without taking up too much space.

o To put multiple plots in a single row, set layout-ncol to 2 for two plots, 3 for
three plots, etc. Depending on what you're trying to illustrate (e.g., show data or
show plot variations), you might also tweak fig-width, as discussed next.

If you find that you're having to squint to read the text in your plot, you need to
tweak fig-width. If fig-width is larger than the size the figure is rendered in the
final doc, the text will be too small; if fig-width is smaller, the text will be too big.
You'll often need to do a little experimentation to figure out the right ratio between
the fig-width and the eventual width in your document. To illustrate the principle,
the following three plots have fig-width of 4, 6, and 8, respectively:

518 | Chapter28: Quarto

20~

40-

20~

i
displ

If you want to make sure the font size is consistent across all your figures, whenever
you set out-width, you'll also need to adjust fig-width to maintain the same ratio
with your default out-width. For example, if your default fig-width is 6 and out-
width is “70%” when you set out-width: "50%", you'll need to set fig-width to 4.3
(6*0.5/0.7).

Figure sizing and scaling is an art and science, and getting things right can require
an iterative trial-and-error approach. You can learn more about figure sizing in the
“Taking Control of Plot Scaling” blog post.

Figures | 519

https://oreil.ly/EfKFq

Other Important Options

When mingling code and text, like in this book, you can set fig-show: hold so that
plots are shown after the code. This has the pleasant side effect of forcing you to
break up large blocks of code with their explanations.

To add a caption to the plot, use fig-cap. In Quarto this will change the figure from
inline to “floating”

If youre producing PDF output, the default graphics type is PDE This is a good
default because PDFs are high-quality vector graphics. However, they can produce
large and slow plots if you are displaying thousands of points. In that case, set
fig-format: "png" to force the use of PNGs. They are slightly lower quality but will
be much more compact.

It’s a good idea to name code chunks that produce figures, even if you don’t routinely
label other chunks. The chunk label is used to generate the filename of the graphic on
disk, so naming your chunks makes it much easier to pick out plots and reuse them
in other circumstances (e.g., if you want to quickly drop a single plot into an email).

Exercises

1. Open diamond-sizes.gmd in the visual editor, find an image of a diamond, copy
it, and paste it into the document. Double-click the image and add a caption.
Resize the image and render your document. Observe how the image is saved in
your current working directory.

2. Edit the label of the code chunk in diamond-sizes.qgmd that generates a plot to
start with the prefix fig- and add a caption to the figure with the chunk option
fig-cap. Then, edit the text above the code chunk to add a cross-reference to the
figure with Insert > Cross Reference.

3. Change the size of the figure with the following chunk options, one at a time;
render your document; and describe how the figure changes.

a. fig-width: 10
b. fig-height: 3

out-width: "100%"
out-width: "20%"

o

520 | Chapter28:Quarto

Tables

Similar to figures, you can include two types of tables in a Quarto document. They
can be Markdown tables that you create in directly in your Quarto document (using
the Insert Table menu), or they can be tables generated as a result of a code chunk. In
this section we will focus on the latter, tables generated via computation.

By default, Quarto prints data frames and matrices as youd see them in the console:

mtcars[1:5,]
#> mpg cyl disp hp drat wt gsec vs am gear carb

#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

If you prefer that data be displayed with additional formatting, you can use the
knitr::kable() function. The following code generates Table 28-1:

knitr::kable(mtcars[1:5, 1,)

Table 28-1. A knitr kable

mpg ol disp hp drat wt gsec vs am gear carb
Mazda RX4 20 6 160 110 390 2620 1646 0 1 4 4
Mazda RX4 Wag 210 6 160 110 390 2875 1702 0 1 4 4
Datsun 710 228 4 108 93 385 2320 1861 1 1 4 1
Hornet 4 Drive 214 6 258 110 3.08 3215 1944 1 0 3 1
Hornet Sportabout 187 8 360 175 315 3440 17.02 0 0 3 2

Read the documentation for ?knitr::kable to see the other ways in which you can
customize the table. For even deeper customization, consider the gt, huxtable, reacta-
ble, kableExtra, xtable, stargazer, pander, tables, and ascii packages. Each provides a
set of tools for returning formatted tables from R code.

Exercises

1. Open diamond-sizes.qmd in the visual editor, insert a code chunk, and add a
table with knitr::kable() that shows the first five rows of the diamonds data
frame.

2. Display the same table with gt::gt() instead.

3. Add a chunk label that starts with the prefix tbl- and add a caption to the table
with the chunk option tbl-cap. Then, edit the text above the code chunk to add
a cross-reference to the table with Insert > Cross Reference.

Tables | 521

https://rdrr.io/pkg/knitr/man/kable.html
https://rdrr.io/pkg/knitr/man/kable.html
https://rdrr.io/pkg/knitr/man/kable.html
https://gt.rstudio.com/reference/gt.html

Caching

Normally, each render of a document starts from a completely clean slate. This is
great for reproducibility, because it ensures that you've captured every important
computation in code. However, it can be painful if you have some computations that
take a long time. The solution is cache: true.

You can enable the knitr cache at the document level for caching the results of all
computations in a document using standard YAML options:

title: "My Document"
execute:
cache: true

You can also enable caching at the chunk level for caching the results of computation
in a specific chunk:
-

#| cache: true

code for lengthy computation...

When set, this will save the output of the chunk to a specially named file on disk. On
subsequent runs, knitr will check to see if the code has changed, and if it hasn't, it will
reuse the cached results.

The caching system must be used with care, because by default it is based on the code
only, not its dependencies. For example, here the processed_data chunk depends on
the raw-data chunk:

)

#| label: raw-data
#| cache: true

rawdata <- readr::read_csv("a_very_large_file.csv")

e
#| label: processed_data
#| cache: true

processed_data <- rawdata |>
filter(!is.na(import_var)) |>
mutate(new_variable = complicated_transformation(x, y, z))

Caching the processed_data chunk means that it will get rerun if the dplyr pipeline
is changed, but it won't get rerun if the read_csv() call changes. You can avoid that
problem with the dependson chunk option:

522 | Chapter28:Quarto

e
#| label: processed-data
#| cache: true

#| dependson: "raw-data"

processed_data <- rawdata |>
filter(!is.na(import_var)) |>
mutate(new_variable = complicated_transformation(x, y, z))

dependson should contain a character vector of every chunk that the cached chunk
depends on. Knitr will update the results for the cached chunk whenever it detects
that one of its dependencies has changed.

Note that the chunks wont update if a_very_large_file.csv changes, because
knitr caching tracks changes only within the .qmd file. If you want to also track
changes to that file, you can use the cache.extra option. This is an arbitrary R
expression that will invalidate the cache whenever it changes. A good function to use
is file.mtime(): it returns when it was last modified. Then you can write:

-

#| label: raw-data

#| cache: true
#| cache.extra: !expr file.mtime("a_very_large_file.csv")

rawdata <- readr::read_csv("a_very_large_file.csv")

We've followed the advice of David Robinson to name these chunks: each chunk is
named after the primary object that it creates. This makes it easier to understand the
dependson specification.

As your caching strategies get progressively more complicated, it's a good idea to
regularly clear out all your caches with knitr::clean_cache().

Exercises

1. Set up a network of chunks where d depends on c and b, and both b and ¢
depend on a. Have each chunk print lubridate: :now(), set cache: true, and
then verify your understanding of caching.

Troubleshooting

Troubleshooting Quarto documents can be challenging because you are no longer in
an interactive R environment, and you will need to learn some new tricks. Addition-
ally, the error could be due to issues with the Quarto document itself or due to the R
code in the Quarto document.

Troubleshooting | 523

https://rdrr.io/r/base/file.info.html
https://oreil.ly/yvPFt
https://rdrr.io/pkg/knitr/man/clean_cache.html
https://lubridate.tidyverse.org/reference/now.html

One common error in documents with code chunks is duplicated chunk labels, which
are especially pervasive if your workflow involves copying and pasting code chunks.
To address this issue, all you need to do is to change one of your duplicated labels.

If the errors are due to the R code in the document, the first thing you should always
try is to re-create the problem in an interactive session. Restart R, and then select
“Run all chunks,” either from the Code menu, under the Run region, or by pressing
the keyboard shortcut Ctrl+Alt+R. If you're lucky, that will re-create the problem, and
you can figure out what’s going on interactively.

If that doesn't help, there must be something different between your interactive
environment and the Quarto environment. Youre going to need to systematically
explore the options. The most common difference is the working directory: the
working directory of a Quarto is the directory in which it lives. Check the working
directory is what you expect by including getwd() in a chunk.

Next, brainstorm all the things that might cause the bug. You'll need to systematically
check that they’re the same in your R session and your Quarto session. The easiest
way to do that is to set error: true on the chunk causing the problem and then use
print() and str() to check that settings are as you expect.

YAML Header

You can control many other “whole document” settings by tweaking the parameters
of the YAML header. You might wonder what YAML stands for: it's “YAML Ain’t
Markup Language,” which is designed for representing hierarchical data in a way
that’s easy for humans to read and write. Quarto uses it to control many details of
the output. Here we'll discuss three: self-contained documents, document parameters,
and bibliographies.

Self-Contained

HTML documents typically have a number of external dependencies (e.g., images,
CSS style sheets, JavaScript, etc.) and, by default, Quarto places these dependencies
in a _files folder in the same directory as your .qmd file. If you publish the HTML
file on a hosting platform (e.g., QuartoPub), the dependencies in this directory are
published with your document and hence are available in the published report.
However, if you want to email the report to a colleague, you might prefer to have a
single, self-contained, HTML document that embeds all of its dependencies. You can
do this by specifying the embed- resources option.
format:

html:
embed-resources: true

524 | Chapter28:Quarto

https://rdrr.io/r/base/getwd.html
https://rdrr.io/r/base/print.html
https://rdrr.io/r/utils/str.html
https://oreil.ly/SF3Pm

the resulting file will be self-contained, such that it will need no external files and no
internet access to be displayed properly by a browser.

Parameters

Quarto documents can include one or more parameters whose values can be set
when you render the report. Parameters are useful when you want to re-render the
same report with distinct values for various key inputs. For example, you might
be producing sales reports per branch, exam results by student, or demographic
summaries by country. To declare one or more parameters, use the paranms field.

This example uses a my_class parameter to determine which class of cars to display:

format: html
params:
my_class:

suv

)
#| label: setup
#| include: false

library(tidyverse)

class <- mpg |> filter(class == params$my_class)

Fuel economy for ‘r params$my_class's

e}

#| message: false

ggplot(class, aes(x = displ, y = hwy)) +
geom_point() +
geom_smooth(se = FALSE)

As you can see, parameters are available within the code chunks as a read-only list
named params.

You can write atomic vectors directly into the YAML header. You can also run
arbitrary R expressions by prefacing the parameter value with !expr. This is a good
way to specify date/time parameters.

params:

start: !expr lubridate::ymd("2015-01-01")
snapshot: !expr lubridate::ymd_hms("2015-01-01 12:30:00")

YAMLHeader | 525

Bibliographies and Citations

Quarto can automatically generate citations and a bibliography in a number of styles.
The most straightforward way of adding citations and bibliographies to a Quarto
document is using the visual editor in RStudio.

To add a citation using the visual editor, select Insert > Citation. Citations can be
inserted from a variety of sources:

o DOI references
« Zotero personal or group libraries.
o Searches of Crossref, DataCite, or PubMed.

¢+ Your document bibliography (a .bib file in the directory of your document)

Under the hood, the visual mode uses the standard Pandoc Markdown representation
for citations (e.g., [@citation]).

If you add a citation using one of the first three methods, the visual editor will
automatically create a bibliography.bib file for you and add the reference to it.
It will also add a bibliography field to the document YAML. As you add more
references, this file will get populated with their citations. You can also directly edit
this file using many common bibliography formats including BibLaTeX, BibTeX,
EndNote, and Medline.

To create a citation within your .qmd file in the source editor, use a key composed
of @ plus the citation identifier from the bibliography file. Then place the citation in
square brackets. Here are some examples:

Separate multiple citations with a “;': Blah blah [@smith04; 1.

You can add arbitrary comments inside the square brackets:
Blah blah [see , PP. 33-35; also , ch. 1].

Remove the square brackets to create an in-text citation:
says blah, or [p. 33] says blah.

Add a '-' before the citation to suppress the author's name:
Smith says blah [-@smithe4].

When Quarto renders your file, it will build and append a bibliography to the end
of your document. The bibliography will contain each of the cited references from
your bibliography file, but it will not contain a section heading. As a result it is
common practice to end your file with a section header for the bibliography, such as #
References or # Bibliography.

526 | Chapter28:Quarto

https://oreil.ly/sxxlC
https://oreil.ly/BDpHv
https://oreil.ly/BpPdW
https://oreil.ly/vSwdK
https://oreil.ly/Hd2Ey

You can change the style of your citations and bibliography by referencing a citation
style language (CSL) file in the cs1 field:

bibliography: rmarkdown.bib

csl: apa.csl
As with the bibliography field, your CSL file should contain a path to the file. Here we
assume that the CSL file is in the same directory as the .qgmd file. A good place to find
CSL style files for common bibliography styles is the official repository for citation
styles.

Workflow

Earlier, we discussed a basic workflow for capturing your R code where you work
interactively in the console and then capture what works in the script editor. Quarto
brings together the console and the script editor, blurring the lines between interac-
tive exploration and long-term code capture. You can rapidly iterate within a chunk,
editing and re-executing with Cmd/Ctrl+Shift+Enter. When you're happy, you move
on and start a new chunk.

Quarto is also important because it so tightly integrates prose and code. This makes it
a great analysis notebook because it lets you develop code and record your thoughts.
An analysis notebook shares many of the same goals as a classic lab notebook in the
physical sciences. It:

» Records what you did and why you did it. Regardless of how great your memory
is, if you don't record what you do, there will come a time when you have
forgotten important details. Write them down so you don’t forget!

o Supports rigorous thinking. You are more likely to come up with a strong analy-
sis if you record your thoughts as you go and continue to reflect on them. This
also saves you time when you eventually write up your analysis to share with
others.

o Helps others understand your work. It is rare to do data analysis by yourself, and
you'll often be working as part of a team. A lab notebook helps you share not
only what you've done but why you did it with your colleagues or lab mates.

Much of the good advice about using lab notebooks effectively can also be translated
to analysis notebooks. We've drawn on our own experiences and Colin Purrington’s
advice on lab notebooks to come up with the following tips:

« Ensure each notebook has a descriptive title, an evocative filename, and a first
paragraph that briefly describes the aims of the analysis.

Workflow | 527

https://oreil.ly/bYJez
https://oreil.ly/bYJez
https://oreil.ly/n1pLD

o Use the YAML header date field to record the date you started working on the
notebook:

date: 2016-08-23

Use ISO8601 YYYY-MM-DD format so that’s there no ambiguity. Use it even if
you don’t normally write dates that way!

o If you spend a lot of time on an analysis idea and it turns out to be a dead
end, don’t delete it! Write up a brief note about why it failed and leave it in the
notebook. That will help you avoid going down the same dead end when you
come back to the analysis in the future.

o Generally, you're better off doing data entry outside of R. But if you do need to
record a small snippet of data, clearly lay it out using tibble::tribble().

o If you discover an error in a data file, never modify it directly, but instead write
code to correct the value. Explain why you made the fix.

o Before you finish for the day, make sure you can render the notebook. If youre
using caching, make sure to clear the caches. That will let you fix any problems
while the code is still fresh in your mind.

o If you want your code to be reproducible in the long run (i.e., so you can come
back to run it next month or next year), you'll need to track the versions of the
packages that your code uses. A rigorous approach is to use renv, which stores
packages in your project directory. A quick and dirty hack is to include a chunk
that runs sessionInfo()—that won't let you easily re-create your packages as
they are today, but at least you'll know what they were.

» You are going to create many, many, many analysis notebooks over the course of
your career. How are you going to organize them so you can find them again in
the future? We recommend storing them in individual projects and coming up
with a good naming scheme.

Summary

This chapter introduced you to Quarto for authoring and publishing reproducible
computational documents that include your code and your prose in one place.
You learned about writing Quarto documents in RStudio with the visual or source
editor, how code chunks work and how to customize options for them, how to
include figures and tables in your Quarto documents, and options for caching for
computations. Additionally, you learned about adjusting YAML header options for
creating self-contained or parameterized documents as well as including citations and
a bibliography. We also gave you some troubleshooting and workflow tips.

528 | Chapter28:Quarto

https://tibble.tidyverse.org/reference/tribble.html
https://oreil.ly/_I4xb
https://rdrr.io/r/utils/sessionInfo.html

While this introduction should be sufficient to get you started with Quarto, there is
still a lot more to learn. Quarto is still relatively young and is still growing rapidly.
The best place to stay on top of innovations is the official Quarto website.

There are two important topics that we haven’t covered here: collaboration and the
details of accurately communicating your ideas to other humans. Collaboration is
a vital part of modern data science, and you can make your life much easier by
using version control tools, like Git and GitHub. We recommend Happy Git with R, a
user-friendly introduction to Git and GitHub from R users, by Jenny Bryan. The book
is freely available online.

We have also not touched on what you should actually write to clearly communicate
the results of your analysis. To improve your writing, we highly recommend reading
either Style: Lessons in Clarity and Grace by Joseph M. Williams & Joseph Bizup
(Pearson) or The Sense of Structure: Writing from the Reader’s Perspective by George
Gopen (Pearson). Both books will help you understand the structure of sentences and
paragraphs and give you the tools to make your writing clearer. (These books are
rather expensive if purchased new, but theyre used by many English classes, so there
are plenty of cheap second-hand copies.) George Gopen also has a number of short
articles on writing. They are aimed at lawyers, but almost everything applies to data
scientists too.

Summary | 529

https://oreil.ly/_6LNH
https://oreil.ly/bzjrw
https://oreil.ly/qS7tS
https://oreil.ly/qS7tS

CHAPTER 29
Quarto Formats

Introduction

So far, you've seen Quarto used to produce HTML documents. This chapter gives
a brief overview of some of the many other types of output you can produce with
Quarto.

There are two ways to set the output of a document:

o Permanently, by modifying the YAML header:

title: "Diamond sizes"
format: html

o Transiently, by calling quarto: :quarto_render() by hand:
quarto::quarto_render("diamond-sizes.gmd", output_format = "docx")
This is useful if you want to programmatically produce multiple types of output

since the output_format argument can also take a list of values:

quarto::quarto_render(
"diamond-sizes.gmd", output_format = c("docx", "pdf")

)

Output Options

Quarto offers a wide range of output formats. You can find the complete list on
the Quarto documentation on all formats. Many formats share some output options
(e.g., toc: true for including a table of contents), but others have options that are
format specific (e.g., code-fold: true collapses code chunks into a <details> tag for
HTML output so the user can display it on demand; it's not applicable in a PDF or
Word document).

531

https://oreil.ly/mhYNQ

To override the default options, you need to use an expanded format field. For
example, if you wanted to render an HTML document, with a floating table of
contents, youd use:

format:
html:

toc: true
toc_float: true

You can even render to multiple outputs by supplying a list of formats:
format:
html:
toc: true
toc_float: true
pdf: default
docx: default
Note the special syntax (pdf: default) if you don’t want to override any default
options.
To render to all formats specified in the YAML of a document, you can use out
put_format = "all":

quarto::quarto_render("diamond-sizes.gmd", output_format = "all")

Documents

The previous chapter focused on the default html output. There are several basic
variations on that theme, generating different types of documents. For example:

o pdf makes a PDF with LaTeX (an open-source document layout system), which
you’'ll need to install. RStudio will prompt you if you don't already have it.

« docx for Microsoft Word (.docx) documents.

o odt for OpenDocument Text (.odt) documents.

o rtf for Rich Text Format (.rtf) documents.

« gfm for a GitHub Flavored Markdown (.md) document.

« ipynb for Jupyter Notebooks (. ipynb).
Remember, when generating a document to share with decision-makers, you can turn
off the default display of code by setting global options in the document YAML.:

execute:
echo: false

532 | Chapter29: Quarto Formats

For HTML documents, another option is to make the code chunks hidden by default
but visible with a click:
format:

html:
code: true

Presentations

You can also use Quarto to produce presentations. You get less visual control than
with a tool like Keynote or PowerPoint, but automatically inserting the results of your
R code into a presentation can save a huge amount of time. Presentations work by
dividing your content into slides, with a new slide beginning at each second (##) level
header. Additionally, first (#) level headers indicate the beginning of a new section
with a section title slide that is, by default, centered in the middle.

Quarto supports a variety of presentation formats, including:

revealjs
HTML presentation with revealjs

pptx
PowerPoint presentation

beamer
PDF presentation with LaTeX Beamer

You can read more about creating presentations with Quarto.

Interactivity

Just like any HTML document, HTML documents created with Quarto can contain
interactive components as well. Here we introduce two options for including interac-
tivity in your Quarto documents: htmlwidgets and Shiny.

htmlwidgets

HTML is an interactive format, and you can take advantage of that interactivity with
htmlwidgets, R functions that produce interactive HTML visualizations. For example,
take the leaflet map shown next. If youre viewing this page on the web, you can drag
the map around, zoom in and out, etc. You obviously can’t do that in a book, so
Quarto automatically inserts a static screenshot for you.

library(leaflet)

leaflet() |>

setView(174.764, -36.877, zoom = 16) |>

addTiles() |>
addMarkers(174.764, -36.877, popup = "Maungawhau")

Interactivity | 533

https://oreil.ly/Jg7T9

£
+ View Roag | i

| Clifton
| | Halise

Glanfell PIACE

-
B 1 %
<,
%

B n
g &“bé T8
o 3
Brene! + =
5 i
i
o
)
2-' Omana Avenue
L)
&
: =
Ol
fal i k=
S O A, b2
3 [|
g [&
3! f
%
2
®
garger Road %’Hmaﬂ"ad 20
e
@
2
¥ 2 :
Fosg % \ Rautang! Read
= W 3 5 N . = e
& ~5d -|- 2. % Leafiet | @ OpenStreetMap contributors, CC-BY-SA

-

The great thing about htmlwidgets is that you dont need to know anything about
HTML or JavaScript to use them. All the details are wrapped inside the package, so

you don’t need to worry about it.

There are many packages that provide htmlwidgets, including:

o dygraphs for interactive time series visualizations
DT for interactive tables

o threejs for interactive 3D plots
o DiagrammeR for diagrams (like flow charts and simple node-link diagrams)

To learn more about htmlwidgets and see a complete list of packages that provide
them, visit https://oreil.ly/Imdha.

Shiny

htmlwidgets provide client-side interactivity—all the interactivity happens in the
browser, independently of R. That’s great because you can distribute the HTML file
without any connection to R. However, that fundamentally limits what you can do to
things that have been implemented in HTML and JavaScript. An alternative approach
is to use shiny, a package that allows you to create interactivity using R code, not

JavaScript.

534 | Chapter29: Quarto Formats

https://oreil.ly/SE3qV
https://oreil.ly/l3tFl
https://oreil.ly/LQZud
https://oreil.ly/gQork
https://oreil.ly/lmdha

To call Shiny code from a Quarto document, add server: shiny to the YAML
header:

title: "Shiny Web App"

format: html

server: shiny
Then you can use the “input” functions to add interactive components to the
document:

library(shiny)
textInput("name", "What is your name?")
numericInput("age", "How old are you?", NA, min = 0, max = 150)

What is your name?

How old are you?

And you also need a code chunk with the chunk option context: server, which
contains the code that needs to run in a Shiny server.

You can then refer to the values with input$name and input$age, and the code that
uses them will be automatically rerun whenever they change.

We can't show you a live Shiny app here because Shiny interactions occur on the
server side. This means you can write interactive apps without knowing JavaScript,
but you need a server to run them on. This introduces a logistical issue: Shiny
apps need a Shiny server to be run online. When you run Shiny apps on your
own computer, Shiny automatically sets up a Shiny server for you, but you need a
public-facing Shiny server if you want to publish this sort of interactivity online.
That’s the fundamental trade-off of Shiny: you can do anything in a Shiny document
that you can do in R, but it requires someone to be running R.

To learn more about Shiny, we recommend reading Mastering Shiny by Hadley
Wickham.

Interactivity | 535

https://oreil.ly/4Id6V

Websites and Books

With a bit of additional infrastructure, you can use Quarto to generate a complete
website or book:

o Put your .gnd files in a single directory. index.qmd will become the home page.

o Add a YAML file named _quarto.yml that provides the navigation for the site. In
this file, set the project type to either book or website, e.g.:

project:
type: book

For example, the following _quarto.yml file creates a website from three source files:
index.gmd (the home page), viridis-colors.qmd, and terrain-colors.qmd.

project:
type: website

website:
title: "A website on color scales"
navbar:

left:
- href: index.gmd

text: Home

- href: viridis-colors.qmd
text: Viridis colors

- href: terrain-colors.qmd
text: Terrain colors

The _quarto.yml file you need for a book is similarly structured. The following
example shows how you can create a book with four chapters that renders to three
different outputs (html, pdf, and epub). Once again, the source files are .qmd files.

project:
type: book

book:

title: "A book on color scales"
author: "Jane Coloriste"
chapters:

- index.qmd

- intro.qmd

- viridis-colors.gmd

- terrain-colors.qmd

format:
html:
theme: cosmo
pdf: default
epub: default

We recommend that you use an RStudio project for your websites and books. Based
on the _quarto.yml file, RStudio will recognize the type of project youre working on

536 | Chapter29: Quarto Formats

and add a Build tab to the IDE that you can use to render and preview your websites
and books. Both websites and books can also be rendered using quarto: : render().

Read more about Quarto websites and books.

Other Formats

Quarto offers even more output formats:

 You can write journal articles using Quarto Journal Templates.

» You can output Quarto documents to Jupyter Notebooks with format: ipynb.

See the Quarto formats documentation for a list of even more formats.

Summary

In this chapter we presented you with a variety of options for communicating your
results with Quarto, from static and interactive documents to presentations to web-
sites and books.

To learn more about effective communication in these different formats, we recom-
mend the following resources:

« To improve your presentation skills, try Presentation Patterns by Neal Ford, Mat-
thew McCollough, and Nathaniel Schutta. It provides a set of effective patterns
(both low- and high-level) that you can apply to improve your presentations.

o If you give academic talks, you might like “The Leek group guide to giving talks”.
o We haven't taken it ourselves, but we've heard good things about Matt McGarri-
ty’s online course on public speaking.

o If you are creating many dashboards, make sure to read Stephen Few’s Informa-
tion Dashboard Design: The Effective Visual Communication of Data (O'Reilly). It
will help you create dashboards that are truly useful, not just pretty to look at.

o Effectively communicating your ideas often benefits from some knowledge of
graphic design. Robin Williams’s The Non-Designer’s Design Book (Peachpit Press)
is a great place to start.

Summary | 537

https://oreil.ly/P-n37
https://oreil.ly/fiB1h
https://oreil.ly/ovWgb
https://oreil.ly/q-E7l
https://oreil.ly/-iGxF
https://oreil.ly/JnOwJ
https://oreil.ly/ST4yc
https://oreil.ly/lXY9u

Symbols
! (not), 210
" (double quotes), 244
(pound sign), 34
$ (dollar sign)
extracting columns from data frames with $
and [[, 494
selecting a single element with $ and [[,
494-497
tibbles and, 495
working with lists, 495-497
%% (remainder computation), 227
%/% (integer division), 227
%>% pipe, 53
%in%, 43, 212, 225
& (ampersand) operators, 197, 210
&& (ampersand) short-circuiting operator, 210
' (single quotes), 244
() (parentheses), in regex, 272
+ operator
in ggplot2 graphics, 31, 65
in plot layouts, 196
/ (slashes), 95
:= operator, 460
<- (assignment operator), 33, 43, 65
= (equals sign), 44, 49
== (equals sign), 207, 225
[(left bracket)
dplyr verbs that are special cases of [,
492-493
selecting multiple elements with [, 490-493
[[(left brackets)
extracting columns from data frames with $
and [[, 494

Index

selecting a single element with $ and [[,
494-497
tibbles and, 495
working with lists, 495-497
[] (brackets), 263
\ (backslashes)
escapes, 244
paths, 95
\n (new line), 245
\t (tab), 245
\u (escape), 245
\U (escape), 245
* (backticks), 99
{} (brackets), 247
| (alternation), 263
| (or), 210
|> (pipe), 65-67
|| (short-circuiting operator), 210

A

absolute paths, relative paths versus, 95
across() function
.cols argument, 467
column names and, 470
defining how column will be transformed,
468
filter() and, 471
in functions, 471-474
handling missing values, 469
modifying multiple columns with, 466
pivot_longer() versus, 472-474
selecting columns with .cols, 467
aes() function, 456-462
aesthetic mappings, 118-121

539

aesthetics, 10-14
aggregation
case study: aggregates and sample size,
60-61
cumulative and rolling aggregates, 230
aliasing, 385
all() function, 213
alternation (|), 263
analysis notebooks, 527-528
anchors, regex and, 270
annotate() function, 175
annotations, 172-177
anti-joins, 339
anti_join() function, 325
any() function, 213
Apache Arrow (see Arrow)
apply() function, 499
arrange() function, 44, 493
array, JSON, 420
Arrow, 395-402
dbplyr and, 402
dplyr and, 400-402
getting dataset for, 396
opening dataset, 396-398
parquet format, 398-399
ASCII, 256
assignment statements, 34
as_date() function, 304
as_datetime() function, 304
axis ticks, 178-181

B
back reference, 273
Banker's rounding, 229
Base R, 489-501
apply family of functions, 497-499
dplyr verbs that are special cases of [,
492-493
extracting columns from data frames with $
and [[, 494
for loops, 499-500
lists, 495-497
plotting functions, 500
regex applications, 282
selecting a single element with $ and [[,
494-497
selecting multiple elements with [, 490-493
subsetting data frames, 491-492
subsetting vectors, 490

tibbles, 495
books, generating with Quarto, 536-537
Boolean algebra, 210-212

%in%, 212

missing values in, 211

order of operations, 211
Boolean operations

JSON, 420

regular expressions and, 279-280
boxplot, defined, 22
breaks argument, 178, 180
.by argument, 58

C
¢() function, 33, 405
caching, in Quarto, 522-523
capturing groups, regex, 273-274
case_when() function, 217-218
categorical variables, 17
covariation between numerical variables
and, 154-158
covariation between two categorical vari-
ables, 159-161
visualizing relationships between numerical
variables and, 22
visualizing relationships between two cate-
gorical variables, 24
ceiling() function, 229
center, numeric summary functions for,
235-236
character classes (character sets), 263, 271-283
chunks (see code chunks)
closest() function, 349
code chunks
global options, 516
inline code, 517
label, 514
options, 514
Quarto, 513-517
code style, 63-68
function names/arguments, 463
ggplot2, 67
names, 64
pipe (|>), 65-67
sectioning comments, 67
spaces, 65
coding basics, 33
coll() function, 277
color, 185-186

540 | Index

ColorBrewer scales, 185-189
.cols, 467
column headers, data and variable names in, 80
column types
controlling, 104-107
guessing types, 104
missing/unexpected values, 104-105
types provided by readr, 106
column-oriented databases, 378
columns, 47-51
across() in functions, 471-474
calling a single function, 468
calling multiple functions, 468-470
data and variable names in column headers,
80
data transformation, 47-51
filtering, 471
lengthening data in column names, 73-76
modifying multiple columns, 466-474
mutate(), 47-48
names, 470
relocate(), 50
rename(), 50
select(), 49
selecting with .cols, 467
separating strings into, 250
working with many variables in column
names, 78-80
command palette, 63
commas, spaces and, 65
comments, 34, 67
communication, 169-201
annotations, 172-177
labels, 170
layout, 196-199
scales, 177-192
themes, 193-195
community, R, 113
comparisons
creating logical vectors with, 206-209
floating-point, 207
is.na(), 208-209
missing values, 208
compatible types, 218
complete() function, 324
compound keys, 330
conditional transformations, 216-219
case_when(), 217-218
compatible types, 218

if_else(), 216
consecutive identifiers, 233
coordinate systems, 141
copyright law, 427
count() function, 222-224
counting, 222-224
covariation, 154-163
between a categorical and a numerical vari-
able, 154-158
between two categorical variables, 159-160
between two numerical variables, 161-163
defined, 154
cross joins, 348
CSL files, 527
CSS, 430
CSV files
basics, 97
writing multiple files, 485-486
cumulative aggregates, 230

D

data entry, 109
data frame functions, 449-455
common use cases, 452-454
data masking versus tidy selection, 454-455
indirection and tidy evaluation, 450-451
when to embrace a variable, 451
data frames
databases and, 378
defined, 4
extracting columns with $ and [[, 494
subsetting, 491-492
tibbles versus, 40, 492
data import, 97-110
controlling column types, 104-107
data entry, 109
reading data from a file, 97-103
reading data from multiple files, 107
writing to a file, 108-109
data masking, tidy selection versus, 454-455
data point, 5
(see also observation)
data tidying, 69-86
lengthening data, 73-81
tidy data basics, 70-72
widening data, 81-85
data transformation, 39-62
case study: aggregates and sample size,
60-61

Index | 541

columns, 47-51
dplyr basics, 41
groups, 53-58
nycflights13 dataset, 40
pipes, 51-53
rows, 42-46
data types, 365
data visualization, 3
adding aesthetics and layers, 10-14
common problems, 30
first steps, 4-14
ggplot creation, 7-9
ggplot2 calls, 16
penguins data frame, 4-6
saving your plots, 30
visualizing distributions, 16-20
visualizing relationships, 21-29
data.frame() function, 408
databases, 377-394
basics, 378
connecting from R, 378-381
DBI basics, 380
dbplyr basics, 381-383
duckdb and, 379
function translations, 391-394
loading data into, 380
SQL, 383-391
date-time
components, 305-312
getting components, 305-308
modifying components of, 312
rounding dates to nearby unit of time,
309-312
date/times
creating, 298-304
creating during import, 299
creating from individual components,
301-304
creating from strings, 300
switching between date-time and date, 304
dates and times, 297-319
creating date/times, 298-304
date-time components, 305-312
JSON, 420
time spans, 313-317
time zones, 317-319
dbListTable() function, 380
dbplyr, 381
(see also databases)

Arrow and, 402
basics, 381-383
dbReadTable() function, 380
dbWriteTable() function, 380
density plot, 20
distinct() function, 45
distributions
categorical variables, 17
numerical variables, 18-20
summary functions for, 238
visualizing, 16-20
double quotes ("), 244
dplyr, 41
(see also data transformation)
Arrow and, 400-402
primary functions, 41
verbs as special cases of [, 492-493
duckdb, 379, 402
durations, 314

E
EDA (see exploratory data analysis)
elements, HTML
basics, 428
extracting plain-text contents of, 432
finding, 430
nesting selections, 431
embracing a variable
figuring out which arguments need to be
embraced, 451
tidy evaluation and, 451
empty groups, 326-328
encoding non-English text, 256
equi joins, 344
escapes (\), 244, 269
ethical issues, in web scraping, 426-427
Excel, 357-368
basics, 358
data types, 365
formatted output, 367
importing data from, 357-368
reading Excel spreadsheets, 358-365
reading part of a sheet, 363-365
reading worksheets, 361-363
writing to, 366
explicit missing values
explicit missing values, 321-323
fixed values, 322
last observation carried forward, 322

542 | Index

NaN, 323

exploratory data analysis (EDA), 145-167
covariation, 154-163
patterns and models, 164-166
unusual values, 151-153
using questions as tools, 146
variation, 146-151

F
faceting, 28, 128-130
facet_grid() function, 129
facet_wrap() function, 28
factors, 285-296
basics, 285-287
empty groups, 326-328
General Social Survey dataset, 287
modifying factor levels, 293-295
modifying factor order, 288-292
ordered, 295
fct_collapse() function, 294
fct_infreq() function, 292
fct_lump_*() functions, 294
fct_recode() function, 293
fct_reorder() function, 289-291
figures
options, 520
in Quarto documents, 517-520
sizing, 518-519
files, reading multiple
handling failures, 483
heterogeneous data, 481-482
listing files in a directory, 475
lists, 476
name of file as data, 478-479
one complex iteration versus multiple sim-
ple iterations, 480
purrr:map() and purrr::list_rbind(),
477-478
saving your work, 480
filter() function, 42-43, 471, 492
filtering joins
about, 339
row matching and, 346
fixed() function, 277
flags, regex, 275-277
floating-point comparisons, 207
floor() function, 229
for loops, 499-500
foreign keys, 331

FROM clause, SQL, 384, 386
full join, 343
function translations, 391-394
functional programming tools, 465
functions, writing, 443-464
calling, 36
calling a single function, 468
calling multiple functions, 468-470
copy-and-paste versus, 443
data frame functions, 449-455
plot functions, 456-463
style for names/arguments, 463
vector functions, 444-448

G

geom, defined, 8
geometric objects, in plots, 122-127
geom_bin2d() function, 162
geom_point() function, 8
geom_smooth() function, 123
geom_text() function, 172
geom_text_repel() function, 174
ggplot, creating, 7-9
ggplot2, 9
(see also layers)
calls, 16
code style, 67
missing values, 9
ggsave() function, 30
Google, as source of information on R, 111
Google Sheets, 371-374
authentication, 374
basics, 371
reading, 372-373
writing to, 374
grammar of graphics
ggplot2 and, 3
layers and, 143-144
(see also layers)
GROUP BY clause, SQL, 384, 386
groups
.by argument, 58
data transformation and, 53-58
grouping by multiple variables, 56
group_by(), 54
slice_ functions, 55
summarize(), 54-55
ungrouping, 57
group_by() function, 54

Index |

543

guides (axes and legends), 178-181
guides() function, 182

H

header row, 97
headers, data and variable names in, 80
help, getting
from Google, 111
investing in yourself, 113
preparing a reprex, 111-113
hierarchical data, 403-408
case study: deeply nested list-column,
416-419
case study: relational data, 414-416
case study: very wide data, 412-414
JSON, 420-423
lists, 404-408
unnesting, 408-411
HTML, 427
attributes of tags, 429
elements, 428
extracting plain-text contents of, 432
tables, 433
htmlwidgets, 533
html_attr() function, 432
html_element() function, 430-432
html_text2() function, 432

I
TANA time zones, 317
identifiers, consecutive, 233
if_else() function, 101, 216
images, saving plots as, 30
implicit missing values
generating with complete(), 324
pivoting, 324
revealing with joins, 325
IN operator, SQL, 387
indirection, 450-451
inequality joins, 349
interquartile range (IQR), 22, 237
intervals of time, 316
IQR() function, 237
is.na() function, 208-209
1SO8601 date standard, 299
iteration, 465-488
modifying multiple columns, 466-474

one complex iteration versus multiple sim-

ple iterations, 480

reading multiple files, 475-483

saving multiple outputs, 483-488

saving multiple outputs to a database,
483-485

saving multiple plots, 487

writing multiple CSV files, 485-486

J

janitor::clean_names() function, 100
jitter, 139
joins, 329-353
basic, 334-339
cross joins, 348
filtering, 339, 346
how they work, 341-346
inequality joins, 349
keys, 330-334
mutating joins, 335-337
non-equi joins, 346-352
overlap joins, 351
rolling joins, 349-351
row matching, 344-346
specifying join keys, 337-338
SQL, 390
join_by() function, 337-338
JSON, 420-423
data types, 420
jsonlite package, 421
starting the rectangling process, 422
jsonlite package, 421

K

keys
checking primary keys, 332
joins and, 330-334
primary and foreign, 330-332
specifying join keys, 337-338
surrogate, 333

L

labels argument, 178-180
labels/labeling
chunks, 514
communication and, 170
plot functions, 461
labs() function, 13, 170
lapply() function, 498
layers, 117-144

544 | Index

adding to visualization, 10-14
aesthetic mappings, 118-121
coordinate systems, 141
facets, 128-130
geometric objects, 122-127
layered grammar of graphics, 143-144
position adjustments, 136-140
statistical transformations, 131-135

layout, 196-199

left join, 342

left_join() function, 335-337

legal issues, web scraping and, 426-427
copyright law, 427
personally identifiable information, 426
terms of service, 426

legend keys, 178-181

legend layout, 181-183

lengthening data, 73-81
data and variable names in column headers,

80

data in column names, 73-76
many variables in column names, 78-80
pivoting, 76-78

letters in strings, 254
length, 254
non-English variations, 257

list() function, 404

list-columns, 407-411

list.files() function, 475

lists, 404-408

literal characters, 262

locale-dependent functions, 258

log() function, 228

logarithms, 228

logical subsetting, 214

logical summaries, 213

logical vectors, 205-219
Boolean algebra, 210-212
comparisons, 206-209
conditional transformations, 216-219
numeric summaries of, 214
summaries, 213-215

lubridate package, 298
(see also dates and times)

M

magrittr package, 53
make_date() function, 301
make_datetime() function, 301

many-to-many joins, 345
mappings, aesthetic, 118-121
mathematical operators, spaces and, 65
mean() function, 214, 235
median() function, 235, 468-470
metacharacters, 262
min_rank() function, 231
missing values, 321-328
Boolean algebra rules for, 211
comparisons and, 208
explicit missing values, 321-323
factors and empty groups, 326-328
fixed values, 322
ggplot2 and, 9
implicit missing values, 323-325
is.na() and, 208-209
last observation carried forward, 322
NaN, 323
mode, 236
models, 164-166
modular arithmetic, 227
mutate() function, 446-447
columns and, 47-48
pairing summary functions with, 240
mutating joins, 335-337

N

n() function, 223

names
code style for, 64
columns, 470

NaN (not a number), 323

natural joins, 337

nesting selections, 431

non-English text, 256-259
coll() function, 277
encoding, 256
letter variations, 257
locale-dependent functions, 258

non-equi joins, 346-352
cross joins, 348
inequality joins, 349
overlap joins, 351
rolling joins, 349-351

nonsyntactic names, 99

NULL operator, SQL, 387

null, JSON handling of, 420

numbers, working with, 221-241
counts, 222-224

Index

545

general transformations, 231-234
JSON, 420
making numbers from strings, 221
numeric summaries, 235-240
numeric transformations, 224-230
numeric comparisons, 206-209
(see also comparisons)
numeric summaries, 214
numeric summary functions, 235-240
numeric transformations, 224-230
arithmetic and recycling rules, 225
cumulative and rolling aggregates, 230
cutting numbers into ranges, 230
logarithms, 228
minimum and maximum, 226
modular arithmetic, 227
rounding, 228
numeric vectors (see numbers, working with)
numerical variables, 18-20
covariation between, 161-163
covariation between categorical variables
and, 154-158
visualizing relationships between categorical
variables and, 22
visualizing relationships between two
numerical variables, 26

0
objects
JSON, 420
naming conventions, 35
observation, defined, 5
offsets, 232
operator precedence, regex, 272
options, for customizing chunk output, 514,
516
ORDER BY clause, SQL, 384, 389
order of operations, Boolean algebra, 211
ordered() factors, 295
outer joins, 342
outliers, variation and, 149-151
overlap joins, 351
overplotting, 139

P

parentheses (), in regex, 272

parquet files, 109, 398-399
(see also Arrow)
advantages of, 398

partitioning, 398
performance impact of switching from CSV
to, 401
parse_double() function, 222
parse_number() function, 222
partial matching, 495
paths, relative versus absolute, 95
pattern control, regex, 275-277
patterns, 164-166
PDF output, from Quarto, 520
per-operation grouping, 58
periods, 315-316
personally identifiable information, 426
pipe (|>), 41, 51-53
%>% pipe versus, 53
style rules, 65-67
pivoting
how it works, 76-78
implicit missing values and, 324
tidyr and, 73
pivot_longer() function
across() versus, 472-474
organizing variables in column names, 79
pivot_wider() function, 83-85
plot functions, 456-462
adding more variables to, 457
Base R, 500
combining with other tidyverse packages,
459-461
labeling, 461
plots, saving as image, 30
pmax() function, 226
pmin() function, 226
position adjustments, 136-140
positions, summary functions for, 239
presentations, Quarto and, 533
primary keys
about, 330-332
checking, 332
projects, 91-96
relative versus absolute paths, 95
RStudio support for file organization, 93-95
source of truth for, 91-93
working directory for, 93
purrr:list_rbind() function, 477
purrr:map() function, 477

Q

quantifiers, regex, 262, 272

546 | Index

quantile() function, 236 counting matches, 265-266

Quarto, 505-529 creating a pattern with code, 280-281
basics, 506-509 detecting matches, 264-265
bibliographies and citations, 526-527 escaping for matching literals, 269
caching, 522-523 extracting variables, 267-268
chunk label, 514 fixed matches, 277
chunk options, 514 flags, 275-277
code chunks, 513-517 grouping and capturing, 273-274
document formats, 532 key functions, 264-268
document parameters, 525 operator precedence and parentheses, 272
figures, 517-520 pattern basics, 262-264
formats other than HTML, 531-537 pattern control, 275-277
generating websites and books, 536-537 pattern details, 268
htmlwidgets, 533 practical applications, 277-281
interactivity options, 533-535 quantiﬁers, 272
output options, 531, 537 replacing values, 267
presentations, 533 tidyverse applications, 282
self-contained documents, 524 relationships, visualizing, 21-29
shiny package, 534-535 between numerical and categorical vari-
source editor, 511 ables, 22
tables, 521 between three or more variables, 27
troubleshooting, 523 between two categorical variables, 24
visual editor, 509-511 relative paths, absolute paths versus, 95
workflow, 527-528 relocate() function, 50, 493
YAML header, 524-527 rename() function, 50

queries, SQL, 384 reprex, creating, 111-113

reserved words, 386

R right join, 343

rolling aggregates, 230
rolling joins, 349-351
round() function, 228

R community, 113
R scripts, as source of truth, 91-93
ranks/ranking, 231

raw strings, 245 r oundiflg, 228
readr package (see data import) row-oriented databases, 378
rows, 42-46

readxl package, 357

(see also Excel) arrange(), 44
read_csv() function, 98, 101 common mistakes when working with, 44

read_excel() function, 358-361 diagnosing widening problems, 251-253
read_html() function, 429 distinct(), 45
read_rds() function, 108 filter(), 42-43

read_sheet() function, 371-373 separ: ating. strings into, 249
rectangling, 422 transforming, 42-46

(see also hierarchical data) r Ow_nlumber () function, 232
recycling rules, 225 RStudio

regular expressions (regex), 261 cc.)mman.d palette, 63
anchors, 270 diagnostics, 89

Base R applications, 282 prqjects, 93-.95 .
Boolean operations, 279-280 saving/naming scripts, 90-91
character classes, 271-274 source editor for Quarto documents, 511

checking work with, 277-278

Index | 547

visual editor for Quarto documents,
509-511
RStudio Server, 93
rvest (see web scraping)

S

sample size, aggregates and, 60-61
sapply() function, 498
scales, 177-192

axis ticks and legend keys, 178-181

default scales, 177

legend layout, 181-183

replacing, 183-189

zooming, 189-192
scale_color_manual() function, 188
scaling, 10
scripts, 87-91

RStudio diagnostics, 89

running code, 88

saving and naming, 90-91
sectioning comments, 67
SELECT clause, SQL, 384, 385-386
select() function, 49, 493
SelectorGadget, 434
selectors, 433
self-joins, 348
semi-joins, 339
separate_longer_delim() function, 249
separate_longer_position() function, 250

separate_wider_delim() function, 250, 251-253

separate_wider_position() function, 251
separate_wider_regex() function, 267-268
set_names() function, 478
shiny, 534-535
short-circuiting operators, 210
single quotes ('), 244
slice_ functions, 55
snake_case, 35
spaces, code style for, 65
spread of data, 237
spreadsheets, 357-375
data types, 365
Excel, 357-368
Google Sheets, 371-374
importing data from, 357-375
reading part of an Excel sheet, 363-365
SQL, 383-391
basics, 383-385
FROM clause, 386

GROUP BY clause, 386
joins, 390
ORDER BY clause, 389
SELECT clause, 385-386
subqueries, 389
WHERE clause, 387-388
statements, SQL, 383
statistical transformations, 131-135
str() function, 404
stringr package, 243-259
strings, 243-259
creating, 244-246
creating date/times from, 300

creating many strings from data, 246-248
diagnosing widening problems, 251-253

escapes, 244

extracting data from, 249-253

JSON, 420

making numbers from, 221

non-English text, 256-259

raw, 245

separating into columns, 250

separating into rows, 249

str_c(), 246

str_flatten(), 248

str_glue(), 247

subsetting, 255

working with individual letters, 254
str_c() function, 246
str_count() function, 265-266
str_detect() function, 264
str_flatten() function, 248
str_glue() function, 247
str_length() function, 254
str_remove() function, 267
str_replace() function, 267
str_sub() function, 255
str_subset() function, 265
str_view() function, 262
str_which() function, 265
style (see code style)
styler package, 63
subqueries, SQL, 389
subset() function, 493
subsetting

logical, 214

strings, 255
sum() function, 214
summaries, of logical vectors, 213-215

548 | Index

logical subsetting, 214
logical summaries, 213
numeric summaries, 214
summarize() function, 54-55, 248
summary functions, 448
distributions, 238
minimum/maximum/quantiles, 236
numeric summaries, 235-240
pairing with mutate(), 240
positions, 239
spread of data, 237
surrogate keys, 333

T
tables

databases and, 378

HTML, 433

Quarto, 521
tabular data, 5
tapply() function, 498
tbl() function, 381
terms of service, 426
text, non-English (see non-English text)
theme() function, 181-183
themes, 193-195
tibble() function, 109
tibbles, 495

data frames versus, 40, 492

defined, 40

list-columns in, 407-407
tidy data (see data tidying)
tidy evaluation, 450-451
tidy selection, data masking versus, 454-455
tidy tabular data, 5
tidyr, 69

(see also data tidying)
tidyr::complete() function, 324
tidyverse, regex applications for, 282
time (see dates and times)
time spans, 313-317

durations, 314

intervals, 316

periods, 315-316
time zones, 317-319
to_duckdb() function, 402
tribble() function, 109
truth, source of, 91-93

U

ungroup() function, 57
unnest() function, 411
unnesting, 408-411
inconsistent types, 410
unnest_longer(), 409
unnest_wider(), 409
unnest_auto() function, 411
unnest_longer() function, 409
unnest_wider() function, 409
unusual values
handling, 151-153
variation and, 149-151
UTC time zones, 318
UTEF-8, 256

v
values
defined, 5
missing (see missing values)
variation (see variation)
vapply() function, 498
variables
categorical (see categorical variables)
data and variable names in column headers,
80
defined, 5
extracting with regex, 267-268
grouping by multiple variables, 56
numerical (see numerical variables)
plot functions and, 457
visualizing relationships between numerical
and categorical variables, 22
working with many variables in column
names, 78-80
variation
EDA and, 146-151
typical values, 147-149
unusual values, 149-151
vector functions, 444-448
improving a function, 446
mutate functions, 446-447
summary functions, 448
writing a function, 445-446
vectors
logical (see logical vectors)
numerical (see numbers, working with)
subsetting, 490
Venn diagram, 344

Index | 549

View() function, 405 getting help, 111-114
object names, 35
W projects, 91-96

web scraping, 425-440 Qu.arto, 027528
dynamic websites, 439 scripts, 87-91
examples, 434-439 working directory, 93
extracting data, 429-433 worksheets, Excel, 361-363

finding HTML elements, 430 write_csv() function, 108
finding the right selectors, 433 write_rds() function, 108
HTML basics. 427 write_tsv() function, 108
IMDD top films example, 436-439
legal/ethical issues, 426-427 X
nesting selections, 431 xor() function, 210
Star Wars example, 434-436

websites, generating with Quarto, 536-537 Y

WHERE clause, SQL, 384, 387-388 YAML header

where() function, 467

RN bibliographies and citations, 526-527
widening data, 81-85

document parameters, 525
workflow Quarto and, 524-527

bas'%cs, 33-3 7. self-contained documents, 524
calling functions, 36

code style, 63-68 Z
coding basics, 33

comments, 34 zooming, 189-192

550 | Index

About the Authors

Hadley Wickham is Chief Scientist at Posit, PBC, winner of the 2019 COPSS award,
and a member of the R Foundation. He builds tools (both computational and cogni-
tive) to make data science easier, faster, and more fun. His work includes packages
for data science (like the tidyverse, which includes ggplot2, dplyr, and tidyr) and
principled software development (e.g. roxygen2, testthat, and pkgdown). He is also a
writer, educator, and speaker promoting the use of R for data science. Learn more on
his website.

Mine Cetinkaya-Rundel is Professor of the Practice at the Department of Statistical
Science at Duke University and Developer Educator at Posit, PBC. Mines work
focuses on innovation in statistics and data science pedagogy, with an emphasis
on computing, reproducible research, student-centered learning, and open source
education. Mine has authored introductory statistics textbooks as part of the Open-
Intro project, she is the creator and maintainer of Data Science in a Box, and she
teaches the popular Statistics with R specialization on Coursera. Mine is the winner
of the 2021 Hogg Award for Excellence in Teaching Introductory Statistics, the 2018
Harvard Pickard Award, and the 2016 ASA Waller Education Award. Learn more on
her website.

Garrett Grolemund is a statistician, teacher, and the director of learning at Posit
Academy. He is the author of Hands-On Programming with R (O’Reilly) and an early
contributor to the tidyverse.

Colophon

The animal on the cover of R for Data Science is the kakapo (Strigops habroptilus).
Also known as the owl parrot, the kakapo is a large flightless bird native to New
Zealand. Adult kakapos can grow up to 64 centimeters in height and 4 kilograms in
weight. Their feathers are generally yellow and green, although there is significant
variation between individuals. Kakapos are nocturnal and use their robust sense of
smell to navigate at night. Although they cannot fly, kakapos have strong legs that
enable them to run and climb much better than most birds.

The name kakapo comes from the language of the native Maori people of New
Zealand. Kakapos were an important part of Maori culture, both as a food source and
as a part of Maori mythology. Kakapo skin and feathers were also used to make cloaks
and capes.

Due to the introduction of predators to New Zealand during European colonization,
kakapos are now critically endangered, with less than 200 individuals currently living.
The government of New Zealand has been actively attempting to revive the kakapo
population by providing special conservation zones on three predator-free islands.

http://hadley.nz
https://mine-cr.com

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on Wood’s Animate Creations.
The cover fonts are Gilroy Semibold and Guardian Sans. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is
Dalton Maag’s Ubuntu Mono.

O'REILLY"

Learn from experts.
Become one yourself.

Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

http://www.oreilly.com/online-learning

	Copyright
	Table of Contents
	Introduction
	Preface to the Second Edition
	What You Will Learn
	How This Book Is Organized
	What You Won’t Learn
	Modeling
	Big Data
	Python, Julia, and Friends

	Prerequisites
	R
	RStudio
	The Tidyverse
	Other Packages

	Running R Code
	Other Conventions Used in This Book
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments
	Online Edition

	Part I. Whole Game
	Chapter 1. Data Visualization
	Introduction
	Prerequisites

	First Steps
	The penguins Data Frame
	Ultimate Goal
	Creating a ggplot
	Adding Aesthetics and Layers
	Exercises

	ggplot2 Calls
	Visualizing Distributions
	A Categorical Variable
	A Numerical Variable
	Exercises

	Visualizing Relationships
	A Numerical and a Categorical Variable
	Two Categorical Variables
	Two Numerical Variables
	Three or More Variables
	Exercises

	Saving Your Plots
	Exercises

	Common Problems
	Summary

	Chapter 2. Workflow: Basics
	Coding Basics
	Comments
	What’s in a Name?
	Calling Functions
	Exercises
	Summary

	Chapter 3. Data Transformation
	Introduction
	Prerequisites
	nycflights13
	dplyr Basics

	Rows
	filter()
	Common Mistakes
	arrange()
	distinct()
	Exercises

	Columns
	mutate()
	select()
	rename()
	relocate()
	Exercises

	The Pipe
	Groups
	group_by()
	summarize()
	The slice_ Functions
	Grouping by Multiple Variables
	Ungrouping
	.by
	Exercises

	Case Study: Aggregates and Sample Size
	Summary

	Chapter 4. Workflow: Code Style
	Names
	Spaces
	Pipes
	ggplot2
	Sectioning Comments
	Exercises
	Summary

	Chapter 5. Data Tidying
	Introduction
	Prerequisites

	Tidy Data
	Exercises

	Lengthening Data
	Data in Column Names
	How Does Pivoting Work?
	Many Variables in Column Names
	Data and Variable Names in the Column Headers

	Widening Data
	How Does pivot_wider() Work?

	Summary

	Chapter 6. Workflow: Scripts and Projects
	Scripts
	Running Code
	RStudio Diagnostics
	Saving and Naming

	Projects
	What Is the Source of Truth?
	Where Does Your Analysis Live?
	RStudio Projects
	Relative and Absolute Paths

	Exercises
	Summary

	Chapter 7. Data Import
	Introduction
	Prerequisites

	Reading Data from a File
	Practical Advice
	Other Arguments
	Other File Types
	Exercises

	Controlling Column Types
	Guessing Types
	Missing Values, Column Types, and Problems
	Column Types

	Reading Data from Multiple Files
	Writing to a File
	Data Entry
	Summary

	Chapter 8. Workflow: Getting Help
	Google Is Your Friend
	Making a reprex
	Investing in Yourself
	Summary

	Part II. Visualize
	Chapter 9. Layers
	Introduction
	Prerequisites

	Aesthetic Mappings
	Exercises

	Geometric Objects
	Exercises

	Facets
	Exercises

	Statistical Transformations
	Exercises

	Position Adjustments
	Exercises

	Coordinate Systems
	Exercises

	The Layered Grammar of Graphics
	Summary

	Chapter 10. Exploratory Data Analysis
	Introduction
	Prerequisites

	Questions
	Variation
	Typical Values
	Unusual Values
	Exercises

	Unusual Values
	Exercises

	Covariation
	A Categorical and a Numerical Variable
	Two Categorical Variables
	Two Numerical Variables

	Patterns and Models
	Summary

	Chapter 11. Communication
	Introduction
	Prerequisites

	Labels
	Exercises

	Annotations
	Exercises

	Scales
	Default Scales
	Axis Ticks and Legend Keys
	Legend Layout
	Replacing a Scale
	Zooming
	Exercises

	Themes
	Exercises

	Layout
	Exercises

	Summary

	Part III. Transform
	Chapter 12. Logical Vectors
	Introduction
	Prerequisites

	Comparisons
	Floating-Point Comparison
	Missing Values
	is.na()
	Exercises

	Boolean Algebra
	Missing Values
	Order of Operations
	%in%
	Exercises

	Summaries
	Logical Summaries
	Numeric Summaries of Logical Vectors
	Logical Subsetting
	Exercises

	Conditional Transformations
	if_else()
	case_when()
	Compatible Types
	Exercises

	Summary

	Chapter 13. Numbers
	Introduction
	Prerequisites

	Making Numbers
	Counts
	Exercises

	Numeric Transformations
	Arithmetic and Recycling Rules
	Minimum and Maximum
	Modular Arithmetic
	Logarithms
	Rounding
	Cutting Numbers into Ranges
	Cumulative and Rolling Aggregates
	Exercises

	General Transformations
	Ranks
	Offsets
	Consecutive Identifiers
	Exercises

	Numeric Summaries
	Center
	Minimum, Maximum, and Quantiles
	Spread
	Distributions
	Positions
	With mutate()
	Exercises

	Summary

	Chapter 14. Strings
	Introduction
	Prerequisites

	Creating a String
	Escapes
	Raw Strings
	Other Special Characters
	Exercises

	Creating Many Strings from Data
	str_c()
	str_glue()
	str_flatten()
	Exercises

	Extracting Data from Strings
	Separating into Rows
	Separating into Columns
	Diagnosing Widening Problems

	Letters
	Length
	Subsetting
	Exercises

	Non-English Text
	Encoding
	Letter Variations
	Locale-Dependent Functions

	Summary

	Chapter 15. Regular Expressions
	Introduction
	Prerequisites

	Pattern Basics
	Key Functions
	Detect Matches
	Count Matches
	Replace Values
	Extract Variables
	Exercises

	Pattern Details
	Escaping
	Anchors
	Character Classes
	Quantifiers
	Operator Precedence and Parentheses
	Grouping and Capturing
	Exercises

	Pattern Control
	Regex Flags
	Fixed Matches

	Practice
	Check Your Work
	Boolean Operations
	Creating a Pattern with Code
	Exercises

	Regular Expressions in Other Places
	Tidyverse
	Base R

	Summary

	Chapter 16. Factors
	Introduction
	Prerequisites

	Factor Basics
	General Social Survey
	Exercise

	Modifying Factor Order
	Exercises

	Modifying Factor Levels
	Exercises

	Ordered Factors
	Summary

	Chapter 17. Dates and Times
	Introduction
	Prerequisites

	Creating Date/Times
	During Import
	From Strings
	From Individual Components
	From Other Types
	Exercises

	Date-Time Components
	Getting Components
	Rounding
	Modifying Components
	Exercises

	Time Spans
	Durations
	Periods
	Intervals
	Exercises

	Time Zones
	Summary

	Chapter 18. Missing Values
	Introduction
	Prerequisites

	Explicit Missing Values
	Last Observation Carried Forward
	Fixed Values
	NaN

	Implicit Missing Values
	Pivoting
	Complete
	Joins
	Exercises

	Factors and Empty Groups
	Summary

	Chapter 19. Joins
	Introduction
	Prerequisites

	Keys
	Primary and Foreign Keys
	Checking Primary Keys
	Surrogate Keys
	Exercises

	Basic Joins
	Mutating Joins
	Specifying Join Keys
	Filtering Joins
	Exercises

	How Do Joins Work?
	Row Matching
	Filtering Joins

	Non-Equi Joins
	Cross Joins
	Inequality Joins
	Rolling Joins
	Overlap Joins
	Exercises

	Summary

	Part IV. Import
	Chapter 20. Spreadsheets
	Introduction
	Excel
	Prerequisites
	Getting Started
	Reading Excel Spreadsheets
	Reading Worksheets
	Reading Part of a Sheet
	Data Types
	Writing to Excel
	Formatted Output
	Exercises

	Google Sheets
	Prerequisites
	Getting Started
	Reading Google Sheets
	Writing to Google Sheets
	Authentication
	Exercises

	Summary

	Chapter 21. Databases
	Introduction
	Prerequisites

	Database Basics
	Connecting to a Database
	In This Book
	Load Some Data
	DBI Basics

	dbplyr Basics
	SQL
	SQL Basics
	SELECT
	FROM
	GROUP BY
	WHERE
	ORDER BY
	Subqueries
	Joins
	Other Verbs
	Exercises

	Function Translations
	Summary

	Chapter 22. Arrow
	Introduction
	Prerequisites

	Getting the Data
	Opening a Dataset
	The Parquet Format
	Advantages of Parquet
	Partitioning
	Rewriting the Seattle Library Data

	Using dplyr with Arrow
	Performance
	Using dbplyr with Arrow

	Summary

	Chapter 23. Hierarchical Data
	Introduction
	Prerequisites

	Lists
	Hierarchy
	List Columns

	Unnesting
	unnest_wider()
	unnest_longer()
	Inconsistent Types
	Other Functions
	Exercises

	Case Studies
	Very Wide Data
	Relational Data
	Deeply Nested
	Exercises

	JSON
	Data Types
	jsonlite
	Starting the Rectangling Process
	Exercises

	Summary

	Chapter 24. Web Scraping
	Introduction
	Prerequisites

	Scraping Ethics and Legalities
	Terms of Service
	Personally Identifiable Information
	Copyright

	HTML Basics
	Elements
	Attributes

	Extracting Data
	Find Elements
	Nesting Selections
	Text and Attributes
	Tables

	Finding the Right Selectors
	Putting It All Together
	Star Wars
	IMDb Top Films

	Dynamic Sites
	Summary

	Part V. Program
	Chapter 25. Functions
	Introduction
	Prerequisites

	Vector Functions
	Writing a Function
	Improving Our Function
	Mutate Functions
	Summary Functions
	Exercises

	Data Frame Functions
	Indirection and Tidy Evaluation
	When to Embrace?
	Common Use Cases
	Data Masking Versus Tidy Selection
	Exercises

	Plot Functions
	More Variables
	Combining with Other Tidyverse Packages
	Labeling
	Exercises

	Style
	Exercises

	Summary

	Chapter 26. Iteration
	Introduction
	Prerequisites

	Modifying Multiple Columns
	Selecting Columns with .cols
	Calling a Single Function
	Calling Multiple Functions
	Column Names
	Filtering
	across() in Functions
	Versus pivot_longer()
	Exercises

	Reading Multiple Files
	Listing Files in a Directory
	Lists
	purrr::map() and list_rbind()
	Data in the Path
	Save Your Work
	Many Simple Iterations
	Heterogeneous Data
	Handling Failures

	Saving Multiple Outputs
	Writing to a Database
	Writing CSV Files
	Saving Plots

	Summary

	Chapter 27. A Field Guide to Base R
	Introduction
	Prerequisites

	Selecting Multiple Elements with [
	Subsetting Vectors
	Subsetting Data Frames
	dplyr Equivalents
	Exercises

	Selecting a Single Element with $ and [[
	Data Frames
	Tibbles
	Lists
	Exercises

	Apply Family
	for Loops
	Plots
	Summary

	Part VI. Communicate
	Chapter 28. Quarto
	Introduction
	Prerequisites

	Quarto Basics
	Exercises

	Visual Editor
	Exercises

	Source Editor
	Exercises

	Code Chunks
	Chunk Label
	Chunk Options
	Global Options
	Inline Code
	Exercises

	Figures
	Figure Sizing
	Other Important Options
	Exercises

	Tables
	Exercises

	Caching
	Exercises

	Troubleshooting
	YAML Header
	Self-Contained
	Parameters
	Bibliographies and Citations

	Workflow
	Summary

	Chapter 29. Quarto Formats
	Introduction
	Output Options
	Documents
	Presentations
	Interactivity
	htmlwidgets
	Shiny

	Websites and Books
	Other Formats
	Summary

	Index
	About the Authors
	Colophon

